

Lecture Notes in Artificial Intelligence 6284
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Kumiyo Nakakoji Yohei Murakami
Elin McCready (Eds.)

New Frontiers
in Artificial Intelligence

JSAI-isAI 2009 Workshops
LENLS, JURISIN, KCSD, LLLL
Tokyo, Japan, November 19-20, 2009
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Kumiyo Nakakoji
SRA Inc., Key Technology Laboratory
2-32-8 Minami-Ikebukuro, Toyoshima-Ku
Tokyo 171-8513, Japan
E-mail: kumiyo@sra.co.jp

Yohei Murakami
National Institute of Information and Communications Technology
3-5 Hikaridai, Seika-cho, Soraku-gun
Kyoto 619-0289, Japan
E-mail: yohei@nict.go.jp

Elin McCready
Aoyama Gakuin University, Department of English
4-4-25 Shibuya, Shibuya-ku
Tokyo 150-8366, Japan
E-mail: mccready@cl.aoyama.ac.jp

Library of Congress Control Number: 2010931529

CR Subject Classification (1998): I.2, H.3, H.4, F.1, H.2.8, I.5

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-14887-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14887-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

JSAI (The Japanese Society for Artificial Intelligence) is a premier academic
society that focuses on artificial intelligence in Japan and was established in
1986. JSAI publishes journals of the JSAI and bimonthly transactions, and hosts
19 special interest groups. The JSAI annual conference attracts several hundred
attendees each year.

JSAI-isAI (JSAI International Symposia on Artificial Intelligence) 2009 was
the First International Symposium, which hosted three co-located international
workshops and one satellite workshop that had been selected by the JSAI-isAI
2009 Organizing Committee. This is in succession to the international workshops
co-located with the JSAI annual conferences since 2001. JSAI-isAI 2009 was
successfully held during November 19–20 in Tokyo, Japan; 158 people from 16
countries participated in JSAI-isAI 2009.

This volume of “New Frontiers in Artificial Intelligence: JSAI-isAI 2009 Work-
shops” is the proceedings of JSAI-isAI 2009. The organizers of the four work-
shops, LENLS, JURISIN, KCSD, and LLLL, hosted by JSAI-isAI 2009, selected
24 papers out of 61 presentations. This has resulted in the excellent selection of
papers that are representative of some of the topics of AI research both in Japan
and in other parts of the world.

LENLS (Logic and Engineering of Natural Language Semantics) is an annual
international workshop on formal semantics and pragmatics. LENLS hosted by
JSAI-isAI 2009 was the sixth event in the series. LENLS focuses on the for-
mal and theoretical aspects of natural language, which demonstrates one of the
strengths of Japanese AI studies. JURISIN (Juris-Informatics) was the third
event, focusing on law and AI, and broader areas of legal issues from the per-
spective of information science. One of the interesting aspects of JURISIN is its
inter-disciplinary nature, involving people from a wide variety of backgrounds,
such as computer science, social science, philosophy, and law. KCSD (Knowl-
edge Collaboration in Software Development) had already been held twice and
this was the third event in the series. The workshop focuses on the collabora-
tive nature of software developers and explores the application of AI to support
such collaboration. The recent trend of open-source software development en-
courages researchers to look into open-source software developmental data and
apply data-mining techniques and develop collaborative tools to support software
development as knowledge activities. LLLL (Learning with Logics and Logics for
Learning) was the sixth event in the series. The workshop focuses both on the
application of logic to represent data and rules for machine learning and knowl-
edge discovery, and on the development of procedural semantics to algebraic
and local inference based on machine learning procedures. The most interesting
aspect of LLLL is its bidirectional approach as its name stands. It provides a
unique forum for researchers to explore the synergy between the two approaches.

VI Preface

It is our great pleasure that we are able to share some part of the outcome
of these fascinating workshops through this volume. We hope the readers of this
book find a way to grasp the state-of-the art research outcomes of JSAI-isAI
2009, and may be motivated to participate in future JSAI-isAI events.

May 2010 Kumiyo Nakakoji
Yohei Murakami
Elin McCready

Organization and Editorial Board

The paper selection of each co-located international workshop was made by the
Program Committee of the workshop. Upon the decisions of the paper selections,
each chapter was edited by the co-located international workshop committees.
The entire contents and structure of the book were managed and edited by the
chief editors.

Volume Editors

Primary Volume Editor: Kumiyo Nakakoji (SRA Inc., Japan)
Yohei Murakami (National Institute of Information and Communications

Technology, Japan)
Elin McCready (Aoyama Gakuin University, Japan)

Chapter Editors (Program Chairs)

JURISIN-2009 Chapter: Seiichiro Sakurai (Meiji Gakuin University,
Japan)

Ken Satoh (National Institute of Informatics,
Japan)

KCSD-2009 Chapter: Masao Ohira (Nara Institute of Science and
Technology, Japan)

Yunwen Ye (SRA Inc., Japan)
LENLS-6 Chapter: Daisuke Bekki (Ochanomizu University, Japan)
LLLL-2009 Chapter: Akihiro Yamamoto (Kyoto University, Japan)

Table of Contents

Part I: Juris-Informatics

Third International Workshop on Juris-Informatics 3
Seiichiro Sakurai

Using BATNAs and WATNAs in Online Dispute Resolution 5
Francisco Andrade, Paulo Novais, Davide Carneiro,
John Zeleznikow, and José Neves

Thai Succession and Family Law Ontology Building Using Ant Colony
Algorithm . 19

Vi-sit Boonchom and Nuanwan Soonthornphisaj

Reflective Visualization of the Agreement Quality in Mediation 33
Yoshiharu Maeno, Katsumi Nitta, and Yukio Ohsawa

Implementing Temporal Defeasible Logic for Modeling Legal
Reasoning . 45

Guido Governatori, Antonino Rotolo, and Rossella Rubino

Evaluating Cases in Legal Disputes as Rival Theories 59
Pontus Stenetorp and Jason Jingshi Li

Law-Aware Access Control: About Modeling Context and Transforming
Legislation . 73

Michael Stieghahn and Thomas Engel

Part II: Knowledge Collaboration in Software
Development

3rd International Workshop on Supporting Knowledge Collaboration in
Software Development (KCSD2009) . 89

Masao Ohira and Yunwen Ye

On the Central Role of Mailing Lists in Open Source Projects: An
Exploratory Study . 91

Emad Shihab, Nicolas Bettenburg, Bram Adams, and
Ahmed E. Hassan

A Proposal of TIE Model for Communication in Software Development
Process . 104

Masakazu Kanbe, Shuichiro Yamamoto, and Toshizumi Ohta

X Table of Contents

Identifying the Concepts That Are Searchable with Keywords in Code
Search Engines . 116

Toshihiro Kamiya

On the Use of Emerging Design as a Basis for Knowledge
Collaboration . 124

Tiago Proenca, Nilmax Teones Moura, and André van der Hoek

A Time-Lag Analysis for Improving Communication among OSS
Developers . 135

Masao Ohira, Kiwako Koyama, Akinori Ihara, Shinsuke Matsumoto,
Yasutaka Kamei, and Ken-ichi Matsumoto

Comparison of Coordination Communication and Expertise
Communication in Software Development: Motives, Characteristics,
and Needs . 147

Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto

Part III: Logic and Engineering of Natural Language
Semantics

6th International Workshop on Logic and Engineering of Natural
Language Semantics (LENLS 6) . 159

Daisuke Bekki

Representing Covert Movements by Delimited Continuations 161
Daisuke Bekki and Kenichi Asai

Problems with Intervention and Binding into Relations 181
Alastair Butler and Kei Yoshimoto

A Translation from Logic to English with Dynamic Semantics 197
Elizabeth Coppock and David Baxter

Semantics of Possibility Suffix “(Rar)e” . 217
Takashi Iida

An Adaptive Logic for the Formal Explication of Scalar Implicatures . . . 235
Hans Lycke

Two Kinds of Procedural Semantics for Privative Modification 252
Giuseppe Primiero and Bjørn Jespersen

On the Nature and Formal Analysis of Indexical Presuppositions 272
Igor Yanovich

Non-standard Uses of German 1st Person Singular Pronouns 292
Sarah Zobel

Table of Contents XI

Part IV: Learning with Logics and Logics for Learning

The Sixth Workshop on Learning with Logics and Logics for Learning
(LLLL2009) . 315

Akihiro Yamamoto, Kouichi Hirata, and Shin-ichi Minato

Inferability of Unbounded Unions of Certain Closed Set Systems 317
Yuichi Kameda and Hiroo Tokunaga

Mining Frequent k-Partite Episodes from Event Sequences 331
Takashi Katoh, Hiroki Arimura, and Kouichi Hirata

Learning from Positive Data Based on the MINL Strategy with
Refinement Operators . 345

Seishi Ouchi and Akihiro Yamamoto

Computing Minimal Models by Positively Minimal Disjuncts 358
Ken Satoh

Author Index . 373

Part I

Juris-Informatics

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 3–4, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Third International Workshop on Juris-Informatics

Seiichiro Sakurai

Meiji Gakuin University

The Third International Workshop on Juris-Informatics (JURISIN 2009) was held on
Nov. 19-20, 2009 at Campus Innovation Center Tokyo in Tokyo, Japan, with a
support of The Japanese Society for Artificial Intelligence in association with First
JSAI International Symoposia on AI (JSAI-isAI 2009). This workshop was organized
to study legal issues from the perspective of informatics. Law is one of the oldest
practical applications of computer science. Though lots of legal reasoning systems
have been developed thus far, they were not supported by the lawyers, or they didn’t
have a positive impact on jurisprudence. One of the reasons is that legal reasoning
mechanisms currently implemented are too simple from the lawyer’s viewpoint.
Another reason is that legal reasoning has been studied mainly from the viewpoint of
logical aspects, but it has not been studied so much from the viewpoint of natural
language processing. If we can bring lawyers and informatics people and natural
language processing people together, we can expect great advances in both
informatics and jurisprudence by implementing legal reasoning systems clear to what
lawyers expect.

The main purpose of the JURISIN workshop is to discuss both the fundamental
and practical issues in juris-informatics among people from diverse backgrounds such
as law, social science, information and intelligent technology, logic and philosophy,
including the conventional "AI and law" area. The program committee (PC) was
organized with the help of leading researchers in AI and Law as follows; Kevin
Ashley (Univ. Pittsburgh, USA), Trevor Bench-Capon (Univ. Liverpool, UK), Phan
Minh Dung (AIT, Thailand), Aditya Ghose (Univ. Wollongong, Australia), Guido
Governatori (Univ. of Queensland, Australia), Tokuyasu Kakuta (Univ. Nagoya,
Japan), Makoto Nakamura (JAIST, Japan), Katsumi Nitta (Tokyo Tech, Japan),
Henry Prakken(Univ. Utrecht & Groningen, The Netherlands), Giovanni Sartor
(European Univ. Institute, Italy), Ken Satoh (NII and Sokendai, Japan), Hajime
Sawamura (Niigata Univ., Japan), Akira Shimazu (JAIST, Japan), Satoshi Tojo
(JAIST, Japan), Katsuhiko Toyama (Univ. Nagoya, Japan), Takahira Yamaguchi
(Keio Univ., Japan), John Zeleznikow (Victoria Univ., Australia).

Though the announcement period was short, fifteen papers were submitted. Each
paper was reviewed by three PC members. While one paper was cancelled, eleven
papers were accepted in total. The collection of papers covers various topics such as
legal reasoning, argumentation theory, legal ontology, computer-aided law education,
use of informatics and AI in law, and so on. The workshop was a provoking and
stimulating opportunity for new research areas.

4 S. Sakurai

After the workshop, seven papers were submitted for the post proceedings. They
were reviewed by PC members again and six papers were selected. Followings are
their synopses.

Andrade et al. analyze the usefulness of Best Alternative to Negotiated Agreement
(BATNA) and Worst Alternative to Negotiated Agreement (WATNA) in online
dispute resolution. The software agents consider the space between BATNA and
WATNA as a useful element to be taken into account when making or accepting a
proposal. Based on such software agents, they present a system for the resolution of
labour disputes.

Boonchom and Soonthornphisaj develop an algorithm using ant colony to
automatically extends a seed ontology that was initially created by law experts. The
initial ontology will be extended to the weighted ontology by using Supreme Court
sentences as a corpus. They investigate the experimental results and found that the
weighted ontology provides significant improvement on the retrieval process.

Maeno et al. propose a text processing method which aids mediation trainees in
reflecting on how they reached an agreement from their dialogue. The text processing
method is an improved variant of the Data Crystallization algorithm, which visualizes
the inter-topic associations which foreshadow the intentional or unintentional
subsequent development of topics far apart in time.

Robino et al. present an efficient implementation of temporal defeasible logic, and
they argue that it can be used to efficiently capture the legal concepts of persistence,
retroactivity and periodicity. In particular, they illustrate how the system works with a
real life example of a regulation.

Stenetorp and Li propose to draw a link from the quantitative notion of coherence
to legal reasoning. They evaluate the stories of the plaintiff and the defendant in a
legal case as rival theories by measuring how well they cohere when accounting for
the evidence. They argue that their notion of coherence gives rise to an important
measure to the quality of a case, and allow rival cases to be compared in a quantitative
manner.

Stieghahn and Engel show the necessity of incorporating the requirements of sets
of legislation into access control. After describing the legislation model, various types
of contextual information, and their relationship, they introduce a new policy-
combining algorithm that respects the different precedence of laws of different
controlling authorities. Then they demonstrate how laws may be transformed into
policies using the eXtensible Access Control Markup Language.

Finally, we wish to express our gratitude to all those who submitted papers, PC
members, discussant and attentive audience.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 5–18, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using BATNAs and WATNAs in Online Dispute
Resolution

Francisco Andrade1, Paulo Novais2, Davide Carneiro2,
John Zeleznikow3, and José Neves2

1 Escola de Direito, Universidade do Minho, Braga, Portugal
fandrade@direito.uminho.pt

2 DI-CCTC, Universidade do Minho, Braga, Portugal
{pjon,dcarneiro,jneves}@di.uminho.pt

3 School of Management and Information Systems, Victoria University, Melbourne, Australia
john.zeleznikow@vu.edu.au

Abstract. When contracting through software agents, disputes will inevitably
arise. Thus there is an urgent need to find alternatives to litigation for resolving
conflicts. Methods of Online Dispute Resolution (ODR) need to be considered
to resolve such disputes. Having agents understanding what the dispute is about,
managing all interaction between the parties and even formulating proposed so-
lutions is an important innovation. Hence it is of the utmost relevance that the
agents may be able to recognise and evaluate the facts, the position of the par-
ties and understand all the relevant data. In many circumstances, risk manage-
ment and avoidance will be a crucial point to be considered. In this sense we
analyze the usefulness of a parallel concept to BATNA – Best Alternative to
Negotiated Agreement, that of a WATNA – Worst Alternative to Negotiated
Agreement, allowing the software agents to consider the space between
BATNA and WATNA as a useful element to be taken into account when mak-
ing or accepting a proposal. These software agents embodied with intelligent
techniques are integrated in an architecture designed to provide support to the
ODR in a system we have developed for the resolution of labour disputes -
UMCourt. In this context software agents are used to compute and provide the
parties with the best and worst alternative to a negotiated agreement.

Keywords: On-Line Dispute Resolution, Negotiation, BATNA, WATNA.

1 Introduction

When moving to a global information society, new needs have appeared in the field of
dispute resolution, since disputes can now take place between virtually any two enti-
ties in the world. With the integration of new communication technologies into our
daily lives, traditional Alternative Dispute Resolution (ADR) mechanisms including
mediation, conciliation, negotiation or modified arbitration and jury proceedings ([10]
and [30]) have slowly started to adapt, giving birth to what is now known as Online
Dispute Resolution (ODR).

6 F. Andrade et al.

ODR allows for the moving of already traditional alternative dispute resolution
methods “from a physical to virtual place” [3]. This provides the parties with an easier
course than litigation, for dealing simply and efficiently with disputes, saving both
“temporal and monetary costs” [12]. This new model for dispute resolution aims at
being an online alternative to litigation and traditional ADR. It can expand the possi-
bilities of common ADR systems as, with the introduction of entities with enhanced
abilities, increases the generation of solutions and the possible ways of achieving them.

Techniques for developing ODR systems include legal knowledge based systems
that provide legal advice to the disputing parties and also “systems that (help) settle
disputes in an online environment” [6]. In this sense we can enumerate projects that
make use of rule-based systems such as [25], negotiation support systems as in [26],
[27] and [28], and others that look at game theory and heuristics [29]. In this paper,
we consider the use of a Case-based Reasoning (CBR) [1] approach for the purpose of
retrieving similar cases in order to advise the parties about the probable and possible
outcomes and solution paths given former similar cases.

The so-called second generation of ODR systems is essentially defined by a more
active role of technology [16]. It goes beyond putting the parties into contact and is
used for idea generation, planning, strategy definition and decision making processes.
The technologies used in this new generation of ODR systems will comprise not only
the communication technologies used nowadays but also subfields of areas such as
Artificial Intelligence, mathematics or philosophy: neural networks, intelligent agents,
case-based reasoning, logical deduction, argumentation, methods for uncertain rea-
soning and learning methods. Thus being, the development of Second Generation
ODR, in which an ODR system might act “as an autonomous agent” [16] is an ap-
pealing way for solving disputes.

In considering this possibility, we take in consideration the Katsh/Rifkin vision of
the four parties in an ODR process: the two opposing parties, the third party neutral
and the technology that works with the mediator or arbitrator [11]. But we must as-
sume a gradual tendency to foster the intervention of software agents, acting either as
decision support systems [3] or as real electronic mediators [16]. This latest role for
software agents implies the use of artificial intelligence techniques such as case based
reasoning and information and knowledge representation. “Models of the description
of the fact situations, of the factors relevant for their legal effects allow the agents to
be supplied with both the static knowledge of the facts and the dynamic sequence of
events” [16].

Merely representing facts and events, whilst useful, is not sufficient for dispute
resolution; the software agent, in order to perform actions of utility for the resolution
of the dispute, also needs to know not only the terms of the dispute but also the rights
or wrongs of the parties [16], and to foresee the legal consequences of the said facts
and events. Thus we have to consider the issue of software agents really understand-
ing law and to consider legal reasoning by software agents and its eventual legal re-
sponsibility: As [4] states, “are law abiding agents realistic?”.

 We need to consider whether agents can evaluate the position of the parties and
present them with useful proposals, “taking into a consideration of which of the two
parties would have a higher probability of being penalised or supported by a judicial
decision of the dispute and, therefore, who would be more or less willing to make
concessions in their claims” [16]. The ability to understand the position of the parties

 Using BATNAs and WATNAs in Online Dispute Resolution 7

is vital for the successful involvement of software agents in the process. To do so, it is
mandatory for the software agent to have the characteristics of consistency, transpar-
ency, efficiency and enhanced support for dispute resolution, in order to allow it to
replicate “the manner in which decisions are made” and thus make the parties “aware
of the likely outcome of litigation” [3]. That is to say, software agent intervention in
an ODR procedure should take into account the alternatives, for the parties, to an
ODR negotiated agreement. This kind of ODR environment involves much more than
just transposing ADR ideas into ODR environments. It should actually proceed by
being “guided by judicial reasoning”, and getting disputants “to arrive at outcomes in
line with those a judge would reach” [14]. Despite there being difficulties to over-
come, the generalised use of software agents as decision support systems in a negotia-
tion, is nevertheless a useful approach.

2 The Role of BATNA (Best Alternative to a Negotiated
Agreement)

Principled negotiation is based on four fundamental principles: separate the people
from the problem; focus on interests, not positions; invent options for mutual gain;
insist on objective criteria [8, 21]. In interest-based negotiation, the disputants attempt
to reconcile their underlying interests. Most negotiations are interest-based1. In this
situation, disputing parties need to know their BATNA (or, the possible best outcome
“along a particular path if I try to get my interests satisfied in a way that does not
require negotiation with the other party”[15].

Whilst principled negotiation as an important concept, it must be supplemented
with other approaches to negotiation. Justice or rights based negotiation (pointing out
to the determination of who is – or who could be considered to be – right in accor-
dance to norms or rules of behaviour) – should also be considered [8].

When taking a principled negotiation approach, we must understand the notion of a
BATNA and what role it should play in ODR. “A precise notion of what constitutes a
BATNA is not available” [6]. But “knowing one’s BATNA may contribute to the
acknowledgement that an agreement may be disadvantageous” [12].

Entering into negotiation or mediation is justified if the parties expect to get better
results than those that could be obtained without the process. In order to evaluate this,
one needs to know, at least what the best alternative to the negotiated agreement
would be. Of course, parties will tend to enter into an agreement if they know that a
possible settlement in ODR is undoubtedly better than her own BATNA [12]. This is
an obvious case of interest in knowing one’s BATNA. But the position of the parties
may become much more unclear if they cannot foresee the possible results in case the
negotiation / mediation fails. “If you are unaware of what results you could obtain if
the negotiations are unsuccessful, you run the risk of entering into an agreement that
you would be better off rejecting or rejecting an agreement that you would be better
off entering into” [9]. That is to say, the parties, by determining their BATNA, would
on one side become “better protected against agreements that should be rejected” and,

1 One exception is Australian Family Law where the paramount interests of the children trump

the interests of the divorcing parents. This is however not the case in US family law.

8 F. Andrade et al.

on the other side, they would be in a better condition to “reach an agreement that
better satisfies their interests” [6].

A BATNA may also provide additional interesting features for the parties in the
dispute procedure. For instance, it might also be used as a “way to put pressure on the
other party”, especially in dispute resolution procedures allowing the choice of going
to court [6]. The important thing is that the choice of going to court, instead of con-
tinuing ADR or ODR, should be a “well-informed choice”. And in ODR environ-
ments, either by the use of data mining techniques, semantic web technology or other
adequate techniques possibly used to determinate the BATNA, the parties can foresee
the possible outcome of the judicial dispute in the case of not reaching an agreement
through ODR [3]. For that purpose, some technical possibilities have already been
pointed out in literature. For instance, the use of a BATNA agent, an agent that has
the knowledge necessary to compute the value of the BATNA, using Toulmin argu-
ment structures providing a “mechanism for decomposing a task into sub-tasks” has
been pointed out [2]. Similarly, the possibility of the BATNA agent being modified
in order to "include current case data and incorporate changes to law" is an important
development [23]. The role of technology is becoming more appealing especially for
the task of determining or establishing objective BATNAs [6].

3 How Understanding WATNAs Can Improve the ODR Process

No matter the alternative dispute resolution method chosen, parties will tend "to de-
velop an overly optimistic view on their chances in disputes" [6]. This rather optimistic
view may lead to differing attitudes taken by the parties, especially in their calculation
of chances of success obtaining their goals in the dispute, and influencing the way
disputants calculate their BATNA. In the course of the dispute, the parties may tend
either to reject generous offers from the other parties, or to stand stubbornly fixed in
some positions or even support “positions or options that are incorrect” [6]. This “op-
timistic overconfidence” [6] may lead the parties to miscalculate the possibilities of
success in an eventual judicial decision.

It is important to reflect on the usefulness of the concept of a BATNA. On one
side, a BATNA may be misevaluated through the above optimistic overconfidence of
the parties. On the other side, there is no probabilistic measure for the correctness of
BATNA. That is to say, the best alternative may not be the most probable one. And
parties will certainly tend to underestimate the probabilities of an undesired result in
judicial decision-making.

In many situations, the calculation of the possible outcomes of a judicial decision
may become quite complex. One of the major reasons that disputants try to avoid
litigation is the risks they might incur – in terms of legal costs and outcome – if they
are unsuccessful [30]. In this situation it could certainly be useful, besides the
BATNA, to consider a WATNA (Worst alternative to Negotiated Agreement)
[8, 15, 20]. A WATNA intends to estimate the worst possible outcome along a litiga-
tion path [15]. It can be quite relevant in complementing principled negotiation with a
justice or rights based approach and thus leading to a calculation of the real risks that
parties will face in judicially determined litigation, imagining the worst possible out-
come for the party. This calculation could prove interesting both for ADR and for

 Using BATNAs and WATNAs in Online Dispute Resolution 9

ODR. In the case of second generation ODR, it would be useful to develop a software
agent to consider the whole space between the BATNA and WATNA. The larger the
space, the greater the benefit in making, or accepting, a proposal.

Consider, for instance, from an organizational perspective, the relevance of labour
rules in the functioning of professional virtual communities: as Willy Picard states,
"the organizational structure of the population that may potentially execute activities
may evolve, as some employees are promoted or are fired" [17]. In the case of a em-
ployee being fired, litigation will most likely occur. Under legal systems such as that
of Portugal, a huge deal of legal parameters need to be considered:

(a) the antiquity of the worker in the company,
(b) supplementary work,
(c) night work,
(d) justified or unjustified absence to work,
(e) the possibility of a “just cause for dismissal” being declared by Court,
(f) the existence (or not) of a valid and legal procedure of dismissal,
(g) the possibility of dismissal being accepted without indemnities or
(h) of it being accepted but accompanied by indemnities that could range from a

very low to a very high amount of money [7].

To dismiss a worker, the company needs to calculate the potential ensuing finan-
cial penalties. For the worker, the amounts involved are not irrelevant: being fired
without good indemnities may be seen as a double sacrifice: not only would he lose
his job but he could get no or little payment for his loss. But he might, on the other
hand, receive adequate financial compensation. For the parties in a labour conflict, it
can be said that the calculation of the possible results of litigation (or of the various
possible outcomes for litigation) are vital.

In order to clearly understand the advantages of a proposed agreement, parties need
to know not only their BATNA but also their WATNA (the worst alternative they
may obtain in case they do not reach an agreement), and they certainly should con-
sider the spectrum between their BATNA and their WATNA. Of course, the less
space there is between BATNA and WATNA, the less dangerous it becomes for the
party not to accept the agreement (unless, of course, their BATNA is really disadvan-
tageous). A wider space between BATNA and WATNA would usually mean that it
can become rather dangerous for the party not to accept the ODR agreement (except
in situations when the WATNA is not undesirable for the party).

Of course, this consideration of the values appearing between the BATNA and the
WATNA is related to the Zone of Possible Agreement proposed by Raiffa (1982)
[19]. It is the zone where an agreement can be met that is acceptable to both parties.
The consideration of the space between BATNA and WATNA has, in our vision, a
clear risk oriented approach – the intention is to estimate the risks and, thus, to avoid
them. And this vision may well push the possible agreement to a space not exactly
coincident with the traditional ZOPA. And certainly it can even be considered here
the existence of a MLATNA – most likely alternative to a negotiated agreement [20].

In terms of the system we are developing, it does not much matter what is the most
likely outcome, which might be hard to estimate, but rather it is vital to foresee the real
risks that the parties are facing. And the extreme value presented by WATNA may
well force the parties to change the ideas they have about their BATNA and ZOPA.

10 F. Andrade et al.

We accept that this analysis is still in an early stage and that other relevant parame-
ters should also be considered: for instance, the existence of metrics in order to meas-
ure the probabilities of each possible outcome. Nonetheless, judicial decisions, al-
though having to be based on legal rules and reasoned from them, arise from a proc-
ess in which it must be determined that some issues are true or false, or are considered
as proved, partially proved, or not proved [18]. This characteristic of judicial deci-
sions certainly makes it advisable for parties to consider not just a single value, in the
case of judicial litigation, but rather a spectrum of values, situated between a BATNA
and a WATNA.

4 UMCourt Architecture

On-line dispute resolution methods can provide easy, efficient, fast ways for resolving
disputes. Labour disputes need to be quickly resolved. The judicial path (which, in
countries such as Portugal, often leads to a judicial conciliation led by a Judge) is
expensive and time consuming. First and second generation ODR [16], with agents
performing relevant parts of the agreement procedure can be of inestimable use for
the parties in a Portugese labour dispute.

UMCourt is a project being developed at University of Minho in the context of the
TIARAC project (Telematics and Artificial Intelligence in Alternative Conflict Reso-
lution) that intends to help parties involved in legal disputes. The current application
relates to the domain of Portuguese labor law. UMCourt represents one of the first
steps in Portugal to implement the ideas depicted in the previous sections [5].

It is based on the agent paradigm, which means that the resulting architecture is
highly modular and expansible. This choice has not been a random one. Although we
are currently addressing the specific domain of the Portuguese labour law, we are
aware that by defining a few domain-dependent agents and reusing many of the core
agents, it is possible to extend the platform to address other domains. To put this idea
into practice, an extension to this architecture that addresses consumer protection law
is now being developed, that uses much of the already defined architecture. The build-
ing blocks of this modular architecture are agents or groups of agents with well de-
fined roles that, through their interactions, configure an intelligent system. Following
the methodology proposed by [22], our work in this system began with a high level
definition of the members of the architecture in terms of their roles. In this phase we
have looked at existing agent-based architectures in the legal domain, namely at [2],
and made the necessary improvements in order to adapt it to our needs. We therefore
arrived at a configuration of four high-level agents with their roles shown in Table 1.
The implementation of this architecture is based on a range of technologies chosen
with the objective of making it a distributed, expansible and independent one [5].

The core of the architecture is the Jade (Java Agent Development Framework) plat-
form2. JADE is a software framework that significantly facilitates the development of
agent-based applications in compliance with the FIPA specifications. FIPA (Founda-
tion for Intelligent Physical Agents) promotes standards that aim at the interoperability
and compatibility of agents, specifically targeting the fields of agent communication,

2 See http://jade.tilab.com/ last accessed January 2 2010.

 Using BATNAs and WATNAs in Online Dispute Resolution 11

Table 1. The four high-level agents and their main roles

High-level
Agent

Description Main Roles

Establish secure sessions with users
Access levels and control
Control the interactions with the knowledge
base

Security

This agent is responsi-
ble for dealing with all
the security issues of the
system

Control the lifecycle of the remaining agents
Read information from the KB
Store new information in the KB Knowledge

Base

This agent provides
methods for interacting
with the knowledge
stored in the system

Support the management of files within the
system
Compute the BATNA and WATNA values
Compute the most significant outcomes and
their respective likeliness Reasoning

This agent embodies the
intelligent mechanisms
of the system Proactively compile and provide useful

information based on the phase of the dispute
resolution process
Define a intuitive representation of the
information of each process
Provide an intuitive interface for the interac-
tion of the user with the system Interface

This agent is responsi-
ble for establishing the
interface between the
system and the user in a
intuitive fashion

Provide simple and easy access to important
information (e.g. laws) according to the
process domain and phase

agent transport, agent management, agent architecture and applications. Of these FIPA
categories, agent communication is the core category at the FIPA multi-agent system
model and is the one that is more closely followed in our system. Our interest in this
category is focused on specification 61, which defines the structure of the Agent
Communication Language (ACL), .i.e., the structure that the messages exchanged
between agents respect. An example of use of this standard is shown below.

Example of an ACL message from agent Coordinator to agent Retriever requesting
the cases similar to 1263491000923, assuming the default settings.

Sender : (agent-identifier
:name Coordinator@davide-desktop:1099/JADE
:addresses (sequence http://davide-desktop:7778/acc))

Conversation-ID : 1263492569251
Reply-To : Coordinator@davide-desktop:1099/JADE
Ontology : CBR_LABOUR
Content : RETRIEVE_SIMILAR DEFAULT 1263491000923

Jade has also the advantage of dealing with all the issues of message transport and

agent registry thanks to a wide number of services provided by the ams and df agents.
This significantly simplifies the creation of new agents thus decreasing the develop-
ment time and costs.

12 F. Andrade et al.

The interaction with the system can be performed in two ways: by means of a JSP
based Guided User Interface (GUI) or with remote agents that interact directly with
the agent platform. In the first case, the interface was designed so that the users could
remotely interact with the system using any common web browser. Through the
browser, the client sends requests to the server which interacts with the Jade platform,
collects the answers and returns the HTML code to be shown in the browser of the
user. By doing this, we not only make sure that the user can understand and interact
with the system through an intuitive interface but also grant the security of the whole
system. In the second case, Jade agents external to the platform can interact with the
agents present by means of FIPA-ACL messages. In fact, using the Jade platform,
sending and receiving remote messages becomes as easy as performing the task lo-
cally. This increases the expansibility and compatibility of the architecture, making
sure that it can interact with other architectures with similar or complementary func-
tionalities or even that automated agents representing the parties can interact.

The high level agents depicted in Table 1 have been submitted to a cut-down
process in order to more precisely define their roles and make them more simple and
refined. In this task we have defined several simpler agents, such as the coordinator,
with the task of load balancing, the retriever which interacts with the KB agents in
order to retrieve cases, among others. A simplified view of the architecture highlight-
ing the main agents is presented in Figure 1. However, as this paper is centred on the
concepts of BATNA and WATNA and the determination of the space in between, we
will from now on focus on the Reasoning agent. The Reasoning agent was defined
with some objectives in mind, being one of them to assist the parties in determining
the possible outcomes. When the parties have knowledge about what could possibly
happen, they can take more informed and, hopefully, rational decisions. As exposed
before, in this paper we support the idea that it is vital to know the BATNA and
WATNA values, as well as the most significant values contained in the interval

Legal
Informal

principles
Strategies

Subjective
Considerations

Goals

File Manager

Cases Manager

Knowledge
Base

Login

Access Level

Session

Dispatcher

Lifecycle

KB Access

Security

WATNA

BATNA

Outcomes

Personal
Assistant

Reasoning

Web Interface

Interface

Case

Intervenient

O2A Jadex

JSP

Browser

Client
HTTP FIPA

DF

AMS

…

Other Agents

FIPA-ACLFIPA-ACL

FIPA-ACL

Agent

Client

Fig. 1. A simplified view of the architecture

 Using BATNAs and WATNAs in Online Dispute Resolution 13

between them, so that an optimal global solution can be achieved. Indeed, the WATNA
of one party is frequently close to the BATNA of the other so limiting the possible
choices to these two values represents a serious drawback and the impossibility of
reaching a global optimization. The optimal solution lies somewhere in the intersection
of the possible solutions of each of the parties: the Zone of Possible Agreement
(ZOPA) [13]. This zone represents all the solutions that can happen at the end of the
process. The role of the Reasoning agent is, in the first place, to determine if an agree-
ment is possible. If the ZOPA does not exist, then an agreement is not possible. How-
ever, if there is a ZOPA with a range of solutions, the objective of the agent is to de-
termine which is the best option and suggest it to the parties, and then trying to work
for a mutually favourable outcome from that point on. This agent has been subdivided
into four simpler agents: BATNA, WATNA, Outcomes and Personal Assistant.

The BATNA and WATNA agents respectively compute the values of the BATNA
and the WATNA. This calculus is based on mathematical formulae that are well de-
fined in the Portuguese labour law and have been transported to the agents in the form
of logical predicates. These are simple formulae that map a set of values of parame-
ters such as antiquity or extra and night working hours to an economical value of
indemnity. The first agent therefore analyzes the case and computes the value of the
best legally possible outcome, i.e., it assumes that the employee is absolutely right in
his allegations. In the other hand, the WATNA agent does the same, assuming that the
employee cannot prove any of the arguments in his defence, determining the worst
possible case according to the rules of the Portuguese labour law. The output of these
two agents, according to what is defined in Portuguese labour law, is a pair of values:
one quantifying the value of the indemnity and the other one stating if the employee
looses the job or is reintegrated.

The Outcomes agent has as objective, as the name depicts, to compute the possible
outcomes of a new case, which configures one important feature in online dispute
resolution systems. For determining them, this agent uses a Case-based Reasoning
model. Our conviction that CBR is an appropriate method for such a problem solving
domain relies on the fact that law itself implements a very similar concept: the legal
precedent [24]. This concept is defined by the Blacks Law dictionary as “an adjudged
case or decision of a court, considered as furnishing an example or authority for an
identical or similar case afterwards arising or a similar question of law.”[31] A prece-
dent, in the legal domain, can be sub-divided into two categories: the binding prece-
dent which must be applied and the persuasive precedent, which is not mandatory but
is relevant. This labeling has generally to do with the courts that decide on the case. If
it is a higher court making the decision, it usually becomes a more persuasive prece-
dent. By looking at all the significant past cases contained in the Knowledge Base,
this agent is able to determine which outcomes are possible to occur, given the prop-
erties of the current case.

In order for this agent to correctly use the information contained in each case, a
syntactic structure for the case has been defined. Each case contains the laws used by
each party and all the remaining information that is requested by law, including a pair
of values denoting the outcome: one quantifying the value of the indemnity and the
other one stating if the employer looses the job or is reintegrated. All this data is
stored in XML files but, in order to fasten the retrieval processes, the cases are in-
dexed in a database by the laws that they address and the way that they are addressed,

14 F. Andrade et al.

i.e., if these laws are used by the employee, employer or by a witness. This allows us
to efficiently search for a case with given characteristics in the database and then
retrieve it from its location in the file system to parse all the information.

Essentially, the process of estimating outcomes is as follows. The agent looks at
the new case, specifically at the norms that are addressed by each party. Afterwards, it
applies a template retrieval algorithm in order to narrow the search space. This can be
performed, a priori in determining which type of cases have the possibility of being
similar and which ones do not. In this sense, template retrieval works much like SQL
queries: a set of cases, with given characteristics, is retrieved from the database. In the
next step, a nearest neighbor algorithm is applied to this set of cases instead of apply-
ing it to all the cases in the case memory, a task that could be very time consuming as
our nearest neighbor algorithm has linear complexity (Formula 1).

 (,)=1 =1
(1)

In formula 1, our closest neighbor algorithm is shown. In this equation,

• n – number of elements to consider to compute the similarity;
• Wi – weight of element i in the overall similarity;
• Fsim – similarity function for element i;
• Arg – arguments for the similarity function representing the values of the

element i for the new case and the retrieved case, respectively N and R.

We now discuss in greater detail the information of the case that is considered to be
relevant for the computation of the similarity, i.e., the components. According to the
scope of application, we consider three types of information: the objectives stated by
each party in the beginning of the dispute, the norms addressed by each party and by
the eventual witnesses and the date of the dispute. The norms addressed and the objec-
tives are lists of elements, thus the similarity function consists in comparing two lists
(equation 2). The similarity is higher when the two lists have a higher percentage of
common members. As for the date, the similarity function verifies if the two dates are
within a given time range, having a higher similarity when the two dates are closer.

 = | | , = | |, | | | || |, | | < | | (2)

Once each case is associated with a value that denotes its similarity with another

given case, we can perform more interesting and useful operations on the cases. One
of these operations is to determine to which extent we want the cases to be similar.
We do so by selecting a threshold. If our current selection results in few cases, we can
lower the threshold resulting in a wider number of cases but with an expected smaller
degree of similarity. On the other hand, if we have many cases, we can increase the
threshold in order to get a more restricted set with a higher degree of similarity.

The most interesting aspect is that the agent can autonomously apply these opera-
tions in real-time, when choosing the cases to present to the user: if there are many
cases, the agent will increase the threshold to select less and more similar cases and

 Using BATNAs and WATNAs in Online Dispute Resolution 15

vice versa. For the agent to determine if it should change the value of the threshold, it
generates a box-and-whisker diagram using the values of the indemnities of each case
selected, and looks at the dispersion of the data. The dispersion of the data is deter-
mined by the Euclidian distance between the indemnities of each of the two consecu-
tive cases. The agent decides to decrease the value of the threshold if the data is much
dispersed and the other way around if the data is not very dispersed.

Having done this, the agent sorts the cases for each of the parties, starting with the
WATNA, passing through all the intermediary cases and ending with the BATNA.
The cases are sorted according to the numeric value of the indemnity and how favor-
able it is to each party. At this point, the parties have an intuitive picture of what may
happen, including not only the best and worst case but all the intermediary cases that
have happened in the past and may happen again, accompanied by the respective
likeliness to occur. All this information is shown in Figure 2. This figure contains two
axes, one for each party, with a direction for increasing satisfaction. Cases are here
represented in these axes by the smaller rectangles and the Euclidian distance between
the values of their indemnities determines how they are distributed and ordered in the
axis of each party and therefore highlights the dispersion.

The likeliness of a given outcome is represented in Figure 2 by the colored curves
which denote the area in which the cases are more likely to occur. We can see that the
line is more distant from the axis when there are more cases that are concentrated.
This denotes a higher likeliness for a case in this region. However, it is not only the
amount of cases that is important. We also consider the type of case, i.e., if it is a case
with a binding or a persuasive precedent or if it has been decided by a higher or a
lower court. In some cases, we may even have groups of cases instead of single cases,
as cases which are highly similar are grouped together into a single case with a weight
that is proportional to the number of cases merged.

Still looking at Figure 2, we can see the range of possible outcomes for each of the
parties in the form of the two big colored rectangles and the result of its intersection,
the ZOPA. It is also possible to see each case and its position in the ordered axis of
increasing satisfaction, in the shape of the smaller rectangles. As stated earlier, the
cases are more likely to occur for each party when they are in the area where the col-
ored lines are further away from the axis of that party. This is highlighted in the figure
by the big dot. Therefore, the probable outcome of the dispute will probably be near
the area where the two lines are closer. Looking at this information, the parties can
have an approximate notion of the most likely outcome. Although a single solution is
proposed by the system, parties can look at these cases in order to search for alterna-
tive solutions in search for a mutual agreement.

Fig. 2. The graphical representation of the possible outcomes for each party

16 F. Andrade et al.

Finally, the Personal Assistant agent is responsible for knowing the role of the user
and adapting the results of the remaining agents according to that role, i.e., the em-
ployee will see the information in a different way than the employer or even than the
witnesses. This agent will also be extended with more features, namely the adaptation
of the interfaces and the remaining information that is presented to the users, includ-
ing help information, according to the roles.

5 Conclusions

When using software agents in electronic contracting the possibility of disputes is
prevalent. Thus there is a demand for fast and efficient ways for resolving the eventual
disputes using ODR. For a second generation ODR, software agents are a useful tool to
help the parties reach an agreement. The acceptance of a certain proposal by the parties
in ODR must take into consideration relevant parameters, such as the BATNA.

Parties in ODR tend to adopt an over-optimistic view on the possible outcomes in the
case of litigation. In many situations the calculation of the possible outcomes of litigation
may become rather complex, with a huge range of possibilities to be evaluated. This is
particularly clear in Portuguese labour legal cases. In these situations it may become
interesting to consider not just the value of BATNA but also the value of the WATNA.

It is vital, to consider the space that lies between the BATNA and the WATNA. It
would be advisable for parties to consider not just a single value but rather a spectrum
of values, situated between a BATNA and a WATNA. For this purpose, we have
developed an architecture supported by a JADE platform, allowing the user to interact
with the system. Software agents are used to compute and provide the parties with the
best and worst alternative to a negotiated agreement as well as the spectrum of possi-
ble outcomes between these two values and their likeliness.

The system presented here, by being based on the multi-agent paradigm ensures
that it can be easily extended with the addition of new agents. To address the chal-
lenges of incorporating new agents, we rely on open standards and technologies.
Moreover, by adopting a case-based approach, we achieve a system that can learn and
adapt to new situations and changes in the law. In future work we intend to allow the
system to estimate outcomes of dispute resolution processes based on CBR and other
paradigms (e.g., neural networks, Adjusted Winner algorithm) in order to compare the
performance and results of different approaches.

Acknowledgments. The work described in this paper is included in TIARAC -
Telematics and Artificial Intelligence in Alternative Conflict Resolution Project
(PTDC/JUR/71354/2006), which is a research project supported by FCT (Science &
Technology Foundation), Portugal.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Communications 7(1), 39–59 (1994)

2. Abrahams, B., Zeleznikow, J.: A multi-agent architecture for online dispute resolution ser-
vices. Expanding the horizons of ODR. In: Proceedings of the 5th International Workshop
on Online Dispute Resolution (ODR Workshop 2008), Firenze, Italy, pp. 51–61 (2008)

 Using BATNAs and WATNAs in Online Dispute Resolution 17

3. Bellucci, E., Lodder, A., Zeleznikow, J.: Integrating artificial intelligence, argumentation
and game theory to develop an online dispute resolution environment. In: ICTAI 2004 -
16th IEEE International Conference on Tools with Artificial Intelligence, pp. 749–754
(2004)

4. Brazier, F., Kubbe, O., Oskamp, A., Wijngaards, N.: Are Law abiding agents realistic? In:
Proceedings of the workshop on the Law of Electronic Agents (LEA 2002), CIRSFID, pp.
151–155. University of Bologna (2002)

5. Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: The Legal Precedent in
Online Dispute Resolution, in Legal Knowledge and Information Systems. In: Governa-
tori, G. (ed.) Proceedings of the Jurix 2009 - the 22nd International Conference on Legal
Knowledge and Information Systems, Rotterdam, The Netherlands, pp. 47–52. IOS press,
Amsterdam (2009) ISBN 978-1-60750-082-7

6. De Vries, B.R., Leenes, R., Zeleznikow, J.: Fundamentals of providing negotiation support
online: the need for developping BATNAs. In: Proceedings of the Second International
ODR Workshop, Tilburg, pp. 59–67. Wolf Legal Publishers (2005)

7. Fernandes, A.M.: Direito de Trabalho, Almedina (2005) (in Portuguese)
8. Fisher, R., Ury, W.: Getting To Yes: Negotiating Agreement Without Giving. Houghton

Mifflin, Boston (1981) ISBN 0-395-31757-6
9. Goldberg, S.B., Sander, F.E., Rogers, N., Cole, S.R.: Dispute Resolution: negotiation, me-

diation and other processes. Aspen Publishers, New York (2003)
10. Goodman, J.W.: The pros and cons of online dispute resolution: an assessment of cyber-

mediation websites. Duke Law and Technology Review (2003)
11. Katsh, E., Rifkin, J.: Online dispute resolution – resolving conflicts in cyberspace. Jossey-

Bass Wiley Company, San Francisco (2001)
12. Klaming, L., Van Veenen, J., Leenes, R.: I want the opposite of what you want: summary

of a study on the reduction of fixed-pie perceptions in online negotiations. In: Expanding
the horizons of ODR, Proceedings of the 5th International Workshop on Online Dispute
Resolution (ODR Workshop 2008), Firenze, Italy, pp. 84–94 (2008)

13. Lewicki, R., Saunders, D., Minton, J.: Zone of Potential Agreement. In: Negotiation, 3rd
edn. Irwin-McGraw Hill, Burr Ridge (1999)

14. Muecke, N., Stranieri, A., Miller, C.: The integration of online dispute resolution and deci-
sion support systems. In: Expanding the horizons of ODR, Proceedings of the 5th Interna-
tional Workshop on Online Dispute Resolution (ODR Workshop 2008), Firenze, Italy, pp.
62–72 (2008)

15. Notini, J.: Effective Alternatives Analysis In Mediation: “BATNA/WATNA” Analysis
Demystified (2005), http://www.mediate.com/articles/notini1.cfm (Ac-
cessed July 24, 2009)

16. Peruginelli, G., Chiti, G.: Artificial Intelligence in alternative dispute resolution. In: Pro-
ceedings of the Workshop on the law of electronic agents – LEA (2002)

17. Picard, W.: Support for Power in adaptation of social Protocols for Professional Virtual
Communities. In: Camarinha-Matos, L., Afsarmanesh, H., Novais, P., Analide, C. (eds.)
Establishing the Foundation of Collaborative Networks. IFIP International Federation for
Information Processing, pp. 363–370. Springer, Heidelberg (2007) ISBN: 978-0-387-
73797-3

18. Pimenta, J.C.: A Lógica da Sentença, Livraria Petrony (2003) (in Portuguese)
19. Raiffa, H.: The art and science of negotiation: how to resolve conflicts and get the best out

of bargaining. The Belknap Press of Harvard University Press, Cambridge (1982)
20. Steenbergen, W.: Rationalizing Dispute Resolution: From best alternative to the most

likely one. In: Proceedings 3rd ODR workshop, Brussels (2005)

18 F. Andrade et al.

21. Ury, W., Brett, J.M., Goldberg, S.B.: Getting Disputes Resolved: Designing Systems to
Cut the Costs of Conflict. Jossey-Bass Publishers, San Francisco (1988)

22. Wooldridge, M., Jennings, N.R., Kinny. D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. In: Autonomous Agents and Multi-Agent Systems, vol. 3 (2000)

23. Zeleznikow, J., Abrahams, B.: Incorporating issues of fairness into development of a
multi-agent negotiation support system. In: Proceedings of the 12th International Confer-
ence on Artificial Intelligence and Law, pp. 177–184. ACM, Barcelona (2009)

24. Zweigert, K., Kötz, H.: An Introduction to Comparative Law. Clarendon Press, Oxford
(1998)

25. Waterman, D.A., Peterson, M.: Rule-based models of legal expertise. In: The Proceedings
of the First National Conference on Artificial Intelligence. Stanford University, Stanford
(1980)

26. Cáceres, E.: EXPERTIUS: A Mexican Judicial Decision-Support System in the Field of
Family law. In: Francesconi, E.B.E., Sartor, G., Tiscornia, D. (eds.) Legal Knowledge and
Information Systems, pp. 78–87. IOS Press, Amsterdam (2008)

27. Kersten, G., Noronha, S.: Negotiation via the World Wide Web: A Cross-cultural Study of
Decision Making. Group Decision and Negotiation 8, 251–279 (1999)

28. Thiessen, E.M.: ICANS: An Interactive Computer-Assisted Multi-party Negotiation Sup-
port System. PhD Dissertation, School of Civil & Environmental Engineering, Cornell
University, Ithaca, NY (1993)

29. Zeleznikow, J., Bellucci, E.: Family_Winner: integrating game theory and heuristics to
provide negotiation support. In: Proceedings of Sixteenth International Conference on Le-
gal Knowledge Based System, pp. 21–30 (2003)

30. Lodder, A., Zeleznikow, J.: Enhanced Dispute Resolution through the use of Information
Technology. Cambridge University Press, Cambridge (2010)

31. Black, H.C.: Black’s Law Dictionary. West Publishing Company, St. Paul (1990)

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 19–32, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Thai Succession and Family Law Ontology Building
Using Ant Colony Algorithm

Vi-sit Boonchom and Nuanwan Soonthornphisaj*1

Department of Computer Science, Faculty of Science
Kasetsart University, Bangkok, Thailand
{g5184018,fscinws}@ku.ac.th

Abstract. Ontology building is a tedious job and a time consuming task for user.
The quality of ontology plays an important role in information retrieval applica-
tion. Therefore, we need the expertise from law users to extract their knowledge
in term of ontology structure. To overcome these difficulties, we develop an algo-
rithm using ant colony to automatically extends a seed ontology that was initially
created by law expert. Two seed ontologies are constructed by experts which are
succession law and family law ontology. These seed ontologies can be extended
using Supreme Court sentences as a corpus. We used 2 datasets from civil Su-
preme Court sentences, which are succession law and family law.

Our ontologies are embedded with weight values that are the product of
pheromone updating process of ant colony. We investigate the experimental re-
sults and found that the weighted ontology provides significant improvement on
the retrieval process. Furthermore, the size of our ontologies obtained from
TLOE is suitable since their retrieval performances are acceptable by users.

Keywords: Ontology Building, Ontology Expansion, Legal, Thai Law, Ant Colony
Algorithm.

1 Introduction

Ontology can be used as a knowledge representation method to enhance the perform-
ance of the retrieval process. There are several domain specific ontologies such as
e-government domain [1], e-learning domain [2], legal knowledge [3], etc. Unfortu-
nately for the Thai law, we haven’t had any ontology for law users. Therefore the
Supreme Court sentences retrieval process cannot provide satisfied results to law user.

Studying Thai law needs Supreme Court sentences as a set of precedent cases to ful-
fill legal knowledge. The Supreme Court of Thailand has provided the search engine as
a service to lawyers, legal students, judges and law researchers. Another advantage of
Thai law ontology is that users can understand the overview of main legal knowledge
concepts obtained from the ontology. These main concepts help user for self studying
in order to gain the complete legal knowledge in the domain specific law.

This research proposes a new algorithm to extend a seed ontology and uses ant
colony [4] to do weight updating on the links of ontology. The mechanism of our

* Corresponding author.

20 V.-s. Boonchom and N. Soonthornphisaj

proposed algorithm complys with the concept of Ant Colony algorithm. There are 26
ants (users) in the colony. The mission of each ant is to find the food (document).
Ants traverse through the ontology to find an appropriated node in the ontology in
order to attach the new found node. The pheromone from the ant is accumulated on
the link, if it passes through by ant. On the other hand, the pheromone is evaporated
from the link if that link is abandoned by the colony. We apply a ThaiLegalWordNet
in the ontology expansion process to identify a concept or superclass in order to cor-
rectly connect the new conceptual node to the predefined ontology. Note that, the
ThaiLegalWordNet covers 2 datasets of Thai civil Supreme Court sentences.

The contributions of this work are the Thai succession law ontology and family
law ontology that can be applied in any applications and the retrieval algorithm that is
suitable for the Supreme Court sentences search engine.

This paper is structured as follows. Section 2 describes the overview of other re-
search using ontology. In section 3, we propose our framework and a new algorithm.
Section 4 is about the experimental results and discussion. Finally, the conclusion and
future work will be addressed in section 5.

2 Related Works

There are several methodologies for ontology construction such as dictionary, thesaurus,
natural language processing or NLP, WordNet and specific domain dictionary, etc.

Nowadays, dictionary and thesaurus are widely used to ontology building. In 2005,
Corcho, O. et al. developed a template for law experts to create a Spanish law ontol-
ogy. They used thesaurous and dictionary as a tool for building a relationship diagram
and used software called WebODE to construct the template in OWL format [5]. In
1997, Kurematsu, M. and Yamaguch, T. initialized legal ontology using the MRD
dictionary. They found the most related legal concept that is extracted from an MRD.
Their algorithm based on the comparison between the initial legal ontology and the
best MRD correspondences legal concepts [8]. Then, in 2007, Zhang, X. and Xia, G.
proposed the pattern to extract the terms and their relationship from the documents.
The prototype is constructed based on the thesaurus that construction depends on the
domain experts. Their algorithm makes a mapping and expands the prototype between
the prototype and the documents using pattern on the documents [9].

NLP technique has more benefits for automatic ontology construction. In 2006,
Despres, S. and Szulman, S. developed the TERMINAE method based on micro-
ontology building as core ontology that is used in legal knowledge. Their algorithm
aligned the legal micro-ontology with NLP tools and combined knowledge with mod-
eling technique that kept link between them. Two or more ontology are brought into
mutual agreement using ontology alignment method [11].

Furthermore, WordNet is the electronic lexical database that can be employed to
many applications. In 2007, Hu, H. and Du, X. built a building bilingual ontology
based on the WordNet and Chinese Classified Thesaurus (CCT). The matrixes of both
ontologies are not in the same dimension. They use lattice method for transform to
ontology matrix [10].

Moreover, specific domain dictionary can be created by domain expert and applied
to ontology construction. In 2006, the first Korean law ontology was generated using

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 21

natural language processing technique cooperated with Korean WordNet. The dataset
was collected from law text books and research papers about law. After that, their
algorithm found a set of word co-occurrences and hand on ability to construct a graph
that connects these words together [7]. In addition, in 2009, the framework of Thai
Law Ontology Expansion was proposed by Boonchom, V. and Soonthornphisaj, N.
Their algorithm created seed ontology and ontology expansion via ThaiLegalWord-
Net that was created by law experts [12].

Kayed, A. used text mining technology for law ontology construction from e-
commerce law cases. He proposed a new algorithm to reduce a number of links con-
nected between nodes in order to descrease the ontology complexity [6].

Behavior of ants is capable on finding the shortest path between food and nest.
Each ant leaves pheromone while moving on the shortest path (chosen path). The
chosen path is increased pheromone and on the other hand, the pheromone decrease
as time passes due to evaporation [4].

3 The Framework of Thai Law Ontology Expansion (TLOE)

There are two main parts in TLOE which are a retrieval module and ontology expan-
sion module (see Fig.1)

User
1. Keyword

Thai Legal Document Retrieval Module

User Query Ontology
Traversal

Weight
Updated Search

Legal Document
Results

Thai Legal
Corpus

2. Found keyword 3. Chosen terms

4. Not found keyword

Thai Legal Ontology Expansion Module

Thai Legal
Ontology Updated

ThaiLegal
WordNet

5. Legal document results

6.Legal documents input
7. Ontology updating

Thai Legal
Ontology

status variable

Fig. 1. The framework of TLOE

3.1 The Thai Legal Document Retrieval Algorithm

The process is started when users enter keyword to the Thai Legal Document Re-
trieval Module. This module proposes set of terms to user using ontology traversal.
The structure of ontology consists of a term, an ID number and a pheromone value

22 V.-s. Boonchom and N. Soonthornphisaj

Fig. 2. Three kinds of nodes and three parameters in ontology

(see Fig. 2). When the node is found, the algorithm determines the type of node
whether it is a root node or a branch node. The OntologyTraversal function converts a
keyword to ID number and use it in the next process. Then the algorithm explores the
links attached with that node and proposes those words to users.

Once TLOE gets information about the selected words from each user (ant). The
pheromone updating process is performed using equation (1).

(1)

(2)

Given a set of terms obtained from the ontology traversal (termk), the pheromone
level is calculated using equation (1). The parameter is an indicator to
determine whether the termk is chosen by user or not. If the proposed term is chosen,
the value of parameter is equal to 1 otherwise it is equal to -1. This parameter simu-
lates the accumulation and evaporation of pheromone. The notation in (2) repre-
sents the updated value for pheromone increasing or decreasing. The value of is the
total number of proposed terms.

Then TLOE system uses all terms selected by each user to expand the query and do
searching in the corpus.

In case that the input keyword from each user can not be found in the ontology or
found as a leaf node, TLOE will directly use that keyword to search in the corpus.

Given n chosen terms obtained from user, the searching module calculates a term
frequency (tfij) for each term. The document ranking process is performed using Doc-
Score in equation (3).

 (3) ()∑
=

×=
n

i
ijkj tftermDocScore

1

)(τ

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 23

Table 1. Thai Legal Document Retrieval Algorithm

Algorithm: ThaiLegalDocRetrieval

Input: User keyword, status
Begin
 If foundConcept(keyword,Ontology) Then
 Terms OntologyTraversal(keyword,Ontology)
 For each ti Terms
 QExpand ChosenTerm(ti)
 Phi WeightUpdated(QExpand,Ontology)
 If status<6 then
 If Phi<= 0 && termi = LeafNode Then
 DeleteNode(termi, Ontology)
 End If
 For each Dock Corpus
 DocScorek Phi*TFi

 LegalDocRanked Sort(DocScore,Corpus)
 End If
End.
Output: LegalDocRanked

Table 1 show the OntologyTraversal function is started to explore all links and

outputs a set of terms. The ChosenTerm procedure displays a set of terms for user to
filter out some terms that may not relate to the user requirement. After that, the
WeightUpdated procedure is performed on a set of chosen words. The algorithm con-
siders the Ph value of termi. If the value is less than or equal to 0 and the termi is a
leaf node, then the DeleteNode module deletes termi. The retrieval step is done by
calculating the score for each document in corpus and the final results are shown to
user. Note that this retrieval module gets the signal from the ontology expansion algo-
rithm via the parameter call status. The status value informs the module about the
convergence condition found by the ontology expansion. If the value of status exceeds
the limit (5), the pheromone evaporation on that like will be discarded. Otherwise the
node deletion might be performed if the pheromone level is completely evaporated
and that term is the leaf node.

3.2 Thai Legal Ontology Expansion Algorithm

The ontology expansion algorithm gets a set of ranked documents from the retrieval
module. Max variable is the total number of document sentences from the corpus.
Given the first ranked document, the word segmentation is performed to get a set of
terms, termi. For each termi, the algorithm traverses through the ontology to find
termi. If it is not found, the algorithm will explore the ThaiLegalWordNet to get the
synonym or the superclass of the termi. The superclass concept is the general meaning
of the termi that will be used to join its concept to the ontology. In the case of new
node is added to the ontology only one node per document, our algorithm consider for
five times and stop to expanded ontology suddenly (see Table 2).

24 V.-s. Boonchom and N. Soonthornphisaj

Table 2. Ontology expansion algorithm

Algorithm: OntologyExpansion

Input: LegalDocRanked {Doc1, Doc2,…, Docn}, Ontology,
 Threshold Max, status
Begin
If status<6 then
 For each Dock RankedDoc
 Term WordSegmentation(Dock)
 For each termi Term
 OntologyTraversal(termi)
 If notFound(termi)
 Superclassi Explore(ThaiLegalWordNet(termi))
 OntologyTraversal(Superclassi)
 If Found(Superclassi)
 JoinConcept(termi,Ontology)
 If CountNewNode(JoinConcept)=1
 status=status+1
 CountDoc++
 If CountDoc > Threshold
 Return Ontology
End.
Output: OntologyUpdated

For example, the term ‘F’ cannot be found in the ontology. Therefore, the algo-

rithm explores the ThaiLegalWordNet and found that the superclass of ‘F’ is ‘B’.
Therefore, node ‘F’ is connected to node ‘B’ (see Fig. 3).

Fig. 3. An example ontology

In case that, the superclass of the termi is not found, the termi is discarded. The on-
tology expansion process convergences when there is only one new node found in the
retrieved document.

3.3 The Seed Ontology

We store the initial ontology structure in XML format since it supports the traversal
process (see Fig.4).

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 25

<?xml version="1.0" encoding="windows-874"?>
<chunks> <chunk>

<class><term> (succession)</term>
<ph>10</ph>
<id>60152</id></class>

<subclass><term> (heir)</term>
<ph>10</ph>
<id>60068</id></subclass>

<subclass><term> (property)</term>
<ph>10</ph>
<id>60068</id></subclass>

</chunk> </chunks>

Fig. 4. Illustrates an example of succession ontology in the XML file

There are two seed ontologies which are succession law and family law ontology.
The initial succession law ontology consists of 19 nodes and 18 links (see Fig.5). In
addition, the initial family law ontology have 7 nodes and 6 links (see Fig.6).

Fig. 5. The seed of succession law ontology

ครอบครัว
(family)

อุปการะ
(maintenance)

บิดามารดา
(parentage)

หยา
(divorce)

สมรส
(marriage)

โมฆะ
(void)

หม้ัน
(engaged)

Fig. 6. The seed of family law ontology

26 V.-s. Boonchom and N. Soonthornphisaj

3.4 The Structure of ThaiLegalWordNet Dictionary

ThaiLegalWordNet Dictionary covers 2 main Thai Civil Law: succession and family
law. There are 282 main concepts obtained from law experts.

Table 3. Nodes of the seed ontology and meaning

Concept_Name Concept _ID Concept _Val Sup_ID
มรดก (succession) 60152 10 60000

ทายาท (heir) 60068 10 60152

ทรัพย (property) 60065 10 60152

บิดา (father) 60087 10 60068

บุตร (child) 60093 10 60068

มารดา (mother)

 ...
60155

...
10

...
60068

...

Consider Table 3, Concept _Name is the name of term, Concept_ID is the concept
identifier of each term, Concept_Val is the pheromone value of each term and
Sup_ID is the concept identifier of superclass node. For example, the concept ID of
property (ทรัพย) is 60065. Its initial pheromone value is 10 and its superclass is 60152
(succession).

4 Experimental Results

4.1 Data Set

The Supreme Court sentences repository was collected from the Supreme Court
search engine web site (www.supremecourt.or.th). There are 1,303 sentences related
to the Thai succession law and family law (article No. 1435-1755).

A word segmentation procedure is applied for each court sentence (see Fig.7). We
obtain 126,996 terms in the corpus.

Fig. 7. An Example of Supreme Court Sentences and the words obtained from word segmenta-
tion procedure

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 27

4.2 Results

In order to simulate the concept of ant colony in the ontology expansion algorithm, a set
of keywords are given to 26 law experts. Each expert randomly picks up the keywords
and retrieves the set of court sentences using ThaiLegalDocRetrieval algorithm. The
pheromone updating process is performed according to the chosen words obtained by
each expert. Note that each expert can arbitrarily select the words those are the result of
the ontology traversal module. The ontology expansion process is activated when the
ThaiLegalDocRetrieval algorithm is finished.

We setup 2 experiments to investigate the contribution of ant colony in ontol-
ogy expansion module. We found that the pheromone updating process has effect
on ontology expansion efficiency in terms of convergence speed and total proc-
essing time.

(4)

In order to evaluate the performance of the extended ontologies, we measure the
precision value obtained from the LegalDocRanked module using equation (4).

The performance measured on Thai succession Law data set is shown in Table 4.
From the table, weighted ontology is the output of TLOE which uses Ant Colony’s
strategy. Non-weighted ontology is obtained from the baseline algorithm without
Ant Colony (there is no pheromone updating). The experiment shows that TLOE
outperforms the baseline algorithm in term of precision value. The average retrieval
performance of TLOE is 89% which is higher than that of the baseline algorithm.
Note that the ontology obtained from TLOE is shown in Table 5.

Table 4. The precision values measured on documents retrieval process

Precision
Keyword Non-weighted

ontology
TLOE algo-

rithm
มรดก (succession) 0.67 0.82
ทายาท (heir) 0.62 0.87

ผูจัดการมรดก (administrator of an estate) 0.70 0.90
พินัยกรรม (wills) 0.76 0.90

มิใหรับมรดก (exclusion for the succession) 0.74 0.92

รับมรดกแทนท่ี (representation for the purpose
of receiving inheritance)

0.79 0.91

สมรส (marriage) 0.71 0.89

สวนแบง (portion) 0.73 0.88

Average 0.72 0.89

28 V.-s. Boonchom and N. Soonthornphisaj

Table 5. The extended nodes and meaning of succession ontology

Keyword Extended nodes

(succession)
(liability) (money) (heir) (land)

(preferential rights) (debtor) (portion)
(movable property) (right) (duties) (shares)
(property)

(heir)
(grandfather) (uncle) (administrator of an estate)

(property) (young brother or young sister) (child)
(brother or sister) (grandmother) (uncle) (father)

(parents) (order) (mother) (exclusion for
the succession) (grandmother) (possess) (insane
person) (legatee) (renunciation of an estate)

(a minor) (performance of the obligation)
(behavior) (descendants)

(administrator
of an estate)

(property) (wills) (court) (account)
(dispose of) (authorize) (agent) (legatee)

(resign) (majority of votes) (bankrupt
person) (incompetence) (insane person)
(juristic act) (creditor) (bad faith) (negligently)

(public prosecutor) (foundation)
(behavior) (remuneration) (sui juris)

(wills)
(make wills) (witness) (property)

(administrator of an estate) (sign) (writer)
(district) (erasure) (legatee) (foundation)
(void) (testamentary disposition) (report)
(written evidence) (add) (change) (oral)
(modification) (descendants) (cancelled)
(public document) (transfer) (written
document)

(exclusion for
the succession)

(conceal) (divert) (fraudulent) (wills)
(legatee) (behavior) (competent

official)

(representation
for the purpose
of receiving
inheritance)

(child) (descendants) (father) (mother)
(dead person) (property)

(marriage)
(marriage portion) (wife) (husband) (the

separate property)

(portion)
(property) (heir) (succession) (marriage)

(prosecute) (wife) (husband)

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 29

Considering the experiments done on Family Law dataset (see Table 6, 7), we
found that the average retrieval performance of TLOE is 86% which is higher than
that of the non-weighted ontology obtained from the baseline algorithm.

Table 6. The precision values measured on documents retrieval process

Precision Keyword
Non-weighted ontology TLOE algorithm

ครอบครัว (family) 0.62 0.87

อุปการะ (maintenance) 0.70 0.90

บิดามารดา (parentage) 0.76 0.90
หยา (divorce) 0.74 0.92

สมรส (marriage) 0.79 0.91
หมั้น (engaged) 0.71 0.89

โมฆะ (void) 0.73 0.88

Average 0.69 0.86

Table 7. The extended nodes and meaning of family ontology

Keyword Extended nodes

(family)
(marriage) (divorce) (parentage)

(maintenance)

(maintenance)
(husband) (wife) (father) (mother) (child)

(parentage)
(child) (succession) (right) (duties)

(guardianship) (adoption) (entry in the register)

(divorce)
(consent) (entry in the register) (adulterer) (badly)
(harm) (insult) (look down upon)

(imprison) (be separated) (maintenance) (partition
of the property) (property) (abandon) (compensate)

(marriage)
(engaged) (bride-price) (age) (entry in the

register) (consent) (relation) (property) (debt)
(void) (end)

(engaged)
(void) (age) (consent) (voidable)

(marriage portion) (contract)

(void)
(relatives) (partner) (consent) (succession)

(compensate) (maintenance)

The objective of TLOE is the build an ontology by extending the nodes from a seed on-

tology created by law expert. Therefore it is an important issue to discuss about the quality
of the extended ontology. We set up another experiment to investigate the retrieval per-
formance of the extended ontology obtained from TLOE using the convergence criteria as

30 V.-s. Boonchom and N. Soonthornphisaj

the stop condition for ontology expansion module (see Table 2). TLOE finishes the ontol-
ogy expansion task when only one new node is obtained from the retrieved document.
Note that the numbers of new nodes obtained from the retrieved document are decreased
until the last retrieved document. It infers that there is no new concept found in the re-
trieved document after the size of ontology is increased to a certain number of nodes. To
prove our assumption, we compare the retrieval performance between 2 ontologies, (the
TLOE ontology with and without convergence). For the no convergence option, TLOE
will extend the node continuously until no document left in the corpus.

From Table 8 and 9, we found that the performance of TLOE using convergence
option is comparable. TLOE with convergence option gets the same performance as
TLOE without convergence option in both data sets. Figure 8 illustrates the example
of the extended family law ontology.

Table 8. The appropriate number of extended nodes of Succession Law ontology

TLOE with convergence TLOE without convergence
Keyword Number of

Nodes
Precision Number of

Nodes
Precision

มรดก (succession) 100 0.82 121 0.82

ทายาท (heir) 111 0.87 122 0.87
ผูจัดการมรดก (administrator
of an estate)

71 0.85 115 0.90

พินัยกรรม (wills) 95 0.90 120 0.90
มิใหรับมรดก (exclusion for
the succession)

110 0.92 121 0.92

รับมรดกแทนท่ี (representa-
tion for the purpose of
receiving inheritance)

104 0.91 121 0.91

สมรส (marriage) 98 0.89 108 0.89
สวนแบง (portion) 92 0.88 103 0.88

Average 98 0.88 116 0.89

Table 9. The appropriate number of extended nodes of Family Law ontology

TLOE with convergence TLOE without convergence
Keyword Number of

Nodes
Precision Number of

Nodes
Precision

ครอบครัว (family) 47 0.87 54 0.87

อุปการะ (maintain) 42 0.90 57 0.90

บิดามารดา (parentage) 45 0.90 55 0.90
หยา (divorce) 55 0.90 59 0.92

สมรส (marriage) 50 0.91 57 0.91
หมั้น (engaged) 44 0.89 53 0.89

โมฆะ (void) 40 0.86 54 0.88

Average 46 0.89 56 0.90

 Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm 31

Fig. 8. An example of extended family law ontology

5 Conclusions

This research proposes two algorithms, the Supreme Court retrieval algorithm and the
ontology expansion algorithm. We use ant colony algorithm as a mechanism in order
to increase or decrease weight in term of ant pheromone and ant behaviours.

The pheromone level of each word is increased when law users select that word to
expand the query. Moreover, the pheromone level effects the retrieval performance
compare to the non-weighted ontology. In the near future, we plan to extend our work
to other areas of Thai law.

Acknowledgments

This work has been supported by Office of the Higher Education Commission, Thailand.

32 V.-s. Boonchom and N. Soonthornphisaj

References

1. Perez, A.G., Rodriguez, F.O., Terrazas, B.V.: Legal Ontologies for the Spanish e-
Government. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005.
LNCS (LNAI), vol. 4177, pp. 301–310. Springer, Heidelberg (2006)

2. Henze, N., Dolog, P., Nejdl, W.: Reasoning and Ontologies for Personalized E-learning in
the Semantic Web. Educational Technology & Society 7(4), 82–98 (2004)

3. Benjamins, V.R., Contreras, J., Casanovas, P., Ayuso, M., Becue, M., Lemus, L., Urios,
C.,: Ontologies of Profesional Legal Knowledge as the Basic for Intelligent IT Support for
Judges. Artificial Intelligence and Law 12, 359–378 (2006)

4. Abachizadeh, M., Tahani, M.: An Ant Colony Optimization Approach to Multi-objective
Optimal Design of Symmetric Hybrid Laminates for Maximum Fundamental Frequency
and Minimum Cost. Springer Struct. Multidisc. Optim. 37, 367–376 (2009)

5. Corcho, O., Lopez, M.F., Perez, A.G., Cima, A.L.: Building Legal Ontologies with
Methontology and WebODE. Law and the Semantic Web, 142–157 (2005)

6. Kayed, A.: Building e-Laws Ontology: New Approach. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 826–835. Springer, Heidelberg
(2005)

7. Soonhee, H., Youngim, J., Aesun, Y., Kwon, H.C.: Building Korean Classifier Ontology
Based on Korean WordNet. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2006. LNCS
(LNAI), vol. 4188, pp. 261–268. Springer, Heidelberg (2006)

8. Kurematsu, M., Yamaguch, T.: A Legal Ontology Refinement Support Environment Using
a Machine-Readable Dictionary. Artificial Intelligence and Law 5, 119–137 (1997)

9. Zhang, X., Xia, G.: A Methodology for Domain Ontology Construction Based on Chinese
Technology Documents. Research and Prcatice Issue of Enterprise Information Systems
II 2, 1301–1310 (2007)

10. Hu, H., Du, X.: Building Bilingual Ontology from WordNet and Chinese Classified The-
saurus. In: Zhang, Z., Siekmann, J.H. (eds.) KSEM 2007. LNCS (LNAI), vol. 4798, pp.
649–654. Springer, Heidelberg (2007)

11. Despres, S., Szulman, S.: TERMINAE Method and Integration Process for Legal Ontology
Building. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp.
1014–1023. Springer, Heidelberg (2006)

12. Boonchom, V., Soonthornphisaj, N.: Thai Succession Law Ontology Building Using Ant
Colony Algorithm. In: Proceeding of the Third International Workshop on Juris-
informatics (JURISIN), pp. 27–37. Campus Innovation Center, Tokyo (2009)

Reflective Visualization of the Agreement
Quality in Mediation

Yoshiharu Maeno1, Katsumi Nitta2, and Yukio Ohsawa3

1 Social Design Group, Bunkyo-ku, Tokyo 112-0011, Japan

maeno.yoshiharu@socialdesigngroup.com
2 Tokyo Institute of Technology, Yokohama-shi, Kanagawa 226-8502, Japan

3 The University of Tokyo, Bunkyo-ku, Tokyo 113-8563, Japan

Abstract. Training for mediators is a complex issue. It is generally ef-

fective for trainees to reflect on their past thinking, speaking, and acting.

We present a text processing method which aids mediation trainees in

reflecting on how they reached an agreement from their dialogue. The

method is an improved variant of the Data Crystallization algorithm,

which visualizes the inter-topic associations which foreshadow the inten-

tional or unintentional subsequent development of topics far apart in

time. We demonstrate how the dialogues which differ in the agreement

quality affects the topological characteristics of the associations.

1 Introduction and Background

Resolving a conflict between parties having opposing opinions is an important
social requirement. Mediation is a form of alternative dispute resolution, which
refers to a rather private and confidential extrajudicial process. Mediation aims
at assisting disputants in reaching an agreement on a disputed matter. Compa-
nies often hire mediators in an attempt to resolve a dispute with workers’ unions.
Mediation is different from arbitration where an arbitrator imposes a solution
on the disputants. Rather, a mediator uses appropriate skills to improve the
dialogue between the disputants and find solution.

Information technologies are applied to assist mediators and disputants in
reaching a good agreement. For example, software agents are used in many re-
lated works in analyzing and aiding the mediation process. A software agent
[1] is a piece of software that acts on behalf of a user. An intelligent software
agent is capable of adapting to the environment by choosing problem solving
rules, and of learning by trial and error, or by generalizing the given examples.
The software agent analyzes the mediation and aids mediators or disputants in
making decisions. Case based reasoning is a powerful technique for the software
agents. This technique is the process of solving new problems based on the so-
lutions of similar past problems. The process formalizes four steps: retrieving
the relevant cases from a knowledge base, reusing the retrieved case to a new
problem, revising the retrieved solution to a new situation, and retaining the
new problem and its solution to the knowledge base.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 33–44, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

34 Y. Maeno, K. Nitta, and Y. Ohsawa

Besides, logic programming and ontology are frequently used as techniques to
implement the case based reasoning. Logic programming [16] is the use of logic
as a language for declarative and procedural representation. Prolog remains one
of the most commonly used logic programming languages today. It has been
applied to the fields of theorem proving, expert systems, games, automated an-
swering systems, and ontology. Building ontology is an essential task in analyzing
the knowledge base. Ontology refers to a formal representation of a shared con-
ceptualization of a particular domain. It includes a set of individuals which are
the basic objects, classes which are the collections of things, attributes which
describe the aspects of the individuals and classes, and relations in which the
individuals and classes can be related to one another.

On the other hand, education and training for mediator trainees (improve-
ment of mediator trainees’ human skills) become a complex issue because the
mediator’s skills range widely from the ability to remain neutral, the ability
to move the disputants from the impasse points, to the ability to evaluate the
strength and weakness of the disputants correctly. Appropriate means are, there-
fore, necessary to education and training. The idea of reflection can be a clue in
the situation when we need to improve a skill which can not be defined clearly
and taught by trainers.

Reflection in cognitive science [17] and computer-mediated communication
[20] means the ability to recognize and understand oneself, discover something
unexpected, and create something new [7], [19], [18]. Particularly, visualization
of the past utterances, decision-making, and actions is one of the most practical
tools to aid the trainees in reflection. Reflective visualization and verbalization
are proven effective in helping a person become aware of his or her unconscious
preferences [9], [6]. We expect that such reflective visualization is also promising
in education and training for mediation trainees. Utterances are relevant and
convenient information records for the trainees to reflect on. They are essential
inputs to negotiation log analysis [13] and online agent based negotiation assis-
tant systems [21], [22]. Similarly, mediators and disputants can reflect on the
quality of the agreement they made by looking back the way how the dispute
was resolved in a dialogue.

In this paper, we explore a text processing method for reflective visualization
and apply it to a mediation case. It is an improved variant of the Data Crystal-
lization algorithm [15] in which a graph-structured diagram evolves to explore
unknown structures with the introduction of dummy variables. The Data Crys-
tallization algorithm has also been studied in [10], [11], and [14]. The method
derives temporal topic clusters and inter-topic associations from the recorded ut-
terance texts, and draws the clusters and associations on a graph-structured di-
agram. The inter-topic associations foreshadow the intentional or unintentional
subsequent development of topics far apart in time. Two dialogue examples in
mediating a dispute on cancelling a purchase transaction at an online auction
site demonstrate how the difference between the agreement quality affects the
topological characteristics of the associations.

Reflective Visualization of the Agreement Quality 35

2 Method

2.1 Dialogue

The dialogue d is a time sequence of the recorded utterance texts ut from a
mediator and disputants. It is represented by eq.(1) formally. The subscript t
means the time when the utterance is observed. We do not use the absolute time
from the beginning of mediation. Instead, the i-th utterance from the beginning
is associated with an integer time t = i approximately. In eq.(1), T is the number
of utterances in mediation.

d = (u0, . . . , ut, . . . , uT−1). (1)

A recorded utterance text is a set of words wi which appear in the sentences in
an utterance. It is in the form of eq.(2). The number of words in an utterance
text ut is |ut|.

ut = {wi} (0 ≤ i < |ut|). (2)

The utterances are analyzed morphologically while assembling a dialogue. Mor-
phology is the identification, analysis and description of structure of words.
Verbs are changed into un-conjugated forms. Nouns are changed into un-inflected
forms. Besides, irrelevant words are deleted. They are articles, prepositions, pro-
nouns, and conjunctions. Periods are not words. For example, the first utterance
of a mediator, Thank you for agreeing in attempting to solve the dispute by me-
diation. Are you ready for starting mediation?, becomes u0 = {agree, attempt,
be, dispute, mediation, solve, start, thank, ready}. A word may appear in many
utterance texts. On the other hand, a word which appears multiple times in an
utterance appears only once in the set of words in eq.(2).

2.2 Graphical Diagram

A graph-structured diagram [15], [9] is employed here to represent the dialog
d visually. Two characteristic structures are extracted from the time sequence
pattern of word appearance in d. The first structure is a temporal topic cluster.
It is a group of words whose time sequence pattern of appearance is similar. The
cluster is drawn as a sub-graph including nodes representing words and links
representing strong similarity between words. The second structure is an inter-
topic association. The ability to extract the inter-topic association is the strength
of our proposed method described in 2.3 and 2.4. The inter-topic association
corresponds to an utterance which can be a trigger to move from a temporal
topic cluster to another. It does not necessarily mean a temporally adjacent
relationship between 2 clusters. Rather, it may foreshadow the intentional or
unintentional subsequent development of topics indicated by clusters which are
far apart in time. The inter-topic association is drawn as a set of links between
multiple temporal topic clusters. The set of links has a label pointing to a trigger
utterance.

36 Y. Maeno, K. Nitta, and Y. Ohsawa

Fig. 1. Example of a graph-structured diagram which visualizes temporal topic clusters

(c0 and c1), and inter-topic associations (DE0) found in the recorded utterance texts

in a dialog. The nodes mediation and start are gateway words of the clusters.

Fig. 1 shows an example of a graph-structured diagram which represents tem-
poral topic clusters and inter-topic associations in the recorded utterance texts
in a dialog. The cluster c0 includes 3 words and c1 includes 6 words. The as-
sociation is a link between c0 and c1 which is labeled as DE0 pointing to u0.
The gateway word is the word in a cluster to which the link representing an
inter-topic association is connected.

The gateway word has strong associations with the words in other clusters as
well as the words in the cluster to which it belongs. It is interpreted as a trigger
(or a switch) which plays a role to ignite the subsequent development from a
cluster to another. For example, the word mediation is the gateway word to c0

for DE0 (u0).

2.3 Temporal Topic Cluster

Every word wi which appears in d is classified into temporal topic clusters. The
number of clusters C is a granularity parameter which can be adjusted so that
visualization can assist mediation trainees in reflecting their dialogues most ef-
fectively. As the granularity becomes finer, C increases, that is, the number of
words in a cluster decreases and the time difference between neighbor clusters de-
creases. As the granularity becomes coarser, C decreases and the time difference
increases. At the beginning of reflection, if the trainees want to grasp the rough
sketch of the subsequent development of topics, coarser granularity visualization
may be appropriate. Large number of clusters is not necessary for this purpose.
After that, if they want to detail the subsequent development between the topics
of particular interests, finer granularity visualization may be appropriate.

At first, a simple measure is introduced to characterize the time sequence
pattern of word appearance. The characteristic time of a word is defined by
eq.(3). It is the average of the time when a word appears.

a(wi) =
∑T−1

t=0 tB(wi ∈ ut)∑T−1
t=0 B(wi ∈ ut)

. (3)

Reflective Visualization of the Agreement Quality 37

The function B(s) is define by eq.(4).

B(s) =
{

1 if the statement s is true
0 otherwise (false) . (4)

The similarity between 2 words is defined by eq.(5). The function min is included
to avoid divergence of the similarity when the characteristic time is very close.
Two words appear closely in time if the similarity is large. Eq.(5) measures the
degree of similarity in temporal appearance pattern while the Jaccard coefficient
used in text analysis [8] measures the degree of co-occurrence.

I(wi, wj) = min(
1

|a(wi)− a(wj)|
, 1). (5)

Then, a clustering algorithm for discrete objects is applied for given C. The k-
medoids algorithm is a simple example [5]. A medoid is an object that is the closest
to the center of gravity in a cluster. Its principle is similar to that of the k-means
algorithm [4] for continuous numerical variables where the center of gravity is up-
dated repeatedly according to the expectation-maximization method [3]. The dis-
tance between words is evaluated by the similarity in eq.(5). Initially, the words
are classified into clusters at random in the k-medoids algorithm. The cluster into
which a word wj is classified is denoted by c(wj). It is given by eq.(6).

c(wj) = random interger ∈ [0, C − 1]. (6)

The medoid wmed(ck) of a cluster ck is also assigned at random. It is given by
eq.(7).

wmed(ck) = random word ∈ ck (0 ≤ k < C). (7)

The clusters into which words are classified and the medoids are updated repeat-
edly. The cluster into which a word is classified is updated according to eq.(8).
The operator arg in eq.(8) means that c(wj) is the cluster which gives the largest
I(wmed(ck), wj). of all the clusters.

c(wj) = arg max
ck

I(wmed(ck), wj). (8)

The medoid is updated according to eq.(9). The operator arg in eq.(9) means
that the medoid is the word wj classified into ck, which maximizes M(ck, wj).

wmed(ck) = arg max
wj∈ck

M(ck, wj) (0 ≤ k < C). (9)

The quantity M(ck, wj) in eq.(9) is given by eq.(10). The operator ∧ means
logical AND.

M(ck, wj) =
∑

wl∈ck∧wl �=wj

I(wl, wj). (10)

After the medoids are determined, the clusters into which words are classified are
updated according to eq.(8) again. Eq.(8), (9), and (10) are calculated repeat-
edly until their value converges. The characteristic time of a cluster is defined by

38 Y. Maeno, K. Nitta, and Y. Ohsawa

eq.(11). The time when a topic cluster ck appears is evaluated by the time when
its medoid word appear approximately.

a(ck) = a(wmed(ck)) (11)

2.4 Inter-topic Association

After extracting temporal topic clusters, every utterance is next assigned a score
which measures the degree of being an inter-topic association [15], [10], [9]. The
score s(ut) of the utterance ut is calculated by eq.(12).

s(ut) = max
wi∈ut

∑
ck

max
wj∈ck∧wj �=wi

I(wi, wj). (12)

The utterances which are assigned large value of the score are extracted to draw
on a diagram. The utterance which has the l-th largest score is given by eq.(13).

U(d, l) = arg max
ui �=U(d,m) for ∀m<l

s(ui). (13)

A gateway word of a cluster is selected when U(d, l) is drawn as a link between
clusters on a graph. It is given by eq.(14). The operator arg means that the
gateway word wgtw(l, ck) of a cluster ck for the utterance of the l-th largest
score is the word wj ∈ ck which maximizes I(wi, wj).

wgtw(l, ck) = arg
wj∈ck

max
wi∈U(d,l)

I(wi, wj). (14)

A set of links are drawn between the gateway words {wgtw(1, ck)} (0 ≤ k < C)
for the utterance assigned the largest value of the score (ut = U(d, 1)) on a
diagram. The label DEt indicating ut is attached to the links. Similarly, a set of
links are drawn between the gateway words {wgtw(l, ck)} (0 ≤ k < C) for the
utterance assigned the l-th largest value of the score (ut = U(d, l)).

3 Extended Example

3.1 Mediation Case

The method described in 2 is applied to dialogues recorded in a mediation train-
ing program. The disputed matter in the program is on a purchase transaction at
an online auction site. Two groups of three mediation trainees played mediator
and disputant roles. Their utterances until the dispute is resolved were recorded
and assembled into two dialogues.

Disputed Matter. The disputed matter is on cancelling a purchase transaction
between two persons (seller disputant and buyer disputant) at an online auction
site. A seller disputant offered a car muffler for bid at the auction site. The seller
disputant provided bidders with photographs of the muffler and showed them

Reflective Visualization of the Agreement Quality 39

its condition and vendor information. A buyer disputant won the bid 7 days
later. The buyer disputant paid for 20,000 yens two days later, and the seller
disputant sent the muffler to the buyer disputant. The transaction at the auction
site completed.

The disputed matter consists of many sub-matters. After two and half months,
the buyer disputant asked the seller disputant whether the muffler is made of
stainless steel or aluminum-plated steel. The seller disputant answered that the
muffler is made of aluminum-plated steel as the photographs at the auction site
had indicated. But, all the mufflers found at the muffler vender’s web catalogue
were made of stainless steel at the time of bidding. A muffler made of stainless
steel is expensive, but excellent in quality. The muffler vender’s hallmark can not
be found on the muffler which the seller disputant sent to the buyer disputant.
The muffler vender used to place the vender’s hallmark on the products at the
time of bidding. The buyer disputant became disappointed at this. The buyer
disputant requested that the purchase transaction be cancelled and the paid
money be returned. The seller disputant rejected the buyer disputant’s request.
The buyer disputant assigned a low rating score to the seller disputant at the
auction site. The seller disputant did similarly in return. These low rating scores
had the effect of making them untrustworthy at the auction site.

Resolution. The buyer disputant asked the seller disputant to attempt to re-
solve their dispute by mediation. The seller disputant agreed. With the aid of a
mediator, the disputants talked about the undisclosed facts on each side in both
of the two dialogues.

The seller disputant had bought the muffler at the same auction site before.
The seller disputant was not aware that the muffler vender did not supply muf-
flers made of aluminum-plated steel at the time of bidding. The seller disputant
investigated the muffler after the buyer requested cancellation. The seller dis-
putant found that it was a custom-made muffler from the vendor. The seller
disputant was embarrassed by the low rating score, which harmed the seller dis-
putant’s business reputation. The seller disputant could not agree on the request
that the paid money be returned because the seller disputant happened to have
little money at the time of mediation. Instead, the seller disputant had a number
of mufflers, which might be used to make an agreement. The buyer disputant
had not tried to check the quality of the sent muffler for a long time. The buyer
disputant had trouble with a car because of the insufficient quality of the sent
muffler, and wanted to settle the trouble by all means.

Finally, they reached an agreement although the buyer disputant’s original
request on returning the paid money did not survive the mediation. In the two
dialogues, however, the two groups of the trainees reached different agreements.
In dialogue 1, the agreement was to substitute the muffler for one made of
stainless steel which the seller disputant possesses and delete both of the low
rating scores at the online auction site. In dialogue 2, the agreement was to
substitute the disputed muffler for one that cost 70 % as much. They discussed
about the low rating scores at the online auction site but did not make an
agreement about them.

40 Y. Maeno, K. Nitta, and Y. Ohsawa

In both dialogues, the mediators succeeded in assisting the disputants in reach-
ing an agreement on a disputed matter. The mediator in dialogue 2, however,
failed to make an agreement on the disputed sub-matter of the low rating scores.
It was not beneficial to both of the disputants. The agreement in dialogue 1 looks
better than that in dialogue 2 in that it incorporates beneficial compromises on
most of the disputed sub-matters. How is this intuitive interpretation of the
agreement quality visualized in terms of the difference between the diagrams? It
is demonstrated next.

3.2 Visualization

Figure 2 shows the diagram drawn by the method from the dialogue 1. The num-
ber of temporal topic clusters is C = 12. They are placed clockwise from c0 to
c11. The black nodes in the clusters are labeled with Japanese words which they
represent. The inter-topic associations found within the whole 0 ≤ t < T (= 54)
utterances are labeled by the red nodes DEt. The number of the associations
which have a non-zero score s(ut) > 0 and are drawn on a diagram is 24
(t = 0, · · · , 23). Figure 3 shows the diagram drawn by the method from the dia-
logue 2. The number of temporal topic clusters is C = 12. They are placed clock-
wise from c0 to c11. The black nodes in the clusters are labeled with Japanese
words which they represent. The inter-topic associations found within the whole

Fig. 2. Diagram drawn by the method from dialogue 1. The number of temporal topic

clusters is C = 12. The inter-topic associations found within the whole 0 ≤ t < T (= 54)

utterances are labelled by the red nodes DEt.

Reflective Visualization of the Agreement Quality 41

Fig. 3. Diagram drawn by the method from dialogue 2. The number of temporal topic

clusters is C = 12. The inter-topic associations found within the whole 0 ≤ t < T (= 87)

utterances are labelled by the red nodes DEt.

0 ≤ t < T (= 87) utterances are labeled by the red nodes DEt. The number
of the associations which have a non-zero score s(ut) > 0 and are drawn on a
diagram is 81 (t = 0, · · · , 80).

There are inter-topic associations between most of the clusters in Figure 2
while there are few inter-topic associations between the early-stage clusters (c0

to c4) and the late-stage clusters (c5 to c11). To analyze quantitatively, let us
count the number of the inter-topic associations between individual clusters and
the concluding cluster c11. The concluding cluster at the end of the mediation
summarizes the content of the agreement. Table 1 shows the result.

Table 1. Number of the inter-topic associations between individual clusters and the

concluding cluster c11

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Dialogue 1 0 1 0 1 0 0 0 2 0 1 0

Dialogue 2 0 0 0 0 6 0 4 0 2 0 5

The Gini coefficient can be calculated from Table 1. The Gini coefficient is a
measure of statistical dispersion. It is commonly used in economics as a measure
of inequality of income or wealth. The Gini coefficient can range from 0 to 1. A
small Gini coefficient indicates a more equal distribution while a large Gini coef-
ficient indicates more unequal distribution. The value of 0 corresponds to perfect

42 Y. Maeno, K. Nitta, and Y. Ohsawa

equality. The value of 1 corresponds to perfect inequality. The Gini coefficient is
0.56 for the dialogue 1 and 0.65 for the dialogue 2. The inter-relationship between
the temporal clusters in dialogue 2 suffers from more inequality. The concluding
cluster in dialogue 2 is less related to the sub-matters in the early-stage clusters
than that in dialogue 1. This may result in the defect in the agreement quality
of the dialogue 2.

This result demonstrates that the agreement quality and the visual structure
of the diagrams may be dependent. This implication is relevant because the
diagrams provide the mediation trainees with a clue to assess the agreement
quality. The number of the associations between the concluding cluster and the
early-stage clusters is of particular interest. A list of the problems posed in the
dispute and the preliminary opinions on them from the disputants are usually
presented in the early-stage clusters. The agreement in the concluding clusters
is supposed to solve all the problems in a successful mediation. For this reason,
very weak inter-relationship between the early-stage clusters and the concluding
clusters can be a sign of bad agreement quality. The method can be an effective
means in education and training to visualize such inequality and present it to
mediator trainees for reflection on how they reached an agreement and how good
or bad the way they discussed and decided was.

4 Discussion

The agreement which the disputant reached in mediation is often different from
the best solution from the viewpoints of many similar past mediation cases. It
is, therefore, more important to understand the intention in the agreement to-
ward which the disputants are reaching (and possibly foresee and adjust it) than
to know the best solution of the disputed matter. Our study focuses on the reflec-
tive visualization of mediators’ human skills, rather than the information technol-
ogy based mediation assistance. Analyzing the subsequent development of topics
in the dialogue is essential for this purpose. The utterances are noisy and fluctu-
ating information, which are not suitable for machines to understand by means
of the knowledge base and ontology (above mentioned purely computational in-
formation technologies). Rather, a human-computer interacting process is poten-
tially advantageous in combining text processing methods with experts’ opinion
and trainees’ reflection through visual interfaces. The method in this paper em-
phasizes the practical usefulness of visualization in strengthening the mediation
trainees’ intuitive understanding of the vast amount of texts in the dialogue.

Although the topology of the inter-topic associations is a big clue to under-
stand the dialogue, the graph-structured diagrams such as Figure 2 and Figure 3
may be difficult to interpret for those who are not familiar with such mathemat-
ical constructs Instead, short easy-to-understand text-based summary informa-
tion on the quality of the agreement and other characteristics of the utterances is
convenient to the trainees. Furthermore, a single digit, score for a mediator and
disputants, may be simple but very useful information. With such information,
trainees’ reflection on their utterances with the aid of the information would re-
main very relevant and essential to improve the skills of the trainees. The score

Reflective Visualization of the Agreement Quality 43

needs to include a clue to reflect on how and why the disputants have reached
better or worse agreements in the dialogue.

The method is more suitable to analyze the Internet based text records than
real time face-to-face conversations. This is mainly because speech recognition
is not a mature technology. Negotiation between two parties through on-line
chats [2] is an attractive field of application. For this purpose, the method needs
to be improved to analyze streaming data (accumulating records of utterances)
rather than a database (a complete dataset from the beginning to the end of
the dialogue). The graph-structured diagrams will have to be updated utterance
by utterance. A big change in the diagram during a single utterance affects
badly the understanding of a mediator and disputants. They are likely to be
confused. Gradual but noticeable change in the diagram would aid the trainees
in understanding the effect of an utterance on the subsequent development of
topics. Such visualization techniques are within the scope for future works.

5 Conclusion

Training for mediators is a complex issue. We present a text processing method
which is a promising tool to address such an issue. The method aids mediation
trainees in reflecting on how they reached an agreement from their dialogue.
The strength of the method is the ability to visualize the inter-topic associations
which foreshadow the intentional or unintentional subsequent development of
topics indicated by temporal topics clusters far apart in time. The method is
applied to a mediation case where a dispute between a seller and a buyer at
an online auction site is resolved. The result demonstrates that the agreement
quality and the visual structure of the diagrams which our method outputs may
be dependent.

This implication is relevant because the diagrams may provide the mediation
trainees with a clue to access the agreement quality from the associations be-
tween the concluding cluster and the early-stage clusters. With this in mind,
in the future, we may be able to design an effective computer-aided training
tool which visualizes mediation trainees’ dialogue in real time, aids them in re-
flecting on how they are making a discussion and how they are reaching an
agreement, and strengthens their ability to foresee the conclusion to which they
are approaching and set it in the right direction.

References

1. Abbas, S., Sawamura, H.: Mining impact on argument learning environment and

arguing agent. In: Proceeding of the International Workshop on Juris-informatics,

Tokyo (2009)

2. Andrade, F., Novais, P., Carneiro, D., Zeleznikow, J., Neves, J.: Using BATNAs

and WATNAs in online dispute resolution. In: Proceeding of the International

Workshop on Juris-informatics, Tokyo (2009)

3. Dempster, A.: Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistics Society 39, 1–38 (1977)

44 Y. Maeno, K. Nitta, and Y. Ohsawa

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley-Interscience,

Hoboken (2000)

5. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: Data

mining, inference, and prediction. Springer, Heidelberg (2001)

6. Ishii, N., Miwa, K.: Interactive processes between mental and external operations

in creative activity: A comparison of experts’ and novices’ performance. In: Pro-

ceedings of the Creativity and Cognition Conference, Loughborough (2002)

7. Larkin, J., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words?

Cognitive Science 11, 65–99 (1987)

8. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.

Journal of American Society of Information Science and Technology 58, 1019–1031

(2007)

9. Maeno, Y., Ohsawa, Y.: Reflective visualization and verbalization of unconscious

preference. International Journal of Advanced Intelligence Paradigms (2010) (in

press)

10. Maeno, Y., Ohsawa, Y.: Human-computer interactive annealing for discovering

invisible dark events. IEEE Transactions on Industrial Electronics 54, 1184–1192

(2007)

11. Maeno, Y., Ohsawa, Y.: Analyzing covert social network foundation behind terror-

ism disaster. International Journal of Services Sciences 2, 125–141 (2009)

12. Maeno, Y.: Node discovery problem for a social network. Connections 29, 62–76

(2009)

13. Miura, T., Katagami, D., Nitta, K.: Analysis of negotiation logs using diagrams.

Japanese Society for Information and Systems in Education Research Report 22,

33–38 (2007)

14. Nitta, K., Zeze, K., Miura, T., Katagami, D.: Scenario extraction using word clus-

tering and data crystallization. In: Proceeding of the International Workshop on

Juris-informatics, Tokyo (2009)

15. Ohsawa, Y.: Data crystallization: chance discovery extended for dealing with un-

observable events. New Mathematics and Natural Computation 1, 373–392 (2005)

16. Sato, K.: A formalization for burden of production in logic programming. In: Pro-

ceeding of the International Workshop on Juris-informatics, Tokyo (2009)

17. Schön, D.A.: The reflective practitioner: How professionals think in action. Basic

Books, New York (2006)

18. Suwa, M., Tversky, B.: Constructive perception: Metacognitive skill for coordinat-

ing perception and conception. In: Proceedings of the Annual Conference of the

Cognitive Science Society, Boston (2003)

19. Suwa, M., Tversky, B.: Constructive perception: An expertise to use diagrams for

dynamic interactivity. In: Proceedings of the Annual Conference of the Cognitive

Science Society, Fairfax (2002)

20. Thurlow, C., Lengel, L., Tomic, A.: Computer mediated communication. Sage Pub-

lications Ltd., Thousand Oaks (2004)

21. Yasumura, Y., Oguchi, K., Nitta, K.: Negotiation strategy of agents in the

Monopoly game. In: Proceedings of the IEEE International Workshop on Robot

and Human Interactive Communication, San Francisco (2003)

22. Yuasa, M., Yasumura, Y., Nitta, K.: A tool for animated agents in network-based

negotiation. In: Proceedings of the IEEE International Symposium on Computa-

tional Intelligence in Robotics and Automation, Banff (2001)

Implementing Temporal Defeasible Logic
for Modeling Legal Reasoning

Guido Governatori2, Antonino Rotolo1, and Rossella Rubino1

1 CIRSFID, University of Bologna, Italy
2 NICTA, Queensland Research Laboratory, Australia

Abstract. In this paper we briefly present an efficient implementation of tem-
poral defeasible logic, and we argue that it can be used to efficiently capture the
the legal concepts of persistence, retroactivity and periodicity. In particular, we
illustrate how the system works with a real life example of a regulation.

1 Introduction

Defeasible Logic (DL) is based on a logic programming-like language and, over
the years, proved to be a flexible formalism able to capture different facets of non-
monotonic reasoning (see [4]). Standard DL has a linear complexity [22] and has also
several efficient implementations (e.g., [8,3,6,21]).

DL has been recently extended to capture the temporal aspects of several phenom-
ena, such as legal positions [18], norm modifications (e.g., [16]), and deadlines [13].
The resulting logic, called Temporal Defeasible logic (TDL), has been developed to
model the concept of temporal persistence within a non-monotonic setting and, remark-
ably, it preserves the nice computational properties of standard DL [15]. In addition,
this logic distinguishes between permanent and transient (non-permanent) conclusions,
which makes the language suitable for applications. In the legal domain, typically we
have two types of effects. The first type is where normative effects may persist over
time unless some other and subsequent events terminate them (example: “If one causes
damage, one has to provide compensation”). For the second type we have that norma-
tive effects hold at a specific time on the condition that the antecedent conditions of the
rules hold and with a specific temporal relationship between the antecedent of the rule
and the effect (example: “If one is in a public building, one is forbidden to smoke”, that
is, if one is a public building at time t, then at time t one has the prohibition to smoke).

This paper illustrates how [23,24] Java implementation of TDL can be fruitfully ap-
plied in the legal domain by discussing the concepts of normative persistence, retroac-
tivity, and periodicity. While the idea of persistence is of paramount importance for
modelling the type of normative effects mentioned above, it is still an open question
whether we really need to explicitly distinguish between persistent and non-persistent
rules, as done in TDL: indeed, it may be the case that persistent effects are simulated
by suitable sets of non-persistent rules. Our answer, however, is negative, since the in-
troduction of persistent rules allows for a more efficient computation. As we will see,
also the concepts retroactivity and periodicity can be feasibly handled within TDL.

The layout of the paper is as follows. Section 2briefly presents TDL. Section 3outlines
[23,24]’s Java implementation of TDL. Section 4 tests and validates this implementation

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 45–58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

46 G. Governatori, A. Rotolo, and R. Rubino

against some interesting cases of normative persistence, retroactivity and periodicity:
Section 4.1 discusses some aspects of the concept of persistence and its relation with
that of retroactivity and shows that our system allows for a very efficient computation of
conclusions; Section 4.2 illustrates how to handle the regulation on road traffic restric-
tions of the Italian town of Piacenza, which specifies normative deadlines and periodical
provisions. Some conclusions end the paper.

2 Temporal Defeasible Logic

The language of propositional TDL is based on the concept of temporal literal, which
is an expression such as lt (or its negation, ¬lt), where l is a literal and t is an element
of a discrete totally ordered set T of instants of time {t1, t2, . . .}: lt intuitively means
that l holds at time t. Given a temporal literal l the complement∼l is ¬pt if l = pt , and
pt if l = ¬pt .

A rule is an expression lbl : A ↪→x m, where lbl is a unique label of the rule, A is a
(possibly empty) set of temporal literals, ↪→∈ {→,⇒,�}, m is a temporal literal and
x is either π or τ signaling whether we have a persistent or transient rule. Strict rules,
marked by the arrow→, support indisputable conclusions whenever their antecedents,
too, are indisputable. Defeasible rules, marked by⇒, can be defeated by contrary ev-
idence. Defeaters, marked by �, cannot lead to any conclusion but are used to defeat
some defeasible rules by producing evidence to the contrary. A persistent rule is a rule
whose conclusion holds at all instants of time after the conclusion has been derived, un-
less interrupting events occur; transient rules establish the conclusion only for a specific
instant of time. Thus ex1 : p5⇒π q6 means that if p holds at 5, then q defeasibly holds at
time 6 and continues to hold after 6 until some event overrides it. The rule ex2 : p5⇒τ q6

means that, if p holds at 5, then q defeasibly holds at time 6 but we do not know whether
it will persist after 6. Note that we assume that defeaters are only transient: if a persis-
tent defeasible conclusion is blocked at time t by a transient defeater, such a conclusion
no longer holds after t unless another applicable rule reinstates it. Furthermore, as we
will see, according to the proof conditions for TDL defeaters cannot be used to prove
positive conclusions directly, thus, in this respect the distinction between transient and
persistent defeaters is irrelevant. In addition, due to the skeptical nature of defeasible
logic, negative conclusions can be considered persistent by default, in the sense that if
no reason to prove a conclusion is given for an instant t, the conclusion is deemed as not
provable at that instant. Thus, also in this case the distinction between persistent and tran-
sient defeaters is irrelevant. Finally, given the intended interpretation of rules and their
applicability conditions, the effects of defeaters are, essentially, those of transient rules.

We use some abbreviations. Given a rule r and a set R of rules, A(r) denotes the
antecedent of r while C(r) denotes its consequent; Rπ denotes the set of persistent rules
in R, and R[ψ] the set of rules with consequent ψ . Rs, Rsd and Rdft are respectively the
sets of strict rules, defeasible rules, and defeaters in R.

There are in TDL three kinds of features: facts, rules, and a superiority relation
among rules. Facts are indisputable statements, represented by temporal literals. The
superiority relation describes the relative strength of rules, i.e., about which rules can
overrule which other rules. A TDL theory is a structure (F,R,≺), where F is a finite set
of facts, R is a finite set of rules and ≺ is an acyclic binary superiority relation over R.

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 47

TDL is based on a constructive inference mechanism based on tagged conclusions.
Proof tags indicate the strength and the type of conclusions. The strength depends on
whether conclusions are indisputable (the tag is Δ), namely obtained by using facts
and strict rules, or they are defeasible (the tag is ∂). The type depends on whether
conclusions are obtained by applying a persistent or a transient rule: hence, conclusions
are also tagged with π (persistent) or τ (transient).

Provability is based on the concept of a derivation (or proof) in a TDL theory D.
Given a TDL theory D, a proof P from D is a finite sequence of tagged temporal literals
such that: (1) each tag is either +Δ π , −Δ π , +∂ π , −∂ π , +Δ τ , −Δ τ , +∂ τ , or −∂ τ ; (2)
the proof conditions Definite Provability and Defeasible Provability given below are
satisfied by the sequence P1.

The meaning of the proof tags is a follows:

– +Δ π ptp (resp. +Δ τ ptp): we have a definite derivation of p holding from time tp

onwards (resp. p holds at tp);
– −Δ π ptp (resp.−Δ τ ptp): we can show that it is not possible to have a definite deriva-

tion of p holding from time tp onwards (resp. p holds at tp);
– +∂ π ptp (resp. +∂ τ ptp): we have a defeasible derivation of p holding from time tp

onwards (resp. p holds at tp);
– −∂ π ptp (resp. −∂ τ ptp): we can show that it is not possible to have a defeasible

derivation of p holding from time tp onwards (resp. p holds at tp).

The inference conditions for −Δ and −∂ are derived from those for +Δ and +∂ by
applying the Principle of Strong Negation [5]. For space reasons, in what follows we
show only the conditions for +Δ and +∂ .

Definite Provability
If P(n+1) = +Δ x ptp , then
1) ptp ∈ F if x = τ; or
2) ∃r ∈ Rx

s [p
t ′p] such that

∀ata ∈ A(r) : +Δ yata ∈ P[1..n]

Defeasible Provability
If P(n+1) = +∂ x ptp , then
1) +Δ x ptp ∈ P[1..n] or
2) −Δ x∼ptp ∈ P[1..n] and
2.1) ∃r ∈ Rx

sd[pt ′p] such that
∀ata ∈ A(r) : +∂ yata ∈ P[1..n], and

2.2) ∀s ∈ Ry[∼pt∼p] either
2.2.1) ∃btb ∈ A(s),−∂ ybtb ∈ P[1..n] or
2.2.2) ∃w ∈ Ry[pt∼p] such that

∀ctc ∈ A(w) : +∂ yctc ∈ P[1..n] and
s≺ w

where (for both proof conditions) (a) y ∈ {π ,τ}; (b) if x = π , then t ′p ≤ t∼p ≤ tp; (c) if
x = τ , then t ′p = t∼p = tp.

Consider the conditions for definite provability. If the conclusion is transient (if x =
τ), the above conditions are the standard ones for definite proofs in DL, which are just
monotonic derivations using forward chaining. If the conclusion is persistent (x = π),
p can be obtained at tp or, by persistence, at any time t ′p before tp. Finally, notice that
facts lead to strict conclusions, but are taken not to be persistent.

Defeasible derivations run in three phases. In the first phase we put forward a sup-
ported reason (rule) for the conclusion we want to prove. Then in the second phase we

1 Given a proof P we use P(n) to denote the n-th element of the sequence, and P[1..n] denotes
the first n elements of P.

48 G. Governatori, A. Rotolo, and R. Rubino

consider all (actual and potential) reasons against the desired conclusion. Finally in the
last phase, we have to rebut all the counterarguments. This can be done in two ways:
we can show that some of the premises of a counterargument do not obtain, or we can
show that the counterargument is weaker than an argument in favour of the conclusion.
If x = τ , the above conditions are essentially those for defeasible derivations in DL. If
x = π , a proof for p can be obtained by using a persistent rule which leads to p holding
at tp or at any time t ′p before tp. In addition, for every instant of time between the t ′p and
tp, p should not be terminated. This requires that all possible attacks were not triggered
(clause 2.2.1) or are weaker than some reasons in favour of the persistence of p (clause
2.2.2). Consider the following theory.

(F = {at1 , bt3 , ct3 , dt4},
R = {r1 : at1 ⇒π et1 , r2 : bt3 ⇒π ¬et3 , r3 : ct3 �τ et3 ,r4 : dt4 ⇒τ ¬et4},
�= {r3 � r2, r1 � r4})

At time t1, r1 is the only applicable rule; accordingly we derive +∂ π et1 . At time t2
no rule is applicable, and the only derivation permitted is the derivation of +∂ πet2 by
persistence. At time t3 both r2 and r3 are applicable, but r4 is not. If r2 prevailed, then
it would terminate e. However, it is rebutted by r3, so we derive +∂ πet3 . Finally at
time t4, rule r4 is applicable, thus we derive +∂ τ¬et4 and −∂ πet4 , which means that r4

terminates e. Notice that, even if r4 is weaker than r1, the latter is not applicable at t4,
thus it does not offer any support to maintain e.

3 The Implementation

The system implementing TDL consists of three elements: (a) a parser, which loads
sets of rules, stored either in plain text format or in RuleML format, and generates
a corresponding TDL theory; (b) a Graphical User Interface for selecting defeasible
theories, and for visualizing conclusions and the execution time of the algorithm; (c)
an inference engine which implements the algorithm of [15] to compute conclusions of
the generated TDL theory [23,24].

The parser translates sets of rules in plain text or RuleML formats to generate a
corresponding theory to be processed by the inference engine. The plain text format is
mostly useful to handle rulesets in a simple presentation syntax easily understandable
by human users. RuleML2 is an open, general and vendor neutral XML/RDF dialect for
the representation of rules. The ability to handle sets of rules written in an interchange
format is valuable insofar as it allows one to exchange rules across different rule engines
and different languages (e.g., W3C RIF [20], R2ML3 and LKIF [10]) just using XSLT
transformations to translate from one language to another language. Furthermore, the
use of XML based languages makes possible interactions of our implementation and
Semantic Web technology. For example, it is possible to use the RDF loaders of [3,8,14]
to load RDF stores as sets of facts. At the same time, it permits the integration of a non-
monotonic reasoner and OWL reasoners [2], thus enabling the use of (legal) ontologies,

2 ������������	
��
���
3 ���������������������

http://www.ruleml.org
http://rewerse.net/I1

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 49

paving thus the way for the use of TDL in expressive and powerful Semantic Web
applications, as well as in SOA based applications.

The Graphical User Interface allows the user to select a set of rules in RuleML or
plain text format and to decide the time interval within which to compute their conclu-
sions. Rules are then elaborated by assigning a unique label to each rule and the signs
+/− to the literals according to whether they are positive or negative: the rules are
visualized accordingly.

The inference engine of the system implements in Java the algorithm for TDL de-
veloped by Governatori and Rotolo in [15]4. The algorithm computes the extension of
any TDL theory D, where the concept of extension is defined as follows: if HBD is
the Herbrand Base for D, the extension of D is the 4-tuple (Δ+,Δ−,∂+,∂−), where
#± = {pt |p ∈ HBD,D ±#x pt ,t ∈ T }, # ∈ {Δ ,∂}, and x ∈ {π ,τ}. Δ+ and Δ− are
the positive and negative definite extensions of D, while ∂+ and ∂− are the positive
and negative defeasible extensions. The extension of a theory D contains the set of all
possible conclusions (and their type) that can be derived from the theory. For example,
given a theory D, ∂+, the positive defeasible extension, is the set of the (temporalised)
literals that can be proved defeasibly from the theory D, similarly for the other elements
of the extension.

The computation of the extension of a TDL theory runs in three steps [15]5:

(i) in the first step the superiority relation is removed by creating an equivalent theory
where ≺= /0; any fact at , too, is removed by replacing it with a rule→τ at ;

(ii) in the second step the theory obtained from the first phase is used to compute the
definite extension;

(iii) in the third step the theory from the first step and the definite extension are used
to generate the theory to be used to compute the defeasible extension.

The Java class implementing the algorithm is ���������. This has, as its main at-
tributes, the theory (a set of rules and atoms), the theory conclusions, the time interval
within which to compute these conclusions, the execution time of the algorithm, and a
log manager.

The methods of the class ��������� are of two types: (i) those that are proper of the
algorithm; (ii) those that are functional to the algorithm execution. Here, we will only
describe the former ones.

It is worth noting that the computation makes use of time intervals to give a compact
representation for sets of contiguous instants. The algorithm works both with proper
intervals such as [t,t ′], i.e., intervals with start time t and end time t ′, and punctual
intervals such as [t], i.e., intervals corresponding to singletons.

Following the idea of [22], the computation of the definite and defeasible extensions
is based on a series of (theory) transformations that allow us (1) to assert whether a
literal is provable or not (and the strength of its derivation) (2) to progressively reduce

4 See �������������������
��������
����������������������������
 for the
full code and the Javadoc documentation. See [23] for more details.

5 Governatori and Rotolo [15] proved that, given a TDL theory D, the extension of D can be
computed in linear time, i.e., O(|R| ∗ |HD| ∗ |TD|), where R are the rules of D and TD is the set
of distinct instants occurring in D. It is also shown that the proposed algorithm is correct.

http://www.defeasible.org/implementations/TDLJava/index.html

50 G. Governatori, A. Rotolo, and R. Rubino

and simplify a theory. The key ideas depend on a procedure according to which, once
we have established that a literal is positively provable we can remove it from the body
of rules where it occurs without affecting the set of conclusions we can derive from the
theory. Similarly, we can safely remove rules from a theory when one of the elements in
the body of the rules is negatively provable. The methods of ��������� for this purpose
are 	
�������������
�	���
�� and 	
���������������
�	���
��.

The method 	
�������������
�	���
�� works as follows. At each cycle, it
scans the set of literals of the theory in search of temporal literals for which there are no
rules supporting them (namely, supporting their derivation). This happens in two cases:
(i) there are no rules for a temporal literal lt or (ii) all the persistent rules having the
literal in their head are parametrized by a greater time than t. For each of such temporal
literals we add them to the negative definite extension of the theory, and remove all rules
where at least one of these literals occurs. Then, the set of rules is scanned in search of
rules with an empty body. In case of a positive match we add the conclusion of the rule
to the positive definite extension (with an open ended interval for a persistent rule and
with a punctual interval otherwise). Finally we remove such temporal literals matching
the newly added conclusions from the body of rules. The cycle is repeated until (1)
there are no more literals to be examined, or (2) the set of strict rules is empty, or (3) no
addition to the extension happened in the cycle.

The method 	
���������������
�	���
�� is more complex. As regards the
scanning of the set of literals of the theory–in search of temporal literals for which there
are no rules supporting them–the procedure is basically the same of 	
���������
�����
�	���
�� (with the difference that when we eliminate a rule we update the
state of the extension instead of waiting to the end as in the case of the definite exten-
sions). Then we search for rules with empty body. Suppose we have one of such rules,
say a rule for lt , and we know that the complement of l, i.e., ∼l, cannot be proved at t.
So we add (∼l, [t]) to ∂−. At this stage we still have to determine whether we can insert
l in ∂+ and the instant/interval associated to it. We have a few cases. The rule for l is
a defeater: defeaters cannot be used to prove conclusions, so in this case, we are done.
If the rule is transient, then it can prove the conclusion only at t, and we have to see
if there are transient rules for ∼lt or persistent rules for ∼lt′ such that t ′ ≤ t. If there
are we have to wait to see if we can discard such rules. Otherwise, we can add (l, [t])
to ∂+. Finally, in the last case the rule is persistent. What we have to do in this case is
to search for the minimum time t ′ greater or equal to t in the rules for ∼l, and we can
include (l, [t,t ′]) in ∂+.

The method 	
���������������
�	���
�� basically calls three subroutines:
��
���, ���	���, and ���������	�.

The subroutine corresponding to ���������	� updates the state of literals in the
extension of a theory after we have removed the rules in which we know at least one
literal in the antecedent is provable with −∂ x. Consider, for example, a theory where
the rules for p and ¬p are: r : ⇒π p1, s : q5⇒τ ¬p10, v : ⇒π ¬p15. In this theory we
can prove +∂ π pt for 1 ≤ t < 10, no matter whether q is provable or not at 5. Suppose
that we discover that −∂ xq5. Then we have to remove rule s. In the resulting theory
from this transformation can prove +∂ π pt for 1≤ t < 15. Thus we can update the entry
for l from (l, [1,10]) to (l, [1,15]).

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 51

Secondly, ���	��� adds a literal to the negative defeasible extension and then re-
moves the rules for which we have already proved that some literal in the antecedent
of these rules is not provable. The literal is parametrised by an interval. Then it further
calls ���������	� that updates the state of the extension of a theory.

Third, ��
��� allows to establish if a literal is proved with respect to a given time
interval I. As a first step, it inserts a provable literal in the positive defeasible extension
of the theory. Then it calls ���	��� with the complementary literal. The next step is to
remove all the instances of the literal temporalised with an instant in the interval I from
the body of any rule. Finally, the rule is removed from the set of rules.

4 Validation and Testing in the Legal Domain

The main contribution of this paper is the validation in the legal domain of [23,24]’s
Java implementation of TDL.

We are still at a preliminary stage for a general testing the system. In particular, we
have not yet done a systematic performance evaluation using tools generating scalable
test defeasible logic theories: this study is a matter of further research.6 In this section we
test and validate the implementation (and the logic) with regard to three complex tem-
poral phenomena occurring in the legal domain, i.e., persistence, retroactivity, deadlines
and periodicity. To test persistence and retroactivity we have generated some synthetic
theories modelling various features of the logic and we have examined the difference
of computing persistence directly or via computation for all instants in an interval. The
test for deadlines and periodicity are based on a theory encoding a real life scenario.

4.1 Persistence and Backward Persistence in Legal Reasoning

We have generated some theory types (exemplified below), and for each of them we
have instantiated the set of rules and computed the conclusions in the interval [0,100].

– Persistence
• Rules:⇒π a0

• Output: (a, [0,100])
– Backward Persistence Persistence
• Rules: ax⇒π ax−1,⇒τ a100

• Output: (a, [0,100])
– Backward Persistence Lazy
• Rules: a100⇒π a0,⇒τ a100

• Output: (a, [0,100])

– Persistence via Transient
• Rules: ax⇒τ ax+1,⇒τ a0

• Output: (a, [0,100])
– Backward Persistence Transient
• Rules: ax⇒τ ax−1,⇒τ a100

• Output: (a, [0,100])
– Backward Opposite Persistence
• Rules: a100⇒π ¬a0,⇒τ a100

• Output: (a, [100]), (¬a, [0,99])

Our preliminary experiments, reported in Table 1, were performed on an Intel Core
Duo (1,80 GHz) with 3 GB main memory. The results about the execution time are
fully alligned with the theoretical result about the linear computational complexity of
TDL (see footnote 5), with minor variations mostly due start-up time.

6 Some first non-systematic tests on large theories are encouraging: random-generated theories
with about 100,000 rules, 1,000,000 of atoms, and 100 instants of time show computation
times comparable to the result of [21] for theories of similar size. See [23] for a discussion.

52 G. Governatori, A. Rotolo, and R. Rubino

Table 1. Performances on Persistence

Theory Rules Atoms Time Execution time
Backward Persistence Transient 101 1 [0,100] 1110 ms

Backward Persistence Persistence 101 1 [0,100] 984 ms
Backward Opposite Persistence 2 1 [0,100] 15 ms

Backward Persistence Lazy 2 1 [0,100] 32 ms
Persistence via Transient 101 1 [0,100] 1250 ms

Persistence 1 1 [0,100] 16 ms

Arguably, one the most distinctive features of legal reasoning is that some normative
effects persist over time unless some other and subsequent events terminate them, while
other effects hold on the condition and only while the antecedent conditions of the rules
hold. This is reflected in TDL in the distinction between persistent and transient rules.
However, we may have different ways the logic can handle this notion of persistence.
One could argue that persistence is not necessary since the logic is meant to give a
response for a query (i.e., whether a conclusion holds) given a start time and an instant
in which to evaluate a formula and the time line is taken as a discrete total order, thus
persistence could be simulated using transient rules. In particular for each (persistent)
literal a, one could introduce a set of rules at ⇒ at+1, for t in the fixed time interval.

Unfortunately, the approach using transient rules suffers from two main limitations: (1)
the approach is not efficient: compare, in Table 1, the execution times for ‘Persistence’ and
‘Persistence via Transient’. Indeed, persistence allows us to adopt a concise and compu-
tationally efficient encoding for the representation of the phenomenon. (2) fixing the time
interval based on the start time and the evaluation time of a conclusion is not enough. For
example, it is not enough to consider the interval [0,100] if one wants to know if a holds
at time 100. Consider for example the theory a1⇒π b10, b99⇒τ c1000, c1000⇒τ a100. In
this theory, limiting to the generation of the transient rules in [0,100] does not lead to the
right results. Using the ‘persistence via transient’ method we have to generate all rules in
the interval [0,1000], with a consequent, useless increase of the execution time.

The second problem reported above is due to the possibility of having rules where the
time labelling the conclusion precedes some of the times in the antecedent (i.e., retroac-
tivity). In legal reasoning it is not unusual to obtain conclusions about the past.[16] This
means that a norm is introduced at a particular time, but its normative effects must be
considered at times preceding the validity. In fact, this is typical, e.g., of taxation law.
A common example is the introduction of norms whose validity is retroactive: for in-
stance, it is possible to claim a tax benefit from a date in the past7. Even though trivial

7 Consider for example Section 165–55 of the Australian Goods and Services Tax Act 1999
prescribing: “For the purpose of making a declaration under this Subdivision, the Tax Com-
missioner may: (a) treat a particular event that actually happened as not having happened; and
(b) treat a particular event that did not actually happen as having happened and, if appropriate,
treat the event as: (i) having happened at a particular time; and (ii) having involved particu-
lar action by a particular entity; and (c) treat a particular event that actually happened as: (i)
having happened at a time different from the time it actually happened; or (ii) having involved
particular action by a particular entity (whether or not the event actually involved any action
by that entity.”

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 53

cases of this phenomenon are captured by single rules whose conclusions hold at times
preceding some of the times of the antecedents, we should be able to detect retroactivity
also in other scenarios, where normative effects are in fact applied retroactively to some
conditions as a result of complex arguments that involve more rules, such as a10⇒π b10

and b10⇒π c0. This problem is of great importance not only because the designer of
a normative system may have the goal to state retroactive effects in more articulated
scenarios of taxation law, but also because she should be able to check whether such
effects are not obtained when certain regulations regard matters for which retroactivity
is not in general permitted. This is the case of criminal law, where the principle Nullum
crimen, nulla poena sine praevia lege poenali is valid.

Modelling retroactivity is challenging if it is combined with the notion of persistence.
In our synthetic experiments we focused on some types of backward persistence, where
conclusions persist from times which precede the ones when rules leading to such con-
clusions apply. As expected, all cases of backward persistence where conclusions are
re-used to derive persistent literals (‘Backward Persistence Transient’ and ‘Backward
Persistence Persistence’) are more computationally demanding, while the other cases,
where literals persist by default, are comparable to standard persistence (the last row
in Table 1). In the theories ‘Backward Persistence Transient/Persistence’ we perform a
regression from one instant to the previous instant, and the we compute the conclusions,
thus the difference between persistence and transient is not relevant. On the contrary, in
‘Backward Persistence Lazy’ and ‘Backward Opposite Persistence’ we first go back in
the past and then we set persistence: for this reason, the performance of the system is
here in line with that of the case ‘Persistence’. However, while it is not investigated in
this paper, to address the problem of (persistent) regression, one could define a logic,
where conclusion are persistent in the past, and this can be achieved with the same
mechanism we use to deal with persistence in the future (all one need is a discrete
linearly order set of instants).

4.2 A Real-Life Scenario: Road Traffic Restrictions of Piacenza

In this paper we report our test with some real-life scenarios [23]. One of them is par-
ticularly significant. It formalizes the regulation on road traffic restrictions of the Italian
town of Piacenza. This case illustrates how the logic and its implementation behave
in handling the concepts of deadline and periodical provision. As regards the former
concept, Piacenza regulation contains several instances of so-called maintenance obli-
gations, which state that a certain condition must obtain during all instants before the
deadline [13]. On the other hand, the regulation includes an example of periodical pro-
vision, stating that a certain legal effect periodically occurs because of intermittent char-
acter of the pre-conditions of this effect.

The road traffic restrictions regulation of the town of Piacenza consists of the follow-
ing rules:

N1. From 1 October 2008 to 1 March 2009 all vehicles Euro 0, diesel Euro 1 are pro-
hibited from circulating in the city centre.

N2. The prohibition of clause N1 is suspended in occasion of public holidays.
N3. From 7 January 2009 to 31 March 2009 vehicles diesel Euro 2 without particulate

filters are prohibited from circulating in the city centre.

54 G. Governatori, A. Rotolo, and R. Rubino

N4. From 8 January 2009 to 31 March 2009, on all Thursdays all vehicles are prohib-
ited from circulating in the city centre.

N5. All vehicles Euro 4 and Euro 5, and the vehicles diesel Euro 3 with particulate
filter are permitted to circulate in the city centre.

N6. WARNING: on the occasion of the snowfall of 7 January 2009, traffic restrictions
scheduled for Thursday 8 January 2009 do not apply.

For the representation of the above regulation in TDL we assume that 1/10/2008 cor-
responds to instant 1, while the other dates are associated to integers according to the
time granularity Day.

The regulation above corresponds to the following TDL rules:

r1 : ⇒π trafficBlock1

r2 : ⇒π ¬trafficBlock151

r3 : ⇒π ¬restricted1

r4 : e0⇒π restricted1

r5 : e1⇒π restricted1

r6 : e3⇒π restricted1

r7 : e3,filter⇒π ¬restricted1

r8 : e2,¬filter⇒π restricted99

r9 : e2⇒π ¬restricted180

r10 : ⇒π circulatex

r11 : restrictedx, trafficBlockx⇒π ¬circulatex

r12 : thursdayx⇒τ ¬circulatex

r13 : thursdayx⇒π circulatex+1

r14 : festivityx⇒τ ¬trafficBlockx

r15 : festivityx⇒π trafficBlockx+1

r16 : snowfallx⇒τ ¬circulatex+1

The meaning of the propositions in the above set of rules is given in Table 2.

Table 2. Meaning of Predicates in the Piacenza Traffic Regulation

Temporal literal Meaning
trafficBlockt the traffic block restrictions are in force at time t
e0, e1, e2, e3, e4, e5 type of vehicles according to Euro classification
filter whether a vehicle is equipped with a particulate filter or not
restrictedt whether a vehicle is subject to traffic restrictions a time t
circulatet whether a vehicle is permitted to circulate in the city centre at

time t
thursdayt it evaluates to true if t is a Thursday
festivityt it evaluates to true is t is a gazetted holiday
snowfallt whether a snowfall happened at time t

In the above set of rules, rules 1–9 are single rules (i.e., instances of rules), while
rules 10–16 are schemata, where the temporal variables have to be instantiated. For the
superiority relation we have8

r4,r5,r6� r3, r7� r6, r2� r15, r11� r10, r11� r13, r14� r15, r16� r11,r12

Rules r12 and r13 could have been simply replaced by rules with empty antecedents and
whose conclusion is the literals temporalised with the day number, similarly for rules
r14 and r15.

8 For rule schemata, we use the superiority to mean that each instance of a schema is superior to
any instance of a second schema.

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 55

The above set of rule exhibits several typical features of reasoning with time and
norms.9 Norms (and their effects) have a time of efficacy. This can be expressed by
deadlines. Thus for example, we can consider the first norm, N1, whose efficacy is
from 1 October 2008 to 1 march 2009. This is represented by rule r1, saying that from
time 1 the traffic block restrictions are in force, and they will stay in force until they are
interrupted or terminated. Where the termination is represented by rule r2: the traffic
restrictions are no longer effective from day 151. However, traffic block conditions can
be suspended in the circumstances defined by rule r12 (norm N4) and rule r16 (Warning,
N6). Notice that these two norms suspend the general traffic block restrictions, but do
not terminate the efficacy of the norm. In temporal defeasible logic, we have that we
can use rule r2 to derive that trafficBlock holds from time 1, so it persists till a rule for
¬trafficBlock becomes applicable. At that time, we conclude ¬trafficBlock; a ‘fresh’
conclusion takes precedence over a conclusion persisting from the past. However, the
new conclusion is transient. After, we have to reinstate the trafficBlock conclusion. This
is done, by a rule, i.e., r15, with the same antecedent of the suspending rule, i.e., r14.

The traffic regulation shows a very common feature of normative systems, norms
can be enacted at different time and can have different validity time. In the regulation
at hand norms N1–N4 are all enacted at the same time. However, norms N2 and N3 are
in force (i.e., they can produce normative effects), only after day 99 and day 100.

Rule r11 could be instantiated for all days, and then we could reinstate the prohibition
to enter in the city centre many times. However, it is not necessary to instantiate it for
all days, all we have to do is to instantiate it for days just after turning points for the
temporal literals restrictedt , trafficBlockt , and circulatet .10 Thus, for our example, given
that we know the gazetted public holidays we can instantiate

r87
10 : ⇒π circulate87

r88
10 : ⇒π circulate88

r87
14 : festivity87⇒τ ¬trafficBlock87

r87
14 : festivity87⇒τ trafficBlock88

r87
11 : restricted87, trafficBlock87⇒π ¬circulate87

r88
11 : restricted88, trafficBlock88⇒π ¬circulate88

The intuition of rule r17, which corresponds to the generalisation of norm N6, is similar
to the case of the suspension of the traffic block conditions. However, there is a caveat
with this rule: We do not know in advance whether there will be a snowfall on a partic-
ular day. Thus it is not possible to generate in advance the relevant instances. However,
the norm will produce its effect only when we have a fact snowfallt . Thus we can gener-
ate dynamically such instances, when the relevant facts are given. We can think of this
case as the introduction of the norm at the time of the snowfall. This further illustrate
another important aspect to consider when reasoning with time and norms: typically one
has to consider at least three temporal dimensions: The time of validity of the norms
(when a norm is enacted), the time of force of the norm (when a norm can produce an

9 For a comprehensive discussion of requirements for conceptual representation of norms using
rules see [11].

10 A turning point is an instant in time –day, in the granularity of the example–, where a change
of provability of a literal could happen.

56 G. Governatori, A. Rotolo, and R. Rubino

effect), and the time of efficacy (when a norm produces an effect). A proper model to
handle this should consider the view-point at which we look at a system of norm. Thus
if I ask whether I can drive my e0 car in the city center of Piacenza on January 8, then,
if I ask on January 1, the answer is no, since the norm N5 is not valid, but if I ask during
the snowfall of January 7, then the answer is yes, since the norm N5, rule r16 become
valid, in force and effective.

The model of TDL presented in this paper, and thus the implementation cannot di-
rectly handle this, it needs to instantiate the rule dynamically. In [17,16] we have ex-
tended TDL to cover the three temporal dimensions. However, currently is it not know,
if it is possible to implement the extended TDL efficiently and maintaining good com-
putational properties.

4.3 Validation of TDL

The material presented in this section is a first step towards the empirical validation of
TDL as a formalism suitable for modelling and reasoning with and about norms and reg-
ulations. The results so far are promising; in particular the synthetic experiment shows:

1. The computation model behind TDL and the infrastructure to consider time does
not produce a substantial overhead over standard DL;

2. The introduction of persistence leads to a substantial speed-up in computation, and
reduction of the complexity of rule-set. In other term it allows for concise encoding
of the formal representation of norms and regulations;

3. The implementation is able to handle large rulesets;
4. Retroactivity does not pose particular concerns both from a conceptual point of

view and computationally.

On the other hand, the experiment where we encoded the Traffic Restriction Regulation
of Piacenza in TDL shows that TDL is able to handle different phenomena common in
norms and regulations: deadlines, interruption of the efficacy of norms, and periodical
norms, as well as exceptions, and derogations. Exceptions and derogation follows im-
mediately from the basic properties of standard DL with immediate adaptation to the
temporal case.

The analysis of the scenario suggests that TDL is appropriate as computational model
for regulations involving temporal references. We notice that some normative aspects
require several rules for their representation. However, these constructions exhibit clear
and regular patterns for the rules needed to capture them. Thus syntactic forms can be
defined for them11. This will hidden the apparent complexity of these construction for
people without expertise in defeasible logic and in general formal methods.

5 Conclusions

There are two mainstream approaches to reasoning with and about time: a point based
approach, as TDL, and an interval based approach [1]. Notice, however, that TDL is

11 For a discussion about patterns for modelling deadline and norms see [13], and for periodicity,
see [19].

Implementing Temporal Defeasible Logic for Modeling Legal Reasoning 57

able to deal with constituents holding in an interval of time: an expression ⇒ a[t1,t2],
meaning that a holds between t1 and t2, can just be seen as a shorthand of the pair of
rules⇒π at1 and �τ ¬at2 .

Non-monotonicity and temporal persistence are covered by a number of different
formalisms, some of which are quite popular and mostly based on variants of Event
Calculus or Situation Calculus combined with non-monotonic logics (see, e.g., [25,26]).
TDL has some advantages over many of them. In particular, while TDL is sufficiently
expressive for many purposes, it is possible in TDL to compute the set of consequences
of any given theory in linear time to the size of the theory. To the best of our knowledge,
no logic covering a set concepts comparable to what TDL covers is so efficient (see [9]
for a comprehensive list of complexity results for various forms of the Event Calculus).

Temporal and duration based defeasible reasoning has been also developed by [7,19].
[19] focuses on duration and periodicity and relationships with various forms of causal-
ity. In particular, [7] proposed a sophisticated interaction of defeasible reasoning and
standard temporal reasoning (i.e., mutual relationships of intervals and constraints on
the combination of intervals). In these cases no complexity results are available, but
these systems cannot enjoy the same nice computational properties of TDL, since both
are based on more complex temporal structures.

On account of the feasibility of TDL, in this paper we reported on [23,24]’s Java
implementation of this logic. In particular, we tested and validated the implementa-
tion (and the logic) with regard to three complex temporal phenomena occurring in
the legal domain, i.e., persistence, retroactivity, deadlines and periodicity. Our results
are encouraging and so we plan to extend the system in order to handle time plus de-
ontic operators (see [21]) and to add temporal parameters, such as in expressions like
(at ⇒π bt′)t′′ , where t ′′ stands for the time when the norm is in force [16].

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23 (1984)
2. Antoniou, G.: A nonmonotonic rule system using ontologies. In: Proc. RuleML 2002. CEUR

Workshop Proceedings, vol. 60 (2002)
3. Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and

ontologies on the semantic web. IEEE Transactions on Knowledge and Data Engineering (2),
233–245 (2007)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

5. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into
logic programming. Theory and Practice of Logic Programming 6, 703–735 (2006)

6. Antoniou, M.R., Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient
defeasible reasoning systems. International Journal of Artificial Intelligence Tools 10 (2001)

58 G. Governatori, A. Rotolo, and R. Rubino

7. Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Sys-
tems 3, 287–318 (2001)

8. Bassiliades, N., Antoniou, G., Vlahavas, I.: A defeasible logic reasoner for the Semantic
Web. International Journal on Semantic Web and Information Systems 2, 1–41 (2006)

9. Cervesato, I., Franceschet, M., Montanari, A.: A guided tour through some extensions of the
event calculus. Computational Intelligence 16(2), 307–347 (2000)

10. ESTRELLA Project. The reference LKIF inference engine. Deliverable 4.3, European Com-
mission (2008)

11. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: Requirements for rule inter-
change languages in the legal domain. In: Governatori, et al. (eds.) [12]

12. Governatori, G., Hall, J., Paschke, A. (eds.): RuleML 2009. LNCS, vol. 5858. Springer, Hei-
delberg (2009)

13. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in tempo-
ral modal defeasible logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

14. Governatori, G., Pham, D.: A semantic web based architecture for e-contracts in defeasible
logic. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp.
145–159. Springer, Heidelberg (2005)

15. Governatori, G., Rotolo, A.: Temporal defeasible logic has linear complexity. In: Proceedings
NMR 2010. CEUR Workshops Proceedings (2010)

16. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL (forthcoming)

17. Governatori, G., Rotolo, A., Riveret, R., Palmirani, M., Sartor, G.: Variants of temporal de-
feasible logic for modelling norm modifications. In: Proc. ICAIL 2007, pp. 155–159 (2007)

18. Governatori, G., Rotolo, A., Sartor, G.: Temporalised normative positions in defeasible logic.
In: ICAIL 2005, pp. 25–34. ACM Press, New York (2005)

19. Governatori, G., Terenziani, P.: Temporal extensions to defeasible logic. In: Orgun, M.A.,
Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 476–485. Springer, Heidelberg
(2007)

20. Hawke, S.: Bringing order to chaos: RIF as the new standard for rule interchange. In: Gov-
ernatori, et al. (eds.) [12], p. 1, ������������������ !���
"���� #$�	
��
�

21. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, et al. (eds.) [12]
22. Maher, M.: Propositional defeasible logic has linear complexity. Theory and Practice of

Logic Programming 1, 691–711 (2001)
23. Rubino, R.: Una implementazione della logica defeasible temporale per il ragionamento

giuridico. PhD thesis, CIRSFID, University of Bologna (2009)
24. Rubino, R., Rotolo, A.: A Java implementation of temporal defeasible logic. In: Governatori,

et al. (eds.) [12]
25. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common

Sense Law of Inertia. MIT Press, Cambridge (1997)
26. Turner, H.: Representing actions in logic programs and default theories: A situation calculus

approach. Journal of Logic Programming 31(1-3), 245–298 (1997)

http://www.w3.org/2009/Talks/1105-ruleml/

Evaluating Cases in Legal Disputes as Rival
Theories

Pontus Stenetorp1 and Jason Jingshi Li2,3

1 Graduate School of Information Science and Technology,

The University of Tokyo, Tokyo, Japan

pontus@is.s.u-tokyo.ac.jp
2 College of Engineering and Computer Science,

The Australian National University, Canberra, Australia
3 Canberra Research Laboratory,

NICTA, Canberra, Australia

jason.li@anu.edu.au

Abstract. In this paper we propose to draw a link from the quantitative

notion of coherence, previously used to evaluate rival scientific theories,

to legal reasoning. We evaluate the stories of the plaintiff and the defen-

dant in a legal case as rival theories by measuring how well they cohere

when accounting for the evidence. We show that this gives rise to a for-

malized comparison between rival cases that account for the same set of

evidence, and provide a possible explanation as to why judgements may

favour one side over the other. We illustrate our approach by applying

it to a known legal dispute from the literature.

Keywords: legal argument, legal justification, theory construction, co-

herence.

1 Introduction

In legal disputes each side present their case before the court, outlining the
issues, positions, and arguments taken with respect to the issues. The “story”
is supported by evidence, which is sometimes explicitly sought by the judge as
burden of proof. Each side must explain how the evidence fits their story, though
there may be elements of their story that for some reason cannot be verified by
evidence or empirical testing.

Similarly in the philosophy of science, rival, possibly incompatible scientific
theories must also account for all observations, but empirical testing cannot
always be used to differentiate or rank theories, as they make the same empirical
claims. One possible measure to evaluate theories is how coherent a theory is in
accounting for a given set of observations.

We propose to draw parallels from this notion of coherence to legal reasoning,
where we view the cases of the plaintiff and the defendant in a legal dispute as
rival theories, and evaluate the cases by measuring how coherent the stories are
in their account for the evidence. Intuitively, just as a good scientific theory uses

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 59–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

60 P. Stenetorp and J.J. Li

only a few credible postulates to explain a large body of evidence, a good “story”
in a legal case must account for the evidence using only a few minor assumptions.
This provide an alternative view on how the cases can be evaluated and decided,
and provides a possible explanation as to why judgements may favour one side
over the other, in a formal and structured manner.

The notion of coherence in regard to legal justification is well explored by
Hage [3] and Amaya [1]. Equally, there is abundant literature on abductive rea-
soning with respect to the evidence and the burden of proof by Prakken et al. [10]
and Satoh et al. [11]. However, the existing literature on coherence is mostly con-
cerned with how a decision can cohere with current law and cases, whereas we
are interested in the overall picture of how the “story” of the plaintiff/defendant
coheres with the evidence.

In this paper we introduce the notion of coherence in the form proposed by
Kwok et al. [5, 6] for evaluating scientific theories. We then propose a possible
scheme based on the previous work by Kwok et al. [5, 6] for evaluating the
coherence of cases in a legal dispute. This is followed by an example of applying
our theory to an actual legal dispute previously formalized by Prakken [8]. In
conclusion, we discuss what is implied by our coherence measure and possible
future directions of this work.

2 Coherence of Theories

Traditionally in the philosophy of science, coherence has always been a criterion
in evaluating the quality of scientific theories. The extent of coherence of a theory
depends on informal, qualitative notions such as “brevity”, “predictive scope”
and “tightness of coupling” of the components of the theory.

Kwok et al. [5] proposed a quantitative measure of coherence based on the
average utilization of formulas in accounting for observations. Their later work,
Kwok et al. [6], better mirrored scientific practice by introducing input and
output sets. The proposed measure facilitates the testing of theories with exper-
iments that have varying inputs and outputs, where each theory is expressed as
a set of clauses.

When performing a scientific experiment we provide a certain input I and
observe a certain output O. It is then the objective of a theory T to explain how
the input leads to the output. For example, in an experiment verifying the theory
of gravity, the input being an object dropped in vacuum, the output would be
the measured velocity of the object some time after the drop and the theory
provides a link between the input and output. In this section we summarize the
approach developed by Kwok et al. [6].

Definition 1 (Support Sets). Given an input set I, an output set O, a subset
of the theory T being Γ . Then, Γ is a I-relative support set of O if:

1. Γ ∧ I |= O and
2. Γ is minimal (wrt set inclusion).

Evaluating Cases in Legal Disputes as Rival Theories 61

Support sets are the building blocks of the coherence measure. They are the
formulas that account for a particular observation for a given input. We denote
S(T, I,O) to be the family of all I-relative support sets for O.

Definition 2 (Utility of a formula). Given an input set I, an output set O
and a theory T . For a formula α ∈ T , the utility of α with respect to T, I,O is
given by:

U(α, T, I, O) =
| {Γ : α ∈ Γ and Γ ∈ S(T, I,O)} |

| S(T, I,O) | if S(T, I,O) �= ∅

The support sets give rise to the definition of the utility of a formula of the
theory. Informally, this is the relative frequency of occurrence of formula α in
the support sets of T, I,O. This reflects the contribution of α in T to account
for the pair (I,O).

Definition 3 (Coherence of a Theory). The coherence of a theory T with
formulas {α1, . . . , αn} with respect to input observations I = {I1, . . . , Im} and
output observations O = {O1, . . . , Om} is:

C(T, I,O) =
1

mn

n∑
i=1

m∑
j=1

U(αi, T, Ij , Oj)

The coherence of a theory is the average utility of the theory’s formulas in ac-
counting for all the observations from possibly multiple experiments. This mea-
sure has been shown by Kwok et. al. [6] to demolish Craig’s trick as shown by
Craig [2], where empirical observations are simply added to the theory as excep-
tions. They showed that such handling of exceptions results in the formulation
of highly incoherent theories, since the measure favours theories in which a small
subset of the theory accounts for a large body of evidence.

3 Evaluating Legal Cases

In this section, we draw a link from scientific disputes between rival theories to
ordinary legal disputes between the cases of the plaintiff and the defendant. We
treat the “stories” given from both sides as rival theories, each of which can be
tested against the evidence presented to the court. Just as scientific theories can
be tested over multiple experiments, a case in a legal dispute can be tested by
multiple pieces of evidence and testimonies.

In the following sections we will show how the analogy can be made. Our
approach enables us to evaluate the coherence of a case by measuring how well
the components of the case are utilized when accounting for the evidence and
testimonies presented to the court. We assume that all the components of the
sets mentioned in the following subsections are in clausal form.

62 P. Stenetorp and J.J. Li

3.1 Inputs

The presentation of evidence and testimonies can be viewed as experiments
testing the theory. Hence the input of the experiments are the relevant laws and
the mutually accepted state of affairs that are necessary for the theory to entail
the output. Laws themselves can not be disputed although their validity for a
certain case may very well be questioned.

A mutually accepted state of affairs is a state of affairs that is presented
by some participant of the trial, but is not contested by any other partici-
pant. This notion is the same as the view on common knowledge given in Wal-
ton and Macagno [12]. It can thus be deemed that a mutually accepted state
of affairs can be regarded as a fact from which one may draw conclusions or
aid arguments, even though the truth of such a state of affairs is never proven
explicitly to the court. We relax the requirement on inputs to include laws and
facts that are not used in deriving the output, as they do not affect the utility of
any component of the theory, and hence have no effect on measuring coherence.

3.2 Outputs

The outputs are the evidence and testimonies presented to the court. They
pose the main problem for any theory since it must explain how an output can
be explained using the theory itself and the inputs mentioned in the previous
section.

Both the plaintiff and the defendant must account for the observations in the
output such as why certain DNA is present at the crime scene, why the witness
x testify that y loaned equipment to z. Without explaining such circumstances
a case may not be considered to fulfil the requirements of the court.

3.3 Theory

The theory in the case of a legal dispute is the “story” that is told by one of the
sides. It may contain several components to explain the evidence presented to
the court, and why the desired outcome holds for the plaintiff or the defendant.
The requirement to hold the sought outcome becomes obvious: if one considers
the “story”, it must in some way justify the conclusion the side hopes for or
nothing can be gained from the trial.

The two theories, while arguing for different outcomes, will have to take into
account the same laws and mutually accepted state of affairs, which in our
framework corresponds to the inputs. But they must also account for the same
evidence and testimonies put forth to the court, in our framework the outputs.
Making the assumption that they both account for all the facts they are clearly
rival theories that account for the same set of evidence but must somehow be
differentiated regarding how well they do so.

3.4 Support Sets and Coherence

For our measure of coherence we need to observe the I-relative support set for
the outputs O that is a subset of the theory that accounts for a particular piece

Evaluating Cases in Legal Disputes as Rival Theories 63

of evidence Oi given input Ii. The relative frequency of a component of the
theory appearing in the support sets give rise to the utility of the component,
where coherence is measured as the average utility of the components over all
the given evidence.

Intuitively, the support set for a given piece of evidence is how the plain-
tiff/defendant explain that piece of evidence with respect to the mutually ac-
cepted state of affairs and relevant laws presented before the court. The coher-
ence of the theory measures how well the overall “story” of the plaintiff and
the defendant explains all the evidence. Any theory that assumes freely without
proper support will thus be punished with lower coherence than a theory which
can utilize a small amount of assumptions in combination with the inputs to
account for a larger body of evidence.

4 Example

As an example of how our notion of coherence can be applied in order to evaluate
rival legal cases between a plaintiff and a defendant, we apply it to a known legal
dispute first formalized by Prakken [8].

Unlike Prakken [8] we simplify the case into sets of clauses to form the basis
of the judgement rather than utilizing an argumentation framework to focus on
the process of the trial. We will attempt to stay consistent with as much of the
previous formalization as possible, differing only when our notion of coherence
and our focus on the judgement rather than the process forces us to do so.

4.1 The Dispute

The legal case formalized by Prakken [8] is a Dutch civil case from 1978, con-
cerning the ownership of a moveable good, a large tent. The owner of the tent,
Mr. van der Velde, put the tent up for sale at the price of 850 Gulden (approx.
380 Euro). Mr. Nieborg, who was a friend of Mr. van der Velde, said that he was
interested in buying the tent but could not afford it. Mr. van der Velde made the
tent available to Mr. Nieborg, who in return helped Mr. van der Velde to paint
his house. Also, Mrs. Nieborg helped Mrs. van der Velde with her domestic work
for some time.

Later, Mr. Nieborg claimed that he and his wife had performed enough work
for Mr. and Mrs. van der Velde to cover the cost of the tent, thus implicitly
claiming that he had now become the legitimate owner of the tent. This angered
Mr. van der Velde since he perceived the work performed by Mr. and Mrs.
Nieborg as an expression of gratitude for allowing them to use the tent as a loan.
He immediately demanded that Mr. Nieborg would return the tent. When his
demands were not met, Mr. van der Velde, with assistance, threw Mr. Nieborg’s
son, who was the person currently occupying the tent, out of the tent and took
possession of it.

Some time later, Mr. van der Velde sold the tent to a Mr. van der Weg. Mr.
van der Weg paid for the tent by performing work, which was similar to the work

64 P. Stenetorp and J.J. Li

performed earlier by Mr. and Mrs. Nieborg, for Mr. van der Velde. Mr. Nieborg
took his case against Mr. van der Weg to court within a period of time which was
less than three years after the repossession of the tent carried out by Mr. van der
Velde, a fact that should be noted due to implications in regard to Dutch law.

We present the cases of both Mr. Nieborg and Mr. van der Weg in clausal
form. In order to make our clauses as brief as possible, we abbreviate the names
of the people as presented in Table 1. We also abbreviate the relevant points in
time as presented in Table 2. Both sets of abbreviations conform to those used
by Prakken [8]. To make the feel of the running text more natural, we will still
make use of the full names and points in time.

Table 1. Abbreviations for the participants of the trial

Surname Abbreviation Role

Mr. Nieborg N Plaintiff

Mr. van der Weg vdW Defendant

Mr. van der Velde vdV Witness

Mr. Sluis S Witness

Mr. Galtema G Witness

Table 2. Abbreviations for the points in time relevant to the trial

Point in time Event

t1 N held the tent

t2 Violent events between vdV and N

t3 Time of the trial

4.2 Inputs – Relevant Laws, Mutually Accepted State of Affairs
and Consequences

We will in this section present the relevant laws, mutually accepted state of
affairs and consequences, all of which will be presented in clausal form as well as
informally in the running text. These clauses will serve as input to be utilized by
the respective theories in order to derive the evidence and testimonies which we
will refer to as output. This derivation will be done using the theory itself and a
subset of the input clauses. The clauses are partially those found in Prakken [8],
but with some additions.

One difference to Prakken [8] is that we only consider the law, mutually ac-
cepted state of affairs and consequences that are relevant to the final juridical
judgement. This difference is due to our focus on the final judgement rather than
the process of the trial itself as is the case with an argument framework, thus we
can disregard of a more general law that is later refuted in favour of one which
for our case applies more specifically. We will point out these special cases when
presenting the clauses.

Evaluating Cases in Legal Disputes as Rival Theories 65

All laws formalized here were in effect at the time of the trial. Also, just as in
Prakken [8] we do not motivate the notion of persistence of ownership that Mr.
Nieborg implicitly uses to justify that he indeed is still the owner of the tent at
the time of the trial, since according to him no change in ownership has taken
place since he took possession of the tent from Mr. van der Velde.

Hold(N,Tent, t2) (1)

Hold(vdW, Tent, t3) (2)

The first two clauses, 1 and 2, concerns the holder of the tent at different points
in time. Clause 1, that Mr. Nieborg held the tent at the time it was taken from
him. Clause 2, that Mr. van der Weg now holds the tent. Both parties agrees
upon these state of affairs.

Loan(x, y)→ TestimonyLoan(z, x, y)∧ (x �= z) (3)

FalseT estimonyLoan(x)→ TestimonyLoan(x, y, z)∧ (x �= y) (4)

V iolence(x, y)→ TestimonyV iolence(z, x, y) ∧ (y �= z) (5)

FalseT estimonyV iolence(x)→ TestimonyV iolence(x, y, z) ∧ (x �= z) (6)

The next set of clauses, clause 3 to clause 6, lays forth the logic concerning
testimonies, it should be noted that we assume a primitive notion of lying to
simplify our set of clauses. It should also be noted that these clauses have no
temporal components, as we previously saw for clauses 1 and 2, the reasoning
behind this is that the testimonies and events in our particular case do not need
any temporal components due to them occurring only once. These four clauses
can not be refuted logically and have to be accepted by all parties.

Clause 3 and 5 simply state that if a person x borrowed an item y or violence
was inflicted by a person x towards person y, then a third person z can deliver a
testimony of the event. Clause 4 and 6 provide an alternate mode for explaining
each testimony. If a witness is lying, then he would deliver the same testimony
that a witness who had observed the events would have delivered.

Hold(x, y, t) ∧ ¬Loan(x, y)→ Possess(x, y, t) (7)

Clause 7 is a formalization of Dutch law 590 BW. The loan condition is a sim-
plification of the actual text that states that the holder may not be holding it
for another person, this change is made to make the clause simpler since holding
the item can be derived from a loan in our specific case. The loan condition is an
exception added to the more general version of the law that lacks this condition,
but since for our case the loan condition is relevant, we observe the more specific
law. This constraint makes it possible to disregard the notion of law precedence
in Prakken [8] and is justified by us only observing the judgement.

Possess(x, y, t)→ GoodFaith(x, y, t) (8)

66 P. Stenetorp and J.J. Li

Possess(x, y, t) ∧ GoodFaith(x, y, t) ∧Owner(z, y, t′) ∧ (x �= z)
∧ InvoluntaryLoss(z, y, t′) ∧ (t′ − t) < 3 years

→ ¬Owner(x, y, t) (9)

Clause 8 is a formalization of Dutch law 589 BW which states that a possessor
is presumed to be a possessor of good faith. Clause 9 is a formalization of Dutch
law 2014 BW regarding the possession of a good. It covers the special case that
x can not be the owner of y if it has occurred an involuntary loss of y from a
previous owner z at a time t′. It also contains the restriction that a maximum
of three years must have passed since the time of the involuntary loss t′ and the
current point in time t.

4.3 Evidence Presented

This section covers all irrefutable evidence presented to the court, these are facts
that must be accounted for by any theory in order for a case to be considered
valid. This can be done by utilizing a subset of a theory, by calling upon law
and/or mutually accepted state of affairs, as presented in section 4.2. The set of
all evidence clauses is referred to as the output set O.

O1 = TestimonyLoan(vdV,N, T ent) (10)

O2 = TestimonyLoan(G,N, T ent) (11)

O3 = TestimonyLoan(S,N, T ent) (12)

O4 = TestimonyV iolence(vdV, vdV,N) (13)

O5 = TestimonyV iolence(G, vdV,N) (14)

O6 = TestimonyV iolence(S, vdV,N) (15)

Clauses 10 to 15 are all testimonies delivered to the court. That the testimonies
took place is irrefutable, but the fact of them taking place has to be explained
by each theory presented in the next two sections 4.4 and 4.5.

To simplify our clauses we have taken the liberty of stating that the testi-
monies of violence implied violence towards Mr. Nieborg. In reality the involved
party was Mr. Nieborg’s son. We have also done the same regarding the tes-
timony of the tent being a loan, what was presented in reality was that Mr.
Nieborg expressed gratitude towards Mr. van der Velde for being able to hold
the tent for a limited time. This was observed by the witnesses, who gave tes-
timonies to that effect. As described by Prakken [8] the violence towards Mr.
Nieborg’s son counts as violence towards Mr. Nieborg when legally proving that
the loss was involuntary and the expression of gratitude observed by the three
witnesses counts as the possession of the tent being perceived as a loan. We have
once again simply left out these conclusions and replaced them with the results
relevant to the judgement.

Evaluating Cases in Legal Disputes as Rival Theories 67

4.4 The Plaintiff’s Case

To make a case, each party x must construct an input set Ix which consists
of input subsets Ixi corresponding with the observation Oi presented in the
previous section. The clauses of each subset Ixi are clauses from section 4.2,
being formalizations of mutually accepted state of affairs and law.

Each party x also needs to produce a theory Tx representing his “story”, that
together with the input subset Ixi will explain the corresponding observation
Oi. A theory may consist of any clauses, as long as it satisfies the previously
mentioned condition to satisfy each Oi by using Ixi as input.

TP1 = V iolence(vdV,N, t2) (16)

TP2 = FalseT estimonyLoan(vdV) (17)

TP3 = FalseT estimonyLoan(G) (18)

TP4 = FalseT estimonyLoan(S) (19)

TP5 = ¬Loan(N,Tent) (20)

The first clause of the plaintiff’s theory TP , clause 16, is an acceptance of the
violent events when the possession of the tent was revoked by Mr. van der Velde
since this plays in his favour. However, he is forced to add clauses 17 to 19 since
he is unwilling to accept that his work was an expression of gratitude, which was
how it was perceived by the witnesses. Not calling the testimonies false would
render it impossible for him to claim previous possession, using law 590 BW with
its special case (clause 7) and law 589 BW (clause 8). Thus being able to revoke
the current hold of the tent by van der Weg using law 2014 BW (clause 9) with
its exception which is his own goal and his theory must thus account for this.
Clause 20 is included since it is a requirement for him to be able to use law 2014
BW (clause 9) with the special case applied.

IP1 = {FalseT estimonyLoan(x)→ TestimonyLoan(x, y, z)∧ (x �= y)} (21)

IP2 = {FalseT estimonyLoan(x)→ TestimonyLoan(x, y, z)∧ (x �= y)} (22)

IP3 = {FalseT estimonyLoan(x)→ TestimonyLoan(x, y, z)∧ (x �= y)} (23)

IP4 = {V iolence(x, y)→ TestimonyV iolence(z, x, y) ∧ (y �= z)} (24)

IP5 = {V iolence(x, y)→ TestimonyV iolence(z, x, y) ∧ (y �= z)} (25)

IP6 = {V iolence(x, y)→ TestimonyV iolence(z, x, y) ∧ (y �= z)} (26)

Since it is an important point, we will once again stress that the input set Ix,
unlike the theory set Tx, has the restriction that it can only consist of laws
and mutually accepted state of affairs. This has significant consequences for our
notion of coherence, which we will observe in the coming sections.

For his input set IP the plaintiff alternates between clause 4 that implies
that a testimony is a lie and clause 5 that implies that a testimony is accurate.
This in combination with his theory TP is enough to prove each Oi using the
corresponding IPi, thus completing his task.

68 P. Stenetorp and J.J. Li

4.5 The Defendant’s Case

The defendant’s case is very similar to that of the plaintiff which we presented
in the previous section. But the minute differences will have effects on how it
interacts with our notion of coherence.

TD1 = V iolence(vdV,N, t2) (27)

TD2 = Loan(N,Tent) (28)

In his theory TD, the defendant has no need to discredit the violent events taking
place since they are neutral towards his goal of ownership when interacting with
the laws contained in I. This is done by concurring with the violent events, just
as the plaintiff did in clause 16 which corresponds to the defendant’s clause 27.

In order to fulfil his goal of ownership the defendant simply has to assume
that the testimonies regarding the loan are accurate, as is done in clause 28.
This will make his theory capable of justifying his ownership of the tent since the
attempts by the plaintiff to claim ownership using law 2014 BW (clause 9) with
its exception, since law 590 BW with its exception (clause 7) is not applicable if
the plaintiff was given the tent on loan.

ID1 = {Loan(x, y)→ TestimonyLoan(z, x, y)∧ (x �= z)} (29)

ID2 = {Loan(x, y)→ TestimonyLoan(z, x, y)∧ (x �= z)} (30)

ID3 = {Loan(x, y)→ TestimonyLoan(z, x, y)∧ (x �= z)} (31)

ID4 = {V iolence(x, y)→ TestimonyV iolence(z, x, y)∧ (y �= z)} (32)

ID5 = {V iolence(x, y)→ TestimonyV iolence(z, x, y)∧ (y �= z)} (33)

ID6 = {V iolence(x, y)→ TestimonyV iolence(z, x, y)∧ (y �= z)} (34)

Just like the plaintiff, the defendant alternates between two clauses when con-
structing his input set ID, in this case clauses 5 and 3, both implying that the
testimonies of the witnesses are true and are thus indications of a loan and a
violent event taking place. He has thus also fulfilled his obligations.

4.6 Calculation of Coherence

We will now proceed to calculate the coherence of the “stories” given by the
plaintiff and defendant using our measure of coherence introduced in section 3.

For the six observations O : {O1, . . . , O6}, the plaintiff’s theory TP contains
five clauses, whereas the the defendant’s theory TD contains two clauses. The
support sets for the evidence from both sides are as noted in table 3. We remind
the reader that a support set is the subset of a theory that is utilized to account
for a given observation.

Evaluating Cases in Legal Disputes as Rival Theories 69

Table 3. Support sets for the observations

Observation Plaintiff support set Defendant support set

O1 {TP5, TP2} {TD2}
O2 {TP5, TP3} {TD2}
O3 {TP5, TP4} {TD2}
O4 {TP5, TP1} {TD1}
O5 {TP5, TP1} {TD1}
O6 {TP5, TP1} {TD1}

We remind ourselves that as described in section 4.4 and 4.5, TP and TD are
comprised as shown in equation 35 and 36.

TP = {TP1, TP2, TP3, TP4, TP5} (35)

TD = {TD1, TD2} (36)

The summation of the utility of each of the components of the plaintiff’s theory
TP over all observations are as shown in equation 37 to 41. These reflect how
much each theory component contributed in accounting for all the evidence.

6∑
j=1

U(TP1, TP , IPj , Oj) = 3 (37)

6∑
j=1

U(TP2, TP , IPj , Oj) = 1 (38)

6∑
j=1

U(TP3, TP , IPj , Oj) = 1 (39)

6∑
j=1

U(TP4, TP , IPj , Oj) = 1 (40)

6∑
j=1

U(TP5, TP , IPj , Oj) = 6 (41)

We then average the sum of all the utility of the components over the size of
the theory and the number of evidence to derive the coherence measure. The
calculation is described in equation 42.

C(TP , I, O) =
1
6
× 1

5
× (3 + 1 + 1 + 1 + 6) = 0.4 (42)

For the case of the defendant, there are only two parts to his story. The sum-
mation of the utility of each of the components in the defendant’s theory over
all observations are as follows.

70 P. Stenetorp and J.J. Li

6∑
j=1

U(TD1, TD, IDj , Oj) = 3 (43)

6∑
j=1

U(TD2, TD, IDj , Oj) = 3 (44)

The coherence of the defendant’s theory can be derived as is done in equation 45.

C(TD, I, O) =
1
6
× 1

2
× (3 + 3) = 0.5 (45)

Our coherence measure shows that in this event where the explanations from
both sides are considered equally valid, the defendant had provided a more co-
herent theory to account for the evidence.

The example illustrates a possible application of our notion of coherence in
a legal dispute. Both sides were capable of producing a story explaining the
evidence, but one did so better than the other as it provided a simpler account
for the evidence. This is reflected in the higher coherence value derived from the
explanations of the defendant compared to that of the plaintiff. In the following
section we will discuss the merits and the shortcomings of this approach in
evaluating cases in legal disputes, and identify possible lines of future work.

5 Discussion and Future Work

We proposed an approach to evaluate cases in a legal dispute as two rivaling sci-
entific theories. The theories are measured by how well they account for the evi-
dence. The proposed measure of coherence rewards simple theories that account
for a large body of evidence, while punishing frivolous theories that regard much
of the evidence as exceptions. We gave an example of a known legal dispute from
the literature, and showed how the case fits into our framework. In the example,
the side that lost due to insufficient evidence also had the less coherent theory.

We note that a key difference between scientific theories and cases in legal
disputes is that scientific theories are evaluated primarily on how well they ac-
count for the evidence, whereas cases in legal disputes are ultimately concerned
with proving a case in order to attain a goal. However, as the case is based on
evidence, the quality of the theory in accounting for the evidence is still crucial
when proving the case. We argue that our notion of coherence gives rise to an
important measure to the quality of a case, and allow rival cases to be compared
in a quantitative manner.

Our framework provides only a preliminary and approximate model for evalu-
ating cases with respect to the given evidence. We intentionally chose to simplify
the example to illustrate our goal of assessing the coherence of rival theories be-
tween the plaintiff and the defendant. In more complicated real-life examples, not
all evidence is treated equally, some would be considered worthy of more merit
than others, and some would be contradictory. The quality of explanations in

Evaluating Cases in Legal Disputes as Rival Theories 71

accounting for a single piece of evidence can also be subjected to debate. The dif-
fering merits of evidence and explanations can be modelled by allocating weights
to the evidence and also components of the theory in a way similar to the pro-
posal made by Li et al. [7]. The merit of cases would then be dependent to the
weights associated with each evidence and their explanations. This would be one
possible line of future work, but it is beyond the scope of the current paper.

Our measure does not take into account that parts of a chain of conclusion
interacts and the final conclusion in such a chain depends on the probability
of the chain as a whole. This fact has been noted in Keppens [4]. Our measure
does, however, capture the effect of corroboratory evidence as described in Wal-
ton and Reed [13], since a theory that can account for corroborating accounts
of the same observation using only a few clever assumptions in combination
with law and common knowledge will be considered “better” according to our
measure. Contradictory evidence could be handled by argument-based version of
extended logic programming with defeasible priorities such as the one proposed
by Prakken and Sartor [9]. Incorporating these features into the evaluation of
coherence is essential for extending our proposal to more complex legal disputes.

Our evaluation of coherence reflects the importance of the choice of evidence in
a legal dispute. As the evidence in a legal dispute is essential for our calculation
of coherence of the respective cases, different selection of evidence can change
the theories, thus leading to different outcomes in accordance with our coherence
measure. Therefore, intelligent allocation of the burden of proof is necessary to
collect the relevant evidence in proving the cases, while avoiding material that
may not necessarily relate to the case.

Acknowledgments. We would like to thank the referees for their comments,
which helped improve this paper considerably. We would also like to thank Mat-
tias Fr̊anberg, Carl Johan Gustavsson, Luke McCrohon and Goran Topić for
proof-reading this paper. This work was partially supported by Grant-in-Aid for
Specially Promoted Research (MEXT, Japan), and NICTA. NICTA is funded
by the Australian Government’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

References

1. Amaya, A.: Formal Models of Coherence and Legal Epistemology. Artif. Intell.

Law 15, 429–447 (2007)

2. Craig, W.: On Axiomatizability Within a System. The Journal of Symbolic

Logic 18, 30–32 (1953)

3. Hage, J.C.: Formalizing Legal Coherence. In: Proc. of 8th International Conference

on Artificial Intelligence and Law, pp. 22–31 (2001)

4. Keppens, J.: Towards qualitative approaches to Bayesian evidential reasoning. In:

Proceedings of the 11th international conference on Artificial intelligence and law,

pp. 17–25 (2007)

5. Kwok, R.B.H., Nayak, A.C., Foo, N.: Coherence Measure Based on Average Use

of Formulas. In: Lee, H.-Y. (ed.) PRICAI 1998. LNCS, vol. 1531, pp. 553–564.

Springer, Heidelberg (1998)

72 P. Stenetorp and J.J. Li

6. Kwok, R.B.H., Foo, N., Nayak, A.C.: The Coherence of Theories. In: Proceedings

of the 18th Joint International Conference on Artificial Intelligence (IJCAI 2003),

Acapulco, Mexico (August 2003)

7. Li, J.J., Kwok, R.B.H., Foo, N.: Coherence of Theories Dependencies and Weights.

In: Trends in Logic, vol. 28, pp. 297–318. Springer, Berlin (2009)

8. Prakken, H.: Formalising Ordinary Legal Disputes: A Case Study. Artif. Intell.

Law 16, 333–359 (2008)

9. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in

legal reasoning. Artif. Intell. Law 4, 331–368 (1996)

10. Prakken, H., Sartor, G.: Formalising Arguments About the Burden of Persuasion.

In: Proc. of ICAIL 2007, pp. 97–106 (2007)

11. Satoh, K., Tojo, S., Suzuki, Y.: Abductive Reasoning for Burden of Proof. In:

Proceedings of the 2nd International Workshop on Juris-informatics (JURISIN

2008), Asahikawa, Japan, pp. 93–102 (2008)

12. Walton, D., Macagno, F.: Common Knowledge in Legal Reasoning About Evidence.

In: International Commentary on Evidence, vol. 3(1). The Berkeley Electronic

Press (2005)

13. Walton, D., Reed, C.: Evaluating Corroborative Evidence. In: Argumentation,

vol. 22, pp. 531–553. Springer, Berlin (2008)

Law-Aware Access Control: About Modeling Context
and Transforming Legislation

Michael Stieghahn and Thomas Engel

University of Luxembourg, 6, rue R. Coudenhove-Kalergi, L-1359 Luxembourg
{michael.stieghahn,thomas.engel}@uni.lu

Abstract. Cross-border access to a variety of data defines the daily business of
many global companies, including financial institutions. These companies are
obliged by law and need to fulfill security objectives specified by legislation.
Therefore, they control access to prevent unauthorized users from using data. Se-
curity objectives, for example confidentiality or secrecy, are often defined in the
widespread eXtensible Access Control Markup Language that promotes interop-
erability between different systems.

In this paper, we show the necessity of incorporating the requirements of sets
of legislation into access control. To this end, we describe our legislation model,
various types of contextual information, and their interrelationship. We introduce
a new policy-combining algorithm that respects the different precedence of laws
of different controlling authorities. Finally, we demonstrate how laws may be
transformed into policies using the eXtensible Access Control Markup Language.

1 Introduction

Although research on access control has been a topic of interest for years, the new field
of Legal Engineering [4], in combination with access control, is of increasing impor-
tance. In times of an ongoing global financial crisis, an increasing demand for regula-
tion of financial markets exists. Currently used remote desktop solutions, such as Citrix
XenApp, VNC, or NX Nomachine, provide the convenience of a known desktop envi-
ronment for their users. Such solutions are necessary because traveling employees of
global working companies need access to data stored on the servers of their company.
However, such remote desktop solutions do not dynamically restrict access to infor-
mation that is necessary to fulfill a certain task but give full access to data. Similarly,
today’s access control systems (e.g. access control lists (ACL) and role-based access
control (RBAC)) lack the possibility of including legal constraints in their access deci-
sions. Nevertheless, deciding whether an access to specific data under a given context
is legal is an indispensable factor for many companies.

We illustrate the necessity for a law-aware access control that incorporates legislation
in an international banking application scenario using the following example, which is
derived from results of interviews with bank consultants:

Example 1. A consultant travels by plane from country S to a customer located in a
country D1. The legislation of S comprises laws regarding bank secrecy and data pro-
tection. The destination country D1 has a law that concedes the right to privacy; how-
ever, it has a restriction of this privacy that allows the border security to check mobile

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 73–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 M. Stieghahn and T. Engel

devices regarding their content. Therefore, airport security potentially checks the mo-
bile device1 and so, to avoid disclosure of confidential information, such data cannot
be stored on the device. However, when meeting the customer, the consultant needs to
access the data of the customer. Since bank secrecy and privacy can prohibit the use
of a remote desktop solution in country D1, the necessary data has to be transferred
in advance to the device after the consultant has left the airport. An active connection
possibly reveals a link between a customer and a bank. This breaks bank secrecy. Thus,
a remote desktop solution might be the right choice, if the consultant and the customer
could instead meet in country D2, where the legal restrictions are not as strict as in D1.

The legislation of a country litigates for everyone located within the country. However,
accessing data such as confidential customer-related data or strategic information that
is hosted in another country introduces the problem of being subject to at least two sets
of legislation. The legislation of different countries may vary in respect of bank secrecy,
data security, data privacy, cryptography, etc. Therefore, the access control system has
to ensure a law-compliant access.

Various approaches, which extend RBAC by a variety of notions of context to over-
come its limitations regarding dynamically changing situations, have been widely
studied.

Bertino et al. introduce in [1] temporal authorization in a discretionary access control
(DAC) system to combine authorization together with start and an expiration time. This
approach supports temporal constraints, as we know from the time defined by the task
when the data access is required and from the legislation at which time the access is
legal. However, the time alone does not reveal whether or not an access to data is legal.

Strembeck and Neumann present in [11] an approach to enforce contextual con-
straints in a dynamic RBAC that checks the current values of contextual attributes for
predefined conditions. In their approach, permissions can be associated with context
constraints.

Damiani et al. define in [2] the spatially-aware access-control model GEO-RBAC.
It enhances RBAC with spatial- and location-based information to model objects, user
positions, and roles that are activated based on the position of the user. In add a physical
position, users are also assigned a logical and device-independent position. However,
binding the activation to roles based on the location information of the user is not suffi-
cient when cross-border data access to confidential data is necessary. Thus, the location
information can be used to serve two purposes: first, the location information for the start
point and the end point of a connection is used to select the observable set of legislation,
and second, it can localize a data access to a specific location to fulfill law-compliance.

Ungureanu and Minsky [13] and Serban et al. [8] describe a mechanism called Law-
Governed Interaction (LGI) that regulates the activities of the participants in an e-
commerce transaction. LGI allows participants, who are combined to a so-called open
group of distributed heterogeneous agents, to interact with each other with confidence
that this interaction is policy-compliant. The policies are called the law of the open
group. In contrast to our solution, the term “location” means that laws are defined

1 As happened recently:
http://www.theregister.co.uk/2009/08/11/ripa_iii_figures/,
http://www.theregister.co.uk/2009/11/24/ripa_jfl/

http://www.theregister.co.uk/2009/08/11/ripa_iii_figures/
http://www.theregister.co.uk/2009/11/24/ripa_jfl/

Law-Aware Access Control: About Modeling Context and Transforming Legislation 75

globally but enforced locally. Therefore, location is restricted to a group, a member-
ship in a group, and contracts between participants, such that laws exist that are only
valid for certain groups and not globally for all participants. Our solution uses location
in the sense of a real location (a specific country or city as well as the proximity of a
specific user). We also do not need a means for binding laws to certain users but bind
instead to a location itself, because laws are enforced on the basis of the location.

1.1 Approach and Contribution

This paper reports our ongoing research to develop a law-aware access control
system. We extend the approach introduced in [9], where we used a logic-based im-
plementation, and in [10], where we used the eXtensible Access Control Markup Lan-
guage (XACML). In this paper, we demonstrate how the widely used eXtensible Access
Control Markup Language can be used to enhance an access control system. Today,
XACML has become a de facto standard for access control policies. It is widely used
to define policies that regulate access to data by providing a standard for access per-
missions as well as for access requests and their responses. Our contribution is to use
the eXtensible Access Control Markup Language to incorporate legislation into access
decisions by enriching policies with legal constraints. Those constraints are based on
different types of context and their interrelations. By including legislation directly into
access decisions, lawfulness can be ensured. To prevent overregulation, our approach
guarantees that the access restrictions are only as strict as it is obliged by the legislation
of the source and destination country.

1.2 Difference between a Health Care scenario and a Banking Scenario

Bank secrecy obliges financial institutions to secure data, which was given, for exam-
ple, to provide a service, with appropriate security measures. For a data access from
a location different from the head office, a financial institution has to guarantee that a
data storage and a data processing is at least as secure as for a local access. Granting
access from the outside may open unknown security holes and, therefore, this may com-
promise the security of this data. Applying the same access rights as for a local access
is not sufficient to ensure the security of data, because usually a user is able to access
more data than needed for a particular task. Financial institutions, however, have to en-
sure the security of accessed data and the best practice for the security is to limit access
to necessary data. This does not imply that the risk of data leakage itself is decreased,
but it minimizes the amount of data that may be lost.

Common examples of access control systems that deal with sensitive data are emer-
gency scenarios, healthcare scenarios, and banking scenarios. A bank scenario differs
from the two other scenarios in a fundamental way. The first priority in a bank scenario
is to secure data against unauthorized access, data disclosure, and data loss. If this can
be fulfilled, the second priority, the service to the customer, may be applied. In contrast,
a healthcare scenario and, to an even greater degree, an emergency scenario rates safety
over security, because saving life is more important than data security. If no service can
be provided due to security reasons, it is inconvenient in the first case, but unaccept-
able in the second case. Therefore, an access control system for financial environments
rather denies than grants access to data in a case of uncertainty.

76 M. Stieghahn and T. Engel

1.3 Organization of the Paper

The remainder of this paper is organized as follows: In Section 2, we briefly describe
the eXtensible Access Control Markup Language and how an XACML system decides
about access. In Section 3, we describe our legislation model. To this end, we spec-
ify the different types of context information that are needed to incorporate legislation
into access decisions. We introduce a new policy-combining algorithm that respects the
precedence of different sets of legislation, which may overrule each other. Then, we
describe how laws may be manually transformed into XACML policies. Finally, we
describe briefly how an access decision is made by a system that follows our approach.
Section 4 concludes the paper and outlines future work.

2 XACML

The eXtensible Access Control Markup Language is a declarative access control policy
language designed to support authorization systems. XACML is implemented in XML
to provides a processing model, describing how to interpret the policies and, as a second
part, a request / response context language.

XACML [5] policies are structured as a tree of sub-policies (Fig. 1). Each tree has
a defined target and a set of leaves containing a set of rules. A target defines certain
conditions to determine whether this policy is applicable to a request. It is specified by
four properties: a subject, a resource, an action, and an environment. Subject defines a
user or process that requests access to a resource, which might be a file, a system, or a
service. An operation on a resource is defined as action. Environment defines a set of
attributes, which are necessary to decide about access, but which are not related to a
specific subject, an action, or an environment. Attributes are features of a subject, a re-
source, an action or an environment. Rules define how to process a target and consist of
Boolean expressions, which are interpreted and executed by the Policy Decision Point
(PDP). Rules consist of a target, an effect, and conditions. The latter describe the state
of the attributes of the target to satisfy the rule, whereas effect specifies how to pro-
ceed (e.g. permit or deny) if the conditions are satisfied. The response to the request is
structured as follows: decision, status, and obligation. There are four possible decisions:
permit, deny, not applicable, or indeterminate. Not applicable is returned if no rules or
applicable policies can be found. Indeterminate indicates that an error occurred during

Fig. 1. XACML policy structure

Law-Aware Access Control: About Modeling Context and Transforming Legislation 77

the access decision. Obligations can be attached to the response and direct the Policy
Enforcement Point (PEP), for example, to process an access in a designated way. How-
ever, XACML does not specify the communication protocol between PEP and PDP.

The XACML specification [5] defines additionally four combining algorithms to
specify how policies of a policy set are combined during an access decision process.

2.1 Access Decisions

When connecting to a server, users need to authenticate themselves. Then they can use,
for example, a file browser to browse a directory or to open a file. The client sends all
actions as XACML requests to the PEP. The PEP resubmits the user’s request to the
Policy Decision Point. After receiving the request, the PDP starts to evaluate the top-
level policy or the policy set. First, the target is checked whether the request matches the
target specified in the policy. If a policy is evaluated to false, this policy is not applicable
and a further evaluation of this policy is not necessary. Subsequently, the resources and
actions specified in the target are evaluated as well. If the PDP evaluates the target to true
the policies and rules in the next level below are evaluated. When the evaluation gets to
a leaf of the XACML policy tree, the rule’s conditions are executed. Every rule has an
effect (permit or deny), which is sent back as decision if the condition is evaluated as
true. Otherwise a non applicable is returned. The evaluation is performed with respect
to the combining algorithm, which is specified for a policy or policy set and defines
how the policies and rules need to be processed. During the evaluation, the PDP queries
the attributes of the XACML request from the PIP, which collects subject, resource,
environment, etc. On completion, the PIP sends the response to the PDP, which can
then decide about the access. Finally, the PDP sends its access decision back to the PEP
by using the XACML response language. The PEP executes the obligations bound to
the policy and sends the final decision (permit / deny) to the user. If the system grants
the access, the user is able, for example, to browse files on the file system or using a
remote desktop solution.

3 Law-Awareness and Access Control

Remote access within a country, but especially cross-border access, implies that at least
one set of legislation needs to be observed. In particular, financial institutions need to
ensure both law-compliant access, which includes securing data against attacks, and
serviceability. In general, laws define, among other things, conditions to satisfy and de-
scribe the handling of data and the access to data. When requesting access to data, a
variety of context information can be used to support access decisions. In our approach,
we mainly follow the definition of Dey et al. [3] for categories of context. In addition to
their context types identity, activity (we use the term task as equivalent), time, and lo-
cation, we extend the context by legal constraints and a second identity. Consequently,
we describe our set of context information as: Who does What for Whom, When, Where
and subject to Which legal constraints.

To improve readability, we elide the prefix urn:oasis:names:tc:xacml:1.0: in the
urn-definitions of all policies in this document. For the same reason, we also elide
http://www.w3.org/2001/XMLSchema# from the definition of the data type.

78 M. Stieghahn and T. Engel

Fig. 2. Schema of a legislation government access control model

3.1 Modeling Legislation

Legislation defines a legal framework for daily business. Therefore, it governs every
business action, every transaction and every data access. Figure 2 shows our used law
model. Main component of the model is legislation of a region, country, or state. From
the perspective of access control, legislation defines which data can be accessed legally
with the given context. Laws govern the where (location), the who (user) and the whom
(customer), the when (time) and the what (task). Contrariwise, the location defines,
which legislation is valid and has to be observed. At the same time, legislation gov-
erns which location is permitted for a data access. Hence, location and legislation are
mutually dependent. The identities of user and customer are also mutually dependent,
as a user has various customers to advise and a customer may have various users as
consultants. The relationship between both is defined in the law by a valid contract be-
tween both individuals, between an individual and a company/institution, or between
two companies. Contracts including multiple parties are also possible. Time and task
interact with each other. A task or an action that is legal is defined from the legisla-
tion. For this task, a specific point in time or a time range may be defined indirectly.
Typically, the time range rather is specified by “as short as possible, as long as neces-
sary” or during “working hours” than a specific time. Combining two or more sets of
legislation will result in a set of legally accessible data for both sets of legislation with
the given context. The various types of context information, which serve as basis for an
law-aware access decision, remain the same. However, the result depends on the used
sets of legislation.

3.2 Identities and Task

Identities (determined by who and whom in the context definition) are used in two ways:
One identity identifies the user, e.g. all consultants of a company. This approach is well
known for all access control systems. The other identity defines the customer who is
the subject of the data.

Law-Aware Access Control: About Modeling Context and Transforming Legislation 79

A task describes what occurs in a specific situation (e.g. a customer advisory service).
In our case, the notion task is a mandatory justification for mobile data access to sen-
sitive data. However, a task is not necessarily required to access non-customer-related
information or non-confidential data, such as product information. In our definition, a
task is determined by an entry in the diary of a user that also may link the identities,
data, location, and time.

3.3 Time

Time ranges represent a common access restriction. When a user requests access to
specific information, the access control system checks whether the user is allowed to
access this data at the current point in time. The context time is defined for customer-
related data by a task. For access to non-customer-related data, the time range can be
defined, for example, by a policy of the company to cover the itinerary working hours of
a consultant. Due to the different time zones on a travel, the location context serves as
input to calculate the correct local time. Sensitive data should be accessible for a limited
time only to proactively minimize the risk of unauthorized access or data disclosure.

3.4 Location

Various approaches to context-aware access control systems [7,2] use a location as con-
text information in decisions concerning access. Location describes the physical posi-
tion of a mobile device. A position specifies not a single location point, but a location
space. The method of determination defines the precision and the size of such location
space. A position can be described by absolute values (GSM cell or GPS) or relative
values (derived from an absolute position or from a proximity measurement).

In our approach, we distinguish between a legislation location and an activity lo-
cation. The legislation location determines the validity area of a law – the country or
region where a specific legislation needs to be observed. The activity location is the cur-
rent location from where the user performs the access request. For the activity location,
we differentiate between the expected location and the current location. An expected
location is noted by the consultant in the diary. It specifies the location where the user
will probably access the data, for example, at the location of the meeting with a cus-
tomer. In our scenario, if a consultant has to travel abroad to accomplish a task, the
supervisor gives an authorization for the travel in advance. This authorization confirms
the expected location with a “second set of eyes”. A current location is where a consul-
tant is located during an access. This may be specified by an attribute of a subject. The
OASIS organization designates the following attribute identifier for the current location
of the subject: “urn:oasis:names:tc:xacml:3.0:ec-us:subject:location” [6].

We define a model called zones+ to categorize locations. Zones+ is an XML location
tree where a node can for example be a region (e.g. European Union), a country (e.g.
the U.S.A, Japan or Germany) or a state (e.g. New York, Washington D.C.). The two
children of such a node contain the areas separated into a restricted area where special
law enforcement exist (e.g. in a customs duty area or a police station) and an unrestricted
area, which contains all areas that are not defined as restricted. This bisection is used
to support the insulation of sensitive data that should not be disclosed, for example,

80 M. Stieghahn and T. Engel

during a customs inspection where a consultant omitted to close the connection to a
confidential resource at headquarters.

Policy 1. Definition of a legislation location within the target section
<Target>

<Legislation>
<LocationMatch MatchId="function:anyURI-equal">
<AttributeValue DataType="string">Country A</AttributeValue>
...
</LocationMatch>

</Legislation>
</Target>

The definition of XACML itself provides no means of defining a legislative location.
Thus, within the definition of the target an additional attribute extends the policy with
an identifier that specifies the area where the policy is applicable (Policy 1). As the
subject, resource, and action are checked, this attribute is included in the decision as to
whether or not this policy is applicable to the current request. Therefore, if an access
to data in country S is requested from another country D, both countries are checked.
If the location defined in the policy equals either country S or D the policy becomes
applicable unless subject, resource, and action do not match the request. Further on, a
legislation tag can affiliate different countries. Provided that the countries concerned
are listed as AttributeValues of a LocationMatch.

Remark that, in a standard XACML model the legislation-tag will be ignored and,
therefore, the decision whether a policy applies to a request is based on subject, re-
source, and action only. A system, which does not evaluate the legislation tag, is rather
over-restrictive than under-restrictive, as legislation-driven policies of different coun-
tries tend to constrain access. We also must point out, that instead of using the addi-
tional legislation tag to define a legislation location the property environment might
be used. In our opinion, proceeding with this approach is more unambiguous than to
merge the legislation location in an existing tag. However, this remains a subject to
further discussions as the development of the XACML standard continues.

3.5 Legal Constraints

In the previous section we distinguished between legislation location and activity lo-
cation. Legislation location means the validity area of a law, which we specify as a
legal constraint. The activity location, which is the current position of the subject who
requests the data, determines the legal constraints that have to be observed. A legisla-
tion location can be a union (e.g. European Union and the United States of America),
a country (e.g. Germany, Japan, or Luxembourg), a state (e.g. Florida, California, or
British Columbia) or an organization (e.g. Microsoft Corporation, Allianz SE), where
the latter addresses organizational policies.

A single law can influence one or more of the other context information items, for
example, if a law prohibits the use of strong encryption mechanisms, which another
country presumes, a condition has to reflect this law. Additionally, laws can cause con-
ditional constraints that relate to context information, but cannot be represented by one

Law-Aware Access Control: About Modeling Context and Transforming Legislation 81

of the contexts described in this paper. Such a conditional constraint may be, for ex-
ample, a signed customer agreement. In legal engineering two cases can occur. First, a
policy is directly and unambiguously generated from the written natural form of an act.
Secondly, a law cannot be transformed directly but has to be divided into several parts
and has to be interpreted.

A Precedence-aware Policy-Combining Algorithm becomes necessary to handle
the various levels of hierarchy that appear with laws of different controlling authori-
ties. Depending on the controlling authority laws may overrule other laws, for example
national law of a member state of the European Union overrules European directives.

Besides the law exists precepts (amongst others), which advise of a specific behavior
or rule of action and is not mandatory. Existing XACML policy-combining algorithms
do not take into account the priority of a law, which we call a precedence of a law.
Algorithm 1 shows the pseudocode for a combining algorithm that respects the prece-
dence of the sets of legislation. If the precedence of the first law (law a) is lower than
the precedence of the second law (law b) the function is recalled with flipped variables,
which does the implementation and, therefore, the cases to handle shorter (line 3). If
both laws evaluate to indeterminate (Alg. 1, line 6) some error occurred and no decision
can be made. Similarly, if laws have the same precedence but one evaluates to permit
the other to deny, the total evaluation results in indeterminate (Alg. 1, line 10). This is,

Algorithm 1. Pseudocode of a Precedence-aware Policy-Combining Algorithm
1: function Combinelaw−permit−override(a,b)
2: if (Precedence(b) > Precedence(a)) then
3: return Combinelaw−permit−override (b,a) � Re-call function with turned variables.
4: end if
5: if (a = indeterminate or b = indeterminate) then
6: return indeterminate � An error occurred and prevents a decision.
7: end if
8: if (Precedence(a) = Precedence(b) then
9: if (a = deny and b = permit) or (a = permit and b = deny) then

10: return indeterminate � Conflicting decision.
11: end if
12: else if (a = permit) then
13: return permit � Both legislation allow access or law a overrules law b.
14: else if (a = not applicable) then
15: if (b = permit) then
16: return permit � Only law b is applicable.
17: else if (b = deny) then
18: return deny � Law b denies access.
19: else
20: return not applicable � Both laws are not applicable.
21: end if
22: else
23: return deny � For all remaining cases the access is denied
24: end if
25: end function

82 M. Stieghahn and T. Engel

however, a policy conflict that has to be resolved by an additional policy conflict han-
dling. At the moment this has to be performed semi-automatic. Algorithm 1 respects
the precedence, which means that as higher the number as “more” important is the law.
In other words, if an organizational policy allows an access to data but a law with a
higher precedence denies the same access, an access request has to be denied (Alg. 1,
line 23). The combining algorithm denies by default (Alg.1, line 23).

It remains to mention that rules evaluating to “not applicable” neither permits nor
denies.

This is different to “indeterminate” that indicates a problem that occurred during ei-
ther the evaluation or the policy-combining process. The result indeterminate needs spe-
cial attention. By default, indeterminate overrules a permit from another policy, which
is required to keep data secure if a decision is not evaluated unambiguously.

Our proposed precedence-aware policy-combining algorithm is fully integrable into
existing XACML systems to replace the default policy-combining algorithms.

4 Transformation

Transition of written legislation into a computer-useable form is an essential step
preparing law-compliance of applications. As shown in Figure 3, taking legislation as
input for a transformation is the first step. This transformation can either be performed
automatically, semi-automatically or manually. In the latter case, lawyers and/or secu-
rity officers read laws and interpret them. Mostly, they perform an interpretative transla-
tion and not a bijective transition of laws to policies. The documentation might refer to
which policy reflects which law but is not necessarily mandatory. If a law changes the
complete policy set needs to be revised in order to recover law-compliance. However,
reassessing new or changed laws to existing policy sets is an error-prone and prolonged
process if performed manually and includes more than one legislation, as it occurs for
cross-border data access.

The output of the applying a transformation (see Fig. 3) is a single policy or set
of policies. Such policies can be included into applications, application frameworks,
or in any desired system that is able to interpret these policies. A verification process,
which is denoted by (3) and (4) in Figure 3, shall cope with incompleteness or misin-
terpretations of the law-to-policy transformation process. Reporting missing legislative
coverage Figure 3 (5) to the legislator to entail on future implementation of those miss-
ing laws completes the process of a law-to-policy transformation. Since laws are often
written in a domain-specific, fuzzy, and stylistic-advanced notation steps (4) and (5) is

Fig. 3. Schema of a law to policy transition process

Law-Aware Access Control: About Modeling Context and Transforming Legislation 83

important for a transformation. Automatic transitions would require, however, a com-
plete taxonomy of legal terms and their interrelations for an unambiguous interpretation.

Tanaka et al. presented in [12] a two-parted structure of law provisions of Japanese
legislation, which consists of a requisite part (with subject and condition) and an effec-
tuation part (with object, detail, and provision). This structure does also cover parts of
the law sentences of the Luxembourgian law.

A single law can provide various types of information such as a: a) condition, which
is a definition of exceptions or states for what a specific action is allowed or denied in
a certain context. It defines what needs to be fulfilled to entitle an action; b) default
behavior that defines the action if a decision cannot be made unambiguously; c) detail,
which gives more information to specify a subject in more detail or to restrict effects, for
example as annotation; d) entitlement that is a judgment-free statement of what right
is granted; e) general statement specifying, for example, the purpose for which the
law was defined; f) link as a reference to another law where, for example, a definition
is refined or where exceptions may be specified; g) nominal definition, a definition of
terms, which are used later within the document; h) penalty, a punishment, e.g. terms
of imprisonment or payment of money, for breaking the specified law. Mostly, it defines
a range from a minimum penalty to a maximum penalty.

To demonstrate the structure of laws, we use Loi 02-08-2002 from Luxembourg,
a law on the Protection of Persons with regard to the Processing of Personal Data.
Figure 4 shows chapter IV, article 18 letter (1) – transfer of data to third countries of
the Luxembourgian law for data protection and privacy. Article 18 describes the main
principles.

As shown in Figure 4, letter (1) describes a resource (data), an action (transfer
to) with an annotation of a location as detail (a third country), an effect (may take
place only). The second part defines conditions for the effect (only where), which needs
to comply to several provisions (provides an adequate level of protection and com-
plies with the provisions of this Law and its implementing regulations). This annota-
tion is currently performed by human experts. A third country attracts attention and
on the first view all countries but Luxembourg are included. However, Chapter 1, Art.
1:-Definitions, letter (m) defines third countries as such that are not members of the
European Union.

Fig. 4. Identifying transition properties in chapter IV, article 18, letter (1)

84 M. Stieghahn and T. Engel

Policy 2. Target section of Loi 02-08-2002, chapter IV, article 18, letter 1
<Target>
<!-- Applies to all Subjects -->
<!-- Applies to all Resources -->
<Actions>
<Action>
<ActionMatch
MatchId="function:string-equal">
<!-- Applies to the action transfer with a given destination -->
<AttributeValue DataType="string">
transfer

</AttributeValue>
<ActionAttributeDesignator AttributeId="action:action-id"

DataType="string"/>
<Apply FunctionId="function:not">
<LocationMatch MatchId="function:string-equal">

<AttributeValue DataType="string">
destination
</AttributeValue>
<LocationMatch MatchId="function:destination-uri">

<AttributeValue DataType="string">
member of european union

</AttributeValue>
</LocationMatch>
</LocationMatch>
</Apply>

</ActionMatch>
</Action>

</Actions>
<!-- Applies to all Environments -->

</Target>

Policy 2 shows an excerpt of the target section for chapter IV, article 18, letter (1)
(see also Fig. 4). The policy is valid for any subject and any resource, which is desig-
nated by XACML through omitting the tags <Subject> and <Resource>. The policy
uses, therefore, “transfer” as action in the target section including an additional location
annotation that is expressed by a <LocationMatch> and a destination country that is
not member of the European Union (<Apply FunctionId=”function:not”>).

The part “complies with the provisions of this Law” is quite straight as our approach
includes by default the legislation of source country and destination country of a con-
nection (Policy 3). However, the specification in XACML is more complicated as the
AttributeValue is not a static value but dynamic. In practice, the destination of a con-
nection remains statically at one location, in our case Luxembourg. The source coun-
try of a connection may change between requests and is, therefore, dynamic. The first
part “provides an adequate level of protection” appears very fuzzy. The law does not
specify how protective measures are defined and how to satisfy those requirements.
However, Chapter IV-Section 23 , special security measures, lists, for example, the pro-
tective measures of access control, usage control, transport control. To demonstrate how
laws are we interpret and transform laws into policies we use, as example, Loi 02-08-
2002 from Luxembourg, a law on the Protection of Persons with regard to the Process-
ing of Personal Data. Chapter IV, Section 5, letter (f) (Legitimacy of data processing)
states that data processing is only permitted if the individual concerned has granted an
agreement. Hence, it has to be checked whether a signed and valid agreement for this
customer exist before deciding about access (Policy 4).

Law-Aware Access Control: About Modeling Context and Transforming Legislation 85

Policy 3. Condition to observe the legislation of source and destination of a connection
<Condition>

<Apply FunctionId="setLegislation">
<LegislationAttributeDesignator

AttributeId="connectionSource" DataType="GEOLocation"/>
<LegislationAttributeDesignator

AttributeId="connectionDestination" DataType="GEOLocation"/>
</Apply>

</Condition>

Policy 4. Condition for a signed customer agreement
<Condition FunctionId="function:not">

<Apply FunctionId="urn:larbac:function:signedCustomerAgreement">
<Apply FunctionId="function:boolean-equal">

<AttributeValue DataType="string">true</AttributeValue>
</Apply>

</Apply>
</Condition>

This law is valid for any country, but needs only to be observed for customer-related
data. Article 19. Derogations, letter (a) is written: “the data subject has given his consent
to the proposed transfer”, which results in the same condition as Article 5, letter (f)
(Policy 4).

5 Conclusion and Future Work

In this paper, we addressed the problem of using the eXtensible Access Control Markup
Language (XACML) for law-aware access control. We stressed the necessity to in-
corporate legislation into mobile cross-border access. To this end, we demonstrated
how various types of context information are defined within an XACML policy, and
described the different types of context and their interrelations. We introduced a new
policy-combining algorithm that respects precedences of laws, which became necessary
to facilitate the evaluation of transformed policies of different controlling authorities.

Currently, we are implementing a prototype of the law-aware access control sys-
tem using our law-enriched XACML policies. We are also investigating semi-automatic
methods to transform laws into XACML policies that support human experts during a
law to policy transformation. For this, we build up an ontology consisting of legal ter-
minologies and a mapping to XACML policies.

Acknowledgement

This work was supported by the Fonds National de la Recherche Luxembourg under
grant number AFR 05/109.

References

1. Bertino, E., Bettini, C., Ferrari, E., Samarati, P.: A Temporal Access Control Mechanism
for Database Systems. IEEE Transactions on Knowledge and Data Engineering 8(1), 67–80
(1996)

86 M. Stieghahn and T. Engel

2. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A Spatially Aware RBAC.
ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

3. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: Computer Human Intraction 2000 Workshop on the What, Who, Where
(1999)

4. Katayama, T.: Legal Engineering - An Engineering Approach to Laws in e-Society Age. In:
Proceedings of the 1st International Workshop on JURISIN (2007)

5. Moses, T.: eXtensible Access Control Markup Language TC v2.0 (XACML). In: Organiza-
tion for the Advancement of Structured Information Standards (OASIS) (February 2005)

6. Organization for the Advancement of Structured Information Standards (OASIS). XACML
3.0 Export Compliance-US (EC-US) Profile Version 1.0 (September 2009)

7. Schilit, B., Adams, N., Want, R.: Context-Aware Computing Applications. In: IEEE Work-
shop on Mobile Computing Systems and Applications, Santa Cruz, CA, US (1994)

8. Serban, C., Chen, Y., Zhang, W., Minsky, N.: The Concept of Decentralized and Secure
Electronic Marketplace. Electronic Commerce Research 8(1-2), 79–101 (2008)

9. Stieghahn, M., Engel, T.: Law-aware Access Control for International Financial Environ-
ments. In: MobiDE 2009: Proceedings of the Eighth ACM International Workshop on Data
Engineering for Wireless and Mobile Access, pp. 33–40. ACM, New York (2009)

10. Stieghahn, M., Engel, T.: Using XACML for Law-aware Access Control. In: 3rd. Interna-
tional Workshop on Juris-informatics (JURISIN), pp. 118–129 (2009)

11. Strembeck, M., Neumann, G.: An Integrated Approach to Engineer and Enforce Context
Constraints in RBAC Environments. ACM Trans. Inf. Syst. Secur. 7(3), 392–427 (2004)

12. Tanaka, K., Kawazoe, I., Narita, H.: Standard structure of legal provisions - for the legal
knowledge processing by natural language (in Japanese). IPSJ Research Report on Natural
Language Processing, 79–86 (1993)

13. Ungureanu, V., Minsky, N.H.: Establishing Business Rules for Inter-Enterprise Electronic
Commerce. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 179–193. Springer,
Heidelberg (2000)

Part II
Knowledge Collaboration in Software

Development

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 89–90, 2010.
© Springer-Verlag Berlin Heidelberg 2010

3rd International Workshop on Supporting Knowledge
Collaboration in Software Development (KCSD2009)

Masao Ohira and Yunwen Ye

1 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
2 SRA Key Technology Lab, 2-32-8 Minami-Ikebukuro, Toshima, Tokyo 171-8513, Japan

masao@is.naist.jp, ye@sra.co.jp

1 Introduction

The creation of modern software systems requires knowledge from a wide range of
domains: application domains, computer hardware and operating systems, algorithms,
programming languages, vast amount of component libraries, development environ-
ments, the history of the software system, and users. Because few software developers
have all the required knowledge, the development of software has to rely on distrib-
uted cognition by reaching into a complex networked world of information and com-
puter mediated collaboration. The success of software development, therefore, hinges
on how various stakeholders are able to share and combine their knowledge through
cooperation, collaboration and co-construction.

The overall goal of the series of the workshop seeks to gain an improved under-
standing on the theoretical, social, technological and practical issues related to all
dimensions of knowledge collaboration in software development, and to explore op-
portunities for automated support, such as the timely acquisition of external knowl-
edge and the facilitation of collaboration among developers.

KCSD2009 is the 3rd installment of the workshop. The first KCSD workshop
(KCSD2005) took place on December 15, 2005, Taipei, as a part of the IEEE 12th
Asia-Pacific Software Engineering Conference (APSEC 2005). The second KCSD
workshop (KCSD2006) was collocated with the 21st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE2006), and took place on Sept 19,
2006, Tokyo.

2 Workshop Topics

KCSD2009 was a two-day workshop and took place on Nov.19-20, 2009 at Tokyo. It
focuses on the transfer of knowledge among software developers and the collaborative
creation of new knowledge that is needed for the development of software systems.
The particular interests of KCSD2009 include:

− formation of shared understanding between users and developers during concep-
tualization, design, deployment and use of software systems;

− technical issues in accessing external knowledge resources and acquiring expertise
from peer developers;

− social issues in facilitating knowledge transfer;

90 M. Ohira and Y. Ye

− socio-technical approaches to motivating participation in knowledge collaboration;
− utilization of social networks to connect developers for knowledge collaboration;
− understanding how knowledge is accumulated, transferred and shared among

software developers;
− analyzing and understanding the unique features of knowledge collaboration

specific to software development such as pair programming, inspection, mainte-
nance and end-user development.

3 Workshop Organization

Workshop Co-Chaires:

Masao Ohira, Nara Institute of Science and Technology, Nara, Japan
Yunwen Ye, SRA Key Technology Lab, Tokyo, Japan

Program Committee:

Daniela Fogli (University of Brescia, Italy)
Mark Grechanik, (Accenture Technology Labs / University of Illinois, USA)
André van der Hoek (University of California, Irvine, USA)
Reid Holmes (University of Washington, USA)
Katsuro Inoue (Osaka University, Japan)
Yasutaka Kamei (NAIST, Japan)
Ken-ichi Matsumoto (NAIST, Japan)
Kumiyo Nakakoji (SRA Key Technology Lab / University of Tokyo, Japan)
Cleidson de Souza (Federal University of Para, Brazil)
Thomas Zimmermann (Microsoft Research, USA)

4 Workshop Outputs

The workshop featured two keynote talks. Professor André van der Hoek of Univer-
sity of California, Irvine presented on “Knowledge Collaboration in Distributed Soft-
ware Development”, and Dr. Shuichiro Yamamoto of NTT Data Corporation ad-
dressed on “Understanding Networked Collaboration”.

KCSD2009 accepted 8 full papers and 3 position papers. All accepted papers were
carefully reviewed by the program committee. After a second round of review, we
selected 6 papers to be included in this post-workshop book.

On the Central Role of Mailing Lists in Open Source
Projects: An Exploratory Study

Emad Shihab, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University

Kingston, K7L 3N6, Canada
{nicbet,emads,bram,ahmed}@cs.queensu.ca

Abstract. Mailing lists provide a rich set of data that can be used to improve
and enhance our understanding of software processes and practices. This infor-
mation allows us to study development characteristics like team structure, ac-
tivity, and social interaction. In this paper, we perform an exploratory study on
the GNOME project and recover operational knowledge from mailing list dis-
cussions. Our findings indicate that mailing list activity is driven by a dominant
group of participants, that it is greatly connected to development activity, yet in-
fluenced by external factors like market competition. Our results provide a broad
picture of the central role played by mailing lists in open source projects.

1 Introduction

Most open source developers communicate through mailing lists. This style of commu-
nication makes mailing lists a rich source of information which researchers can use to
understand software processes and improve development practices. Mailing lists have
been used to infer social structure [4, 10], identify architectural changes [1], and most
recently to study the code review process [3, 13, 17].

However, understanding the generality of the results derived from mailing lists re-
quires that we first understand how mailing lists are used in practice and the impact
of their usage patterns on the information in the lists. For example, previous studies
(e.g. [4]) studied the social structure of developers using mailing lists, however, does
this social structure change over time? How fast does the structure change?.

The central role played by mailing lists is depicted in Figure 1. Developers use mail-
ing lists to discuss a variety of issues and project decisions [1, 9]. Many of these issues
and decisions are related to and affect the source code. These issues are often driven by
external factors such as the introduction of new features in competing products.

In this paper, we perform an exploratory study on the role played by mailing lists.
Performing an exploratory study on mailing lists provides a holistic view of their role.
This holistic view enhances the understanding of the findings of in-depth studies, un-
veils details which may not be apparent through in-depth studies and helps identify
interesting directions for future research.

To perform our study, we use the mailing lists from 22 GNOME projects. The study
centers around the following aspects, shown in Figure 1, in an open source project:

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 91–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 E. Shihab et al.

Fig. 1. The central role of Mailing lists in open source projects

– Developers: We characterized the communication style of mailing list’s partici-
pants, i.e., the developers from the development mailing lists.

We found that a small number of developers play a central role in driving
the mailing list activity. We also found that these developers remain stable
throughout the lifetime of a project.

– Source code: We explored the impact of mailing list activity on the source code
activity, i.e., changes.

We found that there is a high correlation between mailing list activity and
source code activity.

– External Factors: We examined the effect of external factors, such as competing
products on mailing list activity.

We found that competing products shape and drive many of the discussions
on mailing lists.

Overview of Paper. The rest of the paper is organized as follows: Section 2 discusses
the motivation for using the GNOME project as a case study and presents statistics
about the project. We present and analyze our findings in Section 3. The threats to va-
lidity are discussed in Section 4 and the related work is presented in Section 5. Section 6
concludes the paper.

2 GNOME as a Case Study

In this section, we detail the case study project used in our study. The GNOME project
is composed of approximately two million lines of code and has more than 500 differ-
ent contributors from all over the world [8]. The GNOME project is composed of many
small projects that cover a wide range of applications, e.g., email client, text editor,
and file manager. The main source of communication for GNOME developers is the
developer mailing list for each project. These projects vary in size, age, user and devel-
oper base. We expect these differences in size, age, and domain to have an impact on
the mailing lists of these projects. Therefore, studying the mailing lists of the different
projects can lead to interesting and generalizable findings and open new directions for
future research.

On the Central Role of Mailing Lists in Open Source Projects 93

Table 1. General overview of the GNOME mailing lists studied

Number of

Project name Start date Messages Participants Age (months) Threads Application Domain

Deskbar Applet Oct-05 1,098 106 39 340 Search interface
Ekiga Aug-06 5,389 690 29 1,200 Teleconferencing
Eog Mar-01 458 106 93 233 Image viewer
Epiphany Dec-02 5,735 905 73 1,608 Web browser
Evince Jan-05 1,358 415 48 566 Document viewer
Evolution Jan-00 53,927 6,026 96 15,718 Email client
Games Feb-03 1,590 190 71 531 Computer games
Gdm Mar-00 2,578 675 105 1,040 Display manager
Gedit Apr-00 2,237 530 104 919 Text editor
Multimedia Oct-00 1,646 273 98 507 Multimedia library
Network Aug-03 673 105 65 267 Network tools
Power Manager Jan-06 1,059 199 36 305 Power management
Themes Jan-98 1,310 221 132 447 Window manager
Utils Oct-04 358 106 51 279 Utility applications
Control Center Dec-99 1,478 168 97 311 Configuration
Libsoup May-06 83 24 32 41 HTTP library
Metacity Sep-05 262 48 40 59 Window manager
Nautilus Apr-00 22,488 2,384 105 5,582 File manager
Orca Jan-06 11,930 516 36 3,598 Screen reader
Screensaver Oct-05 139 25 39 30 Screensaver
Seahorse Jun-07 252 34 19 116 Encryption management
System tools Nov-99 1,832 327 98 792 System admin tools

Table 1 presents a general overview of the mailing lists used for this study. The
Project name column lists the name of the GNOME module. The Start date,
Number of Messages, Number of Participants, Age and Number of
Threads columns list the month and year of the first commit to the project’s trunk
(derived by examining the source control repository for the project), the total number
of messages, the number of participants, the age, and the number of threads of the
GNOME projects, respectively. In addition, the Application Domain column lists
the application of the project. All calculations are based on the participation from the
start date listed till the end of 2008, inclusive.

3 Results and Analysis

We now study the three aspects outlined in Figure 1 using the GNOME mailing list
data. Subsections 3.1 and 3.2 cover the developers aspect, subsection 3.3 covers the
source code aspect and subsection 3.4 covers the external factors aspect. We start each
subsection by presenting our motivation to explore the aspect. We then describe the
approach that we used to perform our exploration. Finally, we present our results and
outline our main findings.

Since most of the GNOME mailing lists have low activity, we will often use the
Evolution and Nautilus projects to more closely explore many of our findings since the

94 E. Shihab et al.

two projects account for more than 65% of the total messages. We highlight the results
that generalize for the rest of the 20 projects, where applicable.

3.1 Communication Style in Mailing Lists

Is mailing list activity mostly driven by a few participants (a dominant group) or is the
participation evenly distributed? Does the dominant group engage in discussions with
others or is it mostly involved in internal discussions?

Motivation. The Pareto principle (also known as the 80-20 rule), which states that the
majority of the effects come from a minority of the causes, has applications in many
fields. For instance, research shows that 20% of the code contains 80% of the bugs [7].
We hypothesize that there exist a few key participants (who we call the dominant group)
in mailing lists, that are responsible for most of the messages posted on the mailing list.
Most likely, they are members who are very knowledgeable about the project and use
their knowledge to support newcomers and casual participants (who we call the casual
group). It is important for us to investigate whether these experts exist on mailing lists
for two reasons: 1) one can address his/her questions directly to such experts to receive
a more accurate and speedy response and 2) the discussions of these experts can be used
for future reference by others who are less knowledgeable about the project.

In addition, if such a group exists, we would like to know if they actively engage in
discussions with others who are outside of the dominant group. If in fact they do engage
with others then we can safely assume that newcomers and less experienced developers
will benefit from these experts. If we determine otherwise, i.e. that the dominant group
is a closed group, then newcomers and other participants may be better off reading
previous discussions and learning from them rather than attempting to establish direct
contact with the dominant group members.

Approach. We measured the number of messages contributed by the top 10% most ac-
tive participants, who we call the dominant group. We found evidence that in fact there
does exist a dominant group for each of the 22 GNOME mailing lists. The dominant
group contributes a large amount of the messages posted.

Then, we examined the active discussion threads and classified these active threads
into threads with:

– Dominant group members only: A high number of such threads implies that the
dominant group is a closed group that does not engage with others.

– Dominant and casual members together: A high number of such threads is a
good indicator of a stimulating mailing list where expert and casual participants
actively engaging in discussions.

– Casual group members only: A high number of this type of discussion would
indicate that the casual members are not integrated into the mailing list.

Results. In addition to finding out that there exists a dominant group in each mailing
list, we quantified their contribution. We found that on average the dominant group
accounts for approximately 60% of the messages. This finding is consistent across all
of the 22 GNOME projects. We did not observe a consistent finding when we considered
the top 20% of the participants (i.e. we did not find evidence of the Pareto principle).

On the Central Role of Mailing Lists in Open Source Projects 95

(a) Evolution project (b) Nautilus project

Fig. 2. Distribution of discussion types

We plot the number of threads for the Evolution and Nautilus projects in Figures 2(a)
and 2(b), respectively. In both projects, we found that the majority of the active discus-
sions involve dominant and casual group members. On average, in 82% of the discus-
sions dominant and casual group members were present. In 16% of the discussions,
dominant group members were discussing exclusively and in the remaining 2% of the
discussions the casual members discussing exclusively. We believe that it is a sign of
a productive mailing list when the two groups actively engage in discussions, with the
dominant group members most likely playing a supporting role for the casual group
members.

However, in some cases a high percentage in discussions that involve dominant and
casual members may not be desired. For example, some dominant group members may
be overwhelmed by a high number of questions from casual members (since casual
members may make unreasonable requests from more knowledgeable dominant group
members). Whether a high number of discussions between casual and dominant group
members is indicative of a productive mailing list depends on the product domain and
the mailing list’s members’ knowledge.

Conclusion. 10% of mailing list participants (the dominant group) contribute 60% of
the messages in a mailing list. The dominant group is very active and is engaging with
outside-members, i.e. casual members.

3.2 Stability of Mailing List Participants

Do dominant group members change over time? If so, how much are they changing by?
How is their stability compared to rest of the mailing list participants?

Motivation. As we have seen in the previous subsection, the dominant group plays an
important role in the mailing list. They contribute the majority of messages posted and
are involved in approximately 96% of active discussions. For this reason, it is quite im-
portant that dominant group members do not change frequently. We study the stability
of the dominant group. In particular, we measure the variation in the dominant group
over time. A relatively stable dominant group (i.e. one that does not change frequently)

96 E. Shihab et al.

Table 2. Cosine distance of dominant and casual groups of the Evolution and Nautilus projects

Evolution Nautilus

Year Dominant Casual Dominant Casual

2000 - 01 0.68 0.11 0.73 0.20
2001 - 02 0.74 0.11 0.55 0.20
2002 - 03 0.63 0.16 0.40 0.21
2003 - 04 0.74 0.16 0.85 0.23
2004 - 05 0.84 0.16 0.76 0.24
2005 - 06 0.70 0.19 0.95 0.24
2006 - 07 0.35 0.17 0.88 0.19
2007 - 08 0.80 0.15 0.77 0.16

Average 0.69 0.15 0.73 0.21

is desirable because it means that dominant group members spend enough time in the
project and achieve a higher level of expertise to better support casual group members.

Approach. To measure the stability of members in the dominant group, we performed
two studies:

– Dominant group change over time: We measured the change between two con-
secutive years. This gives us a measure of how much a dominant group changes by
from one year to the next.

– Dominant group change compared to casual group change: We measured the
change of the casual group for two consecutive years and compared it to the change
in the dominant group.

We used the Cosine Distance (CD) similarity metric to measure the similarity be-
tween the groups in two consecutive years. The CD metric outperforms other simple
measures such as intersection or proportion which only measure the existence of a par-
ticipant but not their level of contribution. The CD similarity is defined as:

CD(P,Q) =
∑

x P (X)Q(X)√∑
x P (X)2

√∑
x Q(X)2

, (1)

where P (X) and Q(X) represent the two input distributions to be compared. A value
of 0 for the CD metric means that the group has changed drastically across two years
with no members in common. A value of 1 for the CD metric indicates that the group
is the exact same (i.e. is it a very stable group).

The Cosine Distance metric takes as input two participation distributions – one for
each of the years under study. Each distribution has the contribution of each of the
participants for that year. So when comparing the dominant group for the year 2000
and year 2001, the 2000 and 2001 participation distribution for the dominant group is
used. One major challenge we faced when conducting this study was the use of multiple
aliases by developers [4]. We used heuristics based on regular expressions to address
this challenge as detailed in our previous work [2].

On the Central Role of Mailing Lists in Open Source Projects 97

Results. The calculated CD values for the Evolution and Nautilus projects are shown
in Table 2. It is observed that the dominant group is more stable than the casual group.
On average, the dominant group is 3 times more stable than the casual group. These
two findings are observed across all of the 22 GNOME projects. The same stability
of social structures were also observed with the FLOSS projects [21]. This is a positive
sign about the health of the dominant groups of many of these projects. Dominant group
members, who are critically important to the mailing list of the project are stable enough
to pass their knowledge to newcomers and casual group members.

Conclusion. The participants in the dominant group are very stable over time. On aver-
age, they are about 3 times as stable as casual participants.

3.3 Source Code Activity and Mailing List Activity

Can mailing list activity be used to infer information about source code activity (amount
of work done on the source code)?

Motivation. Since mailing lists are the main source for developer communication [9],
we expect that mailing lists contain useful information about the source code of a
project. We want to explore if we can infer the types of source code changes and the
level of activity done on the source code through the mailing list activity. Because devel-
opers often use the mailing list to discuss their source code changes and get assistance
or feedback on these changes [13], we hypothesize that there will be high correlation
between the mailing list activity and the code activity. Or in other words, the more work
done on the source code, the more it will be discussed on the mailing list and vice-versa.

Approach. We mined the SVN source control repository and extracted the number
of lines added, removed and modified per year for each project. We defined a Code
Activity (CA) metric, defined as:

CA(Y) = AY + RY + MY , (2)

where AY , RY and MY refers to the number of lines of source code added, removed
and modified in year Y , respectively. We used this metric and measured the correlation
between it and the mailing list activity, i.e., the number of messages per year. Further-
more, we examine the correlation between the number of messages and the type of the
performed change (add, delete, modify).

Results. The number of messages per year and the Code Activity for the Evolution and
Nautilus projects are plotted in Figures 3(a) and 3(b), respectively. It can be observed
that there is a high correlation between the number of messages on the mailing list and
the Code Activity metric. This finding shows that developers do rely heavily on the
mailing list to discuss source code changes. As for the correlation between the level
of mailing list activity and the type of change, we present the results in Table 3. We
found that in the Evolution project, the highest correlation was between the number of
messages and the lines of code added (ρ = 0.83). On the other hand, in the case of the
Nautilus project, we found that the highest correlation is between the number of mes-
sages and the lines of code modified (ρ = 0.85). It seems that in the Evolution project,
participants are discussing code additions more than they are discussing code removal

98 E. Shihab et al.

Table 3. Correlation between the number of messages per year and the type of source code change

Type of change

Project Add Remove Modify

Evolution 0.83 0.60 0.61

Nautilus 0.32 0.53 0.85

(a) Evolution project (b) Nautilus project

Fig. 3. Number of Messages and Code Activity

or modifications, while for the Nautilus project, code modifications are being discussed
more than code additions and removals. We believe that further investigation is needed
here to better understand the rationale for this discrepancy between both projects and
whether it indicates different development and communication styles.

To verify, we measured the occurrence of terms that indicate code additions and code
modifications in the mailing lists of the two projects. Since most commonly, code ad-
ditions involve the introduction of new features, we classified the terms “new features”
and “feature request” as indicators of code additions. Code modifications are usually
carried out to fix bugs which are found during the testing phase and applied via patches.
For this reason, we associate the terms “bug”, “patch”, “testing”, and “maintain” to code
modifications. We observed that in the Evolution mailing list, the terms associated with
the addition of new features were mentioned in 57% more messages than on the Nau-
tilus mailing list. On the other hand, the terms associated with code modifications were
mentioned in 75% more messages in the Nautilus mailing list compared to the Evolution
mailing list. The findings are consistent with our correlation results shown in Table 3.

Conclusion. Mailing list activity is closely related to source code activity. In addition,
mailing list discussions are good indicators of the types of source code changes being
carried out on the project.

3.4 Effect of External Factors on Mailing List Activity

Can we observe the effect of external factors on mailing list activity?

On the Central Role of Mailing Lists in Open Source Projects 99

Motivation. One of the benefits of studying mailing lists is that they can provide us with
knowledge about issues that indirectly affect a project, i.e., external factors. Market
competition and management changes are examples of external factors. Such knowl-
edge about external factors is often hard to uncover as it is not recorded in the source
code or documentation. However, this knowledge is very important since it helps ex-
plain certain observed behaviors, such as an increase in bugs or the lack of interest in
a project (and maybe its eventual death). We attempt to observe the effect of external
factors on mailing list activity.

Approach. Due to space limitation, we perform the study of external factors on the
Evolution project only. However, we note that our approach can be applied to any other
project. We study the mailing list activity trend and perform two types of analysis: quan-
titative and qualitative analysis. In the quantitative analysis study, we treat the bodies
of all email messages as a bag-of-words and compare the occurrence of the names of
competing mail clients (“gmail”, “outlook”, and “thunderbird”) to the occurrence of
the terms: “evolution” and “evo” (a short hand form often used to refer to the evolution
project). A rise in the number of times a term occurs indicates that it is being discussed
more, hence it has a greater impact. In the qualitative study, we read through several
email postings to better understand and clarify our quantitative findings.

Results.
Quantitative analysis: Looking at Figure 4(a), we observe that the activity on the

Evolution mailing list is increasing from 2000 to 2001. This increase can be attributed
to the creation of Ximian at the end of 1999, which was created to continue the develop-
ment of the Evolution project [8]. This acquisition increased the attention and support
for the Evolution project, hence the continuing increase in mailing list activity.

Then, from the year 2001 on, we observe a steady decline in mailing list activity
(except for a small increase in activity in the year 2003). Market competition, along with
organizational changes may have caused this decline. The results of the quantitative
study (which measures the frequency of occurrence of terms in the message bodies
per year) are shown in Figure 4(b). We observe a steady decrease in the use of the
terms “evolution” and “evo”, suggesting that the Evolution project is being discussed
less frequently. At the same time, there is a steady increase in the number of times its
market competitors “gmail”, “outlook” and “thunderbird” are being mentioned.

Qualitative analysis: We read through several mailing list posting to better under-
stand our aforementioned quantitative findings. The following quotations are excerpts
from discussions that took place when a declining level of activity was observed:

“...Furthermore, I can’t find where in the Tools menu to change this: the option
is no longer present on any of the dialog boxes. Which is why I’m sending this
with Thunderbird...”
“...Unless Ximian implements some features that aren’t important to Ximian but
are important to its users, evo will be relegated to ”toy” status. I’m currently
struggling to remain with my current distro of SuSE+Ximian in my business,
but the lack of meaningful support in both components is forcing my hand to
look around for another solution...”

100 E. Shihab et al.

(a) Messages per year (b) Frequency of terms

Fig. 4. Messages per year and Frequency of terms on the Evolution mailing list

We believe that these excerpts show that the Evolution mail client was and is losing
market share due to competition from other competing mail clients, such as Thunder-
bird, with many of the postings pointing people to competing products.

As for the spike in activity on the Evolution mailing list in the year 2003, we believe
this can be attributed to Novell’s acquisition of Ximian in late 2003 [8]. We counted
the occurrence of the term “novell” in the mailing list and found that the number of
times the term “novell” was mentioned on the Evolution mailing list spiked from 13 in
2003 to 574 in 2004 (as depicted in Figure 4(b)). This spike is most likely due to hype
surrounding Novell’s acquisition, which quickly dies off in the coming years.

This study on external factors suggests that mailing lists can be leveraged to study
the effect of external factors on a project. Furthermore, such information can be used to
explain design decisions that happened in the past.

Conclusion. External factors affect mailing list activity.

4 Threats to Validity

In our stability analysis, we used the names of developers as identifiers. Although we
used heuristics to resolve multiple aliases [2] (i.e. participants who use multiple email
address and names), we were not able to deal with some rare cases. Additionally, in our
study we assume that all mailing list participants are developers. This assumption is true
for the vast majority of the cases (especially since we are considering developer mailing
lists), but in some cases, it is possible that a participant on the developer mailing list is
not engaged in any developmental effort.

In our studies on source code activity and external factors, we measure the frequency
of key terms that we associate with specific topics (i.e. the term “maintain” with the
topic maintenance). Although our list is not exhaustive and does not contain all the
terms that may be associated with the respective topic, we believe that the terms used in
our study are the most common and cover the majority of the terms that would be used
to refer to the topic.

Finally, our findings may not generalize to all open source projects.

On the Central Role of Mailing Lists in Open Source Projects 101

5 Related Work

Previous work used mailing lists to study the social structure of developers. Bird et
al. [4] used mailing lists to study the social networks created by developers and non-
developers. In their follow-on work [6], they extracted the sub-community structure
from these social network and studied their evolution over time. Ogawa et al. [11] used
Sankey diagrams to visualize evolving networks in mailing lists and concluded that
social behavior can be related to events in a project’s development.

In addition, several studies used mailing lists to study developer morale, work times
and the code review process. Rigby and Hassan [14] performed a psychometric study
on the Apache httpd mailing list to identify the personality types of open-source soft-
ware developers and gain insight on the level of optimism in pre- and post release
phases. Tsunoda et al. [16] used mailing lists to analyze developer work times and
found that the ratio of committer messages sent during overtime periods is increasing
every year. Weissgerber, Neu and Diehl [17] used mailing lists to study the likelihood
of a patch getting accepted.

Furthermore, other studies used mailing lists to study developer coordination, mo-
tivation and knowledge sharing. Yamauchi et al. [18] studied the coordination mecha-
nisms used by OSS developers to achieve smooth coordination. They found that spon-
taneous work coordinated afterward is effective, rational organizational culture helps
achieve agreement among OSS members and communications media, such as CVS and
mailing lists, moderately support spontaneous work. Lakhani and von Hippel [20] used
mailing lists to study the motivating factors of OSS participants to perform mundane
tasks. They found that direct learning benefits is one of the main motivators for these
participants to conduct such tasks. Sowe et al. [19] studied knowledge sharing between
developers in mailing lists. They found that developers share knowledge a lot.

Other work combined the information extracted from mailing lists with informa-
tion from other repositories (e.g. the source code repository). Robles and Gonzalez-
Barahona [15] used information from multiple historical archives to assist in accurately
identifying actors. Baysal and Malton [1] used the similarity between mailing list and
source code archives to identify architectural changes. Bird et al. [5] combined the use
of mailing lists and the source code repository to study the time it takes for developers
to be invited into the core group of a project.

Our work recognizes the central role played by mailing lists and, to the best of our
knowledge, is the first to perform an exploratory study using a large number of mail-
ing lists. The study on the communication style of participants and their stability is
novel and complements previous work. For example, previous work on social network
analysis, developer morale, work times and evolution could have treated dominant and
casual group differently and put more emphasis on the dominant group findings. Do-
ing so would enhance the impact of their findings and provide a better understanding
of the phenomena being observed. The findings from our source code activity and ex-
ternal factors studies can assist researchers who use mailing lists in combination with
source code repositories (e.g. [12, 1]) better understand the relationship between the
two. Further, taking into account the effect of external factors may help explain some
unexpected observations.

102 E. Shihab et al.

6 Conclusions

In this paper, the central role of mailing lists was studied through an exploratory study.
The study centered around three aspects: developers, source code and external factors.

Our findings indicate that a small number of participants (dominant group) account
for the majority of the messages posted on mailing lists. The dominant group is very
active and engaging with others and its composition is very stable (3 times more stable
than casual members). In addition, we found that mailing list activity is closely related
to source code activity and mailing list discussions are good indicators of the types of
source code changes being carried out on the project. Lastly, we showed that external
factors affect mailing list activity.

References

1. Baysal, O., Malton, A.J.: Correlating social interactions to release history during software
evolution. In: MSR 2007, p. 7 (2007)

2. Bettenburg, N., Shihab, E., Hassan, A.E.: An empirical study on the risks of using of off-the-
shelf techniques to process mailing list data. In: ICSM 2009 (2009)

3. Bird, C., Gourley, A., Devanbu, P.: Detecting patch submission and acceptance in oss
projects. In: MSR 2007 (2007)

4. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social net-
works. In: MSR 2006, pp. 137–143 (2006)

5. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders? immigration
in open source projects. In: MSR 2007, p. 6 (2007)

6. Bird, C., Pattison, D., D’Souza, R., Folkiv, V., Devanbu, P.: Latent Social Structure in Open
Source Projects. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 24–35. Springer,
Heidelberg (2008)

7. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. Computer 34(1), 135–137
(2001)

8. German, D.M.: The gnome project: a case study of open source, global software develop-
ment. Software Process: Improvement and Practice 8(4), 201–215 (2004)

9. German, D.M.: Using software trails to reconstruct the evolution of software: Research arti-
cles. J. Softw. Maint. Evol. 16(6), 367–384 (2004)

10. Hossain, L., Wu, A., Chung, K.K.S.: Actor centrality correlates to project based coordination.
In: CSCW 2006, pp. 363–372 (2006)

11. Ogawa, M., Ma, K.-L., Bird, C., Devanbu, P., Gourley, A.: Visualizing social interaction
in open source software projects. In: Asia-Pacific Symposium on Visualization, pp. 25–32
(2007)

12. Pattison, D., Bird, C., Devanbu, P.: Talk and work: a preliminary report. In: MSR 2008, pp.
113–116 (2008)

13. Rigby, P.C., German, D.M., Storey, M.-A.: Open source software peer review practices: A
case study of the apache server. In: ICSE 2008, pp. 541–550 (2008)

14. Rigby, P.C., Hassan, A.E.: What Can OSS Mailing Lists Tell Us? A Preliminary Psychome-
tric Text Analysis of the Apache Developer Mailing List. In: MSR 2007, p. 23 (2007)

15. Robles, G., Gonzalez-Barahona, J.M.: Developer identification methods for integrated data
from various sources. SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)

16. Tsunoda, M., Monden, A., Kakimoto, T., Kamei, Y., Matsumoto, K.-i.: Analyzing oss devel-
opers’ working time using mailing lists archives. In: MSR 2006, pp. 181–182 (2006)

On the Central Role of Mailing Lists in Open Source Projects 103

17. Weissgerber, P., Neu, D., Diehl, S.: Small patches get in! In: MSR 2008, pp. 67–76 (2008)
18. Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration with lean media: how

open-source software succeeds. In: CSCW 2000, pp. 329–338 (2000)
19. Sowe, S.K., Stamelos, I., Angelis, L.: Understanding knowledge sharing activities in

free/open source software projects: An empirical study. J. Syst. Softw. 81(3), 431–446 (2008)
20. Lakhani, K.R., von Hippel, E., Lakhani, K.R.: How open source software works: Free user-

to-user assistance. Research Policy 32, 923–943 (2003)
21. Howison, J., Inoue, K., Crowston, K.: Social dynamics of free and open source team commu-

nications. In: Second Intl. Conf. on Open Source Systems, June 2006, pp. 319–330 (2006)

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 104–115, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Proposal of TIE Model for Communication in Software
Development Process

Masakazu Kanbe1,2, Shuichiro Yamamoto3,1, and Toshizumi Ohta2

1 NTT DATA CORPORATION, 3-3-9 Toyosu Koutoku Tokyo, Japan
2 The University of Electro-Communications, 1-5-1 Choufugaoka, Choufushi, Tokyo Japan

3 Nagoya University, Furocho, Chikusaku, Nagoya, Japan
{kanbems,yamamotosui}@nttdata.co.jp, ohta@is.uec.ac.jp

Abstract. Communication is more important in software development fields. We
proposed the intermediary knowledge model to analyze the enterprise communi-
cation by extending traditional knowledge creation model. In this article, we
propose TIE models based on intermediary knowledge model. TIE model is the
knowledge network model to explain the just in time documentation in the CMC
(Computer Mediated Communication) tools like wiki. We analyzed the case of
wiki based software development and showed the effectiveness and efficiency of
the CMC tools in software development in certain conditions.

Keywords: Knowledge network, Software development, Communication.

1 Introduction

Software developments become more complex and many developers who have vari-
ous backgrounds participant in its processes. Various communications occurred in the
field of the software development. The communication style of software develop-
ments contains regular face to face meetings, ad hoc conversations in the local office,
and acceptances of document by e-mail. Furthermore, CMC (Computer Mediated
Communication) tools such as wiki, SNS, blogs and communication plug-ins of Inte-
grated Development Environment support the developers’ communication. In this
article, we propose TIE model as knowledge network model for software develop-
ment communication. TIE model has the aim to elaborate the knowledge transforma-
tion processes by network structure. TIE model is three layered network model. The
three layers are tacit knowledge network, intermediary knowledge network and ex-
plicit knowledge network. We analyzed the case of wiki used software development
process by TIE model. We also investigate the effectiveness and efficiency of wiki
used software development process.

2 Related Works

In this chapter, we introduce the previous related works to explain our model.

 A Proposal of TIE Model for Communication in Software Development Process 105

2.1 Intermediary Knowledge Model

We proposed the intermediary knowledge model as knowledge sharing model in en-
terprises [1] [2]. Intermediary knowledge is the knowledge statement in which em-
ployees share the knowledge by the CMC tools. Intermediary knowledge model is one
of the extended models of tacit and explicit knowledge concept [3].

The traditional knowledge creation model has tacit and explicit knowledge and
four knowledge transformation modes; socialization, externalization, combination and
internalization [4]. Intermediary knowledge model explains business problem solving
without the knowledge spirals of the organizational process. Employees can share the
knowledge in intermediary knowledge statement by using CMC tools. In intermediary
knowledge model, employees can exchange the knowledge that can be shared in tacit
knowledge with less cost compared to explicit knowledge.

Socialization

Combination

Externalization

Internalization

Publication

Collaboration

Resonant formation

Fragmentation

Sophistication

Explicit
Knowledge

Tacit
Knowledge

Intermediary
knowledge

Knowledge shared
in CMC tools

Traditional knowledge creation model

Fig. 1. Intermediary knowledge model

Fig. 1 shows the intermediary knowledge model. The dashed lined square in Fig. 1
indicates the traditional knowledge creation model. We add the intermediary knowledge
and its knowledge transformation modes to the traditional model. This model indicates
that the employees can rapidly develop the knowledge in the CMC tools by using the
intermediary knowledge transformation modes. The modes consist of publication, frag-
mentation, collaboration, resonant formation, and sophistication. Publication means to
publish individual experience or ideas. Fragmentation means to import the parts of ex-
plicit knowledge. Collaboration means to react with employees’ problems or opinions.
Resonant formation means to accept and understand the others’ opinions. Sophistication
means to develop explicit knowledge from intermediary knowledge.

According to the knowledge spiral condition of traditional knowledge creation
model, if employees intend to use the knowledge formally and inter-organizationally,
each employee in organization have to generate the explicit knowledge through the

106 M. Kanbe, S. Yamamoto, and T. Ohta

inner organizational knowledge spirals. Formally making explicit knowledge needs
high cost and much labor through the inner organizational knowledge spirals. Inter-
mediary knowledge transformation modes explain lower cost and labor in the knowl-
edge exchange than the traditional knowledge transformation modes.

Also intermediary knowledge model explains the effectiveness of communication
records. CMC tools create the more interaction occasions for employees than they do
not use CMC tools. The employees have new communication in CMC tools. The
communication in CMC tools are recorded as intermediary knowledge and employees
reused the knowledge efficiently.

2.2 IBIS Model

IBIS [5] and gIBIS [6] [7] are the traditional software engineering method. One of the
purposes of these IBIS methods is to fully record and structuralize the discussion
processes and progresses in software developments. Recording and structuring all the
discussion processes and progresses, software developers could find the important infor-
mation in developments. Although the records and structures of IBIS or gIBIS may be
useful, the costs or labors are too large to make and reuse the full documented records.

2.3 Recent Software Engineering Researches

Software engineering researches supports the software developers’ communication.
Software developments need the knowledge communication among software develop-
ers. Ko et al. [8] analyzed the software developers’ activities and found that the devel-
opers used coworker as information source. This research indicates that the communi-
cation among the developers is very important in recent software developments.

Ye et al. [9] [10] helped the software developers to search the knowledge from the
software libraries and members of software development team. They proposed the
personalized search engine for API documents and communication channels for ex-
perts in software development team. Their researches implicate the way to make de-
velopers communicate each other for efficient software development.

Marczak et al. [11] indicated the importance of information brokers in require-
ment change management. As their research, the information brokers have impor-
tant roles in the social network of software development team. The information
brokers facilitate information flow to avoid misinterpretations of requirements.
These researches indicate the importance of the developers’ communication in
software development.

3 TIE Model

3.1 Overview of TIE Model

We propose TIE model as CMC model for dynamic communication in software
development process. TIE model has three layers consisted of Tacit Knowledge
Network (TKN), Intermediary Knowledge Network (IKN) and Explicit Knowledge
Network (EKN). Table 1 shows features of these three layers.

 A Proposal of TIE Model for Communication in Software Development Process 107

Table 1. Features of layers of TIE model

Knowledge
Network

Network
node

Media Documentation Examples of products

Tacit
Knowledge

Network
Human

Face to Face,
Telephone,

Video
conference

No
documentation

Discussions, Meetings

Intermediary
Knowledge

Network

CMC
content

CMC tools
 (Wiki, SNS,
blog, e-mail)

Just in time
documentation

CMC logs

Explicit
Knowledge

Network
Document

Document
management

services

Full
documentation

Requirements,
specifications, codes,
manuals, guidelines

TKN has roles to exchange the tacit knowledge. The network node of TKN is hu-

man. TKN is related to organization structures, roles of members, processes of deci-
sion making and so on. TKN is occurred in face to face meeting, telephone or video
conference communication. It seems that TKN brings down no documentation for the
software development. We assume TKN does not create any formal documents. The
products of TKN are discussions and meetings. TKN does not always create the tan-
gible products to be observed.

IKN has roles to exchange the intermediary knowledge. The network node of IKN
is CMC content. IKN is related to CMC network in the software development team.
These CMC contents grow up in CMC tools such as Wiki, SNS, blog and e-mail. IKN
provides just in time documentation with the developers. If one needs to coordinate
with others, one can use CMC tools to coordinate with others. And the coordination
records are published for all the members of software developmental teams. These
published coordination records are useful documents for software development. We
call this process “Just in time documentation.” Just in time documentation means that
the necessary knowledge becomes documents when the developers communicate each
other in CMC tools. The products of IKN are CMC logs.

EKN has roles to exchange the explicit knowledge. EKN is related to document
network in the software development process. The network node of EKN is docu-
ment. This document network grows up in document management services, which of
functions are the document traceability, the historical management, the full text search
and the document file sharing. EKN provides full documentation with developers.
The products of EKN are documents, such as requirements, specifications, source
codes, manuals and guidelines.

The network edges of TKN mean human communication in face to face meetings.
The edges of IKN mean the concatenations of CMC contexts. The edges of EKN
mean the concatenations and relation among documents. The edges between TKN and
IKN mean the processes of intermediary knowledge provisions and acquisitions in
CMC tools. The edges between IKN and EKN mean the processes quotations and
documentation of explicit knowledge in CMC tools.

108 M. Kanbe, S. Yamamoto, and T. Ohta

3.2 TIE Model for Software Development Communication

TKN do not create any formal document. We call this TKN statement “no documen-
tation.” EKN aims to create the documents elaborately. We call this EKN statement
“full documentation.” Traditional software developments use the TKN and EKN as
the knowledge process. However, the knowledge processes in the traditional software
developments has two problems. First problem is the loss of the important informa-
tion of software developments. The knowledge processes in TKN are oral communi-
cation in discussions or meetings. Communication records of TKN are almost disap-
peared when the meetings or discussions ended. TKN contents are not always de-
scribed in document and merely shared with all the members.

Second problem is the difficulty to record the all the important information of
software developments. If all the events in software developments were documented
fully at right time, each member could understand requirements, specification, and
source codes perfectly. However, it is difficult to achieve full documentation because
its cost is very high and its range is very ambiguous.

Fig. 2 shows TIE model we proposed. TIE model adds IKN to the traditional
knowledge process in software developments. CMC tools support IKN. Balloons
express the representative knowledge process of TIE model. The square balloon
means the knowledge processes of traditional software development style. Round
balloon means the knowledge processes of particular for TIE model.

The knowledge processes in IKN are open and agile communication on CMC
tools. The CMC tools facilitate the communication of software development teams.
IKN records the CMC logs. These CMC logs are not formal document, but very use-
ful knowledge for software development. The development team members can read
the knowledge processes each other in CMC tools. The knowledge processes in TIE
model have correspondence relation with the knowledge transfer modes in the inter-
mediary knowledge model in Fig. 1. Tacit knowledge, intermediary knowledge and
explicit knowledge are corresponded with TKN, IKN and EKN respectively.

Tacit Knowledge
Network

Explicit Knowledge
Network

■Internalization
・Documents and source
codes review

■Externalization
・Making documents and
source codes based on
discussions or coordination

■Socialization
・Discussions
・Meetings

■Combination
・Management of
documents

Intermediary Knowledge
Network

■Publication
•Publication of personal
experiences of software
development

■Collaboration
•Discussion on
CMC tools

■Sophistication
•Revising documents
based on IKN
communication

■Resonant formation
•Agreeing with others
opinions

■Fragmentation
•Picking up task lists from
documents

Fig. 2. TIE model and knowledge processes

 A Proposal of TIE Model for Communication in Software Development Process 109

4 Case Study of TIE Model for Software Development

To confirm the effectiveness and efficiency of TIE model, we analyzed the case of the
wiki used software development. Wiki was used to facilitate the communication in
software development team.

4.1 Aim of the Case Study

The case study aims to verify these assumptions form A1 to A3.

• A1: Software developers can make lists of necessary knowledge and gather them
from members in CMC tools.

• A2: Software developers can supply and share the informal knowledge among
members in CMC tools.

• A3: Software developers can supplement the knowledge sharing in face to face
meeting in CMC tools.

These assumptions are set to confirm the effectiveness and efficiency of CMC tools in
software development. We define that to verify these assumptions are to verify the
effectiveness and efficiency of TIE model in software development communication
because CMC tools support IKN and express the features of IKN.

4.2 Overview of Case

We selected the wiki used software development case. The number of software devel-
opers in this case was nine. Nine members belonged to two other Japanese companies.
They cooperated to develop the software system development with unfamiliar de-
vices. This software development had the processes; document production, program
coding, and program test. These two companies office were in different location with
no time zone difference. Although the members had the face to face meetings at once
a week regularly, some communication mistakes occurred and caused negative effects
for the software development. To deal with the communication mistakes, this soft-
ware development team determined to use wiki to compliment with team communica-
tion. Appendix shows the outlines of the wiki communication. This wiki had 13
pages. There were 21 items in 13 wiki pages. We observed the knowledge processes
of TIE model, 18 publications, 7 fragmentations, and 2 collaborations in wiki. The
example of the publication was W3 in Appendix. In W3, a member imagined the
tasks to be done for this process and published them. The example of fragmentation
was W12 in Appendix. In W12, a member extracted documents lists from the devel-
opment conference regulations in this organization. The example of collaboration was
W8 in Appendix. In W8, members communicated about the test policy in wiki. We
did not observe the knowledge process of resonant formation and sophistication.
These two knowledge processes might occur outside wiki.

4.3 Verifying the Assumptions

To verify the assumptions, we picked up the evidences from the CMC in the wiki.

• Verifying A1: Software developers can make lists of necessary knowledge and
gather them from members in CMC tools.

110 M. Kanbe, S. Yamamoto, and T. Ohta

The wiki was used to make lists of necessary knowledge and gather them from
members in software development. There were design documents lists in W1 and W2
of Appendix. These lists were fragmented intermediary knowledge from the explicit
knowledge. A member considered which are necessary items from explicit knowledge
for the software development team. This member extracted the document names from
the document inventories. The document inventories are explicit knowledge. This
member picked up and wrote the document names as intermediary knowledge in this
wiki. Making lists of necessary knowledge in this wiki showed the edges between
EKN nodes (documents) and IKN nodes (CMC contents) in TKN model. This mem-
ber did not use e-mail to share the document lists, but used wiki.

Other members added the progress information of the document as intermediary
knowledge. To add the progress information is publication of intermediary knowl-
edge. All the member shared the dairy progress information of each document by
wiki. Gathering necessary knowledge in this wiki showed the edges between TKN
nodes (human) and IKN nodes (CMC contents) in TKN model.

The knowledge in the wiki is open to all the members and shared one target. If they
shared this progress information by e-mail, they would not continue to refine the
progress information because e-mail has the feature of cross in the post.

• Verifying A2: Software developers can supply and share the informal knowledge
among members in CMC tools.

The wiki was used to supply and share the informal knowledge among members in
software development. “Development know-how” in W15 of Appendix is one of the
evidences to verify A2. This development know-how was supplied by a member who
had a similar development experiences. This member wrote politely the knowledge to
treat with specific devices. This knowledge was based on the member’s own experi-
ences and not formalized yet. In traditional software development, such know-how
may be transferred by oral communication in TKN. On the other, this member had to
write this know how as formal meeting document. In this case, the knowledge sharing
in the wiki might avoid the rediscovery of this knowledge to treat specific devices.
Supplying and sharing informal knowledge showed the edge between TKN node
(human) and IKN node (CMC contents) in TKN model.

• Verifying A3: Software developers can supplement the knowledge sharing in face
to face meeting in CMC tools.

The wiki was used to supplement the knowledge sharing in face to face meeting in
software development. “Policy for test items (W7)” and “Comment for policy (W8)”
of Appendix are the evidences to verify A3. In W7, a member published the policy for
the test item for all the members. In W8, Another member in other location replied for
the policy by the wiki. This type of knowledge sharing shows the edge between IKN
node (CMC content) and IKN node (CMC content) in TIE model. In traditional soft-
ware development, this communication between members might suspend until regular
weekly meeting. In this case, using the wiki provided the appropriate communication
occasions and eliminated the delay factor in software development.

 A Proposal of TIE Model for Communication in Software Development Process 111

5 Discussions

We analyzed the case in former section. In this section, we discuss on the effective-
ness of CMC tools along with the case study. We also discuss on the limitation of our
analyses for software development communication.

5.1 To Make Lists and Gather the Knowledge

We discuss the conditions that software developers made lists of necessary knowledge
and gathered them from members in CMC tools. We assume two reasons why they
wrote the necessary knowledge in the wiki.

First reason is that the contents to be shared should be open. The wiki provided the
developers with the open communication environment consistently. If they did not
use the wiki, they might communicate by face to face meeting, telephone or e-mail.
This wiki is more open than these communication methods. The open feature of this
wiki facilitates developers to write their knowledge. The open feature made casual
communication and the developers published the progress information each other. In
face to face meeting, powerful members may interfere in the remarks of other low
powered members. Wiki may facilitate the remarks of low powered members. Wiki
prepared the open IKN environment for the software development team. Although
both e-mail and Wiki are CMC tool, we assume they might be different in openness.

Second reason is that the content in wiki is a single object. In the case, they added
the progress information to the items of document lists. If they did not use the wiki,
they might share the progress information of each document with e-mail. By e-mail, it
is difficult to catch up with the progress information of all the members, because e-
mail has the feature of cross in the post and makes multi objects to coordinate. This
feature of e-mail made distribute their knowledge. It is not efficient that someone
should gather the distributed knowledge in e-mail use. The members also need to read
all the e-mail to comprehend the all the members’ progresses. Because the shared
contents feature is open and single object to edit, software developers record the im-
portant knowledge in CMC tools.

5.2 To Share Informal Knowledge

We discuss the conditions that software developers supplied and shared the informal
knowledge among members in CMC tools. We assume that CMC usage was suitable
for sharing developers’ personal experiences about unfamiliar devices. The software
development will advance smoothly with the developer’s knowledge of unfamiliar
devices. As these kinds of knowledge were not written in manuals, the developers
cannot share the knowledge in EKN. CMC tools facilitate these kinds of knowledge
to be share among the members. If this member wrote the knowledge in the wiki in 30
minutes and other eight members read the knowledge 5 minutes, the amount of the
time is 70 minutes. If the rest of eight members acquired the knowledge by try and
error in 120 minutes and the amount of the time is 960 minutes. Although this is an
extreme example, knowledge sharing in the CMC tools may be very effective. We
assume that sharing unfamiliar knowledge is effective usage of CMC tools. Wiki in
this case created the edge between TKN node (human) and IKN node (CMC contents)
in TKN model. There might be the feature of reciprocity in this team.

112 M. Kanbe, S. Yamamoto, and T. Ohta

5.3 To Supplement the Face to Face Meeting

We discuss the conditions that software developers can supplement the knowledge
sharing in face to face meeting in CMC tools. We suggested that two imaginary con-
ditions of the software development communication; wiki style and traditional style.
Wiki style has the regular weekly face to face meetings and wiki based communica-
tion. Traditional style has only the regular weekly face to face meetings. The relations
between the amount of knowledge and time of each style are shown in imaginary
chart Fig. 3. Fig. 3 expresses the only the amount of knowledge increased by develop-
ers’ communication, does not express the amount of the software development works.
When the amount of knowledge reaches at level K, the increases of knowledge may
finished. Straight line in Fig. 3 shows the increase of knowledge in wiki style. The
dashed line also shows the increase of knowledge in traditional style.

A
m

ount of know
ledge

Time

W0=M0

EWi EM

m

1 week 2 week 3 week 4 week 5 week 6 week 7 week

m

m

Level K

m

wi

wi

wi

0

Regular weekly meeting only

Regular weekly meeting
and wiki

L D
Y

Fig. 3. The relation between time and amount of works

The amount of increase of knowledge in wiki style is Y(a,b).

Y(a,b) = a*wi + b*m (1)

In formula (1), a is the number of communication of wiki, wi is the amount of knowl-
edge increase per one wiki communication, b is the number of the face to face meet-
ings and m is the amount of knowledge increase per one meeting.

The amount of increase of knowledge in traditional style is Y(c).

Y(c) = c*m (2)

 A Proposal of TIE Model for Communication in Software Development Process 113

In formula (2), c is the number of the face to face meetings and m is the amount of
knowledge increase per one meeting. To simplify explains, wi and m are fixed in this
formula. However, wi and m are variable by the features of communication of wiki
and meetings in the real case.

Both wiki and traditional styles may have the first meeting in zero point in Fig. 3.
Both styles may gain the same amount of knowledge by first meeting. In wiki style,
developers may increase their knowledge to communicate each other three times via
wiki. In traditional style, developers may not try to increase the knowledge to com-
municate each other. Although both styles may increase the amount of knowledge by
meeting, traditional style may gain the only half amount of the knowledge which wiki
style may gain. As a result, wiki style will end the knowledge sharing at point EWi,
its period L may be 3 weeks. Traditional style will end the knowledge sharing at point
EM, its period L+D may be 6 weeks.

Fig. 3 is the suggestion that wiki supplemented the knowledge sharing of face to
face meeting. Three interactions to gain the knowledge in wiki match one meeting
communication to gain the knowledge. We suppose the wiki style may be more effi-
cient knowledge communication environment than traditional style. However, we also
found a condition to establish our estimation in Fig. 3. The condition is that the
knowledge gained by wiki should be the same type by face to face meetings. We
supposed that there might be two types of knowledge. One is the knowledge which
only can be gained by CMC tools such as wiki. Another is the knowledge which only
can be gained only by face to face meetings. We should distinguish the knowledge to
investigate the knowledge communication conditions for CMC tools.

5.4 Limitations

In this article, we picked up the few positive effects of CMC tools. We should declare
the conditions under which the CMC tools facilitate the software development more
circumstantially. Also, we should analyze the negative factors of CMC tools such as
false information in the wiki, information overload for developers. And we should
investigate the relations among human, CMC content and document, which are the
nodes of TIE model.

6 Summary

It is important to facilitate the knowledge communication among software developer.
We proposed the intermediary knowledge model and TIE model for software devel-
opment. Traditional software development researches focused on mainly human
properties as experts and the quality of documentation. TIE model is software devel-
opment network to express the CMC knowledge processes as network structure. We
analyzed the case to show the effectiveness and efficiency of the wiki for software
development. By analyzing the case, we discussed the conditions to facilitate the
software development process by CMC tools. For further study, we should analyze
more cases of software development by using our TIE model network structure. We
should also investigate the relation between the communication works and the other
important works such as making document or coding.

114 M. Kanbe, S. Yamamoto, and T. Ohta

References

1. Yamamoto, S., Kanbe, M.: Knowledge Creation by Enterprise SNS. The International
Journal of Knowledge, Culture and Change Management 8(1), 255–264 (2008)

2. Kanbe, M., Yamamoto, S.: An Analysis of Computer Mediated Communication Patterns.
The International Journal of Knowledge, Culture and Change Management 9(3), 35–47
(2009)

3. Polanyi, M.: The Tacit Dimension. Routledge & Kegan Paul Ltd. (1966)
4. Nonaka, I., Takeuchi, H.: The knowledge creating company How Japanese Companies

Create the Dynamics of Innovation, Oxford Univ. (1995)
5. Rittel, H., Kunz, W.: Issues as elements of information systems., Working paper# 131. In-

stitute fur Grundlagen der Planung I.A.University of Stuttgart
6. Conklin, J., Begeman, M.L.: gIBIS: A Hypertext Tool for Exploratory Policy Discussion.

ACM Transactions on Office Information Systems 4(6), 303–331 (1988)
7. Conklin, J., Selvin, A., Shum, S.B., Sierhuis, M.: Facilitated Hypertext for Collective Sen-

semaking: 15 Years on from gIBIS. In: Hypertext 2001 Conference (2001)
8. Ko, A.J., DeLine, R., Venoloa, G.: Information Needs in Collocated Software development

teams. In: 29th International Conference on Software Engineering, ICSE 2007 (2007)
9. Ye, Y., Yamamoto, Y., Nakakoji, K.: Expanding the Knowing Capability of Software De-

velopers through Knowledge Collaboration. International Journal of Technology, Policy
and Management 8(1), 41–58 (2008)

10. Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y., Asada, M.: Searching the Library and
Asking the Peers: Learning to Use Java APIs on Demand. In: Amaral, V., Veiga, L., et al.
(eds.) Proceedings of 2007 International Conference on Principles and Practices of Pro-
gramming in Java, pp. 41–50. ACM Press, Lisbon (2007)

11. Marczak, S., Damian, D., Stege, U., Schroter, A.: Information Brokers in Requirement-
Dependency Social Networks. In: 16th IEEE International Requirement Engineering Con-
ference, pp. 53–62 (2008)

 A Proposal of TIE Model for Communication in Software Development Process 115

Appendix: Contents and Intermediary Knowledge Processes in the
Wiki

Names of pages ID Items Contents Knowledge
transformation mode

Basic design W1 ・Basic design documents list ・Members added the progress for each items. Fragmentation,
Publication

Detail design W2 ・Detail design documents list ・Members added the progress for each items. Fragmentation,
Publication

W3 ・Tasks ・Tasks in this process Publication

Make and unit test W4 ・FYI ・Discussion memo for the decision items Publication

W5 ・Policy for test items ・Descriptions of policy for test items and conditions Publication

W6 ・Estimation method of test density ・Estimation with number of test items and scales Publication

System integration
test

W7 ・Policy for test items ・Descriptions of policy for test items and conditions Publication

W8 ・Comment for policy ・Comment for policy of W7 Collaboration

W9 ・Estimation method of test density ・ Estimation with number of test items and scales Publication

W10 ・List of the test materials ・List of the materials; software and hardware Publication

Run time test W11 ・Call for comments ・Message to make the run time test guideline Publication

Development
conference #1

W12 ・Development conference #1
document list

・Document list for development conference #1 Fragmentation

Development
conference #2

W13 ・Development conference #2
document list

・Document list for development conference #2 Fragmentation

Graph W14 ・Graph description specification ・Graph specification of system Publication

Know-how W15 ・Development know-how ・Know-how from the similar system experienced worker Publication

Memo for project
management

W16 ・Items to be improved for project
management

・Communication method for project management Publication

Demonstration W17 ・Purpose ・Purpose of demonstration Publication

W18 ・Scenario ・Description of use cases for office and factory Publication

W19 ・Proposal of the demonstration ・Phases of demonstration and the To Do lists Publication,
Fragmentation,
Collaboration

Name of documents W20 ・Chapters ・Chapter and correction comments for documents Fragmentation,
Publication

W21 ・Documents list ・Documents list and working memos Fragmentation,
Publication

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 116–123, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Identifying the Concepts That Are Searchable with
Keywords in Code Search Engines

Toshihiro Kamiya

Future University Hakodate
116-2 Kamedanakano-cho, Hakodate, Hokkaido, Japan 041-8655

kamiya@fun.ac.jp

Abstract. The (extended position) paper discusses the reason why keyword-
based search engines may not be effective in code search, and shows an case
study where which kind of concepts in source code can be effectively searched
by keyword code search engines.

Keywords: Search-Driven Software Development, Code Reuse, Experiment.

1 Introduction

Many code search engines, such as Codase (www.codase.com), Codefetch (www.
codefetch.com), Google code search (google.com/codesearch), JExamples (www.
jexamples.com), Koders (www.koders.com), Krugle (www.krugle.org), and Mero-
base (www.merobase.com), have become available recently [1-4, 6, 7]. Most of them
have Google-like interfaces through which a user can enter a set of keywords as a
query to retrieve source code files that are related to the keywords in the query. Some
code search engines also provide options that are specific to source code. For exam-
ple, software developers can use options to specify the specific portions (such as
comments, code, or functional definitions) in which the search keywords appear.

Such code search engines are important instruments to promote and support soft-
ware reuse. However, their support for reuse may not be sufficient. When software
developers consider reuse, they care about not only the functionality of the code, but
also various characteristics such as performance (“Is the algorithm O(N) or O(N2)?”),
usability (“Whether the API is easy to understand and use?”), and maintainability
(“Can the code be easily customized to fit my code?”). This paper tries to evaluate the
capabilities of keyword-based code search engines in terms of their support for
searching reusable code based on multiple characteristics. The paper adopts what we
call an oracle approach for the evaluation: it first identifies a classification schema
that represents different dimensions of code characteristics, and then analyzes whether
we are able to identify, for each dimension of characteristic, a set of intuitive key-
words that can be used in a search query to retrieve effectively reusable code.

 Identifying the Concepts That Are Searchable with Keywords in Code Search Engines 117

2 Challenging Issues in Keyword-Based Code Search

Keyword-based code search systems are faced with two challenging issues:

(1) an expensive process of selecting the right code from search results, and
(2) indirect relations between keywords and source code concepts.

BitArray

BitArray

“temple”

…T F T T F

“bit” “array”

BitArray
BitArray

BitArray

BitArray

BitArray

temple

Concept(s)

Keyword(s)

Search Results

low memory consumption

Fig. 1. Source code search vs. image/text search

Fig. 1 illustrates the two issues by contrasting the process of code search with that
of text and image search. When a user searches in the web space with a keyword-
based search engine, candidates of the search results are web pages (text, or images
around text). The search engine performs matching between the keywords and the text
of the candidates. What a user expects to receive is a set of web pages that directly
include the keywords. For example, when a user types “temple” as a search keyword,
he or she will receive web pages that have the word “temple” in text or embedded
around the images in the web pages.

Moreover, it doesn’t take much time for a user to evaluate whether such search re-
sults are what they need, or to select the best one from the results. When a user re-
ceives hundreds of images shown on a display, it is a matter of seconds to select some
desired images from them. In contrast, it takes much longer time for a software devel-
oper to evaluate whether a source file in the search results are what he or she needs. In
the case study described later, it took the author two person-days to read through 15
source files. When a search result includes a large number of source files, such tasks
of evaluation and selection are very expensive.

118 T. Kamiya

In text or image search, when the search result includes many numbers of items, a
user can reduce the size of the search result by adding extra keywords that are more
specific to a concept to be searched. Such extra keywords should be similarly effec-
tive in code search. However, in the case of code search, except for the names of
classes or methods, the semantics and qualities, such as comprehensibility and the
order of algorithms used in the code, are often not easy to express and may become
obvious only after reading through the whole text of the source file.

To deal with the above two issues, this paper introduces a case study where we try
to explore whether non-functional concepts in source code are searchable with a key-
word-based search engine, and what kind of keywords can be used for search.

3 The Oracle Approach

We describe the oracle approach using a case study of searching code in the following
scenario. A developer is writing a Java program that needs an array of bits with low
memory consumption, that is, a class of bit array that uses one bit in the memory for
each element. The developer guesses, by analogy of the class Array of the standard
Java library, that the name of such a class may be called BitArray. So the developer
can use BitArray as the functionality query for searching. However, the developer
also has other requirements such as performance, comprehensibility and maintainabil-
ity, and the question is what kind of keywords that he or she should use to represent
such requirements for the purpose of searching.

To evaluate the oracle approach of finding effective search keywords that capture
the requirements of multiple characteristics, we will use a toy keyword based code
search engine that is prepared for this evaluation. The oracle approach (Fig. 2) of
finding highly discriminative search keywords works as follows. For each predefined
“correct” answer set of desired code that we want to find, we create a series of key-
word sets that are used as search queries. Each query will return a set of search re-
sults, the search results are then measured against the predefined correct answer set.
Based on the measurement, we will find whether keywords with high discriminating
power exist. More specifically, the approach consists of the following steps:

(1) Prepare a repository of source files, which are the candidates for code search.
(2) Examine each source file in the prepared repository and create a list of concepts

that can be used to describe various features of source files, including basic func-
tionality and other implementation details such as performance and potential usage
pitfalls. This step needs to be performed by a subject expert.

(3) Extract a list of keywords from each source file to represent the source file.
(4) From the list of concepts, create a classification schema by putting each concept

into different categories. This classification schema represents different dimensions
of search requirements. A set of search requirements is created, and each search
requirement contains a subset of the concepts, and in this case study, one search
requirement contains one concept from each category.

(5) For each requirement,

 Identifying the Concepts That Are Searchable with Keywords in Code Search Engines 119

…
…

Concepts

Keywords

Requirement
(set of concepts)

Answer set
(set of files)

High accuracy queries
(set of keywords)

Plausible queries

Repository
(15 BitArray files) …

Find the files that meet the requirement

Identify plausible (for developers) queries

Examine Extract

Generate queries and evaluate accuracies of them

Fig. 2. Steps of the oracle approach

(5-1) Create an answer set, which is a set of source files from the repository that
contain the concepts of the requirement.

(5-2) Determine what words can make a query that returns search results with high
accuracy, namely, identifying the words that have the highest discriminative
power in terms of search accuracy. To do this, we create search queries with ar-
bitrarily selected keywords from the keyword lists, and then compare the search
results of those queries with the predefined answer set.

(5-3) For each query that achieves high search accuracy, analyze whether it is plau-
sible for a software developer to include such words in their search queries
based on their search requirements. The search accuracy of a query is evaluated
with precision and recall.

120 T. Kamiya

4 Case Study

4.1 Source Files, Concepts, and Keywords

The repository in the case study contains 15 Java source files of different implementa-
tions of the BitArray class that are found with existing code search engines. Table 1
shows the concepts that are identified by analyzing the source files. The concepts are
classified into 4 categories:

basic operation
implementation issue (scalability, optimization, pitfalls)
extra operation (functions that can be implemented with combination of

basic operations)
ease of development.

In the implementation issue category, the concepts of limited-size, unlimited-size and
re-size are mutually exclusive; that is, a source file can have only one concept from
that category. Non-pack and pack in the implementation issue category are also mutu-
ally exclusive.

Table 1. Concepts extracted from the source files

Concept Description
basic Can store bits and retrieve the stored bits.
limited-size The max count of bits are hard-corded in a source file (a constat).
unlimited-size Size of a bit array is specified on instance creation.
re-size Size of a bit array can be modified with methods.
non-pack One byte or more stroage is required to store a bit.
pack Less than a byte is required to stroe a bit.
mask A workaround to prevent a time-consuming micro operation.
break-encap. Has methods that return internal data (stored bits).
search Has methods to search true bits in a bit array.
merge Has methods to merge two bit arrays.
value Has a predicate for equality/comparision between two bit arrays.
shift Has methods to shift bits in a bit array.
logical Has methods to calculate "and" or "or" of two bit arrays.
range Has methods to obtain or modify bits within a range on a bit array.
XML Convertible from/to XML strings.
booelan[] Convertible from/to a "boolean[]" object.
byte[] Convertible from/to a "byte[]" object.
file-io Can write to/read from a file.
copy Has methods (or constructors) to duplicate a bit array.
tostring Has a method of a "debug" print.

e. o. d.

impl.
Issue

extra
op.

Classi-
basic op.

basic op. = basic operation,
break-encap. = break encapsulation,
extra op. = extra operation,
e. o. d. = ease of development,

 impl. issue = implementation issue.

 Identifying the Concepts That Are Searchable with Keywords in Code Search Engines 121

Keyword lists were generated from the 15 Java source files with a small script.
Camel cased identifiers such as getLength are split into separate words (e.g. “get”
and “length”). Tag names (e.g. @author) in JavaDoc comments were removed. Op-
erators (such as <<=) were extracted as words too. The keywords extracted from
source files were divided into equivalence classes: If keyword “a” appears in source
files “f” and “g” only, and keyword “b” also appears in “f” and “g” only, then “a” and
“b” are put into one equivalence class because they are equivalent in terms of their
discriminative power. For each equivalence class of keywords, we need evaluate only
one word from that class. In this case study, among the total 197 equivalence classes,
131 classes have only one word and the other 66 classes have an average 11.4 words,
with the largest class having 236 words.

4.2 Evaluations

Table 2 shows queries with high accuracy (high precision and/or high recall) for each
concept. We evaluated queries of one word, two words and three words. The queries
shown in the table are queries of single word. If two or three word queries had higher
precision and recall values than that of single-word queries for a particular concept,
such queries are shown in the remark column in Table 2. Also, when the high dis-
criminative queries in the second column are not intuitive ones, namely, those words
seemed too difficult for a developer to guess from the concepts of the given require-
ment, the more intuitive queries were shown in the remark.

Table 2. High-accuracy queries for each concept

Max
prec. * recall

Max
prec.

Max
recall Remark

basic { & } = 13/14 * 13/14
{ size } = 1/13 * 1/1

{ size }
= 9/13 * 9/9

{ size }
= 9/9

{ limitations } = 2/4 * 2/9, { ++, size } = 9/12 *
9/9, { ++, copy, size } = 9/11 * 9*9

re-size
{ initial }

= 3/4 * 3/3
{ size } = 2/13 * 2/3, { initial, size } = 2/3 * 2/3

{ name }
= 2/2 * 2/2

{ size } = 2/13 * 2/2, { byte } = 0/9 * 0/2,
{ representing } = 2/3 * 2/2

pack
{ copy }

= 12/13 * 12/12
{ packed } = 0/4 * 0/2, { & } = 12/14 * 12/12.
The equivalence class of "packed" includes "̂ ".

mask
{ prevent }
= 2/2 * 2/2

{ mask } = 2/8 * 2/2, { fast, mask } = 2/3 * 2/2

break-
encap.

{ mutable }
= 1/1 * 1/1

The equivalence class of "mutable" includes
"corruption", "performance", and "sanity".

search
{ serialized }
= 3/3 * 3/3

{ first } = 3/5 * 3/3, { pos } = 3/5 * 3/3,
{ position } = 2/6* 2/3, { <=, pos } = 3/3 * 3/3

merge
value { equals } = 5/7 * 5/5, { !, * } = 5/5 * 5/5

shift
{ <<= }

= 2/2 * 2/2

{ shift } = 1/3 * 1/2, { << } = 1/11 * 1/2,
{ >> } = 1/5 * 1/2, { >>> } = 1/5 * 1/2,
{ >>= } = { >>>= } = 1/1 * 1/2

im
pl

. I
ss

ue

non-pack

{ ~ }
= 10/10

{ copy }
= 12/12

{ merge } = 2/2 * 2/2
{ code } = 5/5 * 5/5

Requirement
(concept)

{ + } = 14/14 * 14/14
limited-size { supplied }
unlimited-
size

{ || }
= 5/5

{ exceed }
= 2/2

{ initial }
= 3/3

122 T. Kamiya

Table 2. (Continued)

logical
{ ^= }

= 3/3 * 3/3
{ and } = 3/13 * 3/3, { or } = 2/5 * 2/3,
{ nor } = 2/2 * 2/3, { and, or } = 2/5 * 2/3

range { range } = 0/3 * 0/1, { bounds } = 1/7 * 1/1
XML { xml } = 1/4 * 1/1, { string, xml } = 1/1 * 1/1

{ booleans }
= 3/3 * 3/3

{ boolean } = 3/7 * 3/3

byte[]
{ gets }

= 4/5 * 4/4
{ gets }

= 4/4
{ byte } = 4/9 * 4/4

file-io { file } = 4/7 * 4/6, { file, input } = 4/4 * 4/6

copy
{ >= }

= 8/10 * 8/8
{ >> }
= 5/5

{ >= }
= 8/8

{ copy } = 8/13 * 8/8, { clone } = 6/6 * 6/8,
{ !=, >= } = 8/9 * 8/8, No three-word queryies
outperformed.

{ string }
= 11/12 * 11/11

{ / }
= 9/9 { to, string } = 11/11 * 11/11

e.
 o

. d
.

tostring
{ string }
= 11/11

ex
tra

 o
p.

{ replace } = 1/1 * 1/1

booelan[]

{ reserved }
= 3/3

{ input } = 6/6 * 6/6

{ word } = 1/1 * 1/1

The “{…}” are queries. The values at right side of “=” are precisions and recalls. Each of
these values is denoted by a fraction, whose denominator and numerator are counts of source
files, without canceling down (reduction). A bold-font query is the query that looks the most
intuitive one for the given requirement. A left arrow “←” means the query in the cell is the
same to one in the left cell.

Recall values in Table 2 are relatively high, and this is not surprising for this study

because each concept and queries are both extracted from the source files. In other
words, it is guaranteed that some source files contain words of that concept. If the set
Conclusions.

The findings of the case study can be summarized as follows. Intuitive and high-
precision queries are possible when (i) the name of the method that implements a
concept is easy to guess from the coding conventions of Java, such as copy → clone(),
value → equals(), and tostring → toString(), or (ii) some unique words (operators) are
required to implement the concept, such as, pack → ~ and shift → <<=.

On the other hand, if the concepts are implemented without unique words, such as
scale and conversion, it is difficult to find intuitive and high-precision queries. It is
interesting to note that the former case is considered as searching concept from API
(the exposed attribute of code) and the latter case is considered as implementation
concept (the hidden attribute of entities).

5 Related Work

The CodeBroker [7] system is a code-search engine integrated with a source-code
editor. It watches actions of a developer (user) in the editor and recognizes certain
types of editing actions, such as typing a comment, as triggers for searching.

CodeBroker also incrementally builds discourse and user models about the knowl-
edge of the user, and these models are used to provide search results that are tailored
to the user: it will not present reusable components that the user has known already.

SparsJ [3] is another code search engine that provides a web interface like Google,
in which a user types some keywords and receives a list of components as search

 Identifying the Concepts That Are Searchable with Keywords in Code Search Engines 123

results. It ranks search results using an algorithm named Component Rank: the most
popular component appears in the top of the search results. This increases the chance
for a user to find the components that are most likely to be reused.

As Marcus et al. pointed out in [5], most of the existing approaches for locating
functions (that is, identify code fragments implementing a given domain concept) are
built upon a model that represents a search query with some kind of internal represen-
tations with keywords.

6 Conclusion

This paper explored the possibility of finding effective keywords to search source
code based on concepts that are important for code reuse but are difficult to express in
words. As a case study, 20 concepts were extracted from 15 BitArray classes which
have been developed independently by different developers (except for two). Queries
(a set of keywords) were generated from texts of these source files, and their effec-
tiveness are evaluated in terms of precision and recall values. The evaluation revealed
that (1) if the concepts can be easily guessed from naming conventions of the pro-
gramming language, effective keywords are easier to find; and (2) operators are also
effective keywords for search components that implement the required concepts.

Acknowledgements. I am deeply grateful for Dr. Yunwen Ye for his comments,
advice, and proofreading. This research is supported by JSPS Grant-in-Aid for Chal-
lenging Exploratory Research (No. 21650008).

References

1. Augusto, O., Lemos, L., Bajracharya, S., Ossher, J.: CodeGenie: a Tool for Test-Driven
Source Code Search. In: Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), pp. 525–526 (2007)

2. Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., Lopes, C.: Sourcerer: a
Search Engine for Open Source Code Supporting Structure-Based Search. In: Proceedings
of the 21th ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2006), pp. 681–682 (2006)

3. Inoue, K., Yokomori, R., Fujiwara, H., Yamamoto, T., Matsushita, M., Kusumoto, S.:
Component Rank: Relative Significance Rank for Software Component Search. In: Pro-
ceedings of 25th IEEE International Conference on Software Engineering (ICSE 2003), pp.
14–24 (2003)

4. Mandelin, D., Xu, L., Bodik, R., Kimelman, D., Mining, J.: Helping to Navigate the API
Jungle. In: Proceedings of the 2005 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2005), pp. 48–61 (2005)

5. Marcus, A., Buchta, V., Petrenko, J., Sergeyev, A.: Static Techniques for Concept Location
in Object-Oriented Code. In: Proceedings of 13th IEEE International Workshop on Program
Comprehension (IWPC 2005), pp. 33–42 (2005)

6. Reiss, S.P.: Semantics-Based Code Search. In: Proceedings of the IEEE 31st International
Conference on Software Engineering (ICSE 2009), pp. 243–253 (2009)

7. Ye, Y., Fischer, G.: Supporting Reuse by Delivering Task-Relevant and Personalized In-
formation. In: Proceedings of the 24th IEEE International Conference on Software Engi-
neering, pp. 513–523 (2002)

On the Use of Emerging Design as a Basis
for Knowledge Collaboration

Tiago Proenca, Nilmax Teones Moura, and André van der Hoek

University of California, Irvine, Department of Informatics, Irvine CA 92697, USA

{tproenca,nmoura,andre}@ics.uci.edu

Abstract. Abstractions in software engineering have been used for guid-

ance and understanding of software systems. Design in particular is a key

abstraction in this regard. However, design is often a static representation

that does not evolve with the code and therefore cannot help developers

in collaborating after it becomes out-of-date. Our research group is ex-

ploring the use of Emerging Design, a dynamic abstraction, as the basis

for knowledge collaboration through its implementation in a coordina-

tion portal called Lighthouse. This paper presents the state of the art of

Lighthouse and discusses three knowledge collaboration problems that

we are currently addressing.

1 Introduction

Collaboration is related to mutual sharing of knowledge [1] and has become an
essential part of software development and indeed an important research field
in software engineering. Today, most knowledge sharing is either informal or
decoupled from the actual artifacts to which it pertains. For instance, in the
Knowledge Depot [2], an email-based group memory tool, knowledge is stored
in a separate repository that must be queried to find a particular piece of in-
formation. This not only creates a hurdle to accessing knowledge, but also leads
to the update problem, i.e., in the presence of changes, one has to update two
places: the artifacts themselves and the Knowledge Depot.

Our research group is exploring a different kind of solution, one where the
knowledge is essentially attached to an abstraction that we are creating as part
of a collaboration infrastructure. This abstraction is called Emerging Design [3]
and is defined as the design representation of source code as it changes over time.
With each code change, the Emerging Design is updated accordingly. Emerging
Design satisfies the traditional roles of abstraction (guidance and understanding
[3]) and includes support for new roles such as coordination, project manage-
ment, and detection of design decay.

While the original focus of our use of Emerging Design was on detecting
conflicts in code changes [3], we believe it is a particularly promising abstraction
to address a broader class of collaboration issues. In this paper, we talk about
three such collaboration problems and how we believe Emerging Design serves
as good basis for exploring them.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 124–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Use of Emerging Design as a Basis for Knowledge Collaboration 125

The remainder of this paper is organized as follows. In Section 2, we review
Emerging Design and its implementation in Lighthouse. Section 3 presents three
knowledge problems in collaboration and how we believe they can be addressed
by building upon Emerging Design. In Section 4, we summarize our ideas and
discuss some challenges and future directions to improve our work.

2 Emerging Design

Since a design document illustrates the interactions among modules, it can help
developers to gain an understanding of the high-level structure of the system and
its interactions [3,4]. However, design is often a static representation that does
not evolve (automatically) with the code. Therefore, as it becomes out-of-date,
it loses value for developers who need to collaborate.

Our research group is exploring the use of Emerging Design as the basis for
collaboration. Emerging Design is defined as the design representation of source
code as it changes over time. It is a live document that stays up-to-date with all
changes made to the system. It is annotated with information about the changes
made, helping developers to be aware about how the code structure evolves, and
with whom they may need to coordinate their actions in order to reduce and
prevent conflicts.

We implemented this approach as an Eclipse plug-in called Lighthouse [5].
Lighthouse presents the Emerging Design view as a UML-like class diagram
which is built dynamically as developers implement or make changes in the
code. One particular characteristic of Lighthouse is that it does not require
check-in of the changes made. Instead, it tracks workspaces, since the goal is
help people collaborate and coordinate before sending the changes to the source
code repository, so merge conflicts are avoided.

Figure 1 shows the Emerging Design basic representation. It shows the pri-
mary elements found in UML class diagrams, such as classes, fields, and rela-
tionships, as annotated with additional information. In particular, Lighthouse
shows information about the evolution of the code. The plus symbol represents
an addition of a class/method/field, minus represents a removal, and triangle
represents a change. For instance, in the ATM class, the field value was added by
Max. Another example is the field balance inquiry. We can see that Theo and
Bob changed that field, and finally Anna removed it. Notice that this history of
changes is presented in a top-down manner, time-ordered with the most recent
changes at the bottom.

The use of Lighthouse in a large software product naturally introduces scala-
bility issues with respect to the visualization. This can harm a user’s ability to
spot a particular events of interest. As a first step to make the Emerging Design
more scalable, we developed a variety of filters to improve the user’s capability.
With these filters, the information shown can be reduced by focusing on par-
ticular packages, developers, modifications or some combination of them. As a
result, crowded visualizations that clearly indicate a problem can be examined
for what that problem exactly is.

126 T. Proenca, N.T. Moura, and A. van der Hoek

Fig. 1. Emerging Design basic representation

Figure 2 shows an Emerging Design representation with several classes, where
each class has numerous events representing the activities of four developers
(Max, Bob, Ana, Jim), who are all coding a particular part of the project. The
following picture (Figure 3) illustrates how Lighthouse allows users to turn on
the filter by developer. In this specific example, the user has chosen to show
Bob’s code changes. At this manner the user could be aware of any event that
is happening in Bob’s workspace.

The second filter uses the concept of Java packages. We believe that this fea-
ture is very pertinent, because most of the time, while developing, users interact

Fig. 2. Emerging Design basic representation with four developers (Max, Bob, Ana,

Jim)

On the Use of Emerging Design as a Basis for Knowledge Collaboration 127

Fig. 3. Emerging Design basic representation with filtering. Just modifications in Bob’s

workspace are shown.

Fig. 4. Emerging Design basic representation with filtering. Just modifications in the

selected package are shown.

with only a few package of the whole project. By using this filter, users could
pay more attention to specific packages that are related with the task in hand,
as can be seen in Figure 4.

The third and last filter only shows the classes that have any modification. So,
instead of showing all the classes as in Figure 1, the tool decrease the numbers
of nodes from the visualization by hiding the classes that are not being modified
for any member, as shown in Figure 5.

To date, Lighthouse is a collaboration portal focused on detecting conflicts.
It uses the Emerging Design to show who is making the changes where, and
by looking at that, enabling developers to find where their changes may be
conflicting with somebody else’s. In this paper, we take this work a step further.
We outline how we believe the concept of Emerging Design is not only useful
for detecting conflicts, but also as a basis for knowledge collaboration. In the
next section we talk about three particular knowledge collaboration problems
and how Emerging Design can be used as a basis for exploring them.

128 T. Proenca, N.T. Moura, and A. van der Hoek

Fig. 5. Emerging Design basic representation with filtering. Just classes with modifi-

cations are shown.

3 Three Knowledge Problems

Knowledge collaboration manifests itself in many different forms and may revolve
around many issues. In this section, we discuss the following three problems: (1)
How to support developers in determining where the implementation is deviating
from the original design; (2) How to support finding the right expert related to a
given design; and (3) How to support identification of those parts of the program
with less than ideal quality.

3.1 Design Decay

It is well known that software changes, and that such changes involve modi-
fications to the original design that may lead to design decay [6]. Prior to the
implementation phase, some conceptual design diagrams are usually constructed
to guide developers and help them understand the project’s high-level picture.
The reasons why a particular design decays generally are not available, and
therefore could be said to represent a knowledge collaboration problem: at some
future point in time, other developers must understand why a certain piece of
code is like it is, and much rationale resides behind the code changes from the
original design to the current state.

In order to illustrate this problem, consider the following scenario: Ana is a
developer in a large team and has been assigned to a task that involves making
changes in a part of the system with which she is unfamiliar. The previous person
that developed that specific piece of code is on vacation and is not available for
questions. However, Ana remembers that the project has some documentation,
including a detailed UML design diagram that was made before the system’s

On the Use of Emerging Design as a Basis for Knowledge Collaboration 129

implementation. Ana finds out that this document includes some notes on ratio-
nale for some structural decisions and uses it to find the information she needs to
complete the task. Ready to work, Ana realizes that the design does not match
with the source code. Some elements have changed, others elements are miss-
ing, and no rationale was provided to understand why this has happened and
whether or not the changes happened accidentally or intentionally. Ana is left
to study the source code in detail to try and understand how to accomplish her
task, an unfortunate situation [3].

We can address this issue by marking the Emerging Design, so it shows devi-
ation, and providing facilities for developers to provide contextual information
pertaining to the changes they make. Imagine a developer restructuring a cer-
tain piece of code in a certain way that is counter-intuitive. By leaving a note,
directly visible on the diagram (Figure 6) they now can motivate their change.
Other developers can respond either in the affirmative or by expressing concerns
and such. A discussion can ensue, for which it is crucial to note that the discus-
sion takes place directly in the context of the artifacts and as the changes are
happening. Design decay can be avoided this way, and design evolution becomes
under joint ownership of the developers.

Fig. 6. Design Decay Representation

In Figure 6, the green overlays are used for elements that are present in
both the conceptual and emerging design, i.e., the ones that were implemented
according to the original design. Red overlays are used for items that are in the
emerging but not in the conceptual design, meaning that the implementation
diverges from the original design. Elements left in white are the ones that are
in the conceptual but not in the emerging design. These elements have not been
implemented yet.

The Emerging Design provides a natural basis for addressing design decay
because it already tracks design evolution. By now using this basis with sim-
ple but powerful extensions, the Emerging Design provides instant knowledge
collaboration, both implicitly because it makes visible the design as it evolves

130 T. Proenca, N.T. Moura, and A. van der Hoek

and explicitly because its evolution can be gauged, questioned, discussed, and
resolved as needed.

We also note that this can take place both among individual developers at the
level of individual or small sets of changes, and by team leaders and architects
based upon views of the code as a whole.

3.2 Expertise

The time taken to find an expert is one of the major reasons that co-located
work tends to take less time than similar development work split across sites [7].
Quickly finding the right expert related to a given design and/or implementation
issue is critical to the success of any software development project. There is a
clear knowledge collaboration problem when one needs to understand how some
class/method works, why it is as it is, and how it may need to evolve. For
instance, in the previous section, because of the absence of the expert, Ana
found herself in a situation where she had to study the source code in detail,
which implies more time in order to accomplish her task. Often, an expert can
provide useful assistance in this regard.

We again explore how the basis of Emerging Design can be leveraged to ad-
dress this problem. Particularly, we envision exploring the use of a visualization
to allow users to browse through the Lighthouse diagram in order to find the
proper expert. Since Lighthouse already provides the basis for who made which

Fig. 7. Expertise Representation

On the Use of Emerging Design as a Basis for Knowledge Collaboration 131

changes, now we can actually build various overlays that make it possible, for
instance, to click on one of the authors of a particular method and have the
other pieces that they changed highlighted.

In another form, we note that it is often difficult to find someone with broader
knowledge pertaining to multiple artifacts and methods. We plan to develop a
feature that allows the user to select a group of methods and classes in order to
find the expert related to that set of artifacts, as shown in Figure 7.

The advantage here is that, while most expertise systems are limited to work
at the level of artifacts, our approach can provide more fine-grained as well as a
broader range of answers.

3.3 Code Quality

Software quality metrics can drive software process improvement [8]. Explicit
attention to characteristics of software quality can lead to significant savings
in software life-cycle costs [9]. Some information that could be useful in this
regard is the overall quality of each class, which if available would enable the
identification of the most problematic or complex parts of a project. This kind
of information is not usually accessible, representing the third knowledge collab-
oration problem that we address in this paper.

The use of Emerging Design in this situation would help developers and man-
agers to quickly spot code that is growing without proper quality. We envision a
software quality visualization that will show individual factors, such as number
of developers, number of recent bugs, how well the class/method was tested, and
number of changes/code volatility at the bottom of each class. We also take these

Fig. 8. Code Quality Representation

132 T. Proenca, N.T. Moura, and A. van der Hoek

individual factors in consideration to provide an overall quality measure, and we
represent this high level awareness information by using colored border, in which
green means good quality and red means bad quality (Figure 8).

We extend the capability of Emerging Design to deal with software quality
issues. This approach can help understanding which classes/methods are produc-
ing higher quality code. In this way, managers would be able to identify areas
that need attention, and also tell what parts of the project are in need of more
tests and what parts have enough coverage already.

4 Related Work

Several tools have been created to help people collaborate and to enhance in-
dividuals’ awareness. The War Room Command Console [10] shows in a public
display the current state of a system across workspaces in real-time. The visual-
ization shows the ongoing changes made by developers in thumbprints, a graph-
ical representation of the source code, displayed in a topographic layout. This
work, like Lighthouse, uses a program-centered approach to show how changes
made by developers are related with the artifacts and how the system is evolving.
Its display, however, is in a central location and not on a per-developer basis.
Furthermore, the information that it shown is compacted, and does not allow
easy access to details.

Palant́ır [11] provides real-time awareness of changes made by developers and
estimates the impact of how severe these changes are. Palant́ır, like Lighthouse,
does not require developers to check-in the changes made and presents a view
with information of all developers’ workspaces. However, Palant́ır differs from
Lighthouse since it uses a low-level abstraction that focuses on files, while Light-
house uses the concept of Emerging Design.

FastDash [12] and CollabVS [13] both use a collaboration-centered approach
to display the artifacts’ interaction among developers. Unlike Lighthouse, this
approach uses real-time awareness of developers’ activities instead of focusing
on program artifacts. The visualization shows people and the activities they
currently undertake, e.g., who has which file open or who is editing which file.
This approach has the drawback of not providing a spatial awareness of artifacts
and it does not provide a historical view of changes made.

5 Summary

In this paper we recapped Emerging Design and presented our vision of the
potential role it can play in knowledge collaboration. We described Lighthouse
briefly and addressed three knowledge collaboration problems: design decay by
providing developers with the rationale resides behind the code changes from
the original design to the current state; expertise by finding the proper expertise
for a particular group of methods and/or classes; and code quality by providing
developers the identification of parts of the program with less than ideal quality.

On the Use of Emerging Design as a Basis for Knowledge Collaboration 133

The benefit we can see is that the knowledge is directly anchored to the
artifacts to which it pertains and is thereby easily accessible and intuitive since
it fits with the task that a developer is currently working on. Presently, we are
engaged in providing this support and we will perform various explorations and
evaluations as we build our extensions to Lighthouse. A particular question is
whether Emerging Design is useful to support other knowledge collaboration
problems as well. Another question is how it can support multiple problems in
parallel, as some of our solutions use similar techniques and thus cannot be used
at the same time.

Acknowledgments

Effort partially funded by the National Science Foundation under grant number
0920777.

References

1. Rus, I., Lindvall, M.: Knowledge management in software engineering. IEEE Soft-

ware 19(3), 26–38 (2002)

2. Kantor, M., Zimmermann, B., Redmiles, D.: From group memory to project aware-

ness through use of the knowledge depot. In: CSS 1997: California Software Sym-

posium (1997)

3. Van der Westhuizen, C., Chen, P.H., van der Hoek, A.: Emerging design: New

roles and uses for abstraction. In: ROA 2006: Proceedings of the 2006 International

Workshop on Role of Abstraction in Software Engineering, pp. 23–28. ACM, New

York (2006)

4. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it.

IEEE Transaction on Software Engineering 12(2), 251–257 (1986)

5. da Silva, I.A., Chen, P.H., Van der Westhuizen, C., Ripley, R.M., van der Hoek, A.:

Lighthouse: Coordination through emerging design. In: Eclipse 2006: Proceedings

of the 2006 OOPSLA Workshop on Eclipse Technology Exchange, pp. 11–15. ACM,

New York (2006)

6. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J., Mockus, A.: Does code decay?

assessing the evidence from change management data. IEEE Transactions on Soft-

ware Engineering 27(1), 1–12 (2001)

7. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of

global software development: distance and speed. In: ICSE 2001: Proceedings of

the 23rd International Conference on Software Engineering, Washington, DC, USA,

pp. 81–90. IEEE Computer Society, Los Alamitos (2001)

8. Livingston, J., Prosise, K., Altizer, R.: Process improvement matrix: A tool for

measuring progress toward better quality. In: Proceedings of 5th International Con-

ference on Software Quality (1995)

9. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software qual-

ity. In: ICSE 1976: Proceedings of the 2nd International Conference on Software

Engineering, pp. 592–605. IEEE Computer Society Press, Los Alamitos (1976)

10. O’Reilly, C., Bustard, D., Morrow, P.: The war room command console: shared

visualizations for inclusive team coordination. In: SoftVis 2005: Proceedings of

the 2005 ACM symposium on Software visualization, pp. 57–65. ACM, New York

(2005)

134 T. Proenca, N.T. Moura, and A. van der Hoek

11. Sarma, A., Noroozi, Z., van der Hoek, A.: Palant́ır: raising awareness among con-

figuration management workspaces. In: ICSE 2003: Proceedings of the 25th Inter-

national Conference on Software Engineering, Washington, DC, USA, pp. 444–454.

IEEE Computer Society, Los Alamitos (2003)

12. Biehl, J.T., Czerwinski, M., Smith, G., Robertson, G.G.: Fastdash: a visual dash-

board for fostering awareness in software teams. In: CHI 2007: Proceedings of the

SIGCHI conference on Human factors in computing systems, pp. 1313–1322. ACM,

New York (2007)

13. Hegde, R., Dewan, P.: Connecting programming environments to support ad-hoc

collaboration. In: 23rd IEEE/ACM International Conference on Automated Soft-

ware Engineering, ASE 2008, pp. 178–187. ACM Press, New York (2008)

A Time-Lag Analysis for Improving
Communication among OSS Developers

Masao Ohira, Kiwako Koyama, Akinori Ihara,
Shinsuke Matsumoto, Yasutaka Kamei, and Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology,

8916-5, Takayama, Ikoma, Nara, Japan

{masao,kiwako-k,akinori-i,shinsuke-m,yasuta-k,matumoto}@is.naist.jp

Abstract. In the open source software (OSS) development environment,

a communication time-lag among developers is more likely to happen due

to time differences among locations of developers and differences of work-

ing hours for OSS development. A means for effective communication

among OSS developers has been increasingly demanded in recent years,

since an OSS product and its users requires a prompt response to issues

such as defects and security vulnerabilities. In this paper, we propose

an analysis method for observing the time-lag of communication among

developers in an OSS project and then facilitating the communication.

Keywords: time-lag analysis, OSS, distributed development.

1 Introduction

Open source software (OSS) such as Linux and Apache is generally developed
by globally distributed developers. Unlike commercial software development in a
company, OSS development does not necessarily request developers to engage in
development at a designated time and location. OSS developers may voluntarily
decide whether they continue to dedicate themselves to OSS development or not.

In this OSS development environment, a time-lag occurs in communication
among developers more than a little, because of differences of time zones among
geographically-distributed developers with a variety of lifestyles. For instance,
according to the geographical distribution of registered users at SourceForge
which was reported by Robles and Gonzalez-Barahona [1], the top three regions
by the number of registered developers at SourceForge are North America, West
Europe, and China. Since the time-lag among those regions is at least more
than five hours, it would not be easy to discuss among developers in real-time.
Furthermore, even if developers reside in the same time zone, it is not still
guaranteed that developers can communicate each other in real time, because
each developer has no constraint on working hours.

The goal of our research is to construct a support mechanism for effective com-
munication among geographically-distributed OSS developers. As a first step to-
ward achieving the goal, in this paper we present an analysis method for helping

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 135–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 M. Ohira et al.

OSS developers comprehend the whole picture of the communication time-lag
occurred in a OSS project. The analysis method targets a mailing list archive as
a data source, and consists of three kinds of analyses as follows;

1. analysis of a geographical distribution and activity time of OSS developers
2. analysis of a distribution of time required for information exchanges among

OSS developers in different locations, and
3. analysis of appropriate timing for sending messages.

From a case study with Python project data, this paper explores the usefulness
of the analysis method.

2 Analysis Method

This section describes data extraction, conversion and classification which are
necessary in advance of performing our analysis.

2.1 Preparation

(1) Data extraction and conversion. The target data source for our anal-
ysis is archives of mailing lists which are used by OSS developers to exchange
information. The reason we select mailing list archives as the target data for our
analysis is because mailing lists are widely used in OSS projects. We consider
that data of mailing list archives allows us to reveal the whole picture of the
existence of the time-lag in many OSS projects.

In order to apply the analysis method to the target data, firstly we need
to extract information of posted date and time, and posted locations from
mailing list archives (i.e., from e-mail headers). In what follows, “posted date and
time” means local date and time of a message’s sender, and “posted locations”
is presented as a time-lag between Coordinated Universal Time (UTC) and local
time. For instance, “UTC+9” means the location of Japan because the standard
time of Japan is nine hours prior to UTC.

Fig. 1 shows the procedure of data extraction and conversion. When a devel-
oper posts a message to a mailing list, the message is delivered to subscribed
developers of the mailing list. Replying to the post, the other developers can dis-
cuss the message. Using such the post-reply relationship (i.e., thread structure)
in a mailing list, we extract1 information on posted/replied date and time, and
locations (time zones) from mailing list archives. For instance, from a thread
structure illustrated in Fig. 1 (a), we extract information of posted and replied
messages as the table in Fig. 1 (b). Then we convert the information into post-
reply relationships as the table in Fig. 1 (c) and calculate a time-lag from a
difference between posted and replied date and time. Note that we suppose that
message B replied to message A can be a posted message for message C.

1 We do not collect data from posted messages with no replies.

138 M. Ohira et al.

replied (local) time

in time zones B

p
o
s
te
d
 (
lo
c
a
l)
 t
im
e

in
 t
im
e
 z
o
n
e
s
 A

0 +3 +6 +9 +12 +15 +18 +21

+21 0 +3 +6 +9 +12 +15 +18

+18 +21 0 +3 +6 +9 +12 +15

+15 +18 +21 0 +3 +6 +9 +12

+12 +15 +18 +21 0 +3 +6 +9

+9 +12 +15 +18 +21 0 +3 +6

+6 +9 +12 +15 +18 +21 0 +3

+3 +6 +9 +12 +15 +18 +21 0

3 6 9 12 15 18 21 0 3

0

3

6

9

1
2

1
5

1
8

2
1

0

(a) size of time lag

replied (local) time

in time zones B

p
o
s
te
d
 (
lo
c
a
l)
 t
im
e

in
 t
im
e
 z
o
n
e
s
 A

7 17 16 2 5 3 2 0

0 9 7 5 3 2 2 0

0 0 9 13 9 8 4 1

0 2 2 61 80 24 12 2

1 8 5 6 57 35 17 0

6 13 11 3 4 54 57 1

4 39 11 3 0 1 30 12

4 42 7 3 7 2 2 6

(b) num. of replies

3 6 9 12 15 18 21 0 3

0

3

6

9

1
2

1
5

1
8

2
1

0

Fig. 2. Distribution of posted and replied time

differ even in the same location. By this means, we can identify active or inactive
locations and working hours of OSS developers.

(2) Distribution of time required for information exchanges. In order
to understand the communication time-lag due to the geographical (time zone)
differences, the analysis method calculates distributions of time required for
information exchanges among OSS developers in different locations and the
same locations respectively. This helps us more clearly distinguish between the
time-lag by the geographical differences and the time-lag by the differences of
developers’ lifestyles.

(3) Appropriate timing for sending messages. In order to identify the
appropriate timing for communication which resolves communication time-lags
as much as possible, the analysis method calculates the number of replied mes-
sages by each hour, using posted (local) time and replied (local) time. A
numerical number in Fig. 2 (a) shows the size of a time-lag (hours) between time
zones A and B. Fig.2 (b) shows the number of pairs of posted messages from
time zone A and replied messages from time zones B. For instance, suppose that
one developer in A post a message between 9 and 12, and other developer in B
replies a message between 15 and 18. In this case, the time-lag is +3 hours and
the number of post/reply pairs is 80.

Time zones A and B are fixed after selecting target locations for analysis. Time
zones B in Fig. 2 is arranged as replied messages within an hour correspond to
posted messages on the diagonal. In Fig. 2, the size of time-lag and the number
of posted/replied messages are counted by three hours, but the length may be
changed depends on analysis needs. Furthermore, the all cells in Fig. 2 (b) are
gray-scaled according to the number of posted/replied pairs of messages, to grasp
a big picture of time slots with a large or small number of replied messages.

Using Fig. 2 (a) and (b), it is possible to identify a time slot with a large or
small time-lag. For instance, we can see that messages posted between 21 and
0 in time zones A (the bottom row in Fig. 2) tend to be replied after 6 hours.
That is, to post messages from 21 to 0 would not be the appropriate timing for
less time-lag communication.

A Time-Lag Analysis for Improving Communication among OSS Developers 139

Fig. 3. Distribution of the number of replied messages by time zones

3 Case Study

This section describes a case study with a mailing list fost fost f r developers in the
Python project. Through the case study, we would like to confirm whether the
analysis method can help us understand the existence of the time-lag in com-
munication among OSS developers.

3.1 Python Project

Python2 is an object oriented script language developed by OSS. It is very
popular in Europe and the United States as well as Perl. Because it supports
various platfoatfoatf rms and provides rich documentations and libraries, it is used in a
broad range of domains (e.g., Web pr., Web pr., W ogramming, GUI-based applications, CAD,
3D modeling, fofof rmula manipulation, and so fofof rth).

3.2 Target Data

We seWe seW lected the mailing list archive called Python-Dev3 which is fos fos f r discussing
development of Python such as new features, release and maintenance. We use. We use. W
the Python-Dev mailing list archive from April 1999 to April 2009, which have
89,301 messages. Excluding posted messages with no replies and messages with
no infofof rmation on posted/replied time and locations, posted and replied mes-
sages were 56,707. 51,830 of 56,707 messages were sent within 24 hours.

3.3 Analysis Results

(1) Geographical distribution and activity time. Fig. 3 shows a distribu-
tion of the number of replied messages by time zones. The X-axis and Y-axis
respectively mean time zones and the number of replied messages. It indicates

2 Python Programming Language, http://www.python.org/
3 Python core developers ML, http://mail.python.org/mailman/listinfo/python-dev/

140 M. Ohira et al.

Table 1. Target locations for the case study of Python

region time zone location

North and South UTC-8∼ United States, Canada, West of Brazil,

American continent UTC-4 Chile, Bolivia, Mexico, etc.

European and African UTC+0∼ Europe, Africa, Moscow,

continent UTC+3 Iran, Saudi Arabia, etc.

Fig. 4. Distribution of the number of replied messages by time slots (white circles:

North and South American continent, black circles: European and African continent)

that a large number of messages are replied by developers from UTC-4 (East
of the United States) and UTC+2 (central Europe) in the Python project. This
result is not surprising at all, because Python is mainly used and developed by
European and American developers. It would be natural that developers living
in these locations actively communicated.

Many of countries in the locations of UTC-4 and UTC+2 is utilizing daylight-
saving time. And countries around the countries in UTC-4 and UTC+2 also
have many messages. So, we selected two regions around UTC-4 (the North and
South American continent: UTC-8∼UTC-4) and UTC+2 (the European and
African continent: UTC+0∼UTC+3) as the analysis target in this paper. Tab. Tab. T le
1 shows major countries included in these regions.

Fig. 4 shows transitions of replied messages by hour in the two regions which
are determined from Fig.3. The X-axes shows time in the three time zones
(UTC+0, UTC-4, UTC+2) and the Y-axis is the number of replied messages.
It indicates that the maximum and minimum number of replied messages from
the North and South American continent are attained respectively at 13 and 5
in the local time (UTC-4). Python developers in the North and South Ameri-
can continent seem to mainly communicate during daytime hours. In contrast,
Python developers in the European and African continent actively communicate
during nighttime hours, because the number of replied messages from the Euro-
pean and African continent is peaked at 23 in the local time (UTC+2). In this

A Time-Lag Analysis for Improving Communication among OSS Developers 141

Table 2. Statistics of time-lags by region (A: North and South American continent,

E: European and African continent)

posted region → replied region the number of maximum median minimum

replies (hours) (hours) (hours)

A → A 18,901 11.55 1.24 0.00

A → E 6,942 16.34 2.07 0.00

E → E 9,426 14.69 1.59 0.00

E → A 7,215 13.91 1.80 0.00

way, analyzing activity time of OSS developers by using the number of replied
messages helps us understand the existence of the difference of working hours
by region.

Although Fig. 4 provides an overview on the difference of working hours of
OSS developers by region, however, it does not tell us anything about time-lags.
In fact, developers in the both regions actively communicate each other from
12 to 23 in UTC+0. Communication time-lags might not exist in the regions.
In contrast, developers in either one region or the other region does not ac-
tively communicate from 12 to 23 in UTC+0. Communication time-lags between
developers living different locations might exist in this time period.

(2) Distribution of time required for information exchanges. Table 2
shows time spent to reply messages to the same and different time zones, the
number of replied messages, and time-lags (maximum/median/minimum). A
pair of a post from location X and a reply from location Y is represented as “X
→ Y”.

The median hours of the time-lag among the same time zone was 1.24 hours
for A→ A and 1.59 hours for E→ E. The median hours of the time-lag between
the different time zones was 2.07 hours for A → E and 1.80 hours for E → A.
Developers in the same time zone can expect to have a reply within 90 minutes,
and developers between different time zones also can expect to have a reply
within about 2 hours. Since the actual difference of the time-lag between the
target regions is nearly 6 hours, we can consider that communication time-lags
in the Python project are relatively small.

(3) Appropriate timing for sending messages. Fig. 5 (a), (b), (c) and (d)
are distributions of the number of replied messages between two regions. For the
simplicity, only gray-scaled figures without the number of replied messages are
shown in Fig. 5.

We can see that the zero time-lag (i.e., dark gray cells near the diagonal line) is
expected from 10 to 17 in Fig. 5 (a), from 9 to 17 in posted local time and from 15
to 23 in replied local time in Fig. 5 (b), from 16 to 23 in Fig. 5 (c), and from 16 to 23
in posted local time and from 10 to 17 in replied local time in Fig. 5 (d). For these
time periods, developers would timely communicate each other.

In contrast, reply time seems to be delayed from 18 to 23 in posted local time
in Fig. 5 (b) and from 7 to 13 in replied local time in Fig. 5 (d), because there

142 M. Ohira et al.

Fig. 5. Distributions of posted/replied local time between two regions

are darker cells a short distance away from the diagonal line. These two posted
local time periods correspond to the time period from midnight to early morning
i0 to 6) in replied locations, which means that developers in replied locations
was sleeping at the posted time.

FrFrF om the result of Fig. 5, in order to receive a quick reply, it would be desirable
to post a message from 10 to 17 in the North and South American continent,
and from 16 to 23 in the European and African continent. On the contrary, it is
not appropriate timing to post a message from 18 to 23 in the North and South
American continent, and from 7 to 13 in the European and African continent,
since the time-lag is likely to occur.

In this way, our analysis method helps OSS developers know the appropriate
timing so that they can resolve a time-lag of infofof rmation exchange in an OSS
project as much as possible.

4 Discussions

Opposite to what we expected befopected befopected bef re our case study, we have confirmed in
TabTabT le 2 that the influence of the time-lag due to the time zone differeiffereiff nce was
relatively small in the Python project. One reason of this result might be that ac-
tive time of Python developers is partly overlapping in the two regions. Although

A Time-Lag Analysis for Improving Communication among OSS Developers 143

there are about 6 hours time-zone difference between the two regions, the active
time in the North and South American continent was different from that in the
European and African continent as shown in Fig. 4. Therefore, active hours of
Python developers in the two regions might overlap by coincidence from 10 to 17
in the North and South American continent (from 16 to 23 in the European and
African continent). Another reason may be that the number of Python develop-
ers subscribed to the “Python-Dev” mailing list is sufficiently-large to quickly
respond to a posted message at any time.

Our analysis method is not only useful in knowing the appropriate timing for
communication among geographically-distributed OSS developers, but also use-
ful in changing communication media used in an project. For instance, when a
project replaces mailing lists with IRCs (Internet Relay Chat) as communication
media, developers would be required to more precisely understand the appropri-
ate timing for communication to resolve the time-lag. In that case, our method
would help developers know the better timing for real-time communication.

OSS developers are not necessary to be geographically-distributed, but they
may be at the same region or location. Though our analysis method mainly aims
to understand the communication time-lag arising from time-zone differences, it
can be used for the time-lag due to lifestyle differences of OSS developers in the
same region or location. OSS developers have no constraint on their working
hours and they can freely engage in OSS development. At the same region, some
developers can work in the morning and other developers can develop OSS at
midnight. Depending on the differences of lifestyles of developers, time-lags could
happen even if they live close to each other. In this situation, our method can
provide an insight on the differences of active time in the same region and help
developers understand the appropriate timing for sending messages.

The analysis method also can be used for distributed development in a com-
pany. Working hours in a company are fixed to some extent, but it is not nec-
essarily that a developer in one site can communicate with other developers in
another site at a particular time. In the prior study [2], time zone differences
are visualized to understand and exploit overlapping hours in a distributed en-
vironment. Our method can not only visualize the time zone differences, but
also allows developers to understand the easiness of communication at a partic-
ular time period, using the number of replied messages (i.e., density of working
activity at a particular time period).

In this paper, we introduce the time-lag analysis method toward improving
the communication efficiency of geographically-distributed OSS developers. The
analysis method targets mailing list archive data as communication logs to re-
veal the existence of communication time-lags. Although IRC communication is
often used in OSS projects and they can be our analysis target, communication
using IRC do not work when developers one wishes to talk are off-line. So, IRC
communication logs are not likely to well-capture communication time-lags.

In this paper, we have conducted a case study of the Python project, us-
ing the “Python-Dev” mailing list archive. Python-Dev consists of mailing list
archive data for about 10 years. So, it might be too large to show communication

144 M. Ohira et al.

time-lags among Python developers at the fine-grained level. Actually, we have
observed that communication time-lags in the Python project were relatively
small. We suspect that this results from the size population of developers (sub-
scribers) of Python-Dev. In Python-Dev, a posted message must be read by a
number of developers in the world and so it might be easy to have replies. In
order to emphasize the existence of time-lags and its issues, in the near future,
we need to analyze more specific situations such as the level of communication
among module owners, reviewers and patch contributors.

5 Related Work

The issues on the communication time-lag or delay in OSS development have
been intensively studied in relation to bug modification processes with bug track-
ing systems [3,4,5,6,7,8,9,10,11,12,13]. For instance, Wang et al. [12] proposed
several metrics to measure the evolution of open source software. The metrics
include the number of bugs in software, the number of modified bugs and so on.
As a result of the case study using the Ubuntu project (one of Linux-based op-
erating system distributors), the study found that about 20% of all the reported
bugs were actually resolved and over ten thousand bugs were not assigned to
developers. These findings indicate that it takes a long time to resolve all bugs
reported into bug tracking systems and that it also takes a long time to start
modifying bugs. The study, however, did not reveal the amount of time or com-
munication time-lags to resolve bugs.

Mockus et al. [10] and Herraiz et al. [6] have reported studies on the mean
time to resolve bugs in open source software development. Mockus et al. have
conducted two case studies of the Apache and Mozilla projects to reveal success
factors of open source software development. In the case studies, they analyzed
the mean time to resolve bugs because rapid modifications of software bugs are
generally demanded by users. As a result of the analysis, they have found that
the mean time to resolve bugs were short if bugs existed in modules regarding
to kernel and protocol, and existed in modules with widely-used functions. They
also found that 50% of bugs with the priority P1 and P3 were resolved within
30 days, 50% of bugs with P2 were resolved within 80 days, and 50% of bugs
with P4 and P5 were resolved within 1000 days. While [10,6] mainly focused on
precise understandings of bug modification processes in open source software de-
velopment, we are interested in the influence of communication time-lags among
developers on the bug modification process.

The issues on differences of time-zone and/or geographical distance in dis-
tributed development rather have been discussed in terms of the context of corpo-
rate (proprietary) software development [14,15,16,17,18]. For instance, Harbsleb
et al.[16] have compared single-site development with multi-sites development
and then revealed that development in the distributed environment introduced
the delay of development speed. In contrast, Bird et al. [19] analyzed the devel-
opment of Windows Vista by comparing distributed teams with collocated teams
from the aspect of the post-release failures of components. They have found a

A Time-Lag Analysis for Improving Communication among OSS Developers 145

slight difference in failures, but the difference has been less significant. Nguyen et
al.[20] also reported the similar phenomena in the Eclipse Jazz project. Although
the lessons learned from these studies on distributed software development pro-
vides us a lot of useful insights, they are partly applicable to geographically-
distributed OSS development due to the differences of lifestyles of developers
even in the same region or location. In this paper, we tried to tackle this unique
feature of time-lags in OSS development.

6 Conclusion and Future Work

In this paper, we proposed a method for analyzing a communication time-lag
among OSS developers. As a result of our case study of the Python devel-
opers’ mailing list archive, we could confirm that our analysis method helps
geographically-distributed OSS developers understand: (1) active time of de-
velopers are different from regions, (2) communication time-lags in the Python
project is relatively small, and (3) there exists the appropriate timing for re-
solving communication time-lags as much as possible. In this paper, our analysis
method targets communication time-lags in the two regions with the time zone
difference. In the future, we need to analyze regions and/or locations without
time zone differences in order to better understand the influence of lifestyle dif-
ferences of developers on communication time-lags. As described before, we still
need to analyze more specific situations of time-lags at the fine-grained level.

Acknowledgment

This research is being conducted as a part of the Next Generation IT Program
and Grant-in-aid for Young Scientists (B)–20700028, 21–8995C20–9220 by the
Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

1. Robles, G., Gonzalez-Barahona, J.M.: Geographic location of developers at source-

forge. In: The 2006 international workshop on Mining Software Repositories (MSR

2006), pp. 144–150 (2006)

2. Laredo, J.A., Ranjan, R.: Continuous improvement through iterative development

in a multi-geography. In: The 2008 IEEE International Conference on Global Soft-

ware Engineering (ICGSE 2008), pp. 232–236 (2008)

3. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:

What makes a good bug report? In: The 16th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (SIGSOFT 2008/FSE-16), pp.

308–318 (2008)

4. Colazo, J.A.: Following the sun: Exploring productivity in temporally dispersed

teams. In: The Fourteenth Americas Conference on Information Systems (AMCIS

2008). Paper no. 240 (2008)

146 M. Ohira et al.

5. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In: 16th

IEEE International Conference on Software Maintenance (ICSM 2000), pp. 131–

142 (2000)

6. Herraiz, I., German, D.M., Gonzalez-Barahona, J.M., Robles, G.: Towards a sim-

plification of the bug report form in eclipse. In: The 2008 international Working

Conference on Mining Software Repositories (MSR 2008), pp. 145–148 (2008)

7. Ihara, A., Ohira, M., Matsumoto, K.: An analysis method for improving a bug mod-

ification process in open source software development. In: The joint international

and annual ERCIM workshops on Principles of Software Evolution and Software

Evolution Workshops (IWPSE-Evol 2009), pp. 135–144 (2009)

8. Kim, S., Pan, K., Whitehead, E.J.: Memories of bug fixes. In: The 14th ACM SIG-

SOFT international symposium on Foundations of software engineering (SIGSOFT

2006/FSE-14), pp. 35–45 (2006)

9. Kim, S., Zimmermann, T., Whitehead, E.J.: Automatic identification of bug-

introducing changes. In: The 21st IEEE/ACM International Conference on Au-

tomated Software Engineering (ASE 2006), pp. 81–90 (2006)

10. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-

ware development: Apache and mozilla. ACM Transactions on Software Engineer-

ing and Methodology (TOSEM) 11(3), 309–346 (2002)

11. Śliwersk, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: The

2005 International Workshop on Mining Software Repositories (MSR 2005), pp.

1–5 (2005)

12. Wang, Y., Guo, D., Shi, H.: Measuring the evolution of open source software sys-

tems with their communities. ACM SIGSOFT Software Engineering Notes 32(6),

Article No.7 (2007)

13. Yilmaz, C., Williams, C.: An automated model-based debugging approach. In:

The twenty-second IEEE/ACM international conference on Automated Software

Engineering (ASE 2007), pp. 174–183 (2007)

14. Carmel, E.: Global software teams: collaborating across borders and time zones.

Prentice Hall PTR, Upper Saddle River (1999)

15. Karolak, D.W.: Global Software Development: Managing Virtual Teams and En-

vironments. Wiley-IEEE Computer Society Press, Los Alamitos (1999)

16. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An empirical study of

global software development: distance and speed. In: The 23rd International Con-

ference on Software Engineering (ICSE 2001), pp. 81–90 (2001)

17. Milewski, A.E., Tremaine, M., Egan, R., Zhang, S., Kobler, F., O’Sullivan, P.:

Guidelines for effective bridging in global software engineering. In: The 2008 IEEE

International Conference on Global Software Engineering (ICGSE 2008), pp. 23–32

(2008)

18. Sangwan, R., Bass, M., Mullick, N., Paulish, D.J., Kazmeier, J.: Global Software

Development Handbook. Auerbach Series on Applied Software Engineering Series.

Auerbach Publications, Boston (2006)

19. Bird, C., Nagappan, N., Devanbu, P., Gall, H., Murphy, B.: Does distributed devel-

opment affect software quality? an empirical case study of windows vista. In: The

2009 IEEE 31st International Conference on Software Engineering (ICSE 2009),

pp. 518–528 (2009)

20. Nguyen, T., Wolf, T., Damian, D.: Global software development and delay: Does

distance still matter? In: The 2008 IEEE International Conference on Global Soft-

ware Engineering (ICGSE 2008), pp. 45–54 (2008)

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 147–155, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Comparison of Coordination Communication and
Expertise Communication in Software Development:

Motives, Characteristics, and Needs

Kumiyo Nakakoji1, Yunwen Ye1, and Yasuhiro Yamamoto2

1 Key Technology Laboratory, SRA Inc., Japan
2 Precision and Intelligence Laboratories, Tokyo Institute of Technology, Japan

{kumiyo,ye}@sra.co.jp, yxy@acm.org

Abstract. The research question we pursue is how to go beyond existing com-
munication media to nurture communication in software development. Nurturing
communication in software development is not about increasing the amount of
communication but about increasing the quality of the communication experi-
ence in the context of software development. Existing studies have shown that
different motives and needs are inherent when developers communicate with one
another. Identifying coordination communication (c-comm for short) and exper-
tise communication (e-comm) as two distinct types of communication, we char-
acterize the difference between the two and discuss important factors to take into
account in designing mechanisms to support each type of communication.

Keywords: nurturing communication in software development, knowledge col-
laboration, continuous coordination, unified interface for communication, coor-
dination communication, c-comm, expertise communication, e-comm, design
considerations.

1 Introduction

Communication has been regarded as an important element in software development.
Increasingly more studies argue that socio-technical aspects of software development
need to be seriously taken into account in supporting software development. The
underlying premise is that peer developers are important knowledge resources in the
same way as other artifacts, such as source code, comments, design documents, re-
lease notes, and bug reports, and that obtaining knowledge and information from
peers is quintessential in software development. Communication should not be re-
garded as something to eschew, but instead as something to be nurtured [10].

The media currently used in such communication demonstrate a variety of means,
including face-to-face, telephone, personal email, mailing-list, Wiki, Internet Relay
Chat (IRC), video conferencing, or digital and physical artifacts (e.g., comments in-
serted in source code or post-it notes pasted on a printed document). Awareness
mechanisms may also be regarded as a form of communication media in the sense
that one can obtain information about what other members of the projects are doing.
As communication media vary, styles of communication in software development

148 K. Nakakoji, Y. Ye, and Y. Yamamoto

range from indirect to direct, from asynchronous to synchronous, and from intentional
to unintentional. It might be one to one, one to a designated some, or one to unknown
numbers of many.

Most of communication media that software developers currently use have been
built for general purposes (with few exceptions such as Wiki). The goal of our re-
search is to design innovative communication media to nurture communication for
software developers. Nurturing communication in software development is not about
increasing the amount of communication but about increasing the quality of the com-
munication experience in the context of software development. The primary task of a
software developer is to develop software, and not to communicate. Communicative
activities should be seamlessly integrated within the context of software development
activities. Communication is a means, not a goal.

In order to address the research question of how to go beyond existing communica-
tion media to nurture communication in software development, we need to better
understand why software developer communicate with each other. By looking into the
motives of communicative activities of software developers, we have identified two
distinctive types of needs in such communications: coordination communication and
expertise communication [10].

In coordination communication, or c-comm for short, a developer tries to coordinate
his or her task with dependent peers in order to avoid and/or to solve emerging or po-
tential conflicts. In expertise communication, or e-comm for short, a developer seeks
information to solve his or her task at hand and asks peers for help. Note that by exper-
tise communication, we do not mean that a certain group of developers who have
general expertise thereby transfer their knowledge to novice developers through com-
munication. In contrast, our view is that expertise is always defined in terms of some
context, for instance, in terms of a particular method, a particular class, a particular
release, or a particular bug report at a particular point in time; and that expertise is not
something definable without context. In this view, each developer has his or her own
expertise in some aspects of the system and the project. Expertise communication,
therefore, may take place among all of the peer developers in every direction [16].

Developers currently do not distinguish the two types of communication, which are
driven by their “information needs” and are carried out through common communica-
tion channels. Coworkers were the most frequent source of information for software
developers, and the two types of information most frequently sought by software
developers from their coworkers were “What have my coworkers been doing?” and
“In what situations does this failure occur?” [7]. The former information is sought
primarily for the purpose of coordinating the work, and the latter is for the purpose of
getting some knowledge about the source code. Data on three well-known open
source projects have shown that text-based communication (mailing lists and chat
systems) is the developers’ primary source of acquiring both general knowledge about
other developers (who has the necessary expertise) and specific awareness (who is
working on their relevant parts of the system—to coordinate their tasks) [4].

It seems that developers often mix the two types of communication within a single
discourse session without paying any attention to distinguishing the two. For instance,
developer John first asks his colleague Mary over the cubicle wall whether she knows
why class C calls a method X instead of Y; then Mary answers that it is because Y is
designed to be thrown away, and that, by the way she has just been working on X and

 Comparison of Coordination Communication and Expertise Communication 149

checked-in the changes, so he had better check the latest version of X if he is working
on C. Thus, while the initial question posed by John is e-comm (i.e., he wanted to ask
Mary to give him the answer as to why C calls X instead of Y), the subsequent con-
versation provided by Mary turns out to be c-comm (i.e., C that John is working on
depends on X that Mary is working on).

Why does it matter then to distinguish the two types of communication if develop-
ers do not distinguish them? It matters because when it comes to design computa-
tional mechanisms for supporting communication in software development, each type
of communication demands different types of design concerns.

In this paper, we first describes what fundamental differences exist between the
two types of communication in software development. We then explain how different
aspects need to be considered in designing computational support mechanisms. We
conclude with a list of research issues to be considered in developing such support.

2 Expertise Communication and Coordination Communication

A few features distinguish e-comm (expertise communication) from c-comm (coordi-
nation communication).

We first illustrate c-comm. Suppose developer X initiates communication with de-
veloper Y, which turns out to be c-comm. The purpose of the c-comm is to coordinate
tasks to resolve emerging conflicts or to avoid possible future conflicts among the
tasks in which X and Y are engaged. Developers X and Y are called “socially
dependent” [2] in the sense that they have to coordinate their tasks through social
interactions when it becomes necessary to resolve the perceived conflicts. X and Y
together form an “impact network” [3]. Coordination communication is a part of im-
pact management, which is “the work performed by software developers to minimize
the impact of one’s effort on others and at the same time, the impact of others into
one’s own effort” [3]. X may need to further involve those developers who are part of
the impact network.

In contrast, suppose developer A initiates communication with developer B, which
turns out to be e-comm. The purpose of this e-comm is for A to get some information
about A’s task at hand; A is asking B to help A by providing some information for
A’s particular task. As noted earlier, e-comm refers to the activities to seek informa-
tion that is essential to accomplish A’s software development activities, not for the
purpose of learning, but for the purpose of performing A’s job. If A does not get satis-
fying information from B, A might need to ask other peers the same question.

Thus, while the relation between X and Y in the c-comm is reciprocal, that of A
and B in the e-comm is not. In c-comm, there is a symmetric or reciprocal relation
between those who initiate communication and those who are asked to communicate,
with roughly equal interests and benefits. In e-comm, in contrast, there is an asym-
metric and unidirectional relation between the one who asks a question and the one
who is asked to help. The benefit would primarily for the communication initiator,
and the cost (i.e., the additional effort) is primarily paid by those who are asked to
participate in the communication; that is, the cost of paying attention to the informa-
tion request; of stopping their own ongoing development task; of composing an an-
swer for the information-seeking developer, including collecting relevant information
when necessary; and of going back to the original task [15].

150 K. Nakakoji, Y. Ye, and Y. Yamamoto

The role and value of the resulting communicative actions would also differ be-
tween the two types of communication. When developers communicate with one
another, their conversations as well as produced artifacts (mail message contents or
white board drawings, for instance) can be stored (if appropriate media is used). Such
recorded communication can be useful if generated through e-comm. Email exchange
about a particular design of a class, for example, would serve as a valuable auxiliary
document for the class because another developer might find it useful to read when
using the class at a later time.

Archived communication generated through c-comm might be useful to inform
other developers within the same impact network for the time being. However, the
impact network constantly changes over time, and such information communicated
over a particular class may soon become obsolete. Moreover, c-comm without its
temporal context could be quite harmful when misused. A collection of the coordina-
tion communication about a particular object over a long period of time may serve as
the object's development log but it would not be more than the existing developmental
records captured within current development environments.

Table 1 summarizes the differences between c-comm and e-comm.

Table 1. Comparing Coordination Communication (c-comm) and Expertise Communication (e-
comm)

 Coordination
Communication
 (c-comm)

Expertise
Communication
 (e-comm)

purpose to coordinate work to get information
needs conflict avoidance, conflict

resolution
problem solving

cost & benefit reciprocal between a
communication initiator and
the other communication
participants

asymmetric between a
communication initiator
and the other
communication
participants

expanding
participants

when others are part of the
impact network

when the initiator could
not get satisfactory
information

recorded
communication

useful for the time being
until the impact network
changes

becomes valuable for later
use

The next section compares the different aspects of concern in designing mechanisms
for supporting each of the two types of communication.

3 Different Needs for Supporting the Two Types of
Communications

A thing is available at the bidding of the user--or could be--whereas a person
formally becomes a skill resource only when he consents to do so, and he can
also restrict time, place, and method as he chooses [6].

 Comparison of Coordination Communication and Expertise Communication 151

In talking about depending on other people, such as teachers, as knowledge re-
sources, Illich argued that their willingness to participate is essential in regarding them
as information resources. Using peers as potentially relevant information resources is
likely to increase the cognitive load for both those who initiate communication and
those who are asked to participate in the communication. Unlike a Help Desk, where it
is the job of those who are asked to answer [1], peer developers are there not to commu-
nicate but to perform their own development tasks in a time-critical fashion. They might
be willing to communicate if they had more time and less stressful situations; otherwise,
they might not be willing unless they see an immediate need to communicate.

Therefore, the asymmetric nature of the beneficiary and benefactors in e-comm
demands critical attention in designing communication support mechanisms. For an
information-seeking developer, involving more participants in the communication
means having more potential information resources, implying a better chance of ob-
taining the necessary information but at the cost of information overload; thus, high-
quality ranking and triaging mechanisms would become essential. For those who are
asked to participate in the communication and provide information, however, re-
sponding to the request becomes yet another task [15].

On the one hand, when the relation between the communication initiator and the
rest of the communication participants is symmetrical and reciprocal, those who are
asked to participate in the communication would feel an equal importance of engag-
ing in the communication and would therefore participate. On the other hand, when
the relation is asymmetrical, where the initiator would be a beneficiary and the other
participants would be benefactors, mechanisms to persuade people to participate in
the communication are necessary.

Although there had been no explicit distinctions of the two types of communica-
tions in software development, existing research currently demonstrates different
emphases on supporting each aspect of communication with regard to key concepts,
tools, and the primary functionality. Both approaches stress the importance of taking
socio-technical aspects into account, but in different contexts. Table 2 illustrates the
two distinctive approaches.

Table 2. Different Present Research Emphases on the Two Types of Communication

 Coordination Communication
(c-comm)

Expertise Communication
(e-comm)

key concepts continuous coordination [11]
impact management [3]

developer as knowledge resources
[9]
communication channel [15]

primary
functionality

awareness
visualization

finding expertise
choosing experts
socially-aware communication
channel

tools Palantir [12]
Ariadne [2]

Expert Finder [13]
Expertise Browser [8]
STeP_IN_Java [15]

socio-
technical
aspects

social interaction needs are inferred
from the technical (structural)
dependencies of the tasks [5]

communication participants are
selected based on their technical
experiences on sought information
and previous social relations with
an information seeker [15]

152 K. Nakakoji, Y. Ye, and Y. Yamamoto

Supporting c-comm has been studied primarily in such research areas as coordinat-
ing programmers and programming tasks. Supporting e-comm has been studied pri-
marily in such research areas as knowledge sharing and expert finding.

Although they do not explicitly use the term “coordination communication,” Red-
miles et al. [11] present the continuous coordination paradigm for supporting coordi-
nation activities in software development. The paradigm contains the following four
principles: (1) to have multiple perspectives on activities and information; (2) to have
nonobtrusive integration through synchronous messages or through the representation
of links between different sites and artifacts; (3) to combine socio-technical factors by
considering relations between artifacts and authorship so that distributed developers
can infer important context information; and (4) to integrate formal configuration
management and informal change notification via the use of visualizations embedded
in integrated software development environments [11].

This paradigm stresses the importance of integrating coordination activities within
the programming environment, and of making developers aware of the need for com-
munication and simultaneously minimizing the distraction of software developers by
using formal configuration management mechanisms and informal visual notification
and awareness techniques. Redmiles et al. (2007) focus on socio-technical factors in
the sense that peer-to-peer coordination communication needs are inferred by analyz-
ing structural (technical) dependencies of the system components on which develop-
ers are working because they have to coordinate their tasks through social interactions
when the resolution of perceived conflicts becomes necessary [3], [14].

Nakakoji et al. [10] present nine design guidelines for expertise communication sup-
port mechanisms. The guidelines state that expertise communication support mecha-
nisms should be integrated with other development activities, be personalized and con-
textualized for the information-seeking developer, be minimized when other types of
information artifacts are available, take into account the balance between the cost and
benefit of an information-seeking developer and group productivity, consider social and
organizational relationships when selecting developers for communication, minimize
the interruption when approaching those who are selected for communication, provide
ways to make it easier for developers to ask for help; provide ways to make it easier for
developers to answer or not to answer the information request, and be socially aware.

The guidelines presented by Nakakoji et al. [10] stress the importance of finding
communication participants who not only have necessary information, but are also
willing to provide the sought information in an appropriate way in a timely manner.
The guidelines also pay attention to the cost to those who are asked to engage in ex-
pertise communication, and argue for the use of socially aware communication chan-
nels. They focus on the socio-technical aspect in the sense that finding potential
communication participants takes into account not only technical skills of developers
but also their social relationship with the information-seeking developer.

Each approachs take socio-technical aspects into account differently. Research on
c-comm focuses on socio-technical congruence, where the structural similarities be-
tween an organizational structure and software structure are primarily studied. Re-
search on e-comm focuses on a socio-technical space, where social relations among
developers are considered in finding communication partners who would be willing to
engage in the communication.

Such differences of the two types of communication necessitate fundamental dif-
ferences in designing communication support mechanisms, specifically,

 Comparison of Coordination Communication and Expertise Communication 153

• how to select participants for the communication,
• what timing to use to start communication,
• how to invite people to participate in the communication,
• which communication channel to use
• how to use the resulting communicative session (i.e., communication archives).

Table 3 lists factors that are common and those that are distinctive to the two types of
communication in software development.

Table 3. Comparison of Design Factors

Coordination Communication Expertise Communication
in relation to the
development
environment

integrate with the development environment

disturbance minimize
when
communication
needs are identified

conflicts are detected or
possible conflicts are detected

a developer is in need of
information about the task at
hand

trade-off of not
communicating

potential risks of rework caused
by conflicts that might arise by
not coordinating

potential risks of slowing work
when appropriate information is
not provided to the information-
seeking developer

alternative means
to reduce
communication

to visualize the status of the
potential conflicts so that by
glancing at the visualized
information a developer may
not need to engage in explicit
communication

to guide the information-
seeking developer to relevant
artifacts such as source code
and documents so that a
developer may not need to
engage in explicit
communication

the use of the object
on which a
developer is
working

by looking at what objects a
developer presently works on in
order to infer the impact
network

by looking at what objects a
developer previously worked
on in order to infer the technical
expertise of the developer

the use of who is
initiating the
communication

by using the communication
initiator’s impact network in
selecting communication
participants

by using the communication
initiator’s social relations in
selecting communication
participants

helping one in
initiating
communication

mechanisms to switch to an
explicit communication mode
with the peers in the impact
network when urgent
communication needs are
detected

mechanisms to ask without
worrying about bothering peers

helping those who
are asked to
participate in the
communication

mechanisms to judge how
urgent and important the
conflict is

mechanisms to minimize
feeling guilty for not
responding to the request

awareness of
communication
channel

impact-aware so that developers
can easily judge and
communicate how much impact
the emerging conflict might
have and how to avoid and
solve the conflict.

socially aware so that
developers use the right channel
instead of the channel that is
easier to use (whom to ask,
through which media)

154 K. Nakakoji, Y. Ye, and Y. Yamamoto

Fig. 1. An Architecture of Communication Support Mechanisms that Takes into Account Two
Types of Communication

Figure 1 illustrates how communication support mechanisms should be built in
support of software developers. On the one hand, there should be a unified interactive
framework with communication for the software developer that is integrated within a
development environment. Developers should not need to explicitly choose which
communication type in which they would like to be engaging. Communication with
peer developers should be supported as another type of information usage during
software development, and needs to be integrated with a program- and document-
authoring and browsing environment. On the other hand, how the communication is
designed and structured needs to be tuned to each of the two types of communication.
What is needed is to take the above differences seriously into account and design the
communication support mechanisms accordingly.

4 Concluding Remarks

Nurturing communication in software development is not about increasing the amount
of communication but about increasing the quality of the communication experience
in the context of software development. Although having been recognized merely as
communicative acts, different motives and needs are inherent when developers com-
municate with one another. Different computational mechanisms are necessary to
realize successful communication. This paper presents our initial attempt to list dif-
ferent aspects necessary to take into account in designing mechanisms to support
coordination communication and expertise communication. As opposed to general
communication needs, there are either coordination communication needs or expertise
communication needs. A real challenge would be to design a developer-centered
unified interactive framework that seamlessly integrates the two.

 Comparison of Coordination Communication and Expertise Communication 155

References

1. Ackerman, M.S., Malone, T.W.: Answer Garden: a tool for growing organizational mem-
ory. In: Proceedings of the ACM Conference on Office Information Systems, Cambridge,
MA, pp. 31–39 (1990)

2. [de Souza et al. 2007] de Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.: Supporting
collaborative software development through the visualization of socio-technical dependen-
cies. In: Proceedings of GROUP 2007, pp. 147–156 (2007)

3. [de Souza & Redmiles 2008] de Souza, C.R.B., Redmiles, D.: An empirical study of soft-
ware developers management of dependencies and changes. In: Proceedings of Interna-
tional Conference on Software Engineering (ICSE 2008), pp. 241–250 (2008)

4. [Gutwin et al. 2004] Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed
software development. In: Proceedings of the ACM Conference on Computer Supported
Cooperative Work (CSCW 2004), pp. 72–81 (2004)

5. [Herbsleb & Grinter 1999] Herbsleb, J., Grinter, R.E.: Splitting the organization and inte-
grating the code: Conway’s Law revisited. In: Proceedings of International Conference on
Software Engineering (ICSE 1999), pp. 85–95 (1999)

6. [Illich 1971] Illich, I.: Deschooling Society. Harper and Row, New York (1971)
7. [Ko et al. 2007] Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated soft-

ware development teams. In: Proceedings of International Conference on Software Engi-
neering (ICSE 2007), pp. 344–353 (2007)

8. [Mockus & Herbsleb 2002] Mockus, A., Herbsleb, J.: Expertise Browser: a quantitative
approach to identifying expertise. In: Proceedings of International Conference on Software
Engineering (ICSE 2002), pp. 503–512 (2002)

9. [Nakakoji 2006] Nakakoji, K.: Supporting software development as collective creative
knowledge work. In: Proceedings of International Workshop on Knowledge Collaboration
in Software Development (KCSD 2006), Tokyo, pp. 1–8 (2006)

10. [Nakakoji et al. 2010] Nakakoji, K., Ye, Y., Yamamoto, Y.: Supporting expertise commu-
nication in developer-centered collaborative software development environments. In:
Finkelstein, A., van der Hoek, A., Mistrik, I., Whitehead, J. (eds.) Collaborative Software
Engineering, January 2010, ch. 11. Springer, Heidelberg (2010)

11. [Redmiles et al. 2007] Redmiles, D., van der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk,
S., Sarma, A., Filho, R.S.S., de Souza, C., Trainer, E.: Continuous coordination: a new
paradigm to support globally distributed software development projects. Wirtschaftsinfor-
matik J. 49, S28–S38 (2007)

12. [Sarma et al. 2003] Sarma, A., Noroozi, Z., van der Hoek, A.: Palantir: raising awareness
among configuration management workspaces. In: Proceedings of International Confer-
ence on Software Engineering (ICSE 2003), pp. 444–454 (2003)

13. [Vivacqua & Lieberman 2000] Vivacqua, A., Lieberman, H.: Agents to assist in finding
help. In: Proceedings of Human Factors in Computing Systems (CHI 2000), pp. 65–72
(2000)

14. [Wagstrom & Herbsleb 2006] Wagstrom, P., Herbsleb, J.: Dependency forecasting. Com-
munications of ACM 49(10), 55–56 (2006)

15. [Ye et al. 2007] Ye, Y., Yamamoto, Y., Nakakoji, K.: A socio-technical framework for
supporting programmers. In: Proceedings of ESEC/FSE 2007, pp. 351–360 (2007)

16. [Ye et al. 2008] Ye, Y., Yamamoto, Y., Nakakoji, K.: Expanding the knowing capability
of software developers through knowledge collaboration. International Journal of Technol-
ogy, Policy and Management (IJTPM), Special Issue on Human Aspects of Information
Technology Development 8(1), 41–58 (2008)

Part III
Logic and Engineering of Natural

Language Semantics

6th International Workshop on
Logic and Engineering of Natural Language

Semantics (LENLS 6)

Daisuke Bekki

Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

bekki@is.ocha.ac.jp

The annual international workshop LENLS (Logic and Engineering of Natural
Language Semantics) covers topics in formal linguistics and related fields, such
as theoretical computer science, mathematical logic and formal philosophy, and
includes the following:

� Dynamic syntax/semantics/pragmatics of natural language
� Categorical/topological/coalgebraic approaches to natural language syntax/

semantics/pragmatics
� Logic and its relation to natural language and linguistic reasoning (especially

dynamic logics)
� Type-theoretic approaches to natural language
� Formal philosophy of language
� Formal pragmatics (especially game- and utility-theoretic approaches)
� Substructural expansion of Lambek Lambda Calculi
� Many-valued/Fuzzy and other non-classical logics and natural language

Formal linguistics is intrinsically an interdisciplinary field. Indeed, most of the
formalisms which have been adopted in formal linguistics have their origin in the
field of theoretical computer science, and in programming semantics especially.
To take a few examples:

Lambda calculus originally appeared in Church (1941) and was subsequently
incorporated into Montague Grammar (Montague (1973)).

Dynamic logics has its root in the programming semantics of the mid 1970s
such as in the work of Harel (1979), which inspired the seminal paper by
Groenendijk and Stokhof (1991).

Continuations first appeared in Plotkin (1975) and later in Danvy and Filinski
(1990) before being extended to the field of formal semantics by de Groote
(2001) and Barker (2001).

The average time for these notions to jump the boundary from the originating
field into another was around 23 years. During such time they matured, became
widely accepted in their respective fields as important notions, were introduced
in many lectures, before eventually becoming known to formal linguists.

Besides programming semantics, other fields of theoretical computer science
have influenced formal linguistics. Game theory, Bayesian networks and stochas-
tic processes are among the many examples, and have helped to shape the dis-
cipline over time and remain influential in formal linguistics today.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 159–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

160 D. Bekki

On the other hand, only a very small number of theories emerging from formal
linguistics have influenced theoretical computer science, to say nothing of to
mathematical logic. Algebraic automata theory, which originates in automata
theory, is one of the few exceptions. Lambek calculus is another exception, if
we take the view that it comes from categorial grammar, which, together with
linear and fuzzy logics, gives its own insights into substructural/algebraic logics.

This means that formal linguistics has been, rightly or wrongly, almost a
‘net-importer of formal theory’. Whether we accept this situation and want to
accelerate the cycle of importing new formal theories, or whether we regard it
as a problem and try to develop linguistic-oriented formal theories, it seems
that one of our prime tasks is to promote and maintain people-to-people and
theory-to-theory exchanges between formal linguistics and adjacent fields.

The aim of LENLS, in the spirit of its founder Norihiro Ogata, is to revi-
talize such exchanges, rediscover the connections between the formal disciplines
(theoretical computer science, logic and mathematics) and empirical disciplines
(syntax, semantics, pragmatics and philosophy), and revive the interdisciplinary
nature of formal linguistics to what it once was.

In LENLS6, we focused particularly on work related to the interplay between
logic, philosophy of language and formal semantics and pragmatics. This post-
proceedings volume contains 8 papers, selected from the 20 presentations given
at the LENLS 6 workshop.

LENLS6 was held as part of JSAI International Symposia on AI (JSAI-isAI
2009). I hope that LENLS will continue its international development, alongside
the other workshops of JSAI-isAI, within this new scheme.

References

Barker, C.: Introducing Continuations. In: Hastings, R., Jackson, B., Zvolenszky, Z.

(eds.) The Proceedings of SALT 11. CLC Publications, Ithaca (2001)

Church, A.: The Calculi of Lambda Conversion. Annals of Mathematical Studies, vol. 6,

ii+77. Princeton University Press, Princeton (1941)

Danvy, O., Filinski, A.: Abstracting Control. In: The Proceedings of LFP 1990, the

1990 ACM Conference on Lisp and Functional Programming, pp. 151–160 (1990)

de Groote, P.: Type raising, continuations, and classical logic. In: van Rooij, R.,

Stokhof, M. (eds.) The Proceedings of the 13th Amsterdam Colloquium, Institute

for Logic, Language and Computation, Universiteit van Amsterdam, pp. 97–101

(2001)

Groenendijk, J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and Philosophy 14,

39–100 (1991)

Harel, D. (ed.): First-Order Dynamic Logic. LNCS, vol. 68. Springer, Heidelberg (1979)

Montague, R.: The Proper Treatment of Quantification in Ordinary English. In: Hin-

tikka, J., Moravcsic, J., Suppes, P. (eds.) Approaches to Natural Language, pp.

221–242. Reidel, Dordrecht (1973)

Plotkin, G.D.: Call-by-Name, Call-by Value and the Lambda Calculus. Theoretical

Computer Science 1, 125–159 (1975)

Representing Covert Movements
by Delimited Continuations

Daisuke Bekki and Kenichi Asai

Department of Information Science, Faculty of Science,

Ochanomizu University,

Ootsuka 2-1-1, Bunkyo-ku, Tokyo, Japan

1 Background

1.1 Motivation: Covert Movements and Delimited Continuations

In phenomena which have been claimed to require “covert movements” in gener-
ative terms, a relevant lexical item seems to require a means to somehow refer to
the meaning of its surroundings in order for the meaning of the whole sentence
to be properly computed. This has motivated generative/transformational gram-
mars to adopt a movement of the relevant item to the position where its scope
contains surroundings that influence its meaning, while it remains as an issue
to be solved for categorial/Lambek-style grammars, namely, grammars without
movements.

Analyses that represent “covert movements” by means of delimited continua-
tions (Danvy and Filinski (1990)) have recently attracted much attention in the
field ofnatural language semantics (de Groote (2001), Shan (2002),Barker (2002),
Barker (2004), Shan and Barker (2006), Barker and Shan (2006), Shan (2007),
Otake (2008)). Delimited continuation is a notion which originates in the theory
of functional programming languages; it enables each subterm to refer to “the rest
of the computation”, i.e. its surroundings.

In this paper, we propose a new method to define delimited continuations
in terms of an internal monad, which is described by Meta-Lambda Calculus
(cf. Bekki (2009)), which thereby enables us to analyse linguistic phenomena
such as focus and inverse scope. In the following sections, we will review the
notion of continuations both in programming and natural languages, then point
out some problems that the preceding continuation theory of natural language
semantics, especially in what is called Continuized Semantics, advocated in
Barker (2002) and Barker (2004), and demonstrate how our approach success-
fully overcomes those problems. In the appendix, we will briefly present the
language and theory of Meta-Lambda Calculus used throughout the paper.

1.2 Continuations and CPS Transformation

The concept of a Continuation (Stratchey and Wadsworth (1974)) was devised
originally to capture the semantics of control operators such as jumps, which
otherwise do not fit into a purely functional view of programming languages.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 161–180, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

162 D. Bekki and K. Asai

For any subterm N : α of a lambda term M : O, a continuation for N is a
function k : α→ O, which returns M : O when N : α is passed as its argument.
Intuitively, this function corresponds to the rest of the computation for N in M .

It is often the case that the whole term M is not specified and only its type,
which is called the answer type, is implicitly given. Let us use the following
notation, using T as a type operator:

Tα
def≡ (α→ O)→ O

where O is an answer type implicitly assumed.

Example 1. In the term 1+(a∗2) : int (the answer type is int), the continuation
of a subterm a : int is a function λκ.(1 + (κ ∗ 2)) : (int→ int)→ int.

Example 2. In the proposition love(john,mary) : t (the answer type is t), the
continuation of a subterm mary : e is a function λκ.love(john, κ) : (e→ t)→ t.

In order for each subterm to refer to its continuation, terms are transformed
using the continuation-passing style (CPS).

Definition 3 (The transformation rules for call-by-value CPS). (Slightly
adapted from the definition originally proposed in Plotkin (1975).)

�x�
def≡ λκ.κ(x)

�fM�
def≡ λκ.�M�(λa.κ(fa))

�λx.M�
def≡ λκ.κ(λx.�M�)

�MN�
def≡ λκ.�M�(λf.�N�(λa.(fa)κ))

x is just the variable x but assigned a different type: if the type of x is α, then
the type of x is α∗, where the operator ∗ is recursively defined as follows:

Definition 4 (∗ operator).

b∗ �→ b

(α→ β)∗ �→ (α∗ → T (β∗))

By CPS transformation, a lambda term of type α is uniformly transformed into
one of type T (α∗). It should be noted that a linguist who is familiar with the
continuation analysis of Barker (2002) and Barker (2004) must note that the
CPS of value types and functional types are of different type.

Example 5.

e∗ = e

(e→ t)∗ = (e→ T t)
(e→ e→ t)∗ = (e→ T (e→ T t))

Representing Covert Movements by Delimited Continuations 163

Not all terms in CPS have their counterparts in terms of the direct style. Such
terms include a term in which there is reference to its continuation. This is
the power resulting from the CPS transformation and an example of such an
extended term is the shift/reset operator (Danvy and Filinski (1990)), which
is a static way of capturing these operators.

Definition 6 (Shift/Reset operators)

�shift f.M�
def≡ λκ.(�M�(λx.x)[λa.λκ′ .κ′(κa)/f])

�reset(M)�
def≡ λκ.κ(�M�(λx.x))

1.3 Barker’s Continuized Semantics for Natural Language

Barker (2001) and de Groote (2001) first pointed out the similarity between
Montague-style type raising and CPS transformation. Barker (2002) and Barker
(2004) regarded the type raising operation as an instance of translation into
CPS, and this is the strategy that succeeding analyses (Shan and Barker (2006),
Barker and Shan (2006) have adopted. Let us call this approach Continuized Se-
mantics after Barker (2002). Barker’s CPS transformation rules are defined as
follows.

Definition 7 (The transformation rules for call-by-value CPS). (Slightly
adapted from the definition proposed in Barker (2002) and Barker (2004).)

�x�
def≡ λκ.κ(x)

�f�
def≡ λκ.κ(f)

�MN�
def≡ λκ.�M�(λf.�N�(λa.κ(fa))) (Call-by-value)

�MN�
def≡ λκ.�M�(λf.�N�(λa.κ(fa))) (Call-by-name)

While Plotkin’s original definition in Definition 3 transforms a lambda term of
type α to a lambda term of type T (α∗), Barker’s rules transform a lambda term
of type α to a lambda term of type T (α). Taking the complexity of the star oper-
ator (Definition 4) into account, Barker’s transformation rules are substantially
simpler, and contain substantial flaws as well. We will come back to this point
in Section 2.2.

In Barker (2004), quantifiers such as everyone and someone are assigned their
semantic representations in CPS style in the lexicon as shown below.

everyone λκ.∀x.κx : (e→ t)→ t

someone λκ.∃x.κx : (e→ t)→ t

With the presence of the type raising operation (indicated by (T)), the type
mismatch problem can be resolved as in the following derivation.

164 D. Bekki and K. Asai

(1)

(>)

somebody
λP.∃x(Px)

: (e→ t)→ t

(<)

loves
λy.λx.love(x, y)

: e→ e→ t

(T)

everybody
λP.∀y(Py)

: (e→ t)→ t

λP.λx.∀y(Pyx)
: (e→ e→ t)→ e→ t

λx.∀y(love(x, y))
: e→ t

∃x(∀y(love(x, y)))
: t

On the other hand, Continuized Semantics achieves the same effect in the
following way:

(2)

(<CBN)

somebody
λκ.∀x(κx)

: T (e)

(>CBN)

loves
λκ.κ(λy.λx.love(x, y))

: T (e→ e→ t)

everybody
λκ.∃y(κy)

: T (e)
λκ.∀y(κ(λx.love(x, y)))

: T (e→ t)
λκ.∃x(∀y(κ(love(x, y)))

: T (t)

Barker claims that this method uniformly yields an NP, be it a proper name or
quantifier, a representation of type e without recourse to type raising. Moreover, a
boolean type approach to coordination (Partee and Rooth (1983), Winter (2001),
among many others) can be integrated into this system as an instance of CPS.

2 Problems of Continuized Semantics

In this section, we will show that Continuized Semantics implies at least four
problems that need to be addressed; the first three are theoretical, and the last
one is empirical.

2.1 fcontrol and run

Barker (2004) mentioned the interaction between the adverbial only and focus
within its scope as an instance of applying delimited continuation to natural
language semantics, which can be defined by using run and fcontrol operators
(Sitaram and Felleisen (1990), Sitaram (1993)) as follows (slightly adapted).

�only P �
def≡ run(P)(λx.λκ.λy.(κxy ∧ ∀z.(κzy → x = z)))

�[M]F �
def
≡ fcontrol(�M�)

Representing Covert Movements by Delimited Continuations 165

It is clear that the behaviour of Sitaram’s fcontrol and run fits in with this
phenomenon. However, this analysis is defective in the sense that Barker has not
given any definition of those operators in terms of his CPS.

CPS transformation is regarded as a static simulation of control operators and
Sitaram’s fcontrol/run operators (or, equivalently, Felleisen (1988)’s control/
prompt operators) are defined only dynamically, and it is still controversial
whether they can be statically represented in terms of CPS.

Recently, Dybvig et al. (2007) has given a small step semantics for control/
prompt operators, and mentions its relation to CPS (in section 2.3.4); never-
theless that relation is still far from obvious at present. Fairly speaking, Con-
tinuized Semantics has left much work to be done, including the definition of
fcontrol/run operators, in order to argue that it has good prospects for the
analysis of adverbial only and focus.

2.2 Lambda Abstractions

As we mentioned in Section 1.3, the simplification of the transformation rules in
Continuized Semantics comes at a cost; there is no rule for transforming a lambda
abstraction term. According to Barker’s rule, a lambda term λx.M of the type
α→ β is transformed into one of type T (α→ β), namely, ((α→ β)→ O)→ O.
Then it seems natural to assume that this term has the form λκ.N , where κ is
a variable of type (α → β) → O and N is some lambda term of type O, and it
also seems natural to assume that N is constructed only from a combination of
the following components (where �M� contains x as a free variable).

κ : (α→ β)→ O

x : α

�M� : (β → O)→ O

But this does not seem to be achievable1. The main difficulty lies in the impos-
sibility of obtaining a term of type β from �M�.2

Barker defends the fact that his theory lacks a transformation rule for a
lambda abstraction term by claiming that it might be possible to eliminate
any lambda abstraction terms from logical forms of natural language. For exam-
ple, Barker’s mechanism can deal with the type mismatch problem of quantifiers
without recourse to quantifier raising (QR), and Shan and Barker (2006) men-
tions a treatment of relative clauses without operator movements.

However, in natural language semantics, lambda abstractions are more abun-
dant than his optimism allows for. We may even say that formal semantics
1 For example, the term λκ.�M�(λv : β.κ(λx : α.v)) is of type T (α → β). But this

term contains x as a free variable and the inner variable x is vacuous, which obviously

does not serve as a translation of λx.M . This argument is related to our realization

of the transformation rule of a lambda abstraction term via meta-lambda calculus.

See Section 4.2 for details.
2 This is only possible in the special case in which the answer type is t; then

∧
�M� is

of type β if β is a complete lattice.

166 D. Bekki and K. Asai

without lambda abstraction is bound hand and foot: How can we formalize com-
paratives without lambda abstractions? How can we extend our system with
event variables and possible worlds without lambda abstractions?

2.3 The Type of Determiners

Another theoretical problem of Continuized Semantics concerns the type that it
assigns to determiners. According to the standard theory of generalized quan-
tifiers (in direct style), a determiner (e.g. “every”) has a type (e → t) → (e →
t)→ t, and a common noun (e.g. “man”) has a type e→ t.

every λQ.λP.∀x(Px→ Qx) : (e→ t)→ (e→ t)→ t

man man : e→ t

But this view, as it stands, does not fit into Continuized Semantics for the
following reasons:

1. In the first place, the semantic representation of “every” is of lambda ab-
straction form, therefore it cannot be transformed into CPS.

2. Suppose that the representation of “every” is somehow transformed into
CPS; it should have type T ((e → t) → (e → t) → t). Suppose further that
the representation of “man” is transformed with CPS into one whose type
is T (e→ t). Then the composition of these two yields the representation of
“every man” whose type is supposed to be T ((e → t) → t). However, this
is not consistent with one of the selling points of Continuized Semantics;
namely, that the representation of “everyone” is of type T (e) ≡ (e→ t)→ t
and already in CPS form. This means that “every man” and “every” have
different types!

In order to get around this problem, Barker (2002) assumes that the represen-
tation of a determiner such as “every” is of type T ((e → t) → e), namely,
(((e→ t)→ e)→ t)→ t, instead of T ((e→ t)→ (e→ t)→ t).

The first question that naturally comes to mind is whether one can define a
representation of generalized quantifiers having this type, since this intuitively
means that we define the representation of “every” as having type (e→ t)→ e:
in other words, a function that takes a set like “man” and returns an object of
type e.

This seems impossible within the compass of direct semantics. But Con-
tinuized Semantics gets round this problem by employing choice functions of
type (e→ t)→ e (cf. Kratzer (1998)). Determiners are defined in the appendix
of Barker (2002) as follows, in which the variable f is a choice function that
plays the role of choosing one entity from a given set, and what is universally
quantified here is this f .

every λd.∀f(d(f)) : T ((e→ t)→ e)
some λd.∃f(d(f)) : T ((e→ t)→ e)

Representing Covert Movements by Delimited Continuations 167

The derivation goes as follows. The resulting representation states that for any
of those choice functions, κ(f(man)) is true.

(3)

(>CBV)

every
λd.∀f(d(f)) : T ((e→ t)→ e)

man
λκ.κ(man) : T (e→ t)

λκ.∀f(κ(f(man))) : T (e)

Generalized quantifiers like “most” are alsodefinable in terms of a choice function.3

most λd.∃C ∈MOST(∀f ∈ C (d(f))) : T ((e→ t)→ e)

MOST
def≡ {C | ∀P (|P | < 2 ∗ | {x | ∃f ∈ C (x = f(P))} |)}

However, there are determiners, such as only and even, which cannot be given
a representation of this type. Let us take “only” for example. Putting aside the
pre-suppositional content of “only”, the following representation is plausible for
“only” in direct style.

only λz.λP.(Pz ∧ ∀x(Px→ x = z)) : e→ (e→ t)→ t

This means that “only” must be represented as a type T (e→ e) in Continuized
Semantics, because the derivation must go as follows.

(4)

(>CBV)

only
T (e→ e) ≡ ((e→ e)→ t)→ t

John
T (e) ≡ (e→ t)→ t

T (e) ≡ (e→ t)→ t

Now it seems impossible to define a representation of “only” as having type
T (e→ e), considering its propositional content.4 The same argument applies to
“even”. Moreover, there are other kinds of determiners which lead to the same
sort of difficulty, such as “same” or “different”, among many others.

Therefore, the central view of Continuized Semantics that type raising can
be reduced to CPS transformations, although appealing at a glance, cannot be
maintained as it stands if we consider a wider range of phenomena in natural
language semantics.
3 Barker (2002) and Barker (2004) did not mention anything about downward entailing

quantifiers, but they are also definable in terms of negated forms of upward entailing

quantifiers as follows:

few � λd.¬∃C ∈ MOST(∀f ∈ C (d(f))) : T ((e → t) → e)

4 Barker (2004) includes a lexical entry for adverbial “only” which is defined via the

run operator. But this does not remedy the above problem; in the sentence “only

John runs”, “John” is focused and marked with the []F operator, but since the

continuation that “John” receives is empty, “John” cannot refer to the representation

of the verb phrase.

168 D. Bekki and K. Asai

2.4 Inverse Scope

Barker (2002) suggests that the scope ambiguity between linear and inverse
scope readings (in sentences with more than two quantifiers) can be reduced
to a choice between two evaluation strategies: call-by-value and call-by-name in
the interpretation of functional applications.

For example, the derivation of the sentence “Everybody loves somebody”
in (2) uses only the call-by-name strategy for the interpretation of functional
applications, which yields the linear scope reading. On the other hand, by using
only the call-by-value strategy, the inverse scope reading yields the interpretation
shown by the following derivation.

(5)

(<CBV)

somebody
λκ.∃x(κx)

: T (e)

(>CBV)

loves
λκ.κ(λy.λx.love(x, y))

: T (e→ e→ t)

everybody
λκ.∀y(κy)

: T (e)
λκ.∀y(κ(λx.love(x, y)))

: T (e→ t)
λκ.∀y(∃x(κ(love(x, y))))

: T (t)

It is true that its conception and repercussions (we mean, if natural language
has any phenomena which can be explained by assuming that there are two
different strategies, and more importantly, we have the chance to choose one
of them, for each evaluation of a functional application) are worth pursuing, as
Shan and Barker (2006) does.

However, we believe that any analysis of scope ambiguity has to be verified
by sentences which contain more than three quantifiers. This is not a flaw only
of Continuation Semantics, but rather is an inherited vice in the field of formal
semantics, which has unquestioningly assumed that there exists a reading for
every combination of quantifiers contained in a given sentence; namely, n! dif-
ferent readings for a sentence with n quantifiers, based only on the fact that a
sentence which contains only two quantifiers has two different readings: linear
and inverse scope readings. But the situation becomes different when n > 3.

For example, more deliberate studies of scope ambiguity, such as
Hayashishita (2003) among others, point out that a sentence with three quanti-
fiers, Q1, Q2 and Q3 in their linear order, hardly shows the Q3 > Q2 > Q1 read-
ing (which we may call a “reversed reading”), such as the every > most > some
reading in the following sentence.

(6) Some teachers introduce most students to every company.

The analysis of Barker (2002) and Barker (2004) wrongly generates the reversed
reading for the above sentence, if every functional application is evaluated by
the call-by-value strategy.

On the other hand, the intermediate-inverse scope readings such as most >
some > every or every > some > most seem to exist, but these are not derivable

Representing Covert Movements by Delimited Continuations 169

in the analysis of Barker (2002) nor Barker (2004), because there are only two
choices in the scope relation betwen most and every , namely most > every or
every > most , and the scope of the subject is either higher than both of them,
or lower than both of them, yielding only the following four combinations (the
fourth of which is the reversed reading).

some > most > every
most > every > some
some > every > most
every > most > some

Thus the analysis of Continuized Semantics does not properly predict the em-
pirical combination of linear/intermediate-inverse/inverse scope readings. This
will be solved in our analysis, in which scope ambiguity is not due to the choice
of evaluation strategy, but rather to the use of the inverse scope operator ; See
Section 4.4.

2.5 Summary of the Problems

To summarize, Continuized Semantics has the following set of problems:

– Lack of definitions for fcontrol and run in terms of CPS
– Empirically wrong predictions for inverse scope readings
– No transformation rule for lambda abstraction construction
– Existence of undefinable determiners

We believe that these problems are particular to the formulation of Continuized
Semantics and not problems for the use of continuations in general for natural
language semantics.

The central idea of Continuized Semantics is to regard CPS transformation as
a generalization of type raising operations and thus it enables us to do without
type raising operations. In other words, Continuized Semantics represents the
whole semantic system in CPS, in order to obviate the need for type raising.

This view is the root cause of the problem that we discussed in Section 2.3,
but we think that it is burdened by a more conceptual problem; can we really
consider Continuized Semantics as doing without type raising operations? As
the conclusion of Barker (2002) stated, CPS transformation can also be seen as
a kind of raising. If this is so, then it can be regarded as raising everything by
CPS transformation!

Moreover, every semantic representation in Continuized Semantics is de-
scribed in CPS. This opposes the original concept of CPS transformation in
Danvy and Filinski (1990) , in which the advantage of CPS transformation is
that we can write representations in direct style while making use of control op-
erators such as shift/reset, whose interpretations are defined in terms of CPS;
nevertheless they are allowed to appear within other representations in direct
style.

170 D. Bekki and K. Asai

The achievement of Barker (2002) and Barker (2004) was to introduce the
notion of (delimited) continuations to the field of natural language semantics
and indicate that continuations may have interactions with many linguistic phe-
nomena in an important way. At the same time, its motivation to reduce type
raising operations has been misunderstood to be the central merit of continua-
tions, which leads to a situation where the real descriptive power of continuations
in linguistics is hard to grasp.

Unlike Continuized Semantics, our strategy is to write semantic representa-
tions in direct style according to the line of Danvy and Filinski (1990) . Then
we will define control operators in terms of CPS transformations, allowing them
to appear among direct style representations. This strategy places an emphasis
on bringing out the original expressive power of delimited continuations.

In the next section, we will present our proposal in the following way.

1. We define an internal monad for delimited continuations in term of the
meta-lambda calculus (Bekki (2009)). This enables delimited continuations
to co-exist with other monadic analyses in Bekki (2009).

2. We define CPS transformation (of simply-typed lambda terms) by means of
internal monads. This transformation, unlike Barker’s, is defined generally
enough to treat any lambda terms, including lambda abstraction construc-
tions.

3. We will demonstrate how the resulting analysis solves the problems we have
pointed out in this section: the problem of “only” and focus, the transfor-
mation of lambda abstraction terms, the problem of types of determiners,
and the empirical problem of inverse scope readings.

3 Proposal: Delimited Continuations via Meta-Lambda
Calculus

3.1 Transformation Rules by Continuation Monad

To begin, we define a general translation rule in terms of internal monads
(Bekki (2009)p.202) which is robust enough to deal with any term defined in
typed lambda calculus.

Definition 8 (Internal monad for deliminted continuations). The in-
ternal monad for delimited continuations is a triple 〈T , η, μ〉, each of which is
defined using the following meta-lambda terms.

T = ζf.ζX.ζκ.(X � (ζv.κ � (f � v)))
η = ζX.ζκ.(κ � X)
μ = ζX.ζκ.(X � (ζv.v � κ))

Definition 9 gives a set of transformation rules for simply-typed lambda terms,
which are parametrized by internal monads.

Representing Covert Movements by Delimited Continuations 171

Definition 9 (Transformation with Internal Monad (call-by-value))

�x�T = η � x

�c�T = η � c

�λx.M�T = (T � (ζX.λx.X)) � �M�T

�MN�T = μ � (T � (ζX.((T � (ζY.XY)) � �N�T) � �M�T)

Definition 10 (Translation for continuation monad). Given an internal
monad for continuations, the translation rules for lambda terms with delimited
continuations are accordingly defined as follows.

�x�c = ζκ.(κ � x)
�c�c = ζκ.(κ � c)

�λx.M�c = ζκ.(�M�c � (ζv.κ � (λx.v)))
�MN�c = ζκ.(�M�c � (ζm.�N�c � (ζn.κ � (mn)))

3.2 Control Operators

In the light of this setting, shift/reset operators are defined in the following way.

Definition 11 (Control operators).

�shift κ.M� = ζκ.(�M� � (ζx.x))
�reset(M)� = ζκ.(κ � (�M� � (ζx.x)))

The definition above looks too simple compared with that of Danvy and Filinski
(1990) but has the same effects, as indicated by the following computations.

�1 + reset(10 + shiftf.(f(f(100))))� = ζκ.(κ � 121)
�1 + reset(10 + shiftf.(100))� = ζκ.(κ � 101)

�1 + reset(10 + shiftf.(f(100) + f(1000)))� = ζκ.(κ � 1121)

4 Solutions

4.1 “Focus Movement” as shift/reset

Rooth (1992) discussed the truth conditions of the two sentences (7a) and (7b)
which differ only in the location of the focus. As a description of the situation
where Mary introduced Bill and Tom to Sue, with no other introductions, (7a)
is false and (7b) is true.

(7) a. Mary only introduced [Bill]F to Sue.
b. Mary only introduced Bill to [Sue]F .

In order to account for this, Wagner (2006), among others, adopts an operation
called “focus movement”, which is an instance of covert movements.

172 D. Bekki and K. Asai

We can, however, directly compute the semantic representation without covert
movements under the mechanism of delimited continuations with shift/reset
operators. This is achieved by the following definition, where focus is interpreted
by means of the shift operator, and the adverbial “only” is the reset operator.

Definition 12 (Focus operator). For any meta-lambda term φ : e and ψ :
(e→ t)→ e→ t,

[φ]F
def≡ shift f.λx.∀z((f � z) � x→ z = φ) : (e→ e→ t)→ e→ t

only(φ)
def≡ reset(φ) : (e→ t)→ e→ t

The semantic representations for (7a) and (7b) are respectively calculated as
follows:

�((only ((introduce [b]F) s) m)�c

= ζκ.�only ((introduce [b]F) s)�c(ζx.κ(x(m)))
= ζκ.κ(�(introduce [b]F) s�c(ζx.x)(m))
= ζκ.κ(�[b]F �c(ζw.introduce(w)(s)))(m)
= ζκ.κ(�b�c(λy.∀z(introduce(z)(s)(m)→ z = y))
= ζκ.κ(∀z(introduce(z)(s)(m)→ z = b))

�((only ((introduce b) [s]F) m)�c

= ζκ.�only ((introduce b) [s]F)�c(ζx.κ(x(m)))
= ζκ.κ(�(introduce b) [s]F �c(ζx.x)(m))
= ζκ.κ(�[s]F �c(ζw.introduce(b)(w)))(m)
= ζκ.κ(�s�c(ζy.∀z(introduce(b)(z)(m)→ z = y))
= ζκ.κ(∀z(introduce(b)(z)(m)→ z = s)))

4.2 Transforming Lambda Abstractions

The transformation rules in Definition 9 properly transform a lambda term of
lambda abstraction form in spite of the difficulty we mentioned in Section 2.2.
The rules in Definition 9 transform a lambda term of the form λx.�M� into the
following form:

ζκ.(�M�c � (ζv.κ � (λx.v)))

Notice this form resembles the one we mentioned in the footnote in Section 2.2,
which is as follows.

λκ.�M�(λv.κ(λx.v))

Recall that this form does not serve our purpose, because 1) the variable x
remains free in �M�, and 2) the inner variable x is vacuous. However, in our set-
tings, the free variable x in �M� gets bound by the inner lambda operator. This

Representing Covert Movements by Delimited Continuations 173

is due to the difference of operators binding the variable v; in the failed transfor-
mation, v is bound by a normal lambda operator, while in our transformation,
the variable v is bound by a meta-lambda operator, thus v is actually a meta-
variable, which keeps track of the free variables that it contains. This enables the
inner lambda operator to bind the free variable contained in the meta-variable
v. For a detailed definition of the objects in meta-lambda calculus, see Appendix
A. Here we show only the typing of the transformation of lambda abstraction
terms below.

Example 13

(MLAM)

(MAPP)

(MV AR)

κ : (Γ α→ β ⇒ Γ O), v : (Γ, x : α β)
� κ : (Γ α→ β ⇒ Γ O)

(LAM)

(MV AR)

κ : (Γ α→ β ⇒ Γ O), v : (Γ, x : α β)
� v : (Γ, x : α β)

κ : (Γ α→ β ⇒ Γ O), v : (Γ, x : α β)
� λx.v : (Γ α→ β)

κ : (Γ α→ β ⇒ Γ O), v : (Γ, x : α β) � κ � (λx.v) : (Γ O)

κ : (Γ α→ β ⇒ Γ O) � ζv.κ � (λx.v) : (Γ, x : α β)⇒ (Γ O)

(MLAM)

(MAPP)

κ : (Γ α→ β ⇒ Γ O)
� �M�c : ((Γ, x : α β)⇒ (Γ O))⇒ (Γ O)

κ : (Γ α→ β ⇒ Γ O)
� ζv.κ � (λx.v) : (Γ, x : α β)⇒ (Γ O)

κ : (Γ α→ β ⇒ Γ O) � �M�c � (ζv.κ � (λx.v)) : (Γ O)

� ζκ.�M�c � (ζv.κ � (λx.v)) : (Γ α→ β ⇒ Γ O)⇒ (Γ O)

4.3 Transforming Determiners

Determiners such as “every” and “only”, which have proved to be problematic
for Continuized Semantics, are successfully transformed in the following way.

�every� = �λP.λQ.∀x(Px→ Qx)�
= ζκ.�λQ.∀x(Px→ Qx)�(ζv.κ(λP.v))
= ζκ.(ζκ′.�∀x(Px→ Qx)�(ζv′.κ′(λQ.v′)))(ζv.κ(λP.v))
= ζκ.(ζκ′.(ζκ′′.�Px→ Qx�(ζv′′.κ′′(∀x.v′′)))(ζv′.κ′(λQ.v′)))(ζv.κ(λP.v))
= ζκ.(ζκ′.(ζκ′′.ζκ′′′.κ′′′(Px→ Qx)(ζv′′.κ′′(∀x.v′′)))(ζv′.κ′(λQ.v′)))(ζv.κ(λP.v))
= ζκ.(ζκ′′.ζκ′′′.κ′′′(Px→ Qx)(ζv′′.κ′′(∀x.v′′)))(ζv′.(ζv.κ(λP.v))(λQ.v′))
= ζκ.(ζv′′.(ζv′.(ζv.κ(λP.v))(λQ.v′))(∀x.v′′))(Px→ Qx)
= ζκ.(ζv′.(ζv.κ(λP.v))(λQ.v′))(∀x.Px→ Qx)
= ζκ.(ζv.κ(λP.v))(λQ.∀x.Px→ Qx)
= ζκ.κ(λP.λQ.∀x.Px→ Qx)

�everyone� = �λQ.∀x(Qx)�
= ζκ.�∀x(Qx)�(ζv.κ(λQ.v))
= ζκ.(ζκ′.�Qx�(ζv′.κ′(∀x(v′))))(ζv.κ(λQ.v))
= ζκ.(ζκ′.(ζκ′′.κ′′(Qx))(ζv′.κ′(∀x(v′))))(ζv.κ(λQ.v))
= ζκ.(ζκ′′.κ′′(Qx))(ζv′.(ζv.κ(λQ.v))(∀x(v′)))
= ζκ.(ζv′.(ζv.κ(λQ.v))(∀x(v′)))(Qx)
= ζκ.(ζv.κ(λQ.v))(∀x(Qx)))
= ζκ.κ(λQ.∀x(Qx))

174 D. Bekki and K. Asai

�only� = �λz.λP.(Pz ∧ ∀x(Px→ x = z))�
= ζκ.�λP.(Pz ∧ ∀x(Px→ x = z))�(ζv.κ(λz.v))
= ζκ.(ζκ′.�Pz ∧ ∀x(Px→ x = z)�(ζv′.κ′(λP.v′)))(ζv.κ(λz.v))
= ζκ.(ζκ′.(ζκ′′.κ′′(Pz ∧ ∀x(Px→ x = z))(ζv′.κ′(λP.v′)))(ζv.κ(λz.v))
= ζκ.(ζκ′′.κ′′(Pz ∧ ∀x(Px→ x = z))(ζv′.(ζv.κ(λz.v))(λP.v′))
= ζκ.(ζv′.(ζv.κ(λz.v))(λP.v′)))(Pz ∧ ∀x(Px→ x = z))
= ζκ.(ζv.κ(λz.v))(λP.Pz ∧ ∀x(Px→ x = z)))
= ζκ.κ(λz.λP.Pz ∧ ∀x(Px→ x = z))

These transformations imply that our set of transformation rules does not
result in the problem of types that we pointed out in Section 2.3 for a wide
range of determiners.

4.4 Inverse Scope as shift/reset

In our analysis, inverse scope can be derived without covert movements. Instead,
we define the inverse scope operator in terms of the shift operator.

Definition 14 (Inverse scope operator). For any meta-lambda term φ :
(e→ t)→ t,

[φ]INV

def≡ shift f.φ(λy.f � (λP.Py)) : (e→ e→ t)→ e→ t

For instance, the sentence (8) has a minor reading (called the “wife-reading”)
in which “every English man” over-scopes “a woman”, that is distinct from a
major reading (the “Queen-reading”).

(8) A woman loves [every English man]INV .

The semantic representation of (8), where the inner generalized quantifer “every”
is enclosed by the inverse scope operator, is interpreted in the following way.

�(λP.some(woman)(P)([λP.every(man)(P)]INV love))�c

= ζκ.�λP.some(woman)(P)�c(ζs.�[λP.every(man)(P)]INV �c(ζe.�love�c(ζl.κ(s(e(l))))))
= ζκ.�[λP.every(man)(P)]INV �c(ζe.κ((λP.some(woman)(P))(e love)))
= ζκ.�shift f.(λP.every(man)(P))(λy.f � (λP.Py))�c(ζe.κ((λP.some(woman)(P))(e love)))
= ζκ.(ζf.�(λP.every(man)(P))(λy.f � (λP.Py))�c(ζx.x))(ζe.κ((λP.some(woman)(P))(e love)))
= ζκ.(ζf.every(man)(λy.f � (λP.Py)))(ζe.κ((λP.some(woman)(P))(e love)))
= ζκ.every(man)(λy.κ(some(woman)(love(y))))

This analysis predicts that any quantifier enclosed by an inverse scope op-
erator cannot over-scope the lexical item that resets. For example, the inverse
scope readings, every > some, in the sentences (9a) and (10a) are predicted to
be available, while they are not in the sentences (9b) and (10b).

(9) a. Some woman introduced Bill to [every man]INV .
b. Some woman only introduced [Bill]F to [every man]INV .

(10) a. Some woman introduced [every man]INV to Sue.
b. Some woman only introduced [every man]INV to [Sue]F .

Representing Covert Movements by Delimited Continuations 175

5 Conclusion

In this paper, we have adopted, as a basic framework, meta-lambda calculus,
as proposed in Bekki (2009), in which computational monads are represented
as a triple of meta-lambda terms, called internal monads. Then we defined an
internal monad for delimited continuations, which determines the translation
rule of lambda terms, and defined two control operators, called shift and reset,
under this setting.

We also showed that this setting properly serves as a continuation-based the-
ory of formal semantics, and that it is free from the four crucial empirical/ the-
oretical problems of Continuized Semantics, and we have demonstrated how the
use of control operators enables us to compute the meaning of sentences involv-
ing phenomena such as “focus movement” and inverse scope, without recourse
to “covert movements.”

References

Barker, C.: Introducing Continuations. In: Hastings, R., Jackson, B., Zvolenszky, Z.

(eds.) SALT 11, CLC Publications, Ithaca (2001)

Barker, C.: Continuations and the Nature of Quantification. Natural Language Seman-

tics 10(3), 211–241 (2002)

Barker, C.: Continuations in Natural Language. In: H. Thielecke (ed.): the Fourth

ACM SIGPLAN Continuations Workshop (CW 2004). Technical Report CSR-04-

1, School of Computer Science, University of Birmingham, Birmingham B15 2TT.

United Kingdom, pp. 1–11 (2004)

Barker, C., Shan, C.-c.: Types as Graphs: Continuations in Type Logical Grammar.

Journal of Logic, Language and Information 15(4), 331–370 (2006)

Bekki, D.: Monads and Meta-Lambda Calculus. In: Hattori, H. (ed.) JSAI 2008 Con-

ference and Workshops. LNCS (LNAI), vol. 5447, pp. 193–208. Springer, Heidelberg

(2009)

Danvy, O., Filinski, A.: Abstracting Control. In: LFP 1990, the 1990 ACM Conference

on Lisp and Functional Programming, pp. 151–160 (1990)

Danvy, O., Filinski, A.: Representing control. Mathematical Structures in Computer

Science 2(4) (1992)

de Groote, P.: Type raising, continuations, and classical logic. In: van Rooij, R.,

Stokhof, M. (eds.) The 13th Amsterdam Colloquium. Institute for Logic, Language

and Computation, pp. 97–101. Universiteit van Amsterdam (2001)

Dybvig, R.K., Peyton-Jones, S., Sabry, A.: A Monadic Framework for Delimited Con-

tinuations. Journal of Functional Programming 17(6), 687–730 (2007)

Felleisen, M.: The Theory and Practice of First-Class Prompts. In: 15th ACM Sympo-

sium on Principles of Programming Languages, pp. 180–190 (1988)

Hayashishita, J.R.: ‘Syntactic Scope and Non-Syntactic Scope’. In: Doctoral disserta-

tion, University of Southern California (2003)

Kratzer, A.: Scope or pseudoscope? Are there wide scope indefinites? In: Rothstein, S.

(ed.) Events and Grammar, pp. 163–196. Kluwer, Dordrecht (1998)

Otake, R.: Delimited continuation in the grammar of Japanese. Talk presented at

Continuation Fest, Tokyo (2008)

176 D. Bekki and K. Asai

Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bauerle, R.,

Schwarze, C., Von Stechow, A. (eds.) Meaning, Use and Interpretation of Language,

pp. 361–393. Walter De Gruyter Inc., Berlin (1983)

Plotkin, G.D.: Call-by-Name, Call-by Value and the Lambda Calculus. Theoretical

Computer Science 1, 125–159 (1975)

Rooth, M.: A Theory of Focus Interpretation. Natural Language Semantics 1, 75–116

(1992)

Shan, C.-c.: A continuation semantics of interrogatives that accounts for Baker’s am-

biguity. In: Jackson, B. (ed.) Semantics and Linguistic Theory XII, Ithaca, pp. 246–

265. Cornell University Press (2002)

Shan, C.-c.: Linguistic side effects. In: Barker, C., Jacobson, P. (eds.) Direct composi-

tionality, pp. 132–163. Oxford University Press, Oxford (2007)

Shan, C.-c., Barker, C.: Explaining Crossover and Superiority as Left-to-right Evalua-

tion. Linguistics and Philosophy 29(1), 91–134 (2006)

Sitaram, D.: Handling Control. In: The ACM Conference on Programming Language

Design and Implementation (PLDI 1993). ACM SIGPLAN Notices, vol. 28, pp.

147–155. ACM Press, New York (1993)

Sitaram, D., Felleisen, M.: Control delimiters and their hierarchies. LISP and Symbolic

Computation 3(1), 67–99 (1990)

Stratchey, C., Wadsworth, C.: ‘Continuations: a mathematical semantics for handling

full jumps’. Technical report, Oxford University, Computing Laboratory (1974)

Wagner, M.: NPI-Licensing and Focus Movement. In: Georgala, E., Howell, J. (eds.)

SALT XV, CLC Publications, Ithaca (2006)

Winter, Y.: Flexibility Principle in Boolean Semantics: coordination, plurality and

scope in natural language. MIT Press, Cambridge (2001)

Appendix

A Language of Meta-Lambda Calculus

A.1 Types and Meta-Types

The syntax of MLC is specified by the following definitions.

Definition 15 (Alphabet for MLC). An alphabet for MLC is a sextuple
〈GT , Con,Mcon,Var,Mvar,S :Mvar → Pow(Var)〉, which respectively repre-
sents a finite collection of ground types, constant symbols, meta-constant symbols,
variables, meta-variables and an assignment function of free variables for each
meta-variable.

Definition 16 (Types). The collections of types (notation T yp) for an alpha-
bet 〈GT , Con,Mcon,Var,Mvar,S〉 is defined by the following BNF grammar
(where γ ∈ GT).

T yp := γ | T yp→ T yp

Definition 17 (Context). A context is a finite list of pairs that are members
of Var × T yp (notation Γ = x1 : α1, . . . , xn : αn), where x1, . . . , xn are distinct
variables.

Representing Covert Movements by Delimited Continuations 177

Definition 18 (Meta-types). The collection of meta-types (notation Mtype)
for an alphabet 〈GT , Con,Mcon,Var,Mvar,S〉 is defined by the following BNF
grammar (where Γ is a context and τ ∈ T yp).

Mtyp := Γ τ | Mtyp⇒Mtyp

Definition 19 (Meta-context). A meta-context is a finite list of pairs that
are members of Mvar ×MTyp (notation Δ = X1 : σ1, . . . , Xn : σn), where
X1, . . . , Xn are distinct meta-variables.

A.2 Raw-Terms

Definition 20 (Raw-terms). The collection of raw-terms in Meta-Typed
Lambda Calculus (notation Λ) is recursively defined by the following BNF nota-
tion, where x ∈ Var, c ∈ Con, X ∈Mvar, and C ∈ Mcon.

Λ ::= x | c | λx.Λ | ΛΛ

| X | C | ζX.Λ | Λ � Λ

A.3 Judgment

Definition 21 (Judgment). A judgment is a form Δ � M : σ where Δ is a
meta-context, M is a raw-term, and σ is a meta-type, which is derived by the
following rules.

Variable (V AR)
Δ � x : (Γ, x : α, Γ ′ α)

Constant Symbol (CON)
Δ � c : (Γ α)

where c ∈ Con.

Lambda Abstraction (LAM)
Δ � M : (Γ, x : α β)

Δ � λx.M : (Γ α→ β)

Functional Application (APP)
Δ � M : (Γ α→ β) Δ � N : (Γ α)

Δ � MN : (Γ β)

Substitution (SUB)
Δ � M : (Γ, x : α β) Δ � N : (Γ α)

Δ � M [N/x] : (Γ β)

Definition 22 (Judgment for meta-terms). A judgment is a form Δ � M :
σ where Δ is a meta-context, M is a meta-term, and σ is a meta-type, which is
derived by the following rules.

Meta-Variable (MV AR)
Δ,X : σ,Δ′ � X : σ

Meta-Constant Symbol (MCON)
Δ � C : σ

where C ∈Mcon.

178 D. Bekki and K. Asai

Meta-Lambda Abstraction (MLAM)
Δ,X : σ � M : τ

Δ � ζX.M : σ ⇒ τ

Meta-Functional Application (MAPP)
Δ � M : σ ⇒ τ Δ � N : σ

Δ � M � N : τ

Meta-Substitution (MSUB)
Δ,X : σ � M : τ Δ � N : σ

Δ � M [N/X] : τ

A.4 Free Variables and Free Meta-Variables

Definition 23 (Free Variables and Meta-variables). The set of free vari-
ables and free meta-variables are defined respectively by the following sets of
rules.

fv(x) = {x}
fv(c) = {}

fv(X) = S(X)
fv(λx.M) = fv(M)− {x}
fv(MN) = fv(M) ∪ fv(N)

fv(ζX.M) = fv(M)
fv(M � N) = fv(M)

fmv(x) = {}
fmv(c) = {}

fmv(λx.M) = fmv(M)
fmv(MN) = fmv(M) ∪ fmv(N)

fmv(X) = {X}
fmv(ζX.M) = fmv(M)− {X}
fmv(M � N) = fmv(M) ∪ fmv(N)

A.5 Substitution

Definition 24 (Substitution Rules for variables)

x[L/x]
def≡ L

y[L/x]
def≡ y where y �≡ x.

c[L/x]
def≡ c where c ∈ Con.

(λx.M)[L/x]
def≡ λx.M

(λy.M)[L/x]
def≡ λy.(M [L/x]) where x /∈ fv (M) ∨ y /∈ fv (L).

(λy.M)[L/x]
def≡ λw.(M [w/y])[L/x] where x ∈ fv (M) ∧ y ∈ fv (L).

(MN)[L/x]
def≡ (M [L/x])(N [L/x])

C[L/x]
def≡ C where C ∈Mcon.

(ζX.M)[L/x]
def≡ ζX.(M [L/x])

(M � N)[L/x]
def≡ (M [L/x]) � (N [L/x])

Remark 25 . X [L/x] where x ∈ fv(X) should be treated independently.

Representing Covert Movements by Delimited Continuations 179

Definition 26 (Substitution Rules for meta-variables)

x[L/X]
def≡ x

c[L/X]
def≡ c where c ∈ Con.

(λx.M)[L/X]
def≡ λx.(M [L/X])

(MN)[L/X]
def≡ (M [L/X])(N [L/X])

X [L/X]
def≡ L

Y [L/X]
def≡ Y where Y �≡ X.

C[L/X]
def≡ C where C ∈Mcon.

(ζX.M)[L/X]
def≡ ζX.M

(ζY.M)[L/X]
def≡ ζY.(M [L/X]) where X /∈ fmv(M) ∨ Y /∈ fmv(L).

(ζY.M)[L/X]
def≡ ζW.(M [W/Y])[L/X] where X ∈ fmv(M) ∧ Y ∈ fmv(L).

(M � N)[L/X]
def≡ (M [L/X])(N [L/X])

B ζ-Theory

Axiom 27 (Permutation and Meta-Permutation)

Δ � M = N : (Γ, x : α, y : β, Γ ′ δ)

Δ � M = N : (Γ, y : β, x : α, Γ ′ δ)

Δ,X : ν, Y : υ,Δ′ � M = N : σ

Δ, Y : υ,X : ν,Δ′ � M = N : σ

Axiom 28 (Weakening and Meta-Weakening)

Δ � M = N : (Γ β)

Δ � M = N : (Γ, x : α β)
Δ � M = N : σ

Δ,X : ν � M = N : σ

Axiom 29 (Equivalence)

(=R)
Δ � M : σ

Δ � M = M : σ
(=S)

Δ � M = N : σ

Δ � N = M : σ

(=T)
Δ � L = M : σ Δ � M = N : σ

Δ � L = N : σ

Axiom 30 (Replacement)

(=λ)
Δ � M = N : (Γ, x : α β)

Δ � λx : α.M = λx : α.N : (Γ α→ β)

(=F)
Δ � M = N : (Γ α)

Δ � F (M) = F (N) : (Γ β)
(=A)

Δ � F = G : (Γ α→ β)

Δ � F (M) = G(M) : (Γ β)

180 D. Bekki and K. Asai

Axiom 31 (Meta-Replacement)

(=Mλ)
Δ,X : σ � M = N : τ

Δ � ζX : σ.M = ζX : σ.N : σ ⇒ τ

(=MF)
Δ � M = N : σ

Δ � F � M = F � N : τ
(=MA)

Δ � F = G : σ ⇒ τ

Δ � F � M = G � M : τ

Axiom 32 (Function Equations)

(α)
Δ � M : (Γ, x : α β)

Δ � λx.M = λy.M [y/x] : (Γ α→ β)
where y /∈ fv(M).

(β)
Δ � F : (Γ, x : α β) Δ � M : (Γ α)

Δ � (λx : α.F)M = F [M/x] : (Γ β)

(η)
Δ � M : (Γ α→ β)

Δ � λx : α.(Mx) = M : (Γ α→ β)
where x /∈ fv (M).

Axiom 33 (Meta-Function Equations)

(A)
Δ,X : σ � M : τ

Δ � ζX.M = ζY.M [Y/X] : σ ⇒ τ
where y /∈ fmv(M).

(B)
Δ,X : σ � F : τ Δ � M : σ

Δ � (ζX : σ.F) � M = F [M/X] : τ

(H)
Δ � M : σ ⇒ τ

Δ � ζX : σ.(MX) = M : σ ⇒ τ
where X /∈ fmv (M).

Problems with Intervention and Binding
into Relations�

Alastair Butler1 and Kei Yoshimoto2

1 Japan Society for the Promotion of Science

6 Ichibancho, Chiyoda-ku, Tokyo 102-8471, Japan

ajb129@hotmail.com
2 Center for the Advancement of Higher Education, Tohoku University

Kawauchi 41, Aoba-ku, Sendai 980-8576, Japan

kyoshimoto@mail.tains.tohoku.ac.jp

Abstract. In this paper we describe a formal system in which con-

straints on the interaction of operations involved in creating and support-

ing operator-variable dependencies during interpretive evaluation match

effects of intervention and constraints prohibiting binding into relations

that are observed in natural languages. The derived constraints are found

to form two sides of the same coin, the one occurring when steps are taken

to avoid the other. This formal result is of interest because both types of

constraints afflict all forms of operator-variable dependencies in natural

languages, suggesting that the wide range of cross-linguistic variation

languages exhibit, especially when encoding longer distance dependen-

cies, stems from there being no optimal way to encode operator-variable

dependencies.

1 Introduction

Cross-linguistic data reveals that languages differ systematically when encoding
operator-variable dependencies, especially those that need to span long distances.
An archetypal case is that of WH arguments in constituent questions, where a
long distance dependency can be created with the WH argument taking a wide
semantic scope with the question while having to be appropriately integrated into
the clause. In English one and only one WH constituent must occur sentence
initially.

(1) Who did John give what?

In Slavic languages all WH constituents receive a frontmost placement, as (2)
from Bulgarian illustrates.

(2) Koj
who

kakvo
what

e
is

kupil?
bought

‘Who bought what?’
� We would like to thank the participants of LENLS 2009 and the reviewers for the

helpful and challenging remarks we received.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 181–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 A. Butler and K. Yoshimoto

Motivation for WH constituents favouring frontmost positions follows from
their requiring outermost scope with the question. Yet WH constituents can
have embedded placements while somehow maintaining outermost scope with
the question. For example, languages such as Japanese show an opposite pattern
to Bulgarian by allowing canonical ‘in-situ’ placements for all WH constituents.

(3) John-wa
John-top

dare-ni
who-dat

nani-o
what-acc

ageta
gave

ka?
q

‘Who did John give what?’

Motivation for WH constituents favouring canonical argument placements
can likely be traced to the need for the WH constituents to be appropriately
integrated into the clause. However, on the face of it, such narrow syntactic
placements of WH constituents are puzzling, since the grammar will require a
mechanism whereby such WH constituents are able to take wider scopes than
their (overt) syntactic positioning.

There are also “mixed” languages such as French, which, for questions with a
single WH argument, has the option of having the WH argument placed front-
most, (4a), or placed in a canonical embedded argument position, (4b). No-
tably, from the perspective of interpretation (4a) and (4b) are identical: both
are equally acceptable as nonecho single constituent questions.

(4) a. Qui’
who

est-ce
is-this

que
that

un
a

homme
man

voit?
sees

‘Who does a man see?’
b. Un

a
homme
man

voit
sees

qui?
who

In this paper we aim to provide a rational for why there is such diversity in
how natural languages encode operator-variable dependencies. We will do this
by utilising fine grained operations for manipulating operator-variable depen-
dencies, the formal details of which are presented in an appendix. The paper is
structured as follows. Section 2 presents the account as a series of results regard-
ing the possible distribution of operations used to create and thereafter manage
the allocation of operator-variable dependencies. Section 3 provides an overall
summary.

2 The Account

The account we provide for scope interactions will be phrased in terms of Scope
Control Theory (SCT) (Butler 2007). This provides a small logical language,
defined in the appendix, with operations of scope manipulation that combine
the static reformulations of Dynamic Semantics by Dekker (2002) and Cresswell
(2002) with the Sequence Semantics of Vermeulen (1993). Five operations are of
relevance here:

– Close(oper,x,e) creates a number n (n ≥ 0) of oper quantifications that
bind x, where n is determined by the x usage count over e;

Problems with Intervention and Binding into Relations 183

– Use(x,e) supports binding by incrementing the x usage count;
– Hide(x,e) terminates the x usage count;
– Lam(x,y,e) shifts a binding from x to y;
– Rel(x,y,r,e) builds a relation from relation name r with sequence of ex-

pressions e as arguments, potentially changing the assignment with respect
to which each argument is evaluated based on binding name sequences x
and y.

Using the definitions of (5), the combination of operations Close and Lam allows
for the adoption of a scope picture like (6) as the basis for an account of how a
WH constituent can receive a wide scope interpretation while being syntactically
embedded.

(5) Cq = λf.Close(?,"q",f)
Lqx = λf.Lam("q","x",f)

(6) Cq

Lqx

Notably (6) suggests at least two distinct manifestations of the same scope: (i)
as a semantic scope signalled by the closure operation, Close, that marks the
point from where the scope is actually created and so takes semantic effect—
specifically in (6) as a "q" binding; and (ii) as a syntactic scope signalled by
Lam, marking the point from where an already open scope gets integrated into
the clause as a binding argument—specifically in (6) as an "x" binding. The one
constraint (6) shows is that, in order to pick up on the binding created by Cq,
the action of Lqx needs to occur embedded under Cq.

We can apply (6) to both (4a) and (4b) by supposing that the WH constituent
qui ‘who’ has the argument binding role of Lqx, and that the question act of
utterance contributes Cq, to ensure that Cq receives a widest scope placement.
It follows that un homme ‘a man’ in (4a) is in the dotted region of (6), which is
under both Cq and Lqx, as is illustrated by (7). In contrast, un homme in (4b)
is in the region of (6) without dots that is under Cq, but outside the scope of
Lqx, as is illustrated by (8).

(7) ? (= Cq)

qui (= Lqx)

est-ce que
un homme voit

184 A. Butler and K. Yoshimoto

(8) ? (= Cq)

un homme
qui (= Lqx)

voit

The operations of Cq and Lqx are mutually licensing: Cq relies on their being
as many occurrences of Lam("q",#,#) as it creates bindings, else its presence
will lead to vacuous "q" bindings left without integration into the clause; and
Lqx relies on their being an available binding to shift to an argument binding,
else its action will fail.

However, the picture of (6) cannot be the complete story, since Cq by itself
has no idea how many "q" bindings should be created. With the SCT system,
Cq gets this information by counting occurrences of Uq, as defined in (9).

(9) Uq = λf.Use("q",f)

An instance of Uq needs to be under the scope of the Cq to which it provides its
supporting information, but can be anywhere else, e.g., positioned above Lqx,
(10), or below, (11).

(10) Cq

Lqx

Uq

(11) Cq

Lqx

Uq

There is however a fly in the ointment for the approach of counting instances
of Uq, which comes as the possibility of Uq falling under the scope of Hq, as
defined in (12). Presence of Hq has the effect of ending the count for instances
of Uq, and so any instance of Uq that is under the scope of Hq will no longer be
providing its countable presence outside the scope of Hq. As (13) pictures, this
makes an expression invalid wherever Lqx is placed, since a binding will not be
created by Cq to support Lqx. It follows that in order to avoid the possibility of
falling under the scope of any Hq, one wants a placement of Uq to be as high in
the structure as possible.

Problems with Intervention and Binding into Relations 185

(12) Hq = λf.Hide("q",f)

(13) Cq*

Hq

Uq

Lqx

Interestingly this constraint can be matched to what happens with natural
languages. For example, in French (see e.g., Mathieu 1999), while an operation
like negation leaves the licensing of the fronted WH constituent in (14a) unhin-
dered, negation will block the licensing of a WH constituent embedded within
its scope, as in (14b).

(14) a. Qui’
who

est-ce
is-this

que
that

tu
you

ne
ne

vois
see

pas?
not

‘Who didn’t you see?’

b. *Tu
you

ne
ne

vois
see

pas
not

qui?
who

Supposing we expect the WH constituent qui ‘who’ to now be contributing
the combination of Lqx and Uq and that any definition of negation involves the
introduction of a closure operation that triggers the hiding of all quantificational
usage information and so includes the presence of Hq, then we find that (14a)
leads to the structure of (15) in which the instance of Uq is placed outside the
scope of Hq and so conforms to the valid (11). In contrast, (14b) leads to the
structure of (16) in which the instance of Uq is placed inside the scope of Hq, and
so manifests the invalid structure of (13).

(15) ? (= Cq)

qui (= Lqx Uq)

est-ce que tu

ne-pas (= Hq)

vois

186 A. Butler and K. Yoshimoto

(16) ? (= Cq)

tu
ne-pas (= Hq)

*

qui (= Lqx Uq)

vois

Note that SCT cannot do away with the Hide operation, since the pres-
ence of Hide(x,#) is essential to allowing for the embedding of instances of
Close(#,x,#) for some value of x. For example, the placement of operations
in (17) is invalid, with the problem being that both instances of Cq introduce a
binding for the single Lqx operation.

(17) Cq

Cq

*

Lqx
Uq

Placement of Hq in the portion of structure between the two instances of Cq in
(17), as in (18), ensures that only the embedded instance of Cq is triggered to
create a "q" binding.

(18) Cq

Hq

Cq

Lqx
Uq

Problems with Intervention and Binding into Relations 187

The intervention effect seen with (13) of Hq constraining the placement of Uq
is not the only kind of restriction on where instances of the Use operation can
be placed. Using (19), in addition to the definitions of (5), (9) and (12), we can
illustrate with (20) a scenario where invalidity results from there needing to be
a "q" binding (signalled by the presence of Lqx) that falls within an argument
of an Rq relation without the support of Uq within the argument.

(19) Rq = λl.Rel([..."q"...],#,#,l)

(20) * Cq

Uq

Rq

Lqx

In contrast to (20) the scenario (21) is valid when there is placement of Uq
anywhere within the argument of Rq.

(21)

Uq

Cq

Rq

Lqx

When the placement of Lqx scopes over Rq it becomes essential that Uq is
outside the scope of Rq as shown by the contrast between the valid (22) and
invalid (23). The reason for this contrast is that Lqx will shift the "q" binding
to an "x" binding, so there will be no "q" binding present within the scope of
Rq, thus requiring the absence of any Uq.

188 A. Butler and K. Yoshimoto

(22) Cq

Lqx

Rq

Uq

(23) * Cq

Lqx

Rq

Uq

Combining the results of (20) and (21) on the one hand and (22) and (23) on
the other we get the overall consequence that the placement of Uq should have
as close a proximity as possible to the Lqx that it supports.

After an occurrence of Lqx what had been a "q" binding shifts to an "x"
binding. Using (24) we can observe the contrast between the invalid (25) and
valid (26). That is, just as it was necessary for a "q" binding that binds into an
argument of an Rq relation to find Uq support within the scope of the argument,
it is necessary for an "x" binding that binds into an argument of an Rx relation
to find Ux support within the scope of the argument.

(24) Ux = λf.Use("x",f)
Rx = λl.Rel([..."x"...],#,#,l)

(25)
* Lqx

Rx

Ux

Problems with Intervention and Binding into Relations 189

(26) Lqx

Rx

Ux

Combining the result of (22) together with (25) and (26), we can, for example,
observe the contrast between the valid (27), in which both of the arguments of
Rq involve Rx relations that contain arguments that support the "x" binding
opened by Lqx, and the invalid (28), which is due to one of the arguments of Rq
involving an Rx relation that fails to contain an argument that is able to support
the "x" binding opened by Lqx.

(27)

Lqx

Cq

Uq

Rq

,

Rx

Ux

Rx

Ux

(28) *

Lqx

Cq

Uq

Rq

,

Rx

Ux

Rx

That (28) is invalid can be used to derive the observation that (29) is un-
grammatical.

190 A. Butler and K. Yoshimoto

(29) *Who does John see and Bill like Mary?

Example (29) illustrates what has come to be known as the coordinate structure
constraint of Ross (1967), which was originally phrased in terms of restrictions
on movement:

(30) The Coordinate Structure Constraint
In a coordinate structure, no conjunct may be moved, nor may any ele-
ment contained in a conjunct be moved out of that conjunct.

(Ross’s (4.84))

From the insight of (28), the relevant empirical consequences of (30) follow
from the inability for an x binding to bind into an argument ei of a relation
Rel([...x...],#,#,e) because ei contains no Use(x,#) able to support the
binding. To see this applied, we can capture the invalidity of (29) with the place-
ment of operations in (31).

(31) *

who (= Lqx Uq)

does

? (= Cq)

and (= Rq)

,

see (= Rx)
John

Ux like (= Rx)
Mary
Bill

That the structure of (27) is valid demonstrates what was taken to be an
‘across-the-board’ exception to the coordinate structure constraint. We can il-
lustrate an application of this structure with (32), with both conjuncts containing
predicates that support the binding from who.

(32) Who does John see and Bill like?

We can expect that (32) leads to the allocation of operations seen in (33), thereby
matching (27).

Problems with Intervention and Binding into Relations 191

(33)

who (= Lqx Uq)

does

? (= Cq)

and (= Rq)

,

see (= Rx)
John

Ux

like (= Rx)
Bill

Ux

We have seen with the invalid structure of (28) and example (29/31) that
the high placement of a binding operation runs the risk of falling foul of the
coordinate structure constraint, which amounts to accidentally binding into a
relation sensitised to check for the binding that fails to contain an argument that
is able to support the binding. The way to avoid this constraint is to maintain a
low placement for the binding operation. This amounts to requiring a low Lam(#,
x,#) placement (and so also a low Use(x,#) placement, following the results of
(20) and (21)), as in the valid (34).

(34) Cq

Rq

,

Uq

Lqx

Rx

Ux

Rx

With (34) valid as a result of Lqx being kept low so as not to scope over a
relation sensitised to and failing to support an "x" binding, we are also in a
position to note the invalid (35). This shows the reverse consequence that when
there is a relation that requires a binding, the binding should not fail to scope
over the relation.

192 A. Butler and K. Yoshimoto

(35) * Cq

Rq

,

Uq

Lqx

Rx

Ux

Rx

Ux

We can see a match for the contrast between the valid (34) and the invalid
(35) in the data of (36).

(36) a. Who does John see and does Bill like her?
b. *Who does John see and does Bill like?

We can expect that (36a) leads to the allocation of operations seen in (37),
thereby matching (34).

(37) ? (= Cq)

and (= Rq)

,

who (= Lqx Uq)

see (= Rx)
does John

Ux like (= Rx)
her

does Bill

In contrast, (36b) leads to the allocation of operations seen in (38), thereby
matching (35).

Problems with Intervention and Binding into Relations 193

(38) * ? (= Cq)

and (= Rq)

,

who (= Lqx Uq)

see (= Rx)
does John

Ux

like (= Rx)
does Bill

Ux

The results of binding into relations that we have seen are not limited to
examples involving coordination, but rather the effects will apply whenever there
is the combining of expressions. For example, the invalidity of the structure of
(28) will apply to an example involving an attached adjunct clause, as (39/40)
demonstrates.

(39) *Who did Mary cry after John hit?

(40)

who (= Lqx Uq)

did

? (= Cq)

after (= Rq)

,

cry (= Rx)
Mary

hit (= Rx)
John

Ux

In contrast, the low placement of a WH constituent inside an adjunct clause
leads to a valid structure, as demonstrated by (41/42).

194 A. Butler and K. Yoshimoto

(41) Who cried after John hit who?

(42) ? (= Cq)

after (= Rq)

,

who (= Lqx Uq)

cried (= Rx)
Ux

who (= Lqx Uq)

hit (= Rx)
Ux

John

3 Summary

To sum up, the approach for capturing long distance operator-variable depen-
dencies examined in this paper suggests that a binding operation can be factored
into the components of: Close, to provide the closure that creates new scopes for
bindings; Lam, to provide the instruction for when a scope should be integrated
into the clause as a clause binding; and Use, to say how many scopes should be
created by Close, as well as sustain binding into a sensitised Rel. These opera-
tions work together from potentially disparate locations. However the range of
possible interactions is constrained.

Confining attention to the operations of Cq, Uq, Hq, Lqx, Rq, Rx and Ux: Cq
must have widest placement; Uq must have as high a placement as possible to
avoid intervention, that is, falling under an instance of Hq; Uq must be placed
as close as possible to the instance of Lqx that it supports to avoid problems
with binding into Rq relations (e.g., relations of coordination and adjunction);
and finally Lqx which opens a binding for clause integration must have as low a
placement as possible to avoid problems of binding into Rx relations (e.g., main
predicates) that may or may not contain supporting instances of Ux. The totality
of these constraints which generalise to all other applications of the Close, Use,
Hide, Lam and Rel operations brings about the result that there can be no satis-
factory systematic placement of operations to ensure that effects of intervention
and problems with binding into relations are always avoided. With there being
no optimal ‘solution’ to the placement of scope operations it is reasonable to
expect the wide range of cross-linguistic variation languages exhibit, especially
when coding longer distance dependencies, with any one systematic approach to
operator placement having advantages as well as short comings.

Problems with Intervention and Binding into Relations 195

References

Butler, A.: Scope control and grammatical dependencies. Journal of Logic, Language

and Information 16, 241–264 (2007)

Cresswell, M.J.: Static semantics for dynamic discourse. Linguistics and Philosophy 25,

545–571 (2002)

Dekker, P.: Meaning and use of indefinite expressions. Journal of Logic, Language and

Information 11, 141–194 (2002)

Mathieu, E.: French WH in situ and the Intervention Effect. In: Iten, C., Neeleman, A.

(eds.) UCL Working Papers in Linguistics, pp. 441–472. University College, London

(1999)

Ross, J.R.: Constraints on Variables in Syntax. Ph.D. thesis, MIT, Cambridge, Mass

(1967)

Vermeulen, C.F.M.: Sequence semantics for dynamic predicate logic. Journal of Logic,

Language and Information 2, 217–254 (1993)

Appendix: SCT Evaluation

In this appendix we present the evaluation procedure of Scope Control Theory
we have assumed in this paper by way of a translation routine from expressions
of a language with operators T, Use, Hide, Close, Lam and Rel, into formulas of
a predicate logic notation. The idea is that translation returns a ‘snapshot’ of
the dependencies evaluation establishes.

Extensive use is made of sequences and operations on sequences. Notably:

– [x0,...,xn−1]: a sequence with n elements, x0 being frontmost.
– x: abbreviation for a sequence.
– xi: the i-th element of a sequence, e.g. [x0,....,xn−1]i = xi, where 0 ≤ i< n.
– |x|: the sequence length, e.g. |[x0,...,xn−1]| = n.
– cons(y,[x0,...,xn−1]) = [y,x0,...,xn−1].
– snoc(y,[x0,...,xn−1]) = [x0,...,xn−1,y].

Translation is with respect to an assignment of a (possibly empty) sequence of
predicate logic variables (scopes) to each binding name: g : Name −→ Var�. We
employ relations on sequence assignments taking us from g to h or vice versa.
For shift(op) the operation op needs to be specified, with suitable candidates
being cons and snoc, to give shift(cons) and shift(snoc).

– (g, h) ∈ popx iff h is just like g, except that, g(x) = cons((g(x))0,h(x)).
– (g, h) ∈ shift(op)x,y iff ∃k : (h, k) ∈ popy and k is just like g, except that,

g(x) = op((h(y))0,k(x)).

Relations are iterated when augmented with a positive superscript, e.g., pop3
x

iterates popx three times.
We now define a ‘usage count’ operation x(e). This formally defines the con-

tribution of Use and Hide, returning a count of the number of times Use(x,#)
occurs in expression e outside the scope of any Hide(x,#).

196 A. Butler and K. Yoshimoto

– x(Use(y,e)) =
{

x(e) + 1 if x = y
x(e) otherwise

– x(There(y,e)) =
{

x(e)− 1 if x = y
x(e) otherwise

– x(Hide(y,e)) =
{

0 if x = y
x(e) otherwise

– x(T(y,i)) = 0
– x(Lam(y,z,e)) = x(e)
– x(Close(oper,y,e)) = x(e)
– x(Rel(y,z,r,e)) =

∑|e|−1
i=0 x(ei)

A formal definition for the other operators is given below in terms of a recursive
evaluation procedure with respect to a sequence assignment, g, returning either
a translation into a formula of predicate logic notation or ‘∗’ to indicate failure
of the evaluation.

– (g, T(x,i))◦ return (g(x))i, provided 0 ≤ i< |g(x)|; otherwise return ∗.
– (g, Use(x,e))◦ return (g, e)◦.
– (g, Hide(x,e))◦ return (g, e)◦.
– (g, Close(oper,x,e))◦ if x(e) = 0 return (g, e)◦ else ∃h : (h, g) ∈ pop

x(e)
x re-

turn oper(h(x))0...(h(x))x(e)−1(h, e)◦, provided (h, e)◦ �= ∗; otherwise return
∗.

– (g, Lam(x,y,e))◦ given ∃h : (g, h) ∈ shift(cons)x,y return (h, e)◦; other-
wise return ∗.

– (g, Rel(x,y,r,e))◦ return r((0, g,x,y, e)•,...,(|e| − 1, g,x,y, e)•),
provided for 0 ≤ i< |e|, (i, g,x,y, e)• �= ∗; otherwise return ∗.

where:

– (n, g,x,y, e)• if |x| = 0 return (g, en)◦ else ∃h0...h|x| : h0 = g and for 0 ≤ i<

!|x|, (hi, hi+1) ∈ (pop|hi(xi)|−
∑n

k=0 xi(ek)
xi ; shift(snoc)|hi(xi)|−

∑ |e|−1
k=n xi(ek)

xi,yi)
return (h|x|, en)◦; otherwise return ∗.

A Translation from Logic to English with
Dynamic Semantics�

Elizabeth Coppock and David Baxter

Cycorp, Inc., Austin TX 78731, USA

Abstract. We present a procedure for translating predicate logic into En-

glish, which generates both referring and non-referring expressions using

a dynamically updated context representation. The system treats refer-

ring and non-referring expressions within a unified framework, capturing

their common properties – both bound and referential anaphora require

an accessible antedecent – and the special properties of non-referring ex-

pressions: Non-referring expressions are introduced with quantificational

determiners, and correspond to short-term discourse referents.

Keywords: natural language generation, dynamic semantics, predicate

logic, quantification, anaphora.

1 Introduction

The goal of the present work is to define an algorithm for translating formulas of
predicate logic into concise, natural-sounding English, with quantificational ex-
pressions, proper names, indefinites, definite descriptions, and pronouns, wher-
ever appropriate (examples are given in §2). Because predicate logic contains
both constants and variables, this algorithm should generate both referring and
non-referring expressions.

Work in the field of generating referring expressions [1–16] is designed for the
task of providing an appropriate means of referring to a given object in a domain.
For example, the input might be a situation in which there is more than one book,
and the book in question is on a unique table. An appropriate output for this
situation would be the book on the table. Because of the nature of the input and
the task, these systems only generate expressions that genuinely refer to objects
or groups of objects. Even those systems within this tradition of research that
generate “quantificational” expressions [7, 12] such as those women who have
fewer than two children or the people who work for exactly 2 employers really
only generate referential expressions, referring to groups of objects. The field
‘generating referring expressions’ is thus appropriately named, so far, because it
deals only with the generation of genuinely referring expressions.
� Thanks to the LENLS organizing committee and audience, David Beaver, Cleo

Condoravdi, Nicholas Asher, Lucas Champollion and Elias Ponvert for feedback.

This work was partially supported under the DARPA Rapid Knowledge Formation

program.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 197–216, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 E. Coppock and D. Baxter

A separate line of research, known as ‘tactical generation’ or ‘realization’
concentrates on sentence generation based on formal grammatical theories such
as Head-Driven Phrase Structure Grammar (HPSG) [17–20], Lexical Functional
Grammar (LFG) [21–24] and Combinatory Categorial Grammar (CCG) [25–27].
Some systems in this category take as input a logical semantic representation
that contains quantifiers and variables. For example, the HPSG generation sys-
tem described in [17] takes as input the typed feature structure corresponding
to the CONTENT value of the top-level HPSG sign using Pollard and Yoo’s
HPSG analysis of quantification [28], which makes the input a notational vari-
ant of quantificational logic. Systems in this category may potentially generate
non-referring expressions, such as no man and himself in noi man likes himselfi.

Tactical realization systems based purely on existing grammatical formalisms
like [17] lack a representation of the discourse and a theory of antecedent-
accessibility that could be used to decide, for example, when a pronoun, definite
description, or indefinite description, would be an appropriate way to realize a
given discourse referent. They are incomplete without algorithms for generat-
ing referring expressions. But the problem cannot be solved simply by adjoining
a tactical realization system to a system for generating referring expressions,
because there are common constraints between referential and bound variable
anaphora. For example, both types of anaphora require a cognitively accessi-
ble antecedent. The fields of tactical realization and generating referring expres-
sions should not be kept separate; rather, referring and non-referring expressions
should be treated within a unified framework.

The idea that referential and bound variable anaphora have certain common-
alities is one of the insights underlying dynamic theories of semantics, such as
Discourse Representation Theory (DRT; [29]) and File Change Semantics [30].
Under such theories, both referring and non-referring expressions correspond
to ‘discourse referents’ [31], which are not actual referents but elements of the
discourse. According to Karttunen’s definition (p. 4), “the appearance of an
indefinite noun phrase [or any noun phrase, for our purposes] establishes a ‘dis-
course referent’ just in case it justifies the occurrence of a coreferential pronoun
or a definite noun phrase later in the text.” Pronouns can express either bound
variables or constants, so a discourse referent may or may not correspond a
genuine referent.

A representation containing discourse referents such as DRT’s Discourse Rep-
resentation Structures (DRSs) might therefore seem to be a natural starting point
for a system designed to capture the commonalities between referential and bound
variable anaphora. Combinations of HPSG and DRT (see [32] and references cited
therein) could potentially be used in a practical natural language generation sys-
tem; indeed, Minimal Recursion Semantics (MRS; [19]) is a form of Underspecified
Discourse Representation Theory [33], and MRS-based natural language genera-
tion systems exist [6]. However, this strategy does not capture phenomena that
reflect changes to the discourse context as the discourse proceeds, because if the
input is a fully-formed DRS, then the discourse representation will remain fixed

A Translation from Logic to English with Dynamic Semantics 199

throughout the generation procedure. The dynamic nature of the framework is
not utilized under such an approach.

The framework described in the present paper is inspired by some of the ideas
underlying DRT, including the notion of the discourse referent. However, rather
than using a complete Discourse Representation Structure as an input, a (some-
what more minimal) representation of the discourse is built up as the sentence is
generated. Using this, the generation system keeps track of the changes that take
place as the sentence is in progress, including the introduction of new discourse
referents. It is thus dynamic, in the sense that it updates the discourse as it goes
along.

2 Problems with Non-referential ‘Discourse Referents’

Strictly speaking, it is not necessary to be able to generate quantificational
determiners and bound variable anaphora, if the goal is to produce an English
sentence for any given formula of predicate calculus. For an input like this:

(1) ∀x[isa(x,Man)→ loves(x, x)]

one could give a direct translation like this:

(2) For every x, if x is a man, then x loves x.

This output counts as English as long as explicit variables like ‘x’ count as
English. But it is more desirable to produce the following kind of output:

(3) Every man loves himself.

If the goal is to produce concise English translations of first-order logic formulas,
then it is necessary to produce these kinds of non-referring expressions. This
leads to special challenges having to do with determiner selection and capturing
lifespan limitations.

2.1 Determiner Selection

In simple cases, universally quantified variables as in (4) are introduced with
every, as in (5), and existentially quantified variables as in (6) are introduced
with some, as in (7):

(4) ∀x[loves(Mary, x)]

(5) Mary loves everything.

(6) ∃x[loves(Mary, x)]

(7) Mary loves something.

200 E. Coppock and D. Baxter

A first pass at a determiner-selection algorithm would be then: If the variable is
universally quantified, use every; if it is existentially quantified, use some. But
this simple algorithm would fail at cases where a universally quantified variable is
introduced with an indefinite determiner, as in donkey sentences. The universally
quantified variables in the formula in (8) are introduced as indefinites in (9):

(8) ∀x∀y[[isa(x,Donkey) ∧ isa(x,Farmer) ∧ owns(x, y)]→ beats(x, y)]

(9) If a farmer owns a donkey, then he beats it.

Using every instead would not express the same idea:

(10) If every farmer owns every donkey, then he beats it.

Thus, universally quantified variables are not always introduced with every.
One might then refine the algorithm to say that when the variable occurs in

the antecedent of a conditional, then it is introduced with an indefinite. But
there are cases of this type in which the variable is introduced by every:

(11) ∀x[isa(x,Donkey)→ loves(Mary, x)]

(12) Mary loves every donkey.

When the if-then structure of the logical input formula is lost in the English
translation, the variable is introduced with every.

Universally quantified variables can also be introduced with determiners other
than every in the presence of negation. A formula like (13) has two concise
renditions, (14) and (15), and neither uses every.

(13) ∀x[isa(x,Donkey)→ ¬loves(Mary, x)]

(14) Mary doesn’t love any donkey(s).

(15) Mary loves no donkey(s).

When negation is expressed on the verb, the universally quantified variable is
expressed with any; in the other case, the determiner no expresses both negation
and universal quantification.

The facts are slightly different when the variable is in subject position. Con-
sider an example in which x is the first argument of loves:

(16) ∀x[isa(x,Donkey)→ ¬loves(x,Mary)]

In such a case, only no is possible; verbal negation with any is not possible:

(17) No donkeys love Mary.

(18) *Any donkeys don’t love Mary.

A Translation from Logic to English with Dynamic Semantics 201

Thus, syntactic considerations appear to play a role in determiner selection as
well.

Negation does not always cause a universally-quantified variable to be realized
with any or no; when the negation outscopes the universal quantifier, then every
is used, as in the following example:

(19) ¬∀x[isa(x,Donkey)→ loves(Mary, x)]

(20) Mary doesn’t love every donkey.

Thus, whether a universally quantified variable should be realized as every,
some/a, any, or no depends (at least) on whether it is in the protasis of a
conditional, the presence and relative scope of negation, and syntactic position.

Existentially bound variables are also sensitive to negation. When the exis-
tential quantifier outscopes negation, some is used, as usual, whether in subject
or object position:

(21) ∃x[¬loves(x,Mary)]

(22) Someone doesn’t love Mary.

(23) ∃x[¬loves(Mary, x)]

(24) Mary doesn’t love someone.

However, when negation outscopes the existential quantifier, no and any become
appropriate, following the pattern observed with universal quantifiers:

(25) ¬∃x[loves(x,Mary)]

(26) Noone loves Mary. / *Anyone doesn’t love Mary.

(27) ¬∃x[loves(Mary, x)]

(28) Mary doesn’t love anyone. / Mary loves noone.

Thus, whereas existential quantifiers give rise to any and no only when they are
in the scope of negation, universal quantifiers give rise to them only when they
outscope negation.

Since negation of an existential is equivalent to universal quantification over
a negation, one might argue that any never really corresponds to a universal
quantifier; to get an output with any one would convert a formula with a univer-
sal quantifier outscoping a negation to an equivalent formula with an existential
quantifier outscoped by it. So (29) would be converted to (30) before producing
a sentence with any:

(29) ∀x[¬loves(Mary, x)]

(30) ¬∃x[loves(Mary, x)]

202 E. Coppock and D. Baxter

This would allow one maintain the generalization that any corresponds to an
existential quantifier, as is sometimes assumed (e.g. [34]). We assume, however,
that any can correspond to universally quantified variables as well as existentially
quantified ones. One argument for this view is that when multiple universal
quantifiers outscope negation as in (31), both may correspond to an any phrase
as in (32).

(31) ∀x[∀y[¬loves(x, y)]]

(32) It is not the case that anyone loves anyone (else).

Only one of the quantifiers in (31) can be “swapped” with a negation in order to
produce an existential quantifier, yet there are two any phrases. At least one of
them must correspond to a universal quantifier. Since we must allow universally
quantified variables to be realized with any in such cases, we might as well allow
it in general.

The facts listed above show that the choice of determiner to realize a variable
is a non-trivial function of the logical operators present in the input formula and
their relative scope. The determiner selection algorithm given in §3.3 captures
these patterns.

2.2 Lifespan Limitations

Like referring expressions, non-referring expressions can be anaphoric, when
there is an accessible antecedent in the discourse. The second realization of a
given discourse referent should, barring potential ambiguity, take the form of a
pronoun, whether the discourse referent corresponds to a constant or a variable:

(33) loves(Mary,Mary)

(34) Mary loves herself.

(35) ∀x¬loves(x, x)

(36) No woman loves herself.

However, unlike discourse referents corresponding to constants, discourse ref-
erents corresponding to variables (realized with non-referring expressions) exist
in the discourse only temporarily, and thus have a limited ‘lifespan’ [31]. This is
exemplified in (37), from Heim [30], and (38).

(37) Everyone found a cat and kept it. #Then it ran away.

(38) Noi self-respecting lady will give you heri phone number. #I know heri.

On the reading of (37) on which the universal quantifier outscopes the existential
quantifier, the it in the second sentence cannot corefer with the it in the first
sentence. Similarly, the discourse referent introduced by no self-respecting lady
in (38) in is a short-term referent [31], whose lifespan ends with the end of the

A Translation from Logic to English with Dynamic Semantics 203

first sentence. From a parsing perspective, the challenge is to assign the right
interpretations to pronouns. From a generation perspective, the challenge is to
avoid generating pronouns that are anaphoric to discourse referents that are no
longer active.

This is a challenge that does not arise with referential expressions. Contrast
(38) with the following example:

(39) Janei will give you heri phone number. I know heri.

In (39), the discourse referent survives into the second sentence, because proper
names are referential, and the lifespan of a discourse referent introduced with
a referential expression is in principle unlimited. If referring and non-referring
expressions are not distinguished, then this difference between them cannot be
captured. Thus, although bound variable and referential anaphora should be
treated in a unified fashion, the treatment should not be so unified as to blur
the distinction between them.

The lifespan of a short-term discourse referent does not always correspond to
the enclosing tensed sentence. Whereas a discourse referent introduced by every
is limited to the protasis of a conditional, a discourse referent introduced with
an indefinite in the protasis may extend to the apodosis [29, 30]:

(40) *If everyi farmer owns everyj donkey, then hei beats itj .

(41) If ai farmer owns aj donkey, then hei beats itj .

The lifespan of the indefinite is not indefinite, however:

(42) If ai farmer owns aj donkey, then hei beats itj . #I know himi.

The lifespan of an indefinite introduced in the protasis of a conditional ends with
the apodosis.

3 The Cyc NLG System

We now present a procedure for translating predicate calculus into English, which
treats referring and non-referring expressions in a unified framework, and cap-
tures all of the facts described in the previous section, regarding both determiner
selection and lifespan limitations. The system we present is the natural language
generation (NLG) system for Cyc [35], a large-scale commonsense knowledge
base and reasoning engine. Cyc is based on CycL, a logic that subsumes first
order logic [36],1 and the system we describe translates from CycL to English.
Here, we concentrate on the first order portion of CycL, making limited use of
Cyc-specific ontological distinctions, in order to maximize the applicability of
our model. The input is described in detail in §3.1.
1 The majority of the assertions in the Cyc Knowledge Base are statement of first-order

logic; the majority of the remaining assertions can be transformed into statements

first-order logic [36].

204 E. Coppock and D. Baxter

Our procedure uses two forms of dynamically updated context: the discourse
context, which lists the discourse referents that have been mentioned, and the
operator context, which stores information that is stripped away from the input
formula. The discourse context is discussed in §3.2; the operator context will be
discussed in §3.3.

3.1 Input: First-Order Predicate Calculus Part of CycL

The input to the Cyc NLG system is a formula of CycL, which is a higher-
order logic built on first-order predicate calculus [37]. CycL has a number of
fancy features, such as quoting, meta-assertions, lambda expressions (forming
terms through variable abstraction), and kappa expressions (forming predicates
through variable abstraction), most of which will not concern us here. In this
paper, we will focus on inputs from the first-order portion of CycL. The set of
expressions within this first-order portion contains variables (e.g. x, y, z), and
atomic constants denoting individuals (e.g. Mary), collections (e.g. Donkey)
predicates, (e.g. loves), and functions (e.g. MotherOf). The predicates and
functions can in principle be of any arity. In CycL, arguments of predicates and
functions can in principle be any other CycL expression, so CycL is higher order,
but we can restrict our attention to first-order predicates and functions. The set
of non-atomic expressions contains:2

– Non-Atomic Terms: if γ is a function and ξ1...ξn a sequence of arguments
matching γ’s argument constraints, then γ(ξ1...ξn) is a term.

– Atomic Sentences: if π is a predicate and ξ1...ξn a sequence of arguments
matching π’s argument constraints, then π(ξ1...ξn) is a sentence.

– Negations: if φ is a sentence then ¬φ is a sentence.
– Conjunctions: if φ is a sentence and ψ is a sentence than φ∧ψ is a sentence.
– Disjunctions: if φ is a sentence and ψ is a sentence then φ∨ ψ is a sentence.
– Implications: if φ is a sentence and ψ is a sentence then φ→ ψ is a sentence.
– Universals: if φ is a sentence and ξ is a variable then ∀ξφ is a sentence.
– Existentials: if φ is a sentence and ξ is a variable then ∃ξφ is a sentence.

This logic can be given a standard model-theoretic semantics for predicate
calculus.

Other than the distinction between individuals and collections, this logic is
perfectly standard. In Cyc, collections are often used in place of one-place pred-
icates, so rather than farmer(x), we will have isa(x,Farmer), where Farmer
represents the collection of all farmers, and isa is a predicate relating an individ-
ual to a collection, which holds if the individual is an instance of the collection.

2 Regarding notation: We use the standard way of using parentheses in logic, rather

than using the Lisp-style notation that is normally used for CycL. Constants are in-

dicated with bold face (whereas in CycL they are prefixed with ‘#$’) and variables

with italics (rather than being prefixed with ‘?’ as in CycL). Following CycL conven-

tions, however, we use initial lowercase letters for predicates and initial uppercase

letters for individuals and collections. Variables of all types are lowercase.

A Translation from Logic to English with Dynamic Semantics 205

(We use the term instance for collections, rather than member, which we reserve
for sets; the idea is that collections represent concepts, while sets are merely
extensionally defined.) To give a more standard logic, one could replace all col-
lections with single-arity predicates, so the distinction between individuals and
collections is not completely crucial. However, it does happen to play a role in
the grammar, so the grammar would have to be adapted if that distinction were
eliminated.

The Cyc NLG system has full access to the Cyc Knowledge Base (KB), which
contains an English lexicon. The lexicon includes a set of generation templates,
which describe an English sentence or phrase corresponding to a function or
predicate, with open slots for the arguments. For example, the predicate likes is
associated with a template describing a transitive sentence in which the subject
is the realization of the first argument, the verb is a form of like that agrees with
the subject, and the object is a realization of the second argument. These tem-
plates thus accomplish argument linking. (Rather than stipulating the syntactic
realization of arguments on a case-by-case basis, one could derive these tem-
plates from more general principles, so the present system is not crucially tied
to a stipulative linking theory; we just take linking as given.) Aside from what
is specified in generation templates, the grammatical structure of a generated
utterance is determined procedurally. Therefore, the system that we describe
here is not only a natural language generation system, but also a grammar.

Because it was developed for the purpose of generation rather than parsing,
the theoretical constructs that this system uses are different from the ones that
have been developed under the parsing perspective. In particular, there are two
forms of context: discourse context and operator context. These are described in
the following two subsections.

3.2 Discourse Context

Definition. A discourse context D is a set of discourse referents [31]. Like
Heim’s ‘file cards’ [30, 38] and the elements of DRT universes [29], these dis-
course referents need not correspond to any particular entity in the situation
described by the sentence. Each discourse referent r is associated with a logical
expression α, which can be either a variable or a closed term, composed entirely
of constants (either atomic, e.g. Mary, or non-atomic, e.g. Mother(Mary)
‘Mary’s mother’).

Insofar as the logical expression associated with these discourse referents can
be either a variable or a closed term, they are similar to Muskens’s ‘registers’
[39], and unlike the elements of DRT universes, which correspond only to vari-
ables. As Muskens points out [39], allowing proper names to be translated with
constants eliminates the need for DRT’s ‘external anchoring’ device. From a gen-
eration perspective, this design choice is quite natural; it would be a waste to
convert constants in the input formula to variables before listing them among
the discourse referents.

206 E. Coppock and D. Baxter

Discourse referents are also associated with index features: person, number and
gender [40, 41]. Index features are computed on the basis of morphosyntactic
information if it is available, or encyclopedic knowledge in the Cyc Knowledge
Base (KB) otherwise. For example, the individual Mary is asserted to be a hu-
man female in the KB, so corresponding discourse referents will have a feminine
gender feature. These index features determine the form that pronouns take.

Side effects. We recursively define a generation function G(α), where α can be
any expression of the logic, which depends not only on α, but also on a global
discourse D and a global operator context O. We subdivide the definition of
G(α) into cases based on the logical expression type of α. A fundamental case
is when α is an atomic formula, as in (43).

(43) loves(Mary,Mary)

The most appropriate method for atomic formulas uses the generation template
for the predicate – a mapping from a logical predicate to a partial specification
of a sentence in natural language. The generation template for loves specifies
a template from which a syntax tree is built. A syntax tree is like an HPSG
sign [40], with “phonological”, semantic, and syntactic information, including
daughters for phrases. (Since we are computing textual output, the value of the
so-called phon feature is an orthographic string.)

A simplified rendition of the phrase that is ultimately generated for (43) is
in Fig. 1. The tree is traversed left to right, depth first, and may be expanded
during the traversal. Each time a node is visited, the value of the phon feature is
computed. We say that a subexpression of the logical formula has been realized
if the phon value of the phrase it corresponds to has been set. The phon value
of the mother is the concatenation of the phon values of the daughters. The
value of G is the phon value of the top-level phrase.

⎡
⎢⎣phon “Mary loves herself”
cat S
sem loves(Mary,Mary)

⎤
⎥⎦

��������
��������⎡

⎢⎢⎢⎢⎢⎣

phon “Mary”
cat NP
case nom

sem Muffet
index 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣phon “loves herself”
cat VP
agr 1

⎤
⎥⎦

�����
�����⎡

⎢⎢⎢⎣
phon “loves”
cat V
lex Love

agr 1

⎤
⎥⎥⎥⎦

⎡
⎢⎣phon “herself”
cat NP
sem Mary

⎤
⎥⎦

Fig. 1. Phrase generated for the input ‘loves(Mary,Mary)’ (simplified)

A Translation from Logic to English with Dynamic Semantics 207

What makes the semantics dynamic is that the computation of G can have side
effects in the form of updates to D and O. The discourse context D is updated
when a discourse referent is realized, as part of the algorithm for generating
a constant or a variable. If α is an individual-denoting constant, and is not
listed among the discourse referents, then G(α) returns a proper name, and the
discourse context is updated. For example, the expression Mary in (43) is added
to D after its first instance in the input formula is realized.

If α is listed in D, then an anaphoric expression is used. The algorithm for
generating an anaphor is: If a pronoun would be ambiguous, then use a definite
description or name; otherwise, use a pronoun. There is a great deal of sophis-
tication and subtlety this treatment could acquire [42–48], but this is not our
focus here. A (reflexive) pronoun is appropriate for the second instance of Mary
in (43), so the formula is rendered, “Mary loves herself.”

Like other discourse referents, variables are added to D after being mentioned,
so as to be made eligible for subsequent rendering with anaphora. Thus, after
everything is generated in (44), the variable x is added to the set of discourse
referents, so it can be realized with a pronoun on its second mention:

(44) Everything likes itself.
∀x[likes(x, x)]

Lifespan limitations. Constants added to D during the execution of an in-
stance of G may remain in D. However, it is necessary to remove variables from
D when their “lifespan” is exhausted. Thus, if the argument to G is a quantifi-
cational sentence binding a variable ξ, then the following line must be executed
before G exits:

D ← D −R(ξ)

where R(ξ) stands for the discourse referent associated with ξ. Suppose the input
formula were:

(45) ∀x¬[loves(Doug, x)] ∧ ∀x[loves(Mary, x)]

This would be rendered correctly as: “Doug loves nothing and Mary loves every-
thing” rather than “Doug loves nothing and Mary loves it.”

Removal of variables from D is the key to accounting for the limited lifespan of
the discourse referent introduced by no self-respecting woman in (38) (“No self-
respecting woman will give you her phone number. #I know her.”) At the end
of the sentence, the variable bound by the universal quantifier is removed from
the discourse context, making it impossible for there to be subsequent anaphoric
references to it.3 If a pronoun is generated in the following sentence, it will have
to be associated with some other discourse referent.
3 Some of Karttunen’s observations in [31] suggest that discourse referents correspond-

ing to existentials with maximally wide scope should not be removed from the dis-

course context. For example, consider the sentence “I have a proof of this theorem

but it won’t fit in this margin.” One is tempted to analyze the first sentence using

an existential quantifier; but then how can there be subsequent anaphoric reference

to it? One possibility is to introduce a Skolem constant for wide-scope existentials.

208 E. Coppock and D. Baxter

3.3 Operator Context

G(α) depends not only on a discourse context D, but also on an operator context
O. As we describe futher below, logical operators and negations are stripped
away from the input formula, leaving a “clausal skeleton,” and the information
stripped away is stored in the operator context.

Definition. We define an operator context O as a tuple 〈V, S, n〉 where V is a
set of variable type entries, S is a stack of logical symbols, and n is an integer
representing the number of negations remaining to be expressed.

A variable type entry v ∈ V is a tuple 〈α, θ, τ〉, where α is a variable over
individuals, θ is a quantifier symbol, and τ is a type. Types are Cyc collec-
tions, such as Donkey, the collection of all donkeys. As mentioned above, Cyc
collections are like sets except that they are meant to represent concepts and
have instances, rather than members [49].4 Associating a type with a variable is
conceptually similar to identifying the type as the ‘restriction’ of the quantifier,
even though formally, quantifiers in first order logic do not specify restrictions,
unlike generalized quantifiers.

The stack of symbols S contains the variables and logical operators with
scope over the element of the formula that is currently being realized. We rep-
resent stacks as tuples 〈α1 . . . αn〉, where αn is at the top of the stack. The
wider the scope of the operator, the deeper on the stack it is. For the formula
∀x¬[loves(Mary, x)], at the point when Mary is being generated, S = 〈x,¬〉.
We use the variable x rather than the quantifier ∀ to indicate the scope of the
associated universal quantifier, because the variable uniquely identifies the quan-
tifier in question, while there may be many universal quantifiers in a formula.
The quantifier associated with the variable is computable from the variable’s
type entry in V .

Finally, n is used to keep track of unexpressed negations. As we will see
in the next section, negations can be removed from formulas in the course of
constructing the clausal skeleton, and this counter helps to ensure that every
negation is expressed exactly once. (Note that the value of n is not derivable
from S, as any negation on S may be either expressed or unexpressed.)

Clausal skeletons. In the generation of some formulas, parts of the input
formula are stripped away, leaving a clausal skeleton. For example, the clausal
skeleton of (46) is (47).

(46) ∀x∀y[[isa(x,Man) ∧ isa(y,Donkey) ∧ owns(x, y)]→ loves(x, y)]

(47) owns(x, y)→ loves(x, y)

The two isa statements in the antecedent of the conditional in (46) are variable
typing clauses. The binary predicate isa relates an individual to a collection,

4 Collections can also be complex; CycL contains collection-forming functions with

which concepts like “the collection of farmers who own a donkey” can be expressed.

A Translation from Logic to English with Dynamic Semantics 209

and signifies that the individual is an instance of the collection. Variable typing
clauses are removed, along with the universal quantifiers (as mentioned in [50]).

For any input formula of the form ∀ξα, where ξ is a variable and α is a
sentence, a simplified version of the algorithm for constructing clausal skeletons
σ and new variable type entries v is as follows (where Thing is the most general
collection, and ∼ stands for “is of the form” or “matches”):

(48) – If α ∼ [ψ → φ]:
• If ψ ∼ [isa(ξ, γ)]:

σ = φ
v = 〈ξ, ∀, γ〉
• Else if ψ ∼ [δ1 ∧ ... ∧ δn] where δi ∼ [isa(ξ, γ)]:

σ = [δ1 ∧ ... ∧ δi−1 ∧ δi+1 ∧ ... ∧ δn]→ φ
v = 〈ξ, ∀, γ〉
• Else:

σ = α
v = 〈ξ, ∀,Thing〉

– Else:
σ = α
v = 〈ξ, ∀,Thing〉

For a formula of the form ∃ξα, there are two cases:

(49) – If α ∼ [δ1 ∧ ... ∧ δn] where δi ∼ [isa(ξ, γ)]:
σ = [δ1 ∧ ... ∧ δi−1 ∧ δi+1 ∧ ... ∧ δn]
v = 〈ξ, ∃, γ〉

– Else:
σ = α
v = 〈ξ, ∃,Thing〉

The variable type entry v is added to the set V of variable type entries in the
operator context O. After the operator context is updated, G(σ) is computed;
in other words, the clausal skeleton is realized. Then, importantly, the operator
context is restored to its previous state. The information stored in the operator
context surfaces when the variable is expressed, as described in §3.3.

The clausal skeleton is isomorphic, clause for clause, to the resulting English
sentence. Thus the realization of (46) has two clauses, just as its clausal skeleton
(47) has:

(50) If a farmer owns a donkey, then he loves it.

When the antecedent of the clause consists entirely of a variable typing clause,
all that remains in the clausal skeleton is the consequent. An input formula such
as (51) will be realized as in (52), a single clause.

(51) isa(x,Man)→ loves(x,Mary)

(52) Every man loves Mary.

210 E. Coppock and D. Baxter

Thus, all of the content that is expressed below the clause level (in quantified
noun phrases) comes from the operator context, and every clause in the English
translation is part of the clausal skeleton.5

Negation stripping. When α is of the form ¬φ, the clausal skeleton of α is
φ. No variable type entries are produced in this case, of course, but the counter
representing the number of unexpressed negations, n, is incremented. “Stripping”
the negation in this way makes it possible for negations to be expressed sub-
clausally, using a member of the no-series (nobody, nothing, etc.). We use clausal
negation as a “back-up strategy” when expressing negation sub-clausally fails;
if n > 0 after φ is realized, either the verb is negated or negation is expressed
periphrastically with, for example, “It is false that...”.

Updating the operator stack. The main purpose of the operator stack is to
determine when NPIs are licensed. The generation procedure G(α) updates the
operator stack whenever α is a formula whose operator is in the set {∀, ∃,¬,→}.
If α is a quantificational formula such as ∀xφ, then the variable (x) is pushed
onto the operator stack, and popped off of it at the completion of G(α). If α
is a negative formula, then a ¬ symbol is pushed onto the operator stack and
again, popped off of it after G(α) is computed. If α is an implication, then the
symbol→ is pushed onto the stack and the stack is popped at the completion of
the generation of the antecedent, because implications only license NPIs in the
antecedent.

Determiner selection algorithm. The definition of G(α) where α is a vari-
able (variable realization) involves the operator context as well as the discourse
context. As mentioned in §3.2, variables are realized as pronouns when they are
listed in D and a pronoun would not be ambiguous. If a pronoun is not appro-
priate for realizing a variable, a lexical noun phrase containing a determiner and
a noun is used. The noun is the realization of the variable’s type, the τ such that
〈α, θ, τ〉 ∈ V . τ represents a collection, e.g. Man (the collection of all men),
and can be realized as, for example, man. There are several types of determiner
that may accompany the noun: definite (the), no (no), universal (every),
indefinite (a, some), npi (any, a or some).6

The first step in the algorithm for choosing a determiner type is to compute
whether or not a variable could be expressed as an NPI, i.e., with any. Both
universally and existentially bound variables can be realized with any, but the
5 If the variable typing clauses were not removed, the variables would be registered

with type Thing and the output would contain more clauses: “If something is a

farmer and some other thing is a donkey then the thing loves the other thing.” If

the variables were not registered in the operator context at all, then the universal

quantifier would not be stripped from the formula, and the output would be as

follows, with explicit variables: “For every x, for every y, if x is a farmer and y is a

donkey and x owns y, then x loves y.”
6 Another determiner type is wh (what, which). Wh- determiners are used for unbound

variables in formulas to be generated with interrogative force. We ignore questions

here for the sake of simplicity.

A Translation from Logic to English with Dynamic Semantics 211

two quantifier types differ with respect to the scope that they must have relative
to an NPI licenser. In order to qualify for being realized with any, an instance of a
variable must be bound by either a universally quantified variable outscoping an
NPI licenser, or an existentially bound quantifier outscoped by one. For example,
(29), repeated below is rendered as in (54).

(53) ∀x[¬loves(Mary, x)]

(54) Mary doesn’t love anything.

In contrast, when the universal quantifier is inside the scope of negation, the
output should be Mary doesn’t love everything.

The algorithm for determining whether or not NPI any is licensed is as follows:
First, look up the quantifier of the variable in question; then if the quantifier
is ∀, the question is whether the variable is deeper on the stack than an NPI
licenser; if the quantifier is ∃, the question is whether the NPI licenser is deeper
than it. Call the NPI licenser π; if the variable has no NPI licenser, then π is
null.

Given π, a variable type entry 〈α, θ, τ〉 for variable ξ, and an unexpressed
negation counter n, the determiner is chosen according to the following algo-
rithm:

(55) – If R(χ) ∈ D (i.e., a previous instance of the variable has been realized),
return definite.

– If π is non-null:
• If π = ¬ and n > 0, then return no and decrement n by one.
• Otherwise, return npi.7

– If θ = ∀, return universal.
– Otherwise, return indefinite.

Note at this point that the set of variable type entries V is not redundant with
the discourse context D, despite the fact that they may simultaneously contain
the same variable as an entry. The discourse context is used for referents that
have already been realized, but variable type entries are used in the formulation
of the first mention of the variable.

Now consider example (46) again, repeated here as (56).

(56) ∀x∀y[[isa(x,Man) ∧ isa(y,Donkey) ∧ owns(x, y)]→ loves(x, y)]

Right before x is generated for the first time, 〈x,Man, ∀〉 ∈ V (i.e. x is univer-
sally quantified, and has type Man), S = 〈x,→〉 (i.e., the current expression is
inside the antecedent of a conditional), n = 0 (there are no unexpressed nega-
tions), and x is not in D (so x has not previously been realized). Therefore G(x)
will realized with an npi-type determiner, as either any man or with an indef-
inite (a or some). After x is realized, it will be in D, so it will be realized as a

7 In the generation of variables with npi-type determiners, we make the stylistic choice

to use any when there is only one mention of the variable, and an indefinite otherwise.

212 E. Coppock and D. Baxter

masculine pronoun or as the man. If instead, S were merely 〈x〉 (so the current
expression is not in the scope of an NPI licenser), then π would be null, and the
appropriate determiner type would be every.

Another case where npi-type determiners are chosen is in the scope of nega-
tion, when there is no negation to be expressed, i.e., when π = ¬ and n �> 0.
Such a situation arises when negation is expressed on the verb, as in Mary doesn’t
love anything. When n > 0 (there are unexpressed negations) and π = ¬ (the
NPI licenser for the variable is negation), the variable can be used to express
negation, as in Mary loves nothing.

We are now in a position return to the contrast between indefinite determiners
and every with respect to the lifespan of the discourse referents they introduce.
Recall the fact that whereas discourse referents introduced by indefinites in the
protasis of a conditional extend to the apodosis, those introduced by every are
limited to the protasis:

(57) If ai farmer owns aj/*everyj donkey, then hei loves itj .

We have just seen how the acceptable variant of (57), with an indefinite deter-
miner in the antecedent, is generated for an input like (46). The only way for
every to be generated in the antecedent of a conditional is for the universally
quantified variable to be outscoped by →, as in the following example:

(58) ∀x[isa(x,Farmer)∧∀y[isa(x,Donkey)→ owns(x, y)]]→ loves(x,Mary)

The formula in (58) would be rendered as follows:

(59) If a farmer owns every donkey, then he loves Mary.

When it is time to realize the variable y for the first time, S = 〈x,→, y〉, so the
computation of π for y will yield a null value, since y is universally quantified
and universally quantified variables must be outside the scope of an NPI licenser.
The determiner selection algorithm will therefore correctly choose every. But in
this case, the scope of the quantifier will have ended by the time the consequent
of the conditional is reached. Thus, discourse referents introduced by every in
the protasis of a conditional will never extend to the apodosis.

4 Summary and Outlook

We have presented an algorithm for translating predicate logic to English that
uses dynamically updated information states. It deals with referring and non-
referring expressions in a unified framework, capturing the fact that both require
an accessible antecedent. This is formalized using the discourse context, where
discourse referents are placed after they are introduced. The system also cap-
tures special features of non-referring expressions, which correspond to logical
variables. Discourse referents associated with variables have limited lifespans
and are introduced with quantificational determiners, whose use is governed by
a complex set of factors, modelled with the operator context.

A Translation from Logic to English with Dynamic Semantics 213

Just as general frameworks for generating semantic representations from En-
glish sentences (e.g. [51], [29]) are semantic theories, the framework presented
here is in a sense a theory of semantics (or what we might call ‘inverse seman-
tics’). It differs in its use of theoretical primitives from semantic theories that
were developed from a parsing perspective, as the theoretical constructs that
we found useful in generation are slightly different from those that were found
to be useful in parsing. Given such differences, the generation perspective could
potentially shed light on the theory of semantics more generally, and provide
more elegant or even more empirically adequate accounts of certain phenomena.

One area where the generation perspective may shed light is in NPI licensing.
NPI any is not always licensed in the semantic scope of negation:

(60) *Anyone doesn’t love me.

On our analysis, this configuration is blocked by Noone loves me. Thus, it is not
necessary to associate syntactic constraints with NPI any to rule (60) out. In
general, implicit in the notion of a ‘determiner selection algorithm’ is the idea of
blocking, an idea that is natural from the generation perspective, and we believe
it may be worthwhile to pursue this view of quantificational determiners further.

Secondly, the notion of accessibility between pronouns and their antecedents
receives quite a different treatment here from the one in Discourse Represena-
tion Theory. Whereas the accessibility relationship is characterized in DRT as a
structural relationship within Discourse Representation Structures, accessibility
is formalized here as existence in the discourse context, a potentially transient
state that ends for variables when the logical expression corresponding to the
quantifier that binds them has been realized. In DRT, proper names always
“float to the top” of a DRS, so they are always available; this corresponds to the
fact that constants are never removed from the discourse context. We feel that
the present view on accessibility has a certain intuitive appeal, and it would be
worthwhile to compare the empirical predictions of the two approaches to see if
they differ.

Natural language generation also puts presupposition in a new light. Defi-
nite descriptions and pronouns, for example, are usually analyzed as containing
uniqueness presuppositions. The association of these items with uniqueness is
encoded in the present system via conditions on the choice of referring expres-
sion type. Presuppositions in general need not be represented declaratively, but
can be implicitly encoded in a procedural generation algorithm. This view on
presupposition would capture the fact that pronouns are quite easy to process,
and would therefore seem to carry a very simple message, contrary to what one
would expect if they came associated with complex presuppositional content.

References

1. Horacek, H.: An algorithm for generating referential descriptions with flexible in-

terfaces. In: Proceedings of the 35th Annual Meeting of the Association for Com-

putational Linguistics, pp. 206–213 (1988)

2. Dale, R.: Cooking up referring expressions. In: Proceedings of the 27th Annual

Meeting of the Association for Computational Linguistics (1989)

214 E. Coppock and D. Baxter

3. Reiter, E.: The computational complexity of avoiding false implicatures. In: Pro-

ceedings of the 28th Annual Meeting of the Association for Computational Lin-

guistics (1990)

4. Reiter, E., Dale, R.: A fast algorithm for the generation of referring expressions. In:

Proceedings of the 14th International Conference on Computational Linguistics,

Nantes, pp. 232–238 (1992)

5. Dale, R., Reiter, E.: Computational interpretations of the Gricean maxims in the

generation of referring expressions. Cognitive Science 19, 233–263 (1994)

6. Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., Sag, I.: Translation using

minimal recursion semantics. In: Proceedings of the Sixth International Conference

on Theoretical and Methodological Issues in Machine Translation, Leuven, Belgium

(1995)

7. Shaw, J., McKeown, K.: Generating referring quantified expressions. In: Proceed-

ings of the first international conference on natural language generation, Mitzpe

Ramon, Israel, pp. 100–107 (2000)

8. Krahmer, E., Van Erk, S., Verleg, A.: Graph-based generation of referring expres-

sions. Computational Linguistics (2003)

9. Van Deemter, K.: Generating referring expressions: Boolean extensions of the in-

cremental algorithm. Computational Linguistics 28, 37–52 (2002)

10. Siddharthan, A., Copestake, A.: Generating anaphora for simplifying text. In: Pro-

ceedings of the 4th Discourse Anaphora and Anaphor Resolution Colloquium, pp.

199–204 (2002)

11. Siddharthan, A., Copestake, A.: Generating referring expressions in open domains.

In: Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics, Barcelona, Spain, pp. 408–415 (2004)

12. Varges, S., Van Deemter, K.: Generating referring expressions containing quanti-

fiers. In: Proceedings of the 6th International Workshop on Computational Seman-

tics, pp. 1–13 (2005)

13. Kelleher, J.D., Kruijff, G.J.M.: Incremental generation of spatial referring expres-

sions in situated dialog. In: Proceedings of COLING/ACL 2006 (2006)

14. Paraboni, I., Van Deemter, K., Masthoff, J.: Generating referring expressions: Mak-

ing referents easy to identify. Computational Linguistics 33, 229–254 (2007)

15. Van Deemter, K., Krahmer, E.: Graphs and booleans: on the generation of referring

expressions. In: Bunt, H., Muskins, R. (eds.) Computing Meaning, vol. 3, pp. 397–

422. Springer, Dordrecht (2008)

16. Areces, C., Koller, A., Striegnitz, K.: Referring expressions as formulas of descrip-

tion logic. In: White, M., Nakatsu, C., McDonald, D. (eds.) Proceedings of the

Fifth International Natural Language Generation Conference, Salt Fork, Ohio, pp.

42–49. Association for Computational Linguistics (2008)

17. Wilcock, G., Matsumoto, Y.: Head-driven generation with HPSG. In: Proceed-

ings of COLING-ACL 1998: Workshop on Usage of WordNet in Natural Language

Processing Systems, pp. 1393–1397 (1998)

18. Carroll, J., Flickinger, D., Copestake, A., Poznanski, V.: An efficient chart genera-

tor for (semi-)lexicalist grammars. In: Proceedings of the 7th European Workshop

on Natural Language Generation, Toulouse, France (1990)

19. Copestake, A., Flickinger, D., Pollard, C., Sag, I.A.: Minimal recursion semantics:

An introduction. Research on Language and Computation 3, 281–332 (2005)

20. Carroll, J., Oepen, S.: High efficiency realization for a wide-coverage unification

grammar. In: Dale, R., Wong, K.F. (eds.) Proceedings of the Second International

Joint Conference on Natural Language Processing (IJNLP 2005), Springer, Hei-

delberg (2005)

A Translation from Logic to English with Dynamic Semantics 215

21. Wedekind, J., Kaplan, R.M.: Ambiguity-preserving generation with LFG- and

PATR-style grammars. Computational Linguistics 22, 555–558 (1996)

22. Wedekind, J.: Semantic-driven generation with LFG- and PATR-style grammars.

Computational Linguistics 25, 277–281 (1999)

23. Kaplan, R.M., Wedekind, J.: LFG generation produces context-free languages. In:

Proceedings of the 18th Conference on Computational Linguistics, Saarbrücken,

Germany, pp. 425–431 (2000)

24. Cahill, A., van Genabith, J.: Robust pcfg-based generation using automatically

acquired lfg approximations. In: Proceedings of the 21st International Conference

on Computational Linguistics and 44th Annual Meeting of the ACL, Sydney, Aus-

tralia, pp. 1033–1040. Association for Computational Linguistics (2006)

25. Calder, J., Reape, M., Zeevat, H.: An algorithm for generation in unification cat-

egorial grammar. In: Proceedings of the 4th Conference of the European Chapter

of the Association for Computational Linguistics, Manchester, UK, pp. 233–240

(1989)

26. Phillips, J.D.: Generation of text from logical formulae. Machine Translation 8,

209–235 (1993)

27. White, M.: Reining in CCG chart realization. In: Belz, A., Evans, R., Piwek, P.

(eds.) INLG 2004. LNCS (LNAI), vol. 3123, pp. 182–191. Springer, Heidelberg

(2004)

28. Pollard, C., Yoo, E.J.: A unified theory of scope for quantifiers and wh- phrases.

Journal of Linguistics 34(2), 415–445 (1998)

29. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, Dor-

drecht (1993)

30. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. PhD thesis, MIT

(1982)

31. Karttunen, L.: Discourse referents. In: McCawley, J.D. (ed.) Syntax and Semantics

7: Notes from the Linguistic Underground, pp. 363–385. Academic Press, New York

(1976)

32. Sailer, M.: Npi licensing, intervention and discourse representation structures in

hpsg. In: Müller, S. (ed.) Proceedings of the HPSG 2007 Conference. CSLI Publi-

cations, Stanford (2007)

33. Reyle, U.: Dealing with ambiguities by underspecification: Construction, represen-

tation, and deduction. Journal of Semantics 10(2), 123–179 (1993)

34. De Swart, H.: Licensing of negative polarity items under inverse scope. Lingua 105,

175–200 (1998)

35. Lenat, D.: Cyc: A large-scale investment in knowledge infrastructure. Communi-

cations of the ACM 38 (1995)

36. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: Ex-

pressivity and efficiency in a common-sense ontology. In: Papers from the AAAI

Workshop on Contexts and Ontologies: Theory, Practice and Applications, Pitts-

burg, PA (2005)

37. Matuszek, C., Cabral, J., Witbrock, M., DeOliveira, J.: An introduction to the

syntax and content of Cyc. In: Proceedings of the 2006 AAAI Spring Symposium

on Formalizing and Compiling Background Knowledge and Its Applications to

Knowledge Representation and Question Answering, Stanford, CA (2006)

38. Heim, I.: File change semantics and the familiarity theory of definiteness. In: Bau-

rle, R., Schwarze, C., Von Stechow, A. (eds.) Meaning, Use, and the Interpretation

of Language, pp. 164–189. Walter de Gruyter, Berlin (1983)

39. Muskens, R.: Combining Montague semantics and discourse representation. Lin-

guistics and Philosophy 19, 143–186 (1996)

216 E. Coppock and D. Baxter

40. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of

Chicago Press, Chicago (1994)

41. Wechsler, S., Zlatić, L.: The Many Faces of Agreement. Center for the Study of

Language and Information, Stanford (2003)

42. Chafe, W.L.: Givenness, contrastiveness, definiteness, subjects, topics and point of

view. In: Li, C.N. (ed.) Subject and topic, pp. 25–55. Academic Press, New York

(1976)

43. Ariel, M.: Accessing NP antecedents. Routledge, London (1990)

44. Gundel, J.K., Hedberg, N., Zacharski, R.: Cognitive status and the form of referring

expressions in discourse. Language 69, 274–307 (1993)

45. Brennan, S.: Centering attention in discourse. Language and Cognitive Pro-

cesses 10, 137–167 (1995)

46. Grosz, B.J., Joshi, A.K., Weinstein, S.: Providing a unified account of definite noun

phrases in discourse. In: Proceedings of the 21st Annual Meeting of the Association

for Computational Linguistics, Cambridge, MA, pp. 44–49 (1983)

47. Grosz, B.J., Joshi, A.K., Weinstein, S.: Centering: A framework for modeling the

local coherence of discourse. Computational Linguistics 21, 203–226 (1995)

48. Beaver, D.I.: The optimization of discourse anaphora. Linguistics and Philoso-

phy 27, 3–56 (2004)

49. Lenat, D.B., Guha, R.V.: Building Large Knowledge-Based Systems. Addison-

Wesley, Reading (1990)

50. Baxter, D., Shepard, B., Siegel, N., Gottesman, B., Schneider, D.: Interactive nat-

ural language explanations of cyc inferences. In: Proceedings of AAAI 2005: Inter-

national Symposium on Explanation-aware Computing, Washington, D.C. (2005)

51. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Oxford (1998)

Semantics of Possibility Suffix “(Rar)e”

Takashi Iida�

Department of Philosophy, Keio University

iida@flet.keio.ac.jp

Abstract. A semantical analysis of a Japanese verbal suffix “(rar)e” is

given in the framework of event semantics. It is claimed that the primary

sense of “(rar)e” is that of situational and volitional possibility. This

sense is analyzed in terms of the concept of possible stages of history

during a given time interval and the thematic role of agent. The other

two senses of “(rar)e” are shown to be derivable from the primary sense.

It is observed that the ability sense of “(rar)e” appears when it is used

in an attribute sentence, and an analysis of a certain class of attribute

sentences is given, which shows they are essentially generic sentences

and hence, the predicate with “(rar)e” expressing ability is a generic

predicate. Finally, the reason why “(rar)e” expresses a realized possibility

in certain contexts are explained by the interaction of the primary sense

of “(rar)e” and perfective aspect. Throughout, it is emphasized that the

basic classification of Japanese sentences into states of affairs sentences

and attribute sentences is essential for giving the semantical account of

Japanese predicates.

1 Introduction

I have chosen this topic because it gives me a good opportunity to present a
framework for Japanese semantics, which has been well known for some time
among a number of Japanese grammarians. My work may be regarded as a
formal reworking of the theoretical insights of those grammarians1.

This framework mainly consists in making use of a broad classification of
Japanese sentences. Such a classification of sentences has been a part of the
tradition of Japanese grammatical studies; some people say it can be traced
back even to Edo-era. According to it, Japanese sentences are classified into
those that report a concrete state of affairs and those that ascribe an enduring
property to a subject. These two types have been called differently by different
scholars. Here I adopt the terminologies used by Masuoka Takashi. He classifies
Japanese sentences into “jishou jyojyutsu bun (sentences reporting states of
affairs)” and “zokusei jyojyutsu bun (sentences reporting attributes)” ([Ma1],
p.22). I am going to abbreviate the former as “state of affairs sentences” and the
latter as “attribute sentences”.
� I thank Lajos Brons and Koji Mineshima for helpful comments and discussions.
1 Among the books which present such a framework I would like to cite the following

two. [Ko1] and [Ma1].

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 217–234, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

218 T. Iida

Many authors make a subdivision of the former. According to Masuoka, state
of affairs sentences are divided in turn into those express “dynamic states of
affairs” and those express “static states of affairs”. As he explains a “dynamic
state of affairs” as “an event which happens at a particular time and place”, the
distinction between “dynamic” and “static” among the states of affairs corre-
sponds to the one between events and states which is well-known in philosophy
and plays an important role in the linguistic study of aspect.

In sum, there is a broad classification of Japanese sentences that can be set
in the following table.

(A) state of affairs sentences
(A–1) sentences expressing dynamic states of affairs (event sentences)
(A–2) sentences expressing static states of affairs (state sentences)

(B) attribute sentences

If you wish to give a semantic account of a Japanese sentence, you should
always be aware of the type of sentence which it belongs to, namely, whether it is
an event sentence, a state sentence, or a sentence attributing a certain property
to a subject. Different types of sentences should be given different semantic
accounts, and sometimes the same sentence has different readings corresponding
to the different types to which it is thought to belong. We have a good example
of this in the case of sentences with the so-called possibility suffix “(rar)e”. The
same sentence with this suffix can have a state sentence reading, an attribute
sentence reading , and sometimes even an event sentence reading.

Whether a sentence is an event sentence or a state sentence is determined by its
main predicate. Let us call a predicate which makes an event sentence as an “event
predicate”, and a predicate which makes a state sentence as a “state predicate”.
Japanese verb phrases may be divided into two classes according to whether they
make event predicates or state predicates. It is important to note that this is a
classification of verb phrases and not a classification of verbs themselves. For, there
are verb suffixes which make state verb phrases out of event verbs or event verb
phrases. A typical example is a suffix “tei” which makes a state verb phrase out of
an event verb phrase. Depending on the verb it is appended to, it may mean either
the state that the event of the specified type is in progress, or the state resulting
from the occurrence of the event. “Akeru” (open, transitive) and “aku” (open,
intransitive) give a nice contrasting pair of sentences.

(1) Taro ga mado o ake-tei-ru.
Taro NOM window(s) ACC open PROG NON-PAST
Taro is opening the window(s).

(2) Mado ga ai-tei-ru.
window(s) NOM open RESU NON-PAST
The window(s) is(are) open.

In order to see whether a predicate is an event predicate or a state predicate,
it is enough to look at a non-past sentence which has it as the main predicate.
If the sentence cannot refer to the present state of affairs, then it is an event
sentence. On the other hand, if the sentence may refer to the present state of
affairs, it is a state sentence.

Semantics of Possibility Suffix “(Rar)e” 219

In their admirable textbook of Japanese grammar [MT1], Masuoka Takashi
and Takubo Yukinori say “the suffix ‘(rar)e’ is appended to a dynamic verb to
make a stative verb.” The following two sentences are given as the examples
([MT1], p.106.).

(3) Taro wa Hanako ni a-u.
Taro TOP Hanako DAT meet NON-PAST
Taro is going to meet Hanako.

(4) Taro wa Hanako ni a-e-ru.
Taro TOP Hanako DAT meet can NON-PAST
Taro can meet Hanako.

Using the above test, it is easy to see that the sentence (3) is an event sentence
and (4) is a state sentence. Thus, the verb phrase “a-e-ru” is a state verb phrase,
whereas the verb it comes from is an event verb. As Masuoka and Takubo state,
the suffix “(rar)e” makes a state verb phrase out of an event verb, or more
generally, an event verb phrase.

However, it is not true that any event verb phrase can take the suffix “(rar)e”.
Although the passives are event verb phrases, we cannot put “(rar)e” to passives.
In contrast, you can put “(rar)e” to causatives, as the following example shows.

(5) tabe-sase-rare-na-i.
eat CAUSE can not NON-PAST

I cannot make her (or him or them) to eat it.

Thus, it is not accurate to say simply that “the suffix ‘(rar)e’ is appended to
a dynamic verb to make a stative verb”.

One promising lead is the idea which is also found in [MT1], namely that of
classifying verbs into “volitional verbs” and “non-volitional verbs” (p.13). Shall
we claim then that the suffix “(rar)e” is appended to a verb phrase whose core
is a volitional verb to make a stative verb phrase? Unfortunately, most of the
verbs which are classified as “non-volitonal” also can take “(rar)e”. For example,
the follwing sentence is perfectly all right, in spite of the fact that it has a non-
volitional verb “nemuru” (sleep) as the core of the predicate.

(6) Nemur-e-na-i.
sleep can not NON-PAST
I cannot sleep.

Again, a non-volitional verb “korobu” (fall down) can occur with “(rar)e” in the
sentences like the following.

(7) Taro wa umaku korob-e-ru.
Taro TOP well fall down can NON-PAST
Taro can fall down in the right way.

However, we can save the distinction, if we do not regard it as the one among
the verbs themselves, but as the one among the uses of them. We do not have
volitonal verbs or non-volitional verbs; what we have are the volitional and non-
volitional uses of verbs.

220 T. Iida

Thus, we now have a rough characterization of the function of the suffix
“(rar)e”: it is appended to an event verb phrase whose core consists of a volitonal
use of a verb to make a stative verb phrase. We may call our suffix that of
“volitional possibility”. Our semantics of “(rar)e” should explain what is involved
in “volitional possibility”. This should be our first task.

Another problem we should consider about the semantics of “(rar)e” is con-
cerned with the fact that a sentence containing this suffix may have different
interpretations. For example,

(8) Taro wa oyog-e-ru.
Taro TOP swim can NON-PAST
Taro can swim.

means either (a) Taro is able to swim now, or (b) Taro has the ability to swim.
Moreover, the sentence with the past tense particle “ta”

(9) Taro wa oyog-e-ta.
Taro TOP swim can PAST

has three different interpretations. It may mean that (a) Taro was able to swim
at a particular time in the past, (b) Taro had an ability to swim in the past, or
(c) Taro managed to swim. These different interpretations become explicit if we
put appropriate adverbs.

(9a) Taro wa sono toki oyog-e-ta.
Taro TOP at that time swim can PAST
Taro could swim at that time.

(9b) Taro wa mukashi oyog-e-ta.
Taro TOP years ago swim can PAST
Taro was able to swim years ago.

(9c) Taro wa yatto oyog-e-ta.
Taro TOP somehow swim can PAST
Taro somehow managed to swim.

Thus, our second task is to explain why a sentence with “(rar)e” may have
such different interpretations and how they are related to each other.

2 “(Rar)e” of Volitional Possibility

2.1 Semantics of Event Verbs and State Verbs

My analysis of the possibility suffix “(rar)e” is in the framework of event seman-
tics. Event semantics is particularly well suited to analyzing a Japanese verbal
predicate, because a Japanese verbal predicate may have a complex structure
consisting of various suffixes and they can be regarded as expressing certain op-
erations in the domain consisting of events and states2. One of these suffixes is
our possibility suffix, and as we saw before, it turns an event predicate into a
state predicate.
2 This is one of the reasons why I have not adopted a framework like Stit whose basic

elements are propositions, not events or states.

Semantics of Possibility Suffix “(Rar)e” 221

Let me give an example of a Japanese verbal predicate with various suffixes.
In the sentence

(10) Taro wa eki made ik-ase-rare-tei-ru.
Taro TOP station to go CAUSE PASS PROG NON-PAST
Taro is now in the process of being made to go to the station.

the verbal predicate “ikaserareteiru” consists of a verb stem “ik”, a tense particle
“ru”, and three suffixes in between, namely,

“(s)ase” causative,
“rare” passive,
“tei” progressive.

As was mentioned before, there are two main kinds of predicates, dynamic
predicates which make event sentences, and static predicates which make state
sentences. Each verb and verb phrase introduces a type of event or state. A
dynamic verb phrase is assigned a set of events as its extension, and a static
verb phrase is assigned as its extension a set of time intervals in which the state
it expresses holds. In the present account, for the sake of simplicity, we assume
that time is linear and discrete: it consists of unit intervals. We also assume that
each time unit I has its immediate future I+ and immediate past I−. A period
is a set of consecutive unit time intervals.

Although I am certain that we should countenance events as full-fledged in-
dividuals just like persons and stars, I don’t think we should do the same with
states3. So, a state verb may be regarded as expressing a certain relation between
time intervals and the individuals involved in the state in question.

Moreover, each verb is thought to have a fixed number of arguments. For
example, “oyogu” (swim) is an event verb (dynamic verb) with one argument,
and “taberu” (eat) is an event verb with two arguments. Likewise, “iru” (is at,
or, stay at) is a state verb with two arguments. Each argument of an event
verb plays a definite role in the events the verb denotes. Thus, the one and only
argument of “oyogu” is the agent of a swimming event, and the two arguments
of “taberu” are the agent and the theme (patient) of an eating event. In contrast
to this, a state verb “iru” expresses a relation between individuals like persons
or animals, locations and time intervals.

The extensions of these three verbs are given in the following way. Here “e”
is a variable that ranges over events, and “I” is the one over unit time intervals.
I suppose it is obvious what “SWIM(e)”, “AGENT(x, e)”, etc. mean.

‖oyog(x)‖ = {e|SWIM(e) ∧AGENT(x, e)}
‖taber(x, y)‖ = {e|EAT(e) ∧AGENT(x, e) ∧ THEME(y, e)}

‖i(x, y)‖ = {I|x is at y during I}

A verb makes the core of the main predicate of an event sentence or state sen-
tence. A verb cannot appear by itself in a sentence, but it should be accompanied
3 In an expanded version of event semantics I developed in [Ii1], its ontology comprises

not only individuals like persons or token events but also states and event types. Still,

states are not individuals, but universals just as event types are.

222 T. Iida

with a tense particle. State of affairs sentences are sentences that report partic-
ular events or states, and these can be located in time only with the aid of a
tense expression. Let us take a very simple sentence.

(11) Taro ga oyog-u.
Taro NOM swim NON-PAST
Taro is going to swim.

A semantic theory should give us the truth condition of this sentence relative
to the context C of its utterance. As (11) ends with the non-past tense particle
“ru” and the verb “oyog” preceding it is an event verb, (11) is true if and only
if there are some events which are of the type SWIM with Taro as their agents
and happens at some time after its utterance. If we denote by “I0” some time
interval later than the utterance time IC and EI0 is the set of all the events that
occur during I0, then this condition can be written in this way.

‖oyog(x)‖x=Taro ∩ EI0 �= ∅

or
{e : SWIM(e) ∧AGENT(Taro, e)} ∩ EI0 �= ∅

In contrast to this, a state sentence with non-past tense is true relative to
C when the utterance time IC is in the extension of its state predicate. For
example, a state sentence

(12) Taro wa Toukyou ni i-ru.
Taro TOP Tokyo at stay NON-PAST
Taro is in Tokyo.

is true in C if and only if
IC ∈ ‖i(x)‖x=Taro

namely,

Taro is at Tokyo during IC .

2.2 Analysis of Volitional Possibility

We already know how to give a simple sentence “Taro ga oyog-u (Taro is going to
swim)” its truth condition relative to the context C. Let us consider a sentence
with the possibility suffix “(rar)e”

(8) Taro wa oyog-e-ru.
Taro TOP swim can NON-PAST

As I mentioned before, this sentence has at least two intepretations, namely, it
may mean that (a) Taro can swim now, or that (b) Taro has the ability to swim.
My claim is that the reading (a) is more basic than (b) and the latter reading is
derivable in some sense from (a). So, for the time being, let us interpret (8) as
saying that Taro can swim now.

Please note that this sentence is about the present state of Taro, and not a
future event involving Taro as in (11). (8) is a state sentence, and its predicate

Semantics of Possibility Suffix “(Rar)e” 223

“oyog-e-” denotes a state of Taro. Our task is to show how the extension of
“oyog-e-” is determined by the extension of the core event verb “oyog-”.

In the following analysis the concept of action is taken for granted. We are not
going to consider how this concept should be analyzed4 except that we stipulate
that

an event e is an action ⇔ ∃x AGENT(x, e).

I make an assumption that for any time interval I there are a number of
possibilities that might come to be actualized during its immediate future I+.
Let us call these possibilities “possible stages of history immediately after I”
and designate it by

HI

Let h be an element of such a set. h should satisfy the following conditions.

(i) h is a continuation of the actual history up to I.
(ii) Any general law that holds in the actual world also holds in h.

Given such apparatus, the first idea that might occur is to give an application
condition of a predicate “V + (rar)e” as follows.

“V + (rar)e” is true of an agent a at I ⇔ there are possible stages of
history immediately after I in which there is an action by a which is of
the type V.

This characterization judges correctly that the cases where a might suffer the
V type event just after I are not the cases where “V + (rar)e” is true of a at
I. For example, the fact there are possible stages of history immediately after
I in which a might fall down unintentionally, does not make it true that “a wa
korob-e-ru (a is able to fall down)”. For the latter to be true, what is needed is
not simply an event of a’s falling down, but an action on a’s part of falling down
intentionally.

However, the present characterization is too simple for many cases5. Consider
the various utterances of the following sentence.
4 This is another difference between my analysis and that given by Stit theory like

[Ho1]. But, I don’t think that the concept of action should be a primitive one. For

an interesting attempt at analysis, see [Pi1].
5 A referee pointed out that the present analysis in terms of “possible stages of history”

could not account for the sentences like the following.

(i) Taro wa kaijuu ni datte kat-e-ru

Taro TOP monster(s) DAT even win can NON-PAST

However, the issues raised by such a sentence are part of the general problem of

how to give a semantic account of a discourse containing reference to a fictional

object like kaijuu, and hence, tangential to our concern in this paper. Moreover, I

strongly doubt the possible worlds and the like give us an appropriate framework

to do semantics of such discourses. If my doubt is well founded, then the sentences

like (i) do not give us a good reason to extend our “possible stages of history” to

something further apart from the actual world.

224 T. Iida

(13) (Sore wa) Tabe-rare-na-i.
(that TOP) eat can not NON-PAST
I can’t eat (that).

1. “Tabe-rare-nai” uttered by a person who judges the offered food is poisoned.
2. “Tabe-rare-nai” uttered by a person whose religion prohibits eating a certain

kind of food.
3. “Tabe-rare-nai” uttered by a person who is on diet.
4. “Tabe-rare-nai” uttered by a person who has a very strong moral feeling

when he or she is offered food that is obtained by morally dubious procedure.

These cases remind us that there is a normative dimension in an action. An
action is possible for an agent only if it is not against the norms the agent
adopts6. There are many kinds of norms an agent may adopt; they might be
prudential, religious, aesthetic or moral. In the above examples a speaker judges
“Tabe-rare-nai” because taking the offered food involves the violation of the
norm the speaker adopts.

Let us incorporate such considerations into our semantics of “(rar)e”. What
should be done is to make clear what “a possible stage of history immediately
after I” is. It is no grand thing like a possible world. It is not even like a temporal
stage of it. “A possible stage of history immediately after I” is more like a
possible alternative open to an agent at I. Let us adopt this terminology and
make it relative to an agent a and a norm ν7 as well as a time interval I. Thus, the
set of possible alternatives open to an agent a under a norm ν at I is designated
by

HI
a,ν

If h is an element of this set, it should satisfy the following condition as well as
(i) and (ii) above.

(iii) In h there is no violation of the norm ν.

For each possible alternative h in HI
a,ν , there is the set of all the events that

occur during I+. It is denoted by “EI+

h ”. We also suppose that the context C
supplies the relevant norm ν(C) when it is necessary.

At last, we can define the extension relative to the context C of the predicate
with the possibility suffix

(oyog(x))e

applied to a as follows.

‖(oyog(x))e‖Cx=a = {I|∃h∃e[h ∈ HI
a,ν(C) ∧ e ∈ EI+

h ∧ e ∈ ‖oyog(x)‖x=a]}

6 However, this is an oversimplification. The relevant norm may not be the one the

agent herself adopts. We may judge that some actions are not possible for an agent,

not because they are against a norm the agent adopts, but because they are against

the norm we ourselves adopt.
7 The norm ν may not be the one the agent a adopts. See the previous note.

Semantics of Possibility Suffix “(Rar)e” 225

Using this definition, the truth condition of (8) relative to the context C can
be easily deduced. As (8) is a state sentence, it is true in C if and only if the
utterance time IC is in the extension of

‖(oyog(x))e‖x=Taro

and, it is true in turn if and only if

∃h∃e[h ∈ HIC

Taro,ν(C) ∧ e ∈ E
(IC)

+

h ∧ SWIM(e) ∧AGENT(Taro, e)],

that is, there are some possible alternative open to Taro at IC in which occur
some swimming events with Taro as an agent without any violation of the norm
relevant to the context of the utterance.

3 “(Rar)e” of Ability

However, there are two senses (8) may express.

(a) Taro is in the state of being able to swim now.
(b) Taro has an ability to swim.

Even though our present analysis might be true of (a), it is definitely not true
of (b). (8) read as (b) is concerned with Taro’s ability, whereas (8) read as (a)
is concerned with Taro’s present situation. Why are there two different readings
of (8)? How can we know which is the right reading on each occasion?

I claim that (8) can be interpreted either as a state of affairs sentence or an
attribute sentence, and that the former way of taking (8) results in the volitional
possibility reading and the latter way of taking it results in the ability reading.
Our analysis so far has considered (8) only as a state of affairs sentence. In
order to give an analysis of (8) as expressing an ability, we should know how the
semantics of an attribute sentence is given.

3.1 Attribute Sentences as Generic Sentences

I do not claim that the following analysis applies to all sorts of attribute sen-
tences in Japanese. It is intended to apply to those sentences which attribute an
enduring property to a certain subject. These sentences are divided into those
which attribute such a property to a particular individual like Taro and Hanako
and those which attribute it to a certain kind. Here are the typical examples of
both types of attribute sentences.

(14) Taro wa kashikoi.
Taro TOP wise
Taro is wise.

(15) Zou wa hana ga nagai.
elephants TOP trunks NOM long
Elephants have long trunks.

226 T. Iida

In the following, I will be mainly concerned with the former type of an attribute
sentence, namely, a sentence that attributes an enduring property to a particular
individual.

(8) read as (b) is one of them. According to the present analysis, such a
reading results when it contains an operator which will be written as “Gen”. The
choice of this symbol reflects the thought that a large class of Japanese attribute
sentences are in fact generic sentences. In general, an attribute sentence consists
of two distinct parts; the first part, which we call “subject-part”, presents the
subject of the sentence, and the second part, which we call “attribute-part”,
attributes a property to the subject. Both the subject-part and the predicate-
part contain the generic operator “Gen”.These two parts are typically connected
by a particle “wa”. Finally, a tense particle is an outermost part of the sentence.
Hence, (8) read as an attribute sentence has the following structure.

{ GenSP(Taro) wa GenAP(oyog-e)} ru.

Let us recall that we compared (8) read as (a) to an event sentence (11).

(11) Taro ga oyog-u.
Taro NOM swim NON-PAST
Taro is going to swim.

If we change the particle “ga” to “wa” in (11), then the resulting sentence

(16) Taro wa oyog-u.
Taro TOP swim NON-PAST
Taro swims.

can be construed as an attribute sentence, which says that Taro is a person
who swims, in contrast to an event sentence which talks about a future event of
Taro’s swimming8. Such a reading of (16) has an analysis similar to (8) read as
(b).

{ GenSP(Taro) wa GenAP(oyog)} u

Attribute sentences can be classified again according to whether their at-
tribute parts are event predicates or state predicates. (16) is an attribute sen-
tence having an event predicate as its attribute part, and a sentence like the
following is one having a state predicate as its attribute part9.

(17) Hanako wa gakusei da.
Hanako TOP student COPULA
Hanako is a student.

Our analysis is intended to apply to both kinds of attribute sentences. It is
based on two ideas.
8 (16) can be read in this way, too. But, for such an interpretation to be possible,

“wa” should be pronounced with a stress.
9 A state predicate can be a predicate derived from a noun like “gakusei” of (17) as

well as a verbal predicate.

Semantics of Possibility Suffix “(Rar)e” 227

1. A property attributed to the subject of an attribute sentence is an enduring
one, partly because the subject has it for the period that is much wider than
the period that is the time of its utterance.

2. An untensed part of an attribute sentence has the form

Gen(S) wa Gen(P).

The predicate “Gen(P)” is an attributive predicate whose extension consists
of individuals. It is the third kind of predicate which is different from an event
predicate whose extension consists of events and a state predicate whose
extension consists of time intervals10.

Let me explain this, taking (17) as an example. In the case of attribute sentences
with individual subjects, it is true in the context C if and only if the individual
which is denoted by “Gen(S)” is in the extension of the predicate “Gen(P)”
during a certain extended period of time determined by C and its tense. And, if
“S” is a proper name as in (17), “Gen(S)” denotes just the individual denoted by
“S”. Moreover, “Gen(gakusei-da)” is an attribute derived from a state predicate
“gakusei-da” and it is simply a predicate whose extension consists of individuals
which are students. Hence, (17) is true now if and only if Hanako is a student
during a certain extended period of time which includes the present.

3.2 Attribute Predicates Derived from Event Predicates

“Gen(oyog)” in (16) is also a predicate whose extension consists of certain in-
dividuals, but it is an attribute derived from an event predicate “oyog” , and it
is not so simple to say what kind of individuals are in it. This depends on what
it means to say that a property is “enduring”, because a property expressed by
“Gen(oyog)” should be an enduring property of Taro.

When is a property “enduring”? I think there are two respects in endurity
and both of them are necessary to it. First, for a property F to be an enduring
property of an individual A, F should be true of A during some extensive period
of time. We should be able to say that A continues to be F during that period.
This does not necessarily mean that F should always be true of A in that period.
Even in that period F may not be true of A occasionally. But, A should be F in
the uniform manner during that period, and this is the second respect necessary
to endurity. During the period in question, F may be true of A only occasionally,
but F should be true of A occasionally all through the period. In short, a property
attributed to a subject in an attribute sentence should be a property which is
uniformly true of it during an extensive period of time. Let us say that an
enduring property should be both extensive and uniform.
10 Hence, we have three kinds of predicates corresponding to three types of sentence.

[sentence type] [predicate type] [extension of predicate]

event sentence event predicate consists of events

state sentence state predicate consists of time intervals

attribute sentence attribute predicate consists of individuals in general

228 T. Iida

Let us consider the sentence (16) again. One reading of this sentence is that
Taro is a kind of person who swims, or a swimmer. When do we say that some-
body is a swimmer? Suppose Taro has swam only once in the past. Is that enough
to make him a swimmer? I suppose not. Then how many times should Taro have
swum in the past to be a swimmer? But, if he swam a number of times many
years ago, but has not swum for several years now, then can we count him as a
swimmer now?

I am not sure that there are unique correct answers to these questions. The
answers I give here are only tentative and subject to change in the course of a
more detailed study of the data. With this proviso, let us try to answer them.

I think it is reasonable to refuse the title “swimmer” to a person who has swum
only once during the period relevant to the conversation. I also think that for a
person to be a swimmer it is not only necessary that he or she swims a number
of times during the period in question but also that he or she swims regularly all
through the period. So, let us divide the period in question into several parts,
and see whether it contains the events of the person’s swimming. If such events
are found in most of them, may we conclude that the person is a swimmer?

However, this by itself does not guarantee that the events of that person’s
swimming are distributed uniformly during the period. For, if the period is di-
vided into unequal parts, we will get the wrong result. Suppose that we divide
the part of the entire period where the events of Taro’s swimming occur into
many parts, but never divide the part of the period where such events do not
occur, and suppose also that Taro once did many swimmings many years ago,
but has not swum since. Then, Taro would be counted as a swimmer now. So let
us demand that the period in question should be divided into equal parts11. Still
this is not enough. On one hand, there are some actions which are so difficult to
perform that having successfully performed such an action just once or twice is
enough to qualify the person who did it as the owner of the relevant ability. On
the other hand, there are some actions which are so routinely done many times
a day by a normal person that a few successful performances a day or a week is
not enough to qualify a person as the owner of the ability. This means that the
division of the period may be coarse or fine. For a kind of action which is per-
formed rarely and only with difficulty, the division should be rough. In contrast
to this, for a kind of action which is performed quite often and with no difficulty,
the division should be fine. Thus, we should divide the period differently for
different kinds of action.

Let us try to be a little more formal. First, we define “an equal division of the
period”.

Definition. Let Π be a time period. By “an equal division of Π”, we
mean a set Δ of the periods πi which satisfies the following conditions:

1. For each i, πi ⊆ Π .
2.
⋃

Δ = Π .

11 The divided parts need not be strictly equal. It is enough that there is no extreme

difference between the duration of each part.

Semantics of Possibility Suffix “(Rar)e” 229

3. For any i and j, if i �= j, then πi ∩ πj = ∅.
4. For any i and j, dur(πi) = dur(πj).

Here, “dur(πi)” indicates the duration of πi.

As the above considerations suggest, only some of these divisions are appro-
priate for our purpose, and it is different with each predicate which divisions are
appropriate. So, let us express the relation “an equal division Δ of a period Π
is appropriate for a predicate ‘P ’ ”12 by

AP(Δ,Π, “P”).

With this relation, we can express the condition for a person to be a swimmer
in the period Π : a person is a swimmer during Π if and only if there is an equal
division Δ of Π appropriate for the predicate “swim” and most of the elements
of Δ contain the events of the person’s swimming.

In general, when “P (x)” is an event predicate, the extension of ‖Gen(P (x))‖
relative to the period Π is given by the following.

‖Gen(P (x))‖Π = {x | ∃Δ[AP(Δ,Π, “P (x)”) ∧
most π(π ∈ Δ→ ∃I∃e(I ⊆ π ∧ e ∈ EI ∧ e ∈ ‖P (x)‖)]}

3.3 Attribute Predicates Derived from State Predicates

Let us turn to the case of an attribute predicate derived from a state predicate.
For such a predicate, it seems a simple matter to give its extension. Suppose
“Gen(P (x))” is such a predicate derived from a state predicate “P (x)”. A state
predicate has the property of uniformity in the sense that if it holds in a certain
period, then it holds in any part of that period. Hence, if something has an
attribute derived from a state predicate during Π , then doesn’t it have the same
attribute in any time interval I within Π? That is, can’t its extension relative
to Π be simply this?

‖Gen(P (x))‖Π = {x|∀I(I ∈ Π → I ∈ ‖P (x)‖)}

But, even though a state predicate is admitted to possess such a property of
uniformity, it is not necessarily true that an attribute predicate derived from it
has also that property. Let us consider the following pair of sentences both of
which have a state predicate “urusai” (noisy).

(18) Kuruma ga urusa-i.
Car(s) NOM noisy NON-PAST
The noise is coming out of the car.

(19) Kono kuruma wa urusa-i.
this car TOP noisy NON-PAST
This car is noisy.

12 In an extended framework which contains event types and states as universals, “P”

may be replaced by an event type expressed by “P”. See note 3 above.

230 T. Iida

(18) can be interpreted as is here translated, and in that case, it is a sentence
reporting a particular state. Although (19) can be also interpreted as a sentence
reporting a particular state, it has another interpretation according to which the
property of noisiness is attributed to a particular car. In the latter interpretation,
(19) is an attribute sentence.

Let us consider (19). For the car to have the attribute of noisiness during a
certain period, is it necessary that the car never ceases to be noisy during the
period? Not at all. If it should, then a noisy car should be always in the move
or continue to emit some sound even when it is not moving. Hence, the above
characterization of the extension of the attribute predicate derived from a state
predicate is wrong.

Thus, it is obvious that we need the concept of an equal division of the period
appropriate for a predicate also in the case of an attribute predicate derived
from a state predicate. When “P (x)” is a state predicate, the extension relative
to a period Π of an attribute predicate “Gen (P (x))” is given as follows.

‖Gen(P (x))‖Π = {x | ∃Δ[AP(Δ,Π, “P (x)”) ∧
most π(π ∈ Δ→ ∃I(I ⊆ π ∧ I ∈ ‖P (x)‖))]}

Before moving on, I would like to say something about the semantics of an
attribute sentence with a subject which denotes a kind, not an individual. Such
a sentence asserts of the kind that the individuals belonging to it typically have
a certain property. For example, the sentence

(15) Zou wa hana ga nagai. (Elephants have long trunks.)

ascribes a typical property of having a long trunk to the kind elephant . How
should we explain this “typicality”? I think that this “typicality” of the property
is very much similar to the endurity of the property. A typical property also
should be extensive and uniform. But, this time what should be distributed
extensively and uniformly are not events, but individuals of the kind. That is,
a typical property of the kind is one found extensively and uniformly among its
instances. So, the rough idea is like the following.

Let “Gen(S) wa Gen(P)” be an attribute sentence in which “S” de-
notes a certain kind K. Ignoring tense, this sentence is true if and only
if there is a set Σ of individuals which belong to K such that (i) it forms
an extenseive part of the entire individuals of K, and (ii) there is an ap-
propriate division of Σ into subsets most of which contain an individual
which has the property expressed by “Gen(P)”. As we know what the
property expressed by “Gen(P)” already, we will have the desired truth
condition.

It goes without saying that this is only a rough idea and there are still many
problems to be solved before this idea can give a feasible account of those
Japanese attribute sentences which can be regarded as generic sentences.

Semantics of Possibility Suffix “(Rar)e” 231

3.4 Analysis of Ability

After all this, we now have everything we need to state the truth condition of
(8) as read as a claim about Taro’s ability to swim. As we said before, (8) read
in this way is an attribute sentence and has the following form.

(20) { Gen(Taro) wa Gen((oyog(x))e)} ru.

This sentence is true in the context C if and only if the following holds for a
certain extended period ΩC determined by C.

Taro ∈ ‖Gen((oyog(x))e)‖ΩC

As “Gen((oyog(x))e)” is an attribute predicate derived from a state predicate,
this is equivalent to

Taro ∈ {x|∃Δ[AP (Δ,ΩC , “(oyog(x))e”) ∧
most π(π ∈ Δ→ ∃(I ∈ π ∧ I ∈ ‖(oyog(x))e)‖))]}

Only thing left for us to do now is to spell out the last part of this, namely, to
figure out what the following means.

I ∈ ‖(oyog(x))e)‖)

But it is nothing but the volitional possibility we have dealt with before. What
we get at the end is the following.

(20) is true in the context C if and only if there is an equal division Δ
of the period ΩC appropriate to the predicate “oyog-e”, and in most of
the parts thus divided, there are time intervals at which some possible
alternatives to Taro are open where the swimming events with Taro as
an agent might occur without any violation of the relevant norm.

In short, to say that Taro has the ability to swim for a certain period of time is
to say that for most of the parts of that period Taro is in the state of being able
to swim at that period.

The sentence (8) “Taro wa oyog-e-ru” has two readings not because the suffix
“(rar)e” has two different meanings such as volitional possibility and ability. It is
just an instance of the widely observed phenomena in Japanese. (8) can be read
either as a sentence reporting a particular state involving Taro or as a sentence
attributing a property to Taro. The following two have also such two readings.

(21) Taro wa okubyou dat-ta.
Taro TOP cowardly COPULA NON-PAST
Taro behaved cowardly, vs. Taro was a coward.

(22) Hanako wa ie kara de-na-i.
Hanako TOP home from go out not NON-PAST
Hanako does not go out today, vs. Hanako never goes out.

232 T. Iida

Obviously, it is not a good policy to suppose that the phrases like “okyobyou
dat-ta” and “ie kara de-nai” have two meanings. The ambiguity we see in such
cases are not lexical, but structural. Our analysis about “(rar)e” given here is
concerned with such structural features rather than the specific meaning of it.
Thus it can be easily adopted to account the ambiguity found in (21) or (22).

4 “(Rar)e” of Realized Possibility

Let us consider the sentence we encountered before.

(9) Taro wa oyog-e-ta.
Taro TOP swim can PAST

Suppose (9) is uttered now. If we are watching Taro in the pool and have just
seen Taro swim, then the most natural interpretaion of it is that Taro has just
swum successfully. Let us call such an interpretation the realized possibility
interpretation. According to [MT1] p.107, when the suffix “(rar)e” is followed
by “ta” which expresses perfective aspect as well as past tense, it may mean
the realization of a possibility. So, the realized possibility interpretation of (9)
implies the non-modal sentence.

(23) Taro wa oyoi-da.
Taro TOP swim PAST
Taro swam.

If we consider the sentences with adverbs like “yatto” (somehow) and “mou”
(already), such an implication is still clearer.

(24) [=(9c)] Taro wa yatto oyog-e-ta.
Taro TOP somehow swim can PAST(PERF)

Taro somehow managed to swim.

On the other hand, you may wonder what is the point of the modal expression
“(rar)e” if (9) only reports the same fact (23) does.

In order to explain the existence of implications like the one from (9) to
(23) and the role of the modal suffix in the realized possibility interpretation, I
claim that if a state predicate with the modal suffix “(rar)e” is put just before
the perfective particle “ta”, it should be turned into an event predicate and
that is done by an operator I refer to by “R”. Thus, in the realized possibility
interpretation of (9), the predicate has the following form.

R (oyog(x)-e)

This is an event predicate, and hence, its extension consists of events. What
events should be in the extension? The idea is that the extension consists of those
events which actually occur during the period the state predicate “oyog(x)-e”
holds. In general, the extension relative to the context C of

R ((P (x)) e)

Semantics of Possibility Suffix “(Rar)e” 233

is given by the following set.

{e|∃I[I ∈ ‖(P (x)) e‖ ∧ e ∈ ‖P (x)‖ ∧ e ∈ EI+
∧ non-violation(e, ν(C))]}

where “non-violation(e, ν(C))” means that e involves no violation of the norm
ν(C). As the first conjunct inside “∃I” follows from the remaining three con-
juncts, this reduces to

{e|e ∈ ‖P (x)‖ ∧ non-violation(e, ν(C))]}

It is no wonder that (23) follows from (9). (9) is different from (23) in that it
claims that there has not been any violation of the relevant norm in the event of
Taro’s swimming. For example, if the relevant norm is a prudential one, then the
speaker may mean by the utterance of (9) that Taro swam without any untoward
consequences to himself. But I think there is yet another difference between (9)
and (23). It is the difference in the implicatures they have.

Let us go back to the characterization of the volitional possibility “(rar)e”
expresses. According to it, if you wish to know whether a given interval belongs
to the extension of the predicate with “(rar)e”, you have to consider the possible
stages of history just after that interval. If there exist those which contain an
event satisfying the relevant condition, then the predicate is true, and if not it
is false. Suppose that an event of certain type happens no matter what possible
stages of history follow. For example, no matter how you and the others act
and no matter what happens in general, you have to swim, isn’t it misleading
or inappropriate to say that “oyog-e-ru” (I can swim)? To say this in such cir-
cumstances is like saying something is possible when it is known to the speaker
that it is necessary, and it violates one of the conversational maxims. Hence,
it seems reasonable to suppose that the following condition is presupposed in
the appropriate use of the predicate “oyog(x)-e” applied to an agent a in the
context C.

∃h¬∃e[h ∈ HI+

a,ν(C) ∧ e ∈ EI+

h ∧ e ∈ ‖oyog(x)‖x=a]

in other words,

∃h∀e[(h ∈ HI+

a,ν(C) ∧ e ∈ EI+

h)→ e �∈ ‖oyog(x)‖x=a]

that is, there are some possible alternatives to the agent a where a does not
swim.

In the realized possibility interpretation of (9), its truth condition is non-
modal just as (23) is. However, the presupposition accompanying the use of the
predicate “oyog(x)-e” remains, namely the presupposition that there exist some
possibilities that Taro did not swim, and it results from the use of the modal
suffix “(rar)e”.

5 Conclusion

In conclusion, let me remind the fact that the sentence we have just considered,
namely,

234 T. Iida

(9) Taro wa oyog-e-ta.
Taro TOP swim can PAST

has three different interpretations, all of which we have accounted for in the
foregoing.

First, it can be interpreted as expressing a volitional possibility, namely, it may
mean that Taro was able to swim if he wished in a certain particular occasion in
the past. According to this interpretation, (9) is a state sentence about Taro’s
particular state in the past.

Second, it can be interpreted as saying that Taro once had the ability to swim.
Then, (9) is interpreted as an attribute sentence ascribing the property of being
able to swim to Taro during some extended period in the past.

Third, it can be interpreted as expressing a realized possibility. According to
this interpretation, (9) is an event sentence which says about Taro’s accomplish-
ment. It is non-modal in its truth condition, but has an implicature which is
modal in character.

References

[Ho1] Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)

[Ii1] Takashi, I.: Nihon-go Keishiki Imi-ron no Kokoromi (2): Doushi-ku no Imi-ron

(An Essay in Japanese Formal Semantics (2): Semantics of Verb Phrases.), ms. Keio

University (2001)

[Ko1] Seiji, K.: Nihon-go wa Donna Gengo ka (What Kind of Language is Japanese?).

Chikuma Shobou, Tokyo (1994)

[Ma1] Takashi, M.: Meidai no Bunpou (The Grammar of Propositions). Kuroshio Pub-

lishing, Tokyo (1987)

[MT1] Takashi, M., Yukinori, T.: Kiso Nihongo Bunpou. Kaiteiban (Basic Japanese

Grammar, Revised Edition). Kuroshio Publishing, Tokyo (1992)

[Pi1] Pietroski, P.M.: Causing Actions. Oxford University Press, Oxford (2000)

An Adaptive Logic for the Formal Explication of
Scalar Implicatures

Hans Lycke�

Centre for Logic and Philosophy of Science, Ghent University,

Blandijnberg 2, 9000 Gent, Belgium

Hans.Lycke@UGent.be

http://logica.ugent.be/hans

Abstract. Hearers get at the intended meaning of uncooperative utter-
ances (i.e. utterances that conflict with the prescriptions laid down by

the Gricean maxims) by pragmatically deriving sentences that reconcile

these utterances with the maxims. Such pragmatic derivations are made

according to pragmatic rules called implicatures. As they are pragmatic

in nature, the conclusions drawn by applying implicatures remain uncer-

tain. In other words, they may have to be withdrawn in view of further

information. Because of this last feature, Levinson argued that implica-

tures should be formally modeled as non–monotonic or default rules of

inference. In this paper, I will do exactly this: by relying on the Adaptive
Logics Programme, I will provide a formal explication of implicatures as

default inference rules. More specifically, I will do so for a particular kind

of implicatures, viz scalar implicatures.

Keywords: Gricean pragmatics, scalar implicatures, linguistic scales,

defeasible inference rules, adaptive logics.

1 Scalar Implicatures

In contemporary pragmatics, the Gricean maxims (see [6, pp. 26–27]) are inter-
preted not as actual maxims, but as heuristic markers for both speakers and
hearers (see e.g. [1],[10]).

Instead of thinking about them as rules (or rules of thumb) or behavioral

norms, it is useful to think of them as primarily inferential heuristics which

then motivate the behavioral norms. (sic, [10, p. 35])

The maxims provide speakers the guidelines to model their utterances in a way
that best serves their communicative purposes (whatever these may be: infor-
mation transfer, transfer of emotions,...). Moreover, they provide hearers the
guidelines to decipher the intended meaning of utterances that are in conflict
with the maxims (henceforth, these will be called uncooperative utterances). The
latter is done by deriving sentences that reconcile uncooperative utterances with
the maxims (obviously, hearers will only do so in case they are convinced the
� The author is a Postdoctoral Fellow of the Special Research Fund of Ghent University.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 235–251, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://logica.ugent.be/hans

236 H. Lycke

speaker assumed they are capable to get at the actual meaning of the utterance
in spite of its deviance from the prescriptions stated by the maxims). These
derivations are obviously not deductive derivations, but pragmatic ones. Hence,
the intrinsic features of such derivations are distinct from those of deductive ones.
Most importantly, the consequences of pragmatic derivations are only accepted
in a defeasible way, meaning that they might be withdrawn at some point, for
example in case the speaker explicitly rejects them, or because they conflict with
the background knowledge shared by speaker and hearer (see e.g. [7],[9],[10]).

The pragmatic rules that enable hearers to get at the intended meaning of
uncooperative utterances, are called implicatures. As these rules yield defeasible
consequences, Levinson [10, ch. 1] has argued convincingly that they should be
captured formally as non–monotonic or default rules of inference. That is exactly
what I will do in this paper: by relying on the Adaptive Logics Programme (see
e.g. [2],[3]), I will provide a formal explication of implicatures as default inference
rules. More specifically, I will do so for a particular kind of implicatures, viz
scalar implicatures. The latter are based on linguistic scales,1 which are partially
ordered sets of sets of linguistic expressions 〈Δ1, ..., Δn〉 (the partial ordering
relation has to be defined over the sets of linguistic expressions “in a contextually
salient way,” see [10, p. 105]). The linguistic expressions in Δi are considered
more high–ranked than those in Δj in case i < j.

Example 1. The following are all linguistic scales:2 〈 and, or 〉, 〈 all,most,many,
some 〉, 〈 succeed, try 〉, 〈 book, {chapter 1, chapter 2, ...} 〉,...

Scalar implicatures arise from linguistic scales in the following way: the assertion
by a speaker of a sentence containing a low–ranked linguistic expression will force
the hearer to implicate the negation of the corresponding sentences with more
high-ranked linguistic expressions. For, so the reasoning goes, if the speaker
would have been in a position to use a more high–ranked linguistic expression,
he would have done so (in order to comply with the maxim of quantity that
states that we should be as informative as our communicative purposes require
us to be).

Example 2. “John ate some of the cookies” implicates that “John didn’t eat
all of the cookies”

Finally, remark that I am not concerned with the specific characteristics of lin-
guistic scales (what Levinson called the diagnostics of linguistic scales, see [10,
p. 81]), nor with how people recognize a linguistic scale in a particular conversa-
tional context (what I would like to call the psychology of linguistic scales). I am
merely concerned with how scalar implicatures are used by hearers in order to
get at the intended meaning of assertions made by speakers. Hence, I will simply

1 Levinson [10, p. 105] called these scales Hirschberg scales. I have opted for the more

neutral linguistic scales coined by Verhoeven [12, p. 9].
2 For reasons of convenience, singletons occurring in linguistic scales are represented

by their sole elements. Hence, where l1,...,ln are linguistic expressions, 〈 l1, ..., ln 〉 is

an abbreviation of 〈 {l1}, ..., {ln} 〉.

An Adaptive Logic for the Formal Explication of Scalar Implicatures 237

presuppose that some linguistic scales are available to hearers in a particular
conversational context. Formally, this means that the information available to
the hearer in a conversational context is taken to be a couple 〈 Γu∪Γbk , Γ ls 〉,
where Γu represents the utterances made by the speaker (as they are heard by
the hearer), Γbk represents the background knowledge shared by both speaker
and hearer (as supposed by the hearer), and Γ ls contains all linguistic scales
that are available to the hearer in the particular context.

2 The Role of Standard Logic

The consequences obtained by means of pragmatic inference steps (in casu, scalar
implicatures) are defeasible, which means that speakers might withdraw them
at a certain point. The reasons for withdrawal can be twofold. First of all, new
information might be acquired that is in conflict with the pragmatically derived
conclusions (e.g. the speaker has made some new utterances). In formal terms,
this comes down to non–monotonicity. Secondly, pragmatic consequences might
also be withdrawn because the deductive consequences of some of the utterances
made by the speaker contradict them. In practice, this comes down to the fact
that people sometimes draw (wrong) pragmatic conclusions from utterances be-
fore they have full insight in what the speaker has actually said. If they obtain
more insight (which, let’s face it, might not happen at all), they will withdraw
these conclusions. Formally, this corresponds to the fact that people are not
logically omniscient (which, in the approach presented below, is a strictly proof
theoretic feature).

The second reason for withdrawing pragmatic consequences clearly shows that
scalar implicatures are always applied against a deductive background (i.e. they
are ampliative inference rules). Traditionally, this deductive background is cap-
tured by means of a standard logic (SL),3 which means that the logical sym-
bols (the logical connectives, modal operators,...) are interpreted standardly.
However, when trying to explicate implicatures formally, interpreting the logical
symbols in the standard way leads to the so–called implementation–problem (for
a discussion related to the or–implicature, see [8],[11],[13]). In short, this comes
down to the fact that the implicatures either generate too many or too few prag-
matic consequences (dependent on the way you determine when to withdraw
pragmatic consequences). The problem is related to the fact that SL doesn’t
distinguish between sentences the hearer heard the speaker utter and sentences
the hearer merely derived from those she heard the speaker utter. Obviously, the
implicatures should only be applied to the former, not to the latter.

In this paper, the deductive background is captured by means of a non–
standard logic, viz the logic SLu, a particular extension of SL.4 This logic is
3 This standard logic is usually an extension of classical logic (CL). Consequently, the

approach I will present below is not only applicable to the classical connectives and

quantifiers, but also to a whole range of non–classical quantifiers (most, many,...)

and modal operators (necessary, possible,...).
4 A specific SLu will be characterized in section 4.1. Moreover, the non–standard

extension of propositional CL (called CLu) has been characterized in [11].

238 H. Lycke

defined over the language Lu that not only contains the standard logical symbols,
but also contains utterance–symbols. The latter are non–standard logical symbols
that are used to formally represent the utterances made by the speaker. More
specifically, utterances are represented by sentences that only contain utterance–
symbols (these are called utterance–sentences). The other information available
to the hearer in a conversational context (i.e. the shared background knowledge)
is represented by sentences only containing standard symbols (these sentences
are called standard sentences). In view of section 1, this means that the set
Γu only contains utterance–sentences and that the set Γbk only contains stan-
dard sentences! In this way, the logic SLu is able to formally make the distinc-
tion between sentences the hearer heard the speaker utter and sentences the
hearer derived from those sentences. As a consequence, in the adaptive logics
approach presented below, scalar implicatures will be captured as default infer-
ence rules that may only be applied to utterance–sentences. For, this avoids the
implementation–problem in a way that resembles the actual reasoning process
at hand.

A closing remark is necessary though. From an utterance–sentence A, it is al-
ways possible to derive the corresponding standard sentence B by means of the
logic SLu.5 As a consequence, despite the non–standard interpretation of the
utterance–symbols, the hearer is still able to derive all standard deductive con-
sequences from the utterances made by the speaker, as is shown by theorem 1.6

Theorem 1. For Γ the set of standard sentences corresponding to the utterance–
sentences in Γu and for A a standard sentence:

Γu ∪ Γbk SLu A iff Γ ∪ Γbk SL A.

3 The Adaptive Logics Approach

The adaptive logic SIs now captures the reasoning process of the hearer while
trying to uncover the full intended meaning of the utterances made by the
speaker in a conversational context. In line with the argumentation of Levin-
son [10, ch. 1], the adaptive logic SIs characterizes scalar implicatures proof
theoretically as non–monotonic inference rules. Below, only a general (and quite
intuitive) characterization of SIs will be given.

General Characterization of SIs. All standard adaptive logics are charac-
terized completely by the following three elements: a lower limit logic (LLL),
a set of abnormalities Ω (a set of formulas characterized by a logical form F),
and an adaptive strategy.7 In case of the logic SIs, the LLL is the logic SLu

5 For a good understanding, the standard sentence B corresponding to the utterance–

sentence A is obtained by replacing all utterance–symbols in A by the corresponding

standard symbols.
6 For all SL and SLu, the proof of theorem 1 is completely analogous to the proof of

theorem 3 in [11]. Hence, no proof will be given in this paper.
7 For an elaborated characterization of the standard format of adaptive logics, see e.g.

[2],[3].

An Adaptive Logic for the Formal Explication of Scalar Implicatures 239

(see section 2).8 Given a conversational context 〈Γu ∪ Γbk , Γ ls〉, the conse-
quences derivable from the premise set Γu ∪ Γbk by means of the logic SLu are
called the deductive consequences of that premise set, which means that they are
non–defeasible (i.e. they cannot be withdrawn!). In other words, the logic SLu is
the stable, deductive background against which some defeasible inference steps
can be made.

Where A[e] expresses that the linguistic expression e occurs in the formula A,
the set of abnormalities Ω of SIs is defined as follows:

Definition 1. Ω = {A[e]∧B[e′] | 〈..., Δ∪{e′}, ..., Θ∪{e}, ...〉 ∈ Γ ls; A[e] is an
utterance–sentence; B[e′] is obtained from A[e] by (1) replacing all utterance–
symbols by the corresponding standard symbols and (2) replacing the linguistic
expression e by e′}.

The defeasible consequences of the logic SIs (in casu, those representing the
consequences obtained by applying scalar implicatures) are yielded by treating
the abnormalities (the elements of Ω) in a particular way. More specifically,
the logic SIs falsifies as many abnormalities as possible. In general, this comes
down to the following: if a formula A ∨ Dab(Δ) is an SLu–consequence of a
premise set Γ (with Dab(Δ) a finite disjunction of abnormalities), the formula
A is considered an SIs–consequence of Γ on the condition that none of the
abnormalities in Δ can be interpreted as true.

The above implies that a formula A is a possible SIs–consequence of a premise
set Γ in case A is either a deductive or a defeasible consequence of Γ . Formally,
this is expressed as follows:

Definition 2. The formula A is a possible SIs–consequence of the premise set
Γ iff there is a finite Δ ⊂ Ω such that Γ SLu A ∨Dab(Δ).

If Δ = ∅, the formula A is a deductive consequence of Γ , while in case Δ �= ∅,
A is a defeasible consequence of Γ . As deductive consequences of a premise set
are derivable unconditionally, they necessarily enter the SIs–consequence set of a
premise set. On the other hand, defeasible consequences are only derivable condi-
tionally, so that some might have to be withdrawn from the SIs–consequence set
of a premise set. Which of the defeasible consequences have to be withdrawn,
is determined by the Dab–consequences of the premise set, together with the
adaptive strategy. A Dab–consequence of a premise set Γ is a finite disjunction
of abnormalities that is deductively derivable from Γ .

Definition 3. Dab(Δ) is a Dab–consequence of Γ iff Γ SLu Dab(Δ).

As no abnormalities need to be falsified in order to derive a Dab–consequence
from a premise set, a Dab–consequence of a premise set is true uncondition-
ally. Hence, some of the disjuncts of a Dab–consequence have to be true. This
8 Obviously, the logic SIs will differ according to the particular logic SLu that is

chosen as its LLL. Hence, one might say that there are multiple versions of the logic

SIs. One of these will be characterized in section 4.2. In this section though, the

logic SIs is characterized in general.

240 H. Lycke

implies that some (and possibly all) of the defeasible consequences obtained
by presupposing the falsity of these disjuncts have to be withdrawn. In the
end, the adaptive strategy is decisive, for the latter provides the criterion to
determine which defeasible consequences have to be withdrawn in view of the
Dab–consequences of a premise set. The adaptive strategy of the logic SIs is
the normal selections strategy.9 In general, this strategy states that a defeasible
consequence of a premise set Γ obtained by presupposing the falsity of the ab-
normalities A1, ..., An, is withdrawn in case the formula Dab({A1, ..., An}) is a
Dab–consequence of Γ . Hence, in view of definition 2, SIs–derivability is defined
as follows:

Definition 4. Γ SIs A iff there is a finite Δ ⊂ Ω such that Γ SLu A∨Dab(Δ)
and Γ �SLu Dab(Δ).

Example. To illustrate the logic SIs, consider the example below.

Example 3. Consider the conversational context 〈{A[e]} ∪ ∅, {〈e′, e〉, ...}〉. From
the premise set {A[e]}, the formula ¬B[e′]∨(A[e]∧B[e′]) is deductively derivable.
By interpreting the abnormality A[e] ∧ B[e′] as false, the formula ¬B[e′] may
be derived defeasibly. At this point, the conversational context doesn’t provide
any reason to withdraw the formula ¬B[e′] from the adaptive consequence set
of {A[e]}. Nevertheless, if at some later point, the speaker should utter B[e′],
the conversational context is extended to 〈{A[e], B[e′]} ∪ ∅, {〈e′, e〉, ...}〉. Con-
sequently, the abnormality A[e] ∧ B[e′] cannot be considered as false anymore
(because it is now deductively derivable from the premise set {A[e], B[e′]}). This
implies that the formula ¬B[e′] has to be withdrawn from the adaptive conse-
quence set of {A[e], B[e′]}.

4 Applying the Adaptive Framework

Let’s consider a particular application of the general approach set out in the
previous sections. More specifically, consider the cookie conversation below which
contains some applications of scalar implicatures based on the linguistic scale
〈All, Many, Some〉.

Example 4 (The Cookie Conversation). John’s mother is talking to the nanny
about John’s eating behavior.

Mother Did John eat something this afternoon?
Nanny Yes, he ate some cookies.

implicates that John didn’t eat many cookies.
implicates that John didn’t eat all cookies.

9 A lot of other strategies have been characterized in the adaptive logics literature

(see e.g. [2],[3]), but these will not be considered here.

An Adaptive Logic for the Formal Explication of Scalar Implicatures 241

Nanny In fact, he ate many.
forces withdrawal of John didn’t eat many cookies.

Mother He didn’t eat them all, did he?
Nanny No, he didn’t.

In view of the linguistic scale present in the conversational context described
above, viz the scale 〈All, Many, Some〉, the assertion of the nanny that John ate
some cookies, yields two scalar implicatures. For, from the nanny’s first assertion
John’s mother will pragmatically derive that John didn’t eat all cookies, as well
as that he didn’t eat many of them. However, when the nanny afterwards asserts
that John ate a lot of cookies, John’s mother is forced to withdraw one of those
pragmatic conclusions, viz the latter one.

Representation of Linguistic Expressions. To capture the implicatures
involved in the cookie conversation, the language L of classical logic isn’t satis-
factory, for not all linguistic expressions in the linguistic scale 〈All, Many, Some〉
can be expressed by classical means. Hence, the standard logic SL capturing
the deductive background against which the scalar implicatures are performed
(see section 2) cannot be classical logic. Consequently, I will take SL to be a
straightforward extension of classical logic, viz the logic CL∃10.

The logic CL∃10 is based on the language L∃10, obtained by adding the gen-
eralized quantifier ∃10 to the language L of classical logic.10 This newly added
quantifier expresses that there are at least ten objects in the domain for which
something is the case. Consequently, the quantifier ∃10 is semantically charac-
terized as follows:11

vM ((∃10α)Aα) = 1 iff there are β1, ..., β10 ∈ C ∪ O such that v(β1) �= v(β2),
v(β1) �= v(β3),..., v(β9) �= v(β10), and vM (Aβ1) = ... =
vM (Aβ10) = 1.

Proof theoretically, the characterization of ∃10 is obtained by means of the fol-
lowing axiom:

A∃10 (∃10α)Aα ≡ (∃α1)...(∃α10)(Aα1 ∧ ... ∧Aα10 ∧ ¬(α1 = α2) ∧ ¬(α1 = α3) ∧
... ∧ ¬(α9 = α10))

Soundness and completeness proofs for CL∃10 are obtained by standard means.
As a consequence, these are left to the reader.

Besides the quantifier ∃10, the language L∃10 also contains a number of de-
fined quantifiers, viz the generalized quantifiers All, Many and Some. These are
relational quantifiers, which means that they express a relation between two for-
mulas A and B. For example, the quantifier All expresses that all objects that
are A are B as well (the other quantifiers are explicated analogously). Formally,
the quantifiers All, Many and Some are defined as follows:12

10 For more on generalized quantifiers, see e.g. [5],[15].
11 Any member of the domain is taken to be named by a member of C ∪O, with C the

set of individual constants and O a set of pseudo–constants (see also section 4.1).
12 By using brackets and commas, I follow the notational conventions of [5].

242 H. Lycke

Definition 5. For α an individual variable:

(Allα)(Aα, Bα) =df (∀α)(Aα ⊃ Bα)
(Manyα)(Aα, Bα) =df (∃10α)(Aα ∧Bα)
(Someα)(Aα, Bα) =df (∃α)(Aα ∧Bα)

Some remarks concerning these defined quantifiers are necessary. First of all, the
quantifier Many is generally considered to be context–dependent (see e.g. [15]).
Hence, in view of the conversational context provided by the cookie conversa-
tion, I have arbitrarily taken Many to be at least ten. Secondly, the introduction
of the defined quantifiers is necessary to capture the real meaning of the scalar
implicatures occurring in the cookie example. More specifically, to capture the
scalar implicature from some to not all. For, remember that a scalar implicature
is obtained by negating a sentence in which a low–ranked linguistic expression
(in casu, some) is replaced by a more high–ranked one (in casu, all). In spite
of appearances, one cannot capture this formally by deriving the negation of a
formula in which the logical expression ∃ is replaced by the logical expression
∀. For example, consider the cookie conversation: (∃α)(Cα ∧Ejα) expresses that
John ate some cookies (literally, the formula states that there are objects that
are cookies and are eaten by John). Moreover, suppose that one would (prag-
matically) derive the formula ¬(∀α)(Cα∧Ejα) from the formula (∃α)(Cα∧Ejα).
Obviously, that doesn’t capture the intended meaning of the scalar implicature
at all, for the derived formula doesn’t state that John didn’t eat all cookies, but
states that not everything is a cookie and is eaten by John. The problem resides
in the fact that this formula does not only refer to cookies, but might also refer
to tables, chairs,... Hence, John may well have eaten all cookies, as long as there
is something that is not a cookie, the sentence still applies (which is obviously
not what was intended). The quantifiers All, Many and Some are introduced to
avoid this kind of mix up between linguistic and logical expressions.

Overview. In the remaining of this paper, a particular version of the adaptive
logic SIs will be characterized, viz the one that is able to capture the scalar
implicatures occurring in the cookie conversation. This particular version of the
logic SIs will be called CLs

∃10. Well now, given the adaptive logics approach
outlined in section 3, the lower limit logic of the logic CLs

∃10 is a particular
extension of the logic standardly taken to capture the deductive background
against which the scalar implicatures are performed. For the logic CLs

∃10, this
is the logic CLu

∃10, an extension of the logic CL∃10 discussed above. Below, the
logic CLu

∃10 will be characterized first (in section 4.1). Next, a characterization
of the adaptive logic CLs

∃10 will be provided (in section 4.2). At the end, the
cookie conversation will be reconsidered (in section 4.3).

4.1 The Lower Limit Logic CLu
∃10

The logic CLu
∃10 is based on the language Lu

∃10. The latter is obtained by adding
to the language L∃10 of CL∃10 an utterance–symbol ṡ for each standard logical

An Adaptive Logic for the Formal Explication of Scalar Implicatures 243

symbol s. As a consequence, the utterance–symbols of the language Lu
∃10 are the

following:

¬̇, ∧̇, ∨̇, ⊃̇, ≡̇, ∃̇, ∃̇10, ∀̇, =̇, Ȧll, Ṁany, Ṡome

As their standard counterparts, the utterance–symbols Ȧll, Ṁany and Ṡome are
defined connectives.

Definition 6. For α an individual variable:

(Ȧllα)(Aα, Bα) =df (∀̇α)(Aα⊃̇Bα)

(Ṁanyα)(Aα, Bα) =df (∃̇10α)(Aα∧̇Bα)

(Ṡomeα)(Aα, Bα) =df (∃̇α)(Aα∧̇Bα)

In the remaining of this paper, also the connectives ⊃,≡, ⊃̇ and ≡̇ will be treated
as defined connectives (defined in the standard way). Consequently, only the
most essential logical symbols are taken to be primitive.

Finally, let S,Pr, C,V , and Wu
∃10 be respectively the set of sentential letters,

the set of predicative letters of rank r, the set of individual constants, the set of
individual variables, and the set of well–formed formulas of the language Lu

∃10.
All are defined in the usual way.

Semantics. The semantics of the logic CLu
∃10 isn’t defined for the language

Lu
∃10, but for the language Lu+

∃10. The latter is obtained by adding the set of
pseudo–constants O to the language Lu

∃10. In the semantics of CLu
∃10, the set

C ∪O plays the role usually played by C, with this distinction that it is required
that any element of the domain is named by at least one element of C ∪ O. As
a consequence, the introduction of O greatly simplifies the semantic characteri-
zation of the quantifiers.13

Let Fu+
∃10 be the set of all formulas of Lu+

∃10 (both open and closed ones), and
letWu+

∃10 be the set of all well–formed (closed) formulas of Lu+
∃10. Both are defined

in the standard way. Moreover, let W ṡ+
∃10 be the set of well–formed formulas of

Lu+
∃10 of which the main logical symbols are utterance–symbols (see definition 7),

and let W ¬̇+
∃10 be the set of well–formed formulas ¬̇A of Lu+

∃10 such that the main
logical symbol of the formula A is a standard symbol (see definition 8).

Definition 7. W ṡ+
∃10 =

⋃
({¬̇A | A ∈ S},
{¬̇πβ1...βr | π ∈ Pr and β1, ..., βr ∈ C ∪ O},
{α=̇β | α, β ∈ C ∪O},
{¬̇(α=̇β) | α, β ∈ C ∪O},
{¬̇¬̇A | A ∈ Wu+

∃10},
{A∧̇B | A,B ∈ Wu+

∃10},
{¬̇(A∧̇B) | A,B ∈ Wu+

∃10},
{A∨̇B | A,B ∈ Wu+

∃10},
13 Obviously, the set O should have at least the cardinality of the largest model con-

sidered. If there is no such model, a suitable O has to be selected for each model.

244 H. Lycke

{¬̇(A∨̇B) | A,B ∈ Wu+
∃10},

{(∃̇α)Aα | Aα ∈ Fu+
∃10},

{¬̇(∃̇α)Aα | Aα ∈ Fu+
∃10},

{(∃̇10α)Aα | Aα ∈ Fu+
∃10},

{¬̇(∃̇10α)Aα | Aα ∈ Fu+
∃10},

{(∀̇α)Aα | Aα ∈ Fu+
∃10},

{¬̇(∀̇α)Aα | Aα ∈ Fu+
∃10})

Definition 8. W ¬̇+
∃10 =

⋃
({¬̇(α = β) | α, β ∈ C ∪ O},
{¬̇¬A | A ∈ Wu+

∃10},
{¬̇(A ∧B) | A,B ∈ Wu+

∃10},
{¬̇(A ∨B) | A,B ∈ Wu+

∃10},
{¬̇(∃α)Aα | Aα ∈ Fu+

∃10},
{¬̇(∃10α)Aα | Aα ∈ Fu+

∃10},
{¬̇(∀α)Aα | Aα ∈ Fu+

∃10})

Characterizing Models. A CLu
∃10–model M is a couple 〈D, v〉 with D a non-

empty domain and v an assignment function. The latter is defined as follows:

C1.1 v : S ∪W ṡ+
∃10 ∪W

¬̇+
∃10 → {0, 1}

C1.2 v : C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C1.3 v : Pr → ρ(D) (the power set of the r–th Cartesian product of D)

The assignment function v of the model M is extended to a valuation function
vM :Wu+

∃10 → {0, 1} by the following semantic postulates:

C2.1 For A ∈ S ∪W ¬̇+
∃10, vM (A)= 1 iff v(A) = 1.

C2.2 For α, β ∈ C ∪ O, vM (α = β) = 1 iff v(α) = v(β).
C2.3 For π ∈ Pr and β1, ..., βr ∈ C∪O, vM (πβ1...βr) = 1 iff 〈v(β1), ..., v(βr)〉 ∈

v(π).
C2.4 vM (¬A) = 1 iff vM (A) = 0.
C2.5 vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1.
C2.6 vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1.
C2.7 vM ((∃α)Aα) = 1 iff vM (Aβ) = 1 for at least one β ∈ C ∪ O.
C2.8 vM ((∃10α)Aα) = 1 iff there are β1, ..., β10 ∈ C∪O such that v(β1) �= v(β2),

v(β1) �= v(β3),..., v(β9) �= v(β10), and vM (Aβ1) = ... = vM (Aβ10) = 1.
C2.9 vM ((∀α)Aα) = 1 iff vM (Aβ) = 1 for all β ∈ C ∪ O.
C2.10 For A ∈ S, vM (¬̇A)= 1 iff vM (A) = 0, and v(¬̇A) = 1.
C2.11 For α, β ∈ C ∪ O, vM (α=̇β) = 1 iff v(α) = v(β), and v(α=̇β) = 1.
C2.12 For α, β ∈ C ∪O, vM (¬̇(α=̇β)) = 1 iff v(α) �= v(β), and v(¬̇(α=̇β)) = 1.
C2.13 For π ∈ Pr and β1, ..., βr ∈ C ∪O, vM (¬̇πβ1...βr) = 1 iff vM (πβ1...βr) =

0, and v(¬̇πβ1...βr) = 1.
C2.14 vM (¬̇¬̇A)= 1 iff vM (A) = 1, and v(¬̇¬̇A) = 1.
C2.15 vM (A∧̇B) = 1 iff vM (A) = 1 and vM (B) = 1, and v(A∧̇B) = 1.
C2.16 vM (¬̇(A∧̇B)) = 1 iff vM (¬̇A) = 1 or vM (¬̇B) = 1, and v(¬̇(A∧̇B)) = 1.
C2.17 vM (A∨̇B) = 1 iff vM (A) = 1 or vM (B) = 1, and v(A∨̇B) = 1.

An Adaptive Logic for the Formal Explication of Scalar Implicatures 245

C2.18 vM (¬̇(A∨̇B)) = 1 iff vM (¬̇A) = 1 and vM (¬̇B) = 1, and v(¬̇(A∨̇B)) =
1.

C2.19 vM ((∃̇α)Aα) = 1 iff vM (Aβ) = 1 for at least one β ∈ C∪O, and v((∃̇α)Aα)
= 1.

C2.20 vM (¬̇(∃̇α)Aα) = 1 iff vM (¬̇Aβ) = 1 for all β ∈ C ∪ O, and v(¬̇(∃̇α)Aα)
= 1.

C2.21 vM ((∃̇10α)Aα) = 1 iff there are β1, ..., β10 ∈ C∪O such that v(β1) �= v(β2),
v(β1) �= v(β3),..., v(β9) �= v(β10), vM (Aβ1) = ... = vM (Aβ10) = 1, and
v((∃̇10α)Aα) = 1.

C2.22 vM (¬̇(∃̇10α)Aα) = 1 iff for all β1, ..., β10 ∈ C ∪ O: if vM (Aβ1) = ... =
vM (Aβ10) = 1 then v(β1) = v(β2) or v(β1) = v(β3) or ... or v(β9) =
v(β10), and v(¬̇(∃̇10α)Aα) = 1.

C2.23 vM ((∀̇α)Aα) = 1 iff vM (Aβ) = 1 for all β ∈ C ∪ O, and v((∀̇α)Aα) = 1.
C2.24 vM (¬̇(∀̇α)Aα) = 1 iff vM (¬̇Aβ) = 1 for at least one β ∈ C ∪ O, and

v(¬̇(∀̇α)Aα) = 1.

Semantic Consequence. Remember that pseudo–constants were introduced
merely as a semantic aid, to simplify the characterization of the quantifiers.
However, pseudo–constants are not allowed in the premises nor the conclusion
of arguments. Hence, semantic consequence is defined over formulas that do not
contain any pseudo–constants. In other words, semantic consequence is defined
over well–formed formulas of the language Lu

∃10.
A well–formed formula A of the language Lu

∃10 is verified by a model M iff
vM (A) = 1. Moreover, a model M is a model of a premise set Γ iff M verifies
all elements of Γ . Finally, semantic consequence is defined as follows:

Definition 9 (Semantic Consequence). Γ �CLu
∃10

A iff A is verified by all
CLu

∃10–models of the premise set Γ .

Proof Theory. Proof theoretically, the logic CLu
∃10 is characterized completely

by adding the axioms in table 1 to the axiom system of CL∃10 (as described
above). Proofs are defined in the standard way, as sequences of well–formed
formulas each of which is either an axiom, a premise or a formula derived from
earlier ones by application of a rule of inference. Consequently, derivability is
defined as follows:

Definition 10 (Derivability). Γ CLu
∃10

A iff there is a proof of A from
B1, ..., Bn ∈ Γ .

Soundness and Completeness. Soundness and completeness for the logic
CLu

∃10 is easily obtained by extending the proofs of theorems 1 and 2 in [11].
As the extensions are completely straightforward, this is left to the reader.

Theorem 2. Γ CLu
∃10

A iff Γ �CLu
∃10

A.

246 H. Lycke

Table 1. Additional Axioms of CLu
∃10

A¬̇ ¬̇A ⊃ ¬A A¬̇¬̇ ¬̇¬̇A ⊃ A
A∧̇ (A∧̇B) ⊃ (A ∧ B) A¬̇∧̇ ¬̇(A∧̇B) ⊃ (¬̇A ∨ ¬̇B)

A∨̇ (A∨̇B) ⊃ (A ∨ B) A¬̇∨̇ ¬̇(A∨̇B) ⊃ (¬̇A ∧ ¬̇B)

A=̇ (α=̇β) ⊃ (α = β) A¬̇=̇ ¬̇(α=̇β) ⊃ ¬(α = β)

A∃̇ (∃̇α)Aα) ⊃ (∃α)Aα A¬̇∃̇ ¬̇(∃̇α)Aα ⊃ (∀α)¬̇Aα

A∃̇10 (∃̇10
α)Aα) ⊃ (∃10

α)Aα A¬̇∃̇10 ¬̇(∃̇10
α)Aα ⊃ ¬(∃10

α)Aα

A∀̇ (∀̇α)Aα ⊃ (∀α)Aα A¬̇∀̇ ¬̇(∀̇α)Aα ⊃ (∃α)¬̇Aα

4.2 The Adaptive Logic CLs
∃10

The lower limit logic (LLL) of the logic CLs
∃10 is the logic CLu

∃10 described in
section 4.1, and the adaptive strategy of CLs

∃10 is the normal selections strategy.
Hence, before I can move on to the semantics and the proof theory, the set of
abnormalities Ω still needs to be defined (in section 3 only a general characteri-
zation of Ω has been given — see definition 1).

Definition 11. Ω = Ω1 ∪Ω2 ∪Ω3, with

Ω1 = {(Ṡomeα)(Aα, Bα) ∧ (Manyα)(A′
α, B′

α) | A,B only contain utterance–
symbols; A′, B′ are obtained from respectively A and B by replacing all
utterance–symbols by the corresponding standard symbols}

Ω2 = {(Ṡomeα)(Aα, Bα) ∧ (Allα)(A′
α, B′

α) | A,B only contain utterance–
symbols; A′, B′ are obtained from respectively A and B by replacing all
utterance–symbols by the corresponding standard symbols}

Ω3 = {(Ṁanyα)(Aα, Bα) ∧ (Allα)(A′
α, B′

α) | A,B only contain utterance–
symbols; A′, B′ are obtained from respectively A and B by replacing all
utterance–symbols by the corresponding standard symbols}

By defining Ω in this way, the logic CLs
∃10 is only able to capture scalar implica-

tures based on the linguistic scale 〈All, Many, Some〉. Obviously, Ω can easily be
extended in order to capture more scalar implicatures. To keep things as simple
as possible, I will not do so here.

Semantics. The CLs
∃10–semantics is based on the LLL–models of a premise set

Γ . More specifically, to generate more consequences than the LLL, the CLs
∃10–

consequences are defined by reference to one or multiple selected sets of LLL–
models of Γ , i.e. sets of preferred LLL–models of Γ . Hence, the CLs

∃10–semantics
is a so–called preferential semantics. As the LLL of CLs

∃10 is the logic CLu
∃10,

semantic consequence for the logic CLs
∃10 is defined as follows:

Definition 12 (Semantic Consequence). Γ �CLs
∃10

A iff A is verified by all
elements of some selected sets of CLu

∃10–models of Γ .

Defining Selected Sets. Whether a particular CLu
∃10–model M of Γ will make

it to a selected set Σ, depends on the abnormal part of M and on the adaptive
strategy of the logic CLs

∃10. The abnormal part of a model M is the set of
abnormalities M verifies.

An Adaptive Logic for the Formal Explication of Scalar Implicatures 247

Definition 13. Where M is a CLu
∃10–model, the abnormal part of M is the set

Ab(M) = {A ∈ Ω | vM (A) = 1}.
The adaptive strategy makes the actual selection among the CLu

∃10–models.
This is done by comparing their abnormal parts. As the adaptive strategy of
the logic CLs

∃10 is the normal selections strategy, a selected set Σ is defined
by means of a two–step procedure. First, the minimally abnormal models of a
premise set Γ are defined.

Definition 14. A CLu
∃10–model M of Γ is minimally abnormal iff there is no

CLu
∃10–model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

Secondly, all minimally abnormal models that verify the same abnormalities, are
grouped together into distinct sets. These sets are the selected sets of CLu

∃10–
models of a premise set Γ .

Definition 15. Φ(Γ) = {Ab(M) |M is a minimally abnormal model of Γ}.

Definition 16. A set Σ of CLu
∃10–models of Γ is a selected set iff for some

φ ∈ Φ(Γ), Σ = {M | Ab(M) = φ}.

Proof Theory. As the logic CLs
∃10 is a standard adaptive logic, its proof theory

has some characteristic features shared by all adaptive logics (see also [2],[3]).
First of all, a CLs

∃10–proof is a succession of stages, each consisting of a sequence
of lines. Adding a line to a proof means to move on to the next stage of the proof.
Next, the lines of a CLs

∃10–proof consist of four elements (instead of the usual
three): a line number, a formula, a justification, and an adaptive condition. The
latter is a finite subset of Ω (the set of abnormalities). As long as all elements
of the adaptive condition of a line i can be considered as false, the formula on
line i is considered as derivable from the premise set — remark that this is in
accordance with the intuition set out in section 3. In order to indicate that not all
elements of the adaptive condition of line i can be considered as false anymore,
line i is marked (formally, this is done by placing the symbol � next to the
adaptive condition). Obviously, when a line is marked, the formula on that line
is not considered as derivable anymore. Finally, markings are dynamic: at some
stage of the proof, a line might be unmarked, while at a later stage, it might
become marked.14 Obviously, this proof theoretic dynamics corresponds to the
dynamics involved in the use of scalar implicatures (as described in section 2).

Characterizing Proofs. Now, consider the CLs
∃10–proof theory in particular. It

consists of both deduction rules and a marking definition. The deduction rules
determine how new lines may be added to a proof, while the marking definition
determines at every stage of the proof which lines have to be marked. The
deduction rules are listed in shorthand notation, with

A Δ
14 For some adaptive logics, lines that are marked might become unmarked as well.

Not for the logic CLs
∃10 though.

248 H. Lycke

expressing that A occurs in the proof on a line with condition Δ. Consider the
deduction rules below:

The Premise Rule (PREM)
If A ∈ Γ :

A ∅

The Unconditional Rule (RU)
If A1, . . . , An CLu

∃10
B: A1 Δ1

...
...

An Δn

B Δ1 ∪ . . . ∪Δn

The Conditional Rule (RC)
If A1, . . . , An CLu

∃10
B ∨Dab(Θ): A1 Δ1

...
...

An Δn

B Δ1 ∪ . . . ∪Δn ∪Θ

It is easily verified that the deduction rules are fully determined by the logic
CLu

∃10 (the LLL of the logic CLs
∃10) and the set of abnormalities Ω. The mark-

ing definition on the other hand, strongly depends on the adaptive strategy.15

To determine whether or not a line has to be marked at a certain stage of a
proof, the adaptive strategy of the logic CLs

∃10, i.e. the normal selections strat-
egy, refers to the Dab–consequences of the premise set that have been derived
at that stage of the proof.

Definition 17. Dab(Δ) is a Dab–consequence of a premise set Γ at stage s of
a proof iff Dab(Δ) is derived at stage s on a line with condition ∅.

More specifically, the normal selections strategy lays down that a line i with
condition Δ has to be marked at stage s in case Dab(Δ) is a Dab–consequence
of the premise set at stage s.

Definition 18 (Marking for Normal Selections). Line i is marked at stage
s of the proof iff, where Δ is its condition, Dab(Δ) is a Dab–consequence of Γ
at stage s.

Defining Derivability. A formula A is derivable from a premise set Γ iff A has
been derived as the second element of an unmarked line in a proof from Γ .
However, defining derivability this way is rather problematic. For, markings may
change at every stage, so that for every new stage, it has to be reconsidered
15 In general, the marking definition constitutes the only difference between the proof

theories of adaptive logics that have identical lower limit logics and sets of abnor-

malities (see e.g. [2]).

An Adaptive Logic for the Formal Explication of Scalar Implicatures 249

whether or not a formula is derivable from the premise set. Nonetheless, also a
stable notion of derivability can be defined. It is called final derivability, which
refers to the fact that for some formulas, derivability can only be decided at the
final stage of a proof.

Definition 19. A is finally derived from Γ on a line i of a proof at stage s iff
(i) A is the second element of line i, (ii) line i is not marked at stage s, and (iii)
every extension of the proof in which line i is marked may be further extended
in such a way that line i is unmarked.

Because of its stability, the notion of final derivability is used to define the
CLs

∃10–consequence relation.

Definition 20. Γ CLs
∃10

A iff A is finally derived on a line of a proof from Γ .

Soundness and Completeness. As CLs
∃10 is a standard adaptive logic, sound-

ness and completeness follow immediately (see corollary 2 in [3]). Hence, the
soundness and completeness proofs for CLs

∃10 needn’t be considered here.

Theorem 3. Γ CLs
∃10

A iff Γ �CLs
∃10

A.

4.3 The Cookie Conversation

Let’s return to the cookie conversation one more time. Given the conversational
context at hand, the information available to John’s mother is represented as
follows:

(CC) 〈 {(Ṡomeα)(Cα, Ejα), (Ṁanyα)(Cα, Ejα), ¬̇(Ȧllα)(Cα, Ejα)} ∪ ∅,
{〈All, Many, Some〉} 〉

In CC, the set Γu contains all sentences John’s mother heard the nanny utter.
Moreover, these utterances are placed in chronological order (actually, to repre-
sent the application of scalar implicatures in a realistic way, they should and will
also enter the proof in this order). For reasons of simplicity, the set Γbk is left
empty. Nonetheless, this isn’t necessarily the case, for there may be a lot of back-
ground knowledge shared by John’s mother and nanny. For example, they might
share knowledge about John’s eating habits, his likes and dislikes, etc. Finally,
the set Γ ls only contains one element, viz the linguistic scale 〈All, Many, Some〉,
for it is the only linguistic scale present in this conversational context.

The Cookie Conversation Formally Remastered. The CLs
∃10–proof below cap-

tures the cookie conversation from the viewpoint of John’s mother. Hence, the
proof starts with the utterance of the nanny that John ate some cookies (see line
1 below), followed by the defeasible consequences drawn from this utterance by
means of the scalar implicatures based on the scale 〈All, Many, Some〉 (see lines
2 and 3 below).

250 H. Lycke

1 (Ṡomeα)(Cα, Ejα) –;PREM ∅
2 ¬(Manyα)(Cα, Ejα) 1;RC {(Ṡomeα)(Cα, Ejα) ∧ (Manyα)(Cα, Ejα)}
3 ¬(Allα)(Cα, Ejα) 1;RC {(Ṡomeα)(Cα, Ejα) ∧ (Allα)(Cα, Ejα)}

At stage 3 of the proof, no Dab–consequences of the premise set have been
derived yet. Hence, no markings occur and all formulas derived on a line of
the proof are considered as CLs

∃10–derivable. However, the proof continues with
the nanny’s utterance that John actually ate a lot of cookies (see line 4). This
obviously forces the withdrawal of one of the pragmatic conclusions drawn by
John’s mother (line 2 gets marked).

1 (Ṡomeα)(Cα, Ejα) –;PREM ∅
2 ¬(Manyα)(Cα, Ejα) 1;RC {(Ṡomeα)(Cα, Ejα) ∧ (Manyα)(Cα, Ejα)} �
3 ¬(Allα)(Cα, Ejα) 1;RC {(Ṡomeα)(Cα, Ejα) ∧ (Allα)(Cα, Ejα)}
4 (Ṁanyα)(Cα, Ejα) –;PREM ∅
5 (Ṡomeα)(Cα, Ejα) ∧ 1,4;RU ∅

(Manyα)(Cα, Ejα)

At stage 5 of the proof, a Dab–consequence has been derived on line 5. As a
consequence, line 2 is marked, meaning that the formula on that line is not
considered as CLs

∃10–derivable anymore. On the other hand, line 3 is unmarked
at stage 5 of the proof and it is easily verified that this will remain so, no matter
how the proof is extended (no Dab–consequence yielding the marking of line 3 is
derivable from the premise set). Moreover, this is also confirmed by the nanny’s
final utterance, viz that John didn’t eat all cookies.

...
6 ¬̇(Ȧllα)(Cα, Ejα) –;PREM ∅

5 Conclusion

In this paper, I have provided a formal explication of how hearers apply scalar
implicatures to get at the full intended meaning of uncooperative utterances
(utterances that are not completely in accordance with the Gricean maxims). I
have shown how this can be done in general, by relying on the Adaptive Logics
Programme. More specifically, I have given an outline of how an adaptive logic
SIs for scalar implicatures should look like in general. Moreover, I have char-
acterized a particular version of SIs, viz the logic CLs

∃10. The latter captures
applications of scalar implicatures based on the linguistic scale 〈All, Many, Some〉.
The logic CLs

∃10 does so by treating the scalar implicatures as default rules of
inference. As this is completely in accordance with the characterization of scalar
implicatures given by Levinson in [10], the approach characterized in this paper
adequately explicates the use made of scalar implicatures in conversation.

Further Research. This paper dealt with scalar implicatures, which only consti-
tute a (relatively small) fragment of all possible implicatures. It is still an open

An Adaptive Logic for the Formal Explication of Scalar Implicatures 251

question whether those other implicatures can also be captured by means of adap-
tive logics. Moreover, all (scalar) implicatures in this paper were treated as having
an equal priority. This is not always the case though. For, in certain conversational
contexts, some (scalar) implicatures are given a higher priority than others. De-
spite the fact that the logic SIs cannot cope with this phenomenon, it should be
possible to construct prioritized adaptive logics that can.

References

1. Bach, K.: The Top Ten Misconceptions about Implicature. In: Birner, B., Ward, G.

(eds.) Drawing the Boundaries of Meaning: Neo-Gricean Studies in Pragmatics and

Semantics in Honor of Laurence R. Horn, pp. 21–30. John Benjamins, Amsterdam

(2006)

2. Batens, D.: A Universal Logic Approach to Adaptive Logics. Logica Universalis 1,

221–242 (2007)

3. Batens, D., Meheus, J., Provijn, D.: An Adaptive Characterization of Signed Sys-

tems for Paraconsistent Reasoning (to appear)

4. Gazdar, G.: Pragmatics: Implicature, Presupposition and Logical Form. Academic

Press, New York (1979)

5. Glanzberg, M.: Quantifiers. In: Lepore, E., Smith, B. (eds.) The Oxford Handbook

of Philosophy of Language, pp. 794–821. Oxford University Press, Oxford (2006)

6. Grice, H.P.: Studies in the Way of Words. Harvard University Press, Cambridge

(1989)

7. Horn, L.R.: Implicature. In: Horn, L.R., Ward, G. (eds.) Handbook of Pragmatics,

pp. 3–28. Blackwell Publishing, Oxford (2004)

8. Horsten, L.: On the Quantitative Scalar Or–Implicature. Synthese 146, 111–127

(2005)

9. Jaszczolt, K.M.: Defaults in Semantics and Pragmatics. In: Zalta, E.N. (ed.)

The Stanford Encyclopedia of Philosophy (2008), http://plato.stanford.edu/

archives/fall2008/entries/defaults-semantics-pragmatics/

10. Levinson, S.C.: Presumptive Meanings. In: The Theory of Generalized Conversa-

tional Implicature. MIT Press, Cambridge (2000)

11. Lycke, H.: A Disjunction Is Exclusive Until Proven Otherwise. Introducing the

Adaptive Logics Approach to Gricean Pragmatics (submitted)

12. Verhoeven, L.: De Disjunctie. Adaptief–Logische Formalizering van een Aantal

Griceaanse Implicaturen (in Dutch). Unpublished PhD–Dissertation, Ghent Uni-

versity (2005)

13. Verhoeven, L., Horsten, L.: On the Exclusivity Implicature ‘or’ on the Meaning of

Eating Strawberries. Studia Logica 81, 19–42 (2005)

14. Wainer, J.: Modeling Generalized Implicatures Using Non–Monotonic Logics. Jour-

nal of Logic, Language, and Information 16, 195–216 (2007)

15. Westerst̊ahl, D.: Generalized Quantifiers. In: Zalta, E.N. (ed.) The Stanford Ency-

clopedia of Philosophy (2008), http://plato.stanford.edu/archives/win2008/

entries/generalized-quantifiers/

http://plato.stanford.edu/archives/fall2008/entries/defaults-semantics-pragmatics/
http://plato.stanford.edu/archives/fall2008/entries/defaults-semantics-pragmatics/
http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/
http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/

Two Kinds of Procedural Semantics
for Privative Modification

Giuseppe Primiero1,� and Bjørn Jespersen2,��

1 Centre for Logic and Philosophy of Science,

Ghent University, Belgium

giuseppe.primiero@ugent.be
2 Department of Computer Science, Technical University of Ostrava;

Institute of Philosophy, Department of Logic,

Czech Academy of Sciences, Prague, Czech Republic

jespersen@flu.cas.cz

Abstract. In this paper we present two kinds of procedural semantics

for privative modification. We do this for three reasons. The first reason

is to launch a tough test case to gauge the degree of substantial agree-

ment between a constructivist and a realist interpretation of procedural

semantics; the second is to extend Martin-Löf’s Constructive Type The-

ory to privative modification, which is characteristic of natural language;

the third reason is to sketch a positive characterization of privation.

1 Introduction

The verbal agreements between constructivist/idealist and platonist/realist se-
mantics are so numerous and so striking that it is worth exploring the extent
to which there is also substantial agreement. This paper explores some of the
common ground shared by the Constructive Type Theory of Per Martin-Löf1

and the realist Transparent Intensional Logic of Pavel Tichý.2 We focus here on
the following common features:

– a notion of construction;
– a functional language;
– a typed universe;
– an interpreted syntax.

These four features are sufficient to underpin a neutral notion of procedural
semantics. Phrased in neutral terms, linguistic meaning is construed as an ab-
stract procedure, of one or more steps, delineating what operations to apply to
what operands in order to obtain a particular product as its outcome. Since
� Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Affiliated Re-

searcher IEG, Oxford University and GPI, Hertfordshire University.
�� Project GACR 401/10/0792.
1 See [11] and [15].
2 See [3], [23], [24].

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 252–271, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Two Kinds of Procedural Semantics for Privative Modification 253

the interpreted syntax is susceptible to type-theoretic restrictions, the range of
admissible combinations of operations and operands is accordingly constrained.
These procedures are structured constructions, each of whose constituents is an
abstract object of a particular type.

In this paper we apply the procedural semantics sketched above to the pro-
blem of privative modification. We do this for three reasons. The first reason is
to launch a tough test case to gauge the degree of substantial agreement; the
second is to extend Martin-Löf’s Type Theory to privative modification, which
is characteristic of natural language; the third reason is to sketch a positive
characterization of privation.

Property modification in the Montagovian tradition is a function from pro-
perties to properties.3 If M is a modifier and F a property, then (MF) is the
property formed by applying the function M to the argument F . Thus, (MF)a is
the predication of the property (MF) of the individual a. The sentential schema
whose semantics we wish to study is

“(MF)a”.

The interpretation of this schema in a procedural semantics depends on the
appropriate explanation of what M , F and a are, and of what logical procedures
are involved in modification and predication.

A full semantic theory of modification must be able to account for the following
variants:

– Subsective: (M ′F)a ∴ Fa;
– Intersective: (M ′′F)a ∴ M∗a ∧ Fa;
– Modal/intensional : (M ′′′F)a ∴ Fa ∨ ¬Fa;
– Privative: (M ′′′′F)a ∴ ¬Fa.

The first variant is easily treated in a type-theoretical procedural semantics
by standard subset formation, extending the language with quantifiers and λ-
terms, and forming ordered pairs 〈M,F 〉 where F is the functional argument
of the function M whose functional value is the modified property (MF). The
path from function and argument to value consists in deploying the operation of
functional application. The second variant is less straightforward, as it requires
a rule for replacing the modifier M by the property M∗.4 Our conjecture, in the
absence of obvious counterexamples, is that whenever “Fa” is an expression in a
mathematical or logical theory, (MF)a is exhausted by subsective modification,
whereas for F an empirical property and a a person or an artifact, privative
modification is unavoidable. In general, any semantic theory of mathematical and
logical language must come with an account of modification, since the premise
(M ′F)a contains the modifier M ′.

Two examples to fix ideas:

“a is a prime number”
3 See [13].
4 See [1], §4.4, [6]. The third variant will not be considered here. See [7] for discussion.

254 G. Primiero and B. Jespersen

where prime is a modifier of the property number ; and

“b is a large elephant”

where large is a modifier of the property elephant. In the first example, we con-
sider the least controversial kind of subsective modification, which goes along
procedurally with subset formation: given a set of (natural) numbers, the modi-
fication of the property of being a number generates the subset of those numbers
that have the additional property of being prime numbers.

In empirical languages, we not only have examples like “b is a large elephant”,
but also cases of privative modification, of which the following would be typical
examples:

“b is a forged banknote”;
“b is sham jewellery”;
“b is a false friend”.

According to its definition, privation merely indicates what something is not,
namely not an F . We do not maintain that privation is the converse operation
of subsection, and it would be too strong for the constructivist to hold that
privation produces the complement of the property F (because there are no
such types as not being an F or being a non-F). Instead our thesis is that for
the constructivist privation is an extreme case of subsection. Given a set of F ’s,
privation will generate the null set of F ’s; yet, while forming the null set of a par-
ticular property exhausts the logic of privation, its semantics is richer than that.
Though both forged banknotes and railroads, say, are not banknotes, there is an
intuitive sense in which forged banknotes are somehow ‘closer to’ banknotes than
are railroads (or tea mugs or tax forms, etc.) The challenge is to make explicit
what this (incomplete) approximation comes down to, which is to say something
positive about what properties do define forged banknotes (etc.). Semantically,
the quest is for a definition of what it is that banknotes and forged banknotes
have in common. The philosophical idea which in our view ought to inform any
definition of (forged F), say, is that being a forged F is as good a property as
any. Hence, a procedural semantics needs to show a way of generating such a
property: a constructivist semantics needs to have a way of verifying whether a
particular individual has the property of being a forged banknote, and a platon-
ist theory must be able to define the proper subset of the complement of any set
of banknotes, such that the elements of that subset are forged banknotes. To do
so, we characterize a privatively modified property (MF) as having some, but
not all, of the properties defining F . So there is going to be a range of forged
F ’s, such that those sharing more of those properties are closer approximations
to F . This idea induces a sequence of properties G1, . . . , Gn jointly defining
F ; the more Gi are satisfied, the closer the approximation to F . Those forged
banknotes that satisfy most Gi are virtually indistinguishable from banknotes,
whereas those satisfying few are shoddy imitations (paper instead of polymer, or
vice versa, wrong format, wrong colors, etc.). Still, a very poorly forged banknote

Two Kinds of Procedural Semantics for Privative Modification 255

will nonetheless share more defining properties with a banknote than will a
railroad or a tea mug.5

What is wanted, overall, is a philosophically motivated and technically work-
able account of privative modification interpreted within a basic neutral for-
mulation of procedural semantics. In particular, it must be shown what the
type-theoretically constrained procedure for predicating a modified property of
an individual looks like. In order to obtain such a technical result in the pro-
cedural semantics germane both to the constructivist and the realist approach
to type theory, we have recourse to a procedure for subset formation. We then
generate an appropriate procedure for privative modification by, accordingly,
characterizing one form of subsective modification. However, Martin-Löf’s and
Tichý’s respective theories will, in the final analysis, provide partially diverging
accounts of such a procedure.

To sum up, this paper pursues two strands, one methodological, the other
problem-oriented. The semantic problem is to provide a procedural account of
privative modification in terms of subset formation. The methodological one
concerns two different forms that a procedural semantics may take, namely the
constructivism of Martin-Löf’s Type Theory and the platonism of Tichý’s Trans-
parent Intensional Logic. The paper seeks to advance the research both on an
ill-understood topic in semantics and the general debate of realism vs. anti-
realism.

2 Procedural Semantics for Privative Modification

Both theories start from a notion of construction, which extends to function
formation. While both operate within the confines of a typed interpreted syntax,
the respective type theories work in different ways. Martin-Löf’s type theory
assigns a new type to each new property, laying down how to verify whether an
individual has that property, whereas Tichý’s type theory assigns the same type
to all empirical properties of individuals. Consequently, the respective procedures
for constructing a modified property are also going to differ.

5 We disregard the forger’s intention to produce forged banknotes. We realize that by

disregarding the intentions of someone designing and manufacturing technological

artifacts and confining ourselves to physical properties, we are guilty of a philosoph-

ical simplification. Logically, however, a property along the lines of being intended as
a forged 100-euro banknote can be smoothly added to the list of properties jointly

defining being a forged 100-euro banknote. Another simplification is the absence of

a priority relation over the properties jointly defining the modified one. Clearly, a

real-life account of modification will discriminate between the properties that are

more or less relevant to the modified property. For instance, that a forged 100-

euro banknote has got the watermark right may be more relevant than getting the

code number wrong. Note that in a procedural semantics like Constructive Type

Theory that comes with dependent types, assumptions for hypothetical judgements

are normally prioritized: the present formulation is therefore a simplification where

presuppositions and assumptions are all introduced at the same level of relevance.

256 G. Primiero and B. Jespersen

2.1 Construction

On the constructive interpretation, predication starts by laying down all the
necessary and sufficient conditions for a judgement of the form F set (or equi-
valently F prop, on the props-as-sets identity) to be formulated: such a type
declaration is justified in terms of a judgement f : F that shows a constructor
for that set, and an equality judgement f = f ′ :F , to ensure canonicity for that
element. The basic formal expressions of the theory are the standard categorical
judgements

f :F
f = f ′ :F

with F set being the appropriate type declaration. From categorical judgements
of the form f : F , one extends the language to hypothetical judgements as for-
mulae of the form F ′ set[x :F] which can be understood as a relation between
types, corresponding to functional abstraction. The justification of such a form of
judgement is given by saying that F ′ is a type whenever an appropriate substitu-
tion is performed by a certain canonical constructor f in the type F . Dependent
judgements are generalised to an arbitrary number of assumptions contained in
contexts (within brackets):

f :F [f1 :F1, . . . , fn :Fn]
f = f ′ :F [f1 :F1, . . . , fn :Fn]

where again each Fi is declared a type in an appropriate way. The theoretical
starting point of Martin-Löf’s type theory is, therefore, the justification of a
typed formula in terms of its instance and the reduction of truth-conditions
to assertion-conditions. Formation – with corresponding equalities – is the first
computational rule for types; rules are completed by:6

– introduction rule, to introduce canonical elements of types with equality;
– elimination rule, to prove a property for a previously typed element.

As with Martin-Löf’s, Tichý’s theory construes procedures in a functional
fashion. Its syntax is provided by the λ-calculi, but the semantic interpretation
of it is explicitely procedural in nature.7 The procedural aspect of Tichý’s theory
is given by the fact that the λ-terms of application and abstraction do not denote,
respectively, the result of applying a function to an argument or arranging two
sets of entities as functional arguments and their values. Rather, in TIL, they
denote, respectively, the very procedure of applying a function to an argument
and of forming a function. The procedure of application is called Composition in
TIL and is encoded thus: [X0X1 . . . Xn], where X0 is a construction of a function,
X1, . . . , Xn constructions of its arguments and [] the procedure of functional
application. The procedure of abstraction is called Closure in TIL and is encoded
6 Cf. [11], p.24.
7 However, especially the rules pertaining to β-conversion are susceptible to various

constraints. See [1], §2.7 for the details of TIL as a hyperintensional, partial, typed

λ-calculus.

Two Kinds of Procedural Semantics for Privative Modification 257

thus: [λx1 . . . xnY], where x1, . . . , xn construct arguments, Y constructs values
of a function and [λx1 . . . xnY] is the procedure of functional abstraction.8

2.2 Functional Language

The functional extension of CTT is crucial to expressing implicational and quan-
tified formulae. If F is a type, the construction of a new type is possible by
considering F ′ a family of sets over some x :F , such that F ′[x :F] is also a type.
A function can, therefore, be construed as the judgement regarding a certain
object F ′ type based on the prior judgements for a type F , possibly generalized
to more types (we skip here identity on types and objects of types):9

F set[x :F ′]
Function Formation

(x : F ′)F : set

f :F [x :F ′]
Function Introduction

(x)f : (x :F ′)F

f :F [x :F ′] f ′ :F ′
Function Elimination

f(f ′) : F [x/f]

The neutral formulation (MF)a of an individual a instantiating the modified
property (MF) is constructively expressed as a function M such that for every
element x in the set F taken as argument, it returns a function M(x), formally
M(x)[x : F]. To preserve the functional aspect of M in the constructive nota-
tion, we will refer to M(F) type as the modified type satisfied by some f :F ; this
means that the individual a from the original notation correpsonds to a typed
element in F , expressed by a judgement of the form f :F , hence it will suffice to
translate the modifier M into a function on f , so that (MF)a will be expressed
by M(f). Standard modification of a property M(F) is given, therefore, by func-
tional abstraction and it produces subset formation {x :F |M(x)}. The case of
privative modification is no exception to this general interpretation: a privative
modifier will still take as arguments elements in a basic type F , hence the op-
eration occurs at the level of extensions. It differs from a standard functional
type (and standard subset formation) in that it does not define a set of individ-
uals of the basic type, because its arguments no longer instantiate the original
property F . Rather, the range of this modifier will consist of functions from the
basic type F to the empty set. This shows that constructive privation represents
a special case of standard subsection, specified by requiring extra conditions.
That the range of the privative modifier is a set of functions of the appropriate
8 Two other constructions are Trivialization and Variable. Trivializations can be dis-

pensed with here, since we do not need to mention constructions; we only use them

to obtain the entities they construct. For now, think of variables as one-step pro-

cedures for obtaining an entity relative to a sequence of assignments of entities to

variables. See [1], §§1.1-1.3.2, §2.6.1.
9 See [17], §1.7.

258 G. Primiero and B. Jespersen

type – rather than individuals – can be seen as introducing a type of higher
order. The bottom-up approach characteristic of the constructive philosophy is
preserved, so that the Introduction Rule uses a construction f :F as a premise
to define a privatively modified F in terms of the empty set of F ’s.

The functional language of TIL is cast within a ramified type hierarchy en-
compassing a simple type theory, relative to which each entity of the ontology
of TIL receives a type. The entities are organized into a bi-dimensional typed
universe. One dimension is made up of non-constructions, the other of construc-
tions. On the ground level of the type hierarchy there are non-constructional
entities unstructured from the procedural point of view belonging to a type of
order 1. Given a so-called epistemic (or, equivalently, objectual) base of atomic
types (o-truth values, ι-individuals, τ -reals doubling as times, ω-possible worlds),
the induction rule for forming functional types is applied: where α, β1, . . . , βn are
types of order 1, the set of partial mappings from β1 × . . . × βn to α, denoted
‘(αβ1 . . . βn)’, is a type of order 1 as well. Constructions that construct entities
of order 1 are constructions of order 1. They belong to a type of order 2, denoted
‘∗1’. The type ∗1 together with atomic types of order 1 serves as a base for the
induction rule: any collection of partial mappings, of type (αβ1 . . . βn), involving
∗1 in their domain or range, is a type of order 2. Constructions belonging to a
type ∗2 that construct entities of order 1 or 2, and partial mappings involving
such constructions, belong to a type of order 3 ; and so on ad infinitum.10

Tichý’s theory of modification proceeds, therefore, in a strictly top-down man-
ner. First, a modified property is constructed according to the procedure of func-
tionally applying a modifier M to a property F , and only then is the modified
property (MF) predicated of an individual a.11 What gets predicated of an in-
dividual is, strictly speaking, an extensionalized property, which is a function
from individuals to truth-values.

An intensional entity is any function (mapping) whose domain is in the logical
space of possible worlds. For most purposes, TIL takes an intension to be a
function from logical space to a function from times to entities, in the manner
well-known from possible-world semantics enriched with temporal parameters.
Thus, an empirical property of individuals is a function from logical space to
a function from times to sets of individuals, where a set of individuals is a
characteristic function from individuals to truth-values. Hence, given a particular
world/time pair 〈w, t〉, it is either true or false that a given individual a is a
member of the set that is the extension of the property at 〈w, t〉. Formally, the
type of a property is (((oι)τ)ω), abbreviated ‘(oι)τω’. The TIL abbreviation of
a modified empirical property being predicated of an individual will be of the
form λwλt[[MF]wt a].

2.3 Interpreted Syntax
The procedural way of generating privatively modified properties is based on the
fact that the type-theoretical syntax is interpreted.
10 See [1], §1.3.2.
11 Note the contrast with the constructivist approach, where a modified property is

obtained via application rather than abstraction.

Two Kinds of Procedural Semantics for Privative Modification 259

Constructive Type Theory can be seen as one of several foundational systems
for predicative constructive mathematics,12 but its additional value is repre-
sented by a meaning theory which extends and refines the Brouwer-Heyting-
Kolmogorov interpretation of intuitionistic logic.13 CTT formalizes a proper
theory of reasoning and knowledge, an interpreted system whose objects are
equipped with meanings.14 By implementing the Curry-Howard isomorphism,
types are intended as polymorphic categories of predication, carrying an inter-
nal meaning that can be made explicit in terms of propositions (for which proofs
are the appropriate constructors) or sets (correspondingly constructed by their
elements). The fact that types represent meanings can be adapted to the inter-
pretation of natural language semantics,15 where reference is generally construed
as the relationship between nouns or pronouns and the objects that are named
by them. In a constructive procedural semantics every object comes embedded
within its meaning category, by which a type gains its meaning from its construc-
tor, and the constructor is meaningfully expressed whenever accompanied by its
type (“no entity without a type”).16 As a result, any expression occurring in one
of the computational rules comes embedded with types that yield meanings, and
each meaning category is reduced to the corresponding syntactical construction
procedure.

The syntax of TIL (its formal ‘language of constructions’ in which construc-
tions are encoded) is inherently interpreted because both constructions and the
entities they construct cannot be introduced without typing them first.17 A
semantic analysis of a piece of language executed in accordance with TIL pro-
ceeds along the following three steps.18 First, type-theoretic and logical analysis :
all and only logical entities (operations and their operands) being denoted by
sub-expressions occurring in the overall expression under analysis receive a type,
which may be drawn from the simple or ramified type hierarchy. Second, synthe-
sis : the constructions of the entities mentioned are executed in accordance with
the logical operations made explicit by the logical analysis in order to unveil the
entity denoted by the overall expression. Third, type checking: by means of an
annotated tree it is checked whether the type assignments check out.19

3 Constructive Privative Modification

Standard subsets are used in the type-theoretical setting in order to express a
type that is defined by comprehension in the range of another type. Construc-
tively, this corresponds to nothing other than a propositional function from type
12 Constructive set theory, explicit mathematics and predicative topos are other exam-

ples of systems of constructive matematics.
13 Cf. [10], [11], [17], ch.1.
14 Cf. [17], ch.1.
15 See [21].
16 See also [16].
17 See [1], §1.5.1, §2.1.2.
18 See [1], §2.1.1.
19 See [9] for details.

260 G. Primiero and B. Jespersen

F to another type F ′, i.e. function formation from sec. 2.2, requiring the def-
inition of the type in terms of the judgement F : set[x : F ′] with an equality
judgement defined on it. The appropriate introduction rule corresponds to func-
tional abstraction (x)f :F (x :F ′) and it is equivalent to Church’s λ-abstraction.
To know that the preceding rule is correct, the judgement f(f ′) :F [x/f ′] must
be obtained by function elimination, showing an object of the type F which
satisfies also the subtype F ′, a typed version of β-conversion.20

Let us generalise and consider our subtype as M for ‘modifier’; in this way
one obtains the subset of elements in F satisfying M :

F set M(x) set [x :F]
Standard Subset Formation Rule{x :F |M(x)} set

By the side condition on canonical elements, if f = f ′ and M(x) is true for
some x : F , one obtains equal canonical constructions of the set {x : F | M(x)}
when f or f ′ is used as input of M . That is, since every propositional function is
extensional in the sense that it yields equal types when applied to equal elements,
it follows from f = f ′ : F and M(x) set[x : F] that M(f) and M(f ′) are equal
types. Consequently, from the requirement that M(f) be true, we immediately
get that also M(f ′) is true.

The use of subset formation for an arbitrary property F (e.g. banknote) and
a privative modifier M (e.g. forged) is not entirely correct, however. To preserve
the constructive interpretation also for the case of privative modification, it is
required that the meaning of M(F) set be given by some (canonical) M(f). By
using standard subset formation, the modifier type M will yield a subset of the
set of canonical F ’s. Since a privative modifier M is intended as a modification
procedure that changes entirely the range of its input, an alteration is needed. Be-
cause a forged banknote is not a banknote in the first place, the privative modifier
forged cannot be interpreted as a propositional function from the canonical set of
banknotes to one of its (canonical) subsets. For this reason, one needs to define
privative modification as an extreme version of subsection. The obvious intuition
is that the basic argument F set needs to be modified whenever used as an input
of the privative modifier M in a way that allows us to turn every x :F into an
element of the function from F to the empty set. The first step towards obtaining
such a procedure is to define appropriate constructions of the empty set and of
the function from a set to the empty one, returning the empty set of elements
in that set. The empty set is introduced by declaring the following constants:21

{} :set;
case{} :El(Z(x)) [Z : ({}) set, x :El({})].

The first constant simply declares the collection with no elements to be a set; the
case step gives the empty set of Z’s elements, by applying a set Z to any element x

20 See [17], §1.8. For an analysis of functions and types and the reference of abstract

terms, see [18].
21 Cf. [15], p.21.

Two Kinds of Procedural Semantics for Privative Modification 261

on condition that Z be an element of the collection of empty sets, and x an element
of any set in that collection. Both of these constructions are crucial to the formu-
lation of the privative modifier M . The idea is to use a canonical type declaration
F set and to apply a modifier M to any x : F , under conditions that x : El({})
and F :El({}) set. By this, we do not mean to construct (in the standard way) an
arbitrary empty set, nor to show a (constructively inadmissible) canonical element
for not-F . For the canonical constructive empty set does not allow distinguishing
among different empty sets (which is what we need, if we interpret privative mod-
ification as a construction of the empty set); and there is constructively no way to
give a definitional procedure for a negative type such as the set of non-banknotes,
because its conditions cannot be canonically specified, in case such set should in-
clude everything that does not satisfy the conditions for being a banknote. Instead,
we give the appropriate assertion conditions for a function that takes any element
in the set of banknotes to the complement of such a set, because in this case it is
completely specified what the conditions for its input are, and the function only
requires that those conditions remain (entirely or partially) unsatisfied. Formally:

Privative Subset Formation Rule

F set M(x) set[F : (El({})) set;x :El(F (f))]
{x :F |M(x)} set

This construction defines a function M over the set F ; the result is not a canoni-
cal subset of F , for given any x in F as its input, M(x) returns a set of functions
to the empty set. The apparent mismatch between F in the first premise and
its occurrence in the context of the second premise is easily explained: the first
premise declares a type which, by the given case formation rule for the empty
set, is taken as valid input for the type of elements in the empty set and used
as a condition for the second premise. In the latter, F (a function) is employed
as the argument of a function application rule: namely, M is the function and
x :El(F (f)) gives the input. Nothing needs to be said explicitly about M , pro-
vided the needed information is contained in the context under which M is a
valid construction.22

22 We consider El({}) in the second premise as not entirely arbitrary, instead it contains

an object of the type F defined by the first premise: hence one might require that f be

not only an arbitrary object in {}, but, more specifically, an object in the set {x :{} |
F (x)}. This makes any (standard) restriction over F impossible. The second premise

needs to be taken conditionally, where its conditions are not meant to be interpreted

in terms of subsection. The context in which the modifer M is applied to f requires

that F be an element in the collection of empty sets; then, f is declared one arbitrary

element in this empty set, and finally the set obtained by functional application

F (f) is considered. This gives the empty set of F ’s, restricting all arbitrary elements

of the empty set to those obtained by only considering functions from fs to the

definitional set, in turn declared empty. The formulation of the second premise is

therefore conditional on the requirement of an empty set F , and that whenever we

consider an M(f) we know it leads to an empty set of F ’s. The crucial point is

precisely not to introduce a subset of F ’s, but a set of functions satisfied by an

empty argument.

262 G. Primiero and B. Jespersen

When the Privative Subset Formation Rule is applied to the example of forged
banknote, one starts from the set of banknotes and, by applying the appropriate
conditions on that set, one wishes to obtain the empty set of banknotes:

banknote set forged(x) set[banknote : (El{}) set; b :El(banknote(x))]
{x :banknote | forged(x)} set

It is essential, therefore, to operate with typed empty sets.
Privative modification treated as output of the empty-set function lays down

the distinction between the output of M(F) – for M some privative modifier
like forged and F an argument, e.g. banknote – and any other empty set: what
is the difference between constructing the empty set of banknotes in terms of
the set of forged banknotes and any other way of constructing a set none of
whose elements is a banknote? This problem is constructively solved by putting
forward an appropriate equality rule governing M(F) with respect to the set F :

Equality Rule on Sets

F set F = F ′ set M(x) set[F = F ′ : (El{}) set; f :El(F = F ′(x))]
{x :F = F ′ |M(x)} set

By this rule, for any equivalent set taken as argument of the modifier, the same
empty set is obtained. For any set G with its own constructor g �= f : F the
modifier M(x) set[x : G] shall return a different empty set (namely, the empty
set of G’s, different from the empty set of F ’s). This obviously allows defining
the difference between M(F) (forged banknotes) and G (railroads, say) as empty
sets of banknotes in a different sense: the former will, strictly speaking, be the set
of function constructors from the set of banknotes to the empty set; the second
set will contain no constructor of the set of banknotes at all, hence being empty
with respect to any such individual.

The introduction rule instantiates the procedure which, starting from a typed
object, returns a privatively modified one:

Introduction Rule

f :F m :M(f)[F : (El{}) set; f :El(F (f))]
f :{x :F |M(x)}

where F can be taken to be the set of banknotes and f an instance of that set,
and M the modifier forged .

In the introduction rule one starts from the premise that a canonical element
f in the set F is given; provided M(f) is true, i.e. there is a canonical element
m of the set of functions from F to the empty set, we know that f will yield
a canonical element in the set of modified F ’s when taken as the argument of
the empty-set function of M(F). By the associated equality rule, if f = f ′ are
elements in F , and if there is an m such that M(f) is true, f and f ′ will yield
canonical elements in the set of modified F ’s; and from f = f ′ :F and m :M(f)
it follows that m :M(f ′). Notice that according to the constructive requirement

Two Kinds of Procedural Semantics for Privative Modification 263

on the introduction rule, in order to form the set of modified F ’s, one needs to
know at least one instance m :M(f), and because the latter relies on a function
applied to f , it is a further presupposition that f be known. For example, in the
case of forged banknote, in order to display or recognise a forged banknote one
needs to be able to lay down the conditions for knowing what a banknote is.

The set of rules is rounded off by an appropriate elimination rule, which makes
one able to specify how to extract a modified property from its corresponding
set. Formulating an elimination rule for the subset theory is a notoriously diffi-
cult matter. It is impossible to give in constructive type theory an elimination
rule that captures the way one has introduced elements in a subset, because
there is no explicit construction of the element m :M(f) for a standard subset
{x : F | M(x)}.23 In the case of privative modification, the elimination rule is
supposed to formalise the procedure which, starting from an element of a pri-
vatively modified property (forged banknote, say), will return another modified
element defined over the former; this means that variables will occur bound in the
second construction. The informal meaning of the elimination rule is to enable
positive predication for privatively modified entities. Saying that a banknote can
be identified by ascertaining that it reacts to ultra-violet lamps emitting light
at around 365 nanometres24 can be rephrased by saying that a forged banknote
will fail to react to uv-lamps emitting light at around 365 nanometres; similarly,
one may want to state of a false friend that he or she is a seasoned liar, or that
sham jewellery is an “abomination [. . .], a lie, a pretension”.25 In the following,
let Δ abbreviate the conditions on a privatively modified set as given by the
second premise in its introduction rule. In the corresponding elimination rule,
one starts from an instance of a privatively modified property M(f) satisfying
x :{f :F |M(f)[Δ]}; then, another function f ′(x) of type M ′(x); by substituting
f in the free occurrences of x in M ′(x), one concludes that f ′(f) is an element
of the newly modified type M ′(f):

Elimination Rule

f :{x :F |M(x)[Δ]} f ′(x) :M ′(x)[x :F,m :M(x)]
f ′(f) :M ′(f)

3.1 Degrees of Modification

Standard typing rules do not as yet say anything relevant about the sense in
which modification comes in degrees, given that there are different sorts of forged
banknotes. For example, in the light of a description of a banknote as a green
piece of polymer with a hologram printed on it, there are different ways in which
a forged banknote may be forged: it may be a piece of polymer which is either not

23 Cf. [22] for a full explanation, the solution proposed and the consequences for the

deductive power of the theory.
24 Pamphlet of the Bank of England, downloadable at

http://www.bankofengland.co.uk/banknotes/kyb_lo_res.pdf.
25 From the Routledge Manual of Etiquette, 2007, p. 175.

http://www.bankofengland.co.uk/banknotes/kyb_lo_res.pdf

264 G. Primiero and B. Jespersen

green or lacks the appropriate hologram, or it can be a green piece of something
other than polymer with or without a hologram printed on it. All in all, an
individual that lacks all three properties fails to qualify as a forged banknote.
We shall explain these differences by introducing a formal notion of degrees of
modification.

The use of dependent types has been shown to be crucial to the definition of
the subset formation rule, both in its standard format and its privative variant.
We want now to make a dependency relation explicit also for the argument of the
modifier function, which will make it possible to differentiate among privatively
modified F ’s. Take

F set[x1 :F1, . . . , xn :Fn]

to be the formal way of saying that F is a canonical set whenever each xi :Fi is
a type-theoretical expression satisfied by an appropriate element [xi/fi], where
each Fi is a definitional property of F .26 The rule for defining the privative
modifier can be analytically formulated with respect to its application to the
definitional properties Fi of F :

Dependent Privative Subset Formation

F set[x1 :F1, . . . , xn :Fn] M(x) set[Fi : (El{}) set;x : El(Fi(x))]
{x :F |M(x)} set

where 1 ≤ i ≤ n. This new rule says that M(x) is a modified F in view of the
empty set of Fi, for every

∨
Fi ∈ F up to

∧
−1 Fi defining F , that is by privation

with respect to some – up to all bar one – of its definitional properties.
Depending on the selection and combination of Fi, one obtains different de-

grees of modification. A standard recursive definition of the factorial of the inte-
ger n27 is used in the following for the standard combinatorial result of d elements
extracted from n.28 In the following we shall use n to indicate the number of
Fi occurring in the dependency context of definitional properties of F , so that
we shall call the degree d of modification M of a property F the number of n
definitional properties of F with respect to which a privative modifier is applied.
By the combinatorial result, the following can be easily stated:

– there will be n distinct modifications of degree d = 1, corresponding to the
privation of x :F with respect to Fi for some i ∈ n in the set of conditions
for F set;

26 In the present treatment of type-theoretical predications, we are referring to standard

types requiring a finitistic formulation of a dependency relation from a context of

assumptions. In [12], a non-standard extension of intuitionistic type theory with

infinite objects was introduced, which represents a generalization of the finitistic

frame, relying on the latter for justification. The negation of predicates at one stage

or more in the infinite dependent structure of contexts can be formulated in that

frame in a way that resembles the notion of unsatisfied conditions introduced here.

As mentioned in the Introduction, we are relying on the simplification that elements

in the dependency context come without any priority relation.
27 n! = 1, if n = 0 and n(n − 1), if n ≥ 1.
28 Cd

n = n!/d!· (n − d)!.

Two Kinds of Procedural Semantics for Privative Modification 265

– there will be a combinatorial number of distinct modifications of degree
d = i < n in view of the rule for Ci

n, corresponding to the privation of x :F
with respect to the union

⋃
{F1, . . . , Fi}, 2 ≤ i < n−1 in the set of conditions

for F set.

Following this rule, an individual determined by 10 properties will accommo-
date a total of 198,720 possible combinations of modification, counting all the
modifications of one property, those of two properties and so on, up to counting
10 possible combinations of modification involving 9 properties (obtained by the
calculation 3, 628, 800/362, 880 = 10). For a simple example, consider the defi-
nitional presentation of the set of banknotes introduced above, for which three
different modifications of degree 1 are possible, making forged banknotes forged
due to their being deprived of just one defining property:

banknote set[polymer, green, hologram]
forged(x) set[Fi : (El{}) set;x :El(Fi(x))]

{x :banknote | forged(x)} set

where Fi is a variable for any of the properties of being made of polymer, of
being green or of having a hologram. A modification of degree 2 would take
into account two defining properties; as a result, an instance of the following
constructor would be a forged banknote by failing to be made of green polymer
(or any other combination):

banknote set[polymer, green, hologram]
forged(x) set[Fi,j :El({}) set;x :El(Fi,j(x))]

{x :banknote | forged(x)} set

where again Fi,j instantiate two defining properties.

3.2 Iteration of Modifiers

The formulation of degrees of modification enables us to make comparisons
among different instances of the same modified type. In particular, it enables
us to express, in the metatheory, that a particular modified set is at a cer-
tain degree of approximation to its original counterpart. In the case of forged
banknote, a privative modification of degree 1 will be a closer approximation
to banknote than will a privative modification of degree 2. This squares with
natural-language predicates like ‘is a well-made forged banknote’, whose use
presupposes various degrees to which a forged banknote may succeed in passing
for what it is a forgery of.

This remark leads directly to the next case we want to analyse, namely the
iteration of modifiers. The modifier well-made needs to qualify forged banknote,
otherwise one ends up with the infelicitous ((well-made forged) banknote).29

29 Brackets are used as scope indicators. Note that if well-made is to modify forged, then

because the latter is a first-order modifier (modifying, as it does, a non-modifier),

the former must be a higher-order modifier like, e.g., very. See [6] for discussion of

higher-order modification.

266 G. Primiero and B. Jespersen

Whether well-made modifies forged banknote or forged, well-made is a subsective
modifier, and we do not want to extract well-made forged banknotes from a set
of banknotes. For the iteration to be such that, given a set of forged banknotes,
one extracts only the well-made ones, one has to be sure that the construction
of (well-made (forged banknote)) uses a correct application of different subset
formation rules.

Consider the by now well-known construction of forged banknote and let us
abbreviate again the additional conditions on the privative subsection as Δ. Now
the construction of (well-made (forged banknote)) is of the following form:

banknote set forged(x) set[Δ]

{x :banknote | forged(x)} set well-made(x) set[x :banknote | forged(x)]

{x :banknote | well-made × forged(x)} set

This construction applies first the privative subset formation rule and then the
standard subset formation rule to the resulting set of functions, thus obtaining
the cartesian product of two families of functions over correctly defined sets.

On the other hand, the construction of ((well-made forged) banknote) is an
illegitimate one. The predicate ‘is a (well-made forged) banknote’ does not split
the application of the modifiers into two steps, instead the formal construction
combines via the cartesian product the standard subsective modifier and the
privative subsective modifier. The resulting construction is ill-defined because the
subsective modifier well-made has the categorical set banknote as its arguement,
whereas the privative modifier forged applies to functions defined over an empty
set:

banknote set well-made(x) set[x :banknote]× forged(x) set[Δ]
{x :banknote | well-made(x) × forged(x)[Δ]} set

A specific case of iteration of modifiers is the iteration of privative modifiers.
This kind of iteration avoids the problem of the previous case, because in both
cases the modifiers are privative, hence they share the same conditions. The iter-
ation will give the cartesian product of the sets of functions that are arguments
of the modifier. The following construction is an example of a formation rule
regulating burned forged banknote:

banknote set forged(x) set[Δ]
{x :banknote | forged(x)} set burned(x) set[forged(x)[Δ]]

{x :banknote | forged × burned(x)[Δ]} set

Burned is privative because a burned F is not an F , though it originally was
an F . Not all pairs of privative modifiers cancel each other out, such that a
burned forged banknote would be a banknote. Furthermore, though both forged
and burned are privative, their logical behaviour does not overlap entirely. In
particular, “a is a burned banknote” is an example of resultative predication30

30 See [2], p. 226ff.

Two Kinds of Procedural Semantics for Privative Modification 267

while “a is a forged banknote” is not. From a being a burned banknote, it follows
that a is not a banknote (because a pile of ashes does not make a banknote),
but it is presupposed that a started out as a banknote (otherwise there would
have been no banknote to burn). So burned comes with a dynamic dimension
that forged lacks: a forged banknote was never a banknote and only remains an
approximation to one.31

4 Realist Privative Modification

4.1 Predication of Modified Properties

A property is an intensional entity of type (((oι)τ)ω), abbreviated ‘(oι)τω’, which
is a function from worlds (ω) to functions from times (τ) to sets of individuals
((oι)). A property modifier, by contrast, is an extensional entity, because it is
not indexed to possible worlds. Instead it is a function-in-extension between two
intensions. Since a property modifier is a function that takes one property to
another, its type is ((oι)τω(oι)τω). So in order to construct a modified property,
the procedure of functional application (Composition) is called for:

[modifier property]

The predication of a property of an individual goes via two instances of func-
tional application. First, the relevant property is extensionalized so as to obtain
a set from a property. Second, the set is applied to the individual to obtain a
truth-value. The philosophical motivation is that individuals exemplify empirical
properties only relative to worlds and times.32 Schematically, predication is this
Closure:

λwλt [propertywt a]

This Closure, which constructs a possible-world proposition (a function from
worlds to functions from times to truth-values), would be the logical form of the
sense of a sentence like, “a is a banknote”.

The schema of the predication of a modified property of a is this Closure:

λwλt [[modifier property]wt a]

This Closure would be the logical form of the sense of a sentence like, “a is a
forged banknote” or “a is a burned banknote”.

If the property constructed by [modifier property] is itself modified, the re-
sulting predication looks like this:

λwλt [[modifier ′ [modifier property]]wt a]

This would be the form of, say, “a is a burned forged banknote” or “a is a
well-made forged banknote”. In all three cases the semantic analysis culminates
in the assignment of a propositional construction to a sentence as its sense.
31 As for a being a well-made forged banknote, the degree to which a qualifies as being

well-made is a reflection of the quality of the craftsmanship of the forgery.
32 See [5] for details.

268 G. Primiero and B. Jespersen

4.2 The Requisites of Privation

True to its top-down approach, TIL accounts for a property like being a forged
banknote in terms of other properties being ‘stacked upon it’, to wit, the set of
properties that are individually necessary and jointly sufficient for an individual
to have that property. Such a set is called the essence of the property in question,
and each element is called a requisite.33 The type of a requisite, when a relation-
in-extension between two properties, is (o(oι)τω(oι)τω), while the type of the
essence of a property is ((o(oι)τω)(oι)τω): the essence function takes a property
to the set of properties that are its requisites. Formally, F being of type (oι)τω

and p ranging over the same type, these two constructions converge in the same
set of properties:

[essence F] = λp [Req p F]

The requisite relation is defined in the following manner. Let X,Y be inten-
sional constructions such that X,Y are first-order constructions ranging over the
type (oι)τω (i.e. X,Y are property variables) and let x range over ι.34 Then:

[Req YX] = ∀w∀t [∀x [[Truewtλwλt [Xwtx]]→ [Truewtλwλt [Ywtx]]]]

Gloss definiendum as, “Y is a requisite of X”, and definiens as, “Necessarily,
at every 〈w, t〉, whatever x instantiates X at 〈w, t〉 also instantiates Y at 〈w, t〉.”

Logically, privation comes down to, say, being a banknote and being a forged
banknote having an empty intersection at every 〈w, t〉. This is obtained thus:

[Req λwλt ¬[banknotewt x][forged banknote]]

We say that the property constructed by [forged banknote] has, inter alia, the
requisite property constructed by λwλt ¬[banknotewt x]. This is to say that if,
at some 〈w, t〉 or other, an individual x is in the extension of [forged banknote]
then x is in the extension of the property constructed by λwλt ¬[banknotewt x].

Hence, the proposition that not being a banknote is a requisite of being a
forged banknote is equivalent to the proposition constructed thus:35

∀w∀t [∀x [[forged banknote]wt x]→ [¬[banknotewt x]]]

What is special about the sort of non-banknote that is not a tea mug, a
railroad or a tax form, but a forged banknote? Given a 〈w, t〉, the set constructed
by [banknotewt] will have a complement in which we find tea mugs and all the
rest, including forged banknotes, but the set constructed by [[forged banknote]wt]
will be a well-defined proper subset of that complement.36 To define the notion
33 See [1], §4.4. Requisites play pretty much the same role as do presuppositions in

constructivism.
34 See [1] §4.1, def. 4.1. See also §4.1 for True, which is the propositional property of

being true at 〈w, t〉.
35 For the record, ‘∀y’ abbreviates ‘[0∀[λy]]’, y ranging over an arbitrary type α, ∀ a

function of type (o(oα)), and 0∀ being the Trivialization of this function.
36 See [7] for a positive characterization of the proper subset of the complement of any

set of F ’s containing forged F ’s.

Two Kinds of Procedural Semantics for Privative Modification 269

of the subset of forged banknotes within the set of non-banknotes, we need to
express that no forged banknote is a banknote and that some non-banknotes are
forged banknotes:

∀w∀t [[[All [forged banknote]wt][λx ¬[banknotewt x]]] ∧
[[Some [λx ¬[banknotewt x]]] λx[[forged banknote]wt x]]]

We invoke the quantifiers All, Some, here of type ((o(oι))(oι)).37 All is the
function from the set constructed by [Fwt] to the set of all those sets that contain
the set constructed by [Fwt] as a subset. Some is the function from the set con-
structed by [Fwt] to the set of all those sets that share a non-empty intersection
with the set constructed by [Fwt].

In the Introduction we argued that a forged banknote is an (intended) ap-
proximation to a banknote. We also made the (simplistic) assumption that being
green and being made of polymer exhaust being a banknote. Thus, one reason
why a may be a forged banknote is because a, though being made of polymer,
fails to be green. Therefore, at some 〈w, t〉, a may have some, though not all, of
the properties making up the essence of being a banknote, q ranging over (oι)τω :

λwλt [[[Some λq [qwt a]] [essence banknote]] ∧ ¬[[All λq [qwt a]] [essence banknote]]

A forged banknote is any individual that is not a banknote and which is
either made of polymer but fails to be green, or is green but fails to be made
of polymer. If we add a third property, e.g. having a hologram, it becomes an
option that a non-banknote may have either one or two of those three properties
and, therefore, qualifies as a forged banknote to a lower or higher degree. Degrees
of modification would be captured in TIL by spelling out which of the requisite
properties of being a banknote a given forged banknote possessed.

5 Conclusion and Further Research

Above we set out the philosophical and technical features of two different concep-
tions – one constructive, the other platonist – of what a procedural semantics for
privative modification may look like. These two conceptions of privative mod-
ification are, however, only the first step toward dealing with modification in
general within these two frameworks. Subsective and privative modification are
the easiest two of the altogether four forms of modification mentioned in the
Introduction. The modal/intensional variant, on the other hand, represents the
most challenging case both philosophically and technically. For one thing, its very
logic is far from being clear, since it is not sufficient to simply infer the classical
tautology Fa∨ ¬Fa from (MF)a. Future research will be devoted to extending
both Martin-Löf’s Constructive Type Theory and Tichý’s Transparent Inten-
sional Logic so as to include a worked-out semantics for intensional modifiers. In
particular, the application of CTT to intensional modification will take its lead

37 See [1] §1.4.3.

270 G. Primiero and B. Jespersen

from [19] and [20], which present a modal type theory including syntactic rules
for defining possibility judgements made from open assumptions.38

References

1. Duž́ı, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional

Logic: Foundations and Applications of Transparent Intensional Logic. Logic, Epis-

temology and the Unity of Science, vol.17. Springer, Berlin (2010)

2. Jackendoff, R.: Semantic Structures. MIT Press, Cambridge (1990)

3. Jespersen, B.: Significant sententialism in Transparent Intensional Logic and

Martin-Löf’s Type Theory. In: Childers, T., Majer, O. (eds.) The Logica Year-

book 2002, pp. 117–131 (2003)

4. Jespersen, B.: Explicit intensionalization, anti-actualism, and how Smith’s mur-

derer might not have murdered Smith. Dialectica 59, 285–314 (2005)

5. Jespersen, B.: Predication and extensionalization. Journal of Philosophical

Logic 37, 479–499 (2008)

6. Jespersen, B.: Property modification and the rule of pseudo-detachment (in sub-

mission)

7. Jespersen, B., Carrara, M.: Two conceptions of technical malfunction (in submis-

sion)

8. Jespersen, B.: How hyper are hyperpropositions? Language and Linguistics Com-

pass 4, 96–106 (2010)

9. Jespersen, B., Duž́ı, M., Materna, P.: The logos of semantic structure. In: Stal-

maszczyk, P. (ed.) Philosophy of Language and Linguistics. The Formal Turn,

vol. I, pp. 85–101. Ontos-Verlag, Farnkfurt (2010)

10. Martin-Löf, P.: Constructive mathematics and computer programming. In: Cohen,

J.J., et al. (eds.) Sixth International Congress for Logic, Methodology and Philos-

ophy of Science, pp. 153–175. North-Holland, Amsterdam (1982)

11. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)

12. Martin-Löf, P.: Mathematics of infinity. In: Martin-Löf, P., Mints, G. (eds.)

COLOG 1988. LNCS, vol. 417, pp. 146–197. Springer, Heidelberg (1990)

13. Montague, R.: English as a formal language. In: Visentini, B., et al. (eds.) Lin-

guaggi nella societá e nella tecnica, Milan, pp. 189–224 (1970); Reprinted in R.H.

Thomasson (ed.). Formal Philosophy. Yale University Press, London (1974)

14. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-

ory. Oxford University Press, Oxford (1990)

15. Nordström, B., Petersson, K., Smith, J.: Martin-Löf’s Type Theory. In: Abramsky,

S., Gabbay, D., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science,

pp. 1–38. Oxford University Press, Oxford (2000)

16. Primiero, G.: The determination of reference in a constructive setting. Giornale di

Metafisica 26, 483–502 (2004)

38 The authors wish to thank the referee for helpful comments pertaining especially to

§2. Bjørn Jespersen is indebted to Marie Duž́ı for very helpful suggestions regarding

§4.2. Giuseppe Primiero wishes to thank Bartosz Wieckowski for very helpful com-

ments leading to clarifications in §3. The research reported herein was conducted

while Bjørn Jespersen was affiliated with the Section of Philosophy, Delft University

of Technology, The Netherlands. He gratefully acknowledges its financial support

enabling him to participate at the LENLS VI conference.

Two Kinds of Procedural Semantics for Privative Modification 271

17. Primiero, G.: Information and Knowledge. A Constructive Type-Theoretical Ap-

proach. Logic Epistemology and the Unity of Science, vol.10. Springer, Berlin

(2008)

18. Primiero, G.: Proceeding in abstraction. From concepts to types and the recent

perspective on information. History and Philosophy of Logic 30, 257–282 (2009)

19. Primiero, G.: Epistemic modalities. In: Primiero, G., Rahman, S. (eds.) Acts of

Knowledge: History, Philosophy and Logic, pp. 207–231. College Publications, Lon-

don (2009)

20. Primiero, G.: Constructive contextual modal judgements for reasoning from open

assumptions. In: Proceddings of the Computability in Europe Conference (to ap-

pear, 2010)

21. Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford (1990)

22. Salvesen, A., Smith, J.: The strength of the subset type in Martin-Löf’s Type

Theory. In: Proceedings of LICS 1988. IEEE, Edinburgh (1988)

23. Tichý, P.: The Foundations of Frege’s Logic. De Gruyter, Berlin (1988)

24. Tichý, P.: Collected Papers in Logic and Philosophy. In: Svoboda, V., Jespersen,

B., Cheyne, C. (eds.) Filosofia, Czech Academy of Sciences, Prague. University of

Otago Press, Dunedin (2004)

On the Nature and Formal Analysis of Indexical
Presuppositions�

Igor Yanovich

Massachusetts Institute of Technology

yanovich@mit.edu

Abstract. This paper is divided into an empirical part and a theoret-

ical part. The empirical part rediscovers a peculiar creature which was

found by [Cooper, 1983] and then plunged back into the abyss of oblivion

— indexical presuppositions, a special kind of “presuppositions” which

can only, according to Cooper, be satisfied in the actual world. Cooper

claimed that presuppositions of the gender features of free anaphoric

pronouns induce such non-projecting “presuppositions”. I enlarge the

empirical scope of the discovery by showing that, first, indexical presup-

positions are induced by gender features of all anaphoric pronouns, not

just the free ones; and second, that their satisfaction requirements are

more complicated than simple “satisfaction in the actual world only.”

On the theoretical side, I sketch three possible analyses of indexical pre-

suppositions. The first one relies on direct copying of features from the

antecedent, but meets certain serious problems. More work is needed in

order to figure out if that theory can actually be worked out. The second

theory employs a very complex constraint on choosing the name for the

world variable of the pronoun, crucially using both syntax of the sentence

and the model against which it is interpreted. The third one, in a sense

the least conventional of all three, moves all the work to semantics, and

analyzes indexical presuppositions as conditions on a rich structure of

worlds, somewhat doubling the structure of embedding in the formula,

which replaces the standard single possible world evaluation parameter.

1 Data: What Indexical Presuppositions Are

1.1 How Indexical Presuppositions Were Found

In the Kaplanian family of approaches to indexicality, there is a distinction made
between “regular” expressions and indexical expressions, where the latter depend
� This paper has benefitted greatly from the discussions with and comments of Simon

Charlow, Patrick Grosz, Kai von Fintel, Irene Heim, Pauline Jacobson, Salvador

Mascarenhas, Reinhard Muskens, Chris Potts, Philippe Schlenker, Anna Szabolcsi,

and Hedde Zeijlstra, as well as with and of the audiences at the LF Reading Group at

MIT in the Spring of 2009, the 2009 Southern New England Workshop in Semantics

(SNEWS) at UMass, the Semantics Seminar at NYU, and LENLS VI workshop in

Tokyo. All errors in the paper are, of course, mine. I also want to thank half a

dozen of patient and generous English native speakers whose judgements I cite in

the paper.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 272–291, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Nature and Formal Analysis of Indexical Presuppositions 273

on the context of utterance, as opposed to evaluation parameters1. Unlike non-
indexical expressions, such expressions as I are to be strictly identified with
the speaker of the actual context, without the possibility to be shifted by any
operator. Kaplanian indexicals include words such as I, she, that, now, actual,
an d so forth. Not all of the uses of some of those words are indexical, though:
pronouns like “she” or “he” are indexical in their unbound uses (when they are
accompanied by pointing of some sort), but are not indexical when bound.

[Kaplan, 1989] argues that the minimal adequate system which will be able to
make good predictions about indexicals must have double indexing of a sort: it
must distinguish between the actual contexts (contexts, in Kaplan’s own terms)
and the evaluation parameters which can be shifted (Kaplan’s circumstances).
The argument for that comes from the following consideration: for actual con-
texts, we want to use only those ones where, say, the speaker is located in the
place and time when the utterance is taking place, so that our theory will rec-
ognize the sentence I am here now as true in every context. On the other hand,
the set of possible circumstances must include “improper” contexts, e.g., where
the speaker is at some different place, so that the sentence It is necessary that
I am here now would not be predicted to be true (it should actually be false
most of the time, because it is usually not necessary that I stay where I am at
the moment — I could have been in thousands of different places instead.) Of
course, the degree to which this argument is convincing depends on how much
you want to be always able to say that I am here now cannot be false; if you do
not at all, the argument fails.

But there are purely linguistic arguments in favor of using at least as much
power as double indexing can give us for the interpretation of natural language,
which come from [Kamp, 1971] and [Vlach, 1973]. Consider an example Dick
once thought that he would now be the president. It is essential to be able to
“remember” that we can refer to the actual time of the utterance from inside
of the would embedded clause. If we have double indexing to the evaluation
parameters and to the global context, we can do that for this example — now
will be able to pick up the context time, not the evaluation time.

Under Kaplan’s theory, the only thing about an indexical which relies on the
actual context is its reference as such, the object it designates. [Cooper, 1983],
in his analysis of anaphoric pronouns, has replicated the same distinction be-
tween non-indexicals and indexicals in his analysis of the interpretation of gen-
der features. All gender features introduce, according to Cooper, a presupposi-
tion. Bound pronouns (that is, non-indexicals) introduce normal presuppositions,
which interact with plugs, filters and holes as other presuppositions do. Unbound
pronouns (that is, indexicals) also introduce presuppositions, but they must be

1 To be more precise, [Kaplan, 1989] makes a distinction between pure indexicals,

like I, which do not require anything extra-linguistic to determine their reference,

and true demonstratives, like those or (unbound) she, which are incomplete without

something else, for instance, a pointing gesture. I will ignore this distinction here,

and call the unbound anaphoric pronouns with which we will be concerned simply

“indexicals.”

274 I. Yanovich

satisfied by the actual context, not the current evaluation context (Kaplan’s
circumstance). Consider the following data:

(1) Cooper’s (13c-e), p. 180:
a. Bill said that she talked.
b. Bill hopes that she talked.
c. Bill regrets that she talked.

(2) a. Bill said that Mary’s wife works for Google.
b. Bill hopes that Mary’s wife works for Google.
c. Bill regrets that Mary’s wife works for Google.

[Cooper, 1983] notes that in 1, featuring free pronouns, the speaker has to
believe that the individual referred to by the pronoun is female, even though
the pronoun itself is within a complement to a propositional attitude verb. For
factive verbs like regret it is unsurprising, but for such non-factive verbs as hope
it is unexpected: presuppositions in their complements do not have to project to
the actual world, cf. the presupposition of existence of Mary’s wife in 2.

Cooper’s point is that in 2, the presupposition of Mary’s wife’s existence in-
teracts with the verbs in an expected way: 2a does not inherit the presupposition
of existence, because Bill’s words might have been wrong or misleading; 2b does
not presuppose that Mary’s wife exists either, but presupposes that Bill believes
so; and 2c does presuppose that Mary has a wife because of the factive properties
of regret. But in all examples in 1, the whole sentence inherits the presupposition
that the referent of she is female in the actual world.

Cooper dubbed this special kind of presuppositions induced by free pronouns
as in 1 indexical presuppositions, as opposed to normal presuppositions as in 2.

Bound pronouns, on the other hand, do not exhibit this special presupposi-
tional behavior, according to Cooper (we will see shortly that contrary to his
claim they do.)

(3) Cooper’s (16), p. 182:
a. Bill said that a neighbour1 thinks that she1 saw John.
b. Bill hopes that a neighbour1 thinks that she1 saw John.
c. Bill regrets that a neighbour1 thinks that she1 saw John.

Cooper argues that the presupposition that the referent of a neighbor is fe-
male in 3 interacts with the matrix verbs in the same expected way as the
presupposition of existence in 2:

“In the case of (16a) (= our 3a) with the verb of assertion say there
is no presupposition that a neighbor is female (Bill might have been
wrong) nor that Bill assumes that a neighbor is female (he might have
been deliberately misleading). In the case of (16b) (=3b) with the verb
of psychological attitude hope there is again no presupposition that a
neighbor is female but it is presupposed that Bill assumes that a neighbor

On the Nature and Formal Analysis of Indexical Presuppositions 275

is female. In the case of (16c) (=3c) where we have the factive verb regret
we do get the presupposition that a neighbor is female.” ([Cooper, 1983],
p. 182)

This behavior is parallel to the one Cooper assumes for normal presupposi-
tions. His conclusion is that free and bound pronouns induce different kinds of
presuppositions: free pronouns contribute indexical presuppositions, and bound
pronouns, normal presuppositions:

“Our general claim is, then, that the gender consequences associated
with a pronoun are presuppositions when the pronoun is bound but that
something different than the normal case of presupposition is going on
when the pronoun is free.” ([Cooper, 1983], p. 182).

Cooper’s analysis certainly makes sense when viewed from the perspective of
a Kaplan-style theory of indexicality. Non-indexicals induce normal presupposi-
tions, while indexicals, being rigid designators, can only introduce presupposi-
tions about the actual context of the utterance.

There are two possible ways to modify this view. One was taken by the main-
stream formal semantics following Cooper. The idea that the interpretational im-
port of pronominal features is (normally) presuppositional was widely accepted,
and has made its way into the textbooks. But possibly because the general fo-
cus of linguistic research has shifted away from the philosophical problems with
indexicals, Cooper’s actual analysis that divides pronouns into two classes car-
rying different sorts of presuppositions was largely forgotten. Even though the
focus has somewhat shifted back now, with a flourishing literature on monsters,
to our knowledge the nature of presuppositions of pronominal gender features
has not received any new attention yet, as if the matter were closed. It is re-
markable that [Schlenker, 2003] actually credits Cooper for a unified, or at least
unifiable, account of presuppositions of indexical and non-indexical pronouns. So
the first direction is to fo rget about the difference between normal and indexical
presuppositions altogether.

In the rest of this paper, I pursue the second direction: after we examine
actual data more carefully, it appears that, first, the distinction between the two
kinds of presuppositions does exist, and second, that indexical presuppositions
are much more widespread than Cooper suggested. Namely, both indexical and
non-indexical pronouns carry them, as well as, it seems, the descriptive content
of definites in general.

1.2 Both Free and Bound Pronouns Induce Indexical
Presuppositions

Cooper restricts the emergence of indexical presuppositions to indexical pro-
nouns, but uses only a very limited set of examples to argue for that. As it has
happened with the famously prohibited, yet apparently existing monsters, the
wrong choice of the small set of examples is to blame. Under a closer exami-
nation, all pronouns bear what may be called indexical presuppositions, though

276 I. Yanovich

their satisfaction properties are more complex than the simple rule of “satisfac-
tion in the actual context only.”

I will not provide the full range of pronominal evidence for the reasons of
space, restricting myself to several representative examples.

Scenario 1. My friend Richard and I went to a bar yesterday, and I talked
to an acquaintance of mine who I know to be a woman. But Richard for some
reason thinks it is a man, and I am not able to convince him that he is wrong.

When speaking about Richard’s thoughts, we can only use a feminine pronoun,
not a masculine pronoun:

(4) I : Richard thought that the person I talked to yesterday in the bar lost
*his/OKher keys.

(5) a. I : After talking to Richard1 today about [that person I talked to in
the bar last night]3 , I figured out that Richard thought he1 should
help her3 out when she3 realized she3 lost her3 car keys.

b. I : After talking to Richard1 today about [that person I talked to in
the bar last night]3 , I figured out that Richard thought he1 should
help him3 out when he3 realized he3 lost his3 car keys.

There are two sets of worlds in these examples: W , the set of all of the speaker’s
epistemic alternatives (that is, worlds compatible with what the speaker consid-
ers to be actual), with members w, and W ′, with members w′, which are worlds
compatible with Richard’s beliefs as they are according to the speaker. In all w
worlds, the person Richard and the speaker saw at the bar is female (the speaker
thinks it is a woman); in all w′ worlds, this person is male (the speaker thinks
that Richard is sure it is a man.)

If the gender constraint induced by the gender feature of the pronoun is a
normal presupposition, as it should be according to Cooper, then we expect
that we should be able to satisfy the presupposition either in the w worlds or
in the w′ worlds. Yet the latter option is actually out, irrespectively of whether
we have a c-commanding antecedent, as in 4, or a non-c-commanding one as in
5. We can only use she, the pronoun whose feature corresponds to the gender of
the referent in w-worlds, not he, which corresponds to its gender in w′-worlds.

That is exactly the behavior of Cooper’s indexical presuppositions: the pre-
supposition must be satisfied in the actual world. The novel empirical point
of Scenario 1 is that indexical presuppositions are induced by pronouns with
antecedents, not by indexicals.

The satisfaction pattern of indexical presuppositions contrasts both with the
behavior of normal presuppositions, such as the existence presuppositions in-
duced by definite descriptions, and that of regular DP-internal predicate con-
stituents, such as DP-internal adjectives within indefinite DPs, a standard test
case for de re/de dicto readings.

Scenario 2. I know that Ann does not have a dog, and I also know that my
friend Richard is sure that she has one. Moreover, he told me that he thinks
Ann’s dog is fed well.

On the Nature and Formal Analysis of Indexical Presuppositions 277

Certainly I can describe that state of affairs (as I’ve already did in the previous
sentence) with the following example:

(6) Richard thinks that Ann’s dog should be fed well.

Uttering 6 does not commit me to the belief that Ann has a dog. Yet uttering
the versions of 4 and 5 in Scenario 1 with masculine pronouns is not consistent
with my belief that the person Richard and I met in the bar is female.

Turning to DP-internal predicates of indefinite DPs, when embedded under
an intensional operator, such predicates can be interpreted with respect to the
actual world (de re), or some set of non-actual worlds (de dicto). For instance,
adjectives like male or female, supposedly denoting the same gender properties
that the gender features of pronouns presuppose of the pronoun’s referent, do
not have to be always evaluated against the actual world:

Scenario 3. Richard works in the HR department and they are now looking for
a driver. Richard is in charge of the selection process, and he already conducted
all the interviews. There is a clear top candidate, whom Richard believes to be a
man. But I know that he is wrong about that, because this person is my friend
and I know that it is a woman, not a man.

(7) I : Richard wants to hire a OKmale/OK female driver.

In the speaker’s epistemic alternatives w, the person Richard wants to hire is
a woman. In Richard’s epistemic alternatives w′, the same person is a male. In
7, we can use either a predicate true of this person in w, which is the adjective
female, making a de re statement, or a predicate true of it in Richard’s belief
worlds w′, which is male, thus making a de dicto statement. That contrasts with
the behavior of the gender restriction invoked by the pronouns in 4 and 5 which
has to be satisfied in the actual world.

Thus the properties of being a male or a female as such are not special in
any way, and are not responsible for the indexical nature of pronominal gender
presuppositions; what matters is not the choice of properties, but the way they
are introduced. When those properties are introduced by the gender features of
anaphoric pronouns, then they are indexically presupposed.

We conclude that [Cooper, 1983] was wrong when he argued that the be-
havior of presuppositions induced by bound and free pronouns is different. In
fact, bound pronouns show the same indexical presupposition behavior as free
pronouns: their presupposition can be satisfied only in the actual world.

Another conclusion to draw from Scenario 1 and 4-5 is that it does not matter
whether we have a pronoun syntactically bound by a c-commanding antecedent,
or a pronoun which is coreferent to some non-c-commanding DP. In what fol-
lows I will assume there is no significant distinction between the two kinds of
antecedents, and will not include the examples testing this distinction into the
paradigms.

Cooper’s own characterization of what indexical presuppositions do is simple:
he argues they must be satisfied in the actual world. However, Cooper reports

278 I. Yanovich

only a very limited set of examples probing the behavior of indexical presuppo-
sitions. Let’s take a look at what happens when we embed pronouns.

The simplest possible case which shows that satisfaction conditions are more
complex is the case of talking about an imaginary individual:

Scenario 4. Beth knows that Andrew, a music teacher, does not have any stu-
dents at the moment, but Andrew himself mistakenly thinks that he has one girl
student. It is then possible to refer to this imaginary female student of Andrew’s
with a feminine pronoun:

(8) Beth: According to Andrew, [his student]1 always tries hard to reach
her1/ *his1 goals.

Scenario 4 shows that if the referent does not exist in the actual world, we are
allowed to use a pronoun with a gender feature as long as that feature matches
the gender property of the individual in the non-actual set of worlds W ′. It
may seem to be quite a natural state of affairs, but the facts might have been
different: it might have been that for fictional individuals we would be able to
use pronouns of either gender, or that we would not be able to use a pronoun
with a gender feature at all.

In fact, one of those two alternative way of how things might have been is
predicted by Cooper’s account of indexical presuppositions, which says they can
be satisfied only by an actual-world property. But either no property can hold
of an individual in a world where that individual does not exist, or all properties
are true there.

So the observation just reported is not trivial: the fact that we must use
in Scenario 4 a gendered pronoun with a gender feature matching the gender
property in Andrew’s belief worlds means that Cooper’s characterization of the
behavior of indexical presuppositions is wrong. If the referent does not exist in
the actual world, we have to choose a feature agreeing with its gender in some
other set of worlds.

We have seen in Scenario 1 what happens when the referent exists in the
actual world, but someone mistakenly believes it is of different gender than it
actually is: the actual-world gender wins. The same holds if we compare the
gender of some individual in two sets of non-actual worlds embedded one under
another:

Scenario 5. 1. Just as in 4, Andrew the music teacher does not have any stu-
dents at the moment, and he knows that.
2. Beth’s beliefs about how the world is (w′): Andrew has a boy student.
3. Beth’s beliefs about Andrew’s beliefs (w′′): Andrew has a girl student.

So according to Beth, Andrew mistakenly thinks that his student is a girl,
though it is a boy in Beth’s own beliefs.

(9) a. OK Beth believes that Andrew trusts [his student]7 so much that he
allows him7 to play his violin.

On the Nature and Formal Analysis of Indexical Presuppositions 279

b. * Beth believes that Andrew trusts [his student]7 so much that he
allows her7 to play his violin2.

The winner is the set of worlds which is as close in the chain of accessibility
relations to the actual world as possible (in simplest, and most frequent, cases
this role is given to the actual world itself.) That generalization is more far-
reaching than our data directly support: we have not checked what will happen
in cases of deeper embedding. But first, it is already very hard to get the relevant
judgements even for the cases like those in Scenario 5 above, with just two
levels of embedding; the deeper we go, the harder it becomes. Secondly, it is
hardly possible that the grammar could treat the cases of one-level and two-level
embedding in one way, while cases of, say, four-level embedding in a completely
different manner. That is why it is fairly safe to assume the most general form of
the rule: only the gender property in the least embedded set of worlds matters.

What happens if the individual is actual, but its gender is unknown (that is,
is different in different epistemic alternatives of the speaker)?

Scenario 6. The Russian name Sasha can belong both to a girl and to a boy.
Suppose that I plan to visit some old friends of mine who I have not met for
years. I know that they have a kid, and for some reason I want to bring some
present for that kid with me. I know the name of the kid, which is Sasha, but I
do not know whether it is a girl or a boy.

(10) Before I visit Sasha5 ’s parents, I want to buy a present for *him5 / *her5/
/?/OK [her or him]5 .

However, when we explicitly restrict Sasha’s gender by an if -clause, we can
successfully use pronouns with specific gender features:

(11) I am at the end of my wits. If Sasha1 is a boy, I should buy him1 a doll.
But if Sasha2 is a girl, I’d rather buy her2 a toy car.

Under the standard Kratzerian view on what conditional clauses contribute,
the if -clause “if Sasha is a boy” here explicitly restricts the current set of the
speaker’s epistemic alternatives W , producing W 1 ⊂ W , the set of those epis-
temic alternatives where Sasha is male. The matrix clause following that if -
clause is evaluated in this subset of W , and we can use the pronoun he. The
second if -clause restricts the evaluation domain to W 2 ⊂ W where Sasha is a
girl, in a similar manner. It is worth noting that if -clauses do not simply make
possible free use of whatever pronouns:

(12) *If Sasha1 is a boy, I should buy her1 a doll. *But if Sasha2 is a girl, I’d
rather buy him2 a toy car.

So we can use a corresponding gendered pronoun only when we restrict the
set of epistemic alternatives to a subset in which the gender is uniform.
2 Judgements for such sentences are very hard to get. But as long as English speakers

can process the sentences at all, the contrast clearly goes this way.

280 I. Yanovich

The following scenario shows that a counterfactual if -clause cannot override
the real-world gender property3; such cases fall into the same category with the
attitude verbs, as in Scenario 1.

Scenario 7. There is a kid named Sasha, and I know that Sasha is a girl.

(13) I will buy Sasha a toy train. Well, if Sasha were a boy, I would buy
*him/OKher a doll.

What distinguishes the use of if -clauses in 11 and 13 is that in 11 the if -
clauses select a subset of the set of worlds one of which may turn out to be
actual, while in 13 the if -clause selects a counterfactual set of worlds. Even
though we do not know in 11 which gender the kid actually belongs to when we
use the pronoun, the pronoun’s gender feature nevertheless has to correspond
to the gender property as it is in some of the possibly actual worlds under
consideration. But in 13, the kid is a girl in all possibly actual worlds, so in
line with our generalization that the least embedded set of worlds in which the
referent exists dictates the choice of the gender feature, the pronoun has to be
feminine.

The behavior of indexical presuppositions of pronouns bound by quantifiers
is essentially the same. However, they provide us with a new test case: we can
check what happens when the individuals a pronoun ranges over are of different
gender in some set of worlds (say, in the actual world).

Scenario 8. There are both female and male students at UMass Amherst.

(14) Every UMass student is content with {*her / *his / OK/? his or her /
OK/? their} grades.

When there are both male and female individuals in the domain of the quan-
tifier, it is not possible to use a pronoun like his or her. Only gender-neutral

3 In fact, the real picture is more complicated — though not because of the coun-

terfactual if -clause. Some speakers are consistently more likely to be sympathetic

to the use of a pronoun matching a non-actual gender in the presence of an overt

obviously gendered DP — even if the DP is non-referential, as in 13.

More generally, some people find acceptable certain uses of gendered pronouns

which do not match the actual world gender. My favorite theory about it at the

moment is that it is possible to construct counterparts in different world sets as

being crucially distinct individuals on a certain criterium. The usual rules of gender

presupposition satisfaction will not apply simply because there would be no real-

world counterpart of the imaginary individual in one sense. Cf. the following sentence,

to be interpreted against Scenario 1:

(1) [That man that Richard saw in [that woman I talked to yesterday]8]3 would

not, according to Richard, tell me what [he]3 really thinks.

On the Nature and Formal Analysis of Indexical Presuppositions 281

pronouns may be possible (which may include for some speakers his or her used
as gender-neutral, default pronouns4.)

Of course, it is possible to restrict the domain of quantification to just male
or just female individuals (which is in a sense parallel to restricting the relevant
worlds with if-clauses), and use pronouns with specific gender features, as in 15.
After that the domain of quantification will no longer be of mixed gender.

(15) Every male UMass student is content with his grades.

Scenario 9. Smith College, one of the Five Colleges of Western Massachusetts,
is a women’s college. Imagine that Smith has recently gone coed, but not every-
one knows about it yet, and Beth reads a letter to some newspaper by a Smith
alumna who thinks that Smith is still a women’s college. At the same time, Beth
already knows that Smith is coed now.

(16) Beth: *This alumna strongly believes it should be made an absolute
principle that every Smith College student meet her adviser at least
twice a week.

Beth cannot utter 16 in this situation (unless she consciously uses “she” as a
gender-neutral pronoun, cf. fn. 4.) The sentence carries a presupposition that
all Smith students are female according to Beth’s own beliefs, and since in her
beliefs Smith is coed, this presupposition can not be satisfied.

Thus cases when the quantification domain includes individuals of both gen-
ders behave similarly to the cases when the gender of a single referent is unknown:
only gender-neutral pronouns may be used without further restriction, and it is
not possible to override that by how things are in some embedded set of worlds.

The full set of generalizations about the occurrence and behavior of indexical
presuppositions is as follows:
4 How do we know that a pronoun is used as a “gender-neutral”? It is helpful that the

current range of acceptable English default gender patterns is varied: all variants of

the following sentence contain a default pronoun (obviously there are both female

and male students in the world, so the pronoun has to be default for the sentence

to make sense in our world.)

(1) [Every student]6 in the world wants to become better than

{his6/her6/their6/[her or his]6 } teachers.

Not all speakers find all variants shown in 1 acceptable, but each of the four is used

by some. This variability allows us to distinguish default gender use from normal, or

“proper” gender use: only in examples with such variability we have default usage,

as the same variants are not acceptable for cases like the following:

(2) a. [John’s son]6 wants to become better than {*her6 / * their6 / *[her or

his]6} teachers.

b. [Every girl]6 in our school wants to become better than {*his6 / */?? their6
/ *[her or his]6 } teachers.

282 I. Yanovich

(17) a. Free and bound pronouns behave alike: both induce indexical presup-
positions. Whether the antecedent c-commands the pronoun corefer-
ring with it does not matter.

b. It does not matter whether the antecedent is quantificational.
c. Indexical presuppositions may only be satisfied in the highest (=clos-

est to the actual world in the chain of embedding) set of worlds where
the individual of which the presupposition is predicated exists.

d. If the gender property is non-uniform across such a set, the presup-
position fails.

e. If it is possible to look only at a gender-uniform subset of a non-
uniform set of worlds (e.g., it is possible when we restrict the relevant
set of worlds with a realis if-clause), the presupposition is evaluated
only against that subset, and thus may be satisfied, though it would
be failed in the whole set.

As a final empirical remark, indexical presuppositions seems to be invoked not
only by pronominal gender features, but by other kinds of descriptive predicates
inside of definites:

(18) Beth believes that my dog is a unicorn. She also believes that {*the
unicorn / OK it / OKmy dog} is playing in the garden now.

(19) Beth believes there is a unicorn in the garden. OKShe also believes the
unicorn is grazing now.

Thus there might be nothing special about gender features: anaphoric pro-
nouns may be analyzed as concealed definite descriptions ([Elbourne, 2005],
a.o.), with their features being the predicative content, which is subject to the
general indexical presupposition rule.

2 Analysis: Three Alternative Theories

2.1 A Very Brief History of Indexicality

Cooper built his system on the Kaplanian distinction between indexicals, includ-
ing unbound anaphoric pronouns, and non-indexicals, including bound pronouns,
using a relatively straightforward double-indexing logic. It is important to note
that the double indexing was not the final point of the studies of time and world
dependencies in natural language (the two domains are largely parallel.) In the
tense domain, [Gabbay, 1974] argued that semantics has to keep track of all time
points introduced during evaluation of a sentence. [Saarinen, 1978] has proven
that natural language must have the power to have infinitely many time points
available for back reference. [Enç, 1981] has shown that nouns behave differ-
ently from verbs: roughly, they are evaluated at a time, but this time seems to
be contextually supplied, in a similar way assignment functions give values to

On the Nature and Formal Analysis of Indexical Presuppositions 283

free pronouns. [Cresswell, 1990] concludes that natural language is as expres-
sive as a language wit h explicit quantification over worlds, with the argument
transferrable to times.

It is thus quite obvious by now that a lot more expressive power is needed
than just keeping track of two points — the current evaluation point and the
actual point, be they times or worlds. To name just a few recent contributions
to the debate, [Schlenker, 2005] argues for complete symmetry between the do-
mains of individuals, times and worlds — and thus for explicit quantification
over times and worlds. [Kusumoto, 2005] argues for a relatively restricted tense
system where all predicates have time arguments, but not all of them have those
arguments represented in syntax. Only the ones present in syntax may be used
for subsequent reference, so the resulting system is somewhat less expressive
than a fully articulated explicit quantification system: the power of the logic is
essentially the same, but not all language expressions are allowed to use that
power. [Keshet, 2008] tries to find ways to restrict the system with free use of
world and time variables in a way which would prevent overgeneration. Thus the
main question of the debate, in a simplified form, is how we should restrict the
very expressive system which postulates covert world/time variables for every
predicate.

Note that the original result driving the Kaplanian distinction is lost in this
perspective. After it has become obvious that we need much more than just two
points to interpret our sentences at, linguists have become preoccupied with how
exactly those additional points are to be introduced and handled rather than in
the distinction between Kaplan’s contexts and circumstances. That is probably
a part of the sociological reason why Cooper’s treatment of free pronouns was
largely forgotten.

On the other hand, the empirical foundation of Kaplan’s two-way distinction
has been shattered as well when it was discovered that monsters actually exist,
both in understudied languages like Amharic and in less studied corners of En-
glish, [Schlenker, 2003], though non-shiftable indexicals, like the English I, are
also possible.

How does our data on gender in anaphoric pronouns fit into that general
picture? We see that both bound and unbound pronouns introduce non-trivial
restrictions, which can be called indexical, as they pertain to how the least
embedded relevant set of worlds is — which is close enough to the classical
indexicality, with the difference that not only the actual world matters. But
this indexicality of the presuppositions is not straightforwardly related to the
Kaplanian indexicality of reference for special lexical elements. In a world where
Kaplanian indexicality is actually not quite hard-wired into the interpretation of
language, which is close to our world, as the monster data suggest, this finding
is not surprising.

The question then is what kind of expressive power we need to capture the
indexical presuppositions. The next section sketches several possible alternatives.

284 I. Yanovich

2.2 Three Stabs at the Account

Theory 1: Copy the antecedent’s world argument. Imagine a theory of
predicates within pronouns following the spirit of [Percus, 2000] for DP-internal
predicates. Suppose we have world indices on the predicates of the antecedents
and on pronouns themselves, too. Suppose also the pronoun copies its world
argument from the antecedent — that would be one of the principles of the
binding theory for indices.

There is no complex procedure of searching the right index here, and thus the
main question this theory immediately raises is whether it can be made adequate
empirically.

Theory 2: Constraining the resolution of the world variable. Imag-
ine a different kind of system where pronouns do not copy anything from their
antecedents, but instead it is required that the world arguments of indexically
presupposed predicates be resolved to the highest possible of world variables,
where “possible” means that the resulting extensional predicate will not be triv-
ially false or true. (In other words, if an index is “possible”, it means that the
referent must exist at that index.)

This looks nice, but requires a lot of expressive power and inter-modular
interaction. Here is how the constraining mechanism will work:

We take the individual the pronoun refers to and check if it exists at the actual
world. If yes, we use the actual world as the world argument. If not, we go one
step of embedding lower and check if that individual exists at all worlds of that
level of embedding. If yes, we use the variable name bound by the quantifier over
those worlds; if not, we repeat the same step, going yet further down.

To be able to do that, the module which executes this procedure must be able
to access both world variable names, the syntactic structure of the sentence (and
read off it the embedding structure between sets of worlds), and, crucially, the
model against which it needs to check the existence of that individual.

It is useful to compare Theory 2 with the procedure of presupposition resolu-
tion used in the Binding Theory of presuppositions in DRT, [van der Sandt, 1992],
[Geurts, 1999]. The DRT procedure takes a condition or a referent marked as be-
ing presupposed and pushes it towards the matrix DRS one step at a time. If at
some point the presupposition can be identified with some conditions and referents
already present in the structure, we resolve it to them, and stop: the presupposi-
tion is bound now. If we do not find such a binder, we need to accommodate the
presupposition into the DRS, and we simply change its status from presupposed
to asserted. We do that in the top-to-bottom manner, since after we checked for
all possible binders, we find ourself in the highest DRS.

There are certain similarities between the two procedures: both privilege the
top DRS, and involve, at least in a certain sense, movement from the bottom to
the top, and then possibly back again. But differences are serious: first, indexical
presuppositions can never be bound; second, for regular presuppositions global
accommodation is just a preference, but the principle guiding the resolution
of indexical presuppositions is absolute; finally, the presupposition resolution

On the Nature and Formal Analysis of Indexical Presuppositions 285

procedure does not need to check the model — it remains strictly syntactic, on
the level of the syntax of DRS-s, but the indexical presupposition procedure does
need to check the actual model to determine where the presupposition should
end up.

Theory 3: A rich structure of worlds under discussion. An alternative
is to shift all the work to the semantics. Indexical presuppositions will be simple
unifofof rm operators, but our translation logic will be flexible enough to allow them
to be interpreted in the right way.

To build such a system, called Enriched Indexicality (EI), we replace the
world evaluation parameter with a new, richer evaluation parameter containing
a complex structure , which can be thought of as the “map” of worlds un-
der discussion. This “map” is, fofof rmally speaking, a foa foa f rest with the epistemic
alternatives of the speaker as the roots, plus a pointer to some node(s) which
is (are) “current”. is essentially the point-generated rooted submodel of the
propositional modal logic underlying our translation logic.

Note that the same world w1 may appear many times in . So it is more
appropriate to use pointers to worlds in — “addresses” of nodes in — rather
than of worlds. Given a pointer, we can easily find the world which occupies that
address, but the reverse is not true. The contents of a pointer — the world which
is stored at the node — is denoted by ∗p fofof r a pointer p.

The world corresponding to the current world in the standard semantics is
given by an internal pointer .cr (cr from “current”), which is always defined.
We caWe caW n think about it as if one of the nodes in is red color, and all other nodes
are black. This red node corresponds to the current world in the usual semantic
systems. If we only use the world sitting in .cr, and make no use of the rest of
the structure, that would be the same as if we used usual semantics. So usual
semantic systems are special cases of our new one.

Starting from some world inside of , we can always reach the root of the tree
in which that world resides simply going in steps each of which takes us from
some world to its parent. We ca. We ca. W n define a natural preorder relation on worlds in

: w1 � w2 iff we pass through w1 when we go from w2 up to the root in .
The purphe purpose of is to represent the sets of worlds introduced by intensional

operators in such a way that all members of some set introduced by a more
embedded operator would be situated on the same level, and also farther from
the roots of their trees than members of other sets introduced by operators on
top.

To ensure that is such an “accurate map”, we need to have meaning postu-
lates guaranteeing a proper building procedure. While only intensional operators
themselves know enough to add the relevant worlds to the structure, we should
constrain their freedom of modifyinfyinf g . E.g., we do not want some operators
erasing all the content of , or replacing it with some totally unrelated stuff.

We crucWe crucW ially distinguish between new quantifiers over worlds (like attitude
verbs) and restrictors (like realis if -clauses). The first type adds a new layer
of worlds to the map. The second type erases some part of the lowest level of
worlds from the structure, leaving just a subset of them in it.

286 I. Yanovich

For expository reasons, we present “translation” instructions fos fos f r converting
usual semantics into our semantics rather than define the new semantics from
the scratch.

First we define some notational sugar to make our life simpler:

(20) Augmenting :
Let + W , where W is a set of worlds, denote the result of adding all
worlds in W as daughter nodes to the node .cr.

(21) Changing the current world in :
Let [p[p[], where p is a pointer to some node in , be exactly the same as

except that [p[p[].cr = p.

(22) Taking the daughter set of the current world in :
If p is a pointer to a node in some , let dtr(p) denote a set of pointers
to all daughter nodes of p.
More fore fore f rmally, dtr(p) = def {w| .cr � w ∧ ¬∃w′ : (.cr � w′ ∧w′ � w)}

(23) Redefining world-dependence:
If there is a meaning Q(w) in (your favorite) usual semantics which de-
notes some expression dependent on world w, then in the corresponding
Enriched Indexicality theory Q() is defined and is true whenever Q is
true in ∗(.cr).

(24) Functional Application normally passes the argument intact:
The default interpretation rule foe foe f r �α(β)� is: �α(β)� = �α� (�β�)

Now consider some/your favorite “standard” meaning of a first-kind inten-
sional operator Op of type 〈st,st〉, having the following the following the f g general fofof rm5:

(25) λQ.λw.{w′|w′ ∈ accOp(w)} ξ {w′′|w′′ ∈ accOp(w)∧Q(w′′)}, where accOp

is the accessibility relation returning a set of worlds accessible by some
measure of accessibility from the world w; Q is the propositional argu-
ment of Op; ξ denotes the relation between the set of worlds accOp(w)
and its intersection with the set of worlds where the proposition P is
true.

This is a general fofof rmat format format f r expressing a relation ξ between two sets of possible
worlds: the whole set of worlds accessible from some w and its intersection with
the set of worlds in which some proposition Q is true. In the case of a universal
modal, ξ would be identity; in the case of an existential model, ξ would be
the relation of having a non-empty intersection; and so fofof rth, if we need more
relations.

5 This is an oversimplified picture of what such operators may be; e.g., a good case

can be made that some attitude verbs take into account an ordering on the worlds

they quantify over, not only the set as such, like in Heim’s analysis of want. However,

once we have dealt with an oversimplified version in the text, it is easy to treat more

realistic cases in the same way.

On the Nature and Formal Analysis of Indexical Presuppositions 287

We make tWe make te make tW wo changes to this entry in 25 to adapt it to our EI system: first,
its argument will no longer be w, it will be instead. The world ∗(.cr) will be
used instead of w where we need contingency upon what the current world is.
In effectffectectff , accOp() is the same thing as accOp(w) was: both essentially return
the set of worlds accessible by some measure from the current evaluation world.
It is just that accOp() contains much more infofoof rmation than needed foeeded fooeeded f r this
simple task.

Secondly, we will not simply evaluate Q in the individual worlds from
accOp(), the set of worlds accessible from w. We. Wee. W will supply Q with an aug-
mented version of obtained by adding all worlds in accOp() to . So unlike
in standard intentional semantics when we simply pass an individual world to an
expression in the scope of an intentional operator, in the EI system we pass down
the infofoof rmation about the whole chain of possible world embedding recorded in

as well. The differeiffereereiff nce is thus that, again, we pass down a lot of infofoof rmation
unnecessary fofoof r the evaluation under normal circumstances.

This is how we do that: (+ accOp()) is such ′ where all the members
of the set accOp() — the set of worlds accessible from the current evaluation
world in — have been added as daughters of the node .cr, the node pointing
to the current evaluation world.

To determine which worlds will be specific evaluation parameters, we restrict
our attention to such pointers p that point to one of the daughter nodes we have
just added — we single them out with dtr(′.cr). Then we check whether Q is
true in those worlds, by supplying it with (+ accOp())[p))[pp))[] — the augmented
structure we just built, but with the current world in it shifted to p, where p
points to one of the newly added nodes.

To make the result more readable, let’s define ′ = (+accOp()) (note that
the current world of and ′ is the same). The new meaning then is:

(26) λQ.λ .{w′|w′ ∈ accOp()} ξ
{w′′|w′′ ∈ accOp() ∧ ∃p ∈ ′ : p ∈ dtr(′.cr) ∧ ∗p = w′′ ∧Q(′[p[pp[])}

The second set of worlds w′′ contains such worlds which are pointed to by the
daughter nodes of the current world in ′ — that is, it contains only the worlds
from accOp(); furthermore, w′′ is containing only those such worlds in which
Q is true — this is what Q(′[p[pp[]) says.

How to apply similar transfosfoosf rmations to standard meanings in order to get
EI meanings fogs foogs f r other kinds of intensional operators is straightfoorward, and we
omit them (with the exception of if -clauses, to which we return later.)

Despite the fact that the meaning in 26 looks more complex, it is actually
equivalent to the old meaning in 25 in cases when Q only pays attention to what
the current world of ′[p[pp[] is and ignores the rest of the structure. Our innovation,
thus, allows us to preserve as much of the usual semantics as we want. The new
part here is that we can also utilize the extra infofoof rmation contained in when
evaluating Q. And that is exactly what we will do to account fot foot f r pronominal
indexical presuppositions.

Note that our system fostem foostem f r augmenting is static, not dynamic. We ma. We mae ma. W nipulate
the parameter we pass down to an embedded constituent, but the result of that

288 I. YaYaaY novich

manipulation is accessible only in that constituent. Whatever we do to , that
does not change the contexts of other constituents. Of course, it is possible to
build a dynamic theory where that will not be so, but indexical presuppositions
can be accounted fofoof r in a completely static setting.

It is usefuul to show how the evaluation structure will look like fofoof r a con-
stituent under several levels of embedding. Suppose we have two levels of em-
bedding, one that introduces w′ worlds, and another one which introduces a
set of w′′ worlds fofoof r each w′ world (so fofoof r w′

1 there will be a set W ′′
1 , and

so fofoof rth.) Consider a proposition evaluated in the most local, w′′ context, such
as Q =the parroot talked to Maary in Ann said that her sister thinks the parroot
talked to Maary. FoFooF r the whole sentence to be true, Q must be true in any w′′

world, under each w′ branch. At any w′′-world where we check the truth of that
proposition, through the current we have access to: 1) this w′′ world itself (it
will be given by .cr); 2) to the whole set of W ′′ worlds, as they are already
in ; 3) to the w′-world creating the current branch — it will be the parent of

.cr; 4) to the wh ole W ′ set — it is all worlds of the same embedding level as
the w′-parent; 5) to the root world w (the actual world). There is, however, no
access to other w′′ sets, branching frfrrf om diffeffeeff rent w′ worlds.

w′
1

������ W ′′
1

w′′
2 .1

w ������

���

��������
�����

�����
�����

�����
�����

�����
����� w′

2
�����������
���������������������������� ��� ����������� ��������������������������

���������������������������� ��� ����������� �������������������������� w′′
2 .2

w′′
2 .3

w′
3

������������ W ′′
3

Let a special predicate lives(a)(w) which is true iff individual a is in the
domain of individuals existing in world w. Let level(p)() be the set of all nodes
in which have the same number of nodes between them and the roots of their
trees as p has.

Having prepared those simple devices, we add a new operator of the EI logic
� which will introduce indexical presuppositions. � takes a predicate P and
an individual b. b is returned if the check � perfofoof rms is successfuul. P is the
indexically presupposed predicate. � checks if the presupposition corresponding
to P is satisfied in the current , and if it is not, returns undefinedness.

(27) �(P 〈e,t〉)(be) is defined as be w.r.t. , iff
∃p1 : ∀p∀pp∀ 2 ∈ level(p1)() : lives(b)(∗p2) ∧
∧ ¬∃p3 : (p3 � p2 ∧ lives(b)(∗p3)) ∧
∧ P (b)(∗p2),
undefined otherwise

27 looks fofoof r a set of worlds on the same level of embedding level(w1)()
such that b lives at all of those worlds (lives(b)(∗p2)), and does not live in
any of the parent worlds of those worlds (¬∃p3 : (p3 � p2 ∧ lives(b)(∗p3))).

On the Nature and Formal Analysis of Indexical Presuppositions 289

The existential quantification over p1 is essentially existential quantification over
levels. If there is no such a level at all of the world of which b lives, the whole
fofoof rmula is false, and the operator is undefined. If there is such a set, then �
checks whether at each of those worlds P holds of b (P (b)(∗p2)). If yes, the
indexical presupposition is satisfied. If not, we get the presupposition failure.

Thus there are two ways to fail an indexical presupposition: first, there may
be no such a set of worlds of the same embedding that an individual lives at all
of them; second, if that individual does not satisfysfyysf the indexically presupposed
property in the highest of such sets of worlds, the presupposition also fails.

The meanings fogs foogs f r gender features will be simple, as the real presuppositional
work is done by the satisfaction properties of �. If we believe in featural decom-
position, we may use the semantics focs foocs f r the gender feature as in 28; the result is
supposed to look very much like 29 (except that we omit the semantics of the
other features from it.)

(28) �[fem]� = λxe .(�(λy.female(y))(x))e
(29) �she� = (�(λy.female(y))(x))e

� straightfoorwardly captures our generalizations fos foos f r the intensional opera-
tors of the first kind, like attitude verbs; fofoof r if-if--if clauses, another operation of
modification, a deletion operation should apply:

(30) Let ∩W be exactly like except that all the worlds on the leaves of
which are not in the set W are deleted from the structure. In other

words, ∩W purges all non-W worlds from the lowest level of .

(31) �if(P 〈s,t〉)(Q〈s,t〉)� = Q(∩ (λw.P (w)))

The prediction this meaning makes, taken together with �, matches the data:
the worlds remaining after the deletion are at the same level as the whole set
was, and the purged worlds are simply not seen. So Q will not even know that
the gender was non-unifofoof rm in the first place. Of course, it remains to be seen
if this analysis works well fofoof r the semantics of if-f--f clauses as such or not.

EI is cast in a static setting, but at the same time uses a very rich notion
of context of evaluation; instead of the traditional use of a single world as an
evaluation parameter we use a very complex structure over possible worlds. The
crucial differeiffereereiff nce between that kind of rich context and the dynamic notion of
context is that in the static EI the changes to evaluation parameters are not
seen outside the constituent where they are made. In other words, there is no
transparency: e.g., the interpretation of the first conjunct does not (have to)
affect theffect theect theff interpretation of the second. All richness of context is passed from the
top to the bottom, but not sideways.

If there are no indexical presuppositions present, the EI theory is equivalent to
the standard semantics that was the base to which EI was added: the definitions
fofoof r EI we have given were foere fooere f rmulated as translation instructions fos foos f r modification
of an existing semantic system. We ca. We cae ca. W n think of the EI theory as of an extra
module added to an otherwise standard theory in order to account fot foot f r a part of
the data.

290 I. Yanovich

2.3 Testing the Three Theories

We consider two crucial test cases. First, recall 16. For Theories 2 and 3, the
result is straightforward: they directly say that the actual world gender should
win. For Theory 1, it is more complicated: since it says that pronouns copy the
world argument of their antecedents, to get the pronoun’s feature interpreted at
the actual world we need to assume that the antecedent is interpreted de re.

At first sight that seems to be a disastrous prediction: why would a quantified
DP have to be interpreted de re? But a closer examination reveals that Theories
2 and 3 in fact also need the antecedent to be read de re:

Suppose that the alumna does not have wrong beliefs about anyone’s gender,
she only does not necessarily know who are current Smith students. Since she
thinks Smith is a woman college, there will only be female Smith students in her
belief worlds, and by our assumption, they are female also in the actual world.

Then what Theories 2 and 3 predict is that the presupposition requires each
person who is a Smith College student in the alumna’s worlds to be female in
the actual world. But all such persons are female, by our assumption. Then the
presupposition is satisfied even if Smith is actually coed: all that matters is which
gender the individuals who may be students according to the alumna are.

So if we allow every Smith College student to be read de dicto in 16, Theories 2
and 3 make wrong predictions. They would make the right ones if we require the
de re interpretation of the antecedent, but then Theory 1 will do equally well. The
requirement itself remains surprising and unusual, and should be investigated
further, but it does not tease different theories apart.

The second test case involves if -clauses. Recall 11. Theory 1 says that we
must simply copy the world argument from the antecedent to the presupposed
gender feature. The antecedent in both cases is Sasha, and in order to get the
pronouns right, we must suppose that the if -clauses must introduce a new world
variable, and that Sasha has to be interpreted de dicto in both if -clauses. Then
we will get the results right. This looks somewhat suspicious: for the previous
test case, Theory 1 had to assume obligatory de re interpretation, and here with
if-clauses it has to have de dicto.

For Theory 3, on the other hand, this case does not present any substantial
difficulty — we have sketched above in section 2.2 what the account would look
like. For Theory 2, a parallel account treating if -clauses in a different way from
other intensional operators should probably be possible, though it has to be
spelled out first in order to judge it.

2.4 Relative Merits of the Three Theories

The conclusion is that it is now hard to say with certainty which of the three ways
to go outlined above is better. Theory 1 seems to be somewhat more restrictive,
but also requires non-trivial assumptions about what should be interpreted de
re and de dicto. While its requirements in the case of 16 are essential for the
two other theories, the obligatory de dicto reading in 11 seems to be a genuine
problem, as well as the conflict between the two requirements.

On the Nature and Formal Analysis of Indexical Presuppositions 291

Theories 2 and 3 are both more complex, and are equivalent empirically as far
as our data is concerned. However, while Theory 3 uses only semantics, Theory 2
crucially requires non-trivial interaction between different modules of grammar,
and thus is less restrictive. As for Theory 3, the operation we need to account for
indexical presuppositions uses only a small part of the possibilities which the use
of evaluation trees offers. It remains to be investigated whether there are other
linguistic phenomena that can receive natural explanation in the EI framework,
and/or whether the power of EI can be successfully restricted; but so far this
theory seems to be the best bet.

References

[Cooper, 1983] Cooper, R.: Quantification and Syntactic Theory. Studies in Linguistics

and Philosophy, vol. 21. Reidel, Dordrecht (1983)

[Cresswell, 1990] Cresswell, M.: Entities and Indices. Kluwer, Dordrecht (1990)

[Elbourne, 2005] Elbourne, P.: Situations and individuals. MIT Press, Cambridge

(2005)

[Enç, 1981] Enç, M.: Tense without Scope: An Analysis of Nouns as Indexicals. PhD

thesis, University of Wisconsin (1981)

[Gabbay, 1974] Gabbay, D.M.: Tense logics and the tenses in english. In: Moravcsik,

J. (ed.) Logic and Philosophy for Linguists, Mouton, The Hague (1974)

[Geurts, 1999] Geurts, B.: Presuppositions and Pronouns. Elsevier, Oxford (1999)

[Kamp, 1971] Kamp, H.: Formal properties of “now”. Theoria 37, 227–273 (1971)

[Kaplan, 1989] Kaplan, D.: Demonstratives. In: Almog, J., Perry, J., Wettstein, H.

(eds.) Themes from Kaplan. Oxford University Press, Oxford (1989)

[Keshet, 2008] Keshet, E.: Good Intensions: Paving Two Roads to a Theory of the De

re/De dicto Distinction. PhD thesis, MIT (2008)

[Kusumoto, 2005] Kusumoto, K.: On the quantification over times in natural language.

Natural Language Semantics 13, 317–357 (2005)

[Percus, 2000] Percus, O.: Constraints on some other variables in syntax. Natural Lan-

guage Semantics 8, 173–229 (2000)

[Saarinen, 1978] Saarinen, E.: Backward-looking operators in tense logic and in natural

language. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical

and Philosophical Logic, pp. 341–367. Reidel, Dordrecht (1978)

[Schlenker, 2003] Schlenker, P.: A plea for monsters. Linguistics and Philosophy 26,

29–120 (2003)

[Schlenker, 2005] Schlenker, P.: Ontological symmetry in language: A brief manifesto.

Mind and Language 21(4), 504–539 (2005)

[van der Sandt, 1992] van der Sandt, R.: Presupposition projection as anaphora reso-

lution. Journal of Semantics 9, 333–377 (1992)

[Vlach, 1973] Vlach, F.: ‘Now’ and ‘Then’: A Formal Study in the Logic of Tense

Anaphora. PhD thesis, University of California, Los Angeles (1973)

Non-standard Uses of German 1st Person
Singular Pronouns�

Sarah Zobel

Georg-August Universität Göttingen, 37073 Göttingen, Germany

szobel@gwdg.de

Abstract. The purpose of this paper is to shed light on a phenomenon

concerning the German first person singular pronoun ich which chal-

lenges the standard view on the semantics of first person singular pro-

nouns, i.e. that they are always speaker-referential. The presented data

shows a non-standard use of first person singular ich which I analyze to

have a similar semantics to the German impersonal (generic) pronoun

man. The analysis for non-standard ich is shown to be modifiable to also

model the deictic use of ich. Finally, I bring up some related problems

that merit further investigation.

1 Introduction

The purpose of this paper is to shed light on a phenomenon concerning the
German first person singular pronoun ich which challenges the standard view
that the semantics of first person singular pronouns is as in (1).

(1) �pronoun1PSg�c = cS where cS is the speaker of the context c1

The core of the standard semantics is - in short - that a first person singu-
lar pronoun expresses speaker-referentiality. Keeping this in mind, consider the
colloquial German data in (2) and (3).

(2) Wenn
if

ich
I

als
as

Mannschaft
team

gewinnen
win.inf

will,
want

dann
then

muss
must

ich
I

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

(3) Ich
I

muss
must

als
as

Fußballnation
soccer-nation

eine
a

solche
such

Mannschaft
team

dominieren
dominate

können.
can

� I thank Dirk Buschbom, Eva Csipak, Ilaria Frana, Magdalena Schwager and Arnim

von Stechow for their comments on various versions of this paper. Thanks also go

to Thomas Graf for discussions on the data. All mistakes are of course my own.
1 Malamud [17] explicitly assumes the standard semantics in (1). Kratzer [10] proposes

that first person singular pronouns are composed from the two meaningful features

[1st] and [singular], which also amounts to saying that first person singular pronouns

refer to a unique speaker of a context.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 292–311, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Non-standard Uses of German 1st Person Singular Pronouns 293

Even though both sentences2 include the German first person singular pro-
noun ich, neither of them can be understood as talking about the speakers
directly (obviously neither of the two speakers thinks of himself as a soccer team
or soccer nation). The only sensible interpretations possible for (2) and (3) are
paraphrased in (4) and (5) respectively. I will call these paraphrases the non-
standard readings of the sentences. An occurrence of ich in a sentence with a
non-standard reading is said to be in its non-standard use.

(4) If (one as) a team wants to win, then one/they has/have to enter the field
motivated.

(5) (The national team of) a “soccer nation” (i.e. a nation known for being
good at soccer) has to be able to have the upper hand over a (contextually
salient) team (eine solche Mannschaft).

Interestingly, neither (4) nor (5) talks about the speaker even though (2) and
(3) contain tokens of the first person singular pronoun ich.

This paper attempts to answer the following questions: What is the semantic
contribution of ich in the non-standard readings? Does this new data provide
enough reasons to discard the standard semantics in (1)?

The paper is organised as follows. In Sect. 2, I present a possible analysis of
the data and show why it should not be pursued. Section 3 offers a detailed
data discussion. In the fourth section, I give a purely semantic formalization of
the non-standard use for ich. I show that the proposed meaning for the non-
standard use can be easily modified to capture the semantics of the standard
speaker-referential use of ich. Section 5 concludes.

2 A Counterfactual Analysis?

Before I provide an in-depth data discussion of the non-standard uses of German
ich (cf. Sect. 3), I argue against a treatment in terms of what I will call the
counterfactual hypothesis. The starting point of the counterfactual hypothesis is
to assume that (2) and (3) are in fact hidden counterfactuals with a meaning
similar to the English counterfactuals given in (6-a) and (6-b). The rationale for
this assumption is that by analyzing (2) and (3) as counterfactuals one could
retain the standard semantics for ich.

(6) a. If I were a team and wanted to win, I would have to enter the field
motivated.

b. If I were a soccer nation, I would have to be able to have the upper
hand over a team (of a contextually salient kind).

2 Both pieces of data were taken with small modifications from discussions on

the internet. (2) was taken from http://www.welt.de/print-welt/article532778/

Schlechte Argumente fuer den Aufnahmeantrag an die G 14.html and (3) from

http://www.rp-online.de/public/article/sport/fussball/nationalelf/wm/744344/

Die-deutsche-Mannschaft-muss-sich-steigern.html

294 S. Zobel

However, there are at least three reasons why such an analysis should not be
pursued.

First, consider (3). In contrast to example (2), the sentence in (3) is not an
overt conditional. One would have to stipulate a covert if -clause that includes
parts of the matrix clause, namely the als-phrase. In addition to that, the als-
phrase would have to be analysed in both sentences as expressing non-factive
predication. This is at odds with Jäger’s [8] argument that als-phrases in this
use contribute a factive, presupposition-like meaning.3

Second, example (2) is an indicative anankastic conditional (cf. [4]). Indicative
mood in conditionals, as Stalnaker [27] observed, implies non-counterfactuality.
Therefore, the mood of the verb can not contribute counterfactuality. In fact,
there is no obvious part that could.

Third, the non-standard reading is actually unavailable for overt German
counterfactuals.

(7) ?Wenn
if

ich
I

als
as

Mannschaft
team

gewinnen
win

wollen
want

würde,
would.konj,

dann
then

müsste
must.konj

ich
I

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

The German counterfactual in (7), which is the explicitly counterfactual version
of the indicative conditional in (2), can only be understood in the marked context
where the speaker alone constitutes a team: If I as a team would want to win,
then I would have to enter the field motivated. So, overt counterfactuality actually
blocks the non-standard reading that the counterfactual analysis is trying to
draw on.4

However, counterfactuals with als-phrases containing semantically plural nouns
like Mannschaft (team) do not always require marked contexts, as is illustrated by
the following example taken from another soccer fanpage.

(8) Wenn
if

ich
I

das
that

als
as

Mannschaft
team

von
of

PSG
Paris-St-Germain

mitbekommen
noticed

hätte,
had.konj,

wäre
would.konj

ich,
I

glaube
guess

ich,
I

aus
out-of

Protest
protest

nicht
not

angetreten.
played

3 Apart from this fact, the als-phrase can not be reanalysed to contribute counter-

factuality since it is optional and not required for a sentence to get a non-standard

reading (see Sect. 3.4).
4 It was suggested to me that this is not a good argument against the counterfactual

hypothesis if one assumes that the counterfactuality is brought in by the pronoun

itself. If that is the case, an overt counterfactual would contain an embedded counter-

factual element. This stacking of counterfactuality could then be seen as the reason

for the unavailability of the non-standard reading. Putting the counterfactuality in-

side the first person pronoun, however, takes away the initial motivation to pursue

the counterfactual hypothesis in the first place, i.e. to retain the standard meaning

for the indexical.

Non-standard Uses of German 1st Person Singular Pronouns 295

’If I had been the team of Paris St. Germain and had noticed what was
going on, then, I guess, I wouldn’t have played out of protest.’5

An in-depth exploration of why sentence (7) seems more marked than example
(8) is out of the scope of this paper. As a first idea, the reason for (7) to be less
acceptable is that it is impossible for the speaker as a single individual to win
a soccer game. In example (8), on the other hand, the predicate mitbekommen
(’notice’) is also compatible with the speaker as a semantically singular subject.6

3 Data Discussion

3.1 Putting Things into Context

In order to get a feeling for the meaning and the use of sentences with a non-
standard reading, it is important to take a close look at the contexts in which
such examples surface. Out of the blue, the sentences (2) and (3) are very odd. It
seems that, without the appropriate context, one prefers to interpret ich speaker-
referentially.

The following two scenarios are constructed contexts that “trigger” the non-
standard readings of (2) and (3).

Scenario 1: Imagine you are a soccer expert who is often consulted to evaluate
games on TV. In the match you have just seen, the team that lost played weakly
from the beginning since the players were obviously not motivated. During the
evaluation of the game, the interviewer asks for your opinion as to why this team
lost. You consider it entirely obvious what went wrong during that match. So,
you answer the interviewer’s question by uttering (9) (repeats (2)).

(9) Naja,
well

wenn
if

ich
I

als
as

Mannschaft
team

gewinnen
win.inf

will,
want

dann
then

muss
must

ich
I

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

’Well, if (one as) a team wants to win, then one/they has/have to enter
the field motivated.’

Scenario 2: Imagine again that you are a soccer expert. This time you are asked
to evaluate an international match: Germany against Faroe Islands. Embarrass-
ingly, Germany only won by 1-0. Right before the evaluation starts, you hear an
interview with the coach of the German national team, who says that he is quite
content with the his team’s performance. You can not believe that the coach
could be content with such a weak performance in light of the expectations that
are usually placed on a national team of a country known to be good at soccer.
So, when the interviewer asks you during the evaluation whether you share the
coach’s opinion on the match, you answer with (10) (repeats (3)).

5 http://www.roteteufel.de/archive/index.php/t-24375.html
6 I thank Magdalena Schwager (p.c.) for suggesting this line of argument to me.

296 S. Zobel

(10) Nein,
no,

ich
I

muss
must

als
as

Fußballnation
soccer-nation

eine
a

solche
such

Mannschaft
team

dominieren
dominate

können.
can
’No, (the national team of) a “soccer nation” has to be able to have
the upper hand over a team (of a contextually salient kind; eine solche
Mannschaft).’

The two scenarios highlight the stance the speaker takes with respect to the
interviewer’s questions about the matches. In both scenarios, the use of ich in
the answer signals that the opinion expressed is something that the speaker
thinks is (or should be) unobjectionable.

What further corroborates the idea that the speaker considers the expressed
proposition unobjectionable is the possible co-occurrence of the discourse particle
doch. In the literature, this discourse particle has been analyzed as signaling a
contradiction or inconsistency between two propositions (cf. for example [5], [7]
and [16]).

Gast [5] argues that doch has the following two characteristic features: First,
a proposition p containing doch is taken for granted by the speaker who also ex-
pects the addressee to take it for granted. And second, the speaker assumes that
the addressee takes ¬p for granted. Adopting a dynamic system in the tradition
of Heim [6], he proposes that a sentence containing doch is used to eliminate
contradictions from an input context to give a consistent output context.

In the data sample I collected for non-standard ich, doch occurs frequently
and is in principle compatible with all of the collected examples. The data in
(11), (12) and (14) in the following section show the compatibility of doch with
non-standard ich.

(11) Ich
I

find
think

das
that

ist
is

ein
a

total
absolutely

doofes
dumb

Argument!
argument

Ich
I

kann
can

doch
DOCH

als
as

Brautpaar
bridal-couple

nicht
not

von
from

meinen
my

Gästen
guests

erwarten
expect

dass
that

sie
they

mir
me

quasi
more-or-less

die
the

Feier
party

finanzieren!
pay

’I think this is an absolutely dumb argument! The bridal couple can’t
expect their guests to more or less pay the party!’7

(12) Ich
I

kann
can

doch
DOCH

als
as

Schiedsrichter
referee

in
in

so
such

einer
a

Situation
situation

wie
like

vor
before

der
the

Halbzeit
half-time

keinen
no

Elfmeter
penalty

für
for

Siegen
Siegen

geben.
give

’A referee can’t give a penalty to Siegen in a situation as it occurred
right before the half time.’8

7 http://www.urbia.de/archiv/forum/th-2142726/Wieviel-Geld-zur-Hochzeit-

schenken.html
8 http://www.sportfreunde-siegen.de/content/view/893/16/

Non-standard Uses of German 1st Person Singular Pronouns 297

The second point demonstrated by the two scenarios is the “relation” between
the context and the utterance. One can distinguish between two types of context-
utterance pairs.

The first type is exemplified in (10). Scenario 2 provides a context for example
(10) in which the prejacent of the highest scoping modal (’muss ’) is not true,
i.e. the national team could not dominate the other team. This observation can
be generalized for all analogous examples.

Consider also example (12). This sentence was uttered after a soccer match
in which the referee gave a penalty shot to Siegen right before the half time.
The sentence in (12) contains a negated possibility modal which is logically
equivalent to a necessity modal taking a negated argument (¬♦φ ⇔ �¬φ). To
give an analogous description of the relation between context and utterance to
the one given for exmaple (10), one needs to consider the equivalent formulation
with the necessity modal. In this case, the prejacent of the necessity modal (¬φ)
is not true in the context. The same reasoning applies to (11).

For (9) and analogous examples the situation is even more complicated. Most
of the conditionals in the collected data contain a modal in the consequent. There
are, however, some examples where the consequent contains only an indicative
finite verb. This means that these two cases have to be differentiated9. Thus
for conditionals like (9) containing a modal, it has to be said that the prejacent
of the modal in the consequent is false in the context, whereas for conditionals
without a modal the consequent - as it is - is not true in the context. In the
case of (9), the team in scenario 1 was unmotivated from the beginning which
contradicts the prejacent, i.e. that the team enters the field motivated.

What has been said up until this point suggests that sentences containing
non-standard ich express an opinion or expectation of the speaker’s that has not
been met in the context. The criteria for “not having been met in the context”
are unfortunately hard to grasp. For the examples of the second type, it seems
to suffice that the speaker thinks that someone does not share his or her opinion.

Example (13), illustrating the second type, is taken from a forum discussion
about the political correctness of a funny/offensive mother’s day poem that was
intended as a joke (this is a sample of Austrian colloquial German). In the course
of the discussion, some commenters said they know that the poem is offensive
but they still find it funny, while others told their reasons for not finding it funny
at all, eg. example (13).

(13) Wenn
if

ich
I

als
as

Familie
family

die
the

Frau/Mutter
wife/mother

so
so-much

auslauge,
wear-out

bis
until

sie
she

-vorzeitig-
before-her-time

alt
old

und
and

schiach
ugly

ist,
is

und
and

dann
then

lach
laugh

ich
I

drüber,
about-that

dann
then

ist
is

das
that

einfach
simply

niveaulos
dumb

und
and

wäh.
disgusting

9 If one assumes like Kratzer [12] that all conditionals contain a modal in the conse-

quent, i.e. that conditionals with no overt modal contain a covert modal element,

the two cases collapse.

298 S. Zobel

’If a family wears the wife/mother out until she is old and ugly before
her time and then they laugh about that, then that’s simply dumb and
disgusting.’10

In the above case, the context permitting the non-standard use of ich is a
sequence of matching and non-matching opinions given by other users in the
thread. The speaker expects that there should be no one who thinks that laugh-
ing about a worn out, overworked mother is not dumb and disgusting. Since there
are some people that have no problem laughing about the poem, the speaker as-
sumes that they do not agree with her about this point. Therefore, it can be
said that her expectations are not met in the context.

The characterization that the speaker voices an expectation that is not met
in the context provides a clue for determining the kind of modal found in sen-
tences with non-standard ich. In all of the examples the speaker’s expectations
have a normative flavour. The soccer teams talked about in example (2) and
(3) are soccer teams that conform to a certain standard for soccer teams held
by the speaker. In the case of example (11), the speaker holds it morally ob-
jectionable to ask for money from one’s guest. Thus, her utterance expresses
something she thinks is impossible behaviour for a bridal couple conforming to
her moral standard. In sum I propose that the modals found with non-standard
readings have (possibly among others) a stereotypical or moral flavour. Kratzer
[13] defines a stereotypical conversational background for a modal as a function
f which returns for a world w the set of propositions that gives the expectations
concerning what w is like, i.e. “the normal course of events” for w. An analogous
definition is given for morally accessible worlds from a world w.

To summarize, it was shown that the non-standard reading of ich requires
a certain kind of context in which the speaker’s expectations - the opinion ex-
pressed by the non-standard meaning which the speaker takes as unobjectionable
- is not met.

3.2 Emotional Involvement

In the given examples, the use of non-standard ich also signals emotional in-
volvement on the part of the speaker about the matter at hand. I suggest that
the non-standard readings should be listed among those constructions that are
grouped under the term emotive language (Potts and Schwarz to appear). Potts
and Schwarz characterize emotive language as “words and constructions that are
more or less dedicated to the task of conveying information about our attitudes
and emotions” [23, 2]. The next piece of data is a clear cut example that shows
emotional involvement on the part of the speaker.

(14) sie nimmt nie was für ihre tochter zu essen für unterwegs mit [...] in
meinen augen ist das eine rabenmutter ich muss doch als mutter mit
einem kleinkind dafür sorgen dass es immer zu essen bekommt egal wo
es gerade ist ich muss einfach immer was dabei haben...

10 http://www.parents.at/forum/archive/index.php/t-253616.html

Non-standard Uses of German 1st Person Singular Pronouns 299

’She never brings something to eat for her daughter when they are out.
[...] In my opinion she is a bad mother. A mother with a toddler has
to see to it that the toddler gets food, no matter where the child is. A
mother really has to have something to eat with her...’11

Example (14) was taken from a women-oriented forum with the central topic
of in-family relationships. The author of this passage is a pregnant woman (not
yet a mother). In the given passage she talks about a woman (a mother) in
her family that does not take good enough care of her daughter. The post has
the title “I’m pregnant and I feel screwed by my partner” (’Ich bin schwanger
und fühl mich von meinem Partner verarscht’), which clearly suggests strong
feelings for the topic at hand on the part of the author. Further expressivity is
achieved by her use of expressive language (’Rabenmutter ’ - Engl. ’bad mother ’)
and clusters of exclamation marks near the end of each paragraph.

A somewhat less explicit example that nicely shows the emotional involvement
by the speaker is example (11), where the author also uses expressive language
(’total doof ’ - Engl. ’totally dumb’) and exclamation marks.

Since the non-standard use of ich is emotive, it is not surprising that the
native speakers I consulted judge this way of giving one’s opinion as decidedly
unobjective. They evaluate the non-standard use of ich as unsuitable for serious,
objective argumentation.

3.3 Genericity

Even though, as was shown in the previous section, the utterances in (9), (10) and
(14) express the speaker’s expectations with respect to a certain situation, the
paraphrases suggest that the speaker informs the addressee about an expectation
he holds in general and not only with respect to this particular utterance context,
i.e. regarding all entities in the set denoted by the argument of als and not only
the salient entity from the context of utterance. That the non-standard readings
express genericity in the domain of individuals is shown by the possibility to
extend example (10) by (15).

(15) . . . egal
. . . no-matter

ob
whether

ich
I

Deutschland,
Germany,

Italien
Italy

oder
or

Brasilien
Brazil

bin.
am

When (15) follows the example (10) above, it has roughly the following meaning:
. . . and it does not matter, whether one considers Germany, Italy or Brazil (or
any other team). To give such an exemplary list of teams (or nations) is a natural
extension of (10). In contrast, the extension in (16), which restricts the opinion
given in (10) to only the German national team, is incoherent.

(16) ?. . . aber
. . . but

nur
only

wenn
if

ich
I

die
the

deutsche
German

Nationalmannschaft
national-team

bin.
am

11 http://forum.gofeminin.de/forum/relationsfamille/ f1465 relationsfamille-Ich-bin-

schwanger-und-fuhl-mich-von-meinem-partner-verarscht.html

300 S. Zobel

So one can say, that the opinion is expressed about every entity that is an element
of the set denoted by the argument of als.

Sentences like (9) and (10) also express genericity in the spatio-temporal do-
main. The genericity is easier to see when the number of elements in the set
denoted by the complement of als is restricted to just one element restraining
genericity over individuals, as in example (17).

(17) Wenn
if

ich
I

als
as

deutsche
german

Nationalmannschaft
national-team

gewinnen
win.inf

will,
want

dann
then

muss
must

ich
I

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

’If the German national team wants to win, then the team has to enter
the field motivated.’

Sentence (17) expresses that in any usual match situation involving the Ger-
man national team (i.e. no matter against which opponent they are playing) it
is the case that if the German national team wants to win, the team has to be
motivated from the start.

Given that restricting the set denoted by the complement of als restricts
genericity over individuals, one also expects that leaving out the als-phrase alto-
gether results in total genericity in that domain. Example (18) shows that this
is the case.

(18) Wenn
if

ich
I

gewinnen
win.inf

will,
want

dann
then

muss
must

ich
I

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

’If one wants to win, then one has to enter the field motivated.’12

The paraphrase using the impersonal pronoun one suggests that example (18)
is freely exchangable with example (19), in which ich has been replaced by the
German impersonal pronoun man.

(19) Wenn
if

man
one

gewinnen
win.inf

will,
want

dann
then

muss
must

man
one

motiviert
motivated

auf
on

den
the

Platz
field

gehen.
go.inf

’If one wants to win, then one has to enter the field motivated.’

The seeming interchangability of (18) and (19) is not accurate, however, since
the use of ich suggests a subjective opinion (cf. Sect. 3.1), whereas man is usually
used for objective arguments. Thus, the only difference between (18) and (19)
lies in the respective subjectivity and objectivity on the speaker’s side.

12 This sentence has of course also a speaker-referential reading: if I want to win, then
I have to enter the field motivated.

Non-standard Uses of German 1st Person Singular Pronouns 301

3.4 Summary and a First Analysis

What can be concluded from the data discussion? What does the first person
singular pronoun ich contribute meaningwise to the sentence?

There is a certain parallel between the non-standard use of ich and a use of
demonstratives that Lakoff [15] calls emotional deixis. Lakoff states that emo-
tional deixis covers “a host of problematic uses, generally linked to the speaker’s
emotional involvement in the subject-matter of his utterance” [15, p.347]. An
example she provides is given in (20).

(20) I see there’s going to be peace in the mideast. This Henry Kissinger
really is something!
[15, p.347]

The core of the discussion is that the effect of emotional deixis is to achieve
camaraderie between the speaker and the hearer, which makes these forms collo-
quial. The speaker tries to create emotional closeness and a sense of participation
in the hearer by giving the utterance more vividness.

In a recent paper, Davis and Potts [1] argue that affective demonstratives
(demonstratives used for emotional deixis) are semantically marked elements in
competition with the unmarked definite article the. They follow Horn in assuming
division of pragmatic labor - unmarked forms are used to express unmarked
meanings and marked forms are used to express marked meanings - and argue
that affective demonstratives “generate an exclamative profile”, thus expressing
a more marked meaning than the unmarked definite article.

As we have seen, the non-standard occurrences of ich are substitutable by the
impersonal pronoun man (cf. Sect. 3.3). The substitution apparently does not
change anything on the truth conditional level of the sentence, but the emotional
flavour of the non-standard reading is lost. Applying the same reasoning as Davis
and Potts, the impersonal pronoun man could be seen as the unmarked form
the marked non-standard ich is competing against. If this is indeed the case, one
would expect non-standard ich to have a similar semantic make up as man.

One question suggested by (18), where the als-phrase has been removed, is
which elements are actually needed to obtain the non-standard reading. As far
as I can tell at this point, the non-standard reading always involves a modal
or generic sentential context: one finds the non-standard reading with universal
and existential modals and indicatives under a generic interpretation, although
universal modals seem to be prevalent. The als-phrase and discourse particles
are optional, although the particle doch often improves and enforces the non-
standard reading where the sentence can also be understood as the speaker
talking about himself.

4 Formalization

In this section I formulate a purely semantic account that tries to unify the non-
standard and the standard indexical use of ich. I argue that ich contributes a

302 S. Zobel

(more or less semantically adorned) variable in the non-standard as well as the
standard deictic use.

4.1 A Theory of the Structure of Indexicals

For a unifying, purely semantic account of the facts, one needs to discard the
standard semantics for ich in (21) (repeats (1)) since it always forces speaker-
referentiality.

(21) �pronoun1PSg�c = cS where cS is the speaker of the context c

To discard (21) and to allow ich to refer to other individuals besides the speaker
means that one partly departs from Kaplan’s [9] direct-referentialist view that
ich is a “pure indexical”, i.e. that ich automatically picks out the speaker of the
context.

One of the works that criticize the direct-referentialist picture is [21]. In this
paper Nunberg specifically argues against the assumption that indexicals give
rise to singular propositions. He presents data where indexicals do not contribute
a single individual (or group) but a property. A sentence with a property con-
tributing indexical is non-singular (as long as there are no other singular terms)
and thus, Nunberg argues, the assumption that indexicals give rise to singular
propositions has to be discarded. He consequently proposes, in contrast to what
direct-referentialists assume, that the referent of an indexical is determined not
directly, but in two stages. He suggests that indexicals are more complex than
what is usually assumed and posits that an indexical has three components13: a
deictic component, a classificatory component and a relational component.

The deictic component picks out an individual from the context. Nunberg calls
this individual the index. The index connects the final semantic value of the in-
dexical to the context. Nunberg [21, p.20] notes that this component corresponds
to the standard semantics, e.g. as for ich in (21).

The relational component specifies the relation in which the index stands to
the final semantic value.

The classificatory component consists of features that restrict the final seman-
tic value (e.g. animacy, singularity . . .).

To summarize, an indexical denotes an individual (or individual concept),
whose features match the classificatory component, and which stands in a certain
relation to the contextually chosen index.

Coming back to the original puzzle of the non-standard use of ich, Nunberg’s
three component account sounds very promising in light of the needed flexibility
required for the meaning of non-standard ich; the account provides the necessary
amount of freedom in the choice of referent.

13 Nunberg relativizes the three-component account again by assuming that non-

participant terms, i.e. demonstratives and demonstratively used third person pro-

nouns, lack a relational component [21, p.23]. Since this paper looks only at partic-

ipant terms, I will gloss over this fact.

Non-standard Uses of German 1st Person Singular Pronouns 303

The sentences in (22) are two of the examples Nunberg gives to motivate the
three-component analysis.

(22) a. Condemned prisoner : I am traditionally allowed to order whatever
I like for my last meal.

b. President : The Founders invested me with sole responsibility for
appointing Supreme Court justices.

[21, p.20f]

Nunberg argues that I in (22-a) can not pick out the speaker since it is not a
tradition for the speaker that he is allowed whatever he wants for his last meal.
Rather, it is a tradition for anyone with the property of being a condemned
prisoner. Thus Nunberg concludes that I picks out the property of being a
condemned prisoner. The argumentation for example (22-b) runs analogously.
Since the Founders did not actually invest the sole responsibility for appointing
Supreme Court justices in the current president himself, I in (22-b) picks out
the property of being the president of the United States.

Elbourne [3] formalizes Nunberg’s account. He straightforwardly implements
the idea of the three components by explicitly putting the deictic component
and the relational component into the syntax. The requirements posed by the
classificatory component are added as presuppositions to the meaning of the
indexical. Thus syntactically, an indexical has the complex structure in (23).

(23) [indexical [R1 i2]] [3, p.421]

The two variables R1 and i2 constitute the relational and the deictic component,
respectively. i2 is a variable of type e and R1 is a variable of type 〈e, 〈se, st〉〉, i.e.
a variable for intensional relations between individuals and individual concepts.
The values for both variables are determined from the context. On a technical
note, this means that they are left unbound and are determined by the variable
assignment, which constitutes a parameter of the interpretation function.

Regarding the meaning of the overt lexical item of the complex indexical,
Elbourne generalizes Nunberg’s observation that, in certain contexts, indexicals
can contribute properties. He proposes that the meaning of an indexical is in fact
always a definite description14formed from R and i. Example (24) is Elbourne’s
proposed meaning for English third person singular it (he does not explicitly
formalize the classificatory component).

(24) �it� = λf〈se,st〉.λs.ιx(f(λs′.x)(s) = 1)
[3, p.421]

The first argument of it, f〈se,st〉, is the result of applying the contextually
supplied relation R to the given index i. The informal paraphrase of the final

14 Even though Nunberg talks about properties, Elbourne [3, p. 420] argues that the

properties in Nunberg’s examples always denote singleton sets in the relevant min-

imal situations. He takes this observation as the starting point of his analysis and

implements them as definite descriptions.

304 S. Zobel

meaning of the complex pronoun [it [R1 i2]] in the situation of evaluation is: the
unique individual x such that x stands in relation R to i.

4.2 Emotional Involvement and Speaker Empathy

It is usually assumed in the literature that emotional involvement signalled by
emotive language needs to be modelled on a different level than the truth con-
ditional meaning of a sentences (cf. for example [22] and [24]). As has been
alluded to in Sect. 3.1, the speaker expresses certain expectations with the use
of non-standard ich, which seem to constrain the set of individuals to those that
conform to a certain normative standard held by the speaker. Since one usually
considers one’s normative standards to be applicable to oneself, one tries to con-
form to them and one will tend to identify with the group of people conforming
to them. This identification can be observed in example (25), which contains
both an occurrence of non-standard ich and the objective impersonal man.

(25) Ich kann als Kunde wohl erwarten, dass für den Preis das Paket oder
der Brief auch korrekt zugestellt wird. Und wenn man das eben für
einen so niedrigen Preis nicht kann, dann darf man so einen niedrigen
Preis auch nicht anbieten.
’A client should be allowed to expect that a package or letter will be
delivered correctly for the price that is charged. And if one can’t do
that for such a low price, then one just shouldn’t offer such a low price.’

The speaker of (25) clearly sympathizes with the clients rather than the mail ser-
vice providers. This kind of perspective-taking of the speaker (speaker empathy)
is observable also with other impersonal pronouns.

I consider two previous proposals for modelling empathy. Malamud [17,18]
looks at the impersonal use of the English second person singular pronoun you
and proposes that you involves hearer empathy. Moltmann [19,20] looks at En-
glish generic one and suggests that one involves a special kind of speaker empa-
thy.

Both proposals share that empathy is modelled by means of a special relation
that is required to hold between the speaker/hearer and the values of a variable
that is contributed by the impersonal pronoun.15 Example (26) is the meaning
Malamud proposes for impersonal you.

(26) �you�c = λs.λP.∃y[persona(y, addressee(c), s) & P (y, s)]
[17, p.25]

Hearer empathy is modelled by the persona-relation, λy.λx.λs.persona(y, x, s),
that relates the later existenially quantified variable y to the addressee of the
context.

15 I will not get into details here, since the exact characterisation of the relations is

secondary to formalizing the meaning of non-standard ich. For the details, please

see [17] and [19].

Non-standard Uses of German 1st Person Singular Pronouns 305

Moltmann [19, p.24] proposes that generic one ranges only over such indi-
viduals that the speaker identifies with. She models this semantic restriction by
letting one introduce a qua-predicate that takes two arguments, an individual
variable and the property λy[Izy] (I is the identification relation), that holds
for any y that z identifies with.16 The notion of identification relation is concep-
tually further specified as a notion of pretence: the speaker applies a predicate
to a value of generic one on the basis of “projecting himself” onto that value.

Technically, both of the above accounts are very well combinable with the
account for pronouns presented in the previous section. Both Malamud’s persona
relation and Moltmann’s identification relation could be fitted into the relational
component.

Thus I follow Malamud and Moltmann in modelling speaker empathy by as-
suming an identification relation (different from Malamud’s and Moltmann’s)
that restricts the set of entities to those that the speaker identifies with. A pre-
cise technical account for the identification relation is still to be proposed. A
possible starting point is to restrict the individuals to those that conform to
the stereotypical, moral or otherwise normative standards held by the speaker,
parallel to the various possible flavours found with the modals contained in non-
standard readings.

4.3 Adding Up the Parts

In this section, I bring together Malamud’s [17,18] and Moltmann’s [19,20] work
on “empathy pronouns” with Elbourne’s [3] formalization of Nunberg’s [21]
three-component account of “ordinary indexicals”. I also reconsider the spec-
ulations made at the end of Sect. 3.4 that - given division of pragmatic labor -
the semantic make up of non-standard ich is similar to the semantic make up of
impersonal pronoun man.

With Nunberg’s three-component analysis laid out, only the values for the
three components need to be determined. Nunberg himself has a short section
on the English first person singular pronoun I. There he briefly states that,
like other indexicals, I has all three components of meaning and he specifies
the values of the three components. For the index the deictic component always
picks the speaker of the utterance, the relational component requires the index to
instantiate17 the final interpretation and the classificatory component restricts
the interpretations to an animate syntactically singular individual (or individual
property).

16 Moltmann [20] proposes that one introduces a complex variable that contains an

individual variable and the property, λy.Izy, that should hold of any value assigned

to the individual variable.
17 Nunberg (1993:20) talks about instantiation of the interpretation since he allows for

properties as final interpretations. Concretely this means, that when the interpreta-

tion is an entity, the index has to be identical to the interpretation, and when the

interpretation is a property, the index as to be a member of the set denoted by the

property.

306 S. Zobel

Following Nunberg, I assume for non-standard ich that the deictic component
picks out the speaker. Even though ich in the non-standard reading does not
refer to the speaker, the speaker is crucial for modelling speaker empathy since
the individuals that are ultimately considered vary with respect to the speaker.
Thus, the index is the common core of the non-standard and the standard use.

The classificatory component I will also adopt without change because a sen-
tence is plainly ungrammatical if als takes a plural and/or inanimate entity as
its complement, (27).

(27) a. *Ich
I

muss
have-to

als
as

Mütter
mothers.pl

meinen
for-my

Kindern
children

etwas
something

zu
to

essen
eat

mitnehmen.
take-along

b. *Wenn
if

ich
I

als
as

Schraubenzieher
screwdriver

eine
a

Schraube
screw

festschraube...
fix...

(the sentence is fine if the screwdriver is humanized)

For the relational component, however, I use the identification relation specified
in Sect. 4.2.

As for the syntactic structure of the indexical, I adopt Elbourne’s proposal
[3]. Thus, ich has the complex structure in (28).

(28) [ich [R1 i]]

Regarding the interpretation, I assume that �R1�
g ∈ D〈e,〈e,st〉〉〉 and �i�g ∈

De. Semantically, I depart from Elbourne in that I do not assume that the ich
forms a definite description from R and i. As was shown in Sect. 3.3 the data
under discussion expresses a maximally general subjective opinion of the speaker
(maximally with respect to the als-phrase). In particular this means that ich
can not be analysed to refer to one unique individual. Therefore, an analysis as
definite description can not capture this basic characteristic. I propose that non-
standard ich is an indefinite, as it shows indefinite like behaviour with respect
to quantificational variablity and binding through a generic operator (see [14]).

At least three possibilities to model indefinites are discussed in the literature.
The first is to analyze indefinites as properties that are existentially closed at a
higher point in the structure, see [6]. The second possibility is to model them in a
dynamic system, eg. [2], or thirdly, to use choice functions [25], [26]. I choose the
third option since overt existential quantification leads to technical complications
when I consider the standard indexical use of ich later on.

The definition of intensional choice function, which I adopt, is taken from
Romero [26, p.7] who attributes this definition to Irene Heim.

(29) Intensional Choice Function: A function f〈〈e,st〉,〈se〉〉 is an intensional
choice function (ICH(f)) iff for all P in the domain of f and for all w
in the domain of f(P): P (f(P)(w))(w) = 1

Non-standard Uses of German 1st Person Singular Pronouns 307

An intensional choice function f in (30) is existentially bound at the highest
level in the structure and constrained by the predicate ICH which ensures that
f is a choice function.

Putting it all together, the meaning in (30) formalizes the semantic contribu-
tion of ich to the non-standard readings.

(30) �ich�w,c,g = λQ〈e,st〉.λP〈e,st〉.λs.[P (f(Q)(s))(s)]

Like in Elbourne’s proposed meaning for it in (24), the first argument, Q〈e,st〉,
is filled by the result of applying �R1�

g to �i�g. Q, a property, is the argu-
ment of an intensional choice function f that returns an individual concept
whose value in the situation of evaluation is an element of the set denoted
by Q in the situation of evaluation. Specifically for non-standard ich, the vari-
able assignment returns λx.λy.λs.identifies-with(y)(x)(s) (the identification re-
lation modelling speaker empathy) for R1. Since the deictic component always
picks out cS (the speaker of context c), one can fix i to be cS . Consequently,
Q = λy.λs.identifies-with(y)(cS)(s).

The interpretation of the complex structure underlying the pronoun is given
in (31).

(31) �[ich [R1 cS]]�w,c,g = λP.λs.[P (f(λy.λs′.identifies-with(y)(cS))(s))(s)]

The proposed semantics in (31) formalizes speaker empathy and gives ich an
indefinite semantics that is compatible with genericity. It also creates the desired
parallel to the meaning of impersonal man. Malamud [17,18] proposes (32) for
the meaning of man, partially based on Kratzer’s work [11]. She assumes that
man has the complex syntactic structure in (32-a) which consists of a determiner
Det and an element SE. The semantics of the two lexical items is given in (32-b)
and (32-c).

(32) Slightly adapted from Malamud [18]
a. man = [Det SE]
b. �Det�c,w = λx.λP.∃y[y ∈ HUMANS & P (y, w)]
c. �SE�c = cS

In sum, man is a generalized quantifier with existential force, which is parallel
to the meaning proposed in (30). The only difference is that for non-standard
ich I make use of choice functions.

To give an exemplary truth condition for example (33), I provide the meanings
for the other parts of the sentence.

(33) Ich
I

muss
must

als
as

Nationalspieler
national-team-player

motiviert
motivated

spielen.
play.

’A player of the national team has to play with motivation.’

The semantics of the modal müssen is the same as for English must, for which
I adopt the meaning proposed by Kratzer [12] in (34). A modal in this proposal
has two parameters, f and g which are assigned a conversational background

308 S. Zobel

and an ordering source respectively. The functions f and g together pick out the
optimal worlds accessible from w, O(w, f,g). Concretely, g induces an ordering
on the worlds picked by f for which a set of optimal worlds can be determined.

(34) �müssen�w,c,g = λφ.λs.∀w′ ∈ O(w, f,g)[w′ ∈ φ]

Drawing on Jäger [8], I let the als-phrase contribute a presupposition for the
individual picked out by the choice function. Jäger analyses English as-phrases
in the framework of Discourse Representation Theory (DRT) as inducing a pre-
supposition that has to be resolved (i.e. successfully added to the discourse
representation structure) either by simple resolution or via accomodation. Both
variants amount to identifying the argument of the presupposed predicate with
the argument of the predicate the as-phrase attaches to. For a Montague-style
system, as I am using, I propose the following semantics for als which modifies
a predicate by adding a presupposition to its argument.

(35) �als�w,c,g = λP〈e,st〉.λQ〈e,st〉.λx.λs : P (x)(s) = 1.Q(x)(s)

Consequently, (33) has the truth condition in (36).

(36) �(33)�w,c,g is defined if
national-team-player(f(λy.identifies-with(y)(cS))(s))(w) = 1
and if defined �(33)�c,g = 1 iff ∃f∀w′ ∈ O(w, f,g)[ICH(f)
& play-with-motivation(f(λy.identifies-with(cS)(y)))(w′)]

4.4 Standard Deictic ich

In this section, I show that the proposed meaning for the non-standard use of
ich can be modified to model also the speaker-referential use of ich.

As was already suggested in the last section, the value of R essentially de-
termines the set from which the final semantic value is picked. For deictic ich
according to Nunberg, one needs a relation that the speaker instantiates. To cap-
ture speaker-referentiality it suffices to assign the identity relation (λx.λy.λs.x=y
in s) to R. Since for ich Elbourne’s i component has the fixed value cS , a sen-
tence containing deictic ich is only true if the choice function f picks out the
speaker.

(37) a. Ich
I

bin
am

müde.
tired

b. �Ich bin müde�w,c,g = λs.tired(f(λy.λs′.cS = y in s′)(s))(s)

This shows that the proposed meaning in (30) in fact covers the non-standard
and the deictic use of ich.18 The strong point of this unified treatment is that it

18 In Sect. 4.3 I mentioned that I use choice functions to model indefiniteness since

using an existential quantifier leads to technical problems for standard deictic ich.

Consider (i).

Non-standard Uses of German 1st Person Singular Pronouns 309

accounts for the fact that the non-standard use of ich shares a semantic core of
speaker-relatedness with the deictic use.

As was already noted in Fn. 12, some of the data with a non-standard use of
ich also have a sensible speaker-referential interpretation, as in (38-b).

(38) Wenn
if

ich
I

als
as

Spieler
player

gewinnen
win

will,
want,

dann
then

muss
must

ich
I

motiviert
motivated

auf
on

den
the

Platz
court

gehen.
go.

a. If (one as) a player wants to win, then he/she has to enter the field
motivated.

b. If I being (in my role as) a player want to win, then I have to enter
the field motivated.

Regarding the two interpretations (38-a) and (38-b), the unified treatment says
the difference in the interpretation lies only in the difference of the value assigned
to the relational component.

5 Conclusion and Outlook

In this paper, I have shown that ich has an unexpected non-standard use that
challenges the standard view that first person singular pronouns are always
speaker referential.

The data discussion has demonstrated that the non-standard use of ich signals
that the speaker informs the hearer about a rule he believes to hold in the actual
world, but which is violated in the context of utterance. It was also shown
that the non-standard reading signals emotional involvement on the part of the
speaker. One aspect of the speaker’s involvement I identified as speaker empathy.

I discussed and adopted the theory of indexicals given in Nunberg [21] and
parts of its formalization by Elbourne [3]. To model speaker empathy I looked at
the analyses of English impersonal you [17,18] and generic one [19,20] which, as
the authors argue, also involve forms of empathy. For the meaning proposed in
the end for non-standard ich, I parted from Elbourne’s technical proposal that
pronouns are definite descriptions and reanalysed non-standard ich to form an
indefinite parallel to the meaning proposed for german impersonal man [17]. I
showed that the meaning given for the non-standard use could be modified to
model (albeit unconventionally) the normal deictic use of ich.

One possible point for criticism is the complete freedom regarding the rela-
tional component. As the proposal stands right now, there are no restrictions
that would block any two-place relation to be picked for the relational compo-
nent. This problem is already present in Nunberg’s proposal [21] where the only

(i) �ich�w,c,g = λQ.λP.λs.∃y[Q(y)(s)∧ P (y)(s)]

Given this semantics the sentence in (37-a) would have the meaning ∃y[cS = y ∧
tired(y)(s)], which can be paraphrased as ’I exist and am tired’ which is not the

desired result. I thank an anonymous reviewer for pointing this out to me.

310 S. Zobel

restriction on the relation is that the speaker instantiates it, i.e. that the speaker
stands in this relation to himself (see Fn. 17).

An alternative that might be preferable to the unifying account I presented
is to see the non-standard and the standard use of ich as an instance of true
polysemy rather than context dependence. If one pursues a formalization based
on this assumption, the analysis and the technical parts up to Sect. 4.3 could
be adapted without change, since unifying the non-standard and the standard
deictic use has not been the core motivation for the analysis I proposed. The
application to standard deictic ich shown in Sect. 4.4 has been an automatic
result of adapting Elbourne’s account [3]. Thus, if the proposed semantics for
ich in (30) is restricted to the non-standard use, the relational component can be
fixed to the identification relation. This would eliminate the problem of the un-
restricted relational component. The only context dependence would be brought
in by the choice function and cS , which would remain the common core of the
non-standard and the standard deictic use. Therefore, if one does not object to
the assumption of two distinct lexical items ich1 and ich2, the new data does
not force one to discard the standard semantics for deictic German ich.

As always, there are still open issues that need to be looked at.
The first question is how to capture the second occurence of ich in the conse-

quent of the conditional in data such as (2). This second occurrence of ich seems
to be donkey-bound by the ich in the if -clause. In sentences such as (2), the
other occurrences of first person singular pronouns can be analyzed as fake in-
dexicals as proposed in [10]. Fake indexicals is the term for bound occurrences of
first and second person pronouns that are not independently speaker- or hearer-
referential, eg. my in ’Only I did my homework’, which implies that nobody else
did their homework rather than that nobody else did the speaker’s homework.
As far as I know, nobody has proposed a treatment for fake donkey indexicals,
yet.

Second, one would wish for a comparison with German impersonal second
person singular du and a cross-linguistic search for first person singular pronouns
in other languages with similar non-standard readings as ich.

Last but not least, also the speaker’s emotional involvement has not yet been
treated satisfactorily.

However, even though there are still remaining open questions, I have offered
a first analysis for non-standard ich which can be taken as basis for further
investigation on this topic.

References

1. Davis, C., Potts, C.: Affective demonstratives and the division of pragmatic labor.

In: Aloni, M., Bastiaanse, H., de Jager, T., van Ormondt, P., Schulz, K. (eds.)

Preproceedings of the 17th Amsterdam Colloquium, pp. 32–41 (2009)

2. Dekker, P.: Existential Disclosure. Linguistics and Philosophy 16, 561–587 (2008)

3. Elbourne, P.: Demonstratives as individual concepts. Linguistics and Philoso-

phy 31, 409–466 (2008)

4. von Fintel, K., Iatridou, S.: What to Do If You Want to Go to Harlem: Anankastic

Conditionals and Related Matters. Ms. MIT Press, Cambridge (2005)

Non-standard Uses of German 1st Person Singular Pronouns 311

5. Gast, V.: Modal particles and context updating - the functions of German ja,
doch, wohl and etwa. In: Vater, H., Letnes, O. (eds.) Modalverben und Gram-

matikalisierung, pp. 153–177. Wissenschaftlicher Verlag (2008)

6. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases. Doctoral Disser-

tation: University of Massachusetts (1982)

7. Hentschel, E.: Funktion und Geschichte deutscher Partikeln. Niemeyer (1986)

8. Jäger, G.: On the semantics of ”as” and ”be”. a neo-carlsonian acount. In: Kim,

M., Strauss, U. (eds.) Proceedings of NELS, vol. 31 (2001)

9. Kaplan, D.: Demonstratives. In: Almog, Perry, Wettstein (eds.) Themes from Ka-

plan. Oxford University Press, Oxford (1977/1989)

10. Kratzer, A.: Making a Pronoun: Fake Indexicals as Windows into the Properties

of Pronouns. Linguistic Inquiry 40, 187–237 (2009)

11. Kratzer, A.: German impersonal pronouns and logophoricity. Presentation at Sinn

und Bedeutung II, Berlin, Germany (1997)

12. Kratzer, A.: Modality and Conditionals. In: Semantik: ein internationales Hand-

buch. de Gruyter, Berlin (1991).

13. Kratzer, A.: The Notional Category of Modality. In: Eikmeyer, H., Rieser, H. (eds.)

Words, worlds, and contexts: new approaches in word semantics, pp. 38–73 (1981)

14. Krifka, M., Pelletier, F.J., Carlson, G.N., ter Meulen, A., Chierchia, G., Link,

G.: Genericity: An Introduction. In: The Generic Book, pp. 1–124. University of

Chicago Press, Chicago (1995)

15. Lakoff, R.: Remarks on This and That. In: Proceedings of the Chicago Linguistics

Society, Chicago, vol. 10, pp. 345–356 (1974)

16. Lindner, K.: Wir sind ja doch alte Bekannte - The use of German ja and doch
as modal particles. In: Abraham, W. (ed.), Discourse Particles, Amsterdam, pp.

163–202 (1991)

17. Malamud, S.: Impersonal indexicals: you, man and si. Draft (2007),

http://people.brandeis.edu/~smalamud/iiss.pdf

18. Malamud, S.: Semantics and pragmatics of arbitrariness. Doctoral Dissertation:

University of Pennsylvania (2006)

19. Moltmann, F.: Generalising Detached Self-Reference and the Semantics of Generic

One. Mind and Language (to appear)

20. Moltmann, F.: Generic one, arbitrary PRO, and the first person. NLS 14, 257–281

(2006)

21. Nunberg, G.: Indexicality and Deixis. Linguistics and Philosophy 16, 1–43 (1993)

22. Potts, C.: Conventional implicature and expressive content. In: Maienborn, C.,

von Heusinger, K., Portner, P. (eds.) To appear in Semantics: An International

Handbook of Natural Language Meaning. Mouton de Gruyter, Berlin (2008)

23. Potts, C., Schwarz, F.: Affective ‘this’. Linguistic Issues in Language Technology

3(5), 1–30 (2010)

24. Potts, C., Alonso-Ovalle, L., Asudeh, A., Bhatt, R., Cable, S., Davis, C., Hara,

Y., Kratzer, A., McCready, E., Roeper, T., Walkow, M.: Expressives and identity

conditions. Linguistic Inquiry 40, 356–366 (2009)

25. Reinhart, T.: Quantifier Scope: how labor is divided between QR and choice func-

tions. Linguistics and Philosophy 20, 335–397 (1997)

26. Romero, M.: Intensional Choice Functions for Which Phrases. In: Proceedings of

SALT IX, pp. 255–272. CLC Publications, Ithaca (1999)

27. Stalnaker, R.: Indicative Conditionals. Reprint in Stalnaker, R. (1999); Context

and Content (1975)

http://people.brandeis.edu/~smalamud/iiss.pdf

Part IV
Learning with Logics and Logics for

Learning

The Sixth Workshop on Learning with Logics
and Logics for Learning (LLLL2009)

Akihiro Yamamoto1, Kouichi Hirata2, and Shin-ichi Minato3

1 Graduate School of Informatics, Kyoto University, Japan

akihiro@i.kyoto-u.ac.jp
2 Department of Artificial Intelligence, Kyushu Institute of Technology, Japan

hirata@ai.kyutech.ac.jp
3 Graduate School of Information Science and Technology

Hokkaido University, Japan

minato@ist.hokudai.ac.jp

1 The Workshop

Nowadays the theory of Machine Learning attracts much attention not only as a
subject in Artificial Intelligence, but also for developing new techniques for min-
ing useful knowledge from various types of data. Originally Machine Learning
means methods of developing learning machines for generating appropriate rules
with which training data can be explained. Computational Logic is originally
from mechanizing the activity of explaining why propositions and rules hold.
The two areas are connected on the points representing and explaining rules.
Based on the connection, the workshop of Learning with Logics and Logics for
Learning (LLLL) has been organized to bring together researchers who are in-
terested in both of the areas of Machine Learning and Computational Logic, and
to have intensive discussions on various relations between them with making the
interchange more active. More precisely the LLLL workshop is aiming at clarify-
ing both how logic is useful for learning and how learning contributes new types
of logic.

The LLLL workshop was started as a domestic workshop in January and De-
cember in 2002. In every year from 2005 to 2007, the LLLL workshop was held as
an international workshop collocated with the Annual Conferences of Japan Ar-
tificial Intelligence Society (JSAI). The sixth workshop, LLLL2009, was held in
Kyoto from July 6th to 7th in 2009, as a satellite event of the JSAI International
Symposia on AI (JSAI-isAI). The workshop was collocated with the Fourth Inter-
national Workshop on Data-Mining and Statistical Science (DMSS2009), which
was held from July 7th to 8th. All of the international LLLL workshops were
supported by the Special Interest Group of Fundamental Problems in Artifi-
cial Intelligence (SIG-FPAI) in JSAI. The post-workshop proceedings of LLLL
2009 was included in this volume with other international workshops held in
JSAI-isAI.

To the programming committee of LLLL2009 we invited 9 researchers working
on the relations between logic and learning. We invited Prof. Thomas Zeugmann

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 315–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

316 A. Yamamoto, K. Hirata, and S.-i. Minato

and Prof. Marta Arias for their special talks in the workshop. The papers sub-
mitted to the call for papers were reviewed by the PC members, and 12 papers
were selected for the contributed talks. More information about the workshop
and past workshops are available at the LLLL homepage:

http://www.iip.ist.i.kyoto-u.ac.jp/LLLL/LLLL.html

2 The Post-workshop Proceedings

For the post-workshop proceedings, we requested the contributors to submit
revised versions of their workshop papers. The revised papers were reviewed by
the PC members again. Finally, we have selected the following 4 papers for this
volume.

The paper by Kameda and Tokunaga investigates inferability of unbounded
unions of languages from positive data in the Gold-style learning. Their work is
under the assumption that every language is a closed set system, which is based
on the analogy between learning from positive data and computational algebra.

The paper by Katoh et al. proposes a method of mining time-series patterns
from input event sequences. They introduce a new class of patterns consisting of
k-partite episodes and provide efficient algorithms deriving patterns in the class
which frequently appears in the input.

The paper by Ouchi and Yamamoto also treats inferability of languages from
positive data in the Gold-style learning. They investigate it by designing learning
procedures using refinement operators and the MINL strategy.

The paper by Satoh investigates the method for computing minimal models
in propositional logic, which is useful for learning algorithms when data are
represented as models and rules are in the form of formulae. He introduces the
concept of positively minimal disjuncts in Disjunctive Normal Forms for the
investigation.

Acknowledgments

We believe that the success of the LLLL2009 workshop was brought by the sup-
port of the invited speakers, all of the program committee members, all speakers
of contributed papers, and all audiences who attended the workshop. We would
like to express our thankfulness to the program committee members by listing
their names:

Yoji Akama, Marta Arias, Tamás Horváth, Katsumi Inoue,
Tetsuhiro Miyahara, Taisuke Sato, Takayoshi Shoudai, Hiroo Tokunaga,
and György Turán,

We would express our great thankfulness to Prof. Takashi Washio for his pro-
posal and elaboration to the collocation of LLLL and DMSS, and the co-chairs
of DMSS, Prof. Akihiro Inokuchi and Prof. Masashi Sugiyama, for their great
support to the collocation. At last we would like to express our thankfulness
to Dr. Kumiyo Nakakoji, Dr. Yohei Murakami, and Prof. Elin McCready for
inviting us to JSAI-isAI and publishing the post-workshop proceedings.

Inferability of Unbounded Unions of Certain
Closed Set Systems

Yuichi Kameda and Hiroo Tokunaga

Department of Mathematics and Information Sciences

Graduate School of Science and Engineering,

Tokyo Metropolitan University

1-1 Minami-Ohsawa, Hachioji-shi 192-0397, Japan

tokunaga@tmu.ac.jp, kameda-yuuiti@ed.tmu.ac.jp

Abstract. In this article, we study inferability from positive data for

the unbounded union of certain class of languages. In order to show in-

ferability, we put an emphasis on a characteristic set of a given language.

We consider a class of closed set systems such that there exists an algo-

rithm for generating a characteristic set consisting of one element. Two

concrete examples of closed set systems with such algorithms are given.

Furthermore, we consider applications of these examples to the study of

transaction databases.

1 Introduction

In this article, we continue to study inferability from positive data for the set
union of languages. In the following, “inferability” always means “inferability
from positive data” [4,1]. The class of languages we study here is so called a
closed set system (see §2 for its definition). In the previous article [5], we studied
a learning procedure for the class of bounded unions of a Noetherian closed set
system by using characteristic set. The aim of this article is to consider the class
of unbounded unions of certain closed set systems. As we have seen in [2], any
Noetherian closed set system has finite elasticity and this implies that the class
of bounded unions of a Noetherian closed set system has also finite elasticity by
the result of Wright [12] and it is inferable by [12,9]. The class of unbounded
unions of a Noetherian closed set system, however, is not inferable in general.
In fact, in [2, Theorem 9], a necessary and sufficient condition was given (see
Theorem 5). For example, by Theorem 5, we see that the class of unbounded
unions of ideals of a polynomial ring of Q-coefficient is inferable if and only if
its number of variable is one. Since there seems to be few results on the class
of languages satisfying the condition of Theorem 5, it is worthwhile to consider
explicit classes of such languages, which is our purpose of this article.

Likewise our previous article [5], the notion of characteristic set (see §2 for its
definition) plays an important role. By [2], any element of a Noetherian closed set
system has its characteristic set. In this article, we study two explicit closed set
systems such that there exist an algorithm (or a recursive mapping) to “unify”
a characteristic set into a single element for each language.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 317–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

318 Y. Kameda and H. Tokunaga

This article goes as follows: In §2 we review definitions and theorems about
the inferability from positive data and closed set systems. In §3 we introduce
the notion of the unbounded union of languages and examine the mapping δ
to “unify” a characteristic set into one element. We actually construct δ under
two particular circumstances in §§4 and 5. In §6 we consider applications of our
results in §§4-5 to the study of transaction databases. This is one of goals for
our study: an application of algebra to knowledge discovery in databases, and
vice versa.

2 Preliminaries

2.1 Inferability from Positive Data

In this article, a language L is a subset of some countable set U such that L
is expressed L(G) by some finite expression G. We call this finite expression a
hypothesis. A set of all hypotheses H is called hypothesis space. Let L be the set
of all languages {L(G) | G ∈ H}. We assume that L is uniformly recursive, that
is, there is a recursive function f(w,G) such that f(w,G) = 1 iff w ∈ L(G) for
every w ∈ U and G ∈ H.

A positive data (or positive presentation) of L ∈ L is an infinite sequence
σ : s1, s2, . . . of elements of L such that L = {s1, s2, . . .}. An inference algorithm
M is that:
• M receives incrementally elements of a positive data σ of a language,
• M outputs a hypothesis Gn ∈ H when M receives n-th element of σ.
L is inferable in the limit from positive data if there exists an inference algorithm
M satisfies that for all L ∈ L and an arbitrary positive data of L, the output
sequence of M converges to a hypothesis G such that L(G) = L.

A finite tell-tale of L ∈ L is a finite subset S of L such that L is minimal
in the class {L′ ∈ L | S ⊆ L′} with respect to set inclusion. If L is minimum,
S is called a characteristic set of L. Note that the idea of characteristic set is
essentially the same as that of test set in [6].

Theorem 1. ([1]) L is inferable in the limit from positive data if and only if
there exists a procedure to enumerate elements of a finite tell-tale of every L ∈ L.

Theorem 2. ([7]) If every L ∈ L has a characteristic set, then L is inferable
from positive data.

We say that (i) L has finite thickness if the set {L ∈ L | w ∈ L} is finite for
any w ∈ U and (ii) L has infinite elasticity if there exists an infinite sequence
w0, w1, . . . of elements of U and infinite sequence L1, L2, . . . of languages such
that {w0, . . . , wn−1} ⊆ Ln but wn /∈ Ln. We say that L has finite elasticity if it
does not have infinite elasticity.

Theorem 3. ([7],[8]) 1. If L has finite elasticity, then every L in L has a char-
acteristic set.
2. If L has finite thickness, then L has finite elasticity.

Inferability of Unbounded Unions of Certain Closed Set Systems 319

Let L′ be a subclass of L. Then, it holds clearly that:

Proposition 1. 1. If L is inferable from positive data, then L′ is. 2. If every
L ∈ L has a characteristic set in L, then every L′ ∈ L′ has a characteristic set
in L′.

2.2 Closed Set System

Let 2U be the power set of U . A mapping C : 2U → 2U is called a closure
operator if C satisfies:
(CO1) X ⊆ C(X),
(CO2) C(C(X)) = C(X), and
(CO3) X ⊆ Y ⇒ C(X) ⊆ C(Y)
for each X,Y ∈ 2U . A set X ⊆ U is called closed if X = C(X). A closed set
system C is the class of all closed sets of a closure operator.

Remark 1. In a closed set system, the intersection of arbitrary number of closed
sets is closed, but the union of closed sets is not necessarily closed.

Remark 2. There is another definition of closure operator that is somewhat dif-
ferent from ours as follows. Let F ⊆ 2U . A closure operator is a mapping
C : F → F that satisfies (CO1)-(CO3) as above. Here we call this a closure
operator on F .

In the following, we regard C as a class of languages and assume that it is
recursive. If a closed set X ∈ C is represented X = C(Y) for some finite set
Y ⊆ U , X is called a finitely generated closed set.

Lemma 1. ([2]) Let X = C(Y) be a closed set. The followings are equivalent:
1. Y is finite,
2. Y is a finite tell-tale of X, and
3. Y is a characteristic set of X.

An immediate consequence of Lemma 1 and Theorem 1 is as follows:

Corollary 1. C is inferable from positive data if and only if every closed set is
finitely generated.

A closed set system C is Noetherian if it contains no infinite strictly ascending
chain of closed sets. This condition is equivalent to finite elasticity [2, Theorem
7]. Hence it follows that:

Corollary 2. A Noetherian closed set system is inferable from positive data.

From Proposition 1, a subclass of a closed set system inherits the properties such
as inferability. Henceforth, we regard a subclass of closed set system as a closed
set system.

Remark 3. According to the definition in Remark 2, a subclass of a closed set
system becomes a closed set system. Let C be a closed set system and C be a
closure operator associated with C. Let C′ be a subclass of C. Then a closure
operator C′ associated with C′ can be constructed as follows: C′ = C|F , where
F = {X ⊆ U | C(X) ∈ C′} and |F is restriction to F . So a subclass of a closed
set system is a closed set system.

320 Y. Kameda and H. Tokunaga

3 Unbounded Unions of Closed Set Systems

We start this section by defining the bounded union of languages.

Definition 1. Let L be a class of languages. The bounded union ∪≤kL of L is
the class defined by

∪≤kL = {L1 ∪ . . . ∪ Lm | m ≤ k, Li ∈ L (i = 1, . . . ,m)}.

In [12], Wright showed that:

Theorem 4. ([12]) If L has finite elasticity, then ∪≤kL also has finite elasticity.
In particular, ∪≤kL is inferable from positive data.

The unbounded union of languages is defined as follows:

Definition 2. ([10]) Let L be a language. The unbounded union L∗ of L is the
class

L∗ = {L1 ∪ . . . ∪ Lm | ∀m ∈ N, Li ∈ L (i = 1, . . . ,m)}.

where N denotes the set of all positive integers {1, 2, . . .}.

In [2], de Brecht et al. gave a necessary and sufficient condition for unbounded
unions of closed set systems to be inferable.

Theorem 5. ([2]) Let L be a closed set system. L∗ is inferable from positive
data if and only if every closed set L ∈ L is equal to a union of finitely many
closed sets generated from a single element.

To study the inferability of L∗, let us start with the following proposition.

Proposition 2. Let L be a closed set system such that every L ∈ L has a
characteristic set and let U be the family of all finite subset of U . If there exists
a map δ : U → U satisfying the condition

(") δ(S) ∈ L⇔ S ⊆ L

for all S ∈ U and L ∈ L, then every L ∈ L has a characteristic set consisting of
one element.

Proof. Let S be a characteristic set of an arbitrary L ∈ L. We show that {δ(S)}
is a characteristic set of L. From the condition ("), {δ(S)} ⊆ L. Assume that
there exists a L′ ∈ L such that δ(S) ∈ L′. By applying (") for L′, we have
S ⊆ L′. Since S is a characteristic set of L, L must be a subset of L′.

Combining Proposition 2 and Theorem 5, we have:

Corollary 3. Let L be the same as in the previous proposition. If δ satisfies the
condition ("), then L∗ is inferable from positive data.

In the following sections, we present two examples of L and δ.

Inferability of Unbounded Unions of Certain Closed Set Systems 321

4 Invariant Subspaces of a Linear Transformation of a
Vector Space

Let V be an infinite dimensional vector space with countable basis over the set
of rational numbers Q. More precisely,

(a) V is a vector space over Q, and
(b) V has a countable subset B called a basis such that (b1) each v ∈ V can be

uniquely written by a linear combination of finite number of elements of B
and, (b2) each g ∈ B can not be written by any linear combination of finite
number of elements of B \ {g}.

Note that V is enumerable. We fix one basis B = {g1, g2, . . .} of V . First we
consider the class of all finite dimensional subspaces, V , of V .

Lemma 2. 1. V is a closed set system. 2. Every W ∈ V has a characteristic
set.

Proof. (1) The mapping 〈·〉 : 2V → 2V , S �→ 〈S〉, where 〈S〉 is the subspace
spanned by S, is a closure operator associated with V . (2) Since W is finite
dimensional, there is a finite subset F ⊂ W such that 〈F 〉 = W . By Lemma 1
and (1), F is a characteristic set of W .

Remark 4. V is not Noetherian. In fact, there is an infinite strictly ascending
chain

〈g1〉 ⊂ 〈g1, g2〉 ⊂ 〈g1, g2, g3〉 ⊂

Nevertheless one can show that the bounded union ∪≤kV is also inferable. Note
that we can not apply Theorem 4 to show the inferability of ∪≤kV . Instead,
we make use of the argument given in Takamatsu et al. [11]. Choose W =
〈w1, . . . ,wr〉 ∈ V and let M be a (r × (rk − 1))-matrix in Q-entries such that
any k column vectors are linearly independent. Put(

w′
1, . . . ,w

′
rk−1

)
= (w1, . . . ,wr)M.

Then by the same argument in the proof of [11, Theorem 9], we can show that
{w′

1, . . . ,w
′
rk−1} is a characteristic set of W in ∪≤kV .

On the other hand, V∗ is not inferable. In fact, put W = 〈g1, g2〉. Choose any
finite subset {v1, . . . ,vr} of W . Then, the union 〈v1〉∪. . .∪〈vr〉 of 1-dimensional
vector spaces 〈vi〉 (i = 1, . . . , r) is proper subset of W . This means that any finite
subset of W can not be a finite tell-tale. Thus V∗ is not inferable.

Let T : V → V be a fixed linear transformation such that T (gi) = aigi (ai ∈ Q)
for each i. Here we assume that ai’s are distinct. A subspace W of V is called T -
invariant if T (W) ⊆W . Let VT be the class of all finite dimensional T -invariant
subspaces of V . From Lemma 2 (1) and Remark 3, VT is a closed set system.

Lemma 3. Every W ∈ VT has a characteristic set of the form {gi1 , . . . , gin}
in VT .

322 Y. Kameda and H. Tokunaga

Proof. The next lemma implies that we can write W = 〈gi1 , . . . , gin〉. It is easy
to verify that {gi1 , . . . , gin} is a characteristic set of W .

Lemma 4. Let W �= {0} be a finite dimensional subspace of V . W is T -
invariant if and only if there exists gi1 , . . . , gin such that W = 〈gi1 , . . . , gin〉.

Proof. If there exists gi1 , . . . , gin such that W = 〈gi1 , . . . , gin〉, then clearly W is
T -invariant. Suppose that W is T -invariant. Let w be a nonzero vector of W . We
can write w = c1gk1 + . . .+ cmgkm , where every ci �= 0. Since W is T -invariant,
T (w) = c1ak1gk1 + . . . + cmakmgkm ∈ W . Similarly, T 2(w), . . . , T m−1(w) ∈ W .
Now, let A be the (m×m)-matrix on the right in the equation

(
w, T (w), . . . , T m−1(w)

)
= (gk1 , . . . , gkm)

⎛
⎜⎜⎜⎝

c1 c1ak1 . . . c1a
m−1
k1

c2 c2ak2 . . . c2a
m−1
k2

...
...

...
cm cmakm . . . cmam−1

km

⎞
⎟⎟⎟⎠ .

A is a matrix obtained by multiplying each column of a Vandermonde’s matrix
by nonzero scalars. Since ai’s are distinct,

detA =

⎛
⎝ m∏

j=1

cj

⎞
⎠ ·
(∏

p<q

(akp − akq)

)
�= 0,

so there is the inverse matrix A−1. This means that gkj ’s can be written by
linear combinations of w, T (w), . . . , T m−1(w). Thus, G = {gk1 . . .gkm} ⊆ W .
If 〈G〉 �= W , repeat the method above for w(1) ∈ W \ 〈G〉, and add the yielding
{gk1

(1), . . . , gkm1

(1)} to G. This procedure ends in finite number of steps since
W is finite dimensional.

Theorem 6. V∗
T is inferable from positive data.

Proof. Let S = {v1, . . . ,vn} ⊆ V . For each i, we can write vi =
∑

finite ci,jgj

(ci,j ∈ Q). Let Ai = {gj | ci,j �= 0}. δ(S) is defined as follows:

A =
n⋃

i=1

Ai, δ(S) =
∑
g∈A

g.

According to Corollary 3, it suffices to show that δ satisfying

(") δ(S) ∈W ⇔ S ⊆W

for each finite subset S ⊆ V and for each W ∈ VT . Let W be an arbitrary
element of VT . By Lemma 4, we can write W = 〈gi1 , . . . , gin〉.
(⇒) By applying the argument in the proof of Lemma 4 to δ(S) =

∑
g∈A g ∈ W ,

we get that A is a subset of {gi1 , . . . , gin}, hence Ai is. Since vi is a linear
combination of the elements of Ai, each vi is in W .
(⇐) S ⊆W implies that Ai ⊆ {gi1 , . . . , gin} for every i, so A is. Thus δ(S) ∈ W .

Inferability of Unbounded Unions of Certain Closed Set Systems 323

A concrete inference algorithm of V∗
T is shown as follows:

Procedure 1: Learning V∗
T ;

Input: a positive presentation v1,v2, . . . ,vn, . . . for V1 ∪ . . . ∪ Vm ∈ V∗
T ;

Output: a sequence V
(1)
1 ∪ . . . ∪ V

(1)
m1 , V

(2)
1 ∪ . . . ∪ V

(2)
m2 , . . . of elements of V∗

T ;
begin
1. S = ∅;
2. Put n = 1;
3. repeat
4. if there is no V ∈ S such that vn ∈ V do
5. Set An = {gj | gj occurs in vn with nonzero coefficient };
6. Remove all V ∈ S such that V ⊂ 〈An〉 from S;
7. Add 〈An〉 to S;
8. end do;
9. Output ∪V ∈SV ;
10. Add 1 to n;
11. forever;
end.

We consider an application of Procedure 1 to the study of transaction databases
in §6.1. We end this section with presenting an example of V and T .

Example 1. Let V be the subspace of the vector space consisting of Fourier series
as follows:

V =

{
r∑

n=0

an cosnx
∣∣∣ an ∈ Q, r ∈ Z≥0

}
.

The set {1, cosx, cos 2x, . . .} forms a basis of V . Let T : V ! f �→ d2f
dx2 ∈ V .

Then, T (1) = 0, T (cosx) = − cosx, T (cos 2x) = −4 cos 2x, . . ., so the class of
unbounded unions of finite dimensional T -invariant subspaces is inferable from
positive data. This situation can be generalized to that of Hilbert spaces. A
vector space H over the field of real or complex numbers is called Hilbert space
if an inner product is defined over H and H is complete with respect to the metric
induced by the inner product. It is known that H has an orthonormal basis under
a certain condition. This means that every element of H can be approximated
by a linear combination of finite number of elements of the orthonormal basis
within an arbitrary error. This example can be considered to be the situation
treating an approximation cut off after the r’th term. A Hilbert space is one of
the most typical and important examples of infinite dimensional vector spaces
which appear in mathematics, and it is closely related to functional analysis and
approximation theory. This might shed new light on the connection between
learning theory and analysis.

5 Monomial Ideals of Polynomial Ring

We denote the set of polynomials ofn variableswithQ-coefficients by Q[x1, . . . , xn].
A subset I of Q[x1, . . . , xn] is called an ideal if it satisfies (i) ∀f, g ∈ I ⇒ f±g ∈ I

324 Y. Kameda and H. Tokunaga

and (ii) ∀f ∈ I, ∀h ∈ Q[x1, . . . , xn]⇒ hf ∈ I. We denote the set of all ideals by
I. For a subset F ⊆ Q[x1, . . . , xn], the ideal generated by F , which is denoted
by 〈F 〉, is defined as follows:

〈F 〉 =

⎧⎨
⎩
∑

finite

hifi

∣∣∣ hi ∈ Q[x1, . . . , xn], fi ∈ F

⎫⎬
⎭ .

Note that the correspondenceF �→ 〈F 〉 defines a closure operatoron Q[x1, . . . , xn].
An ideal I is called finitely generated if there is a finite set F such that 〈F 〉 = I.
The following theorem is well-known in algebra:

Theorem 7. (Hilbert’s basis theorem, [3]) Every ideal of Q[x1, . . . , xn] is finitely
generated.

An interpretation of this statement from machine learning view point is that
“I has a finite elasticity.” Hence, I is a Noetherian closed set system with the
closure operator F �→ 〈F 〉. An ideal I is called monomial ideal if there exists a
set of monomials F such that I = 〈F 〉. Monomial ideals are characterized by the
following fact.

Proposition 3. Let I be an ideal of Q[x1, . . . , xn]. The followings are equiva-
lent:
(a) I is a monomial ideal,
(b) I is generated by the set of all monomials in I,
(c) for each f ∈ I, every monomial occurring in f is also in I,
(d) I is generated by a set of finitely many monomials.

Let MI be the class of all monomial ideals. Then,

Lemma 5. 1.MI is a closed set system. 2. Every I ∈MI has a characteristic
set.

Proof. (1) See Remark 3. (2) According to Proposition 3 (d), there is a set of
finite number of monomials G that generates I for each I ∈ MI. This G forms
a characteristic set of I.

Theorem 8. MI∗ is inferable from positive data.

Proof. We denote the set of all monomials by M. Let S = {s1, . . . , sn} ⊆
Q[x1, . . . , xn]. For each i, we can write si =

∑
m∈M ci,mm, where all but fi-

nite ci,m’s are equals to 0. Let Mi = {m | ci,m �= 0}. δ(S) is defined as follows:

M =
n⋃

i=1

Mi, δ(S) =
∑

m∈M

m.

According to Corollary 3, it suffices to show that δ satisfying (") for each finite
subset S ⊆ Q[x1, . . . , xn] and for each I ∈ MI. By Proposition 3 (d), I has a
characteristic set that consists of finite number of monomials, say G.

Inferability of Unbounded Unions of Certain Closed Set Systems 325

(⇒) Suppose δ(S) =
∑

m∈M m ∈ I. Applying Proposition 3 (c) to δ(S), the set
of all monomials occurring δ(S), that is, M is a subset of G. Hence Mi is. Since
si is a linear combination of the elements of Mi, each si is in I.
(⇐) S ⊆ I implies that Mi ⊆ G for every i, so M is. Thus δ(S) ∈ I.

Example 2. Consider a monomial ideal I = 〈x3, xy, y2〉 of the polynomial ring
of two variables Q[x, y]. I equals to the set⎧⎨

⎩
∑
finite

cmm
∣∣∣ cm ∈ Q,m ∈ M is divisible by x3, xy or y2

⎫⎬
⎭ .

Then, the set
{δ({x3, xy, y2})} = {x3 + xy + y2}

forms a characteristic set of I in Q[x, y].

In §6.2, we consider an application of above arguments to the study of transaction
databases.

6 Application: Closed Set Systems and Transaction
Databases

In this section, we apply our arguments of closed set systems considered in §§4
and 5 to the study of transaction databases.

6.1 Application 1: Vector Spaces and Transaction Databases

Let I be a countable set {p1, p2, . . .} and we regard I as the set of items. A
transaction database D over I is a sequence of finite subsets X1, X2, . . . of I. For
a set X ⊆ I, the support of X is defined by {i ∈ N | X ⊆ Xi} and denoted
by D(X). A set X ⊆ I is called closed if D(Y) ⊂ D(X) for every Y ⊃ X . To
avoid confusions, we call this DB-closed here. Note that every DB-closed set X
is finite. In fact, if X is infinite, then D(X) is empty. So X can not be closed.

Let V be the set of all formal linear combinations of elements of I:

V =

⎧⎨
⎩
∑

finite

ckpk

∣∣∣ ck ∈ Q, pk ∈ I

⎫⎬
⎭ .

Then I forms a basis of V . I corresponds to G in §4. Take a linear transformation
T : V → V that is the form T (pi) = aipi, where ai’s are distinct rational numbers
(for example, a linear transformation T defined by T (pi) = ipi is suitable.) By
Lemma 4, we have

VT = {〈S〉 | S ⊂ I, S is finite}.
Hence a finite subset of I, i.e. an itemset, can be regarded as a closed set. More
precisely, it can be described as follows: Let S be the class of all itemsets. By

326 Y. Kameda and H. Tokunaga

Lemma 4, for each W ∈ VT , there exists unique SW ∈ S such that W = 〈SW 〉.
Then the mapping

Φ : VT → S, W �→ SW

is the inverse of
Ψ : S → VT , S �→ 〈S〉,

so an itemset corresponds an element of VT , i.e. a closed set.
Now we apply our result in §4 to consider the inference of V∗

T . Let W1 ∪ . . .∪
Wm ∈ V∗

T be a target and v1,v2, . . . be a positive data of W1 ∪ . . . ∪Wm. We
assume that W1 ∪ . . . ∪Wm is not redundant: for each i, Wi is not included in
∪j �=iWj . As we have seen in §4, W1 ∪ . . . ∪Wm is inferable from v1,v2,

Here we define Xi ⊂ I by

Xi = {pi | pi appears in vi with nonzero coefficient}.

Since every Xi is finite, the sequence {X1, X2, . . .} forms a transaction database,
which we denote by D. Put Ci = {pi | pi ∈ Wi} (= Φ(Wi)). From the corre-
spondence as above, Ci be the subset of I that corresponds to Wi. Then it holds
that:

Proposition 4. Ci is DB-closed. Moreover, Ci is maximal with respect to set
inclusion.

Proof. Let Ci ⊂ X ⊂ I be an arbitrary finite set. Since W1 ∪ . . . ∪Wm is not
redundant, there is no Wk such that Ψ(X) = 〈X〉 ⊆Wk. This means that there
is no j such that Xj ⊇ X . Hence D(X) = ∅. On the other hand, D(Ci) �= ∅, since
v1,v2, . . . is positive data and so there is a vk =

∑
p∈Ci

p. Thus D(X) ⊂ D(Ci),
and then Ci is DB-closed. In addition, D(X) = ∅ implies that X ⊃ Ci can not
be DB-closed. So Ci is maximal.

Furthermore, we have:

Proposition 5. If X is a maximal DB-closed set of D, then there exists unique
i such that Ci = X.

Proof. If D(X) = ∅ then X is not DB-closed, so D(X) �= ∅. Let j ∈ D(X).
There is a Wk such that vj ∈ Wk. By definition, it holds that X ⊆ Xj ⊆ Ck.
The assumption and Proposition 4 imply X = Ck. If there is a k′ �= k such that
X = Ck = Ck′ , then it means that W1 ∪ . . . ∪Wm is redundant, and this is a
contradiction.

Thus “inference of V∗
T ” corresponds to “mining maximal closed sets of D”.

Remark 5. This example would be uninteresting, since a maximal DB-closed
itemset is only a maximal itemset. But, if we choose the linear transformation T
appropriately or make coefficients of gi’s have a meaning, it might be interesting.

Example 3. In practice, both the set of items I and the database D are finite.
Here we consider such a case as an example. Let I = {p1, p2, p3, p4} and D as
follows:

Inferability of Unbounded Unions of Certain Closed Set Systems 327

p1 p2 p3 p4

X1 © © ©
X2 © ©
X3 ©
X4 © ©
X5 © ©

.

Then DB-closed sets of D are

{p1}, {p4}, {p1, p4}, {p2, p3}, {p1, p2, p3}

and maximal DB-closed sets are {p1, p4} and {p1, p2, p3}. Now let vi ∈ V (i =
1, . . . , 5) be the element corresponding to Xi:

v1 = p1 + p2 + p3,v2 = p2 + p3,v3 = p4,v4 = p2 + p3,v5 = p1 + p4.

Then Procedure 1 outputs 〈p1, p2, p3〉 ∪ 〈p1, p4〉 when v1, . . . ,v5 is taken as
input. Since

Φ(〈p1, p2, p3〉) = {p1, p2, p3}, Φ(〈p1, p4〉) = {p1, p4},

the maximal DB-closed sets of D can be given by Procedure 1.

6.2 Application 2: Monomial Ideals and Transaction Databases

We have consider an application of Theorem 8 to the study of transaction
databases. Our advantage is that, by using Theorem 8, we can deal with transac-
tion databases that contains data of quantities of items. Let I = {x1, x2, . . . xn}
be the set of items. A transaction considered in this section is a set of pairs of
an item and its quantity {(xa1 , p1), (xa2 , p2), . . . , (xak

, pk)}. For convenience, we
always assume that a1 < a2 < . . . < ak. A transaction database D is a sequence
of transactions {T1, T2, . . .}.
Definition 3. 1. Let T1 ={(xa1 , p1), (xa2 , p2), . . . , (xan , pn)} and T2 = {(xb1 , q1),
(xb2 , q2), . . . , (xbm , qm)} be itemsets. If there is an ji such that bji = ai and
pi ≤ qji for each i = 1, 2, . . . , n, then T1 is said to be included in T2, and denotes
by T1 $ T2.
2. Let T be an itemset and D be a transaction database. Define

ιD(T) := {T ′ : transaction of D | T $ T ′}.

3. Let D′ ⊆ D. Define

tD(D′) := max�{T : itemset | ∀T ′ ∈ D′, T $ T ′}.

For simplicity, we will write ι and t instead of ιD and tD, respectively. It is known
that

Proposition 6. Let D be a fixed transaction database and ι, t be the mappings
above. Let I denote the set of all itemsets. The composition CD = t ◦ ι : I → I
becomes a closure operator.

328 Y. Kameda and H. Tokunaga

An itemset can be interpreted as a monomial xa1
i1

xa2
i2
· · · · · xan

in
. M denotes the

set of all monomials of variable x1, x2, ThenM corresponds to the set of all
itemsets I and a transaction database D can be regarded as a sequence of mono-
mials m1,m2, . . . (mi ∈ M). Here we give an example of the correspondence.

x1 x2 x3 x4

T1 2 1
T2 1 3 2
T3 1
T4 1 2 1

←→

m1 x2
1x4

m2 x2x
3
3x

2
4

m3 x1

m4 x1x
2
2x3

The mappings ι and t are interpreted as follows:

Proposition 7. 1. Let T1 and T2 be itemsets and let m1 and m2 be monomials
corresponding to T1and T2 respectively. Then T1 $ T2 ⇔ m1|m2, where m|n
means that m divides n.
2. Let m ∈ M be a monomial and D : m1,m2, . . . be a transaction database.
Then ι(m) = {mi | m|mi}.
3. Let S = {n1, n2, . . . , nk} be itemsets. t(S) corresponds to the greatest common
divisor of monomials of S, GCD(S).

Now we fix a transaction database D. As D is regarded to a sequence of mono-
mials as above, the argument in §5 can be applied to D. The algorithm becomes
much simpler since the sequence presented as a positive data is a sequence of
only monomials, instead of a sequence of polynomials.

Procedure 2-1:
Input: a sequence of monomials m1,m2, . . .;
Output: a sequence of a set of monomials S1, S2, . . .;
begin
1. S = ∅;
2. Put n = 1;
3. repeat
4. if there is no m′ ∈ S such that m′|mn do
5. Remove all m′ ∈ S such that mn|m′ from S;
6. Add mn to S;
7. end do;
8. Set Sn = S and output S;
9. Add 1 to n;
10. forever;
end.

It is clear that

Proposition 8. Sn in the output of Procedure 2-1 is equals to the set {mi |
mj |/mi (i, j = 1, 2, . . . , n)}.

Inferability of Unbounded Unions of Certain Closed Set Systems 329

By translating Proposition 8 into the language of transaction databases, it follows
that:

Proposition 9. Sn is the set of all maximal closed itemset of {m1,m2, . . . ,mn}

Now we improve Procedure 2-1. We set a threshold k as follows.

Procedure 2-2:
Input: a sequence of monomials m1,m2, . . . and a threshold k;
Output: a sequence of a set of monomials S1, S2, . . .;
begin
1. S = ∅, M = ∅;
2. Put n = 1;
3. repeat
4. Set m = mn.
5. if there is an element of the form (cm,m) in M , then cm = cm + 1;
6. else set cm = 1 and add (cm,m) to M ;
7. if cm ≥ k and there is no m′ ∈ S such that m′|m do
8. Remove all m′ ∈ S such that m|m′ from S;
9. Add m to S;
10. end do;
11. Set Sn = S and output S;
12. Add 1 to n;
13. forever;
end.

Note that we can take quantities as well as frequency into account in Proce-
dure 2-2. This is an advantage of Procedure 2-2.

7 Conclusion

We have focused on the closed set systems based on the sets with some kind
of algebraic structure. As a result, we showed that the scheme of learning from
positive data can be applied to some objects in both algebra and analysis, such as
polynomial rings or Hilbert spaces. Moreover, we have seen that such closed set
systems can be applied to the study of transaction database in the last section.
In particular, we showed that one can deal with a transaction database with the
quantities of items, under the settings of §6.2. Our problem in the near future is
experiment, i.e. to apply our method to various “actual” databases and see how
it works.

Acknowledgement

The authors are grateful to professor Shin-ichi Minato for his constructive com-
ments on the first version of this article. They also thank for the referees for
their valuable comments.

330 Y. Kameda and H. Tokunaga

References

1. Angluin, D.: Inductive Inference of Formal Languages from Positive Data. Infor-

mation and Control 45, 117–135 (1980)

2. de Brecht, M., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Inferability of Closed

Set Systems From Positive Data. In: Washio, T., Satoh, K., Takeda, H., Inokuchi,

A. (eds.) JSAI 2006. LNCS (LNAI), vol. 4384, pp. 265–275. Springer, Heidelberg

(2007)

3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduc-

tion to Computational Algebraic Geometry and Commutative Algebra. Springer,

Heidelberg (1992)

4. Gold, E.M.: Language Identification in the Limit. Information and Control 10,

447–474 (1967)

5. Kameda, Y., Tokunaga, H., Yamamoto, A.: Learning bounded unionsof Noetherian

closed set systems via characteristic sets. In: Clark, A., Coste, F., Miclet, L. (eds.)

ICGI 2008. LNCS (LNAI), vol. 5278, pp. 98–110. Springer, Heidelberg (2008)

6. Kapur, S., Bilardi, G.: On uniform learnability of language families. Information

Processing Letters 44, 35–38 (1992)

7. Kobayashi, S.: Approximate Identification, Finite Elasticity and Lattice Structure

of Hypothesis Space, Technical Report, CSIM 96-04, Dept. of Compt. Sci. and

Inform. Math., Univ. of Electro-Communications (1996)

8. Lassez, J.L., Maher, M.J., Marriott, K.: Unification Revisited. In: Minker, J. (ed.)

Foundations of Deductive Databases and Logic Programming, pp. 587–626. Morgan

Kaufman, San Francisco (1988)

9. Motoki, T., Shinohara, T., Wright, K.: The Correct Definition of Finite Elasticity:

Corrigendum to Identification of Unions. In: Proceedings of COLT 1991, p. 375,

587–626. Morgan-Kaufman, San Francisco (1988)

10. Shinohara, T., Arimura, H.: Inductive Inference of Unbounded Unions of Pattern

Languages From Positive Data. Theoretical Computer Science 241, 191–209 (2000)

11. Takamatsu, I., Kobayashi, M., Tokunaga, H., Yamamoto, A.: Computing Charac-

teristic Sets of Bounded Unions of Polynomial Ideals. In: Satoh, K., Inokuchi, A.,

Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 318–329.

Springer, Heidelberg (2008)

12. Wright, K.: Identification of Unions of Languages Drawn from an Identifiable Class.

In: Proc. of COLT 1989, pp. 328–388. Morgan-Kaufman, San Francisco (1989)

Mining Frequent k-Partite Episodes
from Event Sequences�

Takashi Katoh1, Hiroki Arimura1, and Kouichi Hirata2

1 Graduate School of Information Science and Technology, Hokkaido University

Kita 14-jo Nishi 9-chome, Sapporo 060-0814, Japan

Tel.: +81-11-706-7678; Fax: +81-11-706-7890

{t-katou,arim}@ist.hokudai.ac.jp
2 Department of Artificial Intelligence, Kyushu Institute of Technology

Kawazu 680-4, Iizuka 820-8502, Japan

Tel.: +81-948-29-7622; Fax: +81-948-29-7601

hirata@ai.kyutech.ac.jp

Abstract. In this paper, we introduce the class of k-partite episodes,
which are time-series patterns of the form 〈A1, . . . , Ak〉 for sets Ai (1 ≤
i ≤ k) of events meaning that, in an input event sequence, every event of

Ai is followed by every event of Ai+1 for every 1 ≤ i < k. Then, we present

a backtracking algorithm Kpar and its modification Kpar2 that find all

of the frequent k-partite episodes from an input event sequence without

duplication. By theoretical analysis, we show that these two algorithms

run in polynomial delay and polynomial space in total input size.

1 Introduction

Episode Mining

It is one of the important tasks in data mining to discover frequent patterns
from time-related data. For such a task, Mannila et al. [11] have introduced
episode mining to discover frequent episodes in an event sequence. Here, an
episode is formulated as a labeled acyclic digraphs in which labels correspond to
events and arcs represent a temporal precedent-subsequent relation in an event
sequence. Then, the episode is a richer representation of temporal relationship
than a subsequence, which represents just a linearly ordered relation in sequential
pattern mining (cf., [3,13]). Since the frequency of the episode is formulated by
a window that is a subsequence of an event sequence under a fixed time span,
the episode mining is more appropriate than the sequential pattern mining when
considering the time span.

For subclasses of episodes [5,8,7,9,11], a number of efficient algorithms have
been developed so far. Mannila et al. [11] presented efficient mining algorithm for
parallel episodes as a set of events and serial episodes a sequence of events. On
the other hand, in order to capture the direct relationship between premises and
consequences, Katoh et al. have introduced the episodes with the special events,
� This work is partially supported by Grand-in-Aid for JSPS Fellows (20·3406).

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 331–344, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

332 T. Katoh, H. Arimura, and K. Hirata

a source as a premise and a sink as a consequence, as sectorial episodes [8],
diamond episodes [7,9] and elliptic episodes [5]. Then, they have succeeded to
find frequent their episodes concerned with the replacement of bacteria and the
changes for drug resistance from bacterial culture data, which are valuable from
the medical viewpoint [5,8,9].

Since their episodes have just a single source and a single sink, they can
represent no relationship between plural premises and consequences. On the
other hand, if we extend the diamond episodes with plural sources and sinks, we
can deal with not only plural sources and sinks but also the precedent-subsequent
relation between 3 sets of events as an episode with length 3. Furthermore,
without restriction of the length of episodes, we can generalize such an episode
by extending an event in a serial episode as a set of events. The generalized
episode can represent the precedent-subsequent relation between sets of events
that simultaneously occur.

Hence, in this paper, as a generalized form of episodes, we newly introduce
k-partite episodes of the form 〈A1, . . . , Ak〉 (k ≥ 0), where Ai (1 ≤ i ≤ k) are
sets of events. The k-partite episode 〈A1, . . . , Ak〉 means that every event in Ai

(1 ≤ i < k) is followed by every event in Ai+1. The name “k-partite” comes
from the fact that we can represent a k-partite episode as a complete k-partite
graph, by adding all of the transitive arcs and by ignoring the direction of arcs.

Main results

For the frequent k-partite episode mining problem, we present a backtracking
algorithm Kpar and its modification Kpar2, which achieve polynomial delay
and polynomial space complexity.

A key idea for the efficiency of these algorithms is an enumeration of the candi-
date k-partite episodes based on depth-first search. The algorithm Kpar searches
for frequent k-partite episodes starting with the smallest empty episode, and then
expands a candidate episode by attaching a new event one by one to the tail com-
ponent. Once the algorithm reaches an infrequent episode, it stops to expand the
current branch and backtracks for remaining branches in a search tree.

Let Σ be an alphabet of events, X a k-partite episode over Σ, S an event
sequence of size N and of length n and w a window width. Then, the match-
ing problem of X in S against w is to determine whether or not there exists a
contiguous subsequence of S of length w that contains X satisfying the edge con-
straints. A straightforward generate-and-test method for the matching problem
requires exponential time in the size M of a k-partite episode. By introducing
the notion of the leftmost tail occurrences , we show that the matching problem
is solvable in O(|Σ|n) time, and we present an efficient scanning-based subproce-
dure CountByScan that solves the matching problem of X in S in O(w|Σ|n)
time. Note here that N ≤ |Σ|n. Then, we show that the algorithm Kpar runs
in O(|Σ|2wn) time per a k-partite episode and O(|Σ|k) space.

In some real-world datasets, input sequences are often sparse, that is, the to-
tal number N(= ||S||) of the occurrences of events in S is much smaller than sn,
where s = |Σ| and n = |S|. In such a case, the performance of a scanning-based

Mining Frequent k-Partite Episodes from Event Sequences 333

algorithm such as CountByScan may degenerate, since it is necessary to tra-
verse many windows overall in order to solve the matching problem. To cope with
this problem, we give a practical speed-up technique for frequency counting. We
show that the matching problem of a k-partite episode in S is solvable in O(N)
time, and we present a practical algorithm CountByList that computes the fre-
quency counts in O(N2k) time by using the event lists. The modified algorithm
Kpar2 with CountByList runs in O(|Σ|N2k) time per a k-partite episode and
in O(|Σ|k + N) space, where O(N) coincides with the space for storing all event
sequences.

As a corollary, we show that the frequent episode mining problem is solvable
in polynomial delay and in polynomial space in the total input size.

Organization

This paper is organized as follows. In Section 2, we introduce episodes and
other notions necessary to the later discussion. In Section 3, we introduce k-
partite episodes and other notions and discuss their properties. In Section 4,
we present the algorithms Kpar and Kapr2 to extract all of the frequent k-
partite episodes. In Section 5, we give the experimental results for the algorithms
given in Section 4, by applying to the randomly generated event sequences. In
Section 6, we conclude this paper and discuss the future works.

2 Preliminaries

In this section, we introduce the frequent episode mining problem and the related
notions necessary to later discussion. We denote the sets of all integers and all
natural numbers by Z and N, respectively. For a set S, we denote the cardinality
of S by |S|. A digraph is a graph with directed edges (or, arcs). An acyclic digraph
is a digraph without cycles.

2.1 An Input Event Sequence and Its Windows

Let Σ = {1, . . . ,m} (m ≥ 1) be a finite alphabet with the total order ≤ over
N. Each element e ∈ Σ is called an event 1. An input event sequence (input
sequence, for short) S on Σ is a finite sequence 〈S1, . . . , Sn〉 ∈ (2Σ)∗ of events
(n ≥ 0), where Si ⊆ Σ is called the i-th event set for every 1 ≤ i ≤ n. For any
i < 0 or i > n, we set Si = ∅. For an input event sequence S, we denote the length
n by |S| and define the total size ||S|| of S by

∑n
i=1 |Si|. Clearly, ||S|| = O(|Σ|n),

but the converse does not hold in general, that is, O(||S||) �= |Σ|n. Without loss
of generality, we can assume that every event in Σ appears at least once in S.

2.2 Episodes

Mannila et al. [11] have formulated an episode as a partially ordered. On the
other hand, We formulate an episode as a labeled acyclic digraph as follows. An
1 Mannila et al. [11] originally referred to each element e ∈ Σ itself as an event type

and an occurrence of e as an event . However, we simply call both of them as events.

334 T. Katoh, H. Arimura, and K. Hirata

episode over Σ is a labeled acyclic digraph X = (V,E, g), where V is a set of
vertices, E ⊆ V × V is a set of arcs and g : V → Σ is a mapping associating
each node with an event. It is not hard to see that two definitions of episodes
by Mannila’s partially ordered sets [11] and our labeled acyclic digraphs are
essentially same each other.

Let X = (V,E, g) be an episode. We define the size ||X || of X by |V |. For
an arc set E on a vertex set V , let E+ be the transitive closure of E such that
E+ = { (u, v) | there is a directed path from u to v }.

Definition 1 (embedding). For episodes Xi = (Vi, Ei, gi) (i = 1, 2), X1 is
embedded in X2, denoted by X1 & X2, if there exists a mapping f : V1 → V2 such
that (i) f preserves the labels of vertices , i.e., for all v ∈ V1, g1(v) = g2(f(v)),
and (ii) f preserves the precedence relation, i.e., for all u, v ∈ V with u �= v, if
(u, v) ∈ E1 then (f(u), f(v)) ∈ (E2)+. The mapping f is called an embedding
from X1 to X2.

Given an input sequence S = 〈S1, . . . , Sn〉 ∈ (2Σ)∗, an window in S is a con-
tiguous subsequence W = 〈Si · · ·Si+w−1〉 ∈ (2Σ)∗ of S for some i, where w ≥ 0
is the width of W .

Definition 2 (occurrence for an episode). An episode X = (V,E, g) occurs
in an window W = 〈S1 · · ·Sw〉 ∈ (2Σ)∗, denoted by X & W , if there exists a
mapping h : V → {1, . . . , w} such that (i) h preserves the labels of vertices, i.e.,
for all v ∈ V , g(v) ∈ Sh(x), and (ii) h preserves the precedence relation, i.e., for
all u, v ∈ V with u �= v, if (u, v) ∈ E then h(u) < h(v). The mapping h is called
an embedding of X into W .

A window width is a fixed positive integer 1 ≤ w ≤ n. For any −w + 1 ≤ i ≤ n,
we say that an episode X occurs at position i in an event sequence S if X &Wi,
where Wi = 〈Si, . . . , Si+w−1〉 is the i-th window of width w in S. Then, we call i
an occurrence or label of X in S. In what follows, we denote the i-th window Wi

by WS,w
i . Let WS,w = { i | −w + 1 ≤ i ≤ n } be the domain of the occurrences.

For an episode X , we define the occurrence window list WS,w(X) for X in S by
the set { −w + 1 ≤ i ≤ n |X &Wi } of the occurrences of X in S.

2.3 Frequent Episode Mining Problem

Let C be a subclass of episodes, X an episode in C, S an input sequence and w (≥
1) a window width. Then, the frequency freqS,w(X) of X in S is defined by the
number of w-windows, that is, freqS,w(X) = |WS,w(X)| = O(|S|). A minimum
frequency threshold is any positive integer σ ≥ 1. Without loss of generality, we
can assume that σ ≤ |S|. An episode X is σ-frequent in S if freqS,w(X) ≥ σ.
We denote the set of all σ-frequent episodes occurring in S by FS,w,σ.

Definition 3. Frequent Episode Mining Problem for C:
Let C be a subclass of episodes we consider. Given an input sequence S ∈ (2Σ)∗,
a window width w ≥ 1, and a minimum frequency threshold σ ≥ 1, the task is
to find all of the σ-frequent episodes X within class C that occur in S with a
window width w without duplication.

Mining Frequent k-Partite Episodes from Event Sequences 335

Our goal is to design an efficient algorithm for the frequent episode mining
problem for the class of k-partite episodes, which we will introduce in the next
section, in the framework of enumeration algorithms [4]. Let N be the total
input size and M the number of all solutions. An enumeration algorithm A is
of output-polynomial time, if A finds all solutions S ∈ S in total polynomial
time both in N and M . Also A is of polynomial delay, if the delay, which is the
maximum computation time between two consecutive outputs, is bounded by a
polynomial in N alone.

3 k-Partite Episodes

In this section, we introduce the class of k-partite episodes for any k ≥ 0 and
other notions and discuss their properties.

In this paper, we regard an event e ∈ Σ as the episode X = ({v}, ∅, g) such
that g(v) = e. Similarly, we regard a set of event {e1, . . . , en} ⊆ Σ (n ≥ 0) as a
parallel episode, that is, an episode X = ({v1, . . . , vn}, ∅, g) such that g(vi) = ei

for every 1 ≤ i ≤ n [11]. Then, we call an episode X = (∅, ∅, g) with an empty
vertex set an empty episode and denote X by ∅.

Definition 4. For k ≥ 1, a k-serial episode (or a serial episode) over Σ is an
episode X = (V,E, g) satisfying that V = {v1, . . . , vk}, E = {(vi, vi+1) | 1 ≤ i <
k} and g(vi) = ai for every 1 ≤ i ≤ k. We denote such a k-serial episode by a
sequence (a1 �→· · · �→ak) of events a1, . . . , ak ∈ Σ.

Definition 5. For k ≥ 1, a k-partite episode (or a partite episode) over Σ is an
episode X = (V,E, g) satisfying the following conditions (i) – (iii):

(i) V = V1 ∪ · · · ∪ Vk, where Vi �= ∅ and Vi ∩ Vj = ∅ for every i and j
(1 ≤ i < j ≤ k).

(ii) X is complete, i.e., E = (V1 × V2) ∪ · · · ∪ (Vk−1 × Vk) holds.
(iii) X is partwise-linear , i.e., for every 1 ≤ i ≤ k, the set Vi contains no distinct

vertices with the same labeling by g.

We denote such a k-partite episode by an k-tuple X = 〈A1, . . . , Ak〉, where
Ai ⊆ Σ is a set of events for every 1 ≤ i ≤ k.

For example, we describe a 3-serial episode, a parallel episode, and a 3-partite
episode on the alphabet Σ = {a, b, c} in Fig. 1. In what follows, we denote the
classes of k-serial, parallel, sectorial [8], diamond [7,9] and k-partite episodes
over Σ by SEk, PE , SEC, DE and PT Ek, respectively. For these subclasses
of episodes, the following inclusion relation hold: (i) SE1 ⊆ PE ⊆ PT E1, (ii)
SE2 ⊆ SEC ⊆ PT E2, (iii) SE3 ⊆ DE ⊆ PT E3 and (iv) SEk ⊆ PT Ek (k ≥ 0).
In particular, for the 3-partite episode X = 〈A1, A2, A3〉, if both |A1| = 1 and
|A3| = 1 then X is a diamond episode. Also, for the 2-partite episode X =
〈A1, A2〉, if |A2| = 1 then X is a sectorial episode.

336 T. Katoh, H. Arimura, and K. Hirata

a
b
c

b

c

a

b

a
b
c

b ca

Fig. 1. The examples of

a 3-serial episode (top), a

parallel episode (center),

and a 3-partite episode

(bottom) on the alpha-

bet Σ = {a, b, c}.

abc
aa

a
b

a
c

baca

a
b
c

a
a
bb

a
bc

a
b

a
ba

a
ca

aa aaa baa c

a
a
b
c

b
a
b
c

c
a
b
c a

b
a
b

a
c

a
b

a
a
b aa

a
b ba

a
b c

a
b
c

a

a
ba a

a
ba b

a
ba c

a ba
a

a ca
a

a

aa

a
b

a
ba

a
b
c

a
a
b

Fig. 2. The parent-child relationships on the alpha-

bet Σ = {a, b, c}, where episodes in dashed boxes are

pre-partite episodes.

4 Algorithm

4.1 Depth-First Enumeration of k-Partite Episodes

In this section, we present a polynomial-delay and polynomial-space algorithm
Kpar for extracting all of the frequent k-partite episodes in an input event
sequence. Throughout of this section, let S = (S1, . . . , Sn) ∈ (2Σ)∗ be an input
event sequence, where |S| = n and ||S|| = N , w ≥ 1 a window width and σ ≥ 1
the minimum frequency threshold.

For a partite episode X = 〈A1, . . . , Ak−1〉 of the length k−1 ≥ 0, we define the
k-pre-partite episode of the length k ≥ 0 as an episode Y = 〈A1, . . . , Ak−1, ∅〉.
The main idea of our algorithm is to enumerate all of the frequent k-partite
episodes by searching for the whole search space from general to specific by
using depth-first search. For the search space, we introduce the parent-child
relationship between k-partite episodes and k-pre-partite episodes, in order to
output no k-pre-partite episodes.

Definition 6. The 0-partite episode ⊥ = 〈〉 is the root . For 1 ≤ i ≤ k, the
parent of the i-partite or i-pre-partite episode X = 〈A1, . . . , Ai〉 is defined by:

parent(〈A1, . . . , Ai〉) =
{
〈A1, . . . , Ai−1〉, if Ai = ∅,
〈A1, . . . , (Ai − {maxAi}〉, otherwise.

Also we define the set of all children of X by Children(X) = {Y | parent(Y) =
X}. Then, we define the family tree for PT Ek by a rooted digraph T (PT Ek) =
(V,E,⊥) with the root ⊥, where V = PT Ek ∪ {X |X is k-pre-partite episode }
and E = { (X,Y) |X is the parent of Y , Y �= ⊥ }.

Mining Frequent k-Partite Episodes from Event Sequences 337

algorithm Kpar(S , k, w, Σ, σ)

input: input event sequence S = 〈S1, . . . Sn〉 ∈ (2Σ)∗ of length n ≥ 0,

maximum length of output partite episode k ≥ 0, window width w > 0,

alphabet of events Σ = {1, . . . , s} (s ≥ 1), the minimum frequency 1 ≤ σ ≤ n + k;

output: the set of all σ-frequent k-partite episodes in S with window width k;

method:

1 output 〈〉;
2 KparRec(〈∅〉, 1,S , w, Σ, σ);

procedure KparRec(X, i,S , k, w, Σ, σ)

input: parent partite episode X = 〈A1, . . . , Ai〉,
and S , k, w, Σ, and σ are same as in Kpar.

output: the set of all σ-frequent i-partite episodes

in S that are descendants of X and i ≤ k;

method:

1 if (i > k) then return;

2 f := CountByScan(X,S , w); // f = |WS,w(X)|;
3 if (f < σ) then return;

4 if (Ai �= ∅) then
5 output X;

6 KparRec(〈A1, . . . , Ai, ∅〉, i + 1,S , w, Σ, σ);

7 end if
8 foreach (e ∈ Σ such that e > max(Ai)) do
9 KparRec(〈A1, . . . , Ai ∪ {e}〉, i,S , w, Σ, σ);

Fig. 3. The main algorithm Kpar and a recursive subprocedure KparRec for mining

frequent k-partite episodes in a sequence

Lemma 1. The family tree T (PT Ek) = (V,E,⊥) for PT Ek is a rooted tree
with the root ⊥.

Proof. For any partite episode X = 〈A1, . . . , Ak〉 of length k ≥ 1, it holds that
||parent(X)|| = ||X || − 1. For any pre-partite episode X = 〈A1, . . . , Ak−1, ∅〉
of length k ≥ 1, it holds that ||parent(X)|| = ||X ||, and then, parent(X) =
〈A1, . . . , Ak−1〉 is a partite episode. Therefore, we can show that, for any vertex
X ∈ V , X is reachable from ⊥ by a path of the length at most 2||X ||. Moreover,
we can show that T (PT Ek) is acyclic. Hence, the statement holds. ()
In Fig. 2, we describe the part of family tree T (PT E3) forms the spanning tree
for all 3-partite episodes of PT E3 on the alphabet Σ = {a, b, c}.

In Fig. 3, we describe the algorithm Kpar and its subprocedure KparRec

for extracting frequent k-partite episodes from an input event sequence S. The
algorithm is a backtracking algorithm that traverses the spanning tree T (PT Ek)
based on depth-first search starting from the root ⊥ using the parent-child rela-
tionships over PT Ek.

4.2 Basic Algorithm with Frequency Counting by Scanning

Let S = (S1, . . . , Sn) ∈ (2Σ)∗ be an input event sequence of length n. For
1 ≤ i ≤ j ≤ n, we denote the subsequence S[i..j] = (Si, . . . , Sj) by S[i..j]. Also

338 T. Katoh, H. Arimura, and K. Hirata

procedure CountByScan(X,S , w)

input: k-partite episode X = 〈A1, . . . , Ak〉, an input sequence S = 〈S1, . . . Sn〉,
window width w > 0;

output: the frequency of X;

method:

1 f := 0;

2 for (i := −w + 1, . . . , n) do

3 Test if X � WS,w
i = 〈Si, . . . , Si+w−1〉 by the procedure in Lemma 2.

4 if the answer is “Yes” then f := f + 1;

5 end for
6 return f ;

Fig. 4. An algorithm CountByScan for computing the frequency of a k-partite

episode

let X be a k-partite episode over Σ and w a window width. Then, the matching
problem of X in W = S[i..j] against w is to determine whether or not there
exists a contiguous subsequence W ′ of W of length w such that X & W ′. Let
1 ≤ i ≤ n be any position. The leftmost tail occurrence of a k-partite episode
X = 〈A1, . . . , Ak〉 w.r.t. the right boundary i is the smallest index i ≤ j ≤ n
such that X is contained in the prefix S[i..j], i.e., X & S[i..j].

Lemma 2. For a k-partite episode X = 〈A1, . . . , Ak〉 over Σ, an input sequence
S of length n and a position 1 ≤ r ≤ n, suppose that P = (p1, . . . , pk) is the list
of positions such that, for every 1 ≤ i ≤ k, pi is the leftmost tail occurrence of
i-partite episode Xi = 〈A1, . . . , Ai〉 w.r.t. the right boundary r. Also let p0 = r.
Then, we have the following statements:

1. P is increasing, i.e., it holds that p0 < p1 < · · · < pk.
2. For every 1 ≤ i ≤ k, it holds that pi = maxe∈Ai min{ j | pi−1 < j ≤ n, e ∈

Sj }.
3. The list P can be computed in O(|Σ|n) time.

Thus, the matching problem for k-partite episodes against a window width
w can be solved in O(|Σ|w) time. The algorithm CountByScan in Fig. 4
computes the frequency count for a k-partite episode X based on the above
lemma.

Lemma 3. Let S be an input event sequence of length n and w a window
width. Then, the algorithm CountByScan in Fig. 4 computes the frequency
freqS,w(X) = |WS,k(X)| of a partite episode X in O(|Σ|wn) time.

To estimate the delay of the algorithm precisely, we adopt the compact repre-
sentation of the current episode X by storing only the difference of X from its
parent. Moreover, we use the alternating output technique of [14] to reduce the
delay by factor of the depth of the search tree. Then:

Mining Frequent k-Partite Episodes from Event Sequences 339

Theorem 1. Let S be an input event sequence of length n. Then, the algorithm
Kpar in Fig. 3 with CountByScan finds all of the σ-frequent k-partite episodes
occurring in S without duplication in O(|Σ|2wn) delay and in O(|Σ|k) space.

Proof. At each iteration of the algorithm KparRec, the algorithm computes the
frequency count f in O(|Σ|wn) by Lemma 3 and executes other instructions than
the invocation of KparRec within the same cost. Since, each frequent episode
has at most O(|Σ|) infrequent children, the running time per a σ-frequent k-
partite episode is O(|Σ|2wn) time. ()

4.3 Modified Algorithm with Frequency Counting on Event Lists

In Fig. 5, we describe a modified version of our algorithm Kpar2 and its sub-
procedure KparRec2 for extracting frequent k-partite episodes from input se-
quence S.

The key idea of Kpar2 is a subprocedure CountByList that computes the
frequency counts using so-called event lists. For an event e ∈ Σ, the event list of e
in an input event sequence S is an increasing list L[e] = (p1, . . . , pm) of positions
1 ≤ p ≤ n such that e ∈ Si. The event list table L in S is the set L = {L[e]}e∈Σ

of event lists for all events in Σ. Under the assumption that every event in Σ
appears at least once in S, the total number of elements in L equals to N . A
position 1 ≤ i ≤ n is said to be appropriate in S if Si is not an empty set.
Without loss of generality, we can assume that the list A = (i1, . . . , ih) (h ≥ 0)
of the appropriate positions in S is given.

Lemma 4. The event list table L in S can be computed in O(N) time.

Proof. We encode a event list L[e] = (p1, . . . , ph) (h ≥ 0) by a triple Head = 0,
POS[0..h − 1] and NEXT [0..h− 1] such that, for each pointer π ∈ [0..h − 1],
POS[π] is the position pointed by π and π′ = NEXT [π] is the next pointer of
π. Then, the algorithm in Fig. 6 computes L in S. The time complexity of the
algorithm is obviously O(N) time. ()

algorithm Kpar2(S , k, w, Σ, σ)

input: an input event sequence S = 〈S1, . . . Sn〉 ∈ (2Σ)∗ of length n ≥ 0,

an integer k ≥ 0, an window width w > 0, an alphabet Σ,

a minimum frequency 1 ≤ σ ≤ n + k;

output: the set of all σ-frequent k-partite episodes in S with window width w;

method:

1 Compute the event list table L = {L[e]}e∈Σ in S ;

2 output 〈〉;
3 KparRec2(〈∅〉, 1,S ,L, w, Σ, σ);

// KparRec2 is same as KparRec except that this calls CountByList

// with L instead of CountByScan;

Fig. 5. The modified algorithm Kpar2 for mining frequent k-partite episodes in a

sequence

340 T. Katoh, H. Arimura, and K. Hirata

method:

1 foreach e ∈ Σ do laste := −1; freee := 0; Heade := 0; end foreach
2 for (i := i1, . . . , ih) do

// (i1, . . . , ih) = A is the list of the appropriate positions in S ;

3 foreach e ∈ Si do
4 pe := freee; freee := freee + 1; POSe[pe] := i;
5 if laste �= −1 then NEXTe[laste] := pe;

6 laste := pe;

7 end foreach
8 foreach e ∈ Si do NEXTe[laste] := laste;

9 return L = (Heade, POSe, NEXTe)e∈Σ ;

Fig. 6. The algorithm for computing the event list table L in S

procedure LeftMostTail(A: a set of events, S : an input sequence of total size N):

method:

1 i := 0;

2 foreach e ∈ A do πe := 0; LM [e] := 0; end foreach
3 while i < n do
4 Let i be the next appropriate position such that i > ilast and Si �= ∅;
5 foreach e ∈ Si ∩ A do
6 LM [e] := POSe[πe]; �max := max(�max, LM [e]); πe = NEXTe[πe];

7 end foreach
8 output (h, �max) as the pair of the position h = i + 1

and the leftmost tail position w.r.t. h;

9 ilast := i;
10 end while

Fig. 7. A streaming algorithm LeftMostTail that computes all leftmost tail positions

of a set A of events by scanning an input sequence from left to right

By regarding a set A ⊆ Σ of events as a parallel episode, we can define the
leftmost tail occurrence q of A w.r.t. a position p in S as before. Then, we have
that p = maxe∈A min{ j | p ≤ j ≤ n, e ∈ Sj }.

Lemma 5. Suppose that S0 = Σ. Then, the algorithm LeftMostTail in Fig. 7
computes the set of all distinct pairs (h, $h) of a position 1 ≤ h ≤ n and the
corresponding leftmost tail position $h w.r.t. h in the increasing order of h in
O(N) time.

In Fig. 9, we describe the algorithm CountByList for computing frequency of
episodes with an incremental version IncLeftMostTail of LeftMostTail in
Lemma 5. The algorithm CountByList is an algorithm that computes the size
of occurrence window list WS,k(X) for a k-partite episode X by sweeping from
the heads of the event lists L to the tails of L.

Mining Frequent k-Partite Episodes from Event Sequences 341

procedure IncLeftMostTail(A: a set of events, �: the left boundary,

(LM [·], π[·], ilast, �max): internal state):

method:

1 i := ilast;

2 if i ≥ � then return (�max, (LM [·], π[·], ilast, �max));

3 while i < n do
4 Let i be the smallest appropriate position such that i > ilast and Si �= ∅;
5 foreach e ∈ Si ∩ A do
6 LM [e] := POSe[π[e]]; �max := max(�max, LM [e]); π[e] = NEXTe[π[e]];
7 end foreach
8 ilast := i;
9 if i ≥ � then return (�max, (LM [·], π[·], ilast, �max));

10 end while
11 return (n + 1, (LM [·], π[·], ilast, n + 1)); //failed!

Fig. 8. An incremental version of LeftMostTail that computes the leftmost tail

position of a set A of events w.r.t. a given position �

procedure CountByList(X = 〈A1, . . . , AK〉, w,S ,L)

input: k-partite episode X, window width w > 0,

an input sequence S = 〈S1, . . . Sn〉, and occurrence lists L for events in S ;

output: the number f of windows in which X occurs;

method:

1 for k := 1, . . . , K do
2 foreach e ∈ Ai do LM [k][e] := 0; πe = 0; ilast := 0; end foreach
3 State[k] := (LM [k][·], π[·], ilast, 0);
4 end for
5 i := 0;

6 while i < n do
7 Let i be the next appropriate position

such that i > ilast and Si �= ∅; �max[0] := i;
8 for k := 1, . . . , K do

// Note: The vector State[k] represents the internal state for k.
9 (�max[k], State[k]) := IncLeftMostTail(Ak, �max[k − 1], State[k]);

10 �max := �max[K];

// Note: �max is the leftmost tail occurrence for episode X w.r.t. position i;
11 if �max[k] > �last then
12 cont := i − max(0, �max[k] − w + 1); f := f + count;
13 end if
14 �last := i + w;

15 ilast := i;
16 end while
17 return f ;

Fig. 9. An algorithm CountByList for computing the number of windows in which

a k-partite episode occurs

342 T. Katoh, H. Arimura, and K. Hirata

24.7813

40.6406

51.0469

70.9531

20
30
40
50
60
70
80
90
100

20

30

40

50

60

70

80

#o
ut

pu
ts

ru
nn

in
g

ti
m

e
(s

ec
)

#output SCAN LIST

12.3906

0.40625 0.78125 1.26563 1.67188 2.0625 0
10
20

0

10

0 10000 20000 30000 40000 50000
input length

Fig. 10. Running time for the input length n, where s = 4, p = 0.1, k = 4, w = 4, and

σ = 0.01n

Lemma 6. Let S be an input sequence of length n and w a window width. Then,
the algorithm CountByList in Fig. 9 computes the frequency freqS,w(X) of a
k-partite episode X in O(N2K) = O(N2w) time, where N = ||S|| is the total
size of an input event sequence S.
Proof. In the algorithm CountByList, the outer while-loop from line 6 to line
16 is executed O(N) times and the inner for-loop from line 8 to line 9 is executed
O(K) times and the call to IncLeftMostTail takes O(N) time in the worst
case. Therefore, the running time of CountByList is O(N2K) time. ()
By using alternating output technique [14], we show the following theorem on
the complexity of the modified algorithm Kpar2.

Proposition 1. Let S be an input event sequence of length n over Σ. Then,
we can implement the algorithm Kpar2 to find all of the σ-frequent k-partite
episodes in S without duplication in O(|Σ|wN2) delay and O(|Σ|k + N) space,
where N = ||S|| is the total size of input event sequence S.

5 Experimental Results

In this section, we give the experimental results for the following combinations of
the algorithms given in Section 4, by applying to the randomly generated event
sequences.

Data: As randomly generated data, we adopt an event sequence S =
(S1, . . . , Sn) over an alphabet Σ = {1, . . . , s} from four parameters (n, s, p), by
generating each event set Si (i = 1, . . . , n) under the probability P (e ∈ Si) = p
for each e ∈ Σ.

Method: We implemented the following two algorithms given in Section 4:

SCAN : the algorithm Kpar with CountByScan in Fig. 3
LIST : the algorithm Kpar2 with CountByList in Fig. 5

Mining Frequent k-Partite Episodes from Event Sequences 343

All experiments were run in a PC (AMD Mobile Athlon64 Processor 3000+,
1.81GHz, 2.00GB memory, Window XP, Visual C++) with window width w ≥
1, maximum length of output partite episode k ≥ 0 and minimum frequency
threshold σ ≥ 1.

Experiments. Fig. 10 shows the running time of the algorithms SCAN and LIST
for the randomly generated event sequences from the parameter (10000 ≤ n ≤
50000, s = 4, p = 0.1), where k = 4, w = 4 and σ = 0.01n. Then, time complexity
of these algorithms seem to be linear in the input size and thus expected to scales
well on large datasets. Furthermore, SCAN is 35 times as faster as LIST.

6 Conclusion

This paper studied the problem of frequent k-partite episode mining, and pre-
sented polynomial-delay and polynomial-space algorithms Kpar and kpar2 that
find all frequent k-partite episodes in an input sequence. Then, we have imple-
mented our two algorithms Kpar and kpar2 and given empirical results to
compare the time and space efficiencies of the algorithms.

It is a future work to give more detailed analysis of the algorithms with
different parameters. Also, it is a future work to apply the proposed algorithm
to bacterial culture data [5,9]. Although Lemma 6 says that the time complexity
of CountByList is O(N2K) time, this can be improved to O(Nw) time by
more detailed analysis on the amortized time of the repeated execution of the
subprecedure IncLeftMostTail. This is another future work.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large

databases. In: Proc. 20th VLDB, pp. 487–499 (1994)

2. Arimura, H.: Efficient algorithms for mining frequent and closed patterns from

semi-structured data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.)

PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 2–13. Springer, Heidelberg (2008)

3. Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for

enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC

2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005)

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathe-

matics 65, 21–46 (1996)

5. Katoh, T., Hirata, K.: Mining frequent elliptic episodes from event sequences. In:

Proc. 5th LLLL, pp. 46–52 (2007)

6. Katoh, T., Hirata, K.: A simple characterization on serially constructible episodes.

In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS

(LNAI), vol. 5012, pp. 600–607. Springer, Heidelberg (2008)

7. Katoh, T., Arimura, H., Hirata, K.: A polynomial-delay polynomial-space algo-

rithm for extracting frequent diamond episodes from event sequences. In: Theer-

amunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS

(LNAI), vol. 5476, pp. 172–183. Springer, Heidelberg (2009)

344 T. Katoh, H. Arimura, and K. Hirata

8. Katoh, T., Hirata, K., Harao, M.: Mining sectorial episodes from event sequences.

In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.) DS 2006. LNCS (LNAI),

vol. 4265, pp. 137–145. Springer, Heidelberg (2006)

9. Katoh, T., Hirata, K., Harao, M.: Mining frequent diamond episodes from event

sequences. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS

(LNAI), vol. 4617, pp. 477–488. Springer, Heidelberg (2007)

10. Katoh, T., Hirata, K., Harao, M., Yokoyama, S., Matsuoka, K.: Extraction of secto-

rial episodes representing changes for drug resistant and replacements of bacteria.

In: Proc. CME 2007, pp. 304–309 (2007)

11. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event

sequences. Data Mining and Knowledge Discovery 1, 259–289 (1997)

12. Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent closed

partial orders from strings. IEEE TKDE 18, 1467–1481 (2006)

13. Pei, J., Han, J., Mortazavi-Asi, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,

M.-C.: Mining sequential patterns by pattern-growth: The PrefixSpan approach.

IEEE TKDE 16, 1–17 (2004)

14. Uno, T.: Two general methods to reduce delay and change of enumeration algo-

rithms, NII Technical Report, NII-2003-004E (April 2003)

15. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-

mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)

EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

16. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating

closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004.

LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004)

17. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE TKDE 12, 372–390

(2000)

18. Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining.

In: Proc. 2nd SDM, pp. 457–478. SIAM, Philadelphia (2002)

Learning from Positive Data Based on the
MINL Strategy with Refinement Operators

Seishi Ouchi� and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University

Yoshida Honmachi, Sakyo-ku, Kyoto, Japan 606-8501

akihiro@i.kyoto-u.ac.jp

Abstract. In the present paper we clarify the combination of the MINL

(MINimal Langugae) strategy and refinement operators in the model of

identification in the limit from positive data, by giving a learning proce-

dure in a general form adopting both of the two. The MINL strategy is

to choose minimal concepts consistent with given examples as guesses,

and has been adopted in many previous works in the model. The mini-

mality of concepts is defined w.r.t. the set-inclusion relation, and so the

strategy is semantic-based. Refinement operators have developed in the

field of learning logic programs to construct logic programs as hypothe-

ses consistent with logical formulae given as examples. The operators are

defined based on inference rules in first-order logic and so are syntactical.

With the proposed procedure we give such a new class of tree pattern

languages that every finite unions of the languages is identifiable from

positive data without assuming the upperbound of the number of unions.

Moreover, we revise the algorithm so that we can show that the class is

polynomial time identifiable.

1 Introduction

The goal of this research is to give a new view to learning formal langugages in
the model of identification in the limit from positive data [1,5], by adopting the
MINL (MINimal Langugae) strategy and refinement operators in one learning
procedure. The MINL strategy, which means to choose minimal concepts consis-
tent with given examples as guesses in a learning process, was adopted in many
learning proedures in the model (see e.g. [1,16]). Refinement operators [8,14]
were developed for learning logic programs from logical formulae given as ex-
amples. The MINL strategy is semantical since the minimality of concepts is
defined w.r.t. the set-inclusion relation, while refinement operators are syntac-
tically defined with inference rules in first-order logic. In the field of symbolic
logic, it is usual to investigate the relations between syntacts and semantics. Both
of the MINL strategy and refinement operators are concerned with ordering in
generating guesses and they should be much related.

Shinohara et al. [15] combined the two for designing learning procedure for
specific classes of pattern languages, but in the present paper we give a procedure
� Current Affiliation: NTT Communications Corporation.

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 345–357, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

346 S. Ouchi and A. Yamamoto

in a general form to reveal the relation between the two more clearly. Moreover,
we apply the combination to give such a new class of tree pattern languages that
every finite unions of the concepts in the class is identifiable from positive data
without assuming the upperbound of the number of unions. Generally speaking,
learning bounded unions of concepts has been investigated by using the finite
elasticity property of a concept class [11,17], and leaning unbounded unions have
treated with Higman’s Thoerem [16]. In both types of the classes, it is hard to
construct precise learning algorithms from theory. The concept class that we
present in the paper has not the finite elasticity property, but unbounded unions
of the concepts in it are identifiable. Moreover, we present a polynomial update
time identification algorithm by revising redundancies of the generic one.

2 Preliminaries

The symbol N denotes the set of natural numbers {0, 1, 2, . . .}, and N+ the set
of positive natural numbers {1, 2, 3, . . .}. The set of rational numbers is denoted
by Q. For a set A, card(A) denotes the cardinality of A. For sets A and B, we
write A ⊆ B if A is a subset of B and A ⊂ B if A is a proper subset of B. For
an infinite sequence σ = 〈s1, s2, . . . 〉, σ[n] denotes the sequence 〈s1, . . . , sn〉, and
content(σ) denotes the set {s1, s2, . . . }.

Let X be a recursively enumerable set of objects. A concept is a subset of X .
A concept class (or identification problem) is a triplet (C,H, L(·)), where C is a
set of concepts over X , H is a recursively enumerable set of hypotheses, L(·) is
a mapping from H to C, which satisfies the following conditions:

– C = {L(h) |h ∈ H}.
– There is a recursive function f : X × H → {0, 1} such that f(w, h) = 1 iff

w ∈ L(h). Such C is called an indexed family of recursive concepts.

If L(h) = C for a hypothesis h and a concept C, we call h a description of C.
We often do not distinguish a concept class and a set of concepts, and use the
symbol C for them.

Let (C,H, L(·)) be a concept class. A learning machine M is a procedure
which receives a member of a given C ∈ C as a positive example, and outputs
a hypothesis in H calculated from already received positive examples, at evey
time of iteration.

M(σ[i]) denotes the ith guess of a learning machine M which receives a se-
quence of positive examples σ. If L(M(σ[n])) ⊇ content(σ[n]) for any σ and
n ∈ N+, we say that M is consistent. If L(M(σ[n])) ⊇ content(σ[n + 1]) implies
M(σ[n]) = M(σ[n + 1]) for any σ, we call M is conservative.

We call σ a positive presentation of a concept C ∈ C if content(σ) = C. If
there exists a time N ∈ N+ such that M(σ[i]) = M(σ[N]) for every i ≥ N , we
say M converges to M(σ[N]) for σ. If M converges to an description of C ∈ C
for any positive presentation of C, we say M identifies in the limit a concept
C from positive data. M identifies in the limit a concept class C from positive
data iff M identifies in the limit any C ∈ C from positive data. A concept class

Learning from Positive Data Based on the MINL Strategy 347

C is identifiable in the limit from positive data iff there exists a learning machine
that identifies in the limit C from positive data. A concept class C is polynomial
time identifiable in the limit from positive data iff there exists a consistent and
conservative learning machine M that identifies in the limit C from positive
data and the time of M producing a guess h after receiving a positive example
e1, . . . , en is at most a polynomial of |h| and |e1|+ · · ·+ |en|, where |e| denotes
the size of e.

A finite tell-tale set of a concept C ∈ C is a finite subset T of C such that
T ⊆ C′ ∈ C implies C′ �⊂ C. The concept class, C is identifiable in the limit from
positive data iff there exists an effective procedure which enumerates a finite
tell-tale set of L(h) from h ∈ H [1].

A characteristic set T of a concept C in C is a finite subset of C such that
T ⊆ C′ implies C ⊆ C′ for every C′ ∈ C [2,7]. The concept class C has the char-
acteristic set property if every C ∈ C has a characteristic set in C. Kobayashi [7]
proved that if every language C ∈ C has a characteristic set then the class C is
identifiable in the limit from positive data. Characteristic sets contributes not
only proving the learnability of a concept class C but also designing learning
algorithms.

For a finite set E of objects, a hypothesis h is minimal w.r.t. E if E ⊆ C′ ⊂
L(h) for no other concept C′ ∈ C.
Definition 1. We say a machine M for learning concepts in C adopts the MINL
strategy if it outputs a minimal hypothesis h, if exists, for every set E of any
subset of any concept in C.
Sakakibara et al. [13] pointed out that, if the concept class has the characteristic
set property, there is a learning machine which adopts the MINL strategy and
identifies in the limit C from positive data.
Proposition 1 ([13]). If C has the characteristic set property, any learning
machine for C adopting the MINL strategy identifies every concept in C in the
limit.

3 Combining the MINL Strategy and Refinement
Operators

3.1 Main Results

Refinement operators were first introduced by Shapiro [14] for his theory and
system of learning logic programs, and precisely investigated by Laird [8]. Based
on the works we give a revised definition of refinement so that it fits our purpose
of combining it with the MINL strategy.
Definition 2. Let (C,H, L(·)) be a concept class. A mapping ρ : H → 2H is
called a refinement operator on the class if it satisfies the following four:

[R-1] For every h ∈ H, ρ(h) is recursively enumerable.
[R-2] g ∈ ρ(h)⇒ L(g) ⊆ L(h).
[R-3] There exists no sequence h1, . . . , hn of hypotheses such that h1 = hn

and hi+1 ∈ ρ(hi)(1 ≤ i ≤ n− 1).

348 S. Ouchi and A. Yamamoto

For a hypothesis h, every element of ρ(h) is called a refinement of h.

The condition [R-3] is weaker than the corresponding one in [14], which requests
that there is no infinite sequence h1, h2, . . . such that hi ∈ ρ(hi+1)(i ∈ N+).
The definition in [8] does not have any condition on such existence of infinite
sequences.

For a hypothesis h and k ∈ N the set ρk(h) is inductively defined as

ρ0(h) = {h}, and
ρk+1(h) = {h′ ∈ H | there exists h′′ ∈ ρk(h) such that h′ ∈ ρ(h′′)} for k ≥ 0.

We also define ρ+(h) =
⋃

k∈N+ ρk(h) and ρ∗(h) =
⋃

k∈N
ρk(h). For a set of

hypotheses H , we write ρ(H) = {g ∈ H | there exists h ∈ H such that g ∈ ρ(h)}.
For our convenience we relate a refinement operator to a directed graph. With

a refinement operator ρ for (C,H, L(·)), we define a directed graph by letting H
be the set of nodes and every pair of h ∈ H and g ∈ ρ(h) be its edge. The
graph is called a refinement graph induced by ρ. A refinement path is a sequence
h1, h2, . . . such that hi+1 ∈ ρ(hi)(i ≥ 1). We also define two classes of refinements
as in [8].

Definition 3. A refinement operator ρ on (C,H, L(·)) is

– the locally finite if ρ(h) is finite for h ∈ H and there is a algorithm which
outputs the list of elements in ρ(h), and

– semantically complete if, for every h and every Ci ⊂ L(h), there exists a
finite sequence h1, . . . , hn such that h1 = h, L(hn) = Ci, and hi+1 ∈ ρ(hi)
(1 ≤ i ≤ n− 1).

We give the main theorem of the paper.

Theorem 1. Let ρ be a refinement operator on a concept class (C,H, L(·)) which
satisfies the following four conditions.

[A-1] ρ is locally finite.
[A-2] ρ is semantically complete.
[A-3] A finite set T ⊆ H is given such that {ρ∗(h) |h ∈ T } = H.
[A-4] There is no infinite sequence h1, h2, . . . such that ρ(hi) = hi+1, and
L(hi) = L(hi+1) for i ≥ 1.

Then the concept class is identifiable in the limit from positive data. Moreover,
there is a conservative learning machine for the identification.

The theorem is proved by showing the conservative procedure illustrated in
Fig. 1.

The next lemma is directly proved from the assumptions in Theorem 1.

Lemma 1. Let C be any concept in C. If all of the assumptions [A-1]–[A-4] hold,
there is a hypothesis h ∈ H satisfying the following three:

[M-1] L(h) = C,
[M-2] there exists k ∈ N such that h ∈

⋃
g∈T ρk(g), and

[M-3] for all h′ ∈ ρ(h) it holds that C � L(h′).

Learning from Positive Data Based on the MINL Strategy 349

Procedure Learn-with-Refinement-and-MINL(H, ρ)

Require A positive presentation σ = e1, e2, . . . of C
Ensure An enumeration of H

1: S := ∅, L(h0) = ∅
2: for i = 1 to ∞
3: S := S ∪ {ei}
4: if ei ∈ L(hi−1)

5: hi := hi−1

6: else if MINL(T, S, i) = “no hypothesis”

7: hi := hi−1

8: else
9: hi := MINL(T, S, i)
10: output hi as a guess

Algorithm MINL(T, S, n)

Require A finite set T in Theorem 1, any finite subset S of any concept C,

and a natural numbern.

Ensure a hypothesis in H or “no hypothesis

1: H0 := T
2: for j = 0 to n
3: if ∃h ∈ Hj .[S ⊆ L(h) ∧ ∀g ∈ ρ(h). S � L(g)]

4: Return the hypothesis which satisfies the condition above

and is firstly enumerated

5: Hj+1 := {g ∈ H | g ∈ ρ(Hj) ∧ S ⊆ L(g)}
6: return “no hypothesis”

Fig. 1. Learning with the MINL strategy and a refinement operator

Proof of Theorem 1. At first we can assume a total ordering on H, which gives
the enumeration of all hypotheses in it. The ordering might be irrelevant to the
refinement operator. From the condition [A-1] and the definition of Algorithm
MINL(T, S, n), the set Hi in the algorithm is finite. We give a numbering for
each hypothesis in Hi in the following way:

T = {h1, . . . , hk0},
ρ1(T) = {hk0+1, . . . , hk1},

...
ρj(T) = {hkj−1+1, . . . , hkj}, . . . ,

where hypotheses in each ρj(T) are indexed according to the assumed total
order.

Let C be any concept in C and hN be the hypothesis which satisfies all of
[M-1]–[M-3] in Lemma 1 and appears first in the numbering. Let S be any finite
subset of positive examples of any intended concept C.

350 S. Ouchi and A. Yamamoto

At first we consider every hypothesis hi for i < N . We consider the following
three cases:

– In the case that C ⊂ L(hi), the condition [A-2] assures a refinement path
from hi to a hypothesis h representing C, and every hypothesis g on the path
includes any subset of C. Thus there exists g ∈ ρ(hi) such that S ⊆ L(g).

– If C = L(hi) and S � L(g) for all g ∈ ρ(hi), then it holds that S � L(g)⇒
C � L(g), but this contradicts the definition of hN .

– If C � L(hi), there exists an example e such that e ∈ C and e �∈ L(hi), and
therefore it holds that S � L(h) after e appears in the positive presentation σ.

Concluding the analysis of the three cases, we know that for every hypothesis hi

with i < N there exists ti such that

t ≥ ti ⇒ [S � L(hi) ∨ ∃g ∈ ρ(hi). S ⊆ L(g)].

Next we consider the refinements of hN . From the condition [M-3] it holds
that, for every g ∈ ρ(hN), there exists a positive example e such that e ∈ C and
e �∈ L(g) and it holds that S � L(g) after e appears in the positive presentation
σ. Thus there exists tN such that

t ≥ tN ⇒ [S ⊆ L(hN) ∧ ∀g ∈ ρ(hN). S � L(g)].

This means that at any time t ≥ max{t1, . . . , tN} there exists j such that hN ∈
Hj in Algorithm MINL(T, S, n) and it returns hN .

Now we show that the outputs of the procedure converges to some hypothesis
representing C. We have shown that the procedure never outputs h such that
C ⊂ L(h). Let h be the hypothesis at a time max{t1, . . . , tN}. If C = L(h), the
procedure never changes its guess. If C � L(h), there exists a positive example
e such that e ∈ C and e �∈ L(hi) and so the procedure outputs hN when e is
provided. �

For preserving consistency of our learning procedure, we need existence of a min-
imal language for any set of examples, but this assumption makes the algorithm
MINL simpler.

Corollary 1. Assume [A-1]–[A-4], and additionally assume

[A-5] There exists a minimal hypothesis for any set of examples.

Then we can substitute n with ∞ in lines 6 and 9 of Learn-with-Refinement-
and-MINL in Fig. 1. In the case the procedure identifies C conservatively and
consistently in the limit from positive data.

The conjunction of assumptions [A-1]–[A-4] does not imply the characteristic-set
property. Let us define concepts of subsets of the set of rationales Q as follows:

C0 = {x ∈ Q | 0 ≤ x ≤ 1},

C2n = {x ∈ Q | 0 ≤ x ≤ 1 +
1
n
},

C2n−1 = {x ∈ Q | 0 ≤ x ≤ 1 +
1
n
} − { 1

n
}.

Learning from Positive Data Based on the MINL Strategy 351

We use a natural number i ∈ N+ as a hypothesis representing Ci. For any finite
subset S of C0, there exists m such that 1/m ∈ {1/n|n ∈ N+}−S, and C0 � Cm.
This leaves the characteristic set property from C. Next we define a refinement
operator ρ as

ρ(0) = ∅, ρ(2n) = {0, 2n− 1, 2n + 2}, and ρ(2n− 1) = ∅ for n ≥ 1.

This operator satisfies all of [A-1]–[A-4], and therefore C is identifiable in the
limit from positive data.

4 Learning Unbounded Unions of Concepts

As an application of Theorem 1 we treat unbounded unions of concepts.

Definition 4. For a concept space (C,H, L(·)) where C = {C1, C2, . . . }, we
define the concept space as

C∗ = {
⋃
i∈A

Ci |A ⊂ N+ ∧ card(A) <∞},

H∗ = {
⋃
i∈A

{Hi}|A ⊂ N+ ∧ card(A) <∞}, and

L(
⋃
i∈A

{Hi}) =
⋃
i∈A

L(Hi)

We call the concept space the unbounded union of C.

4.1 Tree Pattern Languages

We follow the previous works [3,6] for terminology and concepts on tree pattern
languages. Let Σ be a finite set of function symbols, and let V be a countable
set of variables. All function symbols are connected with a non-negative integer
(that is called arity) by a mapping arity(·) : Σ → N. Σ must contain at least
one function symbol whose arity is 0. We call such symbols constant symbols.
The triplet (Σ, V, arity(·)) is called a signature. Tree patterns on the signature
is defined as follows:

(1) c ∈ Σ and x ∈ V are tree patterns.
(2) When f ∈ Σ is a n-ary function symbol and t1, . . . , tn are tree patterns,

f(t1, . . . , tn) is a tree pattern.

|p| denotes the number of symbols in a tree pattern p. |p|>0 denotes the number
of function symbols whose arity is greater than 0 in a tree pattern p. var(p)
denotes the set of variables appearing in a tree pattern p. Tree patterns without
a variable called ground tree patterns. T P denotes the set of all tree patterns.

A substitution is a finite set {x1/q1, . . . , xn/qn}. xi are distinct variables,
and qi are tree patterns different from xi. If p is a tree pattern and θ =
{x1/q1, . . . , xn/qn} is a substitution, pθ is a tree pattern obtained by replac-
ing all occurrences of xi, . . . , xn in p by qi, . . . , qn. Let p, q be tree patterns. If

352 S. Ouchi and A. Yamamoto

there exists a substitution θ such that p = qθ, We write p 	 q (or q
 p). If p 	 q
and p
 q, we write p ≡ q. Such tree patterns are equivalent up to renaming
of variables. We assume this equivalence when we treat a set of tree patterns as
hypothesis space of a identification problem.

Let p be a tree pattern. A tree pattern language expressed by p is a set of tree
patterns L(p) = {t | t 	 p, t is ground tree pattern}. A member of L(p) is called
a ground tree pattern generated by p.

A principal symbol of a tree pattern p is defined as follows:

(1) If p is variable or constant symbol, p’s principal symbol is p.
(2) If p = f(q1, . . . , qn) where f is a function symbol with arity n > 0 and

q1, . . . , qn are tree patterns, p’s principal symbol is f .

Definition 5. A sub tree pattern of a tree pattern p is inductively defined as
follows:

1. p itself is a sub tree pattern of p.
2. If q = f(r1, . . . , rn) is a sub tree pattern of p where f is a function symbol

with arity n > 0 and r1, . . . , rn are tree patterns, then r1, . . . , rn are sub tree
patterns of p.

Definition 6. An occurrence is a sequence of natural numbers I = 〈i1, . . . , in〉.
For a tree pattern p, we define an sub tree pattern p(I) of the occurrences I as
follows.

(1) If I = 〈〉, then p(I) = p.
(2) If I = 〈n1, . . . , nm, i〉 and p(〈n1, . . . , nm〉) = f(q1, . . . , qi, . . . , qn), then

p(I) = qi.

A occurrence of p is an occurrence I such that there is a sub tree pattern p(I).
The depth of p, denoted by depth(p), is the maximal length of occurrences of p.
When the length of an occurrence I of p is n, we say the principal symbol of p
occurs at depth n.

Proposition 2. For tree patterns p and q, holding p = q is equivalent to holding
that the principal symbols of p(I) coincides with that of q(I) for every occurrence I.

Proposition 3. For tree patterns p and q, holding p
 q is equivalent to holding
that, for every occurrence I .

(a) if p(I) is a variable x, q(I) = q(J) for every J such that p(J) = x, and
(b) if the principal of p(I) is a function symbol or constant symbol, then it co-

incides with that of q(I).

It is well-known that L(T P) is identifiable from positive data because it has
the finite thickness property, and that the so-called “anti-unification” algorithm
firstly given by Plotkin [12] provides a polynomial time learning procedure.
Arimura et al. [4] provided a polynomial time procedure which identifies L(T P)k

under some restriction on the signature.
We introduce some classes of tree patterns.

Learning from Positive Data Based on the MINL Strategy 353

Definition 7. A tree pattern p is regular if each variable occurs no more than
once in it. The tree pattern is constant free if p has no constants in it.

The sets of regular tree patterns, constant-free patterns, and constant-free reg-
ular patterns are respectively denoted by RT P, T Pcf, and RT Pcf.

Theorem 2. Neither L(T P)∗ nor L(RT P)∗ are identifiable from positive data.

Proof. Let Σ = {f(·), a} and consider L({f(x)}). For any positive exam-
ple S, there is a hypothesis consistent with S and represented in the form
L({f(a), f(f(a)), f(f(f(a))), . . . , f(f · · · f(a) · · ·)}). Such concepts are properly
included by L({f(x)}) and therefore L({f(x)}) has no finite tell-tale. �

Theorem 3. There is a signature with which L(T Pcf)∗ is not identifiable from
positive data.

The theorem is proved by the fact that L({f(x, y)}) has no finite tell-tale in the
signature Σ = {f(·, ·), a}.

The next is a fundamental lemma for tree pattern languages.

Lemma 2 (Lassez, et al.[10]). For p, q ∈ T P, L(p) ⊆ L(q)⇔ p 	 q.

We can easily show the compactness for L(RT Pcf).

Lemma 3. Let p, q1, . . . , qn ∈ RT Pcf. If L(p) ⊆ L(q1) ∪ · · · ∪ L(qn), then there
exists i (1 ≤ i ≤ n) such that p 	 qi.

Proof. Assume that L(p) ⊆ L(q1)∪· · ·∪L(qn) and p �	 qi for all i(1 ≤ i ≤ n). We
can see that p, q1, . . . , qn ∈ RT Pcf. From Proposition 3(b), there is an occurrence
Ii of qi for p �	 qi satisfying either of the followings:

1. The principal function symbol of qi(Ii) is a function symbol f with arity
n > 0, and p(Ii) is a variable. (Note that qi ∈ RT Pcf implies the arity
n > 0).

2. The principal function symbol of qi(Ii) is a function symbol f , and that of
p(Ii) is a function symbol or constant symbol different from f .

Let t be a ground tree which is obtained by substituting a constant symbol for
every variable in p. From the analysis above any ground tree qiθ has a principal
symbol at Ii different with at occurrence that of t. This means that t �∈ L(qi)
for 1 ≤ i ≤ n, and contradicts the assumption. �

By Lemmas 2, and 3, we obtain the next lemma.

Lemma 4. Let P,Q ∈ RT P∗
cf and & be the Hoare ordering induced from 	.

Then L(P) ⊆ L(Q)⇔ P & Q.

From lemma we design a refinement operator ρ on RT P∗
cf such that ρ∗ =&.

Definition 8. For p ∈ RT Pcf, we define ρ̂(p) is the set of all tree patterns q such
that q = p{x/fi(x1, . . . xn)} where x is a variable appearing in p, arity(fi) =
n �= 0, and x1, . . . , xn are variables not occurring in p. We regard ρ̂ as a mapping
ρ̂ : RT Pcf → 2RT Pcf .

354 S. Ouchi and A. Yamamoto

Proposition 4. The mapping ρ̂ in Definition 8 is a refinement operator on
RT Pcf, and is locally finite and semantically complete.

Definition 9. We define a mapping ρ : RT P∗
cf → 2RT P∗

cf by letting ρ(P) for
P ∈ RT P∗

cf be the set of all Q which satisfies at least one of the following two:

(1) Q is the set obtained by removing redundancy from P ∪ ρ̂(p)−{p} for some
p ∈ P .

(2) Q = P − {p} for some p ∈ P .

Lemma 5. The mapping ρ in Definition 9 is a refinement operator.

Theorem 4. L(RT Pcf)∗ is identifiable in the limit from positive data.

Proof. It is sufficient to show that the refinement operator ρ in Definition 9
satisfies all of the assumptions [A-1]–[A-4] in Theorem 1. The previous lemmas
shows that ρ satisfies [A-1] and [A-2], and the proof of Lemma 5 assures [A-4].
We can see that ρ satisfies [A-3] by putting T = {{x}}.

We can prove that L(RT Pcf)∗ has infinite elasticity. This means we cannot
obtain the above Theorem in the method by Shinohara et al. [16], which is based
on Higman’s Theorem.

4.2 Polynomial Time Learning

By using the previous theorem, we improve the MINL algorithm in Fig. 1. The
obtained algorithm is illustrated in Fig. 2 by replacing bredth-first search with
depth-first, with the refinement operator defined in Definition 9. On Lines 5 and
6 the improved algorithm the refinement is applied to H1∪H2∪H3. The improved
algorithm and this makes L(RT Pcf)∗ to be polynomial time identifiable.

Lemma 6. In the while loop of Algorithm MINL-RTP-CF* in Fig. 2, if i = n
then H1 consists of tree patterns whose total number of function symbols is n.

Lemma 7. Let P ∈ RT P∗
cf. For every p ∈ P , it holds that

L(P)− L(P − {p} ∪ ρ̂(p)) = {t | t is a ground tree, t 	 p, |t| = |p|}.

Proof. From the definition of ρ̂, it holds that

L(P)− L(P − {p} ∪ ρ̂(p)) ⊇ {t | t is a ground tree, t 	 p, |t| = |p|}.

Let t ∈ L(P)−L(P −{p}∪ ρ̂(p)). Then t ∈ L(p) and t /∈ L(ρ̂(p)). If |t| > |p|, ρ̂(p)
contains any constant free regular tree pattern q such that q 	 p and |q| = |p|+1
and so t ∈ L(ρ̂(p)). This is a contradiction, it holds that |t| = |p|, and therefore
we obtain that

L(P)−L(P −{p}∪ ρ̂(p)) ⊆ {t | t is a ground tree, t 	 p, |t| = |p|}. �

Learning from Positive Data Based on the MINL Strategy 355

Algorithm MINL-RTP-CF*(T, S)

Require A positive example S for L(RT Pcf)
∗

Ensure a hypothesis for which L(h) is minimal w.r.t. S
1: H1 := {x}, H2 := ∅, H3 := ∅
2: for i = 0 to ∞
3: while H1 �= ∅
4: Choose one h ∈ H1

5: if S ⊆ L(H1 − {h} ∪ H2 ∪ H3)

6: H1 := H1 − {h}
7: else if [ρ̂ is in Theorem 8]S ⊆ L(H1 − {h} ∪ ρ̂(h) ∪ H2 ∪ H3)

8: H1 := H1 − {h}, H2 := H2 ∪ ρ̂(h)

9: else
10: H1 := H1 − {h}, H3 := H3 ∪ {h}
11: if H2 = ∅
12: return H3

13: else
14: H1 := (the set obtained by removing redundancy fromH2), H2 := ∅

Fig. 2. Improved MINL algorithm for L(RT Pcf)
∗

Proposition 5. For any finite set S of positive example, Algorithm MINL-RTP-
CF* terminates and returns a hypothesis P which represents a minimal concept
for S.

Proof. Let n be the maximal number of non-constant function symbols occurring
in any ground tree S.

In order to show that the algorithm terminates, we consider the while loop
of the case i = n. Let h ∈ H1. From the definition of ρ̂, the number of function
symbols occurring in tree patterns in ρ̂(h) is n + 1. Then no tree patterns in
ρ̂(h) any ground tree in S. Therefore the results of the conditions on Lines 5 and
7 are same. Since no elements is added to H2, H2 = ∅ when the while loop is
finished, and so the algorithm terminates when i ≤ n.

To show that the output P represents a minimal concept, we let Q = ρ(P).
From the definition of the refinement, P − Q = {p}. This p is added to H3

during the execution. Note that S ⊆ L(H1 ∪H2 ∪H3) is the loop invariant. At
the moment when p is added to H3 on Line 8, both S ⊆ L(H1 ∪H2 ∪H3) and
S � L(H1−{p}∪ ρ̂(p)∪H2∪H3) should hold. Then from Lemma 7, there exists
t ∈ S such that t 	 p and |t| = |p|. Since t �∈ L(Q), S � L(Q). Because we can
take any refinement operator which is semantically complete, L(P) is minimal
w.r.t. S. �

Proposition 6. For a set S of positive examples as its inputs, Algorithm MINL-
RTP-CF* returns, outputs a minimal concepts in time complexity O(s3n4α2β2),
where s = card(S), n is the maximum arity of functions appearing in S, α is
the number of functions in Σ, and β is the maximum arity of functions in Σ.

356 S. Ouchi and A. Yamamoto

Proof. At first, we consider the cost of each iteration in the case i = n. When
the if condition makes false, card(H1) < s.

Note that card(ρ̂(p)) ≤ nαβ because at most nβ variables appears in p. Thus,
when i = n − 1, at most s(n − 1)αβ tree patterns are added to H2, and at
most snαβ tree patterns are added when i = n − 1. In similar analysis, we get
card(H3) ≤ s, and therefore, when i = n, card(H1∪H2∪H3) ≤ 2snαβ. Since the
subsumption check for a tree pattern and a ground tree is executed in O(n), the
both of the conditions in Line 5 and Line 7 are evaluated in s ·O(n) ·O(snαβ) =
O(s2n2αβ).

The computation of ρ̂(p) is realized by replacing each variable with a function
symbol of α kinds, and so is executed in O(nαβ) because |p| < n + nβ for
every p ∈ H1. So, every iteration of the while loop is in O(s2n2αβ) + O(nαβ) +
O(s2n2αβ) = O(s2n2αβ).

Since card(H1) iteration is executed, the total cost for i = n is O(s3n3α2β2).
From Proposition 5, the total cost of the algorithm is O(s3n4α2β2). �

In Procedure 2 there is no restriction of how to choose h from H1 on Line 4. We
need not care how to choose h because of the next theorem.

Theorem 5. There is a unique minimal concept for every set S of examples up
to renaming of variables.

The theorem follows from the next lemma.

Lemma 8. Let P be the hypothesis in RT Pcf for a minimal concepts for a set
S of examples. Let S′ be the set of constant-free regular tree patterns obtained
by replacing every occurrence of constants with distinct variables. Then for all
p ∈ P there exists s ∈ S′ such that p ≡ s.

5 Concluding Remarks

We have shown a learning procedure by combining the MINL strategy and using
refinement operators in the model of identification in the limit from positive
data. By revising our learning procedure according to [9], we can show that,
under the four assumptions [A-1]–[A-4], the concept class C can be learned only
with super-set queries.

We showed that the procedure makes the class L(RT Pcf)∗ identifiable from
positive data. We also revise the procedure so that we can show that the class
is polynomial time identifiable. We can easily show that L(RT Pcf)∗ has the
characteristic set property, but our result gives a new method for showing the
identification of unbounded unions.

Comaring with the previous researches [3,4,6] on learning unions of tree pat-
terns, our result differs from them on the points that we removed the restriction
of setting upperbound of numbers of unions, and that the framework of learn-
ing is the identification in the limit from positive data [1,5] without queries or
mistake bound.

Learning from Positive Data Based on the MINL Strategy 357

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Informa-

tion and Control 45, 117–135 (1980)

2. Angluin, D.: Inference of reversible languages. Journal of the ACM 29, 741–765

(1982)

3. Arimura, H., Ishizaka, H., Shinohara, T.: Learning unions of tree patterns using

queries. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS,

vol. 997, pp. 66–79. Springer, Heidelberg (1995)

4. Arimura, H., Shinohara, T., Otsuki, S.: A polynomial time algorithm for finding

finite unions of tree pattern languages. In: Brewka, G., Jantke, K.P., Schmitt, P.H.

(eds.) NIL 1991. LNCS (LNAI), vol. 659, pp. 118–131. Springer, Heidelberg (1993)

5. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–

474 (1967)

6. Goldman, S.A., Kwek, S.: On learning unions of pattern languages and tree pat-

terns in the mistake bound model. Theoretical Computer Science 288, 237–254

(2000)

7. Kobayashi, S.: Approximate identification, finite elasticity and lattice structure of

hypothesis space. In: Technical Report, CSIM 96-04, Department of Computer Sci-

ence and Information Mathematics. University of Electro-Communications (1996)

8. Laird, P.D.: Learning from Good and Bad Data. Kluwer Academic Publishers,

Dordrecht (1988)

9. Lange, S., Zilles, S.: On the learnability of erasing pattern languages in the query

model. In: Gavaldá, R., Jantke, K.P., Takimoto, E. (eds.) ALT 2003. LNCS (LNAI),

vol. 2842, pp. 129–143. Springer, Heidelberg (2003)

10. Lassez, J.L., Maher, M.J., Marriott, K.: Unification revisited. In: Minker, J. (ed.)

Foundations of Deductive Databases and Logic Programming, pp. 587–625. Morgan

Kaufmann, San Francisco (1988)

11. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity.

In: Proceedings of the fourth annual workshop on Computational learning theory

(COLT 1991), p. 375 (1991)

12. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163

(1970)

13. Sakakibara, Y., Kobayashi, S., Yokomori, T.: Computational Learning Theory,

Baifukan (2001) (in Japanese)

14. Shapiro, E.Y.: Inductive inference of theories from facts. In: Research Report

YALEU/DCS/RR-192. Department of Computer Science, Yale University (1980)

15. Shinohara, T., Arikawa, S.: Pattern inference. In: Lange, S., Jantke, K.P. (eds.)

GOSLER 1994. LNCS, vol. 961, pp. 259–291. Springer, Heidelberg (1995)

16. Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern

languages from positive data. Theoretical Computer Science 241, 191–209 (2000)

17. Wright, K.: Identification of unions of languages drawn from an identifiable class.

In: Proceedings of the Second Annual Workshop on Computational Learning The-

ory (COLT 1989), pp. 328–333 (1989)

Computing Minimal Models by
Positively Minimal Disjuncts

Ken Satoh

National Institute of Informatics and Sokendai

ksatoh@nii.ac.jp

Abstract. In this paper, we consider a method of computing minimal

models in propositional logic. We firstly show that positively minimal
disjuncts in DNF (Disjunctive Normal Form) of the original axiom corre-

sponds with minimal models. A disjunct D is positively minimal if there

is no disjunct which contains less positive literal than D. We show that

using superset query and membership query which were used in some

learning algorithms in computational learning theory, we can compute

all the minimal models.

We then give a restriction and an extension of the method. The re-

striction is to consider a class of positive (sometimes called monotone)

formula where minimization corresponds with diagnosis and other im-

portant problems in computer science. Then, we can replace superset

query with sampling to give an approximation method. The algorithm

itself has been already proposed by [Valiant84], but we show that the

algorithm can be used to approximate a set of minimal models as well.

On the other hand, the extension is to consider circumscription with

varied propositions. We show that we can compute equivalent formula of

circumscription using a similar technique to the above.

1 Introduction

In this paper, we consider a method of computing minimal models in propo-
sitional logic. The method is based on techniques from computational learning
theory [Angluin88, Bshouty95].

There are many proposals computing minimal models [Ben-Eliyahu96,
Ben-Eliyahu00, Satoh00] and theoretical analysis of problems related with com-
puting minimal models (see [Cadoli93] for survey), but none of them relates
computing minimal models with computational learning theory.

Let A be a formula (of any form) and n be the number of propositions. Then,
we show an algorithm for computing all the minimal models using superset query
and membership query. The number of superset queries is bound by a polynomial
of |DNF (A)| where |DNF (A)| is the number of conjunctions of a minimal DNF
of A, and the number of membership queries is bound in polynomial of n and
DNF (A).

Then, we discuss a restriction and an extension of the methods. The restriction
is to consider computing minimal models of positive formula which is related with

K. Nakakoji, Y. Murakami, and E. McCready (Eds.): JSAI-isAI, LNAI 6284, pp. 358–371, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computing Minimal Models by Positively Minimal Disjuncts 359

important problems such as diagnosis [Reiter87], data mining [Gunopulos97] and
other fields in computer science [Eiter95, Ibaraki91]. We show an approximation
algorithm using sampling and membership query and analyze the method in PAC
(probably approximately correct) learning framework [Valiant84]. Let ε < 1,
δ < 1 be an arbitrary positive number. We can efficiently find an approximate
a set of minimal models such that the probability that difference ratio between
the approximate set and the true set of minimal models is more than ε is at
most δ. The number of sampling is bound in polynomial of 1

ε , 1
δ , |DNF (A)|

and the necessary number of membership queries is bound in polynomial of n,
|DNF (A)|.

The extension is to consider minimal models in propositional circumscrip-
tion [McCarthy86] where varied propositions are allowed. We give a method of
computing a formula which is logically equivalent to the result of circumscription.

2 Preliminaries

We represent an interpretation I as a set of true propositions in I; p ∈ I iff
I |= p. Let A be a formula. A model M is called minimal model M w.r.t. A if
M satisfies the following condition.

– M |= A
– There is no model M ′ s.t. M ′ |= A and M ′ ⊂ M where ⊂ is a strict subset

relation.

We denote a set of all the models of A as models(A) and a set of all the
minimal models w.r.t. A as min(A).

A DNF formula is a disjunction of conjunctions of literals and a CNF formula
is a conjunction of clauses. Note that there are many DNF representations of the
same formula and many CNF representations of the same formula. We denote the
DNF size of a formula F as |DNF (F)| meaning the minimum possible number of
conjunctions in any logically equivalent DNF representation to F . We call DNF
representation of F with the size of |DNF (F)| minimal DNF of F . Similarly, we
denote the CNF size of a formula F as |CNF (F)| meaning the minimum possible
number of clauses in any CNF representation of F and call CNF representation
of F with the size of |CNF (F)| minimal CNF of F .

3 Correspondence between Minimal Models and Minimal
DNF Formula

Let D be a conjunction of literals. We denote a set of propositions each of which
appears in D as a positive literal as pos(D), and a set of propositions each of
which appears in D as a negative literal as neg(D).

We define positively minimal disjunct D of a DNF formula as a disjunct s.t.
there is no disjunct D′ in the DNF formula s.t. pos(D′) ⊂ pos(D) where ⊂ is a
strict subset relation.

360 K. Satoh

Theorem 1. I is a minimal model w.r.t. A if and only if there exists a positively
minimal disjunct D in a DNF of A s.t. I = pos(D).

Proof.⇒) Suppose that I is a minimal model w.r.t. A. Then, I must satisfy some
disjunct D in a DNF of A. Suppose that D is not positively minimal. Then, there
is a disjunct D′ in the DNF of A s.t. pos(D′) ⊂ pos(D). Then, there exists an
interpretation I ′ such that I ′ = pos(D′). This contradicts with the assumption
that I is a minimal model.
⇐) Suppose that I = pos(D) for a positively minimal disjunct D in a DNF

of A. Suppose that I is not a minimal model. Then, there exists I ′ such that
I ′ |= A and I ′ ⊂ I. Then, there must be a disjunct D′ in the DNF of A such that
I ′ |= D′. Then, pos(D′) = I ′ ⊂ pos(D) and this contradicts with the assumption
that D is positively minimal.

If we can give a DNF of A, we can compute minimal models of A. However, DNF
representation can be very large. We can reduce the size of DNF representation
and cost of selecting positively minimal disjunct by considering a minimal DNF
representation of A since the above theorem holds even if DNF is minimal.

Corollary 2. I is a minimal model w.r.t. A if and only if there exists a positively
minimal disjunct D in a minimal DNF of A s.t. I = pos(D).

Example 1. Let 〈p, q, r, s〉 be a set of propositions and A be (p∧q∧r)∨ (p∧¬q∧
¬r) ∨ (¬p ∧ q ∧ ¬r). This is a minimal DNF. There are two positively minimal
disjuncts, (p∧¬q∧¬r) and (¬p∧ q∧¬r) and disjuncts give two minimal models
{p} and {q}.

4 Computing Minimal Models by Superset Query and
Membership Query

Finding minimal DNF formula is quite a difficult task. Also, what we have to
find is not a minimal DNF formula itself but positively minimal disjuncts in
a minimal DNF formula. In this section, we show an algorithm to find models
which satisfy a positively minimal disjunct using superset query and membership
query.

Let A,F1, F2 be formulas and M be an interpretation. We define a superset
query SQ(F1, F2) and membership query MQ(M,A) as follows.

SQ(F1, F2) returns “yes” if models(F1) ⊇ models(F2)
otherwise it returns a model M s.t. M ∈ models(F2)\models(F1).

MQ(M,A) returns “yes” if M ∈ models(A) otherwise it returns “no”.

SQ(F1, F2) corresponds with checking whether F2 ∧ ¬F1 is unsatisfiable. If
F2 ∧ ¬F1 is satisfiable, SQ(F1, F2) returns a model of F2 ∧ ¬F1. MQ(M,A) is
equivalent to checking M |= A. Therefore, we write M |=? A instead of MQ(M,A)
from now on.

Computing Minimal Models by Positively Minimal Disjuncts 361

ComputeMinimal(A)

A: a formula

begin
S := ∅;
while SQ(ΦS, A) returns a model M
do the following

begin
M ′ := pmin(A, M);

S := S ∪ {M ′};
end
Sout := MinSet(S);

output Sout

end

pmin(A, M)

A: a formula

M : a model of A
begin

1. Select p ∈ M s.t. M↓p |= A by using M↓p |=? A.

2. If there exists no p ∈ M s.t. M↓p |= A, return M .

3. else M := M↓p and go to 1.

end

Fig. 1. Computing Minimal Models

Let I be an interpretation and p a proposition s.t. I |= p. Then, we define I↓p
as I\{p}.

Let S be a set of interpretations {I1, ..., Ik}. We define ΦS as a DNF formula
D1 ∨ ... ∨ Dk such that Di contains positive literals only and pos(Di) = Ii

(1 ≤ i ≤ k).
Let S be a set of interpretations. We define MinSet(S) as {M ∈ S|There is

no M ′ ∈ S s.t. M ′ ⊂M}.
Figure 1 shows an algorithm which computes a set of all minimal models. The

algorithm is inspired by algorithms proposed in [Angluin88, Bshouty95].
The following lemma is related with Claim 4.8 [Khardon and Roth96]. Let

min∗(A) = {M |M |= A and for every p ∈M , M↓p �|= A}.

Lemma 3. The number of calls of pmin is at most |DNF (A)|.

Proof. The number of calls of pmin is at most |min∗(A)|. Therefore, it is suf-
ficient to show that |min∗(A)| ≤ |DNF (A)|. Let M ∈ min∗(A) and assume
that M satisfies a disjunct D in a minimal DNF of A. Then M ⊆ pos(D).
Let Mmin(D) = pos(D) and suppose that Mmin(D) ⊂ M . Then, there exists
proposition such that p ∈ Mmin(D)\M . Then, Mmin(D) ⊆ M↓p ⊂ M . Since
Mmin(D) |= D, so is M↓p. This contradicts the assumption that M ∈ min∗(A).
Therefore, M = pos(D). This means that for every M ∈ min∗(A), there must

362 K. Satoh

be a disjunct D in a minimal DNF of A s.t. M = pos(D). Thus, |min∗(A)| ≤
|DNF (A)|.
Note that min∗(A) can be regarded as a set of “locally minimal models” such
that there are no models which is 1-bit smaller than a model in min∗(A).

Lemma 4. The number of calls of SQ is at most |DNF (A)|.

Proof. Suppose that SQ(ΦS , A) returns M . We show that there exists M ′ ∈
min∗(A)\S s.t. M ′ ⊆M . Suppose that there are no such M ′. This means that for
every M ′ ∈ min∗(A), M ′ �⊆M or already M ′ ∈ S. However, since M |= A, there
exists a minimal model Mmin of A (which is also in min∗(A)) s.t. Mmin ⊆ M .
Therefore, M ′ must be in S. Then, M ∈ ΦS and this contradicts the initial
assumption that SQ(ΦS , A) returns M .

Every time the above M finds, we call pmin. Let Mpmin be an output from
pmin. Then, Mpmin is in min∗(A). Since we add Mpmin to S after calling pmin
in ComputeMinimal, the number of unadded element in min∗(A) is reduced
at least by 1. Since |min∗(A)| ≤ |DNF (A)| is shown in the proof of Lemma 3,
the above situation happens at most |DNF (A)| times.

Lemma 5. The number of checking M↓p |=
?

A in a call of pmin is at most n2

where n is a number of propositions.

Proof. In every iteration in pmin, we call membership queries at most n times
to find p s.t. M↓p |= A. After each iteration, numbers of true proposition in the
model is reduced by 1 and therefore the number of iteration is at most n.

Note that the final S after the iteration in ComputeMinimal is not guaranteed
to be a set of all minimal models since ΦS could include a non-minimal model as
the following execution trace is shown. However, we can obtain all the minimal
models by minimality checking in the end of ComputeMinimal by calling
MinSet.

Example 2. We show an execution trace of ComputeMinimal. Let 〈p, q, r, s〉
be a set of propositions and A be the same formula in Example 1.

1. Since Φ∅ is false, we call SQ(false, A). Suppose that SQ(false, A) returns
{p, q, r, s}(Fig.2)1.

Then, we call pmin(A, {p, q, r, s}) and {p, q, r} is returned(Fig.3)2. We
add {p, q, r} to S and S becomes {{p, q, r}} and Φ{{p,q,r}} becomes (p∧q∧r).

2. Then, we call SQ((p ∧ q ∧ r), A) and suppose that {p, s} is returned(Fig.4).
We call pmin(A, {p, s}) and {p} is returned(Fig.5). We add {p} to S and S
becomes {{p, q, r}, {p}} and Φ{{p,q,r},{p}} becomes (p ∧ q ∧ r) ∨ p.

3. Then, we call SQ((p∧ q∧ r)∨ p,A) and suppose that {q} is returned(Fig.6).
We call pmin(A, {q}) and {q} is returned(Fig.7). and Φ{{p,q,r},{p},{q}} be-
comes (p ∧ q ∧ r) ∨ p ∨ q.

1 In Fig.2, we represent an interpretation as binary values of p, q, r and s in stead of

set representation, and represent a model of A as double circled node.
2 In Fig.3, a node with italic characters expresses a model ΦS where S = {{p, q, r}}.

Computing Minimal Models by Positively Minimal Disjuncts 363

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101
��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 2. After SQ(false, A) returns {p, q, r, s}

4. Finally, we call SQ((p ∧ q ∧ r) ∨ p ∨ q, A) and no model is returned and we
exit the while loop.

5. We call MinSet({p, q, r}, {p}, {q}) and obtain {{p}, {q}} as Sout.

So, we now have the following lemma.

Lemma 6. Let Sout be an output of the above algorithm.

Sout = min(A).

Proof. Let S be the final set of models after the iteration in ComputeMinimal.
It is sufficient to show that min(A) ⊂ S since Sout = MinSet(S). Suppose that
there exists Mmin ∈ min(A) but Mmin �∈ S. Since there is no M s.t. M ∈ A but
M �∈ ΦS , there must be a model M ′ such that M ′ ⊂Mmin. This contradicts the
assumption that Mmin is a minimal model w.r.t. A.

From the above lemmas, we have the following theorem.

Theorem 7

– Thealgorithmhalts after atmost |DNF (A)| superset queries andn2 ·|DNF (A)|
membership queries where n is a number of propositions.

– The output Sout is a set of all the minimal models of A

Note that the bound of |DNF (A)| is not always good. For example, the n-
variable “even parity” function has the single minimal model which is an empty
set, but the algorithm might traverse 2n−1 locally minimal ones.

Bshouty et al. [Bshouty94] and Balcázar and Guijarro [Balcazar02] proposed
a method of learning DNF formula with proper subset and superset queries. But

364 K. Satoh

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101
��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 3. After pmin(A, {p, q, r, s}) returns {p, q, r}

it is difficult to compare our method with them since our purpose in this paper
is not to learn exact DNF formula, but to learn positively minimal disjuncts in
a minimal DNF formula.

We also note that there is a research using superset queries for “preference
elicitation” in combinatorial auctions [Blum03].

5 Approximating Minimal Models for Positive Formula
by Sampling and Membership Query

In this section, we consider a restricted class of positive formula.
Let F be a formula. F is positive if for every interpretation I and J , if I |= F

and I ⊆ J , J |= F . Note that a minimal DNF and a minimal CNF for a positive
formula is unique.

To compute minimal models of positive formula is related with computing min-
imal hitting sets (or in other words, minimal transversals [Eiter95]) and related
with various fields such as diagnosis [Reiter87], data mining [Gunopulos97], hy-
pergraph theory [Eiter95] and distributed systems (theory of coteries [Ibaraki91]).
Therefore, research on this restricted class is very important.

If A is a positive formula, a superset query can be replaced by sampling for
approximating minimal models because of the following reason. For a positive
formula, superset queries can be replaced by equivalence queries in the above
algorithm of Fig. 1 since a counter example found by equivalence query is always
a counter example by superset query for a positive formula. Then equivalence
queries can be approximately simulated by sampling.

Computing Minimal Models by Positively Minimal Disjuncts 365

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101
��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 4. After SQ(p ∧ q ∧ r, A) returns {p, s}

For this purpose, we assume that there is a probability distribution P over
interpretations. We would like to have a set of minimal models such that the
probability that the difference of minimal models is more than we expect is low.

Figure 8 shows such an algorithm. Note that compared with
ComputeMinimal, in ApproximateMinimal, pmin always returns a
minimal model since a considered formula is positive and so final check of
minimality of models in the algorithm is not necessary. This is essentially
equivalent to the algorithm proposed by [Valiant84]. So, the algorithm itself is
not new, but we show that the algorithm can be used to approximate set of
minimal models as well.

Intuitively, in the algorithm we try to find counter examples by sampling and
we count the number of sampled data and if the number of sampling is more
than a certain number which guarantees law probability of existence of counter
examples for the current hypothesis, we are done. If we find a counter example
corresponding with a model returned by SQ(ΦS , A) in the previous algorithm,
we try to find a minimal model by pmin.

Let fΔh be a difference set between f and h (that is, (f ∩ h) ∪ (f ∩ h)).

Lemma 8. Let A be a positive formula. The probability that the above algorithm
outputs a set of models S such that P(models(A)Δmodels(ΦS)) ≥ ε is at most δ.

Proof. Let f, h be finite subsets of a finite set X and P be a probability distri-

bution over X . Suppose that P(fΔh) ≥ ε and let m =
1
ε

ln
1
δ
.

If we choose randomly m samples from X according to P, then the probability
that no sample belongs to fΔh is at most (1 − ε)m.

366 K. Satoh

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101
��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 5. After pmin(A, {p, s}) returns {p}

Then, since ln(1− ε) < −ε,
m ln(1 − ε) < −mε
(1 − ε)m < 2−mε =< 2ln δ = δ
Let us regard f as models(A) and h as models(ΦS). If we conclude that

models(ΦS) subsumes models(A) by checking that m samples does not belong
to models(A)Δmodels(ΦS), then the probability that the algorithm produces S
such that P(models(A)Δmodels(ΦS)) ≥ ε is at most δ.

Lemma 9. The probability that the above algorithm outputs a set of models S
such that P(min(A)ΔS) ≥ ε is at most δ.

Proof. Suppose that M ∈ (min(A)ΔS). Since S ⊆ min(A) always holds,
M ∈ min(A) and M �∈ S. This means M |= A and M �|= ΦS . There-
fore, M ∈ (models(A)Δmodels(ΦS)). This means that (min(A)ΔS) ⊆
(models(A)Δmodels(ΦS)). Then, if P(min(A)ΔS) ≥ ε, P(models(A)ΔΦS) ≥ ε.
Therefore, by Lemma 8, the probability that P(min(A)ΔS) ≥ ε is at most δ.

Theorem 10. The above algorithm stops after taking at most (
1
ε

ln
1
δ
)·|DNF (A)|

samples according to P and asking at most n2 · |DNF (A)| membership queries
and produces S with the probability at most δ such that P(min(A)ΔS) ≥ ε.

Proof. By Lemma 9, we only need to get at most
1
ε

ln
1
δ

examples according to P
to check whether a counter example exists or not, in order to satisfy the accuracy
condition. Since the number of counter examples is |DNF (A)| by Lemma 3, we

only need to get at most (
1
ε

ln
1
δ
) · |DNF (A)| examples as a total. The number

of membership queries is the same as Theorem 7.

Computing Minimal Models by Positively Minimal Disjuncts 367

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101
��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 6. After SQ((p ∧ q ∧ r) ∨ p,A) returns {q}

Note that even if the number of minimal models of A is very small, if the number
of models of A is large enough to find out most of models of A by sampling, we
can find a approximate set of minimal models using pmin. Therefore, we can
obtain a good approximation of minimal models. If the number of models of A
is too small to find out any model by sampling, falsity is a good approximation
of A and therefore, falsity is also a good approximation of minimal models of A.

6 Computing Circumscription

In this section, we give a method of computing equivalent formula with propo-
sitional circumscription [McCarthy86] by extending the above algorithm.

Let P and Q be tuples of propositions, 〈P1, P2, ..., Pn〉 and 〈Q1, Q2, ..., Qn〉.
We define P ≤ Q as

∧n
i=1 Pi ⊃ Qi. We define P < Q as P ≤ Q and Q �≤ P .

Let A be a formula. We divide a set of propositions used in A into disjoint two
tuples of propositions P,Z which are called minimized propositions, varied propo-
sitions. We only consider here minimized proposition and varied proposition since
we can translate circumscription with fixed proposition can be translated into
circumscription without fixed proposition according to [deKleer89].

Circumscription of P for A with Z varied is defined as follows.

Circum(A;P ;Z) = A(P,Z) ∧ ¬∃p∃z(A(p, z) ∧ p < P).

For a model theory of circumscription, we define an order of interpretations
to minimize P with Z varied is defined as follows. Let I be an interpretation and
P be a tuple of propositions. We define I[P] as {p ∈ P |I |= p} or, equivalently,
I ∩ P . Let I1 and I2 be interpretations.

368 K. Satoh

�

�

�

�

�

�

�

�
1111
�������

�
�

�
�

�
�
�
�

							�

�

�

�

�

�

�

�
1110

�
�
�
�

���������

�

�

�

�
1101

�
�
�
�

								

�

�

�

�
1011
��������

�
�

�
�

������

�

�

�

�
0111

�
�

�
�

�
�
�
��

�

�

�
1100

�
�
�
�

������

�

�

�

�
1010

�
�

�
�

								

�

�

�

�

�

�

�

�
1001

���������

�

�

�

�
0110

�
�

�
�

�
�
�
�

�

�

�

�

�

�

�

�
0101

��������

�
�
�
�

�

�

�

�
0011

�

�

�

�

�

�

�

�
1000

�

�

�

�

�

�

�

�
0100

�

�

�

�
0010

�

�

�

�
0001

							

�
�
�
�

�
�

�
�

��������

�

�

�
0000

Fig. 7. After pmin(A, {q}) returns {q}

ApproximateMinimal(A)

A: a positive formula

begin
S := ∅;
m := 0;

1. Produce M according to the probability distribu-

tion P
2. If M |= A and M �|= ΦS then

M ′ := pmin(A, M);

S := S ∪ {M ′};
3. m := m + 1;

4. If m >=
1

ε
ln

1

δ
then output S

else go to 1.

end

Fig. 8. Approximating Minimal Models

We define I1 ≤P ;Z I2 as I1[P] ⊆ I2[P]. We define I1 <P ;Z I2 as I1 ≤P ;Z I2

and I2 �≤P ;Z I1. A minimal model M of A(P,Z) w.r.t. P with Z varied is defined
as follows.

1. M is a model of A(P,Z).
2. There is no model M ′ of A(P,Z) such that M ′ <P ;Z M .

Note that if Z is empty, then the above definition coincides with the previous
definition of minimal model.

Computing Minimal Models by Positively Minimal Disjuncts 369

ComputeCircum(A,P)

A: a formula P : a set of minimized propositions

begin
S := ∅;
while SQ(ΦS, A) returns a model M
do the following

begin
M ′ := pmin(A, M);

S := S ∪ {M ′};
end
Sout := MinSetP (S);

output
∨

M∈Sout
reflect(A,M)

end

Fig. 9. Computing Circumscription

According to [Lifschitz85], I is a minimal model of A(P,Z) w.r.t. P with Z
varied if and only if I is a model of Circum(A;P ;Z).

The following corresponds with Theorem 1 for circumscription. Here, posi-
tively P -minimal disjunct D in a DNF formula is define as a disjunct s.t. there
is no disjunct D′ in the DNF formula s.t. (pos(D′) ∩ P) ⊂ (pos(D) ∩ P).

Theorem 11. Let P be a set of minimized propositions. I is a minimal model
of A w.r.t. P with Z varied if and only if there exists a positively P -minimal
disjunct D in a DNF of A s.t. I satisfies the following conditions.

– pos(D) ⊆ I
– (neg(D) ∩ I) = ∅
– (I\pos(D)) ⊆ Z

Proof.⇒) Suppose that I is a minimal model of A w.r.t. P with Z varied. Then, I
must satisfy a disjunct D in a DNF of A. Then, pos(D) ⊆ I and (neg(D)∩I) = ∅.

Suppose that D is not positively P -minimal. Then, there is a disjunct D′ in the
DNF of A s.t. (pos(D′)∩P) ⊂ (pos(D)∩P). Then, there exists an interpretation
I ′ such that I ′ = (pos(D′) ∩ P). This contradicts with the assumption that I is
a minimal model.

Suppose that there exists p such that p ∈ I and p �∈ pos(D) and p �∈ Z. Then,
p ∈ P . This means that I↓p can be a model of D and it contradicts minimality
of I. Therefore, I\pos(D) ⊆ Z.
⇐) Suppose that I satisfies the above three conditions but I is not a minimal

model. From the conditions, I |= D and I[P] = (pos(D) ∩ P). Then, there
exists I ′ such that I ′ |= A and I ′[P] ⊂ I[P]. Then, there must be a disjunct
D′ in the DNF of A such that I ′ |= D′ and I ′[P] = (pos(D′) ∩ P). Then,
(pos(D′) ∩ P) ⊂ (pos(D) ∩ P) and this contradicts with the assumption that D
is positively P -minimal.

Now, we compute minimal models of circumscription using superset query and
membership query. We use the following lemma.

370 K. Satoh

Lemma 12. Suppose that J is a minimal model of A w.r.t. P with Z varied.
Then, there exists a minimal model I of A w.r.t. P ∪ Z s.t. J [P] = I[P].

Proof. Since J is a minimal model of A w.r.t. P with Z varied, there is no model
J ′ of A s.t. J ′[P] ⊂ J [P]. We can assume that there is a model J ′ of A s.t.
J ′[P] = J [P] and J ′[Z] ⊆ J [Z] and there is no model J ′′ of A s.t. J ′′[P] = J [P]
and J ′′[Z] ⊂ J ′[Z]. Then, J ′ is a minimal model of A w.r.t. P ∪ Z.

Computing minimal models of A w.r.t. P ∪ Z gives partial interpretation of
minimal models of A w.r.t. P with Z varied. Therefore, we first compute all
the combination of interpretation of P in minimal models of A w.r.t. P with Z
varied from models of Circum(A;P ∪ Z) and then reflect interpretation of P
into A and form a disjunction of these formulas. Figure 9 shows an algorithm
which performs such a computation.

Let S be a set of interpretations and P be a set of minimized propositions.
We define MinSetP (S) as {M ∈ S|There is no M ′ ∈ S s.t. M ′[P] ⊂M [P]}. Let
A be a formula and M be a model of A. reflect(A,M) is defined as

A ∧
∧

p∈M

p ∧
∧

p∈P\M

¬p.

Theorem 13

– Thealgorithmhalts after atmost |DNF (A)| superset queries andn2 ·|DNF (A)|
membership queries where n is a number of propositions.

– Output
∨

M∈Sout
reflect(A,M) is logically equivalent to Circum(A;P ;Z).

Proof. The number of queries can be estimated in the same way as the proof
of Theorem 7. Since MinSetP (S) in the algorithm gives all the models each of
whose interpretation of P is minimal, a set of these interpretations of P coin-
cides with a set of interpretations of P in all the models of Circum(A;P ;Z) by
Lemma 12. Then, reflect(A,M) complements interpretations of Z correspond-
ing with the interpretation of M [P] in Circum(A;P ;Z).

7 Conclusion

The contributions of this paper are as follows.

– We propose a method of computing minimal models using membership query
and superset query and analyze its computational complexity.

– We propose a method of approximating minimal models for a positive for-
mula using membership query and sampling and analyze its computational
complexity.

– We extend the first method to compute minimal models in circumscription.

The future works include computer experiments to analyze an average behavior
of the algorithm and theoretical comparison with other methods.

Acknowledgments. I thank anonymous reviewers for their valuable comments
on the paper.

Computing Minimal Models by Positively Minimal Disjuncts 371

References

[Angluin88] Angluin, D.: Queries and Concept Learning. Machine Learning 2, 319–342

(1988)

[Balcazar02] Balcázar, J.L., Castro, J.: A New Abstract Combinatorial Dimension for

Exact Learning via Queries. Journal of Computer and System Sciences 64, 2–21

(2002)

[Ben-Eliyahu96] Ben-Eliyahu, R., Dechter, R.: On Computing Minimal Models. Annals

of Mathematics and Artificial Intelligence 18, 3–27 (1996)

[Ben-Eliyahu00] Ben-Eliyahu-Zohary, R.: A Demand-Driven Algorithm for Generating

Minimal Models. In: Proc. of AAAI-2000, pp. 267–272 (2000)

[Blum03] Blum, A., Jackson, J.C., Sandholm, T., Zinkevich, M.: Preference Elicitation

and Query Learning. In: COLT-2003, pp. 13–25 (2003)

[Bshouty94] Bshouty, N.H., Cleve, R., Gavaldà, Kanna, S., Tamon, C.: Oracles and

Queries that are Sufficient for Exact Learning. Journal of Computer and System

Sciences 52, 421–433 (1994)

[Bshouty95] Bshouty, N.H.: Exact Learning Boolean Functions via the Monotone The-

ory. Information and Computation 123, 146–153 (1995)

[Cadoli93] Cadoli, M., Schaerf, M.: A Survey on Complexity Results for Non-

monotonic Logics. Journal of Logic Programming 17(2-4), 127–160 (1993)

[deKleer89] de Kleer, J., Konolige, K.: Eliminating the Fixed Predicates from a Cir-

cumscription. Artificial Intelligence 39, 391–398 (1989)

[Eiter95] Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph

and Related Problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

[Gunopulos97] Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data Mining,

Hypergraph Transversals, and Machine Learning. In: Proc. of PODS-1997, pp. 209–

216 (1997)

[Ibaraki91] Ibaraki, T., Kameda, T.: A Boolean Theory of Coteries. In: Proc. of 3rd

IEEE Symposium on Parallel and Distributed Processing, pp. 150–157 (1991)

[Khardon and Roth96] Khardon, R., Roth, D.: Reasoning with Models. Artificial In-

telligence 87, 187–213 (1996)

[Lifschitz85] Lifschitz, V.: Computing Circumscription. In: Proc. of IJCAI 1985, pp.

121–127 (1985)

[McCarthy86] McCarthy, J.: Applications of Circumscription to Formalizing Common-

Sense Knowledge. Artificial Intelligence 28, 89–116 (1986)

[Reiter87] Reiter, R.: A Theory of Diagnosis from First Principles. Artificial Intelli-

gence 38, 49–73 (1987)

[Satoh00] Satoh, K., Okamoto, H.: Computing Circumscriptive Databases by Integer

Programming: Revisited. In: Proc. of AAAI 2000, pp. 429–435 (2000)

[Valiant84] Valiant, L.G.: A Theory of the Learnable. CACM 27, 1134–1142 (1984)

Author Index

Adams, Bram 91

Andrade, Francisco 5

Arimura, Hiroki 331

Asai, Kenichi 161

Baxter, David 197

Bekki, Daisuke 159, 161

Bettenburg, Nicolas 91

Boonchom, Vi-sit 19

Butler, Alastair 181

Carneiro, Davide 5

Coppock, Elizabeth 197

Engel, Thomas 73

Governatori, Guido 45

Hassan, Ahmed E. 91

Hirata, Kouichi 315, 331

Ihara, Akinori 135

Iida, Takashi 217

Jespersen, Bjørn 252

Kameda, Yuichi 317

Kamei, Yasutaka 135

Kamiya, Toshihiro 116

Kanbe, Masakazu 104

Katoh, Takashi 331

Koyama, Kiwako 135

Li, Jason Jingshi 59

Lycke, Hans 235

Maeno, Yoshiharu 33

Matsumoto, Ken-ichi 135

Matsumoto, Shinsuke 135

Minato, Shin-ichi 315

Moura, Nilmax Teones 124

Nakakoji, Kumiyo 147

Neves, José 5

Nitta, Katsumi 33

Novais, Paulo 5

Ohira, Masao 89, 135

Ohsawa, Yukio 33

Ohta, Toshizumi 104

Ouchi, Seishi 345

Primiero, Giuseppe 252

Proenca, Tiago 124

Rotolo, Antonino 45

Rubino, Rossella 45

Sakurai, Seiichiro 3

Satoh, Ken 358

Shihab, Emad 91

Soonthornphisaj, Nuanwan 19

Stenetorp, Pontus 59

Stieghahn, Michael 73

Tokunaga, Hiroo 317

van der Hoek, André 124

Yamamoto, Akihiro 315, 345

Yamamoto, Shuichiro 104

Yamamoto, Yasuhiro 147

Yanovich, Igor 272

Ye, Yunwen 89, 147

Yoshimoto, Kei 181

Zeleznikow, John 5

Zobel, Sarah 292

	Title Page
	Preface
	Organization and Editorial Board
	Table of Contents
	Part I: Juris-Informatics
	Third International Workshop on Juris-Informatics
	Using BATNAs and WATNAs in Online Dispute Resolution
	Introduction
	The Role of BATNA (Best Alternative to a Negotiated Agreement)
	How Understanding WATNAs Can Improve the ODR Process
	UMCourt Architecture
	Conclusions
	References

	Thai Succession and Family Law Ontology Building Using Ant Colony Algorithm
	Introduction
	Related Works
	The Framework of Thai Law Ontology Expansion (TLOE)
	The Thai Legal Document Retrieval Algorithm
	Thai Legal Ontology Expansion Algorithm
	The Seed Ontology
	The Structure of ThaiLegalWordNet Dictionary

	Experimental Results
	Data Set
	Results

	Conclusions
	References

	Reflective Visualization of the Agreement Quality in Mediation
	Introduction and Background
	Method
	Dialogue
	Graphical Diagram
	Temporal Topic Cluster
	Inter-topic Association

	Extended Example
	Mediation Case
	Visualization

	Discussion
	Conclusion
	References

	Implementing Temporal Defeasible Logic for Modeling Legal Reasoning
	Introduction
	Temporal Defeasible Logic
	The Implementation
	Validation and Testing in the Legal Domain
	Persistence and Backward Persistence in Legal Reasoning
	A Real-Life Scenario: Road Traffic Restrictions of Piacenza
	Validation of TDL

	Conclusions
	References

	Evaluating Cases in Legal Disputes as Rival Theories
	Introduction
	Coherence of Theories
	Evaluating Legal Cases
	Inputs
	Outputs
	Theory
	Support Sets and Coherence

	Example
	The Dispute
	Inputs – Relevant Laws, Mutually Accepted State of Affairs and Consequences
	Evidence Presented
	The Plaintiff's Case
	The Defendant's Case
	Calculation of Coherence

	Discussion and Future Work
	References

	Law-Aware Access Control: About Modeling Context and Transforming Legislation
	Introduction
	Approach and Contribution
	Difference between a Health Care scenario and a Banking Scenario
	Organization of the Paper

	XACML
	Access Decisions

	Law-Awareness and Access Control
	Modeling Legislation
	Identities and Task
	Time
	Location
	Legal Constraints

	Transformation
	Conclusion and Future Work
	References

	Part II: Knowledge Collaboration in Software Development
	3rd International Workshop on Supporting Knowledge Collaboration in Software Development (KCSD2009)
	Introduction
	Workshop Topics
	Workshop Organization
	Workshop Outputs

	On the Central Role of Mailing Lists in Open Source Projects: An Exploratory Study
	Introduction
	GNOME as a Case Study
	Results and Analysis
	Communication Style in Mailing Lists
	Stability of Mailing List Participants
	Source Code Activity and Mailing List Activity
	Effect of External Factors on Mailing List Activity

	Threats to Validity
	Related Work
	Conclusions
	References

	A Proposal of TIE Model for Communication in Software Development Process
	Introduction
	Related Works
	Intermediary Knowledge Model
	IBIS Model
	Recent Software Engineering Researches

	TIE Model
	Overview of TIE Model
	TIE Model for Software Development Communication

	Case Study of TIE Model for Software Development
	Aim of the Case Study
	Overview of Case
	Verifying the Assumptions

	Discussions
	To Make Lists and Gather the Knowledge
	To Share Informal Knowledge
	To Supplement the Face to Face Meeting
	Limitations

	Summary
	References

	Identifying the Concepts That Are Searchable with Keywords in Code Search Engines
	Introduction
	Challenging Issues in Keyword-Based Code Search
	The Oracle Approach
	Case Study
	Source Files, Concepts, and Keywords
	Evaluations

	Related Work
	Conclusion
	References

	On the Use of Emerging Design as a Basis for Knowledge Collaboration
	Introduction
	Emerging Design
	Three Knowledge Problems
	Design Decay
	Expertise
	Code Quality

	Related Work
	Summary
	References

	A Time-Lag Analysis for Improving Communication among OSS Developers
	Introduction
	Analysis Method
	Preparation
	Procedure

	Case Study
	Python Project
	Target Data
	Analysis Results

	Discussions
	Related Work
	Conclusion and Future Work
	References

	Comparison of Coordination Communication and Expertise Communication in Software Development: Motives, Characteristics, and Needs
	Introduction
	Expertise Communication and Coordination Communication
	Different Needs for Supporting the Two Types of Communications
	Concluding Remarks
	References

	Part III: Logic and Engineering of Natural Language Semantics
	6th International Workshop on Logic and Engineering of Natural Language Semantics (LENLS 6)
	References

	Representing Covert Movements by Delimited Continuations
	Background
	Motivation: Covert Movements and Delimited Continuations
	Continuations and CPS Transformation
	Barker's Continuized Semantics for Natural Language

	Problems of Continuized Semantics
	fcontrol and run
	Lambda Abstractions
	The Type of Determiners
	Inverse Scope
	Summary of the Problems

	Proposal: Delimited Continuations via Meta-Lambda Calculus
	Transformation Rules by Continuation Monad
	Control Operators

	Solutions
	``Focus Movement'' as shift/reset
	Transforming Lambda Abstractions
	Transforming Determiners
	Inverse Scope as shift/reset

	Conclusion
	References

	Problems with Intervention and Binding into Relations
	Introduction
	The Account
	Summary
	References

	A Translation from Logic to English with Dynamic Semantics
	Introduction
	Problems with Non-referential `Discourse Referents'
	Determiner Selection
	Lifespan Limitations

	The Cyc NLG System
	Input: First-Order Predicate Calculus Part of CycL
	Discourse Context
	Operator Context

	Summary and Outlook
	References

	Semantics of Possibility Suffix “(Rar)e”
	Introduction
	``(Rar)e'' of Volitional Possibility
	Semantics of Event Verbs and State Verbs
	Analysis of Volitional Possibility

	``(Rar)e'' of Ability
	Attribute Sentences as Generic Sentences
	Attribute Predicates Derived from Event Predicates
	Attribute Predicates Derived from State Predicates
	Analysis of Ability

	``(Rar)e'' of Realized Possibility
	Conclusion
	References

	An Adaptive Logic for the Formal Explication of Scalar Implicatures
	Scalar Implicatures
	The Role of Standard Logic
	The Adaptive Logics Approach
	Applying the Adaptive Framework
	The Lower Limit Logic $CLu∃10$
	The Adaptive Logic $CLs∃10$
	The Cookie Conversation

	Conclusion
	References

	Two Kinds of Procedural Semantics for Privative Modification
	Introduction
	Procedural Semantics for Privative Modification
	Construction
	Functional Language
	Interpreted Syntax

	Constructive Privative Modification
	Degrees of Modification
	Iteration of Modifiers

	Realist Privative Modification
	Predication of Modified Properties
	The Requisites of Privation

	Conclusion and Further Research
	References

	On the Nature and Formal Analysis of Indexical Presuppositions
	Data: What Indexical Presuppositions Are
	How Indexical Presuppositions Were Found
	Both Free and Bound Pronouns Induce Indexical Presuppositions

	Analysis: Three Alternative Theories
	A Very Brief History of Indexicality
	Three Stabs at the Account
	Testing the Three Theories
	Relative Merits of the Three Theories

	References

	Non-standard Uses of German 1st Person Singular Pronouns
	Introduction
	A Counterfactual Analysis?
	Data Discussion
	Putting Things into Context
	Emotional Involvement
	Genericity
	Summary and a First Analysis

	Formalization
	A Theory of the Structure of Indexicals
	Emotional Involvement and Speaker Empathy
	Adding Up the Parts
	Standard Deictic ich

	Conclusion and Outlook
	References

	Part IV: Learning with Logics and Logics for Learning
	The Sixth Workshop on Learning with Logics and Logics for Learning (LLLL2009)
	The Workshop
	The Post-workshop Proceedings

	Inferability of Unbounded Unions of Certain Closed Set Systems
	Introduction
	Preliminaries
	Inferability from Positive Data
	Closed Set System

	Unbounded Unions of Closed Set Systems
	Invariant Subspaces of a Linear Transformation of a Vector Space
	Monomial Ideals of Polynomial Ring
	Application: Closed Set Systems and Transaction Databases
	Application 1: Vector Spaces and Transaction Databases
	Application 2: Monomial Ideals and Transaction Databases

	Conclusion
	References

	Mining Frequent k-Partite Episodes from Event Sequences
	Introduction
	Preliminaries
	An Input Event Sequence and Its Windows
	Episodes
	Frequent Episode Mining Problem

	k-Partite Episodes
	Algorithm
	Depth-First Enumeration of k-Partite Episodes
	Basic Algorithm with Frequency Counting by Scanning
	Modified Algorithm with Frequency Counting on Event Lists

	Experimental Results
	Conclusion
	References

	Learning from Positive Data Based on the MINL Strategy with Refinement Operators
	Introduction
	Preliminaries
	Combining the MINL Strategy and Refinement Operators
	Main Results

	Learning Unbounded Unions of Concepts
	Tree Pattern Languages
	Polynomial Time Learning

	Concluding Remarks
	References

	Computing Minimal Models by Positively Minimal Disjuncts
	Introduction
	Preliminaries
	Correspondence between Minimal Models and Minimal DNF Formula
	Computing Minimal Models by Superset Query and Membership Query
	Approximating Minimal Models for Positive Formula by Sampling and Membership Query
	Computing Circumscription
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

