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Valuation portfolio in life insurance

In this chapter we define the valuation portfolio for a life insurance liability
portfolio. The construction is done with the help of an explicit example. We
proceed in two steps: First, we assume that the cash flows have deterministic
insurance technical risk, i.e. we have a deterministic mortality table, and only
the value of the financial instruments describe a stochastic process. Then,
we map the cash flows onto these financial instruments. In the second step,
we introduce stochastic mortality rates yielding stochastic insurance technical
risk. In that case we follow the construction in step 1, but we add loadings
for the insurance technical risks coming from the stochastic mortality table.
This construction gives us a replicating portfolio (protected against insurance
technical risks) in terms of financial instruments.

3.1 Deterministic life insurance model

To define the valuation portfolio VaPo we start with a deterministic life in-
surance model where no insurance technical risk is involved (see also Baum-
gartner et al. [BBK04]). We assume that we have a deterministic mortality
table (second order life table) giving the mortalities without loadings. Let lx
denote the number of insured lives aged x and dx the number of insured lives
aged x who die before reaching age x + 1.

lx
↓ −→ dx = lx − lx+1

lx+1

↓ −→ dx+1 = lx+1 − lx+2

lx+2

↓ −→ dx+2 = lx+2 − lx+3

...
...

M.V. Wüthrich et al., Market-Consistent Actuarial Valuation,
EAA Series,
DOI 10.1007/978-3-642-14852-1 3, © Springer-Verlag Berlin Heidelberg 2010

43

http://dx.doi.org/10.1007/978-3-642-14852-1_3


44 3 Valuation portfolio in life insurance

Example 3.1 (Endowment insurance policy).

We assume that the initial sum insured (death benefit) is CHF 1, the age
at policy inception is x = 50 and the contract term is n = 5. Moreover, we
assume that:

• The annual premium Πt = Π, t = 50, . . . , 54, is due in non-indexed CHF
at the beginning of each year.

• The benefits are indexed by a well-defined index It, t = 50, 51, . . . , 55, with
initial value I50 = 1.
– Death benefit is the indexed maximum of It and (1 + i)t−50 for some

fixed minimal guaranteed interest rate i.
– Survival benefit is I55, i.e. no minimal guarantee in the case of survival.

The benefits are always paid at the end of each period (t − 1, t].

This means that the survival benefit is given by a financial instrument I whose
price is a stochastic process (It)t≥50 with initial value I50 = 1. This index can
be any financial instrument like a stock, a fund, etc. Hence, to hedge the
survival benefit we need to buy one unit of index I at the price I50 = 1 and it
generates the (random) survival benefit I55 at time t = 55.

Thus, the endowment contract gives the following cash flow diagram for
X = (X50, . . . , X55) ∈ L2

n+1(P,G): for initially l50 persons alive we have (if we
only consider 1 person we divide by l50)

time cash flow premium death benefit survival benefit
50 X50 −l50 Π
51 X51 −l51 Π d50

(
I51 ∨ (1 + i)1

)

52 X52 −l52 Π d51

(
I52 ∨ (1 + i)2

)

53 X53 −l53 Π d52

(
I53 ∨ (1 + i)3

)

54 X54 −l54 Π d53

(
I54 ∨ (1 + i)4

)

55 X55 d54

(
I55 ∨ (1 + i)5

)
l55 I55

Cash inflows (premium) have a negative sign, cash outflows have a positive
sign, and x ∨ y = max{x, y}. �
Task: Value this endowment policy at the beginning of the contract and at
every successive year!

3.2 Valuation portfolio for the deterministic life
insurance model

For the life insurance portfolio considered in Example 3.1 (with deterministic
mortality rates) we now want to construct the valuation portfolio. Roughly
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speaking the valuation portfolio (VaPo) is a portfolio of financial instruments
that replicates the future cash flows arising from the insurance contracts. The
procedure is the following: to replicate the insurance cash flow X ∈ L2

n+1(P,G)
we specify in a first step the set of financial instruments that will be used for
the replication purposes. Second, for each financial instrument the appropriate
number of units must be determined, this gives the VaPo for X. Thirdly, we
define the market-consistent value of the cash flow X to be equal to the value
of the VaPo. This convention is consistent with the well-known “law of one
price”-principle which says that in an arbitrage-free economy two instruments
with the same cash flows must have the same price.

Step 1. Define units, choose a financial basis.

• The premium Π is due at time t = 50, . . . , 54 in non-indexed CHF. Hence,
as units we choose the zero coupon bonds Z(50), . . . , Z(54) (the units are
denoted by Z(t), whereas the cash flow of the zero coupon bond Z(t) is
denoted by Z(t), see (2.28) and (3.4)).

• Survival benefit: Unit is the indexed fund I with price process (It)t=50,...,55.
• Death benefit It ∨ (1 + i)t−50 can be measured in an indexed fund I plus

a put option on I with strike time t and strike (1 + i)t−50. We denote this
put option by Put(t) = Put(t)(I, (1 + i)t−50).

Hence we have the following units (financial instruments)

(U1, . . . ,U11) (3.1)

=
(
Z(50), . . . , Z(54), I, Put(51)

(
I, (1 + i)1

)
, . . . ,Put(55)

(
I, (1 + i)5

))
,

i.e. we have that the total number of different units equals 11. These units
play the role of the basis (financial instruments) in which we measure the
insurance liabilities.

Step 2. Determine the number/amount of each unit needed.

At the beginning of the policy we need:

Valuation Scheme A (for l50 persons)

time premium death benefit survival benefit
50 −l50 Π Z(50)

51 −l51 Π Z(51) d50

(
I + Put(51)

(
I, (1 + i)1

))

52 −l52 Π Z(52) d51

(
I + Put(52)

(
I, (1 + i)2

))

53 −l53 Π Z(53) d52

(
I + Put(53)

(
I, (1 + i)3

))

54 −l54 Π Z(54) d53

(
I + Put(54)

(
I, (1 + i)4

))

55 d54

(
I + Put(55)

(
I, (1 + i)5

))
l55 I
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This immediately leads to the summary of units:

Valuation Scheme B (for l50 persons)

unit Ui number of units
Z(50) −l50 Π
Z(51) −l51 Π
Z(52) −l52 Π
Z(53) −l53 Π
Z(54) −l54 Π

I d50 + d51 + d52 + d53 + d54 + l55 = l50
Put(51)

(
I, (1 + i)1

)
d50

Put(52)
(
I, (1 + i)2

)
d51

Put(53)
(
I, (1 + i)3

)
d52

Put(54)
(
I, (1 + i)4

)
d53

Put(55)
(
I, (1 + i)5

)
d54

Observe that the number of units of I needed is exactly l50 because every
person insured receives one index I, no matter whether he dies during the
term of the contract or not.

Our valuation portfolio VaPo(X) is a point in an 11-dimensional vector
space (see also (3.2) in Section 3.3 below) where we have specified a basis
of financial instruments Ui (dimension of vector space) and the number of
instruments we need to hold to replicate the insurance liabilities.

Step 3. To obtain the (monetary) value for our cash flow we need to apply
an accounting principle to this VaPo(X), see Section 3.3 below. �
Conclusion. In a first and second step, we decompose the liability cash flow
X = (X50, . . . , X55) into a 11-dimensional vector VaPo(X), whose basis con-
sists of financial instruments U1, . . . ,U11. Only in a third step, we calculate
the monetary value of the cash flow X by applying an accounting principle to
the units Ui, and thus to VaPo(X).

Hence we have found the following general valuation procedure:

3.3 General valuation procedure for deterministic
insurance technical risks

1. For every policy with cash flow X ∈ L2
n+1(P,G) with deterministic insur-

ance technical risk we construct the VaPo(X) as follows: Define units Ui

(basis of a multidimensional vector space) and determine the (determin-
istic) number λi(X) ∈ R of each unit Ui:
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X �→ VaPo(X) =
∑

i

λi(X) Ui. (3.2)

From a theoretical point of view the VaPo mapping needs to be a multi-
dimensional positive continuous linear function that maps the insurance
liabilities X onto a valuation portfolio VaPo(X) which replicates the in-
surance liabilities in terms of financial instruments.

2. Apply then an accounting principle At to the valuation portfolio to obtain
a monetary value at time t ≥ 0

VaPo(X) �→ At (VaPo(X)) = Qt [X] ∈ R. (3.3)

This mapping must be a positive, continuous, linear functional.
Moreover, the sequence of accounting principles (At)t=0,...,n must satisfy
certain consistency properties in order to have an arbitrage-free pricing
system. In fact, we require a martingale property (2.57) for deflated price
processes. This is further discussed below.

For the zero coupon bond with maturity m we have at time 0 (U1 = Z(m))

Q0[Z(m)] = A0

(
VaPo(Z(m))

)
= A0

(
λ1(Z(m)) Z(m)

)
= A0

(
Z(m)

)
. (3.4)

The construction of the VaPo adds enormously to the understanding and
communication between actuaries and asset managers and investors, respec-
tively. In a first step the actuary decomposes the insurance portfolio into
financial instruments, in a second step the asset manager evaluates the finan-
cial instruments. Indeed, it is the key step to a successful asset and liability
management (ALM) technique, and it clearly highlights the sources of uncer-
tainties involved in the process. It also allocates the responsibilities for the
uncertainties to the different parties involved.

Remark 1. For a cash flow X ∈ L2
n+1(P,G) with no insurance technical risk

involved we obtain for the value at time 0

Q0 [X] = A0 (VaPo(X)) =
∑

i

λi(X) A0 (Ui) ∈ R, (3.5)

which should be a positive, continuous, linear functional on L2
n+1(P,G). One

has to be a little bit careful with the positivity: In order to obtain a positive
linear functional, we must have that U

(i)
t = At (Ui) > 0 for all i as long

as a policy is in force, which must be kept in mind whenever the units are
selected.

Remark 2. By linearity the individual policies can be added up to a portfolio,
i.e. individual cash flows X(k) ∈ L2

n+1(P,G) easily merge to
∑

k X(k) which
has value
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Qt

[
∑

k

X(k)

]

=
∑

k

At

(
VaPo(X(k))

)
. (3.6)

This means that we can value portfolios of a single contract as well as of the
whole insurance company. Note that this aggregation needs to be done very
carefully as soon as also insurance technical risks are involved.

Examples of accounting principles At. An accounting principle At at-
taches a value to the financial instruments. There are different ways to choose
an appropriate accounting principle. In fact, choosing an appropriate account-
ing principle very much depends on the problem under consideration. We give
two examples.

• Classical actuarial discounting. In many situation, for example in (tradi-
tional) communication with regulators, the value of the financial instru-
ments are determined by a mathematical model (such as amortized costs,
etc.). If we choose the model where we discount with a fixed constant
interest rate we denote the accounting principle by Dt.

• In modern actuarial valuation, the financial instruments are often valued at
an economic value, market value or value according to the IASB accounting
rule. In general, this means that the value of the asset is essentially the
price at which it can be exchanged at the financial market. If we use such
an economic accounting principle we use the symbol Et.

Both principles Dt and Et need to fulfill some time consistency properties in
order to have an arbitrage-free pricing system. That is, assume we choose
the economic accounting principles Et, t = 0, . . . , n. Then, for cash flows X ∈
L2

n+1(P,G) (with deterministic insurance technical risk) we have the following
value at time 0

Q0 [X] = E0 (VaPo(X)) =
∑

i

λi(X) E0 (Ui) . (3.7)

Using Riesz’ representation theorem (Theorem 2.5) we find the state price
deflator ϕ ∈ L2

n+1(P, F) with

< X, ϕ > = Q0 [X] = E0 (VaPo(X)) . (3.8)

Using price definition (2.38), Lemma 2.8 then implies that we need to have

(ϕtEt (VaPo(X)))t=0,...,n forms an F-martingale under P . (3.9)

3.4 Self-financing property of the VaPo (deterministic
insurance technical risk)

In (2.49) we have defined X(k) ∈ L2
n+1(P,G) as the remaining cash flow after

time k − 1. Moreover, define the cash flow

Xk = Xk Z(k) = (0, . . . , 0, Xk, 0 . . . , 0) ∈ L2
n+1(P,G). (3.10)
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Hence, note
X(k) = X(k+1) + Xk, (3.11)

and using the linearity of the valuation portfolio (3.2) we have the following
lemma.

Lemma 3.1 (Self-financing property as portfolio) For X ∈ L2
n+1(P,G)

VaPo
(
X(k)

)
= VaPo

(
X(k+1)

)
+ VaPo (Xk) . (3.12)

Of course, in this lemma we assume that the vector space is spanned by the
financial instruments determined by X(k).

Remark. At time k, the last term in (3.12) is simply cash value, which
we abbreviate

VaPo (Xk) = Xk at time k, (3.13)

i.e. we omit in this case to write the unit because it is just 1 at time k.
Studying now the values given by the accounting principle At, we have by

the linearity of At the following lemma:

Lemma 3.2 (Self-financing property in value) For X ∈ L2
n+1(P,G) and

t ≤ k

At

(
VaPo

(
X(k)

))
= At

(
VaPo

(
X(k+1)

))
+ At (VaPo (Xk)) . (3.14)

In particular, if the valuation portfolio of Xk is evaluated at time k then

Xk =
1
ϕk

E [ϕk Xk| Fk] = Qk [Xk] = Ak (VaPo(Xk)) , (3.15)

hence
Ak

(
VaPo

(
X(k)

))
= Ak

(
VaPo

(
X(k+1)

))
+ Xk, (3.16)

which tells again that the VaPo for Xk at time k is simply Xk. This observation
is fundamental and should hold independently of the value assigned to the
VaPo by the accounting principle At.

For a more detailed analysis of the self-financing property in monetary
value over time we refer to Subsection 6.2.

3.5 VaPo protected against insurance technical risks

So far we have considered an ideal situation which is an important point of
reference to measure deviations.

ideal realistic deviation

deterministic mortality stochastic mortality technical risk

VaPo real investment portfolio S financial risk
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The ideal situation is often called base scenario and one then studies deviations
from this base scenario.

In this section we want to consider insurance technical risks. They come
from the fact that the insurance liabilities are not deterministic, i.e. X ∈
L2

n+1(P, F). This means in our example that we have stochastic mortality
rates.

For the deviations from the deterministic model (which are expectations,
best-estimates for the liabilities) we add a protection. Such a protection can be
obtained e.g. via reinsurance products, risk loadings or risk bearing capital.
The VaPo with this additional protection will be called VaPo protected
against insurance technical risks.

3.5.1 Construction of the VaPo protected against insurance
technical risks

Let us return to our Example 3.1. The stochastic mortality table reads as:

lx
↓ −→ Dx = lx − Lx+1

Lx+1

↓ −→ Dx+1 = Lx+1 − Lx+2

Lx+2

↓ −→ Dx+2 = Lx+2 − Lx+3

...
...

where now Lx+k and Dx+k−1 are random variables for k ≥ 1. From

D50 = l50 − L51, (3.17)

d50 = l50 − l51, (3.18)

we obtain
D50 − d50 = l51 − L51, (3.19)

which describes the deviations of D50 and L51 from their expected values d50

and l51, respectively. In fact, in a first step we use the expected value d50

as a predictor for the random variable D50, and in a second step we need to
study the prediction uncertainty or the deviation of the random variable D50

around its predictor d50.

The Valuation Scheme A then reads as follows for the stochastic mortality
table:
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time premium death benefit survival benefit
50 −l50 Π Z(50)

51 −L51 Π Z(51) D50

(
I + Put(51)

(
I, (1 + i)1

))

52 −L52 Π Z(52) D51

(
I + Put(52)

(
I, (1 + i)2

))

53 −L53 Π Z(53) D52

(
I + Put(53)

(
I, (1 + i)3

))

54 −L54 Π Z(54) D53

(
I + Put(54)

(
I, (1 + i)4

))

55 D54

(
I + Put(55)

(
I, (1 + i)5

))
L55 I

Let us define the expected survival probabilities and the expected death
probabilities (second order life table) for t ≥ x:

pt =
lt+1

lt
and qt = 1 − pt =

dt

lt
. (3.20)

Denote by VaPo(X(t+1)) the valuation portfolio for the cash flows after
time t with deterministic insurance technical risks (deterministic mortality
table as defined in Section 3.2). I.e. VaPo(X(t+1)) denotes the valuation port-
folio with the expected cash flows (Lt is replaced by its mean lt).

If we allow for a stochastic survival in period (50, 51] we have the following
deviations from the expected VaPo (deterministic insurance technical risks):
For t = 51 we obtain the following deviations form the expected payments

(D50 − d50)
(
I + Put(51)

(
I, (1 + i)1

))
, (3.21)

(l51 − L51) Π Z(51), (3.22)

(L51 − l51)
VaPo(X(52))

l51
, (3.23)

if VaPo(X(52)) denotes the deterministic cash flows of our endowment policy
after time t = 51 (according to Section 3.2). This means that we have devi-
ations in the payments at time t = 51 due to the stochastic mortality, and
then at t = 51, we start with a new basis of L51 insured lives (instead of l51),
which gives a new expected VaPo after time t = 51 of (use the linearity of the
VaPo)

L51

VaPo(X(52))
l51

. (3.24)

Using (3.19) and equations (3.21)-(3.23) we see that we need additional re-
serves of

(D50 − d50)
(
I + Put(51)

(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

)
(3.25)

for the deviations from the expected mortality table within (50, 51]. Note that
this deviation is stochastic seen from time t = 50. Hence the portfolio at risk
is
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I + Put(51)
(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

. (3.26)

We can now iterate this procedure:
For t = 52 we have the following deviation from the expected VaPo. The
expected VaPo starts now after t = 51 with the new basis of L51 insured lives
(we have to build the additional VaPo reserves for the new basis in (3.25)).
Note that conditionally, given L51, we expect q51L51 persons to die within
the time interval (51, 52] and we observe D51 at time t = 52. This gives the
following deviations

(D51 − q51 L51)
(
I + Put(52)

(
I, (1 + i)2

))
, (3.27)

(p51 L51 − L52) Π Z(52), (3.28)

(L52 − p51 L51)
VaPo(X(53))

p51 L51

L51

l51
, (3.29)

where the last term can be simplified to

VaPo(X(53))
p51 L51

L51

l51
=

VaPo(X(53))
l52

. (3.30)

Hence we need for the deviation in (51, 52] additional reserves of

(D51 − q51 L51)
(
I + Put(52)

(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

)
.

(3.31)

And analogously for t = 53, 54, 55 we obtain the deviations

(D52 − q52 L52)
(
I + Put(53)

(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

)
,

(D53 − q53 L53)
(
I + Put(54)

(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

)
,

(D54 − q54 L54)
(
I + Put(55)

(
I, (1 + i)5

)
− I
)

. (3.32)

Remark. One can see that when adding up the terms inside in (3.25) and
(3.31)-(3.32) the unit I cancels since VaPo(X(t+1)) contains exactly lt units
of I for t = 50. This is immediately clear because the number of units I we
need to buy at the beginning of the policy does not depend on the mortality
table (see Valuation Scheme B on page 46), i.e. no matter whether a person
dies or stays alive it receives I.

Hence we find the following portfolios at risk:
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t = 51 : I + Put(51)
(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

,

t = 52 : I + Put(52)
(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

,

t = 53 : I + Put(53)
(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

, (3.33)

t = 54 : I + Put(54)
(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

,

t = 55 : I + Put(55)
(
I, (1 + i)5

)
− I.

The interpretation of (3.33) is the following. Consider for example the period
(52, 53], if more people die than expected (D52 > q52 L52) we have to pay an
additional death benefit of

(D52 − q52 L52)
(
I + Put(53)

(
I, (1 + i)3

))
. (3.34)

On the other hand for all these people the contracts are terminated which
means that our liabilities are reduced by

(D52 − q52 L52)
(
−Π Z(53) +

VaPo(X(54))
l53

)
. (3.35)

These insurance technical risks are now protected against adverse develop-
ments by adding a security loading. This gives us the following reinsurance
premium loadings as a portfolio:

RPP50 = l50 (q∗50 − q50)(
I + Put(51)

(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

)
,

RPP51 = l51 (q∗51 − q51)(
I + Put(52)

(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

)
,

RPP52 = l52 (q∗52 − q52)(
I + Put(53)

(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

)
,

RPP53 = l53 (q∗53 − q53)(
I + Put(54)

(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

)
,

RPP54 = l54 (q∗54 − q54)
(
I + Put(55)

(
I, (1 + i)5

)
− I
)

, (3.36)

where q∗t − qt denote the loadings charged by the reinsurer against insurance
technical risks, and lt is the number of units we need to buy. Here, q∗t can be
interpreted as the yearly renewable term (YRT) rates charged by the reinsurer.
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Valuation Portfolio protected against insurance technical risks is now
defined as

VaPoprot (X) = VaPo (X) +
54∑

t=50

RPPt. (3.37)

Remarks.

• For a monetary reinsurance premium we need to apply an accounting
principle At to the reinsurance premium portfolio (yearly renewable term):

ΠR
t = At (RPPt) (3.38)

= lt (q∗t − qt)

×At

(
I + Put(t+1)

(
I, (1 + i)t−50+1

)
+ ΠZ(t+1) −

VaPo(X(t+2))
lt+1

)
.

• The last term in (3.38) highlights that the choice of the loadings q∗t − qt

needs some care. The monetary value of the portfolio at risk (3.33) may
have both signs. Therefore the sign of the loading may depend on the
monetary value of the portfolio at risk. For example, for death benefits
we decrease the survival probabilities pt, whereas for annuities we increase
the survival probabilities.

• There are different possibilities to determine the premium: We could
choose an actuarial accounting principle Dt or an economic accounting
principle Et (which gives an economic yearly renewable term, see also page
48). This idea opens interesting new reinsurance products: Offer a rein-
surance cover against insurance technical risks in terms of a valuation
portfolio.

• A static hedging strategy is to invest the reinsurance premium into the
valuation portfolios of the reinsurer.

3.5.2 Probability distortion of life tables

The choice of the death probabilities q∗t may look artificial at the first sight.
They often come from a first order life table. A first order life table refers to
survival or death probabilities that are chosen prudent (i.e. with some safety
margin), whereas the second order life table refers to best-estimate survival
and death probabilities. However, the choice of a first order life table fits
perfectly into our modelling framework. Indeed, the first order life tables can
be explained by probability distortions: In (2.105) we have considered the
term Λt,k = 1

ϕ
(T )
t

E
[
ϕ

(T )
k Λk

∣
∣
∣ Tt

]
, k > t, referring to the price of the insurance

cover in units.

To explain this term, we revisit our Example 3.1 with a stochastic mortality
table: for illustrative purposes we choose t = 52. The σ-field T52 tells us that
there are L52 persons alive at time t = 52, i.e. L52 is T52-measurable. Moreover,
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we choose k = 53 and we assume that Λ53 models the death benefit. Thus we
study (set ϕ

(T )
52 = 1)

E
[
ϕ

(T )
53 Λ53

∣
∣
∣ T52

]
= E

[
ϕ

(T )
53 D52

∣
∣
∣ T52

]
, (3.39)

which describes for how many financial units we build insurance technical
reserves.

In a first step we choose ϕ
(T )
53 ≡ 1, then we obtain

E
[
ϕ

(T )
53 Λ53

∣
∣
∣ T52

]
= E [D52| T52] = q52 L52, (3.40)

i.e. q52 describes the single death probability within (52, 53] and (3.40) leads
to the VaPo that covers expected liabilities.

We now model the probability distortion (insurance technical deflator)
ϕ

(T )
53 so that we obtain the first order life table q∗52. Note that

E
[
ϕ

(T )
53 Λ53

∣
∣
∣ T52

]
= E

[
ϕ

(T )
53 D52

∣
∣
∣ T52

]
=

L52∑

i=1

E
[
ϕ

(T )
53 Ii

∣
∣
∣ T52

]
, (3.41)

where Ii is the indicator whether person i dies within (52, 53].
We assume that single life times (of persons all of the same age) are i.i.d.

Then we assume that the probability distortion ϕ
(T )
53 is of the form

ϕ
(T )
53 =

L52∏

i=1

ϕ
(T )
53 (Ii), (3.42)

such that each factor of this product has expectation 1. Henceforth, we write

L52∑

i=1

E
[
ϕ

(T )
53 Ii

∣
∣
∣ T52

]
=

L52∑

i=1

E
[
ϕ

(T )
53 (Ii) Ii

∣
∣
∣ T52

]
. (3.43)

The factors of the probability distortions are now chosen as follows: Take
q∗52 ∈ (0, 1) and define

ϕ
(T )
53 (1) =

q∗52
q52

, (3.44)

ϕ
(T )
53 (0) =

1 − q∗52
1 − q52

. (3.45)

We then obtain the required normalization

E
[
ϕ

(T )
53 (Ii)

∣
∣
∣ T52

]
= q52

q∗52
q52

+ p52
1 − q∗52
1 − q52

= 1, (3.46)

and the first order life table
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E
[
ϕ

(T )
53 (Ii)Ii

∣
∣
∣ T52

]
= q52

q∗52
q52

= q∗52, (3.47)

i.e., note that we have set ϕ
(T )
52 = 1, and

E
[
ϕ

(T )
53 Λ53

∣
∣
∣ T52

]
= q∗52 L52. (3.48)

In other words the transition from the second order life table pt to the first
order life table p∗t exactly refers to a probability distortion ϕ

(T )
t+1.

Exercise 3.2 (Life-Time Annuity).

Consider a life-time annuity for a man aged x at time 0. We assume that the
life-time annuity contract is paid by a single premium installment π0 at the
beginning of the insurance period (initial lump sum) and that the insured
receives an annual payment of M until he dies.

• Determine the valuation portfolio VaPo based on the second order life
table pt, t ≥ x.

• Calculate the portfolios at risk and the VaPo protected against insurance
technical risks.

• Determine the sign of the loadings p∗t − pt.
• Express the second order life table p∗t with the help of probability distor-

tions ϕ
(T )
t+1. �

3.6 Back to the basic model

In Chapter 2 we have chosen a deflator

ϕ = (ϕ0, . . . , ϕn) ∈ L2
n+1(P, F) (3.49)

to value cash flows X = (X0, . . . , Xn) ∈ L2
n+1(P, F). The basic assumption

was that ϕ and X are F-adapted. Moreover, we have assumed that on our
filtered probability space (Ω,F , P, F) we can decompose F into independent
filtrations T and G such that

Xk = Λk U
(k)
k , (3.50)

ϕ = ϕ(T ) ϕ(G), (3.51)

where Λ,ϕ(T ) ∈ L2
n+1(P, T ) and ϕ(G), (U (k)

t )t=0,...,n ∈ L2
n+1(PG ,G) for all

k = 0, . . . , n, see Assumption 2.15. This means that we can split the problem
into two independent problems, one measuring insurance technical risks T
and one describing (financial) price processes on G.



3.6 Back to the basic model 57

To avoid ambiguity we have assumed that the expectation of the proba-
bility distortion is 1, (see also (2.100))

E
[
ϕ

(T )
t

]
= 1 (3.52)

for all t = 0, . . . , n, and moreover, we have assumed that (ϕ(T )
t )t=0,...,n is a

T -martingale under P , see (2.101).

The VaPo construction in this chapter has now led to a multidimensional
approach, i.e. the cash flow X ∈ L2

n+1(P, F) is decomposed into a vector
consisting of different financial instruments/units (see also (3.2))

X �→
p∑

i=1

Λi(X) Ui, (3.53)

if U1, . . . ,Up represent the p financial instruments by which X can be de-
scribed, and Λi the (random) number of units Ui needed. The value/price
process of Ui is denoted by (U (i)

t )t=0,...,n and is independent of T . If we now
use vector notation, (3.53) can be rewritten as (we have linear mappings)

X =

⎛

⎜
⎜
⎜
⎝

X0

X1

...
Xn

⎞

⎟
⎟
⎟
⎠

�→
p∑

i=1

⎛

⎜
⎜
⎜
⎝

Λi(X0)
Λi(X1)

...
Λi(Xn)

⎞

⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎝

Ui

Ui

...
Ui

⎞

⎟
⎟
⎟
⎠

, (3.54)

where Xt = Xt Z(t) = (0, . . . , 0, Xt, 0, . . . , 0).

For the VaPo construction seen from time 0 we have then replaced
the random Λi(Xk) by deterministic numbers (expected values):

Λi(Xk) �→ li,k = l
(0)
i,k = E [Λi(Xk)| T0] . (3.55)

If Λi(Xk) is deterministic as in Section 3.1, then we have Λi(Xk) = λi(Xk) =
li,k (see (3.2)).

For the VaPo protected against insurance technical risks (seen from
time 0) we replace Λi(Xk) by the following deterministic numbers (distorted
expected values):

Λi(Xk) �→ l∗i,k = l∗,0
i,k = E

[
ϕ

(T )
k Λi(Xk)

∣
∣
∣ T0

]
, (3.56)

which adds a loading to li,k for insurance technical risks. If Λi(Xk) is de-
terministic as in Section 3.1, i.e. X ∈ L2

n+1(P,G), then we have Λi(Xk) =
λi(Xk) = li,k = l∗i,k due to (2.100), i.e. we do not need a loading for insurance
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technical risks. The loading in l∗i,k could also have been chosen directly, not
via the definition of a probability distortion. This gives now

VaPo (X) =
p∑

i=1

⎛

⎜
⎝

li,0
...

li,n

⎞

⎟
⎠

T ⎛

⎜
⎝

Ui

...
Ui

⎞

⎟
⎠ . (3.57)

This can also be written as

VaPo (X) =
p∑

i=1

li Ui, (3.58)

with

li =
n∑

t=0

li,t. (3.59)

The VaPo protected against insurance technical risks is given by

VaPoprot (X) =
p∑

i=1

⎛

⎜
⎝

l∗i,0
...

l∗i,n

⎞

⎟
⎠

T ⎛

⎜
⎝

Ui

...
Ui

⎞

⎟
⎠ , (3.60)

or equivalently

VaPoprot (X) =
p∑

i=1

l∗i Ui, (3.61)

with

l∗i =
n∑

t=0

l∗i,t. (3.62)

Remark. Observe that (3.57) and (3.58) provide two representations for
VaPo (X). Firstly, we have the cash flow representation, which corresponds
to Valuation Scheme A in Section 3.2. That is, (3.57) implies

VaPo (X) =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

T ⎛

⎜
⎝

∑p
i=1 li,0 Ui

...∑p
i=1 li,n Ui

⎞

⎟
⎠ . (3.63)

Secondly, we have the instrument representation (3.58) which corresponds
to Valuation Scheme B in Section 3.2.

Analogously, we have the two representations (3.60) and (3.61) for the
VaPo protected against insurance technical risks VaPoprot (X).

For many purposes the instrument representation (3.58) of the VaPo suf-
fices. Sometimes, however, it may be necessary to work with the cash flow
representation (3.63), see for example Section 3.7 below.
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Applying an accounting principle A0 to the VaPo (or equivalently to the
financial instruments Ui) gives then a monetary value for the basic reserves
at time 0.

Remark. It is important to see that the valuation portfolio construction in
(3.55) is seen from time 0. If the cash flows have no insurance technical risks
(as in Section 3.3) there are no deviations in Λi(X) over time, which means
that li,k is constant in time. But if we have insurance technical risks involved,
then

l
(m)
i,k = E [Λi(Xk)| Tm] , (3.64)

l∗,m
i,k =

1

ϕ
(T )
m

E
[
ϕ

(T )
k Λi(Xk)

∣
∣
∣ Tm

]
(3.65)

are functions of time (see also Chapter 6). This then leads to time dependent
valuation portfolios

VaPo(m) (X) and VaPoprot
(m) (X) . (3.66)

We then also need to study the changes in these valuation portfolios over time,
i.e.

VaPo(m) (X) − VaPo(m−1) (X) (3.67)

and
VaPoprot

(m) (X) − VaPoprot
(m−1) (X) , (3.68)

which considers the update of information Tm−1 �→ Tm and is similar to
the claims development result in non-life insurance, see for example Merz-
Wüthrich [MW08] and Salzmann-Wüthrich [SW10].

3.7 Approximate valuation portfolio

In Section 3.2 we have constructed the VaPo for a rather simple example.
We have considered a small homogeneous portfolio and its liabilities were
easily described by financial instruments. In practice the situation is often
more complicated. Life insurance companies have high-dimensional portfolios
which usually involve embedded options and guarantees as well as manage-
ment decisions. I.e. the valuation portfolio becomes path dependent and the
determination of the liability cash flows and the appropriate financial instru-
ments is not straightforward. In such situations one often tries to approximate
the VaPo by a financial portfolio. Here, we will define the approximate VaPo
(denoted by VaPoapprox) which plays the role of a replicating portfolio.

Let us choose a filtered probability space (Ω,Fn, P, F) and assume that
we have an insurance liability cash flow X ∈ L2

n+1(P, F).
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In order to construct an approximate VaPo we choose a set of basic trad-
able financial instruments U1, . . . ,Uq from which we believe that they can
replicate the liabilities in an appropriate way and for which we can easily
describe their price processes

U
(i)
t = At(Ui), for t = 0, . . . , n, (3.69)

i.e. we want to choose q financial instruments for which we have a good un-
derstanding.

We now want to approximate the cash flow representation (3.63) of

VaPo (X) =
n∑

k=0

VaPo (Xk) . (3.70)

That is, for all single cash flows Xk, k = 0, . . . , n, our goal is to choose yk ∈ R
q

such that

VaPo (Yk) =
q∑

i=1

yi,k Ui (3.71)

approximates VaPo (Xk). Or in vector notation, we choose y ∈ R
q×(n+1) such

that

VaPo (Y) =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

T ⎛

⎜
⎝

∑q
i=1 yi,0 Ui

...∑q
i=1 yi,n Ui

⎞

⎟
⎠ (3.72)

approximates VaPo (X), see (3.63). That is, our aim is to choose y ∈ R
q×(n+1)

such that X and Y are “close”. Of course, close will depend on some distance
function.

If there is no insurance technical risk and if U1, . . . ,Uq is a complete finan-
cial basis for the liabilities we can achieve

X = Y P -a.s. (3.73)

In general, we are not able to achieve (3.73) nor is it possible to evaluate the
random vectors X and Y for all sample points ω ∈ Ω. Therefore, one then
chooses a finite set of so-called scenarios ΩK = {ω1, . . . , ωK} ⊂ Ω and one
evaluates the random vectors X and Y in these scenarios. We introduce a
distance function

dist (X(·),Y(·), ΩK) ∈ R, (3.74)

then the approximate valuation portfolio is given by

y∗ = arg min
y∈Rq×(n+1)

dist (X(·),Y(·), ΩK) , (3.75)

and for k = 0, . . . , n we obtain
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VaPoapprox (Xk) =
q∑

i=1

y∗
i,k Ui, (3.76)

or, respectively,

VaPoapprox (X) =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

T ⎛

⎜
⎝

∑q
i=1 y∗

i,0 Ui

...∑q
i=1 y∗

i,n Ui

⎞

⎟
⎠ (3.77)

Remark. It is important to realize that the approximate valuation port-
folio y∗ depends on the choice of (a) the financial instruments U1, . . . ,Uq,
(b) the choice of the scenarios ΩK , and (c) the choice of the distance func-
tion. Based on the purpose of the approximate valuation portfolio (e.g. profit
testing, solvency, extremal behaviour) these choices will vary and there is no
obvious best choice.

Example 3.3 (Cash flow matching).

We assume that we want to match the entire cash flow X as good as possible
and we use the L2-distance measure. Assume that there are positive deter-
ministic weight functions χt : ΩK → R+ given for t = 0, . . . , n. Our distance
function is defined by

dist (X(·),Y(·), ΩK) =
K∑

k=1

n∑

t=0

χt(ωk) (Xt(ωk) − Yt(ωk))2 . (3.78)

For χt(·) we can make different choices. Often one wants to account for time
values, therefore one chooses the financial deflator ϕ(G) (see Assumption 2.15)
and a normalized positive deterministic weight function p : ΩK → R+ with∑K

k=1 p(ωk) = 1 and defines for t = 0, . . . , n

χt(ωk) = p(ωk)
(
ϕ

(G)
t (ωk)

)2

. (3.79)

The distance function is then rewritten as

dist (X(·),Y(·), ΩK) =
K∑

k=1

p(ωk)
n∑

t=0

(
ϕ

(G)
t (ωk)

)2

(Xt(ωk) − Yt(ωk))2

= EK

[
n∑

t=0

(
ϕ

(G)
t Xt − ϕ

(G)
t Yt

)2
]

, (3.80)

where EK denotes the expected value under the discrete probability measure
PK which assigns probability weight p(ωk) to the scenarios in ΩK .

The distance function defined in (3.80) tries to match pointwise in time the
values of the cash flows X and Y as good as possible. Other approaches often



62 3 Valuation portfolio in life insurance

work under equivalent probability measures (risk neutral measures or forward
measures) so that the discount factors become measurable at the beginning
of the corresponding periods. �
Exercise 3.4.

Calculate the approximate valuation portfolio explicitly under distance func-
tion (3.80).

Hint: Note that we have a quadratic form in (3.80). Set the gradient equal to
zero and calculate the Hessian matrix (see Ingersoll [Ing87], formula (37) on
page 8). �
Example 3.5 (Time value matching).

We assume that we want to match the time value of X as good as possible and
we use the L2-distance measure. For a positive deterministic weight function
χt similar to (3.79) we define the distance function

dist (X(·),Y(·), ΩK) =
K∑

k=1

p(ωk)

{
n∑

t=0

ϕ
(G)
t (ωk) (Xt(ωk) − Yt(ωk))

}2

= EK

⎡

⎣

(
n∑

t=0

ϕ
(G)
t Xt − ϕ

(G)
t Yt

)2
⎤

⎦ , (3.81)

where EK denotes the expected value under the discrete probability measure
PK which assigns probability weight p(ωk) to the scenarios in ΩK .

The distance function defined in (3.81) tries to match time value of entire
cash flows X and Y as good as possible. Note that the difference is, that we
match the entire time value of X in (3.81) whereas in (3.80) we match cash
flow Xk individually in k. �
Exercise 3.6.

Calculate the approximate valuation portfolio explicitly under distance func-
tion (3.81).

Hint: Note that we have a quadratic form in (3.81). Set the gradient equal to
zero and calculate the Hessian matrix (see Ingersoll [Ing87], formula (37) on
page 8). �
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3.8 Conclusions on Chapter 3

We have decomposed the cash flow X in a two-step procedure:

1. Choose a multidimensional vector space whose basis consists of financial
instruments U1, . . . ,Up.

2. Express the cash flow X as a vector in this vector space. The number
of each unit is determined by the expected number of units (where the
expectation is calculated with possibly distorted probabilities).

Calculating the monetary value of the valuation portfolio is then the third
step where we use an accounting principle to give values to the vectors in the
multidimensional vector space.

We should mention that we have constructed our VaPo for a very basic
example. In practice the VaPo construction is much more difficult because,
for example, (a) modelling embedded options and guarantees can become very
difficult, see Section 3.7; (b) often one has not the necessary information on
single policies in the portfolio (e.g. collective policies). Moreover, in practice
one faces a lot of problems about data storing and data management since
the volume of the data can become very large.

Finally, we mention that we can also construct the VaPo if the financial
instruments do not exist on the financial market, e.g. a 41-years zero coupon
bond. The VaPo construction still works. However, calculating the monetary
value of the VaPo is not straightforward if the instruments do not exist on
the financial market.

3.9 Examples

In this section we give a numerical example to the deterministic Example
3.1 (endowment insurance policy). Note that the mathematical details for the
evaluation of the accounting principles are given in Chapter 4, below.

For the deterministic mortality table we choose Table 3.1.

time survival death

50 l50 = 1′000
51 l51 = 996 d50 = 4
52 l52 = 991 d51 = 5
53 l53 = 986 d52 = 5
54 l54 = 981 d53 = 5
55 l55 = 975 d54 = 6

Table 3.1. Deterministic mortality table, portfolio of 1’000 insured lives
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Example 3.7 (Equity-linked life insurance).

We choose an equity-linked life insurance product. Assume that (Is)s denotes
the price process of the equity index I (see (4.9)) in the economic world E .
That is, we choose an accounting principle E that corresponds to financial
market prices, moreover Es denotes these market prices at time s, henceforth

Is = Es (I) = E (I| Gs) , (3.82)

and that Z
(t)
s = P (s, t), s = 0, . . . , t, denotes the price process of the zero

coupon bond paying 1 at time t. I.e.

Z(t)
s = Qs

[
Z(t)

]
= Q

[
Z(t)

∣
∣
∣Gs

]
= Es

(
Z(t)

)
= E

(
Z(t)

∣
∣
∣Gs

)
, (3.83)

where Z(t) is the cash flow of the zero coupon bond Z(t) (see (4.10)). Assume
that the zero coupon bond yield curves R(s, t) (continuously-compounded
spot rates) at time s ≤ t are given by

Z(t)
s = exp {−(t − s) R(s, t)} ⇐⇒ R(s, t) = − 1

t − s
log Z(t)

s . (3.84)

Considering historical data we observe (source of zero coupon bond yield
curves given by the Schweizerische Nationalbank [SNB]): see Table 3.2.

R(s, t)
s ln(Is/Is−1) t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

1996 12.99% 1.94% 2.42% 2.79% 3.12% 3.42%
1997 13.35% 1.82% 1.92% 2.20% 2.48% 2.74%
1998 22.11% 1.71% 1.81% 1.95% 2.10% 2.27%
1999 5.41% 2.21% 2.06% 2.21% 2.31% 2.42%
2000 2.02% 3.37% 3.52% 3.53% 3.56% 3.60%
2001 8.60% 2.00% 2.85% 2.90% 2.96% 3.02%
2002 -12.41% 0.69% 1.84% 2.14% 2.38% 2.57%
2003 -14.83% 0.58% 0.79% 1.14% 1.46% 1.72%
2004 15.87% 0.99% 1.11% 1.42% 1.70% 1.94%
2005 1.83% 1.41% 1.14% 1.32% 1.48% 1.62%

average 5.49% 1.67% 1.95% 2.16% 2.35% 2.53%

Table 3.2. Equity index and yield curve of the zero coupon bond

We assume that our endowment insurance policy starts in year 2000, i.e. we
identify the starting point at age x = 50 with the year t0 = 2000.

Assume that the guaranteed interest rate is i = 2%.
To adopt the option pricing formula to the case of non-constant interest

rates we transform our price process Is by a change of numeraire (see also
Subsection 4.3.2) and consider for t0 ≤ s ≤ t

Ĩs =
Is

Z
(t)
s

for fixed t, (3.85)
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that is, we consider the t-forward risk neutral measure for the zero-coupon
bond numeraire Z

(t)
s , see for example Section 2.5 in Brigo-Mercurio [BM06].

Now we need to choose a stochastic model for the price process Ĩs: In order
to apply classical financial mathematics we switch to a continuous time model.
We assume that, under the t-forward risk neutral measure, Ĩs is a martingale
satisfying the following stochastic differential equation

dĨs = σ Ĩs dWs, (3.86)

where Ws is a standard Brownian motion under the t-forward risk neutral
measure. Hence using Ito calculus, Ĩs can be rewritten as follows (see e.g. Sub-
section 3.4.3 in Lamberton-Lapeyre [LL91])

Ĩs = Ĩt0 exp
{
−σ2

2
(s − t0) + σ Ws−t0

}
. (3.87)

Using the general option pricing formula for European put options (see
e.g. Section 9.4 in Elliott-Kopp [EK99]) we obtain the price process

Es

(
Put(t)

(
I, (1 + i)t−t0

))
= K(t)

s Φ (−d2(s, t)) − Is Φ (−d1(s, t)) , (3.88)

with Φ standard Gaussian distribution and

K(t)
s = (1 + i)t−t0 Z(t)

s , (3.89)

d1(s, t) =
log
(
Is/K

(t)
s

)
+ σ2(t − s)/2

σ
√

t − s
, (3.90)

d2(s, t) = d1(s, t) − σ
√

t − s. (3.91)

Remark. For Z
(t)
s = exp{−r (t − s)} with r > 0 constant, (3.88) is the

well-known Black-Scholes formula.

We choose Is and Z
(t)
s according to Table 3.2 with It0 = 1 and σ = 15% and

obtain the following prices for the put options (observe that in year t0 = 2000
we have a rather high yield R(t0, t), which gives a low price for our put option):
see Table 3.3.

t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

s = 2000 0.053 0.069 0.080 0.088 0.093
s = 2001 0.034 0.051 0.066 0.076
s = 2002 0.117 0.131 0.144
s = 2003 0.249 0.267
s = 2004 0.140

Table 3.3. Prices put options Es(Put(t)(I, (1 + i)t−t0))
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Now we calculate the monetary value of the valuation portfolio of X: As-
sume that the survival and death benefit (before index-linking) equal 100’000.
Hence we require (premium equivalence principle)

Et0 (VaPo (X)) = Qt0 [X]
(!)
= 0, (3.92)

which gives the market-consistent pure risk premium Π = 21′667 (per policy).
Now we consider the valuation portfolios at different times t0 ≤ s ≤ t− 1.

Denote by X(s+1) = (0, . . . , Xs+1, . . . , Xt) the cash flow (outstanding liabili-
ties) after time s.

E(+)
s = Es

(
VaPo

(
X(s+1)

)
− l50+s−t0 Π Z(s)

)
(3.93)

= Es

(
VaPo

(
X(s+1)

))
− l50+s−t0 Π = Qs

[
X(s+1)

]
− l50+s−t0 Π,

is the monetary value before the premium l50+s−t0 Π has been paid at time
s, and

E(−)
s = Es

(
VaPo

(
X(s+1)

))
= Qs

[
X(s+1)

]
, (3.94)

is the monetary value after the premium l50+s−t0 Π has been paid at time s.
Of course E(+)

t0 = Et0 (VaPo (X)) = 0 (premium equivalence principle). This
gives the following results for the monetary values of the valuation portfolios:
see Table 3.4.

E(+)
s E(−)

s

s = 2000 0 21’666’637
s = 2001 26’370’714 47’950’684
s = 2002 32’423’186 53’894’823
s = 2003 39’619’061 60’982’365
s = 2004 74’244’766 95’499’737

Table 3.4. Development of the monetary values of the valuation portfolios

For the valuation portfolio protected against insurance technical risks, we
proceed as follows: we define pt and qt as in (3.20). Moreover we choose q∗t =
1.5 · qt (first order life table). Hence we consider the premium for the yearly
renewable term ΠR

s defined in (3.38) for our accounting principle Et0 . This
gives the following monetary reinsurance loadings at time t0: see Table 3.5.

ΠR
s

s = 2000 167’885
s = 2001 162’340
s = 2002 115’180
s = 2003 68’723
s = 2004 27’818

Table 3.5. monetary yearly renewable terms premium

�
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Example 3.8 (Wage index).

In non-life insurance the products are rather linked to other indices like the
inflation index, wage index, the consumer price index or a medical expenses
index. As index we choose the wage index (source Schweizerische Nationalbank
[SNB]): see Table 3.6.

R(s, t)
s Is

Is−1
− 1 t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

1996 1.30% 1.94% 2.42% 2.79% 3.12% 3.42%
1997 1.26% 1.82% 1.92% 2.20% 2.48% 2.74%
1998 0.47% 1.71% 1.81% 1.95% 2.10% 2.27%
1999 0.69% 2.21% 2.06% 2.21% 2.31% 2.42%
2000 0.29% 3.37% 3.52% 3.53% 3.56% 3.60%
2001 1.26% 2.00% 2.85% 2.90% 2.96% 3.02%
2002 2.48% 0.69% 1.84% 2.14% 2.38% 2.57%
2003 1.79% 0.58% 0.79% 1.14% 1.46% 1.72%
2004 1.40% 0.99% 1.11% 1.42% 1.70% 1.94%
2005 0.93% 1.41% 1.14% 1.32% 1.48% 1.62%

average 1.19% 1.67% 1.95% 2.16% 2.35% 2.53%

Table 3.6. Wage inflation index and yield curve of the zero coupon bond

This time we choose as minimal guaranteed interest rate of i = 1.5%. For
the volatility we choose σ = 1%. This implies that the market-consistent pure
risk premium Π equals Π = 21′624 (per policy) and the prices for the put
options can be found in Table 3.7.

t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

s = 2000 1.16 · 10−4 8.26 · 10−6 8.42 · 10−7 7.36 · 10−8 4.74 · 10−9

s = 2001 2.82 · 10−3 2.28 · 10−4 6.14 · 10−5 1.39 · 10−5

s = 2002 4.60 · 10−3 1.21 · 10−3 4.75 · 10−4

s = 2003 3.72 · 10−3 8.27 · 10−3

s = 2004 2.43 · 10−3

Table 3.7. Put option prices Es(Put(t)(I, (1 + i)t−t0))

Observe that the premium Π and the put prices are smaller in the wage
index example than in the equity-linked example. This comes from the fact
that the choice of σ is much smaller in the second example.

The monetary values of the valuation portfolios are provided in Table 3.8.

E(+)
s E(−)

s

s = 2000 0 21’624’505
s = 2001 18’723’288 40’261’295
s = 2002 39’780’582 61’210’467
s = 2003 61’740’997 83’062’759
s = 2004 83’857’251 105’070’890

Table 3.8. Development of the monetary values of the valuation portfolios
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And the reinsurance loadings are given in Table 3.9.

ΠR
s

s = 2000 157’404
s = 2001 145’186
s = 2002 95’278
s = 2003 46’890
s = 2004 0.0014

Table 3.9. Monetary yearly renewable terms premium

The reinsurance premium looks rather small compared to the pure risk
premium lt Π Z

(s)
t0 . This comes from the fact that σ is rather small, that

the minimal guarantee i = 1.5% is rather low compared to the yield R(t0, ·)
in year t0 = 2000, and from the fact the randomness of Dt is rather small
compared to the total volume lt. �
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