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Preface

Numerical works of Edward Lorenz on the fluid convection model of atmospheric
weather and of Norman Zabusky and Martin Kruskal on the initial value problem
of the Korteweg-de-Veries (KdV) equation had paved the way for identifying two
of the important basic concepts, namely Chaos and Soliton. These developments
indeed triggered the golden era of modern nonlinear dynamics in the early 1960s.
Since then, nonlinear science has emerged as a highly interdisciplinary subject hav-
ing its roots in every branch of science and technology and even extending its prin-
ciples and concepts to sociology, humanities, etc.

Chaos synchronization, a patently nonlinear phenomenon, has also emerged as
a highly active interdisciplinary research topic from early 1990s after the works of
Pecora and Carroll, and the earlier works of Fujisaka and Yamada. The possibility of
chaos synchronization has been demonstrated by introducing appropriate coupling
between identical chaotically evolving dynamical systems. The phenomenon is of
interest not only from a theoretical point of view but also has potential applications
in diverse subjects such as biology, neuroscience, laser physics, chemical, electrical
and fluid mechanical systems as well as in secure communication, cryptography and
so on. Subsequently, several generalizations and interesting applications have been
developed. The emergence of coherent behavior from the collective dynamics of
systems ranging from just two to an ensemble/network of interacting oscillators can
be explained by this phenomenon. Also synchronizability of hyperchaotic systems
with just a single scalar coupling motivates further intensive research in synchroniz-
ing high-dimensional systems with appropriate applications.

In this connection, time-delay systems described by delay differential equations,
whose discussion forms the main theme of this monograph, are essentially infi-
nite dimensional in nature and they can admit hyperchaotic attractors with large
number of positive Lyapunov exponents for suitable nonlinearities. Even a simple
first order scalar time-delay system with appropriate nonlinearity can exhibit hyper-
chaotic attractors for suitable values of parameters. Time-delay is also ubiquitous in
many physical systems due to finite switching speeds of amplifiers, finite lengths of
vehicles in traffic flows, finite signal propagation time in biological networks and
circuits, memory effects and so on. Therefore the study of chaos synchronization
in coupled time-delay systems and the effect of time-delay feedback, which give
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viii Preface

rise to plethora of new collective dynamics, have become a center of attraction in
nonlinear dynamics.

This monograph aims to present the basic materials on chaotic time-delay sys-
tems and their synchronization to research students of interdisciplinary study. The
basics on the dynamics of time-delay systems and on the synchronization can even
serve as a tutorial for master-level students to provide further insight into their
knowledge on advanced topics in nonlinear science. It is also intended as an intro-
duction to both theoreticians and experimentalists, particularly in electronics, as
circuit details on time-delay systems and their PSPICE simulations are provided at
appropriate places. Further, to kindle the interest of researchers, we have tried to
provide a detailed discussion on the effect of time-delay feedback which gives rise
to new collective dynamics and on chaos synchronization in networks of time-delay
systems.

Specifically, the first four chapters are devoted to the basics of time-delay sys-
tems including different types of delays along with their applications in different
areas of science and technology, salient features of time-delay systems, detailed
stability and bifurcation analysis, numerical simulation of time-delay systems, col-
lection of chaotic time-delay systems, electronic circuits of a few time-delay sys-
tems, their PSPICE simulations and applications of time-delay systems. Special
attention has been given to explain the phenomenon of amplitude death due to
delay, time-delay induced bifurcations, chimera states and networks with time-delay
feedback/coupling in Chaps. 5 and 6, which are of current research topics in the
literature. Different types of synchronizations (complete, generalized, lag, anticipa-
tory and phase) and their transitions in coupled time-delay systems with constant
delay are discussed in Chaps. 7, 8, 9 and 10. Synchronization with delay time
modulation is discussed in Chap. 11. Exact solution for certain time-delay systems
(car following models) are provided in Chap. 12. This monograph also contains
four appendices: The first one is on calculating Lyapunov exponents of time-delay
systems, while the second one deals with different types of synchronizations and
their respective characterizations. The third appendix provides a brief discussion on
recurrence analysis used for data analyses which has also been used for identifying
different types of synchronization transitions. The final appendix contains a list of
time-delay systems of practical interest.

We hope this monograph bridges a gap in the literature in providing basic materi-
als on chaotic time-delay systems and their synchronization along with some exper-
imental realizations using electronic circuits. Although several books are available
on synchronization in chaotic systems, some of them are focused on specific appli-
cations and others without delay systems or delay coupling. Further, the available
books on time-delay systems have also been focused either on complete mathemat-
ical description or on applications. However, in the present monograph, we have
endeavoured to provide special attention on scalar chaotic/hyperchaotic time-delay
systems including some higher order ones occurring in different branches of science
and technology and also on the synchronization of their coupled versions.

In the course of our studies on synchronization and the preparation of this mono-
graph, we have received considerable support from many colleagues, students and
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friends. In particular, we are very thankful to Dr. J. H. Sheeba for reading the
manuscript and helping to organize Chap. 6 on networks. Mr. R. Suresh has helped
us intensively in the preparation of the manuscript to whom we express our special
thanks. We are also thankful to Ms. A. Durga Devi and Mr. B. Subash for their
assistance in the preparation of the manuscript. However, the authors are solely
responsible for any shortcomings, errors or misconceptions that remain.

We would like to express our special gratitude to Prof. Jürgen Kurths with whom
we enjoyed discussions and collaborations and for his interest in this monograph
and advice.

A few of the illustrations are reproduced from other sources and appropriate ref-
erences are give at the relevant places. We sincerely thank the respective authors
and publishers for granting us permission to use those figures. We would also like
to record our thanks to the Department of Science and Technology, Government
of India for providing support under various research projects, particularly IRHPA
and Ramanna Fellowship, which enabled us to undertake this task. DVS is also
especially thankful to the Alexander von Humboldt Foundation for its support in
the form of a Research Fellowship to work at the University of Potsdam, Germany
during which period a major portion of the book was completed. DVS also acknowl-
edges the support from the PIK, Potsdam and the project PHOCUS (EU FET-Open
grant number: 240763). Finally, we thank our family members for their constant
support and encouragement during the course of this project.
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Chapter 1
Delay Differential Equations

1.1 Introduction

Dynamical systems with delay (which we simply designate hereafter as delay
dynamical systems or delay systems) are abundant in nature. They occur in a wide
variety of physical, chemical, engineering, economic and biological systems and
their networks. One can cite many examples where delay plays an important role.

1. Consider spectators sitting in a cricket or football stadium. Eventhough they are
all clapping their hands in synchrony, those who are sitting in opposite directions
do not hear the clapping in synchrony with their own due to propagation delay
from one end to the other [1].

2. In an auditorium echoes arise due to the bouncing of sound waves again and
again at the microphone after reflection from the walls, where again propagation
delay is the underlying reason.

3. Chirping of crickets causes finite time-delay in the propogation of their sound
and this is measured for example to be 10 ms between two crickets that are 3 m
apart [1–3]. Similarly delay arises in crocking of frogs after rain, chirping of
insects, etc.

4. Another physically observed phenomenon is the El Niño/southern oscillation
(ENSO) [4, 5], where delayed feedback represents the effect of oceanic waves.
What happens here is that the westward propagating Rossby waves on the ocean
thermocline which after getting reflected from the western boundary become
eastward propagating Kelvin waves that reenter the coupled ocean atmosphere
system after a time delay equal to their transit time.

5. In the case of control systems, a controller monitors the state of the system and
makes adjustments to the system based on its observations. Since these adjust-
ments can never be made instantaneously, a delay arises between the observation
and the control action [6].

6. Neural activity of central nervous system is a cooperative process of neurons
and the information flow among the neurons is not generally instantaneous and
hence there exists finite delay in the flow of information. For example, the
speed of signal conduction through unmyelinated axonal fibers is of the order
of 1 m/s resulting in time delays up to 80 ms for propagation through the cortical
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network [7, 8]. Significant delays of more than 4% of the characteristic period
of the 40 Hz frequency oscillations of the brain neurons occur during the nerve
conduction between neurons less then 1 mm apart [9, 10].

7. Connection delays in the networks of coupled dynamical systems due to delayed
flow of information among them can lead to a plethora of new behaviours like
phase flip bifurcation, Neimark-Sacker-type bifurcation, etc., and the connection
delays have been proved to improve the synchronizabilty of networks [8, 11].

8. Time-delay is also ubiquitous in many physical systems due to finite switching
speeds of amplifiers, finite signal propagation time in biological networks and
circuits, memory effects and so on [12, 13].

The mathematical description of delay dynamical systems will naturally involve
the delay parameter in some specified way. This can be in the form of differential
equations with delay or difference equations with delay or differential-difference
equations with delay or even might include integral forms (integro-differential
equations). A differential equation with delay describing a dynamical system
belongs to the class of retarded functional differential equations (also sometimes
called retarded differential-difference equations) [14]. One can also consider other
classes of delay differential equations (DDE), namely neutral DDEs and advanced
DDEs [14]. If the evolution of a DDE depends on the past rates of changes in addi-
tion to its present and past values, then the corresponding DDE is referred to as a
neutral DDE. An advanced type DDE is the one in which the evolution depends on
its present and future values [15]. For example, consider the simple case of a linear
scalar first order equation

a0
dx(t)

dt
+ a1

dx(t − τ)

dt
+ b0x(t)+ b1x(t − τ) = f (t), (1.1)

where a0, a1, b0 and b1 are arbitrary constants and f (t) is a forcing function. The
above equation is said to be a DDE of retarded type if a0 �= 0 and a1 = 0; it is said
to be of neutral type if a0 �= 0 and a1 �= 0, and of advanced type if a0 = 0 and
a1 �= 0.

In particular, the evolution of a dynamical variable corresponding to a retarded
DDE depends not only on its present value, x(t), but also on its values at earlier
times, x(t ′), t ′ ∈ (−τ, 0), where τ > 0 is the lag time (or delay time). As a conse-
quence, a time-dependent solution of a system of DDEs is not uniquely determined
by its initial state at a given moment alone. Instead, the solution profile (initial func-
tion) on an interval of length equal to the maximal delay prior to the time t = 0
has to be prescribed. That is, we need to define a set of infinite (but continuous)
number of initial conditions for −τ < t < 0 and hence DDEs are effectively
infinite-dimensional systems, even if we have only a single scalar delay differential
equation.

The most common type of infinite-dimensional dynamical systems involve the
evolution of functions in time. For instance, if we want to study the evolution of
chemical concentrations in time and space, we can phrase the problem as the change
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in time of the spatial distribution of chemicals. This distribution can be represented
by a function of the spatial variables, that is, C = C(r). This is also one of the
reasons for increasing interest of physics community for DDEs as they provide a
natural link with space extended systems by means of the two variable representa-
tion of the time t = χ + θτ , where χ ∈ (0, τ ) is the continuous space variable, and
θ ∈ N is a discrete temporal variable [16–18].

Another way to think about the infinite dimensionality of the function space is
that its basis set is infinite [6]. We can represent the coordinates of a point in an
n-dimensional space as a superposition of n basis vectors, typically the unit vectors
lying along the coordinate axes. On the other hand, we cannot represent a general
function, or even a function satisfying a few special conditions, using a finite super-
position of some simple set of functions. Rather, the expansion of a general function
requires an infinite basis set. For example,

1. Taylor’s theorem implies that continuous, infinitely differentiable functions can
be expanded in terms of the basis set {1, x, x2, · · · }. Only in exceptional cases
(polynomials) does this expansion terminate.

2. The set of functions which are zero at x = 0 and at x = 1 can be represented
as a superposition of the functions {s1, s2, s3, · · · }, where sn = sin(nπx). Most
functions are of course not representable exactly as a finite superposition of sine
waves.

In general, the DDEs (retarded type) of our concern can be represented as

Ẋ = F(t, X (t), X (t −τi )), X = (x1(t), x2(t), · · · , xn(t))
T ,

(
˙= d

dt

)
(1.2)

where the quantities τi > 0, i = 1, 2, ..., are lag times or delay times and F is a
vector valued smooth continuous function. One may further distinguish the types of
DDEs as characterized by

1. a single constant delay τ = τi , i = 1,
2. discrete delays τi , i = 1, 2, ...,
3. distributed delays (the right hand side of the differential equation is a weighted

integral over the past states, see Eq. (1.4) below),
4. state-dependent delays (τi ’s depend on X (t)) and
5. time-dependent (modulated) delays where τi ’s depend on t .

In the following subsections, we will describe briefly the details of the different
kinds of DDE’s mentioned above. A list of specific interesting DDEs are given at
the end of this monograph, in Appendix D.

1.1.1 DDE with Single Constant Delay

A delay differential equation with a single constant delay can be represented in
general as
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Ẋ = F(t, X (t), X (t − τ)), (1.3)

where τ is a positive constant. Several dynamical systems in biology [19, 20],
optics [21–23], economics [24, 25], ecology [26, 27], etc., can be described by
DDEs with a single constant delay. Examples include the following:

1. The Mackey-Glass DDE [19, 20] was introduced as a model for blood produc-
tion in patients with leukemia, where the time interval taken for the maturation of
red blood cells (RBCs) after their production in the bone marrow is considered as
the delay time τ and their respective concentration of the RBCs are considered as
dynamical variables. A detailed analysis of the Mackey-Glass delay differential
equation will be presented later in Chap. 4.

2. The Ikeda system [21–23] was introduced to describe the dynamics of an optical
bistable resonator, and the time taken for the round trip of the light across the
resonator is considered as the delay time τ . More details are presented in Chap. 4.

3. The Kaldor-Kalecki model of business cycle [24, 25] was introduced as a second
order DDE to study the dynamics of economic fluctuations due to investments.
This model is characterized by time delay in an investment function.

4. The dynamics of a predator-prey system has also been described using delay
models with single constant delay [27]. Time-delay in this model enters through
the temporal evolution of prey’s growth and predator’s death.

1.1.2 DDE with Discrete Delays

Delay differential equations with multiple delays are represented by Eq. (1.2) with
more than one positive delay constants τi , i = 1, 2, · · · . These delay times are also
called discrete delays. Dynamical systems with multiple discrete delays are abun-
dant in biology (neurology) [28–30], control theory [31–35], economics [36, 37],
population dynamics [38] and so on. Some examples are the following.

1. Since neuronal activity is the cooperative process of several neurons, the state of
each neuron depends on the history of all the other neurons situated at distinct
locations in the neuronal assembly. Consequently, the i th neuron receives infor-
mation from the other neurons with different delay times and hence there appears
the necessity of multiple discrete delays [28]. Dynamics of different neuronal
assemblies with multiple delays have been studied in [29, 30].

2. Similarly, multiple delays inevitably occur in networks of coupled dynami-
cal systems with different architectures in analogy with the consideration of
weighted networks, where different weights are considered at the couplings to
account for the different degree of interactions between the various dynamical
units in the network [39, 40].

3. Multiple delays were included in a chemostat model in order to study sustained
oscillations in a yeast population [41]. Multiple delays were also included in the
study of the intrinsic growth rate of microorganisms in a chemostat [42].
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4. Several control systems, for example in a huge machinery, require past knowl-
edge of various processes to maintain their proper functioning and hence differ-
ent variables with different delays have to be considered [31–35].

5. Whenever multiple investors, multiple predators and preys, multiple species in
migration/population dynamics are studied, dynamical systems with multiple
delays are considered to be good approximations [36–38].

1.1.3 DDE with Distributed Delay

Delay differential equations with distributed or continuous delay can be represented
in general as

Ẋ = F(t, X (t),

∞∫
0

μ(τ)X (t − τ)dτ). (1.4)

Models based on distributed delays have been proposed as early as the time of
Volterra [43] and used in areas such as biology [44], ecology [45, 46], neurol-
ogy [47], viscoelasticity [48] and economics [49]. It has also been pointed out
in biological sciences that distributed delay leads to more realistic models [50].
Recently it has also been pointed out that distributed delay facilitates amplitude
death of coupled oscillators [51]. Typical examples are as follows.

1. The presence of parallel pathways with a variety of axon sizes and length in
neural networks usually have widespread spatial distribution and there will be a
distribution of conduction velocities along these pathways and a distribution of
propagation delays. Under such a situation, the signal propagation is not instan-
taneous and cannot be described with discrete delays alone and hence one needs
to introduce a continuously distributed delay [52].

2. In populations of spatially separated neurons, the synaptic communications
between them depend on the propagation of action potentials over appreciable
distances and involve distributed delays [53].

3. In a chemostat model of a single species feeding on a limited nutrient supplied
at a constant rate, distributed delay is included since the growth of the species
depends on the past concentration of the nutrients [54].

4. In textile engineering, drafting of textile silver represents one of the most impor-
tant stages of the textile production chain. Unlike metal wire, textile silver is
composed of many discrete fibres which do not change their lengths during
the process and only their positions with respect to each other and the number
of fibres in cross sections are changed due to different speeds of the rollers.
The lengths of individual fibers are random variables varying between a mini-
mum and a maximum and this distribution of fibre lengths include distributed
delay [55].
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1.1.4 DDE with State-Dependent Delay

In population dynamics and epidemic problems the delay time has also been con-
sidered as a function of the state variable itself [see for example [14] and references
therein]. Delay differential equations with state dependent delay can be represented
in general as

Ẋ = F(t, X (t), X (t − τ(t, X (t)))). (1.5)

State-dependent delay appears in processes such as

1. The time delay for turning processes in the milling operations is not only deter-
mined by the rotation of the workpiece but is also affected by the current and the
delayed position of the tool. This results in a DDE with state-dependent delay,
where the delay depends on the present state and also on a delayed one [56, 57].

2. More realistic and interesting models of species growth have considered DDEs
with state dependent delay and have taken into account the seasonality of the
changing environment which in turn depends on past seasons [58].

1.1.5 DDE with Time-Dependent Delay

In the case of time-dependent DDEs, the delay time τ(t) is considered to be depen-
dent on time t explicitly. DDEs with time dependent delay can be represented in
general as

Ẋ = F(t, X (t), X (t − τ(t))). (1.6)

Time-dependent delays have been introduced as a stochastic process in describ-
ing the dynamics of neural networks and internet [59, 60]. Recently, it has also
been demonstrated that the time-dependent delay with stochastic or chaotic modu-
lation [61] or even simple rectified sinusiodal delay time modulation [62] increases
the complexity of chaotic/hyperchaotic attractors of time-delay systems with con-
stant delays so that the reconstructed phase trajectory does not collapse to a simple
manifold, a property different from that of delayed systems with fixed delays. For
example, Kye et al. [61] considered the time-dependent delay of the form

τ(t) = τ0 +
∫ t

0
ξ(s)ds, (1.7)

where ξ(s) is considered to be a stochastic process. A typical example of time-
dependent delay is the following.

An impact fuze with a time-delay between the impact of a flying object such as a
rocket or projectile at the target and the detonation thereof renders possible penetra-
tion of the rocket or projectile into the target before detonation. The flight velocity
or speed of a projectile decreases with increasing flying time. In order to ensure
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for a penetration depth which nevertheless is sufficient, the impact time-delay must
increase with decreasing flight velocity of the rocket or projectile. For this purpose,
a time-delay counter is set by means of a self-destruction counter as a function of
the flight velocity (see for example, www.freepatentsonline/4455939.html).

It is thus clear that the DDEs of retarded type are of considerable relevance in
nonlinear dynamics and occur in a wide range of physical, chemical, biological
and engineering problems. Consequently, they are receiving considerable attention
recently.

1.2 Constructing the Solution for DDEs with Single Constant
Delay

Let us for the moment specialize on DDEs with a single constant delay, that is,
τ = τi =constant with i = 1 in Eq. (1.2) or Eq. (1.3), as most of the studies
on DDEs considered in the literature are only with a single constant delay. This is
because even simple scalar DDEs are hard to analyse for the underlying dynamics,
including stability and bifurcation analysis, and to arrive at a global picture. So, to
start with, we confine ourselves to DDEs with a single constant delay only.

In order to generate solutions for time t > 0 for the DDEs with a single constant
delay, Eq. (1.3), one has to define the initial function X (t) over the interval (−τ, 0).
A simple way to interpret the solution of this DDE (1.3) is to consider it as a map-
ping of the functions from the interval (t−τ, t) to the next interval (t, t+τ) and then
to the next interval (t+τ, t+2τ), and continue the process recursively. Alternatively,
the solution of the delay dynamical system (1.3) can be thought of as a sequence
of functions f0(t), f1(t), f2(t), · · · defined over contiguous time intervals of
length τ . The mapping of the function f0(t) defined over the interval t ∈ (−τ, 0)
onto a solution curve in the interval (0, τ ) represented by the function f1(t) is illus-
trated in Fig. 1.1, see [6] for more details. The action of the evolution operator φτ in

Φτ Φτ Φτ

0−τ 2ττ

f0(t) f1(t)

t

initial
function

f2(t)

Fig. 1.1 The action of the evolution operator φτ for a delay differential equation of the form (1.3)
is to take a function defined over a time interval of length τ and to map it into another function
defined over a similar subsequent time interval [6]
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Fig. 1.1 for a DDE of the form (1.3) is to take a function defined over a time interval
of length τ and to map it into another function defined over a subsequent similar
time interval. In some simple cases, one can work out this mapping analytically as
discussed in the next subsection for the case of a linear delay differential equation
(LDDE).

1.2.1 Linear Delay Differential Equation

The introduction of a constant delay even in a linear system will have a profound
effect on the nature of solutions, for example to the rate equations in chemical kinet-
ics. The prototype linear rate equation without delay and with rate constant k,

ẋ = −kx(t), k > 0, (1.8)

will have only a decaying solution x(t) = ae−kt , where a is an arbitrary constant.
On the other hand, the same equation with a constant delay of the form

ẋ = −kx(t − τ), τ > 0, (1.9)

will have multiple solutions ranging from monotonic decay to damped oscillations,
stable periodic oscillations and undamped growing oscillations for a range of delay
values [63–66]. In fact, a particular solution for the above linear rate equation with
constant delay can be obtained as

x(t) = b sin(ωt)− b sin(ωτ)

1 − cos(ωτ)
cos(ωt), ω = k, (1.10)

where b is an arbitrary constant. However, note that the general solution to (1.9) is
not known.

Now, the solution for the LDDE (1.9) can be analytically mapped from the initial
function in the interval (−τ, 0) in a heuristic way as follows. Suppose we have the
function x(t) = fi−1(t), defined in the interval (ti−1, ti ), where i = 0, 1, 2, · · ·
corresponds to the number of integration steps of length τ . Then, the solution in the
interval (ti , t = ti + τ) is given by a separation of variables of (1.9) as

fi−1(t)∫
fi−1(ti )

dx ′ = −k

t∫
ti

fi−1(t
′ − τ)dt ′. (1.11)

Consequently, we can write

x(t) ≡ fi (t) = fi−1(ti )− k

t∫
ti

fi−1(t
′ − τ)dt ′. (1.12)
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This approach is known as the method of steps [6]. We can demonstrate it to obtain
the solution for the LDDE (1.9) for a given set of initial values, where the function
x(t) is defined over the interval (−τ, 0).

To make this task simpler, we choose the value of the rate constant k = 1, the
delay time τ = 1 and suppose that

x(t) = 1 for t ∈ (−1, 0). (1.13)

In the first interval (0, 1), we have from Eq. (1.12) that

x(t) = 1 −
t∫

0

dt ′ = 1 − [t ′]t0 = (1 − t). (1.14)

In the second interval (1, 2), we have

x(t) = 0 −
t∫

1

(1 − (t ′ − 1))dt ′,

= −
[

2t ′ − t ′2

2

]t

1

= −2t + 1

2
t2 − 3

2
. (1.15)

In the third interval (2, 3), we have

x(t) = −1

2
−

t∫
2

[
−2(t ′ − 1)+ 1

2
(t ′ − 1)2 + 3

2

]
dt ′,

= −1

2
−
[
−(t ′ − 1)2 + 1

6
(t ′ − 1)3 + 3

2
t ′
]t

2

= 5

3
+ (t − 1)2 − 1

6
(t − 1)3 − 3

2
t. (1.16)

This procedure can be continued further to any order. It can be summarized as
follows. With the knowledge of the function x(t) = fi−1(ti ), i = 1, 2, · · · in the
interval (ti−1, ti ), one can obtain the unknown function x(t) = fi (t) in the sub-
sequent interval (ti , ti+1) of length τ using Eq. (1.12). To illustrate the procedure
further, we make the specific choice k = 1, τ = 1 in Eq. (1.9) or (1.12). Then,
to start with, using our knowledge of the function x(t) = fi−1(ti ) = 1 in the first
interval (−1, 0), we can calculate the function x(t) = fi (t) in the next interval (0, 1)
of length τ = 1 by substituting x(t) = fi−1(ti ) = 1 which is known in the previ-
ous interval into the next interval (0, 1) using Eq. (1.12). This new function x(t),
t ∈ (0, 1), can then be used to find x(t) now for t ∈ (1, 2) again using the relation
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(1.12). This procedure can be repeated for subsequent intervals each of length τ for
as large a value of t as required and hence the solution can be calculated recursively
as the evolution time t increases. It can be realized that even for this simple LDDE
(1.9), evaluating the solution by this procedure becomes tedious for larger values
of t and it is a difficult and time consuming task to do calculations analytically.
However, this method of steps can be coded as a program and then the solutions for
any t can be obtained easily using simulation in a computer.

It is to be noted that for the ease of analytical calculation and understanding we
have taken the integration step Δt to be of length τ = 1 and hence the solution
curve seems to be constant over successive intervals of length τ . But in an actual
simulation, the integration step sizeΔt is taken as a small but optimal value such that
the prescribed initial function x(t) over the interval (−τ, 0) itself is sampled into N
samples, where N is sufficiently large. More details on numerical simulations will
be discussed below.

1.2.2 Numerical Simulation of DDEs

To simulate the behavior of infinite-dimensional systems on a computer it is nec-
essary to approximate the continuous evolution of an infinite-dimensional system
by a finite number of elements whose values change at discrete time steps. Hence
to calculate the solution x(t) of a DDE of the form (1.3) for times greater than
t , a function x(t) over the interval (t, t − τ) must be given. This function can be
approximated by N samples taken at intervals Δt = τ/(N − 1). These N samples
can equivalently be thought of as the N variables of an N -dimensional discrete
mapping [67],

(x1, ..., xN−1, xN ) = f (x(t − (N − 1)Δt), ..., x(t −Δt), x(t)). (1.17)

In particular, consider a DDE of the form

Ẋ = F(t, X (t), X (t − τ)),

and this can be approximated in terms of N variables of an N -dimensional discrete
mapping (1.17) as pointed out above. Choosing any suitable integration scheme, for
example, Euler integration (or more reliable fourth order Runge-Kutta method)

x(t +Δt) = x(t)+ F(x, xτ )Δt, xτ = x(t − τ), (1.18)

N samples and equivalently N variables of Eq. (1.17) can be reduced to an N -
dimensional iterated map, X (k + 1) = G(X (k)) (k labels the kth iteration and k + 1
to its next iteration). Each iteration of the map G corresponds to N time steps Δt of
the continuous equations, that is, each iteration of G moves the system forward by
time Δt . Using Euler integration, the map G is defined as follows [67]:
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x1(k + 1) = xN (k)+ F(xN (k), x1(k))Δt,

x2(k + 1) = x1(k + 1)+ F(x1(k + 1), x2(k))Δt, (1.19)
...

xN (k + 1) = xN−1(k + 1)+ F(xN−1(k + 1), xN (k))Δt.

In this way a continuous infinite dimensional dynamical system is replaced by a
finite-dimensional iterated map.

Once the numerical algorithm for obtaining the solution of the DDE is fixed,
then the Lyapunov exponents for the N -dimensional discrete map can be calculated
using the orthonormalization procedure which can be done, for example, using the
well known Wolf algorithm [67, 68]. More discussion and details on calculating
Lyapunov exponents of a DDE are provided in Appendix A. It is also to be noted
that DDEs in general exhibit enormous transient effects and hence a large amount
of transients should be left out before the system settles into a steady state solution.
The number of transients depends largely on the integration step size (in other words
sampling interval) Δt , the number of coupled equations N and even on the nature
of nonlinear function f (x). More details on the transient effects of DDEs will be
discussed later in Chap. 3.

The nature of the solution obtained numerically for the LDDE (1.9) for differ-
ent values of the delay time τ for fixed values of rate constant k = 1 along with
the initial condition x(t) = 0.1 in the range t ∈ (−τ, 0) is shown in Fig. 1.2.
Monotonically decaying solution is obtained for a delay time τ = 0.3 as seen in
Fig. 1.2a. Damped oscillatory solution is seen for τ = 1.4 in Fig. 1.2b, whereas
periodic oscillation is obtained for τ = 1.565 (Fig. 1.2c) and the Eq. (1.9) exhibits
undamped growing oscillation for τ = 1.7 as shown in Fig. 1.2d.

1.2.3 Nonlinear Delay Differential Equations

It is a well known fact that for nonlinear dynamical systems without delay,
represented as a set of coupled nonautonomous first order ODEs, at least three
dimensions are required to exhibit chaotic behavior. In other words, it requires a
third-order autonomous continuous nonlinear system or a second-order nonlinear
nonautonomous system to have the possibility of chaotic behavior. What is the sit-
uation in the case of delay dynamical systems? A first order linear DDE cannot
produce chaos even for a large delay, as we have seen in the previous section. On
the other hand, a first order scalar nonlinear DDE itself can exhibit not only chaotic
behavior but even hyperchaotic behavior with large number of positive Lyapunov
exponents, even for small delays and suitable parameter values and nonlinearity, as
we will demonstrate clearly in the later Chaps. 3 and 4. Of course, higher order
coupled nonlinear DDEs can also exhibit similar chaotic/hyperchaotic behavior;
however, we will concentrate in the first few chapters mostly on scalar nonlinear
DDEs for simplicity as even these systems typically exhibit most of the delay-related
dynamical behaviors.
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Fig. 1.2 Behavior of the solution x(t) of the LDDE (1.9) for k = 1 and various values of delay
τ , along with the initial condition x(t) = 0.1 in the range t ∈ (−τ, 0). (a) Monotonic decay
to x(t) = 0 for τ = 0.3, (b) Damped oscillatory decay to x(t) = 0 for τ = 1.4, (c) Periodic
oscillation for τ = 1.565 and (d) Undamped growing oscillation for τ = 1.7

Nonlinear DDEs have been used extensively to model population dynamics [38]
with their inherent maturation and gestation time-delays to study epidemics [69],
tumor growth [70], and immune systems [71], lossless electrical transmission
lines [72], electrodynamics of interacting charged particles (the Lorenz force with
Liénard-Weichert potentials) [73], etc. The necessity to generate fast chaos is an
important feature in many applications. For example, information transmission with
high power efficiency, generation of truly random numbers, and novel spread spec-
trum, ultrawide-bandwidth and optical communication schemes require fast sys-
tems, where the time it takes for the signals to propagate through device components
is comparable to the time scale of the fluctuations. Hence many fast systems are most
accurately described by DDEs. Examples of fast broadband chaotic oscillators that
are modeled as time-delay systems include electronic [74], opto-electronic [75, 76]
and microwave oscillators [77], lasers with delayed optical feedback [78] and non-
linear optical resonators [79]. An advantageous feature of these time-delay devices
is that the complexity of the dynamics can be tuned by adjusting the delay time
[67].

There exist several nonlinear delay dynamical systems which have been studied
intensely in the recent literature in diverse areas of science and technology and in
particular, in the context of chaotic dynamics. Some of the prototype scalar nonlin-
ear delay dynamical systems are

1. Mackey-Glass system [19, 20],
2. Ikeda system [21–23],
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3. Piecewise linear time-delay systems of various forms [18, 80–85],
4. Time-delay system with polynomial nonlinearity [86],
5. Time-delayed Chua’s circuit [87–90],
6. Kaldor-Kalecki business model [24, 25],

to name a few. We will discuss the details of the dynamics of most of the important
prototype nonlinear DDEs studied in the literature in the context of chaotic dynam-
ics in the following chapters.

1.3 Salient Features of Chaotic Time-Delay Systems

In this section, we will present a list of important characteristic features of chaotic
nonlinear time-delay systems in general. These are as follows:

1. A chaotic time-delay system has the intrinsic characteristic feature of increase
in the dimension of the attractor with the value of the delay time in general
and thereby can lead to an increase in the number of positive Lyapunov expo-
nents [67, 22].

2. Transient effects play a prominent role in delay dynamical systems, as such
systems require large enough transients to settle into a steady state behavior
[91, 92].

3. Even a simple scalar time-delay system can exhibit hyperchaotic attractors with
large number of positive Lyapunov exponents [22, 82, 83, 94, 95].

4. Feasibility of easy experimental realization of time-delay systems, particularly
in electronic circuits, optical lasers, etc. [93, 86, 21, 82, 83, 94–97], is abundant.

5. Increase in the number of positive Lyapunov exponents and hence the dimension
provides the possibility that the corresponding hyperchaotic attractors may be
useful in secure communication applications, generating random numbers, etc.
[95].

6. Chaotic time-delay systems provide a natural link to understand the dynamical
features of space-time chaos [16–18, 98, 99].
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Chapter 2
Linear Stability and Bifurcation Analysis

2.1 Introduction

In our study of DDEs, we will mainly concentrate on equations with constant time
delay (single or multiple). In particular considering Eq. (1.3), in this chapter we
will consider scalar DDEs (n = 1 in Eq. (1.2)) and analyse the linear stability
and bifurcation aspects of a class of such equations. We will use the usual method
of infinitesimally displacing the solution around the equilibrium point, a geometric
approach, and a more general approach to determine linear stability of equilibrium
points and then illustrate them with specific examples. We will also point out the
extension of these analyses to coupled DDEs/complex scalar equations.

2.2 Linear Stability Analysis

Even though it is rarely possible to completely solve a given DDE (even in the
linear case) and obtain the solution exactly, one can identify the existence of several
types of specific solutions, depending upon the nonlinearity, value of the delay, the
number of dynamical variables, etc. These include

1. fixed points or equilibrium points,
2. simple periodic solutions,
3. decaying solutions,
4. quasiperiodic solutions,
5. strange non-chaotic attractors,
6. chaotic attractors,
7. hyperchaotic attractors, etc.

However, for some models of coupled nonlinear DDEs with exact solutions, we
refer to Chap. 12.

Considerable insight into the nature of solutions of DDEs can be obtained by
performing a linear stability analysis of the equilibrium solutions, similar to ordi-
nary differential equations (ODEs). The main difference in the case of DDEs is
that (as noted earlier) the phase space is infinite-dimensional, whereas in the case

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_2,
C© Springer-Verlag Berlin Heidelberg 2010
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of ODEs it is finite dimensional. The (local or asymptotic) stability nature of an
equilibrium point in the state space can be simply determined by analysing whether
the nearby trajectories approach towards or diverge away from the fixed point.
Naturally a stable fixed point X∗ is the one for which all the nearby trajectories
approach it asymptotically (as t → ∞), and as a consequence all the time deriva-
tives vanish identically. Hence, for a DDE of the form (1.3), any equilibrium point,
X (t) = X (t − τ) = X∗, satisfies the equation

f
(
X (t) = X (t − τ) = X∗) = 0, X∗ = (x1

∗, x2
∗, ..., xn

∗)T . (2.1)

To identify the nature of the stability of an equilibrium point, specifically the
linear stability, we perturb it in the usual way by infinitesimally displacing the solu-
tion around the equilibrium point X∗ by a time dependent function δX (t), persisting
over an interval of at least the value of the longest delay, τmax, in the case of multiple
delays. Denoting X = X (t) and Xτ = X (t − τ), we have

X = X∗ + δX, Xτ = X∗ + δXτ . (2.2)

Then

Ẋ = δ Ẋ = F(X∗ + δX, X∗ + δXτ ), (2.3)

where δX ’s are the infinitesimal displacements from the equilibrium point over the
interval (t0 − τ, t0). Using the Taylor series expansion, the above Eq. (2.3) can be
linearized about the equilibrium point as

δ Ẋ = J0δX + Jτ δXτ , (J0)i, j =
(
∂Fi

∂x j

) ∣∣∣∣ x j =x j
∗

i, j=1,2,··· ,n
, (Jτ )i, j =

(
∂Fi

∂xτ j

) ∣∣∣∣ xτ j =x j
∗

i, j=1,2,··· ,n
,

(2.4)

where J0 is the Jacobian with respect to X evaluated at the equilibrium point, while
Jτ is the Jacobian with respect to Xτ again evaluated at X = Xτ = X∗. As in the
case of ODEs, let the solution δX (t) to (2.3) be assumed as exponential functions of
time along with the exponents given by the eigenvalue of the corresponding Jacobian
matrix,

δX (t) = Aeλt , (2.5)

where A is a constant column matrix. Substituting (2.5) in the above Eq. (2.4) and
collecting the coefficients of eλt , one obtains the matrix equation

λA = (J0 + e−λτ Jτ
)

A. (2.6)

This equation obviously can be satisfied with nonzero displacement amplitudes A if
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|J0 + e−λτ Jτ − λI | = 0, (2.7)

where I is the identity matrix.
The above Eq. (2.7) is of course the characteristic equation of the equilibrium

point which is now transcendental in nature. Equation (2.7) looks like the charac-
teristic equation of an ordinary eigenvalue problem except for the appearance of
the exponential term. If all of the eigenvalues of the characteristic equation have
only negative real parts, then the equilibrium point is said to be stable. On the other
hand, if at least one of the eigenvalues has a positive real part, then the equilibrium
point is unstable. If the leading characteristic eigenvalues are zero, then the stability
is undecidable to the linear order and a recourse should be taken to consider the
neglected higher order terms in the Taylor expansion in Eq. (2.3). A polynomial of
degree n has exactly n roots in the case of ODEs and therefore all the roots can be
calculated at least in principle to determine the stability of an equilibrium point. On
the other hand, transcendental equations containing quasi-polynomials usually have
infinite number of roots in the complex plane, which is essentially a reflection of
the infinite dimensional nature of the phase space. Hence, it is extremely difficult to
find all the roots and is often impossible to do so.

Despite the existence of infinite number of roots for the Eq. (2.7), it is often
possible to determine analytically whether a given equilibrium point is stable or
not. Various theorems have been proposed to enable one to determine algebraically
the stability of a particular equilibrium point. Before discussing these methods, the
above standard stability analysis is illustrated in the following for the case of the
scalar LDDE (1.9).

2.2.1 Example: Linear Delay Differential Equation

Consider the LDDE (1.9), corresponding to the linear rate equation with delay,

ẋ = −kx(t − τ), k > 0. (2.8)

Since the equilibrium point is the one for which

X (t) = X (t − τ) = X∗ for all t, (2.9)

it can be obtained by setting ẋ = 0 and x(t) = x(t − τ) = X∗ in the above LDDE.
The equilibrium point is clearly

x = X∗ = 0. (2.10)

The Jacobians in the Eq. (2.4) for the above LDDE are

J0 = 0 and Jτ = −k. (2.11)
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Then the characteristic equation (2.7) becomes

λ+ ke−λτ = 0. (2.12)

Let λ = α+ iβ, where α and β are the real and imaginary parts of λ. Then equating
the real and imaginary parts of (2.12) separately to zero, we have

ke−ατ cosβτ = −α, (2.13a)

ke−ατ sinβτ = β. (2.13b)

In order to ascertain the stability nature of the equilibrium point we have to find
out whether the above Eqs. (2.13) can have solutions with positive values of α. For
the moment, let α > 0. Since k > 0, and e−ατ < 1, necessarily cosβτ < 0 in
accordance with Eq. (2.13a). Consequently, β > π

2τ since for any smaller positive
value of β, cosβτ is positive or zero. On the other hand | sinβτ | < 1, so that
Eq. (2.13b) implies that β < k. This is in contradiction with the previous require-
ment of β > π

2τ of Eq. (2.13a). Hence β cannot simultaneously be larger than π
2τ

and smaller in magnitude than k, for all values of τ and k except when k > π
2τ .

Therefore the real part of the eigenvalue λ = α + iβ cannot be positive, in general,
and so the corresponding equilibrium point is stable.

A detailed stability analysis using the above procedure for the case of nonlinear
DDEs is given in Sect. 2.4 and later in Chaps. 3 and 4. Specifically, the linear stabil-
ity analysis for the piecewise linear delay differential equation will be discussed in
Chap. 3 and for the Mackey-Glass delay system it will be presented later in Chap. 4.

2.3 A Geometric Approach to Study Stability

McDonald [1] had proposed a simple geometric approach to determine the stability
of a fixed point satisfying the transcendental equation (2.7), which can be rewritten
in general as

P(λ)+ Q(λ)e−λτ = 0, (2.14)

where P and Q are polynomials of degree n.
All the eigenvalues λ of the above equation should lie in the left half of the

complex λ−plane for the equilibrium point X∗ to be stable. That is, if for all the
eigenvalues Re(λ) < 0, the corresponding solution is stable. On the other hand,
even if one of the eigenvalues λ has a positive real part then the solution is unstable.
Hence, a change in stability can occur only when a root of the Eq. (2.14) crosses
the imaginary axis, that is λ = α + iβ with α = 0 is a solution of the Eq. (2.14).
In other words, when the real part of a root, λ, changes from negative to positive
value or vice-versa through zero (as some control parameter changes), change in
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stability of the steady state (equilibrium point) can occur. To check this, one can
simply substitute λ = iβ into Eq. (2.14) so that it can be rewritten as

P(iβ)

Q(iβ)
= −e−iβτ . (2.15)

If the equilibrium point in question is stable in the absence of delay, that is for
τ = 0, then the change in stability can occur only if there are some real β and τ for
which the Eq. (2.15) holds good. This can be determined by the simple geometric
construction demonstrated by McDonald. As βτ is increased from 0 to 2π , the right
hand side of the Eq. (2.15), namely −e−iβτ , traces out a unit circle in the complex
plane. On the other hand the left hand side of Eq. (2.15), called the ratio curve, also
defines another curve in the complex plane. If there is a change in stability then the
ratio curve must intersect the unit circle. The ratio curve can also cross the unit circle
more than once depending on the nature of the left hand side of the above equation.
In such cases, the solution may be stable for short delays, unstable for the interme-
diate range of delays and then stable again for longer delays and vice-versa. Now,
we will illustrate this approach for the linear DDE discussed in the previous section.

2.3.1 Example: Linear Delay Differential Equation

Considering the characteristic equation (2.12), namely λ+ke−λτ = 0, the eigenval-
ues always have negative real parts. Correspondingly, to confirm the stable nature
of the equilibrium point as discussed in Sect. 2.2, the ratio curve must intersect the
unit circle at least once. On setting λ = iβ in λ+ ke−λτ = 0, it can be rewritten as

iβ

k
= −e−iβτ . (2.16)

The real and imaginary parts of both the sides of the above equation are plotted in
Fig. 2.1. It can be readily seen that the ratio curve indeed intersects the unit circle
confirming the stable nature of the equilibrium point.
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Fig. 2.1 Real (x) and imaginary (y) parts of both the sides of the Eq. (2.16)
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As a second example, one can apply this approach to determine the stability
nature of the equilibrium point of a nonlinear DDE, namely the Mackey-Glass delay
differential equation, which we will discuss in more detail later in Chap. 4.

2.4 A General Approach to Determine Linear Stability
of Equilibrium Points

The stability analysis discussed in the previous sections can be used only for a
specific form of the characteristic equation, see Eq. (2.14), and hence it cannot be
used for a general DDE. In this section, we will discuss a more general approach
to determine the linear stability of the equilibrium point and the existence of local
Hopf bifurcations in a general scalar DDE of the form

ẋ = −bx + a f (x(t − τ)) , (2.17)

where a and b are positive parameters and f is a nonlinear function. Let x = x∗ be
an equilibrium point of Eq. (2.17). Then the analysis proceeds as follows.

2.4.1 Characteristic Equation

Considering the equilibrium point x = x∗ of Eq. (2.17), we perturb it linearly as
x = x∗ + ρeλt , ρ 
 1. Then the characteristic equation associated with the time-
delay differential equation (2.17) can be written as

λ = −b + a f ′(x∗)e−λτ . (2.18)

2.4.2 Stability Conditions

Let λ = α + iβ be the eigenvalue associated with the equilibrium point x = x∗ and
the critical stability curve is the one on which α = 0 as one can expect that there is
a change in stability when the value of α crosses the imaginary axis at λ = iβ. The
stability curve can be again obtained by substituting λ = iβ into the characteristic
equation (2.18). Then one obtains the relation

iβ = −b + a f ′(x∗)(cosβτ − i sinβτ). (2.19)

Separating the real and imaginary parts, we get

b = a f ′(x∗) cosβτ, (2.20a)

β = −a f ′(x∗) sinβτ. (2.20b)
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Squaring and adding the above two equations, one obtains the conditions

β = ±
√

a2 f ′2(x∗)− b2. (2.21)

This is possible if and only if |a f ′(x∗)| > b. Note that b > 0 in Eq. (2.17). From
Eq. (2.20a), it follows that

βτ = ± arccos

(
b

a f ′(x∗)

)
+ 2nπ, (2.22)

where n is any integer (0,±1,±2, ...). Consequently for |a f ′(x∗)| > b, and for a
fixed β (say β > 0), one can expect that the stability regions are confined between a
set of two curves/surfaces in the (τ, a, b) parameter space if dα

dτ on any one of these
curves/surfaces is negative and on the other it is positive:

τ1(n) =
2nπ + arccos

(
b

a f ′(x∗)

)
√

a2 f ′2(x∗)− b2
, n = 0, 1, 2, · · · (2.23a)

τ2(n) =
2nπ − arccos

(
b

a f ′(x∗)

)
√

a2 f ′2(x∗)− b2
. n = 1, 2, · · · (2.23b)

In Eq. (2.23a), n = 0, 1, 2, · · · and in Eq. (2.23b), n = 1, 2, · · · for the pair of
curves so that the curves have positive values of τ , which is the physically interesting
case. Note that there will be a similar set of curves for negative n in (2.23) which
will have identical behavior and these will correspond to the case β < 0, since τ is
always positive in (2.23).

2.4.3 Stability Curves/Surfaces in the (τ, a, b) Parameter Space

In order to identify the curves τ1,2(n) that encompass the stable regions for τ > 0,
let us evaluate dα

dτ or Re
( dλ

dτ

)
. Differentiating the characteristic equation (2.18) with

respect to τ (τ > 0), it follows that

dλ

dτ
= a f ′(x∗)e−λτ

[
−λ− τ

dλ

dτ

]
. (2.24)

Rewriting (2.24), using again the characteristic equation, we have

dλ

dτ
= − a f ′(x∗)λe−λτ

1 + a f ′(x∗)τe−λτ (2.25)

= − λ(λ+ b)

1 + τ(λ+ b)
(2.26)
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and hence

Re

(
dλ

dτ

)
≡ dα

dτ
= Re

[
β2 − iβb

(1 + τb)+ iτβ

]
(2.27)

= β2

(1 + τb)2 + τ 2β2
> 0. (2.28)

Therefore, using (2.23) in (2.28), we conclude that

dα

dτ
> 0 on both τ1(n) and τ2(n) for |a f ′(x∗)| > b. (2.29)

Since dα
dτ > 0 for all τ(n) in Eq. (2.23), the corresponding slopes have positive

values on all the stability determining curves τ(n). This implies that there does
not exist any eigenvalue with negative real part across the curves (2.23). On the
other hand, we know that for τ = 0 the fixed point is stable for b − a f ′(x∗) > 0,
see Eq. (2.18). Therefore the condition (2.29) implies that there can be only one
stable region between the τ = 0 line/plane in the (a, b) parameter space and the
critical curve/surface in the (τ, a, b) parameter space τ1(0), which is closest to the
line/plane in the (a, b) parameter space, τ = 0.

2.4.4 Extension to Coupled DDEs/Complex Scalar DDEs

The above stability analysis can also be extended to coupled DDEs and complex
scalar equations with delay/delay coupling. In fact we have applied this analysis to
a system of two coupled DDEs in Sect. 3.5 of Chap. 3, where we have also brought
out the existence of a single stable region between the τ = 0 line/(a, b) plane and
the critical curve closest to the line/plane, τ = 0, in the (a, b, τ ) parameter space.

We also present a similar analysis to a complex scalar equation with delay feed-
back exhibiting limit cycle oscillations in Sect. 5.2 of Chap. 5 and illustrate the
existence of multistability regions in the corresponding parameter space which was
studied by Ramana Reddy [2] and Ramana Reddy et al. [3]. For this case of complex
scalar equation, indeed dα

dτ < 0 on one of the curves, τ1,2(n), n = 1, 2, · · · and
dα
dτ > 0 on another curve and correspondingly there exist multiple stability regions
isolated by unstable regions. This analysis has been originally used by Ramana
Reddy, Sen and Johnston to identify multistability regions in limit cycle oscillators,
where the collective stability regions were termed as amplitude death regions or
death islands [2, 3]. We refer to Sect. 5.2 for further details.
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2.4.5 Bifurcation Analysis

By definition all the roots have negative real parts within the stability region
bounded by the line/plane τ = 0, and the curve/surface τ = τ1(0) in the (τ, a)
plane/ (τ, a, b) space, while at least one of the roots has a positive real part on the
right side of the stability curve/surface. The curve/surface on the right boundary of
the stability region has purely imaginary roots with zero real parts and this curve in
the (τ, a) plane (or the surface in the (τ, a, b) parameter space) corresponds to the
Hopf bifurcation curve (surface) across which a change in stability takes place, as
the real part of the eigenvalue changes from a negative to a positive value.

2.4.6 Results of Stability Analysis

Using the above line of arguments, one can arrive at the following conclusions [4].

1. If b > |a f ′(x∗)|, then all the roots of the characteristic equation (2.18) have
negative real parts.
This is because if b > |a f ′(x∗)|, then according to Eq. (2.21) β turns out to be
imaginary, say β = iω,ω > 0. Since the stability determining critical curves are
the characteristic curves, where λ = iβ, and as a consequence of β becoming
imaginary the eigenvalues on the critical curves become λ = i(iω). Therefore
all the eigenvalues have negative real parts on the critical curves for all τ1,2(n)
and hence the entire parameter regime turns out to be stable.

2. If |a f ′(x∗)| > b, then there exists a sequence of values of τ, 0 < τ(0) < τ(1) <
· · · < τ(k) · · · , such that

i. Equation (2.18) has a pair of simple imaginary roots, ±iβ, when τ =
τ(n), n = 0, 1, 2, · · · .
Since the value of β becomes real if |a f ′(x∗)| > b, in accordance with
Eq. (2.21), the critical curves are the ones on which the eigenvalue becomes
λ = iβ and hence Eq. (2.18) has a pair of simple imaginary roots on the
critical curves represented by τ1,2(n) in Eqs. (2.23).

ii. If a f ′(x∗) < −b and τ ∈ (0, τ (0)), all the roots of equation (2.18) have
negative real parts, if τ = τ(0), all the roots of (2.18) except ±iβ have nega-
tive real parts and if τ ∈ (τ (n), τ (n + 1)) for n = 0, 1, 2, · · · Eq. (2.18) has
2(n + 1) roots with positive real parts.
In accordance with Eq. (2.18), if a f ′(x∗) < −b the eigenvalue has negative
real part at τ = 0. Also according to Eqs. (2.23) and (2.29), as the critical
curves have positive slopes the region enclosed between the line τ = 0 and
the critical curve τ = τ1(0) closest to the line τ = 0 is the only stable region
(all the eigenvalues have negative real parts) as discussed above. This critical
curve is the one on which there exist at least a pair of imaginary eigenvalues
while the rest having negative real parts. All the other critical curves, that is
τ1,2(n), n = 1, 2, · · · have positive real parts in accordance with Eq. (2.29).
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iii. If a f ′(x∗) > b, Eq. (2.18) has at least one root with positive real part for all
τ ≥ 0.
If a f ′(x∗) > b, then according to Eq. (2.18), the eigenvalue has only positive
real part even for τ = 0 and from Eq. (2.29) we know that there exists at least
one eigenvalue with positive real part. Hence, if a f ′(x∗) > b then the entire
parameter space is unstable for any τ ≥ 0.

2.4.7 A Theorem on the Stability of Equilibrium Points

As a consequence of the above results the following theorem has been proposed by
Niu and Geng in [4]. For Eq. (2.17), the following hold.

1. If |a f ′(x∗)| < b, then x = x∗ is asymptotically stable for any τ ≥ 0.
2. If a f ′(x∗) < −b, then x = x∗ is asymptotically stable for τ ∈ (0, τ (0)) and

unstable for τ > τ(0).
3. If a f ′(x∗) > b, then x = x∗ is unstable for τ ≥ 0.
4. If |a f ′(x∗)| > b, then Eq. (2.17) undergoes a Hopf bifurcation at x = x∗ when
τ = τ1,2(n) for n = 0, 1, 2, · · · .

2.4.8 Example: Linear Delay Differential Equation

Now let us illustrate the above analysis for the simple functional form

f (x(t − τ)) = −x(t − τ), (2.30)

so that the general DDE (2.17) becomes the LDDE,

ẋ = −bx − ax(t − τ). (2.31)

The corresponding characteristic equation turns out to be

λ+ b + ae−λτ = 0. (2.32)

Substituting λ = iβ in the above equation, and after simple algebra, we have

β = ±
√

a2 − b2 (2.33)

and

βτ = ±cos−1
(

b

a

)
+ 2nπ, (2.34)
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where n is any integer (0,±1,±2, · · · ). Consequently one can expect that the sta-
bility regions are confined between the set of two curves

τ1(n) = 2nπ + arccos
( b

a

)
√

a2 − b2
, (2.35a)

τ2(n) = 2nπ − arccos
( b

a

)
√

a2 − b2
. (2.35b)

In Eq. (2.35a), n = 0, 1, 2, · · · and in Eq. (2.35b), n = 1, 2, · · · for the pair of
curves to have positive values of τ . In order to identify those curves for τ > 0
which encompass the stable regions, the critical curves should be the ones on which
dλ
dτ > 0. From the above characteristic equation (2.32), we have

dα

dτ

∣∣∣∣
α=0

= β2 D−1, (2.36)

where

D = (1 + τb)2 + τ 2β2. (2.37)

Therefore

dα

dτ
> 0 on both τ1 and τ2. (2.38)

The above condition implies that there can be only one stable region between the
τ = 0 line (where α < 0) and the critical curve τ1(0, a) which is closest to the
line τ = 0 for |a| > b. It is also in accordance with the result of stability analysis
discussed in the previous section.

The numerical plot of the curves τ1(n) (solid curve for n = 0, 1, 2) and τ2(n)
(dashed curve for n = 1, 2) are shown in Fig. 2.2. From the above analysis it is
clear that the region between τ = 0 and τ = τ1(0) is the only stable region (shaded
region), where dα

dτ > 0 on τ1, while passing from negative to positive values of α,
whereas the other curves τ2(n) < τ < τ1(n) for n > 0 do not satisfy the required
stability condition and hence they are all associated with unstable regions.

Now let us demonstrate the existence of a Hopf bifurcation by a numerical anal-
ysis of the LDDE (2.32). For illustration, let us choose the value of the parameters
as a = 0.5, b = 0.1 and carry out a bifurcation analysis as a function of the delay
time τ with reference to Fig. 2.2. The LDDE has been numerically integrated using
the Runge-Kutta fourth order integration scheme for the aforesaid parameter values
with constant initial condition in the range (−τ, 0) and the optimal step size of
Δh = 0.01. It is evident from Fig. 2.2 that there exists a stable equilibrium point
(the origin is the equilibrium point for the LDDE (2.32)) up to the value of delay
time τ < 3.625 for the above choice of parameters characterized by the eigenvalues
with negative real part. This behavior is depicted in Fig. 2.3a, b for the values of
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Fig. 2.2 Curves representing Eqs. (2.35a) and (2.35b). The solid curves represent τ1 for n =
0,+1,+2 and dashed curves represent τ2 for n = +1,+2. The region enclosed between the line
τ = 0 and the curve τ = τ1(0) is the only stable region (shaded region)
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Fig. 2.3 Behavior of the solution x(t) of the linear delay differential equation (2.31) for the param-
eter values a = 0.5, b = 0.1 and for various values of delay τ . (a) Monotonic decay to x(t) = 0
for τ = 0.5, (b) Damped oscillatory decay to x(t) = 0 for τ = 3.0, (c) Periodic oscillation for
τ = 3.625 and (d) Undamped growing oscillation for τ = 6.0

delay times τ = 0.5 and 3.0, respectively. In Fig. 2.3a, the solution of the LDDE
monotonically decays to the stable equilibrium point and in Fig. 2.3b it exhibits a
damped oscillatory decay to the stable equilibrium point. For the value of τ = 3.625,
there exist only imaginary eigenvalues corresponding to the partition curve τ1(0) in
Fig. 2.2, where the LDDE exhibits only periodic oscillations (Hopf oscillations) as
shown in Fig. 2.3c, and this corresponds to the Hopf bifurcation curve. Above the
value of delay time τ > 3.625 for the aforesaid choices of a and b, the LDDE
exhibits undamped growing oscillations as depicted in Fig. 2.3d for the value of
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delay time τ = 6.0. Thus the change in stability across the critical curve (Hopf
bifurcation curve corresponding to the imaginary eigenvalues) confirms the exis-
tence of a Hopf bifurcation. This is in accordance with the results of the stability
analysis discussed in Sect. 2.4.

As noted earlier the above stability analysis has also been applied to the case of
nonlinear DDEs, namely piecewise linear and Mackey-Glass time-delay systems, in
the following Chaps. 3 and 4, respectively. The analysis has also been extended to
coupled DDEs in Chap. 3 and to a complex scalar equation in Chap. 5, where we
have demonstrated the existence of multistability regions.
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Chapter 3
Bifurcation and Chaos in Time-Delayed
Piecewise Linear Dynamical System

3.1 Introduction

The phenomena of bifurcations and chaos have been well studied in nonlinear
dynamical systems without delay and described by nonlinear difference, differential,
difference-differential, etc. equations. Routes to bifurcations, onset of chaos, nature
of the chaotic attractors and their characterizations in such systems have all been
analyzed extensively [1, 2]. However, such analyses have not been carried out in
any greater detail in the case of nonlinear dynamical systems with delay even in the
scalar systems. In this chapter we shall introduce a prototypical delay system, which
is a piecewise linear one, in order to appreciate the nature of bifurcations and chaos
phenomena underlying nonlinear time-delay systems, and to understand clearly the
nature of transients and difficulties in numerical analysis as well as the frequent
existence of hyperchaotic attractors with multiple positive Lyapunov exponents. The
dynamics of other nonlinear time-delay systems will be taken up in the next chapter.

It is a widely accepted fact that chaos can occur in autonomous time continu-
ous nonlinear systems having order greater than two and in nonautonomous time
continuous nonlinear systems with order greater than one. In time discrete systems
chaos can occur even in first order invertible maps and in non-invertible maps with
order greater than one. Recently, Lu and He [3] have shown that chaos can occur
even in a simple scalar first order delayed nonlinear (piecewise linear) dynamical
system with large enough delay. Thangavel, Murali and Lakshmanan [4] have made
a preliminary study of the bifurcation scenario and controlling of chaos in first order
and coupled scalar piecewise linear time-delay systems including the model of Lu
and He.

In this chapter, we will discuss several novel aspects of the underlying dynam-
ics of the above scalar piecewise linear time-delay system [5]. These include the
existence of a stable island in a two parameter space for the equilibrium solutions
in the presence of time-delay, the significant role of transients in attaining steady
state solution and thereby identifying the existence of familiar routes to chaos and
the emergence of hyperchaos even for small values of time-delay for a wide range
of parameters, which is confirmed by the existence of multiple positive Lyapunov
exponents. The study has also been extended to the case in which the first order

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
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scalar time-delay system is coupled to a second scalar system without delay. Again
the existence of a stable island for equilibrium points is established. Existence of
different bifurcation routes, including type III intermittency route, is pointed out,
where we have also discussed the transient effects. We have also plotted the two
parameter bifurcation diagrams for both the cases to bring out the nature of the
underlying dynamics.

3.2 Simple Scalar First Order Piecewise Linear DDE

We consider the following first order delay differential equation introduced by Lu
and He [3], but with the addition of a constant external force as studied by Thangavel
et al. [4],

dx(t)

dt
= −ax(t)+ b f (x(t − τ))+ c, (3.1)

where a and b are parameters, τ is the time-delay, c is a positive constant external
force and f is an odd piecewise linear function defined as

f (x(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ≤ −p2
−1.5x − 2, −p2 < x ≤ −p1

x, −p1 < x ≤ p1
−1.5x + 2, p1 < x ≤ p2

0, x > p2.

(3.2)

Here p1 and p2 are parameters. The form of the function f (x(t)) is sketched in
Fig. 3.1. In our study we have fixed the parameter p1 at p1 = 0.8 and explored
the dynamical behavior in the range of the external force c ∈ [−0.15, 0.15] and
delay time τ ∈ [0.0, 30.0] for different values of the parameter p2 characterizing

–0.8

–0.4

0

0.4

0.8

–3 –2 –1 0 1 2 3

f(
x)

x

Fig. 3.1 The form of the piecewise linear function f (x(t)) of Eq. (3.2) for the values p1 =
0.8, p2 = 1.33
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the piecewise linear function f (x(t)). To start with let us consider the nature of the
fixed (equilibrium) points of the system (3.1) in some detail.

3.2.1 Fixed Points and Linear Stability

Equation (3.1) with the piecewise linear form (3.2) for the function f (x(t)) can
admit four distinct fixed points, xi (t) = x0 = x∗, i = 1, 2, 3, 4, depending upon
the parameter values. We now carry out a detailed linear stability analysis [4, 5]
of these fixed points under the linear perturbation x = x∗ + α exp(λt), α 
 1.
Particularly, in this section, we will bring out the existence of a stable island in the
(τ, 1.5b) plane for some of these equilibrium points, when τ > 0, following the
analysis discussed in Sect. 2.4. For this purpose we examine the stability nature of
the fixed points of Eq. (3.1) both in the absence and in the presence of time delay
τ by analyzing the eigenvalue λ of the characteristic equation and identifying the
cases where Re(λ) < 0 for stability.

3.2.1.1 Time-Delay τ = 0

In the absence of time-delay, the following fixed points can exist depending on the
choice of parameters a, b, c, p1 and p2 in Eqs. (3.1) and (3.2):

1. For |x | > p2, the fixed point is x = x0 = c
a and the characteristic equation in

this region is λ = −a. The fixed point x = x0 = c
a is stable for positive values

of a.
2. For −p2 < x ≤ −p1, the fixed point is x = x0 = c−2b

a+1.5b and the characteristic
equation in this region becomes λ = −(a +1.5b). The fixed point is stable when
a > −1.5b.

3. For |x | ≤ p1, the fixed point is x = x0 = c
a−b and the characteristic equation

becomes λ = −(a + b). The above fixed point is stable when a > −b.
4. For p1 < x ≤ p2, the fixed point is x = x0 = c+2b

a+1.5b and the characteristic
equation in this region becomes λ = −(a +1.5b). The fixed point is stable when
a > −1.5b.

Next we carry out the stability analysis in the presence of time-delay, τ > 0.

3.2.1.2 Time-Delay τ > 0

In the presence of time-delay, now we will examine the stability as follows.

1. Here again, for |x | > p2, the fixed point and its characteristic equation remain
the same as for the case τ = 0 and the fixed point, namely x = x0 = c

a , is stable
for a > 0.

2. Next in the region, −p2 < x ≤ −p1, for the fixed point x = x0 = c−2b
a+1.5b , the

characteristic equation becomes the transcendental equation,
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λ+ a + 1.5be−λτ = 0. (3.3)

Let λ = α+ iβ, where α and β are real. Substituting this into the above equation
and following the stability analysis discussed in Sect. 2.4, one can obtain the set
of critical curves, determining the stability regions, as

τ1(n, 1.5b) = 2nπ + arccos
( −a

1.5b

)
√

2.25b2 − a2
, (3.4a)

τ2(n, 1.5b) = 2nπ − arccos
( −a

1.5b

)
√

2.25b2 − a2
. (3.4b)

In Eq. (3.4a), n = 0, 1, 2, · · · and in Eq. (3.4b), n = 1, 2, · · · for the pair of
curves we have chosen so that the curves have positive values of τ . To determine
those curves which enclose the stable regime, one has to analyze the nature of
dλ
dτ on these curves. From Eq. (3.3), it is easy to check that

dλ

dτ
= 1.5bλ exp(−λτ)

1 − τ1.5b exp(−λτ) (3.5)

and that

dα

dτ

∣∣∣∣
α=0

= Re
1.5b(iβ) exp(−iβτ)

1 − τ1.5b exp(−iβτ)
(3.6)

= 1.5bβ sin(βτ)

D
= β2 D−1,

where

D = [1 − 1.5bτ cos(βτ)]2 + [1.5bτ cos(βτ)]2 ,

β = 1.5b sin(βτ) (from Eq. (2.20b))

Therefore

dα

dτ

∣∣∣∣
α=0

> 0 on both the curves τ1 and τ2. (3.7)

As we know from Eq. (3.3) that when the time-delay τ = 0, λ = −a − 1.5b
and so α < 0. The above condition implies that there can be only one stability
region between the τ = 0 line/plane in the (a, b) parameter space (where α < 0)
and the critical curve τ1(0, 1.5b)/surface in the (τ, a, b) parameter space, which
is the closest to the line/plane τ = 0 in the (a, b) parameter space. We note
that the condition (3.7) prohibits the existence of any other stable region (that
is multistability regions) because for a second stable region to exist one requires
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Fig. 3.2 Curves of Eqs. (3.4a) and (3.4b) in the range, −p1 < x ≤ p1. The solid curves represent
τ1 for n = 0,+1,+2 and broken curves represent τ2 for n = +1,+2. The region enclosed between
the line τ = 0 and the curve τ = τ1(0, 1.5b) is the only stable island (shaded region)

dα
dτ < 0 on any one of the other curves (n > 0). But this never occurs in this case.
The numerical plot of the curves τ1(n, 1.5b) (solid curve for n = 0, 1, 2) and
τ2(n, 1.5b) (broken curve for n = 1, 2) in Fig. 3.2 reveals that the region between
τ = 0 and τ = τ1(0, 1.5b) is the only stable region (shaded region), where dα

dτ
> 0 on τ1, while passing from negative to positive values of α, whereas the other
curves τ2(n, 1.5b) < τ < τ1(n, 1.5b) for n > 0 do not satisfy the required sta-
bility condition and hence they are all associated with unstable regions. As there
is a change in stability across the curve τ = τ1(0, 1.5b), this curve corresponds
to a Hopf bifurcation curve on which there exists limit cycle oscillations (as this
curve corresponds to purely imaginary eigenvalues).

3. As in the previous region, for the case −p1 < x ≤ p1 and for the fixed point
x0 = c

a−b , the characteristic equation in this region has the form

λ+ a + be−λτ = 0. (3.8)

As before, we obtain a set of critical curves as

τ1(n, b) = 2nπ + arccos
( a

b

)
√

b2 − a2
, (3.9a)

τ2(n, b) = 2nπ − arccos
( a

b

)
√

b2 − a2
, (3.9b)

where n = 0,+1,+2, · · · in Eq. (3.9a) and n = +1,+2, · · · in Eq. (3.9b). Also
we get

dα

dτ

∣∣∣∣
α=0

= β2 D−1 > 0 (3.9c)
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where

D = [1 − bτ cos(βτ)]2 + [bτ cos(βτ)]2 , (3.9d)

β = b sin(βτ).

Using similar arguments as in the previous case, we find that there is only one
stable island between the line τ = 0 and the curve τ1(0, b), which corresponds
to a Hopf bifurcation curve.

4. For the case p1 < x ≤ p2 and for the fixed point x = x0 = c+2b
a+1.5b , the charac-

teristic equation turns out to be identical to Eq. (3.3) and the associated critical
curves also have same form as that of Eq. (3.4). Hence, the same discussion in
connection with the stability nature of the fixed point holds good in this case
also.

3.3 Numerical Study of the Single Scalar Piecewise Linear
Time-Delay System

In this section, we will present a discussion on the dynamics of the scalar piecewise
linear time-delay system, (Eq. 3.1), in the pseudospace (x(t), x(t − τ)). Further
we will also discuss the significant role played by transients in attaining the steady
state behavior, the computational efficiency required for achieving such steady state
solution and the nature of bifurcation diagrams for both low and high transients with
the external forcing c as the control parameter. We will also point out the existence
of a stable island for equilibrium points in the two parameter (now in the delay
time Vs the external forcing (τ, c) plane) bifurcation diagrams for various ranges of
control parameters and nonlinearity characterized by the function f (x(t)) for three
different values of p2 in Eq. (3.2). In addition, we have also calculated the Lyapunov
exponents associated with the system and show that there exists a large parameter
range over which hyperchaos can be observed (corresponding to multiple positive
Lyapunov exponents). From the two parameter bifurcation diagrams, it becomes
evident that the sizes of the hyperchaotic regime and the stable fixed point regime
increase with time-delay.

3.3.1 Dynamics in the Pseudospace

The dynamics of the piecewise linear time-delay system, Eq. (3.1), can be studied in
a suitable phase space by plotting the numerical solution of Eq. (3.1) appropriately.
Now, to calculate x(t) from Eq. (3.1) for times greater than t , the function x(t) over
the interval (t − τ, t)must be specified. Hence, for a prescribed continuous function
x(t) on (−τ, 0) one can integrate Eq. (3.1) using numerical methods as in the case of
ordinary differential equations, as discussed earlier in Sect. 1.2.2. We have numer-
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ically integrated Eq. (3.1) using Runge-Kutta fourth order integration routine with
the parameters fixed as a = 1.0, b = 1.2 and p1 = 0.8 for three different values of
p2 = 1.0, 1.33, 1.66 and with the initial condition (initial function) x(t) = 0.9 in
the interval (−τ, 0). As the system is of first order in nature, the dynamics can be
viewed in a pseudospace by plotting x(t) against x(t − τ). (Note that the choice of
x(t −τ) as the second phase variable is arbitrary; x(t − t ′) can be equivalently used,
where t ′ is an arbitrary delay time). One encounters typical scenario of bifurcations
leading to chaos, but with an important difference: Transients play a crucial role
and it takes a very long time before transients die down to attain steady state solu-
tions. In particular, period doubling and inverse period doubling phenomena, besides
other bifurcations, are often encountered. In many cases the system exhibits hyper-
chaotic behavior characterized by multiple positive Lyapunov exponents, which we
will discuss below in Sect. 3.3.4. Figure 3.3 shows a typical chaotic attractor for
τ = 5.0, c = 0.001 and p2 = 1.33 with the initial condition as given above in
the phase space (x(t), x(t + 5)). The positive maximal Lyapunov exponent of this
attractor for the above mentioned parameter values is λmax = 0.05461. It may be
noted that previously it was reported by Thangavel et al. [4] and Lu and He [3] that
the system for a different set of parameters exhibits only chaos (and not hyperchaos)
for large values of time-delay, that is for τ > 20. On the other hand, we have iden-
tified the parameter regimes where the system exhibits chaos and even hyperchaos
for small values of time-delay around τ = 5.0. In the following we present the
details.

3.3.2 Transients

Usually dynamical systems described by ordinary differential equations (ODEs) can
attain the steady state within a few thousand transients for optimal value of time
stepΔt , provided due care is given for numerical accuracy and a suitable numerical
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Fig. 3.3 Chaotic attractor for τ = 5.0, a = 1.0, b = 1.2, c = 0.001, p1 = 0.8, p2 = 1.33 and
x(t) = 0.9, t ∈ (−5, 0)
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algorithm is chosen. However for the delay differential equation (DDE) of the form
(3.1), such low transients (of the order 104 and more) do not seem to lead the sys-
tem to its steady state solution. In such cases one has to leave out more number
of transients so that one can have the possibility of obtaining a clear picture of the
bifurcation diagram of the known routes. In fact, the effect of transients has been
pointed out by Becker and Dorfler [6] even for the logistic map. As far as nonlinear
maps and ODEs are concerned, with some effort it is possible to realize whether the
system has reached the steady state or not by constructing the appropriate bifurca-
tion diagrams and identifying the various bifurcation routes by leaving out sufficient
number of transients before starting the analysis for steady state solutions. The same
considerations hold good for dynamical systems modeled by finite number of cou-
pled nonlinear maps and ODEs without time-delay.

On the other hand, when one starts studying nonlinear dynamical systems with
time-delay, effectively one considers infinite number of coupled ODEs which in
a numerical sense corresponds to several hundred coupled nonlinear ODEs. For
example, for Eq. (3.1), when the time-delay τ = 25.0, in the actual numerical
analysis, we typically take the optimal time step as Δt = 0.05, so that we are
actually solving 500 coupled nonlinear ODEs. However, the optimal time step Δt
to be fixed depends explicitly on the nature of the system and on the time-delay
introduced in the system. In contrast to the nonlinear ODEs, where either a very
small or a relatively large time stepΔt results in an exponentially increasing numer-
ical error, for the time-delay system (3.1), we have found that the optimal time
step Δt varies between 0.05 to 0.0001, depending on which the actual number of
coupled nonlinear ODEs increase, and the number of transients to be left out is
found to lie anywhere between 2.0 − 3.0 × 106. For small values of time-delay
τ , the optimal time step Δt should be as small as possible to identify a typical
bifurcation scenario. However, for large values of time delay τ , a very small value
of time step Δt can again be problematic as one has to deal with a large number of
coupled ODEs and the time required for solving such huge number of coupled ODEs
becomes large. Also a large value of time stepΔt does not seem to lead to the steady
state solution, as such time steps lead to propagation of numerical errors. However,
an appropriate optimal choice of time step Δt can lead to a typical bifurcation
scenario.

Thus the numerical analysis of time-delay nonlinear systems requires an appro-
priate time step Δt to be chosen, depending on which the actual number of cou-
pled nonlinear ODEs increases, which in turn necessarily increases the number of
transients to be left out in order to obtain the steady state solution. In our numer-
ical analysis we have chosen the optimal time step as Δt = 0.05 for the value of
time-delay τ = 25.0. The effect of transients in reaching the steady state behavior
can be realized from the bifurcation diagrams we have obtained for the parameter
values a = 0.16, b = 0.2 and for two different values of p2. Figure 3.4a shows
the one parameter bifurcation diagram for the above mentioned parameter values
with p2 = 1.33, when we leave transients of the order 1.0 − 2.0 × 104, which is
sufficiently large in the case of nonlinear maps and ODEs, leaving the impression
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Fig. 3.4 Bifurcation diagrams of the single scalar piecewise linear time-delay system (3.1) for the
parameters values a = 0.16, b = 0.2 and τ = 25.0 when p2 = 1.33 (a) for transients of the order
1.0 − 2.0 × 104 and (b) for transients now of the order 1.0 × 105

that the steady state has been reached with a bifurcation scenario that is quite com-
plicated and atypical. In contrast, Fig. 3.4b shows the bifurcation diagram for the
same value of the parameters except that now the transients left out are of the order
of 1.0 × 105, which shows a typical bifurcation scenario. Similarly Fig. 3.5a shows
the bifurcation diagram for the same values of parameters as above for τ, a and b
with p2 = 1.66 for the transients of the order 1.0×105, which shows a very complex
structure, whereas Fig. 3.5b shows the bifurcation diagram for the transients of the
order 1.4×106, in which case still there exists some stray points near the bifurcation
regions, which indicates that the system requires still more transients to settle to its
steady state. The complexity increases with time-delay and hence the number of
transients also increases, which in turn increases the computing time enormously.
This is also evident from Fig. 3.6, where the maximum value of x(t), xmax , is plotted
against the time-delay τ , for the parameter values a = 1.0, b = 1.2, c = 0.001
and p2 = 1.33. Fig. 3.6a shows that even for transients of the order 1.0 × 105, the
bifurcation diagram is still in an unsettled form for larger values of time-delay τ . On
the other hand in Fig. 3.6b, the number of transients is of the order 2.5×105, wherein
a clear bifurcation scenario has emerged. We have verified the role of transients to
attain the steady state solutions for various values of time step Δt and time-delay
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Fig. 3.5 Bifurcation diagrams of the single scalar piecewise linear time-delay system (3.1) for the
parameter values a = 0.16, b = 0.2 and τ = 25.0 when p2 = 1.66 (a) for transients of the order
1.0 × 105 and (b) for transients of order 1.4 × 106

τ for few other delay differential equations also, including those discussed in the
work of Ramana Reddy et al. [7]. The results of our detailed numerical investiga-
tion for Eq. (3.1) are tabulated in Table 3.1, where we have indicated the number
of transients to be left out for given values of Δt in order to attain the steady state
solutions.

As the delay time increases, the size of the delay loop (that is to be updated on
every iteration) required to maintain the delay variable in numerical simulation also
increases, which in turn increases the computational effort. Another important point
to note in connection with the effect of transients is the following. In the above we
have discussed the effect with reference to a scalar delay differential equation only.
On the other hand, in recent times, there has been considerable interest to study
the dynamics of multiply coupled delayed neural/nonlinear networks in biological
systems [8, 9]. In order to examine the actual steady state behavior of such networks,
which effectively correspond to several thousands of coupled nonlinear ODEs, the
time required to obtain steady state solution increases enormously as each one of
them have separate time delays (systems with multiple delays) and intrinsic transient
behaviors and it becomes crucial to study the effect of the latter.
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Fig. 3.6 Bifurcation diagrams of the single scalar piecewise linear time-delay system (3.1) for the
parameter values a = 1.0, b = 1.2, c = 0.001, p2 = 1.33 and τ ∈ (2, 29) (a) for transients of the
order 1.0 × 105 and (b) for transients of the order 2.5 × 105

Table 3.1 Effect of time step Δt on transients

Number of coupled Number of transients
Value of τ Optimal value of Δt differential equations to be left out

5 0.002 2,500 3.0 − 5.0 × 105

0.001 5,000 5.0 − 6.0 × 105

10 0.002 5,000 1.0 − 2.0 × 106

0.001 10,000 > 2.0 × 106

25 0.05 500 1.0 × 105 − 2.0 × 106

0.005 5,000 1.0 − 2.0 × 106

0.0025 10,000 > 2.0 × 106

3.3.3 One and Two Parameter Bifurcation Diagrams

All the bifurcation diagrams shown in this chapter (and later chapters) have
been plotted after leaving out a very large number of transients of the order
1.2 − 3.2 × 106. Figure 3.4b shows the one parameter bifurcation diagram for
the values of the parameters p1 = 0.8, p2 = 4/3, τ = 25.0 in Eq. (3.2) for
c ∈ [−0.1,−0.05]. It clearly exhibits period-doubling scenario; however there
exists a sudden distortion around the value of c = −0.0785, the cause of which
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remains unexplained by any standard type of bifurcation. Similarly Fig. 3.5b shows
the bifurcation diagram with the values p1 = 0.8, p2 = 5/3, τ = 25.0 for
c ∈ [−0.15,−0.136], exhibiting reverse period-doubling route to chaos in the
range, c ∈ [−0.136,−0.144], which includes a clear band merging crises and anti-
monotonicity for c ∈ [−0.15,−0.144].

The two parameter bifurcation diagram for τ ∈ [0, 30] and c ∈ [−0.16, 0.16]
when p2 = 1.0 is shown in Fig. 3.7a, which shows the behavior of the scalar
piecewise linear time-delay system in the combined phase space of parameters τ
and c. The following color codes are used to represent various regions: period-1
region -red, period-2 region - green, 3-blue, 4-yellow, 5-magenta, 6-cyan, 7-gray,
8-copper, chaos-black and the fixed points-white. The white region in the two
parameter bifurcation diagram corresponds to stable regions. Figure 3.7b shows
the two parameter bifurcation diagram for the same parameters as in Fig. 3.7a,
except that now p2 = 4/3. We use the same colour codes as in Fig. 3.7a for all
the two parameter bifurcation diagrams in this chapter. Similarly Fig. 3.7c shows
the two parameter bifurcation diagram for the same range of the control parame-
ters and the same values of the parameters a and b in Eq. (3.1), except that now
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Fig. 3.7 Global bifurcation diagrams of the single scalar piecewise linear time-delay system (3.1)
for τ ∈ (0.5, 30) and c ∈ (−0.16, 0.16). The following color codes are used to represent various
regions, period-1 region -red, period-2 region -green, 3-blue, 4-yellow, 5-magenta, 6-cyan, 7-gray,
8-copper, chaos-black and the fixed points-white. (a) p2 = 1.0, (b) p2 = 1.33 and (c) p2 = 1.66
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p2 = 5/3. By comparing the Fig. 3.7a, b and c, we can see that the stable fixed
point regions and the chaotic regions increase for small changes in the nonlinear
parameters p1 and p2. Further one can infer from these figures that as the delay
increases the chaotic nature of the system also increases and thereby contributing to
the hyperchaotic nature of the system characterized by multiple positive Lyapunov
exponents.

3.3.4 Lyapunov Exponents and Hyperchaotic Regimes

One of the interesting aspects of the dynamics associated with Eq. (3.1) is the exis-
tence of hyperchaos in a single first order scalar equation with time delay even for
small values of delay times and for suitable values of other system parameters. As
Eq. (3.1) is a first order delay differential equation, the usual procedure for calcu-
lating Lyapunov exponents is not applicable. However, the simple idea of approxi-
mating a single scalar differential equation with delay, which is essentially infinite
dimensional as pointed out earlier in Sect. 1.2.2 of Chap. 1, by an N-dimensional
discrete mapping [10] facilitates one to calculate the Lyapunov exponents. To sim-
ulate the behavior of such systems on a computer it is necessary to approximate
the continuous evolution of an infinite dimensional system by a finite number of
elements whose values change at discrete time steps (see Sect. 1.2.2). In this manner
a continuous infinite dimensional dynamical system is replaced by a finite dimen-
sional iterated mapping. This method was proposed originally by Farmer [10] to
calculate the Lyapunov exponents for delay systems. As the delay parameter is
increased, for most parameter values the dimension increases and the attractor gen-
erally becomes more complicated, thereby contributing to the hyperchaotic nature
of the system, which gets confirmed by the increasing number of positive Lyapunov
exponents. The first ten maximal Lyapunov exponents, for the parameter values
a = 1.0, b = 1.2, c = 0.001, p1 = 0.8, p2 = 1.33 and τ ∈ (2, 29), are shown
in Fig. 3.8a, where it is evident that the number of positive Lyapunov exponents
increases with time-delay τ . The Kaplan-Yorke dimension obtained by using the
formula

DL = j +
∑ j

i=1 λi∣∣λ j+1
∣∣ , (3.10)

where j is the largest integer for which λ1 + ... + λ j ≥ 0, for the single scalar
piecewise linear time-delay system is shown as a function of the delay time τ in
Fig. 3.8b. Almost the entire black regime in the two parameter bifurcation diagrams
Fig. 3.7 for large values of τ is characterized by multiple positive Lyapunov expo-
nents corresponding to the hyperchaotic nature of the system.
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Fig. 3.8 (a) The first ten maximal Lyapunov exponents of the single scalar piecewise linear time-
delay system (3.1) for the values a = 1.0, b = 1.2, c = 0.001, p2 = 1.33 and τ ∈ (2, 29), and
(b) Kaplan-Yorke dimension of the scalar piecewise linear time-delay system as a function of the
time-delay τ

3.4 Experimental Realization using PSPICE Simulation

The simple scalar odd piecewise linear time-delay system (Eqs. 3.1 and 3.2) can
also be realized experimentally using PSPICE simulation. The block diagram of the
analog electronic circuit consists of a tunable delay unit, a nonlinear device and a
fixed RC filter as shown in Fig. 3.9. The delay unit is of T-type LC L filter with
matching resistors R at the input and output of the delay unit. Delay time can be
tuned by connecting the output amplifier to a suitable output terminal i of the delay
unit shown in Fig. 3.10. Delay time can be approximated by Td(i) = i

√
2LC , where

i is the i th output terminal of the delay unit. Only this T-type LC L filters have been
used as a delay unit in most of the studies available in the literature. However, an
inbuilt delay line, namely bucket brigade line MN 3011 with 3,328 stages, triggered
by MN 3101 (National Panasonic) has also been used in the literature [11, 12] as a
delay unit.

The circuit diagram of the piecewise linear nonlinearity denoted as ND in Fig. 3.9
is shown in Fig. 3.11. The first part of the circuit is the relay circuits denoted by K ,
which cuts off the voltage to zero on both sides of the current-voltage characteristic
curve. D1 and D2 are 1N4148 diodes. O A1 and O A2 are standard operational
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Fig. 3.9 Block diagram of the analog electronic circuit
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Fig. 3.10 Tunable delay unit. Different combinations of the inductance L ,C and R are used in the
literature. However, we have used the combinations L = 4.7 mH,C = 10 nF and R = 190 Ohms
in our PSPICE simulation
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Fig. 3.11 The circuit diagram of the piecewise linear nonlinearity denoted as ND in Fig. 3.9
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Fig. 3.12 (a) Input/output voltage characteristic of the piecewise linear nonlinearity (Fig. 3.11),
and (b) the chaotic attractor exhibited by the circuit, Fig. 3.9
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amplifiers. The input/output voltage characteristic of the piecewise linear nonlin-
earity is depicted in Fig. 3.12a and the chaotic attractor exhibited by this circuit is
presented in Fig. 3.12b.

3.5 Stability Analysis and Chaotic Dynamics of Coupled DDEs

We now add a second dynamical variable evolving without delay to Eq. (3.1) to
obtain the following set of coupled DDEs,

dx(t)

dt
= −ax(t)+ b f (x(t − τ))+ dy(t), (3.11a)

dy(t)

dt
= −cy(t)+ ex(t), (3.11b)

where c and e are additional parameters and the function f (x) and other parameters
are the same as already defined in Eq. (3.1). As in the case of the single scalar
piecewise linear time-delay system, we have fixed the parameter p1 at p1 = 0.8
and studied the system behavior in a range of variable parameter c ∈ [0.0, 1.4] and
time-delay τ ∈ [0.0, 30.0] for different values of the parameter p2 characterizing
the piecewise linear function f (x). Now let us consider the nature of the fixed points
of system (3.11).

3.5.1 Fixed Points and Linear Stability

We will now bring out the existence of stable island in the two parameter bifurcation
diagram corresponding to the system of two coupled delay differential equations by
linear stability analysis in the presence of time-delay τ , as in the case of single scalar
piecewise linear time-delay system. Considering the fixed point X∗ = (x∗, y∗) of
the system (3.11), we assume the linearly perturbed form as x = x∗ + β1eλt and
y = y∗ + β2eλt , β1, β2 << 1. Then, we examine the stability nature of the fixed
points of Eq. (3.11) both in the absence and in the presence of time-delay τ .

3.5.1.1 Time-Delay τ = 0

In the absence of time-delay, the following fixed points can exist depending on the
choice of parameters a, b, c, d, e, p1 and p2 in Eqs. (3.11) and (3.2).

1. For |x | > p2, the fixed point is (x, y) = (x0, y0) = (0, 0) and the characteristic
equation in this region is λ2 + (a + c)λ+ ac − de = 0. The fixed point (x, y) =
(0, 0) is stable when a + c > 0 and ac > de.

2. For −p2 < x ≤ −p1, the fixed point is (x, y) =
(

2bc
de−(a+1.5b)c ,

2be
de−(a+1.5b)c

)
and the characteristic equation in this region becomes λ2 + (c + a + 1.5b)λ +
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(ca + 1.5bc − de) = 0. The fixed point is stable when c + a + 1.5b > 0 and
ac + 1.5bc > de.

3. For |x | ≤ p1, the fixed point is (x, y) = (0, 0) and the characteristic equation
becomes λ2 + (c +a −b)λ+ (ca −bc −de) = 0. The above fixed point is stable
when c + a − b > 0 and ac > bc + de.

4. For p1 < x ≤ p2, the fixed point is (x, y) =
( −2bc

de−(a+1.5b)c ,
−2be

de−(a+1.5b)c

)
and the characteristic equation in this region becomes λ2 + (c + a + 1.5b)λ +
(ca + 1.5bc − de) = 0. The fixed point is stable when c + a + 1.5b > 0 and
ac + 1.5bc > de.

Next we consider the case when time-delay is present, τ > 0.

3.5.1.2 Time-Delay τ > 0

In the presence of time-delay, we will examine the stability as follows.

1. For |x | > p2, the fixed point and its stability remains the same as for the case
τ = 0.0.

2. Next in the region −p2 < x ≤ −p1, for the fixed point

(x, y) =
(

2bc

de − (a + 1.5b)c
,

2be

de − (a + 1.5b)c

)
,

the characteristic equation can be expressed as

(c + λ) (λ+ a + 1.5b exp(−λτ))− de = 0, (3.12)

which is a transcendental equation with infinite number of solutions. Let λ =
α + iβ, where α and β are real. Substituting this in the above equation and
equating the real and imaginary parts, we obtain two equations as

(c + α)
[
α + a + 1.5b exp(−ατ) cos(βτ)

]− de − β2 + 1.5βb exp(−ατ) sin(βτ) = 0,
(3.13a)

(c + α)
[
β − 1.5b exp(−ατ) sin(βτ)

]+ β
[
α + a + 1.5b exp(−ατ) cos(βτ)

] = 0.
(3.13b)

In order to find the critical stability curves, we choose α = 0. Then we have

1.5bc cos(βτ)+ ca − de − β2 + 1.5βb sin(βτ) = 0, (3.14a)

1.5bβ cos(βτ)+ cβ + βa − 1.5bc sin(βτ) = 0. (3.14b)

Multiplying the above two Eqs. (3.14a) and (3.14b) with c and β, respectively,
and adding we obtain

1.5b cos(βτ)(c2 + β2)+ a(c2 + β2)− cde = 0. (3.15)
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Now multiplying the Eqs. (3.14a) and (3.14b) with β and c, respectively, and
subtracting the resulting equations, we obtain

1.5b sin(βτ)(c2 + β2)− β(c2 + β2)− βde = 0. (3.16)

Squaring and adding Eqs. (3.15) and (3.16), and rearranging them, we obtain the
following cubic equation for β2,

X3 + u X2 + vX + w = 0, X = β2, (3.17)

where the constants are given as

u = a2 + 2(de + c2)− 2.25b2; (3.18a)

v = (de + c2)2 − 2ac(de − ac)− 4.5b2c2; (3.18b)

w = c2(de − ac)2 − 2.25b2c4. (3.18c)

From Eq. (3.15), we obtain

βτ = ± arccos

(
cde − a(c2 + β2)

1.5b(c2 + β2)

)
+ 2nπ, (3.19)

where n is any integer (0,±1,±2, ...) and the value of β can be obtained by
solving the Eq. (3.17) for β2. Consequently the stability regions are confined
between the set of curves,

τ1(n, 1.5b) =
2nπ + arccos

(
cde−a(c2+β2)

1.5b(c2+β2)

)
β

(3.20a)

τ2(n, 1.5b) =
2nπ − arccos

(
cde−a(c2+β2)

1.5b(c2+β2)

)
β

, (3.20b)

where n = 0,+1,+2, ... in Eq. (3.20a) and n = +1,+2, ... in Eq. (3.20b). In
order to check whether the region enclosed by the curves τ1 and τ2 forms stable
islands in the (τ, β) plane, one has to again examine the sign of dα

dτ on τ1 and
τ2 as we have done for the case of the single scalar piecewise linear time-delay
system in Sect. 3.2.1.2. We have found that there exists only one stable island
between the line τ = 0 and τ = τ1(0, β) curve (Hopf bifurcation curve) (shaded
region) as shown in Fig. 3.13 following the similar discussion in Sect. 3.2.1.2.

3. In the region |x | ≤ p1, for the fixed point (x, y) = (0, 0), the characteristic
equation is

(c + λ) (λ+ a + b exp(−λτ))− de = 0,
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Fig. 3.13 Curves of Eqs. (3.20a) and (3.20b) in the range of −p2 < x ≤ p1. The solid curves
represent τ1 for n = 0,+1,+2 and broken curves represent τ2 for n = +1,+2. The region
enclosed between the line τ = 0 and the curve τ = τ1(0, 1.5b) (Hopf bifurcation curve) is the
only stable island (shaded region)

which is again a transcendental equation with infinite number of solutions. Pro-
ceeding in the same way as for the case −p2 < x ≤ −p1, we obtain a set of
critical curves as

τ1(n, b) =
2nπ + arccos

(
cde−a(c2+β2)

b(c2+β2)

)
β

(3.21a)

τ2(n, b) =
2nπ − arccos

(
cde−a(c2+β2)

b(c2+β2)

)
β

, (3.21b)

where n = 0,+1,+2, ... in Eq. (3.21a) and n = +1,+2, ... in Eq. (3.21b). As in
the previous case we found that there is only one stable region between the line
τ = 0 and the Hopf bifurcation curve τ = τ1(0, β).

4. For the case p1 < x ≤ p2 and for the fixed point

(x, y) =
( −2bc

de − (a + 1.5b)c
,

−2be

de − (a + 1.5b)c

)
,

the characteristic equation turns out to be identical to Eq. (3.12) and the associ-
ated critical curves also have similar form as that of Eqs. (3.20a) and (3.20b).

3.6 Numerical Analysis of the Coupled DDE

In this section, we will discuss the dynamics of the set of two coupled time-delay
systems defined by Eq. (3.11) through numerical analysis and the transient effects
involved in it by studying the bifurcation diagrams for both low and high transients
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with c as the control parameter. The one parameter bifurcation diagram in one of the
parameter regimes has the signature of type III intermittent behavior. We have also
found that the dynamics at this transition possesses type III intermittent character-
istic scaling behavior. We have also plotted the two parameter bifurcation diagrams
in the (τ, c) plane for three different values of p2, from which also we have pointed
out the existence of stable islands of equilibrium points for suitable choice of other
parameter values.

3.6.1 Transients

As we have already discussed much about the role of transients in the case of sin-
gle scalar piecewise linear time-delay system in Sect. 3.3.2, we will not discuss it
again in detail for the present case. We point out here only the number of transients
required to obtain the bifurcation diagrams which we have shown in Figs. 3.14 and
3.15 for the system (3.11), which enables one to realize the effect of transients.
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Fig. 3.14 Bifurcation diagrams of the two coupled time-delay system defined by Eq. (3.11). (a)
For the parameters values a = 0.16, b = 0.2, d = 0.2, e = 0.2 and τ = 25.0 for p2 = 1.33 and
for transients of the order 2.0 × 105 and (b) For the same parameter values as in (a) except for the
transients of the order 1.75 × 106
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Fig. 3.15 Bifurcation diagrams of the two coupled time-delay system (3.11) (a) For the parameters
values a = 0.16, b = 0.2, d = 0.2, e = 0.2 and τ = 25.0 when p2 = 1.66 for transients of the
order 2.0 × 105 and (b) For the same parameter values as in (a) except for transients of the order
2.0 × 106

As discussed in the case of single scalar piecewise linear time-delay system, the
transients predominate the evolution of the system (3.11) to its steady state solution.
Figure 3.14a shows the one parameter bifurcation diagram for transients of the order
2.0 × 105 for the parameter value p2 = 1.33, whereas Figure 3.14b shows the one
parameter bifurcation diagram for transients of order 1.75×106 for the same param-
eter values. The stray points in the neighbourhood of bifurcation points are due to
the transient effects, which suggests that it requires still more iterations need to be
left out. Figure 3.15a shows the one parameter bifurcation diagram for transients of
the order 2.0 × 105 for the parameter value p2 = 1.66, whereas Fig. 3.15b shows
the bifurcation diagram for transients of the order 2.0 × 106.

3.6.2 One and Two Parameter Bifurcation Diagrams

We have integrated Eq. (3.11) with the parameters a = 0.16, b = 0.2, d = 0.2,
e = 0.2 and c as variable parameter with the initial conditions x(t) = 0.9 for
t ∈ (−25, 0) and y = 0.8. Figure 3.14b shows the one parameter bifurcation
diagram in the nonlinear parameter regime characterized by the function f (x(t))
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with p1 = 0.8, p2 = 4/3 and τ = 25.0, which shows the period-3 doubling
bifurcation route to chaos. Figure 3.15b shows reverse period-doubling in the range
c ∈ [0.32, 0.345], and at the critical value of ccrit = 0.345969 the system exhibits
intermittent transition to chaos followed by reverse period-5 doubling in the range
c ∈ [0.346, 0.365] interspersed by periodic windows for the same parameter values
as above except that now p2 = 5/3. At the intermittent transition, the amplitude
variation loses its regularity and a burst appears in the regular phase as shown in
Fig. 3.16. This behavior repeats as time increases as observed in the usual type-III
intermittent scenario. The duration of laminar phases is random during the transition
and finally results in chaotic oscillations which is obtained by increasing the value
of the control parameter c. The plot of the mean laminar length < l > as a function
of the parameter f = (ccrit − c) is shown in Fig. 3.17, where ccrit is the critical
value of the parameter for the occurrence of the intermittent transition. The phase
space trajectories reveal a power law relationship of the form < l >= f −α with
the estimated value of α = 0.871. This analysis confirms that the trajectories at
the critical value of c is associated with standard intermittent dynamics of type-III
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Fig. 3.16 Intermittent behavior at the parameter values a = 0.16, b = 0.2, d = 0.2, e = 0.2 and
τ = 25.0 when p2 = 1.66 for a critical value of the parameter ccri t = 0.345969
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Fig. 3.17 Mean laminar length < l > versus f = ccri t − c
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Fig. 3.18 Global bifurcation diagrams of coupled time-delay system (3.11) for τ ∈ (0.1, 30) and
c ∈ (0.3, 1.4). The colour codes are the same as in Fig. 3.7. (a) p2 = 1.0, (b) p2 = 1.33 and (c)
p2 = 1.66

described in the work of Pomeau and Manneville [13] and Schuster [14]. Figure 3.18
shows the global bifurcation diagrams when p2 = 1.0, 4/3 and 5/3, respectively.
The colour codes used here are the same as in the previous case of single scalar
piecewise linear time-delay system. By comparing the global bifurcation diagrams,
we can realize that the stable island (fixed point) and the chaotic region increase in
size for small changes (increase) in the parameter p2. In addition the chaotic nature
of the system increases with delay.

More detailed analysis of coupled time-delay systems, including piecewise linear
systems, for their chaotic dynamics and synchronization behavior are investigated
in the following chapters.
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Chapter 4
A Few Other Interesting Chaotic Delay
Differential Equations

4.1 Introduction

One of the well known properties of DDEs is that their effective dimensions increase
with the delay time τ [1, 2], see Sect. 1.2.2. This allows one to select different
values (sufficiently large) for the delay time τ to generate high-dimensional chaotic
signals. Hence, in recent times DDEs have received increased attention in the non-
linear dynamics literature due to the possibility of generating more complex and
high-dimensional chaotic attractors and also because of the feasibility of their exper-
imental realization. Therefore, several chaotic time-delay systems and their variants
have been proposed during the past few years for generating and enhancing com-
plexity of chaotic behavior in various technological and engineering applications.
In this chapter, we will briefly review the dynamical properties of some of the most
important first order scalar nonlinear time-delay systems, that have been widely used
in the literature, exhibiting chaotic/hyperchaotic behaviors. In addition, we will also
present some of the interesting coupled (higher order) delay differential equations
in different areas of science and technology.

4.2 The Mackey-Glass System: A Typical Nonlinear DDE

In order to gain further insight and clear understanding of the general features of
the dynamics of nonlinear DDEs, in this section, we will consider another scalar
first order nonlinear DDE, namely the Mackey-Glass equation, which has been well
studied in the literature in connection with chaotic dynamics and applications. As
noted in the previous chapter, it is quite intricate to obtain even the stability criteria
for the fixed point solution of a scalar nonlinear DDE itself. Now we will consider
the Mackey-Glass system as another example to discuss the dynamics of nonlinear
DDEs. Other examples are discussed in the following sections.

4.2.1 Mackey-Glass Time-Delay System

The Mackey-Glass time-delay system [3, 4] has been a well studied nonlinear DDE
equation in the literature for its chaotic dynamics [1, 5–10]. It has received a central
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importance in recent studies on synchronization in view of its hyperchaotic behav-
ior [11–16]. Analog version of the Mackey-Glass system has also been realized
experimentally using electronic circuits [14–17]. The Mackey-Glass system, which
was originally deduced as a model for blood production in patients with leukemia,
can be represented by the first order nonlinear DDE

ẋ = −bx(t)+ ax(t − τ)

(1.0 + x(t − τ)c)
, (4.1)

where a, b and c are positive constants. Here, x(t) represents the concentration
of blood at time t (density of mature cells in bloodstreams), when it is produced,
x(t −τ) is the concentration when the “request” for more blood is made and τ is the
time-delay between the production of immature cells in the bone marrow and their
maturation for release in circulating bloodstreams. In patients with leukemia, the
time τ may become excessively large, and the concentration of blood will oscillate,
or if τ is even larger, the concentration can vary chaotically, as demonstrated by
Mackey and Glass [1, 3]. This model is often used as a prototype model in the liter-
ature for nonlinear delay systems exhibiting chaotic attractors and even hyperchaotic
attractors for large values of delay time.

4.2.2 Fixed Points and Linear Stability Analysis

A great deal of information can be obtained about the dynamical behavior of the
scalar first order Mackey-Glass DDE (4.1) by performing a linear stability analy-
sis [18] of equilibrium states. As pointed out in Chap. 3, the difficulty lies in obtain-
ing the conditions under which the real part of the eigenvalues of the linearized
equation for the given fixed point is less than zero from the resulting transcendental
characteristic equation.

The steady state or equilibrium state (fixed point) of the system (4.1) is one for
which x(t) = x(t−τ) = x(0) = x∗ ∀ t and as a consequence all the time derivatives
vanish identically. Hence substituting x(t) = x(t − τ) and ẋ = 0 in (4.1), it is easy
to see that Eq. (4.1) has two fixed points,

x = x∗ = 0, (4.2a)

x = x∗ =
(

a − b

b

) 1
c

. (4.2b)

Note that the second solution exists only for a > b (x is real). The stability
of the fixed points is determined by examining how a small perturbation about the
fixed point behaves in time for all t > 0. In particular, as pointed out in Chap. 3,
Sect. 3.2.1, to study the linear stability we assume that the perturbations about
the fixed point grows as ρ exp λt , where λ is in general a complex number to be
determined and ρ 
 1 is the amplitude of the perturbation, Then the characteristic
equation turns out to be
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λ = −b +
(

a(1 + x∗)− acx∗

(1 + x∗)2

)
exp(−λτ). (4.3)

Solving the above equation for λ for either of the fixed points x∗ = 0 or x∗ =( a−b
b

) 1
c gives the criterion for the stability of the corresponding fixed points. In the

following we analyze the stability of the above two fixed points given by Eqs. (4.2)
both in the absence and presence of time-delay τ .

4.2.3 Time-Delay τ = 0

Now, we will discuss the stability of the fixed points (4.2) in the absence of time-
delay, that is τ = 0.

(a) Fixed point x∗ = 0:
From Eq. (4.3), one finds the characteristic equation for the fixed point x = x∗
= 0 to be

λ+ b − a = 0, (4.4)

and the fixed point is stable for a < b.

(b) Fixed point x∗ = ( a−b
b

) 1
c :

The characteristic equation for the second fixed point x = x∗ = ( a−b
b

) 1
c can be

written as

λ+ b − b(1 − ac + bc) = 0, (4.5)

and the fixed point is stable if a > b.

Thus for a < b we have x = x∗ = 0 as the only locally stable fixed point. For

a > b the second fixed point, x∗ = ( a−b
b

) 1
c , is created while the first one, x∗ = 0,

becomes unstable. Obviously a = b is a bifurcation point.

4.2.4 Time-Delay τ > 0

In this section, we will make use of the approach advocated in Chaps. 2 and 3 in
order to (i) determine the parametric conditions due to which change in the stability
of a given fixed point occurs as specified by the transcendental equation, (ii) to
demarcate the asymptotically stable regions of the fixed points in the parameter
space of the system and (iii) to determine the conditions on the parameters under
which the given fixed point of the system is stable.
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4.2.4.1 Geometric Approach

Now let us apply the geometric approach proposed by McDonald [19] to determine
the stability from the general equation (4.3) as discussed in Sect. 2.3 of Chap. 2. As
pointed out earlier, a change in stability of a fixed point can occur only when a root
λ = α + iβ of Eq. (4.3) crosses the imaginary axis, that is, λ = iβ, where β is real,
is a solution of Eq. (4.3). In particular let us consider the transcendental equation

λ+ b − ae−λτ = 0, (4.6)

corresponding to the fixed x∗ = 0 for τ > 0. Now, if a substitution λ = iβ is made
in the above equation, then it takes the following form

b + iβ

a
= exp(− iβτ). (4.7)

If the steady state in question is stable in the absence of delay, that is for τ = 0,
an instability can occur for τ �= 0 only if there are some real β and τ for which the
Eq. (4.7) holds good. This can be determined by the simple geometric construction
discussed in Sect. 2.3 of Chap. 2.

Considering the right hand side of Eq. (4.7), we can easily see that it traces a
unit circle as shown in Fig. 4.1 and change in stability of the fixed point is indicated
by the intersection of the ratio curve, namely the left hand side of Eq. (4.7). This
is examined by changing the value of a in the Eq. (4.6), whose value determines
the stability of the fixed point x∗ = 0. As a typical example, for the values of the
parameters τ = 25.0, b = 0.1 and a = 0.09, it turns out that a < b and the ratio
curve (dotted line) does not intersect the unit circle as shown in the Fig. 4.1a. Thus
the fixed point x∗ = 0 remains stable. As the value of a is increased to a = 0.1
so that a = b, one finds the ratio curve (dotted line) just touches the unit circle
(Fig. 4.1b) indicating the boundary layer between the stability of the two fixed
points. For a = 0.11, when a > b, the ratio curve intersects the unit circle as
shown in Fig. 4.1c indicating the change in stability of the first fixed point x∗ = 0,
which becomes unstable for the latter value of a.

Similarly, using the above geometric construction, one can also determine the

stability of the second fixed point x∗ = ( a−b
b

) 1
c from its characteristic (transcen-

dental) equation

λ+ b − b(1 − ac + bc)e−λτ = 0, τ > 0. (4.8)

Again substituting λ = iβ and rewriting the above transcendental equation in the
form of Eq. (4.7), one can obtain equations corresponding to unit circle and ratio
curve as discussed above. As pointed out in the Sect. 4.2.3, a > b (which is the
condition for the instability of the first fixed point when τ = 0) is also the condition
for the second fixed point to become stable. Correspondingly, the results from the
geometric construction reveals that for τ > 0 also the second fixed point attains
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stability when a > b and this is indicated by the intersection of the ratio curve with
the unit circle as shown in Fig. 4.2. Here the values of the parameters a, b are kept
fixed as in Fig. 4.1 and the value of c = 10.

4.2.4.2 General Approach to Determine Stability

Using the general approach discussed in Sect. 2.4 of Chap. 2, we will demonstrate
the identification of stable regimes in the (a, τ ) parameter space of the fixed point
x∗ = 0 of the Mackey-Glass system (4.1).

Let λ = α+ iβ be a root of the transcendental equation (4.6), where α and β are
real. Substituting this into the Eq. (4.6) and equating real and imaginary parts, we
obtain equations for α and β as

α + b − ae−ατ cos(βτ) = 0, (4.9)

β + ae−ατ sin(βτ) = 0. (4.10)

Squaring and adding Eqs. (4.9) and (4.10), we get

β = β± = ±
√

a2 exp(−2ατ)− (b + α)2, (4.11)

and

α = −b − β

tan(βτ)
. (4.12)

Without loss of generality we choose the + sign in the above equation, as the eigen-
values occur in complex conjugate pairs. The change in stability occurs only when
the value of α crosses the imaginary axis, λ = iβ, β > 0, and hence the critical
stability curve is the one at which α takes the value α = 0. Now, we have

β|α=0 = ±
√

a2 − b2. (4.13)

From Eq. (4.9), it follows that

βτ = ± arccos

(
b

a

)
+ 2nπ, (4.14)

where n is any integer (0,±1,±2, · · · ). Consequently one can expect that the sta-
bility regions are confined between the set of two curves (for τ > 0),

τ1(n) = 2nπ + arccos
( b

a

)
√

a2 − b2
, n = 0, 1, 2, · · · (4.15a)

τ2(n) = 2nπ − arccos
( b

a

)
√

a2 − b2
. n = 1, 2, 3, · · · (4.15b)
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It is to be noted that from Eq. (4.6) when the time-delay τ = 0, λ = −b + a and
so the real part of λ, α < 0 for b > a. In order to identify those curves for τ > 0
which encompass the stable regions, the critical curves should be the ones on which
dλ
dτ > 0. From Eq. (4.6), we have

dλ

dτ
= −aλ exp(−λτ)

1 + aτ exp(−λτ), (4.16)

and hence

dα

dτ

∣∣∣∣
α=0

= β2

[1 + aτ cos(βτ)]2 + [aτ sin(βτ)]2
. (4.17)

Therefore

dα

dτ
> 0 on both τ1 and τ2. (4.18)

The above condition implies that there can be only one stable region (where
α < 0) between the τ = 0 line and the critical curve τ1(0) which is the closest to
the line τ = 0 as discussed in Sect. 2.4 and also in Sect. 3.2.1 for the piecewise
linear DDE. We note that the condition (4.18) prohibits the existence of any other
stable region (that is multistability region) because for a second stable region to
exist one requires dα

dτ < 0 on any one of the other curves (n > 0). But this never
occurs in this case. The numerical plot in Fig. 4.3 of the curves τ1(n) (solid curve for
n = 0, 1, 2) and τ2(n) (broken curve for n = 1, 2) reveals that the region between
τ = 0 and τ = τ1(0) is the only stable region (shaded region), where dα

dτ > 0 on
τ1, which passes from negative to positive values of α. Obviously the other curves
τ2(n) < τ < τ1(n) for n > 0 do not satisfy the required stability condition and
hence they are all associated with unstable regions.
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Fig. 4.3 Curves of Eqs. (4.15a) and (4.15b). The solid curves represent τ1 for n = 0,+1,+2 and
broken curves represent τ2 for n = +1,+2. The region enclosed between the line τ = 0 and the
curve τ = τ1(0) (shaded region) is the only stable island of the first fixed point x∗ = 0 where
dα
dτ > 0 on τ1(0)
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One can also perform similar stability analysis using the above approach to

identify the stable regimes of the second fixed point x∗ = ( a−b
b

) 1
c . Following the

procedure used for the fixed point x∗ = 0, we obtain the set of critical curves
corresponding to the characteristic equation (Eq. 4.8) of the second fixed point as

τ1(n) = 2nπ + arccos
( b

k

)
√

k2 − b2
, n = 0, 1, 2, · · · (4.19a)

τ2(n) = 2nπ − arccos
( b

k

)
√

k2 − b2
, n = 1, 2, 3, · · · (4.19b)

where k = b(1 − ac + bc), along with

dα

dτ

∣∣∣∣
α=0

= β2

[1 + kτ cos(βτ)]2 + [kτ sin(βτ)]2
> 0 on both τ1 and τ2. (4.19c)

With the same argument as in the previous case of first fixed point, we find that
there is only one stable island between the curves τ = 0 and τ1(0) as shown in
Fig. 4.4.
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Fig. 4.4 Curves of Eqs. (4.19a) and (4.19b). The solid curves represent τ1 for n = 0,+1,+2 and
broken curves represent τ2 for n = +1,+2. The region enclosed between the line τ = 0 and the

curve τ = τ1(0) (shaded region) is the only stable island of the second fixed point x∗ = ( a−b
b

) 1
c

where dα
dτ > 0 on τ1(0)

4.2.5 Numerical Simulation: Bifurcations and Chaos

In this section, we will briefly discuss the dynamics of the Mackey-Glass time-
delay system (4.1) as a function of the delay time τ using numerical simulation.
For this purpose, Eq. (4.1) is integrated using Runge-Kutta fourth order integra-
tion scheme for the aforesaid parameter values with constant initial condition in
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Fig. 4.5 Bifurcation diagram of the Mackey-Glass system (Eq. 4.1) for the parameter values a =
0.2, b = 0.1, c = 10 as a function of time-delay τ ∈ (10, 39)

the range (−τ, 0) leaving out sufficiently large transients (of the order 1 × 106).
For details on the effect of transients, see Chap. 3. Fixing the other parameters as
a = 0.2, b = 0.1 and c = 10, one finds that there is a stable fixed point for τ < 4.53
as we have discussed in the previous section. For 4.53 < τ < 13.3, numerical
simulations show that there is a stable limit cycle attractor. At τ = 13.3, the period
of this limit cycle doubles, initiating a period doubling bifurcation sequence (as
shown in Fig. 4.5) that reaches its accumulation point at τ = 16.8. For τ > 16.8
numerical simulations show chaotic attractors at most parameter values, with some
limit cycles interspersed in between.

To depict the qualitative nature of the attractors of the Mackey-Glass system, we
display a representative portion of the time series in Fig. 4.6 and the corresponding
(pseudo) phase plots in Fig. 4.7 by plotting x(t) against x(t − τ). It is to be noted
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Fig. 4.6 Time series plots of the Mackey-Glass system for the parameter values a = 0.2,
b = 0.1, c = 10 for different values of the delay time τ . (a) periodic time trajectory for τ = 14, (b)
chaotic trajectory at the “onset” for τ = 17, (c) chaotic time series for τ = 23 and (d) hyperchaotic
trajectory for the time-delay τ = 32
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Fig. 4.7 Phase plots obtained by plotting x(t) Vs x(t − τ) corresponding to the Fig. 4.6

that the choice of x(t − τ) as the second phase variable is arbitrary; x(t − t ′) can
be equivalently used, where t ′ is an arbitrary time-delay. A periodic time series is
shown in Fig. 4.6a for the delay time τ = 14 and its corresponding phase plot is
shown in Fig. 4.7a. Chaotic trajectory at the “onset” of chaos is shown in Fig. 4.6b
for the value of delay time τ = 17 along with its phase plot in Fig. 4.7b. Chaotic
time series for the value of delay time τ = 23 is shown in Fig. 4.6c with phase plot
for the same value of delay in Fig. 4.7c, whereas hyperchaotic trajectory and phase
plots are shown in Figs. 4.6d and 4.7d, respectively, for τ = 32.

It may be noted that the above plots (time series and phase plots) are adequate
to distinguish periodic behavior from chaotic behavior, but are inadequate to make
a sharp distinction between the properties of qualitatively different chaotic behavior
and this requires a computation of the corresponding Lyapunov exponents. The first
four maximal Lyapunov exponents for the same parameter values as above in the
range of delay time τ ∈ (14, 39) is shown in Fig. 4.8a. The Lyapunov exponents
are evaluated using the procedure suggested by J. D. Farmer [1], described briefly
in Sect. 1.2.2. It is clear from the Lyapunov exponents that while the attractors in
Fig. 4.7b, c are chaotic, the attractor of Fig. 4.7d is hyperchaotic. The Kaplan-
Yorke [1, 20] dimension of the Mackey-Glass system as a function of delay time
τ in the same range, obtained by using the formula given in Eq. (3.10), is shown in
Fig. 4.8b.

4.2.6 Experimental Realization Using Electronic Circuit

Analog and intrinsic electronic circuits have been employed to mimic the dynam-
ics of Mackey-Glass system [14–17]. Losson et al. [21] have made an attempt in
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1993 using analog devices to simulate a delay differential equation; however the
nonlinearity used is a piecewise constant model in contrast to the nonlinearity in
Mackey-Glass equation, which is a smooth hump shaped nonlinearity as shown in
the numerical simulation of the Mackey-Glass nonlinearity in Fig. 4.9a. An elec-
tronic analog of the Mackey-Glass system was designed by Namajunas et al. [17] in
1995 and since then this model has been used widely to explore the dynamical and
application aspects of the Mackey-Glass system [14–16, 22].
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Fig. 4.9 Nonlinearity of the Mackey-Glass system (4.1). (a) Plot of the function f (x) = 0.2x/(1+
x10) obtained by numerical simulation and (b) PSPICE simulation of Vin Vs Vout characteristics
of the nonlinear device (Fig. 4.10)
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4.2.6.1 Circuit Realization

The block diagram of electronic analog of the Mackey-Glass time-delay system
demonstrated in [17] is the same as in Fig. 3.9 shown in Chap. 3. A description of
this block diagram is already provided in Sect. 3.4 except for the nonlinearity N D
corresponding to the Mackey-Glass system.

A smooth single hump nonlinearity is produced by coupling two complementary
junction field-effect transistors (JFETs) [17]. The circuit diagram of nonlinearity
is shown in Fig. 4.10. The output voltage from the resistor r is amplified by an
operational amplifier (OA) to obtain a sufficient output signal. The output charac-
teristic obtained by PSPICE simulation is shown in Fig. 4.9b. The parameters of the
RC filter in Fig. 3.9 are chosen as R0 = 3 KOhm,C0 = 100 nF, and inductance,
capacitance and resistance of the delay unit (Fig. 3.10) as L = 4.7 mH,C = 10 nF
(while another possible combination of L and C used widely in the literature is
L = 9.5 mH,C = 525 nF) and R = 190 Ohm, respectively. Junction field-effect
transistors used in the nonlinear device (Fig. 4.10) are Q1 : 2N5457, Q2 : 2N5460
and r = 470 Ohm. The PSPICE simulation of the electronic circuit, Fig. 3.9, along
with the nonlinearity shown in Fig. 4.10 of the Mackey-Glass system, is shown in
Fig. 4.11, which is a quite typical attractor of the Mackey-Glass system (4.1).

Similar electronic circuits have also been considered by Dmitriyev et al. [23].
However they have used a standard delay unit with fixed delay of 64 µs, while RC
value is used as a control parameter.

OA

r

Q1

Q2

Fig. 4.10 Circuit diagram of the nonlinear device (ND) in Fig. 3.9

Fig. 4.11 Phase portrait of
the analog Mackey-Glass
electronic circuit, Fig. 3.9,
obtained by PSPICE
simulation of the circuit
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4.3 Other Interesting Scalar Chaotic Time-Delay Systems

Several simple scalar nonlinear delay systems described by autonomous delay dif-
ferential equations with suitable nonlinearity have been proposed in the literature
in recent times to represent physical and biological systems in view of their poten-
tial applications in true random bit generators, global optimization of networks and
secure communications, etc. In addition to the piecewise linear and the Mackey-
Glass time-delay systems discussed earlier, there are a number of other important
scalar chaotic time-delay systems which are being discussed in the literature in the
context of chaotic dynamics and chaos synchronization. In this section, we briefly
present details of some of them.

4.3.1 A Simple Chaotic Delay Differential Equation

In recent times several attempts have been made to identify simple models that are
capable of generating highly complex dynamics for various technological appli-
cations. As a consequence, a number of models of delay differential equations and
their variants have been proposed and demonstrated in the literature both experimen-
tally and theoretically [24–28] for generating multiple scroll chaotic/hyperchaotic
attractors .

In this connection, very recently a simple chaotic delay differential equa-
tion has been proposed by J.C. Sprott [26], which can exhibit multiple scroll
chaotic/hyperchaotic attractors even for low value of delay time, say τ ≈ 5. The
delay differential equation is of the form

ẋ = sin x(t − τ). (4.20)

Details of stability and bifurcation analysis, and various dynamical behaviors, have
been reported in [26]. A 6-scroll hyperchaotic attractor for the value of delay time
τ = 5.1 is depicted in Fig. 4.12, while the twelve-largest Lyapunov exponents and
the Kaplan-Yorke dimension defined as in Eq. (3.10) in the range of delay time
τ ∈ (0, 20) are shown in Fig. 4.13a, b, respectively.

4.3.2 Ikeda Time-Delay System

The Ikeda system was introduced to describe the dynamics of an optical bistable
resonator and it was shown that the transmitted light from a ring cavity containing a
nonlinear dielectric medium undergoes transition from a stationary state to periodic
and nonperiodic states, when the intensity of the incident light is increased. It has
also been shown that the nonperiodic state is characterized by a chaotic variation of
the light intensity and associated broadband noise in the power spectrum [29]. The
Ikeda system is well known for delay induced chaotic behavior [30–32] and it is
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Fig. 4.12 A 6-scroll
hyperchaotic attractor of the
simple delay differential
equation (4.20) for the value
of the delay time τ = 5.1
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Fig. 4.13 (a) Largest twelve Lyapunov exponents and (b) Kaplan-Yorke dimension of the simple
delay differential equation (4.20) in the range of delay time τ ∈ (0, 20)

also receiving focus on synchronization studies in recent times [33–36]. The model
is specified by the state equation

ẋ = −αx(t)− β sin x(t − τ), (4.21)

where α > 0 and β > 0 are the parameters and τ is the delay time. Physically
x(t) is the phase lag of the electric field across the resonator and thus may clearly
assume both positive and negative values, α is the relaxation coefficient, β is the
laser intensity injected into the system and τ is the round-trip time of the light in the
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Fig. 4.14 Chaotic attractor of
the Ikeda system (4.21) for
the values of the parameters
α = 1.0, β = 20 and τ = 2
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resonator. A typical hyperchaotic attractor of the Ikeda system is shown in Fig. 4.14
for the parameter values α = 1.0, β = 20 and τ = 2. This system also plays an
important role in electronics and physiological studies [33, 35, 37]. Dynamics and
associated complexity of the Ikeda model have been discussed in detail in [37]. In
particular the dynamics of Ikeda ring cavity laser is explained using an experimental
set up and its block diagram along with the emergence of chaos through period-
doubling cascade [30–32, 37]. The first eleven maximal Lyapunov exponents of
the Ikeda system for the parameters α = 1.0, β = 5 in the range of delay time
τ ∈ (2, 25) are shown in Fig. 4.15a and the corresponding Kaplan-Yorke Lyapunov
dimension (4.15b) is shown in Fig. 4.15b.

4.3.3 Scalar Time-Delay System with Polynomial Nonlinearity

Recently, Voss [38] introduced a scalar time-delay system with polynomial nonlin-
earity experimentally in an electronic circuit with the state equation

ẋ = −αx(t)− f (x(t − τ)), (4.22)

where

f (x(t − τ)) = −10.44x3
τ − 13.95x2

τ − 3.63xτ − 0.85, xτ = x(t − τ). (4.23)

The model has been studied both experimentally and numerically for its chaotic
dynamics [38] and real time anticipation of chaotic states has been demonstrated
using this circuit. The parameters are chosen such as to closely fit the parameters of
the electronic circuit described in [38]. It is also noted that the nonlinearity (4.23)
shows a single smooth hump and resembles that of the Mackey-Glass system. The
parameter values are fixed as α = 3.24 m/s and the delay time τ = 13.28 ms
for numerical simulation and for these values the system (4.22) exhibits chaotic
dynamics as shown in Fig. 4.16.
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dimension of the Ikeda system

Fig. 4.16 Chaotic attractor of
the system (4.22) for the
values of the parameters
α = 3.24 m/s and
τ = 13.28 ms
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4.3.4 Scalar Time-Delay System with Other Piecewise Linear
Nonlinearities

In addition to the odd piecewise linear delay differential equation discussed in the
previous chapter (Chap. 3), there are several other types of piecewise linear delay
differential equations which have been studied in the literature. A delay differen-
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tial equation with odd piecewise linear function with only three segments can be
defined as

ẋ = −ax(t)+ b f (x(t − τ)), (4.24)

where f (x) is a three segment odd piecewise function represented as

f (x) =
⎧⎨
⎩

d(x + 1)− c, x < −1
cx, −1 < x < 1

d(x − 1)+ c, x > 1,
(4.25)

System (4.24) and (4.25) has been analyzed in [24, 25] both experimentally and
theoretically for the parameter values c = 2.0 and d = −4.0. The only difference
between the three segment odd piecewise linear function and the five segment odd
piecewise linear function (2.19) is that nonlinearity does not saturate to zero at larger
values of |x |. It has been shown that this nonlinearity can generate not only mono-
scroll hyperchaotic oscillations but also more complex double-scroll hyperchaotic
oscillations for suitable values of delay times. Numerically simulated three segment
piecewise linear functional form is depicted in Fig. 4.17a. Mono- and double-scroll
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Fig. 4.17 Odd-symmetry nonvanishing three-segment nonlinear function f (x) given by Eq. (4.25)
(a) Numerical plot and (b) PSPICE simulation
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Fig. 4.18 Numerical phase portraits of the systems (4.24) for the values of the parameters a =
1.0, b = 1.0, c = 2.0 and d = −4.0 (a) Mono-scroll attractor for the value of the delay time
τ = 2.0 and (b) Double-scroll attractor for the value of the delay time τ = 8.0
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hyperchaotic attractors for the values of the parameters a = 1.0, b = 1.0 and the
delay times τ = 2.0 and τ = 8.0 are shown in Fig. 4.18a, b, respectively.

The same block diagram and the delay unit depicted in Figs. 3.9 and 3.10, respec-
tively, can be used to mimic the delay differential equation (4.24) along with the
three segment piecewise linear function, Eq. (4.25), by using the nonlinear device
(ND) [24, 25] shown in Fig. 4.19. The values of the resistances in the nonlinear
device are chosen as R1 = R2 = R3 = 1 KOhm and R4 = 3 KOhm. Diodes and
operational amplifiers in the nonlinear device are chosen as 1N4148 and L F356N ,
respectively. PSPICE simulation of the output characteristics of the nonlinear device
(ND) shown in Fig. 4.19 is depicted in Fig. 4.17b. Mono- and double-scroll hyper-
chaotic attractors of the circuit (Fig. 3.9) with the nonlinear device (Fig. 4.19) for
the corresponding values of the parameters [24, 25] are shown in Fig. 4.20a, b,
respectively. Ten largest Lyapunov exponents and the Kaplan-Yorke dimension of
the delay differential equation (4.24) with the three segment piecewise linear func-
tion in the range of τ ∈ (0, 10) for the above values of other parameters are shown
in Fig. 4.21.

Other piecewise linear models discussed in the literature include those models
where the function f (x) in Eq. (4.24) is of the form

−

+

−

+
OA1

OA2

R1 R2

R3 R4 R5 R6

x

F(x)

Fig. 4.19 Circuit diagram of the nonlinear device (ND) corresponding to the Eq. (4.25)
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Fig. 4.20 PSPICE simulation of the nonlinear circuit Fig. 4.19 for the corresponding values of the
circuit elements (a) Mono-scroll attractor and (b) Double-scroll attractor
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Fig. 4.21 (a) Largest twelve
Lyapunov exponents and (b)
Kaplan-Yorke dimension of
the piecewise linear delay
differential equation (4.24) in
the range of delay time
τ ∈ (0, 10)
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f (x) =
{

2x, x ≤ 1/2
2 − 2x, x > 1/2,

(4.26)

and

f (x) =
{

px(1 − x), |x | < 1
0, |x | ≥ 1.

(4.27)

These piecewise linear models have been well studied in [11, 21, 39] for their
chaotic dynamics and also on synchronization aspects. The chaotic attractor of the
system (4.24) with the functional form (4.26) is shown in Fig. 4.22a for the param-
eter values α = 0.2, β = 0.2 and τ = 25, while the chaotic attractor of the system
(4.24) with the piecewise linear function of the form (4.27) for the parameter values
a = 0.2, b = 0.2, p = 5 and τ = 25 is shown in Fig. 4.22b.

4.3.5 Another Form of Scalar Time-Delay System

Another form of scalar DDE which has also been used in the literature is

ẋ = −ax(t − τ)+ b f (x(t − τ)), (4.28)
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Fig. 4.22 Chaotic attractor of the system (4.24) with (a) functional form (4.26) for the values of
the parameters α = 0.2, β = 0.2 and τ = 25 and (b) piecewise linear function of the form (4.27)
for the parameter values a = 0.2, b = 0.2, p = 5 and τ = 25

where a and b are parameters. As a first example to this type of scalar DDE, we
will discuss the dynamical system proposed by Yalcin and Ozoguz [28] to generate
an n-scroll chaotic attractor. Nonlinearity of this model is based on a hard limiter
function and that the model can be easily generalized in a systematic way in order
to obtain an n-scroll attractor. The nonlinear function is given by

f (x) =
M∑

i=1

g(−2i+1)/2(x)+
N∑

i=1

g(2i−1)/2(x) (4.29)

and

gθ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≥ θ, θ > 0
0, x < θ, θ > 0
0, x ≥ θ, θ < 0
1, x < θ, θ < 0.

(4.30)

The nonlinearity (4.29) was used for the generalization of the so called Jerk cir-
cuit [40]. The set of equilibrium points for the nonlinearity (4.29) with a = b is

�eq = {−M,−M + 1, · · · , N − 1, N }. (4.31)

The scrolls are located around the equilibrium points. Therefore the number of
scrolls equals the number of equilibrium points. The number of scrolls generated
by the nonlinearity (4.29) is equal to M + N + 1. Chaotic attractors with three
(M = 1, N = 1), five (M = 2, N = 2), six (M = 1, N = 4) and nine
(M = 4, N = 4) scrolls for the system (4.28) with the nonlinearity (4.29) for the
values of the parameters a = 0.2, b = 0.2 and τ = 20 are shown in Fig. 4.23a–d,
respectively. The above dynamical system (4.28) along with the nonlinearity (4.29)
has also been demonstrated using electronic circuits by the same authors.
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Fig. 4.23 Chaotic attractors of the system (4.28) with nonlinear functional form (4.29) for the
values of the parameters a = 0.2, b = 0.2 and τ = 10. (a) Three-scroll chaotic attractor for
M = N = 1, (b) Five-scroll chaotic attractor for M = N = 2, (c) Six-scroll chaotic attractor for
M = 1, N = 4 and (d) Nine-scroll chaotic attractor for M = 4, N = 4

There are also other types of nonlinear functions used in the literature for the
delay differential equation (4.28) with [41]

f (x) = sgn(x), (4.32)

and

f (x) = tanh(10x). (4.33)

The chaotic attractors exhibited by the above nonlinearities for the values of the
parameters a = 0.2, b = 0.2 and τ = 10 are depicted in Fig. 4.24a, b, respectively.

Another interesting model with a cubic nonlinear function [26] is,

ẋ = x(t − τ)− x3(t − τ), (4.34)

for which chaos sets in from a limit cycle at τ ≈ 1.538. Similar dynamical behavior
is also obtained when the signs of both the terms in Eq (4.34) are exchanged. Note
that the right hand side of the above equation can be considered as a scaled version
of the first two terms in the Taylor series for sin(x(t − τ)).
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Fig. 4.25 Limit cycle
oscillation of the delayed
action oscillator (4.35) for the
value of the parameters
a = 0.7, b = 1 and delay
time τ = 2
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4.3.6 El Niño and the Delayed Action Oscillator

A natural atmospheric phenomenon that attracts regular public attention is the El
Niño event in the equatorial Pacific. El Niño is an excellent example of the inter-
action between the ocean and the atmosphere and their combined effect on climate.
This phenomenon is a disruption of the ocean-atmosphere system having important
consequences for weather around the globe. It results in a redistribution of rains
with flooding and droughts. Along the equator, the western Pacific has some of the
world’s warmest ocean water, while in the eastern Pacific, cool water dwells up,
carrying nutrients that support large fish populations. In every two to seven years,
strong westward blowing trade wind subsides and warm water slowly moves back
eastward across the Pacific, which interrupts the upwelling of cool and nutrient
rich water. As a consequence fish die and climatic changes affect many parts of
the world.

Historically, the term “El Niño” was used by the fisherman along the west coast
of Peru and Ecuador to refer to a warm southward flowing current that moderates
the low sea-surface temperature that typically appears around Christmas-time and
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therefore named as “El Niño” (the Little Boy or Christ Child in Spanish), which
lasts several months. In certain years this current is unusually strong, bringing heavy
rains and flooding inland, but also decimating fishing stocks, bird populations, and
the other water based wildlife in what would normally be an abundant part of the
Pacific.

Today, the term El Niño is most often used when describing a far large-scale
warming that can be observed across the whole of the Pacific Ocean by certain
characteristic climatic conditions. The effects of El Niño can also be seen globally.
Examples include spring rainfall levels in Central Europe, flooding in East Africa,
and the ferocity of the hurricane season in the Gulf of Mexico [42]. El Niño is just
one phase of the El Niño Southern Oscillation (ENSO) phenomenon, that is, an
irregular cycle of coupled ocean temperature and atmospheric pressure oscillations
across the whole equatorial Pacific.

El Niño Southern Oscillation phenomenon is a global event arising from large-
scale interaction between the ocean and the atmosphere. The Southern Oscillation
refers to oscillations in the surface pressure (atmospheric mass) between the south-
eastern tropical Pacific and the Australian-Indonesian regions. When the waters of
the eastern Pacific are abnormally warm (an El Niño) sea level pressure drops in
the eastern Pacific and rises in the west. The reduction in the pressure gradient is
accompanied by a weakening of the low-latitude easterly trades.

Usually, coupled atmosphere-ocean general circulation models combined with
large scale computing resources are needed to study and predict El Niño’s conse-
quences. Fortunately, a route toward qualitative and quantitative prediction based on
the delayed-action oscillator exists. Recent works on the mechanism of the ENSO
have led various simple delay oscillator models which have provided a quite satis-
factory explanation for the onset, termination, and cyclic nature of ENSO events,
see [43] and references therein. Very recently, a simple model described by a scalar
delay differential equation has been shown to mimic most of the observed dynam-
ics of ENSO phenomenon. It models the irregular fluctuations of the sea-surface
temperature, and incorporates the full coupled Navier-Stokes dynamics of an El
Niño event by a suitably chosen nonlinearity. The corresponding equation can be
represented as [42]

ẋ = kx − bx3 − ax(t − τ), (4.35)

where k, b, a and τ are constants. The first term on the right-hand side of Eq. (4.35)
represents a strong positive feedback within the ocean atmosphere system and the
second term is an unspecified nonlinear net damping term that is present to limit
the growth of unstable perturbations. The strength of the returning emerging signals
relative to that of the local nondelayed feedback is denoted by a.

The delayed oscillator (4.35), as it is, exhibits only limit cycle oscillations
(Fig. 4.25). The full model to include every aspect of El Niño event is represented
as

ẋ = kx − bx3 − ax(t − τ)+ y′ + β + R(t), (4.36)
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where y′(t) is the annual cycle which plays an important role in determining the
onset of El Niño, β corresponds to global warming which influences the periodicity
and amplitude of El Niño events, and R(t) is a stochastic term which influences the
irregularity of El Niño events. The full model (4.36) represented by the delayed-
action oscillator now mimics the observed richness and variance of the El Niño
Southern oscillations phenomenon. Thus the oscillator modeled by delayed feed-
back serves as an excellent model for observed physical phenomenon. Details of
stability analysis and its dynamics can be found in [42].

In addition to the above example of describing a natural phenomenon in terms of
delay differential equations/models, recent investigations have also shown that the
Neolithic transition (that is, transition from hunter-gatherer to agricultural economy)
in Europe has also been successfully described using a time-delay model, which
agrees quite well with the observations based on archaeological data. These data led
to the conclusion that European farming originated in the Near East, from where it
spread across Europe [44].

4.4 Coupled Chaotic Time-Delay Systems

As pointed out in the previous section, a large number of physical, biological,
chemical, ecological and economic systems, as well as fluctuations in agricultural
commodity prices, neural networks, etc., are successfully modeled by delay dif-
ferential equations, and thereby capturing many of the inherent complex dynamics
of the respective dynamical systems, cf. [4, 18, 21, 41, 45–60]. DDEs are often
found not only as scalar first order equations but also as coupled higher order equa-
tions. Some of the delay models of chemical, physiological and economic dynam-
ics, mathematical and genetic regulatory systems are represented as coupled higher
order DDEs [59, 60]. Rigorous mathematical treatment of such higher order DDEs
becomes much more complicated than the case of scalar DDEs and consequently
details of such coupled higher order systems are available only through numerical
analysis. In the following, we will discuss briefly about some of the important higher
order DDEs that have been widely studied in the current literature in the context of
chaotic dynamics and chaos synchronization.

4.4.1 Time-Delayed Chua’s Circuit

As an example of coupled higher order DDEs in electronic circuits, we present here
one of the important second order time-delay systems, namely, time-delayed Chua’s
circuit (TDCC) which has been realized experimentally using suitable electronic
circuit. This was introduced by Sharkovsky et al. [61] and it has been studied in
detail by many researchers [62–64]. In particular, the work of Sharkovsky et al.
showed that the dimension of state space is increased by substituting the lumped LC
resonator with an ideal (lossless) transmission line. TDCC has a constant voltage
generator E in series with the Chua’s diode as shown in Fig. 4.26 in order to break
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Fig. 4.26 Time-delayed
Chua’s circuit (TDCC)
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the symmetry in the original Chua’s diode v − i characteristic. The other elements
in the circuit are the lumped linear elements C and G = 1/R. The parameters of
the circuit are the round trip delay T and the characteristic impedance Z of the
transmission line. The line parameters relate to the line per-unit-length inductance
l and capacitance c, and they are related to the line length L as T = 2L√

lc and
Z = √

l/c. The circuit is represented by the coupled normalized equations of the
form

θ ẋ(t)+ λq(x(t)− E)+ q(λ0 − λq) = (1 − γ )(y − 0.5E), (4.37a)

y(t + 1) = γ y(t)− γ+1
2 x(t), (4.37b)

where λq = (1−γ 2)
2(γ−hq )

, q = −1, 0, 1, and θ, γ, h0, h1, h−1 are dimensionless
parameters corresponding to the experimental counterparts. Chaotic attractor of the
time-delayed Chua’s circuit (4.37) for the parameter values θ = 0.1616, γ =
−0.58156, h0 = 0.35828, h1 = h−1 = −4.9073 and E = 0.0 for the initial
conditions y(τ ) = 0, τ ∈ (0, 1) is shown in Fig. 4.27.

4.4.2 Semiconductor Lasers

A large number of systems in laser optics have been represented by coupled higher
order delay differential equations that are quite complicated than the systems pre-
sented in the above sections. Also a large number of papers have appeared in recent
times in studying chaos synchronization using laser systems [65–77] as models, in
view of the feasibility of experimental realization of high-dimensional chaos.

Now, we will describe a well studied single mode semiconductor laser with opti-
cal feedback in the context of chaotic dynamics and its synchronization. All optical
feedback in external cavity semiconductor lasers has been a subject of extensive
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Fig. 4.27 Chaotic attractor of
the time-delay Chua’s circuit
(TDCC) (4.37) for the
parameter values
θ = 0.1616, γ = −0.58156,
h0 = 0.35828, h1 = h−1 =
−4.9073 and E = 0.0 with
initial conditions
y(τ ) = 0, τ ∈ (0, 1)
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research during the past decade because of its importance in technical applications
such as optical data storage or optical fiber communications [78]. The rate equations
for the complex electric fields and the carrier densities in the lasers are the well
known Lang-Kobayashi equations [65–67, 71, 74, 75, 79] represented by

Ė = 1 + iα

2
[G(t)− 1/τp]E(t)+ γ E(t − τ) exp[−i(ωτ)], (4.38)

Ṅ = J/e − N (t)/τn − G(t)|E(t)|2, (4.39)

where E is the slowly varying complex field and N is the normalized carrier number.
The equations are written in the reference frame where the complex optical fields of
the lasers are given by E exp(iωt), where ω is the optical frequency of the solitary
laser [66]. The other parameters are as follows: τp is the photon lifetime, α is the
line width enhancement factor, G(t) = Gn(N − N0)/(1 + ε|E |2) is the optical
gain (where Gn is the differential gain, N0 is the carrier number at transparency,
ε is the gain saturation coefficient), ωτ is the phase accumulation after one round
trip in the external cavity, τ is the one round trip time of the external cavity, J
is the injection current, e is the electric charge, and τn is the carrier lifetime. The
model does not include multiple reflections in the external cavity, and therefore it
is valid for weak feedback levels. For suitable values of the above parameters the
laser is in the so-called coherence collapse regime, characterized by fast, chaotic
intensity fluctuations. Semiconductor lasers subject to delayed feedback generate
chaotic dynamics with intensity pulsations on subnanosecond time scales [78].

Chaos in semiconductor lasers arises in different ways: due to (periodic) mod-
ulation of the pump current [80], due to electro-optical feedback where the pump
current is modulated by the emitted light intensity [81, 82], or due to an external
cavity (optical feedback) [83]. Recently, optoelectronic chaos due to delayed feed-
back in optoelectronic circuits along with their possible applications has been dis-
cussed [84]. All these cases are described by DDEs that exhibit chaotic/hyperchaotic
behaviors for suitable values of the parameters. In the above we have provided state
equations for semiconductor laser with optical feedback as an example for the cou-
pled higher order DDEs in semiconductor laser systems. It is to be noted that the
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semiconductor laser with polarization-rotated optical feedback is described by a 3rd
order DDE containing state equations for two complex electric fields E1 and E2
with orthogonal polarizations, and a carrier density N [85].

4.4.3 Neural Networks

A class of delayed chaotic neural networks can be represented as the set of coupled
DDEs of the form

ẋ(t) = −Cx(t)+ A f [x(t)] + B f [x(t − τ)] , (4.40)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T ∈ Rn is the state vector, the activa-
tion function f [x(t)] = ( f1 [x1(t)] , f2 [x2(t)] , · · · , fn [xn(t)])T denotes the man-
ner in which the neurons respond to each other. C is a positive diagonal matrix,
A = ai j , i, j = 1, 2, · · · , n is the feedback matrix, B = bi j represents the delayed
feedback matrix with a constant delay τ . The general class of delayed neural net-
works represented by the above Eq. (4.40) unifies several well known neural net-
works such as the Hopfield neural networks and cellular neural networks with delay.

The delayed neural networks (Eq. 4.40) corresponds to the Hopfield neural net-
works for the choice of activation function

f [x(t)] = tanh [x(t)] , (4.41)

and for the value of the matrices

C =
[

1 0
0 1

]
, A =

[
2.0 −0.1

−5.0 3.0

]
, B =

[−1.5 −0.1
−0.2 −2.5

]
.

The chaotic behavior of the delayed Hopfield neural network [86, 87] for the above
choice of the parameters and for the initial condition x0 = [0.1, 0.2]T is shown in
Fig. 4.28a. The above general class of delayed neural network represents delayed
cellular neural network for the activation function

f [x(t)] = 0.5 (|xi + 1| − |xi − 1|) , (4.42)

and for the value of the matrices

C =
[

1 0
0 1

]
, A =

[
1 + π/4 20

0.1 1 + π/4

]
, B =

[−√
2(π/4)1.3 −0.1

0.1 −√
2(π/4)1.3

]
.

The chaotic attractor of the above delayed cellular neural network for the choice of
initial condition x0 = [0.1,−0.1]T is shown in Fig. 4.28b.

In the above two sections, we have presented a brief review of some of the impor-
tant time-delay systems and, in particular, scalar first order time-delay systems with
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Fig. 4.28 Chaotic behavior of (a) Delayed Hopfield neural network and (b) delayed cellular neural
network

different functional forms for nonlinearity that are widely studied in the literature in
the context of chaotic dynamics and chaos synchronization. We have also discussed
briefly some of higher order DDEs in different areas. More examples of nonlinear
delay systems are given in Appendix D.
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Chapter 5
Implications of Delay Feedback: Amplitude
Death and Other Effects

5.1 Introduction

For a long time, in the study of coupled nonlinear oscillators, the role of delay has
often been neglected as unimportant. In many cases this approximation is physically
justified and in all the cases it simplifies the mathematics. However, in recent times
one has witnessed increased activities to investigate oscillator systems with delay
feedback and it has been proved that delay feedback is a veritable black box which
can give rise to several interesting and novel phenomena having wide applications,
and these cannot be observed in the absence of delay feedback. In this chapter, we
will discuss an important time-delay induced phenomenon, namely amplitude death,
which has been the center of attraction in recent research on coupled oscillators
with delay feedback. In addition, we will also point out some of the other important
time-delay induced phenomena observed in coupled oscillators.

5.2 Time-Delay Induced Amplitude Death

The phenomenon of suppression of oscillations (amplitude death, see Sec. 5.2.1.1
below for more details) was realized by Bar-Eli [1] in his modeling of chem-
ical oscillations and by Shiino and Frankowicz [2] when they considered the
effects on the amplitudes in a large number of coupled limit cycles. But a rigor-
ous and comprehensive study on the nature of amplitudes of two coupled oscil-
lators was made by Aronson et al. [3] followed by other elegant studies extend-
ing this to a large system [4–6]. However, the concept of amplitude death has
now become an active area of research due to the recent works of Ramana
Reddy et al. [7–10] on the effect of time-delay feedback in limit cycle oscilla-
tors. They have shown particularly that amplitude death can occur even with zero
frequency mismatch among the interacting limit cycle oscillators (identical oscil-
lators) in the presence of time-delay feedback. This is in contrast to the earlier
reports on amplitude death where such a state can occur only when there exists
a broad dispersion in the natural frequencies of the coupled oscillators and that
the coupling strength has to exceed a threshold value so that amplitude death

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_5,
C© Springer-Verlag Berlin Heidelberg 2010
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cannot occur in a collection of identical limit cycle oscillators without delay. In
this section, we will discuss the theoretical and experimental investigations of
delay induced amplitude death phenomenon in single and two coupled limit cycle
oscillators.

5.2.1 Theoretical Study: Single Oscillator

In this section, we will demonstrate the theoretical analysis of existence of delay
induced amplitude death phenomenon in single and two coupled limit cycle oscil-
lators and its subsequent extension to N coupled limit cycle oscillators with global
and ring coupling configurations.

5.2.1.1 Single Limit Cycle Oscillator with Delay Feedback

Specifically, Ramana Reddy et al. [7–10] have considered a model equation, which
represents the dynamics of a single Hopf oscillator that is driven autonomously by
a time-delayed feedback term, given by

Ż(t) = (a + iω − |Z(t)|2)Z(t)− K Z(t − τ), (5.1)

where Z(t) = X + iY is a complex quantity, ω is the frequency of oscillation, a
is a real constant and τ > 0 is the time-delay of the autonomous feedback term.
In the absence of the feedback term (5.1) is often called the Stuart-Landau equa-
tion, which exhibits a stable limit cycle of amplitude

√
a with angular frequency

ω. In the absence of time-delay, Eq. (5.1) has a time-asymptotic periodic solution
given by Z(t) = √

a − K exp iωt for a > K . If a ≤ K , then the origin is the
only stable solution; that is, no oscillatory time-asymptotic solution is possible. At
a = K , the oscillator undergoes a supercritical Hopf bifurcation. Carrying out a
linear stability analysis for the above equation around the fixed point Z = Z∗ = 0,
one can straightforwardly obtain the characteristic equation

λ = a + iω − K e−λτ , τ > 0. (5.2)

For τ = 0, one can have λ = a + iω − K and hence the origin is stable for
K > a. So the critical curve is given in this case by K = a. When τ �= 0, Eq. (5.2)
remains a transcendental equation with infinite number of roots. Now, one has to
find conditions on K , ω and τ such that real parts of all the roots are negative for
stability of the fixed point Z∗. Substituting λ = α + iβ, where α and β are real, in
Eq. (5.2), one can obtain the real and imaginary parts as

α = a − K e−ατ cos(βτ), (5.3)

β = ω + K e−ατ sin(βτ). (5.4)



5.2 Time-Delay Induced Amplitude Death 87

Following the analysis in Sect. 2.4 in Chap. 2, one can obtain a set of critical
curves,

τ1(n, K ) = 2nπ + arccos
( a

K

)
ω + √

K 2 − a2
, n = 0,+1,+2, · · · (5.5a)

τ2(n, K ) = 2nπ − arccos
( a

K

)
ω − √

K 2 − a2
, n = +1,+2,+3, · · · (5.5b)

Also we get

dα

dτ

∣∣∣∣
α=0

= β(β − ω)

[1 − K τ cos(βτ)]2 + [K τ sin(βτ)]2
. (5.6)

Hence, from (5.4) and (5.6), one can easily see that

dα

dτ

∣∣∣∣
α=0

⎧⎪⎪⎨
⎪⎪⎩

> 0 on τ1,

> 0 on τ2 if K > f (ω),
= 0 on τ2 if K = f (ω),
< 0 on τ2 if K < f (ω),

(5.7)

where f (ω) = √
a2 + ω2. The above condition implies that there can be only one

stability region if K > f (ω). On the other hand, there is a possibility of multiple
stability regions if K < f (ω). The numerical plot in Fig. 5.1a of the curves τ1(n, K )
(represented by continuous curves) and τ2(n, K ) (represented by discrete curves)
reveals that the region between τ = 0 and τ = τ1(0, K ) is the only stable region
(indicated as the shaded region) possible for small values ofω. However, as the value
of ω is increased, so that the condition K <

√
a2 + ω2 is satisfied, the number of

stability regions also increases. These regions are specified by 0 ≤ τ < τ1(0, K )
and τ1(n, K ) < τ < τ2(n, K ), where the integer n > 0. In Fig. 5.1b the critical

0
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0.01 1 100

K
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Fig. 5.1 Curves of Eq. (5.5a) and (5.5b). The solid curves represent τ1 for n = 0,+1,+2,+3 and
broken curves represent τ2 for n = +1,+2,+3. (a) The region enclosed between the line τ = 0
and the curve τ = τ1(0, K ) is the only amplitude death region for ω = 1. (b) The region enclosed
between the line τ = 0 and the curve τ = τ1(0, K ), and that between τ1(n, K ) and τ2(n, K ) for
n > 0 are the multiple amplitude death regions for ω = 30
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curves are plotted from Eqs. (5.5a) and (5.5b) for such a large value of ω, namely
ω = 30, and the multiple stability regions are represented by shaded regions
enclosed between the continuous curves, τ1(n, K ), and the discrete curves,
τ2(n, K ), for n > 0 in addition to that enclosed between the τ = 0 and τ = τ1(0, K )
curves. The above collective stability regions have been termed as amplitude death
regions or death islands in the (K − τ) space.

Note that the above analysis shows that when the parameters in (5.1) are such
that (i) K < a in the absence of delay (τ = 0), the system has a stable peri-
odic solution Z = √

a − K eiωt , and (ii) in the presence of delay (τ �= 0), with
K <

√
a2 + ω2, this solution becomes unstable, while the fixed point Z = 0

becomes stable. This phenomenon is nothing but the amplitude death of the periodic
oscillation.

5.2.1.2 Two Delay Coupled Limit Cycle Oscillators

The above analysis has also been extended to a system of two coupled limit cycle
oscillators with delay [7–10]. Here, we will briefly describe the existence of delay
induced death phenomenon in a set of two delay coupled limit cycle oscillators
represented by

Ż1(t) = (1 + iω − |Z1(t)|2)Z1(t)− K [Z2(t − τ)− Z1(t)] , (5.8a)

Ż2(t) = (1 + iω − |Z2(t)|2)Z2(t)− K [Z1(t − τ)− Z2(t)] . (5.8b)

The parameters are the same as discussed above for the case of a single limit cycle
oscillator with the delay feedback. Following a linear stability analysis, one can
obtain the characteristic equation associated with the equilibrium solution Z1 =
0 = Z2 for the above delay coupled limit oscillators, Eq. (5.8), as

λ = 1 − K + iω ± K e−λτ . (5.9)

After simple algebra, one can obtain a set of critical curves,

τ1(n, K ) =
2nπ + arccos

(
1 − 1

K

)
ω − √

2K − 1
, n = 0,+1,+2, · · · (5.10a)

τ2(n, K ) =
2nπ − arccos

(
1 − 1

K

)
ω + √

2K − 1
, n = +1,+2,+3, · · · (5.10b)

Also we get

dα

dτ

∣∣∣∣
α=0

= β(β − ω)

[1 ± K τ ]2 + [K τ sin(βτ)]2
. (5.11)
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Hence, as in the case of the single oscillator,

dα

dτ

∣∣∣∣
α=0

⎧⎪⎪⎨
⎪⎪⎩

< 0 on τ1 if K < f (ω),
> 0 on τ1 if K > f (ω),
= 0 on τ1 if K = f (ω),
> 0 on τ2

(5.12)

where f (ω) = √
1 + ω2. In analogy with the arguments as in the case of single

limit cycle oscillator with the delay feedback, there exists only a single death island
enclosed between the critical curves τ1(0, K ) and τ2(1, K ) for small values of ω.
However, for large values of ω, one can obtain the higher order islands as demon-
strated [7–10] above.

The results have also been extended to the case of a large assembly of delay
coupled limit cycle oscillators with global [7, 8, 10] and ring [11] coupling con-
figuration in order to show the general nature of amplitude death phenomenon.
The same authors have also provided experimental evidence for the existence of
delay induced death phenomenon in two delay coupled limit cycle oscillators using
electronic circuits, which will be discussed in detail in the next section.

5.2.2 Experimental Study

Experimental observation of time-delay induced amplitude death in two coupled
limit cycle oscillators has also been reported by Ramana Reddy et al. [9]. They
have provided experimental evidence for time-delay induced death islands and their
multiple connectedness as predicted by their theoretical studies in the parameter
space defined by the coupling strength, time-delay and frequency for the case of
two coupled identical limit cycle oscillators using a suitable electronic circuit.

A schematic representation of the system of two coupled electronic circuits that
are individually capable of exhibiting limit cycle oscillations is shown in Fig. 5.2.
Each individual oscillator circuit is a nonlinear LCR circuit, which may be consid-
ered as a variant of the well known Chua circuit. Each one of these circuits consists

-
+

C1

RK1

RN1
L1

V2
τ V1

τ

L2

V1
V2

+
-

DDL

RN2

RK2

C2

Fig. 5.2 The circuit diagram of two delay coupled nonlinear LC R circuits that are capable of
exhibiting limit cycle oscillations [9]
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of a capacitance C , an inductance L and a nonlinear resistive element RN that are
coupled through a digital delay line (DDL). The OP-AMPs are buffer amplifiers and
the coupling strength K = 1/(C RK ) is varied by changing the resistances RK that
couple the two oscillator circuits. The coupling is linear, resistive, and proportional
to the difference in the signal strengths of the two oscillators with a time-delay. Each
oscillator is capable of oscillating with a characteristic frequency ω = 1/

√
LC . The

authors have fixed the values of capacitances as C1 = C2 = 0.1 μF and the values
of the inductances L = L1 = L2 and the resistances R = RK 1 = RK 2 are varied

Fig. 5.3 Experimental results
of two delay coupled limit
cycle oscillators for different
values of delay times with
K = 1,000/s and ω = 837 s.
The top panel shows the
in-phase oscillations for
τ = 0.514 ms, the middle
panel shows amplitude death
for τ = 2 ms and the bottom
panel displays anti-phase
oscillations for τ = 4.428 ms.
This figure is adapted from
the work of Ramana Reddy
et al. [9]
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such that the frequencies ω = ω1 = ω2 and the coupling strengths K = K1 = K2
vary in the ranges of 100–1,000/s and 10–106/s, respectively.

The experimental results of the time evolution of the oscillator voltages as a
function of the delay parameter are shown in Fig. 5.3 for K = 1,000/s and ω =
837/s. In-phase oscillations of the coupled identical limit cycle oscillators are shown
in the top panel of Fig. 5.3 for τ = 0.514 ms. Quenching of oscillations, that is,
amplitude death is observed for τ = 2 ms as shown in the middle panel of Fig. 5.3
and anti-phase oscillations are observed for τ = 4.428 ms as depicted in the bottom
panel of Fig. 5.3. Thus the phenomenon of time-delay induced amplitude death
has been experimentally observed in coupled identical nonlinear LCR circuits with
delay feedback for suitable values of the experimental parameters.

Amplitude death has also been shown to occur in a dual-wavelength class-B laser
with modulated losses by Kuntsevich and Pisarchik [12], which is a nonautonomous
system since the losses in a channel are modulated by an external sinusoidal
force.

The phenomenon of amplitude death has also been reported experimentally [13]
in a pair of opto-thermal oscillators that are coupled by heat transfer. Existence
of amplitude death for stronger couplings and its relation to Hopf bifurcations of
the uncoupled and coupled systems have also been experimentally verified. The
authors of [13] have also complimented their experimental results with a theoretical
analysis of the corresponding model equations. However, the role of delay in the
death phenomenon in this experiment has not been clearly understood.

5.3 Amplitude Death with Distributed Delay in Coupled
Limit Cycle Oscillators

F.M. Atay [14] has shown that distributed delay increases the parameter regime
in which the phenomenon of amplitude death occurs. He has demonstrated that
distributed delay enlarges and merges death islands and the death region becomes
unbounded if the variance of the delay distribution is larger than a certain threshold.
Since most of the studies are concerned with constant or discrete delays, propagation
of information among the corresponding physical systems occurs only at fixed time
intervals while the dynamical systems themselves are evolving. In contrast, physical
systems in such situations can be better understood if the propagation delay from
one unit to the other is also evolving dynamically or uniformly distributed over an
interval. This approach is particularly significant in biological systems (in partic-
ular in neurobiology) where the system can be described by networks of coupled
dynamical units evolving in time, for instance as in the case of evolving networks.

Realizing the importance of time-delay in inducing amplitude death in identical
limit cycle oscillators, now we will discuss briefly the effects of distributed delay
on these systems. Atay has considered a system of two coupled limit cycle oscilla-
tors, each one of the form of Eq. (5.1), with a distributed delay coupling [14]. The
dynamical equation can be written as
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Ż1(t) = (1 + iω − |Z1(t)|2)Z1(t)+ K

⎡
⎣

∞∫
0

f (τ ′)Z2(t − τ ′)dτ ′ − Z1(t)

⎤
⎦ ,
(5.13a)

Ż2(t) = (1 + iω − |Z2(t)|2)Z2(t)+ K

⎡
⎣

∞∫
0

f (τ ′)Z1(t − τ ′)dτ ′ − Z2(t)

⎤
⎦ ,

(5.13b)

where K is the coupling strength and f represents the distribution of delay time.
In particular, the distributed delay is considered to be uniformly distributed over the
interval τ ± δ, that is f (τ ) in the above Eq. (5.13) has been chosen as

f (τ ) =
{

1
2δ , |τ − τ ′| ≤ δ

0, else
(5.14)

Carrying out a linear stability analysis about the fixed point Z = 0 in Eq. (5.13), as
discussed in Sect. 2.4, and in the previous section, one can obtain the pair of stability
curves as

(1 − γ 2)K 2 − 2K + 1 = −(β − ω)2, (5.15)

tan(βτ) = β − ω

1 − K
, (5.16)

where

γ = γ (β, δ) =
{

sin(βδ)/(βδ), βδ �= 0
1, βδ = 0.

(5.17)

The stability regime confined by the above critical curves in the (τ, K ) parameter
space is again determined from the knowledge of Re(dλ/dτ) on the critical curves
as was done in the previous section. The stability regime in the (τ, K ) space for
the value of the parameter ω = 30 is shown in Fig. 5.4 for the above mentioned
uniformly distributed delay for various values of δ. For the value of δ = 0.0 the
distributed delay becomes a discrete delay and the corresponding stability regime
for this parameter value consists of three amplitude death islands, Fig. 5.4a, which
continuously deforms as the degree of distribution determined by the value of
the parameter δ increases as seen in Fig. 5.4b–d. The connected stability regimes
become unbounded in the direction of the delay time τ after certain threshold value
of δ, Fig. 5.4c, d.
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Fig. 5.4 Spread of amplitude death islands as the distribution of the delay increases. (a) δ = 0,
(b) δ = 0.007, (c) δ = 0.008 and (d) δ = 0.02. This figure is adapted from the work of F. M.
Atay [14]

5.4 Amplitude Death in Coupled Chaotic Oscillators

In the previous sections, we have discussed the phenomenon of amplitude death in a
single/coupled limit cycle oscillator driven autonomously by a time-delay feedback
and also in two coupled limit cycle oscillators with distributed delay. We also note
that this phenomenon has been shown to occur in a large ensemble of coupled limit
cycle oscillators with time-delay coupling [8, 10]. It has also been demonstrated
that this phenomenon is generic and that it can also occur in chaotic dynamical
systems with time-delay coupling, similar to the case of coupled limit cycles. As this
phenomenon is quite general, it occurs for identical as well as nonidentical coupled
chaotic systems. The existence of amplitude death with time-delay coupling has
been discussed in coupled Lorenz and Rössler chaotic oscillators by A. Prasad [15].

It has also been shown that the transition from chaos to amplitude death via
a limit cycle occurs in analogy with the same mechanism as that of the coupled
limit cycle oscillators [3, 7, 8], that is, a pair of complex conjugate eigenvalues
cross the imaginary axis from right to left and simultaneously the unstable fixed
point becomes stable, initiating the amplitude death at a Hopf bifurcation. However
there exist two distinct nature of transitions to the fixed point from the limit cycle
behavior, namely in-phase and out-of-phase transitions. The shift in the nature of
these distinct transitions occurs at a critical value of delay time τc at which the phase
relationship of the two oscillators changes from in-phase to out-of-phase oscillations
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Fig. 5.5 Phase space plots (left panel) and time series plots (right panel) of the coupled identical
Rössler oscillators (5.18). (a) and (b) at τ = 0.6, (c) and (d) at τ = 2.25, (e) and (f) at τ = 1.5
and (g) and (h) at τ = 2, respectively, see [15]

as a function of delay time τ . These distinct transitions were later realized as a phase
flip bifurcation [16] which is discussed below.

To be specific, consider a system of two delay coupled identical Rössler oscilla-
tors [15] represented by
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ẋi = −yi − zi , (5.18a)

ẏi = xi + ayi + ε(y j (t − τ)− yi ), (5.18b)

żi = b + zi (xi − c), i, j = 1, 2, i �= j, (5.18c)

where a = b = 0.1, c = 14, ε = 0.5 and the delay time τ is considered as the
control parameter. In the absence of coupling ε = 0, the individual systems (5.18)
evolve chaotically for the above values of the parameters. Dynamical behavior of the
coupled identical Rössler oscillators for various values of time-delay τ are shown in
Fig. 5.5. Limit cycle oscillations of both the coupled systems are shown in Fig. 5.5a
for the delay time τ = 0.6 and the corresponding time series plot is depicted in
Fig. 5.5b, where there is no phase difference between both the oscillators x1 and x2.
This implies that both the oscillators x1 and x2 are exhibiting in-phase oscillations.
Similar limit cycle oscillations and their time trajectory plots of both the coupled
oscillators are illustrated in Fig. 5.5c, d, respectively, for the value of delay time
τ = 2.25. In contrast to the previous case, it can be now noted from the time series
plot that the variables x1 and x2 exhibit out-of-phase oscillations. For the value of
delay time τ = 1.5, the coupled chaotic oscillators transit to their fixed point as
shown in Fig. 5.5e, f, where the oscillators are in in-phase state which can be seen
clearly in the inset of Fig. 5.5f. Transition to the fixed point of both the oscillators by
out-of-phase oscillations for the value of time-delay τ = 2 is depicted in Fig. 5.5g, h.
These distinct transitions from in-phase to out-of-phase oscillations can also be
identified from the phase-difference (Δφ) between the two oscillators defined as
Δφ = 〈|φ1(t)− φ2(t)|〉, where 〈·〉 denotes the time average while φ = arctan(y/x).
The phase-difference (Δφ) between the two oscillators as a function of the delay
time τ ∈ (0, 2.5) is shown in Fig. 5.6.

These distinct transitions to amplitude death via limit cycle oscillations and their
mechanism of transitions in coupled chaotic oscillators are generic in nature and that
they can also be demonstrated in coupled identical Lorenz oscillators, coupled non-
identical Rössler and Lorenz oscillators and also in mixed chaotic oscillators [15].

0
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2

3

0 0.5 1 1.5 2 2.5 3

Δϕ

τ

Fig. 5.6 Phase difference Δθ = 〈|θ1(t)− θ2(t)|〉 (which before and after the transition are equal
to 0 and π ) between the oscillators, (5.18), as a function of delay time in the range τ ∈ (0, 3)
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5.5 Amplitude Death with Conjugate (Dissimilar) Coupling

Recently, it was shown that amplitude death can also occur by coupling through
conjugate (dissimilar) variables [17]. The scenario for the occurrence of amplitude
death in this case is quite different from our previous discussions in time-delay
coupled set of identical oscillators. In [17] it has been demonstrated that amplitude
death can occur in identical limit cycle oscillators, and even in identical chaotic
oscillators, with conjugate coupling without time-delay. It was realized that coupling
via conjugate variables provides time-delayed interaction in the sense that the other
variables of a dynamical system are reconstructed from a known time series using
a time-delay, a procedure in embedding. Indeed Takens’ embedding theorem [18]
asserts that the topological properties of the reconstructed system match those of the
true system for suitable choices of embedding dimension and time-delay. The simi-
larity between time-delayed variables and conjugate variables has been extensively
employed in the process of attractor reconstruction [19]. Hence, the analysis of [17]
asserts that some of the time-delay coupling effects can also be realized by means of
conjugate coupling and this reduces computing efforts enormously when arrays or
networks of oscillators are considered. It is also to be noted that it is easy to imple-
ment conjugate coupling in experiments when compared to time-delay feedback
or coupling. However, the conjugate coupling does not lead to the infinite dimen-
sionality of a dynamical system thereby leading to hyperchaotic attractors with large
number of positive Lyapunov exponents, a hallmark property of a dynamical system
with time-delay feedback or coupling.

Coupling conjugate (dissimilar) variables is natural in a variety of experimental
situations where subsystems are coupled by feeding the output of one into the other.
As an example for employing the conjugate coupling, recently Kim et al. [20] in
their experiments on coupled semiconductor laser systems used photon intensity
fluctuation from one laser to the other to modulate the injection current and vice
versa.

Consider, as an example, the Landau-Stuart oscillator specified by the equation
of motion

Ż(t) = (1 + iω − |Z(t)|2)Z(t), (5.19)

where ω is the frequency and Z(t) = x(t) + iy(t). Two such dynamical equations
coupled through conjugate (dissimilar) variables can be expressed in Cartesian coor-
dinates as

ẋi (t) = Pi xi − ωi yi , (5.20a)

ẏi (t) = Pi yi + ωi xi + εx j , (5.20b)

where Pi = 1 − |Zi |2, i, j = 1, 2, and j �= i, ε is the coupling strength and
ωi = ω = 2.0. The largest Lyapunov exponent of the coupled system (5.20) is
shown in Fig. 5.7 in the range of coupling strength ε ∈ (1, 3). For ε < 2, the largest
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Fig. 5.7 Largest Lyapunov exponent of the coupled Landau-Stuart oscillator (5.20) as a function
of the coupling strength in the range ε ∈ (1, 3)
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Fig. 5.8 Trajectories of the x components of the two oscillators (5.20). (a) Limit cycle behavior
for the coupling strength ε = 1.0, and (b) Monotonic decay to the fixed points for ε = 2.5

Lyapunov exponent is zero and the second largest one is negative (which is not
shown here), which is indicative of the limit cycle behavior as shown in Fig. 5.8a.
For ε > 2, transient trajectories decay monotonically to the fixed points as shown
in Fig. 5.8b for the value of the coupling strength ε = 2.5.
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Fig. 5.9 Largest three Lyapunov exponents of the coupled Lorenz systems (5.21) as a function of
the coupling strength in the range ε ∈ (0.2, 0.6)

It has also been shown that amplitude death occurs in coupled Lorenz oscillators
coupled through conjugate variables [17],

ẋi = 10(−yi − xi ), (5.21a)

ẏi = −xi zi + 28xi − yi + ε(x j − yi ), (5.21b)

żi = xi yi − 8

3
zi , i, j = 1, 2, i �= j. (5.21c)

The largest three Lyapunov exponents of the coupled Lorenz system is depicted in
Fig. 5.9 as a function of the coupling strength ε ∈ (0.2, 0.6). All the Lyapunov
exponents become negative for ε > 0.44, indicating the occurrence of amplitude
death in the coupled Lorenz system. Preceding the regime of amplitude death the
largest Lyapunov exponents show wild fluctuations due to the presence of coexisting
attractors, namely multistability, an impact of time-delay. Chaotic trajectories of
both the coupled Lorenz systems for the value of the coupling strength ε = 0.3 is
shown in Fig. 5.10a, while the dynamical behavior in the amplitude death regime is
plotted in Fig. 5.10b for the value of the coupling strength ε = 0.5.

5.6 Amplitude Death with Dynamic Coupling

In the above studies on amplitude death, the coupling signal is proportional to the
difference between the dissimilar or conjugate states of the two oscillators. The
proportionality factor is of a constant value and hence the couplings are consid-
ered static. It was observed that dynamic coupling, which has not only the propor-
tionality factor but also has its own dynamics, can induce amplitude death without
time-delay [21]. It is to be noted that RC-ladder coupling [22], a kind of dynamic
coupling, can be used as an approximation of RC wire delay connections in VLSI
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Fig. 5.10 Transient trajectories of the x components of the coupled Lorenz systems (5.21).
(a) Chaotic behavior for ε = 0.3 and (b) Monotonic decay to the fixed points for ε = 0.5

chips [23]. Consequently, dynamic coupling may also be used to produce some of
the time-delay effects in appropriate situations.

To illustrate the existence of amplitude death due to dynamic coupling, let us
consider the two identical limit cycle oscillators

ẋi = xi

(
1 − y2

i − x2
i

)
− ωyi + ui , (5.22a)

ẏi = yi

(
1 − y2

i − x2
i

)
− ωxi , i = 1, 2, (5.22b)

where the dynamic coupling involves an additional variable with a time evolution,

żi = −zi + x j , ui = ε(zi − xi ) i, j = 1, 2, i �= j, (5.23)

where ε is the coupling strength. The limit cycle oscillations of the coupled system
is shown in Fig. 5.11a in the absence of coupling, that is ε = 0. As the value of the
coupling strength is increased from zero for a fixed value of the natural frequency
ω = 4, oscillatory behavior is found to exist up to a certain threshold value of
the coupling strength, followed by a sudden quenching of oscillations above the
threshold value, leading to amplitude death of the oscillators. The full scenario is
shown as a bifurcation diagram in Fig. 5.12 as a function of the coupling strength
in the range ε ∈ (0, 12). Both the oscillators exhibit chaotic oscillations in the
range ε ∈ (0, 2.3) and amplitude death occurs in the range ε ∈ (2.3, 8.5), where
all the variables converge to the origin. The stable fixed point, which differs from
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Fig. 5.11 Behavior of the
system of coupled limit cycle
oscillators (5.22), (5.23). (a)
Limit cycle oscillations of the
two uncoupled systems in the
absence of coupling, (b)
Quenching of oscillations
(amplitude death) of the
coupled oscillators for the
value of the coupling strength
ε = 4.0 and (c) Both the limit
cycle oscillations and
quenching of oscillations
before and after the dynamic
coupling, respectively,
switched at t = 1500
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Fig. 5.12 Bifurcation
diagram of the coupled
limit-cycle oscillators (5.22),
(5.23) as a function of the
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the origin, appears for ε > 8.5. Figure 5.11b shows the limit cycle oscillations
being damped out to reach the fixed point for ε = 4.0, while Fig. 5.11c shows the
existence of the limit cycle oscillations and quenching of oscillations, respectively,
before and after the dynamic coupling is switched on at t = 1500. Quenching of
oscillations due to dynamic coupling can also be demonstrated in coupled identical
Rössler systems [21].

Recently, the phenomenon of amplitude death has also been reported in coupled
time-delay systems [24] with both delay and dynamic couplings. Stability condition
for the stabilization of the oscillatory behavior in coupled time-delay systems has
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also been derived and it is also shown that static connection never induces ampli-
tude death. These results have also been confirmed experimentally using electronic
circuits.

5.7 Time-Delay Induced Bifurcations

It has also been shown that phase flip bifurcation occurs in a general class of nonlin-
ear oscillators coupled through time-delay coupling [16]. Here, the relative phase
between the coupled oscillators changes abruptly from zero to π as a function of
the delay time for fixed values of the other system parameters and hence it is named
as a phase flip bifurcation, which is a general feature of the time-delay coupled
systems. This bifurcation phenomenon has a broad range of occurrence, that is,
it is observed for periodic as well as chaotic oscillators, for identical as well as
nonidentical coupled systems, and in a variety of dynamical systems [16].

For illustration, let us consider a pair of diffusively coupled Rössler oscillators
represented by Eqs. (5.18) with the same values of the parameters a, b and c as
used in the Sect. 5.4. They evolve chaotically as indicated in Sect. 5.4. The coupling
strength ε and delay time τ are chosen as control parameters. The phase difference
Δφ = 〈|φ1(t)−φ2(t)|〉, where 〈·〉 is the time average, is depicted in Fig. 5.13 in the
(ε, τ ) parameter space. From this figure it is evident that the relative phase between
both of the coupled systems is zero for a fixed value of the coupling strength ε up
to a certain threshold value of delay time τ and above this threshold value there is a
difference of π in the relative phase. As the phase flips from zero to π as a function
of the delay time, this phenomena is termed as phase flip bifurcation. The dynamics
of this phase flip bifurcation, namely transition from in-phase oscillations to out of
phase oscillations has been discussed in Sect. 5.4 (see Fig. 5.5) for both limit cycle
oscillations and chaotic oscillations.

It was also observed that Neimark-Sacker-type bifurcation [25] is prevalent in
delay coupled networks for larger values of delay times, which results in high-period
solutions followed by more complex behavior [26]. It was shown that the synchro-
nized solution of delay coupled logistic map exhibits such complex bifurcation

Fig. 5.13 Phase difference
Δφ in the (ε, τ ) plane
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scenario for finite values of connection delays whereas such bifurcation scenario
(Neimark-Sacker-type bifurcation) cannot arise in one-dimensional maps [26], a
clear implication of delay coupling. It has also been shown that a variety of rich
bifurcation structures can arise in the synchronized solution as a function of the
coupling strength for finite values of connection delays.

Bifurcations such as inverse, direct Hopf and fold limit cycle were observed in
time-delay coupled FitzHugh-Nagumo excitable systems [27]. It was also identified
that for an intermediate range of time lags, inverse sub-critical Hopf and fold limit
cycle bifurcations lead to the phenomenon of oscillator death [27]. Bifurcations in
two coupled excitable FitzHugh-Nagumo systems (N = 2) has been studied ana-
lytically, and it is also numerically confirmed that the same bifurcations are relevant
for N > 2 in the presence of delay coupling.

5.8 Some Other Effects of Delay Feedback

In the following, we will briefly point out the main features and the emergence of
other types of behaviors in delay coupled systems (delay feedback) which are not
possible in the absence of time-delay feedback.

1. The first systematic investigation of time-delayed coupling was done by Schuster
and Wagner [28] who studied two coupled phase oscillators and found multista-
bility of synchronized solutions.

2. A novel form of frequency depression was observed for small delays in the limit
cycle oscillators that interact via time-delayed diffusive coupling and for larger
delay metastable synchronized state was observed [29].

3. Bistability between synchronized and incoherent states have been observed in
Kuramoto oscillators coupled via time-delay coupling. Exact formulas for the
stability boundaries of the incoherent and synchronized state as a function of the
delay has been established [30].

4. Delay induced chaos has been demonstrated in catalytic surface reaction [31]. A
mathematical model has been proposed which explains the origin of chaos in this
reaction as being due to delays in the response of a population of reacting adsor-
bate islands globally coupled via the gas phase. The dynamical equations of this
model yields a sequence of period-doubling bifurcations resulting in chaos [31].

5. It has also been shown that delay coupling in networks enhances the synchroniz-
ability of networks and interestingly it leads to the emergence of a wide range
of new collective behavior (see [26, 32] and reference therein). On the other
hand, it has also been shown that connection delays can actually be conducive to
synchronization so that it is possible for delayed systems to synchronize whereas
the undelayed system does not [26].

6. Enhancement of neural synchrony, that is, the existence of stable synchronized
state even for a very low coupling strength for significant time-delay in the cou-
pling has also been demonstrated [33].
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7. Time-delay feedback has also been demonstrated to be used for bifurcation con-
trol of nonlinear models of chaotic cardiac activity [34].

8. It has also been demonstrated that time-delay feedback can be used for suppress-
ing a pathological period-2 rhythm (cardiac alternans) in a atrioventricular nodal
conduction model [35].

9. In delay coupled fiber lasers, it was demonstrated that a reduction in dynami-
cal complexity occurs for short coupling delays while a logarithmic growth is
observed as the coupling delay is increased [36].
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Chapter 6
Recent Developments on Delay
Feedback/Coupling: Complex Networks,
Chimeras, Globally Clustered Chimeras
and Synchronization

6.1 Introduction

Time-delay systems are ubiquitous in nature and occur in connection with various
aspects of physical, chemical, biological and economic systems as pointed out in
earlier chapters. The study of time-delay induced modifications in the collective
behavior of systems of coupled nonlinear oscillators is a topic of much current
interest both for its fundamental significance from a dynamical systems point of
view and for its practical applications. There have been several reports of interesting
phenomena in time-delay systems such as multistable states [1, 2], oscillation death
[3], chimera states [4] and globally clustered chimera states [5], with vast investi-
gations on synchronization of coupled time-delay systems [6]. Current research on
collective dynamics of coupled dynamical systems have been focusing on the so
called chimera states and also on the dynamics of complex networks with delay.
The discovery of chimera states came as a surprise because an array of identical
oscillators splits into two domains: one coherent and phase locked and the other
incoherent and desynchronized. This characteristic behavior of complex systems
reminded the discoverers of a fire-breathing monster in Greek mythology, which
has a lion’s head, a goat’s body, and a serpent’s tail (see Fig. 6.1), and hence it
was named so. In this chapter, we will discuss some of the recent developments on
the existence of this kind of interesting chimera states and on the synchronization
of complex networks with connection delays. We will also discuss the controlling
aspects using time-delay feedback.

6.2 Complex Networks

A network is nothing but a digraph (directed graph) with weighted edges. The
study of networks is directed towards examining common principles, algorithms
and tools that govern the network behavior which in turn are applicable in analyzing

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_6,
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Fig. 6.1 The monster
according to Greek
mythology which has a lion’s
head, a goat’s body, and a
serpent’s tail. This figure is
obtained from
www.freewebs.com/chimeraclan/

interactions in and among diverse physical or engineered networks, information
networks, biological networks, cognitive and semantic networks, social networks,
etc. [7–9]. A complex network is a network with features that do not occur in simple
networks such as latices or random graphs. The current interest in networks is part
of a broader movement towards complex networks. In the study of complex net-
works, the anatomy of the concerned network is always considered important. This
is because the structure always affects function. For instance, the topology of social
networks affects the spread of information and disease and the topology of the power
grid affects the robustness and stability of power transmission. Networks of dynam-
ical systems have been used to model everything from earthquakes to ecosystems,
neurons and neutrinos [10–17]. The nature of couplings in such complex network
models has been conventionally considered as instantaneous during earlier studies.
One of the main reasons for this assumption is that it substantially simplifies the
analysis of the system. In addition, such an approximation is more often physically
justified. However, the fact is that consideration of time-delay is vital for modeling
real life systems. Furthermore, as we will demonstrate in this chapter, certain inter-
esting dynamical phenomena in complex systems are characteristic of time-delay
and they will not occur in systems without time-delay. Since the introduction of
time-delay increases the effective dimension of the system, one can expect certain
complex phenomena to be explained in a better way in models of real physical
systems when delay is included.

A few types of networks to mention are (see Fig. 6.2 for schematic
representation)

• Small world network – A network in which any two arbitrary nodes are con-
nected by only six degrees of separation, i.e. the diameter of the corresponding
graph of connections is not much larger than six.

• Scale free network – A network whose degree of distribution, i.e., the probability
that a node selected uniformly at random has a certain number of links (degree),
follows a particular mathematical function called a power law. The power law
implies that the degree of distribution of these networks has no characteristic
scale.



6.2 Complex Networks 107

Fig. 6.2 Schematic representation of different types of networks. These figures are taken from
google images

• Regular network – A regular network is one in which the nodes are normally
connected to their nearest neighbours and/or next nearest neighbours.

• Random network – A random network is generated by some random process;
starting with a set of n nodes and adding nodes between them at random.

• Hierarchical architectures – These are nothing but networks of networks, where
each node of the larger network is itself a network (usually called as a sub-
population).
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In the early stages of chaos synchronization studies certain regularity in the connec-
tion was maintained whereas later on more general networks with random, small
world, scale free and hierarchical architectures have been emphasized as suitable
models of real world networks. However, more realistic modeling of many large
networks with nonlocal interaction inevitably requires connection delays [18] to be
taken into account, since they naturally arise as a consequence of finite information
transmission and processing speeds. Hence, it is important to consider the individual
dynamical units of networks as delay dynamical systems [19] with constant and
time varying delays to mimic most of the real networks and to unravel their actual
hidden dynamics. For example, in populations of spatially separated neurons, the
synaptic communications between them which depend on the propagation of action
potentials over appreciable distances involve distributed delays [19].

6.3 Chimera States in Delay Coupled Identical Oscillators

6.3.1 Discovery of Chimera States

Mathematically, as pointed out in the introduction, the phenomenon of the coexis-
tence of coherent and incoherent states of nonlocally coupled identical oscillators
was named chimera states by Abrams and Strogatz [20], see for example the occur-
rence of chimera in a system of coupled phase oscillator populations [5]. Actually
Kuramoto et al. [21] were studying arrays of identical limit-cycle oscillators that
are coupled nonlocally. They found that for certain choices of parameters and ini-
tial conditions, the array would split into two domains: one composed of coherent,
phase-locked oscillators, coexisting with another composed of incoherent, drifting
oscillators. They also found that the coexistence of locking and drifting was robust
and that the phenomenon could occur in both one and two spatial dimensions and
also for various kinds of oscillators including the Fitzhugh – Nagumo model, com-
plex Ginzburg – Landau equations, phase oscillators and an idealized model of bio-
chemical oscillators. It also occurs in a wide class of reaction-diffusion equations,
under particular assumptions on the local kinetics and diffusion strength that lead to
effective nonlocal coupling [22, 23]. This discovery came as a surprise because, in
general identical oscillators would settle into one of a few basic patterns [10, 11],
the simplest of them being synchrony, with all the oscillators moving in unison, exe-
cuting identical motions at all times. Another common pattern is wave propagation,
typically in the form of solitary waves in one dimension, spiral waves in two dimen-
sions and scroll waves in three dimensions. The common feature in these cases is
that all the oscillators are locked in frequency, with a fixed phase difference between
them. At the opposite end of the spectrum is incoherence, where the phases of all the
oscillators drift quasiperiodically with respect to each other, and the system shows
no spatial structure whatsoever. However, this coexistence (unnamed then) was so
odd because the locking and incoherence were present in the same system, simul-
taneously (see Fig. 6.3, where synchronized and desynchronized populations are



6.3 Chimera States in Delay Coupled Identical Oscillators 109

Fig. 6.3 Numerical
illustration of a snapshot of a
chimera state reproduced
from [24]. (a) Synchronized
population, (b)
Desynchronized population
and (c) the density of
desynchronized oscillators

obtained for same values of the parameters but for different initial conditions [24]).
Furthermore, this combination could not be attributed to the simplest mechanism
of pattern formation (a supercritical instability of the spatially uniform oscillation),
because it can occur even if the uniform state is linearly stable, as indeed it was for
the parameter values used by Kuramoto and his colleagues. It also has nothing to do
with the classic partially locked/partially incoherent states that occur in populations
of nonidentical oscillators with distributed natural frequencies [11, 25].

6.3.1.1 Coupled Limit Cycle Oscillators in the Continuum Limit

Abrams and Strogatz, reported the existence of chimera and named them so while
studying a system of a ring of phase oscillators. This is nothing but the same system
studied by Kuramoto and Battogtokh [26–31] as a simplest model for densely and
uniformly distributed oscillators with nonlocal coupling. The system is governed by
the Ginzburg-Landau equation in one spatial dimension as

∂

∂t
A(x, t) = (1 + iω0)A − (1 + ib)|A|2 A

+K (1 + ia)(Z(x, t)− A(x, t)). (6.1)

Here A(x, t) is the complex amplitude of oscillation and Z(x, t) is the mean field
that represents the effect of the nonlocal coupling and is given by

Z(x, t) =
∫

G(x − x ′)A(x ′, t)dx ′. (6.2)
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The coupling function G changes with distance as G(y) = k
2 exp(−k|y|) and is

normalized. The reductive derivation of Eq. (6.1) from a certain class of reaction-
diffusion systems introduces the exponential form of G when Eq. (6.1) involves
an inactive diffusive component to be eliminated adiabatically [27–30]. When the
strength of the coupling K is small, which is actually the case, then Eq. (6.1) is
reduced to a phase equation

∂

∂t
φ(x, t) = ω −

∫ L

−L
G(x − x ′)

× sin[φ(x, t)− φ(x ′, t)+ α]dx ′, (6.3)

which is much easier to analyze. Here ω is the natural frequency of the phase oscilla-
tor and α is a tuning parameter. Abrams and Strogatz presented an exact solution for
the chimera state in this system coupled by a cosine kernel. Letting φ = θ +Ω(t),
where Ω is the angular frequency of the rotating frame, Eq. (6.3) becomes

dθ

dt
= ω −Ω − R sin[θ −Θ + α]. (6.4)

Here Reiθ = ∫ π
−π G(x − x ′)eiθ(x ′,t)dx ′ is the complex order parameter. Focusing

only on stationary solutions, a self consistent equation for the complex order param-
eter can be given as

R(x)eiθ(x) = eiβ
∫ π

−π
G(x − x ′)e[iΘ(x ′)]Δ−√Δ2 − R2(x ′)

R(x ′)
dx ′ (6.5)

where, β = π
2 − α and Δ = ω − Ω . Exact solution for the stationary state can

be obtained by solving Eq. (6.5) for the three unknowns R(x),Θ(x) and Δ using
perturbation analysis. Using this solution they showed that the stable chimera state
bifurcates from a spatially modulated drift state, and died in a saddle-node bifurca-
tion with an unstable chimera state.

Chimera states are considered to be nongeneric, as they emerged only for a partic-
ular set of initial conditions [4, 20, 21, 31]. The nature and properties of this exotic
collective state as well as its potential applications have not been fully explored
or understood and hence it remains unclear whether such a state exists in delay
coupled oscillators. Recently, two independent studies revealed the existence of
chimera states in different model systems that are coupled in a time-delayed and
spatially nonlocal fashion [4, 32]. Furthermore an analytical description of spiral
wave chimera has been provided by Martens et al. [33]. They have also calculated
the rotation speed and the size of the incoherent core of the spiral wave using per-
turbation theory.
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6.3.2 Chimera States in Delay Coupled Systems

Sethia et al. [4] reported that chimera states do indeed exist in delay coupled systems
but acquire an additional spatial modulation such that the single spatially connected
phase coherent region of the usual chimera state is now replaced by a number of
spatially disconnected regions of coherence with intervening regions of incoher-
ence. Furthermore, it was shown that the adjacent coherent regions of this clustered
chimera state are found to be in antiphase relation with respect to each other. These
authors have considered a model equation representing the continuum limit of a
chain of identical phase oscillators arranged on a circular ring C ,

∂

∂t
φ(x, t) = ω −

∫ L

−L
G(x − x ′)

× sin
[
φ(x, t)− φ(x ′, t − τx,x ′)+ α

]
dx ′, (6.6)

where 2L is the system length and a closed chain configuration is ensured by impos-
ing periodic boundary conditions. The kernel G(x − x ′), appropriately normalized
to unity over the system length, is taken as

G(x − x ′) = k

2(1 − e−kL)
e−kdx,x ′ , (6.7)

which provides a non-local coupling among the oscillators over a finite spatial range
of the order of k−1 which is taken to be less than the system size. The coupling is
time-delayed through the argument of the sinusoidal interaction function, namely
the phase difference between two oscillators located at x and x ′ is calculated by tak-
ing into account the temporal delay for the interaction signal to travel the intervening
geodesic (i.e. shortest) distance determined as dx,x ′ = min{|x − x ′|, 2L − |x − x ′|}.
The time-delay term is therefore taken to be of the form, τx,x ′ = dx,x ′/v, where
v is the signal propagation speed. In the absence of time-delay the above equation
reduces to the one investigated in [21, 31], Eq. (6.3) above. The constant phase shift
term α in the undelayed model breaks the odd symmetry of the sinusoidal coupling
function and as discussed in [20] it is needed as a tuning parameter for obtaining
chimera solutions in the undelayed case. In the presence of time-delay however it
is found that α no longer plays such a critical role since the time delay factor also
fulfills a similar function.

The system parameters chosen for the simulations are, 2L = 1.0, α = 0.9,
k−1 = 0.25, ω = 1.1, v = 0.09765625 and the number of oscillators in the ring
N = 256 corresponding to a maximum delay time (τmax ). As discussed in the above
studies [21, 31], the choice of appropriate initial conditions is very important for
numerically accessing a chimera state. Kuramoto used a random distribution with
a Gaussian envelope for the initial distribution of the phases to obtain a chimera
solution. For the present time-delayed system, it is found that choosing the initial
phases of the oscillators from a uniform random distribution between 0 and 2π and
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Fig. 6.4 (a) The space-time plot of the oscillator phases φ for the parameters 2L = 1.0, k = 4.0,
1/v = 10.24, ω = 1.1 and α = 0.9 in the early stages of evolution from a random set of initial
phases. Panel (b) shows a later time evolution and panel (c) gives a snapshot of the final stationary
state. Panel (d) is a blowup of the region between x = −0.5 to x = −0.25 giving an enlarged
view of an incoherent region and portions of the adjacent coherent regions. This figure is adapted
from the work of Gautam C. Sethia et al. [4]

then arranging them in a mirror symmetric distribution in space provides a rapid
access to a clustered chimera state. The existence of such time-delay induced phase
clustering is also further supported through solutions of a generalized functional
self-consistency equation of the mean field [4].

Figure 6.4a, b show a space time plot for the parameters mentioned above in the
early stages of evolution (starting from random initial phases) and in the final stages
of the formation of a clustered chimera state, respectively. Figure 6.4c shows a snap-
shot of the spatial distribution of the phases in the final stationary state. Four coher-
ent regions are shown interspersed by incoherence and also note that the adjacent
coherent regions are in anti-phase states. Blowup of the region between x = −0.5
to x = −0.25 giving an enlarged view of an incoherent region and portions of the
adjacent coherent regions is shown in Fig. 6.4d.

As pointed above, the chimera states revealed so far are nongeneric in the sense
that they occur for specific set of initial conditions. However, Oleh et al. [32] demon-
strated that the chimera states generically emerge already in a rather simple network
of globally coupled oscillators, provided the latter is subject to spatially modulated
delayed feedback. Spatial modulation here means that the strength of the delayed
feedback is maximal at the site of injection and decreases with increasing distance
from the injection site. This feature is typical for spatially extended systems under
the influence of nonhomogeneous, local control forces [34].
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Oleh et al. [32] have investigated the role played by chimera states in delay feed-
back systems. Two main aspects of their report included (i) the generic nature of
chimera states as induced by delayed feedback and (ii) the link between coherent
and incoherent states is nothing but a chimera state. They have considered an ensem-
ble of identical, densely and uniformly distributed Landau-Stuart oscillators, repre-
senting a normal form of a supercritical Andronov-Hopf bifurcation governed by

∂

∂t
W = (1 + iω − |W |2)W + C

(
1

2

∫ 1

−1
W (x, t)dx − W

)

+ K

2
ρ(x)

∫ 1

−1
W (x, t − τ)dx, (6.8)

where W (x, t) stands for a complex amplitude of the oscillator at position x and
at time t . Positive parameters ω and C correspond to the natural frequency and the
global coupling strength, respectively. The term

∫ 1
−1 W (x, t)dx is the ensemble’s

mean field and the last term in Eq. (6.8) corresponds to the mean field delivered
with the delay τ and the spatial profile ρ(x) to each oscillator with the delayed
feedback strength K . They showed that chimera states can be robustly induced by
delayed feedback stimulation with a variety of exponentially or linearly decaying
stimulation profiles, provided the key stimulation parameters, the delay and strength,
are tuned appropriately.

6.4 Chimera States in Delay Coupled Subpopulations: Globally
Clustered States

So far, we have discussed the existence of chimera states in a population of identical
oscillators with nonlocal delay coupling. Recently, globally clustered chimera state
(GCC) has been identified by Sheeba et al. [5] in a system of identical oscillators
with two subpopulations with time-delay coupling. It is demonstrated that coupling
delay can induce globally clustered chimera (GCC) states in systems having more
than one coupled identical oscillator (sub) populations. By GCC state here we mean
that a system, which has more than one (sub) population, splits into two different
groups, one synchronized and the other desynchronized, each group comprising of
oscillators from both the populations.

Sheeba et al. [5] have considered a system of two populations of identical oscilla-
tors coupled through a finite delay, represented by the following equation of motion,

θ̇i
(1,2) = ω − A

N

N∑
j=1

f
(
θ
(1,2)
i (t)− θ

(1,2)
j (t − τ1)

)

+ B

N

N∑
j=1

h
(
θ
(1,2)
i (t)− θ

(2,1)
j (t − τ2)

)
, i = 1, 2, ...,N. (6.9)
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Population−I Population−II

Fig. 6.5 Schematic representation of system (6.9) with N = 3 comprised of two populations of
all – to – all coupled oscillators; the oscillators within each population are identical. Here solid
lines represent coupling within a population (with strength A) and dotted lines represent coupling
between populations (with strength B)

A schematic representation of the system is given in Fig. 6.5. The occurrence
of various synchronization states in system (6.9) is schematically represented in
Fig. 6.6 (details given below). Here ω is the natural frequency of the oscillators in
the populations and it is the same for all oscillators in both the populations mak-
ing all of them identical. However, the two populations are distinguished by the
initial distribution of their phases; the phases are uniformly distributed between 0

Fig. 6.6 Schematic
representation of phase
portraits of the states of
synchronization in system
(6.9). (a) Individual
synchronization in both the
populations, (b) chimera, (c)
GCC, (d) multi-clustered
GCC, and (e) global
synchronization. Open circles
represent synchronized group
of oscillators and the closed
circles represent the
desynchronized oscillators

Population−1 Population−2

(a)

(b)

(c)

(d)

(e)
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and π for the first population and between π and 2π for the second population.
A and B refer to coupling strengths within and between populations, respectively.
The functions f and h are 2π periodic that describe the coupling. N refers to the
size of the populations. The complex mean field parameters, X (1,2) + iY (1,2) =
r (1,2)eiψ(1,2) = 1

N

∑N
j=1 eiθ(1,2)j , characterize synchronization within a population

but not global clustering. Therefore, in order to quantify a GCC numerically, after
allowing the transients, they have identified those oscillators whose θi s are equal
for all times and neglect them so as to end up with the desynchronized group (that
comprises oscillators from both the populations, whose size is N DS) and calculate its
order parameter as

r DSeiψDS = 1

N DS

N DS∑
j=1

eiθDS
j , (6.10)

where N DS = 2N − N S. τ1 and τ2 quantify coupling delay within and between
populations, respectively.

Their simulation results show that the coupling delay can induce splitting of iden-
tical delay coupled populations into desynchronized frequency suppressed (vanish-
ing oscillating frequencies) clusters and synchronized clusters. This splitting can
occur either within the populations (Fig. 6.7 Bottom Panel) representing chimera
states or between the populations (Fig. 6.7 Top Panel) representing the globally cou-
pled chimera states. Further, it is also shown that the GCC state need not be stable
but it can either breathe or can be unstable depending upon the value of the coupling
delay. A GCC state is called as a breather state when one of the groups is completely
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Fig. 6.7 Occurrence of (stable) GCC in system (6.9). Top panel: Global clustering phenomenon –
synchronized and desynchronized (frequency suppressed) groups have oscillators from both the
populations. Bottom panel: One of the populations is synchronized and the other is desynchro-
nized (frequency suppressed). Green (light gray) and red (dark gray) lines represent oscillators in
the first and the second populations, respectively. Here { f, h} = {sin(θ), cos(θ)}, τ1 = nτ2 = nτ
with n = 1 (top panel) A = 1.2, B = 1 and τ = 2, (bottom panel) A = 1.6, B = 1 and τ = 1
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synchronized while the other group is desynchronized and fluctuates. Breathers can
be long, short (defined in a relative sense), periodic or aperiodic. A breather can also
be unstable when the desynchronized group remains desynchronized for a while
after which this state loses stability and all the oscillators lock to one phase. The
different types of breather states are reported to be a steady dynamical states. Typical
illustration of breather and unstable states are shown in Fig. 6.8. Investigations on
the phenomenon of chimera states and exploring its possible applications have been
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Fig. 6.8 Topmost row: Illustration of a breathing GCC state with initial condition close to the
GCC state. Grey and black lines represent the long- and short-periodic breather with τ = 3.6 and
τ = 4, respectively, where the time evolution of the order parameter r DS is plotted. Second row:
The corresponding phases θDS

i are plotted against time. Third row: Aperiodic breathing GCC with
τ = 5. Fourth row: Unstable breathing GCC with τ = 4. For third and fourth rows, left panels
correspond to the time evolution of r DS and right panels represent θDS
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only in their initial stage. There are many open problems such as mechanism of
emergence of chimera states, existence in higher dimensional systems, their generic
nature, etc., need to be explored in this direction. Furthermore, experimental real-
ization of existence of chimera states remains to be explored.

6.5 Synchronization in Complex Networks with Delay

It has been shown that delay in networks enhances their synchronizability and inter-
estingly it leads to the emergence of a wide range of new collective behavior [18, 19]
(for details on synchronization, see Appendix B and later chapters). On the other
hand, it is also shown that connection delays can actually be conducive to syn-
chronization, so that it is possible for the delayed system to synchronize where the
undelayed system does not [18].

To be specific, Atay and Jost [18] consider a finite connected graph Γ with nodes
(vertices) i , writing i ∼ j when i and j are neighbors, that is, connected by an edge,
and with the number of neighbors of i denoted by ni . On Γ , one can have a dynam-
ical system with discrete time t ∈ Z, with the state xi of i evolving according to

xi (t + 1) = f (xi (t))+ ε

⎛
⎜⎜⎝ 1

ni

∑
j

j∼i

f (x j (t − τ))− f (xi (t))

⎞
⎟⎟⎠ . (6.11)

Here f is a differentiable function mapping some finite interval, say [0, 1], to itself,
ε ∈ [0, 1] is the coupling strength, and τ ∈ Z+ is the transmission delay between
vertices. For simulation, the function f (x) is chosen as f (x) = ρx(1 − x) with
the value of ρ = 4, for which the individual uncoupled systems are fully chaotic.
Synchronized regions in the parameter space for scale-free, random, small-world
and nearest-neighbour coupling are shown in Fig. 6.9a–d, respectively. The authors
had used the same size, N = 10000, and the same number of average connections,
even though the architectures may be different.

It is evident from Fig. 6.9 that the scale-free and random networks can synchro-
nize for a large range of parameters whereas more regular networks with nearest-
neighbor and small-world type coupling do not. In the case of scale-free and random
networks, for strong coupling (roughly for ε > 0.6) synchronization is achieved
regardless of the actual value of the delay, as long as it is positive as seen in
Fig. 6.9a, b. For intermediate coupling in the range 0.4 < ε < 0.6, the value of
the delay becomes decisive for synchronization. There are also smaller regions of
synchronization that exist for weaker coupling (0.15 < ε < 0.20) and only for
odd delays. Note that for zero delay synchronization can occur only for a rather
limited range (ε > 0.85). Also, the small regions of synchronization in Fig. 6.9c,
d occur for nonzero delay only. Hence, the presence of delay can indeed facilitate
synchronization.

In a recent work [35], the authors have calculated the master stability function
of networks of chaotic units with time-delayed couplings. They have shown that



118 6 Recent Developments on Delay Feedback/Coupling

Fig. 6.9 Synchronization of coupled logistic maps for different values of coupling strength ε and
connection delays τ , for the cases of (a) scale-free, (b) random, (c) small-world, and (d) nearest-
neighbor coupling. The grayscale encodes the degree of synchronization, with black regions cor-
responding to complete synchronization. This figure is adapted from the work of Atay et al. [18]

when the delay times of transmission are much larger than any characteristic time
scales of the individual units of any arbitrary finite network, the individual units
are not synchronized. It is also shown that this holds for any network including the
case where the individual units contain self-feedback delays. For several models
including chaotic flows and maps, the authors have calculated the master stability
function and determined the maximal value of delay time for which synchronization
can occur.

Among these interesting reports on synchronization in complex networks with
connection delays, there are also few studies available in the literature on the effect
of connection delays on the synchronization dynamics of several network motifs
of different architectures [36–38]. However, synchronization in complex networks
with individual units as intrinsic time-delay systems with and without connection
delays have not yet been considered and this remains an open problem.

6.6 Controlling Using Time-Delay Feedback

Controlling complex dynamics has been emerging as an important issue in modern
nonlinear science [39–44]. Major progress has been made by extending the methods
of chaos control, in particular by employing time-delay feedback, to control unstable
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periodic orbits or stationary states of dynamical systems. In particular, time-delay
feedback control has been used to control pattern formation in neuroscience, to pre-
vent the pathological activity in cortical tissues [45, 46], and developing applications
in bio-medical engineering [47, 48], in technological application such as congestion
control, load balancing control, networked control systems, etc in communication
networks, to remote control and robotized operations of mechanical systems, stabi-
lization of planar vertical takeoff and landing aircraft (PVTOL) models [49], control
of gantry cranes, control of fuel injection rate in combustion engines [43], in popu-
lation dynamics, economics, nonlinear optics, fluid dynamics [43, 44], etc.

In short, very often whenever one observes a state of a system to control its
dynamics there exists a delayed feedback of the corresponding state to the system
in its control mechanism. For instance in our daily life, steering control of a car,
controlling/tuning a tap for optimal flow of hot water, etc are made by observing the
occurred (past) state to control their current state and hence there appears a delayed
feedback. Hence time-delay feedback control is ubiquitous and has emerged as a
highly interdisciplinary subject and a large amount of material on it is now available
in the literature [40, 41, 50, 42–44]. In the following, we will describe briefly the
classical control scheme of Pyragas [51] and its advantage over the other methods
and its further variations. We will also discuss briefly a recent work on transient
behavior in systems with time-delayed feedback [52] by Hinz et al., which is closely
related to the transient behaviors we have discussed in Chap. 3.

6.6.1 Pyragas Time-Delay Feedback Control

Chaotic behavior has been regarded as unwanted signal in the initial stage of its
identification as it restricts the operating range of many electronic and mechani-
cal devices [51]. Hence, several methods have been introduced to control chaotic
dynamics to a desired or a targeted behavior, which includes feedback and nonfeed-
back methods. Nonfeedback methods require prior knowledge of the dynamical sys-
tem and is less flexible. However, in nonfeedback methods control procedures can
be applied at any time to control its dynamics to desired behaviour and it does not
require to follow the trajectory as in feedback methods. Nevertheless, the feedback
methods do not alter the system much as the feedback becomes negligibly small on
reaching the targeted behavior, whereas nonfeedback methods change the systems
by small parameter shift to change the behavior [40, 41, 50].

Ott-Grebogi-Yorke [53] (OGY) have proposed an efficient method of chaos con-
trol, which stabilizes the desired unstable periodic orbit (UPO) embedded in the
chaotic attractor by a small time-dependent perturbation in the form of feedback to
an accessible system parameter. OGY scheme has been demonstrated successfully
in different experiments including Chua’s oscillator, chaotic diode resonator, chaotic
laser, fluid mechanical systems, etc. [51, 40]. However, OGY scheme requires con-
tinuous tracking of the trajectory and it stabilizes only those periodic orbits whose
maximal Lyapunov exponent is small compared to the time interval of the parameter
changes as this scheme deals with the Poincaré map. Further, this scheme is highly
sensitive to noise and then control becomes less efficient.
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To overcome these difficulties continuous control in the form of feedback was
proposed by Pyragas [51]. Two schemes, namely a combined feedback with a peri-
odic external force and a self controlling delayed feedback, were proposed. In the
first method an external oscillator which generates a signal yi (t) = y(t + Ti ) is
combined with the feedback F(t) = K

[
yi (t)− y(t)

]
, where Ti is the period of

i th UPO, K is the adjustable weight of the perturbation and y(t) is the observable
scalar signal from the actual system to which the feedback signal F(t) is applied.
However, in the delayed feedback method no such external oscillator oscillating
with the desired/target period is employed.

The delayed feedback is designed in such a way that whenever the length of the
delay time, τ = Ti , is equal to the period of i th UPO the corresponding UPO is
stabilized and the perturbation

F(t) = K
[
y(t − τ)− y(t)

] = K D(t) (6.12)

becomes zero. This implies that the above perturbation does not change the solution
of the system corresponding to the i th UPO and stabilization is achieved for suitable
value of K . In the case of OGY scheme the perturbation (feedback) is applied only
when the trajectory is sufficiently close to the targeted fixed point/periodic orbit,
whereas in the present case one can apply the feedback at any time to effect the
control.

We present the results of the above time-delay feedback controlling scheme using
the paradigmatic Rössler system represented as

ẋ = −y − z, (6.13a)

ẏ = x + 0.2y + F(t), (6.13b)

ż = 0.2 + z(x − 5.7), (6.13c)

where F(t) is as specified in Eq. (6.12). For the above chosen parameters the Rössler
system exhibits chaotic oscillations in the absence of F(t). As soon as the feed-
back delay is introduced the Rössler system exhibits periodic oscillations of period
τ = Ti of the i th UPO for appropriate value of K . For the value of K = 0.2 and
τ = 17.5 the Rössler system exhibits period-three cycle as shown in Fig. 6.10 after
introducing the perturbation F(t) for t > 300. Chaotic oscillations are observed
for the value of t ≤ 300 and period-three oscillations for t > 300 in Fig. 6.10a.
The origin of perturbation F(t) in Fig. 6.10b indicates the switching of the pertur-
bation and period-three attractor is depicted in Fig. 6.10c, plotted for t > 700. The
amplitude of the feedback signal D(t) = [

y(t + τ)− y(t)
]

can be considered as
a criterion for stabilization of UPOs, the value of which becomes negligibly small
compared to the amplitude of oscillation when the system resides on the UPOs. The
dependence of the amplitude of D(t) on the delay time τ for the Rössler system is
illustrated in Fig. 6.11a. The dispersion of the perturbation

〈
D2(t)

〉
calculated for

20 different initial conditions is depicted in the range of delay time τ ∈ (4, 20),
which indicates a sequence of resonance curves with deep minima. These minima
are located at the points of delay time coinciding with the periods of the UPO,
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Fig. 6.10 Results of
stabilization for
K = 0.2, τ = 17.5 (a)
dynamics of the output signal
y(t), (b) perturbation F(t)
and (c) the period-three cycle
of the Rössler system after
transients. The origin of the
curve F corresponds to the
moment of switching on the
perturbation
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Fig. 6.11 (a) Dependence of the dispersion of perturbation on the delay time τ ∈ (4, 20) for
K = 0.2, (b) period-one cycle at τ = 5.9 and (c) period-two cycle at τ = 11.7

τ = Ti . The phase portraits shown in Figs. 6.11(b,c) and 6.10c at these minima
correspond to period-one, -two and -three cycles, respectively.

One of the major advantage of this method is that the experimental implemen-
tation of this scheme is simple when compared to the other schemes. Only two
parameters K and τ are to be tuned appropriately and a simple delay line is required
to implement this feedback. This scheme has also been shown to be robust against
noise. Further, this scheme has been successfully applied in experiments in differ-
ent areas of research such as chemical systems [54], mechanical systems [55, 56],
optics [57, 58], neuroscience [59], semiconductor devices [60], etc. Pyragas con-
trol scheme is also known as time-delay autosynchronization [51, 61] (TDAS), its
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further generalizations as extended time-delay autosynchronization [61, 62]
(ETDAS), N time-delay autosynchronization [63] (NTDAS), multiple delay feed-
back control [64] (MDFC), etc., and limitations of this powerful control method [62,
65, 66] have also been investigated.

6.6.2 Transient Behavior with Time-Delay Feedback

In this section, we will discuss briefly the recent results on transient behavior in
systems with time-delay feedback by Hinz et al. [52], which is interrelated to the
transient effect discussed in Chap. 3. For this purpose consider a single Hopf oscil-
lator (also called the Stuart-Landau equation in the absence of feedback term) that
is driven autonomously by a time-delayed feedback term,

Ż(t) =
[
λ+ iω − (a + ib)|Z(t)|2

]
Z(t)− K [Z(t)− Z(t − τ)] , (6.14)

where, Z(t) = x + iy is a complex quantity, ω is the frequency of oscillation,
λ, a < 0, b are real constants, K is the feedback gain and τ > 0 is the time-delay of
the autonomous feedback term. In analogy with the discussion in Sect. 5.2, the above
Eq. (6.14), exhibits stable limit cycle/periodic oscillation of amplitude

√−λ/a for
λ > 0, corresponding to supercritical Hopf bifurcation as a < 0, and unstable fixed
point at the origin in the absence of the feedback K = 0.

For numerical simulation, the parameters have been fixed as λ = 0.5, a =
−0.1, b = 1.5, ω = π, τ = 1 = T0/2 and the initial conditions as x = r0, y = 0
for t ∈ (−τ, 0) as in [52]. Dependence of the transient time τtr on the feedback gain
K and initial amplitude r0 is shown in Fig. 6.12. The unshaded regimes correspond
to the parameter values for which the trajectory does not reach the fixed point. As
indicated above the fixed point is unstable in the absence of the feedback gain K .
However, the fixed point is stabilized by the time-delayed feedback for some finite
value of the feedback gain. It is evident from the figure that the transient time τtr

increases with the feedback gain K until the stabilization is lost. In order to get
more clear insights on the transient time of control of time-delay feedback scheme,
the trajectory in the (x, y) phase space and the amplitude r = |Z(t)| as a function

Fig. 6.12 Transient times to
reach the fixed point at the
origin in the (K , r0)

parameter space. The circles
corresponds the choice of
parameters used to depict
Fig. 6.13. This figure is
adapted from the work of
Hinz et al. [52]
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Fig. 6.13 Phase portraits and the amplitude r = |Z(t)| as a function of time t for different combi-
nations of K T0 and r0. (a, b) K T0 = 4, r0 = 2; (c, d) K T0 = 4, r0 = 3; (e, f) K T0 = 9, r0 = 5;
(g, h) K T0 = 10, r0 = 5. This figure is adapted from the work of Hinz et al. [52]

of time t are illustrated in the left and right panels of Fig. 6.13 for four different
combinations of the feedback gain K and the initial amplitude r0, corresponding
to the circles in Fig. 6.12. The fixed point in the origin is stabilized for the initial
amplitude r0 = 2 and the feedback gain K T0 = 4 as in Fig. 6.13a, b, whereas
a delay-induced stable periodic orbit is asymptotically reached on increasing the
initial amplitude to r0 = 3 for the same value of the feedback gain K T0 = 4
(Fig. 6.13c, d).

Again the fixed point at the origin is stabilized on increasing the feedback gain
and it is depicted in Fig. 6.13e, f for K T0 = 9 and r0 = 5. Further increase in the
value of the feedback gain (K T0 = 10) for the same value of the initial amplitude
results in a delay-induced torus (see inset in Fig. 6.13h) as shown in Fig. 6.13g, h. It
is also clear from these figures that the transients increase with the value of feedback
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gain until the stabilization is lost. It also explains the modulation of the stability
range in Fig. 6.12 due to resonances with delay-induced periodic or quasi-periodic
orbits which reduce the basin of attraction of the fixed point. Detailed discussion on
it can be found in [52].

6.7 Further Developments

We will provide a brief discussion on further developments in systems with delay,
delay feedback and delay coupling in addition to the phenomena discussed above in
this chapter.

Recently, generic properties of systems with time-delay that are related to the
appearance and stability of periodic solutions are discussed by Yanchuk et al. [67].
In particular they have shown that delay systems generically have families of peri-
odic solutions, which are reappearing for infinitely many delay times and they over-
lap leading to increasing coexistence of multiple stable as well as unstable solu-
tions. These authors have also reported the stability issue of periodic solutions with
large delay by explaining asymptotic properties of the spectrum of characteristic
multipliers, which can be split into two parts as pseudocontinuous and strongly
unstable [67].

Recent investigations on synchronization has also focused on the synchronization
patterns induced by distributed time-delay [68, 69]. In particular, an array of cou-
pled pendulums with randomly distributed distances between any two neighbors are
considered and the effect of different distances as distributed time-delays in the cou-
pling interactions is investigated [68]. It has been shown that the distributed delay
stabilize the chaotic dynamics of the coupled system and different periodic patterns
appears with increase of the range of distributed delay in confirmation with the result
of [67]. Further, it has been shown that the distributed delays in chemical coupling
can induce a variety of phase-coherent dynamic behaviours in inhibitory coupled
bursting Hindmarsh-Rose neurons [69]. It has also been shown that time-delay can
induce stabilization of a steady state in network of oscillators [70]. Propagation
of synchronization and desynchronization wave fronts in coupled map chains with
delayed transmission was investigated [71].

Time-delay feedback has also been investigated largely in inducing spatiotempo-
ral instabilities which plays vital role in controlling pathological activities in neural
systems [42]. In particular, it has been shown that short delay beyond a critical
threshold may induce spatiotemporal instabilities [72]. Delay induced spatial corre-
lations in one-dimensional stochastic networks with nearest neighbour coupling was
also reported [73]. Fundamental design principles are presented for vehicle systems
governed by autonomous cruise control devices using delay-induced patterns [74]. It
is shown that for any car-following model short-wavelength oscillations can appear
due to robotic reaction times, and that there are tradeoffs between the time-delay and
the control gains. Recently, it has also been shown that partial time-delay coupling
enlarges death island of coupled oscillators [75].
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Chapter 7
Complete Synchronization of Chaotic
Oscillations in Coupled Time-Delay Systems

7.1 Introduction

Historically, synchronization phenomenon dates back to the period of Christiaan
Huygens (1629–1695), who in 1665 found that two very weakly coupled pendulum
clocks, hanging from the same beam, become anti-phase synchronized [1]. Since
the early identification of synchronization in coupled chaotic oscillators [2–4], the
phenomenon has attracted considerable research activity in different areas of sci-
ence, and several generalizations and interesting applications have been developed
[1, 5–9]. Chaos synchronization is of interest not only from a theoretical point of
view but also has potential applications in diverse areas involving physical, chem-
ical, biological, neurological, electrical and fluid mechanical systems. In particu-
lar, possible applications of chaos synchronization include secure communication,
cryptography, controlling, long term prediction, optimization of nonlinear system
performance, modelling brain activity, pattern recognition, and so on [1–18].

In recent years, different kinds of chaos synchronizations, which are character-
ized by the difference in the degree of correlation between the interacting chaotic
dynamical systems, have been identified:

1. Complete (or identical) synchronization refers to the identical evolution of the
interacting systems, Y (t) = X (t) [2, 3],

2. Generalized synchronization is observed in coupled nonidentical systems, where
there exists some functional relation between the states of the response and the
drive systems, that is, Y (t) = F(X (t)) [19–21],

3. Phase synchronization means entrainment of phases of the interacting systems,
nΦx − mΦy = const. (n and m are integers), while their amplitudes remain
chaotic and often uncorrelated [22, 23],

4. Lag synchronization refers to the phenomenon, where the state of the response
system lags the state of the drive system with a lag time τ > 0, Y (t) = X (t − τ)

[24–26] and
5. Anticipatory synchronization corresponds to the fact that the state of the response

system anticipates the state of the drive system with an anticipating time τ > 0,
Y (t) = X (t + τ) [27–29], etc.
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We have provided a brief discussion on the above types of synchronizations along
with their characterizations in Appendix B.

Synchronization of chaotic systems with coexisting attractors indicates that the
route to complete synchronization is characterized by a sequence of type-I and on-
off intermittencies, intermittent phase synchronization, anticipatory synchroniza-
tion and period-doubling phase synchronization [30]. Transition from one kind of
synchronizations to the other, coexistence of different kinds of synchronization in
time series and also the nature of transitions have been studied extensively [24–
26, 31, 32] in coupled chaotic systems. The role of parameter mismatch in syn-
chronization phenomena is quite versatile and it has also been widely reported in
the literature [29, 33–38]. For a critical discussion on the interrelationship between
various kinds of synchronizations, we may refer to [39, 40]. There are also attempts
to find a unifying framework for defining the overall class of chaotic synchroniza-
tions [39–41]. Reviews on the phenomenon of chaos synchronization can be found
in [1, 5–7].

One of the most important potential applications of chaos synchronization is
secure communication. Several approaches for chaos synchronization and control
of chaos with application to secure communication have been the focus of many
recent investigations [13, 16, 42–50]. Important milestones in this direction include
the first demonstration of synchronizing hyperchaos with a single scalar transmit-
ted signal [51], see for example the comments of L. Pecora in “Physics in Action”
section of “Physics World”, May 1996 issue under the title “Hyperchaos harnessed”
[52]. Successful demonstration of communication with chaotic lasers in the labo-
ratory has been made in 1998, in which erbium-doped fiber ring laser (with delay
feedback) was used to produce chaotic light with frequency around 100 MHz [53],
see also [54]. An important landmark in this direction is the demonstration of
high-speed long-distance communication based on chaos synchronization over a
commercial fibre-optic channel. Argyris and colleagues [55] reported the successful
transfer of digital information at gigabit rates by chaotically fluctuating laser light
travelling over 120 km of a commercial fibre-optic link around Athens, Greece. The
scheme used by Argyris et al. exploited time-delayed feedback to generate high-
dimensional, high-capacity waveforms at high bandwidths.

It is now an accepted fact that secure communication based on simple low dimen-
sional chaotic systems does not ensure sufficient level of security, as the associated
chaotic attractors can be reconstructed with some effort and the hidden message can
be retrieved by an eavesdropper [52, 56–58]. Therefore, synchronization of hyper-
chaotic dynamics has been proposed as an alternative method for improving the
security in the communication schemes [13, 51, 59, 60]. However, even here also it
was demonstrated that messages masked by a hyperchaotic signal can be extracted
by using nonlinear dynamic forecasting as the local dynamics does not reflect more
complicated dynamics significantly [56, 57].

One way to overcome this problem is to consider chaos synchronization in high
dimensional systems having multiple positive Lyapunov exponents. This increases
the security by giving rise to much more complex time series, which are apparently
not vulnerable to the unmasking procedures generally. Recently chaotic time-delay
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systems have been suggested as good candidates for secure communication [51, 61–
72], as the time-delay systems are essentially infinite dimensional in nature and
are described by delay differential equations, and that they can admit hyperchaotic
attractors with large number of positive Lyapunov exponents for suitably chosen
nonlinearity.

However, it should be noted that one has to be cautious due to the fact that even in
time-delay systems with multiple positive Lyapunov exponents unmasking may be
possible. Particularly, this is so if any reconstruction of the dynamics of the system
is achieved in some appropriate space even for very high dimensional dynamics as
demonstrated by Zhou and Lai [73] in the case of Mackey-Glass equation. Neverthe-
less, it has been shown that delay time modulation (time-dependent delay) wipes off
any imprints of the delay time carved in the time series of a time-delay system and
that the reconstructed phase trajectory of the system is not collapsed into a simple
manifold [74]. Synchronization, encryption and communication in coupled time-
delay systems in the presence of delay time modulation was also reported [75–77].

In addition to the exploitation of the infinite dimensionality nature of the time-
delay systems in secure communication, time delay serves as a source of instability
and results in many new phenomena that cannot be observed in the absence of delay.
Hence time-delay systems are now recognized as veritable black boxes that give
rise to novel phenomena such as amplitude death, phase flip bifurcation, Neimark-
Sacker type bifurcation, etc. Because of the ease of experimental realization of time-
delay systems, these phenomena have also been demonstrated experimentally as
discussed in the previous chapters.

In view of the above facts, study of chaos synchronization in coupled time-delay
systems has become an active area of research both at the theoretical and experi-
mental levels [37, 38, 41, 74, 76–100]. In recognition of this fact, from this chapter
onwards, we will discuss different kinds of synchronizations and their transitions
in coupled time-delay systems along with derivations of suitable stability condi-
tions for the asymptotically stable synchronized states. In particular, in this chapter
we will demonstrate complete synchronization in coupled time-delay systems with
suitable stability condition using Krasvoskii-Lyapunov functional approach. We will
show that the same general stability condition is valid for different cases, even for
the general situation where all the coefficients of the error equation corresponding
to the synchronization manifold are time-dependent (see next section for details).
These analytical results are also confirmed by numerical simulation of paradigmatic
examples.

7.2 Complete Synchronization in Coupled Time-Delay Systems

As mentioned above, recent studies on synchronization in coupled time-delay sys-
tems with or without time-delay coupling is receiving considerable importance
both theoretically and experimentally due to the infinite dimensional nature of the
underlying systems possessing a very large number of positive Lyapunov expo-
nents as a function of the delay time [62]. In particular, in recent studies on
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synchronization in coupled time-delay systems, the Krasovskii-Lyapunov theory
has been widely used in identifying the stability of the asymptotically stable syn-
chronized states [27, 89, 101, 102].

In this chapter we will show that the same general stability condition resulting
from the Krasovskii-Lyapunov theory indeed holds good for the rather general case
as well. In particular, we will discuss all the four possible cases that arise due to the
nature of the coefficients in the error equation corresponding to the synchronization
manifold and show that the same stability condition deduced from the Krasovskii-
Lyapunov functional approach is valid for all the cases, subject to certain conditions.
We will also confirm these analytical results by numerical analysis using paradig-
matic examples.

7.3 Stability Using Krasovskii-Lyapunov Theory

Consider the following linearly coupled scalar time-delay system,

ẋ(t) = −ax(t)+ b f (x(t − τ)), (7.1a)

ẏ(t) = −ay(t)+ b f (y(t − τ))+ K (t)(x(t)− y(t)), (7.1b)

where a and b are positive constants, τ > 0 is the delay-time, K (t) is the coupling
function between the drive and the response systems and f (x) is a continuously
differentiable function. Now we can deduce the stability condition for complete
synchronization of the general unidirectionally coupled time-delay systems (7.1).
The time evolution of the difference system with the state variable Δ = x(t)− y(t)
(the error equation corresponding to the complete synchronization manifold of the
coupled time-delay system (7.1)) for small values of it can be written as

Δ̇ = −(a + K (t))Δ+ b f ′(y(t − τ))Δτ , Δτ = Δ(t − τ). (7.2)

It is to be noted that there arises four cases depending on the nature of the coeffi-
cients of the Δ and Δτ terms of the above error equation as follows:

1. Both coefficients of the Δ and Δτ terms are time-independent.
2. The coefficient of the Δ term is time-independent and that of the Δτ term is

time-dependent.
3. The coefficient of the Δ term is time-dependent and that of the Δτ term is time-

independent.
4. Both coefficients of the Δ and Δτ terms are time-dependent.

The synchronization manifold of the error equation (7.2) is locally attracting
if the origin of this equation is stable. Following the Krasovskii-Lyapunov the-
ory [101], we define a continuous, positive-definite Lyapunov functional of the form
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V (t) = 1

2
Δ2 + μ

∫ 0

−τ
Δ2(t + θ)dθ, V (0) = 0 (7.3)

where μ is an arbitrary positive parameter, μ > 0. The derivative of the functional
V (t) along the trajectory of the error equation (7.2),

dV

dt
= −(a + K (t))Δ2 + b f ′(y(t − τ))ΔΔτ + μΔ2 − μΔ2

τ , (7.4)

has to be negative to ensure the stability of the solution Δ = 0. The above equation
can be written as

dV

dt
= −μΔ2Γ (X, μ), (7.5)

where X = Δτ/Δ and

Γ =[((a + K (t)− μ)/μ
)−(b f ′(y(t − τ))/μ

)
X + X2]. (7.6)

In order to show that dV
dt < 0 for all Δ and Δτ and so for all X , it is sufficient to

show that Γmin > 0. One can easily check that the absolute minimum of Γ occurs
at

X = 1

2μ
b f ′(y(t − τ)), (7.7)

with Γmin as

Γmin =[4μ(a + K (t)− μ)− b2 f ′(y(t − τ))2
]
/4μ2. (7.8)

Consequently, we have the condition for stability as

a + K (t) >
b2

4μ
f ′(y(t − τ))2 + μ = Φ(μ). (7.9)

Now, Φ(μ) as a function of μ for a given f ′(x) has an absolute minimum at

μ = (|b f ′(y(t − τ))|)/2, (7.10)

withΦmin = |b f ′(y(t−τ))|. SinceΦ ≥ Φmin = |b f ′(y(t−τ))|, from the inequality
(7.9), it turns out that a sufficient condition for asymptotic stability is

a + K (t) > |b f ′(y(t − τ))|. (7.11)

It is to be noted that sinceμ is an arbitrary positive parameter due to the definition
of the positive definite Lyapunov function (7.3), the above stability condition holds
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good only when μ = (|b f ′(y(t − τ))|)/2 is a constant, i.e., only when f ′(x) is a
constant (in other words when the coefficient of Δτ term in the error equation (7.2)
is time-independent, which corresponds to the cases (1) and (3) discussed above).
On the other hand if f ′(x) is time-dependent, then μ can be obtained alternatively
by rewriting Eq. (7.9) as

b2 f ′(y(t − τ))2 < 4μ(a + K (t)− μ), (7.12)

= −4
[
μ− (a + K (t))/2

]2 + (a + K (t))2,

≡ Ψ (μ).

Now, Ψ (μ) as a function of μ for a given f ′(x) has an absolute maximum at

μ = (a + K (t))/2, (7.13)

withΨmax = (a+K (t))2. Using this maximum value in the right hand side of (7.12),
we obtain the same stability condition as that of (7.11), provided (a + K (t))/2 > 0
since μ > 0. Since a > 0, this implies K (t) > −a, that is coupling function K (t)
should be either positive definite or |K (t)| > a if it is negative. In particular for the
case 2, since the coefficient of the Δ term in the error equation is time independent
(which corresponds to the cases (1) and (2) mentioned above), K (t) = k > −a for
all t (k : const.).

However, there arises an even more general situation where the coefficients of
both the Δ and Δτ terms are time dependent (case 4), in which case the arbitrary
positive parameter μ in the Lyapunov functional has to be chosen as a positive
definite function, μ = g(t) > 0 for all t . In this case, one has to consider the
derivative of μ = g(t) also in the derivative of V (t) as follows,

dV

dt
= −(a + K (t))Δ2 + b f ′(y(t − τ))ΔΔτ (7.14)

+ g(t)
(
Δ2 −Δ2

τ

)
+ ġ(t)

∫ 0

−τ
Δ2(t + θ)dθ < 0.

It is known from the Lyapunov functional that the term
∫ 0
−τ Δ

2(t + θ)dθ is positive
definite and let us suppose that ġ(t) ≤ 0 for all t . Then for V̇ (t) < 0 we need

− (a + K (t))Δ2 + b f ′(y(t − τ))ΔΔτ (7.15)

+g(t)
(
Δ2 −Δ2

τ

)
< 0,

that is,

−
[
(a + K (t))− b2 f ′(y(t − τ))2/4g(t)− g(t)

]
Δ2 (7.16)

−g(t)
[
Δτ − b f ′(y(t − τ))Δ/2g(t)

]2
< 0.
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The second term in the above equation is positive definite by assumption of g(t) and
hence it follows that

b2 f ′(y(t − τ))2 < 4g(t)(a + K (t)− g(t)), (7.17)

= −4
[
g(t)− (a + K (t))/2

]2 + (a + K (t))2,

≡ Γ (g(t)).

Consequently we obtain the same stability condition as in Eq. (7.11) with the maxi-
mum of Γ , Γmax = (a + K (t))2, occurring at g(t) = (a + K (t))/2 > 0, along with
the condition ġ(t) = d K

dt ≤ 0 for all t .
Thus, one can show that the same general stability condition, Eq. (7.11), is valid

for all the four cases that arise in the error equation (7.2) corresponding to the syn-
chronization manifold of the unidirectionally coupled time-delay systems (subject
to the above constraints on K (t) in specific situations).

7.4 Numerical Confirmation

In this section, we will provide numerical confirmation of the above stability anal-
ysis for all the four cases using appropriate nonlinear functional forms f (x) and
suitable coupling K (t) in the coupled time-delay systems (7.1). For this purpose we
will consider the following nonlinear functions f (x):

(1) the piecewise linear function, which has been discussed earlier in Chap. 3,

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ≤ −4/3
−1.5x − 2, −4/3 < x ≤ −0.8

x, −0.8 < x ≤ 0.8
−1.5x + 2, 0.8 < x ≤ 4/3

0, x > 4/3,

(7.18)

and (2) the Ikeda model, where

f (x) = sin(x(t − τ)). (7.19)

We have fixed the parameters as a = 1.0, b = 1.2 and τ = 25.0 for the coupled
piecewise linear time-delay system defined by (7.1) and (7.18), for which the uncou-
pled systems exhibit a hyperchaotic behavior with nine positive Lyapunov exponents
[89, 102–104], see Sect. 3.3.4. For the coupled Ikeda systems (7.1) and (7.19), the
parameters are chosen as a = 1.0, b = 5.0 and τ = 2.0 where the uncoupled indi-
vidual Ikeda systems exhibit a hyperchaotic behavior with three positive Lyapunov
exponents [102], see Sect. 4.3.2.

We choose the coupling function K (t) as a square wave function represented
as [94]

K (t) = {(t0, k1), (t1, k2), (t2, k1), (t3, k2), . . .}, (7.20)
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where t j = t0 + ( j − 1)τs, j ≥ 1 is the switching instant, k1 > 0, k2 > 0 with
k1 �= k2. For constant coupling, K (t) = k1 = k2. On the other hand, if either k1 = 0
or k2 = 0, then the coupling is called an intermittent coupling/control which is now
being widely studied in the literature [105–107].

7.4.1 Case 1

First, we use the piecewise linear function (7.18), and the constant coupling K (t) =
k1 = k2. It is clear from the form of the nonlinear function f (x) and the coupling
that both the coefficients of the Δ and Δτ terms in the error equation (7.2) are
constant (case 1) and consequently μ can be chosen as μ = (|b f ′(y(t − τ))|)/2.
The time trajectories of the variables x(t) and y(t) of the coupled piecewise linear
time-delay systems (7.1) and (7.18) are shown in Fig. 7.1a indicating complete syn-
chronization between them for the coupling strength k = k1 = k2 = 0.9 satisfying
the stability condition a + k > b f ′(y(t − τ)) = 1.5b. Here, the other system
parameters are fixed as noted above.

7.4.2 Case 2

Next, we analyse the function f (x) = sin(x(t − τ)), given by (7.19), of the Ikeda
system with constant coupling, which corresponds to the case 2 where the coefficient
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Fig. 7.1 The time trajectory plot of the variables x(t) and y(t) of the coupled time-delay systems
(7.1) indicating complete synchronization between them. (a) Piecewise linear time-delay system,
(7.1) and (7.18), for the parameters a = 1.0, b = 1.2, τ = 25.0 and for the constant coupling
k1 = k2 = 0.9. (b) Ikeda time-delay system, (7.1) and (7.19), for the parameters a = 1.0, b = 5,
τ = 2.0 along with the constant coupling k1 = k2 = 5.0. (c) Piecewise linear time-delay system
for the same values of the system parameters as in Fig. 7.1a with the square wave coupling rates
k1 = 0.9 and k2 = 1.0. (d) Ikeda system for the same values of the system parameters and with
the square wave coupling rates k1 = 5.0 and k2 = 6.0
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of the Δτ term in the error equation is time-dependent, while that of the Δ term
is still time-independent and hence μ can take the form μ = (a + K (t))/2 with
K (t) > 0. The coupling strength is fixed as k = k1 = k2 = 5.0 such that the
stability condition a + k > b f ′(y(t − τ)) = b is satisfied. The variables x(t) and
y(t) of the coupled Ikeda systems, (7.1) and (7.19), are plotted as a function of time
in Fig. 7.1b demonstrating complete synchronization between them.

7.4.3 Case 3

Again, we consider the piecewise linear function (7.18), and the same parameter
values as in the case 1 but with the square wave coupling K (t) chosen as k1 =
0.9 and k2 = 1.0 such that the stability condition (7.11) is satisfied for all t . The
switching instant τs between k1 and k2 for the square wave coupling rate is fixed
as τs = 1.0. This situation corresponds to the case 3, where the coefficient of the
Δ term in the error equation is time-dependent, while that of the Δτ term is time-
independent and as a result μ can be fixed as μ = (|b f ′(y(t − τ))|)/2. The time
trajectories of the variables x(t) and y(t) are shown in Fig. 7.1c indicating complete
synchronization. Note that here K (t) > 0 and the stability condition (7.11) is indeed
satisfied.

7.4.4 Case 4

Finally for the more general case where both the coefficients of theΔ andΔτ terms
of the error equation are time-dependent, μ = g(t) can be given as g(t) = (a +
K (t))/2 for the chosen form of the square wave coupling K (t) with K (t) > 0.
Figure 7.1d is plotted for the same values of the system parameters as in Fig. 7.1b
with k1 = 5.0, k2 = 6.0 and τs = 1.0 satisfying the stability condition (7.11),
indicating complete synchronization between the variables x(t) and y(t).

7.5 Conclusion

In this chapter, asymptotic stability of synchronized state in a unidirectionally cou-
pled general time-delay system is studied using the Krasovskii-Lyapunov theory. It
is shown that the same stability condition is valid for all the four cases that arise
due to the nature of the coefficients of the Δ and Δτ terms in the error equa-
tion corresponding to the synchronization manifold. In particular, it is shown that
the same general stability condition is valid even for the general case where both
the coefficients of the Δ and Δτ terms in the error equation are time-dependent,
which is of high importance for various applications. We have also numerically con-
firmed these results using appropriate examples along with suitable coupling con-
figuration.
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Chapter 8
Transition from Anticipatory to Lag
Synchronization via Complete Synchronization

8.1 Introduction

In this chapter we will consider chaos synchronization of two single scalar
piecewise-linear time-delay systems studied in Chaps. 3 and 7 with unidirectional
coupling between them and having two different time-delays: one in the coupling
term and the other in the individual systems, namely feedback delay. We deduce [1]
the corresponding stability condition for synchronization following Krasovskii-
Lyapunov theory as in the previous chapter for complete synchronization, and
demonstrate that there exist transitions between three different kinds of direct, and
their inverse synchronizations, namely anticipatory, complete and lag synchroniza-
tions, as a function of the time-delay parameter in the coupling. To characterize the
existence of anticipatory and lag synchronizations, we plot the similarity function
S(τ ). We then also demonstrate that when one of the system parameters is varied,
the onset of exact anticipatory/complete/lag synchronization from the desynchro-
nized state is preceded by a region of approximate synchronized state. We also
show that the latter is characterized by a transition from on-off intermittency to a
periodic structure in the laminar phase distribution, as suggested in the work of Zhan
et al. [2] for the case of lag synchronization in coupled Rössler systems.

8.2 Coupled System and the General Stability Condition

Now let us consider the following general unidirectionally coupled drive x1(t) and
response x2(t) systems with two different time-delays τ1 and τ2 as feedback and
coupling time-delays, respectively,

ẋ1(t) = −ax1(t)+ b1 f (x1(t − τ1)), (8.1a)

ẋ2(t) = −ax2(t)+ b2 f (x2(t − τ1))+ b3 f (x1(t − τ2)), (8.1b)

where b1, b2 and b3 are constants, a > 0, and f (x) is a continuously differen-
tiable (or even a continuous) function. The parameters are so chosen that both the
systems evolve chaotically. Now we can deduce the stability condition for chaos

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_8,
C© Springer-Verlag Berlin Heidelberg 2010
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synchronization for the two time-delay systems, Eqs. (8.1a) and (8.1b), in the pres-
ence of the delay coupling b3 f (x1(t − τ2)). Designating x1(t − τ) as x1τ , so that
x1τ2−τ1 = x1(t − (τ2 − τ1)), the time evolution of the difference system with the
state variable Δ = x1τ2−τ1 − x2 can be written for small values of Δ by using the
evolution Eqs. (8.1) as

Δ̇ = −aΔ+ (b2 + b3 − b1) f (x1(t − τ2))+ b2 f ′(x1(t − τ2))Δτ1 , Δτ = Δ(t − τ).

(8.2)

Here f
′
(x) = d f

dx . From the definition ofΔ, one may immediately note that the error
variable Δ corresponds to anticipatory synchronization when τ2 < τ1, identical
synchronization for τ2 = τ1 and lag synchronization when τ2 > τ1 (see also below).

The above evolution equation (8.2) corresponding to the error variable of the
synchronization manifold is inhomogeneous and so it is difficult to analyse it ana-
lytically. Nevertheless, the evolution equation can be written as a homogeneous
equation,

Δ̇ = −aΔ+ b2 f ′(x1(t − τ2))Δτ1, (8.3)

for the specific choice of the parameters,

b1 = b2 + b3. (8.4)

The synchronization manifold Δ = x1τ2−τ1 − x2 = 0 (as well as the inverse syn-
chronization manifold Δ = x1τ2−τ1 + x2 = 0, which will be discussed in the later
Sect. 8.3.4) corresponds to the following distinct cases:

1. Anticipatory synchronization occurs when τ2 < τ1 with x2(t) = x1(t − τ̂ ); τ̂ =
τ2 − τ1 < 0, where the state of the response system anticipates exactly the
state of the drive system in a synchronized manner with an anticipating time
|τ̂ | (whereas in the case of inverse anticipatory synchronization, the state of the
response system anticipates the inverse state of the drive system, that is, x2(t) =
−x1(t − τ̂ )).

2. Complete synchronization results when τ2 = τ1 with x2(t) = x1(t); τ̂ =
τ2 − τ1 = 0, where the state of the response system evolves exactly identical
with the state of the drive system (whereas in the case of inverse complete syn-
chronization, the state of the response system evolves in a synchronized manner
to the inverse state of the drive system, that is, x2(t) = −x1(t)).

3. Lag synchronization occurs when τ2 > τ1 with x2(t) = x1(t − τ̂ ); τ̂ = τ2 −τ1 >

0, where the state of the response system lags the state of the drive system in
a synchronized manner with a lag time τ̂ (whereas in the case of inverse lag
synchronization, the state of the response system lags the inverse state of the
drive system, that is, x2(t) = −x1(t − τ̂ )).

The synchronization manifold corresponding to Eq. (8.3) is locally attracting if
the origin of this equation is stable. Following Krasovskii-Lyapunov functional
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approach [3, 4], discussed earlier in Chap. 7, we define a positive definite Lyapunov
functional of the form

V (t) = 1

2
Δ2 + μ

∫ 0

−τ1

Δ2(t + θ)dθ, (8.5)

where μ is an arbitrary positive parameter, μ > 0. Note that V (t) approaches zero
as Δ → 0.

To estimate a sufficient condition for the stability of the solutionΔ = 0, we again
require (as in Chap. 7) the derivative of the functional V (t) along the trajectory of
Eq. (8.3),

dV

dt
= −aΔ2 + b2 f ′(x1(t − τ2))ΔΔτ1 + μΔ2 − μΔ2

τ1
, (8.6)

to be negative. The requirement that dV
dt < 0, for all Δ and Δτ , results in the condi-

tion for stability (see Sect. 7.3) as

a >
b2

2

4μ
f ′(x1(t − τ2))

2 + μ = Φ(μ). (8.7)

Again Φ(μ) as a function of μ for a given f ′(x) has an absolute minimum at
μ = (|b2 f ′(x1(t − τ2))|)/2 with Φmin = |b2 f ′(x1(t − τ2))|. Since Φ ≥ Φmin =
|b2 f ′(x1(t − τ2))|, from the inequality (8.7), it turns out that sufficient condition for
asymptotic stability is

a > |b2 f ′(x1(t − τ2))| (8.8)

along with the condition (8.4) on the parameters b1, b2 and b3.
The above condition indeed corresponds to the stability condition for exact antic-

ipatory, identical as well as lag synchronizations for suitable values of the coupling
delay τ2. In the following, we will demonstrate the transition from anticipatory to
lag synchronization via complete synchronization as the coupling delay τ2 is varied
from τ2 < τ1 to τ2 > τ1, subject to the stability condition (8.8) with the parametric
restriction b1 = b2 + b3 in three typical cases: (1) coupled piecewise linear, (2)
Mackey-Glass and (3) Ikeda time-delay systems.

8.3 Coupled Piecewise Linear Time-Delay System and Stability
Condition: Transition from Anticipatory to Lag
Synchronization

As a specific example, we first consider the coupled piecewise linear time-delay
system studied in detail in Chap. 3, given by Eq. (8.1) along with the nonlinear
function f (x) specified by the piecewise linear form,



142 8 Transition from Anticipatory to Lag Synchronization via Complete Synchronization

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ≤ −4/3
−1.5x − 2, −4/3 < x ≤ −0.8

x, −0.8 < x ≤ 0.8
−1.5x + 2, 0.8 < x ≤ 4/3

0, x > 4/3.

(8.9)

Therefore

| f ′(x1(t − τ2))| =
{

1.5, 0.8 ≤ |x1| ≤ 4
3

1.0, |x1| < 0.8.
(8.10)

Note that the region |x1| > 4/3 is outside the dynamics of the present system.
Consequently the stability condition (8.8) becomes a > 1.5|b2| > |b2| along with
the parametric restriction b1 = b2 + b3.

Thus one can take a > |b2| as a less stringent condition for (8.8) to be valid,
while

a > 1.5|b2| (8.11)

as the most general condition specified by (8.8) for asymptotic stability of the syn-
chronized state Δ = 0 of the coupled piecewise linear time-delay systems.

8.3.1 Anticipatory Synchronization for τ2 < τ1

To start with, we first consider the transition to anticipatory synchronization in the
coupled system (8.1) with the nonlinear function f (x) taken as in (8.9). We have
fixed the value of the feedback time-delay τ1 at τ1 = 25.0 while the other param-
eters are fixed as a = 0.16, b1 = 0.2, b2 = 0.1, b3 = 0.1 and the time-delay
in the coupling, τ2, is treated as the control parameter. With the above mentioned
stability condition (8.11) and with the coupling delay τ2 being less than the feedback
delay τ1, one can observe the transition to anticipatory synchronization. The time
trajectory plot is shown in Fig. 8.1a depicting anticipatory synchronization, for the
specific value of τ2 = 20 with the anticipating time equal to that of the difference
between the feedback and the coupling delays, that is, |τ | = |τ2 − τ1|. The time-
shifted plot Fig. 8.1b, x1(t − τ), τ < 0 Vs x2(t), shows a concentrated diagonal
line confirming the existence of anticipatory synchronization (In all the numerical
studies in this monograph sufficiently large number of transients have been left out
before presenting our figures).

Rosenblum et al. [5] have introduced the notion of similarity function Sl(τ ) for
characterizing the lag synchronization as a time averaged difference between the
variables x1 and x2 (with mean values being subtracted) taken with the time shift τ ,

S2
l (τ ) = 〈[x2(t + τ)− x1(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2 , τ > 0, (8.12)
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Fig. 8.1 Exact anticipatory synchronization for the parameter values a = 0.16, b1 = 0.2, b2 =
0.1, b3 = 0.1, τ1 = 25.0 and τ2 = 20.0. (a) Time series plot of x1(t) and x2(t), (b) Synchroniza-
tion manifold between x1(t − τ) and x2(t), τ = τ2 − τ1, τ < 0. The response x2(t) anticipates the
drive x1(t) with a time shift of τ = −5.0

where, 〈x〉 means time average over the variable x . If the signals x1(t) and x2(t)
are independent, the difference between them is of the same order as the signals
themselves. If x1(t) = x2(t), as in the case of complete synchronization, the simi-
larity function reaches a minimum S(τ ) = 0 for τ = 0. But for the case of nonzero
value of time shift τ , if Sl(τ ) = 0, then there exists a time shift τ between the
two signals x1(t) and x2(t) such that x2(t) = x1(t − τ), τ > 0, demonstrating lag
synchronization.

In the present study, we have used the same similarity function Sl(τ ) to char-
acterize anticipatory synchronization with negative time shift, τ < 0, instead of
the positive time shift, τ > 0, in Eq. (8.12). In other words, one may define the
similarity function for anticipatory synchronization as

S2
a (τ ) = 〈[x1(t − τ)− x2(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2 , τ < 0 (8.13)

Then the minimum of Sa(τ ), that is Sa(τ ) = 0, indicates that there exists a time shift
−τ between the two signals x1(t) and x2(t) such that x2(t) = x1(t − τ), τ < 0,
demonstrating anticipatory synchronization. Figure 8.2 shows the similarity func-
tion Sa(τ ) as a function of the coupling delay τ2 for four different values of b2, the
parameter whose value determines the stability condition given by Eq. (8.11), while
satisfying the parametric condition b1 = b2 + b3. Curves 1 and 2 are plotted for
the values of b2 = 0.18(> a = 0.16 > a/1.5) and b2 = 0.16(= a > a/1.5),
respectively, where the minimum values of Sa(τ ) is found to be greater than zero,
indicating that there is no exact time shift between the two signals x1(t) and x2(t).
Note that in both the cases the stringent stability condition (8.11) and the less strin-
gent condition a > |b2| are violated. Curve 3 corresponds to the value of b2 = 0.15
(which is less than a but greater than a/1.5), where the minimum value of Sa(τ ) is
almost zero, but not exactly zero (as may be seen in the inset of Fig. 8.2), indicating
an approximate anticipatory synchronization x1(t −τ) ≈ x2(t), τ < 0. On the other
hand the curve 4 is plotted for the value of b2 = 0.1(< a/1.5), satisfying the general



144 8 Transition from Anticipatory to Lag Synchronization via Complete Synchronization

0

0.02

0.04

0.06

0.08

0.1

20 22 24 26 28 30

S a (
τ)

τ2

1

2

3

4
–0.0001

0.0

0.0001

0.0002

20 25 30

3

4

Fig. 8.2 Similarity function Sa(τ ) for different values of b2, the other system parameters are
a = 0.16, b1 = 0.2 and τ1 = 25.0. (Curve 1: b2 = 0.18, b3 = 0.02, Curve 2: b2 = 0.16, b3 =
0.04, Curve 3: b2 = 0.15, b3 = 0.05 and Curve 4: b2 = 0.1, b3 = 0.1)

stability criterion, Eq. (8.11). It shows that the minimum of Sa(τ ) = 0, thereby
indicating that there exists an exact time shift between the two signals demonstrating
anticipatory synchronization. The anticipating time is found to be equal to the differ-
ence between the coupling and feedback delay times, that is, |τ | = |τ2 − τ1|. Note
that Sa(τ ) = 0 for all values of τ2 < τ1, indicating anticipatory synchronization
for a range of delay coupling. A further significance is that the anticipating time
|τ | = |τ2 − τ1| is an adjustable quantity as long as τ2 < τ1, which can be tuned
suitably to satisfy experimental situations.

Next, we show that the emergence of exact anticipatory synchronization is pre-
ceded by a region of approximate anticipatory synchronization, which is associated
with the transition from on-off intermittency to a periodic structure in the laminar
phase distribution [2] as a function of the parameter b2. First we choose the value of
b2 as b2 = 0.17 (with b1 = 0.2 and b3 = 0.03), above the value of a = 0.16, such
that the general stability criterion, Eq. (8.11), as well the less stringent condition
a > |b2| are violated. Figure 8.3a shows the difference of x1(t−τ)−x2(t), τ < 0 Vs
t , exhibiting a typical feature of on-off intermittency [6, 7] with the off state near the
laminar phase and the on state showing random bursts. In Fig. 8.3b, x1(t−τ), τ < 0,
is plotted against x2(t), where the distribution is scattered around the diagonal. To
analyze the statistical feature associated with the irregular motion, we calculated
the distribution of laminar phases Λ(t) with amplitude less than a threshold value
Δ = 0.005 as was done in the statistical analysis of intermittency [6, 7], where
the power law behavior of mean laminar length is calculated as a function of con-
trol parameter. A universal asymptotic − 3

2 power law distribution is observed in
Fig. 8.3c, which is quite typical for on-off intermittency.
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Fig. 8.3 (a) The time series x1(t − τ) − x2(t), τ < 0 for b2 = 0.17 and b3 = 0.03 with all other
parameters as in Fig. 8.1 (so that the stability condition is violated for anticipatory synchroniza-
tion), (b) Projection of x1(t − τ), τ < 0 Vs x2(t) and (c) The statistical distribution of laminar
phase satisfying − 3

2 power law scaling

Now, we choose the value of b2 = 0.15, below the value of a = 0.16 so that
the less stringent condition a > |b2| is satisfied while the general stability criterion
given by Eq. (8.11) is violated and we carry out the same analysis as above. In
Fig. 8.4a, the difference of x1(t − τ) − x2(t), τ < 0, is plotted against time t ,
which is more regular and is much smaller in amplitude but not exactly zero, thereby
implying an approximate anticipatory synchronization x1(t − τ) ≈ x2(t), τ < 0.
Figure 8.4b shows the plot of x1(t − τ), τ < 0 vs x2(t), where the distribution
is localized entirely on the diagonal, but not sharply on it. Earlier we noted that
for this case the minimum of similarity function Sa(τ ) (Curve 3, inset of Fig. 8.2) is
nearly zero, but not exactly zero. The distribution of laminar phaseΛ(t) is plotted in
Fig. 8.4c as for the Fig. 8.3c. It shows a periodic structure in the distribution of lami-
nar phase, where the peaks occur approximately at t = nT, n = 1, 2, ..., where T is
of the order of the period of the lowest periodic orbit of the uncoupled system (8.1a).
It should be remembered that the periodic behavior is associated with the statistical
analysis, while the signals remain chaotic. Finally for the case b2 = 0.1(< a/1.5),
which satisfies the stringent stability criterion (8.11), and where the similarity func-
tion vanishes exactly (Curve 4 in Fig. 8.2), exact anticipatory synchronization occurs
as confirmed in Fig. 8.1. Thus we find that the transition to exact anticipatory syn-
chronization precedes a region of approximate anticipatory synchronization from
desynchronized state as the parameter b2 changes. We have also demonstrated that
the emergence of this approximate anticipatory synchronization from the desyn-
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Fig. 8.4 (a) The time series x1(t − τ) − x2(t), τ < 0 for b2 = 0.15 and b3 = 0.05 with all
other parameters fixed as in Fig. 8.1 (so that the less stringent condition a > |b2| is satisfied while
(8.11) is violated), (b) Projection of x1(t − τ), τ < 0 Vs x2(t) and (c) The statistical distribution
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chronized state is characterized by the transition of on-off intermittency to periodic
structure in the laminar phase distribution.

8.3.2 Complete Synchronization for τ2 = τ1

Complete synchronization follows the anticipatory synchronization as the value of
the coupling time-delay τ2 is increased to equal the feedback time-delay τ1, from a
lower value. With τ2 = τ1, the same stability criterion, Eq. (8.11), holds good for
this case of complete synchronization as well with the same condition b1 = b2 +b3.
Figure 8.5a shows the time trajectory plot of x1(t) and x2(t), exhibiting synchro-
nized evolution between them, which is also confirmed by the entirely localized
diagonal line of x1(t) Vs x2(t) as shown in Fig. 8.5b. As in the case of anticipa-
tory synchronization, we have found that the transition to complete synchronization
precedes a region of approximate complete synchronization (x1(t) ≈ x2(t)) from
the desynchronized state as the parameter b2 varies. Here also we have identified
that the emergence of approximate complete synchronization for the case τ2 = τ1 is
associated with a transition from on-off intermittency to a periodic structure in the
laminar phase distribution as a function of the parameter b2. In the next subsection
we will discuss the existence of lag synchronization for the values of τ2 greater
than τ1.
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Fig. 8.5 Exact complete synchronization for the parameter values a = 0.16, b1 = 0.2, b2 =
0.1, b3 = 0.1, τ1 = 25.0 and τ2 = 25.0. Here the general stability criterion (8.11) is satisfied. (a)
Time series plot of x1(t) and x2(t) and (b) Synchronization manifold between x1(t) and x2(t). The
response x2(t) follows identically the drive x1(t) without any time shift

8.3.3 Lag Synchronization for τ2 > τ1

For the coupling delay τ2 greater than the feedback delay τ1, we find that the sys-
tem (8.1) exhibits exact lag synchronization provided the parameters satisfy the
stringent stability criterion (8.11), with the lag time equal to the difference between
the coupling and feedback delay times. Figure 8.6a shows the plot of x1(t) and
x2(t) Vs time t , where the response system lags the state of the drive system
with constant lag time τ = |τ2 − τ1|. Figure 8.6b shows the time-shifted plot of
x1(t − τ), τ > 0 and x2(t). However, in the region of less stringent stability condi-
tion, 1.5|b2| < a < |b2|, approximate lag synchronization occurs as in the cases of
anticipatory and complete synchronizations.

We have also calculated the similarity function Sl(τ ) from Eq. (8.12) to char-
acterize the lag synchronization. Figure 8.7 shows the similarity function Sl(τ ) Vs
coupling delay τ2 for four different values of b2. Curves 1 and 2 show the similarity
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Fig. 8.6 Exact lag synchronization for the parameter values a = 0.16, b1 = 0.2, b2 = 0.1, b3 =
0.1, τ1 = 25.0 and τ2 = 30.0. Here the general stability criterion (8.11) is satisfied. (a) Time series
plot of x1(t) and x2(t), (b) Synchronization manifold between x1(t − τ), τ > 0 and x2(t). The
response x2(t) lags the drive x1(t) with a time shift of τ = 5.0
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Fig. 8.7 Similarity function Sl (τ ) for different values of b2, the other system parameters are a =
0.16, b1 = 0.2 and τ1 = 25.0. (Curve 1: b2 = 0.18, b3 = 0.02, Curve 2: b2 = 0.16, b3 = 0.04,
Curve 3: b2 = 0.15, b3 = 0.05 and Curve 4: b2 = 0.1, b3 = 0.1)

function Sl(τ ) for the values of b2 = 0.18 and 0.16, respectively. The minimum of
the similarity function Sl(τ ) occurs for values of Sl(τ ) > 0 and hence there is a lack
of exact lag time between the drive and response signals indicating asynchroniza-
tion. Curve 3 corresponds to the value of b2 = 0.15 (which is less than a but greater
than a/1.5), where the minimum values of Sl(τ ) is almost zero, but not exactly zero
(as may be seen in the inset of Fig. 8.7), so that x1(t − τ) ≈ x2(t), τ > 0. However
for the value of b3 = 0.1, for which the general condition (8.11) is satisfied, the
minimum of similarity function becomes exactly zero (Curve 4) indicating that there
is an exact time shift (Fig. 8.6) between drive and response signals x1(t) and x2(t),
respectively, confirming the occurrence of lag synchronization.

We have also confirmed that as in the case of anticipatory synchronization, when
the parameter b2 varies, the onset of exact lag synchronization is preceded by a
region of approximate lag synchronization, which is characterized by a transition
from on-off intermittency of the desynchronized state to a periodic structure in the
laminar phase distribution. For the value of b2 = 0.17 (which violates the sta-
bility condition (8.11) as well as the less stringent condition a > |b2|), Fig. 8.8a
shows the difference of x1(t − τ) − x2(t), τ > 0, Vs time t , exhibiting a typical
on-off intermittency. In Fig. 8.8b, x1(t − τ), τ > 0, is plotted against x2(t), where
the distribution is not concentrated along the diagonal. In Fig. 8.8a, the laminar
phase distribution Λ(t) is characterized by an exponential − 3

2 power law behav-
ior as shown in Fig. 8.8c. In order to show that there is a transition from on-off
intermittency to periodic behavior in the laminar phase distribution corresponding
to approximate lag synchronization, we have changed the value of b2 from 0.17 to
0.15, (so that the less stringent condition a > |b2| is satisfied but not the general
condition (8.11)), and examined the nature of the laminar phase distribution Λ(t).
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Fig. 8.8 (a) The time series x1(t − τ) − x2(t), τ > 0 for b2 = 0.17 and b3 = 0.03 with all other
parameters as in Fig. 8.6 (so that the stability condition is violated), (b) Projection of x1(t −τ), τ >
0 Vs x2(t) and (c) The statistical distribution of laminar phase satisfying − 3

2 power law scaling

The difference between x1(t − τ), τ > 0, and x2(t) is shown as a function of time
t in Fig. 8.9a, where there is only a laminar phase present for the threshold value
Δ = 0.002 without any intermittent burst. The corresponding laminar phase dis-
tribution Λ(t) is again characterized by a periodic structure as shown in Fig. 8.9c.
As in the case of approximate anticipatory synchronization, here also the peaks
occur approximately at t = nT, n = 1, 2, ..., where T is roughly of the order of the
period of the lowest periodic orbit of the uncoupled system (8.1a). Time-shifted plot
x1(t − τ), τ > 0, Vs x2(t) is shown in Fig. 8.9b, where the distribution is concen-
trated along but not exactly on the diagonal line confirming the onset of approximate
lag synchronization. As noted previously that for this case the minimum of similarity
function Sl(τ ) is nearly zero but not exactly zero (Curve 3, inset of Fig. 8.7). Finally
for b2 = 0.1, which satisfies the general stability criterion (8.11), we have exact
lag synchronization as demonstrated in Figs. 8.6 and 8.7. Thus we find that as the
parameter b2 varies the transition to exact lag synchronization precedes a region
of approximate lag synchronization from desynchronized state, where the latter is
characterized by the transition from on-off intermittency to periodic structure in the
laminar phase distribution.

8.3.4 Inverse Synchronizations

Next, we study the existence of inverse synchronization in coupled piecewise lin-
ear systems. Transition between inverse anticipatory and inverse lag via complete
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Fig. 8.9 (a) The time series x1(t − τ)− x2(t), τ > 0 for b2 = 0.15 and b3 = 0.05 so that the less
stringent condition a > |b2| is satisfied while (8.11) is violated, (b) Projection of x1(t − τ), τ > 0
Vs x2(t) and (c) The statistical distribution of laminar phase showing periodic structure

inverse synchronization is demonstrated in this section as a function of the coupling
delay in the coupled piecewise linear time-delay systems with inhibitory coupling
represented by

ẋ1(t) = −ax1(t)+ b1 f (x1(t − τ1)), (8.14a)

ẋ2(t) = −ax2(t)+ b2 f (x2(t − τ1))− b3 f (x1(t − τ2)), (8.14b)

where the functional form f (x) is the same as given by Eq. (8.9).
Importance of inhibitory or repulsive couplings are well acknowledged in bio-

logical systems. It is a well established fact that couplings between neurons are both
excitatory and inhibitory [8]. Ecological webs typically have both positive and neg-
ative connections between their components [9, 10]. Coupled lasers with negative
couplings have also been widely studied [11]. The well known Swift-Hohenberg
and Kuramoto-Sivashinsky equations have such a term [12]. Currently, it has also
been realized that a large class of natural networks also have inhibitory interactions
among the interacting units [13, 14].

Now, the time evolution of the difference system with the state variable Δ =
x1τ2−τ1 + x2, where x1τ2−τ1 = x1(t − (τ2 − τ1)), corresponds to the following
distinct cases:

1. Inverse anticipatory synchronization occurs when τ2 < τ1 with x2(t) = −x1(t −
τ̂ ); τ̂ = τ2 − τ1 < 0, where the state of the response system anticipates the
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inverse state of the drive system in a synchronized manner with the anticipating
time τ̂ (whereas in the case of direct anticipatory synchronization, the state of
the response system anticipates exactly the state of the drive system, that is,
x2(t) = x1(t − τ̂ )).

2. Inverse complete synchronization results when τ2 = τ1 with x2(t) =
−x1(t); τ̂ = τ2 − τ1 = 0, where the state of the response system evolves in
a synchronized manner with the inverse state of the drive system (whereas in
the case of complete synchronization, the state of the response system evolves
exactly identical to the state of the drive system, that is, x2(t) = x1(t)).

3. Inverse lag synchronization occurs when τ2 > τ1 with x2(t) = −x1(t − τ̂ ); τ̂ =
τ2 − τ1 > 0, where the state of the response system lags the inverse state of the
drive system in a synchronized manner with the lag time τ̂ (whereas in the case
of direct lag synchronization, the state of the response system lags exactly the
state of the drive system, that is, x2(t) = x1(t − τ̂ )).

By following the stability analysis using Krasovskii-Lyapunov functional
approach as was done in Sect. 8.2 for direct synchronization, one can obtain the
same asymptotic stability condition given by Eq. (8.8) along with the parametric
condition b1 = b2 + b3 in the present case also. Now again from the form of the
piecewise linear function f (x), one can have a > |b2| as a less stringent condition
and a > 1.5|b2| as the more general condition specified by (8.8) for asymptotic
stability of the inverse synchronized state Δ = 0 as discussed in Sect. 8.2 for direct
synchronization.

Further, it is interesting to note that if one substitutes x2 → x̂2 = −x2 in
Eq. (8.14), then the coupling becomes excitatory for the choice of functional forms
we have chosen. This is exactly the case we have studied in Sect. 8.2, where direct
anticipatory, complete and lag synchronizations exist as a function of the coupling
delay. However, one cannot obtain inverse (anticipatory, complete and lag) synchro-
nization with excitatory coupling or direct (anticipatory, complete and lag) synchro-
nization with inhibitory coupling for the chosen form of the unidirectional nonlinear
coupling because of the nature of the parametric relation between b1, b2 and b3 and
the stability condition (8.8).

In the following, we will demonstrate the existence of inverse anticipatory,
inverse complete and inverse lag synchronizations as a function of the coupling
strength for fixed values of the other parameters.

8.3.4.1 Inverse Anticipatory Synchronization

We have chosen the same values for all the parameters as discussed in the case of
direct anticipatory synchronization in Sect. 8.3.1 for τ2 < τ1. Time trajectories of
the state variables x1(t), x2(t) and −x2(t) of the coupled piecewise linear time-delay
system (8.14) with inhibitory coupling is shown in Fig. 8.10 for the parameter values
a = 0.16, b1 = 0.2, b2 = 0.1, b3 = 0.1, τ1 = 25.0 and τ2 = 20.0, satisfying the
general stability criterion (8.11). It is clear from the Fig. 8.10 that the response
system x2(t) anticipates inversely the state of the drive system x1(t). To view this
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Fig. 8.10 Time series plot of
the variables x1(t), x2(t) and
−x2(t) of the coupled
piecewise linear time-delay
system (8.14) depicting exact
inverse anticipatory
synchronization for the same
parameter values as in
Fig. 8.1
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clearly in Fig. 8.10, we have also plotted the inverse of the response variable x2(t),
that is −x2(t).

It is to be noted that all the other dynamical behaviours observed in Sect. 8.3.1,
namely transition from approximate anticipatory to exact anticipatory synchroniza-
tion as function of the parameter b2 and their characterization by the transition of
on-off intermittency to a periodic structure in the laminar phase distribution can
be observed in this case of inverse anticipatory synchronization also for the same
parameter values.

8.3.4.2 Complete Inverse Synchronization

Existence of exact complete inverse synchronization in the coupled piecewise linear
time-delay system (8.14) with inhibitory coupling is shown in Fig. 8.11 for the same
values of all the parameters as in Fig. 8.5 in Sect. 8.3.2.

8.3.4.3 Inverse Lag Synchronization

Again we have fixed the same values for all the parameters as in the Sect. 8.3.3,
where the existence of exact lag synchronizations has been shown for the param-
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Fig. 8.11 Time series plot of the variables x1(t), x2(t) and −x2(t) of coupled piecewise linear
time-delay system (8.14) depicting exact complete inverse synchronization for the same parameter
values as in Fig. 8.5
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Fig. 8.12 Time series plot of
the variables x1(t), x2(t) and
−x2(t) of coupled piecewise
linear time-delay system
(8.14) depicting exact inverse
lag synchronization for the
same parameter values as in
Fig. 8.6
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eter values satisfying the general stability condition (8.11). Time series plot of
x1(t), x2(t) and −x2(t) depicting exact inverse lag synchronization is shown in Fig.
8.12. All the other dynamical transitions can also be observed in this case of inverse
lag synchronization as well which are not presented here for avoiding repetition.

8.4 Transition from Anticipatory to Lag via Complete
Synchronization: Mackey-Glass and Ikeda Systems

In this section, we will discuss briefly the generality of the above results on dif-
ferent kinds of synchronizations and their transitions in two other prototype delay
models, which are widely studied in the literature. In particular, we will consider
the Mackey-Glass [15, 16] and Ikeda [17–20] time-delay systems to bring out the
existence of the above results.

Let us now consider the unidirectionally coupled drive x1(t) and response x2(t)
systems with two different time-delays τ1 and τ2 as feedback and coupling time-
delays, respectively, as in Eq. (8.1), with the following functional forms for the
nonlinearity function,

f (x) = x(t − τ)

(1.0 + x(t − τ)c)
(8.15)

for Mackey-Glass system [15, 16] and

f (x) = sin(x(t − τ)) (8.16)

for Ikeda system [17–20].
Now, we apply the stability criterion (8.8) deduced for an arbitrary nonlinear

function f (x) in Eq. (8.1) to the present examples. We note that (1) for the Mackey-
Glass system

f ′(x) = 1 + (1 − c)x(t − τ)c

(1 + x(t − τ)c)2
(8.17)
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and (2) for the Ikeda system

f ′(x) = cos(x(t − τ)). (8.18)

As the derivatives, f ′(x), themselves now depend on the instantaneous value of x
for both the systems, it is not possible to pinpoint analytically the exact range of the
parameter a at which the general stability condition (8.8), a > |b2 f ′(x1(t − τ2))|,
is satisfied unlike the earlier case of piecewise linear time-delay system (8.9). Nev-
ertheless, one is able to find out numerically the value of a for which the asymptotic
stability condition is satisfied in both the cases of coupled Mackey-Glass and Ikeda
time-delay systems. However, it is also possible to find the value of f ′(xmax ) by
identifying the maximal value of x(t) numerically from the corresponding attractors
and then find the values of the control parameter b2 for which the stability condition,

a > b2| f ′(xmax )|, (8.19)

is satisfied. In the following, we will demonstrate the transition from anticipatory to
lag synchronization via complete synchronization as the coupling delay τ2 is varied
from τ2 < τ1 to τ2 > τ1, using the above stability criterion.

8.4.1 Anticipatory Synchronization for τ2 < τ1

We first demonstrate the transition to anticipatory synchronization from the desyn-
chronized state in the coupled system (8.1) along with the functional form (8.15) for
the Mackey-Glass system as the value of the coupling strength b3 is varied. After
this, we discuss the corresponding results for the coupled Ikeda system with the
functional form (8.16).

8.4.1.1 Coupled Mackey-Glass Systems

We have fixed the value of the feedback time-delay τ1 at τ1 = 30.0 and the coupling
delay τ2 at τ2 = 25 while the other parameters are fixed as a = 0.1, b1 = 0.2
and c = 10. Hyperchaotic attractor of the uncoupled Mackey-Glass system for the
chosen value of the parameters is shown in Fig. 8.13a, from which one can recognize
that the maximum value of the state variable x(t) does not exceed xmax = 1.4.
Consequently, one can find the values of the parameter b2 for which the stability
condition a > b2| f ′(xmax = 1.4)| with | f ′(xmax = 1.4)| = 0.2895 is satisfied.
For the chosen value of the parameter a = 0.1 the stability condition for asymptotic
stability is satisfied for the values of b2 < 0.35.

However, it is to be noted that according to the parametric condition b1 = b2 +b3
and the chosen value of the parameter b1 = 0.2, the value of b2 should be less
than 0.2. For any value of b2 > 0.2, the value of the other parameter b3 becomes
negative, and as a consequence the coupling in Eq. (8.14) becomes excitatory and
hence inverse synchronization cannot be realized as discussed in the Sect. 8.3.4.
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Fig. 8.13 (a) Hyperchaotic attractor of the Mackey-Glass time-delay system (Eq. (8.1) with the
functional form as in Eq. (8.15)) for the parameter values a = 0.1, b = 0.2, c = 10.0 and τ = 30
and (b) Hyperchaotic attractor of the Ikeda time-delay system (Eq. (8.1) with the functional form
as in Eq. (8.16)) for the parameter values a = 1.0, b = 5.0 and τ = 4.0

Numerical simulation indicates that one cannot obtain synchronized state for all the
values of b2 < 0.35 as expected, instead one can obtain stable synchronized state
for b2 < 0.14 consistent with the parametric condition b1 = b2 + b3, for which the
stability condition is satisfied.

The time trajectory plot of the variables x1(t) and x2(t) is shown in Fig. 8.14a
depicting the existence of anticipatory synchronization for the value of the control
parameter b2 = 0.14 satisfying the stability condition with the anticipating time
equal to that of the difference between the feedback and coupling delays, that is,
τa = |τ2 −τ1|. The time-shifted plot, Fig. 8.14b, of x1(t −τ) Vs x2(t), τ < 0 shows
a sharp diagonal line confirming the existence of anticipatory synchronization. Upon
decreasing the value of b2 from b2 = 0.2 consistent with the parametric condition
b1 = b2 + b3, one can find that there is a transition from desynchronized state
to approximate anticipatory synchronization at the value of b2 = 0.145 and then
to exact anticipatory synchronization state at b2 ≤ 0.14. It is to be noted that the
transition from approximate to exact anticipatory synchronized state is also charac-
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Fig. 8.14 Exact anticipatory synchronization for the parameter values a = 0.1, b1 = 0.2, b2 =
0.14, b3 = 0.06, τ1 = 30.0 and τ2 = 25.0 of the Mackey-Glass system. (a) Time series plot of
x1(t) and x2(t), (b) Synchronization manifold between x1(t − τ) and x2(t), τ = τ2 − τ1. The
response x2(t) anticipates the drive x1(t) with a time shift of τ = −5.0
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terized by transition from on-off intermittency to periodic structures in the laminar
phase distribution as shown for the case of piecewise linear time-delay system.

Now let us characterize the emergence of anticipatory state from asynchronous
state using the notion of similarity function (8.13) for anticipatory synchronization
Sa introduced in Sect. 8.3.1. Similarity function Sa for anticipatory synchronization
is plotted in Fig. 8.15 for three different values of the control parameter b2 consistent
with the parametric condition (8.4). Curve 3 corresponds to the value of b2 = 0.15
at which the coupled system (8.1) (with the functional form (8.15) of Mackey-Glass
system) is in an asynchronous state. As the value of the parameter b2 is decreased
from b2 = 0.15, transition towards approximate anticipatory synchronization is
observed and it is shown for the value of b2 = 0.145 in curve 2 (see the inset of
Fig. 8.15). Further decrease in the value of b2 leads the coupled system (8.1) to
exhibit exact anticipatory synchronization (curve 1 is plotted for b2 = 0.14).

8.4.1.2 Coupled Ikeda Systems

Now, we will point out the existence of anticipatory synchronization in the Ikeda
system, Eq. (8.1) along with the functional form (8.16). We have fixed the value of
the parameters as τ1 = 4, τ2 = 3.0, a = 1.0, b1 = 5. Hyperchaotic attractor of
the individual Ikeda time-delay system for the chosen parameter values is shown in
Fig. 8.13b. It is evident from this figure that the maximum value of x(t) does not
exceed xmax = 5. As a consequence the stability condition (8.8) can be written as
a > b2 cos(5) with f ′(xmax ) = cos(5) = 0.2836 and one can obtain asymptotically
stable synchronized state for b2 < 2.88, for which the stability condition is satisfied.

0

0.02

0.04

0.06

0.08

0.1

26 28 30 32 34

S a (
τ)

τ2

1

2

3

0.0002

0.0001

0.0

–0.0001
25 30 35

2

1

Fig. 8.15 Similarity function Sa(τ ) as a function of coupling delay τ2 for different values of b3
in the case of the Mackey-Glass system, the other system parameters are a = 0.1, b1 = 0.2 and
τ1 = 30.0. (Curve 1: b2 = 0.14, b3 = 0.06, Curve 2: b2 = 0.145, b3 = 0.055, and Curve 3:
b2 = 0.15, b3 = 0.05).
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Fig. 8.16 Exact anticipatory synchronization for the parameter values a = 1.0, b1 = 5, b2 =
2.8, b3 = 2.2, τ1 = 4.0 and τ2 = 3.0 of the Ikeda system. (a) Time series plot of x1(t) and
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Fig. 8.17 Similarity function Sa(τ ) as a function of coupling delay τ2 for different values of b3
in the case of the Ikeda system, the other system parameters are a = 1.0, b1 = 5 and τ1 = 4.0.
(Curve 1: b2 = 2.8, b3 = 2.2, Curve 2: b2 = 2.9, b3 = 2.1, and Curve 3: b2 = 3.0, b3 = 2.0)

Exact anticipatory synchronization is shown in Fig. 8.16 for the value of the
parameter b2 = 2.8. The state of drive x1(t) being anticipated by that of the
response x2(t) is shown in Fig. 8.16a and the corresponding time-shifted plot is
shown in Fig. 8.16b. Similarity function, Sa(τ ), for the Ikeda system (Fig. 8.17) is
also plotted for three different values of b2 as a function of the coupling delay τ2.
Curve 3 in Fig. 8.17 is plotted for b2 = 3.0 which corresponds to desynchronized
state. Approximate anticipatory synchronized state (curve 2) is shown for the value
of b2 = 2.9, for which the value of Sa(τ ) is close to zero but not exactly equal to
zero as seen in the inset of Fig. 8.17, while that corresponds to exact anticipatory
synchronization (curve 1) is equal to zero as seen in the inset for b2 = 2.8. Thus
as the parameter b2 is decreased from b2 = 3.0, one can observe that there is a



158 8 Transition from Anticipatory to Lag Synchronization via Complete Synchronization

transition from asynchronous to approximate state and then to exact anticipatory
synchronization.

8.4.2 Complete Synchronization for τ2 = τ1

Complete synchronization follows the anticipatory synchronization when the value
of the coupling time-delay τ2 equals the feedback time-delay τ1, when τ2 is
increased from a lower value. With τ2 = τ1, the same stability criterion, Eq. (8.8),
holds good for this case of complete synchronization as well with the same condition
b1 = b2 + b3.

Figure 8.18 shows the existence of complete synchronization in the Mackey-
Glass system when the value of the coupling delay τ2 = 30 equals that of the feed-
back delay τ1 = 30. Complete synchronous evolution of both the drive, x1(t), and
the response, x2(t), systems is shown in Fig. 8.18a for the same value of the other
parameters as in case of anticipatory synchronization, while the entirely localized
diagonal line of x1(t) and x2(t) confirms the existence of complete synchronization
as depicted in Fig. 8.18b. Similarly the existence of complete synchronization in
Ikeda system is shown in Fig. 8.19 for the value of coupling delay τ2 = τ1 = 4 for
the same values of the parameters as in Fig. 8.16.

8.4.3 Lag Synchronization for τ2 > τ1

For the value of the coupling delay τ2 greater than that of the feedback delay τ1, we
find that the system (8.1) exhibits lag synchronization with the lag time equal to the
difference between the coupling and the feedback delay times. The same stability
condition (8.8) also holds good in this case of lag synchronization as well for τ2 >

τ1 as discussed in Sect. 8.2. Time evolution of both the drive, x1(t), and the response,
x2(t), of the Mackey-Glass system depicting the exact lag synchronization is shown
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Fig. 8.18 Exact complete synchronization for the parameter values a = 0.1, b1 = 0.2, b2 =
0.14, b3 = 0.06, τ1 = 30.0 and τ2 = 30.0 of Mackey-Glass system. (a) Time series plot of x1(t)
and x2(t) and (b) Synchronization manifold between x1(t) and x2(t). The response x2(t) follows
identically the drive x1(t) without any time shift
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Fig. 8.19 Exact complete synchronization for the parameter values a = 1.0, b1 = 5.0, b2 =
2.8, b3 = 2.2, τ1 = 4.0 and τ2 = 4.0 of Ikeda system. (a) Time series plot of x1(t) and x2(t) and
(b) Synchronization manifold between x1(t) and x2(t). The response x2(t) follows identically the
drive x1(t) without any time shift

in Fig. 8.20a while the corresponding time-shifted plot is depicted in Fig. 8.20b
for the same value of the parameters as in Fig. 8.14. Similarity function Sl for lag
synchronization (8.12) is plotted (Fig. 8.21) as a function of the coupling delay τ2
for three different values of the coupling strength b3 as discussed in the case of
anticipatory synchronization. As the coupling strength is increased from zero, the
coupled system (8.1) shows transition from asynchronous state (curve 3 for the value
of the coupling strength b3 = 0.05) to exact lag synchronized state (curve 1 for b3 =
0.06) preceded by approximate lag synchronized state (curve 2 for b3 = 0.055). The
value of Sl is exactly equal to zero for the exact lag synchronized state as seen in
the inset of Fig. 8.21 while that corresponds to approximate lag synchronization has
finite value close to zero.

Similarly, the time traces of the drive, x1(t), and response, x2(t), systems of the
Ikeda system are plotted in Fig. 8.22a along with the corresponding time shifted
plot in Fig. 8.22b. The existence of lag synchronization in Ikeda system is also
characterized using similarity function as shown in Fig. 8.23. Asynchronous state
is represented by the curve 3 for the value of the parameter b2 = 3.0 whereas
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Fig. 8.20 Exact lag synchronization for the parameter values a = 0.1, b1 = 0.2, b2 = 0.14, b3 =
0.06, τ1 = 30.0 and τ2 = 35.0 of the Mackey-Glass system. (a) Time series plot of x1(t) and
x2(t), (b) Synchronization manifold between x1(t) and x2(t + τ), τ = τ2 − τ1
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Fig. 8.21 Similarity function Sl (τ ) as a function of coupling delay τ2 for different values of b3
in the case of the Mackey-Glass system, the other system parameters are a = 0.1, b1 = 0.2 and
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Fig. 8.22 Exact lag synchronization for the parameter values a = 1.0, b1 = 5.0, b2 = 2.8, b3 =
2.2, τ1 = 4.0 and τ2 = 5.0 of the Ikeda system. (a) Time series plot of x1(t) and x2(t), (b)
Synchronization manifold between x1(t) and x2(t + τ), τ = τ2 − τ1

approximate lag synchronized state is shown by curve 2 for b2 = 2.9. Exact lag
synchronization corresponds to the curve 1 plotted for the value of b2 = 2.8. It
is clear from the inset of Fig. 8.23 that the similarity function Sl corresponding to
the approximate lag synchronization fluctuates around zero while that of exact lag
synchronization is exactly equal to zero.

It is to be noted that as in the case of the coupled piecewise linear time-delay
system (8.1) with (8.9) the emergence of approximate synchronization (anticipa-
tory/complete/lag) is also associated with a transition from on-off intermittency to
periodic structure in the laminar phase distribution for the appropriate values of the
parameters in both the examples of the coupled Mackey-Glass and the coupled Ikeda
systems.
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Fig. 8.23 Similarity function Sl (τ ) as a function of coupling delay τ2 for different values of b2 in
the case of the Ikeda system, the other system parameters are a = 1.0, b1 = 5.0 and τ1 = 4.0.
(Curve 1: b2 = 2.8, b3 = 2.2, Curve 2: b2 = 2.9, b3 = 2.1, and Curve 3: b2 = 3.0, b3 = 2.0)

8.5 Inverse Synchronizations: Mackey-Glass and Ikeda Systems

Finally, we will briefly demonstrate the existence of inverse (anticipatory,complete
and lag) synchronizations in the coupled time-delay systems with inhibitory cou-
pling. Consider the same coupled systems as in Eq. (8.14) but with the functional
form (8.15) corresponding to the Mackey-Glass systems and (8.16) for the Ikeda
systems. We have chosen the parameter values as a = 0.1, b1 = 0.2, c = 10.0, b2 =
0.14, b3 = 0.06 and τ = 30.0 for the coupled Mackey-Glass time-delay systems
and a = 1.0, b1 = 5, b2 = 2.8, b3 = 2.2 and τ = 4.0 for the coupled Ikeda time-
delay systems satisfying their appropriate stability conditions for asymptotic stabil-
ity of the synchronized states. We have fixed the same values for all the parameters
as in the case of exact anticipatory, complete and lag synchronizations as in Sect. 8.4
for both the systems and hence all the discussions in Sect. 8.4 corresponding to the
stability analysis and dynamical transitions are also valid here. In the following, we
will just point out the existence of different types of inverse synchronizations as a
function of the coupling delay τ2 for both the systems for the above values of the
parameters. The time trajectory plots of the variables x1(t), x2(t) and −x2(t) are
plotted in the following figures for both the Mackey-Glass and Ikeda systems for
different values of the coupling delay τ2. The inverse of the variable of the response
system x2(t), that is −x2(t), is shown in the figures in order to clearly visualize
the inverse synchronizations for the corresponding values of the parameters. Inverse
anticipatory synchronization is shown in Fig. 8.24a, b for the values of the cou-
pling delay τ2 = 25 < τ1 = 30 and τ2 = 3.0 < τ1 = 4.0, respectively, cor-
responding to the coupled Mackey-Glass and Ikeda time-delay systems. Complete
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Fig. 8.24 Time series plots of
the variables x1(t), x2(t) and
−x2(t) of coupled time-delay
systems depicting inverse
anticipatory synchronization.
(a) Mackey-Glass systems
and (b) Ikeda systems. The
value of the parameters are
given in the text
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Fig. 8.25 Time series plots of
the variables x1(t), x2(t) and
−x2(t) of coupled time-delay
systems depicting complete
inverse synchronization. (a)
Mackey-Glass systems and
(b) Ikeda systems
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Fig. 8.26 Time series plots of
the variables x1(t), x2(t) and
−x2(t) of coupled time-delay
systems depicting inverse lag
synchronization. (a)
Mackey-Glass systems and
(b) Ikeda systems
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inverse synchronizations for both the systems are plotted in Fig. 8.25a, b for the
values of the coupling delay τ2 = τ1 = 30 and τ2 = τ1 = 4.0, respectively.
The existence of inverse lag synchronization in coupled Mackey-Glass systems for
τ2 = 35 > τ1 = 30 and in coupled Ikeda systems for τ2 = 5.0 > τ1 = 4.0
are shown in Fig. 8.26a, b, respectively. These results clearly demonstrate the exis-
tence of inverse synchronizations in coupled Mackey-Glass systems and in coupled
Ikeda systems also as in the case of piecewise linear time-delay systems studied in
Sect. 8.3. In fact, these results are also corroborated using similarity function, prob-
ability of synchronization and transitions in the spectrum of Lyapunov exponents of
the coupled piecewise linear and Ikeda time-delay systems [21].
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Chapter 9
Intermittency Transition to Generalized
Synchronization

9.1 Introduction

One of the interesting synchronization behaviors of unidirectionally coupled chaotic
systems is the generalized synchronization (GS), which was conceptually intro-
duced in [1]. Generalized synchronization is observed in coupled nonidentical sys-
tems, where there exists some functional relationship between the drive X (t) and the
response Y (t) systems, that is, Y (t) = F(X (t)). With GS, all the response systems
coupled to the drive lose their intrinsic chaoticity (sensitivity to initial conditions)
under the same driving and follow the same trajectory. Hence the presence of GS can
be detected using the so called auxiliary system approach [2], where an additional
system (auxiliary system) identical to the response system is coupled to the drive in
a similar fashion. Auxiliary system approach is particularly appealing since it can
be implemented directly in an experiment and, in addition, this method allows one
to utilize analytical approaches for studying GS. However, one has to be aware that
if there are multiple basins of attraction for the coupled drive-response system, then
the auxiliary system approach can fail.

Generalized synchronization (GS) has been well studied and understood in sys-
tems with few degrees of freedom and for discrete maps [1–7]. The concept of
GS has also been extended to spatially extended chaotic systems such as coupled
Ginzburg-Landau equations [8]. Recently, the terminology intermittent generalized
synchronization (IGS) [9] was introduced in diffusively coupled Rössler systems
in analogy with intermittent lag synchronization (ILS) [10, 11] and intermittent
phase synchronization (IPS) [12–14], and also verified experimentally in coupled
Chua’s circuits. Very recently, it has been shown [15] that transition to intermittent
chaotic synchronization (in the case of complete synchronization) is characteristi-
cally distinct for geometrically different chaotic attractors. In particular, it has been
shown that for phase-coherent chaotic attractors (Rössler attractor) the transition
occurs immediately as soon as the coupling strength is increased from zero and for
non-phase-coherent attractors (Lorenz attractor), the transition occurs slowly as the
coupling strength is increased from zero.

As noted earlier, time-delay systems form an important class of dynamical sys-
tems and recently they are receiving central importance in investigating various

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_9,
C© Springer-Verlag Berlin Heidelberg 2010
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types of chaotic synchronizations, in view of their infinite dimensional nature and
feasibility of experimental realization [16–19]. While the concept of GS has been
well established in low dimensional systems, it has not yet been studied in detail
in coupled time-delay systems and only very few recent studies have dealt with
GS in time-delay systems [16, 17]. In particular, the mechanism of onset of GS
in coupled time-delay systems and its characteristic properties have not yet been
clearly understood.

In this chapter, we present some of the characteristic properties associated with
the nature of transition to GS from an asynchronous state in unidirectionally coupled
piecewise linear time-delay systems exhibiting highly non-phase-coherent hyper-
chaotic attractors [18], and also in the coupled Mackey-Glass and Ikeda systems. We
find that the onset of GS is preceded by an on-off intermittency mechanism from the
desynchronized state. We have also identified that the intermittency transition to GS
exhibits characteristically distinct behaviors for different coupling schemes. In par-
ticular, the intermittency transition occurs in a broad range of coupling strength for
error feedback coupling configurations and in a narrow range of coupling strength
for direct feedback coupling configurations, beyond certain threshold value of the
coupling strength. In addition, the intermittent dynamics is characterized by periodic
bursts away from the temporal synchronized state with period equal to the delay time
of the response system in the case of broad range intermittency transition whereas it
is characterized by random time intervals in the case of narrow range intermittency
transition. We have also confirmed these dynamical behaviors in both linear and
nonlinear coupling configurations. We have analyzed these transitions analytically
using Krasvoskii-Lyapunov functional approach and numerically by the probability
of synchronization and by the subLyapunov exponents. We have also addressed
the reason behind these transitions using periodic orbit theory. The robustness of
these transitions with the system parameters in both the linear and nonlinear, error
feedback and direct feedback coupling configurations are also studied.

9.2 Broad Range (Slow/Delayed) Intermittency Transition
to GS for Linear Error Feedback Coupling of the Form
(x1(t) − x2(t))

To be specific, we first consider the following unidirectional, linearly coupled sys-
tems with drive x1(t), response x2(t) and an auxiliary x3(t),

ẋ1(t) = − ax1(t)+ b1 f (x1(t − τ1)), (9.1a)

ẋ2(t) = − ax2(t)+ b2 f (x2(t − τ2))+ b3(x1(t)− x2(t)), (9.1b)

ẋ3(t) = − ax3(t)+ b2 f (x3(t − τ2))+ b3(x1(t)− x3(t)), (9.1c)
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where b1, b2 and b3 are constant parameters, and τ1 and τ2 are constant delay param-
eters (Dynamics of individual systems have already discussed in Chap. 3). Note that
when b1 �= b2 or τ1 �= τ2 or both, corresponding to parameter mismatches, we
have unidirectionally coupled nonidentical systems (Eqs. (9.1a) and (9.1b)), while
the auxiliary system is given by (9.1c) and f (x) is the odd piecewise linear function
(3.2). The coupling in (9.1b) may be also called a linear error feedback coupling.

For simplicity, we have chosen b1 = b2 so that the time-delays τ1 and τ2 alone
introduce a simple form of parameter mismatch between the drive x1(t) and the
response x2(t). We have chosen the values of parameters as a = 1.0, b1 = b2 =
1.2, τ1 = 20 and τ2 = 25. For this parametric choice, in the absence of coupling,
all the three systems (9.1) evolve independently and exhibit hyperchaotic attrac-
tors, which is confirmed by the existence of multiple positive Lyapunov exponents
(Fig. 3.8).

9.3 Stability Condition

With GS, as all the response systems under the same driving follow the same
trajectory, it is sufficient to identify the existence condition for establishment of
complete synchronization (CS) between the response x2(t) and the auxiliary x3(t)
systems in order to achieve GS between the drive x1(t) and the response x2(t)
systems.

Now, for CS to occur between the response x2(t) and the auxiliary x3(t) vari-
ables, we consider the time evolution of the difference system with the state variable
Δ = x3(t)− x2(t). It can be written for small values of Δ as

Δ̇ = −(a + b3)Δ+ b2 f ′(x2(t − τ2))Δτ2 , (9.2)

where for the odd piecewise linear function (3.2) we have

f ′(x) =
⎧⎨
⎩

−1.5, −4/3 < x ≤ −0.8
1, −0.8 < x ≤ 0.8

−1.5, 0.8 < x ≤ 4/3.
(9.3)

The synchronization manifold, x2(t) = x3(t), is locally attracting if the origin,
Δ = 0 is stable. Following Krasovskii-Lyapunov functional approach (discussed
in the previous chapters), we define a positive definite Lyapunov functional of the
form [19–21]

V (t) = 1

2
Δ2 + μ

∫ 0

−τ2

Δ2(t + θ)dθ, (9.4)
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where μ is an arbitrary positive parameter, μ > 0. The solution of Eq. (9.2), namely
Δ = 0, is stable if the derivative of the functional along the trajectory of Eq. (9.2) is

negative. This negativity condition is satisfied if b3 + a >
b2

2 f ′2(x2(t−τ2))

4μ + μ, from
which it turns out that a sufficient condition for asymptotic stability is

a + b3 >
∣∣b2 f ′(x2(t − τ2))

∣∣ . (9.5)

Now from the form of the piecewise linear function f (x) given by Eq. (3.2), we
have

∣∣ f ′(x2(t − τ2))
∣∣ =

{
1.5, 0.8 ≤ |x2| ≤ 4

3
1.0, |x2| < 0.8.

(9.6)

Consequently the stability condition (9.5) becomes a + b3 > |1.5b2| > |b2|. Thus
one can take

a + b3 > |b2| (9.7)

as the less stringent condition for (9.5) to be valid, while

a + b3 > |1.5b2| (9.8)

can be considered as the most general condition specified by (9.5) for asymptotic
stability of the synchronized state Δ = 0.

9.4 Approximate (Intermittent) Generalized Synchronization

In order to understand the mechanism of transition to the synchronized state, it will
be important to follow the dynamics from the parameter values at which the less
stringent condition is satisfied. Figure 9.1a shows the approximate GS (which may
also be termed as intermittent generalized synchronization (IGS) in analogy with
the concept of intermittent lag synchronization (ILS)) between the drive x1(t) and
the response x2(t) systems, whereas Fig. 9.1b shows the approximate CS between
the response x2(t) and the auxiliary x3(t) systems for the values of the parameters
a = 1.0, b1 = b2 = 1.2, τ1 = 20, τ2 = 25 and b3 = 0.4 satisfying the less stringent
condition (9.7). Perfect GS and perfect CS are shown in Figs. 9.1c, d, respectively,
for b3 = 0.9 satisfying the general stability condition (9.8). Time traces of the
difference x2(t)− x3(t) corresponding to approximate CS (Fig. 9.1b) are shown in
Fig. 9.2, which show periodic bursts with period between two consecutive bursts
approximately equal to the time-delay of the response system t ≈ 25 when “on”
states of amplitude greater than |0.01| are considered. Figure 9.2b shows an enlarged
(in x scale) part of Fig. 9.2a to view the bursts at periodic intervals when bursts of
larger amplitudes (Δ > |0.01|) are considered, while Fig. 9.2c is an enlarged (in y
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Fig. 9.1 Dynamics in the phase space of the systems (9.1). (a) and (b) Approximate GS and CS,
respectively, for the value of the coupling strength b3 = 0.4. (c) and (d) Perfect GS and CS,
respectively, for the value of the coupling strength b3 = 0.9

scale) version of Fig. 9.2b to show random bursts when bursts of smaller amplitude,
Δ < |0.01|, are considered.

Usually the intermittent dynamics is characterized by the entrainment of the
dynamical variables in random time intervals of finite duration [22, 23]. But from
Fig. 9.2b, it is evident that the intermittent dynamics displays periodic bursts from
the synchronous state with period approximately equal to the delay time of the
response system, when amplitudes of the state variable |Δ| = |x3(t)−x2(t)| > 0.01
are considered, for the values of the coupling strength at which the less stringent
stability condition (9.7) is satisfied (It is to be noted that such periodic bursts of
period approximately equal to the time-delay of the response system has also been
observed by Zhan et al. [16], where the authors discussed relation between two
modes of synchronization, namely, CS and GS in unidirectionally coupled Mackey-
Glass systems). The statistical features associated with the intermittent dynamics
is analyzed by calculating the distribution of laminar phases Λ(t) with amplitude
less than a threshold value of Δ. A universal asymptotic power law distribution
Λ(t) ∝ t−α is observed for the threshold value Δ = 0.0001 with the value of the
exponent α = 1.5 as shown in Fig. 9.3, which is quite typical for on-off intermit-
tency. Note that −3/2 power law is observed for the intermittent dynamics shown
in Fig. 9.2 for laminar phases Λ(t) with amplitude less than Δ = 0.0001 (as an
illustrative example), which is also evident from Fig. 9.2c, while periodic bursts are
observed for “on” state of amplitude greater than |0.01|.
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Fig. 9.2 The intermittent
dynamics of the response
x2(t) and auxiliary x3(t)
systems for the value of the
coupling strength b3 = 0.4.
(a) Time traces of the
difference x2(t)− x3(t)
corresponding to Fig. 9.1b,
(b) Enlarged in x scale to
show bursts at periodic
intervals when bursts of
larger amplitudes Δ > |0.01|
are considered and (c)
Enlarged in y scale to show
random bursts when bursts of
smaller amplitudes
Δ < |0.01| are considered
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9.5 Characterization of IGS

Now we characterize the intermittency transition to GS by using (i) the notion of the
probability of synchronization Φ(b3) as a function of the coupling strength b3 [15],
which can be defined as the fraction of time during which |x2(t)− x3(t)| < ε

occurs, where ε is a small but arbitrary threshold, and (ii) from the changes in the
sign of subLyapunov exponents (which are nothing but the Lyapunov exponents of
the subsystem) in the spectrum of Lyapunov exponents of the coupled time-delay
systems. Figure 9.4a shows the probability of synchronization Φ(b3) as a func-
tion of the coupling strength b3 calculated from the variables of the response x2(t)
and the auxiliary x3(t) systems for CS to occur between them. For the range of
b3 ∈ (0, 0.39), there is an absence of any entrainment between the systems result-
ing in an asynchronous behavior and the probability of synchronization Φ(b3) is
practically zero in this region. However, starting from the value of b3 = 0.39 and
above, there appear oscillations in the value of the probability of synchronization
Φ(b3) between zero and some finite values less than unity, exhibiting intermittency
transition to GS in the range of b3 ∈ (0.4, 0.62) for which the less stringent stability
condition (9.7) is satisfied. Beyond b3 = 0.62, Φ(b3) attains unit value indicating
perfect GS. Note that the above intermittency transition occurs in a rather wide
range of the coupling strength (this can also be termed as slow or delayed intermit-
tency transition in analogy with the terminology used in [15]), which has also been
confirmed from the transition of successive largest subLyapunov exponents in the
corresponding range of the coupling strength.

Fig. 9.4 (a) The probability
of synchronization Φ(b3)

between the response x2(t)
and the auxiliary x3(t)
systems and (b) Largest
Lyapunov exponents of the
coupled drive x1(t) and
response x2(t) systems (9.1a)
and (9.1b)
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The spectrum containing the first fifteen largest Lyapunov exponents λmax of the
coupled drive x1(t) and response x2(t) systems is shown in Fig. 9.4b. From the gen-
eral stability condition (9.5), it is evident that for the chosen value of the parameter
a = 1.0, the less stringent stability condition (9.7) is satisfied for values of cou-
pling strength b3 > 0.2. Correspondingly, the least positive subLyapunov exponent
of the response system (9.1b) gradually becomes negative from b3 > 0.2. Subse-
quently, the remaining positive subLyapunov exponents gradually become negative
and attain saturation in the range of b3 ∈ (0.2, 0.8). This is in accordance with
the fact that the less stringent stability condition is satisfied only in the correspond-
ing range of coupling strength b3. This is a strong indication of the broad range
intermittency (IGS) transition to GS. For b3 > 0.8, the general stability condition
(9.8) is satisfied, where one can observe perfect GS as is evidenced by both the
probability of synchronization approaching unit value and by the negative saturation
of subLyapunov exponents, calculated between the drive and response systems. The
inference is that the correlation between the oscillations of the systems eventually
becomes stronger with the strength of the coupling, and this is indicated by the
successive transition of subLyapunov exponents to negative values.

It is a well established fact that a chaotic attractor can be considered as a pool of
infinitely many unstable periodic orbits of all periods. Synchronization between two
coupled systems is said to be asymptotically stable, if all the unstable periodic orbits
of the response system are stabilized in the transverse direction of the synchroniza-
tion manifold. Consequently, all the trajectories transverse to the synchronization
manifold converge for suitable values of coupling strength and this is reflected in
the negative values of the transverse Lyapunov exponents (subLyapunov exponents)
upon synchronization [15]. From our results, we find that the subLyapunov expo-
nents gradually become negative in a broad range of coupling strength b3 after cer-
tain threshold value and this is in accordance with gradual stabilization of unstable
periodic orbits of the response system in the complex synchronization manifold.
Unfortunately, methods for locating UPO’s and calculating their transverse Lya-
punov exponents have not been well established for time-delay systems and hence
a quantitative proof for the gradual stabilization of UPO’s has not been given here.
However, the gradual stabilization of UPO’s along with their transverse Lyapunov
exponent in the range of intermittency transition have been reported for the case
of coupled Rössler and Lorenz systems in [15]. It is also to be noted that the
broad range intermitteny transition in the case of error feedback coupling config-
uration is due to the fact that the strength of the coupling b3 contributes only less
significantly to stabilize the UPO’s as the error x1(t) − x2(t) gradually becomes
smaller from the transition regime after certain threshold value of the coupling
strength.

The robustness of the intermittency transition in a broad range of coupling
strength with the system parameter b2 ∈ (1.1, 1.6) and with the coupling delay
τ2 ∈ (10, 20) has also been confirmed. Figure 9.5a shows the 3-dimensional plot
of the probability of synchronization as a function of the system parameter b2 and
the coupling strength b3, while Fig. 9.5b shows the 3-dimensional plot of Φ(b3) as
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Fig. 9.5 The probability of synchronization Φ(b3) in 3-dimensional plots (a) as a function of the
system parameter b2 and the coupling strength b3 and (b) as a function of the coupling delay τ2
and the coupling strength b3, exhibiting broad range intermittency transition to GS for linear error
feedback coupling

a function of the coupling delay τ2 and the coupling strength b3. The above figures
(Fig. 9.5) clearly reveal the broad range intermittency transition to GS in the case of
linear error feedback coupling scheme.

9.6 Narrow Range (Immediate) Intermittency Transition to GS
for Linear Direct Feedback Coupling of the Form x1(t)

To illustrate the narrow range intermittency transition to GS, we consider the unidi-
rectional linear direct feedback coupling of the form

ẋ1(t) = −ax1(t)+ b1 f (x1(t − τ1)), (9.9a)

ẋ2(t) = −ax2(t)+ b2 f (x2(t − τ2))+ b3x1(t), (9.9b)

ẋ3(t) = −ax3(t)+ b2 f (x3(t − τ2))+ b3x1(t), (9.9c)
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where f (x) is of the same odd piecewise linear form as in Eq. (3.2). Assuming
the same values of the parameters as before and proceeding in the same way as
in the previous case, one can obtain a sufficient condition for asymptotically sta-
ble CS between the response x2(t), Eq. (9.9b), and the auxiliary x3(t), Eq. (9.9c),
systems as

a >
∣∣b2 f ′(x2(t − τ2))

∣∣ . (9.10)

It is to be noted that the above stability condition holds good only for the case
when coupling is present, that is b3 �= 0. When there is no coupling (b3 = 0),
by definition, there will be a desynchronized chaotic state. As soon as the value of
the coupling strength is increased from zero, the stability condition (9.10) always
lead to synchronized state even for very feeble values of b3 for parameters satis-
fying the stability condition, as it is independent of the coupling strength b3. As
the values of the parameters satisfying the stability condition (9.10) rapidly leads
to immediate transition to synchronized state as soon as the coupling is switched
on, it is difficult to identify the possible transitions to synchronized state. In addi-
tion, as the stability condition is independent of the coupling strength b3, one is not
able to explore the dynamical transitions as a function of coupling strength for the
parameter values satisfying the stability condition (9.10). Hence we study the syn-
chronization transition by choosing the parameters violating the stability condition
as a = 1.0, b1 = 1.2, b2 = 1.1, τ1 = τ2 = 20 and varying the coupling strength b3
in order to identify the mechanism of synchronization transition. Here, in this case
b1 and b2 alone introduce the parameter mismatch while τ1 = τ2 (It may be added
that the qualitative nature of the dynamical transitions remain the same even when
the mismatch is either in time delays alone, that is τ1 �= τ2, b1 = b2 or in both the
system parameters and time delays, b1 �= b2, τ1 �= τ2, as confirmed below in the
three dimensional plots of Fig. 9.10).

As b3 is varied from zero, transition from desynchronized state to approximate
GS occurs for b3 > 0.6. Approximate GS (IGS) between the drive x1(t), Eq. (9.9a),
and the response x2(t), Eq. (9.9b), systems is shown in Fig. 9.6a whereas the approx-
imate CS between the response x2(t), Eq. (9.9b), and the auxiliary x3(t), Eq. (9.9c),
systems is shown in Fig. 9.6b for the value of the coupling strength b3 = 0.64.
Perfect GS and CS are shown in Fig. 9.6c, d, respectively, for the value of the
coupling strength b3 = 0.8. The intermittent dynamics at the transition regime
corresponding to the value of the coupling strength b3 = 0.64 is shown in Fig. 9.7,
in which Fig. 9.7b shows the enlarged part of Fig. 9.7a. It is clear from this figure
that the intermittent dynamics displays intermittent bursts at random time intervals.
The statistical distribution of the laminar phases again shows a universal asymptotic
−1.5 power law behavior for the threshold value |Δ| = 0.0001, which is typical for
on-off intermittency transitions, as shown in Fig. 9.8.

Now we characterize the intermittency transition to GS in the present case, again
by using the notion of probability of synchronization Φ(b3) and from the changes
in the sign of subLyapunov exponents of the coupled system. The probability of
synchronization is shown in Fig. 9.9a as a function of the coupling strength, again
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Fig. 9.6 Dynamics in the phase space of the systems (9.9). (a) and (b) Approximate GS and CS,
respectively, for the value of the coupling strength b3 = 0.64. (c) and (d) Perfect GS and CS,
respectively, for the value of the coupling strength b3 = 0.8

Fig. 9.7 The intermittent
dynamics of the response
x2(t) (9.9b) and auxiliary
x3(t) (9.9c) systems for the
value of the coupling strength
b3 = 0.64. (a) and (b) Time
traces of the difference
x2(t)− x3(t) corresponding
to Fig. 9.6b
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Fig. 9.8 The statistical
distribution of laminar phases
for the Fig. 9.7
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calculated from the response x2(t) and the auxiliary x3(t) systems, Eqs. (9.9b) and
(9.9c), respectively, which remains zero in the range of b3 ∈ (0, 0.60) and oscillates
between its maximum and minimum values in a narrow range of b3 ∈ (0.60, 0.68)
confirming the existence of approximate CS in the latter range. Above b3 = 0.68
the probability of synchronization acquires its maximum value depicting perfect
CS between the response x2(t) and the auxiliary x3(t) systems. Correspondingly
there exists perfect GS between the drive x1(t) and the response x2(t) systems.
Fig. 9.9b shows the first twelve maximal Lyapunov exponents of the coupled drive
x1(t) and the response x2(t) systems. The least positive subLyapunov exponent of
the response system starts to become negative from b3 > 0.60. Subsequently, all
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the other positive subLyapunov exponents become negative and reach saturation in
a rather narrow range of b3 ∈ (0.60, 0.68). Thus the narrow range intermittency
(IGS) transition (this can also be termed as immediate intermittency transition in
analogy with the terminology used in [15]) is confirmed from both the probability
of synchronization, calculated from the response and the auxiliary systems, and
negative saturation of subLyapunov exponents, calculated from the drive and the
response systems.

As discussed in the previous section, the narrow range intermittency transition is
in accordance with the stabilization of all the unstable periodic orbits of the response
system in a narrow range as a function of the coupling strength b3 and this is
reflected in the immediate transition of all the subLyapunov exponents (Fig. 9.9b) to
negative values. It is also to be noted that the narrow range intermitteny transition in
the case of direct feedback coupling configuration is due to the fact that the strength
of the coupling b3 contributes significantly proportional to the strength of the signal
x1(t) to stabilize all the UPO’s immediately at the transition regime after certain
threshold value of the coupling strength.

The robustness of the intermittency transition in a narrow range of the coupling
strength b3 for a range of values of the parameter b2 ∈ (1.1, 1.6) and the delay τ1 =
τ2 ∈ (10, 20) is shown in Fig. 9.10. The 3-dimensional plot of the probability of
synchronization as a function of the system parameter b2 and the coupling strength

Fig. 9.10 The probability of
synchronization Φ(b3) in
3-dimensional plots (a) as a
function of the system
parameter b2 and the
coupling strength b3 and (b)
as a function of the coupling
delay τ2 and the coupling
strength b3, exhibiting narrow
range intermittency transition
to GS for linear direct
feedback coupling
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b3 is shown in Fig. 9.10a, while Fig. 9.10b shows the 3-dimensional plot of Φ(b3)

as a function of the coupling delay τ2 and the coupling strength b3.

9.7 Broad Range Intermittency Transition to GS for
Nonlinear Error Feedback Coupling of the Form
( f (x1(t − τ2)) − f (x2(t − τ2)))

Next we demonstrate the existence of the above types of distinct characteristic tran-
sitions for nonlinear coupling configurations as well. For this purpose, we consider
the unidirectional nonlinear error feedback coupling of the form

ẋ1(t) = − ax1(t)+ b1 f (x1(t − τ1)), (9.11a)

ẋ2(t) = − ax2(t)+ b2 f (x2(t − τ2))+ b3( f (x1(t − τ2))− f (x2(t − τ2))),

(9.11b)

ẋ3(t) = − ax3(t)+ b2 f (x3(t − τ2))+ b3( f (x1(t − τ2))− f (x3(t − τ2))),

(9.11c)

where f (x) is again of the same piecewise linear form as in Eq. (3.2). The param-
eters are now fixed as a = 1.0, b1 = b2 = 1.2, τ1 = 20 and the coupling delay
τ2 = 25, where the delays alone form the parameter mismatch between the drive
and response systems in Eqs. (9.11). Following Krasovskii-Lyapunov theory, for
complete synchronization so that the manifold Δ = x3(t) − x2(t) between the
response x2(t) and the auxiliary x3(t) approaches zero, one can obtain the stability
condition as

a >
∣∣(b2 − b3) f ′(x2(t − τ2))

∣∣ . (9.12)

Consequently from the form of the piecewise linear function (3.2), the stability con-
dition (9.12) becomes a > |1.5(b2 − b3)| > |(b2 − b3)|. Thus one can take

a > |b2 − b3| (9.13)

as less stringent condition for (9.12) to be valid, while

a > |1.5b2 − 1.5b3| (9.14)

can be considered as the most general condition specified by (9.12) for asymptotic
stability of the synchronized state Δ = x2(t)− x3(t) = 0. For the chosen values of
the parameters, the less stringent stability condition (9.13) is satisfied for the values
of the coupling strength b3 ∈ (0.2, 0.535) and the general stability condition (9.14)
is satisfied for b3 > 0.535.
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Fig. 9.11 Dynamics in the phase space of the systems (9.11). (a) and (b) Approximate GS and
CS, respectively, for the value of the coupling strength b3 = 0.37. (c) and (d) Perfect GS and CS,
respectively, for the value of the coupling strength b3 = 0.8

As the coupling strength is increased from zero, approximate GS occurs from
b3 > 0.2. Figure 9.11a shows the approximate GS (IGS) between the drive x1(t)
(Eq. (9.11a)) and the response x2(t) (Eq. (9.11b)) systems for the value of the cou-
pling strength b3 = 0.37, while the approximate CS between the response x2(t)
(Eq. (9.11b)) and the auxiliary x3(t) (Eq. (9.11c)) systems is shown in Fig. 9.11b.
Perfect GS and perfect CS are shown in Fig. 9.11c,d respectively for b3 = 0.8.
The intermittent dynamics exhibited by the coupled systems at the transition regime
is shown in Fig. 9.12, which shows bursts at the period approximately equal to
the delay time of the response system x2(t) for bursts of amplitude greater than
|0.01| (Fig. 9.12b). The statistical distribution of the laminar phases away from the
intermittent bursts shows an asymptotic −1.5 power law behavior for the threshold
value Δ = 0.0001 (see Fig. 9.12c), typical for on-off intermittency, which is shown
in Fig. 9.13.

Now, the intermittency transition is again characterized using the probabil-
ity of synchronization and the subLyapunov exponents as in the previous cases.
Figure 9.14a shows the probability of synchronization Φ(b3), the value of which
remains zero in the range b3 ∈ (0, 0.2) due to the fact that there lacks any entrain-
ment between the response x2(t) and the auxiliary x3(t) systems, whereas it fluc-
tuates between the two extreme values in a rather broad range of the coupling
strength b3 ∈ (0.2, 0.42), depicting the existence of intermittency transition in the
corresponding range of b3. Perfect CS exists for b3 > 0.42 as evidenced from
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Fig. 9.12 The intermittent
dynamics of the response
x2(t) (9.11b) and auxiliary
x3(t) (9.11c) systems for the
value of the coupling strength
b3 = 0.37 for nonlinear error
feedback coupling. (a) Time
traces of the difference
x2(t)− x3(t) corresponding
to Fig. 9.11b, (b) Enlarged in
x scale to show bursts at
periodic intervals when bursts
of larger amplitudes
Δ > |0.01| are considered
and (c) Enlarged in y scale to
show random bursts when
bursts of smaller amplitudes
Δ < |0.01| are considered
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Fig. 9.13 The statistical
distribution of laminar phases
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Fig. 9.14 (a) The probability of synchronization Φ(b3) between the response x2(t) (9.11b) and
the auxiliary x3(t) (9.11c) systems and (b) Largest Lyapunov exponents of the coupled drive x1(t)
and response x2(t) systems (9.11a) and (9.11b)

the maximum value of Φ(b3). Correspondingly there exists perfect GS between
the drive x1(t) and the response x2(t) systems. Figure 9.14b shows the transition
of subLyapunov exponents of the spectrum of Lyapunov exponents of the cou-
pled drive x1(t) (Eq. (9.11a)) and the response x2(t) (Eq. (9.11b)) systems. The
subLyapunov exponents become negative in the range b3 ∈ (0.2, 0.42) confirming
the broad range intermittency (IGS) transition in a rather wide range of the coupling
strength and this is again due to the gradual stabilization of the unstable periodic
orbits of the response systems because of the less significant contribution of the cou-
pling strength b3 as the error becomes gradually smaller from the transition regime
beyond certain threshold value of the coupling strength as discussed in Sect. 9.5.
The robustness of the intermittency transition with the system parameter b2 and the
coupling delay τ2 as a function of coupling strength b3 is shown as 3-dimensional
plots in Fig. 9.15.

9.8 Narrow Range Intermittency Transition to GS for Nonlinear
Direct Feedback Coupling of the Form f (x1(t − τ2))

Now we consider the unidirectional nonlinear coupling of the form
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Fig. 9.15 The probability of
synchronization Φ(b3) in
3-dimensional plots (a) as a
function of the system
parameter b2 and the
coupling strength b3 and (b)
as a function of the coupling
delay τ2 and the coupling
strength b3 for the case of
nonlinear error feedback
coupling configuration given
by Eq. (9.11), showing broad
range intermittency transition
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ẋ1(t) = − ax1(t)+ b1 f (x1(t − τ1)), (9.15a)

ẋ2(t) = − ax2(t)+ b2 f (x2(t − τ2))+ b3 f (x1(t − τ2)), (9.15b)

ẋ3(t) = − ax3(t)+ b2 f (x3(t − τ2))+ b3 f (x1(t − τ2)). (9.15c)

Choosing the values of the parameters as in the previous case and following
Krasvoskii-Lyapunov functional approach for the asymptotically stable synchro-
nized state Δ = x3(t)− x2(t) = 0, one can obtain a sufficient condition for asymp-
totic stability for complete synchronization of the response x2(t) and the auxiliary
x3(t) systems as

a >
∣∣b2 f ′(x2(t − τ2))

∣∣ . (9.16)

The above stability condition rapidly leads to immediate transition to synchro-
nized state even for very feeble values of the coupling strength b3 for the parameter
values satisfying the stability condition (9.16) as the stability condition is indepen-
dent of b3 as in the previous linear coupling case (Sect. 9.6). Hence it is difficult to
identify the possible dynamical transitions to synchronized state as a function of the
coupling strength b3. So we study the synchronization transition as a function of the
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Fig. 9.16 Dynamics in the phase space of the systems (9.15). (a, b) Approximate GS and CS for
the value of the coupling strength b3 = 0.78 and (c, d) Perfect GS and CS for the value of the
coupling strength b3 = 0.9

coupling strength b3 by choosing the parameters violating the stability condition as
a = 1.0, b1 = 1.2, b2 = 1.1 and τ1 = τ2 = 15.

As b3 is varied from zero for the above values of the parameters, transition
from desynchronized state to approximate GS occurs for b3 > 0.74. The approxi-
mate GS (IGS) between the drive x1(t) and the response x2(t) variables described
by Eqs.(9.15a) and (9.15b) is shown in Fig. 9.16a, whereas Fig. 9.16b shows
the approximate CS between the response x2(t) and the auxiliary x3(t) variables
(Eqs. (9.15a) and (9.15c)) for the value of the coupling strength b3 = 0.78. Perfect
GS and perfect CS are shown in Fig. 9.16c, d respectively for b3 = 0.9. Time traces
of the difference x2(t) − x3(t) corresponding to approximate CS (Fig. 9.16b) is
shown in Fig. 9.17, which shows intermittent dynamics with the entrainment of the
dynamical variables in random time intervals of finite duration. Fig. 9.17b shows
the enlarged picture of part of Fig. 9.17a. The statistical distribution of the laminar
phases again shows a universal asymptotic −1.5 power law behavior for the thresh-
old value |Δ| = 0.0001, typical for on-off intermittency, as shown in Fig. 9.18.

As in the previous cases, now we characterize the intermittency transition to GS
using the notion of probability of synchronization Φ(b3) and from the changes in
the sign of subLyapunov exponents in the spectrum of Lyapunov exponents of the
coupled time-delay systems. Figure 9.19a shows the probability of synchroniza-
tion Φ(b3) as a function of the coupling strength b3 calculated from the response
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Fig. 9.17 The intermittent
dynamics of the response
x2(t) (9.15b) and auxiliary
x3(t) (9.15c) systems for the
value of the coupling strength
b3 = 0.78. (a) and (b) Time
traces of the difference
x2(t)− x3(t) corresponding
to Fig. 9.16b
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Fig. 9.18 The statistical
distribution of laminar phases
for the Fig. 9.17
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x2(t) and the auxiliary x3(t) variables (Eqs. (9.15b) and (9.15c)) for CS between
them. In the range of b3 ∈ (0, 0.74), the probability of synchronization remains
approximately zero. Upon increasing the value of b3, Φ(b3) oscillates in the nar-
row range of b3 ∈ (0.74, 0.78) depicting the existence of intermittency transi-
tion. This narrow range transition is also confirmed from the transition of succes-
sive largest subLyapunov exponents. The spectrum of the first nine largest Lya-
punov exponents λmax of the coupled drive x1(t) and response x2(t) variables (Eqs.
(9.15a) and (9.15b)) is shown in Fig. 9.19b. It is also evident from the spectrum
that the subLyapunov exponents suddenly become negative in the narrow range of
b3 ∈ (0.74, 0.78), and then reach saturation values for b3 > 0.78. This confirms the
narrow range intermittency (IGS) transition to GS. This is also in accordance with
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Fig. 9.19 (a) The probability
of synchronization Φ(b3)

between the response x2(t)
(9.15b) and the auxiliary
x3(t) (9.15c) systems and (b)
Largest Lyapunov exponents
of the coupled drive x1(t) and
response x2(t) systems
(9.15a) and (9.15b)
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the immediate stabilization of all the UPO’s of the response system as discussed in
Sect. 9.6.

The robustness of the transition with the system parameter b2 and the delay time
τ2 as a function of coupling strength b3 is shown as 3-dimensional plots in Fig. 9.20.

9.9 Intermittency Transition to Generalized Synchronization:
Mackey-Glass & Ikeda Systems

In this section, we will show that the intermittency transition to GS exhibits char-
acteristically distinct behaviors (as before) in both the coupled Mackey-Glass and
the coupled Ikeda time-delay systems for different kinds of couplings. In particu-
lar, intermittency transition occurs in a broad range of coupling strength for error
feedback coupling configurations and in a narrow range of coupling strength for
direct feedback coupling configurations, beyond a certain threshold value of the
coupling strength. In addition, the intermittent dynamics is characterized by peri-
odic bursts away from the temporal synchronized state with period equal to the
delay time of the response system in the case of broad range intermittency transition
whereas it is characterized by random time intervals in the case of narrow range
intermittency transition. These transitions have also been investigated analytically
using Krasvoskii-Lyapunov functional approach and numerically by the probability
of synchronization. The robustness of these transitions with the system parame-
ters in both the error feedback and direct feedback coupling configurations are also
shown.
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9.9.1 Broad Range Intermittency Transition to GS

To be specific, we first consider the unidirectional, linearly coupled systems of the
form Eq. (9.1) with the drive x1(t), response x2(t), and auxiliary x3(t), variables
where the nonlinear function f (x) is now of the form (8.15) for the Mackey-Glass
system and (8.16) for the Ikeda system.

In Sect. 9.2, we have chosen the parameter mismatch in the time-delays τ1 and
τ2 alone for the sake of simplicity. Now we have chosen the parameter mismatch in
both the parameters b1 and b2, and τ1 and τ2, that is b1 �= b2 and τ1 �= τ2 to show
the generality of the obtained results.

The stability condition (9.5) obtained in Sect. 9.3 for the existence of GS holds
good in the above cases of coupled Mackey-Glass and Ikeda systems as well, except
that the derivatives of the function f (x) have now different forms. From the stability
condition (9.5), it is not possible to identify analytically the regions of approximate
and exact GS unlike the case of piecewise linear time-delay system. However, it is
also possible find the value of f ′(xmax ) by identifying the maximal value of x(t)
numerically from the corresponding attractors as discussed in Sect. 8.4 of Chap. 8.
From the value of f ′(xmax ), the value of parameters b2 and b3 satisfying the stability
condition a + b3 >

∣∣b2 f ′(x2(t − τ2))
∣∣ for fixed value of a can be determined.

Nevertheless, one can numerically vary the coupling strength b3 for fixed values of

Fig. 9.20 The probability of
synchronization Φ(b3) in
3-dimensional plots (a) as a
function of the system
parameter b2 and the
coupling strength b3 and (b)
as a function of the coupling
delay τ2 and the coupling
strength b3 for the case of
nonlinear direct feedback
coupling configuration given
by Eq. (9.15) showing narrow
range intermittency
transition to GS
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all other parameters and identify the regions of intermittency transition to GS. To
start with, we will discuss the results for coupled Mackey-Glass systems which is
then followed by the results of coupled Ikeda systems.

9.9.1.1 Coupled Mackey-Glass System

In our analysis, we have fixed the values of the parameters in Eq. (9.1) as a = 0.1,
b1 = 0.2, b2 = 0.198, τ1 = 25, τ2 = 30 and varied the coupling strength b3 which
is now treated as the control parameter. As the value of b3 is increased from zero
numerically, intermittency transition (approximate GS) appears for b3 > 0.06 and
complete GS appears for b3 > 0.094. Approximate GS between the drive x1(t)
and the response x2(t) is shown in Fig. 9.21a for the value of the coupling strength
b3 = 0.084 whereas approximate CS between the response x2(t) and the auxil-
iary x3(t) systems is shown in Fig. 9.21b. Perfect GS and perfect CS are shown in
Fig. 9.21c, d respectively for b3 = 0.1. The time trace of the difference variable
Δ = x2(t)− x3(t) is plotted in Fig. 9.22 corresponding to Fig. 9.21b. It is seen from
Fig. 9.22 that the intermittent dynamics displays bursts at periodic intervals of time
equal (approximately) to the delay time of the response system when “on” states of
amplitude greater than certain threshold value for Δ is considered. It is to be noted
that clear distinction between the on and off states contributing to periodic bursts
cannot be made from the Fig. 9.22 for the chosen value of the time-delay. However,
similar intermittent dynamics with bursts at periodic intervals is also observed in the
coupled Mackey-Glass system with the same coupling configurations as in Eq. (9.1)
for large delays [16].

The statistical features associated with the intermittent dynamics is again ana-
lyzed by calculating the distribution of laminar phasesΛ(t)with amplitude less than
a threshold value of Δ. A universal asymptotic power law distribution Λ(t) ∝ t−α
is observed for the threshold value |Δ| = 0.0001 with the value of the exponent
α = −1.5 as shown in Fig. 9.23, which is quite typical for on-off intermittency.
Figure 9.24 shows the probability of synchronization Φ(b3) for the above param-
eter values of the coupled Mackey-Glass system. For the range of b3 ∈ (0, 0.06),
the value of Φ(b3) is nearly zero due to the absence of any correlation between the
response and the auxiliary systems. However, for b3 > 0.06 there appears oscil-
lations in the value of the probability of synchronization Φ(b3) between zero and
some finite values less than unity, exhibiting intermittency transition to GS in the
range of the coupling strength b3 ∈ (0.06, 0.094). Above b3 > 0.094, the value of
probability of synchronization attains unit value indicating perfect GS. It is to be
noted that the intermittency transition occurs here also in a rather broad range of the
coupling strength.

The robustness of the intermittency transition in a broad range of coupling
strength with the system parameter b2 ∈ (0.196, 0.204) and with the coupling delay
τ2 ∈ (25, 30) has also been confirmed. Figure 9.25a shows the 3-dimensional plot
of the probability of synchronization as a function of the system parameter b2 and
the coupling strength b3, while Fig. 9.25b shows the 3-dimensional plot ofΦ(b3) as
a function of the coupling delay τ2 and the coupling strength b3. The above figures
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Fig. 9.21 Dynamics in the phase space of the systems (9.1) for the functional form of the Mackey-
Glass system (8.15). (a) and (b) Approximate GS and CS, respectively, for the value of the coupling
strength b3 = 0.084. (c) and (d) Perfect GS and CS, respectively, for the value of the coupling
strength b3 = 0.1

(Fig. 9.25) clearly reveal the broad range intermittency transition to GS in the case
of linear error feedback coupling scheme.

9.9.1.2 Coupled Ikeda Systems

Next we will demonstrate the existence of broad range intermittency transition to
GS in the coupled Ikeda system (see Eq.(7.19)) for the linear error feedback cou-
pling configuration of the form given in Eq. (9.1b). We have fixed the values of
the parameters at a = 1.0, b1 = 20, b2 = 22, τ1 = 10, τ2 = 5 and varied
the coupling strength b3 as the control parameter. As the value of b3 is increased
from zero, again intermittency transition (approximate GS) is observed in a broad
range of b3 ∈ (8, 9.4), and for b3 > 9.4 perfect GS is observed. Approximate
GS and approximate CS are shown in Fig. 9.26a, b, respectively, for the value of
the coupling strength b3 = 9 whereas perfect GS and perfect CS are plotted in
Fig. 9.26c, d, respectively, for b3 = 10. The time trace of the difference variable
Δ = x2(t) − x3(t) corresponding to Fig. 9.26b is shown in Fig. 9.27. It is evi-
dent from Fig. 9.27b, which is an enlarged part of Fig. 9.27a, that the intermittent
dynamics displays bursts at periodic intervals with period approximately equal to
the delay time of the response system t ≈ τ2 = 5 when bursts of larger amplitudes
are considered. The statistical features associated with the intermittent dynamics



9.9 Intermittency Transition to Generalized Synchronization 189

Fig. 9.22 The intermittent
dynamics of the response
x2(t) and auxiliary x3(t)
systems for the value of the
coupling strength
b3 = 0.084. (a) Time traces
of the difference
x2(t)− x3(t) corresponding
to Fig. 9.21b and (b)
Enlarged in x scale to show
bursts at periodic intervals
when bursts of larger
amplitudes are considered
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in Fig. 9.27 shows a universal asymptotic −1.5 power law behavior for bursts of
amplitude |Δ| > 0.0001 as shown in Fig. 9.28. The intermittency transition is also
characterized by the probability of synchronization Φ(b3) as shown in Fig. 9.29.
Upto the threshold value b3 = 8, the value of Φ(b3) is zero corresponding to the
asynchronous state of the response and auxiliary systems. There exist oscillations in
the value of Φ(b3) in the broad range of b3 ∈ (8, 9.4), confirming the intermittency
transition to GS. Beyond b3 > 9.4, the probability of synchronizationΦ(b3) reaches
unit value showing the existence of perfect GS between the drive and the response
systems.

Fig. 9.23 The statistical
distribution of laminar phases
for the Fig. 9.22
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Fig. 9.24 The probability of
synchronization Φ(b3)

between the response x2(t)
and the auxiliary x3(t)
systems for the coupled
Mackey-Glass systems
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The robustness of the intermittency transition in a broad range of coupling
strength with the system parameter b2 ∈ (20, 25) and with the coupling delay
τ2 ∈ (5, 10) has also been confirmed from Fig. 9.30. The 3-dimensional plot of the
probability of synchronization as a function of the system parameter b2 and the cou-
pling strength b3 is shown in Fig. 9.30a, while Fig. 9.30b shows the 3-dimensional
plot of Φ(b3) as a function of the coupling delay τ2 and the coupling strength b3.
The above figures (Fig. 9.30) clearly reveal the broad range intermittency transition
to GS in the case of linear error feedback coupling scheme.

9.9.2 Narrow Range Intermittency Transition to GS

To illustrate the narrow range intermittency transition to GS in coupled Mackey-
Glass and Ikeda time-delay systems, we consider the unidirectional linear direct
feedback coupling of the form Eq. (9.9) given in Sect. 9.6 with the functional form
(8.15) for the Mackey-Glass system and (8.16) for the Ikeda system. One can obtain
the same stability condition (9.10) as in the case of piecewise linear time-delay
system discussed in Sect. 9.6. For the reasons stated in Sect. 9.6, we proceed numer-
ically by varying the coupling strength b3 in order to identify the mechanism of
synchronization transition and to demarcate the regions of approximate and perfect
synchronization regions in the parameter space.

We have fixed the same values for the parameters of the coupled Mackey-Glass
system as in the previous section and increased the value of the coupling strength
b3 from zero. Intermittency transition (approximate GS) is found only in the narrow
range of the coupling strength b3 ∈ (0.06, 0.064), and for b3 > 0.064 perfect GS is
observed. Approximate GS is shown in Fig. 9.31a and approximate CS is shown in
Fig. 9.31b for the value b3 = 0.062, whereas perfect GS and perfect CS are shown
in Fig. 9.31c, d, respectively, for the value of the coupling strength b3 = 0.07.
The time trajectory of the difference variable Δ = x2(t) − x3(t) corresponding to
Fig. 9.31b is shown in Fig. 9.32. The intermittent bursts appear at random time inter-
vals as seen from Fig. 9.32b. The statistical distribution of the laminar phases shows
a universal asymptotic −1.5 power law behavior as seen in Fig. 9.33 when bursts
of amplitude less than a certain threshold value |Δ| = 0.0001 are considered. The
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Fig. 9.25 The probability of synchronization Φ(b3) in 3-dimensional plots for the Mackey-Glass
system (a) as a function of the system parameter b2 and the coupling strength b3 and (b) as a
function of the coupling delay τ2 and the coupling strength b3, exhibiting broad range intermittency
transition to GS for linear error feedback coupling

narrow range intermittency transition for the linear direct feedback coupling config-
uration is also characterized by the probability of synchronizationΦ(b3) as shown in
Fig. 9.34. It is evident from Fig. 9.34 that the value ofΦ(b3) fluctuates between zero
and some finite value less than unity in the narrow range of the coupling strength
b3 ∈ (0.06, 0.064) confirming the existence of narrow range intermittency transition
to GS. For b3 > 0.064, the value of Φ(b3) attains unity indicating the existence of
perfect GS. The robustness of the intermittency transition in a narrow range of the
coupling strength b3 for a range of values of the parameter b2 ∈ (0.196, 0.204)
and the delay τ1 = τ2 ∈ (25, 30) is shown in Fig. 9.35. The 3-dimensional plot
of the probability of synchronization as a function of the system parameter b2
and the coupling strength b3 is shown in Fig. 9.35a, while Fig. 9.35b shows the
3-dimensional plot of Φ(b3) as a function of the coupling delay τ2 and the coupling
strength b3.
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Fig. 9.26 Dynamics in the phase space of the systems (9.1) for the functional form of the Ikeda
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Fig. 9.27 The intermittent
dynamics of the response
x2(t) and auxiliary x3(t)
systems for the value of the
coupling strength b3 = 9.
(a) Time traces of the
difference x2(t)− x3(t)
corresponding to Fig. 9.26b
and (b) Enlarged in x scale to
show bursts at periodic
intervals when bursts of
larger amplitudes are
considered
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Fig. 9.28 The statistical
distribution of laminar phases
for the Fig. 9.27
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Fig. 9.29 The probability of
synchronization Φ(b3)

between the response x2(t)
and the auxiliary x3(t)
systems for the functional
form of Ikeda system (8.16),
that is f (x) = sin(x)
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Next, we will show the existence of narrow range intermittency transition in lin-
ear direct feedback coupling configuration for the Ikeda system. The values of the
parameters are now fixed as a = 1.0, b2 = 20, b2 = 5, τ1 = 3, τ2 = 2 and the
coupling strength b3 is varied to study the nature of transition in the coupled Ikeda
systems (9.9) and (8.16). As the coupling strength is increased from zero, intermit-
tency transition is observed in the range of b3 ∈ (6, 6.2) and for b3 > 6.2 perfect
GS is observed. Approximate GS and approximate CS are shown in Fig. 9.36a, b,
respectively, for the value of the coupling strength b3 = 6.1, while perfect GS and
perfect CS are seen in Fig. 9.36c, d respectively for b3 = 7. The time traces of
the difference variable Δ is shown in Fig. 9.37 corresponding to Fig. 9.36b. The
enlarged part of Fig. 9.37a is shown in Fig. 9.37b to show that the intermittent burst
appears at random time intervals in this case of narrow range intermittency transition
to GS. The corresponding intermittent dynamics is also characterized by a universal
asymptotic −1.5 power law behavior as shown in Fig. 9.38 when bursts of amplitude
less than a certain threshold value Δ = |0.0001| are considered. The narrow range
intermittency transition is also characterized by the probability of synchronization
Φ(b3) as a function of the coupling strength as shown in Fig. 9.39. The value of
Φ(b3) is practically zero in the range b3 ∈ (0, 6) attributing to the desynchronized
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Fig. 9.30 The probability of synchronization Φ(b3) in 3-dimensional plots for Ikeda system (a)
as a function of the system parameter b2 and the coupling strength b3 and (b) as a function of the
coupling delay τ2 and the coupling strength b3, exhibiting broad range intermittency transition to
GS for linear error feedback coupling

state and it also oscillates between zero and finite value less than unity indicating
the intermittency transition in the narrow range b3 ∈ (6, 6.2). For b3 > 6.2, the
value of probability of synchronization reaches unit value indicating the existence
of perfect GS. The robustness of the intermittency transition in a narrow range of the
coupling strength b3 for a range of values of the parameter b2 ∈ (5, 10) and the delay
τ1 = τ2 ∈ (5, 10) is shown in Fig. 9.40. The 3-dimensional plot of the probability of
synchronization as a function of the system parameter b2 and the coupling strength
b3 is shown in Fig. 9.40a, while Fig. 9.40b shows the 3-dimensional plot of Φ(b3)

as a function of the coupling delay τ2 and the coupling strength b3.
To summarize, broad range intermittency transition to GS for the case of nonlin-

ear error feedback coupling configuration and narrow range intermittency transition
to GS for the case of nonlinear direct feedback coupling configuration have also
been observed for both the Mackey-Glass and Ikeda systems as in the case of piece-
wise linear time-delay systems. The intermittent dynamics is also characterized by
bursts at periodic intervals approximately equal to the delay time of the response
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Fig. 9.31 Dynamics in the phase space of the systems (9.9) for the functional form of the Mackey-
Glass system (8.15). (a) and (b) Approximate GS and CS, respectively, for the value of the coupling
strength b3 = 0.062. (c) and (d) Perfect GS and CS, respectively, for the value of the coupling
strength b3 = 0.07

Fig. 9.32 The intermittent
dynamics of the response
x2(t) and auxiliary x3(t)
systems for the value of the
coupling strength
b3 = 0.062. (a) Time traces
of the difference
x2(t)− x3(t) corresponding
to Fig. 9.31b and (b)
Enlarged in x scale to show
bursts at random intervals

–0.001

 0

0.001

1000 2000 3000 4000 5000 6000

x 2
(t

)–
x 3

(t
)

t

(a)

–0.001

0

0.001

2000 2200 2400 2600 2800 3000
t

(b)

x 2
(t

)–
x 3

(t
)



196 9 Intermittency Transition to Generalized Synchronization

Fig. 9.33 The statistical
distribution of laminar phases
for the Fig. 9.32
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between the response x2(t)
and the auxiliary x3(t)
systems for the functional
form of Mackey-Glass
system (8.15) with the linear
direct feedback coupling as in
Eq. (9.9)
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Fig. 9.35 The probability of
synchronization Φ(b3) in
3-dimensional plots for the
coupled Mackey-Glass
system (a) as a function of the
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coupling strength b3 and (b)
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range intermittency transition
to GS for linear error
feedback coupling
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Fig. 9.36 Dynamics in the phase space of the systems (9.9) for the functional form of the Ikeda
system (8.16). (a) and (b) Approximate GS and CS, respectively, for the value of the coupling
strength b3 = 6.1. (c) and (d) Perfect GS and CS, respectively, for the value of the coupling
strength b3 = 7

Fig. 9.37 The intermittent
dynamics of the response
x2(t) and auxiliary x3(t)
systems for the value of the
coupling strength b3 = 6.1.
(a) Time traces of the
difference x2(t)− x3(t)
corresponding to Fig. 9.36b
and (b) Enlarged in x scale to
show bursts at random
intervals
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Fig. 9.38 The statistical
distribution of laminar phases
for the Fig. 9.37
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systems for the functional
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with the linear direct
feedback coupling as in
Eq. (9.9)
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system in the case of broad range intermittency transition and by random time
intervals in the case of narrow range intermittency transition for nonlinear coupling
configuration.
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Chapter 10
Transition from Phase to Generalized
Synchronization

10.1 Introduction

Chaotic phase synchronization (CPS) has become the focus of recent research as it
plays a crucial role in understanding the behavior of a large class of weakly inter-
acting dynamical systems in diverse natural systems including circadian rhythm,
cardio-respiratory systems, neural oscillators, population dynamics, etc [1–3]. The
definition of CPS is a direct extension of the classical definition of synchronization
of periodic oscillations and can be referred to as entrainment between the phases
of interacting chaotic systems, while the amplitudes remain chaotic and, in general,
non-correlated [4] (see also Appendix B).

The notion of CPS has been investigated mainly in oscillators driven by external
periodic force [5, 6], chaotic oscillators with different natural frequencies and/or
with parameter mismatches [7–10], arrays of coupled chaotic oscillators [4, 11]
and also in essentially different chaotic systems [12, 13]. In addition CPS has
also been demonstrated experimentally in various systems, such as electrical cir-
cuits [12, 14–16], lasers [17, 18], fluids [19], biological systems [20, 21], climatol-
ogy [22], etc. On the other hand CPS in nonlinear time-delay systems, have been
identified only very recently. A main problem here is to define even the notion of
phase in time-delay systems due to the intrinsic multiple characteristic time scales in
these systems. Studying CPS in such chaotic time-delay systems is of considerable
importance in many fields, as in understanding the behavior of nerve cells (neuro-
science), in physiological studies, in ecology, in lasers, etc [1–3, 23–27], where
memory effects play a prominent role.

In this chapter we will present the progress on the identification and exis-
tence of CPS in coupled piecewise-linear time-delay systems with parameter mis-
matches [28]. We will show the entrainment of phases of the coupled systems
from asynchronous state and its subsequent transition to generalized synchroniza-
tion (GS) as a function of the coupling strength. Phase of the piecewise linear
time-delay system is calculated using the Poincaré method after a newly introduced
transformation of the corresponding attractors, which transforms the original non-
phase-coherent attractors of both the systems into smeared limit cycle like attractors.
Further, the existence of CPS and GS is characterized by recently proposed methods
based on recurrence quantification analysis and in terms of Lyapunov exponents of
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the coupled time-delay systems. Then, CPS and GS are demonstrated in the case of
coupled Mackey-Glass and Ikeda systems.

10.2 Phase-Coherent and Non-phase-coherent Attractors

In this section, we will first make clear the distinction between the terminologies
phase-coherent and non-phase-coherent chaotic attractors, which occur repeatedly
in this chapter.

The distinction between phase-coherent and non-phase-coherent chaotic attrac-
tors depends on the topology of the corresponding chaotic attractor. If the projected
attractor onto the phase space resembles that of a smeared limit cycle, where the
phase point always rotates around a fixed origin with monotonically increasing
phase, then the corresponding attractor is referred to as a phase-coherent attractor
in the literature [1, 2, 4, 8, 29, 30]. Consequently, the phase of such phase-coherent
chaotic attractors can be introduced straightforwardly as discussed below in the next
section. On the other hand, the structure of a non-phase-coherent chaotic attrac-
tor does not look like a smeared limit cycle with a fixed center around which the
phase point rotates. Most importantly such a non-phase-coherent chaotic attractor
is not characterized by a monotonically increasing phase. Hence the phase of such
a non-phase-coherent attractor cannot be defined straightforwardly as in the case
of a phase-coherent attractor. So specialized techniques/tools have to identified to
introduce phase in non-phase-coherent attractors.

As an example, let us consider the widely studied Rössler system in the context
of phase synchronization with standard parameters [4, 8]. The underlying coupled
dynamical equations are the following,

ẋ1,2 = −ω1,2 y1,2 − z1,2 + C(x2,1 − x1,2), (10.1a)

ẏ1,2 = ω1,2x1,2 + ay1,2, (10.1b)

ż1,2 = 0.2 + z1,2(x1,2 − 10). (10.1c)

The topology of the attractor is determined by the parameter a. For a = 0.15,
a phase-coherent attractor (Fig. 10.1a) is observed with rather simple topological
properties [31, 32] and hence the phase can be calculated straightforwardly. The
topology of the Rössler attractor changes dramatically if the parameter a exceeds
the value 0.21 and the phase in this case is not well defined. Funnel (non-phase-
coherent) attractor for the value a = 0.25 is shown in Fig. 10.1b. There are large
and small loops (see Fig. 10.1b) on the (x, y) plane and it is not obvious which phase
gain should be attributed to these loops and hence phase cannot be calculated simply
as in the case of the phase-coherent chaotic attractor (Fig. 10.1a). One way of cal-
culating the phase for the funnel attractor (Fig. 10.1b) is to use Eq. (10.7) discussed
in the next section. As a second example, one may refer to the butterfly attractor
of the Lorenz system discussed in the next section and the transformation (10.6)



10.3 CPS in Chaotic Systems 203

−15

 0

 15

−15 0 15

y(
t)

x(t)

(a)

−20

−10

 0

 10

 20

−20 −10 0 10 20

y(
t)

x(t)

(b)

Fig. 10.1 Phase-coherent and funnel (non-phase-coherent) Rössler attractors with parameters (a)
a = 0.15 and (b) a = 0.25

given below. When higher dimensional systems are considered, they will very often
exhibit more complicated attractors with more than one positive Lyapunov exponent
and they often fall in the class of non-phase-coherent attractors.

10.3 CPS in Chaotic Systems

The definition of CPS (chaotic phase synchronization) in coupled chaotic systems
is derived from the classical definition of phase synchronization in periodic oscil-
lators. Interacting chaotic systems are said to be in phase synchronized state when
there exists entrainment between phases of the systems, while their amplitudes may
remain chaotic and uncorrelated. In other words, CPS exists when their respective
frequencies and phases are locked [1, 2, 4]. To study CPS, one has to identify a
well defined phase variable in both the coupled systems. If the flow of the chaotic
oscillators has a proper rotation around a certain reference point, the phase can be
defined in a straightforward way. For example, for the Rössler system (10.1) with
standard parameters the projection of the chaotic attractor on the (x, y) plane looks
like a smeared limit cycle (Fig. 10.1a). In this and similar cases one can define the
phase [1, 2] as

φ(t) = arctan(y(t)/x(t)). (10.2)

A more general approach to define the phase in chaotic oscillators is the analytic
signal approach [1, 2] introduced in [33]. The analytic signal χ(t) is given by

χ(t) = s(t)+ i s̃(t) = A(t) expiΦ(t), (10.3)

where s̃(t) denotes the Hilbert transform of the observed scalar time series s(t),

s̃(t) = 1

π
P.V .

∫ ∞

−∞
s(t ′)
t − t ′

dt ′, (10.4)



204 10 Transition from Phase to Generalized Synchronization

where P.V. stands for the Cauchy principle value of the integral and this method is
especially useful for experimental applications [1, 2].

The phase of a chaotic attractor can also be defined based on an appropriate
Poincaré section which the chaotic trajectory crosses once for each rotation. Each
crossing of the orbit with the Poincaré section corresponds to an increment of 2π of
the phase, and the phase in between two crossings is linearly interpolated [1, 2],

Φ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1) (10.5)

where tk is the time of kth crossing of the flow with the Poincaré section. For the
phase coherent chaotic oscillators, that is, for flows which have a proper rotation
around a certain reference point, the phases calculated by the above three different
ways are in good agreement [1, 2]. However, we often come across non-phase-
coherent attractors where one cannot encounter flows with a proper rotation around
a fixed reference point (with the origin coinciding with the center of rotation), in
which case a single characteristic time scale does not exist in general. In such cir-
cumstances it is difficult or impossible to find a proper center of rotation and it
is also intricate to find a Poincaré section that is crossed transversally by all the
trajectories of the chaotic attractor. Therefore the above definitions of phase are no
longer applicable for non-phase-coherent chaotic attractors.

However, it has also been demonstrated that certain non-phase-coherent chaotic
attractors can be transformed into smeared limit-cycle like attractors by introducing
a suitable transformation of the original variables. For example, in the case of the
Lorenz system, a transformation of the form

u(t) =
√

x2 + y2 (10.6)

has been introduced in [2] to transform the butterfly attractor into a smeared limit
cycle like attractor and the projected trajectory in the plane (u, z) resembles that of
the Rössler attractor. The butterfly attractor of the Lorenz system for the standard
parameter values is shown in Fig. 10.2a. It is difficult to use the standard approach
to determine the phase of the butterfly attractor since it does not have a single fixed
center of rotation. However, the transformed attractor (Fig. 10.2b) projected in the
plane (u, z) using the above transformation (Eq. (10.6)) resembles that of a smeared
limit cycle like attractor and now the phase of the attractor can be introduced using
the above approaches.

Recently, another definition of the phase based on the general idea of curvature
has been proposed by Osipov et al. [30]. For any two-dimensional curve r = (u, v),
the angle velocity at each point is

ν = (ds/dt)/R,
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Fig. 10.2 (a) Butterfly attractor of the Lorenz system for standard parameter values, and (b) Trans-
formed attractor projected in the plane (u, z) resembling that of smeared limit cycle like attractor

where ds/dt = √
u̇2 + v̇2 is the speed along the curve and R = (u̇2 + v̇2)3/2/(v̇ü −

v̈u̇) is the radius of the curvature. If R > 0 at each point, then

ν = dΦ

dt
= v̇ü − v̈u̇

u̇2 + v̇2

is always positive and hence the variable

Φ =
∫
νdt = arctan

v̇

u̇
(10.7)

is a monotonically increasing function of time and can be considered as the phase
of the oscillator. These definitions of frequency and phase are general for any
dynamical system if the projection of the phase trajectory on some plane is a
curve with a positive curvature. For example, for the non-phase-coherent Rössler
attractor in the funnel regime (Fig. 10.1b), the projections of chaotic trajectories on
the plane (ẋ, ẏ) always rotate around the origin, and the phase can be defined as
Φ = arctan(ẏ/ẋ) [30]. However, it is not clear whether an appropriate plane can
always be found, on which the projected trajectories rotate around the origin for
higher dimensional chaotic systems.

10.4 CPS and Time-Delay Systems

CPS has been studied extensively during the last decade in various nonlinear dynam-
ical systems as discussed in the introduction. However, only a few methods have
been available in the literature [1, 2] (discussed in the previous section) to
calculate the phase of chaotic attractors but unfortunately they are valid only in
the case of phase-coherent chaotic attractors of low-dimensional systems. On the
other hand even the definition of phase itself is not so clear in non-phase-coherent
chaotic attractors and in particular in high-dimensional systems such as time-delay
systems. Correspondingly methods to calculate the phase of non-phase-coherent
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hyperchaotic attractors of time-delay systems are not readily available. The most
promising approach available in the literature to calculate the phase of non-phase-
coherent attractors is based on the concept of curvature [30], discussed above but
this is often restricted to low-dimensional systems. However, one finds that even
this procedure does not work in the case of nonlinear time-delay systems, in gen-
eral, where very often the attractor is non-phase-coherent and high-dimensional. In
the following we will show the existence of CPS in a system of two coupled non-
identical scalar piecewise linear time-delay systems possessing highly non-phase-
coherent hyperchaotic attractors.

We first consider the following unidirectionally coupled drive x1(t) and response
x2(t) systems, which we have discussed in Chap. 3 [34–36],

ẋ1(t) = −ax1(t)+ b1 f (x1(t − τ)), (10.8a)

ẋ2(t) = −ax2(t)+ b2 f (x2(t − τ))+ b3 f (x1(t − τ)), (10.8b)

where b1, b2 and b3 are constants, a > 0, τ is the delay time and f (x) is the
piece-wise linear function of the form (3.2).

We have chosen the values of parameters (same values as studied in [28]) as
a = 1.0, b1 = 1.2, b2 = 1.1 and τ = 15. For this parametric choice, in the absence
of coupling, the drive x1(t) and the response x2(t) systems evolve independently.
Further in this case, both the drive x1(t) and the response x2(t) systems exhibit
hyperchaotic attractors with five and four positive Lyapunov exponents, respec-
tively, i.e. both subsystems are qualitatively different (due to b1 �= b2). The cor-
responding attractors are shown in Fig. 10.3a, b, respectively, which clearly show
the non-phase-coherent nature. The Kaplan and Yorke [37, 38] dimension for the
above attractors turn out to be 8.4085 and 7.007, respectively, obtained by using the
formula

DL = j +
∑ j

i=1 λi∣∣λ j+1
∣∣ , (10.9)

where j is the largest integer for which λ1 + ... + λ j ≥ 0. The parameter b3 is
the coupling strength of the unidirectional nonlinear coupling (10.8b), while the
parameters b1 and b2 play the role of parameter mismatch resulting in nonidentical
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Fig. 10.4 The first ten maximal Lyapunov exponents λmax of (a) the scalar time-delay system
(10.8a) for the parameter values a = 1.0, b1 = 1.2, τ ∈ (2, 29) and (b) the scalar time-delay
system (10.8b) for the parameter values a = 1.0, b1 = 1.1 in the same range of delay time in the
absence of the coupling b3

coupled time-delay systems. The spectrum of the first ten largest Lyapunov expo-
nents of the uncoupled system (10.8a) for the values of the parameters a = 1.0 and
b1 = 1.2 in the range of time-delay τ ∈ (2, 29) is shown again in Fig. 10.4a for
comparison and that of the system (10.8b) for the parameter value b2 = 1.1 and
b3 = 0 in the same range of delay time is also shown in Fig. 10.4b.

Now the task is to identify and to characterize the existence of CPS in the cou-
pled time-delay systems (10.8), possessing highly non-phase-coherent hyperchaotic
attractors, when the coupling is introduced (b3 > 0). In the following we present
three different approaches to study CPS in coupled piecewise linear time-delay sys-
tems (10.8).

10.5 CPS from Poincaré Surface of Section of the Transformed
Attractor

We now introduce a transformation to successfully capture the phase in the present
problem. It transforms the non-phase coherent attractor (Fig. 10.5a) into a smeared
limit cycle-like form with well-defined rotations around one center (Fig. 10.5b).
This transformation is performed by introducing the new state variable
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Transformed attractor in the x1(t +τ) and z(t +τ) space along with the Poincaré points represented
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z(t + τ) = z(t + τ, τ̂ ) = x1(t)x1(t + τ̂ )/x1(t + τ), (10.10)

where τ̂ is an optimal value of delay time to be chosen (so as to rescale the original
non-phase coherent attractor into a smeared limit cycle-like form), and then we plot
the above attractor (Fig. 10.5a) in the (x1(t + τ), z(t + τ)) phase space. The func-
tional form of this transformation (along with a delay time τ̂ ) has been identified by
generalizing the transformation used in the case of chaotic attractors in the Lorenz
system [1], so as to unfold the original non-phase-coherent attractor (Fig. 10.5a) into
a phase-coherent attractor. We find optimal value of τ̂ to be 1.6. It is to be noted that
on closer examination of the transformed attractor (Fig. 10.5b) in the vicinity of the
common center that it does not have any closed loop (unlike the case of the original
attractor (Fig. 10.5a)) even though the trajectories show sharp turns in some regimes
of the phase space. If it is so, such closed loops will lead to phase mismatch, and one
cannot obtain exact matching of phases of both the drive and response systems as
shown in Fig. 10.6 and discussed below. Now the attractor (Fig. 10.5b) looks indeed
like a smeared limit cycle with nearly well defined rotations around a fixed center.

It is to be noted that the above type of transformation (10.10) can be applied to
the non-phase-coherent attractors of any time-delay system in general, except for
the fact that the optimal value of τ̂ should be chosen for each system appropriately.
We have adopted here a geometric approach for the selection of τ̂ and look for an
optimum transform which leads to a phase-coherent structure. This is indeed demon-
strated for the attractor of Mackey-Glass system in the next section. The main point
that we want to stress here is that even for highly non-phase-coherent hyperchaotic
attractors of time-delay systems, one can identify suitable transformations to unfold
the attractor to identify phase.

Therefore, the phase of the transformed attractor can be now defined based on
an appropriate Poincaré section which is transversally crossed by all trajectories
using Eq. (10.5). Open circles in Fig. 10.5b correspond to the Poincaré points of
the smeared limit-cycle-like attractor. Phases, φz

1(t) and φz
2(t), of the drive x1(t)

and the response x2(t) systems, respectively, are calculated from the state variables
z1(t + τ) and z2(t + τ) according to Eq. (10.10). The existence of 1:1 CPS between
the systems (10.8) is characterized by the phase locking condition
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∣∣φz
1(t)− φz

2(t)
∣∣ < const. (10.11)

The phase difference
(
Δφ = φz

1(t)− φz
2(t)
)

between the systems (10.8a) and
(10.8b) is shown in Fig. 10.6 for different values of the coupling strength b3. For
b3 = 0.0 (uncoupled),Δφ increases monotonically as a function of time confirming
that both systems are in an asynchronous state (and that they are also nonidentical)
in the absence of coupling between them. For the values of b3 = 1.0 and 1.3, the
phase slips in the corresponding phase difference Δφ show that the systems are
in a transition state. The strong boundedness of the phase difference specified by
Eq. (10.11) is obtained for b3 > 1.382 and Δφ becomes zero for the value of the
coupling strength b3 = 1.5, showing a high quality CPS.

The mean frequency of the chaotic oscillations is defined as [4, 13]

Ω1,2 =
〈
dφz

1,2(t)/dt
〉
= lim

T →∞
1

T

∫ T

0
φ̇1,2(t)dt, (10.12)

and the 1:1 CPS between the drive x1(t) and the response x2(t) systems can also
be characterized by a weaker condition of frequency locking, that is, the equality
of their mean frequencies Ω1 = Ω2. The mean frequency ratio Ω2/Ω1 and its
difference ΔΩ = Ω2 − Ω1 are shown in Fig. 10.7 as a function of the coupling
strength b3 ∈ (0, 3). It is also evident from this figure that the mean frequency
locking criterion (10.12) is satisfied for b3 > 1.382 and that both the frequency ratio
Ω2/Ω1 and frequency difference ΔΩ show substantial saturation in their values
confirming the strong boundedness in the phases of both the systems.
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10.6 CPS from Recurrence Quantification Analysis

The complex synchronization phenomena in the coupled time-delay systems (10.8)
can also be analyzed by means of the recently proposed methods based on recur-
rence plots [39, 40], see Appendix C also. These methods help to identify and quan-
tify CPS (particularly in non-phase coherent attractors) and GS. For this purpose,
the generalized autocorrelation function P(t) has been introduced in [39, 40] as

P(t) = 1

N − t

N−t∑
i=1

Θ(ε − ||Xi − Xi+t ||), (10.13)

where Θ is the Heaviside function, Xi is the i th data corresponding to either the
drive variable x1 or the response variable x2 specified by Eqs. (10.8) and ε is a
predefined threshold. ||.|| is the Euclidean norm and N is the number of data points.
P(t) can be considered as a statistical measure about how often φ has increased by
2π or multiples of 2π within the time t in the original space. If two systems are in
CPS, their phases increase on the average by K .2π , where K is a natural number,
within the same time interval t . The value of K corresponds to the number of cycles
when ||X (t +T )− X (t)|| ∼ 0, or equivalently when ||X (t +T )− X (t)|| < ε, where
T is the period of the system. Hence, looking at the coincidence of the positions of
the maxima of P(t) for both the systems, one can qualitatively identify CPS.

A criterion to quantify CPS is the cross correlation coefficient between the drive,
P1(t), and the response, P2(t), which can be defined as Correlation of Probability
of Recurrence (CPR),

CPR = 〈P̄1(t)P̄2(t)〉/σ1σ2, (10.14)

where P̄1,2 means that the mean value has been subtracted and σ1,2 are the stan-
dard deviations of P1(t) and P2(t), respectively. If both the systems are in CPS, the



10.6 CPS from Recurrence Quantification Analysis 211

probability of recurrence is maximal at the same time t and CPR ≈ 1. If they are not
in CPS, the maxima do not occur simultaneously and hence one can expect a drift
in both the probability of recurrences and low values of CPR.

When the systems (10.8) are in generalized synchronization, two close states in
the phase space of the drive variable correspond to that of the response. Hence the
neighborhood identity is preserved in phase space. Since the recurrence plots are
nothing but a record of the neighborhood of each point in the phase space, one can
expect that their respective recurrence plots are almost identical. Based on these
facts two indices are defined to quantify GS.

First, the authors of [39] proposed the Joint Probability of Recurrences (JPR),

JPR =
1

N 2

∑N
i, j Θ(εx − ||Xi − X j ||)Θ(εy − ||Yi − Y j ||)− RR

1 − RR
(10.15)

where R R is the rate of recurrence, εx and εy are thresholds corresponding to the
drive and response systems, respectively, and Xi is the i th data corresponding to the
drive variable x1 and Yi is the i th data corresponding to the response variable x2,
specified by Eqs. (10.8). RR measures the density of recurrence points and it is fixed
as 0.02 [39]. JPR is close to 1 for systems in GS and is small when they are not in
GS. The second index depends on the coincidence of the probability of recurrence,
which is defined as Similarity of Probability of Recurrence (SPR),

SPR = 1 − 〈(P̄1(t)− P̄2(t))
2〉/σ1σ2. (10.16)

SPR is of order 1 if both systems are in GS and approximately zero or negative if
they evolve independently.

Now, we will apply these concepts to the original (non-transformed) attractor
(Fig. 10.5a). We estimate these recurrence based measures from 5,000 data points
after sufficient transients with the integration step h = 0.01 and sampling rateΔt =
100. The generalized autocorrelation functions P1(t) and P2(t) (Fig. 10.8a) for the
coupling strength b3 = 0.6 show that the maxima of both systems do not occur
simultaneously and there exists a drift between them, so there is no synchronization
at all. This is also reflected in the rather low value of CPR = 0.381. For b3 ∈
(0.78, 1.381), from Fig. 10.9, we observe the first substantial increase of recurrence
reaching CPR ≈ 0.5 − 0.6. Looking into the details of the generalized correlation
function P(t), we find that now the main oscillatory dynamics becomes locked, i.e.
the main maxima of P1 and P2 coincide. For b3 ∈ (1.382, 2.2), CPR reaches almost
1 as seen in Fig. 10.9, while now the positions of all the maxima of P1 and P2 are
also in coincidence, and this is in accordance with the strongly bounded nature of
phase differences. This is a strong indication for CPS. Note, however that the heights
of the peaks are clearly different (Fig. 10.8b). The differences in the peak heights
indicate that there is no strong interrelation in the amplitudes. Further increase of
the coupling strength (here b3 = 2.21) leads to the coincidence of both the positions
and the heights of the peaks (Fig. 10.8c), confirming the onset of GS in the systems
(10.8). This is also further confirmed by the maximal values of the indices JPR = 1
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Fig. 10.8 Generalized autocorrelation functions of both the drive P1(t) and the response P2(t)
systems. (a) Non-phase synchronization for b3 = 0.6, (b) Phase synchronization for b3 = 1.5 and
(c) Generalized synchronization for b3 = 2.3

and SPR = 1, which is due to the strong correlation in the amplitudes of both
systems. It is clear from the construction of SPR that it measures the similarity
between the generalized autocorrelation functions P1(t) and P2(t). In the regimes of
CPS, as the generalized autocorrelation functions coincide in almost all the regimes
except for the heights of their maxima, it is also quantified by larger values of SPR.
The index SPR in Fig. 10.9 also shows the onset of CPS and it fluctuates around
the value 1 in the regime of CPS (b3 ∈ (1.382, 2.2)) before reaching saturation.
This confirms the strong correlation in the amplitudes of both the systems, thereby
quantifying the existence of GS. The transition from non-synchronized state via CPS
to GS is characterized by the maximal values of CPR, SPR and JPR (Fig. 10.9). As
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expected from the construction of these functions, CPR refers mainly to the onset
of CPS, whereas JPR quantifies clearly the onset of GS and SPR indicates both
the onset of CPS and GS. In this connection, we have also confirmed the onset
and existence of GS by using the auxiliary system approach [41] introduced by
Abarbanel et al for the range of the coupling strength b3 > 2.2.

It is to be noted that a variety of nonlinear techniques [42] such as mutual
information, methods of predictability, etc. to identify the basic types of complex
synchronization, particularly phase and generalized synchronization, are discussed
in [40]. It is clearly shown here that recurrence based approach is one of the most
efficient tools to identify the existence of different kinds of synchronization phe-
nomena, while all the other techniques are in general not or only partly appropriate
for the identification problem.

10.7 CPS from the Lyapunov Exponents

The transition from non-synchronization to CPS can also be characterized by the
changes in the Lyapunov exponents of the coupled time-delay system (10.8). The
eight largest Lyapunov exponents of the coupled systems are shown in Fig. 10.10.
From this figure one can find that all the positive Lyapunov exponents, except the

largest one
(
λ
(2)
max

)
, corresponding to the response system suddenly become nega-

tive at the value of the coupling strength b3 = 0.78 which is an indication of the
onset of the transition regime. One may also note that at this value of b3 already
one of the Lyapunov exponents of the response system attains negative saturation
while another one reaches negative saturation slightly above b3 = 0.78. This is a
strong indication that in this rather complex attractor the amplitudes become some-
what interrelated already at the transition to CPS (as in the funnel attractor [30]
of the Rössler system). Also the third positive Lyapunov exponent of the response
system gradually becomes more negative from b3 = 0.78 and reaches its satura-
tion value at b3 = 1.381, and thereby confirming the onset of CPS (which is also
indicated by the transition of the indices of CPR and SPR in Fig. 10.9 in the range
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Fig. 10.10 Spectrum of first eight largest Lyapunov exponents of the coupled systems (10.8) as a
function of coupling strength b3 ∈ (0, 3)

of b3 ∈ (0.78, 1.381)). It is interesting to note that the Lyapunov exponents of the
response system λ

(2)
i (other than λ(2)max ) are changing already at the early stage of

CPS (b3 ∈ (0.78, 1.381)), where the complete CPS is not yet attained. This has
been also observed for the onset of CPS in phase-coherent oscillators [7].

10.8 Concept of Localized Sets

Recently, an interesting framework for identifying phase synchronization without
having explicitly the measure of the phase, namely the concept of localized sets,
has been introduced [43]. The basic idea of this concept is that one has to define a
typical event in one of the coupled oscillators and then observe the other oscillator
whenever this event occurs. These observations give rise to a set D. Depending upon
the property of this set D one can state whether there PS exists or not. The coupled
oscillators evolve independently if the sets obtained by observing the corresponding
events in both the oscillators spread over the attractors of the oscillators. On the other
hand, if the sets are localized on the attractors then PS exist between the interacting
oscillators.

We have also confirmed the existence of CPS in coupled piecewise linear time-
delay systems using the concept of localized set. We have defined the event in the
attractors of both the drive and response system as Poincaré sections, which are
shown as open squares in Figs. 10.11. The sets obtained by observing the response
system whenever the defined event occurs in the drive system and that corresponds
to drive system whenever the defined event occurs in the response system are shown
as filled circles. The observed sets are distributed over both the drive and response
attractors as shown in Fig. 10.11a, b, respectively, for the value of the coupling
strength b3 = 0.1, at which both the systems evolve independently. For the value
of b3 = 1.5, the observed sets are localized on both the attractors as shown in
Fig. 10.11c, d confirming the existence of CPS between both the drive and response
systems.
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Fig. 10.11 Localized sets and CPS: (a) and (c) attractor of the drive system, (b) and (d) attractor
of the response system. The open squares indicate the events in the corresponding attractors. In (a)
and (b) the sets spread over the attractor and hence there is no CPS for the value of the coupling
strength b3 = 0.1 and, in (c) and (d) the sets are localized confirming the existence of CPS for
b3 = 1.5

10.9 Transition from Phase to Generalized Synchronization:
Mackey-Glass & Ikeda Systems

Following the above analysis, in this section, we present the results on the iden-
tification and existence of CPS in coupled Mackey-Glass time-delay systems with
parameter mismatches. We will demonstrate the entrainment of phases of the cou-
pled systems starting from an asynchronous state and its subsequent transition to
generalized synchronization (GS) as a function of the coupling strength. The phases
of these time-delay systems are calculated using the Poincaré method after a newly
introduced transformation of the corresponding attractors, which transforms the
original non-phase-coherent attractors of both the systems into smeared limit cycle
like attractors. Further, the existence of CPS and GS are characterized by the meth-
ods based on recurrence quantification analysis and in terms of Lyapunov exponents
of the coupled time-delay systems. Finally, we briefly present the results of CPS in
coupled Ikeda systems.

We will first consider the coupled Mackey-Glass systems of the form represented
in Eq. (10.8) with the functional form (8.15) for the nonlinear function f (x).

We have chosen the parameter values (cf. [26, 37]) as a = 0.1, b1 = 0.2, b2 =
0.205, τ1 = τ2 = 20 and varied the coupling strength b3. The non-phase-
coherent chaotic attractor of the system x1(t), Eq. (10.8a), for the above choice of
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Fig. 10.12 (a) The non-phase coherent chaotic attractor of the uncoupled drive (10.8a) and (b)
Transformed attractor in the x1(t +τ) and z(t +τ) space along with the Poincaré points represented
as open circles for the Mackey-Glass system (8.15)

parameters is shown in Fig. 10.12a and it possesses one positive and one zero
Lyapunov exponents, besides negative ones. Similarly, the second system x2(t),
Eq. (10.8b), also exhibits a non-phase-coherent chaotic attractor with one positive
and one zero Lyapunov exponents for the chosen parametric values in the absence
of the coupling strength b3. The parameters b1 and b2 contribute to the parameter
mismatch between the systems x1(t) and x2(t). The first four maximal Lyapunov
exponents of both the systems (10.8a) and (10.8b) are shown in Fig. 10.13a, b,
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Fig. 10.13 The first four maximal Lyapunov exponents λmax of (a) the Mackey-Glass time-delay
system (10.8a) for the parameter values a = 0.1, b1 = 0.2, τ ∈ (14, 37) and (b) time-delay system
(10.8b) for the parameter values a = 0.1, b1 = 0.205 in the same range of delay time in the
absence of the coupling b3
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respectively, as a function of the delay time τ ∈ (14, 37) when b3 = 0. The
Kaplan and Yorke [37, 38] dimension calculated using (10.9) for the present systems
((10.8a) and (10.8b)) work out to be 2.27969 and 2.21096, respectively. Now, the
existence of CPS as a function of the coupling strength in the coupled Mackey-Glass
systems (10.8) will be discussed using the three approaches used for identifying CPS
in coupled piecewise-linear time-delay systems.

10.9.1 CPS from Poincaré Section of the Transformed Attractor

The non-phase-coherent chaotic attractor (Fig. 10.12a) of the Mackey-Glass system
is transformed into a smeared limit cycle-like attractor (Fig. 10.12b) using the same
transformation (10.10) as used for the piecewise linear time-delay systems. For the
attractor (Fig. 10.12a) of the Mackey-Glass system, the optimal value of the delay
time τ̂ in Eq. (10.10) is found to be 8.0. The Poincaré points are shown as open
circles in Fig. 10.12b from which the instantaneous phase φz

1(t) is calculated using
(10.5). The existence of CPS in the coupled Mackey-Glass systems (10.8) is also
characterized by the phase locking condition (10.11) as shown in Fig. 10.14. The
phase differences Δφ = φz

1(t)− φz
2(t) between the systems (10.8a) and (10.8b) for

the values of the coupling strength b3 = 0.04, 0.08, 0.11, 0.12 and 0.3 are shown
in Fig. 10.14. For the value of the coupling strength b3 = 0.3, there exists a strong
boundedness in the phase difference showing high quality CPS. The mean frequency
ratioΩ2/Ω1 calculated from (10.12) along with the mean frequency differenceΔΩ
is shown in Fig. 10.15. The value of the mean frequency ratio is Ω2/Ω1 ≈ 1 in the
range of b3 ∈ (0.12, 0.23) corresponding to the transition regime (which is also to
be confirmed from the indices CPR and JPR in the next subsection), see the inset of
Fig. 10.15. Similarly the mean frequency difference is also ΔΩ ≈ 0 confirming the
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coupling strength b3 ∈ (0, 1)

transition regime. For the value of b3 > 0.23, both the quantities Ω2/Ω1 and ΔΩ
acquire complete saturation in their values confirming existence of CPS.

10.9.2 CPS from Recurrence Quantification Analysis

The existence of CPS from the original non-phase-coherent chaotic attractors of the
systems (10.8) for the Mackey-Glass system is analyzed in this section using the
recurrence quantification measures defined earlier in Sect. 10.6. We have estimated
these measures again using a set of 5,000 data points, and the same integration step
and the sampling rate as used in the case of coupled piecewise linear time-delay
systems. The maxima of generalized autocorrelations of both the drive P1(t) and
the response P2(t) systems (Fig. 10.16a) do not occur simultaneously for b3 = 0.1,
which indicates the independent evolution of both the systems without any correla-
tion and this is also reflected in the rather low value of CPR = 0.4. For b3 = 0.3,
the maxima of both P1(t) and P2(t) are in good agreement (Fig. 10.16b) and this
shows the strongly bounded phase difference. It is to be noted that even though both
the maxima coincide, the heights of the peaks are clearly of different magnitudes
contributing to the fact that there is no strong correlation in the amplitudes of both
the systems in spite of the existence of CPS. Both the positions and the peaks are in
coincidence (Fig. 10.16c) for the value of coupling strength b3 = 0.9 in accordance
with the strong correlation in the amplitudes of both the systems (10.8) correspond-
ing to GS. This is also reflected in the maximal values of both JPR=1 and SPR=1.
The indices CPR, JPR and SPR are shown in Fig. 10.17. The onset of CPS is shown
by the first substantial increase of the index CPR at b3 = 0.11 and the transition
regime is shown by the successive plateaus of CPR in the range b3 ∈ (0.12, 0.23).
The maximal values of CPR for b3 > 0.23 indeed confirm the existence of high
quality CPS. The existence of GS is also confirmed from both the indices JPR and
SPR.
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Fig. 10.16 Generalized autocorrelation functions of both the drive system (10.8a), P1(t), and the
response system (10.8b), P2(t), for coupled Mackey-Glass systems. (a) Non-phase synchronization
for b3 = 0.1, (b) Phase synchronization for b3 = 0.3 and (c) Generalized synchronization for
b3 = 0.9

10.9.3 CPS from the Lyapunov Exponents

The onset of CPS is also characterized by the changes in the Lyapunov exponents
of the coupled Mackey-Glass systems (10.8). The first four largest Lyapunov expo-
nents of the corresponding coupled systems (10.8) are shown in Fig. 10.18. The
zero Lyapunov exponent of the response system x2(t) already becomes negative as
soon as the coupling is introduced and the onset of CPS is indicated by the negative
saturation of the zero Lyapunov exponent at b3 = 0.11. The positive Lyapunov
exponent of the response system becomes gradually negative in the transition regime
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(b3 ∈ (0.12, 0.23)) and it reaches its negative saturation at b3 = 0.23 at which high
quality CPS exists. The transition of the positive Lyapunov exponent to negativity
in this rather complex attractor is a firm indication of the rather strong correlation in
the amplitudes of both the systems even before the onset of CPS. This behavior of
negative transition of the positive Lyapunov exponent of the response system before
CPS has also been observed in [13, 44].

As discussed in the case of piecewise linear time-delay systems, we have also
confirmed the existence of CPS using the concept of localized sets. The event
is chosen as Poincaré sections, which are plotted as open squares in Fig. 10.19.
Observed sets from drive/response attractors collected during the Poincaré sections
in response/drive attractors are depicted as closed circles. When both the drive and
the response systems evolve independently, the observed sets are spread all over the
attractors of both the systems as shown in Fig. 10.19a, b for the value of b3 = 0.04.
The observed sets are localized on the attractor during the phase synchronized state
as shown in Fig. 10.19c, d for the value of coupling strength b3 = 1.5, confirming
the existence of CPS.
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Fig. 10.19 Localized sets and CPS: (a) and (c) attractor of the drive system, (b) and (d) attractor of
the response system of the coupled Mackey-Glass systems. The open squares indicate the events
in the corresponding attractors. In (a) and (b) the sets spread over the attractor and hence there is
no CPS for the value of the coupling strength b3 = 0.04 and, in (c) and (d) the sets are localized
confirming the existence of CPS for b3 = 0.3

10.9.4 CPS in Coupled Ikeda Systems

Finally, we consider the coupled Ikeda systems of the form (10.8) with the functional
form (8.16) for f (x). Now we have chosen the parameter values as a = 1.0, b1 =
b2 = 5, τ1 = 2 and τ2 = 3 for the Ikeda systems. It is to be noted that here we have
chosen parameter mismatch in the value of the feedback delay time of the drive τ1
and the response system τ2 whereas we have considered parameter mismatch in b1
and b2 alone in the case of piecewise linear time-delay system and in Mackey-Glass
system. One may also obtain the same results with parameter mismatch either in
b1 �= b2 or τ1 �= τ2, or in both.

As the topology of the hyperchaotic attractor of the Ikeda system is more com-
plicated with large number of highly non-uniform irregular loops, one is not able to
unfold the original attractor with the transformation (10.10) used for the piecewise
linear time-delay system and for the Mackey-Glass system. It appears that it is more
difficult to identify an appropriate transformation to unloop the attractor so that
the projected attractor in the new phase space looks like a phase-coherent attractor.
However, one may try to find an optimal transformation to unfold the original attrac-
tor of the Ikeda system. Nevertheless, we have identified the existence of CPS in the
coupled Ikeda systems also, using the recurrence indices we have used for both
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Fig. 10.20 First eleven largest Lyapunov exponents of the Ikeda system as a function of delay time
τ ∈ (2, 25)

the piecewise linear time-delay system and Mackey-Glass system. We have also
characterized the existence of CPS using the Lyapunov exponents of the coupled
Ikeda systems.

The set of first eleven largest Lyapunov exponents of the Ikeda systems for the
above values of the parameters a and b is shown in Fig. 10.20 as a function of delay
time τ . Figure 10.20b shows an enlarged part of Fig. 10.20 in the x-axis to view
clearly the eleven largest positive Lyapunov exponents. The existence of CPS in the
coupled Ikeda system is calculated from the original non-phase-coherent chaotic
attractor using the recurrence based indices. Generalized autocorrelation function
of the drive P1(t) and the response P2(t) are plotted in Fig. 10.21 for three differ-
ent values of the coupling strength b3. Maxima of both the quantities, P1(t) and
P2(t), do not occur simultaneously (Fig. 10.21a) for the value of b3 = 4, which
corresponds to asynchronous state of the drive and response systems, whereas for
the value of the coupling strength b3 = 6, the coincidence of maxima of gener-
alized autocorrelation functions, P1(t) and P2(t), contributes to the existence of
CPS between the coupled Ikeda systems. The existence of GS is again indicated by
the coincidence of both the positions and peaks of the generalized autocorrelation
functions, P1(t) and P2(t), of both the systems for the value of b3 = 20. The onset
of CPS and GS is also characterized both by the recurrence based indices and by
the Lypunov exponents of the coupled systems. The onset of CPS is shown by a
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Fig. 10.21 Generalized autocorrelation functions of the coupled Ikeda systems (drive system,
P1(t), and the response system, P2(t)). (a) Non-phase synchronization for b3 = 4, (b) Phase
synchronization for b3 = 6 and (c) Generalized synchronization for b3 = 20

gradual increase in the value of the index CPR (Fig. 10.22) and it shows substantial
saturation for b3 > 19 where the GS appears as indicated by the maximal value of
the index SPR. JPR also shows substantial saturation above b3 > 19. The largest
Lyapunov exponents of the coupled Ikeda system shown in Fig. 10.23 clearly indi-
cates the onset of CPS and GS in their values. The onset of CPS is indicated by the
transition of the least positive (almost zero) Lyapunov exponent (Fig. 10.23) of the
response system to negative value at b3 = 5.52 and the existence of CPS is indicated
by the transition of one of the positive Lyapunov exponents of the response system
to negative value at b3 = 13.56 as in the case of the piecewise linear time-delay
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Fig. 10.23 Spectrum of first five largest Lyapunov exponents of the coupled Ikeda systems as a
function of the coupling strength b3 ∈ (2, 50)

system and the Mackey-Glass system. The onset of GS is shown by the transition of
the largest positive Lyapunov exponent of the response system to negative value at
b3 = 19.3.

We have confirmed the existence of CPS in the coupled Ikeda time-delay systems
also by using the concept of localized set. We have defined the event in the attractor
of the drive system as a segment characterized by x1(t +τ) = 0 and x1(t) > 2.0 and
another event in the response system as a segment characterized by x2(t+τ) = 0 and
x2(t) < −3.0, which are shown as black lines in Fig. 10.24. The sets obtained by
observing the response Ikeda system whenever the defined event occurs in the drive
system and vice versa are shown as dots in Fig. 10.24a, b, respectively, for the value
of the coupling strength b3 = 4.0, for which there is no CPS as discussed earlier
and hence the sets are spread over the attractors. On the other hand for the value of
the coupling strength b3 = 20 for which CPS exists as seen from Figs. 10.21, 10.22
and 10.23, the sets are localized as shown in Fig. 10.24c, d confirming the existence
of CPS in the coupled Ikeda systems.
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Fig. 10.24 Coupled Ikeda system: (a) and (c) attractor of the drive system, (b) and (d) attractor
of the response system. The bars indicate the events in the corresponding attractors. In (a) and (b)
the sets spread over the attractor and hence there is no CPS for the value of the coupling strength
b3 = 4.0 and, in (c) and (d) the sets are localized confirming the existence of CPS for b3 = 20.0

10.10 Summary

It is clear from the above analysis that CPS in coupled time delay systems exhibiting
highly nonphase coherent hyperchaotic attractors can be realized by various meth-
ods. These include unfolding transformation of the hyperchaotic attractor, recur-
rence based indices characterization and changes in the Lyapunov exponents with
typical examples, including piecewise linear, Mackey-Glass and Ikeda systems. We
have also pointed out that the onset of CPS is also characterized based on recurrence
quantification analysis. Furthermore, existence of CPS in these systems is also con-
firmed using the concept of localized sets. To conclude, CPS is a typical dynamical
phenomenon associated with coupled nonlinear time-delay systems.
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Chapter 11
DTM Induced Oscillating Synchronization

11.1 Introduction

So far we have considered nonlinear dynamical systems with constant time delay.
However, it is also possible that the delay could also vary as a function of time.
The notion of time dependent delay (TDD) with stochastic or chaotic modulation
in time-delay systems was introduced by Kye et al. [1] to understand the behaviour
of dynamical systems with time dependent topology. They have reported that in a
time-delay system with TDD, the reconstructed phase trajectory does not collapse to
a simple manifold, a property different from that of delayed systems with fixed delay
time (which is considered to be a serious drawback of the latter type of systems).
It has been shown very recently that a distributed delay enriches the characteristic
features of the delayed system over that of the fixed delay systems [2]. Based on
these considerations, current studies on chaotic synchronization in time-delay sys-
tems are also focused towards time-delay systems with time dependent delay [3–6].
In this connection it is also of considerable interest to study the effect of simple
modulations such as periodic modulation [6] on the nature of the chaotic attractor.

Earlier, in Chap. 8, we have studied chaotic synchronization in a system of two
unidirectionally coupled odd piecewise linear time-delay systems [7] with two dif-
ferent constant delay times: one in the coupling term and the other in the individual
systems, namely, feedback delay. We have shown that there exists a transition from
anticipatory to lag synchronization through complete synchronization as a func-
tion of a system parameter. Suitable stability criteria were also obtained. In this
chapter, we wish to investigate whether there arises any new phenomenon due to
the introduction of periodic delay time modulation in the coupled time-delay sys-
tems which we have studied earlier and its effects on the various synchronization
scenario. Interestingly, one finds that even with simple periodic modulation, the
time-delay system cannot be collapsed into a simple manifold and that the delay
time cannot be extracted using standard methods. More interestingly, one finds that
the fully rectified sinusoidal modulation of delay time introduces a new type of
oscillating synchronization that oscillates between anticipatory, complete and lag
synchronizations for the case of constant coupling delay. This is further corroborated
by suitable stability condition based on Krasovskii-Lyapunov theory. Intermittent
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anticipatory and lag synchronizations are also found to exist in the present system
for the case of identical modulation in both the coupling and feedback delays, for a
range of modulational frequencies. In addition, one also finds that there exist regions
of exact anticipatory and lag synchronizations for lower values of modulational
frequencies. The results can be corroborated by the nature of similarity functions
and the intermittent behavior by the probability distribution of the laminar phase,
satisfying universal − 3

2 power law behavior of on-off intermittency [8, 9]. These
studies are also extended to coupled Mackey-Glass and coupled Ikeda systems.

11.2 Estimation of the Effect of Delay Time Modulation

The concept of time dependent delay with stochastic or chaotic modulation was
introduced by Kye et al. [1] in time-delay systems, and they have shown in the
case of Mackey-Glass system that the delay time carved out of the time series of
the time-delay system is undetectable by the conventional measures and hence any
reconstruction of phase space of the delayed system is hardly possible. This fact
has motivated some authors [3, 5, 6] to look for delay systems with delay time
modulation as an ideal candidate for secure communication.

Interestingly we find here that even with a fully rectified sinusoidal delay time
modulation of the form

τ(t) = τ0 + τa |sin(ωt)| , (11.1)

where τ0 is the zero frequency component, τa is the amplitude and ω/π is the fre-
quency of the modulation, we can realize the effects of modulation. Note that in
the delay term,we have introduced the fully rectified sinusoidal modulational form
(absolute of the sine term) so as to keep the delay time positive even for values of
τa > τ0 so as to avoid acausality problem in Eq. (3.1) for negative values of τ when
τa > τ0. However, for values of τ0 sufficiently greater than τa the rectification in
the modulation (11.1) is not required.

The scalar piecewise linear system (3.1) also exhibits the properties studied by
Kye et al. with stochastic or chaotic modulation. In order to demonstrate the effect
of fully rectified sinusoidal delay time modulation of the form (11.1) on the time
series of the piecewise linear time-delay system (3.1), we will now calculate (1)
filling factor [10], (2) length of polygon line [11] and (3) average mutual information
[1, 12, 13], both in the presence and in the absence of delay time modulation, and
show how periodic modulation removes any imprints of the time-delay.

11.2.1 Filling Factor

Now we will compute the filling factor [10] for the chaotic trajectory x(t) of the
time-delay system (3.1) by projecting it onto the pseudospace (x, xτ̂ , ẋ) with P3N
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equally sized hypercubes, where the delayed time series xτ̂ = x(t−τ̂ ) is constructed
from x(t) for various values of τ̂ . The filling factor is the number of hypercubes
which are visited by the projected trajectory, normalized to the total number of
hypercubes, P3N . Figure 11.1a shows the filling factor for constant delay τ0 = 10
when τa = 0 in Eq. (11.1), where one can identify the existence of an underlying
time-delay induced instability [10] which induces local minima in the filling factor
at τ̂ ≈ nτ0, n = 1, 2, 3.... From the latter, one can identify the value of the time-
delay parameter τ of the system (3.1) under consideration. Figure 11.1b shows the
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Fig. 11.1 Filling factor as a function of delay time τ̂ (of delayed time series xτ̂ ). (a) with constant
delay τ0 = 10 when τa = 0, (b) with delay time modulation of the form (11.1) with τ0 = 10,
τa = 90 and ω = 10−4 and (c) with large constant delay τ0 = 100(τa = 0)
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filling factor with delay time modulation of the form (11.1) with τ0 = 10, τa = 90
and ω = 0.0001, where no local minima occurs. Figure 11.1c is plotted for τ0 = 100
and τa = 0 to show that the disappearance of local minima in Fig. 11.1b is not due
to large delays but only because of the delay time modulation. From the figures one
can realize that the imprints of the delay time embedded in the projected trajectory
is completely ironed out due to the presence of delay time modulation.

11.2.2 Length of Polygon Line

Next, to calculate the length of polygon line [11], the trajectory in (x, xτ̂ , ẋ) space is
restricted to a two dimensional surface. The restriction in dimension is effected by
intersecting the projected trajectory with a surface k(x, xτ̂ , ẋ) = 0. Consequently
the number of times the trajectory traverses the surface and the corresponding inter-
section points can be calculated. One then orders the points with respect to the values
of xτ̂ , and a simple measure for the alignment of the points is the length L of polygon
line connecting all the ordered points. Figure 11.2a shows the length of polygon line
L with constant delay τ0 = 10, where the local minima correspond to the delay time
of the system we have considered. Figure 11.2b shows length of polygon line L with
delay time modulation where there is no remanance of information about delay time
from the trajectory, whereas Fig. 11.2c is plotted for τ0 = 100, τa = 0, to show that
the imprints of delay time carved out in the trajectory vanishes in Fig. 11.2b only
due to the delay time modulation and not because of large delay.

11.2.3 Average Mutual Information

As a final example, we will calculate average mutual information defined by (see
for example, [1, 12, 13] and references therein)

I (τ̂ ) =
∑

x(n),x(n+τ̂ )
P(x(n), x(n + τ̂ ))× log2

[
P(x(n), x(n + τ̂ ))

P(x(n))P(x(n + τ̂ ))

]
, (11.2)

where P(x(n), x(n + τ̂ )) is the joint probability density for measurements in the
chaotic time series X = (x(1), x(2), ..., x(m)) and in the constructed delay time
series X τ̂ = (x(1 + τ̂ ), x(2 + τ̂ ), ..., x(m + τ̂ )) by varying τ̂ , resulting in values
x(n) and x(n + τ̂ ). P(x(n)) and P(x(n + τ̂ )) are the individual probability den-
sities for the measurements of X and X τ̂ . Figure 11.3 shows the average mutual
information for the cases of constant delay time with τ0 = 10, τa = 0 (Fig. 11.3a)
and with delay time modulation (Fig. 11.3b). Figure 11.3c is plotted for τ0 = 100
and τa = 0 to show that the absence of local peaks in Fig. 11.3b is due to delay
time modulation and not because of large delay. For fixed delay time the average
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Fig. 11.2 Length of polygon line as a function of delay time τ̂ (of the delayed time series xτ̂ ). (a)
with constant delay τ0 = 10(τa = 0), (b) with τ0 = 10 and τa = 100 and (c) with large constant
delay τ0 = 100(τa = 0)

mutual information shows local peaks at the time-delay τ̂ = τ0 (or at multiples of it,
τ̂ = nτ0) of the system, whereas for the case of delay time modulation the average
mutual information has no such peaks to identify the delay time of the delayed
system.

One can also obtain similar results with other measures such as autocorrelation
function, onestep prediction error and average fitting error [10, 11, 14, 15]. However,
we are not presenting these results here for lack of space. In order to perform the
phase space reconstruction, the first step is to find out the delay time for the projected
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Fig. 11.3 Average mutual information as a function of delay time τ̂ (of delayed time series xτ̂ ).
(a) with constant delay τ0 = 10, τa = 0, (b) with delay time modulation of the form (11.1) with
τ0 = 10, τa = 100 and (c) with large constant delay τ0 = 100, τa = 0

trajectories. By introducing the delay time modulation the imprints of delay time in
the projected trajectory is completely removed as seen above for the present system,
inhibiting any possibility of phase space reconstruction. This is essentially a conse-
quence of the fact that when the delay time is modulated by the fully rectified sine
term, the delay time effectively gets increased in which case the number of positive
Lyapunov exponents also increases (as noted in Fig. 11.2 in [16]). Consequently, the
study of chaos synchronization in a system of such coupled delay time modulated
oscillators will be of considerable interest.
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11.3 Coupled System and Stability Condition in the Presence
of Delay Time Modulation

Now let us consider the following unidirectionally coupled drive x1(t) and response
x2(t) systems with two different modulated time-delays τ1(t) and τ2(t) as feedback
and coupling time-delays, respectively (hereafter we write τ1(t) and τ2(t) simply as
τ1 and τ2, respectively),

ẋ1(t) = −ax1(t)+ b1 f (x1(t − τ1)), (11.3a)

ẋ2(t) = −ax2(t)+ b2 f (x2(t − τ1))+ b3 f (x1(t − τ2)), (11.3b)

where b1, b2 and b3 are constants, a > 0, and f (x) is of the same form as in Eq. (3.2)
with

τ1 = τ10 + τ1a |sin(ω1t)| , (11.4a)

τ2 = τ20 + τ2a |sin(ω2t)| , (11.4b)

where τ10 and τ20 are the zero frequency components of feedback delay and cou-
pling delay, τ1a and τ2a are the amplitudes of the time dependent components of τ1
and τ2, respectively, and ω1/π and ω2/π are the corresponding frequencies of their
modulations.

Now we can deduce the stability condition for synchronization of the two coupled
time-delay systems, Eqs. (11.3a) and (11.3b), in the presence of the delay coupling
b3 f (x1(t − τ2)) with time delay modulation in both the feedback delay and cou-
pling delay. The time evolution of the difference system with the state variable
Δ = x1τ2−τ1 − x2, where x1τ2−τ1 = x1(t − (τ2 − τ1)), can be written for small
values of Δ by using the evolution equations (11.3) as

Δ̇ = −aΔ+(b2 + b3 − b1) f (x1(t − τ2))+ b2 f ′(x1(t − τ2))Δτ1, Δτ =Δ(t − τ).

(11.5)

Then Δ = 0 corresponds to anticipatory synchronization when τ2 < τ1, identical
or complete synchronization for τ2 = τ1 and lag synchronization when τ2 > τ1. In
order to study the stability of the synchronization manifold as in the case of constant
time delay [7], we choose the parametric condition,

b1 = b2 + b3, (11.6)

so that the evolution equation for the difference system Δ becomes

Δ̇ = −aΔ+ b2 f ′(x1(t − τ2))Δτ1 . (11.7)

Note that here the coefficient in front of the Δτ1 term is a function of time t . In any
case, the synchronization manifold is locally attracting if the origin of this equation
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is stable. Following again the Krasovskii-Lyapunov functional approach [17, 18],
we define a positive definite Lyapunov functional of the form

V (t) = 1

2
Δ2 + μ

∫ 0

−τ1(t)
Δ2(t + θ)dθ, (11.8)

where μ is an arbitrary positive parameter, μ > 0. Note that V (t) approaches zero
as Δ → 0.

To estimate a sufficient condition for the stability of the solution Δ = 0, we
require the derivative of the functional V (t) along the trajectory of Eq. (11.7),

dV

dt
= −aΔ2 + b2 f ′(x1(t − τ2))ΔΔτ1 + μ

[
Δ2
τ1
τ ′

1 +Δ2 −Δ2
τ1

]
, (11.9)

to be negative. Note that in the case of constant modulation τ ′
1 = dτ1

dt vanishes. The
above equation can be rewritten as

dV

dt
= −μΔ2Γ (X, μ), (11.10)

where Γ =[((a − μ)/μ)− (b2 f ′(x1(t − τ2))/μ
)

X + X2/
(
1 − τ ′

1

)]
, X = Δτ1/Δ.

In order to show that dV
dt < 0 for all Δ and Δτ and so for all X , it is suffi-

cient to show that Γmin > 0. One can easily check that the absolute minimum
of Γ occurs at X = b2 f ′(x1(t − τ2))/2μ

(
1 − τ ′

1

)
with Γmin = [4μ(a − μ)(

1 − τ ′
1

)− b2
2 f ′2(x1(t − τ2))

]
/4μ2

(
1 − τ ′

1

)
. Consequently, we have the condition

for stability as

a >
b2

2 f ′2(x1(t − τ2))

4μ
(
1 − τ ′

1

) + μ = Φ(μ). (11.11)

Again Φ(μ) as a function of μ for a given f ′(x) has an absolute minimum at μ =(∣∣∣∣ b2 f ′(x1(t−τ2))

2
√
(1−τ ′

1)

∣∣∣∣
)

with Φmin =
∣∣∣∣ b2 f ′(x1(t−τ2))√

(1−τ ′
1)

∣∣∣∣. Since Φ ≥ Φmin =
∣∣∣∣ b2 f ′(x1(t−τ2))√

(1−τ ′
1)

∣∣∣∣,
from the inequality (11.11), it turns out that a sufficient condition for asymptotic
stability is

a >

∣∣∣∣∣∣
b2 f ′(x1(t − τ2))√(

1 − τ ′
1

)
∣∣∣∣∣∣ (11.12)

along with the condition (11.6) on the parameters b1, b2 and b3.
Now from the form of the piecewise linear function f (x) given by Eq. (3.2),

we have,
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∣∣ f ′(x1(t − τ2))
∣∣ =

{
1.5, 0.8 ≤ |x1| ≤ 4

3
1.0, |x1| < 0.8

(11.13)

Consequently the stability condition (11.12) becomes a > 1.5

∣∣∣∣ b2√
(1−τ ′

1)

∣∣∣∣ >∣∣∣∣ b2√
(1−τ ′

1)

∣∣∣∣ along with the parametric restriction b1 = b2 + b3.

Thus one can take a >

∣∣∣∣ b2√
(1−τ ′

1)

∣∣∣∣ as a less stringent condition for (11.12) to be

valid, while

a > 1.5

∣∣∣∣∣∣
b2√(

1 − τ ′
1

)
∣∣∣∣∣∣ (11.14)

can be considered as the most general condition specified by (11.12) for asymptotic
stability of the synchronized stateΔ = 0. The condition (11.14) indeed corresponds
to the stability condition for exact anticipatory/lag as well as exact complete syn-
chronizations for a given value of the coupling delay τ2 in a general sense. It may
be noted that the stability condition (11.14) is valid irrespective of the nature of the
coupling delay, that is whether it is constant or modulated. However, when the feed
back delay τ1 is constant the condition (11.14) reduces to a > 1.5|b2| as discussed
in Chap. 8, see [7]. In the following, we will consider both the possibilities of con-
stant (τ2 = τ20) and periodically modulated (τ2 = τ20 + τ2a |sin(ω2t)|) coupling
delays with a periodically modulated feedback delay (τ1 = τ10 + τ1a |sin(ω1t)|).
We demonstrate through detailed numerical analysis that there exists oscillating syn-
chronization that oscillates between anticipatory, complete and lag synchronizations
for the case of constant coupling delay τ2 = τ20. Intermittent anticipatory/lag and
complete synchronizations are shown to exist for the case of coupling delay with
delay time modulation τ2 = τ20 + τ2a |sin(ω2t)|, when τ2a = τ1a and ω1 = ω2.
For τ2a �= τ1a and ω1 �= ω2, more complicated oscillating type synchronizations
occur.

11.4 Oscillating Synchronization

To start with, we consider the case of constant coupling delay, τ2 = τ20, and
show that there exists oscillating synchronization that oscillates between anticipa-
tory, complete and lag synchronizations as a function of time for suitable range of
parameters.

Now we will choose the delay time modulation in the form (11.4a) for the feed-
back delay τ1(= τ10 + τ1a |sin(ω1t)|) with τ10 = 10, τ1a = 90 and ω1 = 10−4.
We have fixed the value of τ2a = 0 in (11.4b), so that the coupling delay becomes
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constant τ2 = τ20 = 45 with the parameters a = 1, b1 = 1.2 in Eq. (11.3) and
the values of b2 and b3 are chosen according to the parametric restriction (11.6)
depending upon the stability condition to be satisfied. For the chosen values of τ10
and τ1a , one can find that τ1 oscillates between (τ1(t) = τ10 + τ1a |sin(ω1t)| =
10 + 90 |sin(ω1t)|) the values 10 and 100. With the chosen value of constant cou-
pling delay τ2 = 45 and time dependent feedback delay τ1, as time evolves one finds
that the feedback delay τ1(t) is lesser than the value of constant coupling delay τ2
initially for some time (in which case τ(t) = τ2 − τ1(t) > 0, so that there exists lag
synchronization x1(t − τ(t)) = x2(t) with varying lag time τ(t) = τ2 − τ1(t)). As
time evolves, τ1(t) increases eventually and it approaches τ1 = 45 at a certain later
time (T = π/ω1), where τ(t) = τ2−τ1(t) = 0, so that x1(t) = x2(t) and a complete
synchronization occurs at a specific value of time. As τ1(t) increases further above
the value of τ2 = 45, the delay time τ(t) becomes negative, τ(t) = τ2 − τ1(t) < 0
with x1(t−τ(t)) = x2(t)) and there exists anticipatory synchronization with varying
anticipating time τ(t) = τ2 − τ1(t). This anticipatory synchronization continues till
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Fig. 11.4 Oscillating synchronization for the constant coupling delay τ2 = 45 with time dependent
feedback delay of the form (11.4a) with τ10 = 10, τ1a = 90 and ω = 10−4. (a) Oscillating from
lag to anticipatory synchronization via complete synchronization in the region t ∈ (3970, 4020),
(b) enlarged figure showing lag synchronization in the region t ∈ (3970, 3980) and (c) enlarged
figure showing anticipatory synchronization in the region t ∈ (4010, 4020)
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the value of time dependent feed back delay τ1(t) decreases to approach the value
of the constant coupling delay τ2 = 10 after reaching its maximum value of 100.
Therefore as time evolves there is oscillation between lag, complete and anticipatory
synchronizations with time dependent anticipating and lag times.

Figure 11.4a shows the evolution of the drive x1(t) and the response x2(t) at the
transition between lag to anticipatory synchronization via complete synchronization
for the value of b2 = 0.1, where the general stability condition (11.14) is satisfied,
whereas Figs. 11.4b, c are the enlarged part of lag and anticipatory synchronization
regimes in Fig. 11.4a, respectively. Figure 11.5a shows the evolution of the drive
x1(t) and the response x2(t) at the next transition between anticipatory to lag via
complete synchronization and the enlarged part of Fig. 11.5a in the anticipatory and
lag synchronization regimes are shown in Figs. 11.5b, c, respectively. In Figs. 11.6
a, b, the difference signals x1(t − τ) − x2(t), τ > 0 and x1(t − τ) − x2(t), τ < 0
are plotted respectively for the value of parameters satisfying the general stability
condition corresponding to the Fig. 11.4, confirming the transition between lag to
anticipatory synchronization. Thus as a consequence of delay time modulation there
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Fig. 11.5 Oscillating synchronization for the constant coupling delay τ2 = 45 with time dependent
feedback delay of the form (11.4a) with τ10 = 10, τ1a = 90 and ω = 10−4. (a) Oscillating from
anticipatory to lag synchronization at the next transition in the region t ∈ (27400, 27450), (b)
enlarged figure showing anticipatory synchronization in the region t ∈ (27400, 27410) and (c)
enlarged figure showing lag synchronization in the region t ∈ (27440, 27450)



238 11 DTM Induced Oscillating Synchronization

−0.2

−0.1

 0

 0.1

 0.2

 3900  3950  4000  4050  4100

x 1
(t

–τ
)–

x 2
(t

),
τ>

0

t

(a)

−0.2

−0.1

 0

 0.1

 0.2

 3900  3950  4000  4050  4100

x 1
(t

–τ
)–

x 2
(t

),
τ<

0

t

(b)

Fig. 11.6 (a) Difference between x1(t − τ), τ > 0 and x2(t), showing lag synchronization for
certain time and (b) difference between x1(t − τ), τ < 0 and x2(t), showing anticipatory synchro-
nization for the following period of time for b2 = 0.1 satisfying the general stability condition
(11.14). Note that complete synchronization occurs in the transition regime

exists a new type of oscillating synchronization that oscillates between anticipatory,
complete and lag synchronizations with varying anticipating and lag times.

11.5 Intermittent Anticipatory Synchronization

Now we consider the coupled time-delay system (11.3) with delay time modulation
of the form (11.4) in both the feedback and coupling delays for further studies.
We have fixed the values of the parameters as a = 1, b1 = 1.2, τ1a = τ2a =
90, ω1 = ω2 = 10−5 (identical modulations) and the values of b2 and b3 are chosen
according to the parametric restriction b1 = b2 + b3, depending upon the stability
condition to be satisfied. For τ1, the zero frequency component of amplitude is fixed
as τ10 = 10 and for τ2, it is fixed as τ20 = 5, so that a constant difference is
maintained between the feedback and the coupling time delays throughout the time
evolution. With the coupling delay τ2(= 5 + 90

∣∣sin(10−5t)
∣∣) being less than the

feedback delay τ1(= 10 + 90
∣∣sin(10−5t)

∣∣), that is τ2(t) < τ1(t), the value of
the anticipating time τ = τ2 − τ1 turns out to be negative such that the relation
between drive x1(t) and the response x2(t) now becomes x1(t − τ) = x2(t), τ < 0,
demonstrating anticipatory synchronization, provided the stability condition (11.14)
is satisfied with the parametric restriction specified by Eq. (11.6).
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Fig. 11.7 The time series x1(t − τ) − x2(t), τ < 0, for b2 = 0.7 and b3 = 0.5 (so that the

less stringent condition a >
∣∣∣b2/

√
1 − τ ′

1

∣∣∣ is satisfied while (11.14) is violated) corresponding to

intermittent anticipatory synchronization with the amplitude of the laminar phase approximately
zero

Now let us choose the parameter b2 as the control parameter, whose value deter-
mines the stability condition given by Eq. (11.12).

1. For b2 = 0.7, 1.5

∣∣∣∣ b2√
1−τ ′

1

∣∣∣∣ > a >

∣∣∣∣ b2√
1−τ ′

1

∣∣∣∣, the less stringent condition is sat-

isfied with
√

1 − τ ′
1 ≈ 1 for the chosen values of ω and τa . One can observe

intermittent anticipatory synchronization as shown in Fig. 11.7, exhibiting typi-
cal features of on-off intermittency [8, 9] with the off state near the laminar phase
and the on state showing a random burst. For this value of b2 the amplitude of
the laminar phase corresponding to the synchronized state is approximately zero
(of the order 10−5).

2. For b2 = 0.1, a > 1.5

∣∣∣∣ b2√
1−τ ′

1

∣∣∣∣ >
∣∣∣∣ b2√

1−τ ′
1

∣∣∣∣, the general stability condition

(11.14) is satisfied and correspondingly the numerical analysis reveals that here
the intermittent anticipatory synchronization is such that the amplitude of the
laminar phase corresponding to the synchronized state is exactly zero (in the
sense that the difference Δ = x1(t − τ) − x2(t), τ < 0 is of the order 10−16 in
the laminar phases) as shown in Fig. 11.8.

To analyze the statistical features associated with the intermittent nature in
Fig. 11.8 for the value of b2 = 0.1, we have calculated the distribution of laminar
phases Λ(t) with the amplitude less than a threshold value Δ < 10−10 and we have
observed a universal asymptotic − 3

2 power law distribution as shown in Fig. 11.9,
which is quite typical for on-off intermittency [8, 9]. One can also find a similar
power law distribution for the value of b2 = 0.7 discussed above but now with a
larger threshold value (Δ < 10−4) of the laminar region.

Now we use the similarity function Sa(τ ) (8.13) to characterize the existence of
anticipatory synchronization. Figure 11.10 shows the similarity function Sa(τ ) as a
function of the difference between the feedback and the coupling delays, τ = τ2−τ1
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with the amplitude of the laminar phase exactly zero
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Fig. 11.9 The statistical distribution of laminar phase satisfying − 3
2 power law scaling for b2 =0.1

and b3 = 1.1, where the general stability criterion (11.14) is satisfied

for three different values of b2, the parameter whose value determines the stability
condition (11.12). In Fig. 11.10, the Curve 3 is plotted for the value of b2 = 1.1,

(1.5

∣∣∣∣ b2√
1−τ ′

1

∣∣∣∣ >
∣∣∣∣ b2√

1−τ ′
1

∣∣∣∣ > a), where both the less stringent condition and the most

general condition are violated. From the curve 3 one can find that the minimum
value of Sa(τ ) is greater than zero for all values of τ , resulting in the lack of exact
time shift (anticipating time) between the drive and the response signals. On the
other hand the curve 2 corresponds to the value of b2 = 0.7 such that the less strin-
gent condition is satisfied while the general stability criterion (11.14) is violated as
seen above. Curve 2 shows that the minimum of similarity function Sa(τ ) is approx-
imately zero (of the order 10−4) for τ < 0, as may be seen in the inset of Fig. 11.10,
indicating the existence of intermittent anticipatory synchronization with the ampli-
tude of the laminar phases of the difference signal Δ = x1(t − τ) − x2(t), τ < 0,
being approximately zero (< 10−5). On the other hand, the curve 1 is plotted for
b2 = 0.1, satisfying the general stability criterion Eq. (11.14), which shows that the
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Fig. 11.10 Similarity function for intermittent anticipatory synchronization Sa(τ ) for different
values of b2, the other system parameters are a = 1.0, b1 = 1.2 and ω = 10−5. (Curve 1:
b2 = 0.1, b3 = 1.1, Curve 2: b2 = 0.7, b3 = 0.5 and Curve 3: b2 = 1.1, b3 = 0.1)

minimum of similarity function is much closer to zero (of order 10−8), τ < 0,
indicating that there exists an intermittent anticipatory synchronization with the
amplitude of the laminar phase of the difference signal becoming exactly zero with
the anticipating time equal to the difference between the two time delays τ = τ2−τ1.

Next, by reducing the value of the modulational frequencies ω = ω1 = ω2
further, we find that the lengths of the laminar phases increase gradually with a
corresponding decrease in the number of turbulent phases. Finally at an appro-
priate value of the modulational frequency all the turbulent phases disappear and
there exists only exact anticipatory synchronization without any intermittent bursts
provided the exact stability condition is satisfied. Correspondingly the similarity
function Sa(τ ) becomes zero exactly (which is of the order 10−16) for τ < 0 in this
case, as shown in Chap. 8, also see [7].

11.6 Complete Synchronization

Complete synchronization follows the anticipatory synchronization when the value
of the coupling time-delay τ2 equals the feedback time-delay τ1, that is τ2 = τ1,
where the anticipating time becomes τ = τ2 − τ1 = 0. Here also, the same stability
criterion Eq. (11.14) holds good with the same parametric restriction specified by
(11.6). In this case of complete synchronization (τ2 = τ1), the delay time mod-
ulation does not induce any intermittent nature in the dynamical behavior of the
coupled systems for any value of the modulational frequency (ω1 = ω2) as inferred
from Eq. (11.4). Figure 11.11a shows as an illustration the plot of x1(t) Vs x2(t) for
the values of b2 = 0.7 and ω1 = ω2 = 10−5, such that the less stringent condition
is satisfied and the general stability criterion (11.14) is violated. The plot shows
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Fig. 11.11 Complete synchronization between x1(t) Vs x2(t) when τ20 = τ10. (a) Approximate
complete synchronization for b2 = 0.7 and (b) Exact complete synchronization for b2 = 0.1

small deviations from the localized diagonal line implying an approximate synchro-
nization, whereas Fig. 11.11b shows an entirely localized sharp diagonal line for
the value of b2 = 0.1, where the general stability condition (11.14) is satisfied,
indicating the complete synchronization.

11.7 Intermittent Lag Synchronization

When the value of the coupling delay τ2 is increased above the value of the feedback
delay τ1(τ2 > τ1), then the value of the retarded time τ = τ2 − τ1 turns out to be
positive such that the relation between the drive x1(t) and the response x2(t) now
becomes x1(t − τ) = x2(t), τ > 0, depicting the existence of lag synchronization,
provided the general stability condition (11.14) is satisfied along with the parametric
condition (11.6).

We have fixed the same values for all the parameters as in the case of inter-
mittent anticipatory synchronization except for the zero frequency component τ20
of coupling delay τ2 which is now fixed at τ20 = 15. Figure 11.12 shows the
intermittent lag synchronization for the value of b2 = 0.7, in which case only
the less stringent stability condition is satisfied, where the laminar phase has an
amplitude which is nearly zero (of the order 10−5). Figure 11.13 shows intermittent
lag synchronization for the value of b2 = 0.1, where the amplitude of the laminar
phase vanishes exactly. In the later case the most general stability criterion (11.14) is
satisfied. The statistical behavior associated with the intermittent nature in this case
of intermittent lag synchronization is also characterized by the probability distribu-
tion of laminar phases having amplitudes less than a threshold value Δ < 10−10

corresponding to a universal asymptotic − 3
2 power law distribution as shown in the

Fig. 11.14.
The figure shows the probability distribution Λ(t) of intermittent lag synchro-

nization for the value of b2 = 0.1. One can also verify that the intermittent lag



11.7 Intermittent Lag Synchronization 243

−0.002

−0.001

 0

 0.001

 0.002

 1000  1250  1500  1750  2000

x 1
(t

–τ
)–

x 2
(t

),
τ>

0

t

Fig. 11.12 The time series x1(t − τ) − x2(t), τ > 0, for b2 = 0.7 and b3 = 0.5 (so that the

less stringent condition a >
∣∣∣b2/

√
1 − τ ′

1

∣∣∣ is satisfied while (11.14) is violated) corresponding to

intermittent lag synchronization with the amplitude of the laminar phase approximately zero

–0.002

–0.001

 0

 0.001

 0.002

 1000  1250  1500  1750  2000

x 1
(t

–τ
)–

x 2
(t

),
τ>

0

t

Fig. 11.13 The time series x1(t − τ)− x2(t), τ > 0, for b2 = 0.1 and b3 = 1.1. Here the general
stability criterion (11.14) is satisfied corresponding to intermittent lag synchronization with the
amplitude of the laminar phase exactly zero

 0.0001

 0.001

 0.01

 0.1

 1

 0.1  1  10  100

Λ
(t

)

t

Fig. 11.14 The statistical distribution of laminar phase satisfying − 3
2 power law scaling for b2 =

0.1 and b3 = 1.1, where the general stability criterion (11.14) is satisfied



244 11 DTM Induced Oscillating Synchronization

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

–5 –4 –3 –2 –1  0  1  2  3  4  5

S l
 (

τ)

τ

1

2

3

 0

 0.0005

–1  0  1

1

2
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synchronization for the value of b2 = 0.7 has also similar power law distribution
for larger threshold value (Δ < 10−4)of amplitude of the laminar phases.

The existence of intermittent lag synchronization is also characterized by a sim-
ilarity function Sl(τ ) defined in Eq. (8.12). Figure 11.15 shows the similarity func-
tion Sl(τ ) for intermittent lag synchronization as a function of the retarded time
τ = τ2 − τ1. Curve 3 is plotted for the value of b2 = 1.1 (which is greater than

both a
√

1 − τ ′
1 and a

√
1 − τ ′

1/1.5), where the minimum of similarity function Sl(τ )

occurs at a finite value of Sl(τ ) > 0 and hence there is a lack of lag synchronization
between the drive and the response signals indicating asynchronization. Curve 2

corresponds to the value of b2 = 0.7, (which is less than a
√

1 − τ ′
1 but greater than

a
√

1 − τ ′
1/1.5), where the minimum of similarity function Sl(τ ) is approximately

zero (of the order of 10−4, as may be seen in the inset of Fig. 11.15) indicating
the existence of intermittent lag synchronization with the amplitude of the laminar
phase being approximately zero. However, for the value of b2 = 0.1, for which the
general condition (11.14) is obeyed, the minimum of similarity function for Curve 1
becomes much closer to zero (of the order 10−8) which corresponds to intermittent
lag synchronization with exact time shift between the two signals during the laminar
phase.

Next, as in the case of intermittent anticipatory synchronization, by reducing the
value of modulational frequency one can find that the lengths of the laminar phases
increase with vanishing turbulent phases and finally at an appropriate value of the
modulational frequency there exists exact lag synchronization without any intermit-
tent bursts provided the exact stability condition is satisfied. Correspondingly the
similarity function Sl(τ ) becomes zero exactly (which is of the order 10−16) for
τ > 0 in this case.
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11.8 Complex Oscillating Synchronization

Finally, when τ1a �= τ2a or/and ω1 �= ω2 the frequencies as well as amplitudes
of the modulated feedback delay τ1(t)(= τ10 + τ1a |sin(ω1t)|) and the modulated
coupling delay τ2(t)(= τ20 + τ2a |sin(ω2t)|) differ from each other resulting in a
more complicated variation of the anticipating/lag time τ(t) = τ2(t) − τ1(t). This
in turn results in the existence of more complex oscillating synchronization than the
one presented in Sect. 11.4. It is clear that one can also introduce other kinds of
modulations instead of periodic modulation to obtain varying forms of oscillating
synchronizations.

11.9 DTM Induced Oscillating Synchronization: Mackey-Glass
& Ikeda Systems

In this section, we will present brief details of the delay time induced oscillating syn-
chronization in both the Mackey-Glass and Ikeda time-delay systems. Now, let us
consider again the unidirectionally coupled systems of the form Eq. (11.3) with two
different modulated time-delays τ1(t) and τ2(t) as feedback and coupling delays,
respectively (Hereafter we will write τ1(t) and τ2(t) simply as τ1 and τ2, respec-
tively.), We will use the same functional form (8.15) and (8.16) for the Mackey-
Glass and Ikeda systems, respectively, with the modulations given by Eqs. (11.4).
One can show that again the stability condition obtained in Sect. 11.3 for the exis-
tence of oscillating synchronization in the presence of delay time modulation holds
good here also with appropriate function f (x).

For our further discussion, we now consider a constant coupling delay, τ2 = τ20,
with a modulated feedback delay τ1, given by (11.4a), and show that there exists an
oscillating synchronization that oscillates between anticipatory, complete and lag
synchronizations as a function of time for suitable range of parameters. The results
of simulation for the coupled Mackey-Glass and Ikeda systems are presented briefly
in the following.

11.9.1 Coupled Mackey-Glass Systems

Oscillating synchronization of the Mackey-Glass system is shown in Fig. 11.16 for
the value of the constant coupling delay τ2 = 45 with time dependent feedback
delay of the form (11.4a) with τ10 = 10, τ1a = 90, and ω = 10−4, and for
the value of the coupling strength b3 = 0.06 consistent with the parametric con-
dition b1 = b2 + b3. The other parameters are fixed at a = 0.1 and b = 0.2.
Figure 11.16a shows oscillating synchronization which oscillates between lag and
anticipatory synchronization via complete synchronization for t ∈ (4000, 4150). An
enlarged part of Fig. 11.16a in the range t ∈ (4000, 4020) is shown in Fig. 11.16b,
which clearly shows the existence of lag synchronization at one end. Similarly,
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Fig. 11.16 Oscillating synchronization exhibited by the coupled Mackey-Glass system for the
constant coupling delay τ2 = 45 with time dependent feedback delay of the form (11.4a) with
τ10 = 10, τ1a = 90 andω = 10−4. The other parameters are chosen as a = 1.0, b1 = 1.2, b2 = 0.1
and b3 = 1.1 (a) Oscillating from lag to anticipatory synchronization via complete synchronization
in the region t ∈ (4000, 4150), (b) lag synchronization in the range t ∈ (4000, 4020) and (c)
anticipatory synchronization in the range t ∈ (4130, 4250)

Fig. 11.16c in the range t ∈ (4130, 4150) clearly depicts the existence of antic-
ipatory synchronization at the other end of Fig. 11.16a. Oscillating synchroniza-
tion which oscillates between anticipatory and lag via complete synchronization
at the next transition in the range t ∈ (27450, 27600) is shown in Fig. 11.17a. Fig-
ures 11.17 b, c are the enlarged parts of Fig. 11.17a in the ranges t ∈ (27450, 27470)
and t ∈ (27580, 27600), respectively, which show clearly the regions of anticipatory
and lag synchronizations.

11.9.2 Coupled Ikeda Systems

Next, we will point out the existence of oscillating synchronization in the coupled
Ikeda system with the parameters chosen as a = 1, b1 = 20, b2 = 6.5, b3 =
13.5, τ2 = 2, τ10 = 2, τ1a = 0.5 and ω = 10−3. As the characteristic time scale
of the Ikeda system is very small, the values of both the constant coupling delay
and that of the time dependent feedback delay are chosen to be small when com-
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Fig. 11.17 Oscillating synchronization exhibited by the coupled Mackey-Glass system for the
constant coupling delay τ2 = 45 with time dependent feedback delay of the form (11.4a) with
τ10 = 10, τ1a = 90 and ω = 10−4. (a) Oscillating from anticipatory to lag synchronization at
the next transition in the range t ∈ (27450, 27600), (b) anticipatory synchronization in the range
t ∈ (27450, 27470) and (c) lag synchronization in the range t ∈ (27580, 27600)

pared with the piecewise linear and Mackey-Glass systems. Also the value of the
frequency of modulation is now fixed at ω = 10−3 for identifying the oscillating
synchronization in the Ikeda system.

Oscillating synchronization for the above values of the parameters of the Ikeda
system is shown in Fig. 11.18a which oscillates in the range t ∈ (10240, 10300)
between lag (Fig. 11.18b) and anticipatory (Fig. 11.18c) synchronizations via com-
plete synchronization. Similar oscillating synchronization at the next transition is
shown in Fig. 11.19a in the range t ∈ (11690, 11750). Anticipatory and lag syn-
chronization regimes of Fig. 11.19a are shown in the enlarged Figs. 11.19b, c,
respectively.

It is also to be added that both the Mackey-Glass and Ikeda systems exhibit
intermittent anticipatory synchronization for τ2 < τ1(t) and intermittent lag syn-
chronization for τ2 > τ1(t) as in the case of piecewise linear time-delay system
discussed in Sects. 11.5 and 11.7. This is also an extension of the results for anticipa-
tory and lag synchronizations presented earlier for constant feedback and coupling
delays as in the case of the coupled piecewise linear systems. Further characteriza-
tions can be also carried out as in Sects. 11.5 and 11.7.
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Fig. 11.18 Oscillating synchronization in the coupled Ikeda system for the constant coupling delay
τ2 = 2 with time dependent feedback delay of the form (11.4a) with τ10 = 2, τ1a = 0.5 and
ω = 10−3. Other parameters are chosen as a = 1.0, b1 = 20.0, b2 = 6.5 and b3 = 13.4 (a)
Oscillating from lag to anticipatory synchronization via complete synchronization in the region
t ∈ (10240, 10300), (b) lag synchronization in the range t ∈ (10240, 10243) and (c) anticipatory
synchronization in the range t ∈ (10297, 10300)

Recently, it has also been shown that the simple sinusoidal modulation of
delay time in coupled semiconductor lasers with two optoelectronic feedback (with
delays) results in loss of signatures of time-delays [19], which is characterized using
autocorrelation function. Existence of complete synchronization is also shown to
occur in the coupled semiconductor lasers with both unidirectional and bidirectional
delay coupling.

11.10 Summary

To conclude, delay time modulation can introduce new features in synchronizations
and their transitions in coupled time delay systems which are desirable from secure
communication point of view. In particular, modulation in delay time can remove
any imprints of delay time in the system trajectory, thereby inhibiting/reducing the
possibility of phase-space reconstruction. As illustrative examples, coupled piece-
wise linear, Mackey-Glass and Ikeda systems have been used.
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Fig. 11.19 Oscillating synchronization in the coupled Ikeda system for the constant coupling delay
τ2 = 2 with time dependent feedback delay of the form (11.4a) with τ10 = 2, τ1a = 0.5 and
ω = 10−3. (a) Oscillating from lag to anticipatory synchronization via complete synchronization
in the region t ∈ (11690, 11750), (b) anticipatory synchronization in the range t ∈ (11690, 11693)
and (c) lag synchronization in the range t ∈ (11747, 11750)
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Chapter 12
Exact Solutions of Certain Time Delay Systems:
The Car-Following Models

12.1 Introduction

In spite of the complex dynamics exhibited by even the simplest of nonlinear time
delay systems, there exists a host of coupled nonlinear time delay systems which
admit exact solutions. Particularly, certain coupled systems of nonlinear delay dif-
ferential equations modelling traffic flow [1–3], called the car following models,
possess exact analytic solutions in terms of Jacobian elliptic functions under peri-
odic boundary conditions. However, under open boundary conditions, they admit
shock-like solutions, representing the stationary propagation of a traffic jam [2, 3].
We will closely follow here the approach of Tutiya and Kanai [4] in the following
discussion just to illustrate how exact solutions can arise in delay systems.

12.2 The Car-Following Models

It is interesting to note that one can treat a traffic flow, including pedestrian flow, as
a compressible fluid from a macroscopic point of view, or as a many-body problem
of driven particles in a microscopic sense. Consequently, models can be developed
based either on hydrodynamic equations or in terms of coupled ordinary differential
equations, and even in terms of cellular automata.

Consider for example, the highway traffic. One can model it as a system of par-
ticles moving in one dimension in a definite direction interacting with each other
asymptotically, see Fig.12.1.

In this one-dimensional picture one essentially considers contrasting density pat-
terns, which change quite irregularly as the density of particles increases, and which
finally take the form of a stable traffic jam propagating backwards with constant
speed. One can introduce a set of coupled delay- differential equations of the fol-
lowing form to represent the traffic flow:

ẋn(t) = F(Δxn(t − τ)), Δxn(t) = xn−1(t)− xn(t), n = 1, 2, · · · (12.1)

M. Lakshmanan, D.V. Senthilkumar, Dynamics of Nonlinear Time-Delay Systems,
Springer Series in Synergetics, DOI 10.1007/978-3-642-14938-2_12,
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x
x 2 x 1 x 0 x –1 x –2 x–3

Fig. 12.1 An illustration of one-lane traffic with the assumption that cars overtaking and colliding
are prohibited [4]

where xn(t), n = 1, 2, · · · , denotes the position of the nth car at time t andΔxn(t) is
the distance between the nth car and the one in front of it (that is the (n−1)th). In the
above car following model described by (12.1), one can observe that it represents
the solution where the velocity of each car, ẋn(t), is determined in terms of the
distance that separates it from its predecessor with a delay τ , that is in terms of
Δxn(t − τ). The function F(x) in (12.1), often called optimal velocity function, is
usually determined from real traffic data.

Two typical models correspond to the following forms:

(i) Newell model: F = V
[
1 − exp

(− γ
V (Δxn(t − τ)− L)

)]
, where r , V , L are

parameters.

(ii) Tanh model: F = ξ+ηtanh
(
Δxn(t−τ)−ρ

2A

)
, where ξ , η, ρ and A are parameters.

Exact solutions to these two models can be deduced using the so called Hirota
bilinearization method [5], well known in the theory of soliton systems (see for
example [6]).

12.3 The Newell Model

The Newell equation reads as

ẋn(t) = V
[
1 − exp

(
− γ

V
(Δxn(t − τ)− L)

)]
, (12.2)

Δxn(t) = xn−1(t)− xn(t), n = 1, 2, · · ·

Here V is the maximum allowed velocity of the car, γ is the slope of the optimal
velocity of function at Δxn = L corresponding to the sensitivity of the driver to
changes in the traffic situation, and L is the minimum headway. In Fig.12.2, the
optimal velocity function F is shown as a function of the headway Δxn , where the
parameters have been deduced from empirical data [4].

Now, in order to eliminate the background uniform flow, one can change the
dependent variable xn(t) to yn(t) as

yn(t) = xn(t)− (V0t − L0n), (12.3)

where the velocity V0 and headway L0 satisfy the condition

V0 = V
[
1 − exp

(
− γ

V
(L0 − L)

)]
, (12.4)
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Fig. 12.2 The optimal velocity function for the Newell model. The values of the parameters are as
follows: V = 120, γ = 6 and L = 5, where V indicates the maximum allowed velocity, γ is the
derivative of F at Δxn = L , and L is the minimum distance between cars (adapted from [4])

which is required of a uniform solution. Substituting (12.3) and (12.4) into (12.1),
the Newell equation (12.3) can be rewritten as

ẏn(t) = (V − V0)[1 − exp(−sn(t − τ)], (12.5a)

where

sn(t) = γ

V
(yn−1(t)− yn(t)). (12.5b)

Now differentiating (12.5b) once and using (12.5a), we can rewrite (12.5) as

1

α0
ṡn(t) = −exp (−sn−1(t − τ))+ exp (−sn(t − τ)) , (12.6a)

where

α0 = γ

(
1 − V0

V

)
= γ exp

[
− γ

V
(L0 − L)

]
. (12.6b)

One can now reexpress the above Newell equation in Hirota’s bilinear form. For
this purpose, let us define

ψn(t) = exp(−sn(t)). (12.7)

Then from (12.6) one has

1

α0

ψ̇n(t + τ)

ψn(t + τ)
= ψn−1(t)− ψn(t). (12.8)
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Following the standard bilinearization procedure (for example for the nonlinear
Schrödinger equation see for instance [6]), one can introduce the bilinearizing trans-
formation

ψn(t) = gn(t)

fn(t)
. (12.9)

Then (12.5) can be rewritten as

1

α0

ġn(t + τ) fn(t + τ)− gn(t + τ) ḟn(t + τ)

fn(t + τ)gn(t + τ)
= gn−1(t) fn(t)− gn(t) fn−1(t)

fn−1(t) fn(t)
(12.10)

Consequently (12.10) can be decoupled as

ġn(t + τ) fn(t + τ)− gn(t + τ) ḟn(t + τ)

= λ(gn−1(t) fn(t)− gn(t) fn−1(t)), (12.11a)

fn−1(t) fn(t) = α0
λ

fn(t + τ)gn(t + τ). (12.11b)

Here λ is a constant. Equations (12.11) are now in the required bilinear form.
Following the standard procedure of Hirota bilinearizition method [5], one can

assume that

fn(t) = 1 + exp(an + 2bt), (12.12a)

gn(t) = u + vexp(an + 2bt), (12.12b)

where a, b, u and v are constants. Substituting (12.12) back into (12.11), one obtains
a shock-like solution of the form

fn(t) = 1 + exp[2b(t − nτ)], (12.13a)

gn(t) = b

α0(1 − e−2bτ )
{1 + exp(2b[t − τ(n + 1)])} , (12.13b)

where b is a free parameter. Using (12.13) and (12.9) in (12.7) one can finally obtain
the solution

sn(t) = log
α0sinh(bτ)

b

cosh[b(t − nτ)]
cosh[b(t − (n + 1)τ )] . (12.14)

Solution (12.14) represents a shock-like structure moving with velocity U = 1
τ

representing a traffic jam backwards. Here open boundary conditions have been
assumed. A plot of the function (12.14) is shown in Fig.12.3 to show the solitary
nature and shock-like structure. In addition one can also obtain an elliptic function
wave solution of the form
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Fig. 12.3 Solution sn(t) as a
function of t for various
values of n. The other
parameters are fixed at α0 =
5, b = 1, τ = 2
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sn(t) = log
2α0sn(Ωτ)cn(Ωτ)dn(Ωτ)

Ω[1 − k2sn2(Ωτ)sn2(φ +Ωτ)](1 − k2sn2(Ωτ)sn2φ)
, (12.15)

where φ = Ω(t − 2τn), and sn, cn, and dn are Jacobian elliptic functions with
modulus k, while the parameter Ω satisfies a certain transcendental equation [4].

12.4 The tanh Car-Following Model

Consider the car following model introduced in [2, 3],

ẋn = ξ + η tanh

(
Δxn(t − τ)− ρ

2A

)
, (12.16)

where ξ ,η,ρ and A are constant parameters. Defining the distance variable

hn(t) = (Δxn(t)− ρ)

2A
, (12.17)

Equation (12.16) can be rewritten as

ḣn(t + τ) = η

2A

[
tanh hn−1(t)− tanh hn(t)

]
. (12.18)

Several specific elliptic function solutions to (12.18) can be given [2, 3]:

(i) tanh hn(t) = a sn Ω(t − 2nτ)+ b, (12.19)

(i i) tanh hn(t) = b

sn Ω(t − 2nτ)+ a
+ c, (12.20)

(i i i) tanh hn(t) = b

sn2 Ω(t − 2nτ)+ a
+ c. (12.21)
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In the above Ω is a free parameter, while the parameters a, b, and c can be fixed in
terms of Ω , A, η and τ .

Other interesting solutions can be given again by bilinearizing the system
(12.16). Defining

ψn = tanh hn, (12.22)

Equation (12.17) can be rewritten as

ψ̇n(t + τ) = η

2A

[
1 − (ψn(t + τ))2

]
(ψn−1(t)− ψn(t)) (12.23)

Again defining

ψn(t) = gn(t)

fn(t)
, (12.24)

one can rewrite (12.23) into a system of bilinear equations,

ġn(t + τ) fn(t + τ)− gn(t + τ) ḟn(t + τ)

= λ
[
(gn−1(t) fn(t)− gn(t) fn−1(t))

]
, (12.25a)

fn−1(t) fn(t) = η
2Aλ

[
f 2
n (t + τ)− g2

n(t + τ)
]
, (12.25b)

where λ is a constant.
Making now the substitution

fn(t) = 1 + exp(2bt − an), gn(t) = u + v exp(bt − an) (12.26)

into (12.25), and finding consistent forms of u and v, one can obtain the solution

fn(t) = 1 + exp(2bt − an),

gn(t) =
[

1 − 2bA

η(1 − e−2bτ )

]
+
[
1 + e−2bτ exp(2bt − an)

]
, (12.27)

where the constant parameters a and b are related by

ea = bA/η + 1 − e2bτ

bA/η − 1 + e−2bτ
. (12.28)

Using the above forms of fn(t) and gn(t), then one obtains the exact solution to
the tanh car following model (12.16) as

Δxn(t) = ρ + A log

(
2η sinh (bτ) cosh

(
bt − a

2 n
)

bA cosh
[
b(t − τ)− a

2 n
] − 1

)
(12.29)
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Fig. 12.4 The plot of the
function Δxn(t) Vs t for
different values of n, while
the other parameters are held
fixed
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This is another shock wave solution with velocity U = 2b
a which represents a traffic

jam propagating backwards, see Fig.12.4. Apart from the above type of solutions
one can also construct explicit elliptic function waves propagating with velocity
U = 1

2τ and as a limiting form a kink like solution can also be obtained. For details
see for example [2, 4].

12.5 Other Developments

Modeling of vehicular traffic is a complex dynamical problem, which has been
attracting the attraction of scientists for more than half a century (for a review,
see [7]). Yet the precise mechanism for generation and propagation of traffic jams
is not fully understood. In this chapter, we have presented a couple of simple car
following models which possess exact shock like solutions representing jams prop-
agating backwards. More general models require detailed numerical analysis.

In the case of sparse traffic, it is well known that there exists a uniform flow equi-
librium where vehicles follow each other with the same velocity while oscillations
may arise when the traffic becomes more dense. One of the typical oscillations [8] is
a stop-and-go-wave, where the velocity breaks down and vehicles become densely
packed on a section of the highway and the congestion propagates upstream as a
density wave with a characteristic wave speed. Several models exist to reproduce
some aspects of such a flow. More general models than the simple car following
model (12.1) start with the dynamical equation for the acceleration of the i th vehicle,

v̇i (t) = f
(
hi (t − τ1), ḣi (t − τ2), vi (t − τ3)

)
. (12.30)

Here vi is the velocity of the i th vehicle, while hi is the bumper to bumper distance
between the ith and (i + 1)th vehicles called the headway. The reaction time delays
τ1, τ2, τ3(≥ 0) are generally different, but often assumed to be same for simplicity.
Here

ḣi (t) = xi+1(t)− xi (t)− l, (12.31)
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where xi is the position of the front bumper of the i th vehicle and l is the length of
the vehicle. The time derivative then gives

ḣi (t) = vi+1(t)− vi (t), (12.32)

With suitable functional forms of the function f and appropriate boundary condi-
tions, one may numerically analyze Eq. (12.30) to get detailed microscopic dynam-
ics and macroscopic properties of traffic flow. For details see [8–10] for example.

In all the above models time-delay plays a crucial role.
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Appendix A
Computing Lyapunov Exponents for Time-Delay
Systems

A.1 Introduction

The hall mark property of a chaotic attractor, namely sensitive dependence on initial
condition, has been associated by the Lyapunov exponents to characterize the degree
of exponential divergence/convergence of trajectories arising from nearby initial
conditions. At first, we will describe briefly the concept of Lyapunov exponent and
the procedure for computing Lyapunov exponents of the flow of a dynamical system
described by n-dimensional ordinary differential equations (ODEs), which is then
extended to scalar delay differential equations (DDEs), which are essentially an
infinite-dimensional systems. An important step in computing Lyapunov exponents
of DDEs is that it is necessary to approximate the continuous evolution of an infinite-
dimensional system by a finite-dimensional (appreciably large) iterated mapping.
Then the Lyapunov exponents of the finite-dimensional map can be calculated by
computing simultaneously the reference trajectories from the original map and the
trajectories from their linearized equations of motion. Alternatively, it can also be
calculated by computing the evolution of infinitesimal volume element formed by a
set of infinitesimal separation vectors corresponding to the trajectories starting from
nearby initial conditions.

A.2 Lyapunov Exponents of an n-Dimensional Dynamical
System

Consider an n-dimensional dynamical system described by the system of first order
coupled ordinary differential equation [1–3]

Ẋ = F(X), (A.1)

where X(t) = (x1(t), x2(t), ..., xn(t)). We consider two trajectories in the n-
dimensional phase space starting from two nearby initial conditions X0 and X′

0 =
X0+δX0. They evolve with time yielding the vectors X(t) and X′(t) = X(t)+δX(t),
respectively, with the Euclidean norm
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d (X0, t) = ||δX (X0, t) || ≡
√
δx2

1 + δx2
2 + ...+ δx2

n . (A.2)

Here d(X0, t) is simply a measure of the distance between the two trajectories X(t)
and X′(t). The time evolution of δX is found by linearizing (A.1) to obtain

δẊ = M(X(t)) . δX , (A.3)

where M = ∂F/∂X|X=X0 is the Jacobian matrix of F. Then the mean rate of diver-
gence of two close trajectories is given by

λ (X0, δX) = lim
t→∞

1

t
log

(
d (X0, t)

d (X0, 0)

)
. (A.4)

Furthermore, there are n-orthonormal vectors ei of δX, i = 1, 2, ..., n, such that

δėi = M (X0) ei , M = diag (λ1, λ2, ..., λn) . (A.5)

That is, there are n-Lyapunov exponents given by

λi (X0) = λi (X0, ei ) , i = 1, 2, ..., n . (A.6)

These can be ordered as λ1 ≥ λ2 ≥ ... ≥ λn . From (A.4) and (A.6) we may write

di (X0, t) ≈ di (X0, 0) eλi t , i = 1, 2, ..., n . (A.7)

To identify whether the motion is periodic or chaotic it is sufficient to consider the
largest nonzero Lyapunov exponent λm among the n Lyapunov exponents of the
n-dimensional dynamical system.

A.2.1 Computation of Lyapunov Exponents

To compute the n-Lyapunov exponents of the n-dimensional dynamical system
(A.1), a reference trajectory is created by integrating the nonlinear equations of
motion (A.1). Simultaneously the linearized equations of motion (A.3) are inte-
grated for n-different initial conditions defining an arbitrarily oriented frame of
n-orthonormal vectors (ΔX1,ΔX2, ..., ΔXn). There are two technical problems [4]
in evaluating the Lyapunov exponents directly using (A.4), namely the variational
equations have at least one exponentially diverging solution for chaotic dynamical
systems leading to a storage problem in the computer memory. Further, the orthonor-
mal vectors evolve in time and tend to fall along the local direction of most rapid
growth. Due to the finite precision of computer calculations the collapse toward a
common direction causes the tangent space orientation of all the vectors to become
indistinguishable. Both the problems can be overcome by a repeated use of what is
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known as Gram-Schmidt reorthonormalization (GSR) procedure [5] which is well
known in the theory of linear vector spaces. We apply GSR after τ time steps which
orthonormalize the evolved vectors to give a new set {u1,u2, ...,un}:

v1 = ΔX1 , (A.8)

u1 = v1/||v1|| , (A.9)

vi = ΔXi −
i−1∑
j=1

〈ΔXi ,u j 〉 u j , i = 2, 3, ..., n (A.10)

ui = vi/||vi || , (A.11)

where 〈, 〉 denotes inner product. In this way the rate of growth of evolved vectors
can be updated by the repeated use of GSR. Then, after the N -th stage, for N large
enough, the one-dimensional Lyapunov exponents are given by

λi = 1

Nτ

N∑
k=1

log ||v(k)i || . (A.12)

For a given dynamical system, τ and N are chosen appropriately so that the conver-
gence of Lyapunov exponents is assured. A fortran code algorithm implementing
the above scheme can be found in [4].

A.3 Lyapunov Exponents of a DDE

As described in the Sect. 1.2.2 of Chap. 1, a DDE of the form

Ẋ = F(t, X (t), X (t − τ)), (A.13)

can be approximated as an N -dimensional iterated map [6], X (k + 1) = G(X (k)),
(k labels the kth iteration and k + 1 to its next iteration). Now, the Lyapunov expo-
nents of the N -dimensional map can be calculated by computing simultaneously a
reference trajectory and the trajectories that are separated from the reference trajec-
tory by a small amount, corresponding to N-different initial conditions defining an
arbitrarily oriented frame of N-orthonormal vectors as described above.

Alternatively, it can also be calculated by computing the evolution of infinitesi-
mal volume element, formed by a set of infinitesimal separation vectors δx , which
evolves according to

δx(k + 1) =
N∑

i=1

∂G(x(k))

∂xi (k)
δxi (k). (A.14)
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Computational problems associated with computing adjacent trajectories can be
avoided by calculating the evolution of infinitesimal separations directly from the
above equation. The evolution equation of the infinitesimal volume element corre-
sponding to the continuous DDE (A.13) can be written as

dδx

dt
= ∂F(x, xτ )

∂x
δx + ∂F(x, xτ )

∂xτ
δxτ . (A.15)

This equation can be solved using any convenient integration scheme. The small
separations δx represents separation between two infinite-dimensional vectors.
There are N such separations for every coordinate of the N -dimensional system
corresponding to N Lyapunov exponents. Let δx̃ i (k) denote the collection of all
separations of i th coordinate during kth iteration, then its Lyapunov exponents can
be given as

λi = 1

Lτ

L∑
k=1

log
||δx̃ i (k)||

||δx̃ i (k − 1)|| . (A.16)

For computing each exponent λi , arbitrarily select an initial separation δ x̃ i (0)
and integrate for a time τ . Renormalize δx̃1(τ ) to have unit length. Using GSR
procedure, orthonormalize the second separation function relative to the first, the
third relative to the second, and so on. Repeat this procedure for L iterations. For
sufficiently large L , it is numerically shown that the values of λi converge [6].
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Appendix B
A Brief Introduction to Synchronization
in Chaotic Dynamical Systems

B.1 Introduction

Synchronization phenomenon is abundant in nature and can be realized in very many
problems of science, engineering, and social life. Systems as diverse as clocks,
singing crickets, cardiac pacemakers, firing neurons, and applauding audiences
exhibit a tendency to operate in synchrony. The underlying phenomenon is universal
and can be understood within a common framework based on modern nonlinear
dynamics.

The history of synchronization goes back to the seventeenth century when the
Dutch physicist Christiaan Huygens reported on his observation of phase synchro-
nization of two pendulum clocks [1, 2]. Huygens briefly, but extremely precisely,
described his observation of synchronization as follows.

... It is quite worth noting that when we suspended two clocks so constructed from two
hooks imbedded in the same wooden beam, the motions of each pendulum in opposite
swings were so much in agreement that they never receded the least bit from each other and
the sound of each was always heard simultaneously. Further, if this agreement was disturbed
by some interference, it reestablished itself in a short time. For a long time I was amazed
at this unexpected result, but after a careful examination finally found that the cause of this
is due to the motion of the beam, even though this is hardly perceptible. The cause is that
the oscillations of the pendula, in proportion to their weight, communicate some motion to
the clocks. This motion, impressed onto the beam, necessarily has the effect of making the
pendula come to a state of exactly contrary swings if it happened that they moved otherwise
at first, and from this finally the motion of the beam completely ceases. But this cause is
not sufficiently powerful unless the opposite motions of the clocks are exactly equal and
uniform.

Despite being the oldest scientifically studied nonlinear effects, synchroniza-
tion was understood only in the 1920s when Edward Appleton [3] and Balthasar
van der Pol [4] theoretically and experimentally studied synchronization of triode
oscillators. Considering the simplest case, they showed that the frequency of a gen-
erator can be entrained, or synchronized, by a weak external signal of a slightly
different frequency. These studies were of great practical importance because tri-
ode generators became the basic elements of radio communication systems. The

263
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synchronization phenomenon was used to stabilize the frequency of a powerful
generator with the help of one which was weak but very precise.

Even though the notion of synchronization was identified well before the concept
of chaos was realized, it was believed that chaotic synchronization was not feasible
because of the hallmark property of chaos which is the extreme sensitivity to initial
conditions. The latter property implies that two trajectories emerging from two dif-
ferent close by initial conditions separate exponentially in the course of time. As a
result, chaotic systems intrinsically defy synchronization because even two identical
systems starting from very slightly different initial conditions would evolve in time
in an unsynchronized manner (the differences in the system states would grow expo-
nentially). This is a relevant practical problem, insofar as experimental initial condi-
tions are never known perfectly. Nevertheless, it has been shown that it is possible to
synchronize chaotic systems, to make them evolve on the same chaotic trajectory, by
introducing appropriate coupling between them due to the works of Pecora and Car-
roll and the earlier works of Fujisaka and Yamada [5–10]. Since the identification
of synchronization in chaotic oscillators, the phenomenon has attracted considerable
research activity in different areas of science and technology and several generaliza-
tions and interesting applications have been developed. The phenomenon of chaotic
synchronization is of interest not only from a theoretical point of view but also has
potential applications in diverse subjects such as as biological, neurological, laser,
chemical, electrical and fluid mechanical systems as well as in secure communica-
tion, cryptography, system reconstruction, parameter estimation, controlling chaos,
long term prediction of chaotic systems and so on [2, 11–21].

Chaotic synchronization, in general, can be defined as a process wherein two
(or many) chaotic systems (either equivalent or nonequivalent) adjust a given prop-
erty of their motion to a common behavior, due to coupling or forcing. This ranges
from complete agreement of trajectories to locking of phases [11].

The first point we note here is that there is a great difference in the process lead-
ing to synchronized states, depending upon the particular coupling configuration,
namely one should distinguish two main cases: unidirectional coupling and bidirec-
tional coupling. When the evolution of one of the coupled systems is unaltered by
the coupling, the resulting configuration is called unidirectional coupling or drive-
response coupling. As a result, the response system is slaved to follow the dynamics
of the drive system, which, instead, purely acts as an external but chaotic forcing for
the response system. In such a case external synchronization is produced. Typical
examples are communication using chaos. On the contrary, when both the systems
are connected in such a way that they mutually influence each other’s behavior then
the corresponding configuration is called bidirectional coupling. Here both the sys-
tems are coupled with each other, and the coupling factor induces an adjustment of
the rhythms onto a common synchronized manifold, thus inducing a mutual syn-
chronization behavior. This situation typically occurs in physiology, e.g. between
cardiac and respiratory systems or between neurons. These two processes are very
different not only from a philosophical point of view; up to now no way has been
discovered to reduce one process to another, or to link formally the two cases. Inside
this classification, the appearance and robustness of synchronization states have



B.2 Characterization of Synchronization 265

been established by means of several different coupling schemes, such as the Pecora
and Carrol method [8, 10, 21], the negative feedback [14], the sporadic driving [22],
the active-passive decomposition [23, 24], the diffusive coupling and some other
hybrid methods [25]. A description and analysis of some of these coupling schemes
is given in [26] in a single mathematical framework. In the following studies we
will consider only the so called unidirectional coupling or drive-response coupling
configuration.

Chaos synchronization has been receiving a great deal of interest for more than
two decades in view of its potential applications in various fields of science and
engineering [5, 6, 8, 27–29]. Since the identification of chaotic synchronization,
different kinds of synchronization have been proposed in interacting chaotic sys-
tems, which have all been identified both theoretically and experimentally. These
include

1. complete or identical synchronization (CS) [5–8, 27],
2. phase synchronization (PS) [30–32],
3. lag synchronization (LS) [33–35],
4. anticipatory synchronization (AS) [36–38],
5. generalized synchronization (GS) [39–41],
6. intermittent lag synchronization (ILS) [33, 42–44],
7. intermittent anticipatory synchronization (IAS) [45],
8. intermittent generalized synchronization (IGS) [46],
9. imperfect or intermittent phase synchronization (IPS) [47–50],

10. almost synchronization (AS) [51],
11. time scale synchronization (TSS) [52] and
12. episodic synchronization (ES) [53].

Transition from one kind of synchronization to the other, coexistence of different
kinds of synchronization in time series and also the nature of transitions have also
been studied extensively [33–35, 54, 55] in coupled chaotic systems. There are also
attempts to find a unifying framework for defining the overall class of chaotic syn-
chronizations [56–58]. Before presenting the details of important types of aforesaid
synchronization phenomena, we will discuss about the characterization for identi-
fying the existence of synchronization in coupled chaotic systems.

B.2 Characterization of Synchronization

The existence of synchronization, in particular CS, is also characterized by quan-
titative measures in addition to qualitative pictures such as combined phase space
plots of state variables, time trajectory of error variable, etc. Such quantitative mea-
sures are usually addressed in terms of a stability problem, that is, stability of the
synchronized motion, and many criteria have been established in the literature to
cope with it. One of the most popular and widely used criteria is the use of the
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Lyapunov exponents as average measurements of expansion or shrinkage of small
displacements along the synchronized trajectory.

Let us consider a set of two unidirectionally coupled identical chaotic systems
whose temporal evolution is given by the system of coupled first order ODEs

Ẋ = F(X),
(

˙= d

dt

)
(B.1a)

Ẏ = F(Y,S(t)), (B.1b)

where X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) are n-dimensional state vectors
corresponding to the drive and response systems, respectively, with F defining a
vector field F : Rn → Rn and S(t) is some function of X(t), corresponding to the
drive signal. The stability problem of identical coupled systems can be formulated
in a very general way by addressing the question of the stability of the CS manifold
X ≡ Y, or equivalently by studying the temporal evolution of the synchronization
error e ≡ Y − X. The evolution of e is given by

ė = F(X)− F(Y,S(t)). (B.2)

A CS regime exists when the synchronization manifold is asymptotically stable for
all possible trajectories S(t) of the driving system within the chaotic attractor. This
property can be proved by carrying out a stability analysis of the linearized system
for small e,

ė = DX (S(t))e, (B.3)

where DX is the Jacobian of the vector field F evaluated onto the driving trajectory
S(t). Normally, when the driving trajectory S(t) is constant (fixed point) or periodic
(limit cycle), the stability problem can be studied by evaluating the eigenvalues of
DX or the Floquet multipliers [59, 60]. However, if the response systems is driven
by a chaotic signal, this method will not work.

A possible way out is to calculate the Lyapunov exponents of the system (B.3). In
the context of drive-response coupling schemes, these exponents are usually called
conditional Lyapunov exponents (CLEs) because they are the Lyapunov exponents
of the response system under the explicit constraint that they must be calculated
on the trajectory S(t) [10, 23]. Alternatively, they are called transverse Lyapunov
exponents (TLEs) because they correspond to directions which are transverse to the
synchronization manifold X ≡ Y [25, 61]. These exponents may be defined, for
an initial condition of the driver signal S0 and initial orientation of the infinitesimal
displacement U0 = e(0)/|e(0)|, as

h(S0,U0) ≡ lim
t→∞

1

t
ln

( |e(t)|
|e(0)|

)
= lim

t→∞
1

t
ln|Z(S0, t).U0|, (B.4)
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where Z(S0, t) is the matrix solution of the linearized equation,

dZ/dt = DX (S(t))Z, (B.5)

subject to the initial condition Z(0) = I . The synchronization error e evolves
according to e(t) = Z(S0, t)e0 and then the matrix Z determines whether this
error shrinks or grows in a particular direction. In most cases, however, the cal-
culation cannot be made analytically, and therefore numerical algorithms should be
used [62–64].

It is very important to emphasize that the negativity of the conditional Lyapunov
exponents is only a necessary condition for the stability of the synchronized state.
The conditional Lyapunov exponents are obtained from a temporal average, and
therefore they characterize the global stability over the whole chaotic attractor. Rel-
evant cases exist where these exponents are negative and nevertheless the systems
are not perfectly synchronized, thus indicating that additional conditions should be
fulfilled to warrant synchronization in a necessary and sufficient way [65].

The stability of a CS manifold can also be studied by the use of the Lyapunov
function L(e). It can be defined as a continuously differentiable real valued function
with the following properties:

(a) L(e) > 0 for all e �= 0 and L(e) = 0 for e = 0.
(b) d L/dt < 0 for all e �= 0.

If for a given coupled system one can find a Lyapunov function, then the CS man-
ifold is globally stable. For illustrative examples one may refer to [13, 23, 28, 66].
Unfortunately, whether such functions exist and how one should construct them is
known only in a very limited number of cases, whereas a general procedure to obtain
these functions is not yet available.

At this stage, let us summarize the validity of the stability criteria discussed
above. In general, only Lyapunov functions give a sufficient condition for the sta-
bility of the synchronization manifold, whereas the negativity of the conditional
Lyapunov exponents provides a necessary condition. While the Lyapunov function
criterion gives a local condition for stability, the other two (CLEs/TLEs) involve
temporal averages over chaotic trajectories of the driving signal, and therefore they
establish conditions for global stability. As a consequence, none of these latter cri-
teria prevents from local desynchronization events that could occur within the CS
manifold. This point is discussed in [61], where the synchronized behavior of two
chaotic circuits coupled in a drive-response configuration is studied. The appearance
of these local desynchronized states, despite Lyapunov exponents being negative, is
also related with a small parameter mismatch between the coupled systems and
low levels of noise, which are unavoidable effects in experimental devices and in
numerical integration.

We have pointed in the above that the characterization of synchronization in
coupled identical systems can be done using the stability of synchronized motion
by referring to the stability of the CS manifold. When we deal with nonidentical
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coupled systems, similar stability criteria can be formulated, but additional problem
will appear due to the more complicated structure of the synchronization manifold.
Also, the other kinds of synchronization have their own characterizations, which we
will discuss in the following sections.

B.2.1 Complete Synchronization

When one deals with coupled identical chaotic systems, synchronization appears as
the equality of the state variables while evolving in time. Complete synchroniza-
tion (CS) was the first discovered and simplest form of synchronization in chaotic
systems. It is characterized by a perfect locking of the chaotic trajectories of two
identical nonlinear systems which is achieved by means of a suitable coupling in
such a way that the two trajectories remain in step with each other in the course of
time, that is, X (t) ≡ Y (t), where X and Y are n-dimensional state variables whose
evolution is represented by (B.1), individually. This mechanism was first shown to
occur when two identical chaotic systems are coupled unidirectionally, provided the
conditional Lyapunov exponents of the subsystem (response) to be synchronized are
all negative [8]. Complete synchronization is also called conventional synchroniza-
tion or identical synchronization in the literature [67].

As an illustrative example for CS, we will consider a Pecora and Caroll drive-
response configuration with a drive system given by the Lorenz system [68],

ẋ1 = σ(y1 − x1), (B.6a)

ẏ1 = −x1z1 + r x1 − y1, (B.6b)

ż1 = x1 y1 − bz1, (B.6c)

and with a response system given by the subspace containing the (y, z) variables,
where x1 acts as the driving signal for the response system,

ẏ2 = −x1z2 + r x1 − y2, (B.7a)

ż2 = x1 y2 − bz2. (B.7b)
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Fig. B.1 Complete synchronization between two coupled Lorenz systems using Pecora and Caroll
method as represented by Eqs. (B.6) and (B.7). (a) Time trajectory plot and (b) Phase space plot
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Here the control parameters σ, r and b are fixed as σ = 16, r = 45.92 and b =
4 so that Eqs. (B.6) give rise to chaotic dynamics. With this particular choice of
the driving, CS sets in rather quickly as shown in Fig. B.1. Figure B.1a is a time
trajectory plot of z1(t) and z2(t) showing complete synchronization and diagonal
line in Fig. B.1b confirms the CS between z1(t) and z2(t). Note that the above
configuration is also called a homogeneous driving configuration.

B.2.2 Phase Synchronization

Definition of chaotic phase synchronization (CPS) in coupled chaotic systems is
derived from the classical definition of phase synchronization in periodic oscillators.
Interacting chaotic systems are said to be in phase synchronized state when there
exists entrainment between phases of the systems, nφ1 − mφ2 =const, while their
amplitudes may remain chaotic and uncorrelated (In the presence of noise, a weaker
condition for phase locking, |nφ1 − mφ2| <const, should be used instead). In other
words, CPS exists when their respective frequencies and phases are locked [2, 11,
69]. To study CPS, one has to identify a well defined phase variable in both the
coupled systems. If the flow of the chaotic oscillator has a proper rotation around
a certain reference point, the phase can be defined in a straightforward way. For
example, for the Rössler system [30] with standard parameters the projection of the
chaotic attractor onto the (x, y) plane looks like a smeared limit cycle. In this and
similar cases one can define the phase [2, 11] as

φ(t) = arctan(y(t)/x(t)). (B.8)

A more general approach to define the phase in chaotic oscillators is the analytic
signal approach [2, 11] introduced in [70]. The analytic signal χ(t) is given by

χ(t) = s(t)+ i s̃(t) = A(t) expiΦ(t), (B.9)

where s̃(t) denotes the Hilbert transform of the observed scalar time series s(t)

s̃(t) = 1

π
P.V .

∫ ∞

−∞
s(t ′)
t − t ′

dt ′, (B.10)

where P.V. stands for the Cauchy principle value of the integral and this method is
especially useful for experimental applications [2, 11] .

The phase of a chaotic attractor can also be defined based on an appropriate
Poincaré surface of section which the chaotic trajectory crosses once for each
rotation. Each crossing of the orbit with the Poincaré section corresponds to an
increment of 2π of the phase, and the phase in between two crossings is linearly
interpolated [2, 11],
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Φ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1) (B.11)

where tk is the time of kth crossing of the flow with the Poincaré section. For the
phase coherent chaotic oscillators, that is, for flows which have a proper rotation
around a certain reference point, the phases calculated by these three different ways
are in good agreement [2, 11].

As the simplest example of chaotic phase synchronization, we will consider two
coupled Rössler systems [30, 71],

ẋ1,2 = −ω1,2 y1,2 − z1,2 + C(x2,1 − x1,2), (B.12a)

ẏ1,2 = ω1,2x1,2 + ay1,2, (B.12b)

ż1,2 = 0.2 + z1,2(x1,2 − 10), (B.12c)

where the parameters ω1,2 = 1 ± Δω govern the frequency mismatch and C is
the strength of coupling. As the coupling is increased for a fixed mismatch Δω,
one can observe a transition from a regime, where the phases rotate with different
velocities φ1 − φ2 ∼ ΔΩt , to a synchronous state, where the phase difference does
not grow with time |φ1 − φ2| < const; ΔΩ = 0. This transition is illustrated in
Fig. B.2a. Moreover, the correlation between the amplitudes of x1 and x2 is quite
small (Fig. B.2b), although the phases are completely locked. In this example, it
is shown that transition of one of the zero Lyapunov exponents to negative value
as shown in Fig. B.3 corresponds to the critical point at which the phases become
locked. It is known that in the absence of coupling each oscillator has one pos-
itive, one negative and one zero Lyapunov exponents. The zero Lyapunov expo-
nents correspond to the transition along the trajectory. As the coupling strength
is increased the interaction between the oscillators increases such that the phase
difference φ1 −φ2 decreases and phases become locked eventually. Thus one of the
zero exponents becomes negative to account for the phase locking phenomenon.
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Fig. B.2 (a) Phase difference of two coupled Rössler systems (B.12) versus time for nonsyn-
chronous (C = 0.01), nearly synchronous (C = 0.027) and synchronous (C = 0.035) states
and (b) Amplitudes of (B.12) that remain uncorrelated for phase synchronous case. The frequency
mismatch is Δω = 0.015 and the value of the parameter a = 0.15
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Fig. B.3 The four largest Lyapunov exponents of coupled coupled Rössler systems (B.12)
as a function of the coupling strength C

B.2.3 Lag Synchronization

It has been shown in the previous section that when nonidentical chaotic oscillators
are weakly coupled, the phases can be locked while the amplitudes remain highly
uncorrelated. On further increase of the coupling strength, a relationship between
the amplitudes may be established. Indeed, it has been demonstrated that there exists
a regime of lag synchronization [33] where the states of the two oscillators are nearly
identical, but one system lags in time with the other, that is, Y (t) = X (t −τ), τ > 0.

To characterize lag synchronization quantitatively, Rosenbulm et al. [33] have
introduced the notion of similarity function Sl(τ ) as a time averaged difference
between the variables x1 and x2 (with mean values being subtracted) taken with
the time shift τ ,

S2
l (τ ) = 〈[x2(t + τ)− x1(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2

, (B.13)

where 〈x〉 means time average over the variable x , and x1(t) and x2(t) are the state
variables of the drive and response systems, respectively. If the signals x1(t) and
x2(t) are independent, the difference between them is of the same order as the sig-
nals themselves. If x1(t) = x2(t), as in the case of complete synchronization, the
similarity function reaches a minimum so that S(τ ) = 0 for τ = 0. But for the case
of nonzero positive value of time shift τ , if Sl(τ ) = 0, then there exists a time shift τ
between the two signals x1(t) and x2(t) such that x2(t) = x1(t − τ), demonstrating
lag synchronization.

We will consider the coupled Rössler systems (B.12) again for illustrative pur-
pose with the same parameters as in the previous section except that the frequency
mismatch now is given by ω1,2 = 0.97 ± Δω with Δω = 0.02 [33] and the value
of the parameter a is chosen as a = 0.165. It was noted in the previous section
that as the coupling is increased from zero there exists entrainment of phases of the
coupled systems in the weak coupling limit. As the coupling strength is increased
further one can expect a stronger correlation in the amplitude resulting in the onset
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Fig. B.4 (a) Time series plot of the state variables x1,2 showing the state of one of the systems
evolving with a time lag τ = 0.21 to the state of the other variable for the value of the cou-
pling strength C = 0.2 and (b) Projection of the attractor of the coupled system on the delayed-
coordinates, plot of x1(t − τ) Vs x2(t), demonstrating that the state of one of the oscillators is
delayed in time with respect to the other for the above values of the parameters

of lag synchronization for an appropriate value of the coupling strength. In fact, one
finds that for C = 0.2, the state of one of the oscillators, x2, lags in time to that of
the other, x1, with a lag time τ = 0.21 which is illustrated in Fig. B.4a. Projection
of the attractor of the coupled system (B.12) on the delayed-coordinate x1(t −τ) Vs
x2(t) is shown in Fig. B.4b.

B.2.4 Anticipatory Synchronization

It has also been shown that certain kinds of coupled chaotic systems may synchro-
nize so that the response “anticipates” the driver, Y (t) = X (t +τ), by synchronizing
with the future states. In [36] different unidirectional coupling schemes are consid-
ered such as a nonlinear time-delayed feedback either in the driver or in both the
coupled systems. The results confirm that the anticipating synchronization can be
globally stable due to the interplay between delayed feedback and dissipation, for
any relatively small value of the lag time between response and driver. In addition,
it has been shown that it is possible to achieve anticipation times larger than the
characteristic time scales of the system dynamics, thus introducing a novel way of
reducing the unpredictability of chaotic dynamics [37].

Anticipatory synchronization can also be characterized using the same similarity
function Sl(τ ) but with a negative time shift τ < 0 instead of the positive time shift
τ > 0 in Eq. (B.13). In other words, one may define the similarity function for
anticipatory synchronization as

S2
a (τ ) = 〈[x1(t − τ)− x2(t)]2〉[〈

x2
1(t)

〉 〈
x2

2(t)
〉]1/2

, τ < 0 (B.14)

Then the minimum of Sa(τ ),that is Sa(τ ) = 0, indicates that there exists a time
shift −τ between the two signals x1(t) and x2(t) such that x2(t) = x1(t −τ), τ < 0,
demonstrating anticipatory synchronization.
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Fig. B.5 (a) Time series plot of the state variables x1,2 showing that the drive x2(t) anticipates
the state of the response system x1(t) with an anticipating time |τ | = 0.4 for the value of the
coupling strength C = 1.0 and (b) Projection of the attractor of the coupled system on the delayed-
coordinates, x1(t −τ)Vs x2(t), τ < 0, demonstrating the existence of anticipating synchronization
between the drive x1(t) and response x2(t) variables

As an illustrative example, we will consider the following unidirectionally cou-
pled Rössler systems [36],

ẋ1 = −y1 − z1, (B.15a)

ẏ1 = x1 + ay1, (B.15b)

ż1 = 0.2 + z1(x1 − 10), (B.15c)

ẋ2 = −y2 − z2 + C(x1 − x2,τ ), (B.15d)

ẏ2 = x2 + ay2, (B.15e)

ż2 = 0.2 + z2(x2 − 10), (B.15f)

where the parameter a is fixed as 0.15. It can be easily checked that the above
coupled systems exhibit anticipatory synchronization for small values of delay τ
upon increasing the coupling strength. Figure B.5a illustrates that the response x2(t)
anticipates the state of the drive x1(t) with anticipating time τ = 0.4 for the value
of the coupling strength C = 1.0 and the projection of the attractor of the coupled
system (B.15) on the delayed-coordinates, x1(t) Vs x2(t −τ), is shown in Fig. B.4b.

B.2.5 Generalized Synchronization

In general, completely identical synchronization may not be expected in nonidenti-
cal systems because there does not exist an invariant manifold x = y. In such cases
where there exists an essential difference between the coupled systems, there is no
hope to have a trivial manifold in the phase space attracting the system trajectories,
and therefore it is not clear at a first glance whether nonidentical chaotic systems can
synchronize. However, many works have shown that it is possible to generalize the
concept of synchronization to include nonidenticity between the coupled systems
and this phenomenon is called generalized synchronization [7, 39–41].

In order to define generalized synchronization (GS), let us consider the following
coupled system
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Ẋ = F(X), (B.16a)

Ẏ = G(Y, Hμ(X)), (B.16b)

where X is the n-dimensional state vector of the driver and Y is the m-dimensional
state vector of the response. F and G are vector fields, F : Rn → Rn , and G :
Rm → Rm . The coupling between the response and the driver is provided by the
vector filed Hμ(X) : Rn → Rm , where the dependence of this function upon the
parameters μ is explicitly considered. When μ = 0, the response system evolves
independently of the driver, and we assume that both systems are chaotic.

Some differences in the definition of GS exists in the literature. However, we
will discuss here a more general definition given in [39, 40, 72]. When μ �= 0,
the chaotic trajectories of the two systems are said to be synchronized in a gen-
eralized sense if there exists a transformation ψ : X → Y which is able to map
asymptotically the trajectories of the driver attractor into the ones of the response
attractor Y (t) = ψ(X (t)), regardless of the initial condition in the basin of the
synchronization manifold M = (X, Y ) : Y = ψ(X).

The difference between various definitions of GS is based on the mathematical
properties required for the map ψ . Reference [67] distinguishes between two types
of GS, namely the so-called weak synchronization and strong synchronization. The
latter corresponds to the case of a map ψ which is smooth, in the sense of being dif-
ferentiable; on the other hand the former corresponds to the case of a map ψ which
is non-smooth, in the sense of being not differentiable. Even a stronger version
of strong synchronization is considered in [73], called differentiable generalized
synchronization, requiring continuous differentiability of ψ . All of these different
approaches have relevant consequences when one looks for the existence of GS in
experimental situations. The stability of the manifold M of GS can be determined as
in the case of CS, that is, by the negativity of conditional Lyapunov exponents [67]
and the use of Lyapunov functions [40].

As an example, we consider the system studied in [74] where the drive system is
described by

μẋ1 = y1, (B.17a)

μẏ1 = −x1 − δy1 + z1, (B.17b)

μż1 = γ (α1 f (x1)− z1)− σ y1, (B.17c)

which is realized in experiments with electrical chaotic circuits [75]. The response
system equations are

ẋ2 = y2, (B.18a)

ẏ2 = −x2 − δy2 + z2, (B.18b)

ż2 = γ (α2 f (x2)− z2 + gx1)− σ y2, (B.18c)

where g is the coupling strength, and γ = 0.294, σ = 1.52, δ = 0.534, and
α2 = 16.7 are fixed system parameters. The nonlinear function f (x) models the
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Fig. B.6 Projection of attractor constructed from the drive (B.17) and response attractors (B.18)
and plotted for (x1, x2). (a) For α1 = 15.94 showing desynchronized state and (b) For α1 = 15.93
showing generalized synchronized state

input-output characteristics of a nonlinear converter in the circuit [74, 75]. The
parameter μ in the drive system equations is the time scaling parameter that is used
to select the desired frequency ratio of the synchronization. For the parameter values
g = 3.0, μ = 0.498 and α1 = 15.94 the above systems are in asynchronous state
which is shown in Fig. B.6a and as the value of α is decreased to α = 15.93 the
above systems display generalized synchronization as illustrated in Fig. B.6b.
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Appendix C
Recurrence Analysis

C.1 Introduction

The concept of recurrence dates back to Poincaré [1], who proved that after a
sufficiently long time the trajectory of a chaotic system in phase space will return
arbitrarily close to any former point of its path with probability one. However, the
concept of recurrence within the framework of chaotic systems was not considered
until the sixties, when the now famous Lorenz equation was derived by E. Lorenz
as a simplified equation of convection rolls [2, 3]. Later in 1987, Eckmann et al.
introduced the method of recurrence plots (RPs), a technique that visualizes the
recurrences of a dynamical system and gives information about the behavior of its
trajectory in phase space [4]. This technique has become popular in the last decade
because of its applicability to rather short and non-stationary time series. Further,
cross recurrence plots (CRPs) (a bivariate extension of the RP) was introduced by
Zbilut et al. [5] and Marwan and Kurths [6] to analyse the dependencies between
two different systems by comparing their states [5, 6]. As an extension of CRPs to
analyse physically different systems with different phase space dimensions, joint
recurrence plots (JRPs) were introduced. Also, in order to go beyond the visual
inspection of RPs, several measures of complexity which quantify the small scale
structures in RPs have been proposed [7–10] and are known as recurrence quan-
tification analysis (RQA). These measures are based on the recurrence point den-
sity and the diagonal and vertical line structures of the RP. Furthermore, a more
theoretical study of the relationship between RPs and the properties of dynami-
cal systems has also been addressed [10–15]. The concept of recurrence plots and
its measures have been applied in numerous fields of research including astro-
physics [16, 17], earth sciences [18–20], engineering [21, 22], biology [23, 24] and
cardiology/neuroscience [25–28]. In the following, we describe briefly the concept
of recurrence plots along with CRP and JRP. We will also discuss the various quan-
tification measures introduced to characterize synchronization transitions in coupled
chaotic systems.

279
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C.2 Recurrence Plots and Their Variants

In this section, we will describe briefly the concept of recurrence plots and their
variants such as cross recurrence plots and joint recurrence plots to analyse the
data of different physical systems of same or even different dimensions along with
suitable illustrations.

C.2.1 Recurrence Plots

As mentioned in the introduction, RPs provide a visual impression of the trajectory
of a dynamical system in phase space. Suppose that the time series {Xi }N

i=1 repre-
senting the trajectory of a system in phase space is given, with Xi ∈ R

d . The RP
efficiently visualises recurrences and can be formally expressed by the matrix

Ri, j = Θ(ε − ||Xi − X j ||), i, j = 1, · · · , N , (C.1)

where N is the number of measured points Xi , ε is a predefined threshold, Θ is
the Heaviside function (i.e. Θ(x) = 0, if x < 0, and Θ(x) = 1 otherwise) and
||.|| is the Euclidean norm. For ε-recurrent states, that is for states which are in an
ε-neighbourhood, we have the following notion:

Xi ≈ X j ⇐⇒ Ri, j ≡ 1. (C.2)

The graphical representation of the matrix Ri, j is called recurrence plot (RP). The
RP is obtained by plotting the recurrence matrix, Eq. (C.1), using different colors
for its binary entries, for example by marking a black dot at the coordinates (i, j), if
Ri, j ≡ 1, and a white dot, if Ri, j ≡ 0. Since Ri,i ≡ 1 |N

i=1 by definition, the RP has
always a black main diagonal line. Furthermore, the RP is symmetric by definition
with respect to the main diagonal, that is Ri, j ≡ R j,i .

A crucial parameter of an RP is the threshold ε. Therefore, special attention has
to be required for its choice. If ε is chosen too small, there may be almost no recur-
rence points and we cannot learn anything about the recurrence structure of the
underlying system. On the other hand, if ε is chosen too large, almost every point
is a neighbour of every other point, which leads to a lot of artefacts. A too large
ε includes also points into the neighbourhood which are simple consecutive points
on the trajectory. Hence, one has to find an appropriate value for ε. Moreover, the
influence of noise can entail choosing a larger threshold, because noise would distort
any existing structure in the RP [10].

Several methods have been advocated in the literature to estimate the value of
threshold ε with their own advantages and disadvantages which has been discussed
in [10]. Among them, we use the approach that preserves the fixed recurrence point
density. In order to find an ε which corresponds to a fixed recurrence point density
or recurrence rate (RR) defined as
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R R(ε) = 1

N 2

N∑
i, j=1

Ri, j (ε), (C.3)

the cumulative distribution of the N 2 distances between each pair of vectors can be
used. The R Rth percentile is then the required ε. An alternative is to fix the number
of neighbours for every point of the trajectory. In this case, the threshold is actually
different for each point of the trajectory. The advantage of these two methods is that
both of them preserve the recurrence point density and allow one to compare RPs of
different systems without the necessity of normalising the time series beforehand.
Nevertheless, the choice of ε depends strongly on the system under study.

For illustration, we will show the RPs of three different motions, namely (i) of a
periodic motion on a circle (Fig. C.1a), (ii) of a chaotic attractor of Rössler system
(Fig. C.1b) and (iii) of a Gaussian white noise (Fig. C.1c). In all our simulation, we
have chosen the threshold value for ε as ε = 0.03R R and the sampling interval
to be Δt = 0.1. The RP of the purely periodic oscillation shown in Fig. C.1a
consists of uninterrupted diagonal lines separated by the distance T , where T is
the period of the oscillation. This is due to the fact that the position of the system
in the phase space recurs exactly at the same point after a cycle and hence one has
identical recurrence. The RP of Gaussian white noise depicted in Fig. C.1c is rather
homogeneous, consisting of mainly single points, indicating the randomness of its
behavior. The RP of chaotic attractor of Rössler system is illustrated in Fig. C.1b,
which shows that the predominant structures are intermediate between that of peri-
odic oscillations and that of purely stochastic motions. The RP of Rössler attractor
also shows diagonal lines which are shorter (interrupted) and the vertical distance
between the diagonal lines is not constant because of the multiple time scales of the
chaotic system. The interrupted diagonal lines are due to the exponential divergence
of nearby trajectories (sensitive to slightly different initial conditions). However, on
the upper right of Fig. C.1b, there is a small rectangular patch which rather looks like
the RP of the periodic motion and this structure corresponds to an unstable periodic
orbit of the Rössler attractor [10]. It is also conjectured that shorter the diagonals in
the RP, the less the predictability of the system [29], and indeed it was suggested
that the inverse of the longest diagonal (except the main diagonal for which i = j) is
proportional to the largest Lyapunov exponent of the system by Eckmann et al. [4].

Fig. C.1 Recurrence Plots of (a) a periodic oscillation, (b) a chaotic attractor of Rössler system
and (c) a Gaussian white noise
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C.2.2 Cross Recurrence Plots (CRP)

As mentioned in the introduction, CRP is a bivariate extension of the RP and was
introduced to analyse the difference between two different systems [5, 6]. CRPs can
be regarded as a generalisation of the linear cross-correlation function [10]. The
cross recurrence matrix, analogous to RP, of two dynamical systems represented by
the trajectories X and Y in a d-dimensional phase space is defined by

C RX,Y
i, j = Θ(ε − ||Xi − Y j ||), i = 1, · · · , N , j = 1, · · · ,M, (C.4)

where N and M are the lengths of the trajectories X and Y , respectively. Note that
N may not be equal to M and hence the matrix C R is not necessarily a square
matrix. As a CRP is plotted for those times when a state of the first system recurs
to that of the other system, both the systems are represented in the same phase
space. The components of Xi and Yi are usually normalised before computing the
cross recurrence matrix, while the other possibilities are to use the fixed amount of
neighbours for each Xi in which case the components need not be normalised. It
has been shown that the latter choice of the fixed neighborhood has the additional
advantage of suitability for slowly changing trajectories [10].

As an illustration, the CRP of the coupled Rössler systems (Eq. (B.12)) for the
same value of the parameters as in Sect. B.2.2 and for the value of the coupling
strength C = 0.01 is shown in Fig. C.2. As the values of the main diagonal C Ri,i

are not necessarily unity, CRPs do not have a black main diagonal line as in RPs as
in Fig. C.2. It has been shown that measures based on the length of the diagonally
oriented lines are used to find the nonlinear interactions between two systems, which
cannot be detected by the common cross-correlation function [6, 10]. An important
property of CRPs is that they reveal the local difference of the dynamical evolution
of close trajectory segments, represented by bowed lines. A time dilation or time
compression of one of the trajectories causes a distortion of the diagonal lines. For

Fig. C.2 Cross recurrence plot of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01
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two identical trajectories, the CRP is the RP of a single trajectory and contains the
main black diagonal line.

C.2.3 Joint Recurrence Plots (JRP)

We have seen above that CRP can be used to analyse the interrelation between two
different systems. However, CRP cannot be used to analyse two physically different
systems because the two different physical units or different phase space dimensions
do not make sense in computing CRP. A different possibility to compare the states
of different systems is to consider the recurrences of their trajectories in their cor-
responding phase spaces separately and then look for the times when both of them
recur simultaneously, that is when joint recurrence occurs. The individual phase
spaces are preserved by this approach and different thresholds for each system εX

and εY are considered, in respect of the natural measure of both the systems. Joint
recurrence matrix for two systems X and Y can be defined as

JRX,Y
i, j (ε

X , εY ) = Θ(εX − ||Xi − X j ||)Θ(εY − ||Yi − Y j ||), i, j = 1, · · · , N .
(C.5)

JRP of the coupled Rössler systems (Eq. (B.12)) for the same value of the parame-
ters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01 is shown
in Fig. C.3.

The bivariate joint recurrence plot can be generalized to analyse n systems
(X(1), X(2), ..., X(n)) by using multivariate joint recurrence matrix, which can be
represented using Eq. (C.1) as

JR
X(1,2,...,n)
i, j (εX(1) , ..., εX(n) ) =

n∏
k=1

R
X(k)
i, j (ε

X(k) ), i, j = 1, · · · , N . (C.6)

Fig. C.3 Joint recurrence plot of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 and for the value of the coupling strength C = 0.01
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In addition, a delayed version of the joint recurrence matrix can also be intro-
duced as

J RX,Y
i, j (ε

X , εY , τ ) = R
X
i, j (ε

X )RY
i+τ, j+τ (εY ), i, j = 1, · · · , N − τ, (C.7)

to analyse the interacting delayed systems [10]. JRP is invariant under permutation
of the coordinates in one or more of the systems. It can also be computed using a
fixed amount of nearest neighbours. In this case, each RPs which contributes to the
JRP is computed using the same number of nearest neighbours. These RPs obtained
from CRP, JRP and their variants are exploited in quantifying several dynamical
properties and their transitions using recurrence quantification analysis as discussed
in the next section.

C.3 Recurrence Quantification Analysis (RQA)

Several measures of complexity which quantify the small scale structures in RPs
have been proposed and are known as recurrence quantification analysis. These mea-
sures are based on the recurrence point density, the diagonal and vertical line struc-
tures of the RP. Studies based on RQA measures show that they are able to identify
bifurcation points, including chaos-order and chaos-chaos transitions [10]. Several
recurrence quantification measures have been introduced for different requirements.
Some of the most important measures include Recurrence Rate (RR), Determinism
(DET ), Divergence (DIV ), Entropy (ENTR), Trend (TREND), Ratio (RATIO), Lin-
earity (L AM), Trapping Time (TT ), Maximal vertical length (Vmax ), etc. It has also
been shown that several dynamical invariants such as correlation entropy, correlation
dimension, generalized mutual information, etc can also be calculated using RQA.
Detailed discussion on all of the above RQAs can be found in [10] and, all of the
methods and procedure discribed in this appendix are available in the CRP toolbox
for Matlab (Provided by TOCSY: http://tocsy.agnld.uni-potsdam.de). However, in
the following, we will focus our discussion on some of the RQAs that have been
introduced to characterize and to identify different kinds of synchronization transi-
tions in coupled chaotic systems.

C.3.1 Generalized Autocorrelation Function, P(t)

Generalized autocorrelation function P(t) has been defined as [10, 30]

P(t) = 1

N − t

N−t∑
i=1

Θ(ε − ||Xi − Xi+t ||). (C.8)

If any two coupled oscillators are in phase synchronization (PS), then the distances
between the diagonal lines in their respective RPs coincide as their phases, and
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hence their time scales are locked to each other. As PS is characterized by entrain-
ment in the phases of the interacting systems while their amplitudes remain uncorre-
lated, their respective RPs remain non-identical. However, if the probability that the
first oscillator recurs after t time steps is high, then the probability that the second
oscillator recurs after the same time interval is also high, and vice versa. Therefore,
looking at the probability P(t) that the system recurs to the ε neighborhood of a
former point of the trajectory X after t time steps and comparing P(t) of both the
system allows to detect and quantify PS.

Generalized autocorrelation function P(t) can be considered as a statistical mea-
sure about how often the phase φ has increased by 2π or multiples of 2π within
the time t in the original space. If two systems are in a phase synchronized state,
their phases increase on the average by K .2π , where K is a natural number, within
the same time interval t . The value of K corresponds to the number of cycles when
||X (t + T )− X (t)|| ∼ 0, or equivalently when ||X (t + T )− X (t)|| < ε, where T
is the period of the system. Hence, looking at the coincidence of the positions of the
maxima of P(t) for both the systems, one can qualitatively identify CPS. It is to be
noted that the heights of the local maxima are in general different for both systems
if they are only in PS.

C.3.2 Correlation of Probability of Recurrence (CPR)

A criterion to quantify phase synchronization between two systems is the cross
correlation coefficient between P1(t) and P2(t) (P1(t) represents the probability
of recurrence of the first system and P2(t) that of the second system) which can be
defined as Correlation of Probability of Recurrence (CPR)

CPR = 〈P̄1(t)P̄2(t)〉/σ1σ2, (C.9)

where P̄1,2 means that the mean value has been subtracted and σ1,2 are the standard
deviations of P1(t) and P2(t), respectively. If both systems are in CPS, the proba-
bility of recurrence is maximal at the same time t and CPR ≈ 1. If they are not in
CPS, the maxima do not occur simultaneously and hence one can expect a drift in
both the probability of recurrences and low values of CPR.

It has also shown that this method is highly efficient even for non-phase coherent
oscillators and it is able to detect PS even in time series which are strongly corrupted
by noise. One of the most important applications of this method is that it can also
be applied to experimental time series with noise.

C.3.3 Joint Probability of Recurrence (JPR)

Joint probability of recurrence to quantify the existence of generalized synchroniza-
tion (GS) between two systems is defined as
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JPR = S − RR

1 − RR
, (C.10)

where, S = R R1,2
R R , R R1,2 is the recurrence rate of the JRP of both the systems and

R R1 = R R2 = R R is the recurrence rate of the individual systems.

C.3.4 Similarity of Probability of Recurrence (SPR)

As the recurrence matrix contains only information about the neighborhood of each
point of a time series, the RPs of systems in GS must be almost identical. Hence,
it follows that their respective probabilities of recurrence must coincide and this
suggests the similarity coefficient between P1(t) and P2(t) represented as

SPR = 1 − 〈(P̄1(t)− P̄2(t))
2〉/σ1σ2, (C.11)

is of order 1 if both systems are in GS and approximately zero or negative if they
evolve independently.

C.4 Synchronization and Recurrences

In this section, we will investigate the onset, existence and transition among different
kinds of synchronizations by using recurrence plots and recurrence quantification
analysis discussed above. It may be noted that these indices based on the recurrence
are of considerable importance in synchronization analysis of experimental systems
and, in particular, in the case of very small available data set. With these indices, one
can quantify the degree of synchronization in complex interacting systems, specif-
ically in the case of non-coherent attractors. These methods are more appropriate
for non-stationary data. In the following, we will analyse (i) phase synchroniza-
tion in mutually coupled Rössler systems [31] and (ii) transition from phase to lag
synchronization again in mutually coupled Rössler systems [32] but in slightly dif-
ferent parameter regimes using recurrence plots and recurrence indices discussed
above.

C.4.1 PS in Mutually Coupled Rössler Systems

Phase synchronization has already been discussed in detail in Sect. B.2.2 and it has
been illustrated using mutually coupled Rössler systems [31]. Now, we will discuss
about the structure of recurrence plots, the nature of generalized autocorrelation
function, P(t), and correlation of probability of recurrence, CPR, for two differ-
ent values of the coupling strength corresponding to non-synchronized and phase
synchronized state in these systems. It is well known that PS is characterized by
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entrainment in the phase of the interacting systems while their amplitudes remain
uncorrelated. During PS, the phases get locked and so also the frequencies. There-
fore, the recurrence plots of both the systems have the same distance (vertical)
between the diagonal lines, which corresponds to the period of oscillation, while
their respective RPs remain nonidentical.

Recurrence plot of both of the mutually coupled Rössler systems (Eq. (B.12)) for
the same values of the parameters as in Sect. B.2.2 are shown in Fig. C.4a, b, respec-
tively, for the value of coupling strength C = 0.01 in the non-synchronized regime.
The generalized autocorrelation functions, P1,2(t) of both the systems are shown in
Fig. C.4c, which indicates that the positions of local maxima are not in coincidence
and there exists a drift between them indicating non-synchronized state. The value of
correlation of probability of recurrence, CPR = 0.022, is rather low confirming the
non-synchronized state. Similarly, RPs of both the systems are shown in Fig. C.5a,
b, respectively, for the value of coupling strength C = 0.035 corresponding to PS
regime. Now both P1(t) and P2(t) are in perfect coincidence in their positions of
local maxima indicating PS (Fig. C.5c). In addition, the value of the correlation
coefficient CPR = 0.91 which is rather high, indicating a high degree of PS.

The transition from non-synchronized state to PS and the onset of PS can also be
clearly revealed by the index CPR. It has been demonstrated [31] that the onset of
PS occurs at the value of coupling strength C = 0.027 and PS exists for values C >

0.027 as indicated by the Lyapunov exponents shown in Fig. C.6a in the range of
coupling strength C ∈ (0, 0.04). The onset of PS at this value is also clearly revealed

Fig. C.4 Recurrence plots of the coupled Rössler systems (Eq. (B.12)) for the same value of
the parameters as in Sect. B.2.2 but for the value of the coupling strength C = 0.01 in the
non-synchronized state. (a) First system, (b) Second system and (c) Generalized autocorrelation
functions, P1,2(t), of both the systems
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Fig. C.5 Recurrence plots of the coupled Rössler systems (Eq. (B.12)) for the same value of the
parameters as in Sect. B.2.2 but for the value of the coupling strength C = 0.035 in the PS state.
(a) First system, (b) Second system and (c) Generalized autocorrelation functions, P1,2(t), of both
the systems

by the index CPR shown in Fig. C.6b in the same range of the coupling strength C
of the mutually coupled Rössler systems (Eq. (B.12)). The value of the CPR shows a
sudden increase in its value at C = 0.027 and above this value of coupling strength
CPR fluctuates near to but less than unity characterizing the degree of PS.

C.4.2 Phase to Lag Synchronization

Lag synchronization (LS) has also been already discussed in Sect. B.2.3, along with
an illustration as demonstrated in [32]. With the same values of parameters as dis-
cussed in Sect. B.2.3 for mutually coupled Rössler systems (Eq. (B.12)), we will
characterize the transition from non-synchronized state to PS and then to an LS state
using the recurrence indices. As LS is a special case of generalized synchronization
(GS) all the discussion for LS will also hold for GS.

Since RPs and generalized autocorrelation functions for both the coupled systems
are already shown in the non synchronized and PS regimes, we concentrate here on
LS only. RPs and P1,2(t) of the mutually coupled Rössler systems (Eq. (B.12)) for
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the value of coupling strength C = 0.2 is shown in Fig. C.7, where both the systems
are in LS. It is evident that the RPs of both the systems are identical confirming
the existence of lag (generalized) synchronization between the coupled systems.
Furthermore, the generalized autocorrelation functions, P1,2(t), are also in perfect
coincidence both with their positions and with their amplitudes confirming the exis-
tence of lag (generalized) synchronization. Correspondingly, the value of the indices
CPR = 0.881 and SPR = 0.999 are rather high attributing to the degree of LS.

Transition from the non-synchronized state to PS and then from PS to LS in
mutually coupled Rössler systems has been demonstrated in [32]. It has been shown
that the onset of PS occurs at the critical value of the coupling strength C p = 0.036
and that of LS occurs at Cl = 0.14 as indicated by the largest Lyapunov expo-
nents of the coupled Rössler systems shown in Fig. C.8a. Indices CPR, JPR, SPR
are depicted in Fig. C.8b in the range of coupling strength C ∈ (0, 0.2). Indices
CPR and SPR indicate the onset of PS at the critical value of the coupling strength
C p = 0.036 as indicated by the Lyapunov exponents, by a sudden increase in their
values. The onset of LS in the coupled Rössler systems is also indicated by the
indices JPR and SPR exactly at the same critical value of the coupling strength
Cl = 0.14 by saturation in their amplitudes at high values near to unity.
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of the mutually coupled Rössler systems (Eq. (B.12)) studied in Sect. B.2.3 and (b) Indices,
CPR, JPR, SPR, in the same range of the coupling strength characterizing the onset of PS, LS
and transition among them
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Appendix D
Some More Examples of DDEs

D.1 Introduction

In addition to the examples of different kinds of DDEs presented in Chap. 1 and
other chapters, we will describe briefly some of the available DDEs of various forms
that have been used in the literature in different areas of science and technology.

D.2 DDEs with Constant Delay

DDEs with constant delays have been discussed in Sect. 1.1.1 of Chap. 1 along with
some of the instances where they appear. In the following we will present few more
of them briefly.

D.2.1 Hutchinson’s Equation/Delayed Logistic Equation

Hutchinson [1, 2] proposed a more realistic logistic delay equation for single species
dynamics by assuming egg formation to occur τ time units before hatching repre-
sented as follows,

dx

dt
= r x(t)

[
1 − x(t − τ)

K

]
, (D.1)

where x(t) denotes the population size at time t , r > 0 is the intrinsic growth rate
and K > 0 is the carrying capacity of the population. This equation is often referred
to as the Hutchinson’s equation or delayed logistic equation.

D.2.2 Gopalsamy and Ladas Population Model

Gopalsamy and Ladas [3] proposed a single species population model exhibiting the
Allee effect in which the per capita growth rate is a quadratic function of the density
and is subject to more than one identical time-delay terms represented as

293
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dx

dt
= x(t)

[
a + bx(t − τ)− cx2(t − τ)

]
, (D.2)

where a > 0, c > 0, τ > 0 and b are real constants. In this model, when the density
of the population is not small, the positive feedback effects of aggregation and coop-
eration are dominated by density-dependent stabilizing negative feedback effects
due to intraspecific competition. In other words, intraspecific mutualism dominates
at low densities and intraspecific competition dominates at higher densities [2, 3].

D.2.3 Stem-Cell Model

The dynamics of pluripotential stem-cell population is governed by the pair of cou-
pled DDEs [4, 5]

dx

dt
= −γ x(t)+ βx(t)2 − exp(−γ τ)βy2

τ , (D.3)

dy

dt
= − [

βy(t)+ δ
]

y(t)+ 2exp(−γ τ)βy2
τ , yτ = y(t − τ), (D.4)

where τ is the time required for a cell to traverse the proliferative phase and β is the
resting to proliferative phase feedback rate. Further details can be found in [4, 5].

D.2.4 Pupil Cycling Model

Pupil cycling is described by the following DDE with piecewise constant negative
feedback

dx

dt
= y(t), (D.5)

dy

dt
= f (xτ ), xτ = x(t − τ), (D.6)

where the piecewise constant negative feedback is given as

f (x) =
{

a, x > θ

b, x ≤ θ.
(D.7)

Here x(t) is the pupil area at time t , τ is the time-delay, a, b describe retinal illumi-
nation (a > b) and θ is a threshold area [6, 7].
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D.3 DDEs with Discrete Delays

Given the general form of DDEs with discrete delays as in Sect. 1.1.2 along with
suitable examples, we will describe here some other examples of discrete/multiple
delays with their explicit equations and their details.

D.3.1 Australian Blowfly Model

Braddock and van den Driessche [2, 3, 8] proposed a logistic equation with two dif-
ferent delays to mimic the population x(t) of the Australian blowfly Lucila cuprina,
which is represented as follows:

dx

dt
= r x(t) [1 + ax(t − τ1)− bx(t − τ2)] , (D.8)

where r > 0, a > 0 and b > 0 are real constants, τ1 > 0 and τ2 > 0 corresponds
to regeneration and reproductive delays, respectively.

D.3.2 Wilson and Cowan Model

Wilson and Cowan [9, 10] model describes the evolution of a network of synap-
tically interacting neural populations, typically one being excitatory and the other
inhibitory, in the presence of two different delays represented as

dx

dt
= −x(t)+ f

[
θx + ax(t − τ1)+ by(t − τ2)

]
, (D.9)

dy

dt
= α

(−y(t)+ f
[
θy + cx(t − τ2)+ dy(t − τ1)

])
, (D.10)

where x(t) and y(t) represent the synaptic activity of the two populations with a
relative time scale for the response set by α−1. The architecture of the network is
fixed by the weights a, b, c, d , while θx,y describe background drives and f is the
common firing rate function.

D.3.3 Human Respiratory Model

A simple model of the respiratory control mechanism in humans is represented
as [11]
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dx

dt
= p − αW

[
x(t − τ1), y(t − τ2)

]
(x(t)− xI ), (D.11)

dy

dt
= −σ + βW

[
x(t − τ1), y(t − τ2)

]
(y(t)− yI ), (D.12)

where x(t) and y(t) denote the arterial CO2 and O2 concentrations, respectively.
W (·, ·) is the ventilation function (the volume of gas moved by the respiratory sys-
tems), τ1,2 are transport delays, xI and yI are inspired CO2 and O2 concentrations, p
is the CO2 production rate, σ is the O2 consumption and α, β are positive constants
referring to the diffusibility of CO2 and O2, respectively.

D.4 DDEs with Distributed Delay

In the following we will present a few examples for DDEs with distributed delay in
addition to the details presented in Sect. 1.1.3.

D.4.1 Volterra’s Logistic Equation

The Hutchinson’s equation (D.1) assumed that the regulatory effect depends on the
population at a fixed earlier time t − τ . However, in a more realistic model the delay
effect should be an average over past populations and this requires an equation with a
distributed delay. Volterra [2, 12] suggested the first model of logistic equation with
distributed delay and he used a distributed delay term to examine a cumulative effect
in the death rate of a species, depending on the population at all times, represented
as

dx

dt
= r x(t)

[
1 + 1

K

∫ t

−∞
G(t − s)x(s)ds

]
, (D.13)

where G(t) is the delay kernel, corresponding to a weighting factor which indicates
how much emphasis should be given to the size of the population at earlier times to
determine the present effect on resource availability.

D.4.2 Neural Network with Distributed Delay

Hopfield neural networks with distributed delays are considered [13] to take into
account the distribution of conduction velocities along parallel pathways with a
variety of axon sizes and lengths as [13]

dx

dt
= −x(t)+ a tanh

[
x(t)− b

∫ ∞

0
x(t − s)k(s)ds − c

]
, (D.14)

where x(t) is the state of neuron, a, b and c are non-negative constants.
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D.4.3 Chemostat Model

A chemostat model of a single species feeding on a limiting nutrient supplied at
constant rate is proposed as [14]

d S

dt
=

(
S0 − S(t)

)
D − ax(t)p (S(t)) , (D.15)

dx

dt
= x(t)

[
−D1 +

∫ t

−∞
F(t − s)p(S(t))ds

]
, (D.16)

where S(t) and x(t) denote the concentration of the nutrient and the population of
microorganism at t. S0 denotes the input concentration of nutrient, D is referred to
as the dilution rate and D1 denotes the sum of the dilution rate and the death rate of
the population of microorganism. The function p(S) describes the species specific
growth rate and a−1 is referred to as the growth yield constant.

D.5 DDEs with State-Dependent Delay

We will discuss some of the DDEs with state-dependent delay that have been used
in the literature in some detail. General discussion and some other examples are
presented in Sect. 1.1.4,

D.5.1 Population Model

Considering the birth rate as population density dependent rather than age dependent
certain population dynamics is also modeled with delay equations with state depen-
dent delay. Assuming the lifespan L of individuals in the population as a function
of the current population size, x(t), and taking into account the crowding effect, a
DDE with state dependent delay for population dynamics is suggested [15, 2],

dx

dt
= bx(t)− bx(t − L [x(t)])

1 − L ′ [x(t)] bx(t − L [x(t)])
. (D.17)

D.5.2 Logistic Model with State Dependent Delay

Logistic model with a state dependent delay has also been proposed [2],

dx

dt
= r x(t)

[
1 − x(t − τ(x(t)))

K

]
. (D.18)
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D.5.3 Mechanical Model for Machine Tool Chatter

Turning process in machine tool chatter is governed by the following state dependent
DDE [16],

mẍ(t)+ cx ẋ(t)+ kx x(t) = Kxw
[
vτ(xt )+ y(t − τ(xt ))− y(t)

]q
, (D.19)

mÿ(t)+ cy ẏ(t)+ ky y(t) = Kyw
[
vτ(xt )+ y(t − τ(xt ))− y(t)

]q
, (D.20)

where m, cx , cy, kx and ky are the modal mass, the damping and the stiffness param-
eters in the x and y directions, respectively. Kx,y are the cutting coefficients, w is
the depth of cut, q is an exponent and v is the speed of feed. More details on the
system and its stability analysis can be found in [16].

D.6 DDEs with Time-Dependent Delay

In the following we will present explicit equations for two models described by
DDEs with time-dependent delays.

D.6.1 Stem-Cell Equation

The stem cell equation can be put in the form [17]

Ṡ(t) = 2M(t − τm(t))S(t − τm(t))− S(t) [M(t)+ ω] , (D.21)

where S(t) is the available stem cell population. The rate M(t)S(t) at which stem
cells enter the mitotic channel is controlled by the mitotic operator, M(t), acting on
the stem cell population and the rate at which they return after dividing is 2M(t −
τm(t))S(t − τm(t)), assuming that there are no losses. τm(t) represents the delay
between cells leaving the stem cell population to enter the mitotic cycle and the
return of two daughter cells.

D.6.2 Neural Network Model

A neural network model with time-varying delay is represented as [18]

d X

dt
= −DX (t)+ AG(X (t))+ B F(X (t − τ(t)))+ I (t), (D.22)

where X (t) = [x1(t), x2(t), · · · , xn(t)] is the state vector of the network at time
t , D = diag [d1, d2, · · · , dn] with di > 0 denotes the rate with which the cell i
resets its potential to the resting state when isolated from other cells and inputs,
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A = (akl)n×n , B = (bkl)n×n ∈ R
n×n represent the connection weight matrix and

the delayed connection weight matrix, respectively. akl , bkl denote the strengths
of connectivity between the cell k and l at time t and t − τ(t), respectively.
F(X) = [

f1(x1(t)), · · · , fn(xn(t))
]
, G(X) = [

g1(x1(t)), · · · , gn(xn(t))
]

are acti-
vation functions.

Further details on all these examples can be found in their respective references.
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Amplitude death The phenomenon of suppression of oscillations in dynamical
systems mainly due to time-delay feedback or time-delay coupling is termed as
amplitude death.

Analog simulation circuit An electronic circuit designed to mimic the dynamics
of a system modelled by a linear/nonlinear evolution equation.

Analytic signal approach It is one of the approaches to calculate the phase of a
non-phase-coherent chaotic/hyperchaotic attractor. The complex analytical signal
χ(t) is constructed from a scalar time series s(t) via Hilbert transform (HT).

Anticipatory synchronization Anticipatory synchronization is a special kind of
generalized synchronization (see below), where one (receiver) of the coupled sys-
tems anticipates the state of the other (transmitter) with finite anticipating time.

Attractor It is a bounded region of phase space of a dynamical system towards
which nearby trajectories asymptotically approach. The attractor may be a point or
a closed curve or an unclosed but bounded orbit.

Autonomous system A system with no explicit time-dependent term in its equation
of motion.

Band merging bifurcation Merging of two or more bands of a m-band chaotic
attractor at a critical value of a control parameter.

Bifurcation A sudden/abrupt qualitative change in the dynamics of a system at a
critical value of a control parameter when it is varied smoothly.

Bifurcation diagram A plot illustrating qualitative changes in the dynamical
behavior of a system as a function of a control parameter.

Bifurcation route The nature of sudden/abrupt qualitative changes in the dynami-
cal behavior of a system as a function of a control parameter indicating the mecha-
nism responsible for the change.

Chaos A phenomenon or process of occurrence of bounded nonperiodic evolu-
tion in deterministic nonlinear systems with high sensitive dependence on initial
conditions. A consequence is that nearby chaotic orbits diverge exponentially (in a
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time average sense) in phase space. A measure of quantification of the degree of
divergence is the set of Lyapunov exponents. Chaotic motion is characterized by at
least one positive Lyapunov exponent.

Chimera state The coexistence of coherent (synchronized) and incoherent (desyn-
chronized) states in coupled identical oscillators is called a chimera state.

Chua’s circuit A simple, third-order, autonomous electronic circuit consisting of
two linear capacitors, a linear inductor, a linear resistor, and only one nonlinear
element, namely Chua’s diode, having a piecewise linear characteristic.

Chemostat model A chemostat (from Chemical environment is static) is a biore-
actor to which fresh medium is continuously added, while culture liquid is continu-
ously removed to keep the culture volume constant. By changing the rate with which
the medium is added to the bioreactor the growth rate of the microorganism can be
easily controlled.

Complete synchronization Complete synchronization (CS) refers to the identi-
cal evolution of the trajectories of two identical linear/nonlinear systems which is
achieved by means of a suitable coupling in such a way that the two trajectories
remain in step with each other in the course of time.

Complex network In the context of network theory, a complex network is a net-
work (graph) with non-trivial topological features (Examples: scale-free networks
and small-world networks) that do not occur in simple networks such as lattices
or random graphs. The study of complex networks is an active area of scien-
tific research of this decade inspired largely by the empirical study of real-world
networks such as computer networks and social networks.

Connection delay Delay caused due to the finite time required for the propagation
of signals from output to the receiver end or among the interconnected dynamical
systems.

Correlation dimension A quantitative measure used to describe geometric and
probabilistic features of attractors. It is an integer for regular attractors such as a
fixed point, a limit cycle or a quasiperiodic orbit. It is non-integer for a strange
(chaotic) attractor.

Correlation function A statistical measure used to characterize regular and chaotic
motions. For periodic motion it oscillates while for chaotic motion it decays to zero.

Correlation of probability of recurrence (CPR) A cross correlation coefficient
between the generalized autocorrelation functions of two systems, P1,2(t), is defined
as correlation of probability of recurrence (CPR).

Cross recurrence plot (CRP) A cross recurrence plot (CRP) is a bivariate exten-
sion of the recurrence plot and was introduced to analyse the difference between
two different systems. CRP can be regarded as a generalisation of the linear cross-
correlation function.
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Delay differential equation (DDE) A delay-differential equation (DDE) com-
prises of an unknown function and certain of its derivatives, evaluated at arguments
that differ by fixed numerical values. For example, ẋ(t) = F(t, x(t), x(t − τ))

is a retarded DDE for τ > 0. DDEs (also called functional differential equations
or retarded differential-difference equations) generalize the concept of differential
equations by allowing the state of the system to depend on states different from the
present one. DDEs can also be of neutral and advanced types.

Delay time modulation (DTM) Delay time modulation refers to the case of time
varying delay τ(t), where the time-delay τ evolve in time or even it can be a function
of state variable τ(x) (in which case it is referred to as state dependent delay).

El Niño-Southern oscillation The El Niño-Southern Oscillation is often abbre-
viated as ENSO and in popular usage is called simply El Niño. It is defined by
sustained differences in the Pacific ocean surface temperatures when compared
with the average value. The accepted definition is a warming or cooling of at least
0.5 ◦C(0.9 ◦F) averaged over the east-central tropical Pacific ocean. When this hap-
pens for less than 5 months, it is classified as El Niño or La Niña conditions; if
the anomaly persists for 5 months or longer, it is called an El Niño or La Niña
“episode”. Typically, this happens at irregular intervals of 27 years and lasts 9
months to 2 years.

Embedding theorem Delay embedding theorem gives the conditions under which
a chaotic dynamical system can be reconstructed from a sequence of observations
of the state of a dynamical system. The reconstruction preserves the properties of
the dynamical system that do not change under smooth coordinate changes, but it
does not preserve the geometric shape of structures in phase space.

Epidemiology It is a branch of science dealing with spreading of diseases in human
population. The model proposed to study the nature of spreading and to identify
the measures to control a specific disease is called an epidemic model. The term
“epidemics” is derived from Greek epi- upon + demos people. An epizootic is the
analogous circumstance within an animal population.

Equilibrium point An admissible solution of F(X) = 0 for a dynamical system
Ẋ = F(X), X = (x1, x2, · · · , xn)

T . It is also called fixed point or singular point of
the system.

Error feedback Error feedback refers to the feedback given as a linear/nonlinear
function of the difference of the state variables of the coupled systems.

Feedback delay Finite time taken by a signal that is fed back into the system
causes the feedback delay. For instance, in semiconductor lasers the coherent light
is converted into chaotic signal due to the feedback of the light through a cavity and
the round trip time results in the feedback delay. Feedback delay can give rise to
plethora of new behaviors in dynamical systems (see Chaps. 5 and 6).

FitzHugh-Nagumo oscillator FitzHugh-Nagumo model ẋ = x−x3/3−y+ I, ẏ =
0.08(x + 0.7 − 0.8y) is a two-dimensional simplification of the Hodgkin-Huxley
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model of spike generation in squid giant axons. It is used to isolate conceptually the
essentially mathematical properties of excitation and propagation from the electro-
chemical properties of sodium and potassium ion flow.

Generalized autocorrelation function In recurrence quantification analysis, gen-
eralized autocorrelation function, P(ε, t), can be considered as the probability that
the system recurs to the ε-neighbourhood of a former point xi of the trajectory
after t time steps. Comparing P(ε, t) of two systems, one can characterize quan-
titatively and qualitatively the existence of phase synchronization between the two
systems.

Generalized synchronization Synchronization can be achieved even in the case
of coupled non-identical systems and in this case, it is termed as generalized syn-
chronization where there exists some functional relationship between the variables
of the coupled systems.

Globally coupled chimera (GCC) state The coexistence of chimera states in a
system of identical oscillators with (sub) populations with time-delay coupling is
termed as globally coupled chimera states. It is demonstrated that coupling delay
can induce globally clustered chimera (GCC) states in systems having more than
one coupled identical oscillator (sub) populations. By GCC one refers to the state
of a system, which has more than one (sub) population, that splits into two different
groups, one synchronized and the other desynchronized, each group comprising of
oscillators from both the populations.

Hopf bifurcation It corresponds to the birth of a limit cycle from an equilibrium
point when a control parameter is varied. If the limit cycle is stable (unstable) then
the bifurcation is called supercritical (subcritical).

Hyperchaos It represents chaotic motion with more than one positive Lyapunov
exponents. It has at least two exponentially diverging directions in its orthonormal
phase space.

Ikeda system Ikeda system was introduced to describe the dynamics of an opti-
cal bistable resonator, which is specified by the state equation dx

dt = −αx(t) −
β sin x(t − τ). Physically x(t) is the phase lag of the electric field across the res-
onator and thus may clearly assume both positive and negative values, α is the
relaxation coefficient, β is the laser intensity injected into the system and τ is the
round-trip time of the light in the resonator.

Intermittency route to chaos A route to chaos where regular orbital behavior is
intermittently interrupted by short time irregular bursts. As the control parameter is
varied, the durations of the bursts increase, leading to full scale chaos.

Inverse period doubling It denotes the bifurcation sequence of a nonlinear dynam-
ical system which is inverse to the period doubling bifurcation as a control parameter
is varied.
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Invertible map A map is invertible when its inverse exists and is unique for each
point in the phase space.

Jacobian matrix Jacobian matrix is the matrix of all first-order partial derivatives
of a vector-valued function. The Jacobian determinant (often simply called the Jaco-
bian) is the determinant of the Jacobian matrix. These concepts are named after the
mathematician Carl Gustav Jacob Jacobi.

Joint recurrence plot (JRP) A joint recurrence plot is introduced to compare the
states of different systems by estimating the recurrences of their trajectories in their
corresponding phase spaces separately and then look for the times when both of
them recur simultaneously, that is when joint recurrence occurs.

Kelvin waves A Kelvin wave is a wave in the ocean or atmosphere that balances
the earth’s Coriolis force against a topographic boundary such as a coastline, or a
waveguide such as the equator. A feature of a Kelvin wave is that it is non-dispersive,
i.e., the phase speed of the wave crests is equal to the group speed of the wave energy
for all frequencies. This means that it retains its shape in the alongshore direction
over time.

Krasovskii-Lyapunov theory Krasovskii-Lyapunov theory is the direct extension
of Lyapunov second theorem on stability, which states that if a positive definite
function V (x) : Rn → R exists such that V (x) ≥ 0 with equality if and only if
x = 0 and V̇ (x) ≤ 0 with equality if and only if x = 0 (negative definite), then the
equilibrium state is Lyapunov stable.

Kuramoto oscillators It is a mathematical model used to describe synchronization.
More specifically, it is a model for the behavior of a large set of coupled oscillators.
Its formulation was motivated by the behavior of systems of chemical and biological
oscillators, and it has found widespread applications. The most popular form of the
model has the following governing equations: dθi

dt = ωi + K
N

∑N
j=1 sin(θ j − θi ),

i = 1 . . . N , where the system is composed of N limit-cycle oscillators.

Lag synchronization Lag synchronization is a special case of generalized synchro-
nization, where one of the coupled systems always evolve in lag with respect to the
other with a finite lag time.

Limit cycle An isolated closed orbit in the phase space associated with a dynamical
system.

Linear superposition principle A property associated with linear differential
equations. The property is that if u1 and u2 are two linearly independent solutions
of a linear homogeneous differential equation then u = au1 + bu2 is also a solution
of it, where a and b are arbitrary (complex) constants.

Localized set It refers to the sets obtained by observing one of the coupled systems
whenever a defined event occurs in the other system and viceversa. The concept of
localized sets has been introduced recently as a new framework to identify phase
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synchronization in chaotic/hyperchaotic attractors without explicitly calculating the
phase variable.

Logistic map A discrete map analog of the logistic equation for population growth.
The map is represented as xn+1 = axn(1 − xn), where a is a parameter with 0 ≤
a ≤ 4 and 0 < x < 1.

Lorenz equation The paradigmic nonlinear chaotic system originally introduced
by E. Lorenz in 1963 in connection with atmospheric convection, represented by a
set of three coupled ordinary differential equations dx

dt = σ(y−x), dy
dt = x(ρ−z)−

y, dz
dt = xy − βz, where σ is called the Prandtl number and ρ is called the Rayleigh

number.

Lyapunov exponent Lyapunov exponent of a dynamical system is a quantity
(a number) that characterizes the rate of separation of infinitesimally close trajec-
tories. Different types of orbits can be distinguished depending on the value of its
Lyapunov exponents. All negative exponents represent regular and periodic orbits,
while at least one positive exponent indicates the presence of chaotic motion. More
than one positive exponent indicate the presence of hyperchaotic motion.

Lyapunov function Lyapunov function is a function which can be used to prove
the stability of a certain fixed point in a dynamical system or autonomous differential
equation.

Mackey-Glass system The Mackey-Glass system, which was originally deduced
as a model for blood production in patients with leukemia, can be represented by the
first order nonlinear DDE ẋ = −bx(t)+ ax(t−τ)

(1.0+x(t−τ)c) , where a, b and c are positive
constants. Here, x(t) represents the concentration of blood at time t (density of
mature cells in bloodstreams), when it is produced, x(t − τ) is the concentration
when the “request” for more blood is made and τ is the time-delay between the
production of immature cells in the bone marrow and their maturation for release in
circulating bloodstreams.

Noise In common use, the word noise means any unwanted sound. In both ana-
log and digital electronics, noise is an unwanted perturbation to a wanted signal.
In signal processing or computing it can be considered unwanted data without
meaning.

Nonautonomous system A system with at least one explicit time-dependent term
in its equation of motion.

Non-invertible map Maps that are not invertible are non-invertible maps, that is,
one for which inverse does not exist.

Non-phase-coherent attractor If the flow of a dynamical system does not have
a proper center of rotation around a fixed reference point, then the correspond-
ing attractor is termed as a non-phase-coherent attractor. For instance, the funnel
Rössler attractor for the parameter values a = 0.25, b = 0.2, and c = 8.5 shown in
Fig. 10.1b of Chap. 10, is an example of non-phase-coherent attractor.
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Orthonormalization A form of orthogonalization in which the resulting vectors
are all unit vectors. Gram-Schmidt orthogonalization, also called the Gram-Schmidt
process, is a procedure which takes a nonorthogonal set of linearly independent
functions and constructs an orthogonal basis over an arbitrary interval with respect
to an arbitrary weighting function w(x).

Phase-coherent attractor If the flow of a dynamical system has a proper rotation
around a fixed reference point as its center, then the corresponding attractor is called
a phase-coherent attractor. For instance, Rössler attractor for the standard parameter
values a = 0.15, b = 0.2, and c = 8.5 shown in Fig. 10.1a of Chap. 10, is an
example of phase-coherent attractor.

Period doubling It denotes the bifurcation sequence of periodic motions for a non-
linear dynamical system in which the period doubles at each bifurcation as a control
parameter is varied. Beyond a critical accumulation parameter value, chaotic motion
occurs. It is also referred as subharmonic bifurcation or flip bifurcation.

Phase flip bifurcation It denotes the abrupt change in the relative phase of the
coupled oscillators from zero to π as a function of the delay time.

Phase point A point in the phase space representing the state of a system at any
instant of time.

Phase space As abstract space where each of the variables needed to specify the
dynamical state of a system represents an orthogonal coordinate.

Phase synchronization Phase synchronization can be defined as perfect locking of
the phase/frequency of the coupled systems, while their amplitudes remain uncorre-
lated and often chaotic in the case of coupled chaotic systems.

Piecewise linear system A piecewise linear system is usually referred to a non-
linear dynamical system, whose nonlinear function f (x) is composed of piecewise
linear segments.

Poincaŕe section Any suitable hyperplane of the phase space is a Poincaŕe sec-
tion (or surface of section). The relation between the successive intersections of the
phase trajectories with this section in a single direction constitutes the Poincaŕe map.

Propagation delay See connection delay.

Pseudospace Any additional phase space created by embedding technique is
referred to as pseudospace.

PSPICE simulation PSPICE, is an acronym for Personal Simulation Program with
Integrated Circuit Emphasis, is a SPICE (Simulation Program with Integrated Cir-
cuit Emphasis) analog circuit and digital logic simulation software that runs on
personal computers.

Recurrence analysis Recurrence analysis is a powerful technique that visualizes
the recurrences of a dynamical system and gives information about the behavior of
its trajectory in the phase space.
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Recurrence plot (RP) A recurrence plot (RP) is the graphical representation of a
binary symmetric square matrix which encodes the times when two states are in
close proximity (neighbours), that is the time of recurrence in the phase space.

Recurrence quantification analysis (RQA) Several measures of complexity
which quantify the small scale structures in recurrence plots have been proposed
and are known as recurrence quantification analysis (RQA).

Rossby waves Rossby waves are giant meanders in high-altitude winds that are a
major influence on weather. Their emergence is due to shear in rotating fluids so that
the Coriolis force changes along the sheared coordinate. In planetary atmospheres,
they are due to the variation in the Coriolis effect with latitude. The waves were first
identified in the Earth’s atmosphere in 1939 by Carl-Gustaf Arvid Rossby who went
on to explain their motion. Rossby waves are a subset of inertial waves.

Rössler system Otto Rössler designed the Rössler attractor in 1976, but the theo-
retical equations were later found to be useful in modeling equilibrium in chemical
reactions. The defining equations are: dx

dt = −y−z, dy
dt = x +ay, dz

dt = b+z(x −c).
Rössler studied the chaotic attractor with a = 0.2, b = 0.2, and c = 5.7, though
properties of a = 0.1, b = 0.1, and c = 14 have been more commonly used since.

Runge-Kutta method In numerical analysis, the Runge-Kutta methods are an
important family of implicit and explicit iterative methods for the approximation
of solutions of ordinary differential equations. These techniques were developed by
the German mathematicians C. Runge and M.W. Kutta.

Stochastic process A stochastic process is the counterpart to a deterministic pro-
cess (or deterministic system). Instead of dealing with only one possible “reality” of
how the process might evolve under time (as is the case, for example, for solutions of
an ordinary differential equation), in a stochastic or random process there is some
indeterminacy in its future evolution described by probability distributions. This
means that even if the initial condition (or starting point) is known, there are many
possibilities the process might go to, but some paths are more probable and others
less.

Synchronization The word synchronous is derived from Greek terminology
chronous means time and syn means common. Put together synchronous/synchroniz-
ation has its direct meaning “share the common time” or “occurring in the common
time”. Technically, it can be defined as “entrainment of a dynamical property/share
a common property of motion” or “as degree of correlation” between the interacting
dynamical systems.

Time series The measured values of a physical variable of a dynamical system at
regular intervals of time.

Transient motion An initial time evolution of a system before getting settled into
its steady state behavior.

Unstable periodic orbit An unstable period-1, or 2, · · · , or n fixed point or limit
cycle. A chaotic orbit is regarded as a pool of unstable periodic orbits.
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