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Abstract In the interference scheduling problem, one is given a set of n
communication requests each of which corresponds to a sender and a receiver in
a multipoint radio network. Each request must be assigned a power level and a color
such that signals in each color class can be transmitted simultaneously. The feasi-
bility of simultaneous communication within a color class is defined in terms of the
signal to interference plus noise ratio (SINR) that compares the strength of a signal
at a receiver to the sum of the strengths of other signals. This is commonly referred
to as the “physical model” and is the established way of modeling interference in
the engineering community. The objective is to minimize the schedule length corre-
sponding to the number of colors needed to schedule all requests. We study oblivious
power assignments in which the power value of a request only depends on the path
loss between the sender and the receiver, e.g., in a linear fashion. At first, we present
a measure of interference giving lower bounds for the schedule length with respect
to linear and other power assignments. Based on this measure, we devise distributed
scheduling algorithms for the linear power assignment achieving the minimal sched-
ule length up to small factors. In addition, we study a power assignment in which
the signal strength is set to the square root of the path loss. We show that this power
assignment leads to improved approximation guarantees in two kinds of problem
instances defined by directed and bidirectional communication request. Finally, we
study the limitations of oblivious power assignments by proving lower bounds for
this class of algorithms.

2.1 Introduction

Simultaneously transmitted radio signals interfere with each other. Early theoretical
approaches (see, e.g., [11, 13, 17]) about scheduling signals or packets in radio
networks resort to graph-based vicinity models (also known as protocol model) of
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the following flavor. Two nodes in the radio network are connected by an edge in
a communication graph if and only if they are in mutual transmission range. Inter-
ference is modeled through independence constraints: If a node u transmits a signal
to an adjacent node v, then no other node in the vicinity of v, e.g., in the one- or
two-hop neighborhood, can transmit. The problem with this modeling approach is
that it ignores that neither radio signals nor interference ends abruptly at a boundary.

Recent theoretical studies [1–4, 6, 7, 9, 14, 15] use a more realistic model, the
so-called physical model, which is well accepted in the engineering community.
It is assumed that the strength of a signal diminishes with the distance from its
source. More specifically, let d(u, v) denote the distance between the nodes u and v.
We assume the path loss radio propagation model, where a signal sent by node u
with power p is received at node v with p/d(u, v)α , where α ≥ 1 is parameter
of the model, the so-called path loss exponent.1 A signal sent with power p by
node u is received by node v at a strength of p/d(u, v)α . Node v can successfully
decode this signal if its strength is relatively large in comparison to the strength of
other signals received at the same time. This constraint is described in terms of the
signal to interference plus noise ratio (SINR) being defined as the ratio between the
strength of the signal that shall be received and the sum of the strengths of signals
simultaneously sent by other nodes (plus ambient noise). For successfully receiving
a signal, it is required that the SINR is at least β with β > 1 being the second
parameter of the model, the so-called gain.

Let us illustrate the physical model with a simple but intriguing example showing
the importance of choosing the right power assignment. Suppose there are two pairs
of nodes (u1, v1) and (u2, v2). Two signals shall be sent simultaneously, one from u1
to v1 and the other from u2 to v2. Suppose the nodes are placed in a nested fashion
on a line, that is, the points are located on the line in the order u1, u2, v2, v1 such
that the distance between u1 and u2 is two, the distance between u2 and v2 is one,
and the distance between v2 and v1 is two (cf. Fig. 2.1). For simplicity fix α = 2
and β = 1 and neglect the noise.

• At first, let us assume that both u1 and u2 send their signal with the same power
1. Then the strength of u1’s signal at node v1 is 1/25 while the strength of u2’s
signal at the same node is 1/9. Hence, v1 cannot decode the signal sent by node
u1 as it is drowned by u2’s signal. That is, the outer pair is blocked by the inner
pair when using uniform powers.

• At second, let us assume that signals are sent in a way that the path loss is
compensated, that is, both nodes use a strength that is linear in the path loss.
In particular, u1 sends at power 25 and u2 sends at power 1. Now consider the
strengths of the signals received at v2: The strength of u2’s signal is only 1 while
the strength of u1’s signal is 25/9. Thus, the inner pair is blocked by the outer
pair when using powers that are chosen linear in the path loss.

• Finally, let us make an attempt setting the powers equal to the square root of
the path loss, that is, u1 uses power 5 and u2 uses power 1. Now easy calculus

1 Depending on the environment, it is usually assumed that α has a value between 2 and 5.
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Fig. 2.1 Placement of the nodes and the path loss for α = 2. Linear and uniform power assignment
both need different schedule steps for each of the requests, the square root power assignment can
schedule both requests at once

shows that, at v1, the strength of u1’s signal is larger than the strength of u2s
and, at v2, the strength of u2’s signal is larger than the strength of u1s. Hence,
simultaneous communication between the nested pairs is possible when choosing
the right power assignment.

In this chapter, we investigate interference scheduling problems like the one in the
example above. In general, one is given a set of n communication requests, each
consisting of a pair of points in a metric space. Each pair shall be assigned a power
level and a color such that the pairs in each color class can communicate simultane-
ously at the specified power. The feasibility of simultaneous communication within
a color class is described by SINR constraints. The objective is to minimize the
number of colors, which corresponds to minimizing the time needed to schedule
all communication requests. As this problem is NP-hard [1], we are interested in
approximation algorithms.

The interference scheduling problem consists of two correlated subproblems: the
power assignment and the coloring. By far, most literature focuses on scheduling
with uniform power assignment, in which all pairs send at the same power (see, e.g.,
[8, 12, 18]). In other studies, the linear power assignment is considered, in which
the power level for a pair (u, v) is chosen proportional to the path loss d(u, v)α . In
the example above, we have seen that choosing powers proportional to the square
root of the path loss might be an interesting alternative. All these power assignments
have the advantage that they are locally computable independent of other requests,
which allows for an immediate implementation in a distributed setting. These are
examples of oblivious power assignments which mean the power level assigned to
a pair is defined as a function of the path loss (or the distance) between the nodes of
a pair.

2.1.1 Outline

In Sect. 2.2, we formally introduce the physical model with SINR constraints and
show a helpful robustness property of this model. In Sect. 2.3, we study scheduling
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algorithms for the linear power assignment. In particular, we introduce a measure
of interference giving lower bounds for the schedule length with respect not only
to linear but also to other power assignments. Based on this measure, we devise
distributed scheduling algorithms for the linear power assignment achieving the
minimal schedule length up to small factors. In Sect. 2.4, we study the square root
power assignment. We show that this power assignment leads to better approxima-
tion guarantees in two kinds of problem instances defined by directed and bidirec-
tional communication request. In Sect. 2.5, we study the limitations of oblivious
power assignments by proving lower bounds for this approach. Finally, in Sect. 2.6
we summarize the results from our presentation with pointers to the literature and
open problems.

2.2 Notation and Preliminaries

Let the path loss exponent α ≥ 1 and the gain β > 1 be fixed. Let V be a set of
nodes from a metric space. Let d(u, v) denote the distance between two nodes u
and v. One is given a set R of n requests consisting of pairs (ui , vi ) ∈ V 2, where
ui represents the source and vi the destination of the signal from the i th request.
W.l.o.g., we assume mini∈R d(ui , vi ) = 1. Let Δ = maxi∈R d(ui , vi ) be the aspect
ratio. We say that a set R of requests is a nearly equilength set, if the lengths of the
requests in R differ by at most factor 2.

In the interference scheduling problem one needs to specify a power level pi > 0
and a color ci ∈ [k] := {1, . . . , k} for every i ∈ [n] := {1, . . . , n} such that the
latency, i.e., the number of colors k, is minimized and the pairs in each color class
satisfy the SINR constraint, that is, for every i ∈ [n], it holds

pi

d(ui , vi )α
≥ β

⎛

⎜⎜
⎝
∑

j∈[n]\{i}
c j=ci

p j

d(u j , vi )α
+ ν

⎞

⎟⎟
⎠ (2.1)

The SINR constraint is the central condition for successful communication in the
physical model. It characterizes the received strength of the signal emitted from ui

at receiver vi compared to ambient noise ν and the interference from signals of all
other senders in the same color class. The so-called scheduling complexity of R, as
introduced by Moscribroda and Wattenhofer [14], is the minimal number of colors
(steps) needed to schedule all requests in R.

In this chapter we focus on distance-based power assignments because of their
simplicity and locality, which is a striking conceptual advantage in distributed
wireless systems. An oblivious (or distance-based) power assignment p is given
by pi = φ(d(ui , vi )) with a function φ : [1,Δ] → (0,∞). For uniqueness
we assume that φ is always scaled such that φ(1) = 1. Examples are the uni-
form φ(d(ui , vi )) = 1 or the linear φ(d(ui , vi )) = d(ui , vi )

α power assignment.
Recently, the square root assignment φ(d(ui , vi )) = d(ui , vi )

α/2 has attracted some
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interest [5, 9] as it yields better approximation ratios for request scheduling than the
uniform and the linear power assignment.

We define the relative interference on a request i from a request set R as

RIi (R) = ci · d(ui , vi )
α

pi
·
∑

j∈R

p j

d(u j , vi )α

where

ci = β

1 − β · ν · pi/d(ui , vi )

denotes a constant that indicates the extent to which the ambient noise approaches
the required signal at the receiver of request i . The relative interference describes the
received interference at receiver vi normalized by the received signal strength. The
relative interference satisfies the two following properties for a request set R. First,
R is SINR feasible iff for every i ∈ R, RIi (R) ≤ 1. Second, the relative interference
function is additive, that is, for every partition R = R1∪̇R2 and every request i it
holds RIi (R) = RIi (R1)+ RIi (R2).

We denote with an r-signal set or schedule one where each requests relative
interference is at most 1/r .

2.2.1 Robustness of the Physical Model

The main criticism of graph-based models is that they are too simplistic to model
real wireless networks. The physical model requires simplifying assumptions, too,
as (2.1) models no obstructions, perfectly isotropic radios and a constant ambient
noise level.

In the following proof (from [10]) we show that there are only minor changes
in the schedule length, if there are minor changes in the signal requirements. This
justifies the analytic study of the physical model despite its simplifying assumptions.

Proposition 1 Let R be a r-signal schedule under a power assignment p. Then there
exists a r ′-signal schedule R′ for p that is at most �2r ′/r�2 times longer than R, for
r ′ > r .

Proof Let R be a r -signal schedule and T be a single schedule step. We show that
we can decompose T in at most �2r ′/r� slots T1, T2, . . . that are r ′-signal sets. We
now process the requests in T by increasing index. For request i , assign it to the first
set Tj , in which the relative interference on i is at most 1/2r ′. Since every request
had at most a relative interference of 1/r , it follows from the additivity of relative
interference that there are at most

⌈
1/r

1/2r ′

⌉
=
⌈

2r ′

r

⌉
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such sets. In each of these sets Tj the relative interference from requests with lower
index is at most 1/2r ′. Now, for each of these sets we repeat this process, processing
the requests in Tji , now in reverse order. Using the same arguments Tj is split into
at most �2r ′/r� sets. In that way we make sure that the requests in each set have a
relative interference of at most 1/2r ′ from requests with higher index, which bounds
the total relative interference on each request by 1/r ′, while using at most �2r ′/r�2

times more slots than the original schedule. �

2.3 Scheduling with the Linear Power Assignment

In the first part we focus on the linear power assignment, i.e., the power for a
request pair (ui , vi ) is equal to d(ui , vi )

α and, hence, linear in the path loss. The
linear power assignment has the advantage of being energy efficient as the minimal
transmission power required to transmit along a distance d(ui , vi ) is proportional to
d(ui , vi )

α .
We first present a measure of interference I , which allows us to lower bound the

schedule for general metrics using the linear power assignment byΩ(I ). If we allow
any power assignment, the schedule length can be bounded by Ω(I/logΔ log n).
For α > 2, embedding the instance in the Euclidean space improves this bound to
O(I/logΔ).

These results are complemented by a simple and efficient algorithm computing
a schedule using O(I · log n) steps. A more sophisticated algorithm computes a
schedule using O(I + log2 n) steps. This gives a constant factor approximation of
the optimal schedule using the linear power assignment for dense instances, i.e., if
I ≥ log2 n.

2.3.1 Measure of Interference and Lower Bounds

We first present an instance-based measure of interference I , which allows us to
lower bound the number of steps needed for scheduling a request set R in terms
of I .

Definition 1 (Measure of Interference) Let R ⊆ V × V be a set of requests. For
w ∈ V define

Iw(R) =
∑

(u,v)∈R

min

(
1,

d(u, v)α

d(u, w)α

)

Using this function we define the measure of interference induced by the requests
in R:

I = I (R) = max
w∈V

Iw(R)
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w1

w2

Fig. 2.2 An example for the measure of interference with three requests. Gray circles mark the
areas where the interference from a sender is at least 1. For the red node Iw2 is 1 plus the inter-
ference from the two rightmost senders (each less than 1). The interference is maximal at the blue
node w1, i. e., Iw1 = 3, so the measure of interference I for this instance is I = 3

An example of the measure of interference is illustrated in Fig. 2.2.
Observe that I is subadditive, i.e., for R = R1 ∪ R2 it holds

I (R) = max
w∈V

Iw(R) ≤ max
w∈V

{Iw(R1)+ Iw(R2)}
≤ max

w∈V
Iw(R1)+ max

w∈V
Iw(R2) = I (R1)+ I (R2)

Theorem 1 Let T be the minimum schedule length for a set of requests R with the
linear power assignment. Then we have T = Ω(I ).

Proof Let there be a schedule of length T when using the linear power assign-
ment. Then there exist sets of requests R1, . . . , RT each of which satisfies the SINR

constraint for this power assignment. As I is subadditive we have I
(⋃T

t=1 Rt

)
≤

∑T
t=1 I (Rt ). Thus it suffices to show that I (Rt ) = O(1) for every t ∈ {1, . . . , T },

as this implies T = Ω(I ).
Let Rt = {(u1, v1), . . . , (un̄, vn̄)} and let w ∈ V . Furthermore, let v j be the

receiver from Rt that is closest to w, i.e., j ∈ arg mini∈[n̄] d(vi , w). Possibly
w = v j .

We distinguish between two kinds of requests. We define a set U of indices of
requests whose senders ui lie within a distance of at most 1

2 d(v j , w) from w, i.e.,
U = {i ∈ [n̄] | d(ui , w) ≤ 1

2 d(v j , w)}. Using the triangle inequality we can
conclude for all i ∈ U :

d(ui , v j ) ≤ d(ui , w)+ d(w, v j ) ≤ 3

2
d(v j , w) (2.2)

In addition, we have

d(v j , w) ≤ d(vi , w) ≤ d(vi , ui )+ d(ui , w) ≤ d(vi , ui )+ 1

2
d(v j , w)
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Here the first equation holds since v j is the closest receiver tow, the second equation
holds by triangle inequality and the third step follows from the definition of U . This
implies

d(v j , w) ≤ 2d(ui , vi ) (2.3)

Combining (2.2) and (2.3) we get d(ui , v j ) ≤ 3d(ui , vi ). Thus it holds

|U \ { j}| =
∑

i∈U
i �= j

d(ui , vi )
α

d(ui , vi )α
≤
∑

i∈U
i �= j

d(ui , vi )
α

1
3α d(ui , v j )α

≤ 3α

β

Hence,

Iw(U ) =
∑

i∈U

min

{
1,

d(ui , vi )
α

d(ui , w)α

}
≤ 3α

β
+ 1

Next we upper bound Iw(Rt \ U ). For all i ∈ [n̄] \ U it holds that

d(ui , v j ) ≤ d(ui , w)+ d(w, v j ) ≤ d(ui , w)+ 2d(ui , w) = 3d(ui , w)

by applying triangle inequality and the definition of U . As a consequence

Iw(Rt \ U ) ≤
∑

i∈[n̄]\U
i �= j

d(ui , vi )
α

d(ui , w)α
≤

∑

i∈[n̄]\U
i �= j

d(ui , vi )
α

1
3α d(ui , v j )α

≤ 3α

β

Thus

Iw(Rt ) ≤ Iw(U )+ Iw(Rt \ U ) = 2 · 3α

β
+ 1 = O(1)

�
Theorem 2 Let T denote the optimal schedule length using any power assignment.
Then we have T = Ω (I/logΔ · log n).

Proof We use a similar technique as in the proof of Theorem 1. However, we have
to deal with an unknown power assignment. Since there is a schedule of length T
in this power assignment, there exist sets of requests R1, . . . , RT each of which
satisfies the SINR constraint for this power assignment. We divide such a set Rt into
logΔ classes Ct, j = {(u, v) ∈ Rt | 2 j−1 ≤ d(u, v) < 2 j }. Again, by using the
subadditivity of I , it suffices to show that I (Ct, j ) = O(log n) for such a class. Fix
Ct, j and let Ct, j = {(u1, v1), . . . , (un̄, vn̄)}. Further, for notational simplicity we
write L = 2 j−1.
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As an important fact we can bound the number of requests whose senders are
located around a node within a distance of at most 	.

Lemma 1 For all w ∈ V , 	 ≥ L we have for K	(w) = {i ∈ [n̄] | d(ui , w) ≤ 	}:

|K	(w)| ≤ 1

β

(
4	

L

)α
+ 1

Proof Let p be the power assignment that allows all requests to be served in a single
time slot. Let furthermore (uk, vk) be the request with k ∈ KL(w) that is transmitted
with minimal power pk . As the SINR condition is satisfied for request (uk, vk), we
get

1

β

pk

d(uk, vk)α
≥

∑

i∈K	(w)
i �=k

pi

d(ui , vk)α
≥

∑

i∈K	(w)
i �=k

pi

(2	+ 2L)α
≥ (|K	(w)| − 1) · pk

(2	+ 2L)α

So

|K	(w)| − 1 ≤ 1

β

(
2	+ 2L

d(uk, vk)

)α
≤ 1

β

(
4	

L

)α

�
Now, let w ∈ V . We prove Iw(Ct, j ) = O(log n). W. l. o. g., let u1, . . . , un̄ be

ordered by increasing distance to w. Note that for all 	 > 0 we have K	(w) =
{1, . . . , x} for some x ∈ N by this definition.

For k ≤ log n̄ + 1 let Sk = [2k] \ [2k−1]. Furthermore, let 	k be defined as
	k = mini∈Sk d(ui , w). For the value of Iw(Ct, j ) follows from these definitions:

Iw(Ct, j ) =
n̄∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , w)α

}

≤
log n̄+1∑

k=1

∑

i∈Sk

d(ui , vi )
α

d(ui , w)α
+

∑

i∈KL (w)

1 ≤ (2L)α
log n̄+1∑

k=1

|Sk |
	αk

+ |KL(w)|

As the distances are increasing, we have 	k ≥ d(ui , w) for all i ≤ 2k−1. In other
words [2k−1] ⊆ K	k (w).

Since we add up the interference induced by requests from KL(w) separately, we
may assume 	k ≥ L for all k and thus apply Lemma 1 on |K	k (w)|, which gives

2k−1 = |[2k−1]| ≤ |K	k (w)| ≤
(

4	k

L

)α
+ 1
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Consequently, we have

	αk ≥ (2k−1 − 1)

(
L

4

)α

Using the above results for 	αk and |KL(w)| we can bound Iw(Ct, j ) by

(2L)α
log n̄+1∑

k=1

2k−1

(2k−1 − 1)
( L

4

)α +
(

4α

β
+ 1

)
≤ 8α

log n̄+1∑

k=1

2 + 4α

β
+ 1 = O(log n)

�
Earlier results restricted the instances often to the Euclidean plane and required

α to be strictly greater than 2. Under these assumptions we can use geometric argu-
ments to get an even better bound of Ω(I/logΔ) on the optimal schedule length, as
we show in the following.

Theorem 3 Let the instance be located in the Euclidean plane, let α > 2, and let
T denote the optimal schedule length using any power assignment. Then we have
T = Ω (I/logΔ).

Proof Again, we divide the requests into logΔ · T classes Ct,i . This time, we have
to prove Iw(Ct,i ) = O(1). Let us remark that in the Euclidean plane a ring of inner
radius L · r and width L can be covered by 8(r + 1) circles of radius L . If x is the
center of such a circle, we get from Lemma 1 that |KL(x)| ≤ 4α

β
. Thus we have

|KL(r+1)(w) \ KLr (w)| ≤ 8(r + 1) 4α
β

≤ 16r 4α
β

= r 4α+2

β
for r ≥ 1. We can bound

Iw(Ct, j ) by

Iw(Ct, j ) ≤
∞∑

r=1

|KL(r+1)(w) \ KLr (w)| · (2L)α

(Lr)α
+ |KL(w)|

Using the above result we get

Iw(Ct, j ) ≤ 2α
4α+2

β

∞∑

r=1

r1−α + 4α

β
≤ 4α

β

(
2α42α − 1

α − 2
+ 1

)
= O(1)

�

2.3.2 Upper Bounds for the Linear Power Assignment

The measure of interference enables us to design randomized algorithms using
the linear power assignment, i.e., the power for the transmission from u to v is
c · d(u, v)α for some fixed c ≥ βν. As a key fact, we can simplify the SINR
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constraint in this setting as follows. If R is a set of requests that can be scheduled in
one time slot, we have for all nodes v′ with (u′, v′) ∈ R

∑

(u,v)∈R
(u,v) �=(u′,v′)

c · d(u, v)α

d(u, v′)α
≤ c

β
− ν

Since β > 1 we can write equivalently

Iv′(R) =
∑

(u,v)∈R

min

{
1,

d(u, v)α

d(u, v′)α

}
≤ 1

β
− ν

c
(2.4)

For simplicity of notation we replace 1
β
− ν

c by 1
β ′ in the following proofs.

The idea of our basic algorithm (Algorithm 1) is that each sender decides ran-
domly in each time slot if it tries to transmit until it is successful. The probability of
transmission is set to 1

2β ′ I and is not changed throughout the process.

Algorithm 1 A simple single-hop algorithm
1: while packet has not been successfully transmitted do
2: try transmitting with probability 1

2β ′ I
3: end while

Theorem 4 Algorithm 1 generates a schedule of length at most O(I log n) whp.

Proof Let us first consider the probability of success for a fixed request (uk, vk) in
a single step of the algorithm. Let Xi , i ∈ [n], be the 0/1 random variable indicating
if sender ui tries to transmit in this step. Assume a sender uk tries to transmit in this
step, i.e., Xk = 1. To make this attempt successful, the interference constraint (2.4)
has to be satisfied. We can express this event as Z ≤ 1/β ′ where Z is defined by

Z =
∑

i∈[n]
i �=k

min

{
1,

d(ui , vi )
α

d(ui , vk)α

}
Xi

We have E [Z ] ≤ 1/2β ′ and thus we can use Markov’s inequality to bound the
probability that this packet cannot be transmitted successfully by

PrZ ≥ 1

β ′
≤ PrZ ≥ 2E [Z ] ≤ 1

2

To make the transmission successful the two events Xk = 1 and Z ≤ 1/β ′ 1
β ′ have

to occur. Since they are independent it holds that

PrXk = 1, Z ≤ 1

β ′
= PrXk = 1 · PrZ ≤ 1

β ′
≥ 1

2β ′ I

(
1 − 1

2

)
= 1

4β ′ I
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The probability for packet k not to be successfully transmitted in (k0 + 1)4β ′ I ln n
independent repeats of such a step is therefore at most

(
1 − 1

4β ′ I

)(k0+1)4β ′ I ln n

≤ e−(k0+1) ln n = n−(k0+1)

Applying a union bound we get an overall bound on the probability that one of n
packets is not successfully transmitted in these independent repeats by n−k0 . This
means all senders are successful within O(I log n) steps whp.

An obvious disadvantage of the basic algorithm is that the probability of trans-
mission stays the same throughout the process. To improve it, one idea could be to
increase the probability of transmission after some transmissions have successfully
taken place. This is why we need the following weighted Chernoff bound that can
deal with dependent random variables.

Lemma 2 Let X1, . . . , Xn be 0/1 random variables for which there is a p ∈ [0, 1]
such that for all k ∈ [n] and all a1, . . . , ak−1 ∈ {0, 1}

PrXk = 1 | X1 = a1, . . . Xk−1 = ak−1 ≤ p (2.5)

Let furthermore w1, . . . , wn be reals in (0, 1] and μ ≥ p
∑
wi . Then the weighted

Chernoff bound

Pr
n∑

i=1

wi Xi ≥ (1 + δ)μ ≤
(

eδ

(1 + δ)(1+δ)

)μ

holds.

Proof (Sketch). To show this bound, a standard proof for the weighted Chernoff
bound [16] can be adapted. By using the definition of expectation and repeatedly
applying (2.5), one can show that

E
[
et X
]
≤

n∏

i=1

(
petwi + 1 − p

)

although random variables are no more independent. In the original proof no other
step makes use of the independence. �

We can now use this bound to analyze Algorithm 2. This algorithm assigns ran-
dom delays to all packets. The maximum delay is decreased depending on I curr,
which denotes the measure of interference that is induced by the requests that have
not been scheduled at this point.

The algorithm works as follows: During one iteration of the outer while loop by
repeatedly assigning random delays to the packets the measure of interference is
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Algorithm 2 An O(I + log2 n) whp algorithm
1: while I curr ≥ log n do
2: J := I curr

3: while I curr ≥ J
2 do

4: if packet i has not been successfully transmitted then
5: assign a delay 1 ≤ δi ≤ 16eβ ′ J i. u. r.
6: try transmission after waiting the delay
7: end if
8: end while
9: end while

10: execute algorithm Algorithm 1

reduced to a half of its initial value. This is repeated until we have I curr < log n and
the basic algorithm is applied.

Our first observation is that reducing I curr by factor 2 takes O(I curr) scheduling
steps whp.

Lemma 3 During one iteration of the outer while loop of Algorithm 2, the inner
while loop is executed at most k0 + 2 times with probability at least 1− n−k0 for all
constants k0.

Proof Let us first consider a single iteration of this loop. We assume all senders
are taking part as if none has been successful during this iteration of the outer while
loop yet. We only benefit from any previous success.

Observe, if the senders of a set S are transmitting and there is a collision for
packet i we have

∑

j∈S
j<i

min

{
1,

d(u j , v j )
α

d(u j , vi )α

}
>

1

2β ′
or
∑

j∈S
j>i

min

{
1,

d(u j , v j )
α

d(u j , vi )α

}
>

1

2β ′

In the first case let Y<
i = 1, in the second one Y>

i = 1. We now show
that the random variables Y<

1 , . . . , Y<
n fulfill (2.5) for p = 1

8e . Let us fix
k ∈ [n] and a1, . . . , ak−1 ∈ {0, 1}. We have to show PrY<

k = 1 | Y<
1 = a1,

. . . ,Y<
k−1 = ak−1 ≤ p.

Since the delays δi are drawn independently they can be considered as if they
were drawn one after the other in the order δ1, δ2, . . .. Then the value of Y<

i would
already be determined after drawing δi by definition. In other words, the values of
δ1, . . . , δk−1 already determine the values of Y<

1 , . . . ,Y<
k−1. It follows that there is

a subset M ⊆ [16eβ ′ J ]k−1 of delay values such that Y<
1 = a1, . . . ,Y<

k−1 = ak−1 iff
(δ1, . . . , δk−1) ∈ M .

Now let Xi be a 0/1 random variable for i ∈ [k − 1] such that Xi = 1 iff δi = δk .
We can observe that we have for all (b1, . . . , bk−1) ∈ [16eβ ′ J ]k−1:

E
[
Xi | δ1 = b1, . . . , δk−1 = bk−1

] = 1

16eβ ′ J
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Define furthermore

Z<k =
k−1∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , vk)α

}
Xi

with E
[
Z<k | δ1 = b1, . . . , δk−1 = bk−1

] ≤ 1
16eβ ′ . Now it holds that

Pr [ Y<
k = 1 | δ1 = b1, . . . , δ j−1 = bk−1 ]

= PrZ<k >
1

2β ′

∣∣∣
∣ δ1 = b1, . . . , δk−1 = bk−1

≤ 2β ′E
[
Z<k | δ1 = b1, . . . , δk−1 = bk−1

]

= 1

8e
= p

We now apply the law of alternatives:

PrY<
k = 1 | Y<

1 = a1, . . . ,Y<
k−1 = ak−1

=
∑

(b1,...,bk−1)∈M

Prδ1 = b1, . . . , δk−1 = bk−1 | Y<
1 = a1, . . . ,Y<

k−1 = ak−1

·PrY<
k = 1 | δ1 = b1, . . . , δk−1 = bk−1

≤ p

Thus, for w ∈ V , we may apply Lemma 2 on I<w defined as follows:

I<w =
n∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , w)α

}
Y<

i

This random variable indicates the remaining measure of interference that is caused
by these collisions. Setting δ = 2e − 1 and μ = J

8e Lemma 2 states

PrI<w ≥ J

4
≤ 2−

J
4 ≤ n−1

Now consider the situation after k0+2 iterations of the inner while loop. Since these
are independent repeats we have

PrI<w ≥ J

4
≤ n−(k0+2)

With a symmetric argument this also applies to I>j . For a sender that has not been
successful we have Z<j + Z>j ≥ 1. This means we have the bound I curr

w ≤ I<w + I>w .
For the remaining measure of interference I curr = maxw∈V I curr

w we can conclude
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PrI curr ≥ J

2
≤
∑

w∈V

PrI curr
w ≥ J

2

≤
∑

w∈V

PrI<w ≥ J

4
or I<w ≥ J

4

≤ n
(

n−(k0+2) + n−(k0+2)
)

≤ n−k0

�
Using the previous lemma, we can bound the numbers of steps that are generated

in the while loops.

Theorem 5 Algorithm 2 generates a schedule of length at most O(I + log2 n) steps
whp.

Proof Let Tk denote the number of scheduling steps generated in the kth execution
of the outer while loop. As shown in the previous lemma, it holds that

Prvk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I ≤ 1

nk0+1

Let furthermore U denote the number of scheduling steps generated in the execution
of Algorithm 1. As shown in Lemma 4, it holds that

PrU ≥ (k0 + 2) 4β ′ ln n log n ≤ 1

nk0+1

Thus the total number of steps generated in the while loops
∑

k vk + U can be
estimated by

Pr
∑

k

vk + U ≥ (k0 + 3) 32eβ ′ I + (k0 + 2) 4β ′ ln n log n

≤ Pr
∨

k

vk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I ∨ U ≥ (k0 + 2) 4β ′ ln n log n

≤
∑

k

Prvk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I + PrU ≥ (k0 + 2) 4β ′ ln n log n

≤
∑

k

1

nk0+1
+ 1

nk0+1

≤ (log n + 1)
1

nk0+1

≤ 1

nk0

This means the total number of steps upper bounded by
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(k0 + 3) 32eβ ′ I + (k0 + 2) 4β ′ ln n log n = O(I + log2 n)

with probability at least 1 − 1
nk0

. �
In sufficiently dense instances, i.e., I ≥ log2 n, this algorithm yields a constant-

factor approximation for the optimal schedule compared to the linear power assign-
ment with high probability. Compared to the optimal power assignment the approx-
imation factor then is O(logΔ · log n) whp for general metrics, respectively.
O(logΔ) for the two-dimensional Euclidean plane.

Algorithm 1 can be implemented in a distributed way losing a factor log n in the
following way. In contrast to the centralized problem, the nodes do not know the
correct value of I , thus, they do not know their transmission probability. Now in the
distributed setting the algorithm processes in each while iteration log n steps, where
in each of these steps the transmission probability is halfed, that is, starting by 1/2β ′
down to 1/2β ′n.

Algorithm 2 can be modified analogously, leading to a schedule of length
O(log n · (I + log2 n)) whp.

2.4 Scheduling with the Square Root Power Assignment

The scheduling algorithms for the linear power assignment presented in Sect. 2.3
achieve an approximation factor of order logΔpolylog n in comparison to an opti-
mal solution with respect to general power assignments. In this section, we show
that the square root power assignment admits schedules beating this bound achiev-
ing an approximation factor of order log logΔpolylog n. Furthermore, we present
a bidirectional variant of the interference scheduling problem in which the square
root power assignment yields an approximation of order polylog n and is, hence,
independent of the aspect ratio.

2.4.1 Scheduling Directed Requests

In this section we show how to achieve an O(log logΔ log3 n) approximation on
the interference scheduling problem using square root power. To prove this result
we first show two properties that make use of the following definitions. We call a set
R of requests well separated, if the length of any pair of requests differs by a factor
of either at most 2 or at least 16n2/α . We say that two requests (ui , vi ) and (u j , v j )

are τ -close under the square root power assignment if max{RIi ( j),RI j (i)} ≥ τ .

Lemma 4 Let R be a well-separated SINR-feasible set of requests. Let (u0, v0) be a
request that is shorter than the requests in R by at least a factor of 16n2/α . If all the
requests in R are 1/2n-close to (u0, v0) under the square root power assignment,
then |R| = O(log logΔ).



2 Scheduling and Power Assignments in the Physical Model 47

Proof Let R′ be a maximum 3α-signal subset of R, let n′ denote the number of
requests in R′ and w.l.o.g. let the requests in R′ be labeled in increasing order of
length. From Proposition 1 we know

∣
∣R′∣∣ = n′ ≥ |R| /9α . As all the requests in R′

are 1/2n-close to (u0, v0), R′ consists of two types of requests:

• Requests j for which the ratio between j’s interference and the received signal
from u0 at receiver v0 is at least 1/2n (or

√
d(u0, v0) · d(u j , v j )

α ≥ d(u j , v0)
α ·

1
2n ) and

• Requests j for which the ratio between u0’s interference and the received signal
from j’s sender at v j is at least 1/2n (or

√
d(u0, v0) · d(u j , v j )

α ≥ d(u0, v j )
α ·

1
2n ).

We only consider the former type, the argument is almost identical for the latter type
and will be left to the reader.

Let j, j ′ ∈ R′, w.l.o.g. assume j ≥ j ′. As they are 1/2n-close to (u0, v0), it
holds

√
d(u0, v0) · d(u j , v j )

α ≥ d(u j , v0)
α · 1

2n (and analogously for j ′). So we get

d(u j , v0) ≤
√

d(u0, v0) · d(u j , v j )(2n)1/α

and

d(u j ′ , v0) ≤
√

d(u0, v0) · d(u j ′ , v j ′)(2n)1/α

With triangle inequality we can conclude

d(u j ′ , v j ) ≤ d(u j ′, vi )+ d(vi , u j )+ d(u j , v j )

≤ d(u j , v j )+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j )

Applying α ≥ 1 and d(u j , v j ) ≥ 16n2/αd(u0, v0) to this inequality, we get

d(u j ′, v j ) ≤ d(u j , v j )+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j ) ≤ 2d(u j , v j )

For technical simplicity, we use the more relaxed d(u j ′ , v j ) < 3d(u j , v j ) in the
following. Using the same arguments as above we get

d(u j , v j ′) ≤ d(u j ′ , v j ′)+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j )

Multiplying this inequality with d(u j ′ , v j ) < 3d(u j , v j ) it follows

(u j ′ , v j )·d(u j , v j ′)<3d(u j , v j )d(u j ′ , v j ′)+12n1/αd(u j , v j )

√
d(u0, v0) · d(u j , v j )



48 A. Fanghänel and B. Vöcking

Since R′ is a 3α-signal set, we have d(u j ′ , v j ) ·d(u j , v j ′) ≥ 9d(u j , v j ) ·d(u j ′, v j ′).
Again, applying the well separation, the last two inequalities yield (with canceling
a 6d(u j , v j ) factor)

d(u j ′ , v j ′) < 2n1/α
√

d(u0, v0) · d(u j , v j ) (2.6)

This equation implies d(u j , v j ) > 2d(u j ′ , v j ′). By well separation of R it follows
d(u j , v j ) ≥ 16n2/αd(u j ′ , v j ′). Now it follows from (2.6)

d(ui+1, vi+1) ≥ d(ui , vi )
2

4d(u0, v0)n2/α
≥ 2d(ui , vi )

2

d1

for any i ∈ {2, . . . , n′}. Let λi = d(ui , vi )/d(u1, v1). Then λi+1 ≥ 2λ2
i and by

induction λn′ ≥ 22n′−1−1. Hence, n′ = ∣∣R′∣∣ ≤ lg lg λn′ + 2 = lg lgΔ + 2, which
proves the lemma. �

Lemma 5 Let R be a well-separated set of requests. If any subset of R containing
only nearly equilength requests can be scheduled with the linear power assignment
using at most c colors, then all requests in R can be scheduled with O(c log logΔ)
colors using the square root power assignment.

Proof In the following we show that a single step from a schedule of R can be
scheduled in O(log logΔ) steps. Let R = R1∪̇R2∪̇ . . . ∪̇Rt denote the decompo-
sition of R in length groups, such that the length of the requests in each group
differs by at most factor 2 and in different groups by at least factor 16n2/α . First
we transform the schedules for each length group in an r -signal schedule, with
r = 2α/2. This changes the number of schedule steps by at most factor (r + 1)2

(by Proposition 1). Let T =⋃i Ti be a single schedule step from the schedule of R
and let Ti denote the requests in T from length group Ri . W.l.o.g., let the requests
in T be ordered by decreasing length.

Lemma 4 states that for each request i there are at most O(log logΔ) longer
requests in T that are 1/2n-close to i . Let p = O(log logΔ) denote this bound.
Now process the requests i ∈ T by decreasing length: Assign i to a step T ′

j with
j ∈ [p + 1] that does not contain a 1/2n-close request for i .

It remains to show that this assignment yields a feasible schedule. Consider a
request i ∈ T ′

j that originally came from set Rk . The relative interference on i from
nearly equilength requests in T ′

j ∩ Rk under the linear power assignment is at most
1/r , since each length group is an r -signal set. We first analyze the influence from
changing the power assignment from linear to square root in a length class. It holds
for two requests a and b for the linear power assignment

RIa ((ub, vb)) = ca · d(ua, va)
α

pa
· pb

d(ub, va)α
= ca · d(ub, vb)

α

d(ub, va)α
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and for the square root power assignment

RIa ((ub, vb)) = ca ·√d(ua, va)α ·
√

d(ub, vb)
α

d(ub, va)α

Since the requests in the same length class differ by at most factor 2 combining
these two bounds yields that changing the power in a feasible schedule from the
linear power assignment to the square root power assignment changes the relative
interference by a factor of at most 2α/2 in such nearly equilength request sets. Thus,
the relative interference on i from requests in the same length class is at most 1/2.
On the other hand, the relative interference on i from requests not in the same length
class is at most 1/2n each, by construction, which is at most 1/2 in total. The relative
interference on each link is not greater than one, which gives us an SINR-feasible
schedule. �
Theorem 6 Suppose there exists a ρ-approximate algorithm for the interfer-
ence scheduling problem on nearly equilength request sets using uniform power
assignment. Then there exists an O(ρ · log logΔ · log n)-approximate algo-
rithm for the interference scheduling problem using the square root power
assignment.

Proof Let R be the set of requests. We partition R into k =
⌈

2
α

log 16n
⌉

well-

separated sets as follows. Let R1, R2, . . . denote length groups with Ri = { j ∈
R | d(ui , vi ) ∈ [2i−1, 2i )}. Then, partition R into classes Bi = ∪ j Ri+ j ·k , for
i = 1, 2, . . . , k. Now the theorem follows from applying Lemma 5 on each of the
classes Bi separately. �

Recall that Algorithm 2 had an approximation ratio of O(logΔ log2 n) in general
metrics. For nearly equilength request sets this ratio reduces to O(log2 n), which
gives the following result.

Corollary 1 The interference scheduling problem in general metrics has an approx-
imation factor of O(log logΔ · log3 n) for the square root power assignment.

For instances embedded in the Euclidean plane the approximation factor of Algo-
rithm 2 is O(logΔ log n) which reduces to O(log n) for nearly equilength request
sets.

Corollary 2 For α > 2, the interference scheduling problem in the two-dimensional
Euclidean space has an approximation factor of O(log logΔ · log2 n) for the square
root power assignment.

2.4.2 Scheduling Bidirectional Requests

Most communication protocols used in practice rely on bidirectional point-to-point
communication. This is reflected by the following variant of the physical model in
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which requests are undirected, that is, each of the two nodes of a request acts as both
sender and receiver. The SINR constraint is adapted as follows. For every request
pair (ui , vi ) ∈ R and w ∈ {ui , vi }, it must hold

pi

d(ui , vi )α
≥ β

⎛

⎜⎜
⎝
∑

j∈[n]\{i}
c j=ci

p j

min{d(u j , w)α, d(v j , w)α} + ν

⎞

⎟⎟
⎠

In every request set that fulfills this condition the two nodes of a request can
exchange messages in both directions, as long as only one of them acts as sender at
any given time.

In this setting, bounded, linear, and superlinear power functions still can have
schedule lengths of Ω(n), while the optimal schedule has constant length. This can
be shown by a straightforward adaption of the proof for Theorem 8. For sublinear
assignments this adaption is not possible. In fact, we show in the following that the
square root power assignment guarantees an approximation factor of O(log3 n).

First, we need the following technical lemma.

Lemma 6 Let (ui , vi ) and (u j , v j ) be two requests. If they can be scheduled simul-
taneously, then

min{d(wi , w j )}2 ≥ β2/α · d(ui , vi ) · d(u j , v j )

Proof Letw1 ∈ {ui , vi } andw2 ∈ {u j , v j }, such that min{d(wi , w j )} = d(w1, w2).
The SINR constraint gives

pi

d(ui , vi )α
≤ β

p j

d(w1, w2)α

and

p j

d(u j , v j )α
≤ β

pi

d(w1, w2)α

From multiplying both equations follows

d(w1, w2)
2 ≥ β2/α · d(ui , vi ) · d(u j , v j )

�
Lemma 7 Let R be a set of requests that can be scheduled with an arbitrary power
assignment and let i be a request. Then there is at most a constant number of
requests j ∈ R with d(u j , v j ) ≥ n2/α · d(ui , vi ) that cause a relative interference
of at least 1/2n on i under the square root power assignment.
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Proof In the following we show that for fixed β there is at most one request j ∈ R
with d(u j , v j ) ≥ n2/α ·d(ui , vi ) that causes a relative interference of at least 1/2n on
i under the square root power assignment. By Proposition 1 this yields the claimed
result.

Assume that there are two requests j, j ′ ∈ R with d(u j , v j ) and d(u j ′ , v j ′) at
least n2/α · d(ui , vi ) that cause a relative interference of more than 1/2n on i under
the square root power assignment. W.l.o.g, let d(u j , v j ) ≥ d(u j ′ , v j ′). For k ∈
{ j, j ′} and w ∈ {ui , vi } let dm = min{d(uk, w), d(vk, w)}. The relative interference
under the square root power assignment implies

(√
d(uk, vk)d(ui , vi )

dm

)α
≥ 1

2n

This implies

dm ≤ (2n)1/α
√

d(uk, vk) · d(ui , vi ) ≤ (2n)1/α
√

d(u j , v j ) · d(ui , vi )

To avoid notational clutter, let d(u j , v j ′) be the minimal distance between j and j ′.
Applying triangle inequality we get

d(u j , v j ′) ≤ 2dm ≤ 2(2n)1/α
√

d(ui , vi ) · d(u j , v j )

≤ 2(2n)1/α
√

d(u j ′ , v j ′)

n2/α
· d(u j , v j ) ≤ 21+1/α

√
d(u j , v j ) · d(u j ′ , v j ′)

Thus

d(u j , v j ′)
2 ≤

(
2α+1

)2/α
d(u j , v j ) · d(u j ′ , v j ′)

From Lemma 6 follows for β < 2α+1 there is at most one request j ∈ R with
d(u j , v j ) ≥ n2/α · d(ui , vi ) that causes a relative interference of at least 1/2n on i
under the square root power assignment. �

We now can use an almost identical approach like shown in Lemma 5 and Theo-
rem 6 for the unidirectional case.

Lemma 8 Let R be a request set where the length of every pair of links differs by at
most factor 2 or at least n2/α . If any subset of R containing only nearly equilength
requests can be scheduled with the linear power assignment using at most c colors,
then all requests in R can be scheduled with O(c) colors.

Theorem 7 Suppose there exists a ρ-approximate algorithm for the bidirectional
interference scheduling problem on equilength requests. Then there exists an algo-
rithm for the bidirectional interference scheduling problem with approximation fac-
tor O(ρ log n) for the square root power assignment.
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We omit the proofs for these lemmas, as the arguments are analogous to the
unidirectional case. For scheduling the equilength request sets we again can use
Algorithm 2.

Corollary 3 The bidirectional interference scheduling problem in general metrics
has an approximation factor of O(log3 n) for the square root power assignment.

Corollary 4 For α > 2, the bidirectional interference scheduling problem in the
two-dimensional Euclidean space has an approximation factor of O(log2 n) for the
square root power assignment.

2.5 The Gap of Oblivious Power Schemes

Our upper bounds on the approximation ratios of oblivious scheduling algorithms
for directed communication requests depend on the aspect ratio. In this section,
we show that the dependence on the aspect ratio is unavoidable. To prove this we
construct a family of instances for a given oblivious power assignment function f
such that using f requires at least Ω(n) colors or schedule steps while an optimum
power assignment needs only O(1) rounds.

Theorem 8 Let f : R>0 → R>0 be any oblivious power assignment function. There
exists a family of instances on a line that requiresΩ(n) colors when scheduling with
the powers defined by f whereas an optimal schedule has constant length.

Proof We distinguish three cases. In the first case, we assume that f is asymptot-
ically unbounded, that is, for every c > 0 and every x0 > 0 there exists a value
x > x0 with f (x) > c.

We consider the following family of instances. They consist of n pairs (ui , vi ) on
a line, with distances xi between two nodes of a pair and χyi between neighboring
pairs. Depending on β, we choose χ as a suitable constant that is large enough to
get along with different values of β.

Formally, this kind of instance can be defined by u1, v1, . . . , un, vn ∈ R such
that

ui =
{

0 if i = 1

vi−1 + χyi otherwise
and vi = ui + xi

We now define the distances xi and yi between the nodes recursively depending on
the function f :

yi = 2(xi−1 + yi−1)

Given x1, . . . , xi−1 and yi , we choose xi such that xi ≥ yi and

f (xi ) ≥ yαi
f (x j )

xαj
for all j < i
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This is always possible since f is asymptotically unbounded. By this construction it
is ensured that a pair k is exposed to high interference by pairs with larger indices.
To show this, let S ⊆ [n] be a set of indices of pairs that can be scheduled together
in one step; k = min S.

For i ∈ S \ {k} it holds that

d(ui , vk) =
i−1∑

j=k+1

x j +
i∑

j=k+1

χ · y j ≤ 2χ
i∑

j=k

y j ≤ 2χ
i∑

j=k

1

2i− j
yi ≤ 4χyi

Since all pairs in S can be scheduled in one step the SINR condition is satisfied for
pair k:

β
∑

i∈S\{k}

pi

d(ui , vk)α
≤ pk

d(uk, vk)α
= f (xk)

xαk

Putting these facts together

1

β

f (xk)

xαk
≥
∑

i∈S\{k}

pi

d(ui , vk)α
≥
∑

i∈S\{k}

yαi
f (xk )
xαk

(4χyi )α
= |S| − 1

(4χ)α
f (xk)

xαk

This implies |S| ≤ (4χ)α

β
+ 1, which means there are at least β

(4χ)α+β n = Ω(n)
colors needed when using pi = f (d(si , di )).

On the other hand for these instances there is a power assignment, pi = √
2i ,

such that there is a coloring using a constant number of colors. This is caused by the
fact that for all instances described it holds that yi ≤ xi and yi+1 ≥ 2xi . Thus for
any link k the interference by the ones with higher index as well as the ones with
lower index forms a geometric series. This means a constant fraction of all links
may have the same color and therefore there is a coloring using a constant number
of colors.

In the second case, we assume that f is asymptotically bounded from above
by some value c > 0 but does not converge to 0. In this case, there exists a value
b ∈ (0, c] such that for every x0 > 0 there exists a value x > x0 with f (x) ∈ [b, 2b].
Let χ > 1 be a suitable constant. We choose n numbers x1, . . . , xn satisfying the
properties (a) f (xi ) ∈ [b, 2b], for 1 ≤ i ≤ n, and (b) xi ≥ χxi−1, for 2 ≤ i ≤ n.
We set ui = −xi/2 and vi = xi/2. This instance corresponds to nested pairs on
the line, whereas the power assignment is similar to the uniform power assignment,
which already indicates the desired result.

To be more precise, let S ⊆ [n] be a set of indices of requests that can be sched-
uled together and let k = max S. For i ∈ S it holds d(ui , vk) ≤ xk/2. The SINR
condition for k states
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β
∑

i∈S\{k}

pi

d(ui , vk)α
≤ pk

d(uk, vk)α
= f (xk)

xαk

This yields

1

β
· f (xk)

xαk
≥
∑

i∈S\{k}

pi

d(ui , vk)α
≥
∑

i∈S\{k}

b

(xk/2)α
= (|S| − 1) · 2αb

xαk

Since 2b ≥ f (xk), we have |S| ≤ 1/β · 21−α + 1. It follows again that at least Ω(n)
colors are needed to schedule these instances using pi = f (d(ui , vi )).

In contrast, if χ is chosen sufficiently large than the square root power assignment
can schedule all these requests simultaneously.

Finally, in the third case, lim f (x) = 0, we again construct a sequence of
nested pairs analogously to second case but replacing condition (a) by the condition
f (xi ) ≤ f (xi−1). Analogously to the second case, the power assignment defined by
f allows only for scheduling a constant number of pairs simultaneously while the
square root assignment can schedule all pairs simultaneously. �

The last result shows that the dependence onΔ is necessary for nontrivial results.
The following theorem shows that there is a gap of at least Ω

(√
log logΔ

)
between

oblivious and optimal power assignments.

Theorem 9 An instance of the interference scheduling problem exists such that
every schedule using an oblivious power function needs at least Ω

(√
log logΔ

)

more steps than the optimal schedule.

Proof In this proof we construct an instance that can be scheduled in a constant
number of rounds by a non-oblivious power assignment, but every oblivious power
assignment needs at least Ω

(√
log logΔ

)
steps. The instance consist of two nearly

identical requests sets, only the role of sender and receiver in each request is
exchanged. More formally, let x1 = 1, yi = x2

i , and xi+1 = 2yi for every i ∈ [n].
Let the request set R1 consist of the requests (ui , vi ) described by

ui =
{

0 if i = 1

−∑i
j=2 x j otherwise

and vi =
i∑

j=1

yi

and let R2 consist of requests
(
u′

i , v
′
i

)
with

u′
i = M +

i∑

j=1

yi and v′i =
{

M if i = 1

M −∑i
j=2 x j otherwise

where M denotes a constant large enough that interferences between requests from
R1 and R2 become negligible. Since for all i ∈ [n] holds d(ui , vi ) = d

(
u′

i , v
′
i

)
,

every oblivious power assignment uses the same power pi for request (ui , vi ) and(
u′

i , v
′
i

)
.
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Let T denote the schedule under an arbitrary, fixed oblivious power assignment.
In this schedule there must be a step where at least n/T requests from R1 are sched-
uled. Let M ⊆ [n] denote their indices. Let i, j ∈ M with i < j . The SINR
constraint states

β
pi

d(ui , v j )α
≤ p j

d(u j , v j )α

Using d(ui , v j ) ≤ x j and d(u j , v j ) ≥ y j = x2
j we get

β
pi

xαj
≤ p j

x2α
j

which implies pi ≤ p j/βxαj . With d
(

u′
j , v

′
i

)
≤ 2x j , the interference from

(
u′

j , v
′
j

)
on
(
u′

i , v
′
i

)
is

β
p j

d
(

u′
j , v

′
i

)α ≥ β
p j

(2x j )α
≥ β2 pi

2α
>

pi

d
(
u′

i , v
′
i

)

Thus, for every i �= j , i, j ∈ M , the requests
(
u′

i , v
′
i

)
and

(
u′

j , v
′
j

)
cannot be sched-

uled in the same step. In fact, for every i ∈ M ,
(
u′

i , v
′
i

)
must be assigned to a differ-

ent schedule step. This yields T ≥ |M | and it follows T ≥ √
n = √Ω(log logΔ).

�

2.6 Summary and Open Problems

We have studied the interference scheduling problem with a focus on oblivious
power assignments, i.e., the power for a signal is defined as a function of the path
loss. Examples of such power assignments are the uniform, the linear, and the square
root power assignment. The major advantage of these power assignments is their
simplicity. In particular, they can be computed for every request without taking into
account other requests. In our study we investigated the approximation factors with
respect to the schedule length that can be achieved with oblivious power assign-
ments.

The linear power assignment is of special interest as it is energy efficient in the
sense that signals are sent at a power level that is only a constant factor larger
than the power level needed to drown out ambient noise. In Sect. 2.3, we pre-
sented lower and upper bounds for the linear power assignment from [5]. The key
to both the lower and upper bounds is the measure of interference I . On the one
hand, we have shown that Ω(I ) is a lower bound on the schedule length when
using linear power assignments. On the other hand, we have presented distributed
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scheduling algorithms for the linear power assignment computing schedules of
length O(I log n) and O(I + log2 n), respectively. For dense instances this gives a
constant factor approximation of the optimal schedule for linear power assignment.

Similar results have been achieved recently for the uniform power assignment.
In [6] it is presented an algorithm that achieves a constant factor approximation
guarantee with respect to the number of requests that can be scheduled simul-
taneously. A straight forward extension of this approach yields an approxima-
tion factor of O(log n) with respect to the schedule length for the uniform power
assignment.

How do these results compare to the schedule length for general power assign-
ments? – In Sect. 2.3, we show a lower bound of Ω(I/logΔ log n) for schedules
with general power assignments, where Δ denotes the aspect ratio of the metric.
When restricting to the two-dimensional Euclidean space the bound improves to
Ω(I/logΔ). Thus, the best known scheduling algorithms for the linear and the
uniform power assignments achieve approximation ratios of order logΔpolylogn
in comparison to the optimal power assignment.

In Sect. 2.4, we present an analysis showing that the square root power assign-
ment can achieve significantly better approximation ratio in terms of the aspect ratio
than the linear and the uniform power assignment: For directed communication
requests the approximation ratio of the square root power assignment is of order
O(logΔpolylog n) and for bidirectional requests even of order only O(polylog n).
Both of these ratios compare the schedule length of the square root power assign-
ment with the schedule length for general power assignments. The result for directed
communication requests is from [9] and the result for bidirectional requests was first
shown in [5] and then improved in [9].

Finally, in Sect. 2.5 we study lower bounds for oblivious power assignments.
We show that the dependence on the aspect ratio cannot be avoided for directed
communication requests and present a lower bound of order Ω

(√
log logΔ

)
on the

approximation ratio holding for every oblivious power assignment. In particular,
one cannot achieve approximation factors better than Ω(n) for directed commu-
nication requests with unbounded aspect ratio when restricting to oblivious power
assignments.

We want to conclude with the major open problems about interference schedul-
ing in the physical model: Devise a polynomial time constant factor approximation
algorithm or approximation scheme for the interference scheduling problem with
general power assignments or show that such an approximation is not possible.
Present improved distributed algorithms beating the currently best known approxi-
mation ratios for oblivious power assignments.

References

1. M. Andrews and M. Dinitz. Maximizing capacity in arbitrary wireless networks in the SINR
model: Comple xity and game theory. In Proceedings of the 28th Conference of the IEEE
Communications Society (INFOCOM), Rio de Janeiro, Brazil, 2009.



2 Scheduling and Power Assignments in the Physical Model 57

2. C. Avin, Z. Lotker, and Y. A. Pignolet. On the power of uniform power: Capacity of wireless
networks with bounded resources. In Proceedings of the 17th Annual European Symposium
on Algorithms (ESA), Copenhagen, Denmark, 2009.

3. D. Chafekar, V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. Cross-
layer latency minimization in wireless networks with SINR con. In Proceedings of the 8th
ACM International Symposium Mobile Ad-Hoc Networking and Computing (MOBIHOC),
pages 110–119, Montreal, Quebec, Canada, 2007.

4. D. Chafekar, V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. Approx-
imation algorithms for computing capacity of wireless networks with SINR constraints. In
Proceedings of the 27th Conference of the IEEE Communications Society (INFOCOM), pages
1166–1174, Phoenix, AZ, USA, 2008.

5. A. Fanghänel, T. Kesselheim, H. Räcke, and B. Vöcking. Oblivious interference scheduling.
In Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing
(PODC), Calgary, Alberta, Canada, 2009.

6. O. Goussevskaia, M. M. Halldórsson, R. Wattenhofer, and E. Welzl. Capacity of arbitrary
wireless networks. In Proceedings of the 28th Conference of the IEEE Communications Soci-
ety (INFOCOM), Rio de Janeiro, Brazil, 2009.

7. O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer. Complexity in geometric SINR. In
Proceedings of the 8th ACM International Symposium Mobile Ad-Hoc Networking and Com-
puting (MOBIHOC), pages 100–109, Montreal, Quebec, Canada, 2007.

8. P. Gupta and P. R. Kumar. Critical power for asymptotic connectivity in wireless networks. In
W. M. McEneaney, G. Yin, and Q. Zhang, editors, Stochastic Analysis, Control, Optimization,
and Applications: A Volume in Honor of W. H. Fleming, Systems & Control: Foundations &
Applications, pages 547–566. Birkhäuser, 1998.

9. M. M. Halldórsson. Wireless scheduling with power control. In Proceedings of the 17th
Annual European Symposium on Algorithms (ESA), Copenhagen, Denmark, 2009.

10. M. M. Halldórsson and R. Wattenhofer. Computing Wireless Capacity. In press.
11. V. S. Anil Kumar, M. V. Marathe, S. Thite, H. Balakrishnan, C. L. Barrett. The distance-2

matching problem and its relationship to the MAC-layer capacity of ad hoc wireless networks.
IEEE Journal on Selected Areas in Communications, 22(6):1069–1079, 2004.

12. R. Hekmat and P. Van Mieghem. Interference in wireless multi-hop ad-hoc networks and its
effect on network capacity. Wireless Networks, 10(4):389–399, 2004.

13. S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and approximation algorithms for
channel assignment in radio networks. Wireless Networks, 7(6):575–584, 2001.

14. T. Moscibroda and R. Wattenhofer. The complexity of connectivity in wireless networks. In
Proceedings of the 25th Conference of the IEEE Communications Society (INFOCOM), pages
1–13, Barcelona, Catalunya, Spain, 2006.

15. T. Moscibroda, R. Wattenhofer, and A. Zollinger. Topology control meets SINR: The schedul-
ing complexity of arbitrary topologies. In Proceedings of the 7th ACM International Sym-
posium Mobile Ad-Hoc Networking and Computing (MOBIHOC), pages 310–321, Florence,
Italy, 2006.

16. P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing
integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.

17. S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multi-hop radio networks. ACM
SIGCOMM Computer Communication Review, 22(4):211–222, 1992.

18. S. Singh and C. S. Raghavendra. PAMAS—Power aware multi-access protocol with signalling
for ad hoc networks. ACM SIGCOMM Computer Communication Review, 28(3):5–26, 1998.


	2  Scheduling and Power Assignments in the Physical Model 
	Alexander Fanghänel and Berthold Vöcking
	2.1  Introduction
	2.1.1  Outline

	2.2  Notation and Preliminaries
	2.2.1  Robustness of the Physical Model

	2.3  Scheduling with the Linear Power Assignment
	2.3.1  Measure of Interference and Lower Bounds
	2.3.2  Upper Bounds for the Linear Power Assignment

	2.4  Scheduling with the Square Root Power Assignment
	2.4.1  Scheduling Directed Requests
	2.4.2  Scheduling Bidirectional Requests

	2.5  The Gap of Oblivious Power Schemes
	2.6  Summary and Open Problems
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




