
Chapter 13
Oblivious Routing for Sensor Network
Topologies

Costas Busch, Malik Magdon-Ismail, and Jing Xi

Abstract We present oblivious routing algorithms whose routing paths are con-
structed independent of each other, with no dependence on the routing history.
Oblivious algorithms are inherently adaptive to dynamic packet traffic, exhibit low
congestion, and require low maintenance. All these attributes make oblivious algo-
rithms to be suitable for sensor networks which are characterized by their limited
energy and computational resources. Specifically, low congestion provides load
balancing, and low stretch provides low-energy utilization. We present two sim-
ple oblivious routing algorithms. The first algorithm is for geometric networks in
which nodes are embedded in the Euclidean plane. In this algorithm, a packet path
is constructed by first choosing a random intermediate node in the space between
the source and destination and then the packet is sent to its destination through
the intermediate node. In the second algorithm we study mesh networks, where
the nodes are arranged in a two-dimensional grid. Grids are interesting symmet-
ric topologies which can be used as a testbed for designing efficient new routing
algorithms in sensor networks. The oblivious algorithm in the mesh constructs the
paths by decomposing the network into smaller submeshes in a hierarchical manner.
This algorithm can be extended to d dimensions, which makes it suitable for three-
dimensional sensor network deployments, such as in buildings and tall structures.
We analyze the algorithms in terms of the stretch and congestion of the resulting
paths and demonstrate that they exhibit near optimal performance.

13.1 Introduction

Routing algorithms specify the paths to be followed by packets in a network. A
routing algorithm is oblivious if the path of every packet is given independently of
the paths of the other packets and without considering the history of the previously
routed packets. Oblivious algorithms are by their nature distributed and capable of
solving online routing problems, where packets continuously arrive in the network.

C. Busch (B)
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA
e-mail: busch@csc.lsu.edu

S. Nikoletseas, J.D.P. Rolim (eds.), Theoretical Aspects of Distributed Computing
in Sensor Networks, Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14849-1_13, C© Springer-Verlag Berlin Heidelberg 2011

381

382 C. Busch et al.

Hence, oblivious routing is often preferred to non-oblivious routing, since one does
not need to make assumptions regarding the nature of the traffic.

In wireless and sensor network applications the nodes may have power and com-
puting capability constraints. For example, a sensor node is typically operated with
a battery that has limited energy capacity. To maximize the lifetime of the nodes,
the time until nodes run out of power, it is important to minimize the utilization
of individual nodes. This relates directly to balancing the packet traffic for mini-
mizing the node congestion. With load balancing, the lifetime of a battery operated
sensor network is prolonged, since the time that the first node runs out of energy
is extended. Further, using paths of small stretch (ratio of path length to shortest
path) is also beneficial to the sensor network since small stretch implies low overall
energy utilization.

Oblivious routing algorithms are suitable for balancing the congestion in the net-
work and therefore extending the lifetime of the nodes. They can also provide small
stretch in interesting sensor network deployment scenarios. Oblivious algorithms
are easy to implement in wireless and sensor networks, on account of their sim-
plicity. We present two oblivious routing algorithms which are suitable for wireless
sensor networks. The first algorithm is for geometric networks, while the second is
for mesh networks. Both of these algorithms achieve low congestion and stretch. We
continue with describing each of them.

13.1.1 Geometric Networks

We present the oblivious routing algorithm for geometric networks which was orig-
inally proposed in [7]. In geometric networks, the nodes are placed in the two-
dimensional Euclidian space and we assume that all the nodes are contained in some
geographic area A (Fig. 13.1). Suppose that a packet wants to go from a node s to a
node t in the network. The algorithm is to choose a random intermediate node w in
the space between the s and t , then sends the packet to w, and then sends the packet
from w to its destination (see Fig. 13.3). In order to implement this idea, we assume
that between every pair of nodes there is a dedicated path which we call the default
path. For example, the default path between two nodes u and v could be a shortest
path that connects them. We denote the set of all default paths by Q. The choice of
the default paths affects the performance of our algorithm, and the closer the default
paths are to the geodesics, the lines that connect the respective end points of the
paths, the better the performance of the algorithm.

We analyze the algorithm in terms of stretch and congestion. Consider some set
of paths P produced by the routing algorithm. Denote by stretch(P) the maximum
ratio of a path length to the length of the respective shortest path (the length is
measured in the number of node hops). The node congestion Cnode is the maximum
number of paths that use any node in the network. The edge congestion Cedge is the
maximum number of paths that use any edge in the network. Let C∗

node and C∗
edge

denote the optimal node and edge congestions, which could be obtained by a brute
force search through all possible paths from the sources to the destinations in P.

13 Oblivious Routing for Sensor Network Topologies 383

u

v

q

deviation(q)

A

Fig. 13.1 Example of a geometric network

The stretch and congestion of the paths P produced by our algorithm depend
on the quality of the default paths Q. In particular, provided that the geometric
embedding is “faithful” to the topology of the network (i.e., nodes far apart are
connected with more hops than nodes closer to each other) we obtain:

stretch(P) = O (stretch(Q)) ,

Cnode = O
(

C∗
node · (1 + deviation3(Q)) · log(n + deviation(Q))

)

where n is the number of nodes, and deviation(Q) measures the extent of deviation
of the default paths from geodesics (see Fig. 13.1). We also obtain a corresponding
result for the edge congestion. The congestion results hold with high probability,
while the stretch result is deterministic.

We apply our general result to two particular geometric networks: the two-
dimensional mesh network, and uniformly distributed disk networks. Both of these
kinds of network have geometric embeddings that are faithful to the network topolo-
gies. The mesh network is a two-dimensional grid of nodes (see Fig. 13.2). In disk
networks, each node is connected to any node within a specific disk radius. In the
uniformly distributed disk graphs, each unit square area contains a constant number
of nodes. In these networks, we can choose default paths with constant stretch and
deviation. Therefore, our algorithm gives paths with constant stretch. We obtain
node and edge congestions which are within logarithmic factors of optimal, Cnode =
O
(
C∗

node · log n
)

and Cedge = O
(

C∗
edge · log n

)
, with high probability. Maggs et al.

[21] give a worst case edge congestion lower bound of Ω
(

C∗
edge · log n

)
for any

oblivious routing algorithm in the two-dimensional mesh. Therefore, in addition to

384 C. Busch et al.

Fig. 13.2 The two-dimensional mesh network and a shortest path between two nodes

constant stretch, the congestion we obtain is optimal, within constant factors, for
oblivious algorithms.

13.1.2 Mesh Networks

We continue with an alternative oblivious algorithm for mesh networks. A two-
dimensional mesh with n nodes is simply a

√
n ×√

n grid of nodes (see Fig. 13.2).
The oblivious algorithm for geometric networks that we described above can be
applied to the two-dimensional mesh. However, it cannot be extended to higher
dimensions. Here, we present the oblivious routing algorithm in the mesh which
originally appears in [8]. The algorithm can be used for any d-dimensional mesh
network (d ≥ 2) and it provides near optimal congestion while maintaining a small
stretch.

The benefit of a higher dimensional algorithm is that it can be used in sensor
network deployments in buildings and other tall structures which are not restricted
in the two-dimensional space. Note that the mesh topology has a symmetric topol-
ogy and it may not be directly applicable in real deployment scenarios. However,
the mesh topology exhibits many characteristics which can be found in real sensor
networks (and especially in random uniform area deployment), such as the low node
degree, small ratio of Euclidian to graph distance, and low doubling dimension.
Routing algorithms on the mesh often generalize to other network topologies as
well and typically the mesh is used as an exploration testbed for the design and
analysis of new efficient algorithms.

Given a routing problem (collection of sources and destinations), let C∗ = C∗
edge

denote the optimal edge congestion attainable by any routing algorithm (oblivious
or not). We give an oblivious routing algorithm for the d-dimensional mesh with
n nodes, that achieves congestion O(d · C∗ · log n), and stretch O(d2), For the
d-dimensional mesh with n nodes, Maggs et al. [21] give the lower bound C∗

obl =

13 Oblivious Routing for Sensor Network Topologies 385

Ω
(

C∗
d · log n

)
in the worst case for any oblivious routing algorithm. Considering

the class of oblivious algorithms, our algorithm is within O(d2) of optimal for both
congestion and dilation. For a fixed d, our algorithm is optimal to within constant
factors.

Our algorithm is based upon a hierarchical decomposition of the mesh. Starting
at its source node, a packet constructs its path by randomly selecting intermediate
points in submeshes of increasing size until the current submesh contains the desti-
nation node. Random intermediate points are then selected in submeshes of decreas-
ing size until the destination node is reached. The key new idea we introduce is the
notion of “bridge” submeshes that make it possible to move from a source to a des-
tination more quickly, without increasing the congestion. These bridge submeshes
are instrumental in controlling the stretch, while maintaining low congestion.

13.2 Geometric Networks

13.2.1 Preliminaries on Geometric Networks

Consider a geometric network G with n nodes which is embedded in the Euclidean
plane, R2 (see Fig. 13.1). We assume that G is un-weighted, undirected, connected,
and stationary. Further, its edges are un-weighted, i.e., the communication cost of
every link is 1 regardless of the link’s Euclidian distance. Every node vi has a posi-
tion xi ∈ R2. We will also use the notation x(v) to denote the position of the node
v. The network is defined over some area A. We will also refer to the network itself
as A when the context is clear. Thus, xi ∈ A for all i . For the area A, we define
a coverage radius R(A) of the area as follows (we drop the A dependence when
the context is clear). If, for every point x ∈ A, there is at least one node v that is
located at most a (Euclidean) distance R from x, then R is a coverage radius, i.e.,
from any point in A, one needs to go a distance of at most R to reach some node in
the network.

We define the pseudo-convexity γ (A) of area A as follows. Let x1, x2 ∈ A, and
consider the line 	 joining x1 to x2. Let 	⊥ be a line of equal length to 	 such that
	 and 	⊥ are mutually perpendicular bisectors. Let 	⊥A ⊆ 	⊥ be the intersection
of 	⊥ with A. Denote by

∣∣	⊥A
∣∣ the measure or “length” of 	⊥A. We define the local

pseudo-convexity at x1, x2 as γ (x1, x2) =
∣∣	⊥A
∣∣ /|	⊥|. The pseudo-convexity γ of

A is the infimum over all pairs x1, x2 ∈ A of γ (x1, x1)

γ = ∞x1,x2∈Aγ (x1, x2)

In words, γ is a lower bound on the fraction of the perpendicular bisector 	⊥ that is
guaranteed to be in A. Note that A is convex if γ ≥ 1

2 but that the converse is not
true (consider a very thin rectangle). For any regular convex polygon, or a circle,
γ ≥ 1

2 . For a network embedded in a fixed area A, γ is independent of n, which

386 C. Busch et al.

will have important consequences on the optimality of our path selection algorithm
(provided that γ > 0).

Since the network is embedded in R2, there are two notions of distance between
two nodes u, v that are useful. The first is the Euclidean distance, distE (u, v) which
is the length of the straight line (or geodesic) joining the positions x(u) and x(v).
For two points x, y ∈ R2, || x − y || is the Euclidean distance between them. Thus,
distE (u, v) = || x(u)− x(v) ||. The second useful distance measure is the graph-
theoretic or network distance distG(u, v) which is the length of the shortest path in
G from u to v. For any path p in G, we use |p| to denote the length of the path
(number of edges in the path), and we define the Euclidean path length |p|E to be
the weighted path length, where the weights on the edges are set to the Euclidean
distance between the nodes they connect.

For two nodes u, v, we use the measure distG(u, v)/distE (u, v) to represent how
well the Euclidean distances in the network embedding represent the network dis-
tances. We introduce two parameters α, β to denote lower and upper bounds for this
measure. Thus, for every pair of nodes u, v,

α ≤ distG(u, v)
distE (u, v)

≤ β

Thus, two nodes u, v that are connected by an edge (distG(u, v) = 1) cannot
be separated by more than a distance of 1

α
. Note also that distG(u, v) ≥ 1, so

distE (u, v) ≥ 1
β

. We thus have the following useful lemma.

Lemma 1 For any two nodes, u, v, distE (u, v) ≥ 1
β

. If u and v are adjacent then

distE (u, v) ≤ 1
α

.

Lemma 1 allows us to derive an upper bound on the number of nodes that can be in
a disk.

Lemma 2 Consider a disk of radius r ≥ 1
β

containing M nodes. Then M ≤ c(βr)2,

where c is a constant, c ≤ 1 + π/
(

2π
3 −

√
3

2

)
.

Proof The intuition is that every node accounts for an area of at least π/β2. Since
the total area is πr2, there can be at most πr2/(π/β2) = (βr)2 nodes. The only
complication is that nodes near the boundary do not take up the entire area π/β2, as
part of this area could be outside the disk. Taking this boundary phenomenon into
account gives us the constant c.

To prove the lemma, consider the circle of radius r − 1
β

with M1 nodes and the

remaining ring from r − 1
β

to r with M2 nodes. Since every one of the M1 nodes

defines an area of radius 1
β

that is completely enclosed in the disk, we have M1 ≤
(βr)2. Now consider the ring. The smallest area blocked off by a node occurs when
the node is on the boundary, in which case the area is smallest when r = 1

β
. Some

geometric considerations show that this area blocked off is at least 1
β2

(
2π
3 −

√
3

2

)
,

13 Oblivious Routing for Sensor Network Topologies 387

and since the area of the ring is at most πr2, M2 ≤ (βr)2π/
(

2π
3 −

√
3

2

)
. To con-

clude, note that M ≤ M1 + M2. �
For every pair of nodes u, v, we assume that a default path q(u, v) in G is pro-

vided. For example, the default paths could be the shortest paths connecting the
pairs of nodes. The default paths should actually have certain good properties and
may not be shortest paths. Denote the set of all n(n − 1) default paths by the set Q.
For a given default path q(u, v), we define the stretch of the path, stretch(q), to be
|q(u, v)|/distG(u, v) which is the factor by which q is longer than the shortest path
between u and v.

Consider the infinite line 	 drawn through the points x(u) and x(v). Let z be
any intermediate node in the path q(u, v). The displacement of z from 	 is the
perpendicular (Euclidean) distance from x(z) to 	. The deviation of q(u, v) from
	, denoted deviation(q), is the maximum displacement of any intermediate node z
of q from 	. In other words, deviation(q) measures how closely the path q(u, v)
stays to the straight line (geodesic) from x(u) to x(v).

The stretch factor for the entire set of paths Q is the maximum stretch of any
path in Q and similarly with the deviation of Q. We use Σ to denote the stretch and
Δ to denote the deviation:

ΣQ = stretch(Q) = max
q∈Q

stretch(q)

ΔQ = deviation(Q) = max
q∈Q

deviation(q)

As we will see later in the analysis of our path selection algorithm, if the default
paths have small stretch and deviation, then the path selection performance is closer
to optimal. Thus, it is beneficial to select default paths that make these parameters as
small as possible. We will see later that for a variety of networks they can be made
constants.

13.2.2 Oblivious Routing on Geometric Networks

Here we describe our oblivious routing algorithm. The task of the algorithm is to
provide a path for each packet in the network. It is assumed that each node knows
the default paths that connect it to other nodes in the network. The algorithm is
randomized and we assume that each node has access to a sequence of random
numbers. The path selection algorithm is executed for each packet independently
of every other packet, so the algorithm is oblivious, and thus distributed and online.
Algorithm 1 is the detailed algorithm for a particular packet. The algorithm is similar
for any other packet. Figure 13.3 graphically illustrates the algorithm.

In the analysis of the algorithm, we consider a set of N packets Π which we will
refer to with their sources and destinations, Π = {si , ti }N

i=1. The result of applying
the algorithm to each packet is a set of paths P = {pi }N

i=1, where each path pi ∈ P
is from the source node si to the destination node ti . We define the stretch for a path

388 C. Busch et al.

⊥

Rw

A

⊥
A

s

q(s,w)

t

q(w, t)

y

Fig. 13.3 Path selection with oblivious routing algorithm for geometric networks

Algorithm 1 Oblivious Routing for Geometric Networks
Input: A graph G embedded in an area A with default paths Q; and a packet π with source s and

destination t ;
Output: A path p(s, t) from s to t ;
1: Let 	 be the geodesic line segment that connects x(s) and x(t). Let 	⊥ be the perpendicular

bisector of 	 which has the same length as 	 and is also bisected by 	. Let 	⊥A be the part of 	⊥
inside A;

2: Choose a point y randomly and uniformly on 	⊥A;
3: Find a node w close to y within coverage radius R;
4: The path p(s, t) from s to t is formed by concatenating the default paths q(s, w) and q(w, t):

p(s, t) = q(s, w)q(w, t);

p ∈ P as well as the stretch factor for the entire set P as we did in Sect. 13.2.1 with
the default paths Q. We define D∗ as the maximum shortest path length between
any pair of sources and destinations inΠ , namely, D∗ = maxi distG(si , ti). We first
analyze the stretch of paths P and then we continue with the node congestion and
edge congestion.

13.2.2.1 Stretch Analysis

We now give a bound on stretch(P), the stretch factor of the paths selected.

Theorem 1 stretch(P) ≤
√

2β
α

·ΣQ ·
(

1 +√
2Rα

)
.

Proof We will refer to Fig. 13.3 in our proof. By construction,
√

2|| x(s)− y || ≤
|| x(s)− x(t) ||, and || x(s)− y || = || x(t)− y ||. Since || x(w)− y || ≤ R, by the tri-
angle inequality, we have that

|| x(s)− x(w) || ≤ || x(s)− y || + || x(w)− y ||
≤ 1√

2
|| x(s)− x(t) || + R

13 Oblivious Routing for Sensor Network Topologies 389

Similarly,

|| x(t)− x(w) || ≤ 1√
2
|| x(s)− x(t) || + R

From the definition of ΣQ , the stretch factor of the default paths, we have

|q(s, w)| ≤ ΣQ · distG(s, w)

≤ β ·ΣQ · distE (s, w)

and similarly

|q(w, t)| ≤ β ·ΣQ · distE (w, t)

We thus conclude that

|p(s, t)| = |q(s, w)| + |q(w, t)|
≤ β ·ΣQ · (|| x(s)− x(w) || + || x(t)− x(w) ||)
≤ β ·ΣQ ·

(√
2|| x(s)− x(t) || + 2R

)

Since || x(s)− x(t) || ≤ 1
α

distG(s, t), and distG(s, t) ≥ 1, we obtain the theorem.
Typically R, α, β are constants, in which case stretch(P) = O(stretch(Q)),

i.e., the stretch factor of the algorithm is determined by the quality of the default
paths.

13.2.2.2 Node Congestion Analysis

We now turn to the node congestion. We will get a bound on the expected congestion
for any particular node with respect to the optimal congestion. We will then use a
Chernoff bounding argument to obtain a high probability result.

To bound the expected node congestion for a particular node v, we need to under-
stand the probability that a particular packet might use the node. Thus consider a
particular packet π , with source s and destination t , which uses intermediate node
w. Phase I of the path p(s, t) corresponds to the first part q(s, w), while phase II to
the second part q(w, t). Suppose that the packet uses v in phase I of its path (we will
bound the probability that π uses v in phase I of its path, a similar argument applies
to phase II of the path). Let r denote || x(v)− x(s) ||. The situation is illustrated in
Fig. 13.4. A circle of radius ΔQ is drawn around v. We give an upper bound on the
probability that π uses node v in the following lemma.

Lemma 3 Suppose that packet π has source s and destination t. Let PI be the prob-
ability that π uses node v in phase I of its path and PI I be the probability that π
uses node v in phase II of its path. Then,

390 C. Busch et al.

r

φ

θ

⊥

v

ΔQ

R

R

s

Fig. 13.4 Probability of using a node v

PI ≤ 5

γ

(
R

|| x(s)− x(t) || +
ΔQ

|| x(s)− x(v) ||
)

PI I ≤ 5

γ

(
R

|| x(s)− x(t) || +
ΔQ

|| x(t)− x(v) ||
)

Proof Consider the shaded cone subtended by the source s, tangent to the circle
of radius ΔQ centered on v. Since the deviation of the default paths is ΔQ , the
intermediate node must lie within the shaded cone if the path q(s, w) is to pass
through v. If the intermediate node is in the cone, the random intermediate point y
must lie either in the cone or in one of the two shaded strips of thickness R around
the cone. Since y must also be on 	⊥, y must lie on the line segment illustrated by
the thick line of length ε illustrated in Fig. 13.4. The probability of using v is then
bounded by ε/

∣∣	⊥A
∣∣. We use the definitions of θ, φ as shown in Fig. 13.4. Using

some elementary geometry, we find that

ε = R ·
(

1

cos(θ)
+ 1

cos(θ + φ)

)
+ 1

2
|	| · (tan(θ + φ)− tan(θ))

We observe that ε is largest when θ ≤ π
4 and θ + φ ≤ π

4 , so using some trigono-
metric identities we get

ε ≤ 2
√

2R + |	|
2

· tanφ(1 + tan2 θ)

1 − tan θ tanφ

≤ 2
√

2R + |	| · tanφ

1 − tanφ

where the last line follows because tan θ < 1. Since
∣∣	⊥A
∣∣ ≥ γ |	⊥| = γ |	|, we get

that the probability of using v is at most

13 Oblivious Routing for Sensor Network Topologies 391

Prob ≤ 2
√

2
R

γ |	| +
1

γ

tanφ

1 − tanφ
(a)≤ 2

√
2

R

γ |	| +
2 tanφ

γ

(b)= 2
√

2
R

γ |	| +
4

γ

tan φ
2

1 − tan2 φ
2

(c)≤ 2
√

2
R

γ |	| +
64 tan φ

2

15γ
(d)= 2

√
2

R

γ |	| +
64

15γ

ΔQ/r
√

1 −Δ2
Q/r2

(e)≤ 5

γ

(
R

|	| +
ΔQ

r

)

Inequality (a) follows because when tanφ ≤ 1
2 , tanφ/(1 − tanφ) ≤ 2 tanφ, and

when tanφ > 1
2 , 2 tanφ > 1, in which case it is a trivially valid upper bound for

the probability; (b) follows by using a double angle identity; (c) follows by a similar
argument that leads to (a) by considering separately tan φ

2 ≤ 1
4 and tan φ

2 > 1
4 ; (d)

follows because from Fig. 13.4, we see that tan φ
2 = ΔQ/

√
r2 −Δ2

Q ; and finally,

(e) follows using 2
√

2 < 5 and by considering separately the cases ΔQ/r ≤ 1
5 and

ΔQ/r > 1
5 (similar with (a) and (c)).

To conclude, note that by symmetry, the situation is exactly reversed if the packet
uses v in phase II of its path, except that now r will be the distance from v to the
destination t . �

In order to bound the congestion on node v, we need to bound the number of
packets that can cross v and then using Lemma 3 we will be able to bound the
expected congestion on v. We first compute how far the packets that cross v have
their sources or destinations from v, this will help to bound the number of those
packets. Let X I denote the packets that could possibly use v during phase I of their
path and similarly X I I . Consider only the packets in X I . Let SI = {sk} denote the
sources of all the packets in X I . Let rmax be the maximum (Euclidean) distance
from the positions of these sources to x(v), thus, rmax = maxs∈SI || x(s)− x(v) ||.
We have the following result (a similar result holds for the destinations).

Lemma 4 rmax ≤ D∗√
2α

+ R +ΔQ .

Proof Let s be a source that could possibly use v in phase I and let t be
the corresponding destination. Let w be a possible intermediate node. Then
|| x(s)− x(w) || ≤ 1√

2
|| x(s)− x(t) || + R. Since the path cannot deviate by more

thanΔQ from the line joining x(s) to x(w), and the path passes through v, it follows
that

392 C. Busch et al.

|| x(v)− x(s) || ≤ || x(s)− x(w) || +ΔQ

≤ 1√
2
|| x(s)− x(t) || + R +ΔQ

To conclude, note that || x(s)− x(t) || ≤ 1
α

distG(s, t) and distG(s, t) ≤ D∗. �

In order to bound the congestion on v, we will divide the area around v into
concentric rings with maximum radius rmax. We will then bound the number of
packets that originate in each ring and use v. The number of packets from each ring
will be used to bound the expected congestion caused by each ring. The sum of the
expected congestions from the rings will determine the total congestion on node v.

Consider concentric rings A0, A1, A2, . . . of exponentially increasing radius,
centered at x(v). Ring Ai has radius ri = 2i/β, for i ≥ 0. Let imax = �log(rmaxβ)�
(logarithms are base 2). Note that all the sources in SI are contained in Aimax . For
i > 0, we collect in set SI

i all the sources which are in ring Ai , but not in Ai−1 (that
is, they are in the area between Ai−1 and Ai). Figure 13.5 illustrates the situation.
Consider a particular i and the packets X I

i with sources in SI
i . Let Ni = ∣∣X I

i

∣∣ be
the number of packets with sources in SI

i . In order to obtain an upper bound on the
expected congestion at v, we will need to bound Ni in terms of the optimal node
congestion C∗

node.

Lemma 5 For any i ≥ 0 :

C∗
node ≥

αhi Ni

4c(βri)2

where,

v

Ai−1

Ai

w
A0

A1

s

t

Si
I

Fig. 13.5 Expected congestion at a node v

13 Oblivious Routing for Sensor Network Topologies 393

hi = max

{
1

β
,
√

2(ri−1 − R −ΔQ)

}

Proof As in the proof of Lemma 4, || x(s)− x(v) || ≤ |	|√
2
+ R + ΔQ, and since

|| x(s)− x(v) || ≥ ri−1, we get

|	| ≥ √
2(ri−1 − R −ΔQ)

From Lemma 1, |	| ≥ 1
β

, therefore |	| ≥ hi . Furthermore, from the definition of
α and Lemma 1, we have that the minimum number of hops from s to t is at least
α|	| ≥ αhi , and each of these hops moves a distance of at most 1

α
. So, for Ni such

paths, any path selection algorithm will have to use at least αhi hops per path, within
a disk of radius

r = ri + hi ≤ ri + 2ri−1 ≤ 2ri

By Lemma 2, there are at most 4c(βri)
2 nodes within this disk of radius r . The

minimum total number of times these nodes are used by any path selection algorithm
is αhi Ni . Thus, the average number of times Tavg a node is used in radius r is at least

Tavg ≥ αhi Ni

4c(βri)2

where c is the constant defined in Lemma 2. Since one of these nodes has to be used
at least Tavg times, we obtain a lower bound on the congestion for any path selection
algorithm, and hence for the optimal congestion C∗

node ≥ Tavg. �

Note that inverting the bound in Lemma 5, we get an upper bound for Ni , when
i ≥ 1:

Ni ≤ 4c(βri)
2C∗

node

αhi
(13.1)

Note that for i = 0 it holds trivially that N0 ≤ 0, since no node except for v can be
in ring A0 (a consequence of Lemma 1). The upper bound for Ni together with the
upper bound for the probability that any of these packets uses node v (Lemma 3)
allows us to bound the expected congestion.

Theorem 2 The expected congestion on node v is

E[C(v)] ≤ f (γ, α, β, R,ΔQ, D∗) · C∗
node

where,

394 C. Busch et al.

f (γ, α, β, R,ΔQ, D∗) =
40cβ2(R + 2ΔQ)

γ α
· ((3 + 4β(R +ΔQ))

2

+4 log

(
βD∗
√

2α
+ β(R +ΔQ)

)
+ 1

)
.

Proof Let Probv(π) be the probability that packet π ∈ X I
i uses node v. Then packet

π ’s contribution to the expected node congestion at v is Probv(π). Using Lemma 3,
we can bound Probv(π) by PI . Then, Ni PI is an upper bound for the contribution
to the expected node congestion at v due to the packets in X I

i . Since every source
in SI

i is distanced at least ri−1 from node v, from Lemma 3 and using 13.1, and the
fact that ri ≥ hi , we obtain for i ≥ 1:

∑

π∈X I
i

Probv(π) ≤ Ni PI

≤ 20c(βri)
2C∗

node

γαhi

(
R

hi
+ ΔQ

ri−1

)

= 20cβ2C∗
node

γα

(

R
r2

i

h2
i

+ 2ΔQ
ri

hi

)

≤ 20cβ2(R + 2ΔQ)C∗
node

γα
· r2

i

h2
i

The expected node congestion at v is obtained by summing the contributions due to
each set X I

i for i = 1, . . . , imax. Thus,

E[C(v)] ≤ 20cβ2(R + 2ΔQ)C∗
node

γα

imax∑

i=1

r2
i

h2
i

Consider now the ratio hi/ri . We have

hi

ri
=

max
{

1
β
,
√

2(ri−1 − R −ΔQ)
}

ri

= max

{
1

2i
,
√

2

(
1

2
− β(R +ΔQ)

2i

)}

Let

i∗ =
⌈

log
(√

2 + 4β(R +ΔQ)
)⌉
.

13 Oblivious Routing for Sensor Network Topologies 395

Then for i ≥ i∗, it holds hi
ri

≥
√

2
4 or equivalently ri

hi
≤ 23/4 < 2. For 1 ≤ i < i∗,

we have that hi
ri

≥ 1
2i , or in other words, ri

hi
≤ 2i . Since imax = �log(rmaxβ)�, using

the bound in Lemma 4, we get

imax∑

i=1

r2
i

h2
i

=
i∗−1∑

i=1

r2
i

h2
i

+
imax∑

i=i∗

r2
i

h2
i

≤
i∗−1∑

i=1

4i +
imax∑

i=i∗
4

≤ (2i∗)2 + 4imax

≤ (3 + 4β(R +ΔQ))
2

+4 log

(
βD∗
√

2α
+ β(R +ΔQ)

)
+ 1

A symmetrical argument applies to the second phase of the paths, which contributes
an additional factor of 2, concluding the proof. �

Note that without increasing the expected congestion, we can always remove any
cycles in a path, so without loss of generality, we will assume that the paths are
acyclic. We now obtain a concentrated result on the congestion using a straightfor-
ward Chernoff bounding argument and the fact that every packet selects its path
independently of every other packet. To simplify the presentation, we give the result
for constant γ, α, β, R in which case Theorem 2 gives

E[C(v)] = O
(

C∗
node ·

(
Δ3

Q + (1 +ΔQ) log(D∗ +ΔQ)
))

The general case can be handled similarly. We have the following theorem.

Theorem 3 When γ, α, β, R are constants, the node congestion is

Cnode = O
(

C∗
node ·

(
1 +Δ3

Q

)
· log(n +ΔQ)

)

with high probability.

Proof Let Xi = 1 if path p(si , ti) uses node v, and Xi = 0 otherwise. Then, by
Theorem 2, there is a constant A such that

396 C. Busch et al.

E[C(v)] = E

[
∑

i

Xi

]

≤ A · C∗
node

·
(
Δ3

Q + (1 +ΔQ) log(D∗ +ΔQ)
)

≤ A · C∗
node

·
(
Δ3

Q log n + (1 +ΔQ) log(n(D∗ +ΔQ))
)

:= B.

Let κ > 2e. Since
∑

i Xi is a sum of independent Bernoulli trials, by applying a
Chernoff bound [23] we obtain

P[C(v) > κB] < 2−κB ≤ 1/nκA

where we used the facts that C∗
node, D∗ ≥ 1 and ΔQ ≥ 0. Taking a union bound

over the n nodes multiplies by an additional n, reducing the exponent on the right
to κA − 1. Choosing a large enough κ , and noting that D∗ = O(n), we obtain the
theorem. �

13.2.2.3 Edge Congestion Analysis

For the edge congestion, the proof is similar to the node congestion. In order to carry
through the same analysis, we need an upper bound on the number of edges in the
area, so we can get a lower bound on the average edge congestion. If the maximum
degree (maximum number of edges adjacent per node) in the network is δ, then the
maximum number of edges is at most a factor of δ times the maximum number of
nodes. Therefore, the result is that the optimal edge congestion is at most a factor
of δ smaller than the optimal node congestion, giving the following theorem for the
expected edge congestion,

Theorem 4 Let δ be the maximum node degree. The expected congestion on an edge
e is

E[C(e)] ≤ δ · f (γ, α, β, R,ΔQ, D∗) · C∗
edge

A concentrated result can also be obtained for the edge congestion.

Theorem 5 When γ, α, β, R are constants, the edge congestion is

Cedge = O
(
δ · C∗

edge ·
(

1 +Δ3
Q

)
· log(n +ΔQ)

)

with high probability.

13 Oblivious Routing for Sensor Network Topologies 397

13.2.3 Applications of Geometric Networks

The oblivious algorithm for geometric networks has applications in the two-
dimensional mesh and also in uniformly distributed unit disk graphs. The two-
dimensional mesh is an

√
n × √

n grid of nodes, where each node is connected
with at most four adjacent neighbors (see Fig. 13.2). The nodes are placed at a unit
distance from each other, and thus R = 1/

√
2. The rectangular area A is a square

defined by the border nodes of the mesh so the pseudo-convexity γ = 1/2. For the
default path between a pair of nodes, we choose the shortest path that connects the
nodes which is closest to the geodesic and therefore deviation(Q) ≤ 1/

√
2. Since

the default paths are shortest paths, stretch(Q) = 1. Since adjacent nodes cannot
be further than a unit distance, we have that α = 1. Moreover, the number of nodes
used per unit distance in the shortest path is maximized when the geodesic between
the nodes is 45◦, which gives β = √

2. Since the maximum node degree is 4, using
Theorems 1, 3, and 5, we obtain

Theorem 6 The oblivious algorithm on the mesh has stretch(P) < 2
√

2 and node

congestion O
(
C∗

node · log n
)

and edge congestion O
(

C∗
edge · log n

)
with high prob-

ability.

We consider uniform disk graphs with n nodes distributed in an s1 × s2 rectangle
area A, with constant pseudo-convexity γ = min{s1, s2}/2 max{s1, s2} (i.e., the
sides are proportional to each other). In a disk graph, each node has a constant radius
r and is connected to any node within this radius (see Fig. 13.6). We set the radius
r = 2

√
2 and assume that no two nodes are placed within a constant distance l of

each other. We consider a uniform distribution for the nodes in the area, i.e., the area
is divided into non-overlapping unit squares, and every unit square area contains a

number of nodes between 1 and k = O
(

1
l2

)
nodes, where k is a constant. By

the choice of r , two nodes within the same square or in adjacent squares will be
connected. Thus, R ≤ √

2, and since there are at most 32 squares containing nodes
which could possibly be adjacent to a particular node, the maximum node degree is
bounded by δ ≤ 32k.

We now explain how to construct the default paths (see Fig. 13.6). Consider
two nodes u and v in area A and construct the line 	 that connects x(u) to x(v).
This line passes through a collection of unit squares, forming a path with adjacent
unit squares. We pick one node from each square and construct the default path by
connecting these nodes. Since for every node in the path, the line passes through the
corresponding unit square containing the node, deviation(Q) ≤ √

2. The number
of unit squares in the formation of the default path is no more than 2|	|, so the
longest default path consists of at most 2|	| nodes. The shortest path has to use at
least |	|/r nodes; therefore, stretch(Q) ≤ 2r . Since distG(u, v) ≥ distE (u, v)/r ,
α ≥ 1/r . If distG(u, v) = 1, distE (u, v) ≥ l, so distG(u, v)/distE (u, v) ≤ 1

l . More
generally, we know that distG(u, v) ≤ 2|	| since the default path has 2|	| hops, so
the shortest path cannot have more. Thus, distG(u, v)/distE (u, v) ≤ max{2, 1/ l},
so β ≤ max{2, 1/ l}. Applying Theorems 1, 3, and 5, we obtain

398 C. Busch et al.

r

v

u

Fig. 13.6 Connectivity of a disk graph and default path construction

Theorem 7 On uniform disk graphs, the oblivious routing algorithm has
stretch(P) = O(1) and node congestion O

(
C∗

node · log n
)

and edge congestion

O
(

C∗
edge · log n

)
with a high probability.

13.3 Mesh Networks

13.3.1 Preliminaries on Mesh Networks

The d-dimensional mesh M is a d-dimensional grid of nodes with side length mi

in dimension i . There is a link connecting a node with each of its 2d neighbors
(except for the nodes at the boundaries of the mesh). We denote by n the size of
M , n = size(M) = ∏d

i=1 mi , and by |E | the number of edges in the network.
Each node has a coordinate. For example, in the two-dimensional mesh, the top-left
node has coordinate (0, 0). We refer to specific submeshes by giving its end points
in every dimension, for example, [0, 3][2, 5] refers to a 4 × 4 submesh, with the x
coordinate ranging from 0 to 3 and the y coordinate from 2 to 5.

The input for the path selection problem is a set of N sources and destinations
(i.e., packets), Π = {si , ti }N

i=1 and the mesh M . The output is a set of paths,
P = {pi }, where each path pi ∈ P is from node si to node ti . The length of
path p, denoted |p|, is the number of edges it uses. We denote the length of the
shortest path from s to t by dist(s, t). We will denote by D∗ the maximum short-
est distance, maxi dist(si , ti). The stretch of a path pi , denoted stretch(pi), is the
ratio of the path length to the shortest path length between its source and destina-
tion, stretch(pi) = |pi |/dist(si , ti). The stretch factor for the collection of paths
P , denoted stretch(P), is the maximum stretch of any path in P , stretch(P) =
maxi stretch(pi).

For a submesh M ′ ⊆ M , let out(M ′) denote the number of edges at the boundary
of M ′, which connect nodes in M ′ with nodes outside M ′. For any routing prob-

13 Oblivious Routing for Sensor Network Topologies 399

lem Π , we define the boundary congestion as follows. Consider some submesh
of the network M ′. Let Π ′ denote the packets (pairs of sources and destinations)
in Π which have either their source or their destination in M ′, but not both. All
the packets in Π ′ will cross the boundary of M ′. The paths of these packets will
cause congestion at least |Π ′|/out(M ′) times. We define the boundary congestion
of M ′ to be B(M ′,Π) = |Π ′|/out(M ′). For the routing problem Π , the bound-
ary congestion B is the maximum boundary congestion over all its submeshes, i.e.,
B = maxM ′⊆M B(M ′,Π). Clearly, C∗ ≥ B.

13.3.2 Oblivious Routing on Two-Dimensional Mesh Networks

Here we show how to select the paths in a two-dimensional mesh with equal side
lengths m = 2k, k ≥ 0. We consider this case here for expository ease, however,
the result generalizes to the case of unequal side lengths which are not necessarily
powers of 2. We use the two-dimensional case to illustrate the main ideas, before
generalizing to the d-dimensional case in the next section. The path selection algo-
rithm relies on a decomposition of the mesh to submeshes, and then constructing an
access graph, as we describe next.

13.3.2.1 Decomposition to Submeshes

We decompose the mesh M into two types of submeshes, type-1 and type-2, as
follows:

• Type-1 submeshes: We define the type-1 submeshes recursively. There are k + 1
levels of type-1 submeshes, 	 = 0, . . . , k. The mesh M itself is the only level
0 submesh. Every submesh at level 	 can be partitioned into four submeshes by
dividing each side by 2. Each resulting submesh is a type-1 submesh at level
	+ 1. This construction is illustrated in Fig. 13.7. In general, at level 	 there are
22	 submeshes each with side m	 = 2k−	. Note that the level k submeshes are
the individual nodes of the mesh.

• Type-2 submeshes: There are k−1 levels of type-2 submeshes, 	 = 1, . . . , k − 1.
The type-2 submeshes at level 	 are obtained by first extending the grid of type-1
meshes by adding one layer of type-1 meshes along every dimension. The result-
ing grid is then translated by the vector −(m	/2,m	/2). In this enlarged and
translated grid, some of the resulting translated submeshes are entirely within M .
These are the internal type-2 submeshes. For the remaining external type-2
submeshes, we keep only their intersection with M , except that we discard all
the “corner” submeshes, because they will be included in the type-1 submeshes
at the next level. Notice that all the type-2 submeshes have at least one side with
a length of m	 nodes. Fig. 13.7 illustrates the construction.

A submesh of M is regular if it is either type-1 or type-2. Unless otherwise
stated, a submesh will always refer to regular submeshes. The following lemma
follows from the construction of the regular submeshes.

400 C. Busch et al.

Level 1, Level 1, Level 2, Level 2,
type 1. type 2. type 1. type 2.

Fig. 13.7 Mesh decomposition for the 23 × 23 mesh. Arrows indicate the parents of a submesh

Lemma 6 The mesh decomposition satisfies the following properties:

(1) The type-1 submeshes at a given level are disjoint, as are the type-2
submeshes.

(2) Every regular submesh at level 	 can be partitioned into type-1 submeshes at
level 	+ 1.

(3) Every regular submesh at level 	 + 1 is completely contained in a submesh at
level 	 of either type-1 or type-2, or both.

13.3.2.2 Access Graph

The access graph G(M), for the mesh M , is a leveled graph with k + 1 levels of
nodes, 	 = 0, . . . , k. The nodes in the access graph correspond to the distinct regular
submeshes. Specifically, every level-	 submesh (type-1 or type-2) corresponds to a
level 	 node in G(M). Edges exist only between adjacent levels of the graph. Let u	,
u	+1 be level 	 and 	+1 nodes of G(M), respectively. The edge (u	, u	+1) exists if
the regular submesh corresponding to u	 completely contains the regular submesh
corresponding to u	+1. We borrow some terminology from trees. We say that u	 is
a parent of u	+1 in G(M); the parent relationship is illustrated in Fig. 13.7, for the
corresponding submeshes. Note that the access graph is not necessarily a tree, since
a node can have two parents (a consequence of Lemma 6, part (3)). The depth of
a node is the same as its level 	, and its height is k − 	. Nodes at height 0 have
no children and are referred to as leaves. The leaves in G(M) correspond to single
nodes in the mesh. There is a unique root at level 0, which corresponds to the whole
mesh M .

Let p = (u1, u2, . . . , uk) be a path in G(M). We say that p is monotonic if every
node is of increasing level (i.e., the level of ui is higher than the level of ui+1), and
the respective submeshes of nodes u2, . . . , uk are all of type-1. If p is monotonic,
then we say that u1 is an ancestor of uk . We will use a function g to map nodes in the
access graph to submeshes. Let u be a node in the access graph with a corresponding
submesh M ′. We define the function g so that g(u) = M ′. Denote by g−1 the inverse
of function g, that is, g−1(M ′) = u. Using induction on the height of G(M) and
part (2) of Lemma 6, we obtain the following lemma:

13 Oblivious Routing for Sensor Network Topologies 401

Lemma 7 Let v be any node (1 × 1 submesh) of a regular submesh M ′ ⊆ M, then
g−1(M ′) is an ancestor of g−1(v).

Let u and v be two leaves of G(M) and let A be their (not necessarily unique)
deepest common ancestor; note that A exists and in the worst case is g−1(M) (a
consequence of Lemma 7). Let p = (u, . . . , A, . . . , v), be the concatenation of two
monotonic paths, one from A to u and the other from A to v. We will refer to p as the
bitonic path between u and v. Submesh g(A) may be type-1 or type-2, all the other
submeshes in p are of type-1. We will refer to g(A) as a “bridge” submesh, since
it provides the connecting point between two monotonic paths. Note that type-2
submeshes can be used as bridges between type-1 submeshes, when constructing
bitonic paths between leaves. Further, only one type-2 submesh is ever needed in a
bitonic path. These access graph paths will be used by the path selection algorithm.
Suppose that height (A) = h A. The length of a bitonic path from u to v is 2h A. We
now show that h A cannot be too large. This will be important in proving that the
path selection algorithm gives constant stretch.

Lemma 8 The deepest common ancestor of two leaves u and v has a height of at
most �log dist(g(u), g(v))�+2.

Proof Let s, t ∈ M such that s = g(u) and t = g(v). We show that there is a
common ancestor with height at most �log dist(s, t)�+2.

Assume, first, that instead of a mesh, the network is a torus (the same result holds
for the mesh, with a minor technical detail in the proof due to edge effects, which
we will discuss later). In this case, all type-2 meshes are of the same size. We obtain
the regular submeshes in the original mesh after truncation of the submeshes at the
borders of the torus. Note that all distances, however, are measured on the mesh.

Let μ = 2�log dist(s,t)� ≥ dist(s, t). If 4μ ≥ 2k , then the root, g−1(M), is a
common ancestor with, at most, a height of �log dist(s, t)�+2, so assume that 4μ <

2k . Node s is contained in some type-1 submesh of side length 4μ. Without loss of
generality (since we are on a torus), assume that this submesh is M1 = [0, 4μ−1]2.
If M1 also contains t , then we are done, since by Lemma 7, g−1(M1) is a common
ancestor at height �log dist(s, t)�+2. So suppose that t is contained in some other
(adjacent) type-1 submesh M2. There are two possibilities for M2.

1. M1 and M2 are diagonally adjacent, so without loss of generality, let M2 =
[4μ, 8μ − 1][4μ, 8μ − 1]. Since dist(s, t) ≤ μ, s ∈ [3μ, 4μ − 1]2 and t ∈
[4μ, 5μ− 1]2, and so the type-2 submesh [2μ, 6μ− 1]2 contains both s and t .

2. M2 is laterally adjacent to M1, so, without loss of generality, let M2 be to the
right of M1, i.e., M2 = [0, 4μ − 1][4μ, 8μ − 1]. In this case, s must be in the
right half of M1 and t in the left half of M2, i.e., s ∈ [0, 4μ−1][3μ, 4μ−1] and
t ∈ [0, 4μ− 1][4μ, 5μ− 1]. There are four cases:

a. s ∈ [0, 2μ− 1][3μ, 4μ− 1] and t ∈ [0, 2μ− 1][4μ, 5μ− 1], in which case
the type-2 submesh [−2μ, 2μ− 1][2μ, 6μ− 1] contains s, t ;

b. s ∈ [2μ, 4μ − 1][3μ, 4μ − 1] and t ∈ [2μ, 4μ − 1][4μ, 5μ − 1], in which
case the type-2 submesh [2μ, 6μ− 1]2 contains s, t ;

402 C. Busch et al.

c. s ∈ [μ, 2μ − 1][3μ, 4μ − 1] and t ∈ [2μ, 3μ − 1][4μ, 5μ − 1], in which
case the type-2 submesh [μ, 3μ−1][3μ, 5μ−1] at height �log dist(s, t)�+1
contains s, t ;

d. s ∈ [2μ, 3μ − 1][3μ, 4μ − 1] and t ∈ [μ, 2μ − 1][4μ, 5μ − 1], which is
similar to (c).

In all cases, s and t are contained in a submesh of a height of at most
�log dist(s, t)�+2.

To complete the argument, we now suppose that the network is a mesh (instead of
a torus). If the ancestor submesh constructed in the torus is also a regular submesh
in the mesh, then there is nothing to prove. So, assume that the ancestor constructed
in the torus is not a regular submesh of the mesh. In particular, the ancestor con-
structed on the torus must be composed of two type-2 submeshes, on opposite sides
of the mesh. If s, t are both contained in one of these submeshes, then they are
both contained in a type-2 submesh of a height of at most �log dist(s, t)�+2. The
only remaining case is that s is in one of these submeshes and t is in the other. In
this case, dist(s, t) ≥ 2k−1, and since μ ≥ dist(s, t), we have that μ ≥ 2k−1, or
that 4μ ≥ 2k+1 which contradicts the assumption that 4μ < 2k , concluding the
proof. �

Algorithm 2 Oblivious Routing for two-Dimensional Mesh Networks
Input: Source s and destination t in the mesh M ;
Output: Path p(s, t) from s to t in M ;
1: Let (u0, . . . , ul) denote a bitonic path in G(M) from g−1(s) to g−1(t);
2: for i = 0 to l do
3: Select a node vi in g(ui) uniformly at random; //v0 = s and vl = t
4: if 1 ≤ i ≤ l then
5: Construct subpath ri from vi−1 to vi by picking a dimension by dimension shortest path1

(an at most one-bend path), according to a random ordering of the dimensions;
6: end if
7: end for
8: The path p(s, t) is obtained by concatenating the subpaths ri , p(s, t) = r0r1 · · · rl−1;

13.3.2.3 Path Selection

Given the access graph, the procedure to determine a path from a given source s to
a destination t is summarized in Algorithm 2. Note that the algorithm is oblivious
and local, since each source–destination pair can obtain a path independently of the
other paths. We will now show that our algorithm with the generalized access graph,
in addition to obtaining optimal congestion, also controls the stretch. First we show
the constant stretch property of the selected paths.

Theorem 8 For any two distinct nodes s, t , stretch(p(s, t)) ≤ 64.

Proof Let h be the height of the deepest common ancestor of s and t . Then p(s, t)
is the concatenation of paths constructed from the dimension by dimension paths
in meshes of sides 21, . . . , 2h−1, 2h, 2h−1, . . . , 21. A path in a mesh of side 	 has
length of at most 2	 − 1, so by adding the lengths of these paths, we have that

13 Oblivious Routing for Sensor Network Topologies 403

|p(s, t)| ≤ 2(21 + · · · + 2h + 2h + · · · + 21 − 2h) which implies that |p(s, t)| ≤
2h+3 − 4h. Since s and t are distinct, h ≥ 1. By Lemma 8, h ≤ log dist(s, t) + 3,
and the theorem follows. �

We now relate the congestion of the paths selected to the optimal congestion C∗.
Let e denote an edge in M . Let C(e) denote the load on e, i.e., the number of times
that edge e is used by the paths of all the packets. We will get an upper bound on
E[C(e)], and then, using a Chernoff bound, we will obtain a concentrated result.

We start by bounding the probability that some particular subpath formed by the
path selection algorithm uses edge e. Consider the formation of a subpath ri from
a submesh M1 to a submesh M2, such that M2 completely contains M1, and e is a
member of M2. According to the path selection algorithm, mesh M1 is of type-1,
thus all of its sides are equal to m	, where 	 is the level of M1. We show the following
lemma.

Lemma 9 Subpath ri uses edge e with probability at most 2/m	.

Proof For subpath ri , let v1 be the starting node in M1 and v2 the ending node
in M2. Suppose e = (v3, v4). Without loss of generality, suppose e is vertical. Since
the subpath is a one-bend path, edge e can be used only when either v1 or v2 have
the same x coordinate as e. This event occurs at a probability of at most 2/m	. �

Let P ′ be the set of paths that go from M1 to M2 or vice versa. Let C ′(e) denote
the congestion that the packets P ′ cause on e. We show

Lemma 10 E[C ′(e)] ≤ 2|P ′|/m	.

Proof We can write P ′ = P1 ∪ P2, where P1 is the set of subpaths from M1 to
M2 and P2 is the subpaths from M2 to M1. Then, from Lemma 9, the expected
congestion on edge e due to the subpaths in P1 is bounded by 2|P1|/m	. Using a
similar analysis, the expected congestion on e due to subpaths in P2 is bounded
by 2|P2|/m	. Since the congestion on e due to the paths in P ′ is the sum of
the congestions due to P1 and P2, we obtain E[C ′(e)] ≤ 2(|P1| + |P2|)/m	 =
2|P ′|/m	. �

From the definition of the boundary congestion, we have that B ≥ B(M1,Π) ≥
|P ′|/out(M1). Therefore, C∗ ≥ |P ′|/out(M1). Since each side of M1 has m	 nodes,
we have that out(M1) ≤ 4m	. From Lemma 10, we therefore obtain

Lemma 11 E[C ′(e)] ≤ 8C∗.

We “charge” this congestion to submesh M2. By Lemma 8, only submeshes up
to height h < log D∗ + 3 can contribute to the congestion on edge e (submeshes of
type-1). By summing the congestions due to these at most 2(log D∗ +3) submeshes
(a type-1 and a type-2 submesh at each level), and by using Lemma 11, we arrive at
an upper bound for the expected congestion on edge e.

Lemma 12 E[C(e)] ≤ 16C∗(log D∗ + 3).

Note that without increasing the expected congestion, we can always remove any
cycles in a path, so without loss of generality, we will assume that the paths obtained

404 C. Busch et al.

are acyclic. We now obtain a concentrated result on the congestion C obtained by
our algorithm, using the fact that every packet selects its path independently of every
other packet.

Theorem 9 C = O(C∗ log n) with high probability.

Proof Let Xi = 1 if path pi uses edge e, and 0 otherwise. Then E[C(e)] =
E[∑i Xi] ≤ 16C∗(log D∗ + 3). Let |E | be the number of edges in the mesh. For
|E | > 8, E[C(e)] ≤ 16C∗ log(|E |D∗). Let κ > 2e, then applying a Chernoff bound
[23], and using the fact that C∗ ≥ 1 we find that P[C(e) > 16κC∗ log(|E |D∗)] <
(|E |D∗)−16κ . Taking a union bound over all the edges, we obtain

P

[
max
e∈E

C(e) > 16κC∗ log(|E |D∗)
]
<

1

(|E |D∗)16κ−1

Using the fact that D∗ = O(|E |), |E | = O(n2), and choosing κ = 2e + 1, we get
C = O(C∗ log n) with high probability. �

Acknowledgments We are grateful to the reviewers of this book chapter.

References

1. J. Aspens, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. Online load balancing with applications
to machine scheduling and virtual circuit routing. In: Proceedings of the 25th ACM Symposium
on Theory of Computing, pages 623–631, ACM Press, San Diego, California, USA, 1993.

2. F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald. Congestion, dila-
tion, and energy in radio networks. Theory of Computing Systems, 37(3):343–370, 2004.

3. B. Awerbuch and Y. Azar. Local optimization of global objectives: Competitive distributed
deadlock resolution and resource allocation. In: Proceedings of 35th Annual Symposium on
Foundations of Computer Science, pages 240–249, Santa Fe, NM, 1994.

4. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial
time. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC),
San Diego, CA, ACM Press. pages 383–388, June 2003.

5. M. Bienkowski, M. Korzeniowski, and H. Räcke. A practical algorithm for constructing obliv-
ious routing schemes. In: Proceedings of the 15th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 24–33, ACM Press, San Diego, California, USA, June
2003.

6. A. Borodin and J. E. Hopcroft. Routing, merging, and sorting on parallel models of computa-
tion. Journal of Computer and System Science, 30:130–145, 1985.

7. C. Busch, M. Magdon-Ismail, and J. Xi. Oblivious routing on geometric networks. In: Pro-
ceedings of the 17th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
Las Vegas, NV, pages 316–324, July 2005.

8. C. Busch, M. Magdon-Ismail, and J. Xi. Optimal oblivious path selection on the mesh. IEEE
Transactions on Computers, 57(5):660–671, May 2008.

9. I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas, and P. Spirakis. A probabilistic algorithm
for efficient and robust data propagation in wireless sensor networks. Ad Hoc Networks, 4(5):
621 – 635, 2006.

13 Oblivious Routing for Sensor Network Topologies 405

10. I. Chatzigiannakis, S. Nikoletseas, and P. G. Spirakis. Efficient and robust protocols for local
detection and propagation in smart dust networks. Mobile Networks and Applications, 10(1–
2):133–149, 2005.

11. S. Dolev, T. Herman, and L. Lahiani. Polygonal broadcast, secret maturity, and the firing
sensors. Ad Hoc Networks, 4(4):447 – 486, 2006.

12. S. Dolev and N. Tzachar. Empire of colonies: Self-stabilizing and self-organizing distributed
algorithm. Theoretical Computer Science, 410(6–7):514–532, 2009.

13. C. Efthymiou, S. Nikoletseas, and J. Rolim. Energy balanced data propagation in wireless
sensor networks. Wireless Networks, 12(6):691–707, 2006.

14. J. Gao and L. Zhang. Tradeoffs between stretch factor and load balancing ratio in routing
on growth restricted graphs. In PODC ’04: Proceedings of the twenty-third annual ACM
symposium on Principles of distributed computing, New York, NY, pages 189–196, 2004.

15. C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to minimize
congestion. In: Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 34–43, June 2003.

16. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed diffusion
for wireless sensor networking. IEEE/ACM Transmission Network, 11(1):2–16, 2003.

17. C. Kaklamanis, D. Krizanc, and T. Tsantilas. Tight bounds for oblivious routing in the hyper-
cube. In: Proceedings of 2nd IEEE Symposium on Parallel and Distributed Processing (2nd
SPAA 90), pages 31–36, Crete, Greece, July 1990.

18. F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-scheduling in
O(congestion + dilation) steps. Combinatorica, 14:167–186, 1994.

19. F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hyper-
cubes. Morgan Kaufmann, San Mateo, CA, 1992.

20. T. Leighton, B. Maggs, and A. W. Richa. Fast algorithms for finding O(congestion + dilation)
packet routing schedules. Combinatorica, 19:375–401, 1999.

21. B. M. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. Westerman. Exploiting locality
in data management in systems of limited bandwidth. In: Proceedings of the 38th Annual
Symposium on the Foundations of Computer Science, pages 284–293, IEEE, Miami Beach,
Florida, USA, 1997.

22. F. Meyer auf der Heide and Berthold Vöcking. Shortest-path routing in arbitrary networks.
Journal of Algorithms, 31(1):105–131, April 1999.

23. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cam-
bridge, 2000.

24. R. Ostrovsky and Y. Rabani. Universal O(congestion+dilation+log1+ε N) local control packet
switching algorithms. In: Proceedings of the 29th Annual ACM Symposium on the Theory of
Computing, New York, NY, pages 644–653, May 1997.

25. L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica. Balancing traffic load in
wireless networks with curveball routing. In: MobiHoc, 2007.

26. H. Räcke. Minimizing congestion in general networks. In: Proceedings of the 43rd Annual
Symposium on the Foundations of Computer Science, pages 43–52, IEEE, Vancouver, Canada,
November 2002.

27. H. Räcke. Data management and routing in general networks. Phd thesis, University of
Paderborn, Paderborn, Germany, 2003.

28. H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 255–264,
ACM Press, Victoria, British Columbia, Canada, May 2008.

29. P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

30. C. Scheideler. Course notes. http://www14.in.tum.de/lehre/2005WS/na/index.html.en.
31. A. Srinivasan and C-P. Teo. A constant factor approximation algorithm for packet routing, and

balancing local vs. global criteria. In: Proceedings of the ACM Symposium on the Theory of
Computing (STOC), pages 636–643, ACM Press, El Paso, Texas, USA, 1997.

http://www14.in.tum.de/lehre/2005WS/na/index.html.en

406 C. Busch et al.

32. L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11:350–361, 1982.

33. L. G. Valiant and G. J. Brebner. Universal schemes for parallel communication. In: Proceed-
ings of the 13th Annual ACM Symposium on Theory of Computing, pages 263–277, Milwau-
kee, Wisconsin, USA, May 1981.

34. F. Zhao and L. J. Guibas. Wireless Sensor Networks: An Information Processing Approach.
Morgan Kaufmann, San Francisco, CA, USA, 2004.

	13 Oblivious Routing for Sensor Network Topologies
	Costas Busch, Malik Magdon-Ismail, and Jing Xi
	13.1 Introduction
	13.1.1 Geometric Networks
	13.1.2 Mesh Networks

	13.2 Geometric Networks
	13.2.1 Preliminaries on Geometric Networks
	13.2.2 Oblivious Routing on Geometric Networks
	13.2.3 Applications of Geometric Networks

	13.3 Mesh Networks
	13.3.1 Preliminaries on Mesh Networks
	13.3.2 Oblivious Routing on Two-Dimensional Mesh Networks

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

