
Chapter 1
Composition and Scaling Challenges in Sensor
Networks: An Interaction-Centric View

T. Abdelzaher

Abstract Moore’s law, automation considerations, and the pervasive need for
timely information lead to a next generation of distributed systems that are open,
highly interconnected, and deeply embedded in the physical world by virtue of per-
vasive sensing and sensor-based decision-making. These systems offer new research
challenges that stem from scale, composition of large numbers of components, and
tight coupling between computation, communication, and distributed interaction
with both physical and social contexts. These growing challenges span a large spec-
trum ranging from new models of computation for systems that live in physical
and social spaces, to the enforcement of reliable, predictable, and timely end-to-
end behavior in the face of high interactive complexity, increased uncertainty, and
imperfect implementation. This chapter discusses the top challenges in composing
large-scale sensing systems and conjectures on research directions of increasing
interest in this realm.

1.1 Introduction

The envisioned proliferation of networked sensing devices, predicted in the 1990s,
has given rise to myriads of challenges that arise from interconnecting sensors at
large scale. Future distributed sensing systems will surpass the current paradigms
for embedded computing, where a number of sensors and actuators implement
well-understood and tightly managed control loops. New paradigms will involve
data acquisition at a significantly wider scale, offering less structure and less control
over the properties of the resulting loops from sensing to decision-making. It is envi-
sioned that by the end of the next decade, a significant number (if not the majority) of
Internet clients will constitute sensors and embedded devices. Indeed, the main role
of future networks will shift from offering a mere communication medium between
end-points to offering information distillation services bridging the gap between the
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myriads of real-time low-level data feeds and the high-level human decision needs.
The success of Google, built around the mission of organizing and “distilling” Web
content, attests to the increasing use of networks as information sources. The pro-
liferation of sensing devices gives rise to new information acquisition paradigms,
such as opportunistic and participatory sensing [1, 4, 9, 15, 18], that rely on sensory
data collection by individuals or devices acting on their behalf and on sharing these
data at large scale to extract information of common use. New challenges arise in
supporting the information distillation requirements of such emerging applications.
These challenges are brought about primarily by scale and the need to compose
sensing systems of large numbers of components, while maintaining predictable
end-to-end properties.

Composition challenges arise from the complex interactions that large-scale
sensing systems exhibit in several spaces including functional, data, and tempo-
ral interactions. This chapter focuses on four important interaction challenges that
arise by virtue of scale. Namely, we elaborate on composition challenges in the face
of functional interactions, data interactions, timing interactions, and interactions of
system dynamics in largely distributed sensing systems.

It should be noted that this chapter is by no means a complete account of sensor
network design and performance challenges. Most prominently, the chapter does not
directly address the issues of heterogeneity, programming interfaces, middleware,
and architectural paradigms used to facilitate building large systems. These software
and architectural solutions, as well as examples of large-scale deployed networks,
are detailed elsewhere in this book. The chapter also does not address the issues of
security; a growing concern in recent literature as sensor networks empark on new
mission-critical application domains where secure operation must be assured. The
interaction challenges mentioned above present a more basic categorization of chal-
lenges, classifying them not by the software layer in which they arise (such as oper-
ating systems, communication protocols, middleware, or programming support), but
rather by the conceptual space in which they occur, such as functional, temporal, or
data related. These spaces are described in the following sections, respectively.

1.2 Functional Interactions

The first interaction space for components of sensor network applications is the
space of functional interactions. Most deployed distributed system failures are
attributed to unexpected interactions between multiple components that lead to new
subtle failure modes. In sensor networks, the space of such interactions often cannot
be fully explored at design time. Significant advances have been made in the area
of formal methods and verification techniques. However, they remain limited by
scalability challenges that arise due to massive concurrency and unreliable com-
ponents (e.g., wireless). Most of the system development time, therefore, is spent
on debugging as opposed to new component development. Debugging individual
components is relatively simple. The problem lies in understanding failures that
arise due to component composition in complex systems.
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1.2.1 Troubleshooting Interactive Complexity

New fundamental theory, algorithms, analysis techniques, and software tools are
needed to help uncover root causes of errors resulting from interactions of large
numbers of components in heterogeneous networked sensing systems. System het-
erogeneity and tight integration between computation, communication, sensing, and
control lead to a high interactive complexity. Moreover, the lack of layering and
isolation, attributed to resource constraints, make it hard to apply the usual soft-
ware engineering techniques aimed at reducing interactive complexity, thus further
increasing the possibility of distributed errors and unexpected failures. On the other
hand, software reuse is impaired by the customized nature of application code and
deployment environments, making it harder to amortize debugging, troubleshooting,
and tuning cost. Hence, while individual devices and subsystems may operate well
in isolation, their composition may result in incompatibilities, anomalies, or failures
that are very difficult to troubleshoot. At the same time, users of such systems (such
as domain scientists) may not be experts on networking and system administration.

Automated techniques are needed for troubleshooting the system both at develop-
ment time and after deployment in order to reduce production as well as ownership
costs. Using such automated techniques, developers of future networked sensing
systems should be able to significantly curtail debugging effort. Similarly, upon
network deployment, service agents should be able to quickly diagnose and resolve
problems in unique customer installations, hence reducing ownership cost. The aim
is to answer developer or user questions such as “Why does this sensor network suf-
fer unusually high service delays?”, “Why is data throughput low despite availability
of resources and service requests?”, “Why does my time synchronization protocol
fail to synchronize clocks when the localization protocol is run concurrently?”, or
“Why does this vehicle tracking system suffer increased false alarms when it is
windy?1” Building efficient troubleshooting support to address the above questions
offers significant research challenges brought about by the nature of interaction
bugs, such as:

• Non-reproducible behavior: Interactions in networked sensing systems feature an
increased level of concurrency and thus an increased level of non-determinism.
In turn, non-determinism generates non-reproducible bugs that are hard to find
using traditional debugging tools.

• Non-local emergent behavior: By definition, interaction bugs do not manifest
themselves when components are tested in isolation. Current debugging tools are
very good at finding bugs that can be traced to individual components. Interaction
bugs manifest only at scale as a result of component composition. They result in
emergent behavior that arises when a number of seemingly individually sound
components are combined into a network, which makes them hard to find.

1 In a previous deployment of a magnetometer-based wireless tracking system, wind resulted in
antennae vibration which was caught by the magnetometers and interpreted as the passage of
nearby ferrous objects (vehicles).
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A successful approach to the automation of diagnosis of interactive complexity
failures must rely on two main design principles aimed at exploiting concurrency,
interactions, and non-determinism to improve the ability to diagnose problems in
resource-constrained systems. These principles are as follows:

• Exploiting non-reproducible behavior: Exploitation of non-determinism to
improve understanding of system behavior is not new to computing literature.
For example, many techniques in estimation theory, concerned with estimation
of system models, rely on introducing noise to explore a wider range of system
states and hence arrive at more accurate models. Machine learning and data min-
ing approaches have the same desirable property. They require examples of both
good and bad system behavior to be able to classify the conditions correlated
with good and bad. In particular, note that conditions that cause a problem to
occur are correlated (by causality) with the resulting bad behavior. Root causes
of non-reproducible bugs are thus inherently suited for discovery using data min-
ing and machine learning approaches as the lack of reproducibility itself and the
inherent system non-determinism improve the odds of occurrence of sufficiently
diverse behavior examples to train the troubleshooting system to understand the
relevant correlations and identify causes of problems.

• Exploiting interactive complexity: Interactive complexity describes a system
where scale and complexity cause components to interact in unexpected ways. A
failure that occurs due to such unexpected interactions is therefore not localized
and is hard to “blame” on any single component. This fundamentally changes the
objective of a troubleshooting tool from aiding in stepping through code (which
is more suitable for finding a localized error in some line, such as an incorrect
pointer reference), to aiding with diagnosing a sequence of events (component
interactions) that lead to a failure state. For example, sequence mining algorithms
present a suitable core analytic engine for diagnostic debugging.

1.2.2 Troubleshooting Examples

An example application of the above principles is reported in a previous investiga-
tion of a diagnostic debugging tool prototype. This prototype was experimented with
over the course of 1 year to understand the strengths and limitations of the afore-
mentioned approach [24–26]. The examples below give a feel for how diagnostic
debugging is used according to this investigation.

1.2.2.1 A “Design” Bug

As an example of catching a design bug, we summarize a case study, published
in [26], involving a multi-channel sensor network MAC-layer protocol from prior
literature [27] that attempts to utilize channel diversity to improve throughput. The
protocol assigned a home channel to every node, grouping nodes that communi-
cated much into a cluster on the same channel. It allowed occasional communi-
cation between nodes in different clusters by letting senders change their channel
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temporary to the home channel of a receiver to send a message. If communication
failed (e.g., because home channel information became stale), senders would scan
all channels looking for the receiver on a new channel and update home channel
information accordingly. Testing revealed that total network throughput was some-
times worse than that of a single-channel MAC. Initially, the designer attributed it
to the heavy cost of communication across clusters. To verify this hypothesis, the
original protocol, written for MicaZ motes, was instrumented to log radio channel
change events and message communication events (send, receive, acknowledge)
as well as related timeouts. It was tested on a motes network. Event logs from
runs where it outperformed a single-channel MAC were marked “good.” Event
logs from runs where it did worse were marked “bad.” Discriminative sequence
mining applied to the two sets of logs revealed a common pattern associated
prominently with bad logs. The pattern included the events No Ack Received,
Retry Transmission on Channel (1), Retry Transmission on Channel
(2), Retry Transmission on Channel (3), executed on a large number of
nodes. This quickly led the designer to understand a much deeper problem. When
a sender failed to communicate with a receiver in another cluster, it would leave its
home channel and start scanning other channels causing communication addressed
to it from upstream nodes in its cluster to fail as well. Those nodes would start
scanning too, resulting in a cascading effect that propagated up the network until
everyone was scanning and communication was entirely disrupted everywhere (both
within and across clusters). The protocol had to be redesigned.

1.2.2.2 An “Accumulative Effect” Bug

Often failures or performance problems arise because of accumulative effects such
as gradual memory leakage or clock overflow. While such effects evolve over a large
period of time, the example summarized below [24] shows how it may be possible to
use diagnostic debugging to understand the “tipping point” that causes the problem
to manifest. In this case, the operators observed sudden onset of successive message
loss in an implementation of directed diffusion [19], a well-known sensor network
routing protocol. As before, communication was logged together with timeout and
message drop events. Parts of logs coinciding with or closely preceding instances of
successive message losses were labeled “bad.” The rest were labeled “good.” Dis-
criminative sequence mining revealed the following sequential patterns correlated
with successive message loss:
Message Send (timestamp = 255), Message Send (timestamp = 0),
Message Dropped (Reason = "SameDataOlderTimeStamp").
The problem became apparent. A timestamp counter overflow caused subsequent
messages received to be erroneously interpreted as “old” duplicates (i.e., having
previously seen sequence numbers) and discarded.

1.2.2.3 A “Race Condition” Bug

Race conditions are a significant cause of failures in systems with a high degree of
concurrency. A previous case study [26] demonstrated how diagnostic debugging
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helped catch a bug caused by a race condition in their embedded operating sys-
tem called LiteOS [5]. When the communication subsystem of an early ver-
sion of LiteOS was stress-tested, some nodes would crash occasionally and non-
deterministically. LiteOS allows logging system call events. Such logs were col-
lected from (the flash memory of) nodes that crashed and nodes that did not, giving
rise to “good” and “bad” data sets, respectively. Discriminative sequence mining
revealed that the following sequence of events occurred in the good logs but not in
the bad logs: Packet Received, Get Current Radio Handle, whereas the fol-
lowing occurred in the bad logs but not in the good logs: Packet Received, Get
Serial Send Function. From these observations, it is clear that failure occurs
when Packet Received is followed by Get Serial Send Function before
Get Current Radio Handle is called. Indeed, the latter prepares the application
for receiving a new packet. At high data rates, another communication event may
occur before the application is prepared, causing a node crash. The race condition
was eliminated by proper synchronization.

1.2.2.4 An “Assumptions Mismatch” Bug

In systems that interact with the physical world, problems may occur when the
assumptions made in protocol design regarding the physical environment do not
match physical reality. In this case study [25], a distributed target tracking proto-
col, implemented on motes, occasionally generated spurious targets. The protocol
required that nodes sensing a target form a group and elect a group leader who
assigned a new ID to the target. Subsequently, the leader passed the target ID
on in a leader handoff operation as the target moved. Communication logs were
taken from runs where spurious targets were observed (“bad” logs) and runs where
they were not (“good” logs). Discriminative pattern mining revealed the absence of
member-to-leader messages in the bad logs. This suggested that a singleton group
was present (i.e., the leader was the only group member). Indeed, it turned out that
the leader hand off protocol was not designed to deal with a singleton group because
the developer assumed that a target would always be sensed by multiple sensors (an
assumption on physical sensing range) and hence a group would always have more
than one member. The protocol had to be realigned with physical reality.

While these preliminary results are encouraging, significant challenges remain.
For example, non-trivial scalability enhancements are needed. Scalability limita-
tions imply that the designer should have some intuition into which event types
and which event attributes to monitor. Since it is hard to tell which event types
are relevant to a bug in advance, ideally, we would like to be able to monitor a
large number of different event types and attributes, leaving it to a software tool
to ignore irrelevant ones automatically, without degrading efficiency in identifying
culprit event sequences. The patterns suspected of causing failures often have a false
dependence on workload. For example, the frequency of occurrence of many events
depends on the communication rate. If communication rates vary from one experi-
ment to the next, discriminative sequence mining often zooms-in on differences in
event traces caused by differences in communication rates and not by bugs. Some
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form of normalization is needed. Often one or a small number of initial (bad) events
create a cascading wave, where a larger number of repercussions follow, in turn
setting off an even larger number of measurable consequences (manifestations of
anomalous behavior). Identifying this causal chain (or, in many cases, tree) is hard
due to the difference in the frequency of occurrence of events at different levels in
the tree. Unsynchronized clocks often result in finding incorrect sequences making
it hard to infer distributed patterns correctly. Existence of multiple bugs often causes
decreased diagnostic accuracy. Events with multiple attributes (e.g., function calls
with multiple parameters) cause problems and have to be broken up into series of
events with single attributes, which in turn generates false event sequences. Address-
ing such challenges may require interdisciplinary collaboration between data min-
ing experts, machine learning experts, sensor networks experts, and troubleshooting
experts in order to provide solutions that both consider peculiarities and require-
ments of sensor network troubleshooting and leverage algorithmic expertise needed
for root cause diagnosis.

1.3 Data Interactions

Another important interaction space for sensor networks is the space of data inter-
actions. An emerging application model for networked sensing systems is that of
social sensing [1, 4], which broadly refers to applications that employ sensors used
by individuals in their homes, cars, offices, or on their person, whose measure-
ments may be shared for purposes of various application-related services. Social
sensing systems range from medical devices that measure human biometrics and
share them with medical repositories available to care-givers [29], location sen-
sors, and accelerometers in phones and cars that can be used to compute aggregate
information of community interest such as pollution or traffic patterns [9, 11, 17].
Traditional embedded and networked sensing systems research typically considers
computing systems that interact with physical and engineering artifacts and assumes
a single trust domain. Interaction of future embedded sensing devices with both
physical and social spaces (in multiple trust domains) creates new challenges, such
as loss of privacy, that can be broadly classified as data interaction challenges.

1.3.1 Privacy and Data Aggregation

Protection mechanisms from involuntary physical exposure are needed to enforce
physical privacy. Innovative optimization problems can be formulated by recog-
nizing that privacy is not a binary concept. When data are continuous and noisy,
privacy is more akin to a degree of uncertainty; a concept closely related to noise
and filtering in control applications. Control of voluntary information sharing must
facilitate privacy-preserving exchange of time-series data. A predominant use of
data in social sensing applications is for aggregation purposes such as mapping dis-
tributed phenomena or computing statistical trends. New mathematically based data
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perturbation and anonymization schemes are needed to hide user data but allow
fusion operations on perturbed or partial data to return correct results to a high
degree of approximation. These problems are difficult due to interactions between
data streams.

When sharing a single data item or stream, it is easy to reason about what
information is releaved and what information is withheld. When multiple streams
are shared, however (possibly by different individuals), correlations between these
streams may be exploited to make additional inferences that make it harder to con-
trol what exactly is being revealed. For example, sharing an acoustic energy signa-
ture from the neighborhood of a person on a campaign to reduce noise pollution may
reveal something about the person’s location if the noise level correlates with a train
or bus schedule on a known route. This data interaction challenge makes it espe-
cially hard to reason about privacy in a social sensing system. Nevertheless, certain
privacy assurances are often needed to encourage people to share the information
needed for the social sensing application to function. Hence, an important challenge
becomes one of understanding how to perturb (or decorrelate) data in such a way
that it becomes impossible to make additional privacy-violating inferences, beyond
what is explicitly allowed by the data owner.

Data aggregation operations are most common in social sensing systems where
multiple data streams need to be combined to compute some community-wide infor-
mation such as energy consumption trends, driving patterns, or fitness and weight
loss statistics. The challenge is to perturb a user’s sequence of data values such that
(i) the individual data items and their trend (i.e., their changes with time) cannot be
estimated without large error, whereas (ii) the distribution of the data aggregation
results at any point in time is estimated with high accuracy. Intuitively, privacy in
this context refers to the degree of uncertainty or error regarding a user’s individual
data. For instance, in a health-and-fitness application, it may be desired to find the
average weight loss trend of those on a particular diet or exercise routine as well
as the distribution of weight loss as a function of time on the diet. This is to be
accomplished without being able to reconstruct any individual’s weight and weight
trend without significant error.

1.3.2 Perturbation Examples and Time-Series Data

Examples of data perturbation techniques can be found in [2, 3, 10]. The general
idea is to add random noise with a known distribution to the user’s data, after which
a reconstruction algorithm is used to estimate the distribution of the original data.
Early approaches relied on adding independent random noise. These approaches
were shown to be inadequate. For example, a special technique based on random
matrix theory has been proposed in [23] to recover the user data with high accuracy.
Later approaches considered hiding individual data values collected from differ-
ent private parties, taking into account that data from different individuals may be
correlated [16]. However, they do not make assumptions on the model describing



1 Composition and Scaling Challenges in Sensor Networks 11

the evolution of data values from a given party over time, which can be used to
jeopardize privacy of data streams. By developing a perturbation technique that
specifically considers the data evolution model, one can prevent attacks that extract
regularities in correlated data such as spectral filtering [23] and principal component
analysis (PCA) [16].

In other work [11], it was shown that privacy of time-series data can be preserved
if the noise used to perturb the data is itself generated from a process that approx-
imately models the measured phenomenon. For instance, in the weight watchers
example, we may have an intuitive feel for the time scales and ranges of weight evo-
lution when humans gain or lose weight. Hence, a noise model can be constructed
that exports realistic-looking parameters for both the direction and time constant
of weight changes. We can think of this noise as the (possibly scaled) output of a
virtual user. Once the noise model is available, its structure and probability dis-
tributions of all parameters are agreed upon among all parties contributing to the
aggregation result. By choosing random values for these noise parameters from the
specified distribution, it is possible to generate arbitrary weight curves (of virtual
people) showing weight gain or loss. A real user can then add their true weight
curve to that of one or several locally generated virtual users obtained from the noise
model. The actual model parameters used to generate the noise are kept private. The
resulting perturbed stream is shared with the pool where it can be aggregated with
that of others in the community. Since the distributions of noise model parameters
are statistically known, it is possible to estimate the sum, average, and distribution
of added noise (of the entire community) as a function of time. Subtracting that
known average noise time series from the sum of perturbed community curves will
thus yield the true community trend. The distribution of community data at a given
time can similarly be estimated (using deconvolution methods) since the distribu-
tion of noise (i.e., data from virtual users) is known. The estimate improves with
community size.

An important question relates to the issue of trust. Given that non-expert users
cannot be asked to derive good noise models for their private data, how does a
non-expert client know that a given noise model is privacy-preserving? Obtaining
the noise model from an external party is risky. If the party is malicious, it could
send a “bad” model that is, say, a constant, or a very fast-changing function (that
can be easily separated from real data using a low-pass filter), or perhaps a function
with a very small range that perturbs real data by only a negligible amount. Such
noise models will not perturb data in a way that protects privacy.

Consider an information aggregation service that announces a suggested noise
model structure and parameter distribution to the community of users over which
aggregation is performed. The model announced by the server can be trusted by a
user only if that user’s own data could have been generated from some parameter
instantiation of that model with a non-trivial probability. This can be tested locally
by a curve fitting tool on the user’s side. Informally, a noise model structure and
parameter distributions are accepted by a user only if (i) the curve fitting error for
user’s own data is not too large and (ii) the identified model parameter values for
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user’s data (that result from curve fitting) are not too improbable (given the proba-
bility distributions of model parameters). A friendly user interface can be developed
to automate the verification of the noise model on the user’s behalf.

More formally, consider a particular application where an aggregation server
collects data from a community to perform statistics. In previous work [11], a
perturbation algorithm is described for a community of N individuals who share
M data points with the aggregation each (we assume this to be the same across
users for notational simplicity). Let xi = (xi
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munity distribution, f e

k (x) be the exact community distribution, fk(n) be the noise
distribution, and fk(y) be the perturbed community distribution. Most user data
streams can be generated according to either linear or non-linear discrete models.
In general, a model can be written as a discrete function of index k, which can
be time, distance, or other (depending on the application), parameters θ and inputs
u, and is denoted as g(k, θ,u). Notice that θ is a fixed length parameters vector
characterizing the model while u is a vector of length M characterizing the input
to the model at each instance. Given the data xi = (
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Now, consider reconstructing the distribution of community data at a given point

in time. At time instance k, the perturbed data of each user are the sum of the actual
data and the noise yi

k = xi
k + ni

k . Thus, the distribution of the perturbed data fk(y)
is the convolution of the community distribution fk(x) and the noise distribution
fk(n), fk(y) = fk(n) ∗ fk(x). All the distributions above can be discretized and
the equation can be rewritten as: fk(y) = H fk(x), where H is a Toeplitz cyclic
matrix, which is also called the blurring kernel, constructed from the elements of the
discrete distribution fk(n), fk(x) is the community distribution at time k that needs
to be estimated, H is known, and fk(y) is the empirical perturbed data distribution.
This problem is well known in the literature as the deconvolution problem. The
Tikhonov–Miller restoration method [34] can be employed to compute the com-
munity distribution. It requires an a priori bound ε for the L2 norm of the noise,
together with an a priori bound M for the L2 norm of the community distribution,∣∣∣∣H f e

k (x)− fk(y)
∣∣∣∣

2 ≤ ε and
∣∣∣∣(H T H)−ν f e

k (x)
∣∣∣∣

2 ≤ M .
The approach preserves individual user privacy while allowing accurate recon-

struction of community statistics. A multi-dimensional extension of this approach
was presented in recent literature [32]. In this example, perturbation was added to
the GPS trajectories of individual vehicles. The perturbed trajectories were then
shared with a central server, whose responsibility was to reconstruct traffic statistics
in a city. While the individuals who shared their data were allowed to “lie” about
their (i) GPS location, (ii) velocity, and (iii) time of day, the reconstruction was
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shown to be accurate in that it reported the true average speed on city streets as
a function of correct actual location and time. Figure 1.1 (reproduced from [32])
depicts the manner in which GPS trajectories are perturbed in this approach.
Figure 1.2 (reproduced from [32]) compares the distribution of ground truth speed
data to the reconstructed distribution obtained from perturbed shared data. It can
be seen that the two distributions are rather similar. As a measure of similarity,
Table 1.1 (reproduced from [32]) compares the percentages of speeding vehicles on
four city streets, obtained using original and perturbed data, respectively. It can be
seen that the estimates obtained from perturbed data are reasonably accurate.

Several research questions remain. For example, what is a good upper bound on
the reconstruction error of the data aggregation result as a function of the noise
statistics introduced to perturb the individual inputs? What are noise generation
techniques that minimize the former error (to achieve accurate aggregation results)
while maximizing the noise (for privacy)? How to ensure that data of individual
data streams cannot be inferred from the perturbed signal? Intuitively, this is doable
because traditional filtering methods such as PCA and spectral filtering work based
on the assumptions that additive noise is time independent, independent of the sig-
nal, and has a small variance compared to the signal variance. With a good per-
turbation scheme, these assumptions are violated. What are some bounds on mini-
mum error in reconstruction of individual data streams? What are noise generation
techniques that maximize such error for privacy? Privacy challenges further include
the investigation of attack models involving corrupt noise models (e.g., ones that
attempt to deceive non-expert users into using perturbation techniques that do not
achieve adequate privacy protection), malicious clients (e.g., ones that do not follow

Table 1.1 Percentage of speeding vehicles

Street Real % Reconstructed %

University Ave 15.60 17.89
Neil Street 21.43 23.67
Washington Street 0.5 0.15
Elm Street 6.95 8.6
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Fig. 1.1 Real and perturbed traffic trajectories for different perturbation levels
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Fig. 1.2 Real and reconstructed traffic speed distributions. (a) Real community speed distribution;
(b) Reconstructed speed distribution; (c) Real speed distribution on University Ave.; (d) Recon-
structed speed distribution on University Ave.; (e) Real speed distribution on Washington Ave.;
and (f) Reconstructed speed distribution on Washington Ave.

the correct perturbation schemes or send bogus data), and repeated server queries
(e.g., to infer additional information about evolution of client data from incremental
differences in query responses). For example, given that it is fundamentally impos-
sible to tell if a user is sharing a properly perturbed version of their real weight
or just some random value, what fractions of malicious users can be accommodated
without significantly affecting reconstruction accuracy of community statistics? Can
damage imposed by a single user be bounded using outlier detection techniques
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that exclude obviously malicious users? How does the accuracy of outlier detec-
tion depend on the scale of allowable perturbation? In general, how to quantify
the trade-off between privacy and robustness to malicious user data? How tolerant
is the perturbation scheme to collusion among users that aims to bias community
statistics? Importantly, how does the time-series nature of data affect answers to the
above questions compared to previous solutions to similar problems in other con-
texts (e.g., in relational databases)? The above challenges offer significant research
opportunities in the area of data interactions and social sensing.

The above perturbation techniques, defense solutions, and bounds are especially
challenging due to the presence of multiple correlated data streams, or data streams
with related context. For example, consider a social sensing application where users
share vehicular GPS data to compute traffic speed statistics in a city. In this case,
in order to compute the statistics correctly as a function of time and location, each
vehicle’s speed must be shared together with its current GPS location and time of
day. Perturbing the speed alone does not help privacy if the correct location of the
user must be revealed at all times. What is needed is a perturbation and reconstruc-
tion technique that allows a user to “lie” about their speed, location, and time of
day, altogether, in a manner that makes it impossible to reconstruct their true values,
yet allow an aggregation service to average out the added multi-dimensional noise
and accurately map the true aggregate traffic speed as a function of actual time and
space. This problem is related to the more general concern of privacy-preserving
classification [36, 37], except that it is applied to the challenging case of aggregates
of time-series data. Understanding the relation between multi-dimensional error
bounds on reconstruction accuracy and bounds on privacy, together with optimal
perturbation algorithms in the sense of minimizing the former while maximizing
the latter, remains an open research problem.

1.4 Temporal Interactions

The third important interaction space for computing applications that interface with
the physical world is the space of temporal interactions. Embedded computations
must generally obey not only functional integrity constraints but also timeliness con-
straints on results. Early applications of sensor networks focused on soft domains
where it was not critical to analyze timing properties. Eventually, as the range of
sensor network applications extends to include mission-criticial and safety-critical
ones, the timeliness of interactions with the physical world will become important.
Recent sensor network literature reflects increasing interest in analysis of real-time
behavior and time constraints [6, 13, 28, 33]. Hence, theory is needed to analyze
end-to-end delay in large networked sensing systems that execute a set of distributed
real-time tasks.

Timing correctness requirements arise due to data volatility, interaction with
mobile objects, and the need for timely reaction to environmental events. The time-
sensitive nature of sensor network applications and environmental interactions moti-
vates understanding of the real-time limitations of information transfer, such that
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future networks could be properly sized for the desired real-time transfer capability.
Real-time information transfer is characterized by deadlines on data communica-
tion. In a hard real-time application, only those bits that are transferred prior to
their deadlines contribute useful information. Missed deadlines result in adverse
consequences that range from utility loss to significant physical damage. Deadlines
could arise for various reasons, for example, the necessity to react to external events
in a timely manner, and the need to deliver dynamically changing data prior to the
expiration of their respective validity intervals.

Recently, information-theoretic bounds were derived for sensor networks that
quantify the ability of the network to transfer bytes across distance [12, 30]. For
time-sensitive applications, a more useful bound should also be a function of delay.
Observe that network delay and throughput are interrelated. Intuitively, the network
should be able to transfer more bits by their deadlines if the deadlines are more
relaxed. Finding a function that bounds achievable total capacity subject to delay
constraints is a new objective that has not been addressed in sensor network litera-
ture. We call it real-time capacity of distributed sensing systems.

1.4.1 Temporal Analysis of Distributed Systems

As a step toward a fundamental understanding of real-time capacity, significant
advances were independently made in the embedded systems and networking com-
munities to quantify the timing properties of distributed computation or communi-
cation. Existing techniques for analyzing delay/throughput trade-offs in distributed
systems can be broadly called decomposition based. Decomposition-based tech-
niques break the system into multiple subsystems, analyze each subsystem indepen-
dently, then combine the results. Network calculus [7, 8] (developed in the network-
ing community) and holistic analysis [31, 35] (developed in the embedded systems
community) fall into this category.

A deficiency with decomposition-based approaches is that by viewing the aggre-
gate problem as a set of smaller subproblems, often interactions between the sub-
problems are ignored or simplified. For example, network calculus does not accu-
rately account for the effects of pipelining between stages when multiple flows share
the same set of successive hops. It merely computes a delay bound on each hop
based on its service curve and its arrival curve (computed from the service curve
on the previous hop). Pipelining, however, makes it impossible for the same flow
to suffer the delay bound on several successive hops in a row. Intuitively, this is
because if a packet waits for many other packets to get processed on one hop, by the
time its turn comes, most of the other packets have already moved sufficiently down-
stream that they may not interfere with it again. Hence, this packet’s interference at
the downstream hop is lower than what the bound predicts. This is an example of
a temporal interaction between stages in a distributed system that leads to a sub-
additive property of individual (i.e., per hop) worst-case delay bounds. Generally
speaking, the worst-case delay of a task on two successive stages of processing is
deterministically less than the sum of its worst-case delays on the individual stages.
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An exception is the top priority task that suffers no interference on its path. There
is a need to quantify these subadditive delay properties of distributed computation.
At present, very little work exists toward a general theory for delay composition
and the relation of delay composition results to priorities of tasks and the amount of
present interference.

Consider, by contrast, the fundamental laws of circuit theory used to analyze lin-
ear electric circuits. In that theory, a small number of fundamental rules (e.g., Kirch-
hoff laws) allow a designer to analyze complex circuits of arbitrary interconnection
topology, reducing them to their effective transfer functions and deducing their exact
end-to-end characteristics, such as total impedance, current draw, and voltage drop.
The same compositionality is observed in feedback control theory, where compo-
nent models, represented by block diagrams, can be collapsed into an equivalent sin-
gle block that accurately expresses the overall system model and enables controller
design. A similar theory is needed for networked sensing systems that develop rules
for composition of temporal behavior of real-time system components. We call
this category of techniques for analyzing distributed systems reduction-based (as
opposed to decomposition-based) techniques. It is key for reductions to capture the
essential properties of components involved and the properties of their interactions.
This ensures that reductions do not lead to inaccuracies caused by ignored or over-
simplified dependencies.

1.4.2 Reduction-Based Analysis and Delay Composition Algebra

A recent reduction-based approach to composition of timing properties of dis-
tributed sensing systems is delay composition algebra [21]. Given a graph of sys-
tem resources, where nodes represent processing resources and arcs represent the
direction of job flow, algebraic operators systematically “merge” resource nodes,
composing their workloads per rules of the algebra, until only one node remains.
The workload of that node represents a single resource job set called the uniproces-
sor job set. Uniprocessor schedulability analysis can then be used to determine the
schedulability of the set.

Workload of any one node (that may represent a single resource or the result of
reducing an entire subsystem) is described generically by a two-dimensional matrix
stating the worst-case delay that each job, Ji , imposes on each other job, Jk , in
the subsystem the node represents. Let us call it the load matrix of the subsystem
in question. Observe that on a node that represents a single resource j , any job
Ji that is of higher priority than job Jk can delay the latter by at most Ji ’s worst-
case computation time, Ci, j , on that resource. This allows one to trivially produce
the load matrix for a single resource given job computation times, Ci, j , on that

resource. Element (i, k) of the load matrix for resource j , denoted q j
i,k (or just qi,k

for notational simplicity where no ambiguity arises), is simply equal to Ci, j as long
as Ji is of (equal or) higher priority than Jk . It is zero otherwise.

The main question becomes, in a distributed system, how to compute the worst-
case delay that a job imposes on another when the two meet on more than one
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resource? The answer decides how delay components of two load matrices are com-
bined when the resource nodes corresponding to these matrices are merged using
appropriate algebraic operators. Intuitions derived from single resource systems
suggest that delays are combined additively. This is not true in distributed systems.
In particular, it was shown in [20] that worst-case delays in pipelines are subad-
ditive because of gains due to parallelism caused by pipelining. More specifically,
the worst-case delay imposed by a higher priority job, Ji , on a lower priority job,
Jk , when both traverse the same set of stages varies with the maximum of Ji ’s per-
stage computation times, not their sum (plus another component we shall mention
shortly).

The delay composition algebra leverages the aforementioned result. Neighbor-
ing nodes in the resource DAG present an instance of pipelining, in that jobs that
complete execution at one node move on to execute at the next. Hence, when these
neighboring nodes are combined, the delay components, qi,k , in their load matrices
are composed by a maximization operation. In delay composition algebra, this is
done by the PIPE operator. It reduces two neighboring nodes to one and combines
the corresponding elements, qi,k , of their respective load matrices by taking the
maximum of each pair. For this reason, we call qi,k the max term.

It could be, however, that two jobs travel together in a pipelined fashion for a
few stages (which we call a pipeline segment), then split and later merge again for
several more stages (i.e., another pipeline segment). Consider a higher priority job
Ji and a lower priority job, Jk . In this case, the max terms of each of the pipeline
segments (computed by the maximization operator) must be added up to compute
the total delay that Ji imposes on Jk . It is convenient to use a running counter or
“accumulator” for such addition. Whenever the jobs are pipelined together, delays
are composed by maximization (kept in the max term) as discussed above. Every
time Ji splits away from Jk , signaling the termination of one pipeline segment,
the max term (i.e., the delay imposed by Ji on Jk in that segment) is added to the
accumulator. Let the accumulator be denoted by ri,k . Hence, ri,k represents the total
delay imposed by Ji on a lower priority job Jk over all past pipeline segments they
shared. Observe that jobs can split apart only at those nodes in the DAG that have
more than one outgoing arc. Hence, in the algebra, a SPLIT operator is used when
a node in the DAG has more than one outgoing arc. SPLIT updates the respective
accumulator variables, ri,k , of all those jobs Jk , where Jk and a higher priority job
Ji part on different arcs. The update simply adds qi,k to ri,k and resets qi,k to zero.

In summary, in a distributed system, it is useful to represent the delay that one
job Ji imposes on another Jk as the sum of two components qi,k and ri,k . The qi,k

term is updated upon PIPEs using the maximization operator (the max term). The
ri,k is the accumulator term. The qi,k is added to the ri,k (and reset) upon SPLITs,
when Ji splits from the path of Jk . PIPE and SPLIT are thus the main operators of
the algebra. In the final resulting matrix, the qi,k and ri,k components are added to
yield the total delay that each job imposes on another in the entire system.

The final matrix is indistinguishable from one that represents a uniprocessor
task set. In particular, each column k in the final matrix denotes a uniprocessor
job set of jobs that delay Jk . In this column, each non-zero element determines
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the computation time of one such job Ji . Since the transformation is agnostic to
periodicity, in the case of periodic tasks, Ji and Jk simply represent the parameters
of the corresponding periodic task invocations. Hence, for any task, Tk , in the origi-
nal distributed system, the final matrix yields a uniprocessor task set (in column k),
from which the schedulability of task Tk can be analyzed using uniprocessor schedu-
lability analysis.

Finally, the above discussion omitted the fact that the results in [20] also speci-
fied a component of pipeline delay that grows with the number of stages traversed
by a job and is independent of the number of higher priority jobs, called the stage-
additive component, sk . Hence, the load matrix, in fact, has an extra row to represent
this component. As the name suggests, when two nodes are merged, this component
is combined by addition. A detailed account of delay composition algebra, including
a complete exact specification of its operators and examples of its use, can be found
in [20–22]. One can easily envision examples from the sensor networks domain,
where aggregation trees, for instance, lead to traffic patterns where transmission of
individual flows (represented as a pipeline of forwarding stages) forms a DAG or
convergecast graph, whose end-to-end delay may need to be bounded. Other exam-
ples include query processing applications, where a single query may be divided
across multiple nodes to be evaluated against different subsets of data, then the
results combined. Given multiple queries of different query processing graphs, their
end-to-end timing behavior can be analyzed using the above approach.

Delay composition algebra is a step toward understanding temporal interactions
and composition of timing properties in distributed sensing systems. In turn, this
understanding can lead to a quantification of new notions of real-time capacity. Sev-
eral questions must be answered for a useful real-time capacity theory to emerge:

• Load metrics: Real-time capacity must be expressed in appropriate load metrics.
For example, classical schedulability bounds are expressed in terms of utilization.
For distributed systems, one must determine which of the family of viable load
metrics is the “best” metric to use to quantify the ability of the system to meet
timing constraints.

• Sufficient capacity regions: Real-time capacity quantifies system load that can
be supported within time constraints, which known as the schedulability prob-
lem. Schedulability, however, is an NP-hard problem and gives rise to very com-
plex (porcupine) scheduable state spaces. To derive practical analytic capacity
expressions, sufficient schedulability conditions must be found, meaning those
defined by simple surfaces that encompass most (but not necessarily all) states
in which timing constraints are met. We call them capacity regions. There is an
inherent trade-off between the simplicity of capacity regions and their degree
of approximation. Good compromises must be sought that maintain simplicity
without introducing excessive pessimism.

• Composition rules: Rules must be defined for composing capacity regions of
large systems from those of their subsystems. In general, starting with capac-
ity regions of elementary components, one should be able to compose capac-
ity regions of arbitrarily large systems. Most importantly, capacity expressions
should not become more pessimistic with composition. For very large systems,
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where the number of components can be viewed as infinite, continuous forms
of composition rules are needed. Composition becomes an integration operation
over functions of component densities as opposed to an operation that is carried
out on individual components. Delay composition algebra is a first step toward
defining such composition rules.

• Optimization algorithms: Capacity regions define sets of system states that meet
sufficient time constraints. It may be desired to optimize various metrics within
those constraints. For example, one might want to derive points of maximum
sensor network throughput or minimum total energy consumption within capac-
ity region boundaries.

A new real-time capacity theory should make it possible to understand the timing
behavior of large real-time sensing networks with in-network computation at inter-
mediate hops. It should also become possible to quantify end-to-end behavior of
complex distributed sensing applications such as distributed power grid control and
telepresence. The theory should help understand how prioritization affects real-time
capacity. It will be possible, for example, to do a cost/benefit analysis of prioritizing
different sensor data queues in a complex distributed sensing application since the
theory will quantify the effect of prioritization on the load/timeliness trade-off. The
needed theory is different from previous foundations for analysis of network delay
that consider networks as graphs of links that carry packets in that the role of com-
putation on network nodes must be considered together with communication. The
real-time capacity is a general notion that does not make limiting assumptions on
the types of processing resources involved. Hence, both network transmissions and
CPU processing should be analyzable within the same framework. This framework
is needed to understand the end-to-end timing behavior of large systems involving
tightly intertwined computation, communication, and sensing.

1.5 Interactions of System Dynamics

The final interaction space for distributed sensing systems addressed in this chapter
is the space of system dynamics. Control engineers are trained to analyze dynamics
of physical and embedded systems and verify their adherence to desired specifi-
cations. Unfortunately, dynamics (in a control-theoretic sense) are not a term that
computer scientists normally come in contact with in their education. As a result,
dynamics of feedback loops that pervade the design of computing software are often
poorly accounted for and poorly understood. While it is easy to use simple heuris-
tics to ensure the stability of feedback loops within smaller subsystems, unexpected
consequences may arise when such subsystems are combined.

1.5.1 Sources of Dynamics in Software

Informally, software dynamics occur when systems involve “delayed” or “cumu-
lative” response that may be approximated by differential or difference equation
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models. An example of software features that generate dynamics is an action taken
by one system component that depends on results of another action taken by another
component in the past. Another example is when some action or system parameter
depends on a previously accumulated value of another parameter. For example,
the number of packets waiting in a network queue depends on the accumulation
(i.e., integral) of differences between past enqueue and dequeue rates. This depen-
dency on previous values can be captured by a difference equation creating software
dynamics.

If all causal responses within a software system were instantaneous, the system
becomes strictly reactive in that it instantly reaches a state that is a function of only
currently applied stimuli. However, in most systems, effects depend not only on
current state but also on previous states. This is especially true in sensor networks,
where queues and other communication delays create significant dependencies on
past states. Hence, analysis of dynamics is needed. This analysis is especially crit-
ical in computing systems when feedback is used. Dynamics imply that software
decisions are made based on past information (e.g., due to delays in acquiring
or communicating the information) or that effects of actions are not immediately
observed (for example, a reduction in source sending rates in a congested network
will take some time before it diffuses network delays). If software feedback loops
do not properly address dynamics, they may “under-” or “over-react.” For example,
sending rates might not be decreased enough to eliminate congestion, or conversely
might be cut too much, thereby unnecessarily degrading performance. Stability is
the property of a feedback loop that allows it to converge over time to desired per-
formance. Control theory allows designers to analyze stability, convergence rate,
overshoot, and other dynamic response properties of computing systems. In partic-
ular, control theory explains that while individual components may be stable, their
composition may not be necessarily so. Hence, using ad hoc techniques in designing
feedback in software systems may result in components that work well in isolation,
but have poor performance when combined.

The above discussion suggests that composing, analyzing, controlling, and opti-
mizing performance of large-scale networked sensing systems is an important prob-
lem, complicated by increased system size, a growing number of tunable parameters
(and hence feedback loops that tune them), subtle interactions among distributed
components, and limited observability of internal software state at run-time.

The problem is of growing importance. The increasing cost of managing large
systems suggests that sensor networks and the information processing systems
they serve will operate with progressively less human oversight. The trend toward
increasingly autonomous, larger, and more interconnected systems exacerbates the
problem in two important ways:

• First, autonomy implies increasing need for adaptive or self-tuning behavior.
Many aspects of system functionality will be automated, creating a large number
of feedback loops. For example, MAC-layer algorithms may automatically deter-
mine the best line transmission rates such that reliability is maximized. Routing
may automatically determine the least-cost routes as load on different network
components changes. Congestion control may automatically determine the best
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application sending rate to prevent bottlenecks and overload. Application knobs
such as fidelity of information processing may be manipulated depending on fac-
tors such as currently available energy or user demand.

• Second, increased system scale implies interactions among a larger number of
components, which makes component composition a growing problem. As devel-
oper teams that build software systems grow, each developer becomes responsible
for a progressively smaller fraction of the system, essentially leading to myopic
design. Unintended interactions among different feedback loops in such a design
can lead to unexpected effects on aggregate performance. Individually designed
adaptive or automated modules with efficient performance management poli-
cies (when considered in isolation) might contribute to significant performance
degradation when put together. Research and management tools are needed to
address these performance composability problems, especially when designers
and operators do not have the analytic background to analyze overall dynamics
and stability of their systems.

1.5.2 Examples of Dynamic Interactions

To give an example of adverse interactions and illustrate the importance of address-
ing composability of dynamic behavior in the context of distributed sensing sys-
tems, consider a scenario drawn from the domain of communication protocols. Let
shortest path routing be one policy that constantly discovers shorter routes between
sources and destinations. Let the MAC-layer rate adaptation policy, on the other
hand, tune the radio transmission rate to match channel quality (a lower rate is used
on lower quality channels). While each policy is individually well motivated, com-
posing the two policies leads to an adverse interaction. Shortest path routing may
prefer longer hops (so there are fewer of them on the path). Longer hops tend to have
lower quality, which causes the radio to lower its transmission rate. At the lower rate,
new more distant neighbors may be discovered leading to shorter routes. Switching
to those routes reduces channel quality again, leading to further rate reductions.
This adverse feedback cycle ultimately diminishes throughput. Such composition
problems are expected to increase in software systems as these systems become
more complex (i.e., made of more components) and feature more capabilities for
adaptation.

Interestingly, adverse interactions may result even when the different adaptive
policies have the same objective. These unintended interactions stem from subtle
incompatibilities between their performance management mechanisms. Consider a
distributed data processing back-end that performs multistage data fusion for a large
sensing system. Two mechanisms are installed to save energy during off-peak load
conditions. The first mechanism is to power off those machines that are underuti-
lized and distribute their load across other machines in their tier. When all machines
exhibit high utilization, extra machines are powered on. We call it the On/Off policy.
The second mechanism is to employ dynamic voltage scaling (DVS) on individual
processors such that the speed and voltage of a machine are reduced when the
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Fig. 1.3 Two adaptation
policies in a multi-tier server
farm and their combination
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machine is underutilized and increased when it is overloaded. We call it the DVS
policy. The two policies work well in isolation. Previous literature reports [14] that
the two policies combined may actually result in a higher energy consumption than
when one policy is used in isolation. This effect is shown in Fig. 1.3.

The explanation lies in unmodeled dynamics. If the DVS policy is aggressive
enough, whenever the utilization of a machine decreases, the policy reduces clock
frequency (and voltage) thus slowing down the machine and restoring a high uti-
lization value. From the perspective of the (DVS-oblivious) On/Off policy, the farm
becomes “fully utilized,” as the measured utilization of all machines is high. This
drives the On/Off policy to needlessly turn machines on in an attempt to relieve
the full utilization condition. DVS will slow down the clock further, causing more
machines to be turned on, and so on. Figure 1.3 also shows that proper joint control
of both knobs (labeled “our approach” in the figure) does improve performance over
tuning either knob in isolation.

To uncover unintended loops, a formal analysis of the system should use stability
notions from control theory. A simplified analysis technique, based on the notion of
adaptation graphs, was presented in previous computing literature [14]. Nodes in an
adaptation graph represent the key variables in the system such as delay, throughput,
utilization, length of different queues, and settings of different policy knobs. Arcs
represent the direction of causality. For example, consider a back-end data server
that serves queries over a network. When the utilization, U , of the outgoing link
increases, the delay, D, of served requests increases as well (because they wait
longer to be sent over the congested link). Hence, an arc exists from utilization to
delay, U → D, indicating that changes in the former affect the latter. The arcs
in the adaptation graph are annotated by either a “+” or a “−” sign depending
on whether the changes are in the same direction or not. In the example at hand,
since an increase in utilization causes a same-direction change in delay (i.e., also an
increase), the arc is annotated with a “+” sign: U →+ D. Some of the arcs represent
fundamental natural phenomena (for example, an increase in delay is a natural con-
sequence of an increase in utilization). Others represent programmed behavior or
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policies. For example, an admission controller may be programmed to decrease the
fraction of admitted requests, R, in response to an increase in delay, D. Hence, an
arc exists in the adaptation graph from delay to admitted requests, D →− R. The
arc is annotated with a “−” sign because an increase in delay results in a change
in the opposite direction (i.e., a decrease) in admitted requests. This arc does not
represent a natural phenomenon but rather the way the admission control policy is
programmed. These arcs are called policy arcs and annotated with the name of the
module implementing the corresponding policy. Hence, we have D →−

AC R, where
AC stands for the admission control module. Figure 1.4a depicts the adaptation
graph of the data server under consideration. The graph is composed of three arcs.
The arc D →−

AC R reflects that the admission controller reduces the number of
admitted requests when delay increases and vice versa. The arc R →+ U reflects
the natural phenomenon that any changes in the number of admitted requests result
in same-direction changes in outgoing link utilization. Finally, the arc U →+ D
expresses the fact that changes in link utilization cause changes in delay (in the same
direction). The three arcs form a cycle (a feedback loop). An interesting property of
the loop is that the product of the signs of the arcs is negative. This indicates a
negative feedback loop, which is expected for stability.

As another example, consider a network power management middleware that
measures links utilization, U. If the link utilization is low, the server workload must
be low. The middleware thus engages dynamic voltage scaling (DVS) on the server
to lower processor voltage, V , and frequency, F , hence reducing power consump-
tion, P , due to the off-peak load condition. This adaptation action can be expressed
as U →+

PM V and U →+
PM F , where PM stands for power management middleware

(i.e., a decrease in link utilization causes the policy to decrease both voltage and
frequency which explains the signs on the arcs). In turn, we have V →+ P and
F →+ P , which says how power consumption changes with voltage and frequency.
Finally, we have F →− D, since lowering frequency (i.e., slowing down a proces-
sor) increases delay and vice versa. Figure 1.4b depicts the adaptation graph for the
network power management middleware.

As might be inferred from above, each component or subsystem of a larger sys-
tem has its own adaptation graph that describes what performance variables this
component is affecting and what causality chains (or loops) exist within. When
a system is composed, the adaptation graphs of individual components are coa-
lesced. Figure 1.4c shows the combined adaptation graph that results when a server
described in Fig. 1.4a operates on top of the middleware described in Fig. 1.4b.
To check for incompatibilities (adverse interactions), the graph is searched for loops
using any common graph traversal algorithm. Loops that traverse component bound-
aries are emergent behavior loops that have not been created by design. In particular,
if the product of signs on one such loop is positive, the cycle indicates an unsafe
feedback loop. In other words, a stimulus reinforces itself causing more change in
the same direction. In control-theoretic terms, such a loop is unstable.

For example, in Fig. 1.4c, the cycle U →+
PM F , F →− D, D →−

AC R,
R →+ U crosses module boundaries and has positive sign product, indicating
that it is unstable. The cycle is an instance of an adverse interaction explained as
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Fig. 1.4 Examples of adaptation graphs and their combination. (a) Adaptation graph of an admis-
sion controller of a performance-aware server; (b) Adaptation graph of a network power manage-
ment middleware; and (c) Combined adaptation graph of the two

follows. Starting with the node labeled, U , when the network utilization decreases
in the server, the power management middleware causes the server to slow down.
This, in turn, increases the delay experienced by served requests causing the admis-
sion controller to accept fewer requests. The reduced accepted number of requests
will further decrease the load on the network link, causing the power management
middleware to slow down processors even more. This, in turn, may cause a more sig-
nificant reduction in admitted requests and a further reduction in network load. This
cycle could ultimately bring the server to a crawl, indeed an adverse consequence
of unintended interaction.

Analytic foundations and tools are needed for the design, composition, and opti-
mization of performance of large-scale distributed, adaptive, sensing systems. Much
of our future infrastructure, such as power grids, homeland defense systems, and
disaster recovery systems will likely be able to make use of insights and contri-
butions of such a theory. It should be noted that despite the promise of control-
theoretic techniques in analysis of system dynamics, they fall short of analysis of
networked sensing systems. This is because computing systems offer new nonlin-
earities and different functionalities not adequately modeled by linear difference
equations. Hence, extensions are needed to non-linear control to address the specific
nonlinear and functional behaviors common to networked sensing systems in order
to reason about their closed loop behavior. Such techniques must further be scaled
to predict emergent behavior of large highly interconnected, interacting systems, as
opposed to analyzing performance of isolated feedback loops.
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1.6 Summary

This chapter described some practical considerations in the design of large net-
worked sensing systems that arise in different interaction spaces between sys-
tem components. Functional, data, temporal, and dynamic interaction spaces were
explored. It was shown that new challenges arise in handling problems that occur by
virtue of scale. Problems and interactions addressed in this chapter do not typically
manifest themselves in smaller deployments. Tools and techniques are needed for
sensor network designers to address the above composition and scaling challenges.
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