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Preface to the first edition

The balance sheet of an insurance company is often difficult to interpret.
This derives from the fact that assets and liabilities are measured by different
yardsticks. Assets are mostly valued at market prices; liabilities - as far as
they relate to contractual obligations to the insured - are measured by es-
tablished actuarial methods. Since, in general, there is no trading market for
insurance policies, the question arises how these actuarial methods need to be
changed to give values - as if these markets existed. The answer to this ques-
tion is “Market-Consistent Actuarial Valuation”. These lecture notes explain
the logical mathematical framework that leads to market-consistent values for
insurance liabilities.

In Chapter 1 we motivate the use of market-consistent values. Solvency
requirements by regulators are one major reason for it.

Chapter 2 introduces stochastic discounting, which in a market-consistent
actuarial valuation framework replaces discounting with the classical technical
interest rate. In this chapter we introduce the notion of “Financial Variables”,
(which follow the laws of financial markets) and the notion of “Technical
Variables”, (which are purely depending on insurance events).

In Chapter 3 the concept of the “Valuation Portfolio” (VaPo) is introduced
and explained in the life insurance context. The basic idea is not to calculate
in monetary values but in units, which are appropriately chosen financial
instruments. For life insurance products this choice is quite natural. The risk
due to technical variables is included in the protected (against technical risk)
VaPo, denoted by VaPoprot.

Financial risk is treated in Chapter 4. It derives from the fact that the ac-
tual investment portfolio of the insurance company differs from the VaPoprot.
Ways to control the financial risk are - among others - derivative securities
such as Margrabe Options and/or (additional) Risk Bearing Capital.

In Chapter 5 the notion of the Valuation Portfolio (VaPo) and the pro-
tected (against technical risk) Valuation Portfolio (VaPoprot) is extended to
the non-life insurance sector. The basic difference to life insurance derives
from the fact that in property-casualty insurance the technical risk is much

V



VI Preface to the first edition

more important. The discussion of appropriate risk measures (in particular
the quadratic prediction error) is therefore a central issue.

The final Chapter 6 contains selected topics. We mention only the treat-
ment of the “Legal Quote” in life insurance.

These lecture notes stem from a course on Market-Consistent Actuarial
Valuation, so far given twice at ETH Zürich, namely in 2004/05 by HB and
HJF and in 2006 by MW and HJF. MW has greatly improved on the first
version of these notes. But obviously also this version is not to be considered
as final. For this reason we are grateful that the newly created EAA Lecture
Notes series gives us the opportunity to share these notes with many friends
and colleagues, whom we invite to participate in the process of discussions
and further improvement of the present text as well as of further clarification
of our way of understanding and modelling.

The authors wish to thank Professor Paul Embrechts for his interest and
constant encouragement while they were working on this project. His support
has been a great stimulus for us.

It is also a great honour for us that our text appears as the first volume
of the newly founded EAA Lecture Notes series. We are grateful to Peter
Diethelm, who as Managing Director has been the driving force in getting
this series started.

Zürich, Mario Wüthrich
May 2007 Hans Bühlmann

Hansjörg Furrer



Preface to the second edition

The financial crisis of 2007-2010 has shown that the topic of market-consistent
valuation and solvency has nothing lost from its topicality. On the contrary
it has shown that we need a much deeper understanding of the models used,
their limitations, etc. in order to model real world problems. In this spirit the
first edition of these lecture notes has initiated a very active discussion among
academics and practitioners about actuarial modelling and the use of models.

Since the first edition of these notes this course was again held at ETH
Zurich in 2008 and 2010. Moreover, we have also presented part of these notes
in various European countries, such as Germany, UK, France, The Nether-
lands, Sweden. These presentations have stimulated several interesting dis-
cussions which we have implemented into the new version. The main new
features are:

In Chapter 2 we elaborate on the separation of financial deflators and prob-
ability distortions. For the financial deflator we then give an explicit simple
example in terms of the discrete time Vasicek model. Probability distortions
on the other hand can be understood in various ways. We give different ex-
amples that lead to the Esscher premium, to the cost-of-capital loading for
expected shortfall and to first order life tables (in Chapter 3).

In Chapter 3 we introduce the approximate valuation portfolio which is
useful in the case where we are not able to construct an exact valuation
portfolio. This is done using selected scenarios evaluated with the help of an
appropriate distance function. This is in line with the state-of-art concepts
used in life insurance practice.

Finally, in Chapter 6 we add two sections that discuss losses and gains from
insurance technical risks. This is closely related to the actual discussion of the
claims development result in non-life insurance, but of course also applies to
life insurance problems.

Zürich, Mario Wüthrich
May 2010 Hans Bühlmann

Hansjörg Furrer
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1

Introduction

1.1 Three pillar approach

The recent years have shown that (financial) companies need to have a good
management, a good business strategy, a good financial strength and a sound
risk management in order to survive financial distress periods. It is essential
that the risks are known, assessed, controlled and, whenever possible, quanti-
fied by the management and the respective specialist units.

Especially in the past few years, we have observed several failures of finan-
cial companies (for example Barings Bank, HIH Insurance Australia, Lehman
Brothers, Washington Mutual, etc.). From 1996 until 2002 many companies
were facing severe solvency and liquidity problems. As a consequence, super-
vision and politics have started several initiatives to analyze these problems
and to improve qualitative and quantitative risk management within the com-
panies (Basel II, Solvency 2 and local initiatives like the Swiss Solvency Test
[SST06], for an overview we refer to Sandström [Sa06]). The next financial
crisis of 2007-2010 however has shown that there is still a long way to go
(leading economists view this last financial crisis as the worst one since the
Great Depression of the 1930s). This crisis has (again) shown that risks need
to be understood and managed properly on the one hand, and on the other
hand that mathematical models, their assumptions and their limitations need
to be well-understood in order to solve real world problems.

Concerning insurance companies: the goal behind all the solvency initia-
tives is to protect the policyholder (and the injured third party, respectively)
from the consequences of an insolvency of an insurance company. Hence, in
most cases it is not primarily the object of the regulator to avoid insolven-
cies of insurance companies, but given an insolvency of an insurance company
occurs, the regulator has to ensure that all liabilities are covered with assets
and can be fulfilled in an appropriate way (this is not the shareholder’s point
of view).

One special project was carried out by the “London working group”. The
London working group has analyzed 21 cases of solvency problems (actual

M.V. Wüthrich et al., Market-Consistent Actuarial Valuation,
EAA Series,
DOI 10.1007/978-3-642-14852-1 1, © Springer-Verlag Berlin Heidelberg 2010
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2 1 Introduction

failures and ‘near misses’) in 17 European countries. Their findings can be
found in the famous Sharma Report [Sha02]. The main lessons learned are:

• In most cases bad management was the source of the problem.
• Lack of a comprehensive risk landscape
• Misspecified business strategies which were not adapted to local situations

From this perspective, what can we really do?
Sharma says: “Capital is only the second strategy of defense in a company,

the first is a good risk management”.
Supervision has started several initiatives to strengthen the financial ba-

sis and to improve risk management thinking within the industry and the
companies (e.g. Basel II, Solvency 2, Swiss Solvency Test [SST06], Laeven-
Valencia [LV08], Besar et al. [BBCMP09]). Most of the new approaches and
requirements are formulated in three pillars:

1. Pillar 1: Minimum financial requirements (quantitative requirements)
2. Pillar 2: Supervisory review process, adequate risk management (qualita-

tive requirements)
3. Pillar 3: Market discipline and public transparency

Consequences: regulators, academia as well as actuaries, mathematicians
and risk managers of financial institutions are in search for new solvency reg-
ulations. These guidelines should be risk-adjusted. Moreover they should be
based on a market-consistent valuation of the balance sheet (full balance
sheet approach).

From this perspective we derive the valuation portfolio which reflects a
market-consistent actuarial valuation of our balance sheet. Moreover, we de-
scribe the uncertainties within this portfolio which corresponds to a risk-
adjusted analysis of our assets and liabilities.

1.2 Solvency

The International Association of Insurance Supervisors IAIS [IAIS05] defines
solvency as follows

“the ability of an insurer to meet its obligations (liabilities) under all
contracts at any time. Due to the very nature of insurance business, it is
impossible to guarantee solvency with certainty. In order to come to a practi-
cable definition, it is necessary to make clear under which circumstances the
appropriateness of the assets to cover claims is to be considered, . . . ”.

Hence the aim of solvency is to protect the policyholder (or the injured
third party, respectively). As it is formulated in Swiss law: it is not the main
goal of the regulator to avoid insolvencies of insurance companies, but in
case of an insolvency the policyholder’s demands must still be met. Avoiding
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Fig. 1.1. Balance sheet of an insurance company

insolvencies must be the main task of the management and the board of an
insurance company. Moreover, modern risk-based solvency requirements will
ensure a certain stability of the financial market.

In this lecture we give a mathematical approach and interpretation to the
solvency definition of the IAIS [IAIS05].

Let us start with two definitions (see also Fig. 1.1):

1. Available Solvency Surplus (see [IAIS05]), or Risk Bearing Capital
RBC (see [SST06]) is the difference between the market-consistent value
of the assets minus the market-consistent value of the liabilities. This
corresponds to the Available Risk Margin, the Available Risk Capacity or
the Financial Strength of a company.

2. Required Solvency Margin (see [IAIS05]) or Target Capital TC (see
[SST06]) is the Required Risk Capital (from a regulatory point of view)
in order to be able to run the business such that also certain adverse
scenarios are covered (see solvency definition of the IAIS [IAIS05]). This
is the Necessary Risk Capacity, Required Risk Capacity or the Minimal
Financial Requirement for writing certain business.

Then, the general solvency requirement is:

TC
!!!
≤ RBC. (1.1)

Hence, given the amount of risk TC a company is exposed to, the regulators
require that this risk is bounded by the available surplus RBC. That is, RBC
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defines the risk capacity of a company, which has to be compared to the
required solvency margin TC.

Otherwise if (1.1) is not satisfied, the authorities force the company to take
certain actions to improve the financial strength or to reduce the risks within
the portfolio, such as: write less risky business, buy protection instruments
(like derivative securities), sell part of the business or even close the company,
and make sure that another company guarantees the smooth runoff of the
liabilities.

1.3 From the past to the future

A short overview on the historical developments of solvency requirements can
be found in Sandström [Sa07].

In the past, the evaluation of the Risk Bearing Capital RBC was not
based on market-consistent valuation techniques of assets and liabilities (for
example, insurance liabilities were measured by means of statutory accounting
principles). Moreover, the Target Capital TC was volume- and not risk-based.
For example, the Solvency 1 regulations in non-life insurance were simply of
the form

Target Capital TC = 16% of premium, (1.2)

and in traditional life insurance they are essentially given by

Target Capital TC = 4% of the mathematical reserves (financial risk)
+3� of capital at risk (technical risk). (1.3)

These solvency regulations are very simple and robust, easy to understand
and to use. They are rule-based but not risk-based. As such, they are not
tailored to the specifics of the written business and neglect the differences be-
tween the asset and the liability profiles. Moreover, risk mitigation techniques
such as reinsurance are only allowed to a limited extent as eligible elements
for the solvency margin.

Our goal in this lecture is to give a mathematical theory to a market-
consistent valuation approach. Moreover, our model builds a bridge of under-
standing between actuaries and asset managers. In the past, actuaries were
responsible for the liabilities in the balance sheet and asset managers were
concerned with the active side of the balance sheet. But these two parties
do not always speak the same language which makes it difficult to design a
successful asset and liability management (ALM) strategy. In this lecture we
introduce a language which allows actuaries and asset managers to communi-
cate in a successful way which leads to a canonical risk-adjusted full balance
sheet approach to the solvency problem.
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1.4 Full balance sheet approach

A typical balance sheet of an insurance company contains the following posi-
tions:

Assets Liabilities
cash and cash equivalents deposits
debt securities policyholder deposits

bonds reinsurance deposits
loans borrowings
mortgages money market

real estate hybrid debt
equity convertible debt

equity securities insurance liabilities
private equity mathematical reserves
investments in associates claims reserves

hedge funds premium reserves
derivatives derivatives

futures, swaptions, equity options
insurance and other receivables insurance and other payables
reinsurance assets reinsurance liabilities
property and equipment employee benefit plan
intangible assets provisions

goodwill
deferred acquisition costs

income tax assets income tax liabilities
other assets other liabilities

It is necessary that assets and liabilities are measured in a consistent way.
Market values have no absolute significance, depending on the purpose other
values may be better (for example statutorial values). But market values guar-
antee the switching property (at market price).

Applications of these lectures are found in:

• pricing and reserving of insurance products,
• value based management tools, dynamical financial analysis tools,
• risk management tools,
• for solvency purposes which are based on a market-consistent valuation,
• finding prices for trading insurance policies and for loss portfolio transfers.

In the past actuaries we have mostly been using deterministic models for
discounting liabilities. As soon as interest rates are assumed to be stochastic,
life is much more complicated. This is illustrated by the following example.
Let r > 0 be a stochastic interest rate, then (by Jensen’s inequality applied
to the convex function u(x) = (1 + x)−1)
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1 = E

[
1 + r

1 + r

]
�= E [1 + r] E

[
1

1 + r

]
> 1, (1.4)

that is, in a stochastic environment we cannot simply exchange the expec-
tation of the stochastic return 1 + r with the expectation of the stochastic
discount (1 + r)−1. This problem arises as soon as we work with random
variables. In the next chapter we define a consistent model for stochastic dis-
counting (deflating) cash flows.

1.5 Recent financial failures and difficulties

We close this chapter with some recent failures in the insurance industry.
This list is far from being complete. For instance, it does not contain compa-
nies which were taken over by other companies just before they would have
collapsed.

• 1988-1991: Lloyd’s London loss of more than USD 3 billion due to asbestos
and other health IBNR claims.

• 1991: Executive Life Insurance Company due to junk bonds.
• 1993: Confederation Life Insurance, Canada, loss of USD 1.3 billion due

to fatal errors in asset investments.
• 1997 Nissan Mutual Life, Japan, too high guarantees on rates cost 300

billion Yen.
• 2000: Dai-ichi Mutual Fire and Marine Insurance Company, Japan, is liq-

uidated, strategic mismanagement of their insurance merchandise.
• 2001: HIH Insurance Australia is liquidated due to loss of USD 4 billion.
• 2001: Independent Insurance UK is liquidated due to rapid growth, insuf-

ficient reserves and not adequate premiums.
• 2001: Taisei Fire and Marine, Japan, loss of 100 billion Yen due to large

reinsurance claims, e.g. world trade center September 11, 2001.
• 2002 Gerling Global Re, Germany, seemed to be undercapitalized and

underreserved for many years. Further problems arose by the acquisition
of Constitution Re.

• 2003: Equitable Life Assurance Society UK is liquidated due to concentra-
tion and interest rate risks.

• 2003: KBV Krankenkasse, Switzerland, is liquidated due to financial losses
caused by fraud.

This was the list presented in our first edition of the lecture notes in 2007.
Meanwhile we have many additional bad examples that have failed in the
financial crisis 2007-2010. For example, we may mention:

• Yamato Life Insurance, loss of 22 billion Yen.
• AIG, loss of USD 145 billion by August 2009, see Donnelly-Embrechts

[DE10].
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• In 2008: 25 US banks failed with, for example, Washington Mutual with
a loss of USD 307 billion.

• In 2009: 140 US banks failed.
• Investment banks have disappeared: Merrill Lynch, Lehman Brothers,

Bear Stearns, etc.
• Fraud cases like the Madoff Investment Securities LLC.

A detailed anatomy of the credit crisis 2007–2010 can be found in the Geneva
Reports [GR10].

This shows that the topic of the current lecture notes has not lost any of
its topicality and there is a strong need for sound quantitative methods (and
the understanding of their limitations).



2

Stochastic discounting

In this chapter we define a mathematically consistent model for calculating
time values of cash flows. The key objects are so-called deflators which play
the role of stochastic discount factors. Our definition (via deflators) leads
to market values which are consistent with the usual financial theory that
involves risk neutral valuation. Typically, in financial mathematics the pric-
ing formulas are based on equivalent martingale measures (see, for example,
Föllmer-Schied [FS04]), economists use the notion of state price density pro-
cesses (see Malamud et al. [MTW08]) and actuaries use the terminology of
deflators under the real world probability measure (see Duffie [Du96] and
Bühlmann et al. [BDES98]). In this chapter we describe these terminologies.

Moreover, we would like to emphasize that in financial mathematics one
usually works under risk neutral measures (equivalent martingale measures)
for pricing financial assets. In actuarial mathematics, however, one should also
understand the processes under the real world probability measure (physical
measure) which makes it necessary that we understand the connection between
these two probability measures as well as the transform of measure techniques.

2.1 Basic discrete time model

In this chapter we develop the theoretical foundations of market-consistent
valuation. We work in a discrete time setting which has the advantage that
the mathematical machinery becomes simpler for the calculation of the price
processes (for continuous time models we refer to the standard literature on
financial mathematics, see for example Jeanblanc et al. [JYC09]).

Choose n ∈ N fixed. This is the final time horizon. Then, w.l.o.g. we
consider cash flows on the yearly grid t = 0, 1, . . . , n.

We choose a probability space (Ω,F , P ) and an increasing sequence of
σ-fields F = (Ft)t=0,...,n with

M.V. Wüthrich et al., Market-Consistent Actuarial Valuation,
EAA Series,
DOI 10.1007/978-3-642-14852-1 2, © Springer-Verlag Berlin Heidelberg 2010
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http://dx.doi.org/10.1007/978-3-642-14852-1_2
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{∅, Ω} = F0 ⊂ F1 ⊂ . . . ⊂ Fn (2.1)

and for simplicity, we assume Fn = F . We call (Ω,F , P, F) a filtered proba-
bility space with filtration F. The σ-field Ft plays the role of the information
available/known at time t. This includes demographic information, insurance
technical information on insurance contracts, financial and economic informa-
tion and any other information (weather conditions, legal changes, politics,
etc.) that is available at time t.

Moreover, we assume that we have a sequence of F-adapted random vari-
ables

X = (X0, X1, . . . , Xn) (2.2)

on the filtered probability space (Ω,F , P, F). That is, Xt is an Ft-measurable
random variable for all t = 0, . . . , n.

Interpretation and aim. X is a (random) cash flow, with single pay-
ments Xt at time t. If we have information Ft, then Xk is known for all k ≤ t,
otherwise it may be random. Henceforth, on the one hand, we need to predict
future payments Xs, s > t, based on the information Ft available at time t.
On the other hand, our goal is to determine the (time) value of such cash
flows X at any time t = 0, . . . , n, see also Figure 2.1.

Fig. 2.1. Cash flow X = (X0, X1, . . . , Xn)

We make some technical assumptions.

Assumption 2.1 Assume that every component of X is square integrable.

For a general square integrable cash flow X = (X0, X1, . . . , Xn) we write

X = (X0, X1, . . . , Xn) ∈ L2
n+1(P ), (2.3)

where L2
n+1(P ) is a Hilbert space with
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E

[
n∑

t=0

X2
t

]
< ∞ for all X ∈ L2

n+1(P ), (2.4)

< X,Y > = E

[
n∑

t=0

XtYt

]
for all X,Y ∈ L2

n+1(P ), (2.5)

‖X‖ = < X,X >1/2 < ∞ for all X ∈ L2
n+1(P ). (2.6)

If the cash flow X = (X0, X1, . . . , Xn) is F-adapted and square integrable,
then we write

X = (X0, X1, . . . , Xn) ∈ L2
n+1(P, F). (2.7)

Technical remark. The equality ‖X − Y‖ = 0 implies that X = Y, P -a.s.
As usually done in Hilbert spaces, we identify random variables which are
equal P -a.s.

Example 2.1 (Life insurance).

We consider a general life insurance policy financed by a regular premium
income stream (Π0, . . . , Πn), where Πt denotes the premium payment made
at time t. Furthermore cash outflows comprise the expenses and the benefit
payments occurring in the time interval (t − 1, t]. If we map all cash flows
occurring in the time interval (t − 1, t] to the right end point t of the time
interval, we obtain a discrete time cash flow for t ∈ {0, . . . , n}:

Xt = −Πt + benefits and expenses paid within (t − 1, t]. (2.8)

Henceforth, X denotes the cash flow generated by this single policy. �
Example 2.2 (Non-life insurance).

In non-life insurance the insurance company usually receives a (risk) premium
at the beginning of a well-defined insurance period. Within this insurance
period certain (well-defined, random) financial losses are covered. We denote
the premium payment by Π = −X0. The occurrence of an insured event
(covered claim) during the insurance period typically entails a sequence of
future cash outflows, namely claims payments until the claim is settled. That
is, usually the insurance company cannot immediately settle a claim. It takes
quite some time until the ultimate claim amount is known. The delay in the
settlement is due to the fact that, for example, it takes time until the total
medical expenses are known, until the claim is settled at court, until the
damaged building is fixed, until the recovery process is understood, etc. (see
also Wüthrich-Merz [WM08]).

Since one does not wait with the payments until the ultimate claim amount
is known (e.g. medical expenses and salaries are paid when they occur) a claim
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consists of several single payments Xt which reflect the on-going recovery
process. Hence, the total or ultimate claim amount (nominal) is given by

Cn =
n∑

t=1

Xt, (2.9)

where Xt (t ≤ n) denote the single claims payments and Xn denotes the
final payment when the claim is closed/settled. Henceforth, at time t we have
information Ft and the payments Xk, k ≤ t, are already made, whereas the
future payments Xs, s > t, need to be predicted based on the information Ft

available at time t.
The underwriting loss (nominal loss) can then be written as

UL =
n∑

t=0

Xt = −Π + Cn. (2.10)

Remark. UL does not necessarily need to be negative to run successfully
this non-life insurance business. The nominal underwriting loss UL does not
consider the financial income during the settlement of the claim. That is,
the delay in the payments allows for discounting of the payments, which in
the profit and loss statement is considered similar to investment incomes on
financial assets at the insurance company (see next sections). �

2.2 Market-consistent valuation in the basic discrete
time model

We now value the (stochastic) cash flow X. We proceed as in Bühlmann
[Bü92, Bü95] using a positive, continuous, linear (valuation) functional.

Definition 2.2 (Positivity)

• X ≥ 0 ⇐⇒ Xt ≥ 0, P -a.s., for all t = 0, . . . , n.

• X > 0 ⇐⇒ X ≥ 0 and there exists k ∈ {0, . . . , n} such that Xk > 0 with
positive probability.

• X � 0 ⇐⇒ Xt > 0, P -a.s., for all t = 0, . . . , n.

Assumption 2.3 Assume that Q : L2
n+1(P ) → R is a positive, continuous,

linear functional on L2
n+1(P ).

This means that the functional Q satisfies the following properties:

(1) Positivity: X > 0 implies Q[X] > 0.
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(2) Continuity: For any sequence X(k) ∈ L2
n+1(P ) with X(k) → X in L2

n+1(P )
as k → ∞, we have Q

[
X(k)

]
→ Q [X] in R as k → ∞.

(3) Linearity: For all X,Y ∈ L2
n+1(P ) and a, b ∈ R we have

Q [aX + bY] = aQ [X] + bQ [Y] . (2.11)

Terminology.
The mapping X �→ Q[X] assigns a monetary value Q[X] ∈ R at time 0 to
the cash flow X. That is, the valuation function Q attaches a value to any
X ∈ L2

n+1(P ), which can be seen as the price of X at time 0. As we will see
below, this valuation/pricing will be done in a market-consistent way which
leads to a risk neutral valuation scheme and Q[X] is the (market-consistent)
price for X at time 0.

Remark. Assumptions (1) and (3) ensure that one can develop an arbitrage-
free pricing system (see Lemma 2.8 and Remark 2.14).

Lemma 2.4 Assumptions (1) and (3) imply (2).

Proof. Define Y(k) = X(k) − X. Due to the linearity of Q it suffices to
prove that Y(k) → 0 in L2

n+1(P ) implies that Q
[
Y(k)

]
→ 0.

In the first step we assume that Y(k) ≥ 0. Then we claim

Y(k) → 0 in L2
n+1(P ) implies Q

[
Y(k)

]
→ 0 as k → ∞. (2.12)

Assume (2.12) does not hold true, hence (using the positivity of the linear
functional) there exists ε > 0 and an infinite subsequence k′ of k such that
for all k′

Q
[
Y(k′)

]
≥ ε. (2.13)

Choose an infinite subsequence k′′ of k′ with
∑
k′′

∥∥∥Y(k′′)
∥∥∥ < ∞. (2.14)

We define
Y =

∑
k′′

Y(k′′). (2.15)

Due to the completeness of L2
n+1(P ) we know that Y ∈ L2

n+1(P ). But

Q [Y] ≥ Q

[
K∑

k′′=1

Y(k′′)

]
≥ K ε for every K. (2.16)

This implies that Q [Y] = ∞ is not finite, which is a contradiction.
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Second step: Decompose Y(k) = Y(k)
+ −Y(k)

− into a positive and a so-called
negative part. Since ‖Y(k)

+ ‖ ≤ ‖Y(k)‖ → 0 and ‖Y(k)
− ‖ ≤ ‖Y(k)‖ → 0 we see

that both Y(k)
+ and Y(k)

− tend to 0. Because Y(k)
+ ≥ 0 and Y(k)

− ≥ 0 we have
- as proved in the first step -

Q
[
Y(k)

+

]
→ 0 and Q

[
Y(k)

−

]
→ 0. (2.17)

Using once more the linearity of Q completes the proof. �
Theorem 2.5 (Riesz’ representation theorem) Under Assumption 2.3
there exists ϕ ∈ L2

n+1(P ) such that for all X ∈ L2
n+1(P ) we have

Q [X] = < X,ϕ > = E

[
n∑

t=0

Xt ϕt

]
. (2.18)

Definition 2.6 The vector ϕ (and its single components ϕt) is called (state
price) deflator.

The terminology (state price) deflator was introduced by Duffie [Du96] and
Bühlmann et al. [BDES98]. In economic theory deflators are called “state
price densities” and in financial mathematics “financial pricing kernels” or
“stochastic interest rates”.

Remarks. The deflator has the following properties:

• The positivity of Q ensures that ϕ � 0.
• Assume X ∈ L2

n+1(P, F) is F-adapted. Then ϕ may also be chosen F-
adapted: replace ϕt by ϕ̃t = E [ϕt|Ft]. Then we have for all F-adapted,
square integrable cash flows X

Q[X] = E

[
n∑

t=0

Xt ϕt

]
=

n∑
t=0

E [Xt ϕt] =
n∑

t=0

E [E [Xt ϕt|Ft]]

=
n∑

t=0

E [Xt E [ϕt|Ft]] = E

[
n∑

t=0

Xt E [ϕt|Ft]

]
(2.19)

= E

[
n∑

t=0

Xt ϕ̃t

]
= < X, ϕ̃ >,

where in the third step on the first line we have used the tower property for
conditional expectations (see Williams [Wi91]), and in the fourth step we
have used that Xt is Ft-measurable. Henceforth, because we will only work
on L2

n+1(P, F) we may and will assume that ϕ is F-adapted, throughout.
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• There is exactly one F-adapted deflator ϕ in L2
n+1(P, F) for a given Q (up

to measure 0): assume that there are two F-adapted random vectors ϕ and
ϕ∗ satisfying for all X ∈ L2

n+1(P, F)

Q [X] =< X,ϕ >=< X,ϕ∗ > . (2.20)

But then we choose X = ϕ − ϕ∗ ∈ L2
n+1(P, F). This and (2.20) imply

0 =< X,ϕ − ϕ∗ >= ‖ϕ − ϕ∗‖2, (2.21)

which immediately gives ϕ = ϕ∗, P -a.s.
• Furthermore, we assume that Q is such that ϕ0 ≡ 1. This means that for a

(deterministic) payment x0 at time 0, we have Q[(x0, 0, . . . , 0)] = x0. This
means that for x0 the functional Q delivers simply its nominal value.

• We have assumed that X ∈ L2
n+1(P, F) in order to find the state price

deflator ϕ. This can be generalized to cash flows X ∈ Lp
n+1(P, F) (1 ≤ p ≤

∞) and then the deflator ϕ would be in Lq
n+1(P, F) with 1/p + 1/q = 1.

Or even more generally we can take ϕ ∈ L1
n+1(P, F) fixed and then define

the set of cash flows that can be priced by

Lϕ =
{
X ∈ L1

n+1(P, F) : < X,ϕ > < ∞
}

. (2.22)

For these cash flows we then define the pricing functional Q on Lϕ by
Q [X] =< X,ϕ >.

2.2.1 Task of modelling

Find the appropriate pricing functional Q or equivalently find the appropriate
F-adapted state price deflator ϕ!

In the more general setup, one would define/choose ϕ ∈ L1
n+1(P, F) and

then value the cash flows X ∈ Lϕ, see (2.22). The choice of ϕ will include
market risk aversion as well as individual risk aversion, this will be described
in the following chapters, and we will also describe the connection between
the state price deflators and the risk neutral martingale measures.

The F-adaptedness will be crucial in the sequel. It essentially means that
the deflator ϕt (stochastic discount factor) is known at time t, and hence,
allows for a direct connection of the Ft-measurable cash flow Xt with the
behaviour ϕt of the financial market at time t. Especially, this means that ϕt

will allow for the modelling of embedded options and guarantees in Xt that
depend on economic and financial scenarios.

Examples of state price deflators can be found in Bühlmann [Bü95], for
example the Ehrenfest Urn with limit Ornstein-Uhlenbeck model, in Filipovic-
Zabczyk [FZ02] or one can easily discretize, for example, the Vasicek model,
see Brigo-Mercurio [BM06] and Exercise 2.3 below.
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Exercise 2.3 (Discrete time Vasicek [Va77] model).

Choose a filtered probability space (Ω,F , P, F) and assume that (εt)t=0,...,n

is F-adapted, that εt is independent of Ft−1 for all t = 1, . . . , n and standard
Gaussian distributed. Then, we define the stochastic process (rt)t=0,...,n by
r0 > 0 (fixed) and for t ≥ 1

rt = b + βrt−1 + ρεt, (2.23)

for given b, β, ρ > 0. This (rt)t=0,...,n describes the spot rate dynamics of
the Vasicek model under the (real world) probability measure P , see Brigo-
Mercurio [BM06] Section 3.2.1.
Next, we choose λ ∈ R and define the deflator in the Vasicek model by

ϕt = exp

{
−

t∑
k=1

[
rk−1 +

λ2

2
r2
k−1

]
−

t∑
k=1

λ rk−1 εk

}
. (2.24)

Prove that ϕ ∈ L1
n+1(P, F) is a deflator. Moreover, prove that the cash flow

X = (0, . . . , 0, 1, 0, . . . , 0) ∈ Lϕ, see (2.22). �

2.2.2 Understanding deflators

A deflator ϕt transports cash amount at time t to value at time 0, see Fig-
ure 2.2. This transportation is a stochastic transportation (stochastic dis-
counting). This implies, a cash flow Xt = (0, . . . , 0, Xt, 0, . . . , 0) does not
necessarily need to be independent (or uncorrelated) of ϕt, which then gives

Fig. 2.2. Deflator ϕ and cash flow X
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Fig. 2.3. Span-deflators Yt and cash flow X

Q [Xt] = E [Xt ϕt] �= E [Xt] E [ϕt] . (2.25)

Q [Xt] describes the value/price of Xt at time 0, where Xt is stochastically
discounted with the deflator ϕt.

We decompose the deflator ϕ into its span-deflators. Since ϕ � 0 we
can build the following ratios for all t > 0, P -a.s.:

Yt =
ϕt

ϕt−1
. (2.26)

Moreover, we define Y0 = 1. Thus, Y = (Yt)t=0,...,n is F-adapted and satisfies

ϕt = Y0 Y1 · · · Yt =
t∏

k=0

Yk. (2.27)

Y = (Yt)t=0,...,n is called span-deflator. Span-deflators Yt, t ≥ 1, transport
cash amount at time t to value at time t − 1, see Figure 2.3.

Question. How is the deflator ϕ related to zero coupon bonds and classical
financial discounting?

Denote by Z(t) = (0, . . . , 0, 1, 0, . . . , 0) the cash flow of the zero coupon
bond paying the amount 1 at time t. The value at time 0 of this zero coupon
bond is given by

D0,t = Q
[
Z(t)
]

= E [ϕt] . (2.28)

In the financial literature D0,t is often denoted by P (0, t), which is the value
at time 0 of a default-free contract paying 1 at time t.

Hence, also D0,t transports cash amount at time t to value in 0. But D0,t

is F0-measurable, whereas ϕt is a Ft-measurable random variable. This means
that the deterministic discount factor D0,t is known at the beginning of the
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time period (0, t], whereas ϕt is only known at the end of the time period
(0, t]. As long as we deal with deterministic cash flows X, we can either work
with zero coupon bond prices D0,t or with deflators ϕt to determine the value
of X at time 0. But as soon as the cash flows X are stochastic we need to
work with deflators (see (2.25)) since Xt and ϕt may be influenced by the
same factors (are dependent). An easy example is that Xt is an option that
depends on the actual realization of ϕt. Various life insurance policies contain
such embedded options and financial guarantees, that is, the insurance payout
depends on the development of economic and financial market factors (which
are also risk drivers of ϕt).

Classical actuarial discounting is taking a constant interest rate i. That
is, in classical actuarial models ϕt has the following form

ϕt = (1 + i)−t. (2.29)

This deflator gives a consistent theory but it is far from the economic obser-
vations in practice. This indicates that we have to be very careful with this
deterministic model in a total balance sheet approach, since it implies that we
obtain values far away from those consistent with the financial market values
on the asset classes.

Exercise 2.4 (Price of the zero coupon bond in the Vasicek model).

We revisit the discrete time Vasicek model presented in Exercise 2.3. Calculate
for this model the zero coupon bond price D0,t. We claim that this price is
given by

D0,t = exp {a(t) − r0 b(t)} , (2.30)

for appropriate functions a(t) and b(t).

Hint: the claim is proved by induction using properties of log-normal distri-
butions.

Give an interpretation to r0 in terms of D0,1.
�

2.2.3 Toy example for deflators

In this subsection we give a toy example which is based on finite proba-
bility spaces: in a first step we need a market model for calibration pur-
poses. In a second step we construct deflators (the example is taken from
Jarvis et al. [JSV01]).

We consider a one-period model, and we assume that there are two possible
states at time 1, namely Ω = {ω1, ω2}. For this example on finite probability
spaces finding the deflators is essentially an exercise in linear algebra. Here,



2.2 Market-consistent valuation in the basic discrete time model 19

we would also like to mention that finite models often have the advantage that
one can easier find the crucial mathematical and economic structures (see also
Malamud et al. [MTW08]).

Step 1. In a first step we construct the state space securities SS1 and
SS2. A state space security for state ωi pays one unit if state ωi occurs at
time 1. These state space securities are used to construct an arbitrage-free
pricing model. That is,

SS1 SS2

market price Q at time 0 ? ?
payout if in state ω1 at time 1 1 0
payout if in state ω2 at time 1 0 1

Since we have two states ω1 and ω2 we need two linearly independent assets A
and B to calibrate the model. Assume that assets A and B have the following
price and payout structure:

asset A asset B
market price Q at time 0 1.65 1
payout if in state ω1 at time 1 3 2
payout if in state ω2 at time 1 1 0.5

With this information we can now construct the two state space securities SS1

and SS2, respectively. That is, we can calculate the prices of SS1 and SS2 at
time 0. To this end (for SS1) we construct a portfolio that consists of x units of
asset A and y units of asset B. The goal is to determine x and y such that the
resulting portfolio pays 1 if state ω1 occurs at time 1 and 0 otherwise. That is,
this portfolio exactly replicates the state price security SS1. Mathematically
speaking we need to solve the linear equation SS1 = xA + yB for SS1, and
a similar linear equation for SS2. The solution to these two linear equations
provides the following table (with the corresponding prices at time 0):

units of asset A units of asset B market price Q
ω1 state security SS1 -1 2 0.35
ω2 state security SS2 4 -6 0.60

Note that this is similar to the derivation of the Arbitrage Pricing Theory
model (see Ingersoll [Ing87], Chapter 7). Basically, we need that asset A and
asset B are linearly independent and that the pricing functional Q is linear.
Hence, if we have another risky asset X which pays 2 in state ω1 and 1 in
state ω2, its price is given by

Q [X] = 2 · 0.35 + 1 · 0.6 = 1.3. (2.31)

We now consider the zero coupon bond Z(1). The zero coupon bond pays in
both states ω1 and ω2 the amount 1:
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D0,1 = Q
[
Z(1)

]
= 1 · 0.35 + 1 · 0.6 = 0.95, (2.32)

which leads to a risk-free return of (0.95)−1 − 1 = 5.26%.

Step 2. Now we construct the deflators. Denote by Q(ωi) the market
price of the ωi state space security SSi at time 0, i.e. Q(ω1) = 0.35 and
Q(ω2) = 0.60. Moreover, let X1(ωi) denote the payout at time 1 of the risky
asset X = (0, X1), if we are in state ωi at time 1. Hence the market price of
X at time 0 is given by (see (2.31))

Q [X] =
2∑

i=1

Q(ωi) X1(ωi). (2.33)

Note: so far we have not used any probabilities!

Now we assume that we are in state ω1 at time 1 with probability p(ω1) ∈ (0, 1)
and in state ω2 with probability p(ω2) = 1 − p(ω1). Hence (2.33) can be
rewritten as follows

Q [X] =
2∑

i=1

Q(ωi) X1(ωi) (2.34)

=
2∑

i=1

p(ωi)
Q(ωi)
p(ωi)

X1(ωi)

= E

[
Q

p
X1

]
.

Henceforth, define the random variable

ϕ1 =
Q

p
, (2.35)

which immediately implies the pricing formula

Q [X] = E [ϕ1 X1] . (2.36)

For an explicit choice of probabilities p(ωi), the deflator ϕ1 takes the following
values:

value of deflator ϕ1 probability p(ωi)
state ω1 at time 1 0.7 0.5
state ω2 at time 1 1.2 0.5

Hence, alternatively to (2.32) we obtain for the value of the zero coupon bond

Q
[
Z(1)

]
= E [ϕ1] =

2∑
i=1

ϕ1(ωi) p(ωi) = 0.7 · 0.5 + 1.2 · 0.5 = 0.95. (2.37)
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Note that in our example the deflator ϕ1 is not necessarily smaller than 1.
With probability 1/2 we will observe that the deflator has a value of 1.2. This
may be counter-intuitive from an economic point of view but makes perfect
sense in our model world. Henceforth, the model and parameters need to be
specified carefully in order to get economically meaningful models.

2.3 Valuation at time t > 0

Postulate: Correct prices should eliminate the possibility to play games with
cash flows (see also Remark 2.14).

Assume an F-adapted deflator ϕ ∈ L2
n+1(P, F) is given. We then define the

price process for a random vector X ∈ L2
n+1(P, F) as follows: for t = 0, . . . , n

Qt [X] = Q [X|Ft] =
1
ϕt

E

[
n∑

k=0

ϕk Xk

∣∣∣∣∣Ft

]
. (2.38)

Note, ϕ � 0 implies that Qt [X] is well-defined. The right-hand side of (2.38)
can be decoupled because the payments Xk (and the deflators ϕk) are Ft-
measurable for k ≤ t.

Terminology.
The mapping X �→ Qt[X] assigns a monetary value Qt[X] at time t to the cash
flow X, i.e. attaches an Ft-measurable price to the cash flow X. Of course this
price is stochastic seen from time 0, it depends on Ft. As we see below, this
valuation process (Qt)t=0,...,n is done in a market-consistent way which leads
to a risk neutral valuation scheme (see also Lemma 2.8 and Remark 2.14).

First, we note that by our assumption we have Q[X] = Q0[X].

The justification of our price process definition (Qt)t=0,...,n uses an equi-
librium principle or an arbitrage argument. Assume that we pay for cash flow
X at time t the price Qt [X]. Hence, we generate a payment cash flow

Qt [X] Z(t) = (0, . . . , 0, Qt [X] , 0, . . . , 0) , (2.39)

if we pay the price for X at time t. From today’s point of view this payment
stream has value

Q0

[
Qt [X] Z(t)

]
, (2.40)

since we have only information F0 at time 0 about the price Qt [X] of X at
time t. Equilibrium requires, that

Q0 [X] = Q0

[
Qt [X] Z(t)

]
, (2.41)
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since (based on today’s information F0) the two payment streams should have
the same value. That is, we today agree either to buy and pay X today or to
buy and pay X at time t (at its current price Qt [X] at that time). Since we
use the same information F0 for these two contracts and we obtain the same
cash flow X the two contracts should have the same price.

Suppose now that we play the following game: We decide to buy and pay
cash flow X only if an event Ft ∈ Ft occurs. Since from today’s point of
view we do not know whether the event Ft occurs or not, we should have the
following price equilibrium, see also (2.41),

Q0 [X 1Ft ] = Q0

[
Qt [X] Z(t) 1Ft

]
, (2.42)

note, however, that X 1Ft is not F-adapted (to avoid this we could also do an
argument similar to (2.51) below). Using deflators, we rewrite (2.42)

E

[
n∑

k=0

ϕk Xk 1Ft

]
= E [ϕt Qt [X] 1Ft ] . (2.43)

Since (ϕt Qt [X]) is Ft-measurable and equation (2.43) must hold true for all
Ft ∈ Ft, this is exactly the definition of the conditional expectation given the
σ-field Ft. Henceforth, (2.43) implies (2.38), P -a.s., and justifies that (2.38)
is an economically meaningful definition. A more financial mathematically
based argumentation would say that deflated price processes need to be (P, F)-
martingales in order to have an arbitrage-free pricing model, see Lemma 2.8
and Remark 2.14 below.

We close this section with some remarks on “pure” financial risks. We have
defined the traditional discount factors

D0,m = Q0

[
Z(m)

]
= E [ϕm] (2.44)

at time 0 for a zero coupon bond with maturity m. For t < m, let Dt,m

stand for the discount factor from time m back to time t, fixed at time 0. The
terminology forward refers to this fixing at an earlier time point. We must
have

D0,t Dt,m = D0,m. (2.45)

The left-hand side of (2.45) is the price at time 0 for receiving Dt,m at time t,
and Dt,m is the price for receiving 1 at time m (fixed at time 0 and to be paid
at time t). The right-hand side of (2.45) is the price at time 0 for receiving 1
at time m.

Hence we define forward discount factors for t < m:

Dt,m =
D0,m

D0,t
. (2.46)
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Fig. 2.4. Forward discount factor Dt,m for t < m

This is the forward price of a zero coupon bond with maturity m fixed at time
0 to be paid at time t (F0-measurable).

On the other hand, the value/price at time t of a zero coupon bond with
maturity m is given by (Ft-measurable)

Qt

[
Z(m)

]
=

1
ϕt

E [ϕm| Ft] = E

[
ϕm

ϕt

∣∣∣∣Ft

]
. (2.47)

This is exactly (2.38) for a single deterministic payment of 1 in m.

Remark. In financial mathematics literature one often uses the notation

P (t, m) = Qt

[
Z(m)

]
= E [ϕm/ϕt| Ft] = E∗

[
exp

{
−

m−1∑
s=t

rs

}∣∣∣∣∣Ft

]
,

where (rt)t=0,...,n stands for the spot rate process, see also Exercise 2.3, and E∗

is the expectation under the risk neutral measure P ∗ ∼ P (see also Exercise
2.6). Note that D0,m = P (0, m) = Q0

[
Z(m)

]
.

Exercise 2.5.

We revisit the discrete time Vasicek model presented in Exercise 2.3. Calculate
for this model the zero coupon bond price P (t, m) at time t < m. We claim
that this price is given by

P (t, m) = Qt

[
Z(m)

]
= exp {a(m − t) − rt b(m − t)} , (2.48)

for appropriate functions a(·) and b(·) and Ft-measurable spot rate rt, see
also (2.30).

Give an interpretation to rt in terms of P (t, t + 1).

Remark. The zero coupon bond price representation (2.48) is called an
affine term structure, because its logarithm is an affine function of the observed
spot rate rt for all t = 0, . . . , m − 1. �
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2.4 The meaning of basic reserves

In the previous section we have considered the valuation of cash flows
X ∈ L2

n+1(P, F) at any time t = 0, . . . , n. In the insurance industry how-
ever, we are mainly interested in the valuation of the future cash flows
(0, . . . , 0, Xt+1, . . . , Xn) if we are at time t. For these cash flows we need
to build reserves in our balance sheet, because they refer to the outstanding
(loss) liabilities. This means that we need to predict Xk, k > t, and assign
market-consistent values to them, based on the information Ft.

Note that from an economic point of view the terminology reserves is
not quite correct (because reserves refer rather to shareholder value) and one
should call the reserves instead provisions because they belong to the insured
(policyholder).

Postulate: Correct basic reserves should eliminate the possibility to play
games with insurance liabilities.

Throughout: assume an F-adapted deflator ϕ ∈ L2
n+1(P, F) is given.

Assume that an insurance contract is represented by the (stochastic) cash
flow X ∈ L2

n+1(P, F). We define for k ≤ n the outstanding liabilities at time
k − 1 by

X(k) = (0, . . . , 0, Xk, . . . , Xn) ∈ L2
n+1(P, F), (2.49)

this is the remaining cash flow after time k − 1. X(k) represents the amounts
for which we have to build reserves at time k − 1, such that we are able to
meet all future payments arising of this contract. Henceforth, the reserves
at time t ≤ k − 1 for the outstanding liabilities X(k) are defined as

R
(k)
t = R

[
X(k)

∣∣Ft

]
= Qt[X(k)] =

1
ϕt

E

[
n∑

s=k

ϕs Xs

∣∣∣∣∣Ft

]
. (2.50)

On the one hand, R
(k)
t corresponds to the conditionally expected monetary

value of the cash flow X(k) viewed from time t. On the other hand, R
(k)
t is used

to predict the monetary value of the random variable X(k). Therefore, R
(k)
t is

often called discounted “best-estimate” reserves, see also (2.113) below.

We justify that (2.50) is a reasonable definition for the reserves. We argue
for R

(k)
t in a similar fashion as in the last section. We want to avoid that

we can play games with insurance contracts. In particular, we consider the
following game: assume we have two insurance companies A and B that have
the following business strategies.

• Company A keeps the contract until the ultimate payment is made.
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• Company B decides (at time 0) to sell the run-off of the outstanding li-
abilities at time t − 1 at price R

[
X(t)

∣∣Ft−1

]
if an event Ft−1 ∈ Ft−1

occurs.

This implies that the two strategies generate the following cash flows:

0 . . . t − 1 t . . . n

X(A) =
(
X0, . . . , Xt−1, Xt, . . . , Xn

)
X(B) =

(
X0, . . . , Xt−1 + R

[
X(t)

∣∣Ft−1

]
1Ft−1 , Xt1F c

t−1
, . . . , Xn1F c

t−1

)

Hence, the price difference at time 0 of these two strategies is given by

Q0

[
X(A) − X(B)

]
= E

[
−ϕt−1R

[
X(t)

∣∣Ft−1

]
1Ft−1

]
+ E

[
n∑

s=t

ϕsXs1Ft−1

]
.

(2.51)

As in (2.42), we have that the two strategies based on the information F0

should have the same initial value (because they are based on the same
information), i.e. Q0

[
X(A) − X(B)

]
= 0. This implies that for all events

Ft−1 ∈ Ft−1 we need to have the equality

E
[
ϕt−1R

[
X(t)

∣∣Ft−1

]
1Ft−1

]
= E

[
n∑

s=t

ϕsXs1Ft−1

]
. (2.52)

Hence, using the definition of conditional expectations, this justifies the fol-
lowing definition of the reserves:

R
(t)
t−1 = R

[
X(t)

∣∣Ft−1

]
=

1
ϕt−1

E

[
n∑

s=t

ϕs Xs

∣∣∣∣∣Ft−1

]
= Qt−1

[
X(t)

]
, (2.53)

which justifies (2.50) for k = t. The case k > t is then easily obtained by the
fact that we should have the martingale property for deflated price processes
given by Lemma 2.8 (see below) which says

ϕt−1R
(k)
t−1 = ϕt−1Qt−1

[
X(k)

]
(2.54)

= E
[
ϕk−1Qk−1

[
X(k)

]∣∣Ft−1

]
= E

[
ϕk−1R

(k)
k−1

∣∣∣Ft−1

]
.

Observe that we have the following self-financing property:

Corollary 2.7 (Self-financing property) The following recursion holds

E
[
ϕt

(
R

(t+1)
t + Xt

)∣∣∣Ft−1

]
= ϕt−1 R

(t)
t−1. (2.55)
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Remark.

• The classical actuarial theory with ϕt = (1 + i)−t for some constant in-
terest rate i (see (2.29)) forms a consistent theory but the deflators are
not market-consistent, because they are often far from observed economic
behaviours.

• Corollary 2.7 basically says that if we want to avoid arbitrage opportunities
of reserves then we need to define them as conditional expectations of the
random cash flows.

Proof of Corollary 2.7. We have the following identity (using the Ft-
measurability of Xt and the tower property of conditional expectations, see
Williams [Wi91], Chapter 9)

E
[
ϕt

(
R

(t+1)
t + Xt

)∣∣∣Ft−1

]
= E

[
n∑

k=t

ϕkXk

∣∣∣∣∣Ft−1

]
= ϕt−1R

(t)
t−1. (2.56)

This completes the proof of the corollary. �
2.5 Equivalent martingale measures

Assume a fixed F-adapted deflator ϕ ∈ L2
n+1(P, F) is given.

The price process defined in (2.38) gives in a natural way a martingale
(that is, it satisfies the efficient market hypothesis in its strong form, see
Remark 2.14 below):

Lemma 2.8 The deflated price process (2.38)

(ϕtQt [X])t=0,...,n forms an F-martingale under P . (2.57)

Proof. Since Ft ⊂ Ft+1 we have with the tower property of conditional
expectations, see Williams [Wi91],

E [ϕt+1Qt+1 [X]| Ft] = E

[
E

[
n∑

k=0

ϕkXk

∣∣∣∣∣Ft+1

]∣∣∣∣∣Ft

]
(2.58)

= E

[
n∑

k=0

ϕkXk

∣∣∣∣∣Ft

]
= ϕtQt [X] .

This finishes the proof of the lemma. �
Remarks on deflating and discounting.

• From the martingale property we immediately have
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Qt [X] =
1
ϕt

E [ϕt+1Qt+1 [X]| Ft] = E

[
ϕt+1

ϕt
Qt+1 [X]

∣∣∣∣Ft

]
. (2.59)

This implies for the span-deflated price

Qt [X] = E [Yt+1Qt+1 [X]| Ft] , (2.60)

with span-deflator Yt+1 defined in (2.26). The (stochastic) span-deflator
Yt+1 is Ft+1-measurable, i.e. it is known only at the end of the time period
(t, t + 1], and not at the beginning of that time period.

• We define the span-discount known at the beginning of the time period
(t, t + 1], i.e. which is observable on the market at time t:

D(Ft) = E [Yt+1|Ft] = E

[
ϕt+1

ϕt

∣∣∣∣Ft

]
. (2.61)

It is often convenient to rewrite (2.60) using the span-discount D(Ft) in-
stead of the span-deflator Yt+1. The reason is that the span-discounts
are eventually observable whereas span-deflators are always “hidden vari-
ables”. The basic idea is to change the probability measure P to P ∗ such
that we can change from span-deflators Yt+1 to observable span-discounts
D(Ft) at time t.

• If the time interval (t, t+1] is one year then D(Ft) is exactly the price of the
zero coupon bond with maturity 1 year at time t, i.e., on this yearly grid
this corresponds to the one-year risk-free investment at time t. Henceforth,
on a yearly grid D(Ft)−1 describes the development of the value of the
bank account. That is, if we invest 1 into the bank account at time 0, then
the value of this investment at time t ≥ 1 is given by (yearly role over)

Bt =
t−1∏
s=0

D(Fs)−1 =
t−1∏
s=0

E [Ys+1|Fs]
−1 = exp

{
t−1∑
s=0

rs

}
, (2.62)

where we have defined

rt = − log E [Yt+1|Ft] . (2.63)

We remark that (rt)t=0,...,n−1 is the spot rate process in discrete time and
we have already met it in Exercise 2.3.

• The change of probability measure mentioned above will then correspond
to a change of discount factors from the deflator ϕ to the bank account
numeraire (B−1

t )t=0,...,n.

We define the process ξ = (ξs)s=0,...,n by ξ0 = 1 and for s = 1, . . . , n

ξs =
s−1∏
t=0

Yt+1

D(Ft)
= ϕs Bs. (2.64)
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Corollary 2.9 We have ξ � 0 is a normalized density process w.r.t. P .

Proof. Positivity is immediately clear. Moreover, ξ is a P -martingale
(which immediately follows from Lemma 2.8 because (Bt)t=0,...,n is the price
process of the bank account) with normalization E[ξn] = 1. This proves the
claim. �

For A ∈ Fn we define

P ∗ [A] =
∫

A

ξn dP = E [ξn1A] . (2.65)

Lemma 2.10 We have the following statements:

(1) P ∗ is a probability measure on (Ω,Fn) equivalent to P .
(2) We have

dP ∗

dP

∣∣∣∣
Fs

= ξs P -a.s. (2.66)

(3) Moreover, for s ≤ t and A ∈ Ft

P ∗ [A| Fs] =
1
ξs

E [ξt 1A| Fs] P -a.s. (2.67)

Proof. The proof of statement (1) follows from Corollary 2.9. The normal-
ization implies that P ∗[Ω] = E[ξn] = 1, which says that P ∗ is a probability
measure on (Ω,Fn). Moreover, ξn > 0 P -a.s. implies that P ∗ ∼ P , i.e. they
are equivalent measures.

Next we prove statement (2). Note that for any Fs-measurable set C we
have

P ∗[C] = E [ξn1C ] = E [E [ξn| Fs] 1C ] = E [ξs1C ] , (2.68)

using the martingale property of ξ in the last step. Therefore, ξs is the density
on Fs.

Finally we prove (3). Note that we have for any Fs-measurable set C

E∗ [1C 1A] = E [1C ξn 1A] (2.69)
= E [1C E [ξn 1A| Fs]]

= E

[
ξs

(
1C

1
ξs

E [ξn 1A| Fs]
)]

= E∗
[
1C

1
ξs

E [ξn 1A| Fs]
]

= E∗
[
1C

1
ξs

E [1A E [ξn| Ft]| Fs]
]

= E∗
[
1C

1
ξs

E [ξt 1A| Fs]
]

= E∗ [1C P ∗ [A| Fs]] ,



2.5 Equivalent martingale measures 29

by the definition of conditional expectations w.r.t. P ∗. This completes the
proof of the lemma. �

Item (3) of Lemma 2.10 immediately implies the next corollary:

Corollary 2.11 For s < t we have

E∗ [Qt [X]| Fs] =
1
ξs

E [ξt Qt [X]| Fs] . (2.70)

If we apply (2.60) and Corollary 2.11 to s = t − 1 we obtain

E∗ [Qt [X]| Ft−1] =
1

ξt−1
E [ξt Qt [X]| Ft−1] (2.71)

=
1

ξt−1
E

[
ξt−1

Yt

D(Ft−1)
Qt [X]

∣∣∣∣Ft−1

]

=
1

D(Ft−1)
E [Yt Qt [X]| Ft−1]

=
1

D(Ft−1)
Qt−1 [X] ,

or
D(Ft−1) E∗ [Qt [X]| Ft−1] = Qt−1 [X] . (2.72)

Hence for the bank account numeraire

B−1
t =

t−1∏
s=0

D (Fs) (2.73)

we find

E∗ [B−1
t Qt [X]

∣∣Ft−1

]
= B−1

t E∗ [Qt [X]| Ft−1] = B−1
t−1Qt−1 [X] . (2.74)

Note that the discount factor B−1
t is now measurable w.r.t. Ft−1. Hence, in

contrast to ϕt (see (2.57)) we have now an Ft−1-measurable discount factor
(bank account numeraire) which describes the growth of the bank account.
This gives the following corollary (compare to Lemma 2.8):

Corollary 2.12 Under the probability measure P ∗ the process(
B−1

t Qt [X]
)
t=0,...,n

(2.75)

is an F-martingale w.r.t. P ∗.

Remark 2.13 (Real world and risk neutral measure)

• Henceforth, the price process is now a martingale for discounting with
the bank account numeraire B−1

t under the equivalent measure P ∗ ∼ P .
Therefore, this measure is often called equivalent martingale measure or
risk neutral measure.
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• As a consequence we can either work under the real world probabil-
ity measure P (physical measure or objective measure) where the price
processes need to be deflated with ϕ. Alternatively, we can also work un-
der the equivalent martingale measure P ∗ (risk neutral measure). In
that case the price processes need to be discounted with the bank account
numeraire B−1

t .
• If we work with financial instruments only, then it is often easier to work

under P ∗. If we additionally have insurance products then usually one
works under P . Therefore, actuaries need to well-understand the connec-
tion between these two measures.

• For the equivalent martingale measure P ∗ we choose the bank account
numeraire B−1

t for discounting. In general, if (At)t=0,...,n is any strictly
positive, normalized price process, then we could choose A−1

t as a nu-
meraire and find the appropriate equivalent measure PA ∼ P such that
the price processes (A−1

t Qt [X])t=0,...,n are F-martingales w.r.t. PA. For
more on this subject we refer to Brigo-Mercurio [BM06], Sections 2.2-2.3.

In the one-period model we obtain

Q0 [X] = D(F0) E∗ [Q1 [X] ] = E [Y1 Q1 [X] ] . (2.76)

Exercise 2.6.

Prove that the price of the zero coupon bond with maturity m at time t < m
is given by

P (t, m) = Qt

[
Z(m)

]
= E∗

[
exp

{
−

m−1∑
s=t

rs

}∣∣∣∣∣Ft

]
, (2.77)

where (rt)t=0,...,n was defined in (2.63). �
Remark 2.14 (Fundamental Theorem of Asset Pricing)

• The efficient market hypothesis in its strong form assumes that the
deflated price processes

Q̃t = ϕt Qt [X] , t = 0, . . . , n, (2.78)

form F-martingales under P . This implies for the expected net gains (t > s)

E
[
Q̃t − Q̃s

∣∣∣Fs

]
= 0, (2.79)

which means that there exists no arbitrage strategy defined the “right
way” (which roots in the idea of risk neutral valuation).
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• The efficient market hypothesis in its weak form assumes that “there
is no free lunch”, i.e. there does not exist any (appropriately defined)
self-financing trading strategy with positive expected gains and without
any downside risk. In a finite discrete time model, this is equivalent to
the existence of an equivalent martingale measure for the deflated price
processes (which rules out arbitrage) (see e.g. Theorem 2.6 in Lamberton-
Lapeyre [LL91]), the proof for a finite probability space is essentially an
exercise in linear algebra. In a more general setting the characterization
is more delicate (see Delbaen-Schachermayer [DS94] and Föllmer-Schied
[FS04]).
That is, the existence of an equivalent martingale measure rules out ap-
propriately defined arbitrage (which is the easier direction). The opposite
that no-arbitrage defined the right way implies the existence of an equiv-
alent martingale measure is rather delicate and was proved by Delbaen-
Schachermayer [DS94] in its most general form.

• In complete markets, the equivalent martingale measure is unique, which
implies that we have a perfect replication of contingent claims and the
calculation of the prices is straight forward (see e.g. Theorem 3.4 in
Lamberton-Lapeyre [LL91]).

• In incomplete markets, where we have more than one equivalent martin-
gale measure, we need an economic model to decide which measure to use
(e.g. utility theory, super-hedge or efficient hedging (utility based mod-
els accepting some risks), see also Föllmer-Schied [FS04] or Malamud et
al. [MTW08]).

Toy example (revisited).
In this subsection we revisit the toy example from Subsection 2.2.3. We trans-
form our probability measure according to Lemma 2.10 (here we work in a
one-period model with Q0 = Q):

p∗(ωi) = ξ1(ωi) p(ωi) =
ϕ1(ωi)
E [ϕ1]

p(ωi) =
Q(ωi)

Q
[
Z(1)

] . (2.80)

Hence, from (2.33) and (2.36)

Q [X] = E [ϕ1 X1] =
2∑

i=1

Q(ωi) X1(ωi), (2.81)

Q [X] = B−1
1 E∗ [X1] =

2∑
i=1

Q(ωi) X1(ωi), (2.82)

with (see (2.73))
B−1

1 = E [ϕ1] = Q
[
Z(1)

]
, (2.83)

which is deterministic at time 0. Hence under P ∗ we have
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Q [X] = B−1
1 E∗ [X1] = Q

[
Z(1)

]
E∗ [X1] . (2.84)

This leads to the following table with p∗(ω1) = 0.368:

Z(1) asset A asset B
market price Q0 0.95 1.65 1.00
payout state ω1 1 3 2
payout state ω2 1 1 0.5
P ∗ expected payout 1 1.737 1.053
P ∗ expected return 5.26% 5.26% 5.26%

which is the martingale property of the discounted cash flow Q
[
Z(1)

]
X1

w.r.t. P ∗. �
Exercise 2.7.

We revisit the discrete time Vasicek model given in Exercise 2.3. The spot
rate dynamics (rt)t=0,...,n was given by r0 > 0 (fixed) and for t ≥ 1

rt = b + βrt−1 + ρεt, (2.85)

for given b, β, ρ > 0, and (εt)t=0,...,n is F-adapted with εt independent of Ft−1

for all t = 1, . . . , n and standard Gaussian distributed under the real world
probability measure P .

The deflator ϕ was then defined by

ϕt = exp

{
−

t∑
k=1

[
rk−1 +

λ2

2
r2
k−1

]
−

t∑
k=1

λrk−1εk

}
, (2.86)

for λ ∈ R.

• Calculate the span-discount D(Ft) from the span-deflator

Yt+1 =
ϕt+1

ϕt
= exp

{
−
[
rt +

λ2

2
r2
t

]
− λrtεt+1

}
(2.87)

and show that the model is well-defined.
• Prove that the density process (ξt)t=0,...,n is given by

ξt = exp

{
−

t∑
k=1

λ2

2
r2
k−1 −

t∑
k=1

λrk−1εk

}
, (2.88)

where an empty sum is set equal to zero.
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• Prove that
ε∗t = εt + λrt−1 (2.89)

has, conditionally given Ft−1, a standard Gaussian distribution under the
equivalent martingale measure P ∗ ∼ P , given by the density in Lemma
2.10.
Hint: use the moment generating function and Lemma 2.10.

• Prove that (2.89) implies for the spot rate process (rt)t=0,...,n: r0 > 0
(fixed) and for t ≥ 1

rt = b + (β − λρ)rt−1 + ρε∗t , (2.90)

where (ε∗t )t=0,...,n is F-adapted with ε∗t independent of Ft−1 for all t =
1, . . . , n and standard Gaussian distributed under the equivalent martin-
gale measure P ∗.

• Calculate the zero coupon bond prices t < m (see also Exercise 2.5)

P (t, m) = E∗

[
exp

{
−

m−1∑
s=t

rs

}∣∣∣∣∣Ft

]
= exp {a(m − t) − rt b(m − t)} .

(2.91)
�

Remark on Exercise 2.7. In (2.88) we calculate the density process
(ξt)t=0,...,n for the discrete time Vasicek model. It depends on the parameter
λ ∈ R. We see that if λ = 0, then the density process is identical equal to 1,
and henceforth P ∗ = P . Therefore, λ models the difference between the real
world probability measure P and the equivalent martingale measure P ∗ which
is in economic theory explained through the market risk aversion. Therefore,
λ is often called market price of risk parameter and explains the aggregate
market risk aversion (in our Vasicek model). In general, a higher risk aversion
explains lower prices because the more risk averse some is, the less he is willing
to accept risky positions.

Conclusions:

• We have found three different ways to value cash flows X:
1. via a positive linear functional Q,
2. via deflators ϕ under P ,
3. via the bank account numeraire B−1

t under risk neutral measures P ∗.
• The advantage of using risk neutral measures is that the discount factor is

a priori known, which means that we have state independent discount fac-
tors. The main disadvantage of using the risk neutral measure is that the
concept is not straight forward (especially parameter estimation and mod-
elling of insurance liabilities), and that the risk neutral measure changes
under currency changes.
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• By contrast, deflators are calculated using the real world probability mea-
sure (expressing market risk aversion). Moreover, as shown below, they
clearly describe the dependence structures (also between deflator and cash
flow). From a practical point of view, deflators allow for the modelling of
embedded (financial) options and guarantees in insurance policies, and are
therefore preferred especially by actuaries that value life insurance prod-
ucts.

2.6 Insurance technical and financial variables

2.6.1 Choice of numeraire

Choose a cash flow X ∈ L2
n+1(P, F). For practical purposes in insurance ap-

plications it makes sense to factorize the payments Xk into an appropriate
financial basis Uk, k = 0, . . . , n, and the number of units Λk of this basis.
Assume that we can split the payments Xk as follows

Xk = Λk U
(k)
k , k = 0, . . . , n, (2.92)

where the variable U
(k)
t denotes the value/price of one unit of the financial

instrument Uk at time t = 0, . . . , n, and

Λk =
Xk

U
(k)
k

, k = 0, . . . , n, (2.93)

gives the number of units that we need to hold (insurance technical vari-
able). This means that we measure insurance liabilities in units Uk which
have price/value U

(k)
k at time k and insurance technical variable Λk.

We denote the price processes of the financial instruments Uk by

U
(k)
0 , U

(k)
1 , . . . , U

(k)
k , U

(k)
k+1, . . . , U

(k)
n . (2.94)

Assume that the price process (U (k)
t )t=0,...,k is strictly positive, P -a.s., then

(U (k)
t )t=0,...,k is called numeraire in which we study the liability Xk (see

also Remark 2.13), that is, every payment Xk is studied with its appropriate
numeraire.

Examples of units/numeraires.

• Currencies like CHF, USD, EURO
• Indexed CHF (inflation index, salary index, claims inflation index, medical

expenses index, etc.)
• stock index, real estates, etc.
• strictly positive asset portfolio
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Examples of insurance technical events.

• death benefit, annuity payments, disability benefit
• car accident compensation, fire claim
• medical expenses, workmen’s compensation

We would like to factorize the filtered probability space (Ω,Fn, P, F) into a
product space such that we get an independent decoupling:

T = (Tt)t=0,...,n σ-filtration for the insurance technical events, (2.95)
G = (Gt)t=0,...,n σ-filtration for the financial events, (2.96)

with for all t = 0, . . . , n

Ft = σ (Tt,Gt) = smallest σ-field containing all sets of Tt and Gt. (2.97)

We assume that under P the two σ-filtrations T and G are independent,
i.e. F can be decoupled into a product of independent σ-fields, one covering
insurance technical risks T and one covering financial risks G. That is, we
obtain a product probability space with product measure

dP = dPT × dPG , (2.98)

with PT describing insurance technical risks Λ = (Λ0, . . . , Λn) which will be
T -adapted and with PG describing financial risks (U (k)

t )t=0,...,n which will be
G-adapted. This decoupling is crucial in the sequel of this manuscript and
explained in the next assumption.

Assumption 2.15 We assume that Λ = (Λ0, . . . , Λn) ∈ L2
n+1(PT , T ) and

that (U (k)
t )t=0,...,n ∈ L2

n+1(PG ,G) for all k = 0, . . . , n. Moreover, we assume
for the given deflator ϕ ∈ L2

n+1(P, F) that it factorizes ϕk = ϕ
(T )
k ϕ

(G)
k such

that ϕ(T ) is T -adapted and ϕ(G) is G-adapted.

The valuation of the cash flow X = (Λ0 U
(0)
0 , . . . , Λn U

(n)
n ) ∈ L2

n+1(P, F) is
then under Assumption 2.15 given by

ϕt Qt [X] = E

[
n∑

k=0

ϕk Xk

∣∣∣∣∣Ft

]
(2.99)

= E

[
n∑

k=0

ϕ
(T )
k Λk ϕ

(G)
k U

(k)
k

∣∣∣∣∣ Tt,Gt

]

=
n∑

k=0

ET

[
ϕ

(T )
k Λk

∣∣∣ Tt

]
EG

[
ϕ

(G)
k U

(k)
k

∣∣∣Gt

]
,

where ET is the expectation w.r.t. PT and EG is the expectation w.r.t. PG . In
the sequel we drop the subscripts T and G if it does not cause any confusion.
Note that the conditional expectations can be dropped for k ≤ t.
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Remarks.

• The expression ET

[
ϕ

(T )
k Λk

∣∣∣ Tt

]
describes the price of the insurance cover

in units of currency. ϕ
(T )
k defines the loading (probability distortion) of

the insurance technical price. This is further outlined in Subsection 2.6.2.
• The expression EG

[
ϕ

(G)
k U

(k)
k

∣∣∣Gt

]
relates to the price for one unit Uk at

time t, see also Subsection 2.6.2 on probability distortion.
ϕ

(G)
k should be obtained from financial market data. For example, we can

use the Vasicek model, proposed in Exercise 2.3, and fit the model to
financial market parameters, see Wüthrich-Bühlmann [WB08].

• We have separated the pricing problem into two independent pricing prob-
lems, one for pricing insurance cover in units and one for pricing units. This
split looks very natural, but in practice one needs to be careful with its ap-
plications. Especially in non-life insurance, it is very difficult to find such
an orthogonal split, since the severities of the claims often depend on the
financial market and the split is non-trivial. For example, if we consider
workmen’s compensation (which pays the salary when someone is injured
or sick), it is very difficult to describe the dependence structure between 1)
salary height, 2) length of sickness (which may have mental cause), 3) state
of the job market, 4) state of the financial market 5) political environment.

• The financial economy including insurance products could also be defined
in other ways that would allow for similar splits. For an example we refer
to Malamud et al. [MTW08]. There one starts with a complete financial
market described by the financial σ-field. Then one introduces insurance
products that enlarge the underlying σ-field. This enlargement in general
makes the market incomplete (but still arbitrage-free) and adds idiosyn-
cratic risks to the economic model. Finally, one defines the “hedgeable”
σ-field that exactly describes the part of the insurance claims that can be
described via financial market movements. The remaining parts are then
the insurance technical risks.

2.6.2 Probability distortion

In this section we discuss the factorization of the deflator ϕk = ϕ
(T )
k ϕ

(G)
k from

Assumption 2.15. The choice of the probability distortion ϕ(T ) needs some
care in order to obtain a reasonable model.

(1) Firstly, we observe that ϕ(T ) � 0, which follows from ϕ � 0. More-
over, ϕ(T ) ∈ L2

n+1(PT , T ), which follows from ϕ ∈ L2
n+1(P, F) and the inde-

pendence and T -adaptedness in Assumption 2.15.

(2) Secondly, to avoid ambiguity, we set for all t = 0, . . . , n

E
[
ϕ

(T )
t

]
= 1. (2.100)
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Otherwise, the decoupling into a product ϕt = ϕ
(T )
t ϕ

(G)
t is not unique, which

can easily be seen by multiplying and dividing both terms by the same positive
constant.

(3) Thirdly, we assume that the sequence (ϕ(T )
t )t=0,...,n is a T -martingale

under P , i.e.
E
[
ϕ

(T )
t+1

∣∣∣ Tt

]
= ϕ

(T )
t . (2.101)

Of course, the normalization (2.100) is then an easy consequence from the
requirement

E
[
ϕ(T )

n

]
= 1. (2.102)

Under Assumption 2.15 and assuming (1)-(3) for the probability distortion
(ϕ(T )

t )t=0,...,n we see that

(ϕ(T )
t )t=0,...,n is a density process w.r.t. T and PT , (2.103)

see also (2.104). This allows for the definition of an equivalent probability
measure P ∗

T ∼ PT via the density

dP ∗
T

dPT

∣∣∣∣
Tn

= ϕ(T )
n . (2.104)

Moreover, we define the price process for the insurance technical variable Λk

as follows: for t ≤ k

Λt,k =
1

ϕ
(T )
t

E
[
ϕ

(T )
k Λk

∣∣∣ Tt

]
. (2.105)

Lemma 2.16 Assume Assumption 2.15 and (2.103) hold true. The probabil-
ity distorted process

(
ϕ

(T )
t Λt,k

)
t=0,...,k

forms a T -martingale under PT . (2.106)

The process

(Λt,k)t=0,...,k forms a T -martingale under P ∗
T . (2.107)

Proof Lemma 2.16. The first claim follows similarly to Lemma 2.8 and
uses the tower property of conditional expectations, see Williams [Wi91]. The
second claim follows similarly to Corollary 2.12 and equality (2.71). Note that
here the numeraire is equal to 1 (due to our choice of the density process)
which proves the claim. �
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An immediate consequence of Lemma 2.16 is the following corollary:

Corollary 2.17 Under the assumptions of Lemma 2.16 we have

Λt,k =
1

ϕ
(T )
t

E
[
ϕ

(T )
k Λk

∣∣∣ Tt

]
= E∗

T [Λk| Tt] . (2.108)

This has further consequences:

Theorem 2.18 Under the assumptions of Lemma 2.16 and (2.57) we obtain
that the price process (U (k)

t )t=0,...,k of the financial instrument Uk satisfies for
t < k

U
(k)
t =

1

ϕ
(G)
t

E
[
ϕ

(G)
t+1U

(k)
t+1

∣∣∣Gt

]
. (2.109)

Proof of Theorem 2.18. We define the cash flow X = U
(k)
k Z(k) =

(0, . . . , 0, U
(k)
k , 0, . . . , 0) ∈ L2

n+1(P, F). Note that in fact the cash flow X ∈
L2

n+1(P,G). The martingale property (2.57), Assumption 2.15 and Corollary
2.17 imply for t < k

ϕtQt [X] = E [ϕkQk [X]| Ft] = E
[
ϕkU

(k)
k

∣∣∣Ft

]
(2.110)

= E
[
ϕ

(T )
k ϕ

(G)
k U

(k)
k

∣∣∣Ft

]

= E
[
ϕ

(T )
k

∣∣∣ Tt

]
E
[
ϕ

(G)
k U

(k)
k

∣∣∣Gt

]

= ϕ
(T )
t E

[
ϕ

(G)
k U

(k)
k

∣∣∣Gt

]
.

This implies that

U
(k)
t = Qt [X] =

1

ϕ
(G)
t

E
[
ϕ

(G)
k U

(k)
k

∣∣∣Gt

]
. (2.111)

Henceforth (ϕ(G)
t U

(k)
t )t=0,...,k is a G-martingale under P , which proves the

claim. �
Corollary 2.17 and Theorem 2.18 imply that we can study the insurance

technical variables Λ and the price processes of the financial instruments Uk

independently. The valuation of the outstanding loss liabilities

X(k) = (0, . . . , 0, ΛkU
(k)
k , . . . , ΛnU (n)

n ) ∈ L2
n+1(P, F) (2.112)

at time t ≤ k can then easily be done (see also (2.99)). The basic reserves are
given by (see also (2.50))

R
(k)
t = Qt

[
X(k)

]
=

1
ϕt

n∑
s=k

E
[
ϕ(T )

s Λs

∣∣∣ Tt

]
E
[
ϕ(G)

s U (s)
s

∣∣∣Gt

]

=
n∑

s=k

Λt,s U
(s)
t . (2.113)
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Conclusions.
Under the product space Assumption 2.15, the assumption (2.103) that the
insurance technical deflator is a density process w.r.t. T and P , and under the
no-arbitrage assumption (2.57) we obtain that we can separate the valuation
problem into two independent valuation problems:

(1) the insurance technical processes (Λt,k)t=0,...,k, k = 0, . . . , n, describe
the probability distorted developments of the predictions of Λk if we increase
the information Tt → Tt+1;

(2) the financial processes (U (k)
t )t=0,...,k, k = 0, . . . , n, describe the price

processes of the financial instruments Uk at the financial market (Ω,Gn, PG ,G).

Example 2.8 (Best-Estimate Predictions).

Choose ϕ(T ) ≡ 1. Hence, ϕ(T ) gives a suitable probability distortion (nor-
malized martingale). This implies for the insurance technical process at time
t ≤ k

Λt,k = E [Λk| Tt] , (2.114)

i.e. Λt,k is simply the “best-estimate” prediction of Λk based on the informa-
tion Tt (conditional expectation which has minimal conditional variance). �
Exercise 2.9 (Esscher Premium).

We choose a positive random variable Y on the underlying filtered proba-
bility space (Ω, Tn, PT , T ) such that for some α > 0 the following moment
generating function exists

MY (2α) = E [exp {2αY }] < ∞. (2.115)

Then we define the probability distortion

ϕ
(T )
t =

E [ exp {αY }| Tt]
E [exp {αY }] =

E [ exp {αY }| Tt]
MY (α)

. (2.116)

(1) Prove that ϕ(T ) � 0. Moreover, prove that ϕ(T ) ∈ L2
n+1(PT , T ).

(2) Show that (ϕ(T )
t )t=0,...,n is a density process w.r.t. T and PT .

Assume that Xk = (0, . . . , 0, Xk, 0, . . . , 0) with Xk = ΛkU
(k)
k . Choose Y =

Λk and assume that t < k. Prove under Assumption 2.15 and (2.57) that

Qt [Xk] =
1

E [ exp {αΛk}| Tt]
E
[
Λk eαΛk

∣∣ Tt

]
U

(k)
t . (2.117)

If we define the conditional moment generating function by
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MΛk|Tt
(α) = E [ exp {αΛk}| Tt] , (2.118)

then the term

Λt,k =
d

dr
log MΛk|Tt

(r)
∣∣
r=α

= MΛk|Tt
(α)−1

E
[
Λk eαΛk

∣∣ Tt

]
(2.119)

describes the Esscher premium of Λk at time t < k, see Gerber-Pafumi [GP98].

Claim: prove that the Esscher premium (2.119) is strictly increasing in α.

Remark: α plays the role of the risk aversion. �
Exercise 2.10 (Expected Shortfall).

Choose a continuous integrable random variable Y on the filtered probability
space (Ω, Tn, PT , T ). Denote the distribution of Y by FY (x) = P [Y ≤ x]
and the generalized inverse by F−1

Y , where F−1
Y (u) = inf{x|FY (x) ≥ u}.

Henceforth, the Value-at-Risk of Y at level 1 − α ∈ (0, 1) is then given by

VaR1−α(Y ) = F−1
Y (1 − α). (2.120)

We obtain

P [Y > VaR1−α(Y )] = 1 − P [Y ≤ VaR1−α(Y )] (2.121)
= 1 − FY (VaR1−α(Y ))
= 1 − FY

(
F−1

Y (1 − α)
)

= α.

Choose c ∈ (0, 1) and define (note that Y is Tn-measurable)

ϕ(T )
n = (1 − c) +

c

α
1{Y >VaR1−α(Y )}, (2.122)

and for t < n
ϕ

(T )
t = E

[
ϕ(T )

n

∣∣∣ Tt

]
. (2.123)

(1) Prove that ϕ(T ) � 0. Moreover, prove that ϕ(T ) ∈ L2
n+1(PT , T ).

(2) Show that (ϕ(T )
t )t=0,...,n is a density process w.r.t. T and PT .

Assume that Xk = (0, . . . , 0, Xk, 0, . . . , 0) with Xk = ΛkU
(k)
k . Choose Y =

Λk and assume that t < k. Under Assumption 2.15 and (2.57) show that

Qt [Xk] =
{

βtE [Λk| Tt] + (1 − βt)E [Λk|Λk > VaR1−α(Λk), Tt]
}

U
(k)
t ,

(2.124)
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with so-called credibility weights

βt =
1 − c

(1 − c) + c P [Λk>VaR1−α(Λk)|Tt]
α

. (2.125)

We define the probability

αt = P [Λk > VaR1−α(Λk)| Tt] . (2.126)

This implies

αt = P [Λk > VaR1−α(Λk)| Tt] = P [Λk > VaR1−αt(Λk|Tt)| Tt] , (2.127)

which says
VaR1−α(Λk) = VaR1−αt(Λk|Tt), (2.128)

where VaR1−αt(Λk|Tt) denotes the Value-at-Risk of Λk|Tt at level 1 − αt.
Henceforth, the credibility weight is given by

βt =
1 − c

(1 − c) + c αt

α

(2.129)

and for the price of the insurance technical variable we obtain

Λt,k = βtE [Λk| Tt] + (1 − βt)E [Λk|Λk > VaR1−αt(Λk|Tt), Tt] . (2.130)

The last term is called expected shortfall of Λk|Tt at level 1−αt, see McNeil et
al. [MFE05]. Value-at-Risk and expected shortfall are probably the two most
popular risk measures in the insurance industry.

Choose the special case t = 0. Then we have α0 = α (note that T0 =
{∅, Ω}), which implies βt = 1 − c and

Λ0,k = (1 − c)E [Λk] + cE [Λk|Λk > VaR1−α(Λk)] (2.131)

= E [Λk] + c

{
E [Λk|Λk > VaR1−α(Λk)] − E [Λk]

}
.

Henceforth, the basic reserve for Λk at time 0 is given by its expected value
E [Λk] plus a loading where c ∈ (0, 1) plays the role of the cost-of-capital rate
and

E [Λk|Λk > VaR1−α(Λk)] − E [Λk] (2.132)

is the capital-at-risk (unexpected loss) measured by the expected shortfall
on the level 1 − α. This is in line with actual solvency developments, see
for example SST [SST06], Pelsser [Pe10], Salzmann-Wüthrich [SW10] and
Section 5.3 below. �
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2.7 Conclusions on Chapter 2

We have developed theoretical foundations of market-consistent valua-
tion based on (possibly distorted) expected values (see (2.99) and (2.113)).
The distorted probabilities will lead to the price for risk. The framework as
developed is not the “full story” since it only gives the price for risk (the so-
called (probability distorted) pure risk premium) for an insurance company.

However, it does not provide enough information on the risk bearing. This
means, that we have not described how the risk bearing should be organized
in order to protect against insolvencies.

An insurance company can take the following measures to protect itself
against financial impacts of adverse scenarios:

1. buying options and reinsurance, if available,
2. hedging options internally,
3. setting up sufficient risk bearing capital (solvency margin).

In practice, one has to be extremely careful in each application whether
the price for risk resulting from the mathematical model is already sufficient
to finance adverse scenarios.

Remark on the existing literature. There is a wide range of literature on
the definition of market-consistent values. Usually all these definitions are not
very mathematical and slightly differ from each other, e.g. market-consistent
values should be realistic values, should serve for the exchange of two portfo-
lios, etc. One has to be very careful with these definitions, e.g. do they include
cost-of-capital charges, etc.

Our model gives a mathematical framework for a market-consistent valua-
tion. Charges for the risk bearing can be integrated via distorted probabilities,
however (as mentioned above) this does not solve the question of the organi-
zation of the risk bearing.
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Valuation portfolio in life insurance

In this chapter we define the valuation portfolio for a life insurance liability
portfolio. The construction is done with the help of an explicit example. We
proceed in two steps: First, we assume that the cash flows have deterministic
insurance technical risk, i.e. we have a deterministic mortality table, and only
the value of the financial instruments describe a stochastic process. Then,
we map the cash flows onto these financial instruments. In the second step,
we introduce stochastic mortality rates yielding stochastic insurance technical
risk. In that case we follow the construction in step 1, but we add loadings
for the insurance technical risks coming from the stochastic mortality table.
This construction gives us a replicating portfolio (protected against insurance
technical risks) in terms of financial instruments.

3.1 Deterministic life insurance model

To define the valuation portfolio VaPo we start with a deterministic life in-
surance model where no insurance technical risk is involved (see also Baum-
gartner et al. [BBK04]). We assume that we have a deterministic mortality
table (second order life table) giving the mortalities without loadings. Let lx
denote the number of insured lives aged x and dx the number of insured lives
aged x who die before reaching age x + 1.

lx
↓ −→ dx = lx − lx+1

lx+1

↓ −→ dx+1 = lx+1 − lx+2

lx+2

↓ −→ dx+2 = lx+2 − lx+3

...
...
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Example 3.1 (Endowment insurance policy).

We assume that the initial sum insured (death benefit) is CHF 1, the age
at policy inception is x = 50 and the contract term is n = 5. Moreover, we
assume that:

• The annual premium Πt = Π, t = 50, . . . , 54, is due in non-indexed CHF
at the beginning of each year.

• The benefits are indexed by a well-defined index It, t = 50, 51, . . . , 55, with
initial value I50 = 1.
– Death benefit is the indexed maximum of It and (1 + i)t−50 for some

fixed minimal guaranteed interest rate i.
– Survival benefit is I55, i.e. no minimal guarantee in the case of survival.

The benefits are always paid at the end of each period (t − 1, t].

This means that the survival benefit is given by a financial instrument I whose
price is a stochastic process (It)t≥50 with initial value I50 = 1. This index can
be any financial instrument like a stock, a fund, etc. Hence, to hedge the
survival benefit we need to buy one unit of index I at the price I50 = 1 and it
generates the (random) survival benefit I55 at time t = 55.

Thus, the endowment contract gives the following cash flow diagram for
X = (X50, . . . , X55) ∈ L2

n+1(P,G): for initially l50 persons alive we have (if we
only consider 1 person we divide by l50)

time cash flow premium death benefit survival benefit
50 X50 −l50 Π
51 X51 −l51 Π d50

(
I51 ∨ (1 + i)1

)
52 X52 −l52 Π d51

(
I52 ∨ (1 + i)2

)
53 X53 −l53 Π d52

(
I53 ∨ (1 + i)3

)
54 X54 −l54 Π d53

(
I54 ∨ (1 + i)4

)
55 X55 d54

(
I55 ∨ (1 + i)5

)
l55 I55

Cash inflows (premium) have a negative sign, cash outflows have a positive
sign, and x ∨ y = max{x, y}. �
Task: Value this endowment policy at the beginning of the contract and at
every successive year!

3.2 Valuation portfolio for the deterministic life
insurance model

For the life insurance portfolio considered in Example 3.1 (with deterministic
mortality rates) we now want to construct the valuation portfolio. Roughly
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speaking the valuation portfolio (VaPo) is a portfolio of financial instruments
that replicates the future cash flows arising from the insurance contracts. The
procedure is the following: to replicate the insurance cash flow X ∈ L2

n+1(P,G)
we specify in a first step the set of financial instruments that will be used for
the replication purposes. Second, for each financial instrument the appropriate
number of units must be determined, this gives the VaPo for X. Thirdly, we
define the market-consistent value of the cash flow X to be equal to the value
of the VaPo. This convention is consistent with the well-known “law of one
price”-principle which says that in an arbitrage-free economy two instruments
with the same cash flows must have the same price.

Step 1. Define units, choose a financial basis.

• The premium Π is due at time t = 50, . . . , 54 in non-indexed CHF. Hence,
as units we choose the zero coupon bonds Z(50), . . . , Z(54) (the units are
denoted by Z(t), whereas the cash flow of the zero coupon bond Z(t) is
denoted by Z(t), see (2.28) and (3.4)).

• Survival benefit: Unit is the indexed fund I with price process (It)t=50,...,55.
• Death benefit It ∨ (1 + i)t−50 can be measured in an indexed fund I plus

a put option on I with strike time t and strike (1 + i)t−50. We denote this
put option by Put(t) = Put(t)(I, (1 + i)t−50).

Hence we have the following units (financial instruments)

(U1, . . . ,U11) (3.1)

=
(
Z(50), . . . , Z(54), I, Put(51)

(
I, (1 + i)1

)
, . . . ,Put(55)

(
I, (1 + i)5

))
,

i.e. we have that the total number of different units equals 11. These units
play the role of the basis (financial instruments) in which we measure the
insurance liabilities.

Step 2. Determine the number/amount of each unit needed.

At the beginning of the policy we need:

Valuation Scheme A (for l50 persons)

time premium death benefit survival benefit
50 −l50 Π Z(50)

51 −l51 Π Z(51) d50

(
I + Put(51)

(
I, (1 + i)1

))
52 −l52 Π Z(52) d51

(
I + Put(52)

(
I, (1 + i)2

))
53 −l53 Π Z(53) d52

(
I + Put(53)

(
I, (1 + i)3

))
54 −l54 Π Z(54) d53

(
I + Put(54)

(
I, (1 + i)4

))
55 d54

(
I + Put(55)

(
I, (1 + i)5

))
l55 I
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This immediately leads to the summary of units:

Valuation Scheme B (for l50 persons)

unit Ui number of units
Z(50) −l50 Π
Z(51) −l51 Π
Z(52) −l52 Π
Z(53) −l53 Π
Z(54) −l54 Π

I d50 + d51 + d52 + d53 + d54 + l55 = l50
Put(51)

(
I, (1 + i)1

)
d50

Put(52)
(
I, (1 + i)2

)
d51

Put(53)
(
I, (1 + i)3

)
d52

Put(54)
(
I, (1 + i)4

)
d53

Put(55)
(
I, (1 + i)5

)
d54

Observe that the number of units of I needed is exactly l50 because every
person insured receives one index I, no matter whether he dies during the
term of the contract or not.

Our valuation portfolio VaPo(X) is a point in an 11-dimensional vector
space (see also (3.2) in Section 3.3 below) where we have specified a basis
of financial instruments Ui (dimension of vector space) and the number of
instruments we need to hold to replicate the insurance liabilities.

Step 3. To obtain the (monetary) value for our cash flow we need to apply
an accounting principle to this VaPo(X), see Section 3.3 below. �
Conclusion. In a first and second step, we decompose the liability cash flow
X = (X50, . . . , X55) into a 11-dimensional vector VaPo(X), whose basis con-
sists of financial instruments U1, . . . ,U11. Only in a third step, we calculate
the monetary value of the cash flow X by applying an accounting principle to
the units Ui, and thus to VaPo(X).

Hence we have found the following general valuation procedure:

3.3 General valuation procedure for deterministic
insurance technical risks

1. For every policy with cash flow X ∈ L2
n+1(P,G) with deterministic insur-

ance technical risk we construct the VaPo(X) as follows: Define units Ui

(basis of a multidimensional vector space) and determine the (determin-
istic) number λi(X) ∈ R of each unit Ui:
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X �→ VaPo(X) =
∑

i

λi(X) Ui. (3.2)

From a theoretical point of view the VaPo mapping needs to be a multi-
dimensional positive continuous linear function that maps the insurance
liabilities X onto a valuation portfolio VaPo(X) which replicates the in-
surance liabilities in terms of financial instruments.

2. Apply then an accounting principle At to the valuation portfolio to obtain
a monetary value at time t ≥ 0

VaPo(X) �→ At (VaPo(X)) = Qt [X] ∈ R. (3.3)

This mapping must be a positive, continuous, linear functional.
Moreover, the sequence of accounting principles (At)t=0,...,n must satisfy
certain consistency properties in order to have an arbitrage-free pricing
system. In fact, we require a martingale property (2.57) for deflated price
processes. This is further discussed below.

For the zero coupon bond with maturity m we have at time 0 (U1 = Z(m))

Q0[Z(m)] = A0

(
VaPo(Z(m))

)
= A0

(
λ1(Z(m)) Z(m)

)
= A0

(
Z(m)

)
. (3.4)

The construction of the VaPo adds enormously to the understanding and
communication between actuaries and asset managers and investors, respec-
tively. In a first step the actuary decomposes the insurance portfolio into
financial instruments, in a second step the asset manager evaluates the finan-
cial instruments. Indeed, it is the key step to a successful asset and liability
management (ALM) technique, and it clearly highlights the sources of uncer-
tainties involved in the process. It also allocates the responsibilities for the
uncertainties to the different parties involved.

Remark 1. For a cash flow X ∈ L2
n+1(P,G) with no insurance technical risk

involved we obtain for the value at time 0

Q0 [X] = A0 (VaPo(X)) =
∑

i

λi(X) A0 (Ui) ∈ R, (3.5)

which should be a positive, continuous, linear functional on L2
n+1(P,G). One

has to be a little bit careful with the positivity: In order to obtain a positive
linear functional, we must have that U

(i)
t = At (Ui) > 0 for all i as long

as a policy is in force, which must be kept in mind whenever the units are
selected.

Remark 2. By linearity the individual policies can be added up to a portfolio,
i.e. individual cash flows X(k) ∈ L2

n+1(P,G) easily merge to
∑

k X(k) which
has value
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Qt

[∑
k

X(k)

]
=
∑

k

At

(
VaPo(X(k))

)
. (3.6)

This means that we can value portfolios of a single contract as well as of the
whole insurance company. Note that this aggregation needs to be done very
carefully as soon as also insurance technical risks are involved.

Examples of accounting principles At. An accounting principle At at-
taches a value to the financial instruments. There are different ways to choose
an appropriate accounting principle. In fact, choosing an appropriate account-
ing principle very much depends on the problem under consideration. We give
two examples.

• Classical actuarial discounting. In many situation, for example in (tradi-
tional) communication with regulators, the value of the financial instru-
ments are determined by a mathematical model (such as amortized costs,
etc.). If we choose the model where we discount with a fixed constant
interest rate we denote the accounting principle by Dt.

• In modern actuarial valuation, the financial instruments are often valued at
an economic value, market value or value according to the IASB accounting
rule. In general, this means that the value of the asset is essentially the
price at which it can be exchanged at the financial market. If we use such
an economic accounting principle we use the symbol Et.

Both principles Dt and Et need to fulfill some time consistency properties in
order to have an arbitrage-free pricing system. That is, assume we choose
the economic accounting principles Et, t = 0, . . . , n. Then, for cash flows X ∈
L2

n+1(P,G) (with deterministic insurance technical risk) we have the following
value at time 0

Q0 [X] = E0 (VaPo(X)) =
∑

i

λi(X) E0 (Ui) . (3.7)

Using Riesz’ representation theorem (Theorem 2.5) we find the state price
deflator ϕ ∈ L2

n+1(P, F) with

< X,ϕ > = Q0 [X] = E0 (VaPo(X)) . (3.8)

Using price definition (2.38), Lemma 2.8 then implies that we need to have

(ϕtEt (VaPo(X)))t=0,...,n forms an F-martingale under P . (3.9)

3.4 Self-financing property of the VaPo (deterministic
insurance technical risk)

In (2.49) we have defined X(k) ∈ L2
n+1(P,G) as the remaining cash flow after

time k − 1. Moreover, define the cash flow

Xk = Xk Z(k) = (0, . . . , 0, Xk, 0 . . . , 0) ∈ L2
n+1(P,G). (3.10)
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Hence, note
X(k) = X(k+1) + Xk, (3.11)

and using the linearity of the valuation portfolio (3.2) we have the following
lemma.

Lemma 3.1 (Self-financing property as portfolio) For X ∈ L2
n+1(P,G)

VaPo
(
X(k)

)
= VaPo

(
X(k+1)

)
+ VaPo (Xk) . (3.12)

Of course, in this lemma we assume that the vector space is spanned by the
financial instruments determined by X(k).

Remark. At time k, the last term in (3.12) is simply cash value, which
we abbreviate

VaPo (Xk) = Xk at time k, (3.13)

i.e. we omit in this case to write the unit because it is just 1 at time k.
Studying now the values given by the accounting principle At, we have by

the linearity of At the following lemma:

Lemma 3.2 (Self-financing property in value) For X ∈ L2
n+1(P,G) and

t ≤ k

At

(
VaPo

(
X(k)

))
= At

(
VaPo

(
X(k+1)

))
+ At (VaPo (Xk)) . (3.14)

In particular, if the valuation portfolio of Xk is evaluated at time k then

Xk =
1
ϕk

E [ϕk Xk| Fk] = Qk [Xk] = Ak (VaPo(Xk)) , (3.15)

hence
Ak

(
VaPo

(
X(k)

))
= Ak

(
VaPo

(
X(k+1)

))
+ Xk, (3.16)

which tells again that the VaPo for Xk at time k is simply Xk. This observation
is fundamental and should hold independently of the value assigned to the
VaPo by the accounting principle At.

For a more detailed analysis of the self-financing property in monetary
value over time we refer to Subsection 6.2.

3.5 VaPo protected against insurance technical risks

So far we have considered an ideal situation which is an important point of
reference to measure deviations.

ideal realistic deviation

deterministic mortality stochastic mortality technical risk

VaPo real investment portfolio S financial risk
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The ideal situation is often called base scenario and one then studies deviations
from this base scenario.

In this section we want to consider insurance technical risks. They come
from the fact that the insurance liabilities are not deterministic, i.e. X ∈
L2

n+1(P, F). This means in our example that we have stochastic mortality
rates.

For the deviations from the deterministic model (which are expectations,
best-estimates for the liabilities) we add a protection. Such a protection can be
obtained e.g. via reinsurance products, risk loadings or risk bearing capital.
The VaPo with this additional protection will be called VaPo protected
against insurance technical risks.

3.5.1 Construction of the VaPo protected against insurance
technical risks

Let us return to our Example 3.1. The stochastic mortality table reads as:

lx
↓ −→ Dx = lx − Lx+1

Lx+1

↓ −→ Dx+1 = Lx+1 − Lx+2

Lx+2

↓ −→ Dx+2 = Lx+2 − Lx+3

...
...

where now Lx+k and Dx+k−1 are random variables for k ≥ 1. From

D50 = l50 − L51, (3.17)

d50 = l50 − l51, (3.18)

we obtain
D50 − d50 = l51 − L51, (3.19)

which describes the deviations of D50 and L51 from their expected values d50

and l51, respectively. In fact, in a first step we use the expected value d50

as a predictor for the random variable D50, and in a second step we need to
study the prediction uncertainty or the deviation of the random variable D50

around its predictor d50.

The Valuation Scheme A then reads as follows for the stochastic mortality
table:
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time premium death benefit survival benefit
50 −l50 Π Z(50)

51 −L51 Π Z(51) D50

(
I + Put(51)

(
I, (1 + i)1

))
52 −L52 Π Z(52) D51

(
I + Put(52)

(
I, (1 + i)2

))
53 −L53 Π Z(53) D52

(
I + Put(53)

(
I, (1 + i)3

))
54 −L54 Π Z(54) D53

(
I + Put(54)

(
I, (1 + i)4

))
55 D54

(
I + Put(55)

(
I, (1 + i)5

))
L55 I

Let us define the expected survival probabilities and the expected death
probabilities (second order life table) for t ≥ x:

pt =
lt+1

lt
and qt = 1 − pt =

dt

lt
. (3.20)

Denote by VaPo(X(t+1)) the valuation portfolio for the cash flows after
time t with deterministic insurance technical risks (deterministic mortality
table as defined in Section 3.2). I.e. VaPo(X(t+1)) denotes the valuation port-
folio with the expected cash flows (Lt is replaced by its mean lt).

If we allow for a stochastic survival in period (50, 51] we have the following
deviations from the expected VaPo (deterministic insurance technical risks):
For t = 51 we obtain the following deviations form the expected payments

(D50 − d50)
(
I + Put(51)

(
I, (1 + i)1

))
, (3.21)

(l51 − L51) Π Z(51), (3.22)

(L51 − l51)
VaPo(X(52))

l51
, (3.23)

if VaPo(X(52)) denotes the deterministic cash flows of our endowment policy
after time t = 51 (according to Section 3.2). This means that we have devi-
ations in the payments at time t = 51 due to the stochastic mortality, and
then at t = 51, we start with a new basis of L51 insured lives (instead of l51),
which gives a new expected VaPo after time t = 51 of (use the linearity of the
VaPo)

L51

VaPo(X(52))
l51

. (3.24)

Using (3.19) and equations (3.21)-(3.23) we see that we need additional re-
serves of

(D50 − d50)
(
I + Put(51)

(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

)
(3.25)

for the deviations from the expected mortality table within (50, 51]. Note that
this deviation is stochastic seen from time t = 50. Hence the portfolio at risk
is
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I + Put(51)
(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

. (3.26)

We can now iterate this procedure:
For t = 52 we have the following deviation from the expected VaPo. The
expected VaPo starts now after t = 51 with the new basis of L51 insured lives
(we have to build the additional VaPo reserves for the new basis in (3.25)).
Note that conditionally, given L51, we expect q51L51 persons to die within
the time interval (51, 52] and we observe D51 at time t = 52. This gives the
following deviations

(D51 − q51 L51)
(
I + Put(52)

(
I, (1 + i)2

))
, (3.27)

(p51 L51 − L52) Π Z(52), (3.28)

(L52 − p51 L51)
VaPo(X(53))

p51 L51

L51

l51
, (3.29)

where the last term can be simplified to

VaPo(X(53))
p51 L51

L51

l51
=

VaPo(X(53))
l52

. (3.30)

Hence we need for the deviation in (51, 52] additional reserves of

(D51 − q51 L51)
(
I + Put(52)

(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

)
.

(3.31)

And analogously for t = 53, 54, 55 we obtain the deviations

(D52 − q52 L52)
(
I + Put(53)

(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

)
,

(D53 − q53 L53)
(
I + Put(54)

(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

)
,

(D54 − q54 L54)
(
I + Put(55)

(
I, (1 + i)5

)
− I
)

. (3.32)

Remark. One can see that when adding up the terms inside in (3.25) and
(3.31)-(3.32) the unit I cancels since VaPo(X(t+1)) contains exactly lt units
of I for t = 50. This is immediately clear because the number of units I we
need to buy at the beginning of the policy does not depend on the mortality
table (see Valuation Scheme B on page 46), i.e. no matter whether a person
dies or stays alive it receives I.

Hence we find the following portfolios at risk:
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t = 51 : I + Put(51)
(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

,

t = 52 : I + Put(52)
(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

,

t = 53 : I + Put(53)
(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

, (3.33)

t = 54 : I + Put(54)
(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

,

t = 55 : I + Put(55)
(
I, (1 + i)5

)
− I.

The interpretation of (3.33) is the following. Consider for example the period
(52, 53], if more people die than expected (D52 > q52 L52) we have to pay an
additional death benefit of

(D52 − q52 L52)
(
I + Put(53)

(
I, (1 + i)3

))
. (3.34)

On the other hand for all these people the contracts are terminated which
means that our liabilities are reduced by

(D52 − q52 L52)
(
−Π Z(53) +

VaPo(X(54))
l53

)
. (3.35)

These insurance technical risks are now protected against adverse develop-
ments by adding a security loading. This gives us the following reinsurance
premium loadings as a portfolio:

RPP50 = l50 (q∗50 − q50)(
I + Put(51)

(
I, (1 + i)1

)
+ Π Z(51) −

VaPo(X(52))
l51

)
,

RPP51 = l51 (q∗51 − q51)(
I + Put(52)

(
I, (1 + i)2

)
+ Π Z(52) −

VaPo(X(53))
l52

)
,

RPP52 = l52 (q∗52 − q52)(
I + Put(53)

(
I, (1 + i)3

)
+ Π Z(53) −

VaPo(X(54))
l53

)
,

RPP53 = l53 (q∗53 − q53)(
I + Put(54)

(
I, (1 + i)4

)
+ Π Z(54) −

VaPo(X(55))
l54

)
,

RPP54 = l54 (q∗54 − q54)
(
I + Put(55)

(
I, (1 + i)5

)
− I
)

, (3.36)

where q∗t − qt denote the loadings charged by the reinsurer against insurance
technical risks, and lt is the number of units we need to buy. Here, q∗t can be
interpreted as the yearly renewable term (YRT) rates charged by the reinsurer.
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Valuation Portfolio protected against insurance technical risks is now
defined as

VaPoprot (X) = VaPo (X) +
54∑

t=50

RPPt. (3.37)

Remarks.

• For a monetary reinsurance premium we need to apply an accounting
principle At to the reinsurance premium portfolio (yearly renewable term):

ΠR
t = At (RPPt) (3.38)

= lt (q∗t − qt)

×At

(
I + Put(t+1)

(
I, (1 + i)t−50+1

)
+ ΠZ(t+1) −

VaPo(X(t+2))
lt+1

)
.

• The last term in (3.38) highlights that the choice of the loadings q∗t − qt

needs some care. The monetary value of the portfolio at risk (3.33) may
have both signs. Therefore the sign of the loading may depend on the
monetary value of the portfolio at risk. For example, for death benefits
we decrease the survival probabilities pt, whereas for annuities we increase
the survival probabilities.

• There are different possibilities to determine the premium: We could
choose an actuarial accounting principle Dt or an economic accounting
principle Et (which gives an economic yearly renewable term, see also page
48). This idea opens interesting new reinsurance products: Offer a rein-
surance cover against insurance technical risks in terms of a valuation
portfolio.

• A static hedging strategy is to invest the reinsurance premium into the
valuation portfolios of the reinsurer.

3.5.2 Probability distortion of life tables

The choice of the death probabilities q∗t may look artificial at the first sight.
They often come from a first order life table. A first order life table refers to
survival or death probabilities that are chosen prudent (i.e. with some safety
margin), whereas the second order life table refers to best-estimate survival
and death probabilities. However, the choice of a first order life table fits
perfectly into our modelling framework. Indeed, the first order life tables can
be explained by probability distortions: In (2.105) we have considered the
term Λt,k = 1

ϕ
(T )
t

E
[
ϕ

(T )
k Λk

∣∣∣ Tt

]
, k > t, referring to the price of the insurance

cover in units.

To explain this term, we revisit our Example 3.1 with a stochastic mortality
table: for illustrative purposes we choose t = 52. The σ-field T52 tells us that
there are L52 persons alive at time t = 52, i.e. L52 is T52-measurable. Moreover,
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we choose k = 53 and we assume that Λ53 models the death benefit. Thus we
study (set ϕ

(T )
52 = 1)

E
[
ϕ

(T )
53 Λ53

∣∣∣ T52

]
= E

[
ϕ

(T )
53 D52

∣∣∣ T52

]
, (3.39)

which describes for how many financial units we build insurance technical
reserves.

In a first step we choose ϕ
(T )
53 ≡ 1, then we obtain

E
[
ϕ

(T )
53 Λ53

∣∣∣ T52

]
= E [D52| T52] = q52 L52, (3.40)

i.e. q52 describes the single death probability within (52, 53] and (3.40) leads
to the VaPo that covers expected liabilities.

We now model the probability distortion (insurance technical deflator)
ϕ

(T )
53 so that we obtain the first order life table q∗52. Note that

E
[
ϕ

(T )
53 Λ53

∣∣∣ T52

]
= E

[
ϕ

(T )
53 D52

∣∣∣ T52

]
=

L52∑
i=1

E
[
ϕ

(T )
53 Ii

∣∣∣ T52

]
, (3.41)

where Ii is the indicator whether person i dies within (52, 53].
We assume that single life times (of persons all of the same age) are i.i.d.

Then we assume that the probability distortion ϕ
(T )
53 is of the form

ϕ
(T )
53 =

L52∏
i=1

ϕ
(T )
53 (Ii), (3.42)

such that each factor of this product has expectation 1. Henceforth, we write

L52∑
i=1

E
[
ϕ

(T )
53 Ii

∣∣∣ T52

]
=

L52∑
i=1

E
[
ϕ

(T )
53 (Ii) Ii

∣∣∣ T52

]
. (3.43)

The factors of the probability distortions are now chosen as follows: Take
q∗52 ∈ (0, 1) and define

ϕ
(T )
53 (1) =

q∗52
q52

, (3.44)

ϕ
(T )
53 (0) =

1 − q∗52
1 − q52

. (3.45)

We then obtain the required normalization

E
[
ϕ

(T )
53 (Ii)

∣∣∣ T52

]
= q52

q∗52
q52

+ p52
1 − q∗52
1 − q52

= 1, (3.46)

and the first order life table
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E
[
ϕ

(T )
53 (Ii)Ii

∣∣∣ T52

]
= q52

q∗52
q52

= q∗52, (3.47)

i.e., note that we have set ϕ
(T )
52 = 1, and

E
[
ϕ

(T )
53 Λ53

∣∣∣ T52

]
= q∗52 L52. (3.48)

In other words the transition from the second order life table pt to the first
order life table p∗t exactly refers to a probability distortion ϕ

(T )
t+1.

Exercise 3.2 (Life-Time Annuity).

Consider a life-time annuity for a man aged x at time 0. We assume that the
life-time annuity contract is paid by a single premium installment π0 at the
beginning of the insurance period (initial lump sum) and that the insured
receives an annual payment of M until he dies.

• Determine the valuation portfolio VaPo based on the second order life
table pt, t ≥ x.

• Calculate the portfolios at risk and the VaPo protected against insurance
technical risks.

• Determine the sign of the loadings p∗t − pt.
• Express the second order life table p∗t with the help of probability distor-

tions ϕ
(T )
t+1. �

3.6 Back to the basic model

In Chapter 2 we have chosen a deflator

ϕ = (ϕ0, . . . , ϕn) ∈ L2
n+1(P, F) (3.49)

to value cash flows X = (X0, . . . , Xn) ∈ L2
n+1(P, F). The basic assumption

was that ϕ and X are F-adapted. Moreover, we have assumed that on our
filtered probability space (Ω,F , P, F) we can decompose F into independent
filtrations T and G such that

Xk = Λk U
(k)
k , (3.50)

ϕ = ϕ(T ) ϕ(G), (3.51)

where Λ,ϕ(T ) ∈ L2
n+1(P, T ) and ϕ(G), (U (k)

t )t=0,...,n ∈ L2
n+1(PG ,G) for all

k = 0, . . . , n, see Assumption 2.15. This means that we can split the problem
into two independent problems, one measuring insurance technical risks T
and one describing (financial) price processes on G.
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To avoid ambiguity we have assumed that the expectation of the proba-
bility distortion is 1, (see also (2.100))

E
[
ϕ

(T )
t

]
= 1 (3.52)

for all t = 0, . . . , n, and moreover, we have assumed that (ϕ(T )
t )t=0,...,n is a

T -martingale under P , see (2.101).

The VaPo construction in this chapter has now led to a multidimensional
approach, i.e. the cash flow X ∈ L2

n+1(P, F) is decomposed into a vector
consisting of different financial instruments/units (see also (3.2))

X �→
p∑

i=1

Λi(X) Ui, (3.53)

if U1, . . . ,Up represent the p financial instruments by which X can be de-
scribed, and Λi the (random) number of units Ui needed. The value/price
process of Ui is denoted by (U (i)

t )t=0,...,n and is independent of T . If we now
use vector notation, (3.53) can be rewritten as (we have linear mappings)

X =

⎛
⎜⎜⎜⎝

X0

X1

...
Xn

⎞
⎟⎟⎟⎠ �→

p∑
i=1

⎛
⎜⎜⎜⎝

Λi(X0)
Λi(X1)

...
Λi(Xn)

⎞
⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

Ui

Ui

...
Ui

⎞
⎟⎟⎟⎠ , (3.54)

where Xt = Xt Z(t) = (0, . . . , 0, Xt, 0, . . . , 0).

For the VaPo construction seen from time 0 we have then replaced
the random Λi(Xk) by deterministic numbers (expected values):

Λi(Xk) �→ li,k = l
(0)
i,k = E [Λi(Xk)| T0] . (3.55)

If Λi(Xk) is deterministic as in Section 3.1, then we have Λi(Xk) = λi(Xk) =
li,k (see (3.2)).

For the VaPo protected against insurance technical risks (seen from
time 0) we replace Λi(Xk) by the following deterministic numbers (distorted
expected values):

Λi(Xk) �→ l∗i,k = l∗,0
i,k = E

[
ϕ

(T )
k Λi(Xk)

∣∣∣ T0

]
, (3.56)

which adds a loading to li,k for insurance technical risks. If Λi(Xk) is de-
terministic as in Section 3.1, i.e. X ∈ L2

n+1(P,G), then we have Λi(Xk) =
λi(Xk) = li,k = l∗i,k due to (2.100), i.e. we do not need a loading for insurance
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technical risks. The loading in l∗i,k could also have been chosen directly, not
via the definition of a probability distortion. This gives now

VaPo (X) =
p∑

i=1

⎛
⎜⎝

li,0
...

li,n

⎞
⎟⎠

T ⎛
⎜⎝

Ui

...
Ui

⎞
⎟⎠ . (3.57)

This can also be written as

VaPo (X) =
p∑

i=1

li Ui, (3.58)

with

li =
n∑

t=0

li,t. (3.59)

The VaPo protected against insurance technical risks is given by

VaPoprot (X) =
p∑

i=1

⎛
⎜⎝

l∗i,0
...

l∗i,n

⎞
⎟⎠

T ⎛
⎜⎝

Ui

...
Ui

⎞
⎟⎠ , (3.60)

or equivalently

VaPoprot (X) =
p∑

i=1

l∗i Ui, (3.61)

with

l∗i =
n∑

t=0

l∗i,t. (3.62)

Remark. Observe that (3.57) and (3.58) provide two representations for
VaPo (X). Firstly, we have the cash flow representation, which corresponds
to Valuation Scheme A in Section 3.2. That is, (3.57) implies

VaPo (X) =

⎛
⎜⎝

1
...
1

⎞
⎟⎠

T ⎛
⎜⎝
∑p

i=1 li,0 Ui

...∑p
i=1 li,n Ui

⎞
⎟⎠ . (3.63)

Secondly, we have the instrument representation (3.58) which corresponds
to Valuation Scheme B in Section 3.2.

Analogously, we have the two representations (3.60) and (3.61) for the
VaPo protected against insurance technical risks VaPoprot (X).

For many purposes the instrument representation (3.58) of the VaPo suf-
fices. Sometimes, however, it may be necessary to work with the cash flow
representation (3.63), see for example Section 3.7 below.
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Applying an accounting principle A0 to the VaPo (or equivalently to the
financial instruments Ui) gives then a monetary value for the basic reserves
at time 0.

Remark. It is important to see that the valuation portfolio construction in
(3.55) is seen from time 0. If the cash flows have no insurance technical risks
(as in Section 3.3) there are no deviations in Λi(X) over time, which means
that li,k is constant in time. But if we have insurance technical risks involved,
then

l
(m)
i,k = E [Λi(Xk)| Tm] , (3.64)

l∗,m
i,k =

1

ϕ
(T )
m

E
[
ϕ

(T )
k Λi(Xk)

∣∣∣ Tm

]
(3.65)

are functions of time (see also Chapter 6). This then leads to time dependent
valuation portfolios

VaPo(m) (X) and VaPoprot
(m) (X) . (3.66)

We then also need to study the changes in these valuation portfolios over time,
i.e.

VaPo(m) (X) − VaPo(m−1) (X) (3.67)

and
VaPoprot

(m) (X) − VaPoprot
(m−1) (X) , (3.68)

which considers the update of information Tm−1 �→ Tm and is similar to
the claims development result in non-life insurance, see for example Merz-
Wüthrich [MW08] and Salzmann-Wüthrich [SW10].

3.7 Approximate valuation portfolio

In Section 3.2 we have constructed the VaPo for a rather simple example.
We have considered a small homogeneous portfolio and its liabilities were
easily described by financial instruments. In practice the situation is often
more complicated. Life insurance companies have high-dimensional portfolios
which usually involve embedded options and guarantees as well as manage-
ment decisions. I.e. the valuation portfolio becomes path dependent and the
determination of the liability cash flows and the appropriate financial instru-
ments is not straightforward. In such situations one often tries to approximate
the VaPo by a financial portfolio. Here, we will define the approximate VaPo
(denoted by VaPoapprox) which plays the role of a replicating portfolio.

Let us choose a filtered probability space (Ω,Fn, P, F) and assume that
we have an insurance liability cash flow X ∈ L2

n+1(P, F).
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In order to construct an approximate VaPo we choose a set of basic trad-
able financial instruments U1, . . . ,Uq from which we believe that they can
replicate the liabilities in an appropriate way and for which we can easily
describe their price processes

U
(i)
t = At(Ui), for t = 0, . . . , n, (3.69)

i.e. we want to choose q financial instruments for which we have a good un-
derstanding.

We now want to approximate the cash flow representation (3.63) of

VaPo (X) =
n∑

k=0

VaPo (Xk) . (3.70)

That is, for all single cash flows Xk, k = 0, . . . , n, our goal is to choose yk ∈ R
q

such that

VaPo (Yk) =
q∑

i=1

yi,k Ui (3.71)

approximates VaPo (Xk). Or in vector notation, we choose y ∈ R
q×(n+1) such

that

VaPo (Y) =

⎛
⎜⎝

1
...
1

⎞
⎟⎠

T ⎛
⎜⎝
∑q

i=1 yi,0 Ui

...∑q
i=1 yi,n Ui

⎞
⎟⎠ (3.72)

approximates VaPo (X), see (3.63). That is, our aim is to choose y ∈ R
q×(n+1)

such that X and Y are “close”. Of course, close will depend on some distance
function.

If there is no insurance technical risk and if U1, . . . ,Uq is a complete finan-
cial basis for the liabilities we can achieve

X = Y P -a.s. (3.73)

In general, we are not able to achieve (3.73) nor is it possible to evaluate the
random vectors X and Y for all sample points ω ∈ Ω. Therefore, one then
chooses a finite set of so-called scenarios ΩK = {ω1, . . . , ωK} ⊂ Ω and one
evaluates the random vectors X and Y in these scenarios. We introduce a
distance function

dist (X(·),Y(·), ΩK) ∈ R, (3.74)

then the approximate valuation portfolio is given by

y∗ = arg min
y∈Rq×(n+1)

dist (X(·),Y(·), ΩK) , (3.75)

and for k = 0, . . . , n we obtain
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VaPoapprox (Xk) =
q∑

i=1

y∗
i,k Ui, (3.76)

or, respectively,

VaPoapprox (X) =

⎛
⎜⎝

1
...
1

⎞
⎟⎠

T ⎛
⎜⎝
∑q

i=1 y∗
i,0 Ui

...∑q
i=1 y∗

i,n Ui

⎞
⎟⎠ (3.77)

Remark. It is important to realize that the approximate valuation port-
folio y∗ depends on the choice of (a) the financial instruments U1, . . . ,Uq,
(b) the choice of the scenarios ΩK , and (c) the choice of the distance func-
tion. Based on the purpose of the approximate valuation portfolio (e.g. profit
testing, solvency, extremal behaviour) these choices will vary and there is no
obvious best choice.

Example 3.3 (Cash flow matching).

We assume that we want to match the entire cash flow X as good as possible
and we use the L2-distance measure. Assume that there are positive deter-
ministic weight functions χt : ΩK → R+ given for t = 0, . . . , n. Our distance
function is defined by

dist (X(·),Y(·), ΩK) =
K∑

k=1

n∑
t=0

χt(ωk) (Xt(ωk) − Yt(ωk))2 . (3.78)

For χt(·) we can make different choices. Often one wants to account for time
values, therefore one chooses the financial deflator ϕ(G) (see Assumption 2.15)
and a normalized positive deterministic weight function p : ΩK → R+ with∑K

k=1 p(ωk) = 1 and defines for t = 0, . . . , n

χt(ωk) = p(ωk)
(
ϕ

(G)
t (ωk)

)2

. (3.79)

The distance function is then rewritten as

dist (X(·),Y(·), ΩK) =
K∑

k=1

p(ωk)
n∑

t=0

(
ϕ

(G)
t (ωk)

)2

(Xt(ωk) − Yt(ωk))2

= EK

[
n∑

t=0

(
ϕ

(G)
t Xt − ϕ

(G)
t Yt

)2
]

, (3.80)

where EK denotes the expected value under the discrete probability measure
PK which assigns probability weight p(ωk) to the scenarios in ΩK .

The distance function defined in (3.80) tries to match pointwise in time the
values of the cash flows X and Y as good as possible. Other approaches often
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work under equivalent probability measures (risk neutral measures or forward
measures) so that the discount factors become measurable at the beginning
of the corresponding periods. �
Exercise 3.4.

Calculate the approximate valuation portfolio explicitly under distance func-
tion (3.80).

Hint: Note that we have a quadratic form in (3.80). Set the gradient equal to
zero and calculate the Hessian matrix (see Ingersoll [Ing87], formula (37) on
page 8). �
Example 3.5 (Time value matching).

We assume that we want to match the time value of X as good as possible and
we use the L2-distance measure. For a positive deterministic weight function
χt similar to (3.79) we define the distance function

dist (X(·),Y(·), ΩK) =
K∑

k=1

p(ωk)

{
n∑

t=0

ϕ
(G)
t (ωk) (Xt(ωk) − Yt(ωk))

}2

= EK

⎡
⎣
(

n∑
t=0

ϕ
(G)
t Xt − ϕ

(G)
t Yt

)2
⎤
⎦ , (3.81)

where EK denotes the expected value under the discrete probability measure
PK which assigns probability weight p(ωk) to the scenarios in ΩK .

The distance function defined in (3.81) tries to match time value of entire
cash flows X and Y as good as possible. Note that the difference is, that we
match the entire time value of X in (3.81) whereas in (3.80) we match cash
flow Xk individually in k. �
Exercise 3.6.

Calculate the approximate valuation portfolio explicitly under distance func-
tion (3.81).

Hint: Note that we have a quadratic form in (3.81). Set the gradient equal to
zero and calculate the Hessian matrix (see Ingersoll [Ing87], formula (37) on
page 8). �
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3.8 Conclusions on Chapter 3

We have decomposed the cash flow X in a two-step procedure:

1. Choose a multidimensional vector space whose basis consists of financial
instruments U1, . . . ,Up.

2. Express the cash flow X as a vector in this vector space. The number
of each unit is determined by the expected number of units (where the
expectation is calculated with possibly distorted probabilities).

Calculating the monetary value of the valuation portfolio is then the third
step where we use an accounting principle to give values to the vectors in the
multidimensional vector space.

We should mention that we have constructed our VaPo for a very basic
example. In practice the VaPo construction is much more difficult because,
for example, (a) modelling embedded options and guarantees can become very
difficult, see Section 3.7; (b) often one has not the necessary information on
single policies in the portfolio (e.g. collective policies). Moreover, in practice
one faces a lot of problems about data storing and data management since
the volume of the data can become very large.

Finally, we mention that we can also construct the VaPo if the financial
instruments do not exist on the financial market, e.g. a 41-years zero coupon
bond. The VaPo construction still works. However, calculating the monetary
value of the VaPo is not straightforward if the instruments do not exist on
the financial market.

3.9 Examples

In this section we give a numerical example to the deterministic Example
3.1 (endowment insurance policy). Note that the mathematical details for the
evaluation of the accounting principles are given in Chapter 4, below.

For the deterministic mortality table we choose Table 3.1.

time survival death

50 l50 = 1′000
51 l51 = 996 d50 = 4
52 l52 = 991 d51 = 5
53 l53 = 986 d52 = 5
54 l54 = 981 d53 = 5
55 l55 = 975 d54 = 6

Table 3.1. Deterministic mortality table, portfolio of 1’000 insured lives
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Example 3.7 (Equity-linked life insurance).

We choose an equity-linked life insurance product. Assume that (Is)s denotes
the price process of the equity index I (see (4.9)) in the economic world E .
That is, we choose an accounting principle E that corresponds to financial
market prices, moreover Es denotes these market prices at time s, henceforth

Is = Es (I) = E (I| Gs) , (3.82)

and that Z
(t)
s = P (s, t), s = 0, . . . , t, denotes the price process of the zero

coupon bond paying 1 at time t. I.e.

Z(t)
s = Qs

[
Z(t)
]

= Q
[
Z(t)
∣∣∣Gs

]
= Es

(
Z(t)
)

= E
(
Z(t)
∣∣∣Gs

)
, (3.83)

where Z(t) is the cash flow of the zero coupon bond Z(t) (see (4.10)). Assume
that the zero coupon bond yield curves R(s, t) (continuously-compounded
spot rates) at time s ≤ t are given by

Z(t)
s = exp {−(t − s) R(s, t)} ⇐⇒ R(s, t) = − 1

t − s
log Z(t)

s . (3.84)

Considering historical data we observe (source of zero coupon bond yield
curves given by the Schweizerische Nationalbank [SNB]): see Table 3.2.

R(s, t)
s ln(Is/Is−1) t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

1996 12.99% 1.94% 2.42% 2.79% 3.12% 3.42%
1997 13.35% 1.82% 1.92% 2.20% 2.48% 2.74%
1998 22.11% 1.71% 1.81% 1.95% 2.10% 2.27%
1999 5.41% 2.21% 2.06% 2.21% 2.31% 2.42%
2000 2.02% 3.37% 3.52% 3.53% 3.56% 3.60%
2001 8.60% 2.00% 2.85% 2.90% 2.96% 3.02%
2002 -12.41% 0.69% 1.84% 2.14% 2.38% 2.57%
2003 -14.83% 0.58% 0.79% 1.14% 1.46% 1.72%
2004 15.87% 0.99% 1.11% 1.42% 1.70% 1.94%
2005 1.83% 1.41% 1.14% 1.32% 1.48% 1.62%

average 5.49% 1.67% 1.95% 2.16% 2.35% 2.53%

Table 3.2. Equity index and yield curve of the zero coupon bond

We assume that our endowment insurance policy starts in year 2000, i.e. we
identify the starting point at age x = 50 with the year t0 = 2000.

Assume that the guaranteed interest rate is i = 2%.
To adopt the option pricing formula to the case of non-constant interest

rates we transform our price process Is by a change of numeraire (see also
Subsection 4.3.2) and consider for t0 ≤ s ≤ t

Ĩs =
Is

Z
(t)
s

for fixed t, (3.85)



3.9 Examples 65

that is, we consider the t-forward risk neutral measure for the zero-coupon
bond numeraire Z

(t)
s , see for example Section 2.5 in Brigo-Mercurio [BM06].

Now we need to choose a stochastic model for the price process Ĩs: In order
to apply classical financial mathematics we switch to a continuous time model.
We assume that, under the t-forward risk neutral measure, Ĩs is a martingale
satisfying the following stochastic differential equation

dĨs = σ Ĩs dWs, (3.86)

where Ws is a standard Brownian motion under the t-forward risk neutral
measure. Hence using Ito calculus, Ĩs can be rewritten as follows (see e.g. Sub-
section 3.4.3 in Lamberton-Lapeyre [LL91])

Ĩs = Ĩt0 exp
{
−σ2

2
(s − t0) + σ Ws−t0

}
. (3.87)

Using the general option pricing formula for European put options (see
e.g. Section 9.4 in Elliott-Kopp [EK99]) we obtain the price process

Es

(
Put(t)

(
I, (1 + i)t−t0

))
= K(t)

s Φ (−d2(s, t)) − Is Φ (−d1(s, t)) , (3.88)

with Φ standard Gaussian distribution and

K(t)
s = (1 + i)t−t0 Z(t)

s , (3.89)

d1(s, t) =
log
(
Is/K

(t)
s

)
+ σ2(t − s)/2

σ
√

t − s
, (3.90)

d2(s, t) = d1(s, t) − σ
√

t − s. (3.91)

Remark. For Z
(t)
s = exp{−r (t − s)} with r > 0 constant, (3.88) is the

well-known Black-Scholes formula.

We choose Is and Z
(t)
s according to Table 3.2 with It0 = 1 and σ = 15% and

obtain the following prices for the put options (observe that in year t0 = 2000
we have a rather high yield R(t0, t), which gives a low price for our put option):
see Table 3.3.

t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

s = 2000 0.053 0.069 0.080 0.088 0.093
s = 2001 0.034 0.051 0.066 0.076
s = 2002 0.117 0.131 0.144
s = 2003 0.249 0.267
s = 2004 0.140

Table 3.3. Prices put options Es(Put(t)(I, (1 + i)t−t0))
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Now we calculate the monetary value of the valuation portfolio of X: As-
sume that the survival and death benefit (before index-linking) equal 100’000.
Hence we require (premium equivalence principle)

Et0 (VaPo (X)) = Qt0 [X]
(!)
= 0, (3.92)

which gives the market-consistent pure risk premium Π = 21′667 (per policy).
Now we consider the valuation portfolios at different times t0 ≤ s ≤ t− 1.

Denote by X(s+1) = (0, . . . , Xs+1, . . . , Xt) the cash flow (outstanding liabili-
ties) after time s.

E(+)
s = Es

(
VaPo

(
X(s+1)

)
− l50+s−t0 Π Z(s)

)
(3.93)

= Es

(
VaPo

(
X(s+1)

))
− l50+s−t0 Π = Qs

[
X(s+1)

]
− l50+s−t0 Π,

is the monetary value before the premium l50+s−t0 Π has been paid at time
s, and

E(−)
s = Es

(
VaPo

(
X(s+1)

))
= Qs

[
X(s+1)

]
, (3.94)

is the monetary value after the premium l50+s−t0 Π has been paid at time s.
Of course E(+)

t0 = Et0 (VaPo (X)) = 0 (premium equivalence principle). This
gives the following results for the monetary values of the valuation portfolios:
see Table 3.4.

E(+)
s E(−)

s

s = 2000 0 21’666’637
s = 2001 26’370’714 47’950’684
s = 2002 32’423’186 53’894’823
s = 2003 39’619’061 60’982’365
s = 2004 74’244’766 95’499’737

Table 3.4. Development of the monetary values of the valuation portfolios

For the valuation portfolio protected against insurance technical risks, we
proceed as follows: we define pt and qt as in (3.20). Moreover we choose q∗t =
1.5 · qt (first order life table). Hence we consider the premium for the yearly
renewable term ΠR

s defined in (3.38) for our accounting principle Et0 . This
gives the following monetary reinsurance loadings at time t0: see Table 3.5.

ΠR
s

s = 2000 167’885
s = 2001 162’340
s = 2002 115’180
s = 2003 68’723
s = 2004 27’818

Table 3.5. monetary yearly renewable terms premium

�
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Example 3.8 (Wage index).

In non-life insurance the products are rather linked to other indices like the
inflation index, wage index, the consumer price index or a medical expenses
index. As index we choose the wage index (source Schweizerische Nationalbank
[SNB]): see Table 3.6.

R(s, t)
s Is

Is−1
− 1 t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

1996 1.30% 1.94% 2.42% 2.79% 3.12% 3.42%
1997 1.26% 1.82% 1.92% 2.20% 2.48% 2.74%
1998 0.47% 1.71% 1.81% 1.95% 2.10% 2.27%
1999 0.69% 2.21% 2.06% 2.21% 2.31% 2.42%
2000 0.29% 3.37% 3.52% 3.53% 3.56% 3.60%
2001 1.26% 2.00% 2.85% 2.90% 2.96% 3.02%
2002 2.48% 0.69% 1.84% 2.14% 2.38% 2.57%
2003 1.79% 0.58% 0.79% 1.14% 1.46% 1.72%
2004 1.40% 0.99% 1.11% 1.42% 1.70% 1.94%
2005 0.93% 1.41% 1.14% 1.32% 1.48% 1.62%

average 1.19% 1.67% 1.95% 2.16% 2.35% 2.53%

Table 3.6. Wage inflation index and yield curve of the zero coupon bond

This time we choose as minimal guaranteed interest rate of i = 1.5%. For
the volatility we choose σ = 1%. This implies that the market-consistent pure
risk premium Π equals Π = 21′624 (per policy) and the prices for the put
options can be found in Table 3.7.

t − s = 1 t − s = 2 t − s = 3 t − s = 4 t − s = 5

s = 2000 1.16 · 10−4 8.26 · 10−6 8.42 · 10−7 7.36 · 10−8 4.74 · 10−9

s = 2001 2.82 · 10−3 2.28 · 10−4 6.14 · 10−5 1.39 · 10−5

s = 2002 4.60 · 10−3 1.21 · 10−3 4.75 · 10−4

s = 2003 3.72 · 10−3 8.27 · 10−3

s = 2004 2.43 · 10−3

Table 3.7. Put option prices Es(Put(t)(I, (1 + i)t−t0))

Observe that the premium Π and the put prices are smaller in the wage
index example than in the equity-linked example. This comes from the fact
that the choice of σ is much smaller in the second example.

The monetary values of the valuation portfolios are provided in Table 3.8.

E(+)
s E(−)

s

s = 2000 0 21’624’505
s = 2001 18’723’288 40’261’295
s = 2002 39’780’582 61’210’467
s = 2003 61’740’997 83’062’759
s = 2004 83’857’251 105’070’890

Table 3.8. Development of the monetary values of the valuation portfolios
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And the reinsurance loadings are given in Table 3.9.

ΠR
s

s = 2000 157’404
s = 2001 145’186
s = 2002 95’278
s = 2003 46’890
s = 2004 0.0014

Table 3.9. Monetary yearly renewable terms premium

The reinsurance premium looks rather small compared to the pure risk
premium lt Π Z

(s)
t0 . This comes from the fact that σ is rather small, that

the minimal guarantee i = 1.5% is rather low compared to the yield R(t0, ·)
in year t0 = 2000, and from the fact the randomness of Dt is rather small
compared to the total volume lt. �



4

Financial risks

In the previous chapter we have defined the valuation portfolio VaPo for life
insurance policies. This valuation portfolio VaPo can be viewed as a replicating
portfolio for the insurance liabilities in terms of financial instruments. In this
chapter we analyze financial risks which come from the fact that the VaPo
and the real existing asset portfolio on the asset side of the balance sheet may
differ.

4.1 Asset and liability management

We assume that the VaPo, the VaPoprot and the VaPoapprox consist of financial
instruments Ui which can be bought at the financial market (this is reasonable
for life insurance). We should now compare these valuation portfolios to the
existing asset portfolio S which our insurance company holds on the asset
side of its balance sheet, see Figure 4.1.

In the sequel we drop the upper indices “prot” and “approx”.

Definition 4.1 If we buy VaPo as assets the resulting portfolio is called repli-
cating portfolio.

It is convenient to use VaPo for both: 1) the portfolio of liabilities, 2) the
replicating portfolio of assets, since they are physically the same portfolio.

Definition 4.2 Financial risks derive from the fact that the existing asset
portfolio S and the replicating portfolio VaPo differ.

Financial risk management and asset and liability management (ALM)
is concerned with maximizing financial returns under the constraint that one
has to cover the given liabilities VaPo. Goal is to obtain solvency at any time,
where solvency is defined relative to an accounting principle.
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Fig. 4.1. Existing asset portfolio S for the cover of insurance liabilities and the
valuation portfolio protected against insurance technical risks VaPoprot

In the sequel we choose the economic accounting principle Et (see Sec-
tion 3.3). Here, this corresponds to the prices that are paid at the financial
market for the different financial instruments. Since these prices are time de-
pendent, we attach a subscript t to the accounting principle denoting the time
point at which the prices of the financial instruments are evaluated. In order
to have a meaningful pricing system we again need consistency properties for
the accounting principles Et over time t = 0, . . . , n. Similarly to Section 3.3
this means that we want the accounting principles to be continuous, positive,
linear functionals such that the martingale property (3.9) is fulfilled for the
corresponding deflator ϕ ∈ L2

n+1(P, F).

Definition 4.3 Choose t0 ∈ {0, . . . , n− 1}. An insurance company is solvent
at time t0, iff

Et0 [S] ≥ Et0 [VaPo] , (4.1)

this is the accounting condition (actual market-consistent balance sheet), and

Et [S] ≥ Et [VaPo] for all t = t0 + 1, . . . , n, (4.2)

this is the insurance contract condition.
�

Remarks.

• Definition 4.3 is our definition for solvency. Pay attention to the fact
that there is not a unique definition for solvency, indeed the solvency
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rules slightly differ from country to country. In particular, they depend on
the risk classes considered, the risk measure used, the security level used,
the stochastic model used, etc. Moreover, importantly, we could replace
the economic accounting principle Et by any other appropriate accounting
principle At and we would obtain different solvency results.

• The accounting condition (4.1) is necessary but not sufficient for solvency.
It basically says that the market-consistent value of the outstanding in-
surance liabilities described by the VaPo is covered by the asset value.

• Either there is no insurance technical risk involved (i.e. the valuation port-
folio is deterministic with respect to insurance technical risks) or if there is
insurance technical risk involved, we consider the valuation portfolio pro-
tected against insurance technical risks. Hence in both situations the valu-
ation portfolios are assumed to be deterministic (w.r.t. insurance technical
risks), i.e. the cash flow generated by the VaPo is in L2

n+1(P,G). Therefore,
requirement (4.2) only considers financial risks. This view will be refined
in Chapter 6.

• Note that viewed from time t0, the values Et [S] and Et [VaPo] are random
variables for t = t0 +1, . . . , n. Therefore, we require the insurance contract
condition (4.2) to hold with P [·|Gt0 ]-probability 1 (below we write shortly
P -a.s.). At the first sight this seems rather restrictive and in practice one
often relaxes (4.2) to hold with high probability. However, we will see below
how we can achieve our definition of solvency.

• In many solvency considerations the time interval under consideration is
1. This means that one assumes that the accounting condition needs to be
fulfilled at time t0 and that the insurance contract condition is fulfilled at
time t0 + 1 (this is the so-called one-year solvency view). After t0 + 1 we
iterate this one-year procedure with a new accounting condition at t0 + 1
and so on (until the run-off of all liabilities is done). In the sequel, for the
protection against financial risks, we will also take this point of view. Then
the problem of solvency decouples into one-period problems (that need to
be calculated recursively and involve multiperiod risk measures, see also
Salzmann-Wüthrich [SW10]).

Task of financial risk management. If (4.1) is satisfied, how do we need
to choose our asset portfolio S such that our company is solvent?

S is a dynamic portfolio, which can be restructured at any time t = t0, . . . , n.

a) Prudent solution. Choose S at time t0 as follows

S = VaPo + F, (4.3)

where VaPo is the replicating portfolio of the liabilities and F is the free
reserve or excess capital which must satisfy Et [F ] ≥ 0 for all t ≥ t0, P -a.s.
Hence solvency is guaranteed which, from a mathematical point of view, shows
that solvency is possible.



72 4 Financial risks

b) Realistic situation.

• S does not (entirely) contain VaPo.
• ALM mismatch (between S and VaPo) is often wanted, because taking

additional financial risks on the asset side of the balance sheet opens the
possibility for receiving higher investment returns.

• This mismatch asks for additional protections against financial risks to
achieve solvency. In fact regulators ask for a substantially increased target
capital for the protection against financial risks. It turns out in the Swiss
Solvency Test [SST06] that the financial risk is the dominant term for
life insurance companies, whereas in a typical non-life insurance company
the target capital for financial risks has about the same size as the target
capital for insurance technical risks.

4.2 Procedure to control financial risks

As described on page 71 we decouple the solvency problem into one-period
problems. For simplicity we only study the first accounting year {t0, t0 + 1}.
We decompose our portfolio at the beginning t0 of the accounting year into
three parts

S = S̃ + M + F, (4.4)

where S̃ is any asset portfolio which satisfies the accounting condition (4.1),
and M is a margin which is determined below, i.e.

Et0 [VaPo] = Et0

[
S̃
]

accounting condition,

M margin,
F free reserves, excess capital.

(4.5)

At the end t0 + 1 of the accounting year (before adding additional insurance
contracts to our balance sheet), we should be able to

(1) switch from S̃ + M to VaPo if necessary,
(2) Et[F ] is not allowed to become negative for t = t0, t0 + 1, P -a.s.

I.e. the margin M is calculated such that we are able to switch from S̃ + M
to VaPo at the end of the accounting period {t0, t0 + 1}, if necessary.

Formalizing (1). A Margrabe option gives the right to exchange one
asset for another. It is named after William Margrabe [Ma78].

Hence, in terms of financial instruments, M is chosen to be a Margrabe
option that allows for switching from the asset portfolio S̃ to the asset portfolio
VaPo whenever

Et0+1 [VaPo] > Et0+1

[
S̃
]
. (4.6)

This means that the decomposition (4.4) is chosen such that
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Fig. 4.2. Time evolution of the asset and liability portfolios

(1) Et0 [VaPo] = Et0

[
S̃
]

(accounting condition);

(2) M allows for switching from S̃ + M to VaPo whenever (4.6) holds at time
t0 + 1, note that Et[M ] ≥ 0 for t = t0, t0 + 1, P -a.s.;

(3) Et[F ] ≥ 0 for t = t0, t0 + 1, P -a.s.

In order to calculate the price of the Margrabe option, we consider in the
sequel the two price processes generated by S̃ and VaPo:

Yt = Et

[
S̃
]
, (4.7)

Vt = Et [VaPo] . (4.8)

For explicit calculations it will be useful to consider a continuous time model
t ∈ [t0, t0 + 1] because this allows for applying classical financial mathematics
like the geometric Brownian motion framework.

4.3 Financial modelling

4.3.1 Stochastic discounting of financial variables

In this subsection we recall the situation from Section 2.6. Our aim is to
model the financial market G, where throughout we assume Assumption 2.15
and that the probability distortion ϕ(T ) is a density process according to
(2.103).

We choose a filtered probability space (Ω,Gn, P,G) with financial filtration
G = (Gt)t=0,...,n. On this probability space we choose a fixed financial deflator
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ϕ(G) ∈ L2
n+1(P,G), and we assume that the price processes of the financial

instruments Ui satisfy (U (i)
t )t=0,...,n ∈ L2

n+1(P,G).

In order to have an economically meaningful pricing framework we obtain
from Theorem 2.18 that the deflated price process (ϕ(G)

t U
(i)
t )t=0,...,n has at

time s ≤ t value
E
[
ϕ

(G)
t U

(i)
t

∣∣∣Gs

]
= ϕ(G)

s U (i)
s . (4.9)

This means that deflated price processes are (G, P )-martingales which corre-
sponds to the fundamental theorem of asset pricing, see Remarks 2.14.

If we denote by Z(t) = (0, . . . , 0, 1, 0, . . . , 0) ∈ L2
n+1(P,G) the cash flow

of the zero coupon bond paying 1 at time t. Then the value Z
(t)
s of the zero

coupon bond at time s ≤ t is given by (see (2.47), Z
(t)
t = 1)

Z(t)
s = Qs

[
Z(t)
]

=
1

ϕ
(G)
s

E
[
ϕ

(G)
t

∣∣∣Gs

]
(4.10)

=
1

ϕ
(G)
s

E
[
ϕ

(G)
t Z

(t)
t

∣∣∣Gs

]
= E

[
ϕ

(G)
t

ϕ
(G)
s

∣∣∣∣∣Gs

]
.

Remarks.

• We have seen in Lemma 2.8 and Theorem 2.18 that (ϕ(G)
s Z

(t)
s )s=0,...,t forms

an G-martingale under P .
• At time 0 we have (see (2.28))

Z
(t)
0 = Q0

[
Z(t)
]

= E
[
ϕ

(G)
t

]
= D0,t. (4.11)

If we consider the equivalent martingale measure P ∗ ∼ P for the bank
account numeraire B−1

t , see Lemma 2.10 and Corollary 2.12, then we get
discount factors that are known (measurable) at the beginning of the period
under consideration. In particular, in view of (2.76), we have for the one-period
model t = 0, 1

U
(i)
0 = D0,1 E∗

[
U

(i)
1

]
= E

[
ϕ

(G)
1 U

(i)
1

]
, (4.12)

with D0,1 = B−1
1 .

Exercise 4.1 (Pricing of financial assets).

We revisit the discrete time Vasicek model from Exercise 2.3. In all the as-
sumptions and statements we replace the filtration F by the financial filtra-
tion G.

Moreover, we assume that we have a two-dimensional process (εt, δt)t=0,...,n

that is G-adapted and (εt, δt) is independent of Gt−1 with standard Gaussian
distribution and correlation � for t = 1, . . . , n.
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Assume that the financial asset U has price process given by U0 > 0 (fixed)
and for t = 1, . . . , n

Ut = Ut−1 exp {μt − σδt} , (4.13)

for given μt ∈ R and σ > 0.

Determine the necessary properties of μt ∈ R so that the price process

(ϕ(G)
t U

(i)
t )t=0,...,n is a (G, P )-martingale, (4.14)

for the financial deflator (ϕ(G)
t )t given in (2.24).

Hint: use the properties of log-normal distributions.
�

4.3.2 Modelling Margrabe options

Recall definitions (4.7)-(4.8). It is often convenient to make another change of
numeraire. Assume that (Vt)t=0,...,n = (Et [VaPo])t=0,...,n � 0, then the price
process (Vt)t=0,...,n may serve as a numeraire as follows: we define

Ỹt =
Yt

Vt
=

Et

[
S̃
]

Et [VaPo]
, (4.15)

these are the assets measured relative to the liabilities. The advantage of using
Ỹt is that the deflator disappears, since both expressions have the same time
value. Growth of Ỹt means that we have an extensive growth of the assets Yt

relative to the liabilities Vt.
In the sequel we identify the solvency problem in {t0, t0 + 1} for which we

would like to price the Margrabe option exercised at t0 + 1. This is basically
a one-period problem similar two (4.12). If we price the Margrabe option
at time t0, we need to model/calculate (see (2.71)) for the cash flow X =
(0, . . . , 0, (Vt0+1 − Yt0+1)+ , 0, . . . , 0):

Qt0 [X] =
1

ϕ
(G)
t0

E
[
ϕ

(G)
t0+1 (Vt0+1 − Yt0+1)+

∣∣∣Gt0

]
(4.16)

= D(Gt0) E∗ [(Vt0+1 − Yt0+1)+
∣∣Gt0

]
= Z

(t0+1)
t0 E∗ [(Vt0+1 − Yt0+1)+

∣∣Gt0

]

= Vt0 E∗∗
[(

1 − Ỹt0+1

)
+

∣∣∣∣Gt0

]
,

where the equivalent probability measure P ∗∗ ∼ P ∗ is defined by the density

dP ∗∗(·|Gt0) = Z
(t0+1)
t0

Vt0+1

Vt0

dP ∗(·|Gt0). (4.17)
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Observe that Z
(t0+1)
t0

Vt0+1

Vt0
is (by assumption) strictly positive with probabil-

ity 1 and, moreover, it is a density w.r.t. P ∗ because

E∗∗ [1|Gt0 ] = E∗
[
Z

(t0+1)
t0

Vt0+1

Vt0

∣∣∣∣Gt0

]
= 1, (4.18)

due to the martingale property of discounted price processes w.r.t. the equiv-
alent martingale measure P ∗. Hence from the right-hand side of (4.16) we
need to model

Vt0 E∗∗
[(

1 − Ỹt0+1

)
+

∣∣∣∣Gt0

]
, (4.19)

where prices are relative to the initial value Vt0 = Et0(VaPo) of the valuation
portfolio.

Example 4.2.

We assume that Ỹt0+1 = exp {W} has a log-normal distribution with pa-
rameters μ and σ2, conditionally given Gt0 , w.r.t. P ∗∗. Since deflated price
processes are martingales we obtain

Yt0 = Z
(t0+1)
t0 E∗ [Yt0+1| Gt0 ] (4.20)

= Vt0 E∗∗
[
Ỹt0+1

∣∣∣Gt0

]

= Vt0 exp
{
μ + σ2/2

}
.

The accounting condition Yt0 = Vt0 then implies the drift condition satisfies
μ = −σ2/2.

Henceforth, (4.19) is simply the price of a European put option for log-
normal prices. We calculate

E∗∗
[(

1 − Ỹt0+1

)
+

∣∣∣∣Gt0

]
= E∗∗

[(
1 − Ỹt0+1

)
1{eYt0+1≤1}

∣∣∣Gt0

]
(4.21)

= P ∗∗
[
Ỹt0+1 ≤ 1

∣∣∣Gt0

]
− E∗∗

[
Ỹt0+11{eYt0+1≤1}

∣∣∣Gt0

]

= P ∗∗ [W ≤ 0| Gt0 ] −
∫ 1

0

1√
2πσ

1
y

y exp

{
−1

2

(
log y + σ2/2

)2
σ2

}
dy

= P ∗∗ [W ≤ 0| Gt0 ] −
∫ 1

0

1√
2πσ

1
y

exp

{
−1

2

(
log y − σ2/2

)2
σ2

}
dy

= P ∗∗ [W ≤ 0| Gt0 ] − P ∗∗
[
W̃ ≤ 0

∣∣∣Gt0

]
,

with W |Gt0
P∗∗
∼ N (−σ2/2 , σ2) and W̃ |Gt0

P∗∗
∼ N (σ2/2 , σ2). This immedi-

ately implies

E∗∗
[(

1 − Ỹt0+1

)
+

∣∣∣∣Gt0

]
= Φ(σ/2) − Φ(−σ/2), (4.22)
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where Φ(·) denotes the standard Gaussian distribution. Note that (4.22) is
the Black-Scholes price for a European put option, see Lamberton-Lapeyre
[LL91], Section 3.2.

We find the following relative loadings (depending on the volatility of the
assets relative to the liabilities):

σ price relative to Vt0

0.05 1.99%
0.10 3.99%
0.20 7.97%
0.30 11.92% �

4.3.3 Conclusions

We have decoupled the solvency problem into recursive one-period problems.
To protect against financial risks one has to invest each year the price of the
Margrabe option. This price measures the ALM mismatch between the real
asset portfolio S̃ and the liability portfolio VaPo.

The agents who are entitled to receive the earnings beyond the VaPo should
also finance this option:

• With-profit policies share the price: Between the policyholder and the
shareholder according to their participation.

• Non-participating policy: Shareholder has to pay the full price.

As the price of the Margrabe option is relative to the VaPo, we can easily
make a similar calculation for the VaPo protected against insurance technical
risks. And if the VaPo protected against insurance technical risks cannot be
financed we need to a) have more capital, b) do better ALM, and/or c) reduce
insurance technical risks.

4.4 Pricing Margrabe options

A first version of pricing Margrabe options has been given in (4.19). For pric-
ing and hedging Margrabe options in general we go over to a continuous time
model t ∈ [0, n] for a fixed final time horizon n ∈ N. This has the advan-
tage that we can use classical financial mathematics. However, we restrict the
continuous time setting to the present subsection.

We choose a filtered probability space (Ω,Gn, P,G) with financial filtra-
tion G = (Gt)t∈[0,n] satisfying the usual conditions (completeness and right-
continuity, see for example Filipović [Fi09], page 59) and G0 = {∅, Ω}.

The VaPo protected against financial risks will provide us each year with
the price of a Margrabe option, which can be used to
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1. buy the option (often not realistic),
2. hedge the option,
3. cover the cost of target capital TC.

This is discussed below.

Below, we describe pricing of financial instruments using Esscher trans-
forms which are well-known in actuarial mathematics. This approach might
be rather unusual in classical financial mathematics, but it is straightforward
to actuaries who are familiar with the Esscher premium.

4.4.1 Pricing using Esscher transforms

To derive the price of a Margrabe option we closely follow the outline in
Gerber-Shiu [GS94b].

Choose δ > 0 fixed. We assume that our financial market consists of L
financial assets U1, . . . ,UL with strictly positive G-adapted price processes.
Assume that U

(1)
t , . . . , U

(L)
t > 0 denote the (cum dividend) prices of these

L assets U1, . . . ,UL at time t ∈ [0, n]. We define the logarithmized price
processes by

W
(i)
t = log

(
U

(i)
t

U
(i)
0

)
∈ R, (4.23)

for i = 1, . . . , L and t ≥ 0. Moreover, for fixed t ∈ [0, n]

Wt =
(
W

(1)
t , . . . , W

(L)
t

)T

(4.24)

is a stochastic vector in R
L with distribution function

F (x, t) = P
[
W

(i)
t ≤ xi, i = 1, . . . , L

]
(4.25)

for all t ∈ [0, n] and x ∈ R
L.

We define the moment generating function of Wt as follows, for z ∈ R
L and

t ∈ [0, n]
M(z, t) = E

[
exp
{
zT Wt

}]
, (4.26)

whenever it exists.

Assumptions. Assume that the stochastic process {Wt}t∈[0,n] has sta-
tionary, independent increments and that, hence,

M(z, t) = [M(z, 1)]t . (4.27)

Moreover, we assume that Wt has a density for t ∈ [0, n]:

f(x, t) =
∂L

∂x1 · · · ∂xL
F (x, t) . (4.28)

�
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The modified (probability distorted) density under the Esscher transform
is for h ∈ R

L defined as follows:

f(x, t;h) =
exp
{
hT x

}
f(x, t)

M(h, t)
, (4.29)

the corresponding moment generating function is given by

M(z, t;h) =
M(z + h, t)

M(h, t)
. (4.30)

Define the transformed distribution function: Fh(·, ·) = F (·, ·;h), where
F (·, ·;h) denotes the distribution function to the density f(·, ·;h). Then the
Esscher transform of the process {Wt}t∈[0,n] has again stationary, indepen-
dent increments with

M(z, t;h) = [M(z, 1;h)]t . (4.31)

Our goal is to choose h∗ ∈ R
L such that the (discounted) price processes

{
e−δtU

(i)
t

}
t∈[0,n]

(4.32)

are martingales w.r.t. F ∗ = Fh∗(·, ·) = F (·, ·;h∗) and G:
Choose t > 0 and s ∈ [0, t] then

E∗
[
e−δtU

(i)
t

∣∣∣Gs

]
= e−δt U

(i)
0 E∗

[
exp
{

W
(i)
t

}∣∣∣Gs

]
(4.33)

= e−δt U
(i)
0 E∗

[
exp
{

W
(i)
t − W (i)

s + W (i)
s

}∣∣∣Gs

]

= e−δt U
(i)
0 exp

{
W (i)

s

}
E∗
[
exp
{

W
(i)
t − W (i)

s

}∣∣∣Gs

]

= e−δs U (i)
s e−δ(t−s) E∗

[
exp
{

W
(i)
t − W (i)

s

}∣∣∣Gs

]
.

Since we have stationary and independent increments, h∗ ∈ R
L must satisfy

for all s ≤ t

E∗
[
exp
{

W
(i)
t − W (i)

s

}∣∣∣Gs

]
= E∗

[
exp
{

W
(i)
t−s

}]
= eδ(t−s). (4.34)

This implies that

eδ(t−s) = E∗
[
exp
{

W
(i)
t−s

}]
(4.35)

= Eh∗

[
exp
{

W
(i)
t−s

}]

= M(1i, t − s;h∗) = [M(1i, 1;h∗)]t−s
,

where 1i = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R
L. But this immediately implies the

requirement
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eδ = M(1i, 1;h∗). (4.36)
It can be shown (see Gerber-Shiu [GS94a]) that there is a unique solution
h∗ ∈ R

L, which satisfies (4.36) for all i = 1, . . . , L. Hence the Esscher trans-
formed measures give an equivalent martingale measure for the discounted
price processes {

e−δtU
(i)
t

}
t∈[0,n]

. (4.37)

Remarks.

• The parameter h∗ is called the risk-neutral Esscher transform parameter
and the corresponding equivalent martingale measure with marginals F ∗ =
Fh∗(·, ·) = F (·, ·;h∗) the risk-neutral Esscher measure.

• Since h∗ is unique we have that the risk-neutral Esscher measure is unique.
However, there may be other equivalent martingale measures, i.e. the mar-
ket is not necessarily complete.

• The risk-neutral Esscher measure allows here for discounting with a con-
stant interest rate numeraire e−δt.

The following theorem is helpful for many problems in option pricing.

Theorem 4.4 Let g : R
L → R be a measurable function. Then for all t ∈

[0, n] we have the following identity

Eh∗

[
e−δtU

(i)
t g

(
U

(1)
t , . . . , U

(L)
t

)]
= U

(i)
0 Eh∗+1i

[
g
(
U

(1)
t , . . . , U

(L)
t

)]
.

(4.38)

Proof. We consider (see (4.30))

exp {xi} f(x, t;h∗) = exp
{
xT 1i

}
f(x, t;h∗) (4.39)

=
exp
{
xT (h∗ + 1i)

}
f(x, t)

M(h∗, t)

= f(x, t;h∗ + 1i)
M(h∗ + 1i, t)

M(h∗, t)
= f(x, t;h∗ + 1i) M(1i, t;h∗).

By the choice of h∗ this last expression is equal to

exi f(x, t;h∗) = eδt f(x, t;h∗ + 1i). (4.40)

But this immediately implies that

Eh∗

[
e−δtU

(i)
t g

(
U

(1)
t , . . . , U

(L)
t

)]
(4.41)

= U
(i)
0 Eh∗

[
e−δt eW

(i)
t g

(
U

(1)
t , . . . , U

(L)
t

)]

= U
(i)
0 Eh∗+1i

[
g
(
U

(1)
t , . . . , U

(L)
t

)]
,

which completes the proof. �
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This gives us the following corollary for the Esscher price of the Margrabe
option.

Corollary 4.5 (Margrabe Option) Assume L = 2. The Esscher price (us-
ing the risk-neutral Esscher measure) at time 0 of an option to exchange U

(2)
t

for U
(1)
t at time t ∈ [0, n] is

U
(1)
0 Ph∗+11

[
U

(1)
t > U

(2)
t

]
− U

(2)
0 Ph∗+12

[
U

(1)
t > U

(2)
t

]
. (4.42)

Proof. The value of the option at time 0 is

Eh∗

[
e−δt

(
U

(1)
t − U

(2)
t

)
+

]
(4.43)

= Eh∗

[
e−δt

(
U

(1)
t − U

(2)
t

)
1{U

(1)
t >U

(2)
t }

]

= Eh∗

[
e−δt U

(1)
t 1{U

(1)
t >U

(2)
t }

]
− Eh∗

[
e−δt U

(2)
t 1{U

(1)
t >U

(2)
t }

]

= U
(1)
0 Eh∗+11

[
1{U

(1)
t >U

(2)
t }

]
− U

(2)
0 Eh∗+12

[
1{U

(1)
t >U

(2)
t }

]
.

This completes the proof of the corollary. �
Remark. Theorem 4.4 can also be used to price a European call option
with strike K at time τ : Assume that (U (1)

t )t∈[0,n] is the price process of
the underlying asset and define for t ∈ [0, n] the process U

(2)
t = K eδ(t−τ).

U
(2)
t describes the price process of an initial investment of Ke−δτ into the

numeraire asset. Then the Esscher price of the European call can be calculated
from Theorem 4.4 using the function g(x1, x2) = (x1 − x2)+.

4.4.2 Application of the Esscher transform to the
multi-dimensional Wiener process

So far, the underlying process {Wt}t∈[0,n] is a general process having sta-
tionary and independent increments with (4.27) fulfilled and such that the
densities exist. Is there any process satisfying these assumptions?

We now choose a specific underlying process for the price processes Ut =
(U (1)

t , . . . , U
(L)
t ), t ∈ [0, n]. Assume that Wt = log(Ut/U0) is described by

a G-adapted multidimensional Wiener process with non-singular covariance
matrix Σ and mean parameter μ ∈ R

L (see (4.23)-(4.24)). Henceforth, Wt

has for t ∈ (0, n] density given by

f(x, t) =
1

(2π)L/2 |tΣ|1/2
exp
{
−(x − tμ)T (2tΣ)−1(x − tμ)

}
. (4.44)

The moment generating function is then given by (z ∈ R
L)



82 4 Financial risks

M(z, t) = E [exp {z Wt}] = exp
{
t
[
zT μ + zT Σz/2

]}
, (4.45)

and for h ∈ R
L we obtain

M(z, t;h) =
M(z + h, t)

M(h, t)
(4.46)

= exp
{
t
[
(z + h)T μ + (z + h)T Σ(z + h)/2

]}
· exp

{
−t
[
hT μ + hT Σh/2

]}
= exp

{
t
[
zT (μ + Σh) + zT Σz/2

]}
.

Henceforth, the Esscher transform of an L-dimensional Wiener process is again
an L-dimensional Wiener process with modified mean vector μ �→ μ + Σh
and unchanged covariance matrix Σ.

Equation (4.36) implies that for all i = 1, . . . , L

δ = 1T
i (μ + Σh∗) + 1T

i Σ1i/2, (4.47)

which gives us (if we bring to last term to the other side)

μ + Σh∗ = (δ − σ1,1/2, . . . , δ − σL,L/2) . (4.48)

This implies by adding Σ1i

μ + Σ(h∗ + 1i) = (δ + σ1,i − σ1,1/2, . . . , δ + σL,i − σL,L/2) . (4.49)

Note that the right-hand side of (4.48)-(4.49) is independent of μ.
If we apply Corollary 4.5 to the 2-dimensional Wiener process Wt =

(W (1)
t , W

(2)
t ), t ∈ [0, n], we obtain

Eh∗

[
e−δt

(
U

(1)
t − U

(2)
t

)
+

]
(4.50)

= U
(1)
0 Ph∗+11

[
U

(1)
t > U

(2)
t

]
− U

(2)
0 Ph∗+12

[
U

(1)
t > U

(2)
t

]

= U
(1)
0 Ph∗+11 [W (t) < ζ] − U

(2)
0 Ph∗+12 [W (t) < ζ] ,

with ζ = log(U (1)
0 /U

(2)
0 ) and W (t) = W

(2)
t − W

(1)
t . W (1) has the following

distributions, using (4.49),

N (−σ1,1/2 + σ1,2 − σ2,2/2 , σ1,1 − 2σ1,2 + σ2,2) under Ph∗+11 , (4.51)
N (σ1,1/2 − σ1,2 + σ2,2/2 , σ1,1 − 2σ1,2 + σ2,2) under Ph∗+12 . (4.52)

With N (μ, σ2) we denote the one-dimensional Gaussian distribution with
mean μ and variance σ2, Φ(·) denotes the standard Gaussian distribution
(μ = 0 and σ2 = 1) and ϕ its density.
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Let us define

v2 = σ1,1 − 2σ1,2 + σ2,2 = σ2
1 − 2ρσ1σ2 + σ2

2 , (4.53)

with σ2
1 = σ1,1, σ2

2 = σ2,2 and ρ = σ1,2/(σ1σ2). Then we see that W (t) has
the following distributions

N
(
−v2t/2, tv2

)
under Ph∗+11 , (4.54)

N
(
v2t/2, tv2

)
under Ph∗+12 . (4.55)

So we immediately have the next corollary, which gives the price of the
Margrabe option at time 0 under the risk-neutral Esscher measure for a 2-
dimensional Wiener process:

Corollary 4.6 (Margrabe Option for Wiener process) The price of the
Margrabe option at time 0 for an exercise at time t is given by

Eh∗

[
e−δt

(
U

(1)
t − U

(2)
t

)
+

]
(4.56)

= U
(1)
0 Φ

(
ζ + v2t/2

vt1/2

)
− U

(2)
0 Φ

(
ζ − v2t/2

vt1/2

)
.

If we come back to (4.4) modified to a continuous time setup: We define
the price process of the Margrabe option by Mt, t ∈ [t0, t0 + 1], to exchange
S̃ with the valuation portfolio VaPo at time t0 +1 whenever (4.6). We choose

U
(1)
t = Vt = Et [VaPo] and U

(2)
t = Yt = Et

[
S̃
]
, (4.57)

then

ζt = log

(
U

(1)
t

U
(2)
t

)
= log

(
Vt

Yt

)
= − log Ỹt. (4.58)

Hence the price process of the Margrabe option is given by (see Corollary 4.6)

Mt = Vt

[
Φ

(
ζt + v2

t /2
vt

)
− e−ζt Φ

(
ζt − v2

t /2
vt

)]
(4.59)

= Yt

[
eζt Φ

(
ζt + v2

t /2
vt

)
− Φ

(
ζt − v2

t /2
vt

)]
,

where v2
t = v2 (t0 + 1 − t), which implies at t = t0

Mt0 = Vt0 [Φ (v/2) − Φ (−v/2)] , (4.60)

see also (4.22) and again corresponds to the Black-Scholes formula for geo-
metric Brownian motion.
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4.4.3 Hedging Margrabe options

We have seen that the price process of the Margrabe option Mt for 2-
dimensional Wiener processes is given by (4.59). We consider now the price
process Yt + Mt which allows for switching from S̃ to VaPo in t ∈ [t0, t0 + 1].
Since in practice, we are not able to buy such a Margrabe option, we need to
use a hedging strategy to protect ourselves against financial losses from the
ALM mismatch.

Define the function

H(t, x) = x Φ

(
log x + v2

t /2
vt

)
− Φ

(
log x − v2

t /2
vt

)
. (4.61)

Then we have
Mt = Yt H(t, eζt) = Yt H

(
t, Ỹt

−1
)

(4.62)

and with Itô calculus one sees that we have to study

∂

∂x
H(t, x) (4.63)

= Φ

(
log x + v2

t /2
vt

)
+ ϕ

(
log x + v2

t /2
vt

)
/vt − ϕ

(
log x − v2

t /2
vt

)
/(xvt).

= Φ

(
log x + v2

t /2
vt

)
,

which is a well-known expression for the European call option in the Black-
Scholes model (see e.g. Remarque 3.6 in Lamberton-Lapeyre [LL91] on p. 79).

Hence for the hedging strategy ψ = (λ̃t, λt) we obtain the following natural
candidate (see e.g. Section 3.3 in Lamberton-Lapeyre [LL91]): Invest

λ̃t =
∂

∂x
H(t, x)

∣∣∣∣
x=eζt=fYt

−1
= Φ

(
ζt + v2

t /2
vt

)
(4.64)

into the asset Vt and

λt = 1 − Φ

(
ζt − v2

t /2
vt

)
(4.65)

into asset Yt.
Hence the value of our portfolio is at any time t

λ̃t Vt + λt Yt = Vt

[
λ̃t + e−ζt λt

]
(4.66)

= Vt

[
Φ

(
ζt + v2

t /2
vt

)
+ e−ζt

(
1 − Φ

(
ζt − v2

t /2
vt

))]

= e−ζt Vt + Mt = Yt + Mt,

which means that we can switch to the VaPo at any time t ∈ [t0, t0 + 1].

Remark. The choice (4.64) is done since it reflects the relative change of the
value of the Margrabe option as a function of time.
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Example 4.3.

We choose v = 0.05 as in Example 4.2. This immediately implies that the price
of the Margrabe option is Mt0 = 2% · Vt0 . This leads for a specific realization
of Ỹt to the following development of the price process: see Figure 4.3.

If we plot the process for three different realizations of the Ỹt we obtain a
picture as shown in Figure 4.4.

Observe that the path of Mt + Yt never falls below Vt, i.e. we have full
financial coverage of all liabilities during the whole investment period. �

Fig. 4.3. One realization of eYt with its associated value process Mt + Yt

Fig. 4.4. We have plotted three different realizations of eY and the corresponding
value processes Mt + Yt
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Conclusions. If we cannot buy the Margrabe option we need to hedge
for switching into the VaPo at the end of each year.

The hedging strategy can be made cheaper, if we only hedge for switching
at the point when the money is needed → the price of the Margrabe option
becomes cheaper.

(a) Money is needed in n years. Switch at the end of every year. Henceforth,
the price is

n price Margrabe option(σ). (4.67)

(b) Money is needed in n years. Switch at the end of the period. Henceforth,
the price is

price Margrabe option(
√

n σ). (4.68)

Roughly speaking: approach (a) corresponds to a yearly guarantee whereas
approach (b) only corresponds to a final wealth guarantee. Therefore it is clear
that approach (a) needs to be more expensive.

Observe also, that in case (a) we may take out (Yt − Vt)+ every year,
whereas in case (b) these profits must be left in the risk process.

4.4.4 Target capital

An alternative to controlling financial risk by Margrabe options uses the so-
called target capital to absorb the fluctuations caused by financial risk. The
target capital is obtained as follows. If our risk measure is Value-at-Risk, we
choose qt0 such that for given small ε > 0

P [ (1 + qt0)Yt0+1 ≥ Vt0+1| Gt0 ] = P
[
(1 + qt0) Ỹt0+1 ≥ 1

∣∣∣Gt0

]
≥ 1 − ε, (4.69)

i.e. only with small probability ε we have a shortfall which cannot be financed
by the target capital, which says that adverse scenarios that are not completely
covered by the target capital need to have a probability of at most ε.

From the theoretical point of view, this is not an ideal solution, but it
is the solution, which is (at the moment) applied in many practical solvency
applications like Solvency 2 and the Swiss Solvency Test [SST06].

Under the simple standard model from last subsection, we obtain for the
log-normal distribution log Ỹt0+1|Gt0 ∼ N (μ, σ2)

P
[
log Ỹt0+1 ≥ − log (1 + qt0)

∣∣∣Gt0

]
= 1 − ε. (4.70)

Henceforth, qt0 is given by

− log(1 + qt0) = σ Φ−1(ε) + μ. (4.71)
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Example 4.4.

We choose the following example: assume that we can choose our standard
deviation parameter σ = v and the default probability ε > 0. The default
probability is chosen such that it matches to the Standard & Poors ratings.
The result is shown in Figure 4.5. Observe that for the target capital we also

Fig. 4.5. Target capital calculation depending on the choice of ε, μ and σ

need to specify the expected return μ. In discussions with economists and
in the developments of the Swiss Solvency Test it has turned out that it is
highly non-trivial to estimate μ for the different asset classes. For example,
for the Swiss Solvency Test 2005, even experts have had so different opinions
about estimations of μ that at the end one has put the expected investment
return equal to the risk-free rate. But Example 4.4 shows that for the target
capital calculation it only makes sense to consider the expected return and the
expected volatility simultaneously. Higher expected returns will increase the
uncertainty because one needs to invest into more risky assets. This example
also shows that the choice of the asset portfolio is more crucial than the choice
of the security level ε. �



5

Valuation portfolio in non-life insurance

5.1 Introduction

To illustrate the problem we assume that we have a non-life insurance contract,
which protects the policyholder against claims within a fixed calender year,
see Figure 5.1. Assume that we receive a premium Π at the beginning of this
calender year. Hence the policyholder exchanges the premium Π against a
contract, which gives him a cover against well-specified random events (claims)
occurring within a fixed time period.

Assume that we have a claim within this fixed time period. In that case
the insurance company will replace the financial damage caused by that claim
(according to the insurance contract).

In general, the insurance company is not able to assess the claim immedi-
ately at the occurrence date due to:

1. Usually, there is a reporting delay (time gap between claim occurrence
and claim reporting to the insurance company). This time gap can be
small (a few days), for example, in motor hull insurance, but it can also
be quite large (months or years). Especially, in general liability insurance
we can have large reporting delays: typical examples are asbestos claims
that were caused several years ago but are only noticed and reported
today.

2. Usually it takes quite some time to settle a claim (time difference be-
tween reporting date and settlement date). This is due to several differ-
ent reasons, for example, for bodily injury claims we first have to ob-
serve the recovery process before finally deciding on the claim and on
the compensation, or other claims can only be settled at court which
usually takes quite some time until the final settlement. In most cases a
(more complex) claim is settled by several payments Xk (k ≥ 1): When-
ever a bill for that specific claim comes it is paid by the insurance com-
pany.

M.V. Wüthrich et al., Market-Consistent Actuarial Valuation,
EAA Series,
DOI 10.1007/978-3-642-14852-1 5, © Springer-Verlag Berlin Heidelberg 2010
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Fig. 5.1. Claims development process

Assume that a contract (or a portfolio of contracts) generates a cash flow

X = (X0, . . . , XN ), (5.1)

where Xk denotes the payments at time/in period k ∈ N (Xk = 0 if there is
no payment at time k), and N is the (random) number of payments, i.e. the
last payment takes place at time/in period N .

Remarks.

• In general, non-life insurance payments are done continuously over time.
For modelling however, we choose a yearly grid k = 0, 1, 2, . . . , and we
map all payments within accounting year (k, k + 1] to its endpoint k + 1,
that is, Xk+1 will denote the payments within accounting year (k, k + 1].

• The settlement date is random for non-life insurance claims and therefore
also the time point N of the last payment is random. In our case, we
assume that n ∈ N is sufficiently large, such that N ≤ n, P -a.s.

With these remarks we set

X0 = −Π, premium paid at the beginning of the contract, (5.2)
Xk, k ∈ {1, . . . , n}, nominal claims payments in period (k − 1, k]. (5.3)

We denote cumulative nominal claims payments until time k ∈ {1, . . . , n} by

Ck =
k∑

j=1

Xj , (5.4)

henceforth the ultimate loss/claim is given by CN = Cn.

We choose a filtered probability space (Ω,F , P, F) and assume that the
insurance liability cash flow satisfies X ∈ L2

n+1(P, F).

Problems in practice.

(1) Predict the ultimate claim amount Cn for given information Fk at time k.
This is in general a very difficult problem, which is known under the name
“claims reserving problem”. It is not further discussed here, but there is
a vast literature on the claims reserving problem. For a reference we refer
to Wüthrich-Merz [WM08].
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(2) Split the total ultimate claim Cn into the different (annual) payments
X1, . . . , Xn, i.e. estimate a payout/cash flow pattern for Cn.

A first idea is to directly predict the single cash flows Xi, i ∈ {k+1, . . . , n},
given Fk. But long time experience indicates that this approach does in most
cases not lead to reasonable estimates and predictions for the total claim
amount Cn. Therefore one usually proceeds by (1) and then (2), as above.
Usually, the following information is used for these predictions:

For (1): paid claims experience, incurred losses experience, claims handling
directives, financial parameters, other external knowledge and expert opinion.

For (2): paid claims experience to split Cn into the different periods.

In this lecture we restrict ourselves to paid claims data also for (1). In
practice, of course, we would take into account any other additional informa-
tion. This means that in this lecture we assume that the insurance technical
information T is basically generated by the payments X (after “subtracting”
the financial information G, e.g. readjusting for inflation).

To construct the VaPo in non-life insurance we proceed as in Chapter 3
with the two steps:

Step 1. Choose an appropriate basis U1,U2, . . . , of financial instruments:

• zero coupon bonds Z(t) paying 1 at time t ∈ {0, . . . , n}, or
• inflation protected zero coupon bonds,
• etc.

Step 2. Determine the number of units Λi(Xk), li,k and l∗i,k, respectively,
of financial instrument Ui we need to reserve in order to meet all our future
obligations (which are covered by past premium), see Section 3.6.

Questions:
How should we determine our future liabilities of old contracts (outstanding
loss liabilities)? We are at time t: How should we reserve? How should we
construct the VaPo?

Assumption 5.1

We assume that the appropriate financial basis is given by the zero coupon
bonds Z(t), t = 0, . . . , n, i.e. we assume that the price processes (Z(t)

s )s=0,...,n ∈
L2

n+1(P ) of the zero coupon bonds are independent of the random cash flow
X ∈ L2

n+1(P ) (which generates in our case the insurance technical informa-
tion T ). �
For a comment on Assumption 5.1 we refer to Remark 5.2.
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Assumption 5.1 implies that we will work on a product probability space.

1. The financial market is modelled with (Ω,Gn, PG ,G) and all financial in-
struments Ui will have price processes (U (i)

t )t=0,...,n ∈ L2
n+1(PG ,G).

2. The insurance technical events are modelled on (Ω, Tn, PT , T ). The filtra-
tion T will be generated by a square integrable cash flow X ∈ L2

n+1(PT ),
i.e. Tt = σ {X0, . . . , Xt}.

3. The product space is then denoted by (Ω,F , P, F).

Remark. Under Assumption 5.1 we know that the ZCB Z(k) is the right
financial instrument for cash flow Xk that leads to the independent decoupling
according to Assumption 2.15. This then immediately implies that (see (2.93))

X = Λ = (Λ0, . . . , Λn) ∈ L2
n+1(PT , T ). (5.5)

(Random) cash flow after time t < n.

period instrument cash flow number of units
t + 1 Z(t+1) Xt+1 −→ l

(t)
t+1

t + 2 Z(t+2) Xt+2 −→ l
(t)
t+2

...
...

...
...

t + k Z(t+k) Xt+k −→ l
(t)
t+k

...
...

...
...

n Z(n) Xn −→ l
(t)
n

Task: Replace the stochastic cash flows Xt+k by Ft-measurable numbers l
(t)
t+k

(where the upper index denotes the information that was used to determine
the number of units). In the notation of Chapter 3 we denote the units as
follows

Ui = Z(i), i = t + 1, . . . , n. (5.6)

Then the number of units Ui at time t are given by (VaPo without protection
against insurance technical risks, see (3.64))

n∑
k=0

l
(t)
i,k =

n∑
k=0

E [Λi(Xk)|Tt] = E [Λi(Xi)|Tt] = E [Xi|Tt] = l
(t)
i,i , (5.7)

where we have used (5.5). Hence we use the following abbreviations

li = l
(t)
i = l

(t)
i,i and l∗i = l∗,t

i = l∗,t
i,i , (5.8)

where l∗i is the number of units used for the valuation portfolio protected
against insurance technical risks, that is, if we use probability distortions
ϕ(T ) ∈ L2

n+1(P, T ) satisfying (2.103), then

l∗i =
1

ϕ
(T )
t

E
[
ϕ

(T )
i Xi

∣∣∣ Tt

]
. (5.9)
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Below we give an explicit construction for the choice of li and l∗i .

Remark 5.2

• The zero coupon bonds Z(t+k) are the financial basis, which represent our
cash flow, valuation portfolio, respectively. The choice of the basis was
rather obvious in life insurance. In non-life insurance this is one of the
crucial, non-trivial steps: find a decoupling such that the price processes
of the units Ui and the number of units are independent.
Indeed, the nominal payments Xi may depend on the state of the econ-
omy, on the job market, on the financial market, etc. (but also on the line
of business we have chosen). Therefore we would need an inflation pro-
tected zero coupon bond which reflects what kind of business we write,
and how this business is correlated with the economy and the financial
market (immunization against financial risks).

• The mapping Xt+k �→ lt+k is considered both with and without protection
(margin) for insurance technical risks, hence as in the life insurance chapter
we have either lt+k and l∗t+k, see also (5.9). l∗t+k exactly describes against
which shortfalls the insurance company provides protection.

• The mapping Xt+k �→ lt+k should also incorporate that actual information
considered, hence as in (3.64)-(3.65), we have lt+k = l

(t)
t+k and l∗t+k = l∗,t

t+k.
These depend on the available information Tt at time t, which in our case
is generated by Xk, k ≤ t. But in practice we would, of course, include
any information available at time t.

• The financial risk is treated exactly in the same way as the ALM risk of
the life insurance VaPo. Therefore we will no further address this problem
here and refer to Chapter 4.

5.2 Construction of the VaPo in non-life insurance

In the sequel we work under Assumptions 5.1 and 2.15 for a given deflator
ϕ ∈ L2

n+1(P, F). Moreover, we assume that the probability distortion ϕ(T ) ∈
L2

n+1(P, T ) is a density process according to (2.103).
Then, we define for k = t, . . . , n

E
(t)
k = E [Xk| Tt] , (5.10)

V
(t)
k = Var (Xk| Tt) . (5.11)

E
(t)
k , E

(t+1)
k , . . . denotes the sequence of successive best-estimate predictions

(minimum variance forecasts) for Xk (conditional expectations). Moreover,
the sequence forms a martingale, which means that the sequence has uncor-
related increments. This is important if one works with variance and stan-
dard deviation loadings, see Salzmann-Wüthrich [SW10]. The so-called best-
estimate prediction of the ultimate nominal claim Cn =

∑n
k=1 Xk at time t is

then given by
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E [Cn| Tt] = Ct +
n∑

k=t+1

E
(t)
k . (5.12)

Note that we have assumed that N ≤ n, P -a.s., which means that all liabilities
are settled at time n.

The best-estimate nominal reserves at time t for the remaining liabilities
after and including time k ≥ t + 1 (including k) are given by

R̃
(k)
t =

n∑
l=k

E
(t)
l = E [Cn − Ck−1| Tt] . (5.13)

Remark.
R̃

(k)
t are nominal reserves (not discounted values). If we choose a constant

deflator ϕk ≡ 1 for all k = 0, . . . , n, then we obtain in view of (2.50)

R
(k)
k−1 = R

[
X(k)

∣∣Fk−1

]
= Qk−1[X(k)] (5.14)

=
n∑

l=k

E [Xl| Fk−1] =
n∑

l=k

E
(k−1)
l = R̃

(k)
k−1,

and analogously for constant ϕk ≡ 1

R̃
(k)
t = Qt[X(k)] = Q

[
X(k)

∣∣Ft

]
. (5.15)

Note that for ϕk ≡ 1 time value of money does not matter and hence the
price of the zero coupon bond is equal to 1.

We define the valuation portfolio at time t, VaPo(t)(X(t+1)), for the out-
standing loss liabilities X(t+1) = (0, . . . , 0, Xt+1, . . . , Xn) as follows:

period instrument cash flow number of units
t + 1 Z(t+1) Xt+1 −→ lt+1 = l

(t)
t+1 = E

(t)
t+1

t + 2 Z(t+2) Xt+2 −→ lt+2 = l
(t)
t+2 = E

(t)
t+2

...
...

...
...

t + k Z(t+k) Xt+k −→ lt+k = l
(t)
t+k = E

(t)
t+k

...
...

...
...

n Z(n) Xn −→ ln = l
(t)
n = E

(t)
n

That is,

VaPo(t) = VaPo(t)(X(t+1)) =
n−t∑
k=1

lt+k Z(t+k). (5.16)
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Remarks.

• So far the VaPo contains only the expected liabilities (written as a port-
folio). Of course we need to protect this VaPo against insurance technical
risks li �→ l∗i , which will be the main subject of the remaining chapter.

• If we valuate by nominal values (the accounting principle A is simply
adding nominal values, which corresponds to taking the deflator ϕk ≡ 1),
we simply obtain the classical undiscounted best-estimate claims reserves.
Hence for constructing the valuation portfolio in non-life insurance one
proceeds as follows: (1) Estimate nominal best-estimate claims reserves
R̃

(t+1)
t for X(t+1) given the information Tt; (2) allocate them to differ-

ent time periods and appropriate financial instruments, i.e. estimate a
cash flow pattern which allocates l

(t)
t+k = E

(t)
t+k to, e.g., Z(t+k), preserving

R̃
(t+1)
t =

∑n−t
l=1 E

(t)
t+l obtained in step (1).

5.3 VaPo protected against insurance technical risks,
pragmatic approach

Our main goal is to choose a risk measure which describes the uncertainties in
Xt+k relative to lt+k. This risk measure should protect against adverse devel-
opments (relative to lt+k) in the claims developments. Before we discuss the
probability distortion based approach (5.9) we discuss pragmatic approaches
used in practice.

We assume that we can consider the uncertainties in the payments inde-
pendently. Hence we attach to each unit a security margin determined by a
standard deviation loading. Note that the standard deviation loading is
very common in insurance pricing. Recently, it has also been used for solvency
discussions, for example, in Pelsser [Pe10] and Salzmann-Wüthrich [SW10].

We choose i, β > 0 and define the valuation portfolio protected against
insurance technical risks for the outstanding loss liabilities X(t+1) at time t
as follows:

period instrument cash flow number of units

t + 1 Z(t+1) Xt+1 −→ l∗t+1 = E
(t)
t+1 + i β

√
V

(t)
t+1

t + 2 Z(t+2) Xt+2 −→ l∗t+2 = E
(t)
t+2 + i β

√
V

(t)
t+2

...
...

...
...

t + k Z(t+k) Xt+k −→ l∗t+k = E
(t)
t+k + i β

√
V

(t)
t+k

...
...

...
...

n Z(n) Xn −→ l∗n = E
(t)
n + i β

√
V

(t)
n
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That is,

VaPoprot
(t) = VaPoprot

(t) (X(t+1)) =
n−t∑
k=1

l∗t+k Z(t+k). (5.17)

Remarks.

• The certainty equivalent l∗t+k = l∗,t
t+k also depends on the time of its eval-

uation, i.e. on the information Tt on which it is based on. For increasing
information Tt → Tt+1 the uncertainty decreases.

• β
√

V
(t)
t+k stands for the target capital (risk measure). Regulatory con-

straints impose that the company needs to hold a risk measure in order
to run the business in accounting year t + k (evaluated at time t). It mea-
sures the uncertainties of Xt+k|Tt relative to E

(t)
t+k, and covers adverse

developments in the claims payments Xk+t. Observe that we have chosen
a standard deviation loading, i.e. the risk measure is proportional to the
standard deviation of Xt+k|Tt with proportionality factor β.

• We define this target capital β
√

V
(t)
t+k individually for each accounting

year. One should carefully make such a choice because it should also respect
the dependence structures between the different accounting periods. Below
we give other definitions.

• The parameter i denotes the cost-of-capital rate. If we want to mobilize

the target capital β
√

V
(t)
t+k from the financial market, we need to promise

a return on that target capital, which is higher than the risk-free rate.
Because if our business runs badly, which means that we have an adverse

development in Xt+k, we use the target capital β
√

V
(t)
t+k to cover this

adverse development. Hence, the investor’s capital is exposed to risk for
which he wants to obtain a price i (of course i could also depend on the
time t+k and in general it depends on economic factors, for simplicity we
choose i constant).

• This means that we decompose the liabilities into E
(t)
t+k (best-estimate

of outstanding loss liabilities towards to insured/injured) and i β
√

V
(t)
t+k

(price to the investor/shareholder for risk bearing beyond the best-estimate
liabilities).

• It is important to distinguish between

– price for capital exposed to risk: i β
√

V
(t)
t+k

– availability of the capital exposed to risk: β
√

V
(t)
t+k.

Observe that we only hold the money that is needed to recruit the risk
measure (we hold the price of risk measure). It is then the task of the
regulator to make sure that the insurance company really recruits/holds
that target capital for risk bearing. Moreover, holding the price for the
target capital does not guarantee its availability when it is due. Henceforth,
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i has to be so large that the risk measure can really be recruited at that
price.

• β
√

V
(t)
t+k can be motivated by the Swiss Solvency Test approach: risk

is considered one a 1-year time horizon. As risk measure one considers
expected shortfall at some level α > 0: VaRα(X) is the α-quantile of X,
then the expected shortfall of X at level α is given by (losses are assumed
to be centered, continuous and positive)

ESα(X) = E [X|X > VaRα(X)] , (5.18)

see also (2.132). If X is normally distributed, then both, the Value-at-
Risk VaRα(X) and the expected shortfall ESα(X), are multiples β of the
standard deviation of X.

• In this construction we consider each accounting year, Xt+k respectively,
individually. Pay attention to the fact that the single cash flows are not
necessarily independent, which may have various impacts on simultaneous
risk capital calculations for all future accounting years.

• We conclude. Both, the choice of the risk measure and the cost-of-
capital rate, are rather ad-hoc. Many solvency systems, for example the
Swiss Solvency Test [SST06], use similar ad-hoc solutions. To obtain a
unified approach using economic theory, financial mathematics and actu-
arial sciences much more research (and deeper mathematical methods) are
needed. First attempts are done for example in Pelsser [Pe10], Salzmann-
Wüthrich [SW10] and based on the idea of indifference pricing in Malamud
et al. [MTW08]. In most of these developments the models and methods
need to be further refined so that, e.g., the role of the regulator is mod-
elled realistically. The notoriously difficult thing is that they involve mul-
tiperiod risk measures that can only be calculated recursively and often
involve nested simulations.

5.4 VaPo protected against insurance technical risks,
theoretical considerations

The comprehensive approach to calculate the valuation portfolio protected
against insurance technical risks uses probability distortions, see (5.9). One
could even go one step beyond and use probability distortion together with
utility theory. This has been done in Tsanakas-Christofides [TC06]. In this
section we would like to motivate the choice of the risk margin by the utility
theory approach.

Choose l∗t+k = l
∗(α)
t+k , where l

∗(α)
t+k is the certainty equivalent at time t for

payments Xt+k in period t + k for a certain risk aversion α (for the explicit
definition see below). Hence the margin is then defined by

l
∗(α)
t+k − E

(t)
t+k. (5.19)
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We construct the certainty equivalent l
∗(α)
t+k as follows:

Utility Theory. If we have two random variables W and V we introduce
a preference ordering. Say: we prefer V over W , write V � W .

Neumann-Morgenstern, 1944 (Theory of games and economic behaviour):
All reasonable preference orderings can be understood as expected utilities.
Choose a twice differentiable utility function u : R → R with u(0) = 0 and
u′ > 0. If we have risk aversion we need to choose u such that u′′ < 0. Hence
we define the preference ordering by

V � W ⇔ E[u(V )] ≥ E[u(W )]. (5.20)

u(x) indicates the utility that is located in the monetary unit x. One of the
most popular utility functions is the exponential utility function: u(x) = 1 −
exp{−αx} with risk aversion constant α > 0 (see Figure 5.2).

Fig. 5.2. Risk aversion for utility function u(x) = 1 − exp{−αx}, α > 0
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The exponential utility function has constant risk aversion given by

− u′′(x)
u′(x)

= α. (5.21)

Henceforth, the risk aversion is for the exponential utility function parametrized
by α.

A second popular utility function used is the so-called power utility func-
tion that is not further discussed here (see Cochrane [Co01]).

The zero utility principle from our point of view with utility function u
means that we are willing to replace the random variable Xt+k|Tt by a fixed
amount l

∗(α)
t+k such that the expected utility is the same:

E [u(−Xt+k)| Tt] = u(−l
∗(α)
t+k ), (5.22)

i.e. we are willing to pay the Tt-measurable premium l
∗(α)
t+k according to our

preference order u(·). Note that l
∗(α)
t+k ≥ E

(t)
t+k, since (using concavity, Jensen’s

inequality and u′ > 0)

u(−l
∗(α)
t+k ) = E [u(−Xt+k)| Tt] ≤ u (−E [Xk+t| Tt]) = u

(
−E

(t)
t+k

)
. (5.23)

If we work with the exponential utility function then the price we are willing
to pay is given by

E [u(−Xt+k)| Tt] = 1 − E [ exp{−α(−Xt+k)}| Tt] (5.24)

= 1 − exp{−α(−l
∗(α)
t+k )}.

This implies that

l
∗(α)
t+k =

1
α

log E [ exp{−α(−Xt+k)}| Tt] (5.25)

= E
(t)
t+k +

1
α

log E
[
exp
{

α
(
Xt+k − E

(t)
t+k

)}∣∣∣ Tt

]

≈ E
(t)
t+k +

α

2
V

(t)
t+k ≥ E

(t)
t+k for α > 0,

where in the last step we have used a Taylor approximation.

Hence this gives the following VaPo protected against insurance technical risks
(Variance loading):
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period instrument cash flow number of units
t + 1 Z(t+1) Xt+1 −→ l∗t+1 = E

(t)
t+1 + α

2 V
(t)
t+1

t + 2 Z(t+2) Xt+2 −→ l∗t+2 = E
(t)
t+2 + α

2 V
(t)
t+2

...
...

...
...

t + k Z(t+k) Xt+k −→ l∗t+k = E
(t)
t+k + α

2 V
(t)
t+k

...
...

...
...

n Z(n) Xn −→ l∗n = E
(t)
n + α

2 V
(t)
n

How do we quantify α? Using risk theory we can determine α from ruin prob-
abilities. For details we refer to the literature on risk theory (see e.g. Mikosch
[Mi04]).

Remark. It may be disturbing that the pragmatic solution for the VaPo
protected against insurance technical risks uses a standard deviation approach
whereas utility considerations suggest a variance loading. This dilemma is
also known in the framework of premium calculation principles. The variance
loading violates the positive homogeneity property, which is often desirable in
practice, see also Pelsser [Pe10].

Question. How do we estimate E
(t)
t+k and V

(t)
t+k (at time t)? Pay especially

attention to the fact, that these parameters need to be estimated. This im-
mediately implies that the certainty equivalents l∗t+k should also contain a
margin for parameter and model risk. Parameter risk is often quantified
using an appropriate Ansatz or taking a Bayesian point of view. Model risk,
however, is almost never really treated.

Remark. The variance loading approach can also be seen as an Esscher
premium approach, see also Exercise 2.9, and then we are back in the situation
with probability distortions. The Esscher premium is defined as follows: For
α > 0 set

Hα(Xt+k|Tt) =
E [ exp{α Xt+k} Xt+k| Tt]

E [ exp{α Xt+k}| Tt]
, (5.26)

subject to the condition that the moment generating function exists for α,

E [ exp{α Xt+k}| Tt] < ∞, (5.27)

see also (2.117)-(2.118). For α → 0 we have

Hα(Xt+k|Tt) = E [Xt+k| Tt] + α Var [Xt+k| Tt] + o(α). (5.28)

For normally distributed random variables the Esscher premium is exact
(o(α) = 0). In Wang [Wa02] and Landsman [La04] there is also defined the Es-
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scher premium for exponential and elliptical tilting which enables to consider
loadings for dependent random variables.

Pragmatic vs. theoretical approach. Observe that we have not said
anything about the dependence structure between accounting years. If we
choose the variance loading in each accounting year and then simply add the
risk measures to obtain the overall loading, we assume that the accounting
year payments are independent. On the other hand, if we add risk measures
from standard deviation loadings, we are rather on the safe side, because this
approach would be implied by assuming maximal positive correlation between
accounting year payments.

Final Remark. In our VaPo construction we completely neglected the
fact that accounting rules may also influence solvency requirements. Espe-
cially, the question “when does the target capital need to be available” is cru-
cial. This question has motivated many new developments, especially in the
field of the so-called claims development result, see Merz-Wüthrich [MW08],
Bühlmann et al. [BFGMW09] and Wüthrich-Bühlmann [WB08].

5.5 Loss development triangles

5.5.1 Definitions

Pooling data and claims occurrence principle:

Usually, in non-life insurance, data are pooled so that one obtains homoge-
neous groups. For example, for pricing one builds homogeneous subportfolios
which are then evaluated. For claims reserving one typically builds different
subportfolios consisting of different lines of business, claims types, etc. These
subportfolios are then further structured by a time component like the acci-
dent year.

There are different methodologies to set an accident year, e.g. underwrit-
ing year principle, accident date principle, claims-made principle, etc. The
insurance contract rules exactly which claims within which time period are
covered by the premium. In order to make a meaningful analysis it is impor-
tant that the choice of the premium principle and the accident date principle
are compatible, when pooling data for the study of loss development triangles.

Then claims data are typically structured in a triangular form with the
vertical axis labelling accident years i ∈ {1, . . . , I} and the horizontal axis
labelling development years j ∈ {0, . . . , J}, see Wüthrich-Merz [WM08]. We
assume that all claims are settled after J development periods.



102 5 Valuation portfolio in non-life insurance

development period j
AY i premium 0 1 2 3 4 . . . j . . . J
1 Π1

2 Π2 realizations for r.v. Xi,j are
...

... observed
...

...
i Πi

...
...

...
... predicted payments Xi,j

I ΠI

Xi,j denotes the payments for accident year i in development period j ∈
{0, . . . , J} and Xi,−1 = −Πi denotes the premium received for accident year
i (at the beginning of accident year i, see also Figure 5.1). Cumulative claims
payments for accident year i within the first j development periods are given
by

Ci,j =
j∑

k=0

Xi,k. (5.29)

If we want to have all claims payments within a fixed accounting year we
should consider

Xk =
∑

i+j=k

Xi,j , (5.30)

these are the diagonals of our loss development squares. This implies (if we
neglect the premium payments Xi,−1 = −Πi) for accounting year k

Xk =
I∧k∑

i=1∨(k−J)

Xi,k−i. (5.31)

Example 5.1 (Non-life development triangles).

For our example we use the Taylor-Ashe [TA83] data, which were also used
by Verrall [Ve90], [Ve91] and Mack [Ma93] (see Table 1 in [Ma93]).
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5.5.2 Chain-ladder method

Probably the most popular method to predict future claims payments is the
so-called chain-ladder method. For our exposition we revisit this method since
we will use it to construct the valuation portfolio. For other methods and more
background information we refer to Wüthrich-Merz [WM08].

Assume I is the last accident year (=accounting year) for which we have an
observation Xi,0. Define the observations in the first k columns of the claims
development triangle by

Bk = σ {Xi,j : i + j ≤ I, j ≤ k} = σ {Ci,j : i + j ≤ I, j ≤ k} . (5.32)

Hence, BJ is the σ-field in the upper triangle, where we have collected all
observations up to time I.

Model Assumptions 5.3 (Chain-ladder model) We assume that

• the filtration Tt is generated by {Ci,j : i + j ≤ t},
• payments Xi,j in different accident years i are independent,
• (Ci,j)j=0,...,J is a Markov process and there exist fj > 0, j ∈ {0, . . . , J−1},

and σ2
j > 0, j ∈ {0, . . . , J − 1}, such that for all i ∈ {1, . . . , I} and

j ∈ {1, . . . , J}

E [Ci,j |Ci,j−1] = fj−1 Ci,j−1, (5.33)
Var (Ci,j |Ci,j−1) = σ2

j−1 Ci,j−1. (5.34)

Remarks.

• There is a huge literature on the chain-ladder method. One of the first
rigorous probabilistic approaches to the chain-ladder method is due to
Mack [Ma93]. Mack has given a distribution-free stochastic model for the
chain-ladder method in which he derived an estimate for the mean square
error of prediction.

• fj are called chain-ladder factors, development factors, age-to-age factors
or link ratios.

• Define the individual development factors

Fi,j =
Ci,j+1

Ci,j
, (5.35)

then Fi,j are conditionally, given Ci,j , unbiased estimators for fj with
conditional variance

Var (Fi,j |Ci,j) = σ2
j /Ci,j . (5.36)
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The chain-ladder model immediately implies, how we should predict the
ultimate claim Ci,J and the incremental payments Xi,j for i + j > I:

Lemma 5.4 Under Model Assumptions 5.3 we have for all i = 1, . . . , I, j =
0, . . . , J − 1 and k ≥ 1

E [Ci,J |Ci,j ] = Ci,j

J−1∏
l=j

fl, (5.37)

E [Xi,j+k|Ci,j ] = Ci,j

j+k−2∏
l=j

fl (fj+k−1 − 1) . (5.38)

Proof. This is an exercise using conditional expectations. Using the tower
property of conditional expectations (see Williams [Wi91]), the Markov prop-
erty of cumulative payments Ci,j and (5.33) we obtain

E [Ci,J |Ci,j ] = E [E [Ci,J |Ci,J−1]|Ci,j ]

= fJ−1 E [Ci,J−1|Ci,j ] . (5.39)

If we iterate this procedure until we reach j we obtain the first result. The
second assertion easily follows from Xi,j+k = Ci,j+k −Ci,j+k−1 and a similar
calculation to (5.39). �
Note that the information given at time t = I is

TI = BJ . (5.40)

Therefore, from Lemma 5.4 we see that under the chain-ladder model assump-
tions we obtain for Tt = BJ at time t = I

E
(t)
t+k = E [Xt+k| Tt] =

∑
i+j=t+k

E [Xi,j | BJ ] (5.41)

=
∑

i+j=t

Ci,j fj · · · fj+k−2 (fj+k−1 − 1) ,

hence there remains to estimate the chain-ladder factors fj in order to estimate
the VaPo(t), see (5.16).

Remark. We use E
(t)
t+k as a prediction for Xt+k based on the information Tt.

Since the true model parameters fj are not known they need to be estimated.
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This leads to the estimator ̂
E

(t)
t+k for E

(t)
t+k which is at the same time a Tt-

measurable predictor for Xt+k.

We introduce the following notations (assume J + 1 = I = t)

i∗(j) = I − j and j∗(i) = J + 1 − i, (5.42)

hence Xi∗(j),j and Xi,j∗(i) belong to the last observed accounting year, which
is the last diagonal in the observed claims development triangle. Estimators
for fj and σ2

j are then given by

f̂j =
∑i∗(j+1)

i=1 Ci,j+1∑i∗(j+1)
i=1 Ci,j

=
i∗(j+1)∑

i=1

Ci,j∑i∗(j+1)
m=1 Cm,j

Fi,j , (5.43)

σ̂2
j =

1
i∗(j + 1) − 1

i∗(j+1)∑
i=1

Ci,j

(
Ci,j+1

Ci,j
− f̂j

)2

.

Note that the estimator f̂j is a weighted average of the observed individual
development factors Fi,j .

Hence choose on the set Tt the following chain-ladder estimators for lt+k

lt+k = ̂
E

(t)
t+k =

∑
i+j=t

Ci,j f̂j · · · f̂j+k−2

(
f̂j+k−1 − 1

)
. (5.44)

Lemma 5.5 Conditionally, given Bj, f̂j are unbiased estimators for fj.

This immediately implies that f̂j are (unconditionally) unbiased estimators
for fj .

Proof of Lemma 5.5. Using the Bj-measurability of the Ci,j ’s we obtain

E
[
f̂j

∣∣∣Bj

]
= E

[∑i∗(j+1)
i=1 Ci,j+1∑i∗(j+1)

i=1 Ci,j

∣∣∣∣∣Bj

]
(5.45)

=
E
[∑i∗(j+1)

i=1 Ci,j+1

∣∣∣Bj

]
∑i∗(j+1)

i=1 Ci,j

= fj .

This finishes the proof of Lemma 5.5. �
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Lemma 5.6 Choose l ≤ k < j. Then f̂j and f̂k are conditionally uncorre-
lated, given Bl.

This also immediately implies the unconditional uncorrelatedness of the
estimators f̂j and f̂k.

Proof of Lemma 5.6. Assume j > k ≥ l. Then using the tower property
of conditional expectations

E
[
f̂j f̂k

∣∣∣Bl

]
= E

[
f̂k E

[
f̂j

∣∣∣Bj

]∣∣∣Bl

]
= E

[
f̂k fj

∣∣∣Bl

]
= fk fj . (5.46)

In view of Lemma 5.5, this finishes the proof of Lemma 5.6. �
An immediate consequence is the next corollary:

Corollary 5.7 Choose j > j∗(i). The chain-ladder estimator given by

X̂i,j = Ci,j∗(i) f̂j∗(i) · · · f̂j−2

(
f̂j−1 − 1

)
(5.47)

is conditionally unbiased for E [Xi,j | Tt], given Bj∗(i) or Ci,j∗(i), respectively.

Proof. We have

E
[
X̂i,j

∣∣∣Bj∗(i)

]
= Ci,j∗(i) E

[
f̂j∗(i) · · · f̂j−2

(
f̂j−1 − 1

)∣∣∣Bj∗(i)

]
= E [Xi,j | Tt] , (5.48)

where in the last step we have used the conditional unbiasedness and uncor-
relatedness of the f̂j , the independence of different accident years and the
Markov property of our time series. �

Hence this motivates to (a) estimate E
(t)
t+k, (b) predict Xt+k by

̂
E

(t)
t+k =

∑
i+j=t+k

X̂i,j , (5.49)

which is exactly (5.44).

Lemma 5.8 f̂j is the Bj+1-measurable unbiased estimator, which has mini-
mal variance among all linear combinations of unbiased estimators of Fi,j =
Ci,j+1/Ci,j.

Proof. See Lemmas 3.3 and 3.4 in Wüthrich-Merz [WM08]. �
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Lemma 5.9 σ̂2
j are conditionally unbiased estimators for σ2

j , given Bj.

Proof of Lemma 5.9. We have (add and subtract fj), i + j ≤ I,

E

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj

]
= E

[(
Ci,j+1

Ci,j
− fj

)2
∣∣∣∣∣Bj

]
(5.50)

−2 E

[(
Ci,j+1

Ci,j
− fj

)(
f̂j − fj

)∣∣∣∣Bj

]
+ E

[(
f̂j − fj

)2
∣∣∣∣Bj

]
.

Hence we calculate the terms on the r.h.s. of the equality above.

E

[(
Ci,j+1

Ci,j
− fj

)2
∣∣∣∣∣Bj

]
= Var

(
Ci,j+1

Ci,j

∣∣∣∣Bj

)
=

1
Ci,j

σ2
j . (5.51)

The next term is (using the independence of different accident years)

E

[(
Ci,j+1

Ci,j
− fj

) (
f̂j − fj

)∣∣∣∣Bj

]
= Cov

(
Ci,j+1

Ci,j
, f̂j

∣∣∣∣Bj

)
(5.52)

=
Ci,j∑
i Ci,j

Var
(

Ci,j+1

Ci,j

∣∣∣∣Bj

)

=
σ2

j∑
i Ci,j

.

Whereas for the last term we obtain

E

[(
f̂j − fj

)2
∣∣∣∣Bj

]
= Var

(
f̂j

∣∣∣Bj

)
=

σ2
j∑

i Ci,j
. (5.53)

Putting all pieces together gives

E

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj

]
= σ2

j

(
1

Ci,j
− 1∑

i Ci,j

)
. (5.54)

Hence we have

E
[
σ̂2

j

∣∣Bj

]
=

1
i∗(j + 1) − 1

i∗(j+1)∑
i=1

Ci,j E

[(
Ci,j+1

Ci,j
− f̂j

)2
∣∣∣∣∣Bj

]
= σ2

j ,

(5.55)
which proves the claim of Lemma 5.9. �

In the sequel, we will also need the following equality
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E
[
f̂2

j

∣∣∣Bj

]
= Var

(
f̂j

∣∣∣Bj

)
+ f2

j =
σ2

j∑i∗(j+1)
i=1 Ci,j

+ f2
j , (5.56)

which is obtained from (5.53).

In a first step we would now like to calculate the valuation portfolio for
our Example 5.1. From (5.16) we obtain

VaPo(t) = VaPo(t)(X(t+1)) =
∑
k≥1

lt+k Z(t+k) =
∑
k≥1

̂
E

(t)
t+k Z(t+k)

=
∑
k≥1

⎡
⎣ ∑

i+j=t

Ci,j f̂j · · · f̂j+k−2

(
f̂j+k−1 − 1

)⎤⎦Z(t+k). (5.57)

Note that this corresponds to the Tt-measurable VaPo represented in terms
of the financial instruments Z(t+k).

Example 5.1 (revisited).
Observed individual chain-ladder factors Fi,j .

0 1 2 3 4 5 6 7 8

1 3.1432 1.5428 1.2783 1.2377 1.2092 1.0441 1.0404 1.0630 1.0177
2 3.5106 1.7555 1.5453 1.1329 1.0845 1.1281 1.0573 1.0865
3 4.4485 1.7167 1.4583 1.2321 1.0369 1.1200 1.0606
4 4.5680 1.5471 1.7118 1.0725 1.0874 1.0471
5 2.5642 1.8730 1.3615 1.1742 1.1383
6 3.3656 1.6357 1.3692 1.2364
7 2.9228 1.8781 1.4394
8 3.9533 2.0157
9 3.6192
10
bfj 3.4906 1.7473 1.4574 1.1739 1.1038 1.0863 1.0539 1.0766 1.0177
bσj 400.35 194.26 204.85 123.22 117.18 90.48 21.13 33.87 21.13

Note that we do not have enough data to estimate the last variance pa-
rameter σ2

8 . Therefore to estimate σ2
8 we have chosen the formula given in

Mack [Ma93] (J = 9):

σ̂2
J−1 = min

{
σ̂4

J−2/σ̂2
J−3 ; σ̂2

J−2 ; σ̂2
J−3

}
. (5.58)

We now complete the claims triangle by predicting the cumulative pay-
ments Ci,j , i + j > I, using the chain-ladder predictor

Ĉi,j = Ci,j∗(i) f̂j∗(i) · · · f̂j−1. (5.59)

This gives the following completed (predicted) claims development triangle
for the cumulative payments Ci,j :
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Hence the estimated expected incremental payments, i + j > I are pre-
dicted by, see also (5.44),

Ê [Xi,j | BJ ] = Ci,j∗(i) f̂j∗(i) · · · f̂j−2

(
f̂j−1 − 1

)
= Ĉi,j − Ĉi,j−1 : (5.60)

0 1 2 3 4 5 6 7 8 9
1
2 94’634
3 375’833 93’678
4 247’190 370’179 92’268
5 334’148 226’674 339’456 84’611
6 383’287 351’548 238’477 357’132 89’016
7 605’548 424’501 389’349 264’121 395’534 98’588
8 1’310’258 725’788 508’792 466’660 316’566 474’073 118’164
9 1’018’834 1’089’616 603’569 423’113 388’076 263’257 394’241 98’266
10 856’804 897’410 959’756 531’636 372’687 341’826 231’882 347’255 86’555

This leads to the following estimated expected payments lt+k = ̂
E

(t)
t+k in

the accounting years (predictions for Xt+k):

t + k t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9
lt+k 5’226’536 4’179’394 3’131’668 2’127’272 1’561’879 1’177’744 744’287 445’521 86’555

Table 5.1. Predicted payments Xt+k based in information Tt

Hence we have estimated the valuation portfolio given by

VaPo(t) =
∑
k≥1

lt+k Z(t+k). (5.61)

If we want to obtain the cash value, we need to apply an accounting principle
At to our valuation portfolio. We choose three different examples: 1) nominal
value, 2) constant interest rate r = 1.5%, 3) risk-free rates used in the Swiss
Solvency Field-Test 2005:

maturity 1 2 3 4 5 6 7 8 9

risk free rate 0.88% 1.14% 1.36% 1.57% 1.75% 1.91% 2.05% 2.18% 2.29%

Table 5.2. Swiss Solvency Test risk-free rates 2005

This gives the following values for At

(
VaPo(t)

)
at time t = I:

At

(
VaPo(t)

)
=
∑
k≥1

lt+k At

(
Z(t+k)

)
(5.62)

=
∑
k≥1

lt+k Z
(t+k)
t ,

with prices Z
(t+k)
t determined by 1) nominal values, i.e. equal to 1; 2) constant

interest rates, i.e. equal to (1 + r)−k; 3) risk-free rates similar to (3.84). This
provides the following results:
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reserves At

`

VaPo(t)

´

difference to eR
(t+1)
t

1) eR
(t+1)
t (nominal) 18’680’856

2) r = 1.50% 17’873’967 806’888 4.32%
3) SST rates 17’847’512 833’344 4.46%

Table 5.3. Monetary value of the valuation portfolio for different accounting prin-
ciples �
5.5.3 Estimation of insurance technical risks in the chain-ladder
model, single accident years

Let us, for the moment, fix one single accident year i. Hence, under the chain-
ladder Model Assumptions 5.3 we have for t = I, k ≥ 1

E
(t)
t+k(i) = E

[
Xi,j∗(i)+k

∣∣ Tt

]
= E

[
Xi,j∗(i)+k

∣∣Ci,j∗(i)

]
, (5.63)

which is estimated by (see also (5.60))

lt+k(i) = ̂
E

(t)
t+k(i) = Ci,j∗(i)

k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

)
. (5.64)

We use the bracket term (i) to indicate that we study one single accident year
only.
This gives the following VaPo for accident year i:

period instrument cash flow number of units

t + 1 Z(t+1) Xt+1 → lt+1(i) = Ci,j∗(i)

(
f̂j∗(i) − 1

)
t + 2 Z(t+2) Xt+2 → lt+2(i) = Ci,j∗(i) f̂j∗(i)

(
f̂j∗(i)+1 − 1

)
...

...
...

...

t + k Z(t+k) Xt+k → lt+k(i) = Ci,j∗(i)

k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

)
...

...
...

...

That is,
VaPo(t)(i) =

∑
k≥1

lt+k(i) Z(t+k). (5.65)

First approach to insurance technical risks

As in (5.11) we set for accident year i

V
(t)
t+k(i) = Var

(
Xi,j∗(i)+k

∣∣ Tt

)
= Var

(
Xi,j∗(i)+k

∣∣Ci,j∗(i)

)
, (5.66)

W
(t)
t+k(i) = Var

(
Ci,j∗(i)+k

∣∣Ci,j∗(i)

)
. (5.67)
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If we decompose the variance in its usual way and using the Markov property
we obtain

W
(t)
t+k(i) = E

[
Var
(
Ci,j∗(i)+k

∣∣Ci,j∗(i)+k−1

)∣∣Ci,j∗(i)

]
(5.68)

+Var
(
E
[
Ci,j∗(i)+k

∣∣Ci,j∗(i)+k−1

]∣∣Ci,j∗(i)

)
= E

[
σ2

j∗(i)+k−1 Ci,j∗(i)+k−1

∣∣∣Ci,j∗(i)

]

+Var
(
fj∗(i)+k−1 Ci,j∗(i)+k−1

∣∣Ci,j∗(i)

)

= σ2
j∗(i)+k−1 Ci,j∗(i)

j∗(i)+k−2∏
l=j∗(i)

fl

+ f2
j∗(i)+k−1 Var

(
Ci,j∗(i)+k−1

∣∣Ci,j∗(i)

)

= σ2
j∗(i)+k−1 Ci,j∗(i)

j∗(i)+k−2∏
l=j∗(i)

fl + f2
j∗(i)+k−1 W

(t)
t+k−1(i).

The first term on the r.h.s. of the equality above can be rewritten as

E
[
Ci,j∗(i)+k−1

∣∣Ci,j∗(i)

]
= Ci,j∗(i)

j∗(i)+k−2∏
l=j∗(i)

fl. (5.69)

Hence we have found an iteration for the conditional variances, which imme-
diately implies, see also Wüthrich-Merz [WM08] formula (3.10),

W
(t)
t+k(i) = Ci,j∗(i)

j∗(i)+k−1∑
m=j∗(i)

j∗(i)+k−1∏
n=m+1

f2
n σ2

m

m−1∏
l=j∗(i)

fl (5.70)

=
j∗(i)+k−1∑
m=j∗(i)

j∗(i)+k−1∏
n=m+1

f2
n σ2

m E
[
Ci,m

∣∣Ci,j∗(i)

]
.

If we insert the estimators for fl and σ2
l (estimated from BJ) we immediately

obtain an estimator for the conditional variances of the cumulative payments.

̂
W

(t)
t+k(i) = Ci,j∗(i)

j∗(i)+k−1∑
m=j∗(i)

j∗(i)+k−1∏
n=m+1

f̂2
n σ̂2

m

m−1∏
l=j∗(i)

f̂l (5.71)

=
j∗(i)+k−1∑
m=j∗(i)

j∗(i)+k−1∏
n=m+1

f̂2
n σ̂2

m Ĉi,m

= Ĉ2
i,j∗(i)+k

j∗(i)+k−1∑
m=j∗(i)

σ̂2
m/f̂2

m

Ĉi,m

,

with
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Ĉi,m = Ê
[
Ci,m

∣∣Ci,j∗(i)

]
= Ci,j∗(i)

m−1∏
l=j∗(i)

f̂l. (5.72)

For the incremental payments we have

V
(t)
t+k(i) = E

[
Var
(
Xi,j∗(i)+k

∣∣Ci,j∗(i)+k−1

)∣∣Ci,j∗(i)

]
+Var

(
E
[
Xi,j∗(i)+k

∣∣Ci,j∗(i)+k−1

]∣∣Ci,j∗(i)

)
= E

[
σ2

j∗(i)+k−1 Ci,j∗(i)+k−1

∣∣∣Ci,j∗(i)

]

+Var
((

fj∗(i)+k−1 − 1
)

Ci,j∗(i)+k−1

∣∣Ci,j∗(i)

)
. (5.73)

Hence we obtain the following estimator for the variance:

Estimator 5.10 (Process variance for single accident years)

V̂
(t)
t+k(i) = σ̂2

j∗(i)+k−1 Ci,j∗(i)

j∗(i)+k−2∏
l=j∗(i)

f̂l +
(
f̂j∗(i)+k−1 − 1

)2 ̂
W

(t)
t+k−1(i)

= Ĉ2
i,j∗(i)+k

σ̂2
j∗(i)+k−1/f̂2

j∗(i)+k−1

Ĉi,j∗(i)+k−1

+
(
f̂j∗(i)+k−1 − 1

)2 ̂
W

(t)
t+k−1(i)

= ̂
W

(t)
t+k(i) +

(
1 − 2 f̂j∗(i)+k−1

)
̂

W
(t)
t+k−1(i). (5.74)

Using the pragmatic approach (first approach with standard deviation load-
ings), we obtain for the VaPo protected against insurance technical risks (see
(5.64) and (5.74)):

period instrument cash flow number of units

t + 1 Z(t+1) Xt+1 −→ l∗t+1(i) = ̂
E

(t)
t+1(i) + i β V̂

(t)
t+1(i)

1/2

t + 2 Z(t+2) Xt+2 −→ l∗t+2(i) = ̂
E

(t)
t+2(i) + i β V̂

(t)
t+2(i)

1/2

...
...

...
...

t + k Z(t+k) Xt+k −→ l∗t+k(i) = ̂
E

(t)
t+k(i) + i β V̂

(t)
t+k(i)1/2

...
...

...
...

That is,
VaPoprot

(t) (i) =
∑
k≥1

l∗t+k(i) Z(t+k), (5.75)

with number of units determined with the standard deviation loading

l∗t+k(i) = ̂
E

(t)
t+k(i) + i β V̂

(t)
t+k(i)1/2 (5.76)

for i, β > 0 (the bracket term (i) denotes the accident year and i the cost-of-
capital rate).
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Example 5.1 (revisited).

We calculate the uncertainties V̂
(t)
t+k(i)1/2 which correspond to predicted

incremental payments Xi,j∗(i)+k on page 111 (see also (5.60)).

0 1 2 3 4 5 6 7 8 9

1
2 48’832
3 75’052 48’603
4 45’268 74’566 48’243
5 178’062 44’398 72’835 46’336
6 225’149 183’669 47’407 77’269 47’781
7 229’965 238’145 194’528 52’055 84’306 50’590
8 346’712 258’879 264’121 216’465 62’761 100’344 56’248
9 226’818 332’762 242’972 244’204 200’828 62’482 98’906 52’140

10 234’816 275’881 364’358 250’614 240’498 199’983 74’127 115’011 51’779

The variational coefficients are estimated by

V̂co(Xi,j∗(i)+k|BJ) =
V̂

(t)
t+k(i)1/2

Ê
[
Xi,j∗(i)+k|BJ

] , (5.77)

and given by:

0 1 2 3 4 5 6 7 8 9

1
2 51.6%
3 20.0% 51.9%
4 18.3% 20.1% 52.3%
5 53.3% 19.6% 21.5% 54.8%
6 58.7% 52.2% 19.9% 21.6% 53.7%
7 38.0% 56.1% 50.0% 19.7% 21.3% 51.3%
8 26.5% 35.7% 51.9% 46.4% 19.8% 21.2% 47.6%
9 22.3% 30.5% 40.3% 57.7% 51.7% 23.7% 25.1% 53.1%
10 27.4% 30.7% 38.0% 47.1% 64.5% 58.5% 32.0% 33.1% 59.8%

Note that if we aggregate within accounting years, i.e.

̂
E

(t)
t+k =

∑
i+j=t+k

X̂i,j , (5.78)

we have a sum over different accident years i only. Since we have assumed
that different accident years are independent, we can simply add the second
moments to obtain the estimated variance of one accounting year (pay atten-
tion to the fact, that the accounting years are not independent). Hence the
overall variance of one accounting year is estimated by

V̂
(t)
t+k = V̂ar (Xt+k| Tt) =

∑
i

V̂ar
(
Xi,j∗(i)+k

∣∣Ci,j∗(i)

)
=
∑

i

V̂
(t)
t+k(i). (5.79)
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Hence the estimated standard deviations for accounting years V̂
(t)
t+k

1/2 and
its estimated variational coefficients are given by:

t + k t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9
lt+k 5’226’536 4’179’394 3’131’668 2’127’272 1’561’879 1’177’744 744’287 445’521 86’555

̂
V

(t)
t+k

1/2
610’035 595’147 556’123 424’414 333’918 237’751 135’798 126’278 51’779

Vco 11.7% 14.2% 17.8% 20.0% 21.4% 20.2% 18.2% 28.3% 59.8%

We define the cost-of-capital charge for accounting year t + k as follows

CoC(k) = i β V̂
(t)
t+k

1/2

(5.80)

and the valuation portfolio protected against insurance technical risks is then
given by

l∗t+k = lt+k + CoC(k), (5.81)

with i = 8% and β = Φ−1(99%). Observe that in (5.81) we consider the esti-
mated expected claims payments lt+k (this is only an estimate based on BJ)
and the cost-of-capital charge CoC(k) for the valuation portfolio protected
against insurance technical risks. Then, we obtain the valuation portfolio pro-
tected against insurance technical risks given by

VaPoprot
(t) =

∑
k≥1

l∗t+k Z(t+k). (5.82)

We obtain the numerical values provided in Table 5.4.

t + k t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9
CoC 113’532 110’761 103’499 78’987 62’145 44’247 25’273 23’501 9’636
l∗t+k 5’340’068 4’290’156 3’235’166 2’206’259 1’624’024 1’221’991 769’560 469’023 96’191

Table 5.4. Valuation portfolio protected against insurance technical risk (process
error)

Hence for the three different accounting principles (nominal, constant in-
terest rate, risk-free rates SST (see Table 5.2)) we obtain Table 5.5. Table 5.5
should be compared to Table 5.3.

VaPo VaPoprot difference

1) nominal 18’680’856 19’252’438 571’582
2) r = 1.50% 17’873’967 18’416’946 542’979
3) SST rates 17’847’512 18’387’990 540’479

Table 5.5. Monetary value of the valuation portfolio protected against insurance
technical risks (process error) for different accounting principles

So we find that the cost-of-capital margin adds about 3% of monetary
value to the value of the valuation portfolio. This has comparable size to the
loadings in Salzmann-Wüthrich [SW10]. �
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Question. As a regulator: are we satisfied with this solution?

Answer: NO!

In fact, we have replaced the certainty equivalent E
(t)
t+k + i β V

(t)
t+k

1/2
by

an estimate ̂
E

(t)
t+k + i β V̂

(t)
t+k

1/2

. This estimate covers the expected liabilities
and gives a loading for the process variance. But it does not give a loading
for the uncertainties in their parameter estimates (that is, we have replaced
the chain-ladder factors fk by the estimators f̂k). Therefore, we also require
a loading for the possible deviations

̂
E

(t)
t+k − E

(t)
t+k, (5.83)

which is called parameter estimation uncertainty.

Second approach for protection against insurance technical risks

We consider the (conditional) mean square error of prediction (MSEP)
which is defined as follows, see Wüthrich-Merz [WM08], Section 3.1,

msepXi,j∗(i)+k|Tt

(
̂
E

(t)
t+k(i)

)
= E

[(
Xi,j∗(i)+k − ̂

E
(t)
t+k(i)

)2
∣∣∣∣∣ Tt

]

= Var
(
Xi,j∗(i)+k

∣∣ Tt

)
+
(

E
(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2

= V
(t)
t+k(i) +

(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2

, (5.84)

note that we use that a ̂
E

(t)
t+k(i) is Tt-measurable predictor for Xi,j∗(i)+k.

So far we have only given an estimate for the process errors W
(t)
t+k(i)

and V
(t)
t+k(i) of the insurance technical risks. Since we do not know the true

parameters fk and σ2
k, we need to estimate them from the observations Tt. Of

course, in doing so, we have an additional potential error term, the so-called
parameter estimation error. The parameter estimation error is reflected
by the difference (

E
(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2

. (5.85)
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To calculate the parameter estimation error we would have to evaluate (5.85),
but this requires that the true chain-ladder factors fk are known (which,
unfortunately, is not the case). Hence in the sequel we provide an estimate for
(5.85). This estimator is based on an analysis on how much the estimators f̂k

fluctuate around fk.
To get an understanding for the parameter estimation error we introduce a

time series version of the chain-ladder model (see Murphy [Mu94], Buchwalder
et al. [BBMW05, BBMW06a])

Model Assumptions 5.11 In addition to Model Assumptions 5.3 we as-
sume that

Ci,j = fj−1 Ci,j−1 + σj−1

√
Ci,j−1 εi,j , (5.86)

with εi,j independent, centered random variables with variance 1.

Remarks.

• We should also make sure that the Ci,j stay positive P-a.s. For the moment,
we assume that this is a purely mathematical problem which is not further
treated here. For a mathematically consistent treatment we refer to Model
Assumptions 3.9 in Wüthrich-Merz [WM08].

• (5.86) defines an additive time series model. We could also define a mul-
tiplicative time series model in the spirit of Wüthrich [Wü10]. This way
one may easily omit the difficulty with the positivity of Ci,j .

• (5.86) does not contradict the chain-ladder Model Assumptions 5.3.
• (5.86) defines an explicit stochastic model, which tells us what values our

observations BJ could also have. In order to determine the parameter

estimation error, we need to see, how much ̂
E

(t)
t+k(i) fluctuates around its

mean E
(t)
t+k(i) for other realizations, i.e. how would ̂

E
(t)
t+k(i) look like, if we

would have different observations BJ?

The chain-ladder factors are (with (5.86))

f̂j =
∑i∗(j+1)

i=1 Ci,j+1∑i∗(j+1)
i=1 Ci,j

= fj +
σj∑i∗(j+1)

i=1 Ci,j

i∗(j+1)∑
i=1

(Ci,j)1/2 εi,j+1. (5.87)

That is, (5.87) shows how the chain-ladder estimates f̂j fluctuate around the
true fj .

There are various different ways to resample the chain-ladder factors in
this time series model, and there is an extended discussion in the literature on
this issue (see Buchwalder et al. [BBMW06a], Mack et al. [MQB06] and Gisler
[Gi06]). We will not further discuss this here. The only point that we would
like to mention is that a Bayesian treatment of the parameter estimation error
term leads to answers that are consistent within the defined (Bayesian) model,
see Gisler [Gi06], Gisler-Wüthrich [GW08] and Bühlmann et al. [BFGMW09].
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Our goal here is to conditionally resample these chain-ladder factors f̂j

from a frequentist’s point of view (this corresponds to Approach 3 in Buch-
walder et al. [BBMW06a]), i.e. given the observation Bj we resample f̂j (this
is the next step in the time series). This way we obtain resampled values f̂

Bj

j

by

f̂
Bj

j = fj +
σj∑i∗(j+1)

i=1 Ci,j

i∗(j+1)∑
i=1

(Ci,j)1/2 ε̃i,j+1, (5.88)

where (ε̃i,j)i,j and (εi,j)i,j are independent copies. Hence, we see that

f̂
Bj

j

(d)
= f̂j given Bj . (5.89)

If we continue this procedure in an iterative way for every j we obtain
a set of random variables f̂B0

0 , . . . , f̂
BJ−1
J−1 which are conditionally, given BJ ,

independent. BJ plays the role of the (deterministic) volume measure in f̂j

(denominator) and we only resample the numerator of f̂j which leads to f̂
Bj

j

(next step in time series).
Observe that we do not claim that f̂j are independent (in fact their squares

are correlated, see Mack et al. [MQB06] and Wüthrich-Merz [WM08], Lemma
3.8), but we use that the conditionally resampled values are independent given
BJ (which gives a multiplicative structure).

For simplicity, we denoted this conditionally resampling measure by PBJ

and we drop the superscript Bj in the conditionally resampled observations
f̂
Bj

j . We have the following properties:

1) f̂0, . . . , f̂J−1 are independent under the measure PBJ
, (5.90)

2) EBJ

[
f̂j

]
= fj , (5.91)

3) VarPBJ

(
f̂j

)
= EBJ

[
f̂2

j

]
− f2

j =
σ2

j∑i∗(j+1)
i=1 Ci,j

, (5.92)

see (5.56).

Remarks.

• In fact we do not need (5.86), all that we need for the derivation of the
parameter estimation error is (5.87). For a Bayesian model we refer to
Gisler-Wüthrich [GW08].

• (5.87) describes a possible model for the claims development factors. The
fluctuation around fj will be the crucial term do determine the quality of

our estimate ̂
E

(t)
t+k(i).

• In the sequel, we assume that Tt = {Ci,j ; i + j ≤ t} is known and that
we work with the conditionally resampled chain-ladder factor estimates
(under the measure PBJ

) as described above.
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In the conditional resampling approach as presented in the paper of Buch-
walder et al. [BBMW06a] the parameter estimation error (5.85) for a single
accident year i is estimated by

EBJ

[(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2
]

(5.93)

= C2
i,j∗(i) EBJ

[(
k−2∏
l=0

fj∗(i)+l

(
fj∗(i)+k−1 − 1

)

−
k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

))2]

= C2
i,j∗(i) VarPBJ

(
k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

))
.

Hence we need to study this last term. Due to the independence and the
unbiasedness of the conditionally resampled f̂j , given BJ , we have

EBJ

⎡
⎣
(

k−2∏
l=0

fj∗(i)+l

(
fj∗(i)+k−1 − 1

)
−

k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

))2
⎤
⎦

= VarPBJ

(
k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

))
(5.94)

= EBJ

[
k−2∏
l=0

f̂2
j∗(i)+l

(
f̂j∗(i)+k−1 − 1

)2
]
−

k−2∏
l=0

f2
j∗(i)+l

(
fj∗(i)+k−1 − 1

)2

=
k−2∏
l=0

(
σ2

j∗(i)+l∑
n Cn,j∗(i)+l

+ f2
j∗(i)+l

)(
σ2

j∗(i)+k−1∑
n Cn,j∗(i)+k−1

+
(
fj∗(i)+k−1 − 1

)2)

−
k−2∏
l=0

f2
j∗(i)+l

(
fj∗(i)+k−1 − 1

)2
,

where in the last step we have used (5.90) and (5.92).

Remark. If we would work in a Bayesian model similar to Bühlmann et
al. [BFGMW09] we would obtain a similar result because the posterior dis-
tributions of the chain-ladder factors are independent, given the observations
BJ .

This last expression can be rewritten and approximated by
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k−2∏
l=0

f2
j∗(i)+l

(
fj∗(i)+k−1 − 1

)2 (5.95)

⎛
⎝k−2∏

l=0

(
σ2

j∗(i)+l/f2
j∗(i)+l∑

n Cn,j∗(i)+l
+ 1

)⎛
⎝σ2

j∗(i)+k−1/
(
fj∗(i)+k−1 − 1

)2
∑

n Cn,j∗(i)+k−1
+ 1

⎞
⎠− 1

⎞
⎠

≈
k−2∏
l=0

f2
j∗(i)+l

(
fj∗(i)+k−1 − 1

)2
⎛
⎝k−2∑

l=0

σ2
j∗(i)+l/f2

j∗(i)+l∑
n Cn,j∗(i)+l

+
σ2

j∗(i)+k−1/
(
fj∗(i)+k−1 − 1

)2
∑

n Cn,j∗(i)+k−1

⎞
⎠ .

In the last step we have made a linear approximation, see (A.1) in Merz-
Wüthrich [MW08], which leads to the well-known Mack formula [Ma93].
Henceforth, the parameter estimation error for a single accident year i is
estimated by

Ṽ
(t)
t+k(i)

def.
= Ê

[(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2
∣∣∣∣∣BJ

]
(5.96)

= ̂
E

(t)
t+k

2

(i)

⎛
⎜⎝

k−2∑
l=0

σ̂2
j∗(i)+l/f̂2

j∗(i)+l∑
n Cn,j∗(i)+l

+
σ̂2

j∗(i)+k−1/
(
f̂j∗(i)+k−1 − 1

)2

∑
n Cn,j∗(i)+k−1

⎞
⎟⎠ .

This gives the following estimator for the conditional mean square error of
prediction:

Estimator 5.12 (Conditional MSEP)

m̂sepXi,j∗(i)+k|Tt

(
̂
E

(t)
t+k(i)

)
= Ê

[(
Xi,j∗(i)+k − ̂

E
(t)
t+k(i)

)2
∣∣∣∣∣ Tt

]

= V̂
(t)
t+k(i) + Ṽ

(t)
t+k(i), (5.97)

where V̂
(t)
t+k(i) is given in (5.74) and Ṽ

(t)
t+k(i) is given in (5.96).

Henceforth in the pragmatic approach (first version with standard devia-
tion loadings) is the VaPo protected against insurance technical risks (for a
single accident year i) given by:
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period instrument cash flow number of units
t + 1 Z(t+1) Xt+1 −→ l∗t+1(i)
t + 2 Z(t+2) Xt+2 −→ l∗t+2(i)

...
...

...
...

t + k Z(t+k) Xt+k −→ l∗t+k(i)
...

...
...

...

where for k ≥ 1

l∗t+k(i) = ̂
E

(t)
t+k(i) + i β Ê

[(
Xi,j∗(i)+k − ̂

E
(t)
t+k(i)

)2
∣∣∣∣∣ Tt

]1/2

. (5.98)

Remarks.

• The i in front of the security loading β denotes the cost-of-capital rate,

the i in the brackets of ̂
E

(t)
t+k(·) the accident year.

• Now l∗t+k(i) covers both, risks coming from the stochastic process (process
error) and uncertainties coming from the fact that we have to estimate
parameters, parameter estimation errors.

• Pay attention to the fact that we have not considered possible depen-
dencies between the accounting years:
Indeed, E

(t)
t+k(i) is estimated by

̂
E

(t)
t+k(i) = Ci,j∗(i)

k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

)
(5.99)

and E
(t)
t+k+1(i) is estimated by

̂
E

(t)
t+k+1(i) = Ci,j∗(i)

k−1∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k − 1

)
. (5.100)

Hence they use the same estimated age-to-age factors f̂j , which means
that the parameter estimation errors are correlated. We will not further
investigate this problem here, since in the next section we have the same
problem, when we aggregate different accident years.

Example 5.1 (revisited).

For our example we calculate both the parameter estimation error Ṽ
(t)
t+k(i)1/2

and the process error V̂
(t)
t+k(i)1/2. For low development periods, the process er-

ror is the dominant term whereas for higher development periods they have
about the same size (this comes from the fact that we have only little data
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to estimate late development factors which gives high uncertainties in these
estimates).

Parameter error Ṽ
(t)
t+k(i)1/2.

0 1 2 3 4 5 6 7 8 9
1
2 57’628
3 56’970 57’055
4 27’163 56’151 56’199
5 87’733 25’353 51’975 51’565
6 102’068 92’721 27’334 55’408 54’296
7 99’925 113’519 103’131 30’954 62’123 60’182
8 151’271 122’620 137’303 124’760 38’833 76’414 72’259
9 82’715 131’364 104’103 115’123 104’622 33’562 65’004 60’188
10 75’503 92’152 130’499 97’599 104’075 94’627 32’962 61’279 53’294

Process error V̂
(t)
t+k(i)1/2.

0 1 2 3 4 5 6 7 8 9
1
2 48’832
3 75’052 48’603
4 45’268 74’566 48’243
5 178’062 44’398 72’835 46’336
6 225’149 183’669 47’407 77’269 47’781
7 229’965 238’145 194’528 52’055 84’306 50’590
8 346’712 258’879 264’121 216’465 62’761 100’344 56’248
9 226’818 332’762 242’972 244’204 200’828 62’482 98’906 52’140
10 234’816 275’881 364’358 250’614 240’498 199’983 74’127 115’011 51’779

�
5.5.4 Aggregation of parameter estimation errors across different
accident years

Now we consider the whole diagonal of our claims development trapezoids
(see (5.41)). The expected accounting year payments

E
(t)
t+k =

∑
i+j=t

Ci,j fj · · · fj+k−2 (fj+k−1 − 1) (5.101)

are estimated by

̂
E

(t)
t+k =

∑
i+j=t

Ci,j f̂j · · · f̂j+k−2

(
f̂j+k−1 − 1

)
=

I∑
i=0

̂
E

(t)
t+k(i). (5.102)

The conditional mean square error of prediction (MSEP) is now given
by
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msepXk|Tt

(∑
i

̂
E

(t)
t+k(i)

)

= E

⎡
⎢⎣
⎛
⎝ ∑

i+j=t+k

Xi,j −
∑

i

̂
E

(t)
t+k(i)

⎞
⎠

2
∣∣∣∣∣∣∣
Tt

⎤
⎥⎦ (5.103)

=
∑

i

Var
(
Xi,j∗(i)+k

∣∣ Tt

)
+

(∑
i

E
(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2

=
∑

i

V
(t)
t+k(i) +

∑
i

(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)2

+
∑
i 	=m

(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)(
E

(t)
t+k(m) − ̂

E
(t)
t+k(m)

)

= msepXi,j∗(i)+k|Tt

(
̂
E

(t)
t+k(i)

)

+
∑
i 	=m

(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)(
E

(t)
t+k(m) − ̂

E
(t)
t+k(m)

)
.

Hence the first term is estimated by (5.97), but now we obtain an additional
(covariance) term for the parameter estimation error

∑
i 	=m

(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)(
E

(t)
t+k(m) − ̂

E
(t)
t+k(m)

)
. (5.104)

As above we resample f̂j in the conditional version. Hence we choose again
the conditional resampling measure PBJ

and estimate the covariance term by

EBJ

[(
E

(t)
t+k(i) − ̂

E
(t)
t+k(i)

)(
E

(t)
t+k(m) − ̂

E
(t)
t+k(m)

)]
= Ci,j∗(i) Cm,j∗(m)

×EBJ

[(
k−2∏
l=0

fj∗(i)+l

(
fj∗(i)+k−1 − 1

)
−

k−2∏
l=0

f̂j∗(i)+l

(
f̂j∗(i)+k−1 − 1

))

×
(

k−2∏
l=0

fj∗(m)+l

(
fj∗(m)+k−1 − 1

)
−

k−2∏
l=0

f̂j∗(m)+l

(
f̂j∗(m)+k−1 − 1

))]
.

(5.105)

It now depends on the choice of i, m, k whether the expression above is differ-
ent from zero: W.l.o.g. we assume that m > i. If

j∗(m) + k − 1 < j∗(i) ⇐⇒ m − (k − 1) > i (5.106)
⇐⇒ m > i + k − 1,
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then we only use different development factors for the estimation of E
(t)
t+k(i)

and E
(t)
t+k(m). I.e. for this indices (5.105) is equal to zero because we have

independence.
Choose m such that i < m ≤ i + k − 1, and abbreviate

gi,k−2 =
k−2∏
l=0

fj∗(i)+l and ĝi,k−2 =
k−2∏
l=0

f̂j∗(i)+l. (5.107)

Hence the last term in (5.105) is

EBJ

[(
gi,k−2

(
fj∗(i)+k−1 − 1

)
− ĝi,k−2

(
f̂j∗(i)+k−1 − 1

))
(5.108)

(
gm,k−2

(
fj∗(m)+k−1 − 1

)
− ĝm,k−2

(
f̂j∗(m)+k−1 − 1

))]

= CovPBJ

(
ĝi,k−2

(
f̂j∗(i)+k−1 − 1

)
, ĝm,k−2

(
f̂j∗(m)+k−1 − 1

))

= EBJ

[
ĝi,k−2

(
f̂j∗(i)+k−1 − 1

)
ĝm,k−2

(
f̂j∗(m)+k−1 − 1

)]

−gi,k−2

(
fj∗(i)+k−1 − 1

)
gm,k−2

(
fj∗(m)+k−1 − 1

)
.

The first term on the r.h.s. of (5.108) is equal to (we use the unbiasedness
and the independence (5.90))

j∗(i)−1∏
l=j∗(m)

fl

j∗(m)+k−2∏
l=j∗(i)

EBJ

[
f̂2

l

]
(5.109)

EBJ

[(
f̂j∗(m)+k−1 − 1

)
f̂j∗(m)+k−1

] j∗(i)+k−2∏
l=j∗(m)+k

fl

(
fj∗(i)+k−1 − 1

)
.

This term is equal to (see (5.92))

j∗(i)−1∏
l=j∗(m)

fl

j∗(m)+k−2∏
l=j∗(i)

(
σ2

l∑
n Cn,l

+ f2
l

)

(
σ2

j∗(m)+k−1∑
n Cn,j∗(m)+k−1

+
(
fj∗(m)+k−1 − 1

)
fj∗(m)+k−1

)
(5.110)

j∗(i)+k−2∏
l=j∗(m)+k

fl

(
fj∗(i)+k−1 − 1

)
.

Collecting all the term, we obtain for the r.h.s. of (5.108)
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j∗(i)−1∏
l=j∗(m)

fl

[
j∗(m)+k−2∏

l=j∗(i)

(
σ2

l∑
n Cn,l

+ f2
l

)

(
σ2

j∗(m)+k−1∑
n Cn,j∗(m)+k−1

+
(
fj∗(m)+k−1 − 1

)
fj∗(m)+k−1

)
(5.111)

−
j∗(m)+k−2∏

l=j∗(i)

f2
l

((
fj∗(m)+k−1 − 1

)
fj∗(m)+k−1

) ]

j∗(i)+k−2∏
l=j∗(m)+k

fl

(
fj∗(i)+k−1 − 1

)
.

This leads to the following estimates of the covariance terms for i < m ≤
i + k − 1

̂
E

(t)
t+k(i) ̂

E
(t)
t+k(m)

[
j∗(m)+k−2∏

l=j∗(i)

(
σ̂2

l /f̂2
l∑

n Cn,l
+ 1

)

⎛
⎝ σ̂2

j∗(m)+k−1/
((

f̂j∗(m)+k−1 − 1
)

f̂j∗(m)+k−1

)
∑

n Cn,j∗(m)+k−1
+ 1

⎞
⎠− 1

]
.

If we do a linear approximation (as above, see also (A.1) in Merz-Wüthrich
[MW08]) we get for the correlation term if i < m ≤ i + k − 1

Ṽ
(t)
t+k(i, m)

def.
= ̂

E
(t)
t+k(i) ̂

E
(t)
t+k(m) (5.112)⎡

⎣j∗(m)+k−2∑
l=j∗(i)

σ̂2
l /f̂2

l∑
n Cn,l

+
σ̂2

j∗(m)+k−1/
((

f̂j∗(m)+k−1 − 1
)

f̂j∗(m)+k−1

)
∑

n Cn,j∗(m)+k−1

⎤
⎦ .

Estimator 5.13 (Conditional MSEP) Assume J + 1 = I = t. The condi-
tional mean square error of prediction for the accounting year k is estimated
by (see also (5.102))

m̂sepXk|Tt

(∑
i

̂
E

(t)
t+k(i)

)

= Ê

⎡
⎢⎣
⎛
⎝ ∑

i+j=t+k

Xi,j −
̂
E

(t)
t+k

⎞
⎠

2
∣∣∣∣∣∣∣
Tt

⎤
⎥⎦

=
I∑

i=2

(
V̂

(t)
t+k(i) + Ṽ

(t)
t+k(i) + 2

i+k−1∑
m=i+1

Ṽ
(t)
t+k(i, m)

)
,
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where V̂
(t)
t+k(i) is given in (5.74), Ṽ

(t)
t+k(i) is given in (5.96) and Ṽ

(t)
t+k(i, m) is

given in (5.112).

Henceforth in the pragmatic approach (first version with standard devi-
ation loadings) is the VaPo protected against insurance technical risks (for
aggregate accident years) given by

period instrument cash flow number of units
t + 1 Z(t+1) Xt+1 −→ l∗t+1

t + 2 Z(t+2) Xt+2 −→ l∗t+2
...

...
...

...
t + k Z(t+k) Xt+k −→ l∗t+k

...
...

...
...

where for k ≥ 1 (and cost-of-capital rate i)

l∗t+k = ̂
E

(t)
t+k + i β Ê

⎡
⎢⎣
⎛
⎝ ∑

i+j=t+k

Xi,j −
̂
E

(t)
t+k

⎞
⎠

2
∣∣∣∣∣∣∣
Tt

⎤
⎥⎦

1/2

. (5.113)

Remark. As above, our l∗t+k gives now a protection against process and pa-
rameter estimation errors. But so far it doesn’t take into account that pa-
rameter estimation errors for different accounting years are correlated. Hence
in that sense, neglecting the dependencies between accounting years, we have
still a simplified model.

Example 5.1 (revisited).
We obtain the following values for the parameter estimation errors:

In the claims development triangle we give the individual parameter estima-

tion errors Ṽ
(t)
t+k(i)1/2, whereas the last column illustrates the square root of

the aggregate covariance terms within the accounting years

C̃ov
1/2

=

(
2
∑
i<m

Ṽ
(t)
t+k(i, m)

)1/2

. (5.114)

Hence we have:
0 1 2 3 4 5 6 7 8 9 gCov

1/2

1
2 57’628 0
3 56’970 57’055 133’023
4 27’163 56’151 56’199 151’288
5 87’733 25’353 51’975 51’565 135’535
6 102’068 92’721 27’334 55’408 54’296 112’891
7 99’925 113’519 103’131 30’954 62’123 60’182 77’669
8 151’271 122’620 137’303 124’760 38’833 76’414 72’259 38’802
9 82’715 131’364 104’103 115’123 104’622 33’562 65’004 60’188 19’970
10 75’503 92’152 130’499 97’599 104’075 94’627 32’962 61’279 53’294 0
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Henceforth, the estimated square root of the conditional MSEP for ac-

counting years t+k ≥ t+1 is m̂sep1/2
k = Ê

[(∑
i+j=t+k Xi,j −

̂
E

(t)
t+k

)2
∣∣∣∣∣ Tt

]1/2

,

and its estimated variational coefficients are given by:

t + k t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9
lt+k 5’226’536 4’179’394 3’131’668 2’127’272 1’561’879 1’177’744 744’287 445’521 86’555

m̂sep
1/2
k 665’562 664’239 629’383 493’486 392’859 286’530 174’586 154’022 74’305

Vco 12.7% 15.9% 20.1% 23.2% 25.2% 24.3% 23.5% 34.6% 85.8%

We define the cost-of-capital charge for accounting year t + k as follows

CoC(k) = i β m̂sep1/2
k , (5.115)

for given cost-of-capital rate i and security loading β. Of course, both CoC(k)
and m̂sep1/2

k depend on t because for the parameter estimation we have used
information Tt.

The valuation portfolio protected against insurance technical risks is de-
fined as

l∗t+k = lt+k + CoC(k), (5.116)

with i = 8% and β = Φ−1(99%). Then we obtain the following table.

t + k t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 t + 8 t + 9
CoC 123’866 123’620 117’133 91’842 73’114 53’326 32’492 28’665 13’829
l∗t+k 5’350’402 4’303’015 3’248’801 2’219’113 1’634’993 1’231’069 776’779 474’186 100’383

Table 5.6. Valuation portfolio protected against insurance technical risk (process
error and parameter estimation error)

Hence for the three different accounting principles (nominal, constant in-
terest rate, risk-free rates SST (see Table 5.2)) we obtain (see also Tables 5.3
and 5.5):

VaPo VaPoprot difference

1) nominal 18’680’856 19’338’741 657’886
2) r = 1.50% 17’873’967 18’497’998 624’031
3) SST rates 17’847’512 18’468’169 620’657

Table 5.7. Monetary value of the valuation portfolio protected against insurance
technical risks (process error and parameter estimation error) for different account-
ing principles

�
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5.6 Unallocated loss adjustment expenses

5.6.1 Motivation

In this section we describe the “New York”-method for the estimation of
unallocated loss adjustment expenses (ULAE). The “New York”-method for
estimating ULAE is found in the literature e.g. as footnotes in Feldblum [Fe03]
and CAS notes [CAS90] and in more detail in Buchwalder et al. [BBMW06b].
Sometimes this method is also called paid-to-paid method.

In non-life insurance there are usually two different kinds of claims han-
dling costs, external ones and internal ones. External costs like costs for ex-
ternal lawyers or for an external expertise etc. are usually allocated to single
claims and are therefore contained in the usual claims payments and loss
development figures. These payments are called allocated loss adjustment ex-
penses (ALAE). Typically, internal loss adjustment expenses (income of claims
handling department, maintenance of claims handling system, internal layers,
management fees, etc.) are not contained in the claims figures and there-
fore have to be estimated separately. These internal costs can usually not be
allocated to single claims. We call these costs therefore unallocated loss ad-
justment expenses (ULAE). From a regulatory point of view, we should also
build provisions for these costs/expenses because they are part of the claims
handling process which guarantees that an insurance company is able to meet
all its obligations. I.e. ULAE reserves should guarantee the smooth run-off
of the old insurance liabilities without a “pay-as-you-go” system from new
business/premium.

Concluding this means that ULAE reserves should also be part of the
valuation portfolio, if we want to have a self-financing run-off of an insurance
portfolio.

5.6.2 Pure claims payments

Usually, claims development figures only consist of “pure” claims payments
not containing ULAE charges. They are usually studied in loss development
triangles or trapezoids as described above (see Section 5.5).

In this section we denote by X
(pure)
i,j the “pure” incremental payments

for accident year i ∈ {1, . . . , I} in development year j ∈ {0, . . . , J}. “Pure”
always means, that these quantities do not contain ULAE (this is exactly the
quantity studied in Section 5.5). The cumulative pure payments for accident
year i after development period j are denoted by (see (5.29))

C
(pure)
i,j =

j∑
k=0

Xi,k
(pure). (5.117)

We assume that X
(pure)
i,j = 0 for all j > J , i.e. the ultimate pure cumulative

loss is given by C
(pure)
i,J .
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We have observations for Tt = {X(pure)
i,j : 1 ≤ i ≤ I and 0 ≤ j ≤

min{J, t − i}} and the complement of Tt needs to be predicted.

For the New York-method we also need a second type of development
trapezoids, namely a “reporting” trapezoid: For accident year i, Z

(pure)
i,j de-

notes the pure cumulative ultimate claim amount for all those claims, which
are reported up to (and including) development year j. Hence

(
Z

(pure)
i,0 , Z

(pure)
i,1 , . . .

)
(5.118)

with Z
(pure)
i,J = C

(pure)
i,J describes how the pure ultimate claim C

(pure)
i,J is re-

ported over time at the insurance company. Of course, this reporting pattern
is much more delicate, because claims which are reported in the upper set
D̃t = {Z(pure)

i,j : 1 ≤ i ≤ I and 0 ≤ j ≤ min{J, t − i}} are still developing,
since usually it takes quite some time between the reporting and the final
settlement of a claim. Hence, the claim sizes/severities in D̃t are still ran-
dom variables, however, they are already reported and therefore we already
have some information on these reported claims. In general, the final value
for Z

(pure)
i,j is only known at time i + J .

Remark. The New York-method has to be understood as an algorithm
used to estimate expected ULAE payments. This algorithm is not based on a
stochastic model. Therefore, we assume in this section that all our variables are
deterministic numbers. Stochastic variables are replaced by their best-estimate
for its conditional mean at time t. We think that for the current presentation
(to explain the New York-method) it is not helpful to work in a stochastic
framework. Moreover, the volume of the ULAE is usually comparably small
compared to the volume of pure payments. Therefore, often, the main risk
drivers come from the pure payments.

5.6.3 ULAE charges

The cumulative ULAE payments for accident year i until development period
j are denoted by C

(ULAE)
i,j . And finally, the total cumulative payments (pure

and ULAE) are denoted by

Ci,j = C
(pure)
i,j + C

(ULAE)
i,j . (5.119)

The cumulative ULAE payments C
(ULAE)
i,j and the incremental ULAE charges

X
(ULAE)
i,j = C

(ULAE)
i,j − C

(ULAE)
i,j−1 (5.120)

need to be predicted: The main difficulty, now in practice, is that for each
accounting year t ≤ I we have only one aggregated observation
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X
(ULAE)
t =

∑
i+j=t
0≤j≤J

X
(ULAE)
i,j (sum over t-diagonal). (5.121)

That is, ULAE payments are usually not available for single accident years
but rather we have a position “Total ULAE Expenses” for each accounting
year t (in general ULAE charges are contained in the position “Administrative
Expenses” in the annual profit-and-loss statement).

The reason for having only aggregated observations per accounting year
is that in general the claims handling department treats several claims from
different accident years simultaneously. Only an activity-based cost allocation
split then allocates these expenses to different accident years. Hence, for the
estimation of future ULAE payments we need first to define an appropriate
model in order to split the aggregated observations X

(ULAE)
t into the different

accident years X
(ULAE)
i,j .

5.6.4 New York-method

The New York-method assumes that one part of the ULAE charge is propor-
tional to the claims registration (denote this proportion by r ∈ [0, 1]) and the
other part is proportional to the settlement (payments) of the claims (propor-
tion 1 − r).

Assumption 5.14 There exist two (incremental) development patterns
(γj)j=0,...,J and (αj)j=0,...,J with γj ≥ 0, αj ≥ 0, for all j, and

∑J
j=0 γj =∑J

j=0 αj = 1 such that (cash flow or payout pattern)

X
(pure)
i,j = γj C

(pure)
i,J (5.122)

and (reporting pattern)

Z
(pure)
i,j =

j∑
l=0

αl C
(pure)
i,J (5.123)

for all i and j.

Remarks.

• Equation (5.122) describes, how the pure ultimate claim C
(pure)
i,J is paid

over time. In fact γj gives the cash flow pattern for the pure ultimate
claim C

(pure)
i,J . We assume that this payout model satisfies the classical de-

terministic chain-ladder assumptions for cumulative payments. Therefore
we propose that γj is estimated by the classical chain-ladder factors fj ,
see (5.43)

γ̂j =
1

fj · · · fJ−1

(
1 − 1

fj−1

)
. (5.124)
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• The estimation of the claims reporting pattern αj in (5.123) is more deli-
cate. There are not many claims reserving methods which give a reporting
pattern αj . Such a pattern can only be obtained if one separates the claims
estimates for reported claims and IBNyR claims (incurred but not yet re-
ported).

Model 5.15 Assume that there exists r ∈ [0, 1] such that the incremental
ULAE payments satisfy for all i and all j

X
(ULAE)
i,j =

(
r αj + (1 − r) γj

)
C

(ULAE)
i,J . (5.125)

Henceforth, we assume that one part (r) of the ULAE charge is proportional
to the reporting pattern (one has loss adjustment expenses at the registration
of the claim), and the other part (1 − r) of the ULAE charge is proportional
to the claims settlement (measured by the payout pattern).

Definition 5.16 (Paid-to-paid ratio) We define for all t

πt =
X

(ULAE)
t

X
(pure)
t

=

∑
i+j=t
0≤j≤J

X
(ULAE)
i,j

∑
i+j=t
0≤j≤J

X
(pure)
i,j

. (5.126)

The paid-to-paid ratio measures the ULAE payments relative to the pure
claims payments in each accounting year t.

Lemma 5.17 Assume there exists π > 0 such that for all accident years i we
have

C
(ULAE)
i,J

C
(pure)
i,J

= π. (5.127)

Under Assumption 5.14 and Model 5.15 we have for all accounting years t

πt = π, (5.128)

whenever C
(pure)
i,J is constant in i.

Proof of Lemma 5.17. We have

πt =

∑
i+j=t
0≤j≤J

X
(ULAE)
i,j

∑
i+j=t
0≤j≤J

X
(pure)
i,j

=

J∑
j=0

(
r αj + (1 − r) γj

)
C

(ULAE)
t−j,J

J∑
j=0

γj C
(pure)
t−j,J

= π

J∑
j=0

(
r αj + (1 − r) γj

)
C

(pure)
t−j,J

J∑
j=0

γj C
(pure)
t−j,J

= π. (5.129)
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This finishes the proof. �
We define the following split of the claims reserves for accident year i at

time j:

R
(pure)
i,j =

∑
l>j

X
(pure)
i,l =

∑
l>j

γl C
(pure)
i,J (total reserv. for pure future paym.),

R
(IBNR)
i,j =

∑
l>j

αl C
(pure)
i,J (IBNyR reserves, incurred but not yet reported),

R
(rep)
i,j = R

(pure)
i,j − R

(IBNR)
i,j (reserves for reported claims).

Result 5.18 (New York-method) Under the assumptions of Lemma 5.17
we can estimate π using the observations πt (accounting year data). The
reserves for ULAE charges for accident year i after development year j,
R

(ULAE)
i,j =

∑
l>j X

(ULAE)
i,l , are estimated by

R̂
(ULAE)
i,j = π r R

(IBNR)
i,j + π (1 − r) R

(pure)
i,j

= π R
(IBNR)
i,j + π (1 − r) R

(rep)
i,j . (5.130)

Explanation of Result 5.18.
We have under the assumptions of Lemma 5.17 for all i, j

R
(ULAE)
i,j =

∑
l>j

(
r αl + (1 − r) γl

)
C

(ULAE)
i,J (5.131)

= π
∑
l>j

(
r αl + (1 − r) γl

)
C

(pure)
i,J

= π r R
(IBNR)
i,j + π (1 − r) R

(pure)
i,j .

Remarks.

• In practice one assumes the stationarity condition πt = π for all t. This
implies that π can be estimated from the accounting data of the annual
profit-and-loss statements. Pure claims payments are directly contained
in the profit-and-loss statements, whereas ULAE payments are often con-
tained in the administrative expenses. Hence one needs to divide this posi-
tion into further subpositions (e.g. with the help of an activity-based cost
allocation split).

• Result 5.18 gives an easy formula for estimating ULAE reserves. If we are
interested into the total ULAE reserves after accounting year t we simply
have

R̂
(ULAE)
t =

∑
i+j=t

R̂
(ULAE)
i,j = π

∑
i+j=t

R
(IBNR)
i,j + π (1 − r)

∑
i+j=t

R
(rep)
i,j ,

(5.132)
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i.e. all we need to know is, how to split the total pure claims reserves into
reserves for IBNyR claims and reserves for reported claims.

• The assumptions for the New York-method are rather restrictive in the
sense that the pure cumulative ultimate claim C

(pure)
i,J must be constant

in i (see Lemma 5.17). Otherwise the paid-to-paid ratio πt for accounting
years is not the same as the ratio C

(ULAE)
i,J /C

(pure)
i,J even if the latter is

assumed to be constant. Of course in practice the assumption of equal
pure cumulative ultimate claim is never fulfilled. If we relax this condition
we obtain the following lemma.

Lemma 5.19 Assume there exists π > 0 such that for all accident years i we
have

C
(ULAE)
i,J

C
(pure)
i,J

= π

(
r

α

γ
+ (1 − r)

)−1

, (5.133)

with

γ =

∑J
j=0 γj C

(pure)
t−j,J∑J

j=0 C
(pure)
t−j,J

and α =

∑J
j=0 αj C

(pure)
t−j,J∑J

j=0 C
(pure)
t−j,J

. (5.134)

Under Assumption 5.14 and Model 5.15 we have for all accounting years t

πt = π. (5.135)

Proof of Lemma 5.19. As in Lemma 5.17 we obtain

πt = π

(
r

α

γ
+ (1 − r)

)−1

J∑
j=0

(
r αj + (1 − r) γj

)
C

(pure)
t−j,J

J∑
j=0

γj C
(pure)
t−j,J

= π. (5.136)

This finishes the proof. �
Remarks.

• If all pure cumulative ultimates are equal then γ = α = 1/J (apply Lemma
5.17).

• Assume that there exists a constant i(p) > 0 such that for all i ≥ 1 we
have C

(pure)
i+1,J = (1 + i(p)) C

(pure)
i,J , i.e. constant growth i(p). If we blindly

apply (5.128) of Lemma 5.17 (i.e. we do not apply the correction factor
in (5.133)) and estimate the incremental ULAE payments by (5.130) and
(5.132) we obtain
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∑
i+j=t

X̂
(ULAE)
i,j

= π

J∑
j=0

(
r αj + (1 − r) γj

)
C

(pure)
t−j,J

=
X

(ULAE)
t

X
(pure)
t

J∑
j=0

(
r αj + (1 − r) γj

)
C

(pure)
t−j,J (5.137)

=
∑

i+j=t

X
(ULAE)
i,j

(
r

α

γ
+ (1 − r)

)

=
∑

i+j=t

X
(ULAE)
i,j

⎛
⎝r

∑J
j=0 αj

(
1 + i(p)

)J−j

∑J
j=0 γj

(
1 + i(p)

)J−j
+ (1 − r)

⎞
⎠

>
∑

i+j=t

X
(ULAE)
i,j ,

where the last inequality in general holds true for i(p) > 0, since usually
(αj)j is more concentrated than (γj)j , i.e. we usually have J > 1 and

j∑
l=0

αl >

j∑
l=0

γl for j = 0, . . . , J − 1. (5.138)

This comes from the fact that the claims are reported before they are paid.
I.e. if we blindly apply the New York-method for constant positive growth
then the ULAE reserves are too high (for constant negative growth we
obtain the opposite sign). This implies that we have always a positive loss
experience on ULAE reserves for constant positive growth.

5.6.5 Example

We assume that the observations for πt are generated by i.i.d. random vari-

ables X
(ULAE)
t

X
(pure)
t

. Hence we can estimate π from this sequence. Assume π = 10%.

Moreover i(p) = 0 and set r = 50% (this is the usual choice often done in prac-
tice). Moreover we assume that we have the following reporting and cash flow
patterns (J = 4):

(α0, . . . , α4) = (90%, 10%, 0%, 0%, 0%), (5.139)
(γ0, . . . , γ4) = (30%, 20%, 20%, 20%, 10%). (5.140)

Assume that C
(pure)
i,J = 1′000. Then the ULAE reserves for accident year i are

given by (
R̂

(ULAE)
i,−1 , . . . , R̂

(ULAE)
i,3

)
= (100, 40, 25, 15, 5), (5.141)
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which implies for the estimated incremental ULAE payments
(
X̂

(ULAE)
i,0 , . . . , X̂

(ULAE)
i,4

)
= (60, 15, 10, 10, 5). (5.142)

Hence for the total estimated payments X̂i,j = X
(pure)
i,j + X̂

(ULAE)
i,j we have

(
X̂i,0, . . . , X̂i,4

)
= (360, 215, 210, 210, 105). (5.143)

5.7 Conclusions on the non-life VaPo

We have constructed both the Valuation Portfolio and the Valuation Portfolio
protected against insurance technical risks for a run-off portfolio of a non-
life insurance company. In fact our solution is only a first approach to the
construction of an appropriate replicating portfolio for a non-life insurance
portfolio.

Open problems for example are:

• Appropriate choice of the financial basis, such that we have an independent
decoupling into insurance technical risks and financial risks. In fact, this is
a rather difficult task because claims inflation and accounting year effects
may substantially increase the uncertainties, see also Wüthrich [Wü10].

• Choice of an appropriate risk measure which also takes into account the
dependencies between accounting years.
Moreover, our valuation portfolio protected against insurance technical
risks is purely cash flow based. In practice, however, one needs to consider:
– Accounting rules will influence the loadings. For example, we did not

treat the question about the time point when risk capital needs to be
available. We therefore also refer to the next chapter and the so-called
claims development result, see Merz-Wüthrich [MW08].

– In our model, there is no diversification between financial risks and
insurance technical risks. Insurance technical risks obtain a cost-of-
capital margin, financial risks are treated by the Margrabe option. If
both risks are treated by a risk margin then one also needs to quantify
the diversification effect between these two risk classes, see Wüthrich-
Bühlmann [WB08].

• Make an appropriate economic choice for the cost-of-capital rate i. All
choices used in practice are rather ad-hoc.

• Choose an appropriate stochastic claims reserving model in order to de-
termine claims reserves, cash flow patterns, uncertainties in the estimates
and predictions, etc.
In general, one has different sources of information, e.g. claims payments,
claims incurred information, other internal information, expert knowledge,
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etc. Most claims reserving methods are not able to cope with all of these
different information channels simultaneously. An interesting new method,
the so-called PIC method, treats claims payments, claims incurred and
prior knowledge information simultaneously, see Merz-Wüthrich [MW10].

• Here we have only treated the run-off situation of a non-life insurance
portfolio. The premium liability risk could, theoretically, also be put into
our framework, by assuming that CI+1,−1 = −ΠI+1 and then applying
the chain-ladder method also to this extended model. However, this ap-
proach does often not lead to good estimates for the premium liabilities
and premium liability risks. We therefore recommend to rather treat the
premium liability risk in a separate model (such as it is done in almost all
risk-adjusted solvency calculations).
In this separate model, premium liability risks are often split into two
categories: i) small (single) claims, ii) large single claims, or cumulative
events (such as hailstorms, floods, etc.) (see e.g. SST [SST06]).
The main risk driver in i) is, that the prediction of future parameters may
have large uncertainties. This can be modelled assuming that true future
parameters are latent variables which we try to predict (see e.g. Wüthrich
[Wü06b]).
The risk drivers in class ii) are often modelled using a compound model
(for low frequencies and high severities). One main difficulty in this class
of risks is to estimate the parameters, because usually one has only lit-
tle information. We propose to use internal data, external data and ex-
pert opinion for the estimation of the parameters. This can e.g. be done
in a Bayesian or credibility framework, similarly as it is done for opera-
tional risks in the banking industry (see e.g. Bühlmann et al. [BSW07],
Shevchenko-Wüthrich [SW06] and Lambrigger et al. [LSW07]).
If one models premium liability risks and claims run-off risks separately
one should, however, keep in mind that there might be inconsistencies over
time because one switches from one model to another, this is also discussed
in Ohlsson-Lauzeningks [OL09].
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Selected Topics

We conclude these lecture notes with selected topics and remarks. These re-
marks are rather unstructured. They give some ideas that go beyond the
presentation of the previous chapters. In general, we believe that still a lot of
work, developments and research has to be done in order to come to a uni-
fied market-consistent valuation approach that respects economic intuition,
financial mathematics and actuarial sciences.

6.1 Sources of losses and profits, profit sharing

We denote by X = X(T+1) = (XT+1, XT+2, . . .) the cash flows after time T
of all contracts which are in force at time T . Hence the valuation portfolio
at time T of our business is given by (see Section 3.6)

VaPo(T ) (X) =
∑
t>T

VaPo(T ) (Xt) =
∑
t>T

p∑
i=1

l
(T )
i,t Ui, (6.1)

with Xt = Xt Z(t), (Ui)i=1,...p are the units (basis, financial instruments) and

l
(T )
i,t = E [Λi(Xt)| TT ] (6.2)

denotes the expected number of units Ui generated by the stochastic cash flow
Xt (seen from time T ). Similarly, we consider one period later

VaPo(T+1) (X) =
∑
t>T

VaPo(T+1) (Xt) =
∑
t>T

p∑
i=1

l
(T+1)
i,t Ui. (6.3)

Henceforth, the valuation portfolio VaPo(T ) (X) is TT -measurable and the val-
uation portfolio VaPo(T+1) (X) is TT+1-measurable. Basically, what happens
is that we update our information
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TT �→ TT+1 (6.4)

in order to predict the outstanding loss liabilities X at times T and T + 1,
respectively.

Moreover, by applying conditional expectations iteratively,

VaPo(T ) (X) = E
[
VaPo(T+1) (X)

∣∣ TT

]
(6.5)

is the valuation portfolio seen at time T . This means that the prediction is in
the average correct (unbiased). Due to our construction we have the following
recursion (linearity)

VaPo(T ) (X) = E
[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
+ E

[
VaPo(T+1) (XT+1)

∣∣ TT

]
.

(6.6)

This is the self-financing property for stochastic cash flows (for deterministic
cash flows see Section 3.4).

VaPo(T+1) (XT+1) is simply cash value at time T + 1 (FT+1-measurable).
Hence it is replaced by XT+1. This leads to the recursion (viewed from time
T + 1)

VaPo(T ) (X) = E
[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
+ E [XT+1| TT ] . (6.7)

Therefore the insurance technical loss in the interval (T, T +1] at time
T + 1 is given by

VaPo(T+1)

(
X(T+2)

)
+ XT+1 − VaPo(T ) (X) (6.8)

= VaPo(T+1)

(
X(T+2)

)
+ XT+1

−E
[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
− E [XT+1| TT ]

= VaPo(T+1)

(
X(T+2)

)
− E

[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
+XT+1 − E [XT+1| TT ] .

Hence the insurance technical loss has two parts:

1. prediction error in the next payment, which is given by

XT+1 − E [XT+1| TT ] , (6.9)

2. prediction error in the valuation portfolio for cash flows after T +1, which
is given by

VaPo(T+1)

(
X(T+2)

)
− E

[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
. (6.10)

Remark. In non-life insurance this insurance technical loss within (T, T +
1] is called claims development result (CDR), see Merz-Wüthrich [MW08]. It
means that we predict the valuation portfolio at time T by VaPo(T ) (X) and
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one period later by VaPo(T+1) (X). Because this prediction is unbiased, see
(6.5), we predict the insurance technical loss CDR for accounting year T + 1
by 0 at time T . The risk driver of this profit-and-loss statement position then
is that we face an insurance technical loss according to (6.8).

Note that we predict random variables by their (conditional) expectations.
Henceforth, the error terms are called prediction errors. Moreover, if we esti-
mate the conditional expectations

E [XT+1| TT ] and E
[
VaPo(T+1)

(
X(T+2)

)∣∣ TT

]
(6.11)

with the available data we obtain an additional error term known as the
parameter estimation error term. It arises from the fact the true mean is not
known and must be estimated from the data (this is completely analogous to
the derivations in Chapter 5). Hence, in general, we have two different sources
of uncertainty.

For both prediction error terms in (6.9)-(6.10) we have calculated a loading
in the valuation portfolio protected against insurance technical risks. Observe
that the two error terms are not necessarily independent (see Section 3.5). This
loading was purely cash flow driven (independent of any accounting standard).
In Section 6.3 we will give a slightly different view.

For the financial loss we proceed as follows: We have chosen an asset
portfolio S̃ which fulfills the accounting condition at time T on the economic
value scale

ET

[
VaPo(T )(X)

]
= ET

[
S̃
]
. (6.12)

We have a financial gain at time T + 1 if

ET+1

[
VaPo(T )(X)

]
< ET+1

[
S̃
]
, (6.13)

and a financial loss otherwise.
If the portfolio is protected against financial risks we have no financial loss

(we exercise the Margrabe option in case of a loss) but a gain if (6.13) holds.

Both, insurance technical part and financial part may (and will) produce
losses and gains:

1. If we have a protected portfolio, the gains should go to those who pay the
protection fee.

2. If we have no protection, gains and losses should be shared in the same
fixed proportion.

Other sources of risks: Model risk, credit risk, operational risk, etc. For a more
detailed discussion of other risks we refer to Sandström [Sa06].
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6.2 Remarks on the self-financing property of the
insurance technical liabilities

a) If we have a cash flow X = (X0, . . . , Xn) ∈ L2
n+1(P,G) with deterministic

insurance technical risk we construct a valuation portfolio

X �→ VaPo(X) =
∑

i

λi(X) Ui, (6.14)

where the deterministic numbers λi(X) are given in a natural way. As in
Section 3.4 we then easily obtain the self-financing property (see Lemma 3.1)

VaPo
(
X(k)

)
= VaPo

(
X(k+1)

)
+ VaPo (Xk) . (6.15)

Note that both sides of (6.15) should be read as portfolios.

b) If the cash flow X ∈ L2
n+1(P, F) has stochastic insurance technical

risks, the situation is more complicated. In that case we have chosen for the
valuation portfolio construction the expected number of units Ui (at time k)

l
(k)
i (X) = E [Λi(X)| Tk] (6.16)

and then the valuation portfolio at time k is given by

X �→ VaPo(k)(X) =
∑

i

l
(k)
i (X) Ui. (6.17)

Observe that
l
(k)
i (X) = E

[
l
(k+1)
i (X)

∣∣∣ Tk

]
, (6.18)

which implies

VaPo(k)

(
X(k)

)
= VaPo(k)

(
X(k+1)

)
+ VaPo(k) (Xk) (6.19)

= E
[
VaPo(k+1)

(
X(k+1)

)∣∣ Tk

]
+ VaPo(k) (Xk) .

The identity in (6.19) is called self-financing property in the mean, see
also (6.5)–(6.6).

c) Assume we have a cash flow X ∈ L2
n+1(P, F) with stochastic insur-

ance technical risks and we consider the valuation portfolio protected against
insurance technical risks

X �→ VaPoprot
(k) (X) =

∑
i

l∗,k
i (X) Ui, (6.20)

with the “distortion representation” (see also (3.65))

l∗,k
i (X) =

1

ϕ
(T )
k

E

[∑
t

ϕ
(T )
t Λi(Xt)

∣∣∣∣∣ Tk

]
. (6.21)
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The martingale property of Lemma 2.16 implies

l∗,k
i (X) =

1

ϕ
(T )
k

E
[
ϕ

(T )
k+1 l∗,k+1

i (X)
∣∣∣ Tk

]
= E

[
ϕ

(T )
k+1

ϕ
(T )
k

l∗,k+1
i (X)

∣∣∣∣∣ Tk

]
. (6.22)

The span probability distortion ϕ
(T )
k+1/ϕ

(T )
k models the underlying risk aversion

(risk margin) for the insurance technical risk when we increase the information
from Tk to Tk+1. Risk aversion then means that we have

l∗,k
i (X) ≥ E

[
l∗,k+1
i (X)

∣∣∣ Tk

]
. (6.23)

Hence, in general, we do not have the self-financing property in the mean as
portfolio

VaPoprot
(k)

(
X(k)

)
= VaPoprot

(k)

(
X(k+1)

)
+ VaPoprot

(k) (Xk) (6.24)

�= E
[
VaPoprot

(k+1)

(
X(k+1)

)∣∣∣ Tk

]
+ VaPoprot

(k) (Xk) .

However, under risk aversion we require for each unit Ui

l∗,k
i (X) − E

[
l∗,k+1
i (X)

∣∣∣ Tk

]
≥ 0, (6.25)

see also (6.23). This can be interpreted as the expected gain which compen-
sates the risk taker for bearing the insurance technical risk. Another interpre-
tation is that this is the risk margin for non-hedgeable risks in an incomplete
market setting.

Distortion techniques are used quite often in actuarial practice, e.g. in
life insurance when one replaces the best-estimate life table by a prudent
life table. However, the loadings for insurance technical risks are often not
naturally obtained via a distortion as in (6.21). An example was given in
Chapter 5. In such cases we would at least expect under risk aversion

∑
i

l∗,k
i (X(k)) Ui ≥

∑
i

E
[
l∗,k+1
i (X(k+1))

∣∣∣ Tk

]
Ui + Xk U0, (6.26)

where U0 stands for the financial instrument representing cash value at time
k. Note that the inequality (6.26) lacks of full mathematical rigour as it should
be interpreted in a vector space.

This means that in general we assume under risk aversion

l∗,k
i (X) ≥ E

[
l∗,k+1
i (X)

∣∣∣ Tk

]
. (6.27)

Self-financing property as monetary value. Assume that the price pro-
cess (As(Ui))s is independent of T and satisfies (4.9) with financial deflator
ϕ(G). The monetary value at time k of our protected VaPo is given by
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Ak

(
VaPoprot

(k)

(
X(k)

))
=
∑

i

l∗,k
i (X(k)) Ak (Ui) , (6.28)

and due to the independence of insurance technical and financial risks, and
because of (6.27)

E
[
ϕ

(G)
k+1 Ak+1

(
VaPoprot

(k+1)

(
X(k+1)

))∣∣∣Fk

]

= E

[
ϕ

(G)
k+1

∑
i

l∗,k+1
i (X(k+1)) Ak+1 (Ui)

∣∣∣∣∣Fk

]

=
∑

i

E
[
l∗,k+1
i (X(k+1))

∣∣∣ Tk

]
E
[
ϕ

(G)
k+1 Ak+1 (Ui)

∣∣∣Gk

]

≤
∑

i

l∗,k
i (X(k+1)) ϕ

(G)
k Ak (Ui) , (6.29)

where we have assumed the martingale property for the price processes of
financial instruments, see Theorem 2.18.

This implies the “self-financing property” in monetary value

E

[
ϕ

(G)
k+1

ϕ
(G)
k

Ak+1

(
VaPoprot

(k+1)

(
X(k+1)

))∣∣∣∣∣Fk

]
≤ Ak

(
VaPoprot

(k)

(
X(k+1)

))
.

(6.30)

This means that we obtain a super-martingale for the monetary value of the
valuation portfolio protected against insurance technical risks. This super-
martingale property (6.30) is explained by the two terms: (i) deflated price
processes of financial instruments Ui are (P, F)-martingales, highlighting the
fact that we can hedge financial risks by an appropriate asset allocation S;
(2) probability distorted processes of the insurance technical variables Λi(X)
are super-martingales highlighting the fact that we ask for a margin for non-
hedgeable risks.

Note that it is not straightforward that the super-martingale property is
satisfied if we use ad-hoc methods for the calculation of the protection margin,
e.g. the derivations in Chapter 5 do not necessarily lead to a self-financing
valuation portfolio protected against insurance technical risks.

6.3 Claims development result in non-life insurance

When we have constructed the valuation portfolio protected against insurance
technical risks we have taken a purely cash flow based point of view, that is
we have considered

VaPo(k)(X) =
∑

i

l
(k)
i (X) Ui �→ VaPoprot

(k) (X) =
∑

i

l∗,k
i (X) Ui, (6.31)
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where
l∗,k
i (X) = l

(k)
i (X) + appropriate loading. (6.32)

The appropriate loading was determined by measuring the uncertainties be-
tween

the random variable Λi(X) and

its predictor l
(k)
i (X) = E [Λi(X)| Tk] at time k.

This can be viewed as the so-called long-term view because it measures
the uncertainty over the whole run-off of the liabilities. Under Solvency 2 one
is rather interested in the short-term view that explains how predictions
change over time, that is one studies the successive predictions

l
(k)
i (X), l

(k+1)
i (X), l

(k+2)
i (X), . . . . (6.33)

The risk for accounting year k is then given by the difference

l
(k+1)
i (X) − l

(k)
i (X), (6.34)

and the regulator asks for a protection of this difference (profit-and-loss state-
ment position). The conclusion to this regulatory view is that the accounting
principle becomes important in the study of the uncertainties and we will
obtain accounting principle dependent risk margins.

For the chain-ladder method in non-life insurance reserving, this was stud-
ied in Merz-Wüthrich [MW08] and Bühlmann et al. [BFGMW09] for nominal
payments. It turns out that the one-year risk measured for standard devia-
tions makes about 2/3 of the total risk (depending on the line of business),
which is similar to the findings in the AISAM-ACME study [AISAM07].

6.4 Legal quote in life insurance

In this section we consider participating life insurance contracts characterized
by a guaranteed minimum rate of return and a specified rule of the distribu-
tion of annual excess investment returns above the guaranteed return. Often,
the sharing of profits between the policyholder and the insurer is a legal re-
quirement stipulating that bonuses shall be at least a certain percentage of
the profits of the company (legal quote).

Suppose we have a guaranteed interest rate i (technical interest rate) for
the minimum interest rate credited to the policyholder’s account. We define
the annual investment return of S̃ in [t, t + 1] by

Rt+1 =
S̃t+1 − S̃t

S̃t

. (6.35)
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We assume that the policyholder receives a certain proportion β ∈ [0, 1] of
the excess investment return above the guaranteed rate:

ρ
(1)
t+1 =

max (β Rt+1, i) − i

1 + i
, (6.36)

ρ
(2)
t+1 = β

max (Rt+1, i) − i

1 + i
. (6.37)

Definition (6.36) can be viewed as a net legal quote, whereas (6.37) is rather
a gross legal quote.

Remark. There are different ways to think about profit sharing. The easiest
ways probably are

• cash bonus paid to the policyholder,
• (in practice) transfer into final cash bonus (for single premium policies one

increases the sum insured by ρ
(k)
t+1, k = 1, 2).

Example 6.1 (Purely theoretical).

Choose a pure endowment policy with a duration of 20 years and a single
premium installment. A pure endowment contract of duration n years provides
the payment of the sum insured only if the policyholder survives to the end of
the contract period. However, for simplicity in this example, we assume that
there is no mortality (⇒ only financial risk) and that the sum insured is 100.
For an other example we refer to De Felice-Moriconi [dFM04].

Fig. 6.1. Pure endowment policy

The valuation portfolio is given by (the basis is the zero coupon bond Z(20))

VaPo = 100 Z(20). (6.38)

The monetary actuarial value if we take constant interest rate i = 3% is given
by
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A0 [VaPo] = 100 (1 + i)−20 = 55.37, (6.39)
At [VaPo] = 100 (1 + i)−(20−t), for t = 0, . . . , 20. (6.40)

The economic value is given by

Vt = Et [VaPo] = 100 Et

[
Z(20)

]
. (6.41)

On the other hand we have an investment portfolio S̃ with price process

Yt = Et

[
S̃
]
, (6.42)

which determines the participation benefits. We consider an example with
annual volatility of Ỹt = Yt/Vt of σ = 4% and participation rate β = 100%
(see also Subsection 4.3.2).

The benefit is paid by increasing the sum insured each year by ρ
(k)
s . Hence

the benefit paid at contract maturity (viewed from time 0) is

100
20∏

s=1

(
1 + ρ(k)

s

)
= 100 φ

(20)
0 , (6.43)

where

φ
(20)
0 is a stochastic “zero coupon bond” including (6.44)

participations after time 0.

If we think now of paying the legal quote to the insured we obtain the
following valuation portfolio at time t < 20

VaPolq
t = 100

20∏
s=t+1

(
1 + ρ(k)

s

)
= 100 φ

(20)
t . (6.45)

Hence the non participating valuation portfolio and the valuation portfolio
with legal quote participation after time t < 20 are given by

VaPo = 100 Z(20) with Et [VaPo] = 100 Et

[
Z(20)

]
, (6.46)

VaPolq
t = 100 φ

(20)
t with Et

[
VaPolq

t

]
= 100 Et

[
φ

(20)
t

]
. (6.47)

One can also represent the values with a put option: Define

100 φ̃
(20)
t = 100

20∏
s=t+1

(
1 +

β Rs − i

1 + i

)
, (6.48)

i.e. no guaranteed minimum interest rate i. Hence we can write

Et

[
VaPolq

t

]
= 100 Et

[
φ

(20)
t

]
= 100

(
Et

[
φ̃

(20)
t

])
+ Putt, (6.49)
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where the put option Putt adjusts for the minimum interest rate guarantee.
With the call-put parity we also obtain

Et

[
VaPolq

t

]
= Et [VaPot] + Callt. (6.50)

For a specific example we use real Italian market data (which had very
high yields initially). For the determination of the monetary values Monte
Carlo simulation techniques were used. The results are shown in Table 6.1.

t At [VaPo] Et [VaPo] Et

h

VaPolq
t

i

Callt

0 55.37 5.60 33.00 27.40
1 57.03 6.81 35.13 28.32
2 58.74 11.49 39.63 28.14
3 60.50 12.09 41.20 29.11
4 62.32 24.71 49.59 24.88
5 64.19 16.63 46.82 30.19
6 66.11 23.02 50.88 27.86
7 68.10 36.90 59.23 22.33
8 70.14 50.25 67.35 17.10
9 72.24 61.82 76.33 14.51

10 74.41 56.58 71.99 15.41
11 76.64 61.62 73.56 11.94
12 78.94 66.71 76.06 9.35
13 81.31 75.25 81.31 6.06
14 83.75 79.30 84.38 5.08

Table 6.1. Calculations by courtesy of De Felice-Moriconi. For a description of their
method we refer to [dFM04]

Remarks.

• The reserves Et

[
VaPolq

t

]
in this example are not reserves in the actuarial

sense and can not be used for solvency purposes.
• E.g. for going from E8

[
VaPolq

8

]
= 67.35 to E9

[
VaPolq

9

]
= 76.33 we need

an investment return of 13.3%. But the legal quote caps our return at
i = 3%!

• Using Et

[
VaPolq

t

]
leads to the wrong reasoning

– The market value accounting principle Et is here not applicable.
– The participations given to the insured caps the returns available for

reserve accumulation, hence we cannot apply Et.
• Correct reasoning: For policies with β-participation ρ

(2)
t make two policies:

Policy 1) for insured amount × β; Policy 2) for insured amount × 1 − β.
– For Policy 1) we need statutory reserves with discount rate i and a put

option for the minimum interest rate guarantee.
– For Policy 2) we have economic reserves with a put option for minimum

interest rate guarantee.



References

[AISAM07] AISAM-ACME (2007). AISAM-ACME study on non-life long tail li-
abilities. Reserve risk and risk margin assessment under Solvency II.
October 17, 2007.

[BK07] Barrieu, P., El Karoui, N. (2007). Pricing, hedging and optimal de-
signing derivatives via minimization of risk measures. Volume on In-
difference Pricing, R. Carmona(Ed.), Princeton University Press.
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[BG05] Bühlmann, H., Gisler, A. (2005). A Course in Credibility Theory and
its Applications. Springer.
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[SW06] Shevchenko, P.V., Wüthrich, M.V. (2006). Structural modelling of op-
erational risk using Bayesian inference: Combining loss data with ex-
pert opinions. J. OpRisk 2006/3, 3-26.

[SNB] Statistisches Monatsheft der Schweizerischen Nationalbank SNB.
Available under www.snb.ch

[SST06] Swiss Solvency Test (2006). FINMA SST Technisches Dokument, Ver-
sion 2. October 2006.

[Ta00] Taylor, G. (2000). Loss Reserving: An Actuarial Perspective. Kluwer
Academic Publishers.

[TA83] Taylor, G.C., Ashe, F.R. (1983). Second moments of estimates of out-
standing claims. J. Econometrics 23, 37-61.

http://europa.eu.int/comm/internal_market/insurance/docs/solvency/solvency2-conference-report_en.pdf
http://europa.eu.int/comm/internal_market/insurance/docs/solvency/solvency2-conference-report_en.pdf


References 153

[TC06] Tsanakas, A., Christofides, N. (2006). Risk exchange with distorted
probabilities. ASTIN Bulletin 36, 219-244.

[Va77] Vasicek, O. (1977). An equilibrium characterization of the term struc-
ture. J. Financial Economics 5, 177-188.

[Ve90] Verrall, R.J. (1990). Bayes and empirical Bayes estimation for the
chain ladder model. ASTIN Bulletin 20, 217-243.

[Ve91] Verrall, R.J. (1991). On the estimation of reserves from loglinear mod-
els. Insurance: Math. Econom. 10, 75-80.

[Wa02] Wang, S. (2002). A set of new methods and tools for enterprise risk
capital management and portfolio optimization. 2002 CAS Summer
Forum, Dynamical Financial Analysis Discussion papers.

[Wi91] Williams, D. (1991). Probability with Martingales. Cambridge.
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