
Chapter 3. Selected Design Issues

Sabine Helwig, Falk Hüffner�, Ivo Rössling, and Maik Weinard

3.1 Introduction

In the cycle of Algorithm Engineering, the design phase opens after the modeling
phase. We may assume that the algorithmic task to be performed is well under-
stood, i. e., that the desired input-output relation is specified, and an agreement
has been reached as to what makes a solution to the problem a good solution.
These questions must be settled in cooperation with representatives from fields
of application.

Once the problem specification has been successfully translated into the lan-
guage of computer science, we must design an appropriate algorithm. We seek a
construction plan for the algorithm to be developed, starting with choices about
very fundamental algorithmic concepts and iteratively enhancing this picture,
until the plan is sufficiently convincing to move it forward to the implemen-
tation phase. If there are several alternatives and a theoretical analysis does
not reveal a clear winner, design decision should be based on an experimental
evaluation.

This chapter discusses selected aspects of the design phase. However, we do
not discuss classical algorithm design paradigms like divide & conquer, dynamic
programming, prune & search, or greedy approaches, because textbooks on al-
gorithms like [191, 742, 475, 14, 348, 520, 562] usually provide very instructive
examples on how to use and combine these design paradigms.

While classical algorithm design mainly considers asymptotic worst-case per-
formance in a certain model of computation, Algorithm Engineering now deals
with algorithms exposed to a real-world environment like real-world data, real-
world computers, and real-world requirements as to performance and reliability.
In Algorithm Engineering, an algorithm and an implementation is sought. Hence,
in the big picture of Algorithm Engineering the sublime task of algorithm design
is to bridge the gap from the first abstract algorithmic ideas to the implementa-
tion by anticipating questions that arise during the implementation phase and
providing sufficiently detailed answers to them.

A first important step in that direction is to recognize the inherent limitations
of the models used. Abstraction is and will remain one of the fundamental ap-
proaches to science and everything from the asymptotical O(·) notation to the
simplifying PRAM model has been developed for a good and justified reason.
However, awareness is advised. When designing an algorithm for real world ap-
plications, it is crucial to recognize the potential dangers, e. g., the imprecision
resulting from the finite representation of real numbers in a computer. Hence,
� Supported by DFG Emmy Noether research group PIAF (fixed-parameter algo-

rithms), NI 369/4.

M. Müller-Hannemann and S. Schirra (Eds.): Algorithm Engineering, LNCS 5971, pp. 58–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

3. Selected Design Issues 59

the task of algorithm design is being extended by a couple of important issues
arising from reasonable practical needs.

In order to complement standard textbooks on algorithms with respect to
Algorithm Engineering we concentrate on the following design issues, which have
turned out to be of quite practical importance:

Simplicity. We explain how simplicity of an algorithm is not just a nice feature,
but has wide-ranging effects on the applicability. We give several techniques
that can help in developing simple algorithms, among them randomization
and the use of general purpose modelers.

Scalability. Algorithm designers have to deal with rapidly growing data sets,
large input sizes, and huge networks, and hence, they have to develop algo-
rithms with good scalability properties. We will introduce some basic ideas,
ranging from the pure definition of scalability to scalability metrics used in
parallel algorithm design. Moreover, some fundamental techniques for im-
proving the scalability properties of an implementation are presented. Fi-
nally, we will discuss techniques for designing highly scalable systems such
as decentralization, content distribution in peer-to-peer networks, and self-
organization.

Time-space trade-offs. The time and space requirements of algorithms are
key parameters of an algorithms performance. How easily one measure of
quality can be improved by moderately sacrificing the other one is the central
question in the analysis of time-space trade-offs. We discuss formal methods
to analyze the capability to exchange time for space and vice versa. Typical
application of time-space trade-offs in the context of storing data or sup-
porting brute force methods are discussed, as well as general techniques like
lookup tables and preprocessing.

Robustness. Conventional algorithm design is a development process that is
often based on abstraction and simplifying assumptions – covering things
like the model of computation, specific properties of the input, correctness
of auxiliary algorithms, etc. Such assumptions allow the algorithm designer
to focus on the core problem. Yet, resulting implementations and runtime
environments are not generally able to meet all of these assumptions, at times
leading us to the sobering conclusion: In theory, the algorithm works provably
– in practice, the program fails demonstrably. The section on robustness
discusses the various aspects of this issue, points out focal problems and
explains how to consciously design for robustness, i. e., making algorithms
able to deal with and recover from unexpected abnormal situations.

Reusability is another design goal. The benefits of reuse are obvious: using
a building block that is already available saves implementation time and one
inherits the correctness of the existing implementation. This limits the chances
to introduce new bugs during the coding and everything that has been done in
terms of testing or proofs of correctness is of immediate use. Furthermore, if at
a later time a part of the required functionality needs changes or extensions, it
suffices to change the one building block every algorithm is using, rather than
making similar changes in similar codes.

60 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

The issue of reusability arises at two occasions during the algorithm design
stage. At an early stage it arises as an opportunity. It should be checked whether
the entire algorithm to be designed or algorithms performing subtasks of the
given problem are already available. Using a top down approach in designing
algorithms the designer will eventually arrive at building blocks that perform a
functionality that has been required before. Public software libraries should be
checked as well as components of previously completed projects.

At a later stage reusability arises as a strategic option. Newly developed al-
gorithms should be decomposed into building blocks performing functionalities
that are easy to grasp and document. The more thoroughly this decomposition
is performed and dependencies between the blocks are minimized, the higher is
the chance that some of them will come in handy at a later project.

Design for reusability is supported by functions, procedures and modules in
imperative programming languages or to a higher degree by objects and classes
in object oriented languages. The smaller the degree of interdependence be-
tween the building block, the higher the likelihood that a building block can be
reused.

3.2 Simplicity

Simplicity is a highly desirable property of an algorithm; a new algorithm that
achieves the same result as a known one, but in a simpler way, is often an
important progress. Although the simplicity of an algorithm seems to be an
intuitively clear concept, it probably cannot be defined rigorously. A reasonable
approximation is “concise to write down and to grasp”. However, this clearly
depends on “cultural” factors: for example, using sorting as a subroutine would
certainly not be considered to make an algorithm complicated nowadays, since
library functions and knowledge about their behavior are readily available. This
might have been different 50 years ago.

Also, much of the perceived simplicity of an algorithm lies in its presentation.
For example, Cormen et al. [191] define red-black trees (a dictionary data struc-
ture) based on five invariants, and need about 57 lines of code to implement the
insert function. In contrast, a presentation by Okasaki [620] uses two invariants
and requires 12 lines of code. The reason is that Okasaki focuses on simplicity
from the start, chooses a high-level programming language, and omits several
optimizations.

Because of these inherent difficulties, and to avoid getting tangled in semantic
snares, we will do without a formal definition of “simplicity” and rely on the
intuition of the concept.

Advantages of simplicity will be further discussed in Section 3.2.1. Section 3.2.2
shows some general design techniques that can help in keeping algorithms simple.
Finally, Section 3.2.3 examines the interplay between simplicity and analyzability
of algorithms.

3. Selected Design Issues 61

3.2.1 Advantages for Implementation

The most obvious reason to choose a simple algorithm for practical applications
is that it is quicker to implement: an algorithm that is more concise to describe
will take fewer lines of code, at least when using a sufficiently high-level language.
This means simple algorithms can be implemented more quickly. Moreover, since
the number of bugs is likely to increase with the number of lines of code, simple
algorithms mean fewer bugs. Also, the effort for testing the implementation is
reduced.

Another major factor is maintainability. A smaller and simpler code base
is easier to understand and debug. Also, if the specification changes, simple
methods are more likely to be adaptable without major efforts.

A third factor is employment in resource constrained environments, such
as embedded systems, in particular pure hardware implementations. An even
moderately complicated algorithm has no chance of being implemented in an
application-specific integrated circuit (ASIC) or a field-programmable gate ar-
ray (FPGA).

As an example for the importance of simplicity, the Advanced Encryption
Standard (AES) process, which aimed to find a replacement algorithm for the
aging DES block cipher, required “algorithm simplicity” as one of the three major
criteria for candidates [238].

Lack of simplicity in an algorithm may not only be a disadvantage, but even
make implementation infeasible. A famous example is the algorithm for four-
coloring planar graphs by Robertson, Sanders, Seymour, and Thomas [674]. The
algorithm works by finding one of 633 “configurations” (subgraphs), and then
applying one of 32 “discharging rules” to eliminate them. Even though this is the
only known efficient exact algorithm for four-coloring, it has to the best of our
knowledge never been implemented.

On the other hand, algorithms initially dismissed as too complicated some-
times still find uses; for example Fibonacci heaps, a priority queue data structure,
have been described as “predominantly of theoretical interest” [191], but have
still found their way into widely used applications such as the GNU Compiler
Collection (gcc) [754].

3.2.2 How to Achieve Simplicity?

Clearly, one cannot give a recipe that will reliably result in a simple algorithm.
However, several general principles are helpful in achieving this goal.

Top-Down Design. A standard way of simplifying things is to impose a hi-
erarchical, “top-down” structure. This means that a system is decomposed into
several parts with a narrow intersection, which can then independently designed
and understood, and be further subdivided. Possibly the most simple example
are algorithms that work in phases, each time applying a transformation to the
input, or enforcing certain invariants. For example, compilers are usually divided

62 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

x2

x1

feasible region

constraint

optimal solution

objective function

Fig. 3.1. Example Integer Linear Program (ILP)

into a lexing, a parsing, and a translation phase, even though in principle lexing
and parsing could be done at the same time. The translation phase is usually
broken down further; for example gcc chains more than 100 separate optimization
passes.

This concept is well-explored (although typically at the somewhat lower pro-
gramming language level) in software engineering, for example as modularity,
but can equally be applied in algorithm design, where one still thinks in terms
of pseudo-code. Another benefit of this approach is increased robustness, as ex-
plained in Section 3.5.1.

In addition to straightforward phases, there are several more standard al-
gorithm design schemes which can simplify algorithms by reducing them to
smaller steps. Examples are divide & conquer, dynamic programming, greedy,
and branch & bound. A particular advantage of choosing such a standard scheme
is that they are well-known and thus simpler to grasp, and much knowledge about
implementing and analyzing them has been accumulated.

General-Purpose Modelers. Often, it is possible to cast a problem in terms
of a general problem model. Particularly successful models are linear programs
(LPs) and integer linear programs (ILPs) [710,191], constraint satisfaction prob-
lems (CSPs) [34], and boolean satisfiability problems (SAT) [522,191]. The chap-
ter on modeling, Section 2.3, gives an extended introduction to this topic; we
here focus on an example that demonstrates the simplicity of the approach.

LP solvers optimize a linear function of a real vector under linear constraints.
ILPs add the possibility of requiring variables to be integral (see Figure 3.1).
This allows to express nonlinear constraints, as will be seen in an example be-
low. CSPs consists of variables that can take a small number of discrete values
and constraints on these variables, where a constraint forbids certain variable
allocations. This generalizes a large number of problems, for example graph col-
oring. Finally, SAT solvers find assignments to boolean variables that satisfy a
boolean expression that contains only AND, OR, and NOT.

3. Selected Design Issues 63

Fig. 3.2. Example Graph Bipartization instance (left) and optimal solution by delet-
ing two vertices (right)

As an example, consider the NP-hard Graph Bipartization, which asks for
a minimum set of vertices to delete from a graph to make it bipartite. Given a
graph G = (V, E), this problem can be formulated as an ILP with little effort:

c1, . . . , cn : binary variables (ci ∈ {0, 1}) (deletion set)
s1, . . . , sn : binary variables (si ∈ {0, 1}) (side)

minimize
n∑

i=1

ci

s. t. ∀{v, w} ∈ E : (sv 	= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v, w} ∈ E : sv + sw + (cv + cw) ≥ 1
∀{v, w} ∈ E : sv + sw − (cv + cw) ≤ 1.

Here, cv = 1 models that v is part of the deletion set, and the variables sv model
the side of the bipartite graph that remains after deleting the vertices from the
deletion set. The solution space then has 2n dimensions (in contrast, the example
in Figure 3.1 has only 2 dimensions).

To actually solve an instance, it takes little more than a script containing the
above description in a solver-specific syntax. In this way, problem instances could
be solved much faster than with a problem-specific branch&bound-algorithm
that consists of several thousand lines of code [417], and the size of instance that
could be solved within reasonable time was doubled to about 60 vertices.

The power of this approach comes from the many years of Algorithm Engi-
neering that went into the solvers. These solvers are readily available, e. g., GNU
GLPK [536] for LPs and ILPs, MINION [326] for CSPs, or MiniSat [270] for
SAT, as well several commercial solvers.

When it is possible to formulate a problem in one of these general models
without too much overhead, this is usually the quickest way to obtain a solution,

64 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Fig. 3.3. Example for the Monte Carlo algorithm for Min-Cut. In the last step, the
top option displayed yields the optimum minimum cut.

and often performance is surprisingly good. Even if it is not satisfactory, there
are ways to tune performance and amend the solving process with problem-
specific tricks, such as branch&cut for ILPs [185]. Therefore, it is recommendable
to try this approach first, if applicable, before thinking about any problem-
specific algorithms. An exception are very simple problems that are expected to
be solvable in a very good polynomial time bound, since the transformation of
the problem representation incurs a noticeable linear-time overhead.

Trade-Off Guaranteed Performance. Sometimes, bad worst-case perfor-
mance of an algorithm comes from corner case inputs, which would have to be
specifically designed by an adversary to thwart the usually good performance of
the algorithm. For example, consider quicksort, a sorting algorithm that works
by selecting an element as pivot, dividing the elements into those smaller than
the pivot and those larger than the pivot, and then recursively sorting these
subsets. It usually performs very well, except when the choice of the pivot re-
peatedly divides the subsequence into parts of very unequal size, resulting in
a Θ(n2) runtime. Even elaborate pivot choice schemes like “median-of-three”
cannot eliminate this problem. A very simple solution to this problem is to
choose a random pivot. In a sense, this thwarts any attempt of an adversary to
prepare a particularly adverse input sequence, since the exact behavior of the
algorithm cannot be predicted in advance. More formally, one can analyze the
expected runtime of this algorithm to be Θ(n log n). The disadvantage of the
approach is that with a small probability, the algorithm takes much longer than
expected. An algorithm employing randomness that always produces a correct
result, but carries a small probability of using more resources than expected, is
called a Las Vegas algorithm [589].

A disadvantage of Las Vegas algorithms is that they are often hard to analyze.
Still, it is often a good idea to employ randomness to avoid excessive resource
usage on corner case inputs, while retaining simplicity.

Trade-Off Guaranteed Correctness. While Las Vegas algorithms gamble
with the resources required to solve a problem, Monte Carlo algorithms gam-
ble with the quality of the result, that is, they carry some small chance that
a solution will not be correct or optimal [589]. Consider for example the Min-

Cut problem: given a graph G, find a min-cut in G, that is, a minimum size
set of edges whose removal results in G being broken into two or more com-
ponents. We consider the following algorithm: pick a random edge and merge

3. Selected Design Issues 65

its two endpoints. Remove all self-loops (but not multiple edges between two
vertices) and repeat until only two vertices remain. The edges between these
vertices then form a candidate min-cut (see Figure 3.3). The whole process is
repeated, and the best min-cut candidate is returned. With some effort, one
can calculate how often the procedure has to be repeated to meet any desired
error probability. This algorithm is much simpler than deterministic algorithms
for Min-Cut, which are mostly based on network flow. In addition, a variant
has an expected running time that is significantly smaller than that of the best
known deterministic algorithms [589].

Another classical example is the Miller–Rabin primality test [574, 656]. In
particular in public-key crypto systems, it is an important task to decide whether
an integer is prime. Only recently a deterministic polynomial-time algorithm
has been found for this problem [13]. This method is quite complicated and
will probably never be implemented except for educational reasons; moreover,
it has a runtime bound of about Õ(g7.5), where g is the number of digits of
the input [243]. The Miller–Rabin primality test, on the other hand, is quite
practical and routinely used in many software packages such as GNU Privacy
Guard (GnuPG) [492]. To test a number n for primality, n− 1 is first rewritten
as 2s · d by factoring out 2 repeatedly. One then tries to find a witness a for
the compositeness of n. With comparably simple math one can show that if for
some a ∈ Z/nZ

a2rd 	≡ −1 (mod n) for all 0 ≤ r ≤ s− 1

holds, then n is not prime. By trying many random a’s, the probability of fail-
ing to detect compositeness can be made arbitrarily small. This algorithm is
very simple, can be implemented efficiently, and is the method of choice in
practice.

3.2.3 Effects on Analysis

Intuitively, a simpler algorithm should be easier to analyze for performance mea-
sures such as worst-case runtime, memory use, or solution quality. As an example,
consider the NP-complete Vertex Cover problem: given a graph, find a subset
of its vertices such that every edge has at least one endpoint in the subset. This
is one of the most well-known NP-complete problems, and it has found many
applications, for example in computational biology. A simple greedy algorithm
repeatedly chooses some edge, takes both endpoints into the cover, and then
deletes them from the graph. Clearly, this gives an approximation factor of 2,
that is, the solution is always at most twice the size of an optimal solution. The
currently best approximation for Vertex Cover [456] is based on semidefinite
programming and achieves a factor of 2−Θ(1/

√
log n), where n is the number of

vertices in the graph. This algorithm is quite complicated, and requires advanced
concepts to be analyzed.

However, in fact sometimes simplicity and analyzability seem to be excluding
properties, and more complicated algorithms are developed to make them more
amenable to analysis tools.

66 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

This is illustrated by the NP-complete Shortest Common Superstring

problem: given a set S = {S1, . . . , Sn} of strings, find the shortest string that
contains each element of S as a contiguous substring. This problem has impor-
tant applications in computational biology and in data compression. The stan-
dard approach is a simple greedy algorithm that repeatedly merges two strings
with the largest overlap, until only one string remains. Here, the overlap of two
strings A and B is the longest string that is both a suffix of A and a prefix of B.
For example:

TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

In the first line, the largest overlap is “TCAG”, found at the start of the first string
and the end of the third string. Therefore, these strings are merged (second line).
After this, the largest overlap is “AAG” (third line), and so on.

One can find an example where the resulting superstring is twice as long as
an optimal one, but no worse example is known. This has lead to the conjecture
that a factor of 2 is indeed the worst case [828], which is supported by recent
smoothed analysis results [532]. However, despite considerable effort, only an
upper bound of 3.5 has been proven yet [455].

The currently “best” algorithm for Shortest Common Superstring [769]
provides a factor-2.5-approximation. In contrast to the 3-line greedy algorithm,
it takes several pages to describe it, and, to the best of our knowledge, has never
been implemented. However, its design and features allow to derive the better
bound.

Another example for the interplay of simplicity and analysis are recent results
on exponential-time algorithms for NP-hard problems. As an example, the Ver-

tex Cover problem can be solved in O(2kn) time, where n is the number of
vertices in the input graph, and k is the size of the cover. For this, one considers
an arbitrary edge and branches into two possibilities: the one endpoint is in the
cover, or the other is. In a long series of papers, the runtime of this algorithm
has been improved to O(1.274kn) [166]. Most progress was based on an ever in-
creasing number of case distinctions: a list of possible graph substructures, and
a corresponding list on how to branch, should they occur. Similar studies were
undertaken for other NP-complete problems. The process of finding and verifying
such algorithms became somewhat tedious; eventually computer programs were
written to automate the task of designing case distinctions [354]. Also, experi-
ments have shown that the numerous distinguished cases do often not lead to a
speedup, but in fact to a slowdown, due to the overhead of distinction. Better
methods of analyzing the recurrences involved were designed by Eppstein [274].
Using these methods, it was shown that many simple algorithms perform in fact

3. Selected Design Issues 67

much better than previously proved; for example, an algorithm for Dominating

Set runs in O(20.598n) on n-vertices graphs instead of O(20.850n) [292].
These examples seed the doubt that some “improvements” to algorithm per-

formance in fact may actually be only improvements to their analyzability. There
are several ways how this situation could be ameliorated:

– Experimental results can shed some light on the relative performance. For
example, one could generate random Shortest Common Superstring

instances and see whether the 2.5-approximation fares better than the 3.5-
approximation. However, these tests will always be biased by the choice of
instances and can never prove superiority of an algorithm.

– Proving lower bounds on the performance of algorithms can give hints on
the quality of an upper bound. However, proving good lower bounds can
be difficult, and often there remains a large gap between lower and upper
bounds. Also, instances used to show the lower bounds are often “artificial”
or could easily be handled as special cases in actual implementations.

– Improving the algorithm analysis tool chest. This is clearly the most valuable
contribution, as illustrated by the effects of Eppstein’s paper [274].

These steps can help to avoid that designers give up simplicity without an actual
gain in implementations.

3.3 Scalability

Due to rapid technological advances, system developers have to deal with huge
and growing data sets, very large input and output sizes, and vast computer net-
works. A typical Internet search engine has to find relevant data out of billions
of web pages. These large data sets can only be processed by very sophisticated
text-matching techniques and ranking algorithms [626]. Car navigation systems
have to find shortest paths in graphs with several billions of nodes, ideally with
taking traffic jams and road works into account. The graphs used for North
America or Western Europe have already about 20,000,000 nodes each [697]. Al-
though the shortest path problem can be solved with the well-known Dijkstra’s
algorithm [244] in time O(n2) (where n is the number of nodes), for large road
graphs and on mobile hardware with memory constraints, the original Dijkstra
algorithm is much too slow. Here, we need new, more specialized, algorithms
which can successfully handle real world problems, not only today but also to-
morrow, i. e., taking growing data sets into consideration.

Simulation and measurement results of, e. g., car crash tests or computed
tomography, produce gigabytes of data which have to be evaluated, analyzed, or
visualized. In the “Visible Human Project”, the data set representing a human’s
body is about 40 GB [7]. We certainly expect these data sets to grow larger and
larger due to technological progress which allows better and better resolutions
of, e. g., computed tomography scans. An algorithm designer must be aware of
increasing data sets and larger input and output sizes when approaching a real
world problem.

68 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Moreover, not only data sets, but also computer networks are growing. The
Internet connects billions of computers which are often sharing the same re-
sources, for instance, a certain web service. The world wide web introduces a lot
of new challenges for algorithm designers: Load variations and denial of service
attacks must be handled by, e. g., using redundancy and data distribution [247].
The Internet allows its users to share any kind of resources such as data or
computational power. Grid computing projects like SETI@home [726] use the
idle times of ordinary computers to perform large computational tasks. Coor-
dination between the participants is strongly required in order to solve huge
problems jointly in networks whose structure changes permanently. In computer
networks, it can be advantageous to spread data over the network in order to
decrease space requirements. Distributed data storage has recently become an
important research area, and new protocols for efficient data storage and access
in large, unreliable, and ever-changing networks have to be invented. The Chord
protocol from Stoica et al. [757] proposes a very efficient protocol for distributed
data storage.

Summarizing, we have seen that an algorithm designer who wants his or her
algorithm to also be used in a few years has to anticipate growing data sets, in-
creasing input and output sizes, and large, permanently changing networks. Such
algorithms are said to “scale well”. Countless papers propose a “new scalable al-
gorithm” for a certain problem, which suggests that scalability is an important
feature of an algorithm. But what is the exact meaning of the term “scalabil-
ity”? When can we claim our algorithm to “scale well”? The term scalability is
used in many different application areas such as data mining, computer graph-
ics, and distributed computing. Thus, giving an overall definition seems to be
rather difficult. Nevertheless, in 2006, Duboc et al. [260] presented a “scalabil-
ity framework”, which is a first step towards a formal definition of “scalability”.
This framework will be presented in Section 3.3.1. In parallel computing, how-
ever, the term “scalability” already is widely-used and there exist metrics for
evaluating the scalability of a parallel system. Unfortunately, these metrics are
too specific to be applied elsewhere. Nevertheless, they give deeper insight into
the whole topic, and they might be helpful when an algorithm designer wants
to prove his or her system to scale well. Thus, we will show two of these met-
rics in Section 3.3.2. Afterwards, some basic techniques for designing algorithms
with good scaling properties will be presented in Section 3.3.3. Finally, state-
of-art strategies for creating highly scalable computer networks such as using
decentralization or hierarchies, distributed hash tables, and self-organization,
are discussed in Section 3.3.4.

3.3.1 Towards a Definition of Scalability

The term scalability is used in many different application areas in order to de-
scribe technical systems or algorithms. There exists a variety of different scala-
bility aspects, for example:

– An algorithm should be designed such that it can deal with small and large
input sizes.

3. Selected Design Issues 69

– A database system should be designed such that queries can be answered on
small and large data sets.

– The running time of a parallel algorithm should decrease in relation to the
number of processing elements.

– Peer-to-peer networks should be able to deal with a small and large number
of users.

Usually, a system is said to scale well if it can react to modifications (mostly
enlargement) of the application or the hardware properties in a way which is
acceptable for the system developer as well as for its users. Due to the many as-
pects of scalability, it is difficult to develop evaluation methods suitable for broad
application. But in some research areas the use of specific scalability metrics is
well-established, e.g., as already mentioned, in parallel computing. Although the
concept of scalability is hard to define, many systems are claimed by their de-
velopers to scale well. In 1990, Mark Hill [394] considered the question “What is
Scalability?” and concluded with “I encourage the technical community to either
rigorously define scalability or stop using it to describe systems.” Few studies
have been published since then providing more general definitions [368,117], but
most of them correspond to the intuitive definition mentioned above. In a recent
study, Duboc et al. [260] still argue:

Most uses of the term scalability in scientific papers imply a desired
goal or completed achievement, whose precise nature is never defined but
rather left to the readers’ imagination.

Duboc et al. provide a first step towards expressing scalability more generally.
They claim that scalability is about the relationship between cause and effect,
i. e., how a system reacts to changes in the environment. Based on this defini-
tion, the framework presented in Figure 3.4 has been derived. The application
domain and the machine domain are called independent variables whereas system
requirements such as performance, economics, physical size, security, or reliabil-
ity are called dependent variables. When investigating the scalability properties
of a system, single parts of the independent variables, e. g., input size, num-
ber of users, size of a database system, or number of processing elements, are
changed, and the effects on the dependent variables are considered. Accordingly,
scalability should never be regarded on its own, but always together with one or
more independent and one or more dependent variables. For example, a devel-
oper could claim his or her system to scale well in the input size regarding the
system’s performance. Of course, more precise statements are also possible, e. g.,
by showing that a parallel system scales well up to 50 processors, but poorly
for more than 50 processors. Ideally, the relationship between cause and effect is
expressed as a function, but most researchers only present experimental results
in order to demonstrate the scalability of their system.

Sometimes, well-scaling systems can be achieved by sacrificing one or more
rather unimportant dependent variables for the benefit of one or more other qual-
ities. For example, in many applications it is possible to get faster algorithms
by using more space, and vice versa. These so-called time-space trade-offs are

70 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Scalability
framework

Application
domain

Machine

Critical
qualities

Flexible
qualitiesdomain

Independent Dependent
variables variables

Fig. 3.4. A first step towards a general definition of scalability: the scalability frame-
work [260]

extensively discussed in Section 3.4. Duboc et al. have integrated trade-offs into
their framework by dividing the dependent variables into critical qualities and
flexible qualities. Critical qualities are those qualities which are assumed to be
very important whereas flexible qualities can be sacrificed. If, for example, per-
formance and quality are critical qualities, and space is a flexible one, we can
try to find a time-space trade-off. If performance and space are assumed to be
critical qualities, but quality is rather flexible, we might design an approximation
algorithm.

Although this framework does not include any concrete scalability metrics, it
provides a useful general definition. However, parallel algorithm designers have
developed methods for evaluating the scalability of a system. Two of these met-
rics will be presented in the next section.

3.3.2 Scalability in Parallel Computing

Parallelization can be used to improve the performance of a computer program,
and is discussed in detail in Chapter 5. Here, we focus on scalability metrics for
parallel systems. The running time of a parallel algorithm does not only depend
on the input size, but also on the number of processing elements that are used.
Ideally, we would expect a program to run ten times faster if ten processing
elements are used instead of a single one. However, for most parallel algorithms,
this is not the case due to the following overheads which might occur through
parallelization [352]:

Communication overhead. In most parallel systems, the processing elements
have to interact with each other to spread intermediate results or to share
information.

Idle times. A processing element becomes idle when it must wait for another
processor in order to perform a synchronization step, or due to load
imbalance.

3. Selected Design Issues 71

Poor parallel algorithm. It might be impossible to parallelize the best known
sequential algorithm for a given problem. Thus, it might be necessary to use
a poorer algorithm, resulting in inherent performance loss.

In the context of parallel algorithm design, scalability is defined as the ability
of an algorithm to scale with the number of processing elements, i. e., if more
processors are used, the running time should decrease in proportion to the num-
ber of the additional processing elements. It is a measure for how efficiently
additional processing elements can be used.

There are some broadly applicable techniques to achieve scalability in parallel
systems: As communication often is one of the main sources of parallelization
overhead, Skiena recommends to design parallel algorithms such that the original
problem is split into tasks which can be executed completely independently from
each other, and to just collect and put together the results in the end [742]. This
strategy is successfully applied in grid computing projects like SETI@home [726].
If communication is necessary for performing the task, Dehne et al. [216] suggest
to partition the problem such that only a constant number of global communi-
cation steps are required. They show the practicability of this approach on a
number of geometric problems such as 2D-nearest neighbor search on a point
set, or the calculation of the area of the union of rectangles.

The most challenging part in parallelization is to divide the given problem
into appropriate subproblems. Grama et al. [352] identified four decomposition
techniques which can serve as a starting point for designing a parallel algorithm:

Recursive decomposition. Problems that can be solved by using a divide-
and-conquer strategy are qualified for recursive decomposition. The problem
is divided into a set of independent subproblems, whose results are then
combined to the overall solution. For each of the subproblems, the same
algorithm is applied, until they are small enough to be solved efficiently on
a single processing element.

Data decomposition. There are several ways for data decomposition: Each
processor can compute a single element of the output, if the computation of
each output element only depends on the input. Sometimes, the input can be
split using a kind of divide-and-conquer strategy: For example, let us assume
that the sum of a sequence of numbers has to be computed. It is possible to
split the task into summing up the numbers of subsequences and to finally
combine the results. If the algorithm is structured such that the output of
one step is the input of another, it might be possible to partition the input
or the output of one or more such intermediate steps.

Exploratory decomposition. If, for example, the solution of a combinatorial
problem is searched for, we might give the problem to an arbitrary number
of processors, letting each one apply another search strategy, and finish if a
solution has been found.

Speculative decomposition. Some applications are hard to parallelize because
a long sequential computation must be performed in order to decide what
should be done next. If this is the case, all possible next computation steps

72 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

can be executed in parallel, and needless computations will be discarded af-
terwards.

Evaluating the Scalability of a Parallel Algorithm. Until now, we have
defined scalability as a measure for a parallel system’s capability to utilize addi-
tional processing elements efficiently. Grama et al. [352] described the following
model for parallel programs which allows a formal definition of a parallel system’s
scalability.

When analyzing a parallel algorithm, its performance is usually compared
with a sequential algorithm which solves the same problem, and has execution
time TS . To provide fair comparison, a parallel algorithm designer should always
use the best known sequential algorithm for the analysis and not, if existing, the
sequential algorithm which has been the basis of his or her parallel algorithm.

The execution time TP of a parallel algorithm is the time elapsed between the
beginning of the computation until the last processor has finished.

The overhead of a parallel program which is executed on p processing elements
is defined as

TO = pTP − TS

which is the time that would have been required in addition to the sequential
running time if the parallel algorithm was processed sequentially.

Speed-up is defined as the ratio of the time required to solve a given problem
sequentially to the time required to solve the same problem on p processing
elements:

S =
TS

TP
.

Theoretically, this assures that S ≤ p is always true, but in practice, speedups
greater than p have also been observed, referred to as superlinear speed-up. This
can be due to, for example, cache effects: If the data is too large to fit in the cache
of a single processing element, partitioned for parallel computation it might fit.
We need two more definitions to complete the model:

– The efficiency metric tells us how efficiently the processing elements are
used:

E =
S

p
=

TS

pTP
.

– The problem size W is the number of computation steps that is required by
the best known sequential algorithm for solving the problem. For example,
for matrix addition, the problem size is Θ(n2). The problem size is a function
of the input size.

With the previous definitions in mind, scalability is now defined as a parallel
system’s ability to increase speed-up in proportion to the number of processing
elements.

3. Selected Design Issues 73

Looking at scalability from another point of view (but based on the same def-
inition), a parallel system is called scalable, if the efficiency can be kept constant
as the number of processing elements as well as the input size is increased. If we
assume that the problem size W is equal to the sequential running time TS , we
can evaluate W to [352]:

W = KTO(W, p) , (1)

where TO is the overhead, which depends on the problem size W and on the
number of processing elements p, and K = E/(1− E) is a constant, as we keep
the efficiency constant.

Equation (1) is called the isoefficiency function of a parallel system. The
isoefficiency function is a measure for the scalability of a system: It specifies the
growth rate of the problem size (which is a function of the input size) required to
keep the efficiency fixed when adding more processing elements. If its asymptotic
growth is slow, additional processing elements can be utilized efficiently. For
unscalable parallel systems, the isoefficiency function does not exist, since it is
impossible to keep the efficiency fixed when p increases.

3.3.3 Basic Techniques for Designing Scalable Algorithms

After having presented the scalability framework and shown some metrics which
can be applied in parallel computing, we will now approach scalability from a
more general point of view. In this section, we will present some fundamental
techniques for designing algorithms with good scaling properties.

In Algorithm Engineering we are supposed to solve a concrete real world prob-
lem. Designing algorithms with good asymptotic worst case running times is of
great theoretical interest and leads to valuable insights for practical applications.
However, when regarding Algorithm Design in the context of Algorithm Engi-
neering, we have to extend our view and consider the specific application. An
algorithm with a bad worst case behavior might be a good choice if the worst
case seldom or never happens. Consider the simplex algorithm as an example:
It has exponential worst case running time, but it is nevertheless a very popular
and successful technique for solving linear programming problems.

One of the most-used methods to achieve scalability in a software system
is to apply problem-specific heuristics which have proven to scale well in prac-
tice. Since Algorithm Engineering means cycling between design, analysis, imple-
mentation and experimentation until an appropriate solution is found, heuristic
approaches are very common. Their quality can be checked, e. g., in the exper-
imentation step, and further improvements are possible in the next cycle. The
major drawback of applying heuristics is that most of the times, only subopti-
mal outputs are generated, and often, an analysis of the expected output quality
does not exist.

When approaching a concrete problem, we first analyze the problem and make
assumptions on the expected inputs and system properties. In order to design
an algorithm with good scaling properties, we have to decide which concrete

74 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

scaling properties we want to realize. Certainly, if we have to develop a program
for a mobile phone, it is not important for us whether our algorithm scales in
the number of processors, because we will not use thousands of them in a single
mobile phone. Thus, the expected application domain (e. g., input size, number
of users) and the system properties (e. g., number of processing elements, mem-
ory size) have to be bounded appropriately. Then, we concentrate on designing
algorithms which are efficient within the given restrictions, and thus scale well
in their application areas. We are not searching for algorithms with good asymp-
totic behavior because our concrete problems are bounded. A typical example
of bound dependent design is the choice of an appropriate data structure which
will be explained in the following subsection, and is also discussed in the context
of time-space trade-off in Section 3.4.4.

Using Appropriate Data Structures. The choice of the most efficient data
structure for a given application depends on the number of elements which have
to be stored as well as on the operations which are expected to be most commonly
applied to them. Using appropriate data structures can improve an application’s
performance significantly.

Dictionaries. One of the most important data structure needed in computer
science is dictionaries, which can store data identifiable by one or more keys and
provide methods for inserting, deleting, and searching for objects. There exists
a variety of different dictionaries such as simple arrays, hash tables, and trees.
The following dictionary types are widely used (see, e. g., Skiena [742]):

Unsorted arrays. For very small data sets, i. e., less than 20 records, a simple
array is most appropriate. A variant which has been proven to be very effi-
cient in practice is a self-organizing list : Whenever an element is accessed, it
is inserted at the front of the list in order to provide faster access the next
time.

Sorted arrays. In a sorted array, elements can be accessed in logarithmic time
by performing binary search. However, they only perform well if there are
only very few insertions or deletions.

Hash tables. Often, a hash table with bucketing is good choice, when many
elements have to be stored. The keys are transformed to integers between
0 and m − 1 via a hash function, and then the objects are stored at the
respective position of an array of length m. If two or more elements have
been mapped to the same position, they can for example be organized as a
linked list. The array size m and the hash function have great impact on the
performance of a hash table, and should therefore be chosen carefully.

Binary search trees. Binary search trees provide fast insertions, deletions,
and access. There are balanced and unbalanced versions. For most applica-
tions, balanced trees such as red-black trees or splay trees are more efficient
since an unbalanced tree might degenerate to a linked list, which performs
very poorly.

3. Selected Design Issues 75

For large data sets which do not fit in main memory, using a B-tree might
be appropriate. In a B-tree, several levels of a binary tree are moved into
one node in order to process them sequentially before requiring another disk
access.

Space Partitioning Trees. In many applications, such as computer graphics,
statistics, data compression, pattern recognition, and database systems, many
objects in low- or high-dimensional spaces have to be stored. Typical questions to
such systems are “which object is closest to another given object” (nearest neigh-
bor search), “which region contains the following object” (point localization) or
“which objects lie within a given region” (range search).

The nearest neighbor problem is defined as follows: A set S of n elements in k
dimensions is given, and we are searching for the closest element in S to a query
object q. Obviously, this query can be answered in linear time by comparing
all objects with the given one. This simple approach performs very well for a
small number (less than 100) of objects. However, for hundreds or thousands of
objects, there are better approaches, based on space partitioning trees. The idea
is to arrange the objects into a tree structure so that the time for answering
queries depends on the height of the tree, which ideally is log n. The most-used
space partitioning trees are kd-trees [91, 307]: The space is recursively divided
into two parts according to a splitting strategy, e. g., such that each subregion
contains equally many elements. The recursion stops if the number of elements in
a region is below a given threshold [590]. These elements can be processed more
efficiently using the simple linear time approach. Of course, it is also possible
to divide a region not only along one dimension but along every dimension in
every split, resulting in quadtrees for two-dimensional data sets and octtrees for
three dimensions [690]. Figure 3.5 shows a kd-tree and a quadtree. The kd-tree
should only be used for less than 20 dimensions since it performs very poorly in
higher-dimensional spaces. For such applications, searching for an approximate
solution of the given problem might be a good approach [49].

Fig. 3.5. An example of a kd-tree (left) and of a quadtree (right)

76 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

The process of analyzing, transforming, and/or reducing data before applying
an algorithm is called preprocessing, and is discussed in more detail in Sec-
tion 3.4.4, concentrating on time-space trade-offs. Usually, creating a kd-tree is
not a space-critical procedure, but a time-consuming task, and therefore only
pays off for large input sizes, or if we expect a large number of queries.

Algorithm Selection. If it is impossible to make any assumptions on the
expected application domain, we can design more than one algorithm for a given
problem and choose the appropriate one during runtime, when more information
is available.

For small input sizes, an algorithm with good asymptotic running time might
not be the best choice due to overhead produced by, for example, applying com-
plicated transformations on the input data before solving the problem. These
computations (preprocessing operations) are hidden in the O-notation, and might
significantly slow down an algorithm for small input sizes. When solving larger
problems, however, it pays off to create additional data structures or to do pre-
calculations, since the additional running time is mostly negligible compared to
the overall execution time.

An example for algorithm selection is the introspective sorting algorithm de-
scribed by Musser [602]. The median-of-three quicksort algorithm has an aver-
age computing time O(n log n) and is considered to be faster than many other
algorithms with equally good asymptotic behavior. However, there are input
sequences which lead to quadratic running time. In these cases, a better per-
formance can be achieved by heapsort, with average and worst case running
time O(n log n), but which on average is slower than quicksort. The introspective
sorting algorithm uses quicksort on most inputs, but switches to heapsort if the
partitioning of quicksort has reached a certain depth. The result is an algorithm
which works almost exactly like quicksort on most inputs and is thus equally
fast, but has a O(n log n) worst case running time by using heapsort for the
critical cases.

After having introduced some fundamental strategies for achieving algorithms
with good scaling properties, we will now present some examples of advanced,
more modern design techniques.

3.3.4 Scalability in Grid Computing and Peer-to-Peer Networks

In grid computing projects, large computational tasks are performed by using
many processing elements which can be located geographically far away from
each other. Often, they are connected via existing communication infrastruc-
tures, mostly the Internet, and try to solve computational problems together by
sharing their resources. The number of processing elements can be significantly
larger than in traditional parallel applications, while communication can be much
slower, and thus, scalability is an important concern here. Special types of grid
computing are desktop grids. They have become popular through projects like
SETI@home [726], which try to use the idle times of ordinary desktop computers
to perform large computations.

3. Selected Design Issues 77

Peer-to-peer is a concept which differs from the traditional client-server-
approach: Every participant, also called peer, acts as both client and server,
which means that it provides resources for other peers, but also uses resources
of the others. Peer-to-peer networks have become well-known through file shar-
ing, but more generally, each kind of resource can be shared. In peer-to-peer
networks, two communicating participants usually establish a direct connection
to each other. The scalability question which arises here is whether new partic-
ipants can be integrated without decreasing the performance of the whole net.
For further reading, an overview on peer-to-peer networks and grid computing
can be found in [31], and a comparative study has been published by Foster and
Iamnitchi [303].

When designing distributed algorithms for grid or peer-to-peer computing,
we have to consider two main scalability issues: The system should be able to
deal with a large number of participants, and it should use available resources
efficiently, even if they are not known beforehand. There exist some techniques
to achieve these goals, namely decentralization, making use of hierarchies, and
utilizing distributed hash tables, which have been proven to work very well in
practice. These techniques will be explained below, in the context of information
sharing and content distribution.

Decentralization. Using a central instance which coordinates the whole com-
putation can easily become the bottleneck of a distributed application since the
performance of the whole network depends on the performance of this central
node. Consider the information sharing application Napster (see, e. g., [31, p.
344ff]): Data is stored in a decentralized manner on the peers, but a central server
knows where to find which piece of data. If a peer is searching for something
it must ask the central server where to find it. Afterwards, a direct connection
to a peer owning the desired information is established. Although data storage
takes place decentralized, the existence of a central server slows down the whole
application significantly the more users participate.

Gnutella [443] is completely decentralized: A central server does not exist,
instead, each peer helps other peers to find information by forwarding incom-
ing requests to its neighbors. The bottleneck caused by centralization vanishes,
but Gnutella has another problem, resulting in bad scalability properties: Each
request is published randomly in the net, and thus the unintelligent searching
strategy can become the bottleneck of this application when too many messages
are spread and single nodes become overloaded.

Making Use of Hierarchies. The problem caused by broadcasting requests
has been solved by the developers of Kazaa, which is, like Gnutella, fully decen-
tralized, but divides its participants into super nodes and ordinary nodes. This
way, Kazaa exploits the heterogeneity of the peers as they can strongly differ in
up time, bandwidth connectivity, and CPU power [525]. Each ordinary node is
assigned to a super node. Super nodes are fully informed about which informa-
tion is provided by their children. If a participant searches for data, it asks its

78 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

super node where to find it. The super node first checks whether another child
node has the desired information, otherwise forwards the request to its adjacent
super nodes. If an appropriate node has been found, a direct connection between
the peers is established for transferring the data.

Besides Kazaa, there exist many other algorithms which exploit the inherent
heterogeneity of a problem in order to achieve better scalability. For example, in
car navigation systems, the inherent hierarchical structure of road networks can
be used in order to develop extremely efficient, problem-specific solutions [224].
Shortest path algorithms are discussed in detail in Chapter 9. Another example
is an algorithm for rendering objects in computer graphics, namely level of de-
tail [275]: Objects, which are near the viewer are rendered with high resolution
whereas objects which are far away are shown less detailed.

Intelligent Data Distribution. Although Kazaa has helped to eliminate some
of the bottlenecks of earlier protocols, it has two main disadvantages: The first
one is the lookup strategy. Each request is broadcasted in the net, but after pass-
ing a specified number of nodes, it is deleted in order to avoid that unanswered
requests are rotating in the network forever. This means that it might happen
that a data request is removed even if the data is available. Hence, accessibility
of data can not be guaranteed. The second disadvantage is the inhomogeneity of
the nodes, although helpful to achieve scalability, this property causes larger vul-
nerability as, for example, the failure of a super node may cause serious problems
for the whole net.

More recent protocols like CAN [664], Chord [757], Pastry [683], Tapastry [391],
Viceroy [537], Distance Halving [610], and Koorde [445] overcome these two
drawbacks by using distributed hash tables (DHT), which have been introduced
as consistent hashing in 1997 by Karger et al. [460]. All these protocols assume
that data does no longer belong to a certain peer, but can be distributed arbi-
trarily in the net. This is done by hashing data as well as peers into a predefined
space. In order to illustrate this principle, Chord will now be presented in more
detail.

Here, each piece of data is represented by a unique key which is hashed to an
m-bit identifier. The participating nodes also get an m-bit identifier by hashing,
for example, their IP address. Thus, every piece of data and every node has
an ID in the interval [0 . . . 2m − 1]. The nodes are arranged into a logical ring
structure, sorted by their IDs. Each piece of data is now assigned to the first
node whose ID is equal to or follows the data’s ID. Figure 3.6 shows a Chord
ring with N = 3 nodes and m = 3, i. e., all IDs are in the interval [0 . . . 7]. Let
us assume that our nodes have IDs 0, 1, and 3. Data is always stored in its
succeeding node, which means that, in our example, in the node with ID 0 all
data with ID 0, 4, 5, 6, and 7, is stored, and in the node with ID 3 all data with
ID 2 and 3 is stored. This strategy allows efficient leaving and entering of nodes.
If a node leaves the net, all its data is transfered to its successor, while when a
node is joining, it might get data from its successor.

3. Selected Design Issues 79

2
3

0
4
5
6
7

1

1, 3, (0)
Finger table

Finger table
3, (3), 0

Finger table
0, (0, 0) 3

0

1

Node

IDs (hash values) of data

Node ID

which would be stored here

Fig. 3.6. A Chord ring with 3 nodes with IDs 0, 1, and 3. Data is always stored in the
node whose ID follows the data’s ID, and thus, data with ID 0, 4, 5, 6, 7 is stored in
node with ID 0, and data with ID 2 or 3 is stored in node with ID 3.

In order to locate data, each node must have information about other nodes. A
Chord node only maintains a very small amount of such routing information; this
is the main reason why it scales well in the number of nodes. The routing table
of a Chord node, also called finger table, consists of at most m entries, which
is in O(log N) where N is the number of nodes. The i-th entry of the finger
table of node n contains the ID and the IP address of the first node following
n + 2i−1 mod 2m, for i = 1 . . .m. The finger tables of the nodes in our example
are also shown in Figure 3.6. The construction of the finger table assures that
each node has more information about the nodes following it than about those
located further away in the ring structure, but also has some information about
more distant nodes.

If a node wants to look up a piece of data with ID k, it searches its finger
table for the node whose ID most closely precedes k and asks this node for more
information. By repeating this procedure, the data with ID k will finally be
found. Stoica et al. [757] show that with high probability or in steady state, each
data can be located using only O(log N) communication steps. Also with high
probability, entering and leaving of nodes only cost O(log2 N) messages.

80 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Using Self-Organization as Algorithm Design Strategy. Many biologi-
cal systems have very good scaling properties, whereby scaling in this context
means that the system works well no matter how many individuals are involved.
Consider, for example, a fish swarm. There are swarms with only very few fish,
but there are also swarms with millions of them. The behavior remains the same
which indicates good scalability properties. Reynolds [670] succeeded in visual-
izing fish swarms by assigning a small set of rules to each fish:

1. Collision Avoidance: Avoid collisions with neighboring fish.
2. Velocity Matching: Try to have the same speed and direction as the neigh-

boring fish.
3. Centering: Try to move towards the center of the swarm, i. e., try to be

surrounded by other swarm members.

The reason that this algorithm scales well is that every fish only makes local
decisions, and knowledge about the whole swarm is not required.

This is similar to decentralization, but goes one step further: The rules de-
scribed above are very simple, but nevertheless, complex structures can re-
sult [149]. There have been attempts to imitate biological systems in order
to develop systems which are simple, scalable, robust, and adaptable, such as
ant colony optimization, and genetic algorithms. Only few approaches use self-
organization without a concrete natural basis, among them the organic grid of
Chakravarti et al. [154]. In grid computing, a large number of computers are
working together in order to perform expensive calculations. Often, a central
instance distributes the tasks among the clients. In the organic grid, however,
everyone should be able to use the resources of the whole system by spread-
ing its task over the net. As already mentioned, centralization often becomes
the bottleneck of such an application, and thus, Chakravarti et al. developed a
fully decentralized system by using self-organized agents which carry the tasks
from one node to another. They did not use any biological system as their basis.
Instead, they developed their system by first defining the desired goals and by
then thinking about the rules each agent must obey in order to achieve these
goals. The resulting rules are simple, but provide complex behavior. Thus, they
showed that using self-organization as an algorithm design strategy might lead
to simple, well-scaling, and robust algorithms.

3.4 Time-Space Trade-Offs

Introductory textbooks about algorithm design usually focus on the time com-
plexity of algorithms and problems, the space requirements are mostly just
mentioned in passing. For teaching purposes on an elementary level there is
an easy justification for this apparently one-sided approach: using the funda-
mental model of a Turing machine, it is obvious that an algorithm running
for f(n) steps cannot use more than f(n) cells of the working tape. Hence,
DTIME(f) ⊆ DSPACE(f) follows and an analysis of time complexity suffices
to establish the term of an efficient algorithm.

3. Selected Design Issues 81

Space constraints may arise out of system requirements. As nowadays only a
vanishing portion of the produced computers are in the shape of multi-purpose
computers (e. g., personal computers or laptops) and the major part is embedded
in systems as miscellaneous as cell phones, cars, watches or artificial pacemak-
ers, the space requirements of algorithms and problems will likely increase in
significance. Technological improvements making it possible to store more and
more data at the same cost are usually met by an ever-growing wish to store
more and more data creating a permanent shortness.

To pick the most space efficient algorithm among algorithms of the same
running time is a first step to include space analysis into algorithm design. When
designing algorithms minimizing time and minimizing space may easily be two
conflicting goals. Hence, a variety of different algorithmic solutions to one and
the same problem may be optimal for different time and space requirements.

The problem of choosing the right algorithm remains relatively simple if one of
the resources time or space is by far more crucial than the other one, in a given
setting: in an artificial pacemaker, one might be willing to sacrifice orders of
magnitude in calculation time to gain a constant factor in space. For a high-end
chess computer providing immense extra storing capacities might be acceptable if
this enables the system to evaluate 5% more configurations in the time available
for a move, because it is able to recognize more configurations which were already
evaluated.

The degree to which minimization of time and space are in conflict is the
central issue in the discussion of time-space trade-offs. These trade-offs differ
immensely in scope: For some problems, the set of time-optimal algorithms and
the set of space-optimal algorithms may intersect while in other cases, time-
optimality can only be reached by accepting severe space requirements and vice
versa. Apart from the scope of the trade-offs also their shape is of interest: For
some problems the trade-off between time and space is smooth which means
that an increase in time by a factor of f(x) results in a reduction of space by a
factor of g(x) with f and g not too different in growth or, in the best case, even
asymptotically equivalent. In other cases, the trade-off is rather abrupt which
means there is a certain bound of one resource so that even a relatively small
step below this bound can only be made by sacrificing the other resource to an
extreme extent. We will see examples of these cases in the following discussions.

Time-space trade-offs do not only arise in the comparison of different algorith-
mic approaches, but may also arise within one algorithm that can be adapted,
e. g., by tuning parameters appropriately. A search algorithm can be run with
very restricted memory resulting in revisiting the same places over and over
again, or it can store its entire search and avoid redundancy completely.

Such an adaption can even be made at runtime if the algorithm itself evaluates
parameters like the current processor idle time or the amount of main memory
available. The SETI@home [726] project may serve as an example for this line of
thought: the system is allowed to use resources (space and time) of participants
willing to contribute but it must be ready to clear the resources at all times,
should the user require his resources for other purposes.

82 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

1,1 2,2 3,3 4,4 5,5

4,53,42,31,2

2,41,3 3,5

2,5

1,5

1,4

n/3 2n/3

2n/3

n/3

Fig. 3.7. Left: A dependency graph with G = (V, E), V = {(i, j)|1 ≤ i ≤ j ≤ n}
and E = {((a, b), (a, d))|b < d} ∪ {((a, b), (c, b))|a < c} shown for n = 5. Middle: An
illustration for results no longer needed at a certain point. Right: An illustration for
the counting argument.

Beyond the application driven motifs to consider time-space trade-offs, there
is also a structural insight into the nature of the problem in question and its
algorithmic solutions that should not be underestimated. Theory has provided
means to establish lower bounds for time-space products and to analyze the im-
portant question whether a time-space trade-off for a given algorithm is smooth
or abrupt. (See for example [700] for an introduction.)

3.4.1 Formal Methods

Theoretical studies break down into the analysis of straight line programs and the
analysis of data-dependent programs. The latter class is more powerful. In straight
line programs, the input does not effect the course of computation – loops (with
variable number of executions) and branches are forbidden. Hence, straight line
programs for a given input size n may be written as a fixed sequence of input
and output steps and operations on previously computed values. A naive bubble
sort is a straight line algorithm (it looses this property if a test is added to make
the algorithm stop should the array be sorted after some iteration). Prominent
straight line algorithms are the Fast Fourier Transformation, computation of
convolutions or matrix multiplications.

The dependencies between the different steps of an algorithm can naturally
be modeled as a directed acyclic graph. The vertices are the different steps of
the algorithm and an edge (u, v) is inserted, if the result of step u is called for
in the computation of step v. Input steps have indegree 0, output steps have
outdegree 0. Consider for example the dependency graph of Figure 3.7 that we
will revisit when discussing dynamic programming in the next section.

The Pebble Game. A fundamental approach to formally studying time-space
trade-offs is the so-called pebble game, played on these dependency graphs. Peb-
bles are placed on the vertices and moved from vertex to vertex according to

3. Selected Design Issues 83

certain rules. A pebble on a vertex indicates that the result of this node is cur-
rently stored by the algorithm. The rules follow naturally:

1. A pebble may be placed on an input vertex at any time.
2. A pebble may be placed on an inner vertex, if there is a pebble on every

predecessor of the node. (It is allowed that the pebble placed on the node is
one of the pebbles of the predecessors.)

3. A pebble can be removed at any time.
4. If all nodes have once carried a pebble, the game is won.

As every move represents an operation or a reading of an input component, the
number of moves needed to win the game corresponds to the running time of the
algorithm. The maximum number of pebbles that has been in use at the same
time is the algorithm’s space requirement. (If a distinction between input space
and working space is required, input vertices never carry pebbles and an inner
node may be pebbled if all its preceding inner nodes carry a pebble.)

In our example we could just pebble the graph row-wise from top to bottom
and within each row from left to right. This results in Θ(n2) for time and space.
Clearly Ω(n2) is a lower bound for time, as every node must be pebbled at least
once. But what about space? The center part of Figure 3.7 shows that nodes arise
that are no longer needed when computing in this order. If the dot resembles the
node currently being pebbled, every result in the shaded area will not be needed
again. Hence, we could save pebbles by using them over. It turns out however,
that the number of pebbles needed remains Θ(n2).

The next approach would be to modify the order in which the nodes are peb-
bled. This freedom cannot be exploited to yield a lower space requirement: Let
(a1, b1) and (a2, b2) with 1 ≤ ai ≤ bi ≤ n be two nodes and let X(a1, b1, a2, b2)
be an indicator that is 1 iff the result for node a2, b2 is stored at the time the re-
sult for node (a1, b1) is computed, 0 otherwise. Then

∑
(a2,b2) X(a1, b1, a2, b2) is

the space in use at the time (a1, b1) is evaluated. Due to an averaging argument
it suffices to verify that

∑
a1,b1

∑
a2,b2

Xa1,b1,a2,b2 = Θ(n4) in order to establish
a Ω(n2) space bound.

Define Span((a1, b1), (a2, b2)) := (min{a1, a2}, max{b1, b2}). Now note that if
Span((a1, b1), (a2, b2)) /∈ {(a1, b1), (a2, b2)}, both (a1, b1) and (a2, b2) are prede-
cessors of the span and hence they are both stored when the node of their span
is computed. Consequently, X(a1, b1, a2, b2) = 1 or X(a2, b2, a1, b1) = 1 as we
do not delete results until we know that they will not be called for again. A
counting argument completes the proof: Pick (a1, b1) from the pale shaded area
in the right diagram of Figure 3.7 and (a2, b2) from the dark shaded area. The
span of these combinations is below the lowest dashed line and hence all these
Θ(n4) combinations contribute a 1 in the above sum.

Hence, we cannot save space (asymptotically) without sacrificing time. If we
allow results to be computed, deleted and later recomputed, we are actually
able to win the game with 2n−1 pebbles. The price turns out to be exponential
running time: We inductively verify that a node in the i-th layer (counting top-
down starting with layer 1) can be pebbled with 2i−1 pebbles. This is obviously

84 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

true for level 1. For a node in level i, proceed from k = i−1 down to 1 and pebble
its two predecessors recursively. This can be done by the induction hypothesis.
At the end of each recursive call remove all pebbles placed during this call except
the final one. When all the predecessors are pebbled, the node in level i can be
pebbled. For the running time, we obtain the recursion T (n) = 2

∑n−1
i=1 T (i) with

T (1) = 1 which solves to T (n) = 2 · 3n−2.
The time-space trade-offs of other graphs can be much smoother. Several

graph classes like binary trees, pyramids, lattices and butterflies have been stud-
ied. Hence, an algorithm designer even if he does not want to establish trade-
off bounds by analyzing pebble games himself, should at least check whether
the specific pattern of dependencies in his task is a prominent one and already
analyzed.

The total independence between input and course of computation in straight
line programs appears to be a rather severe restriction. However, in algorithms
that are mostly straight line the same formal methods may still give a hint on
time-space trade-offs even though they lose the formal assurance of a mathemat-
ical proof. We revisit the above graph and this line of thought when discussing
dynamic programming.

3.4.2 Reuse and Lookup Tables

On the conceptual level, an important way to save time is avoiding doing the
same things over and over again. Storing and reusing results that have been
obtained from a time consuming process is an obvious solution requiring space.
Some simple examples:

– In a lookup table values previously obtained by a lengthy calculation are
stored for later use.

– In caching, a certain amount of pages is kept in main memory to minimize
slow hard disk accesses.

– In distributed databases an object may be stored in more than one location
in order to keep the communication time small.

An important question in a given application is to what degree the access pat-
tern to data can be predicted. If the designer is dependent on working with
probabilities or relying on heuristics, a more redundant storing must be used to
obtain the same performance.

Dynamic Programming. In dynamic programming it is known in advance
which previously computed result is needed at a given stage of the algorithm.
Hence, the necessary space can be figured out in advance and can be made
the subject of a minimization process. A graph, like the one to demonstrate
the pebble game, modeling the dependencies between the different subproblems,
comes in handy.

Consider the following two basic problems, firstly the problem to decide
whether a word w of length n is in a language of a context free grammar

3. Selected Design Issues 85

Fig. 3.8. The dependency graph for the longest common subsequence problem

G = (V, T, P, S) given in Chomsky normal form, where V denotes the set of
variables, T the set of terminals, P the production rules, and S the start symbol.
The well-known Cocke-Younger-Kasami (CYK) method solves n·(n+1)

2 problems
corresponding to all subwords of w. In fact, the dependency graph in Figure 3.7
is exactly the dependency graph of the subproblems in the CYK-algorithm. Node
(i, j) represents the computation of Vi,j , the set of variables that can produce
the subword xi, . . . , xj . The dependencies are due to the rule

Vi,j = {A ∈ V |∃i≤k<j∃B,C∈V (A→ BC) ∈ P, B ∈ Vi,k, C ∈ Vk+1,j}

for j > i.
The second problem we discuss is to find the longest common subsequence of

two sequences x and y of length n. A standard dynamic programming algorithm
computes the longest common subsequences Maxi,j of every pair of prefixes
x1, . . . , xi and y1, . . . , yj including the empty prefix ε for i = 0 or j = 0. Hence,
(n+1)2 subproblems are solved. The dependency graph (Figure 3.8) reflects the
rule

Maxi+1,j+1 = max{Maxi,j+1, Maxj+1,i, Maxi,j + 1xi+1=yi+1}

for i, j ≥ 0.
While the common subsequence problem computes roughly twice as many

subproblems, a smart implementation only requires storing Θ(n) solutions at a
time. A glance at the structure of the dependency graph of this algorithm reveals
this. If the subproblems are solved in a top-down and left to right manner, the
algorithm does only need the results of the last n + 1 computations. The older
ones may be overwritten. We thus have a case where space improvement can be
obtained without a loss in computation time.

Observe that our proof for the CYK-algorithm graph needing Ω(n2) pebbles
when time is constrained to O(n2), only proves the necessity of storing Θ(n2)
subsolutions for CYK, provided the task of computing one table entry is not
interrupted and no partial solutions are stored. We may conclude however, that
if we intend to break the Ω(n2) space bound, we must do exactly that. Hence,

86 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

there is no easy way to break this bound, i.e., the bound cannot be broken simply
by optimizing the order in which subproblems are solved.

An aspect of dynamic programming that deserves special attention are the
two different versions of optimization problems. In many problems which are
approached with dynamic programming there is a value version and a construc-
tion version. The value version just asks for the value of the solution, while the
construction version also requires producing the solution itself. This solution
consists of information gathered during the computation.

In the above example of the longest common subsequence the computation
of an internal node consists of picking the maximum among three candidates
provided by the predecessors. A constructive solution does not just require the
length of the longest common subsequence, but also the sequence itself. This is
easily solved by storing after every computation the identity of the predecessor
that delivered the maximum value. Then, after the value of the optimal solu-
tion is found, one traces these predecessor information back to the origin. This
requires storing the whole table even if it is redundant for the value version. In
the dependency graph the shift from value- to construction version is reflected
in further edges: in the constructive case every internal node has an incoming
edge from every node located to its upper left. We loose a factor of n just by
switching from the value version to the constructive version.

This problem is addressed in [114] for a variety of interesting cases. It is shown
that in the cases they describe, a construction version may be computed with
asymptotically the same space as the value version if a slowdown of a logarithmic
factor is acceptable. In the cases covered, subproblems are organized in bags and
the dependencies are reflected by a constant degree tree with the bags as nodes.
A simple case would be the one where the tree is a simply linked list. We can
obtain this structure by organizing the different columns of the subsequence
graph as a bag. (See Fig. 3.9.)

Bodlaender and Telle point out that this setup arises for many NP-hard prob-
lems on graphs that can be solved efficiently, provided the path decomposition
or the tree decomposition of the graphs is bounded by a constant. We will only
describe the algorithmic idea for the case where the bags constitute a simply
linked list. The more general case follows similar ideas.

Assume a sequence of n bags is to be solved. Each subproblem in bag i + 1
can be solved using only the results of bag i. Furthermore, assume that for every
subproblem a single predecessor delivers the optimal solution, hence the con-
structive solution is a path through the dependency graph. (This assumption is
met in the subsequence problem, as we only need to remember which predecessor
constituted the maximum. The assumption is not met in the CYK graph, as we
need to store a pair of predecessors.)

In a first iteration (Fig. 3.9 top) the optimal value as well as a pointer to the
subproblem in the first bag, where the path of the optimal solution starts, are
computed. Afterwards the algorithm works recursively on problems Pl,r with
l < r, starting with P (1, n). It is assumed that we know which result in bag

3. Selected Design Issues 87

l m r

0

l m r

0

l m r

0

Fig. 3.9. Finding the middle of an optimal path. A method to reconstruct the optimal
path in short time, without storing the entire table.

l and which result in bag r is part of the optimal path. We seek to determine
which result from bag m = � l+r

2 � is on the optimal path.
This is achieved as follows. Assuming a maximization problem, we set the

value of the starting point of the optimal path in bag l to 0 and all the other
entries of bag l to −∞. That way the optimal path does not change and we
do not need to know the real values of bag l. With these fictitious starting
values we rerun the dynamic program up to bag m (Fig. 3.9 middle). In the
second half of the run from bag m to r we maintain a set of pointers indicating
which result in bag m is on the path leading to a specific result. When bag r is
reached we follow the pointer from the optimal result to its predecessor in bag m
(Fig. 3.9 bottom). The recursion than continues independently for P (l, m) and
P (m, r).

We never store more than two bags at a time and have asymptotically the
same space requirement as the value version. The time is described by T (n) =
2T (n

2) + n yielding T (n) = Θ(n log n).

Online Scenarios. In an online scenario the input and therefore the requests
for stored data are revealed at runtime. A web server, for example, has no way
of knowing which page a user might request next. The theory of online computa-
tion [125] provides formal frameworks for performance guarantees on worst case
inputs. We say an approximation algorithm A is c–competitive for a minimization

88 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

problem, if for every legal instance I the inequality A(I) ≤ c · opt(I) holds.
The paging heuristic Least-Recently-Used for example is k-competitive if k is
the number of pages which fit into main memory. It is optimal among all deter-
ministic strategies in the worst case analysis [744]. A marking algorithm using
random bits is O(log k)-competitive for oblivious input (i. e., if the sequence of
page requests is independent of the behavior of the paging algorithm) [4, 286]
and optimal in this sense.

However, for real world applications, the idea of an adversary generating the
input with the intent to hurt the system as bad as possible is overly pessimistic
(denial of service attacks being an exception to this rule). A stochastic analysis,
assuming every page being requested with the same probability, is equally little
appealing. More advanced methods have turned out to resemble experiments
with real world data pretty well. The idea is to model legal sequences of requests
either deterministically in an access graph or more generally allowing randomness
in a Markov chain [461]. By the last one it is assumed that a request for page
a is followed by a request for page b with a probability pa,b. The sparser the
Markov chain, the better it can be exploited to figure out a tailor-made paging
strategy for the given application. The probability values themselves may arise
out of experimental studies.

In online scenarios we usually have a smooth trade-off: the more space we are
able and willing to provide in main memory, the more seldomly page misses will
occur.

Interpolation. For arithmetic functions, lookup tables may be used in yet a
different manner. Assume a complicated function f(x) is to be evaluated many
times throughout an algorithm with the x-values neither being known in ad-
vance nor sufficiently predictable. Hence, we are facing an online scenario. But
if the function is defined over real-valued variables – even given the usually fi-
nite representation of a real value in a computer – the odds of luckily having
a requested value in store is negligible. Assuming a certain smoothness of the
function however, it might be acceptable to work with interpolation: if function
f is called for a specific value x the algorithm determines the biggest x-value
smaller than x and the smallest x-value greater than x in the lookup table. The
result for x is then obtained for example by linear interpolation or, if the first
k derivates of f are also stored, by a more advanced method. In this scenario,
building a lookup table for interpolation is also an example of a preprocessing
phase yielding a time-space trade-off.

In this case of arithmetic functions the time-space trade-off is a conceptual
decision and is not smooth. The lookup table is only constructed if the decision
is made to totally ban exact evaluations of f from the computation. Once a table
is established, the time saved does not increase with the size of the table, but of
course, we do have a clear space precision trade-off.

3. Selected Design Issues 89

3.4.3 Time-Space Trade-Offs in Storing Data

Crucial properties of data structures are their space requirement and their
ability to execute specific operations in a given time. Hence, for data structures
the time-space trade-off is the measure of performance.

An obvious example are B-trees. They are specifically designed to organize
data that does not fit into main memory and the space requirements are only
measured in the number of hard disk accesses as the operations in main memory
are by orders of magnitudes faster. A B-tree is specified by a parameter t ≥ 2.
Every node except for the root contains at least t− 1 and at most 2t− 1 keys.
Every inner node containing the keys x1 < x2 < . . . < xr has exactly r + 1
children that correspond to the intervals

[−∞, x1], [x1, x2], . . . , [xr−1, xr], [xr ,∞].

Furthermore, every leaf of a B-tree has the same depth. Insertions and deletions
are arranged so that they maintain these invariants.

For reasonably high values of t almost every key will be stored in a leaf.
Hence, every unsuccessful and almost every successful search requires d hard
disk accesses if d is the depth of the tree. The depth d of a B-tree with n keys
is bounded by d ≤ �logt n�. Therefore t should be picked as large as possible,
that is, t should reflect the amount of main memory one is able and willing
to provide for the search. This example also reminds that different measures of
time (main memory operation or external memory access) and space must be
used properly in order to achieve a useful performance description. Here the O(·)
notation poses a specific danger.

As data structures are designed to support specific operations efficiently while
keeping space small, an exhaustive discussion of time-space trade-offs in data
structures would actually be an exhaustive discussion about data structures,
well beyond the scope of this chapter. We thus restrict ourselves to three aspects
that are of specific interest in Algorithm Engineering. First, using the example of
resizing in hashing schemes, we describe how a scheme with good amortized per-
formance bounds can be enriched to yield good worst-case performance bounds.
We then point out that advanced data structures usually use sub-data structures
that need to be well chosen. Hence, both observations deal with bridging the gap
from theoretical analyzes to practical necessities. We finish with some remarks
about data compression.

Hashing. Hashing is almost a scientific field on its own. The more data is
stored in a hash table of a given size, the more often collisions will occur. These
collisions either result in longer linked lists in the case of hashing with chaining
or in multiple hash table accesses when a form of open addressing is used. Hence,
densely filled hash tables require less space per item stored but the price is longer
lookup times.

Every concept of hashing provides a system of resizing the hash table. Once a
certain load factor is exceeded, a larger hash table is created and the data is re-
hashed. Should a table become too sparse due to deletions, the table is shrunken.

90 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

As the hash function will involve the table size, it becomes necessary to recom-
pute the hash values of every key already stored, whenever a resize measure is
undertaken. Usually the change in size of the hash tables will be by a multi-
plicative factor, as then amortized analysis using the simple accounting method
shows constant amortized cost per operation. Hence, even if a single operation,
namely the one causing the resizing measure, may take time Θ(n) where n is the
number of elements currently stored, the cost per operation remains constant in
the long run.

However, if for a given time crucial operation we cannot afford operations
which take linear time in rare peak situations, and therefore an amortized con-
stant time per operation is not good enough, further space can be invested to
obtain this goal. One possibility is to setup a new larger hash table in the case
of overflow, but to also keep the old one. Lookups are performed on both tables
resulting in an increase of a factor 2 in lookup time. Deletions are treated simi-
larly. Whenever a new element is inserted, it is inserted into the larger table and
c further elements from the small table are removed from there and hashed into
the larger one. The constant c needs to be picked in a manner such that the time
needed to rehash c elements is still acceptable. As soon as the old hash table is
empty, it can be discarded. The density bounds for enlarging or shrinking tables
are picked such that never more than two tables are in use at the same time.
Hence, by doubling the space needed, the worst case time of an operation has
been reduced from Θ(n) to constant. So in this case space is used to take the
peaks out of the runtime.

Sub-Data Structures. More advanced data structures often include elemen-
tary ones as substructures. Here knowledge about the context in which the data
structure is to be used, comes in handy. Consider for example a suffix tree [367].

A suffix tree T for an m-character string S is a rooted directed tree with
exactly m leaves numbered 1 to m. Each internal node, other than the root,
has at least two children and each edge is labeled with a nonempty substring
of S. No two edges out of a node can have edge-labels beginning with the same
character. The key feature of a suffix tree is that for any leaf i, the concatenation
of the edge-labels on the path from the root to leaf i exactly spells out the suffix
of S that starts at position i. That is, it spells out S[i . . .m].

Figure 3.10 shows an example of a suffix tree for the word MISSISSIPPI$. (The
unique stop symbol “$” is used as otherwise there are strings with no suffix trees.)
We will briefly describe the use of suffix trees when discussing preprocessing in
the next section.

Constructing a suffix tree speeds up algorithms that make use of their struc-
ture. However, they clearly require significantly more space than the string itself.
Hence, finding a space efficient representation is worth a thought. How should the
children of an internal node be represented? In bioinformatics, where the strings
are DNA sequences consisting of the four nucleotide bases A, C, G and T, an
array providing room for pointers to each of the four possible children makes
sense. Every child can be addressed in constant time and the space blowup is
acceptable. If in principle the entire ASCII code could be the first character of

3. Selected Design Issues 91

1

4 7

10

11

$

12
9

8

SSI

2 5 36

SSIPPI$

MISSISSIPPI$

S

SII

PPI$
PPI$

SSIPPIPPISSIPPI$

PPI$ $

I

P

PII

Fig. 3.10. An example suffix tree

an edge label, we will clearly not afford an array of 256 cells for every internal
node. Possible alternatives are linked lists (space efficient, slows down lookup),
binary trees (more space consuming than linked lists but faster in lookup times)
or hash tables.

In fact, practical implementations use a mixture of these schemes. In a suffix
tree internal nodes, that are higher in the tree, usually have more children than
the ones located closer to the leafs. Hence, one might start with arrays for the
first levels and then switch to simple lists further down.

Data Compression. The field of data compression finds ways to save space
by investing calculation time. Classical algorithms make only use of statistical
properties of the text to be compressed. They rely on redundancies within the
text to be compressed and find ways to exploit them. Such redundancies appear
in different scope depending on the nature of the compressed file: a text in a
natural language has redundancy simply because letters appear with different
frequency and e. g., only a small portion of all combinations of 5 letters will ever
appear in a text. Is the original file a picture, redundancy arises for example
from larger areas having the same color. A random binary string can hardly
be compressed as it has by definition no structure, and information theoretic
bounds prevent lossless compression of arbitrary input.

Usually the compression is performed to save space when the file in question
is currently not used, e.g., the photos on the memory card of a digital camera
should take as few space as possible, since one wants to store as many photos as
possible and has no problem whatsoever with the time needed to compress and
decompress the picture. A new branch of research (e.g. [738]) is dealing with
compression methods that allow to execute specific tasks on the compressed
file directly, hence making it superfluous to decompress and re-compress it af-
terwards. First methods of this kind were reported for string problems. Lately,
also graph-theoretic questions have been dealt with on compressed representa-
tions [107].

92 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

3.4.4 Preprocessing

Preprocessing or input enhancement is the process of adding an additional struc-
ture to the input, such that the task can then exploit that structure to obtain a
better running time. Preprocessing requires anticipating the kind of tasks that
are to be performed with the stored data. Quite often the preprocessing will
compute partial solutions hoping they will turn out to be useful when the real
computation begins. In this case space must be invested.

What constitutes a good preprocessing, obviously depends on the task to be
performed. A hint that time-space trade-offs might be obtainable by means of
preprocessing is that in a given task the input breaks down into different layers,
where the input components of one layer change much more frequently than the
components of other layers.

An illustration is a navigation system for cars. The input consists of the graph
letting us know which streets exist and at what speed we can expect to drive
on them. Furthermore, the input consists of the requests, namely origin and
destination between which the fastest route is to be found. In a middle layer the
input could also include information about current traffic jams, road blocks and
so on. As a change in the first layer – the graph – requires building, expanding or
redirecting roads in reality, it seldomly appears. More often, traffic jams evolve
or vanish, road blocks are established or lifted. Still much more frequently, a new
query consisting of origin and destination is brought forward.

It would obviously be unwise if the system reacted to every query as if it had
never seen the graph before, hence handling every part of the input equally. A
system should at first work on the graph and enrich it with additional structures
and information like e. g., the fastest connection between large cities. When a
query appears, the system can then first find the closest larger cities to the origin
and the destination and use the connection between these cities as a basis for
its solution. If a middle layer with current traffic information is used, the sys-
tem might store additional alternative connections on the graph level, such that
if an anticipated scenario of traffic jams occurs, the already developed backup
plan is immediately available. Chapter 9 has a section devoted to preprocessing
techniques for shortest path queries.

It is well possible, that for one and the same problem different preprocessing
steps may be useful depending on the context. Let us consider the problem of
simple pattern matching: given a text T of length n and a pattern P of length
m, find every occurrence of P in T . Clearly Ω(n + m) is a lower time bound
as every algorithm must at least read pattern and text completely. This bound
is met by several algorithms. It is possible to preprocess the pattern in time
O(m), such that every search for that pattern in a string of length n runs in
time O(n). Hence, searching this pattern in r texts of size n each is possible in
time O(rn + m) [367].

This approach is advisable if the pattern seldomly changes. For example in
bioinformatics a certain sequence of nucleotides in a DNA string may constitute
a defect and a lot of DNA samples are to checked for this defect.

3. Selected Design Issues 93

Using suffix trees [333] it is even possible to preprocess the text in time O(n)
such that after the preprocessing every request for patterns of length m runs in
time O(m). Hence, a sequence of r calls with patterns of length m runs in time
O(n + rm).

This setup for example applies to web search engines that store huge databases
of web pages. These web pages are comparably seldomly updated. More fre-
quently, requests for web pages containing a certain word are made, and in a
preprocessed web page the check for the presence of every search-phrase can
be done in time linear in the size of the phrase (which is usually short) and
independent of the size of the web page.

These preprocessing steps, again, require additional space. For preprocessing
the text, a suffix tree of the text must be constructed. That suffix tree may require
Ω(n2) space. Hence, it should be made sure, that the number of searches to be
expected before the next update of the text justifies the factor of n compared to
the naive representation of the string.

Let us stick to the Internet search engine a little longer to illustrate another
implicit time-space trade-off. The designers of the search engine may choose to
store several web pages in one suffix tree. (This roughly corresponds to creating
a suffix tree for the concatenation of the pages and deriving the page with the
occurrence from the position in the concatenation). Hence, a query now delivers
the results of several searches which may (depending on the degree of similarity
between the pages) be faster than iterating independent searches in every single
text. However the combined suffix tree may need more space than the sum of
the individual ones, as fewer edge label compressions may be possible.

3.4.5 Brute Force Support

Brute force methods are mostly applied when efficient algorithms for a problem
do not exist or are not acceptable even though they formally count as efficient.
The recognition of a problem’s NP-completeness for example does not change
anything about the presence of the problem and its relevance in certain applica-
tions. If efficient approximation algorithms are not available or ruled to produce
results of insufficient qualities, brute force methods may be an option.

Optimization Problems. The A∗ algorithm [382] is an optimization algorithm
which finds on a weighted graph G = (V, E) the shortest path from a source
s ∈ V to a destination t ∈ V (see also the case study in Chapter 9.2). Of course,
this problem can be solved with Dijkstra’s algorithm running for |V | iterations in
the worst case. The A∗ algorithm is capable of exploiting a heuristic h : V → R

that delivers a lower bound for the lengths of the paths from a certain node to
the destination. If this heuristic is weak, A∗ will not perform any better than
Dijkstra’s algorithm. If the lower bound reflects the real distance rather well, a
lot of unpromising paths do not have to be examined.

A∗ maintains a set S of paths. Initially, the set consists of only the path [s]. In
each iteration, the path p with minimum priority is removed from S. The priority

94 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

of a path p = [v1, . . . , vi] is
∑i−1

j=1 w(vj , vj+1), the sum of the weight of the edges
of the path plus h(vi), the lower bound for the remaining path connecting vi and
t. Hence, A∗ is best understood as a most promising first search. The possible
extensions of p are included into S and it is made sure that further paths in S
that end with vi are ignored.

An obvious example is the computation of shortest routes in traffic guidance
systems. The direct line distance between two points (clearly a lower bound for
their road distance) serves as heuristic h. Unless the roads of the area in question
are heavily distorted, the algorithm will find the fastest route without visiting
the entire graph.

The A∗ algorithm is not restricted to applications in which the vertices resem-
ble distributed points in space. Another prominent example are solitaire games
like the Rubik’s cube or the tile game. In the n× n tile game a set of n(n− 1)
square shaped tiles numbered 1 to n2 − 1 is arranged in a square frame of side
length n, leaving one empty space. Now tiles adjacent to the empty space can
be moved into the empty space. The goal is to bring the tiles into a specific
order. Here the sum of the distances of each tile to its destination may serve
as a heuristic. As every move involves only one tile, the game cannot be won
with fewer moves. More moves however may be necessary, as the tiles cannot be
moved independently.

Usually the space requirement of the A∗ algorithm is severe as A∗ quickly
proceeds into uncharted areas of the graph creating a huge set of vertices, that
the algorithms has seen but not yet visited. Several approaches have been used
to deal with this problem. One is to search simultaneously starting from the start
vertex and from the goal vertex. This turns out to be helpful, if the heuristics
typically is more accurate at a long distance from the goal. The straight line
distance for navigation systems is clearly of that type. If one is far away from his
destination, the straight line gives a good idea about the actual distance. When
approaching the destination and being exposed to small labyrinthine alleys and
one-way streets the straight line distances value decreases severely.

The concept to iterate A∗ is also often used in order to reduce the space
requirements at the cost of time. Every run of A∗ is executed with a certain
bound. Vertices with priorities beyond that bound are ignored and not stored.
If a run of A∗ fails to reach the goal, the bound is raised and A∗ starts all
over. This leads to an increase in calculation time, as results are recomputed
in every run. This approach is driven to the extreme, if a run of A∗ saves the
smallest priority above the current bound that it has seen to use this value as
the bound for the next run. In this case there is not even a need for a priority
queue anymore, as only vertices with minimum priority are considered. This
iterated deepening A∗ approach is called IDA∗. If the length of paths from the
source to the goal is extremely small in comparison to the number of vertices,
this will be a preferable approach. For the Rubik’s cube for example the number
of configurations is greater than 4.3 · 1019 but no configuration is further than
26 moves away from the solution.

3. Selected Design Issues 95

Non-Optimization Problems. There is also a variety of applications where
a search is not for an optimal solution with respect to a given function but just
for a solution with a certain property. The attack of cryptographic systems is an
example (meet in the middle attack or rainbow tables).

In these cases the approach can be abstracted as follows: A universe U is to
be searched for an element x having a property A(x). The designer decomposes
the universe U to U1 × U2, so the search is now for x1 ∈ U1 and x2 ∈ U2. If one
is able to find a domain U ′ and a function f : U1 → U ′ as well as a relation
A′ ⊂ U ′×U2 such that A′(f(x1), x2)→ A(x1, x2), one can speed up the process
of searching the universe naively by computing as many values f(x1) as possible
and storing them.

Let us demonstrate this setup with the example of the Baby Step Giant Step
Algorithm to determine discrete logarithms. Let p be prime and 1 ≤ a, b ≤ p−1.
We want to find x so that ax = b mod p. Many cryptographic schemes are
based on the hardness of constructing discrete logarithms. The Baby Step Giant
Step Algorithm can be used to attack such a cryptographic system or, from the
designers perspective, to reveal the systems vulnerability.

A naive algorithm checks every value from 1 to p− 1 and hence needs expo-
nential time in the number of bits of p. The idea is to split x into two components
x = x2 ·m + x1 with x1 < m. A good selection for parameter m is �√p�. We get
U2 = {0, 1, . . . , �p−1

m �} and U1 = {0, 1, . . . , m− 1}.
The function f : U1 → U ′ in this case is f(x1) = ax1 mod p for x1 ∈ U1.

We compute these values and store them. Now x2 ∈ U2 matches x1 ∈ U1 if they
combine to the solution we seek. Hence they must fulfil ax2·m+x1 = b mod p
which we can write as f(x1) = b

ax2·m mod p. So this is the relation A′ of the
general description.

Using the extended Euclid algorithm we compute a−m mod p and set β := b.
For 0 ≤ x2 ≤ m − 1 we do the following: If β is stored in our table of results
(say as ax1 mod p) we have x = x2 ·m + x1 and are done. Otherwise, we set
β := β ·a−m mod p and continue. Hence, by iteratively dividing the target value
β by powers of am we search for a x2 that, paired with one of the f(x1) in store,
constitutes the solution.

Choosing m := �√p� we gain a factor of √p in time as we first calculate
�√p� values of the function f and later divide β by am at most �√p� times. We
assume that the values of f(U1) are stored in a data structure that allows quick
lookup. On the other hand we invest the space necessary to store �√p� values
of the function f . The naive algorithm only needs constant space.

The search scenarios described in this section allow smooth time-space tran-
sitions, as every register available for storing a value in principal shortens the
search time. Every register saved for other purposes increases the runtime.

3.5 Robustness

Depending on the subject of discourse, the term robustness is assigned quite differ-
ent meanings in pertinent literature. At the bottom line, these various denotations

96 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

may be subsumed as the degree to which some system shows insusceptible to ab-
normal conditions in its operational environment.

In computer science, these systems of interest are algorithmic components,
the defining units of computational processes. Robustness here is usually de-
fined with respect to a given specification of the desired behavior. Still, even
in this restricted field concepts are varying and sometimes rather vague. In the
following we will employ the terminology due to Meyer [568, p. 5]. He defines
correctness as the ability of a software component to perform according to its
specification, whereas robustness denotes its ability to react appropriately to
abnormal conditions not covered by this specification. Following this definition,
it must be stressed that correctness and robustness are both relative notions. A
software component may thus neither called (in)correct nor (non)robust per se,
but always only with respect to a given specification.

Note that the above definition has been still uncommitted as to what the
precise meaning of reacting appropriately would be. Yet, this is just consequen-
tial, as any precise definition of some concrete behavior for certain conditions
would ultimately become part of the specification. Robustness in turn by inten-
tion concerns those conditions for which the concrete behavior is not specified
after all. Informally, the overall objective is to maintain the component’s useful-
ness despite possible adverse situations; no condition shall make the algorithm
crash, run infinitely or return absolute garbage. In other words, we seek for the
algorithm in any case to behave reasonable and compute something meaningful.

Throughout this section we want to provide a survey on most relevant non-
robustness issues as well as techniques and tools to deal with them. The follow-
ing subsection discusses robustness from a more software engineering point of
view. Sections 3.5.2 and 3.5.3 in turn address robustness issues that arise due
to numerical inaccuracy during computation. There, the term meaningful will
be re-rendered with regard to numerical, respectively combinatorial properties
of computed solutions.

3.5.1 Software Engineering Aspects

Abnormal situations do not just appear from nowhere. Instead, they can gener-
ally be traced back to a single or more often a combination of several factors.
Henceforth, we will call any such cause a fault. Note though that this term may
be used quite differently in the literature.

The policy of robustness is twofold: anticipate the faults, the causes of abnor-
mal conditions, or limit their adverse consequences. We will soon go into detail
on these two notions, called fault avoidance and fault acceptance. But first let
us have a closer look on the adverse momenta themselves.

Fault Types. Depending on the primary causer, faults may be grouped into
two classes: interaction faults and design faults. The following passage is meant
to provide a brief overview on most common faults for each category. The list will
certainly be incomplete and the faults mentioned may not always be classified
unambiguously.

3. Selected Design Issues 97

Interaction faults originate from interaction with other systems, which in turn
can be the user, some hardware resource or yet another software component. In
case of the user, we can identify accidental interaction faults, such as operator
mistakes or invalid inputs, and intentionally malicious interaction faults like
penetration attempts or crashing aimed attacks.

As far as hardware is concerned, we have to deal with service deliverance
faults in the first line. Typical representatives of this kind are that a given
resource is not available at all, still busy in serving further requests or it has
reached other limits like memory or storage capacity, for example. The second
category are data flaws, which may arise in (at least) three different scenarios:
the hardware serving for data generation, data storage/transmission, or data
processing. To name just one example of each kind, imagine a 3d laser scanner
producing extremely noise-polluted measured data, an ill-functioning hard disk
or network connection causing data corruptions, or a GPU inducing artifacts in
a crucial (e. g., medical) visualization.

The same two subcategories can be observed for the software component do-
main. In this scope, a service deliverance fault can be a communication to another
software resource that could not be established, a service that terminated un-
expectedly, or a software component that failed to provide time-critical results
duly. Concrete examples are a database connection that cannot be established,
a shared library that fails being loaded dynamically, or a tardy nested computa-
tion in a real-time application. As before, the second category of issues are again
data flaws. In fact, any interaction with another software component bears the
risk of adverse data to be transferred in one of both directions. Such a fault
can usually be seen in two different ways. From the viewpoint of the component
receiving adverse input it may be considered an interaction fault. Yet, regarding
the component that produced adverse output despite actually benign input, one
may considered it a design fault.
Design faults are faults unintentionally caused by man during the modeling, the
design but also the implementation phase. In the modeling phase you try to
capture the core of the problem and derive a notion of the desired input-output
relation, thereby incorporating fundamental assumptions. Clearly, if one of these
assumptions is in actual fact unfounded, the formal or informal specification
obtained may not suit all problem instances, making the algorithm run into
trouble in case of their incidence.

However, in general the modeling phase very well manages to come up with
a proper specification. Instead, it more often happens to be the algorithm de-
signer not playing by the rules. For the sake of easing correctness proofs and
human understanding, simplifying assumptions are drawn and intricate details
are omitted. Not filling the voids at a later point in time, this policy ultimately
boils down to in an incomplete design at the very end. In the very same way also
hidden assumptions, unintentionally incorporated at some intermediate step, can
give rise to a design that does not fully meet the specification. Every so often
we can even encounter algorithms being published that, although a “correctness

98 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

proof” was provided, eventually turn out to be incorrect. Yet, it is sometimes
only thanks to the implementation that such a fact gets revealed [373].

Of course, also the implementer can be source of faults. His task is to put the
algorithm into practice, thereby filling up all details that have been left open
so far. This in particular covers things like dynamic management of runtime
resources (e. g., memory, (I/O-)streams, locks, sockets, devices and so on), each
of which imposing its very own potential for faults. Another problem zone arising
in this phase is the realization of dynamic data structures and their manipulation,
which needs to be crafted carefully to avoid runtime faults. On the other hand,
the implementer is given the freedom to locate and make reuse of already existing
implementations, e. g., as provided by libraries and frameworks. At this point,
however, it is imperative to verify their suitability and to know about their
possible restrictions. In both scenarios, own implementation and reuse, the pitfall
is to unintentionally impose a mismatch between the models and specifications
the design is based on, and their counterparts (re)used in the implementation.
It is certainly beyond the scope of the algorithm designer to avoid all these
potential faults – yet, it is not beyond his scope to treat some of them.

Fault acceptance regards the existence of faults as actually not completely
avoidable. It therefore focuses on the resolution of abnormal conditions in case
of their incidence, each time seeking for reestablishing some normal condition
again. We can distinguish three types of approaches: detection and recovery, fault
masking and fault containment.

Approach 1: Detection and recovery is the most common practice. As the term
suggests, it consists of an initial fault detection followed by a subsequent recovery
procedure. The detection of faults can be attained by the following mechanisms:

Design diversity relies on several alternative versions of a given component,
expected to be of dissimilar design. Derived independently from the same
specification, these so-called variants allow the detection of design faults
that cause the diversified copies to produce distinct results on the same given
input. The approach is based on the assumption that sufficiently dissimilar
designs may hardly suffer from the very same design fault. It is closely related
to the duplication and comparison technique in the field of fault-tolerant
hardware architectures, which makes use of two or more functional identical
(hardware) components as a means against physical faults.

Validity checks are used to test whether the given input, the requested op-
eration or the current internal state is actually valid, i. e., covered by the
component’s specification. They check for the presence of an observable ab-
normal condition, yet they do not confirm any correctness of the computation
performed so far.

Reasonableness checks assess the current internal state or some computed
(intermediate) result w. r. t. plausibility. As opposed to the previous scenario,
we do not only check for present abnormality. Instead, additional constraints

3. Selected Design Issues 99

intrinsic to the specification are exploited, rendering necessary or sufficient
conditions entities can be tested against.

Redundancy in representation is introduced to detect integrity faults in the
course of data manipulation or exchange. Most well-known realizations are
error detecting codes such as parities and checksums.

Timing and execution checks are used to detect timing faults or to moni-
tor some component’s activity. They are usually implemented by so-called
“watchdog” timers and facilitate a mechanism for interception of tasks which
fail to provide the result duly or are likely to suffer from an infinite loop.

Once a fault has been detected in the course of performing a requested task,
there are basically the following main strategies for a software component to
deal with that situation:

Backward recovery tries to return the component from the reached abnormal
state back to a previous one, known or supposed to be sane. Afterwards
normal service is resumed, proceeding with the next operation.

Forward recovery basically searches for a new state from which the compo-
nent will be able to resume or restart the requested task.

Graceful degradation can be regarded as a variant of forward recovery where
after finding the new state, only that single operation is performed at re-
duced capability, or the component permanently switches to some degraded
operating mode.

Omission of the moot operation is also generally worth considering. The idea is
to check first whether the operation would possibly lead to an abnormal state,
and simply skip it in that case. Clearly, this technique is only applicable for
faults that can actually be detected prior to the execution of the operation.
Moreover, omission must be feasible, i. e., we cannot skip operations that are
actually vital.

Fault compensation requires sufficient redundancy, either in terms of the in-
ternal state’s representation or by means of design diversity. Exploiting this
additional information provides means to transform the abnormal state into
a suitable (usually uniquely corresponding) sane state. It should be noted
that in fact more redundancy is required to compensate a fault than to just
detect one.

Fault propagation is a matter of releasing competence. The component de-
tects an abnormal condition which it is effectively unable to handle itself.
Using some fault notification mechanism, it informs a competent authority,
which can also be the calling component or the user, and temporarily or
permanently transfers control without conducting any further changes first.

Fail-safe return terminates the execution under control after detecting a fault
the component observes to being unable to handle. Based on the assumption
that no other component may be capable either, some local or global fail-safe
state is entered and possibly a dummy result is returned.

Increasing verbosity is no approach actually aimed for handling abnormal
situations, yet the minimum to accomplish when concerned about robustness

100 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

on the long run. The policy is to report or record any abnormality, at least
those that cannot be handled – the more severe, the more verbosely. The
basic aim is, if ever an abnormal condition occurs, then to be able to locate
its cause based on the recordings and to fix the design appropriately.

Approach 2: Fault masking can basically be circumscribed as “fault compensation
without prior detection”. It can take the following three forms:

Functional redundancy based masking relies on the design diversity prin-
ciple described above. The individual outcomes of a component’s different
variants are merged together, e. g., using some weighted or unweighted ma-
jority voting model, thereby obtaining a common result.

Representation redundancy based masking exploits the redundancy
incorporated into the internal state’s representation in an implicit way. That
is, the fault-induced abnormal fraction of the present state is inherently be-
ing superseded by the dominant redundant deal. Using an error correcting
code for the state representation, simply refreshing (i. e., decoding and en-
coding) the current state represented automatically removes the supported
number of bit errors – a common technique to enhancing integrity of data
exchange.

Normalization based masking is another way of returning abnormal states
or inputs back into normal domain. It usually involves a more or less simple
total mapping that maps every normal element to itself and and a deal of the
abnormal states to a corresponding normal element each. A trivial example
is, when expecting positive inputs, to accept whatever is passed and simply
turn it into its absolute value.

Note the way in which the role of redundancy differs between this fault mask-
ing and the previous detection and recovery scenario. Here, redundancy is used
to directly override possible faults without explicitly checking for inconsistency
first. In contrast, detection and recovery exploits redundancy to detect abnormal
situations first of all. Only in case of incidence action is taken, which may then
possibly but not necessarily involve recourse to redundancy again.

Approach 3: Fault containment basically neither tries to prevent faults a priori,
nor to recover from abnormal conditions. Instead, it aims at restraining the
evolution and propagation of abnormal conditions within a so-called containment
area. The overall objective is to prevent any further components to become
affected. Two obvious paradigms can be distinguished:

Self containment commits to the detection and containment of abnormal con-
ditions eventuating in the component’s internal context. In contrast to the
detection and recovery principle, we are not too much interested into main-
taining or re-establishing service. That is, even unplugging or shutting down
is considered tolerable in the border case, as long as a safe state was estab-
lished first.

3. Selected Design Issues 101

Defensive design follows the inverse idea. Every component shall be designed
in a way that it defends itself against its outside. By no means shall a fault
of external origin be able to infect the component, if there is any chance to
detect it beforehand. We will go into more detail on this strategy later.

Fault avoidance is aimed at designing algorithmic components with effectively
less fault potential. Faults shall in the best case never be introduced, or get
eliminated before the component or system goes into live operation.

Fault removal concentrates on reducing the number or severity of already exist-
ing faults. This clearly involves locating these present faults first in the currently
established design.

Inspection of the current design (or implementation) should be the most ob-
vious approach. The (pseudo-)code is being reviewed thoroughly by human
hand to verify the correspondence between design and specification, thereby
challenging once again any assumptions and conclusions made during the
design phase. Yet, this is just half of the picture, in that one would have
only checked for correctness then. Seeking for robustness in turn amounts to
additionally asking the “But what if ...? ” question over and over again, and
requires the algorithm designer to systematically think beyond the borders
of the specification.

Formal verification is the method of choice in fields of inevitably high-reliable
software construction like aviation, space flight and medicine. Specifications
are expressed by means of some description formalism with well-defined se-
mantic [777]. Based on these descriptions, formal methods allow to some
degree to verify correctness or other specifiable properties of a software
component. Apart from human-directed proofs, two (semi-)automatic ap-
proaches can be distinguished: Model checking, which basically consists of
an exhaustive exploration of the underlying mathematical model, and au-
tomated theorem proving, which based on a set of given axioms uses logic
inference to produce a formal proof from scratch. Some approaches directly
verify the code itself, instead of an abstract model. For functional program-
ming languages, verification is usually done by equational reasoning together
with induction. For imperative languages in turn, Hoare logic is used in gen-
eral. This so-called program verification will be discussed in Chapter 6.

Testing is the preferred approach applied in medium- and large-scale design
scenarios. It basically relies on a dual design strategy. Parallel to designing
the component itself, one develops appropriate test scenarios and documents
their expected I/O relation. These test scenarios are intended to capture
a representative set of normal and abnormal conditions, as well as border
cases. Black-box testing thereby only uses the given formal specification of the
component, whereas white-box testing additionally incorporates knowledge
on its design or implementation into the development of the test scenarios.
Binder [101] explains in detail how to design for testability, how to generate
suitable test patterns and how to finally do the tests. It should yet be noted

102 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

that, although software testing having proved to be quite successful, not
observing any abnormalities does not imply having no faults – this is the
curse of testing, as pointed out by Dijkstra [245].

Runtime fault detection should be used to report and/or record any abnor-
malities caused by faults that were still present as the component went into
live operation. The overall goal w. r. t. fault avoidance is that any fault that
becomes detected, can be located and removed by making suitable adjust-
ments. The detection should be as rigorous as possible and reporting as
verbose as necessary. Basically, the art is to design both fault detection and
reporting in a way that renders debugging superfluous.

Fault prevention is concerned about preventing the introduction of faults, or at
least limiting their occurrence, from the very beginning. This is usually achieved
by starting the design phase with some clear and preferably formal specification
of requirements, and by following proven design methodologies. The remaining
part of this section tries to give some suggestions on basic rules and methodolo-
gies one may follow to achieve empirically more robust designs. Yet, there will
certainly be no such thing as an “ultimate answer”.

The Role of Specification. The probably most essential ingredient to con-
structing a software component is a proper specification. This description of the
desired behavior is the starting point for any efforts of validation (“Am I build-
ing the right product?”) and verification (“Am I building the product right?”).
In fact, as pointed out by Meyer [568, p. 334]: Just writing the specification is a
precious first step towards ensuring that the software actually meets it.

As a specification builds the basis for all subsequent steps of software con-
struction, the resulting design is always as weak as its underlying specification.
It is obvious, that latter one should therefore be precise and unambiguous. To
achieve this, the best way to express a specification is to make use of some
formal systems like Abstract State Machines [366, 123], Hoare logic [397], the
B-method [2, 707] or Z-notation [3, 842]. The second of these formalisms will
be described into more detail in Section 6.2 of Chapter 6. For a more general
introduction on how to create specifications, see [777].

As mentioned before, a formal specification of a component is the basis of
its formal verification. At the same time, a specification draws the line between
normal and abnormal states. Everything that is not covered by the specification
definitely needs to be included into the considerations of how to attain robust-
ness. Moreover, this borderline has coining influence on the design of suitable
test scenarios. Last, but not least, specifications are the pivotal elements for
reuse. In fact, two designs or implementations can only be exchanged with each
other if their corresponding specifications match.

Expressing Expectations. The component’s specification is not the only thing
that asks for being documented for later purpose. In fact, any assumption and
expectation made during the design phase can become crucial at a later point

3. Selected Design Issues 103

of time. Therefore, it is also a task of the designer to express any such state-
ment in some formal or informal way. Opting for a formal representation has two
advantages: First, one clearly avoids ambiguity. And second, these formal state-
ments can later be turned into so-called assertions, or can already be designed
that way. Assertions are Boolean expressions defined over the values available
in the local context of the considered design fragment. They reflect assumptions
or expectations on which the fragment is based and are therefore intended to
be true. Assertions can be used to check these expectations at runtime. In fact,
if an assertion ever proves false, this indicates a possible fault in the overall
design.

However, as Meyer [568, p. 334] sums up, assertions convey even further rele-
vance: They force the designer to think more closely and in formal dimensions,
thus getting a much better understanding of the problem and its eventual solu-
tions. They provide a mechanism to equip the software, at the time you write
it, with the arguments showing its correctness. They document assumptions and
expectations drawn throughout the design phase, thus facilitating later under-
standing and inspection of the design. Finally, they provide a basis for runtime
fault detection and for systematic testing and debugging.

Decompose what is Decomposable. According to Meyer [568, p. 332], the
probably single biggest enemy of robustness is complexity. In fact, there is just
too much monolithic software construction nowadays [803]. The most obvious
way out of complexity is proper decomposition. First of all, decomposition usu-
ally leads to a much simpler design. And simplicity in general reduces potential
error sources considerably (cf. Section 3.2). Accordingly, Raymond [666, p. 13]
outlines the Rule of Robustness : Robustness is the child of transparency and
simplicity. Breaking the design down allows to focus on single parts at a time.
Thus, a top-down analysis of the problem followed by a bottom-up synthesis of
the algorithmic solution encourages the use of “building blocks”, which in turn
can much easier be handled (i. e., examined, tested, replaced, etc.).

Apart from the reduction of potential error sources itself, decomposition might
support robustness also from another point of view. If applied in a clever way,
the resulting design may pay off, in terms of the robustness of the whole software
component to be implied in a bottom-up-fashion by robustness of its building
blocks on the one hand and their interaction on the other.

But how do we guarantee, or at least increase, robustness in these two areas?
Are we back again at the same problem as before? Actually not, since firstly,
robustness for smaller components may certainly be assumed to be much easier
to achieve than for larger ones. And secondly, robustness of sub-components on
the one hand and of their interaction on the other may be treated separately
and independently.

Reuse what is Reusable. Another basic rule in modern software construction
is: Avoid to reinvent the wheel! The past decades gave raise to copious quantities
of algorithms and data structures, ranging from most fundamental to highly
specialized ones. So, instead of designing from scratch, try to (re)use building

104 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

blocks for which well-tested implementations already exist. In fact, it is certainly
not unwise to let the process of decomposition be guided to some extend by the
knowledge about such implementations.

Clearly, this might actually mean a trade-off to be weight out between the
risk of inventing faults when designing from scratch and the risk of importing
faults from these “well-tested” implementations. Apart from that, the principle of
reuse asks for more: Similarly to using what is already available, try to design for
reusability in the first place – you may want to reuse parts of the design and/or
the implementation once again later on, probably much earlier than expected.

However, it must be stressed that designing for simplicity and for reusabil-
ity is not straight forward. There is usually no such thing as a “best way of
decomposition”, and in particular reusability is difficult to achieve [803].

Generating Trust. One all too common backdoor for non-robustness to come
into play is too much confidence in computed solutions. In general, when request-
ing an external algorithm for performing some desired task, the returned output
is usually not checked for correctness, or at least plausibility [112]. Certainly,
such checks might be performed after receiving the result computed by some
external algorithm by treating it like unreliable input. Yet, from the external
algorithm’s point of view fairness dictates to either verify your results before
returning them – or to provide some mechanism that makes it relatively easy
for your clients to verify your output.

Regarding the former of both approaches, Weihe [826] suggests letting the
software component apply runtime checkers that test its (given) input and its
(self-produced) output for conformance with the specification. In case of a neg-
ative checking result, the component is obligated to handle the abnormal situa-
tion itself, instead of returning the adverse result. Depending on how restrictive
the runtime checker is, Weihe [826] distinguishes two types of robustness in his
own terminology: Complete robustness is achieved, when success of the runtime
checkers is both, necessary and sufficient for the computation to satisfy the spec-
ification. If computed results are just checked for necessary conditions, Weihe
speaks only of partial robustness. Certainly, the first of the two options should be
expected the better choice with regard to robustness. Unfortunately, complete
robustness checking may very well increase the expected asymptotic complexity
of the initial computation itself.

Of course, runtime checking may in the very same way also be used to verify
results obtained from any auxiliary software component invoked for perform-
ing some desired subtask. However, in general external results do not have to
pass any but at the most a simple plausibility check. First, complete robustness
checking can sometimes turn out to be quite expensive. Second, it can not al-
ways be achieved easily. But most of all, the task of verification actually appears
rather responsibility of the callee than of the caller. The second promising ap-
proach towards result verification is therefore concerned with the provision of a
mechanism for externally verifying the correctness of computed solutions. The
so-called certification policy dictates that an algorithm for solving an instance I

3. Selected Design Issues 105

of a problem P does not solely produce some output O, claiming that P(I) = O.
Instead, the algorithm additionally produces some certificate or witness C that
(a) is easy to be verified and (b) whose validity implies that indeed P(I) = O.

The topic of checking the correctness of computed solutions is discussed in
more detail in Section 6.2 of Chapter 6.

Defensive Design. The idea of defensive design is simple: Take precautions to
defend your software component against all external sources. On global program
level, such provisions can be for instance: Explicit checking of the values of input
parameters, overflow and underflow protection during numerical computations,
plausibility checks for intermediate results, or redirection of data transfers in
case of hardware breakdown.

However, defensive design calls for not only protecting the program as a whole
against the outside, but rather every single entity against any other. In its ex-
treme, there were no such thing as too much checking or precaution. Basically,
defensive design advocates the attitude of not trusting clients and demands for
the protection of any kind of interface – even internally. What you want is to
completely isolate failures from one module to the next, so that a failure in
module A cannot propagate and break a second module B [803]. Two examples
of this kind are information hiding, i. e., delimiting access to any internal data
solely to the use of access methods; and defensive copying, i. e., not sharing any
data with other (untrustable) modules, but instead creating copies, both when
receiving input as well as when returning output. Of course, this strategy will
often be in conflict with efficiency.

In their book, dedicated to teaching how to construct large programs, Liskov
and Guttag [529] emphasize the need to “program defensively”. A robust program,
so they conclude, is one that “continues to behave reasonably even in the presence
of errors”. After all, this is also (and maybe even in particular) a defense against
intentional failures, such as hacking.

Design by Contract. The central idea of this systematic approach, developed
by Bertrand Meyer [566], is the metaphor of a business contract. The way in
which modules interdepend and collaborate is viewed as a kind of a formal
agreement between a client and the supplier of a service, stating mutual rights
and obligations. By demanding both parties to go by the contract, the obligations
for one party make up the benefit for the other.

In the terminology of design by contract, the two most important elements in
a contract are preconditions, expressing constraints under which a routine will
function properly, and postconditions, expressing properties of the state resulting
from a routine’s execution [568, p. 340]. With a contract at hand, responsibil-
ities are firmly distributed. The client is responsible for fulfilling the suppliers
precondition. The supplier, in turn, is responsible for fulfilling its own postcon-
dition. However, the supplier is bound to the contract only inasmuch as the
precondition was being adhered. In fact, if the client (the caller) fails to observe

106 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

External objects Input and validation modules Internal Objects

Fig. 3.11. The principle of filter modules (following [568, p. 345 et seq.])

its part of the deal, the supplier (the routine) is left free to similarly do as it
pleases [568, p. 343].

Basically, design by contract even preaches a so-called non-redundancy prin-
ciple, stating that under no circumstances the routine’s body should ever test
its own precondition. This is contrary to what defensive design advocates, which
calls for modules to always check incoming messages and reject those violating
its precondition [101, p. 845]. Yet, the non-redundancy principle by no means
prohibits consistency checks within the body entirely. It rather postulates assign-
ing the enforcement of those conditions to solely one of the two partners. “Either
a requirement is part of the precondition and must be guaranteed by the client,
or it is not part of the precondition and must be handled by the supplier” [567].
In this regard, it is up to the designer to choose either for a demanding or a
tolerating type of contract.

Basically, this also answers the question of how to ensure a protection of
internal components from, e. g., invalid inputs. Note, that we certainly cannot
contract the user. To solve this and related problems, Meyer suggests the princi-
ple of filter modules. The idea is to let internal and external modules be separated
by a layer of specifically designed input and validation modules, featuring tol-
erant contracts with the external modules and strict contracts with the internal
modules (cf. Figure 3.11). It is the task of these filter modules to prohibit all ex-
ternal calls that do not fulfill the precondition of the respective internal module,
by handling them in an appropriate way.

Being placed as close to the source of the objects in question as possible,
such filter modules go in line with what Meyer calls the principle of modular
protection [568, p. 45]. A method satisfying modular protection ensures that
the effect of an abnormal condition in one module will remain confined to that
module, or at worst will only propagate to a few neighboring modules [568, p. 45].
Note that this principle differs from defensive design in two points: First, Meyer
does not ask for a maximum possible protection for each and every single module.
And second, modular protection is not aimed at necessarily letting the modules

3. Selected Design Issues 107

protect themselves against the outside, but leaves it open how to achieve the
desired protection.

Concerning the issue of (non)robustness, it is often claimed that this notion
of a contract is so powerful that many well-known failures would certainly have
never been caused if design by contract had been applied in the first place. In
particular, the Ariane-5 disaster is regularly quoted as an example [434].

Dealing with Adverse Input. There are a couple of reasons why input should
not be assumed to be generally good-natured. First, the user should not be ex-
pected to be aware of every single aspect that makes up the difference between
a valid and an invalid input, not to mention intentional malignity by means
of purposeful attacks. Also, the input may not be adverse due to the user’s
fault, but due to some other origin it results from. In fact, nowadays a multi-
tude of algorithms is actually designed for processing data known to originate
from measurements (e. g., in GIS, medicine or bio-science) or previous compu-
tations (e. g., in numerical computing, mechanical engineering or computational
geometry). Such data cannot be ruled out of being noise-prone, inaccurate, con-
tradictory or even corrupted. Finally, even if the input is in fact valid, it may
still be ill-conditioned due to other reasons, e. g., an exceeding complexity of the
data or the task requested.

Hence, the question arises, how to deal with an input or request that turns
out to be not handleable, based on the current design. To come to the point,
there are four obvious answers to this question: reject it, tolerate it, fix it or
simply handle it.

The first and probably easiest solution, of course, is to reject the request
by announcing to be incapable of handling the input data or performing the
requested task. Although this does not actually solve the user’s problem, it is
certainly still preferable to the alternative of a crash or garbage to be computed.
In fact, this measure reflects a basic principle: If you are not able to handle
it, then it is better to stop right away rather than continuing in spite of being
aware of the problem. Just a few years ago, Yap and Mehlhorn [849] as well as
Du et al. [259] still criticized the instability of modern CAD software, lacking
any robustness guarantees whatsoever and crashing even on suitable choices
of inputs. Nowadays, current CAD software still sometimes shows unable to
perform the user’s request on the given data. Yet, they do not crash anymore,
but simply notify the user if an operation could not be performed.

The second option is (trying) to be tolerant. One may, for instance, dynam-
ically decide to revert to a different variant of the algorithm that features less
strict prerequisites. Or, in particular, if the input is known beforehand to possi-
bly be subject to noise or inaccuracy, one may use a tolerance-based approach
from the very beginning. Such approaches will be discussed more extensively in
Section 3.5.3 in the context of geometric robustness issues.

If input turns out to be invalid, it might very well be possible to actually cor-
rect it by fixing the points of invalidity. This technique is sometimes employed

108 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

in the field of terrain modeling where meshes are checked for their adjacency and
incidence information not reflecting a regular mesh (e. g., being incomplete or
inconsistent), and are remeshed where necessary. Correcting input requires sub-
stantial knowledge about the domain of interest. Missing information demands
for being added and contradictory information needs to be replaced, both in a
way that guarantees consistency of the resulting patched version of the input. In
fact, the problem amounts to answering the two questions: First, which proper-
ties do constitute a “valid input” at all? And second, given some invalid input,
how exactly does a corrected version look like that, by some means, “corresponds”
to that input?

Last, but not least: If the algorithm is, due to its design or its implementation,
yet not capable of handling specific inputs or requests, then one can try to make
it capable of doing so. Although this may sound slightly absurd, it is not that
out of place actually. After all, the cause for the incapability may very well be
remediable. The Sections 3.5.2 and 3.5.3, as for instance, will discuss more closely
how to proceed in case numerical inaccuracy is the problem.

3.5.2 Numerical Robustness Issues

The previous section was concerned with robustness in a rather general sense
and discussed issues from a software-engineering point of view. The following
two sections are meant to complete the picture by considering non-robustness
arising due to numerical inaccuracy. In mathematics and in theoretical computer
science, one commonly assumes being able to compute exactly within the field of
all real numbers. It is this assumption based on which algorithms are generally
proven to be correct. In implementations however, this exact real arithmetic is
usually replaced by some fast but inherently imprecise hardware arithmetic, as
provided by the computing device.

This hardware arithmetic is generally based on some specific kind of finite
number system, intended to mimic its infinite counterpart as good as possible.
The finiteness of the co-domain of this mapping, however, inevitably results in an
approximation, which in turn involves two inconvenient side-effects: discretiza-
tion errors (round-offs) and range errors (overflows and underflows). They apply
to both, the input representation as well as the following computation. Such nu-
merical errors are basically fully expected and in general considered benign [848].
However, the consequence of using a finite number system is crucial: Basic math-
ematical laws just do not hold anymore in hardware arithmetic (cf. Chapter 6),
which in turn used to form the theoretical basis used for proving relevant al-
gorithm properties, like correctness, convergence, termination and other quality
guarantees. In fact, these formerly benign errors may turn into serious ones as
soon as one of the following two situations eventuates:

– the numerical error accumulates, causing the (numerical) result to be far off
from correct, or

– the numerical error, involved in the computation that determines a branch
in the control flow, entails a wrong decision with respect to the program
logic, thus leading to an inconsistent state of the algorithm.

3. Selected Design Issues 109

The remainder of this section will address the first issue, whereas Section 3.5.3
will discuss the second one in detail.

Numerical Problems and their Sensitivity to Inaccuracy. The influence
of numerical errors on the quality of computed solutions has been studied ex-
tensively in the field of numerical analysis for a couple of decades already. The
overriding concern thereby has been to minimize such errors by studying how
they propagate, to determine the sensitivity of problems to minor perturbations
in the input, and to prove rigorous error bounds on the computed solutions.

Thereby, two types of errors are generally distinguished. The absolute error
that results from using an approximation s∗ to represent some numerical data
s is given by e(s, s∗) := ‖s− s∗‖. Similarly, for s 	= 0 the relative error of this
approximation is given by ẽ(s, s∗) := ‖s− s∗‖ / ‖s‖ = e(s, s∗)/ ‖s‖. A numeric
problem type T may generally be expressed by some function T : X → Y from
an input space X ⊆ R

n to an output space Y ⊆ R
m. In this sense, a problem

(instance) P can be considered as a pair P = (T , x) of a problem type T and
a specific input x ∈ X . Solving this problem instance amounts to determining
y = T (x) ∈ Y .

Imagine now, the input x is subject to error such that (due to whatever
reason) only an approximation x∗ is at hand. This error in the input will imply
a corresponding error in the output, whose size depends on both, x and T . Let’s
say, someone may guarantee that the absolute error in the input will be definitely
less than δ, or that the relative error will be definitely less than ε. Then one may
be willing to ask, how much influence such an (absolute or relative) inaccuracy
might actually have on the result. This sensitivity to minor perturbations in
the input is generally referred to as the condition of a problem. We define, the
absolute δ-condition κδ(P) of a problem P = (T , x) as

κδ(P) := sup
e(x,x∗)≤δ

e(T (x), T (x∗))
e(x, x∗)

.

There are actually different ways to measure a problem’s sensitivity to minor per-
turbations in the input. In fact, Rice [671] and Geurts [330] as well as Trefethen
and Bau [783], choose for an asymptotic version. This asymptotic condition,
which is sometimes just referred to as the condition or the condition number,
represents the limit of the absolute δ-condition for δ approaching zero.

Historically, the term condition was first introduced by Turing [786] in the
context of systems of linear equations Ax = b. To quantify the benignity of
such a system, he defined the condition number of a matrix with respect to
inversion κ(A) := ‖A‖ ·

∥∥A−1
∥∥. Although Turing’s definition seems somewhat

different, Geurts [330] showed that, when choosing the matrix norm, κ actually
corresponds to the absolute (asymptotic) condition.

Let us briefly illustrate the meaning of condition. Assume, we want to solve
the following linear system of equations A · x = b

(
99 98

100 99

)(
x1

x2

)
=
(

197
199

)
(2)

110 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

X

Y

δ

x

T (x)

x∗

T (x∗)

e(
x
, x

∗

)
e(T

(x
), T

(x
∗))

Fig. 3.12. The δ-condition of a problem P = (T , x), based on the problem type T :
X → Y and a problem instance x ∈ X. It is the maximum of the ratio of e(x, x∗) to
e(T (x),T (x∗)) over all approximations x∗ of x within an absolute distance of δ to x.
As the δ-condition here is large, this problem is considered ill-conditioned.

This system features the solution x1 = x2 = 1, whereas the slightly perturbed
version A′ · x = b

(
98.99 98

100 99

)(
x1

x2

)
=
(

197
199

)
(3)

has the somewhat completely different solution x1 = 100, x2 = −99. The reason
is easily revealed: Applying Turing’s formula, we obtain

κ(A) : = ‖A‖ ·
∥∥A−1

∥∥ =
∥∥∥∥

99 98
100 99

∥∥∥∥ ·
∥∥∥∥

99 −98
−100 99

∥∥∥∥ = 199 · 199 ≈ 4 · 104

This condition number now tells us that if we were to be faced with some specific
minor error or variance in the input, we could not get around accepting a variance
in the output of up to four orders of magnitude times as much.

Indeed, the condition number for a problem can be seen as some kind of a
magnification factor stating the amplification or dilution of variances from the
input towards the output space. It is a measure for a given problem’s benignity,
i. e., a property that is inherent to that problem, imposing an inevitable vagueness
in computed solutions when dealing with (e. g., due to discretization) perturbed
input. A problem instance that exhibits a small condition is generally referred
to as well-conditioned, whereas a high condition number gives rise to the term
ill-conditioned. By extending this notion over the whole input space, we may
consequently call a problem (type) well-conditioned, if all valid input instances
are actually well-conditioned, and similarly ill-conditioned, if at least one input-
instance is ill-conditioned. In the above example, the problem instance given by
Equation (2) is obviously ill-conditioned. Hence, the general problem of solving
a system of linear equations or determining the inverse of a given matrix, should
be considered ill-conditioned.

3. Selected Design Issues 111

X

Y

x

T (x′) = T
∗(x)

T (x)

e(x
, x
′)

e(T
(x

), T
∗ (x

))
T

T

T
∗

T
−1(T ∗(x)) � x′

Fig. 3.13. Forward errors (right) and backward errors (left)

Algorithms and Numerical Stability. The quality of computed solutions
for a problem does not solely depend on its condition. In fact, it is addition-
ally impaired due to rounding errors that occur during computation. Even for
exactly represented input, these round-off errors therefore entail the effective
function induced by an algorithm for computing T to deviate from this ideal
function by means of an approximation T ∗. The error that is introduced due to
this approximation is usually measured in one of the two following ways. The
(absolute) forward error e−→(x) with respect to a given input x shall be defined as
e−→(x) = e−→(T , T ∗, x) := e(T (x), T ∗(x)). Assuming the existence of a preimage
of T (x) with regard to T ∗, the (absolute) backward error with respect to a given
input x shall be defined as e←−(x) = e←−(T , T ∗, x) := inf{x′|T (x′)=T ∗(x)} e(x, x′).
The corresponding relative notions are defined similarly by substituting ẽ for e.

Basically, the forward error tells us how close the computed solution is to
the exact solution, whereas the backward error tells us how well the computed
solution satisfies the problem to be solved — in other words, how close to the
initial problem x there is a similar problem x′ for which the exact solution is
equal to the computed result. The latter of the two notions allows us to introduce
a property for classifying algorithms with regard to their computational quality:
An algorithm is called (numerically) stable, if it guarantees the backward error to
be small for all feasible inputs x. Similarly, an algorithm is called (numerically)
unstable, if there is at least one feasible input x for which the backward error is
large. A (numerically) stable algorithm thus guarantees us that the computed
(approximate) solution for a given problem is at least equal to the true solution
of a nearby problem. For a more detailed introduction into numerical stability,
refer to Trefethen and Bau [783] who devote several chapters to this topic and
offer the most explicit definition of stability.

Unfortunately, having an algorithm at hand, the exact function T ∗ induced by
this algorithm is usually not easily determined. However, by viewing an algorithm
as a finite sequence of elementary operations, one can stepwise determine a bound

112 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

for the overall computation, if for each of the operations such a bound is known.
And indeed, depending on the underlying arithmetic, such bounds are at hand
– for fixed precision arithmetic in their absolute, for floating point arithmetic
in their relative notion. In fact, standards such as IEEE 754 [420], for instance,
dictate an upper bound on the relative forward error per elementary operation
in floating point arithmetic, usually referred to as machine epsilon, which can
be taken for granted in case the environment fully conforms to that standard.

Based on such guarantees, forward error analysis tries to bound the forward
error of the whole computation, whereas the backward error analysis tries to
bound the backward error. The analysis of round-off goes back to the work of
von Neumann and Goldstine [813, 346]. Historically, forward error analysis was
developed first, but regrettably led to quite pessimistic predictions regarding
how numerical algorithms would actually perform, once confronted with larger
problems. Backward error analysis is heavily to be credited to Wilkinson who did
pioneering work in this field (see [831,832], but also the classical books [833,834]).

Coping With Numerical Inaccuracy. As mentioned, the quality of the com-
puted solution basically depends on three parameters: The input error, reflecting
the initial quality of the input; the condition of the problem instance, reflect-
ing the severity inherent to the problem; and finally the numerical stability of
the algorithm, reflecting the additional deviation between the round-off error
affected implementation and its corresponding model, i. e., the problem type. In
fact, seeking for T (x), actually results in finally computing T ∗(x∗). However,
regarding the input, it is most common to assume it to be either error-free or
beyond our control; and the condition of the problem can even less be biased.
Hence, it remains to address the problem of inaccuracy of computer arithmetic,
with the objective of avoiding the overall round-off error to blow up.

Facing the fact, that naively implementing a numerical algorithm in a straight-
forward way based on standard hardware arithmetic may easily result in the
resulting program to be prone to numerical inaccuracy, the question arises how
to cope with this issue. There are two not necessarily mutually exclusive choices:
focus on minimizing or controlling the error, or adapt the underlying
arithmetic.

When choosing for sticking to the given arithmetic, the overriding challenge is
to get a grip on the round-off errors. This objective basically amounts to deter-
mining good bounds for numerical errors, locating numerically critical computa-
tions, and finding alternative ways for computing the same value that may show
less prone to round-off. (Note, however, that a better bound does not necessarily
impose a guarantee for better results.) Numerical analysis offers both static and
dynamic techniques. For example, given two equivalent one-line expressions, one
may statically assess bounds on the corresponding errors and choose for the more
accurate version for the implementation. However, only in rare cases it will be
possible to show that one way of computing a value will always yield a better
bound than any other known one. In most cases, it will be necessary to react
dynamically to the values of the arguments passed. Common strategies are, for

3. Selected Design Issues 113

instance, to reorder the data values, to consciously select the next out of a set
of permitted alternatives, to transform the data into a more pleasant equivalent,
or to choose between different equivalent implementations – always seeking for
the least maximum error for the given input.

For example, when computing the sum of a set of numbers, one may dynam-
ically re-order the sequence of values in a way such that cancellation effects will
be minimized. Another example can be found in the context of solving a set of
linear equations Ax = b via Gaussian elimination. In each step i the current ma-
trix An×n of coefficients is pivoted by one of the entries of the still unprocessed
submatrix A[i..n; i..n]. In theory, this choice does not make any difference on
the computed solution. In practice, however, it turns out that selecting a small
pivot may introduce large numerical errors. Simply choosing the first non-zero
coefficient in the current row as pivot (trivial pivoting) appears thus not advis-
able. In consequence, other pivoting strategies have been developed: In partial
pivoting one chooses the largest magnitude in the current column as pivot. Scaled
partial pivoting also chooses the largest magnitude in the current column, but
always relative to the maximum entry in its row. Finally, in total pivoting one
always chooses the absolutely largest coefficient in A[i..n; i..n]. Although out
of these three strategies total pivoting involves the best bound on the numer-
ical error, partial pivoting is usually applied in practice since it is much less
computationally expensive.

Apart from delimiting the negative effects of round-off by controlling the ac-
cumulation of numerical errors, numerical analysis also helps us in assessing
their actual magnitude at runtime. In doing so it allows us to check at runtime
whether computed solutions are reliable or not. This is an important part of the
basis of reliable computing and will be discussed in Chapter 6. Another question,
that chapter deals with, is how to get away from (fast, but) inaccurate hardware
arithmetic in those cases where it turns out insufficient.

For a detailed introduction into the field of error analysis, the reader is referred
to the classic books [833, 834]. Moreover, the topic of stability is extensively
treated in [783], devoting several chapters to this issue. Last, but not least,
when looking into the subject of floating-point programming, [819] and [343]
should be consulted.

3.5.3 Robustness in Computational Geometry

As mentioned in Section 3.5.2, numerical errors, initially considered benign, may
well turn into serious ones as soon as they start changing the control flow in a cru-
cial way. Conditional tests delivering the wrong result impose erring branches
the program runs through during computation. Whereas some algorithms are
actually immune against such wrong decisions, other algorithms may be highly
sensitive to them. This sensitivity in particular arises in the field of compu-
tational geometry, as we will see shortly. Afterwards, we will discuss different
approaches to cope with the problem of inaccuracy.

Problems that are considered to be of geometric nature generally have one
property in common. The given input and the desired output are supposed to

114 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

consist of a combinatorial and a numerical part each. A geometric algorithm
solves a given geometric problem if for any given input it computes the output
as specified by the problem definition. The algorithm involves so-called geomet-
ric primitives to progressively transform the given input into the desired output.
These fundamental operations are basically each of one of two kinds: Geometric
constructions create single basic geometric objects out of a constant number of
given defining basic objects. Geometric predicates in turn test a specific rela-
tionship between, again, a constant number of given basic geometric objects. In
doing so, they provide a mechanism for querying decisive properties in condi-
tional tests that direct the control flow in geometric algorithms.

Each geometric predicate can be considered to perform in its very last step a
comparison of two numbers, which in turn are determined based on the numerical
data of the involved geometric object and possibly additional constants. Without
loss of generality, one may assume that the second of both numbers is actually
zero, which means that a geometric predicate at the bottom line amounts to
determining the sign of the value of some arithmetic expression.

The crucial point now is the following. Geometric algorithms are usually de-
signed and proven to be correct in the context of a model that assumes exact
computation over the set of all real numbers. In implementations however, this
exact real arithmetic is mostly replaced by some fast but finite precision arith-
metic as provided by the hardware of the computing device. For some few types
of problems with restricted inputs this approach works out well. However, for
most of the geometric algorithms, if simply implemented this way, one would
have to face adverse effects caused by this finite approximation, which for some
critical input could finally result in catastrophic errors in practice.

The reason is that due to the lack of an exact arithmetic, the predicates do
not necessarily always deliver the correct answer, but may err if the computed
approximation happens to yield the wrong sign. In consequence, the algorithm
will branch incorrectly, which in the most lucky case may be masked by some
later computation. If not, the algorithm will in the best case compute some
combinatorially incorrect or even topologically impossible result. In the worst
case, however, an inconsistent state will be entered that causes the algorithm to
crash or loop forever.

A simple example of geometrically impossible situation can be observed in the
context of computing the intersection point p of two lines l1 and l2. Computing
p = l1 ∩ l2 and subsequently testing whether p lies on li, i = 1, 2, both with
limited precision floating-point arithmetic, will most of the times result in at least
one of the two tests to fail. Schirra [705] points out that even for obviously well-
conditioned constellations the intersection point only rarely verifies to actually
lie on both lines. Of course, one may argue that these failing tests may just result
from p not being exactly representable within the limited precision in most of
the cases. However, as it turns out, a direct floating point implementation even
fails to always determine correctly for each of the two defining lines, on which
side the computed point p actually lies w. r. t. line. Kettner et al. [471] explain in
detail, but so that it can be readily understood, how and why an erring sideness

3. Selected Design Issues 115

test may cause even the most simple convex hull algorithm to fail in various
ways.

Similar robustness problems apply for practically most of the algorithms in
Computational Geometry. They arise because the approximate substitute for
real number arithmetic used in practice just does not behave exactly like its
counterpart in theory, i. e., the real RAM model based on which algorithms and
data structures were initially designed and proven to be correct. However, not
all input data needs to be considered critical. For most of the configurations rep-
resentable in the available finite precision format, a direct implementation of a
geometric predicate will indeed deliver the correct sign. In fact, the approximate
arithmetic may fail to yield the correct sign basically only in those situations,
where the given configuration is somewhat close to a configuration for which
an exact evaluation of the predicate would report zero. The latter configura-
tions are commonly called degenerate. Hence, it is the true and near-degenerate
configurations that make up the critical inputs.

These scenarios are the ones that call for approaches to deal with numerical
inaccuracy. Recalling that the root of the whole issue was the assumption in
theory to being able to compute exactly, but the insufficiency of plain hardware
arithmetic to do so in practice, there are two obvious ways out: (a) adapt practice
to fit the theory, i. e., compute exactly in practice; or (b) adapt theory to fit the
practice, i. e., take imprecision into account during design.

Adapt Practice: The Exact Geometric Computation Paradigm. If we
are asked for some way to guarantee that our geometric algorithm in practice will
always deliver correct results, the most obvious solution would be to ensure that
any numerical computation ever performed is actually (numerically) exact. When
resorting for some kind of exact arithmetic, correct results are thus automatically
achieved. In fact, in such a case, robustness is actually a non-issue. Chapter 6
discusses such approaches in detail, how to compute exactly within the field of
rational numbers or algebraic numbers, respectively. However, it should be noted
that, in general, off-the-shelf use of exact arithmetic packages may become quite
expensive and should therefore be employed cautiously.

Now, in order to make the algorithm behave in practice just as in theory, we
do not necessarily need numerical exactness all the time. Instead, all we need
to assure is that the program flows are identical in both cases. In fact, this will
guarantee a correct combinatorial part of our output. To achieve this, we request
that any decision is always made in the same way as if it was done on a real
RAM. As mentioned above, the predicates that are evaluated during the branch-
ing steps of the algorithm may w. l. o. g. be assumed to deliver just the sign of
some arithmetic expression over the numerical values of the geometric objects
involved (and possibly additional constants). In effect, what it takes to always
guarantee correct decisions is to (a) have a suitable representation for any ob-
ject which is always sufficient to (b) compute the correct sign of the expression
for the inquired predicate. Since compliance with these two requirements enables

116 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

the geometric algorithm to always compute the correct geometric result, this
postulation is called the exact geometric computation paradigm.

The term suitable representation already suggests that we do not necessarily
seek for numerical exactness. So, (a) and (b) can be achieved in further ways,
other than exact arithmetic. The applicability of these approaches, however,
depends on the class of problem to be solved – more precisely, on the kind of
arithmetic operations that are required and the maximum depth of derivation
for any value that may occur during computation.

In short, a problem that can be solved by using solely the four basic arithmetic
operations +,−, ∗, / is called rational. Similarly, one that does not require more
than algebraic primitives is called algebraic. Moreover, following Yap [845], one
may inductively define the depth d of a value: given a set U of numbers, x is of
depth 0, if x ∈ U ; and x is of depth at most d+1 if it is obtained by applying one
of the rational operations to numbers of depth at most d, or by root extraction
from a degree k polynomial with coefficients of degree at most d − k + 1. An
algebraic problem now is said to be bounded-depth, if there exists an algorithm
that does not impose any value of more than some fixed depth d, otherwise it is
called unbounded-depth.

Unbounded-depth problems cannot reliably be solved without employing
exact arithmetic. However, such problems are rather rare in traditional Com-
putational Geometry [846]. One example of this kind is a solid polyhedral mod-
eler allowing us to perform rational transformations and Boolean operations on
solids. There, each such transformation and operation inherently may increase
the depth of derivation. But due to the lack of a well-defined input-output-
relation, this kind of problem is often not considered a “computational problem”
in algorithmics.

Problems that are bounded-depth but not rational may go beyond an off-
the-shelf use of standard (arbitrary precision) rational arithmetic. They require
techniques for determining the root of a polynomial of bounded degree, which
will be explained in Chapter 6. In contrast, rational bounded-depth problems,
in short RBD, can be solved without arbitrary precision arithmetic. In fact, for
any given RBD algorithm there is a constant D such that as long as the input
is known to involve only rational numbers of size (at most) s, all intermediate
computations involve only rational numbers of size at most D ·s+O(1). This fact
allows us to limit the needed precision in the context of specific applications if
the input precision is known in advance. And indeed, in most of the applications,
the input is given as either integers of fixed maximum length or in floating-point
format with fixed-precision. A few examples shall be given now.

Many geometric predicates used in prevalent geometric algorithms can be
expressed by computing the sign of some determinant. Common representatives
include the orientation test in two- or three-dimensional space, the in-circle test
in 2D as well as the in-sphere test in 3D, the intersection test of lines in 2D, etc.
Not surprisingly, a lot of effort has been done on computing the exact sign of
determinants.

3. Selected Design Issues 117

Concerning matrices with integral entries of bounded bit length, different
authors have proposed algorithms for computing the sign of a determinant. The
approaches vary from specializations for 2× 2 and 3× 3 matrices [52] to general
n×n matrices [177,137] and cover standard integer as well as modular arithmetic
[138]. In each case, a bound on the required bit length for the arithmetic is given.

Besides these algorithms for integral instances, further algorithms were sug-
gested for computing the exact sign of a determinant for a matrix given in
floating-point format. The ESSA algorithm (“exact sign of sum algorithm”) due
to Ratschek and Rokne [665] computes the sign of a finite sum for double pre-
cision floating-point values. Since the determinant of a 2D orientation test is
representable as a sum Σxkyl over the coordinates of the three points involved,
ESSA can compute the orientation of three points if their coordinates are given
in single-precision floating-point format (which simply guarantees that all xkyl

are exactly computable in double-precision). Shewchuk [731] offers a method
for adaptively computing exact signs of matrices of size up to 4 × 4 with en-
tries in double precision floating-point format, provided that neither overflow
nor underflow occurs.

Apart from the sign of a determinant, also its actual value may be of inter-
est sometimes. Whereas testing two lines in 2D for intersection only amounts
to determining just the sign of 3 × 3 determinants, computing the intersec-
tion itself amounts to determining their actual values. Hoffmann [401] shows
how to compute such an intersection point for two lines in parametric form
based on the exact inner product and derives a bound on the bit length of the
homogeneous coordinates of this point. Sugihara and Iri [763] introduced an
algorithm for exactly computing polyhedral intersections. In this method, geo-
metric elements are represented without redundancy, giving only the coefficients
of the parametric plane equations of the faces. The key property of Sugihara
and Iri’s method is that neither edges nor vertices are computed explicitly. In-
stead, all primitives are represented topologically. Vertices are represented as
intersections of three planes, edges by their two endpoints and finally faces by
delimiting edge loops. Two important observations shall not stay unmentioned:
First of all, the representable polyhedra are not restricted to convex polyhedra
only. And second, no digit proliferation takes place when intersecting the poly-
hedra, since the resulting polyhedron always inherits its surfaces from the two
input polyhedra. However, as noted by Hoffmann [401], Sugihara and Iri’s pro-
posed approach unfortunately lacks support for exactly representing rotations,
which is due to the fact that plane coefficients are not being exactly repre-
sentable anymore. However, Sugihara and Iri represent their polyhedra in a dual
form, based on a CSG (constructive solid geometry) tree of trihedral polyhe-
dra and a history recording the boundary structure for the Boolean operations.
Then, rotation of a complex polyhedron is performed by first rotating the trihe-
dral primitives and then reconstructing the rotated polyhedron from the CSG
representation.

Adapt Theory: Design for Inaccuracy. When having to rely on potentially
inaccurate computations, one has to resign from the assumption of getting exact

118 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

results to base the decisions on. However, an algorithm may still be quite suitable
as long as it guarantees to deliver the exact result for a problem that is (in
some sense) close to the original one. This motivates the following definition of
robustness which was omitted in this section until now, since in the scope of the
exact geometric computation paradigm, robustness was actually a non-issue.

Following Fortune [295], a geometric algorithm shall be called robust, if it
produces the correct result for some perturbation of the input. In close connec-
tion to Section 3.5.2, we want to call the algorithm stable if this perturbation is
small. Moreover, Shewchuk [731] suggests calling an algorithm quasi-robust if it
computes some useful information, even though not necessarily a correct output
for any perturbation of the input.

Interval Geometry. These approaches can be seen as the geometric counter-
part to interval arithmetic (cf. Chapter 6). Numerical inaccuracy is treated by
systematically thickening the geometry of processed objects, or by adjusting
the geometric meaning of the predicates. The tolerance-based approach due to
Segal and Sequin [720, 719] associates tolerance regions to geometric objects.
The challenge now is to always keep the data in a consistent state. To achieve
this consistency and to obtain correct predicates on these “toleranced objects”
they enforce a minimum feature separation. Features that are too close to each
other (i. e., have overlapping tolerance regions) must either be shrunken (by
re-computation with higher precision), merged or split. Each of these actions
might require backtracking if the new tolerance region of one object happens to
start or stop overlapping the tolerance region of an object that has already been
processed. In order to enable this kind of consistency checking, tolerance-based
approaches usually maintain additional neighborhood information.

Epsilon Geometry due to Guibas, Salesin and Stolfi [688] treats the problem
of uncertainty due to numerical inaccuracy from the other side, namely the
geometric predicates. An epsilon-predicate returns a real number ε that reflects,
how much the input satisfies the predicate. A non-positive outcome states that
the input could successfully be verified to satisfy the predicate and, moreover,
that the predicate would even be satisfied when perturbing the input by not more
than ε. A positive ε in turn states that the input could not be verified to satisfy
the predicate. However, ε is the size of the smallest perturbation that would
actually produce an input satisfying the predicate. Unfortunately, reasoning in
this framework seems to be difficult [704], and until now epsilon geometry has
been applied successfully only to a few basic geometric problems, cf. [688, 364].

Axiomatic Approach. Another quite tempting approach was proposed by Schorn
[708,709]. The key idea of what he calls the axiomatic approach is to determine
properties of primitive operations that are sufficient for performing a correctness
proof of an algorithm, and to find invariants that solely base on these properties.
Schorn applies his axiomatic approach to the problem of computing a closest
pair within a set of points in 2D, but also to the problem of finding pairs of
intersecting line segments.

3. Selected Design Issues 119

In the former case, he introduces some abstract functions d, dx, dy, d′y of type
(R2 ×R

2)→ R as substitutes for ‖p− q‖, px − qx, py − qy, and qy − py, respec-
tively. Then he lists some properties that these functions shall fulfill: First, d
is to be symmetric and furthermore an upper bound for each of the functions
dx, dy, d′y. And second, the functions dx, dy, d′y need to feature some monotonic-
ity properties. Schorn proves that based on these axioms his sweep algorithm
is guaranteed to compute mins,t∈P d(s, t) for the given point set P – no matter
what d, dx, dy, d′y are, as long as they satisfy the postulated axioms. He also shows
that floating-point implementations of the substituted exact distance functions
from above would yield a guaranteed relative forward error of at most 8ε, for ε
being the machine epsilon.

Consistency Approach. The consistency approach implements robustness by sim-
ply demanding that no decisions are contradictory. The requirement of correct
decisions is weakened towards consistent ones. In fact, as long as they are con-
sistent with all other decisions, also incorrect decisions are tolerable. Of course,
in the lucky case that an algorithm performs only tests that are completely in-
dependent of previous results, it would always deliver consistent results, even for
random outcomes for the predicates. Fortune [295] calls such algorithms parsi-
monious. He presumes that – in principle – many algorithms should be capable
of being made parsimonious.

An algorithm that is not parsimonious needs to assure consistency in another
way. The topology-oriented approach due to Sugihara and Iri [765] puts highest
priority on topology and combinatorial structure. Whenever a numerical compu-
tation would entail a decision violating the current topology, this decision is sub-
stituted by a consistent one that actually conforms to the topology. Degeneracies
are not treated explicitly. If the sign of a predicate evaluates to zero, it is re-
placed by a positive or negative one, whatever is consistent. Sugihara’s approach
ensures topological consistency throughout the whole computation, in particular
for the final result. However, there is no guarantee for obtaining topologically
correct results, and the numerical values computed may be noticeably far away
from correct. Usually it is argued at this point that computing with higher pre-
cision will make the output getting closer to the correct result – finally being
equal to it, once the precision is sufficient. Yet, this argument only holds as long
as no true degeneracies are involved. Irrespective thereof, the topology-oriented
approach has still proven capable of leading to amazingly robust algorithms. In
fact, Sugihara et al. presented several algorithms for polyhedral modeling prob-
lems (see p. 117, but also [762]), for computing Voronoi diagrams [764,619,765]
and for determining the convex hull in 3D [575]. The reader is also referred to
Chapter 9, devoting a whole section to Voronoi diagrams, including a topology
oriented implementation due to Held [385].

Milenkovic proposes an approach, called the hidden variable method [572],
which is based on two components: a structure with topological properties and
a finite approximation of the numerical values. The topological structure is cho-
sen in such a way that there exist infinite precision numerical values (close
to the given finite precision parameter values), for which the problem has the

120 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

chosen structure. The name hidden variable method derives from the fact that
the topology of the infinite precision version is known but not its numerical val-
ues. In [572], the approach is applied to the computation of line arrangements.

Adapting Input. Milenkovic [572] also proposes a second approach to deal with
numerical inaccuracy. His technique called data normalization modifies the in-
put in such a way that it will finally be able to be processed with approximate
arithmetic. It basically constitutes a preprocessing procedure, in which incidence
is enforced for features that are too close together and the subsequent algorithm
may not be able to tell apart. After eliminating any near coincidence this way, it
is guaranteed that all the finite precision operations performed by the algorithm
will yield correct results based on this normalized input. Milenkovic exemplifies
his approach on the problem of polygonal modeling, based on the two opera-
tions permitted to be performed on the input: vertex shifting, which merges two
vertices that are closer than ε, and edge cracking, which subdivides an edge into
a poly-edge at all vertices that are too close to that edge. Clearly, introduc-
ing incidences definitely changes the local topological structure of the input in
terms of connectivity. Yet, Milenkovic proves bounds on the maximum positional
displacement introduced by his method.

Controlled perturbation is another approach that adapts the input so as to
make it pleasant enough for being processed with approximate arithmetic. Again,
one concedes the problem at hand not necessarily to be solved for the given input
but for some nearby input. The basic procedure is yet somewhat different to the
data normalization technique. The idea is to run the algorithm in a supervised
manner, and to monitor if any of the predicate invocations is once not guaranteed
to deliver a reliable result. In the latter case, the current pass is interrupted, the
original input is perturbed and the algorithm is restarted again on the perturbed
input. This protection is achieved by augmenting each of the predicate calls with
a so-called guard. A guard GE for a geometric predicate E is a Boolean predicate
that, if evaluating to true in the given approximate arithmetic, guarantees E to
yield the correct sign when evaluated in the same arithmetic. By increasing the
size of the perturbation after each unsuccessful run, one increases the probability
that none of the guards evaluates to false. However, the larger the perturbation,
the less nearby is the finally solved input instance to the original one. Controlled
perturbation, as proposed by Halperin et al. [378], therefore calls for controlling
over the size of perturbation by means of choosing the perturbed input in a
careful manner. Halperin et al. use this technique to compute arrangements of
spheres [378], arrangements of polyhedral surfaces [654], and arrangements of
circles [376], each in floating point arithmetic. Klein [474] applies the paradigm
to the computation of Voronoi diagrams. Finally, Funke et al. [311] compute
Delaunay triangulations using controlled perturbation. In each case, the authors
derive a relation between the perturbation amount and the quality guarantee
of the approximate arithmetic, i. e., the precision of the floating point system
intended to be used.

Funke et al. point out that controlled perturbation (as opposed to data nor-
malization) is actually a general conversion strategy for idealistic algorithms

3. Selected Design Issues 121

designed for the real RAM model and some general position assumption. In ad-
dition to this original approach, Klein [474] and Funke et al. [311] also consider
so-called lazy controlled perturbations, which perturb only those sites that during
their incremental insertion caused one of the involved guards to fail. Unfortu-
nately, neither the perturbation bound nor the expected running time could be
shown to carry over from the standard scenario.

Representation and Model Approach. This approach is probably the most ab-
stract one to deal with numerical inaccuracy. Basically, an explicit distinction
is drawn between mathematical objects, the models, on the one hand and their
corresponding computer representations on the other. Based on this distinc-
tion, a geometric problem P is considered to define a mapping P : I → O
from a set I of input models into a set O of output models. In comparison,
a computer program A imposes a mapping A : Irep → Orep on correspond-
ing sets Irep ⊇ {repI(i)|i ∈ I} and Orep ⊇ {repO(o)|o ∈ O} of computer
representations.

A computer program A for a problem P will be called correct, if it holds that
repI ◦ A ◦ rep−1

O = P , i. e., if for any i ∈ I we have rep−1
O (A(repI(i)) = P(i).

Obviously, this requires repI and repO both to be bijections. In other words,
it would take a one-to-one correspondence between representations and models.
However, because of the infinite character of most mathematical models on the
one hand and the finite nature of computer representations on the other, the
correspondence between the two is normally not one-to-one.

Taking this issue into account, the term correctness is therefore replaced by
robustness as follows: A computer program A : Irep → Orep for a problem
P : I → O will be called robust, if for every computer representation irep ∈ Irep
there is a corresponding model i ∈ I such that P(i) ∈ O is among the models
corresponding to A(irep) ∈ Orep – or formally, if for any irep ∈ Irep we have
{P(i)|i ∈ I, repI(i) = irep} ∩ {o ∈ O|repO(o) = A(irep)} 	= ∅. So, in order to
prove that a given computer program is robust in this terminology, one basically
has to show that for any given representation there always exists a model for
which the computer program takes the correct decisions.

Admittedly, this definition of robustness allows a fairly generous interpretation
of the term “correspondence”. In particular, if we were to define only a single
input representation x and a single output representation y and let A simply
return y for the only possible input x, then A would be a robust algorithm for
any problem P , as all input models are mapped to x and all output models are
mapped to y. In fact, this definition of robustness basically rather reflects what
Shewchuk [731] suggests to be called quasi-robust.

Hoffmann, Hopcroft, and Karasick [402] introduced this formalization. They
also gave an algorithm for intersection of polygons and proved its robustness with
respect to their formalism. Hopcroft and Kahn [411] considered robust intersec-
tion of polyhedron with a half-space. However, in both cases the interpretation of
“correspondence” was actually quite generous, leading to fairly loose relationship
between computer representation and its “corresponding” model.

122 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Related Issues. In the remaining part of this subsection, we will look at three
issues that are actually closely related to precision-caused robustness problems
in computational geometry, namely: inaccurate data, degeneracies and geometric
rounding. Each of these issues shall be briefly discussed now in closing.

Inaccurate Data. Approximate arithmetic employed for computation is not the
only type of inaccuracy relevant in computational geometry. As Schirra [704]
points out, many geometric data arising in practice is actually known or supposed
to be inaccurate. Since both types of inaccuracy basically impose a similar kind
of uncertainty, there is actually not much of a difference between processing
geometric objects that result from inaccurate computations and processing real-
world data that is potentially inaccurate by nature.

Now, if we were to directly employ exact geometric computation on this kind
of input, we would implicitly treat inaccurate data as exact. This way we would
determine the correct result for some possibly inaccurately represented problem
instance. Yet, this procedure only works out as long as the given data are ac-
tually consistent. Otherwise, we were to face similar problems as discussed in
the course of this subsection: The algorithm may happen to enter a state that
it was never supposed to be confronted with. In fact, it got actually launched in
such a state already. This close relationship was a sufficient natural reason for
researchers to address both kinds of inconsistencies in a uniform way. An imme-
diate consequence however is, that any error in the output cannot be identified
whether to be caused by inaccuracy of input or during computation.

In order to finally achieve an error-free output, there are two ways to choose
between. When sticking to exact geometric computation, one will have to fix the
relevant deal of the data – either in advance or on the fly, if possible. Basically,
the input needs to be considered as non-benign and asks for being handled in
one of the ways discussed in Section 3.5.1. Geometric rounding, as discussed
shortly, may turn out one of these possible answers. The second way is to follow
one of the approaches of consciously designing for inaccuracy discussed earlier
in this section. In particular, tolerance-based and consistency-driven approaches
appear naturally promising in this respect.

Degeneracy. As already mentioned in the beginning of this subsection, precision-
caused non-robustness is closely related to degeneracy in computational geome-
try. The nearly degenerate and true degenerate instances are the critical scenarios
in computing with numerical inaccuracy. Roughly speaking, degeneracies may
be deemed to be points of discontinuity of the input-output-function induced
by an algorithm – usually configurations of the input data where one of the
predicates involved in the overall computation evaluates to zero, thus entailing
a switch-over in the algorithm’s control flow.

When designing a geometric algorithm it is common practice to assume the
absence of such degeneracies. In fact, in scientific publications authors on a
regular base tend to declare them as negligible details “left to the reader”. The
assumption is usually justified, for in most cases the details can indeed more or
less easily be filled up. Yet, the more the phase of implementation approaches,

3. Selected Design Issues 123

the less pleasant it becomes from the point of robustness to keep hold of any
such void in the algorithm’s specification.

Following Yap [848], an algorithm is called generic, if it is only guaranteed to
be correct on generic (i. e., non-degenerate) input. A general algorithm in turn is
one that works for all (legal) inputs. In order to avoid the final implementation
to crash due to degenerate input that could not be handled, it is desirable for the
implementer to being delivered a general algorithm. So, if the initial description
did not cover all degeneracies, then at one point in time a generic algorithm
asks for being turned into a general one. There are basically two (not mutually
exclusive) options for doing so: Adapting the algorithm or modifying the input.

Certainly, when following one of the approaches for computing with inac-
curacy discussed earlier in this section, true degeneracy is actually kind of a
non-issue. Since they cannot reliably determine true degeneracy anyway, these
approaches treat any nearly degenerate case like an untrustworthy outcome of
a predicate. For example, tolerance-based approaches simply adapt their toler-
ance information for any (true or) near degeneracy they hit upon. Consistency
approaches in turn do not treat degeneracies explicitly at all. If the sign of a
predicate evaluates to zero, it is replaced by a positive or negative one, what-
ever is consistent. In contrast, the controlled perturbation approach perturbs
the input until it does not entail any predicate anymore that evaluates too close
to zero. In general, approaches adapting the input (like also Milenkovic’s data
normalization technique) explicitly remove possible degeneracies.

In contrast to that, when applying exact geometric computation true degen-
eracy becomes an explicit issue. In fact, exact geometric computation guarantees
to always yield the correct sign for each of the involved geometric predicates.
However, it does not help us any further, once a predicate happens to correctly
evaluate to zero, but the algorithm by design doesn’t have an answer at hand how
to handle this degenerate situation. Again, one could adapt the algorithm, i. e.,
extend it in a way that allows for degeneracies to being handled. However, apart
from really treating them, there is again the second option, namely bypassing.

Edelsbrunner and Mücke [268] were the first ones to introduce the notion of
so-called symbolic perturbation schemes into the field of computational geometry.
The idea of this concept is to perturb the input in a symbolic way in order to
remove degeneracies, but at the same time to obtain a result as close as possible
to the real solution. In fact, perturbing only in a symbolic manner is the way to
ensure that the perturbation does not change the sign of any non-zero predicate
result. Edelsbrunner and Mücke [268] introduced a scheme, called Simulation
of Simplicity (SoS). This technique, that was already known in the context of
the simplex method, amounts to adding powers of some indeterminate ε to each
input parameter. Emiris and Canny [273] reduced the computational complexity
by applying linear perturbations only: to each input parameter xi they add a
perturbations πi · ε where πi ∈ Z and ε infinitesimal.

Yap [845] proposes a slightly more generalized concept called blackbox sign
evaluation schemes. In this approach, every call to a predicate is generally re-
placed by a call to a sign blackbox which (a) always returns a non-zero sign and

124 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

(b) guarantees to preserve any non-zero sign concluded by the original pred-
icate. Yap [845, 844] shows how to formulate a consistency property for the
blackbox and offers a whole family of admissible schemes applicable for polyno-
mial functions. This approach is in particular important, as SoS can be applied
to determinants only.

Finally, Seidel [722] proposes an approach, based on the following idea. Given
a problem P (x) and just a single non-degenerate input x∗, then every other input
x can be made non-degenerate by perturbing it in the direction of x∗, leaving
us with computing P (x + εx∗). He shows that the other perturbation schemes
mentioned above are each special cases of his general approach.

Geometric Rounding. Computing geometrically exact results is only worth as
much as the computed result can actually be successfully passed on to subse-
quent stages. In fact, it does not help much, for example, to determine the exact
solution of a geometric problem if the output format is yet not capable of repre-
senting it without information loss. There may also be a couple of other reasons
(e. g., the computational cost) that call for a reduction of the numerical and/or
structural complexity of geometric data.

The goal of geometric rounding now is to find a simplification of a given
geometric structure, i. e., a geometric structure of lower complexity that does
not deviate too much from its original with respect to some specific geometric or
topological criteria. Thereby, two different objectives may be the driving forces,
namely combinatorial versus precision simplification [848]. Whereas the former
one aims at reducing the number of primitives and their combinatorial relations,
the latter objective seeks for reducing the (bit-)complexity of the numerical
values themselves.

Greene and Yao [359] were the first authors to introduce the topic of geometric
rounding in the field of computational geometry. They considered the problem
of rounding line segments consistently to a regular grid. They suggested to break
the line segments into polygonal chains by moving any vertex of the subdivision
(i. e., every endpoint of a line segment or intersection point of two segments) to
its nearest grid point. Their approach moves edges only by a distance of at most
half a grid cell’s diameter. It may introduce new incidences, but no additional
crossings, which is the property that is meant by “consistently”. Unfortunately,
it may produce a large number of new vertices along the polygonal chains. Since
n segments may show Θ(n2) intersections, Greene/Yao rounding may end up
with quadratically many additional vertices, compared to initially O(n).

Snap rounding, usually attributed to Hobby [398] and Greene [358], overcomes
this issue. The general idea is based on the notion of a hot pixel, which also gave
raise to the name hot pixel rounding. A pixel of the grid is called hot, if it either
contains an endpoint of an original line segment, or an intersection point of two
original line segments. The rounding procedure consists of snapping all segments
intersecting a hot pixel to the pixel center. As with Greene/Yao rounding, snap
rounding guarantees that the resulting arrangement will be contained within the
Minkowski sum of the original arrangement and a unit grid cell centered at the
origin.

3. Selected Design Issues 125

However, Halperin and Packer [377] showed that a vertex of the output com-
puted that way may be very close to an actually non-incident edge. Since this
might induce new potential near-degeneracies, they proposed an augmented pro-
cedure, called iterated snap rounding, aimed to eliminate the undesirable prop-
erty. Their rounding basically consists of two stages. In a preprocessing stage
they compute hot pixels defined by the vertices of the arrangement. Addition-
ally, they prepare a segment intersection search structure that allows to query for
all hot pixels that a given segment s intersects. In a second stage they perform
a procedure the call reroute on each input segment. This recursive procedure
produces a polygonal chain s∗ as an approximation for a given segment s, such
that when s∗ passes through a hot pixel, it passes through its center. Halperin
and Packer show that their rounding procedure guarantees that any vertex is at
least half the width of a pixel away from any non-incident edge.

Milenkovic [573] proposes a scheme called shortest path rounding, which in-
troduces even fewer bends than snap rounding. He defines a deformation to be
a continuous mapping π : [0, 1]× R

2 → R
2 such that π(0, p) = p for all p ∈ R

2,
and for any fixed t ∈ [0, 1) the function πt(p) := π(t, p) is a bijection. (Note that
π1 not necessarily needs to be a bijection – distinct points may collapse at time
t = 1. However, π1 is clearly the limit of a series of bijections.) πt represents
the state of the deformation at time t ∈ [0, 1]. In comparison, γp(t) := π(t, p)
reflects the path that p travels through during the whole process of deformation,
starting at p and ending at the target position ρ(p) := π(1, p) = π1(p) = γp(1).
A geometric rounding of a straight line embedding G = (V, E) to a lattice S is
then a deformation of the plane such that the following two properties hold:

(a) For any v ∈ V , γv is completely contained in CELL(S, v), i. e., the defor-
mation path of any vertex v ∈ V always stays within the lattice cell corre-
sponding to v.

(b) Each (u, v) ∈ E is deformed into a polygonal chain having its vertices in
lattice points of vertices of V only.

Such a geometric rounding is called a shortest path rounding if every rounded
edge results in a polygonal chain with shortest possible paths among all (feasible)
roundings. Milenkovic shows that the result of a shortest path rounding is always
unique.

Apart from 2-dimensional arrangements and planar subdivisions, geometric
rounding has also been studied in 3D. As already mentioned in Section 3.5.3, Sug-
ihara and Iri [763] apply what may be called CSG rounding to a geometric object
by first rounding all involved CSG primitives and subsequently reconstructing
the tree. Fortune [296] in turn rounds geometric objects given in manifold repre-
sentation. This manifold rounding works by first rounding the equations or faces
and afterwards, in case the rounded solid is self-intersecting, retaining only the
“unburied” portion of the boundary.

In general, rounding geometric data is far more than just rounding numbers,
and doing it properly can be very difficult. In fact, the quest for reducing com-
plexity significantly while always keeping the numerical and combinatorial data
consistent may turn out highly complicated.

126 S. Helwig, F. Hüffner, I. Rössling, and M. Weinard

Final Remarks. As we have seen in the second part of this section, computing
with inaccuracy obviously seems to impair problems for geometric algorithms. In
fact, as pointed out by Fortune [297], it is in general “notoriously difficult to ob-
tain a practical implementation of an abstractly described geometric algorithm”.
In effect, the number of problems that have been successfully attacked this way
is still small (see [524, 401, 704] for surveys on robustness issues in geometric
computation). In fact, these approaches entail two major disadvantages: First
of all, the respective techniques are highly specific to the considered problem
and do hardly generalize to other geometric problems. And second, they do not
permit off-the-shelf use of all the various geometric algorithms already available,
but require a redesign of practically every single algorithm intended to be used.
In short: They force us to redo Computational Geometry [141].

	Chapter 3. Selected Design Issues
	Introduction
	Simplicity
	Advantages for Implementation
	How to Achieve Simplicity?
	Effects on Analysis

	Scalability
	Towards a Definition of Scalability
	Scalability in Parallel Computing
	Basic Techniques for Designing Scalable Algorithms
	Scalability in Grid Computing and Peer-to-Peer Networks

	Time-Space Trade-Offs
	Formal Methods
	Reuse and Lookup Tables
	Time-Space Trade-Offs in Storing Data
	Preprocessing
	Brute Force Support

	Robustness
	Software Engineering Aspects
	Numerical Robustness Issues
	Robustness in Computational Geometry

