
Chapter 7
Networked Distributed Source Coding

Shizheng Li and Aditya Ramamoorthy

Abstract The data sensed by different sensors in a sensor network is typically
correlated. A natural question is whether the data correlation can be exploited in
innovative ways along with network information transfer techniques to design effi-
cient and distributed schemes for the operation of such networks. This necessarily
involves a coupling between the issues of compression and networked data trans-
mission that have usually been considered separately. In this work we review the
basics of classical distributed source coding and discuss some practical code design
techniques for it. We argue that the network introduces several new dimensions to
the problem of distributed source coding. The compression rates and the network
information flow constrain each other in intricate ways. In particular, we show that
network coding is often required for optimally combining distributed source coding
and network information transfer and discuss the associated issues in detail. We
also examine the problem of resource allocation in the context of distributed source
coding over networks.

7.1 Introduction

There are various instances of problems where correlated sources need to be trans-
mitted over networks, e.g., a large-scale sensor network deployed for temperature
or humidity monitoring over a large field or for habitat monitoring in a jungle. This
is an example of a network information transfer problem with correlated sources.
A natural question is whether the data correlation can be exploited in innovative
ways along with network information transfer techniques to design efficient and
distributed schemes for the operation of such networks. This necessarily involves a
coupling between the issues of compression and networked data transmission that
have usually been considered separately (see Fig. 7.1 for an illustration).
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Fig. 7.1 (a) Classical Slepian–Wolf problem with sources X and Y with direct links to a terminal.
(b) Practical scenario with multiple sources and terminals communicating over a network with
link capacity and cost constraints. The joint problem of distributed source coding and network
information transfer introduces various issues that are overviewed in this work

The correlation in a sensor network can be exploited in multiple ways. One can
consider protocols where sensor nodes exchange information among themselves,
compress the information, and then transmit the compressed bits to the terminal.
At the other extreme, the sensors may operate independently. Intuitively, one would
expect that the first scenario would be significantly better from a compression per-
spective. A surprising and groundbreaking result of Slepian and Wolf [1] shows that
in fact under certain situations, the case in which the sensors act independently can
be as efficient as the case in which the sensors do communicate with each other.
The work of [1] introduced the idea of distributed source coding and demonstrated
the existence of encoders and decoders that could leverage the correlation without
needing explicit cooperation between the sources.

In this chapter we review various ideas in distributed source coding that are
interesting within the context of sensor networks. We begin by an overview of the
basic concepts and an outline of certain practical code constructions that have been
the focus of much work recently. Next, we examine distributed source coding in
a network context. The network introduces several dimensions to the problem of
distributed source coding that do not exist in the classical case. It may be tempting
to argue that one could simply find paths in the network that act as the direct links in
the classical problem, assuming that the paths have enough capacity. However, such
an approach is not optimal. The compression rates and the network information
flow constrain each other in intricate ways. In particular, it turns out that network
coding [2] is essential in certain cases for optimality. Interestingly enough, the flavor
of results in this area depends upon the number of sources and terminals in the
network. We survey these in a fair amount of detail in this chapter and examine the
relationship between network coding and distributed source coding.

The issue of resource allocation is very important in the field of networking.
For example, optimal routing of packets that maximizes some utility function of
the network is a well-investigated issue in the field of networking [3]. Several tech-
niques for solving these problems in a distributed manner have been studied in the
literature [4]. In this chapter we discuss resource allocation problems in the context
of transmitting correlated sources over a network. The main difference here is that
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one needs to jointly allocate the rates and the flows in the network. In particular, the
network capacity region and the feasible rate regions interact in non-trivial ways.

This chapter is organized as follows. We discuss the basics of distributed source
coding in Sect. 7.2 and introduce the problem of networked distributed coding in
Sect. 7.3. Sect. 7.4 presents the discussion for the case of networks with a single
terminal and Sect. 7.5 considers the case of networks with multiple terminals.

7.2 Basics of Distributed Source Coding

A sensor network consists of various sensors that monitor some physical phe-
nomenon, e.g., an agricultural sensor network may be deployed in a field for tem-
perature or humidity monitoring. In this chapter we will use the terms sensor and
source interchangeably. Furthermore, a sensor output at a given time is assumed to
be a random variable. Hence, over time, the observations of a sensor can be treated as
a vector of random variables. We assume that the source outputs a sequence of inde-
pendent and identically distributed (i.i.d.) random variables. While this assumption
may not hold in a strict sense, we will see that it serves to simplify our exposition.
Many of the results discussed in this chapter also hold for the case of sources with
memory. However, we will not discuss them here.

Formally, we denote n successive realizations of a source X by X1, X2, . . . , Xn ,
such that their joint distribution p(X1, . . . , Xn) = �n

i=1 p(Xi ). If there is
another correlated source Y , the joint distribution p(X1,Y1, X2,Y2, . . . , Xn,Yn) =
�n

i=1 p(Xi ,Yi ), i.e., at a given time instant, the sources are correlated but across
time they are independent.

In a sensor network, the main problem is to convey either the sensor readings or
their functions (e.g., mean, variance) to a terminal. The transmission protocol needs
to be efficient in terms of the number of bits transmitted. If the correlation between
the sources is ignored and if the terminal needs to recover the source without any
distortion, the compression rate should be at least the entropy [5, 6] of the source.
For example, if there are two sources X and Y , this implies that the terminal needs
to receive H(X)+ H(Y ) bits per unit time for recovering both X and Y .

Clearly, if there is correlation across sensors, the overall bit rate required for
transmission to the terminal can be reduced. This is certainly feasible if the sources
communicate with each other. The famous result of Slepian and Wolf [1] shows that
distributed source coding, where the sources do not communicate with each other,
can be as efficient as the case in which the sources communicate with each other.

7.2.1 Slepian–Wolf Theorem

Consider two sources X and Y . Let RX and RY denote the rates at which the sources
operate. This means that the sources X and Y transmit RX and RY bits per unit time
to the terminal.
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Theorem 1 (Slepian–Wolf Theorem [1]) Consider memoryless correlated sources
X and Y from finite-sized alphabets X ,Y respectively, with joint distribution
p(X,Y ). Suppose that

RX ≥ H(X |Y )
RY ≥ H(Y |X)

RX + RY ≥ H(X,Y )

There exist encoding functions f1 : X n → {1, 2, . . . , 2n RX } at source X
and f2 : Yn → {1, 2, . . . , 2n RY } at the source Y and a decoding function
g : {1, 2, . . . , 2n RX } × {1, 2, . . . , 2n RY } → X × Y at the terminal, such that the
terminal is able to recover the source sequences with vanishing error probability
as n goes to infinity. Conversely, if RX , RY do not satisfy those conditions, it is
impossible to recover the sources with vanishing error probability.

The implication of the Slepian–Wolf theorem is rather surprising and profound.
Intuitively, it is clear that there is no hope of compressing the sources to a rate of less
than H(X,Y ) even if they communicate with each other. The Slepian–Wolf theorem
shows that in fact one can do this even when the sources do not communicate with
each other.

The achievability proof goes as follows. A length n X -sequence is compressed
to a binary vector of length n RX by encoding function f1 that is chosen at random.
This process is referred to as random binning [6] in the literature, as each sequence
is assigned a bin whose index is determined by f1. Similarly, f2 returns the bin index
of a Y -sequence. At the terminal, suppose bin indices (i, j) are received. The decod-
ing function finds all the length n sequences x, y such that f1(x) = i, f2(y) = j and
find the pair of sequences that are most likely to have been transmitted. When n is
large, with high probability, such sequence pair is the actual transmitted sequence
pair. In other words, the error probability is vanishing as n goes to infinity.

The rates satisfying conditions are called achievable rates and they form a region
in the 2-D plane shown in Fig. 7.2.

The two corner points on the boundary are interesting. They correspond to a
rate allocation (RX , RY ) = (H(X), H(Y |X)) or (RX , RY ) = (H(X |Y ), H(Y )).
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Fig. 7.2 Slepian–Wolf Region in the case of two sources X and Y
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In order to achieve one of these points, say the first one, since RX = H(X), any
lossless compression scheme can be used to compress x. Then, x is used as side
information to help decode y at the decoder. The rate of Y is H(Y |X), i.e., the
amount of uncertainty given X .

Code design in the case when side information is available at the decoder is called
the asymmetric Slepian–Wolf coding problem [7]. Code design for achieving any
general (non-corner) point is called the symmetric Slepian–Wolf coding problem.
There are many practical code designs for both asymmetric coding and symmetric
coding when we have only two sources. In general, asymmetric Slepian–Wolf cod-
ing is easier than the symmetric case, because of a certain equivalence with channel
coding, that we will discuss shortly. We refer the reader to [7] and the references
therein for detailed descriptions.

The theorem above is stated for two sources. In general, when there are N
sources, we have a generalized Slepian–Wolf theorem [8]. Suppose the sources
X1, X2, . . . , X N are generating i.i.d. symbols according to the joint probability dis-
tribution p(X1, X2, . . . , X N ). Let Ri denote the rate for source Xi and S denote
a nonempty subset of node indices: S ⊆ {1, 2, . . . , N }. Let X S denote the set of
random variables {Xi : i ∈ S}. If the rate vector (R1, R2, . . . , RN ) satisfies

∑

i∈S

Ri ≥ H(X S|X Sc ) for all S �= ∅

the decoder is able to recover all sources error free (asymptotically). Conversely, if
the rates do not satisfy the condition, lossless recovery is impossible. When there
are multiple sources, practical code design is a challenging problem. Some coding
schemes exist, e.g., [9–11], but they either suffer suboptimal rate or have strong
assumptions on the correlation model.

7.2.2 Equivalence Between Slepian–Wolf Coding and Channel
Coding

The proof of the Slepian–Wolf theorem is information theoretic in nature and the
corresponding achievability scheme requires exponential (in n) complexity decod-
ing in general. For the case of two sources, and asymmetric Slepian–Wolf coding,
Wyner [12] discovered the relation between channel coding and Slepian–Wolf cod-
ing. Most existing work on Slepian–Wolf coding for two sources relies on Wyner’s
idea and exploits powerful channel codes such as Turbo codes and LDPC codes
[13–19]. Here, we introduce the basic ideas for asymmetric Slepian–Wolf coding.

First we review the concepts of channel coding [20], especially on linear block
codes. A (n, k) linear block code over a finite field G F(q) maps each message of
length k (i.e., a k-length vector ∈ G F(q)) to a codeword c of length n (i.e., an
n-length vector ∈ G F(q)). The codeword is transmitted through a channel, which
introduces an error e. The receive vector is r = c + e (addition over G F(q)), where
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e denotes the error vector. The decoder takes r as input and attempts to find the
correct c. In classical coding theory, the errors are modeled according to their Ham-
ming weight, i.e., the number of nonzero elements in e. An important design param-
eter of a code is the minimum Hamming distance d (the number of positions where
two codewords take different values). A code with minimum distance d is able to
correct up to �(d − 1)/2� errors, i.e., as long as the Hamming weight of e, wt (e) ≤
�(d −1)/2�, the decoder can find the error pattern e and the transmitted codeword c.

The parity check matrix of a linear block code is a (n − k) × n matrix H such
that cH T = 0 (matrix multiplication over G F(q)) for every codeword c. A practical
decoding algorithm for a linear block is called syndrome decoding. The decoder
computes the syndrome of length (n − k) s = rH T . Since rH T = cH T + eH T ,
s = eH T , implying that the syndrome only depends on the error pattern. It then
attempts to find the e with the least weight. This can be done efficiently for specific
classes of codes. For example, Berlekamp–Massey algorithm for BCH codes and
Reed–Solomon codes [20] can be used to find the error pattern e from s as long as
wt (e) ≤ (d − 1)/2. Likewise, binary LDPC codes admit efficient decoding.

We now demonstrate that syndrome decoding can be applied to the asymmetric
Slepian–Wolf coding problem. Assume that the source sequences x, y have length
n and the correlation model is that the Hamming distance between them is no more
than t , i.e., they differ at most t positions. Suppose y is available at the decoder. At
source X , we transmit xH T to the terminal. The terminal computes yH T + xH T =
(x + y)H T = eH T, where e = x + y is the difference between x and y.1 We know
that x and y differ in at most t positions, so wt (e) ≤ t . The decoder is able to find e
as long as the minimum distance of the channel code is at least 2t + 1 based on the
discussions above. Once e is obtained, x = y + e can be easily computed. Thus, a
length n vector x is compressed to a length (n − k) vector xH T . Since the minimum
distance of a code should satisfy Singleton bound d ≤ n − k + 1 [20], the length
n − k should be at least 2t .

In order to establish a concrete relationship with Slepian–Wolf theorem, next we
consider a probabilistic correlation model. Consider binary sources X and Y that
are uniformly distributed. The correlation between them is that the probability that
they are different is p < 0.5. In other words, each bit in the vector e = x + y is
1 with probability p and 0 with probability 1 − p. Then, H(X |Y ) = Hb(p),2 and
H(X,Y ) = 1 + Hb(p).

Now, consider the channel coding problem for the binary symmetric channel
(BSC) with crossover probability p. The codeword c is transmitted and r = c+ e is
received and e is i.i.d. taking value 1 with probability p. The capacity of this channel
is 1 − Hb(p) [6]. The receiver computes the syndrome s = rH T = eH T . It can be
shown that there exists an H and the decoding function fdec(·) such that the code

1 In this chapter, assume that the size of the finite field is a power of 2 so addition and subtraction
are the same.
2 Hb(p) is the binary entropy function defined as Hb(p) = −p log2 p − (1 − p) log2(1 − p).
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rate k/n → 1 − Hb(p) as n → ∞ and the decoding error can be made arbitrarily
small [21]. Such a code is called a capacity-achieving code.

In an asymmetric Slepian–Wolf coding setting, suppose that the decoder knows
y. Let RY = H(Y ) = 1 and apply any lossless entropy coding scheme [6], y can be
recovered at the terminal. Take the parity check matrix of a capacity-achieving code
H and the source X transmits xH T . The terminal finds the estimate of x,

x̂ = y + fdec(xH T + yH T )

The probability that x̂ �= x is arbitrary small. Note that the length of vector trans-
mitted by source X is n − k, so the rate

RX = (n − k)/n = 1 − k/n = Hb(p) = H(X |Y )

Thus, using a capacity-achieving channel code, we can achieve the corner point
(H(X |Y ), H(Y )) of the Slepian–Wolf region.

In practice, LDPC codes [22] come very close to the BSC capacity. The belief
propagation algorithm (BPA) [22] acts as the decoding function fdec(·). Note that in
the channel coding setting, the belief propagation algorithm is designed to output a
codeword c with 0 syndrome, whereas in the distributed source coding setting, the
BPA needs to be modified so that it outputs a vector satisfying a given syndrome.
More generally, even if the correlation model cannot be viewed as a binary sym-
metric channel, we can provide proper initialization to the BP algorithm according
to the correlation model. Turbo codes can also be used to achieve compression via
puncturing at the encoder; the extrinsic information exchange at the decoder exploits
the correlation between the sources [23–25].

The equivalence in the asymmetric case does not carry over in a straightforward
manner to the symmetric case. However, an approach called source splitting [26, 27]
allows us to transform the symmetric Slepian–Wolf coding problem for N sources
to an asymmetric (corner point) problem where there are 2N − 1 sources.

7.2.3 Distributed Source Coding with a Fidelity Criterion

In the previous sections we considered the problem of lossless reconstruction. In
many practical applications, we may allow a certain amount of distortion in the
recovery process. In lossy multiterminal source coding, each source encodes its own
data at a certain rate and transmits it to the terminal. The terminal tries to recover
all the sources under a fidelity criterion. The fidelity is measured with respect to a
distortion metric.

More specifically, the encoders observe source sequences x1, x2, . . . , xN emit-
ted by the sources X1, X2, . . . , X N and encode them at rate R1, R2, . . . , RN sep-
arately (with no communication between the encoders). Given distortion metrics,
D = (D1, D2, . . . , DN ) for each source, we hope to find the region R(D) of all rates
R = (R1, R2, . . . , RN ) that allow the decoder to reconstruct x̂1, x̂2, . . . , x̂N such
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that the expected distortion between xi and x̂i is less than Di for all i = 1, 2, . . . , N .
However, the general region even in the case of very specific distortion metrics
remains unknown.

The inner bound for a given problem refers to a set of rates that can be shown
to be achievable. The outer bound refers to a set of rates that are not achievable
under any strategy. Some inner/outer bounds for the general problem can be found in
[28–30]. In most cases the inner and outer bounds do not meet, i.e., the exact region
is unknown. A tighter outer bound was obtained recently [31] and some insights on
the optimal encoders and decoders are given in [32]. The quadratic Gaussian case
was considered in [33, 34], where the rate-distortion regions for several special cases
are determined. Practical code design for multiterminal rate-distortion problems is
discussed in [35, 36].

Next we discuss two special cases of multiterminal source coding problems, for
which the rate-distortion regions are relatively well studied.

7.2.3.1 Wyner–Ziv Coding

Consider two correlated sources X and Y that follow joint distribution p(X,Y ).
The source sequence x needs to be encoded without knowing y and transmitted to
the decoder, at which side information y is available. Let the distortion between
two n length sequences x and x̂ be measured as 1

n

∑n
i=1 d(xi , x̂i ), where d is a

non-negative function. The rate-distortion function RW Z (D) gives the minimum
required rate such that the expected distortion between the actual source sequence x

and the decoder output x̂ is upper bounded by D, i.e., E
(

1
n

∑n
i=1 d(xi , x̂i )

)
≤ D.

Clearly, if D = 0, it is the special instance of Slepian–Wolf problem at corner point
(H(X |Y ), H(Y )). In general, the rate-distortion function was shown by Wyner and
Ziv [37] to be

RWZ(D) = min
PU |X (·), f (·):E(d(X, f (U,Y )))≤D

I (X;U )− I (Y ;U )

where U is an auxiliary random variable and is such that U → X → Y , i.e.,
U, X,Y form a Markov chain and the expectation is taken over the joint distribution
of X,Y,U . The function f is the decoding function.

In the Slepian–Wolf setting (i.e., D = 0), we know that minimum required rate
is H(X |Y ), whether or not Y is available at the X encoder. When D > 0, let us
denote the rate required when Y is available at the source encoder as RX |Y (D).
It can be shown that in some cases RX |Y (D) < RW Z (D). In other words, we may
lose efficiency when encoding correlated sources separately rather than jointly when
D > 0. In the special case when the sources are correlated by X = Y + Z where Y
and Z are both Gaussian and Z is independent of Y , RX |Y (D) = RW Z (D) [37]. In
many other correlation models, the equality does not hold.

Practical coding schemes for the Wyner–Ziv problem based on nested codes [38,
39] are known. Nested lattice codes can be used in the quadratic Gaussian case and



7 Networked Distributed Source Coding 199

can be shown to achieve the Wyner–Ziv bound. Other practical Wyner–Ziv code
designs include trellis-based codes [13], nested coding followed by Slepian–Wolf
coding [40], quantization followed by Slepian–Wolf coding [41, 42]. The discussion
of these techniques is beyond the scope of this survey.

7.2.3.2 The CEO Problem

In the CEO problem [43], there is one source X and N encoders that do not observe
the source directly. Instead, each encoder observes a corrupted version of X , denoted
as Yi , i = 1, 2, . . . , N . The Yi ’s are assumed to be conditionally independent
given X . The encoder encodes yi at rate Ri and such that the total encoding rate
is
∑N

i=1 Ri ≤ R. The decoder finds the x̂ (the estimate of x,), based on the encoded
codewords. The aim is to find the rate-distortion function R(D), i.e., the minimum
total encoding rate needed such that the expected distortion between x and x̂ is
at most D. This is analogous to a situation when a Chief Executive (or Estima-
tion) Officer obtains information from N agents and wants to estimate the source
sequence x that he or she is interested in. In a sensor network application, we can
think of the data fusion center acting as the CEO and the sensors act as the agents.
The problem formulation takes into account the noise in the sensing procedure. The
original paper [43] determined the asymptotic behavior of the error frequency when
R → ∞ for discrete memoryless source. The quadratic Gaussian case of the CEO
problem, where X is Gaussian and the observation noises Yi − X are independently
Gaussian distributed, is studied in [44–46] and the rate-distortion function is deter-
mined in [45, 46].

7.3 Networked Distributed Source Coding: An Introduction

In the previous sections we have discussed the classical Slepian–Wolf result and its
lossy variants. Note that so far we have assumed that there is a direct noiseless link
between the sources and the terminal. This is a useful simple case to analyze and
captures the core of the problem as far as the basic concept of distributed source
coding is concerned. However, in a practical sensor network we expect that the
sensors will be communicating with the terminal over a network, possibly with the
help of various relay nodes. Therefore, it is natural to investigate whether the process
of information transmission over the network influences the compression and vice
versa. Our network model represents a wireline network or a wireless network with
medium access control (MAC) protocols that make the channels look independent
(we discuss the network model in more detail later). In this part of the chapter, we
overview relatively recent work that has contributed toward our understanding of
this field.

The problem of networked distributed source coding differs from the classical
problem in the following ways.
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• Suboptimality of separation between distributed source coding and network
information transfer.
Note that the problem of distributed source coding over networks would be a
straightforward extension of the classical Slepian–Wolf problem if one could
essentially “simulate” the presence of direct links between the sources and the
terminal. Indeed, one could encode the sources using a classical Slepian–Wolf
code and simply “flow” the encoded bits over the appropriate paths. This would
amount to separating the tasks of distributed source code design and the problem
of network information transfer. It turns out that such a strategy is suboptimal in
general.

• Issues of optimal resource allocation over the network.
The network introduces several issues with respect to the allocation of rates and
flows such that they are in some sense “optimal” for the operation of a network.
For example, in sensor networks, the problem of deciding the appropriate paths
over which the data needs to flow for minimum energy or maximum lifetime
[47] is of interest. In the context of correlated sources, these issues become more
complicated since one needs to jointly optimize the rates and the flows.

Our model of a network is a directed graph G = (V, E), where V is the set
of nodes and E is the set of edges. There is a set of source nodes S ⊂ V that
observes the sources and a set of terminals T ⊂ V that needs to reconstruct the
sources. An edge (v1, v2) is a communication channel which allows information
transmission from v1 to v2. The channel can be noisy or deterministic (but typi-
cally capacity constrained). The different channels in the network are in general
dependent, e.g., in a wireless network, broadcast, and interference induces depen-
dence between different channels. However, characterizing the capacity region in
such scenarios, even with independent messages, has proved to be a difficult task
[6]. In fact, in many practical situations, protocols such as time division multiple
access-TDMA, frequency division multiple access-FDMA are used to provide the
semblance of independent channels. In a wireline network, the channels are typi-
cally independent. In the discussion in the sequel, we will mostly work under the
assumption that the channels are independent. It turns out that the results in this area
depend critically on the number of terminals in network. Accordingly, we divide
the discussion into two different sections. In Sect. 7.4 we review the results for the
single terminal case and in Sect. 7.5 we review the corresponding results for multiple
terminals.

7.4 Networked Distributed Source Coding: Single Terminal

In networks with a single terminal, under the assumption that the channels are inde-
pendent, Han [48] gave necessary and sufficient conditions for a network to be able
to transmit the correlated sources to the sink. A simple achievable transmission
scheme was proposed and its optimality was proved. Barros et al.[49] obtained
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the same result under a more general encoding model, where the form of joint
source/channel coding can be arbitrary and the coding can be across multiple blocks.
The achievability proof is almost the same as [48] and the converse is proved in a
different manner and is stronger because of the more general coding model.

Suppose that there are N + 1 nodes v0, v1, . . . , vN in the network observing
sources X0, X1, . . . , X N . The graph G(V, E) is complete and each edge (vi , v j ) is
a discrete memoryless channel with capacity Ci j . Note that the source entropy could
be zero and the capacity could also be zero, so realistic networks can easily fit into
this general framework. Node v0 is the sink that wants to reconstruct the sources
X1, . . . , X N .

The proposed transmission scheme is very simple and intuitive. Apply good
channel codes to each channel so that we can model every edge (vi , v j ) as a noise-
less link with capacity Ci j . Each node performs Slepian–Wolf coding at rate Ri .
Next, the Slepian–Wolf coded bits need to be routed to the sink v0. Knowing the
rates at each source node, we can find a feasible flow that supports rate Ri at source
node vi and terminates at sink node v0 as follows.

Add a virtual supersource s∗ and introduce an edge (s∗, vi ) with capacity Cs∗i =
Ri for i = 1, . . . , N . Then compute the max-flow between s∗ and v0 [50]. This
returns a flow assignment on each edge. The Slepian–Wolf coded bits are routed
according to the flow assignment to v0.

The node v0 receives all Slepian–Wolf coded bits and jointly decodes all
the sources X1, X2, . . . , X N . In order to reconstruct the sources, the rate vector
(R1, . . . , RN ) needs to be in the Slepian–Wolf region, i.e., for any nonempty subset
of {0, . . . , N }, S, such that 0 ∈ Sc (since X0 is available at v0 as side information
and is not encoded)

∑

i∈S

Ri ≥ H(X S|X Sc ) (7.1)

In order to successfully find the flow of value
∑N

i=1 Ri from s∗ to v0, we need
the capacity of any cut separating s∗ and v0 to be greater than

∑N
i=1 Ri . Note that

a cut separates the source nodes into S and Sc, where S ⊆ {0, . . . , N }, 0 ∈ Sc

but s∗ does not connect to v0, its capacity is
∑

j∈Sc\{0} Cs∗ j +∑i∈S, j∈Sc Ci j =∑
j∈Sc\{0} R j +∑i∈S, j∈Sc Ci j . Thus, as long as

∑

i∈S

Ri ≤
∑

i∈S, j∈Sc

Ci j (7.2)

for all nonempty subset S of {0, . . . , N } such that 0 ∈ Sc, the flow exists. This is
illustrated in Fig. 7.3. Moreover, if

H(X S|X Sc ) ≤
∑

i∈S, j∈Sc

Ci j (7.3)
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Fig. 7.3 Illustration of the sufficient condition for routing Slepian–Wolf coded bits to the terminal.
s∗ is the supersource. The cut of interest contains v1, v2 in S and v3, v4 in Sc. The cut capacity
is
∑

j∈Sc\{0} R j +∑i∈S, j∈Sc Ci j , and it should be no less than
∑N

i=1 Ri . Thus,
∑

i∈S, j∈Sc Ci j ≥∑
i∈S Ri

there exists a rate allocation satisfying (7.1) and (7.2) [48]. Therefore, (7.3) is a
sufficient condition for the single sink data collection with Slepian–Wolf coding.

Conversely, it is proved that the above condition is the necessary condition for
successful transmission under any joint coding scheme, i.e., if the capacity does not
satisfy this condition, the sink cannot recover the sources losslessly, under any kind
of coding scheme. Note that the proposed achievability scheme separates source
coding, channel coding, and routing. The converse part implies that it is optimal to
separately perform channel coding, distributed source coding, and treat the Slepian–
Wolf coded bits as commodities and route to the terminal. The main theorem in [49]
can also be viewed as a general source–channel separation theorem for networks
with one terminal, with independent channels. It implies that the source coding,
routing, and channel coding can be put into different layers of the protocol stack
separately.

We emphasize, however, that such a separation does not hold in general, i.e.,
when there are more terminals. As we shall see in Sect. 7.5, even when the channels
are independent, if we have more terminals, the compression rates and the network
flows are closely coupled.

7.4.1 Optimal Rate and Flow Allocation

From the discussion in previous sections, it is clear that distributed source coding
can compress the data effectively. In this section, we discuss resource allocation
problems for networked distributed source coding.

A natural resource allocation problem is to determine the rate at which each
source should be encoded, and the corresponding flows such that some network
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metric is optimized. For simplicity, we first consider the case when there are direct
channels between the sources and the sink.

7.4.1.1 Direct Source–Sink Channels

Suppose the sources communicate to the sink directly. We consider two metrics as
follows.

1. Sum rate minimization: In this case we consider noiseless source–sink channels
and seek to find a feasible rate vector that minimizes

∑N
i=1 Ri .

2. Sum power minimization: Here we assume orthogonal additive white Gaussian
noise (AWGN) channels between the sources and the sink and seek to minimize
the total power min

∑N
i=1 Pi (where Pi is the power of the i th source), expended

in ensuring that the sources can be reconstructed at the terminal.

For the noisy channel case, the source nodes first use Slepian–Wolf codes to
encode the sources. As long as each rate is less than the channel capacity the sources
can be recovered losslessly at the terminal (assuming capacity-achieving codes are
used). The capacity of the channel between node i and the sink with transmission
power Pi and channel gain γi is Ci (Pi ) ≡ log(1 + γi Pi ), where the noise power is
normalized to one and channel gains are constants that are known to the terminal.
Thus, the rate Ri should satisfy Ri ≤ Ci (Pi ). It is easy to see at the optimum, the
sensor node should transmit at the capacity, i.e., R∗

i = Ci
(
P∗

i

)
. Thus, the power

assignment is given by the inverse function of Ci which we denote by Qi (Ri ), i.e.,

P∗
i = Qi

(
R∗

i

) =
(

2R∗
i − 1

)
/γi . Once we know the optimal rate assignment R∗

i

we know the power assignment P∗
i and vice versa. Therefore, the objective function

of the sum power minimization problem can also be written as

min
N∑

i=1

(
2R

i − 1
)
/γi

For both problems, if N -dimensional Slepian–Wolf codes are used, the rates
should be in the N -dimensional Slepian–Wolf region, which is denoted by SWN .
Then, the sum rate minimization problem can be written as

min
R1,...,RN

N∑

i=1

Ri

subject to (R1, . . . , RN ) ∈ SWN

The solution to this problem is trivial, i.e., any point at the boundary of the N -
dimensional Slepian–Wolf region is the optimal solution. In the sum power mini-
mization problem, besides Slepian–Wolf region constraint, we also add peak power
constraints for the transmission power of each sensor node, taking into account the
fact that every sensor has limited transmission power in a wireless sensor network.
Then, the problem is a convex optimization problem:
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min
R1,...,RN

N∑

i=1

Pi =
N∑

i=1

(2Ri − 1)/γi

subject to (2Ri − 1)/γi ≤ Pmax,∀i

(R1, . . . , RN ) ∈ SWN

This problem can be efficiently solved by, for example, interior-point methods [51].
In practice we do need to impose additional restrictions on the set of feasible

rate vectors. This is primarily because the problem of practical code design for the
N -dimensional Slepian–Wolf region remains open. It is fair to say that at present,
we only know how to design Slepian–Wolf codes for two sources. Thus, it makes
sense to impose “pairwise” constraints on the rate vectors, so that two sources can
be decoded together. Given the state-of-the-art code designs for two sources case,
we could perform encoding and decoding in a pairwise fashion. Before the trans-
mission starts, we determine the source pairs that are jointly decoded together each
time and determine the rates of the sources and the corresponding codes. During the
transmission, the sources encode the message separately (without communication
with other sources) using the preassigned code and the sink performs joint decod-
ing for two nodes each time according to the preassigned combinations. We call
this pairwise distributed source coding, which is simple and practical. The resource
allocation problem is to determine the optimal pairing combinations and the rates for
the sensors such that the sum rate or the sum power is minimized. This problem was
first considered and solved using the notion of matching in undirected graph in [52].
Later, an improved solution using the notion of minimum weight arborescences and
matching forests was proposed in [53] that we shall discuss below.

First, we consider the sum rate minimization problem. Note that any point on
the slope of the Slepian–Wolf boundary achieves the minimum sum rate of two
sources. Thus, for a pair of sources that will be decoded together, simply choosing
the corner point as a rate allocation achieves minimum sum rate. Also note that a
decoded source can be used as side information to help decode other sources at the
terminal so that the rate of other sources being helped can be as low as the con-
ditional entropy given the decoded source. Since we consider pairwise distributed
source coding here and each time only two sources are involved in the decoding,
we do not use more than one decoded sources as helper. We say a rate assignment
has the pairwise property if it allows the terminal decode the sources in a pairwise
fashion. Specifically, the rate assignment is said to satisfy the pairwise property if
for each source Xi , i = 1, 2, . . . , N , there exists an ordered sequence of sources
(Xi1 , Xi2 , . . . , Xik ) such that

Ri1 ≥ H(Xi1) (7.4)

Ri j ≥ H(Xi j |Xi j−1), for 2 ≤ j ≤ k, and (7.5)

Ri ≥ H(Xi |Xik ) (7.6)

Such a rate assignment allows the possibility that each source can be reconstructed
at the decoder by solving a sequence of decoding operations at the SW corner points,



7 Networked Distributed Source Coding 205

e.g., for decoding source Xi one can use Xi1 (since Ri1 ≥ H(Xi1)), then decode Xi2

using the knowledge of Xi1 . Continuing in this manner finally Xi can be decoded.
We hope to find rate assignment with pairwise property and with minimum sum rate.
Clearly, the optimal rate assignment satisfies conditions (7.4), (7.5), and (7.6) with
equality. It is easy to see the sequential decoding procedure of a rate assignment
with pairwise property that can be expressed on a tree. The nodes at the higher layer
are decoded first and used as side information to help decode the nodes at the lower
layer. If we assign edge weights to be entropies and conditional entropies, the weight
of the tree is the sum rate. Therefore, this inspires us to find a tree with minimum
weight on a proper defined graph.

Now we formally describe our approach. Construct a directed graph G = (V, E)
as follows. The node set V consists of N regular nodes: 1, 2, . . . , N and N starred
nodes 1∗, 2∗, . . . , N∗. The edge set E consists of edges (i∗ → i) with weight
H(Xi ) for all i = 1, 2, . . . , N , and edges (i → j) with weight H(X j |Xi ) for all
i, j = 1, 2, . . . , N . An example of G is shown in the left figure of Fig. 7.4. Define a
subgraph Gi∗ of G as a graph obtained from G by deleting all starred nodes except
i∗ and all edges of the form ( j∗ → j) for j �= i . For each i , find a minimum weight
directed spanning tree3 on Gi∗ . This tree gives a rate allocation: Ri = H(Xi ),
R j = H(X j |X inc( j)), where inc( j) is the node such that edge (inc( j) → j)
belongs to the tree. Each subgraph Gi∗ gives a rate allocation by a minimum weight

(a) (b)

Fig. 7.4 An example of the rate allocation algorithm. The left figure shows the graph G. The edge
weights on the edges from node i∗ to node i are individual entropies and the edge weights on the
edges between regular nodes are conditional entropies. In this example, the individual entropies
are the same. Thus, H(Xi |X j ) = H(X j |Xi ) and we only label one number between regular nodes
i and j . The right figure shows the minimum weight directed spanning tree found on G1∗ (a) The
graph G; (b) The minimum weight directed spanning tree found on G1∗

3 A directed spanning tree (also called arborescence) of a directed graph G = (V, A) rooted at
vertex r ∈ V is a subgraph T of G such that it is a spanning tree if the orientation of the edges is
ignored and there is a path from r to all v ∈ V when the direction of edges is taken into account.
The minimum weight directed spanning tree can be found by a greedy algorithm in polynomial
time [54].
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directed spanning tree and the one with minimum weight gives the final optimal
rate allocation of the network. Note that if each source has the same entropy, the
weights of minimum weight directed spanning trees of Gi∗ are the same for each i ,
so we only need to pick up an arbitrary subgraph Gi∗ and find the assignment on
it. Clearly, the resulting rate assignment has the pairwise property and is optimal.
In the example in Fig. 7.4, each source has the same entropy and the minimum
weight directed spanning tree rooted at node 1∗ is shown in the right figure. The
optimal rate allocation is R1 = H(X1), R4 = H(X4|X1), R2 = H(X2|X4), and
R3 = H(X3|X4). The corresponding decoding procedure is that first decode source
X1, and use X1 as side information to help decode X4. Then, X4 is used as side
information to help decode X2 and X3.

Next, we show some simulation results. Consider a wireless sensor network
example in a square area where the coordinates of the sensors are randomly chosen
and uniformly distributed in [0, 1]. The sources are assumed to be jointly Gaussian
distributed such that each source has zero mean and unit variance (this model was
also used in [55]). The parameter c indicates the spatial correlation in the data. A
lower value of c indicates higher correlation. The individual entropy of each source
is H1 = 1

2 log(2πeσ 2) = 2.05. In Fig. 7.5, we plot the normalized sum rate found

by minimum weight spanning tree (MST) Rs0 ≡ ∑N
i=1 Ri/H1 vs. the number of

sensors n. If no distributed source coding is used, i.e., the nodes transmit data indi-
vidually to the sink, Ri = H1 and Rs0 = N . Clearly, by pairwise distributed source
coding, the sum rate is reduced. We also plotted the optimal normalized sum rate
when N -dimensional Slepian–Wolf code is used H(X1, . . . , HN )/H1 in the figure.
It is interesting to note that even though we are doing pairwise distributed source
coding, our sum rate is quite close to the theoretical limit which is achieved by
N -dimensional distributed source coding.
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Now we consider the sum power minimization problem. Note that for a pair of
sources that will be decoded together, the optimal rate allocation that minimizes the
sum power of the pair is no longer a corner point but rather a particular point on the
slope (which can be found by solving a simple optimization problem). For a node
pair i and j , denote the optimal power allocation as P∗

i j (i), P∗
i j ( j). We cannot simply

choose the corner points and perform asymmetric Slepian–Wolf coding. We want
some source pairs working at corner points while some others working at the optimal
point on the slope of the 2-D SW region. Taking this into account, we generalize the
concept of pairwise property. Recall that previously, under a rate assignment with
pairwise property, the first source in a sequence is encoded at the rate of its entropy.
Now we allow the first source in a decoding sequence to be paired with another
node and encoded at the rate on the slope of the 2-D Slepian–Wolf region. The
appropriate structure for finding the optimal resource allocation turns out to be one
that combines the directed spanning tree and the matching. Such a structure is the
matching forest first introduced in the work of Giles [56]. In fact, we are interested
in a specific form of matching forest called strict matching forest (SMF). For the
formal definitions, we refer the reader to [53]. Roughly speaking, a strict matching
forest is a subgraph of a mixed graph4 that connects every node only once. The
SMF plays a role similar to the spanning tree in the sum rate minimization problem.
The sequential decoding procedure of a rate assignment with generalized pairwise
property can be expressed on a SMF. The node pairs connecting with undirected
edges work at the slope of the Slepian–Wolf region and a symmetric coding scheme
is used for them. The nodes that are connected with directed edge work at the corner
point of the Slepian–Wolf region and the tail (origin) of a directed edge is used as
side information to help decode the head (destination) of the edge. If we assign edge
weights to be transmission powers, the weight of the SMF is the total transmission
power.

Now we formally describe our approach. Construct a mixed graph G =
(V, E, A) as follows. The node set V consists of N regular nodes: 1, 2, . . . , N
and N starred nodes 1∗, 2∗, . . . , N∗. Recall that Qi (R) is the power consumed in
transmission at rate R. For each i = 1, 2, . . . , N , if Qi (H(Xi )) ≤ Pmax, add edge
(i∗ → i)with weight Qi (H(Xi )). For each i, j = 1, 2, . . . , N , if Qi (H(Xi |X j )) ≤
Pmax, add edge ( j → i) with weight Qi (H(Xi |X j )). For each pair i and j , if the
optimal power allocation P∗

i j (i), P∗
i j ( j) that minimizes the sum power of the pair

of nodes exists, add undirected edge (i, j) with weight P∗
i j (i) + P∗

i j ( j). Then, find
the minimum weight SMF on G, which gives the rate/power assignment with the
generalized pairwise property and minimum sum power. It is shown in [53] that the
problem of finding minimum weight SMF can be transformed and solved in poly-
nomial time [57]. From the simulations we observe that in most cases, the optimal
allocation is such that only one pair works on the slope and all other sources work
at the corner points.

4 “Mixed” graph refers to a graph with directed edges and undirected edges.
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7.4.1.2 General Multihop Communication Between Sources and Sink

The resource allocation problem in a network with general topology and relay nodes
was first considered by Han [48] and a similar formulation is given in [49]. We
reformulate the problem as follows.

The network is given by a directed graph G = (V, E,C), where C = {Ci j :
(i, j) ∈ E} is the capacity of each edge. Edge (i, j) is also associated with a
weight wi j . The cost of a flow of value zi j going through the edge can be written as
F(zi j )wi j , where F(·) is a non-negative, increasing function. Then, the optimization
problem can be written as

min
∑

(i, j)∈E

F(zi j )wi j

s.t. 0 ≤ zi j ≤ Ci j ,∀(i, j) ∈ E (capacity constraint)
∑

j |(i, j)∈E

zi j −
∑

j |( j,i)∈E

z ji = σi ,∀i ∈ V (flow balance constraint)

(R1, R2, . . . , RN ) ∈ SWN (Slepian–Wolf constraint)

where σi = Rl if i is the lth source node, σi = −∑N
i=1 Ri if i is the sink and

otherwise, σi = 0.
For simplicity, we can consider linear cost F(zi j ) = zi j . Then, the above opti-

mization is a linear program. If F(·) is a convex function, it is a convex optimization
problem.

If there is no capacity constraint, the solution of the problem has a simple form
and interpretation [58]. The basic idea is that in the absence of capacity constraints,
there is no need to split the flow across different edges. Once a route (path) from a
given source to the sink with minimum cost is found, the source simply routes all
the data through that path. For example, suppose that the minimum cost path for
source Xl is P l . Then for all edges (i, j) belonging to P l , we set zi j = Rl . In this
case, the cost of transmitting the data from Xl to the sink is

∑
e∈P l F(Rl)we. Thus,

the overall cost function becomes

min{Rl ,dl },l=1,2,...,N

N∑

l=1

F(Rl)dl

where dl is the total weight of path P l , i.e., dl = ∑e∈P l we. Solving this problem
involves finding the optimal paths P l , l = 1, 2, . . . , N and finding the optimal rate
allocation Rl , l = 1, 2, . . . , N . It is shown in [58] that these two steps are separable,
i.e., one can first find the optimal paths P l∗ and then find the optimal rate allocation
based on the optimal paths P l∗. This separation holds even if the function F(·) is
nonlinear. It is easy to see the optimal path P l∗ is the path with minimum total
weight. Then, the optimal routing structure is the shortest path tree rooted at the
sink, which can be found effectively and in a distributed manner. Now, suppose that
the cost function F is such that F(Rl) = Rl . In this case, the problem becomes
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min
N∑

l=1

RldSPT(l, t)

s.t.(R1, R2, . . . , RN ) ∈ SWN

where dSPT(l, t) (known as a constant) is the weight of the path from source l to ter-
minal t on the shortest path tree. This is a linear programming problem with number
of constraints exponentially with N . However, because of the contra-polymatroidal
structure of the Slepian–Wolf region [59], the solution can be found in a easy greedy
manner as follows [58].

1. Find a permutation π such that dSPT(π(1), t) ≥ dSPT(π(2), t) ≥ · · · ≥
dSPT(π(N ), t).

2. The optimal rate allocations is given by

Rπ(1) = H(X{π(1)}|X{π(2),π(3),...,π(N )})
Rπ(2) = H(X{π(2)}|X{π(3),π(4),...,π(N )})

...

Rπ(N ) = H(X{π(N )}) (7.7)

If the function F(·) is not linear but convex, the problem can still be solved by
convex optimization [51] but the simple greedy algorithm may not work here.

From the previous discussion, we know that Slepian–Wolf coding along with
routing is the optimal solution for the single sink data collection problem. In fact, it
is shown in [60] that in terms of the cost under convex and increasing cost func-
tions, Slepian–Wolf coding plus routing is still the optimal solution even if the
wireless network broadcast advantage is considered. Interestingly, because the N -
dimensional (N > 2) Slepian–Wolf code design problem remains open, [58, 60]
also consider several schemes that do not use distributed source coding but allow
some cooperation among the sources. Clearly, the communication between the
sources will increase the cost. The cost of the Hierarchical Difference Broadcasting
in [60] has been shown to have the same order compared to Slepian–Wolf coding.
However, the explicit communication scheme in [58] will have significant loss com-
pared to Slepian–Wolf under some conditions.

7.5 Networked Distributed Source Coding: Multiple Terminals

We now consider the variant of the problem when there are multiple terminals that
want to reconstruct all the sources. This is called multicast. As before, one could
attempt to treat this scenario as a generalization of the single terminal case. For
example, one could divide the capacity of each edge into various parts, with each
part responsible for conveying the bits to a specific terminal. However, on closer
inspection it is possible to realize that such a strategy will in general be suboptimal.
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Fig. 7.6 A network with unit capacity edges and sources S1 and S2 and terminals T1 and T2. Each
terminal wants to simultaneously recover the pair of bits (a, b). Under routing this is impossible.
However, by computing and sending a⊕b along the bottleneck edge, we can achieve simultaneous
recovery

To see this consider Fig. 7.6 that depicts the celebrated butterfly network of network
coding [2]. In this example, each edge has unit capacity. Each terminal seeks to
obtain the bits from both the sources. It is easy to see that if we only allow routing
in the network, it is impossible to support this since the edge in the middle is a
bottleneck. However, if we allow coding at the intermediate nodes and transmit the
XOR of the two bits, then both terminals can obtain the two bits by simple XOR
decoding. This example shows the potential gain of coding when there are multiple
terminals. Of course, in this case the sources are independent. However, since inde-
pendence is a degenerate case of correlation, one expects that similar conclusions
will hold in the correlated case. As we shall see this is indeed the case. Furthermore,
several interesting conclusions about the relationship of the coding rates and flow
structures can be found.

7.5.1 A network Coding Primer

Traditionally, the intermediate nodes (routers) in the network only copy and forward
packets. In a single source single sink unicast connection, routing achieves maxi-
mum flow, which equals to the minimum cut between the source and the terminal
[61]. However, in a multicast scenario, pure routing may not achieve maximum
flow as shown above. But it has been shown in [2] that network coding achieves
max-flow min-cut upper bound in multicast. Next, we shall mathematically describe
this result.

As usual, we model a network as a graph G = (V, E,C), where C = {ce : e ∈
E} is the capacity of the edges, where ce is the capacity on edge e. The seminal work
on network coding [2] finds a tight capacity characterization for the single source,
multiple terminals multicast problem.

Theorem 2 Consider a network G = (V, E,C) with source s and L terminals:
t1, . . . , tL . Suppose that the source node observes a source X, such that its entropy
H(X) = R. Each terminal can recover X if and only if
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min − cut (s, tl) ≥ R,∀l ∈ {1, . . . , L} (7.8)

The work of [62, 63] shows that the multicast can be supported even with linear
codes. Basically, each intermediate node transmits linear combinations of the pack-
ets, where a packet is treated as a vector over a finite field. It is possible to show that
in this case at each terminal, the received packets are the source messages multiplied
by a transfer matrix. By inverting the transfer matrix, the terminal is able to recover
the source packets. Moreover, as long as the coefficients of the linear combinations
are chosen randomly from a large field and the min-cut between the source and each
destination is greater than the source rate, the probability that the transfer matrix
is invertible is very high [64]. This fact provides a simple distributed scheme for
network coding-based multicast. A practical multicast protocol based on these ideas
was developed in [65].

7.5.2 Multicasting Correlated Sources over a Network

In the discussion in the previous section, we only considered multicast with single
source. The multiple independent sources case can be reduced to single source case
[63], by introducing a virtual supersource that is connected to each source node.

In this section we consider the problem of multicasting correlated sources over a
network. We begin by stating the main result. Consider a network G = (V, E,C),
with terminals ti , i = 1, . . . , L and a set of source node S ⊂ V . Without loss
of generality, we assume a numbering so that these are the first |S| sources in V.
Furthermore, source node i observes a source Xi . The communication requirement
for multicasting correlated sources is that each terminal ti , i = 1, . . . , L needs to
recover all sources (X1, . . . , X |S|) losslessly. The admissible rate region is given by
[66, 67].

Theorem 3 The correlated sources (X1, . . . , X |S|) can be multicast to the terminals
t1, . . . , tL if and only if

H(X S|X Sc ) ≤ min−cut(S, ti ) ∀S ⊆ S (7.9)

An achievability scheme based on random linear network coding for this result was
proposed in [64]. Alternative proofs are provided in [66, 67]. We briefly overview
the achievability scheme in [64] now.

Consider two correlated sources generating binary vectors x1, x2 of length r1 and
r2 according to joint probability distribution Q(x1, x2) each time. After n time slots,
the source messages are xn

1 and xn
2 of length nr1 and nr2, respectively. We assume

that ce is rational for all e. Furthermore assume that n is large enough so that n × ce

is an integer for all e. This implies that when considered over a block of n time slots
we communicate nce bits over edge e.

Simply perform random linear coding at each node over a blocklength of n
including the source nodes and intermediate nodes, i.e., the bits on an outgoing edge
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of node v are a linear combination of bits on incoming edges to node v, where the
coefficients are chosen uniformly randomly from GF(2). Each terminal t receives a
vector zn

t of length n| i (t)|, where | i (t)| is the number of incoming edges to termi-
nal t (before the edges are copied). Using the algebraic network coding framework
[63], we can conclude that

zn
t = [xn

1 xn
2

]
Mt (7.10)

where Mt is a (nr1 + nr2) × n| i (t)| transfer matrix from the sources to terminal
t . When sources are independent, Mt needs to have full rank so that by inversion
we can recover the sources. In the case of correlated sources , Mt need not have full
rank because we can take advantage of the correlation between the sources to find
xn

1 and xn
2.

The decoding is done as follows. Find all possible
[
xn

1 xn
2

]
satisfying (7.10).

Note that xn
1, xn

2 can be viewed as a length n vector of elements from GF(2r1) and
GF(2r2), respectively.5 Let x1i , x2i denote the i th element and i = 1, 2, . . . , n.
The number of appearances of (a,b), a ∈ GF(2r1),b ∈ GF(2r2) is defined to be
N (a,b) = |{i : x1i = a, x2i = b}|. The empirical joint distribution (histogram)
Pxn

1 ,x
n
2

is Pxn
1 ,x

n
2
(a,b) = N (a,b)/n for a ∈ GF(2r1) and b ∈ GF(2r2). The empiri-

cal joint distribution is an approximation of the true joint distribution based on the
observation of two sequences xn

1 and xn
2. Note that the empirical joint distribution

defined for each sequence
[
xn

1, xn
2

]
has a similar form to a probability mass function.

Then, the functions applied on probability mass function, such as entropy function,
relative entropy function, can be applied to Pxn

1 ,x
n
2
.

In the decision procedure, given all sequences
[
xn

1, xn
2

]
that satisfying zn

t =[
xn

1xn
2

]
Mt , find

{
x̂n

1, x̂n
2

} = arg min[
xn

1xn
2

]
Mt=zn

t

α
(

Pxn
1 ,x

n
2

)

where α(·) is a function that needs to be chosen, depending on the metric to be
optimized. The two functions discussed below both achieve the capacity region in
Theorem 3.

1. Maximum-Q probability decoder. α
(

Pxn
1 ,x

n
2

)
= D

(
Pxn

1 ,x
n
2
||Q
)
+ H

(
Pxn

1 ,x
n
2

)
,

where D(·||·) is the relative entropy [6],

D
(

Pxn
1 ,x

n
2
||Q
)
=
∑

a∈F2r1

∑

b∈F2r2

Pxn
1 ,x

n
2
(a,b) log

Pxn
1 ,x

n
2
(a,b)

Q(a,b)

and H(·) is the joint entropy function [6]

5 A length r vector with elements from GF(2) can be viewed as an element from GF(2r ).
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H
(

Pxn
1 ,x

n
2

)
= −

∑

a∈F2r1

∑

b∈F2r2

Pxn
1 ,x

n
2
(a,b) log Pxn

1 ,x
n
2
(a,b)

From [6, theorem 12.1.2], since
(
xn

1, xn
2

)
are drawn i.i.d. according to Q(x1, x2),

the probability of xn
1, xn

2 is given by

Qn(x1, x2) = 2−n(D(Px1,x2 ||Q)+H(Px1,x2 ))

Therefore, finding xn
1, xn

2 that minimizing α
(

Pxn
1 ,x

n
2

)
is equivalent to finding

xn
1, xn

2 that maximizing the sequence probability.
2. Minimum entropy decoder. α(Px1,x2) = H(Px1,x2).

Note that here the decoder does not need to know the prior source joint distribu-
tion Q. Thus, it is an universal decoder. For a long sequence, the empirical distri-
bution Px1,x2 is very close to the true distribution Q, which causes D(Px1,x2 ||Q)
to approach zero. Therefore, the minimum entropy decoder is an approximation
of maximum-Q probability decoder.

It is shown in [64] that as long as

min − cut (s1, ti ) ≥ H(X1|X2) (7.11)

min − cut (s2, ti ) ≥ H(X2|X1) and (7.12)

min − cut (s1 and s2, ti ) ≥ H(X1, X2) (7.13)

for every i = 1, 2, . . . , L , each terminal ti can recover X1 and X2 with vanishing
error probability when the one of the two decoders shown above is used. Therefore,
the admissible rate region achieves bound (7.9). However, the decoding algorithms
above are based on exhaustive search and have a complexity that is unacceptably
high.

7.5.3 Separating Distributed Source Coding and Network Coding

The achievability scheme described in the previous section performs distributed
source coding and network coding jointly and has high decoding complexity. Per-
haps the simplest way to multicast correlated sources is to perform distributed
source coding and network coding separately, i.e., the source nodes perform dis-
tributed source coding (Slepian–Wolf coding) and the coded bits are multicasted
to the terminals through network coding. The terminals first decode the network
code to obtain the Slepian–Wolf coded bits, then jointly decode the Slepian–Wolf
code (usually is a channel code) to recover the sources. The decoding algorithms for
network code and Slepian–Wolf code have been well studied and have polynomial
time complexity. However, the separation of distributed source coding and network
coding is suboptimal in general [68].
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At an intuitive level, this result can be understood as follows. Suppose that the
network is such that each terminal can operate at the same point in the Slepian–Wolf
region. In such a situation, one could use a Slepian–Wolf code and encode each
source. Next, one could treat the encoded sources as independent and multicast
the encoded bits to each terminal. The terminal then decodes to obtain the origi-
nal sources. Roughly speaking, in this case we can reduce the correlated sources
multicast to an independent sources multicast.

However, if different terminals in the network are forced to operate at different
rate points in the Slepian–Wolf region, because of the nature of their connectivity,
then a reduction to the independent sources multicast is not possible in general.
In this case, clearly one cannot work with a single distributed source code. It can
be shown that there exist instances of networks and source distributions such that
performing separate distributed source coding and network coding can be strictly
suboptimal with respect to the approach in [64]. A surprising conclusion of [68] is
that if there are two sources and two terminals in a network, then it can be shown
that there is no loss in using a separation-based approach. This result forms the basis
of practical approaches to combining distributed source coding and network coding
as explained in the next section.

7.5.4 Practical Joint Distributed Source Coding and Network
Coding

In this section, we describe practical algorithms to perform joint distributed source
coding and network coding. Suppose there are two source nodes s1, s2 ∈ V and
observe two binary sources X and Y , respectively. The sources generate bits i.i.d.
according to the joint distribution p(X,Y ) where the joint distribution satisfies the
following symmetry property, i.e., p(X + Y = 1) = p < 0.5. Then, as discussed
before, the sequences x, y are related by y = x + e, where ei equals to 1 with
probability p < 0.5. Note that H(X,Y ) = 1+Hb(p) and I (X; Y ) = 1−Hb(p). Let
H be the parity check matrix for a channel code approaching the capacity of a binary
symmetric channel with crossover probability p with code rate k/n = I (X; Y ) =
1 − Hb(p), i.e., there is a decoding function f (·) such that Pr(e �= f (eH T )) is
arbitrarily close to zero.

The basic idea is to transmit xH T + yH T = eH T to each terminal such that
e can be recovered. Then, we transmit some additional information so that each
terminal can recover either x or y. We shall see the exact form of this additional
information later. The simplest but not necessarily optimal way to convey the sum
eH T = xH T + yH T to the terminal is to multicast both xH T and yH T to each
terminal and compute the sum at the terminal. Based on this, a practical joint dis-
tributed source coding and network coding is proposed in [69]. We first describe this
scheme and then discuss the optimal schemes to multicast the sum to the terminals.
The scheme in [69] is not optimal in the sense that in general, it requires more
network capacity than the result of [64] requires.
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The design scheme can be summarized as follows. The network capacity resource
C is partitioned into two shares: C1 and C2, where C1 +C2 ≤ C . Each share is used
to support two multicast sessions. Let H̄ be a matrix such that [H̄ T H T ] has full
rank. And let x1 = xH̄ , y1 = yH̄ . The two multicast sessions are described as
follows.

1. In the first session, multicast xH T and yH T to each terminal. This implies eH T

can be computed, and e can be recovered at each terminal since H is the parity
check matrix of a capacity achieving code. Using this, e1 ≡ y1 + x1 = eH̄ T can
be computed.
The length of xH T is (n − k) = nH(X |Y ) (likewise for yH T ). We need to
multicast nH(X |Y ) bits from node s1 to the terminal and nH(Y |X) bits from
node s2 to the terminal. This requires G(V, E,C1) to support a multicast with
rate H(X |Y ) + H(Y |X) from a virtual supersource connected to s1, s2 to each
terminal.

2. In the second session, the sources transmit linear combinations of x1 and y1 to
the network and x1 At + y1 Bt is received by terminal t . At and Bt are transfer
matrices from s1 to terminal t and s2 to terminal t , respectively, and they are
assumed known to the terminal t . At and Bt are such that given e1 and x1 At +
y1 Bt , x1, y1 can be recovered. Since we can compute (x1 + y1)Bt = e1 Bt =
eH̄ T Bt and then x1(At + Bt ) = x1 At + y1 Bt + e1 Bt , as long as At + Bt is
invertible, x1 and y1 can be recovered. The invertibility of At + Bt is guaranteed
with high probability (for details see [69]). After x1 is obtained, we compute
y1 = e1 + x1. Once x1, y1 are known, x, y can be recovered by the inversion of
[H̄ T H T ] since [xH̄ T xH T ] = x[H̄ T H T ] and y = x + e.

The two multicast sessions are illustrated in Fig. 7.7. The admissible rate region
for this design scheme is

C∗ = {C1 + C2 : C1 ∈ C(s̄, T, H(X |Y )+ H(Y |X)) and C2 ∈ C(u, T, I (X; Y ))}

G(V,E,C) = G1(V,E,C1) + G2(V,E,C2)

H(X |Y ) H(Y |X )I(X;Y )

s*

s1 s2

t1 t2 tL

Fig. 7.7 Multicast model for the practical scheme [69]
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In general, C∗ requires more capacity than the optimal capacity region [64] because
separate multicast sessions are usually suboptimal. But if there are only two termi-
nals (and we are only dealing with two sources), C∗ is optimal, i.e., the practical
design scheme is optimal [68, 69].

Computing the sum at the terminals (see [70–72] for related work) may not be
optimal in terms of the capacity region. It may in fact be better in terms of resource
utilization if the sum is computed at some intermediate nodes and then sent to each
terminal. In a network with two sources multiple terminals or two terminals multiple
sources, it is shown in [70, 72] that the optimal scheme to convey the symbol sum
of the sources to the terminals is to compute the sum in some intermediate nodes
and multicast to the terminals. In general, finding the right set of nodes at which the
sum should be computed is an open problem. But, the idea of computing the sum
at the intermediate nodes leads us to a heuristic approach to the joint distributed
source coding and network coding. We can find a set of nodes U and multicast xH T

and yH T to each node in U (multicast session 1). Then, compute the sum eH T at
u ∈ U and multicast to the terminals so that each terminal can recover e (multicast
session 2). Transmit linear combinations xAt + yBt to the terminals (multicast ses-
sion 3) and if (At + Bt ) is invertible then both x and y can be recovered in a similar
manner to the previous scheme. Note that the coded packets in multicast session 1
can be used in multicast session 3 since xH T and yH T are also linear combinations
of x and y. Next we demonstrate an example of this scheme in which we achieve the
optimal capacity region.

Consider the network in Fig. 7.8. The capacity on each edge is 0.5. The source
nodes s1, s2 observe the sources X and Y , and they are correlated such that
H(X) = H(Y ) = 1 and H(Y |X) = H(X |Y ) = 0.5. The terminals are t1, t2, and t3

Fig. 7.8 An example where the strategy in [69] is suboptimal. However, our proposed heuristic for
selecting the right set of nodes for computing the sum works better
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and min−cut(si , t j ) = 0.5 for i = 1, 2, j = 1, 2, 3, min−cut({s1, s2}, ti ) = 1.5 for
i = 1, 2, 3. According to Theorem 3, the capacity of this network supports the
recovery of the sources at the terminals. Consider the following scheme: s1, s2 trans-
mit xH T and yH T to node v2 (multicast session 1). Node v2 computes the sum eH T

and routes it to the terminals (multicast session 2). For multicast session 3, transmit
xH T , yH T on v1 − t1, v3 − t3, respectively.6 In addition, s1, s2 transmit random
linear combinations on edges s1−v4, s2−v6, i.e., M1, M2 are matrices of dimension
n × 0.5n consisting of entries randomly from G F(2). Then, matrices M1, M2, and
[M1 M2] have full rank with high probability. Terminal t1 receives eH T , xM1 and
xH T . From the first one t1 can decode e and from the last two t1 can recover x, then
y = x + e can also be obtained. Terminal t2 acts in a similar fashion as t1, while t3
can decode e from eH T and it also knows xM1 and yM2. Therefore, it can compute
xM2 = eM2 + yM2 then x can be recovered by the inversion of [M1 M2].

As shown in [69], the scheme that multicasts both xH T and yH T to the terminals
cannot achieve the capacity region in the example above. But from some simulations
on random graphs, where the optimal set U is found by integer programming, we
observe that in many cases, multicasting both xH T and yH T to the terminals and
computing the sum there is as good as computing the sum at some intermediate
nodes. Clearly, the best choice of nodes for computing the sum depends on the
network topology. The problem of choosing these nodes in an efficient manner is
still an open problem.

7.5.5 Resource Allocation for Multicasting Correlated Sources
over a Network

Given the admissible region in Sect. 7.5.2, it is natural question to determine the
rate at each source and the flow on each edge such that the total cost is minimized.
The problem is solved in an efficient manner in [73, 74].

The network is modeled as a directed acyclic graph G = (V, E,C) and each
edge is associated with a weight wi j . For simplicity we assume that the cost of the
use of an edge (i, j) when the actual data rate on edge (i, j) is zi j is wi j zi j . To
facilitate the problem formulation we append a virtual super source node s∗ to G,
so that

V ∗ = V ∪ {s∗}
E∗ = {(s∗, v)| v ∈ S} ∪ E and

C∗
i j =

{
Ci j (i, j) ∈ E
H(X j ) if i = s∗ and j ∈ S

We let G∗ = (V ∗, E∗,C∗). Denote the source node set as S and the terminal
set as T . The admissible region in Theorem 3 requires the min-cut between any

6 We could also simply perform random linear network coding on these edges.
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subset S of nodes and every terminal greater than H(S|Sc). From max-flow min-cut
theorem, we know the min-cut can be characterized as max-flow. As long as there
is a flow of value R from a source s to a terminal t , the min-cut between s and
t is R. Thus, to model the conditions on the min-cut, we introduce virtual flows
f(tk ) =

{
f (tk )i j

}
for each terminal tk . Note that we only require the existence of the

flow for every terminal; the flows corresponding to different terminals can coexist
on an edge. So the actual flow rate zi j on edge (i, j) is the maximum (not the sum)

of f (tk )i j ,∀tk ∈ T , i.e., zi j ≥ f (tk )i j ,∀tk ∈ T . Based on the discussions above, the
problem can be formulated as follows:

minimize
∑

(i, j)∈E

wi j zi j

s. t. 0 ≤ f (tk )i j ≤ zi j ≤ C∗
i j , (i, j) ∈ E∗, tk ∈ T

∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , for i ∈ V ∗, tk ∈T, (7.14)

f (tk )s∗i ≥ R(tk )i , for i ∈ S, tk ∈ T (7.15)
(

R(tk )1 , R(tk )2 , . . . , R(tk )N

)
∈ SWN , for tk ∈ T (7.16)

where

σ
(tk )
i =

⎧
⎨

⎩

H(X1, X2, . . . , X N ) if i = s∗
−H(X1, X2, . . . , X N ) if i = tk
0 otherwise

The constraint (7.14) is the flow balance constraint for each virtual flow. The
constraints (7.15) and (7.16) make sure for each terminal tk there is a flow of value
H(X S|X Sc ) from each subset S of sources to tk . The detailed proof of the correct-
ness of the formulation can be found in [73, 74]. The formulation of MIN-COST-SW-
NETWORK as presented above is a linear program and can potentially be solved by
a regular LP solver. However, the number of constraints due to the requirement that
R ∈ SWN is |T |(2N −1) that grows exponentially with the number of sources. For
regular LP solvers the time complexity scales with the number of constraints and
variables. Thus, using a regular LP solver is certainly not time efficient. Moreover
even storing the constraints consumes exponential space and thus using a regular
LP solver would also be space inefficient. We now present efficient techniques for
solving this problem.

Let w, z, f(tk ) denote the column vectors of wi j , zi j , f (tk )i j for (i, j) ∈ E and

R(tk ), f(tk )s∗ denote the column vectors of R(tk )i , f (tk )s∗i for i = 1, 2, . . . , |S|. Let L be
the number of terminals. We form the Lagrangian of the optimization problem with
respect to the constraints R(tk ) ≤ f(tk)s∗ , for tk ∈ T . This is given by
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L(λ, z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL ))

= wT z +
L∑

k=1

λT
k

(
R(tk ) − f(tk)s∗

)

where λ = [λT
1 λT

2 . . . λT
L

]T
and λk = [λk,1, λk,2, . . . , λk,|S|]T are the dual vari-

ables such that λ - 0 (where - denotes component-wise inequality).
For a given λ, let g(λ) denote the dual function obtained by

g(λ) = minimizez,f(t1),...,f(tL ),R(t1),...,R(tL )L
(
λ, z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL )

)

Since strong duality holds in our problem we are guaranteed that the optimal value
of MIN-COST-SW-NETWORK can be equivalently found by maximizing g(λ) sub-
ject to λ - 0 [51]. Thus, if g(λ) can be determined in an efficient manner for a given
λ then we can hope to solve MIN-COST-SW-NETWORK efficiently.

Consider the optimization problem for a given λ - 0.

minimize wT z +
L∑

k=1

λT
k

(
R(tk ) − f(tk )s∗

)

s. t. 0 ≤ f (Tk )
i j ≤ zi j ≤ Ci j , (i, j) ∈ E∗, tk ∈ T

∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , i ∈ V ∗, tk ∈ T

R(tk ) ∈ SWN , tk ∈ T (7.17)

We realize on inspection that this minimization decomposes into a set of inde-
pendent subproblems shown below.

minimize wT f −
L∑

k=1

λT
k f(tk )s∗

s. t. 0 ≤ f (tk )i j ≤ zi j ≤ Ci j , (i, j) ∈ E∗, tk ∈ T
∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , i ∈ V ∗, tk ∈ T (7.18)

and for each tk ∈ T ,

minimize λT
k R(tk )

subject to R(tk ) ∈ SWN (7.19)

The optimization problem in (7.18) is a linear program with variables z and x (Tk )

for k = 1, . . . , NR and a total of (2|T | + 1)|E∗| + |T ||V ∗| constraints that can be
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solved efficiently by using a regular LP solver. It can also be solved by treating it
as a minimum cost network flow problem with fixed rates for which many efficient
techniques have been developed [50].

However, each of the subproblems in (7.19) still has 2N −1 constraints and there-
fore the complexity of using an LP solver is still exponential in N . However, recall
the contra-polymatroid property of Slepian–Wolf region mentioned in Sect. 7.4.1.2.
Using the contra-polymatroid property, the solution to this LP can be found by a
greedy allocation of the rates as shown in (7.7), where the permutation π is such
that λk,π(1) ≥ λk,π(2) ≥ · · · ≥ λk,π(N ).

The previous algorithm presents us a technique for finding the value of g(λ)
efficiently. It remains to solve the maximization

max
λ-0

g(λ)

For this purpose we use the fact that the dual function is concave (possibly non-
differentiable) and can therefore be maximized by using the projected subgradient
algorithm [75]. Roughly speaking, the subgradient algorithm is a iterative method to
minimize non-differentiable convex (or maximize concave) functions. It is similar to
the gradient descent method, though there are notable differences. The subgradient
for λk can be found as R(tk ) − f(tk)s∗ [75].

Let λi represent the value of the dual variable λ at the i th iteration and θi be
the step size at the i th iteration. A step-by-step algorithm to solve MIN-COST-SW-
NETWORK is presented below.

1. Initialize λ0 - 0.
2. For given λi solve the problem (7.18) using an LP solver and for each tk ∈ T ,

solve the problem (7.19) using the greedy algorithm presented in (7.7).

3. Set λi+1
k =

[
λi

k + θi

(
R(tk ) − f(tk )s∗

)]+
for all tk ∈ T , where [x]+ = x if x ≥ 0

and zero otherwise. Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approximation on the optimal
value of the primal problem, a primal-optimal solution or even a feasible, near-
optimal solution is usually not available because the objective function is linear. In
our problem, we seek to jointly find the flows and the rate allocations that support
the recovery of the sources at the terminals at minimum cost. Thus, finding the
appropriate flows and rates specified by the primal-optimal or near primal-optimal
z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL ) is important. Toward this end we use the method of
Sherali and Choi [76]. We skip the details and refer the interested reader to [73, 74].

7.6 Conclusion

In this survey we have examined the problem of distributed source coding over
networks. Distributed source coding has been traditionally studied under a model
where there exist direct source destination links. In a general network, the sources
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communicate with the destinations over a network whose topology may be quite
complicated. It turns out that in this case the problem of distributed source coding
and network information transfer needs to be addressed jointly. In particular, treating
these problems separately can be shown to be suboptimal in general. Moreover,
in certain cases the usage of the network coding [2] becomes essential. We also
discussed various resource allocation problems that occur in this space and provided
an overview of the solution approaches.

There are several problems that need to be addressed in this area. In the area
of sensor networks, it would be interesting to examine if simple protocols can be
developed that leverage joint distributed source coding and network coding. In this
survey we assumed that the source statistics are known to the intended destination.
In practice, the protocols will need to ensure that these statistics are communicated
periodically. In a practical sensor network, it is reasonable to assume that some
limited communication between the sensors is possible. It would be interesting to
see if this reduces the overall complexity of decoding at the destinations.
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