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Foreword

We first thank all authors of this book for their high-quality contributions; the will-
ingness of these leading researchers to participate in this effort has been vital to its
success and a great honor for us.

This book is organized into eight thematic sections, namely (i) Challenges for
Wireless Sensor Networks; (ii) Models, Topology, Connectivity; (iii) Localiza-
tion, Time Synchronization, Coordination; (iv) Data Propagation and Collection;
(v) Energy Optimization; (vi) Mobility Management; (vii) Security Aspects; and
(viii) Tools, Applications, and Use Cases. It spans a large spectrum of fundamental
aspects for sensor networks such as topology management, node interactions and
connectivity, information dissemination and obstacle avoidance, localization and
synchronization, mobility management and robotic entities, energy optimization
and power assignment, security, as well as relations of sensor networks to other
network types such as radio and mobile. The book is meant for use by researchers,
developers, educators, and students interested in the area of sensor networks. Since
sensor networking is applied to a variety of domains, the ideas, methods, and tech-
niques illustrated in this book may be useful to a very wide audience. Furthermore,
this book can also be used as a supplement to any course on algorithms, wireless
protocols, and distributed computing and networking.

We wish to thank Springer, Lecture Notes in Computer Science (LNCS), for pub-
lishing this book; in particular, we thank Alfred Hofmann for our long cooperation
and his persistent willingness to encourage high-quality publications in emerging
research topics. Also, we thank his Springer colleague Ronan Nugent for a fruit-
ful cooperation in realizing this volume. Many thanks go to Dionysios Efstathiou
(MSc), a brilliant PhD student at the University of Patras and CTI, actively working
on sensor networks, for integrating the Volume material so timely and efficiently.

Finally, we acknowledge support from the EU research project AEOLUS (“Algo-
rithmic Principles for Building Efficient Overlay Computers”) of the Sixth Frame-
work Programme/FET Proactive Initiative on Global Computing. Several of our
research perspectives have been positively influenced by AEOLUS, while many
AEOLUS researchers are contributors of this book.

Patras, Greece Sotiris Nikoletseas
Geneva, Switzerland José D.P. Rolim
November 2010
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Preface

Wireless ad hoc sensor networks have recently become a very active research subject
as well as a topic of rapid technological progress and large-scale practical devel-
opment and application activities. However, a solid foundational and theoretical
background seems still necessary for sensor networking to achieve its full potential.
The provision of relevant abstract modeling, novel algorithmic design, and analysis
methodologies toward efficient and robust realizations of such very large, highly
dynamic, complex, non-conventional networks is a challenging task for the theoret-
ical computer science community (and that of distributed computing in particular).

Several models, algorithms, and interesting research results have already
appeared, in specialized and generic theory journals, conferences and workshops.
This book aims to reinforce the emergence of a critical mass of theoretical and
algorithmic foundations by bringing together, for the first time in a systematic
way, high-quality research contributions (invited book chapters) by leading experts
worldwide relevant to important algorithmic and complexity-theoretic aspects of
wireless sensor networks and related ad hoc network types.

The intended audience of this book includes researchers and advanced graduate
students working on sensor networks and the broader areas of wireless network-
ing and distributed computing, as well as practitioners in the relevant application
domains interested to obtain a broader foundational perspective and insight. The
book can also serve as a text for advanced university courses and research seminars.

The book is structured into eight themes covering respective common aspects,
issues, and methodologies. This division is rather indicative; because of the inherent
relations of different topics, layers, and problems, many chapters could be associ-
ated to more than one theme, and the themes themselves could have been chosen in a
different manner. Still, we hope that the particular structure will be methodologically
useful for the reader.

We now briefly describe each theme. The first one discusses characteristic chal-
lenges for distributed sensor networking; although the perspective stems from sys-
tems methodologies, the implications to algorithms and theory are relevant.

The second theme presents current abstract modeling proposals for sensor net-
works related to different layers (physical, network), diverse (yet highly related)
aspects such as the topology management and mobility plane, as well as the impor-
tant aspect of network coding.

vii



viii Preface

The next theme concerns basic primitives for distributed computing in sensor
networks such as localization, time synchronization, and decentralized coordination.
Efficient distributed solutions to such primitives are necessary for higher layer net-
work services, such as the (rather canonical) problem of data routing. Data routing
(and information dissemination, more general) is studied in the fourth theme, in
terms of both propagating data to a sink destination as well as collecting data from
the network nodes.

The fifth theme covers one of the most important challenges in sensor net-
working, that of energy optimization. Different aspects of energy management are
addressed, such as prolonging the network lifetime via probabilistically optimized
routing decisions as well as via mobility optimization. This mobility-based approach
nicely connects to the next theme which addresses mobility and its complications;
also, how to exploit mobility anyway present in the network to, e.g., optimize infor-
mation spreading.

The important aspect of security in sensor networks is investigated in the seventh
theme by addressing complementary aspects, such as the efficient distribution and
management of secure keys. The book concludes with an interesting more practi-
cal theme on characteristic applications and representative tools for programming
sensor networks, as well as the discussion of a use case scenario in the context of a
Future Internet perspective.

We hope that this book will be helpful to its readers and contribute to a solid foun-
dation and deeper understanding of the fascinating and rapidly evolving research
area of distributed sensor networking.

Patras, Greece Sotiris Nikoletseas
Geneva, Switzerland José D.P. Rolim
November 2010
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Part I
Challenges for Wireless Sensor Networks



Chapter 1
Composition and Scaling Challenges in Sensor
Networks: An Interaction-Centric View

T. Abdelzaher

Abstract Moore’s law, automation considerations, and the pervasive need for
timely information lead to a next generation of distributed systems that are open,
highly interconnected, and deeply embedded in the physical world by virtue of per-
vasive sensing and sensor-based decision-making. These systems offer new research
challenges that stem from scale, composition of large numbers of components, and
tight coupling between computation, communication, and distributed interaction
with both physical and social contexts. These growing challenges span a large spec-
trum ranging from new models of computation for systems that live in physical
and social spaces, to the enforcement of reliable, predictable, and timely end-to-
end behavior in the face of high interactive complexity, increased uncertainty, and
imperfect implementation. This chapter discusses the top challenges in composing
large-scale sensing systems and conjectures on research directions of increasing
interest in this realm.

1.1 Introduction

The envisioned proliferation of networked sensing devices, predicted in the 1990s,
has given rise to myriads of challenges that arise from interconnecting sensors at
large scale. Future distributed sensing systems will surpass the current paradigms
for embedded computing, where a number of sensors and actuators implement
well-understood and tightly managed control loops. New paradigms will involve
data acquisition at a significantly wider scale, offering less structure and less control
over the properties of the resulting loops from sensing to decision-making. It is envi-
sioned that by the end of the next decade, a significant number (if not the majority) of
Internet clients will constitute sensors and embedded devices. Indeed, the main role
of future networks will shift from offering a mere communication medium between
end-points to offering information distillation services bridging the gap between the

T. Abdelzaher (B)
University of Illinois at Urbana-Champaign, Champaign, IL, USA
e-mail: zaher@cs.uiuc.edu

S. Nikoletseas, J.D.P. Rolim (eds.), Theoretical Aspects of Distributed Computing
in Sensor Networks, Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14849-1_1, C© Springer-Verlag Berlin Heidelberg 2011
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4 T. Abdelzaher

myriads of real-time low-level data feeds and the high-level human decision needs.
The success of Google, built around the mission of organizing and “distilling” Web
content, attests to the increasing use of networks as information sources. The pro-
liferation of sensing devices gives rise to new information acquisition paradigms,
such as opportunistic and participatory sensing [1, 4, 9, 15, 18], that rely on sensory
data collection by individuals or devices acting on their behalf and on sharing these
data at large scale to extract information of common use. New challenges arise in
supporting the information distillation requirements of such emerging applications.
These challenges are brought about primarily by scale and the need to compose
sensing systems of large numbers of components, while maintaining predictable
end-to-end properties.

Composition challenges arise from the complex interactions that large-scale
sensing systems exhibit in several spaces including functional, data, and tempo-
ral interactions. This chapter focuses on four important interaction challenges that
arise by virtue of scale. Namely, we elaborate on composition challenges in the face
of functional interactions, data interactions, timing interactions, and interactions of
system dynamics in largely distributed sensing systems.

It should be noted that this chapter is by no means a complete account of sensor
network design and performance challenges. Most prominently, the chapter does not
directly address the issues of heterogeneity, programming interfaces, middleware,
and architectural paradigms used to facilitate building large systems. These software
and architectural solutions, as well as examples of large-scale deployed networks,
are detailed elsewhere in this book. The chapter also does not address the issues of
security; a growing concern in recent literature as sensor networks empark on new
mission-critical application domains where secure operation must be assured. The
interaction challenges mentioned above present a more basic categorization of chal-
lenges, classifying them not by the software layer in which they arise (such as oper-
ating systems, communication protocols, middleware, or programming support), but
rather by the conceptual space in which they occur, such as functional, temporal, or
data related. These spaces are described in the following sections, respectively.

1.2 Functional Interactions

The first interaction space for components of sensor network applications is the
space of functional interactions. Most deployed distributed system failures are
attributed to unexpected interactions between multiple components that lead to new
subtle failure modes. In sensor networks, the space of such interactions often cannot
be fully explored at design time. Significant advances have been made in the area
of formal methods and verification techniques. However, they remain limited by
scalability challenges that arise due to massive concurrency and unreliable com-
ponents (e.g., wireless). Most of the system development time, therefore, is spent
on debugging as opposed to new component development. Debugging individual
components is relatively simple. The problem lies in understanding failures that
arise due to component composition in complex systems.
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1.2.1 Troubleshooting Interactive Complexity

New fundamental theory, algorithms, analysis techniques, and software tools are
needed to help uncover root causes of errors resulting from interactions of large
numbers of components in heterogeneous networked sensing systems. System het-
erogeneity and tight integration between computation, communication, sensing, and
control lead to a high interactive complexity. Moreover, the lack of layering and
isolation, attributed to resource constraints, make it hard to apply the usual soft-
ware engineering techniques aimed at reducing interactive complexity, thus further
increasing the possibility of distributed errors and unexpected failures. On the other
hand, software reuse is impaired by the customized nature of application code and
deployment environments, making it harder to amortize debugging, troubleshooting,
and tuning cost. Hence, while individual devices and subsystems may operate well
in isolation, their composition may result in incompatibilities, anomalies, or failures
that are very difficult to troubleshoot. At the same time, users of such systems (such
as domain scientists) may not be experts on networking and system administration.

Automated techniques are needed for troubleshooting the system both at develop-
ment time and after deployment in order to reduce production as well as ownership
costs. Using such automated techniques, developers of future networked sensing
systems should be able to significantly curtail debugging effort. Similarly, upon
network deployment, service agents should be able to quickly diagnose and resolve
problems in unique customer installations, hence reducing ownership cost. The aim
is to answer developer or user questions such as “Why does this sensor network suf-
fer unusually high service delays?”, “Why is data throughput low despite availability
of resources and service requests?”, “Why does my time synchronization protocol
fail to synchronize clocks when the localization protocol is run concurrently?”, or
“Why does this vehicle tracking system suffer increased false alarms when it is
windy?1” Building efficient troubleshooting support to address the above questions
offers significant research challenges brought about by the nature of interaction
bugs, such as:

• Non-reproducible behavior: Interactions in networked sensing systems feature an
increased level of concurrency and thus an increased level of non-determinism.
In turn, non-determinism generates non-reproducible bugs that are hard to find
using traditional debugging tools.

• Non-local emergent behavior: By definition, interaction bugs do not manifest
themselves when components are tested in isolation. Current debugging tools are
very good at finding bugs that can be traced to individual components. Interaction
bugs manifest only at scale as a result of component composition. They result in
emergent behavior that arises when a number of seemingly individually sound
components are combined into a network, which makes them hard to find.

1 In a previous deployment of a magnetometer-based wireless tracking system, wind resulted in
antennae vibration which was caught by the magnetometers and interpreted as the passage of
nearby ferrous objects (vehicles).
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A successful approach to the automation of diagnosis of interactive complexity
failures must rely on two main design principles aimed at exploiting concurrency,
interactions, and non-determinism to improve the ability to diagnose problems in
resource-constrained systems. These principles are as follows:

• Exploiting non-reproducible behavior: Exploitation of non-determinism to
improve understanding of system behavior is not new to computing literature.
For example, many techniques in estimation theory, concerned with estimation
of system models, rely on introducing noise to explore a wider range of system
states and hence arrive at more accurate models. Machine learning and data min-
ing approaches have the same desirable property. They require examples of both
good and bad system behavior to be able to classify the conditions correlated
with good and bad. In particular, note that conditions that cause a problem to
occur are correlated (by causality) with the resulting bad behavior. Root causes
of non-reproducible bugs are thus inherently suited for discovery using data min-
ing and machine learning approaches as the lack of reproducibility itself and the
inherent system non-determinism improve the odds of occurrence of sufficiently
diverse behavior examples to train the troubleshooting system to understand the
relevant correlations and identify causes of problems.

• Exploiting interactive complexity: Interactive complexity describes a system
where scale and complexity cause components to interact in unexpected ways. A
failure that occurs due to such unexpected interactions is therefore not localized
and is hard to “blame” on any single component. This fundamentally changes the
objective of a troubleshooting tool from aiding in stepping through code (which
is more suitable for finding a localized error in some line, such as an incorrect
pointer reference), to aiding with diagnosing a sequence of events (component
interactions) that lead to a failure state. For example, sequence mining algorithms
present a suitable core analytic engine for diagnostic debugging.

1.2.2 Troubleshooting Examples

An example application of the above principles is reported in a previous investiga-
tion of a diagnostic debugging tool prototype. This prototype was experimented with
over the course of 1 year to understand the strengths and limitations of the afore-
mentioned approach [24–26]. The examples below give a feel for how diagnostic
debugging is used according to this investigation.

1.2.2.1 A “Design” Bug

As an example of catching a design bug, we summarize a case study, published
in [26], involving a multi-channel sensor network MAC-layer protocol from prior
literature [27] that attempts to utilize channel diversity to improve throughput. The
protocol assigned a home channel to every node, grouping nodes that communi-
cated much into a cluster on the same channel. It allowed occasional communi-
cation between nodes in different clusters by letting senders change their channel
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temporary to the home channel of a receiver to send a message. If communication
failed (e.g., because home channel information became stale), senders would scan
all channels looking for the receiver on a new channel and update home channel
information accordingly. Testing revealed that total network throughput was some-
times worse than that of a single-channel MAC. Initially, the designer attributed it
to the heavy cost of communication across clusters. To verify this hypothesis, the
original protocol, written for MicaZ motes, was instrumented to log radio channel
change events and message communication events (send, receive, acknowledge)
as well as related timeouts. It was tested on a motes network. Event logs from
runs where it outperformed a single-channel MAC were marked “good.” Event
logs from runs where it did worse were marked “bad.” Discriminative sequence
mining applied to the two sets of logs revealed a common pattern associated
prominently with bad logs. The pattern included the events No Ack Received,
Retry Transmission on Channel (1), Retry Transmission on Channel
(2), Retry Transmission on Channel (3), executed on a large number of
nodes. This quickly led the designer to understand a much deeper problem. When
a sender failed to communicate with a receiver in another cluster, it would leave its
home channel and start scanning other channels causing communication addressed
to it from upstream nodes in its cluster to fail as well. Those nodes would start
scanning too, resulting in a cascading effect that propagated up the network until
everyone was scanning and communication was entirely disrupted everywhere (both
within and across clusters). The protocol had to be redesigned.

1.2.2.2 An “Accumulative Effect” Bug

Often failures or performance problems arise because of accumulative effects such
as gradual memory leakage or clock overflow. While such effects evolve over a large
period of time, the example summarized below [24] shows how it may be possible to
use diagnostic debugging to understand the “tipping point” that causes the problem
to manifest. In this case, the operators observed sudden onset of successive message
loss in an implementation of directed diffusion [19], a well-known sensor network
routing protocol. As before, communication was logged together with timeout and
message drop events. Parts of logs coinciding with or closely preceding instances of
successive message losses were labeled “bad.” The rest were labeled “good.” Dis-
criminative sequence mining revealed the following sequential patterns correlated
with successive message loss:
Message Send (timestamp = 255), Message Send (timestamp = 0),
Message Dropped (Reason = "SameDataOlderTimeStamp").
The problem became apparent. A timestamp counter overflow caused subsequent
messages received to be erroneously interpreted as “old” duplicates (i.e., having
previously seen sequence numbers) and discarded.

1.2.2.3 A “Race Condition” Bug

Race conditions are a significant cause of failures in systems with a high degree of
concurrency. A previous case study [26] demonstrated how diagnostic debugging
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helped catch a bug caused by a race condition in their embedded operating sys-
tem called LiteOS [5]. When the communication subsystem of an early ver-
sion of LiteOS was stress-tested, some nodes would crash occasionally and non-
deterministically. LiteOS allows logging system call events. Such logs were col-
lected from (the flash memory of) nodes that crashed and nodes that did not, giving
rise to “good” and “bad” data sets, respectively. Discriminative sequence mining
revealed that the following sequence of events occurred in the good logs but not in
the bad logs: Packet Received, Get Current Radio Handle, whereas the fol-
lowing occurred in the bad logs but not in the good logs: Packet Received, Get
Serial Send Function. From these observations, it is clear that failure occurs
when Packet Received is followed by Get Serial Send Function before
Get Current Radio Handle is called. Indeed, the latter prepares the application
for receiving a new packet. At high data rates, another communication event may
occur before the application is prepared, causing a node crash. The race condition
was eliminated by proper synchronization.

1.2.2.4 An “Assumptions Mismatch” Bug

In systems that interact with the physical world, problems may occur when the
assumptions made in protocol design regarding the physical environment do not
match physical reality. In this case study [25], a distributed target tracking proto-
col, implemented on motes, occasionally generated spurious targets. The protocol
required that nodes sensing a target form a group and elect a group leader who
assigned a new ID to the target. Subsequently, the leader passed the target ID
on in a leader handoff operation as the target moved. Communication logs were
taken from runs where spurious targets were observed (“bad” logs) and runs where
they were not (“good” logs). Discriminative pattern mining revealed the absence of
member-to-leader messages in the bad logs. This suggested that a singleton group
was present (i.e., the leader was the only group member). Indeed, it turned out that
the leader hand off protocol was not designed to deal with a singleton group because
the developer assumed that a target would always be sensed by multiple sensors (an
assumption on physical sensing range) and hence a group would always have more
than one member. The protocol had to be realigned with physical reality.

While these preliminary results are encouraging, significant challenges remain.
For example, non-trivial scalability enhancements are needed. Scalability limita-
tions imply that the designer should have some intuition into which event types
and which event attributes to monitor. Since it is hard to tell which event types
are relevant to a bug in advance, ideally, we would like to be able to monitor a
large number of different event types and attributes, leaving it to a software tool
to ignore irrelevant ones automatically, without degrading efficiency in identifying
culprit event sequences. The patterns suspected of causing failures often have a false
dependence on workload. For example, the frequency of occurrence of many events
depends on the communication rate. If communication rates vary from one experi-
ment to the next, discriminative sequence mining often zooms-in on differences in
event traces caused by differences in communication rates and not by bugs. Some
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form of normalization is needed. Often one or a small number of initial (bad) events
create a cascading wave, where a larger number of repercussions follow, in turn
setting off an even larger number of measurable consequences (manifestations of
anomalous behavior). Identifying this causal chain (or, in many cases, tree) is hard
due to the difference in the frequency of occurrence of events at different levels in
the tree. Unsynchronized clocks often result in finding incorrect sequences making
it hard to infer distributed patterns correctly. Existence of multiple bugs often causes
decreased diagnostic accuracy. Events with multiple attributes (e.g., function calls
with multiple parameters) cause problems and have to be broken up into series of
events with single attributes, which in turn generates false event sequences. Address-
ing such challenges may require interdisciplinary collaboration between data min-
ing experts, machine learning experts, sensor networks experts, and troubleshooting
experts in order to provide solutions that both consider peculiarities and require-
ments of sensor network troubleshooting and leverage algorithmic expertise needed
for root cause diagnosis.

1.3 Data Interactions

Another important interaction space for sensor networks is the space of data inter-
actions. An emerging application model for networked sensing systems is that of
social sensing [1, 4], which broadly refers to applications that employ sensors used
by individuals in their homes, cars, offices, or on their person, whose measure-
ments may be shared for purposes of various application-related services. Social
sensing systems range from medical devices that measure human biometrics and
share them with medical repositories available to care-givers [29], location sen-
sors, and accelerometers in phones and cars that can be used to compute aggregate
information of community interest such as pollution or traffic patterns [9, 11, 17].
Traditional embedded and networked sensing systems research typically considers
computing systems that interact with physical and engineering artifacts and assumes
a single trust domain. Interaction of future embedded sensing devices with both
physical and social spaces (in multiple trust domains) creates new challenges, such
as loss of privacy, that can be broadly classified as data interaction challenges.

1.3.1 Privacy and Data Aggregation

Protection mechanisms from involuntary physical exposure are needed to enforce
physical privacy. Innovative optimization problems can be formulated by recog-
nizing that privacy is not a binary concept. When data are continuous and noisy,
privacy is more akin to a degree of uncertainty; a concept closely related to noise
and filtering in control applications. Control of voluntary information sharing must
facilitate privacy-preserving exchange of time-series data. A predominant use of
data in social sensing applications is for aggregation purposes such as mapping dis-
tributed phenomena or computing statistical trends. New mathematically based data
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perturbation and anonymization schemes are needed to hide user data but allow
fusion operations on perturbed or partial data to return correct results to a high
degree of approximation. These problems are difficult due to interactions between
data streams.

When sharing a single data item or stream, it is easy to reason about what
information is releaved and what information is withheld. When multiple streams
are shared, however (possibly by different individuals), correlations between these
streams may be exploited to make additional inferences that make it harder to con-
trol what exactly is being revealed. For example, sharing an acoustic energy signa-
ture from the neighborhood of a person on a campaign to reduce noise pollution may
reveal something about the person’s location if the noise level correlates with a train
or bus schedule on a known route. This data interaction challenge makes it espe-
cially hard to reason about privacy in a social sensing system. Nevertheless, certain
privacy assurances are often needed to encourage people to share the information
needed for the social sensing application to function. Hence, an important challenge
becomes one of understanding how to perturb (or decorrelate) data in such a way
that it becomes impossible to make additional privacy-violating inferences, beyond
what is explicitly allowed by the data owner.

Data aggregation operations are most common in social sensing systems where
multiple data streams need to be combined to compute some community-wide infor-
mation such as energy consumption trends, driving patterns, or fitness and weight
loss statistics. The challenge is to perturb a user’s sequence of data values such that
(i) the individual data items and their trend (i.e., their changes with time) cannot be
estimated without large error, whereas (ii) the distribution of the data aggregation
results at any point in time is estimated with high accuracy. Intuitively, privacy in
this context refers to the degree of uncertainty or error regarding a user’s individual
data. For instance, in a health-and-fitness application, it may be desired to find the
average weight loss trend of those on a particular diet or exercise routine as well
as the distribution of weight loss as a function of time on the diet. This is to be
accomplished without being able to reconstruct any individual’s weight and weight
trend without significant error.

1.3.2 Perturbation Examples and Time-Series Data

Examples of data perturbation techniques can be found in [2, 3, 10]. The general
idea is to add random noise with a known distribution to the user’s data, after which
a reconstruction algorithm is used to estimate the distribution of the original data.
Early approaches relied on adding independent random noise. These approaches
were shown to be inadequate. For example, a special technique based on random
matrix theory has been proposed in [23] to recover the user data with high accuracy.
Later approaches considered hiding individual data values collected from differ-
ent private parties, taking into account that data from different individuals may be
correlated [16]. However, they do not make assumptions on the model describing
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the evolution of data values from a given party over time, which can be used to
jeopardize privacy of data streams. By developing a perturbation technique that
specifically considers the data evolution model, one can prevent attacks that extract
regularities in correlated data such as spectral filtering [23] and principal component
analysis (PCA) [16].

In other work [11], it was shown that privacy of time-series data can be preserved
if the noise used to perturb the data is itself generated from a process that approx-
imately models the measured phenomenon. For instance, in the weight watchers
example, we may have an intuitive feel for the time scales and ranges of weight evo-
lution when humans gain or lose weight. Hence, a noise model can be constructed
that exports realistic-looking parameters for both the direction and time constant
of weight changes. We can think of this noise as the (possibly scaled) output of a
virtual user. Once the noise model is available, its structure and probability dis-
tributions of all parameters are agreed upon among all parties contributing to the
aggregation result. By choosing random values for these noise parameters from the
specified distribution, it is possible to generate arbitrary weight curves (of virtual
people) showing weight gain or loss. A real user can then add their true weight
curve to that of one or several locally generated virtual users obtained from the noise
model. The actual model parameters used to generate the noise are kept private. The
resulting perturbed stream is shared with the pool where it can be aggregated with
that of others in the community. Since the distributions of noise model parameters
are statistically known, it is possible to estimate the sum, average, and distribution
of added noise (of the entire community) as a function of time. Subtracting that
known average noise time series from the sum of perturbed community curves will
thus yield the true community trend. The distribution of community data at a given
time can similarly be estimated (using deconvolution methods) since the distribu-
tion of noise (i.e., data from virtual users) is known. The estimate improves with
community size.

An important question relates to the issue of trust. Given that non-expert users
cannot be asked to derive good noise models for their private data, how does a
non-expert client know that a given noise model is privacy-preserving? Obtaining
the noise model from an external party is risky. If the party is malicious, it could
send a “bad” model that is, say, a constant, or a very fast-changing function (that
can be easily separated from real data using a low-pass filter), or perhaps a function
with a very small range that perturbs real data by only a negligible amount. Such
noise models will not perturb data in a way that protects privacy.

Consider an information aggregation service that announces a suggested noise
model structure and parameter distribution to the community of users over which
aggregation is performed. The model announced by the server can be trusted by a
user only if that user’s own data could have been generated from some parameter
instantiation of that model with a non-trivial probability. This can be tested locally
by a curve fitting tool on the user’s side. Informally, a noise model structure and
parameter distributions are accepted by a user only if (i) the curve fitting error for
user’s own data is not too large and (ii) the identified model parameter values for
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user’s data (that result from curve fitting) are not too improbable (given the proba-
bility distributions of model parameters). A friendly user interface can be developed
to automate the verification of the noise model on the user’s behalf.

More formally, consider a particular application where an aggregation server
collects data from a community to perform statistics. In previous work [11], a
perturbation algorithm is described for a community of N individuals who share
M data points with the aggregation each (we assume this to be the same across
users for notational simplicity). Let xi = (xi
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munity distribution, f e

k (x) be the exact community distribution, fk(n) be the noise
distribution, and fk(y) be the perturbed community distribution. Most user data
streams can be generated according to either linear or non-linear discrete models.
In general, a model can be written as a discrete function of index k, which can
be time, distance, or other (depending on the application), parameters θ and inputs
u, and is denoted as g(k, θ,u). Notice that θ is a fixed length parameters vector
characterizing the model while u is a vector of length M characterizing the input
to the model at each instance. Given the data xi = (

xi
1, xi

2, . . . , xi
M

)
, the model

g(k, θ ,u), and the approximated distributions f n
θ (θ), f n

u (u), the perturbed data for
user i is generated by (i) generating samples θ i

n and ui
n, from the distributions f n

θ (θ)

and f n
u (u), respectively, (ii) generating noise stream ni = (ni

1, ni
2, . . . , ni

M

)
, where

ni
k = g

(
k, θ i

n, ui
n

)
, and (iii) generating perturbed data by adding the noise stream
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Now, consider reconstructing the distribution of community data at a given point

in time. At time instance k, the perturbed data of each user are the sum of the actual
data and the noise yi

k = xi
k + ni

k . Thus, the distribution of the perturbed data fk(y)
is the convolution of the community distribution fk(x) and the noise distribution
fk(n), fk(y) = fk(n) ∗ fk(x). All the distributions above can be discretized and
the equation can be rewritten as: fk(y) = H fk(x), where H is a Toeplitz cyclic
matrix, which is also called the blurring kernel, constructed from the elements of the
discrete distribution fk(n), fk(x) is the community distribution at time k that needs
to be estimated, H is known, and fk(y) is the empirical perturbed data distribution.
This problem is well known in the literature as the deconvolution problem. The
Tikhonov–Miller restoration method [34] can be employed to compute the com-
munity distribution. It requires an a priori bound ε for the L2 norm of the noise,
together with an a priori bound M for the L2 norm of the community distribution,∣∣∣∣H f e

k (x)− fk(y)
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2 ≤ ε and
∣∣∣∣(H T H)−ν f e
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∣∣∣∣

2 ≤ M .
The approach preserves individual user privacy while allowing accurate recon-

struction of community statistics. A multi-dimensional extension of this approach
was presented in recent literature [32]. In this example, perturbation was added to
the GPS trajectories of individual vehicles. The perturbed trajectories were then
shared with a central server, whose responsibility was to reconstruct traffic statistics
in a city. While the individuals who shared their data were allowed to “lie” about
their (i) GPS location, (ii) velocity, and (iii) time of day, the reconstruction was
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shown to be accurate in that it reported the true average speed on city streets as
a function of correct actual location and time. Figure 1.1 (reproduced from [32])
depicts the manner in which GPS trajectories are perturbed in this approach.
Figure 1.2 (reproduced from [32]) compares the distribution of ground truth speed
data to the reconstructed distribution obtained from perturbed shared data. It can
be seen that the two distributions are rather similar. As a measure of similarity,
Table 1.1 (reproduced from [32]) compares the percentages of speeding vehicles on
four city streets, obtained using original and perturbed data, respectively. It can be
seen that the estimates obtained from perturbed data are reasonably accurate.

Several research questions remain. For example, what is a good upper bound on
the reconstruction error of the data aggregation result as a function of the noise
statistics introduced to perturb the individual inputs? What are noise generation
techniques that minimize the former error (to achieve accurate aggregation results)
while maximizing the noise (for privacy)? How to ensure that data of individual
data streams cannot be inferred from the perturbed signal? Intuitively, this is doable
because traditional filtering methods such as PCA and spectral filtering work based
on the assumptions that additive noise is time independent, independent of the sig-
nal, and has a small variance compared to the signal variance. With a good per-
turbation scheme, these assumptions are violated. What are some bounds on mini-
mum error in reconstruction of individual data streams? What are noise generation
techniques that maximize such error for privacy? Privacy challenges further include
the investigation of attack models involving corrupt noise models (e.g., ones that
attempt to deceive non-expert users into using perturbation techniques that do not
achieve adequate privacy protection), malicious clients (e.g., ones that do not follow

Table 1.1 Percentage of speeding vehicles

Street Real % Reconstructed %

University Ave 15.60 17.89
Neil Street 21.43 23.67
Washington Street 0.5 0.15
Elm Street 6.95 8.6
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Fig. 1.1 Real and perturbed traffic trajectories for different perturbation levels
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Fig. 1.2 Real and reconstructed traffic speed distributions. (a) Real community speed distribution;
(b) Reconstructed speed distribution; (c) Real speed distribution on University Ave.; (d) Recon-
structed speed distribution on University Ave.; (e) Real speed distribution on Washington Ave.;
and (f) Reconstructed speed distribution on Washington Ave.

the correct perturbation schemes or send bogus data), and repeated server queries
(e.g., to infer additional information about evolution of client data from incremental
differences in query responses). For example, given that it is fundamentally impos-
sible to tell if a user is sharing a properly perturbed version of their real weight
or just some random value, what fractions of malicious users can be accommodated
without significantly affecting reconstruction accuracy of community statistics? Can
damage imposed by a single user be bounded using outlier detection techniques
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that exclude obviously malicious users? How does the accuracy of outlier detec-
tion depend on the scale of allowable perturbation? In general, how to quantify
the trade-off between privacy and robustness to malicious user data? How tolerant
is the perturbation scheme to collusion among users that aims to bias community
statistics? Importantly, how does the time-series nature of data affect answers to the
above questions compared to previous solutions to similar problems in other con-
texts (e.g., in relational databases)? The above challenges offer significant research
opportunities in the area of data interactions and social sensing.

The above perturbation techniques, defense solutions, and bounds are especially
challenging due to the presence of multiple correlated data streams, or data streams
with related context. For example, consider a social sensing application where users
share vehicular GPS data to compute traffic speed statistics in a city. In this case,
in order to compute the statistics correctly as a function of time and location, each
vehicle’s speed must be shared together with its current GPS location and time of
day. Perturbing the speed alone does not help privacy if the correct location of the
user must be revealed at all times. What is needed is a perturbation and reconstruc-
tion technique that allows a user to “lie” about their speed, location, and time of
day, altogether, in a manner that makes it impossible to reconstruct their true values,
yet allow an aggregation service to average out the added multi-dimensional noise
and accurately map the true aggregate traffic speed as a function of actual time and
space. This problem is related to the more general concern of privacy-preserving
classification [36, 37], except that it is applied to the challenging case of aggregates
of time-series data. Understanding the relation between multi-dimensional error
bounds on reconstruction accuracy and bounds on privacy, together with optimal
perturbation algorithms in the sense of minimizing the former while maximizing
the latter, remains an open research problem.

1.4 Temporal Interactions

The third important interaction space for computing applications that interface with
the physical world is the space of temporal interactions. Embedded computations
must generally obey not only functional integrity constraints but also timeliness con-
straints on results. Early applications of sensor networks focused on soft domains
where it was not critical to analyze timing properties. Eventually, as the range of
sensor network applications extends to include mission-criticial and safety-critical
ones, the timeliness of interactions with the physical world will become important.
Recent sensor network literature reflects increasing interest in analysis of real-time
behavior and time constraints [6, 13, 28, 33]. Hence, theory is needed to analyze
end-to-end delay in large networked sensing systems that execute a set of distributed
real-time tasks.

Timing correctness requirements arise due to data volatility, interaction with
mobile objects, and the need for timely reaction to environmental events. The time-
sensitive nature of sensor network applications and environmental interactions moti-
vates understanding of the real-time limitations of information transfer, such that
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future networks could be properly sized for the desired real-time transfer capability.
Real-time information transfer is characterized by deadlines on data communica-
tion. In a hard real-time application, only those bits that are transferred prior to
their deadlines contribute useful information. Missed deadlines result in adverse
consequences that range from utility loss to significant physical damage. Deadlines
could arise for various reasons, for example, the necessity to react to external events
in a timely manner, and the need to deliver dynamically changing data prior to the
expiration of their respective validity intervals.

Recently, information-theoretic bounds were derived for sensor networks that
quantify the ability of the network to transfer bytes across distance [12, 30]. For
time-sensitive applications, a more useful bound should also be a function of delay.
Observe that network delay and throughput are interrelated. Intuitively, the network
should be able to transfer more bits by their deadlines if the deadlines are more
relaxed. Finding a function that bounds achievable total capacity subject to delay
constraints is a new objective that has not been addressed in sensor network litera-
ture. We call it real-time capacity of distributed sensing systems.

1.4.1 Temporal Analysis of Distributed Systems

As a step toward a fundamental understanding of real-time capacity, significant
advances were independently made in the embedded systems and networking com-
munities to quantify the timing properties of distributed computation or communi-
cation. Existing techniques for analyzing delay/throughput trade-offs in distributed
systems can be broadly called decomposition based. Decomposition-based tech-
niques break the system into multiple subsystems, analyze each subsystem indepen-
dently, then combine the results. Network calculus [7, 8] (developed in the network-
ing community) and holistic analysis [31, 35] (developed in the embedded systems
community) fall into this category.

A deficiency with decomposition-based approaches is that by viewing the aggre-
gate problem as a set of smaller subproblems, often interactions between the sub-
problems are ignored or simplified. For example, network calculus does not accu-
rately account for the effects of pipelining between stages when multiple flows share
the same set of successive hops. It merely computes a delay bound on each hop
based on its service curve and its arrival curve (computed from the service curve
on the previous hop). Pipelining, however, makes it impossible for the same flow
to suffer the delay bound on several successive hops in a row. Intuitively, this is
because if a packet waits for many other packets to get processed on one hop, by the
time its turn comes, most of the other packets have already moved sufficiently down-
stream that they may not interfere with it again. Hence, this packet’s interference at
the downstream hop is lower than what the bound predicts. This is an example of
a temporal interaction between stages in a distributed system that leads to a sub-
additive property of individual (i.e., per hop) worst-case delay bounds. Generally
speaking, the worst-case delay of a task on two successive stages of processing is
deterministically less than the sum of its worst-case delays on the individual stages.
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An exception is the top priority task that suffers no interference on its path. There
is a need to quantify these subadditive delay properties of distributed computation.
At present, very little work exists toward a general theory for delay composition
and the relation of delay composition results to priorities of tasks and the amount of
present interference.

Consider, by contrast, the fundamental laws of circuit theory used to analyze lin-
ear electric circuits. In that theory, a small number of fundamental rules (e.g., Kirch-
hoff laws) allow a designer to analyze complex circuits of arbitrary interconnection
topology, reducing them to their effective transfer functions and deducing their exact
end-to-end characteristics, such as total impedance, current draw, and voltage drop.
The same compositionality is observed in feedback control theory, where compo-
nent models, represented by block diagrams, can be collapsed into an equivalent sin-
gle block that accurately expresses the overall system model and enables controller
design. A similar theory is needed for networked sensing systems that develop rules
for composition of temporal behavior of real-time system components. We call
this category of techniques for analyzing distributed systems reduction-based (as
opposed to decomposition-based) techniques. It is key for reductions to capture the
essential properties of components involved and the properties of their interactions.
This ensures that reductions do not lead to inaccuracies caused by ignored or over-
simplified dependencies.

1.4.2 Reduction-Based Analysis and Delay Composition Algebra

A recent reduction-based approach to composition of timing properties of dis-
tributed sensing systems is delay composition algebra [21]. Given a graph of sys-
tem resources, where nodes represent processing resources and arcs represent the
direction of job flow, algebraic operators systematically “merge” resource nodes,
composing their workloads per rules of the algebra, until only one node remains.
The workload of that node represents a single resource job set called the uniproces-
sor job set. Uniprocessor schedulability analysis can then be used to determine the
schedulability of the set.

Workload of any one node (that may represent a single resource or the result of
reducing an entire subsystem) is described generically by a two-dimensional matrix
stating the worst-case delay that each job, Ji , imposes on each other job, Jk , in
the subsystem the node represents. Let us call it the load matrix of the subsystem
in question. Observe that on a node that represents a single resource j , any job
Ji that is of higher priority than job Jk can delay the latter by at most Ji ’s worst-
case computation time, Ci, j , on that resource. This allows one to trivially produce
the load matrix for a single resource given job computation times, Ci, j , on that

resource. Element (i, k) of the load matrix for resource j , denoted q j
i,k (or just qi,k

for notational simplicity where no ambiguity arises), is simply equal to Ci, j as long
as Ji is of (equal or) higher priority than Jk . It is zero otherwise.

The main question becomes, in a distributed system, how to compute the worst-
case delay that a job imposes on another when the two meet on more than one
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resource? The answer decides how delay components of two load matrices are com-
bined when the resource nodes corresponding to these matrices are merged using
appropriate algebraic operators. Intuitions derived from single resource systems
suggest that delays are combined additively. This is not true in distributed systems.
In particular, it was shown in [20] that worst-case delays in pipelines are subad-
ditive because of gains due to parallelism caused by pipelining. More specifically,
the worst-case delay imposed by a higher priority job, Ji , on a lower priority job,
Jk , when both traverse the same set of stages varies with the maximum of Ji ’s per-
stage computation times, not their sum (plus another component we shall mention
shortly).

The delay composition algebra leverages the aforementioned result. Neighbor-
ing nodes in the resource DAG present an instance of pipelining, in that jobs that
complete execution at one node move on to execute at the next. Hence, when these
neighboring nodes are combined, the delay components, qi,k , in their load matrices
are composed by a maximization operation. In delay composition algebra, this is
done by the PIPE operator. It reduces two neighboring nodes to one and combines
the corresponding elements, qi,k , of their respective load matrices by taking the
maximum of each pair. For this reason, we call qi,k the max term.

It could be, however, that two jobs travel together in a pipelined fashion for a
few stages (which we call a pipeline segment), then split and later merge again for
several more stages (i.e., another pipeline segment). Consider a higher priority job
Ji and a lower priority job, Jk . In this case, the max terms of each of the pipeline
segments (computed by the maximization operator) must be added up to compute
the total delay that Ji imposes on Jk . It is convenient to use a running counter or
“accumulator” for such addition. Whenever the jobs are pipelined together, delays
are composed by maximization (kept in the max term) as discussed above. Every
time Ji splits away from Jk , signaling the termination of one pipeline segment,
the max term (i.e., the delay imposed by Ji on Jk in that segment) is added to the
accumulator. Let the accumulator be denoted by ri,k . Hence, ri,k represents the total
delay imposed by Ji on a lower priority job Jk over all past pipeline segments they
shared. Observe that jobs can split apart only at those nodes in the DAG that have
more than one outgoing arc. Hence, in the algebra, a SPLIT operator is used when
a node in the DAG has more than one outgoing arc. SPLIT updates the respective
accumulator variables, ri,k , of all those jobs Jk , where Jk and a higher priority job
Ji part on different arcs. The update simply adds qi,k to ri,k and resets qi,k to zero.

In summary, in a distributed system, it is useful to represent the delay that one
job Ji imposes on another Jk as the sum of two components qi,k and ri,k . The qi,k

term is updated upon PIPEs using the maximization operator (the max term). The
ri,k is the accumulator term. The qi,k is added to the ri,k (and reset) upon SPLITs,
when Ji splits from the path of Jk . PIPE and SPLIT are thus the main operators of
the algebra. In the final resulting matrix, the qi,k and ri,k components are added to
yield the total delay that each job imposes on another in the entire system.

The final matrix is indistinguishable from one that represents a uniprocessor
task set. In particular, each column k in the final matrix denotes a uniprocessor
job set of jobs that delay Jk . In this column, each non-zero element determines
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the computation time of one such job Ji . Since the transformation is agnostic to
periodicity, in the case of periodic tasks, Ji and Jk simply represent the parameters
of the corresponding periodic task invocations. Hence, for any task, Tk , in the origi-
nal distributed system, the final matrix yields a uniprocessor task set (in column k),
from which the schedulability of task Tk can be analyzed using uniprocessor schedu-
lability analysis.

Finally, the above discussion omitted the fact that the results in [20] also speci-
fied a component of pipeline delay that grows with the number of stages traversed
by a job and is independent of the number of higher priority jobs, called the stage-
additive component, sk . Hence, the load matrix, in fact, has an extra row to represent
this component. As the name suggests, when two nodes are merged, this component
is combined by addition. A detailed account of delay composition algebra, including
a complete exact specification of its operators and examples of its use, can be found
in [20–22]. One can easily envision examples from the sensor networks domain,
where aggregation trees, for instance, lead to traffic patterns where transmission of
individual flows (represented as a pipeline of forwarding stages) forms a DAG or
convergecast graph, whose end-to-end delay may need to be bounded. Other exam-
ples include query processing applications, where a single query may be divided
across multiple nodes to be evaluated against different subsets of data, then the
results combined. Given multiple queries of different query processing graphs, their
end-to-end timing behavior can be analyzed using the above approach.

Delay composition algebra is a step toward understanding temporal interactions
and composition of timing properties in distributed sensing systems. In turn, this
understanding can lead to a quantification of new notions of real-time capacity. Sev-
eral questions must be answered for a useful real-time capacity theory to emerge:

• Load metrics: Real-time capacity must be expressed in appropriate load metrics.
For example, classical schedulability bounds are expressed in terms of utilization.
For distributed systems, one must determine which of the family of viable load
metrics is the “best” metric to use to quantify the ability of the system to meet
timing constraints.

• Sufficient capacity regions: Real-time capacity quantifies system load that can
be supported within time constraints, which known as the schedulability prob-
lem. Schedulability, however, is an NP-hard problem and gives rise to very com-
plex (porcupine) scheduable state spaces. To derive practical analytic capacity
expressions, sufficient schedulability conditions must be found, meaning those
defined by simple surfaces that encompass most (but not necessarily all) states
in which timing constraints are met. We call them capacity regions. There is an
inherent trade-off between the simplicity of capacity regions and their degree
of approximation. Good compromises must be sought that maintain simplicity
without introducing excessive pessimism.

• Composition rules: Rules must be defined for composing capacity regions of
large systems from those of their subsystems. In general, starting with capac-
ity regions of elementary components, one should be able to compose capac-
ity regions of arbitrarily large systems. Most importantly, capacity expressions
should not become more pessimistic with composition. For very large systems,
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where the number of components can be viewed as infinite, continuous forms
of composition rules are needed. Composition becomes an integration operation
over functions of component densities as opposed to an operation that is carried
out on individual components. Delay composition algebra is a first step toward
defining such composition rules.

• Optimization algorithms: Capacity regions define sets of system states that meet
sufficient time constraints. It may be desired to optimize various metrics within
those constraints. For example, one might want to derive points of maximum
sensor network throughput or minimum total energy consumption within capac-
ity region boundaries.

A new real-time capacity theory should make it possible to understand the timing
behavior of large real-time sensing networks with in-network computation at inter-
mediate hops. It should also become possible to quantify end-to-end behavior of
complex distributed sensing applications such as distributed power grid control and
telepresence. The theory should help understand how prioritization affects real-time
capacity. It will be possible, for example, to do a cost/benefit analysis of prioritizing
different sensor data queues in a complex distributed sensing application since the
theory will quantify the effect of prioritization on the load/timeliness trade-off. The
needed theory is different from previous foundations for analysis of network delay
that consider networks as graphs of links that carry packets in that the role of com-
putation on network nodes must be considered together with communication. The
real-time capacity is a general notion that does not make limiting assumptions on
the types of processing resources involved. Hence, both network transmissions and
CPU processing should be analyzable within the same framework. This framework
is needed to understand the end-to-end timing behavior of large systems involving
tightly intertwined computation, communication, and sensing.

1.5 Interactions of System Dynamics

The final interaction space for distributed sensing systems addressed in this chapter
is the space of system dynamics. Control engineers are trained to analyze dynamics
of physical and embedded systems and verify their adherence to desired specifi-
cations. Unfortunately, dynamics (in a control-theoretic sense) are not a term that
computer scientists normally come in contact with in their education. As a result,
dynamics of feedback loops that pervade the design of computing software are often
poorly accounted for and poorly understood. While it is easy to use simple heuris-
tics to ensure the stability of feedback loops within smaller subsystems, unexpected
consequences may arise when such subsystems are combined.

1.5.1 Sources of Dynamics in Software

Informally, software dynamics occur when systems involve “delayed” or “cumu-
lative” response that may be approximated by differential or difference equation
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models. An example of software features that generate dynamics is an action taken
by one system component that depends on results of another action taken by another
component in the past. Another example is when some action or system parameter
depends on a previously accumulated value of another parameter. For example,
the number of packets waiting in a network queue depends on the accumulation
(i.e., integral) of differences between past enqueue and dequeue rates. This depen-
dency on previous values can be captured by a difference equation creating software
dynamics.

If all causal responses within a software system were instantaneous, the system
becomes strictly reactive in that it instantly reaches a state that is a function of only
currently applied stimuli. However, in most systems, effects depend not only on
current state but also on previous states. This is especially true in sensor networks,
where queues and other communication delays create significant dependencies on
past states. Hence, analysis of dynamics is needed. This analysis is especially crit-
ical in computing systems when feedback is used. Dynamics imply that software
decisions are made based on past information (e.g., due to delays in acquiring
or communicating the information) or that effects of actions are not immediately
observed (for example, a reduction in source sending rates in a congested network
will take some time before it diffuses network delays). If software feedback loops
do not properly address dynamics, they may “under-” or “over-react.” For example,
sending rates might not be decreased enough to eliminate congestion, or conversely
might be cut too much, thereby unnecessarily degrading performance. Stability is
the property of a feedback loop that allows it to converge over time to desired per-
formance. Control theory allows designers to analyze stability, convergence rate,
overshoot, and other dynamic response properties of computing systems. In partic-
ular, control theory explains that while individual components may be stable, their
composition may not be necessarily so. Hence, using ad hoc techniques in designing
feedback in software systems may result in components that work well in isolation,
but have poor performance when combined.

The above discussion suggests that composing, analyzing, controlling, and opti-
mizing performance of large-scale networked sensing systems is an important prob-
lem, complicated by increased system size, a growing number of tunable parameters
(and hence feedback loops that tune them), subtle interactions among distributed
components, and limited observability of internal software state at run-time.

The problem is of growing importance. The increasing cost of managing large
systems suggests that sensor networks and the information processing systems
they serve will operate with progressively less human oversight. The trend toward
increasingly autonomous, larger, and more interconnected systems exacerbates the
problem in two important ways:

• First, autonomy implies increasing need for adaptive or self-tuning behavior.
Many aspects of system functionality will be automated, creating a large number
of feedback loops. For example, MAC-layer algorithms may automatically deter-
mine the best line transmission rates such that reliability is maximized. Routing
may automatically determine the least-cost routes as load on different network
components changes. Congestion control may automatically determine the best
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application sending rate to prevent bottlenecks and overload. Application knobs
such as fidelity of information processing may be manipulated depending on fac-
tors such as currently available energy or user demand.

• Second, increased system scale implies interactions among a larger number of
components, which makes component composition a growing problem. As devel-
oper teams that build software systems grow, each developer becomes responsible
for a progressively smaller fraction of the system, essentially leading to myopic
design. Unintended interactions among different feedback loops in such a design
can lead to unexpected effects on aggregate performance. Individually designed
adaptive or automated modules with efficient performance management poli-
cies (when considered in isolation) might contribute to significant performance
degradation when put together. Research and management tools are needed to
address these performance composability problems, especially when designers
and operators do not have the analytic background to analyze overall dynamics
and stability of their systems.

1.5.2 Examples of Dynamic Interactions

To give an example of adverse interactions and illustrate the importance of address-
ing composability of dynamic behavior in the context of distributed sensing sys-
tems, consider a scenario drawn from the domain of communication protocols. Let
shortest path routing be one policy that constantly discovers shorter routes between
sources and destinations. Let the MAC-layer rate adaptation policy, on the other
hand, tune the radio transmission rate to match channel quality (a lower rate is used
on lower quality channels). While each policy is individually well motivated, com-
posing the two policies leads to an adverse interaction. Shortest path routing may
prefer longer hops (so there are fewer of them on the path). Longer hops tend to have
lower quality, which causes the radio to lower its transmission rate. At the lower rate,
new more distant neighbors may be discovered leading to shorter routes. Switching
to those routes reduces channel quality again, leading to further rate reductions.
This adverse feedback cycle ultimately diminishes throughput. Such composition
problems are expected to increase in software systems as these systems become
more complex (i.e., made of more components) and feature more capabilities for
adaptation.

Interestingly, adverse interactions may result even when the different adaptive
policies have the same objective. These unintended interactions stem from subtle
incompatibilities between their performance management mechanisms. Consider a
distributed data processing back-end that performs multistage data fusion for a large
sensing system. Two mechanisms are installed to save energy during off-peak load
conditions. The first mechanism is to power off those machines that are underuti-
lized and distribute their load across other machines in their tier. When all machines
exhibit high utilization, extra machines are powered on. We call it the On/Off policy.
The second mechanism is to employ dynamic voltage scaling (DVS) on individual
processors such that the speed and voltage of a machine are reduced when the
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Fig. 1.3 Two adaptation
policies in a multi-tier server
farm and their combination
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machine is underutilized and increased when it is overloaded. We call it the DVS
policy. The two policies work well in isolation. Previous literature reports [14] that
the two policies combined may actually result in a higher energy consumption than
when one policy is used in isolation. This effect is shown in Fig. 1.3.

The explanation lies in unmodeled dynamics. If the DVS policy is aggressive
enough, whenever the utilization of a machine decreases, the policy reduces clock
frequency (and voltage) thus slowing down the machine and restoring a high uti-
lization value. From the perspective of the (DVS-oblivious) On/Off policy, the farm
becomes “fully utilized,” as the measured utilization of all machines is high. This
drives the On/Off policy to needlessly turn machines on in an attempt to relieve
the full utilization condition. DVS will slow down the clock further, causing more
machines to be turned on, and so on. Figure 1.3 also shows that proper joint control
of both knobs (labeled “our approach” in the figure) does improve performance over
tuning either knob in isolation.

To uncover unintended loops, a formal analysis of the system should use stability
notions from control theory. A simplified analysis technique, based on the notion of
adaptation graphs, was presented in previous computing literature [14]. Nodes in an
adaptation graph represent the key variables in the system such as delay, throughput,
utilization, length of different queues, and settings of different policy knobs. Arcs
represent the direction of causality. For example, consider a back-end data server
that serves queries over a network. When the utilization, U , of the outgoing link
increases, the delay, D, of served requests increases as well (because they wait
longer to be sent over the congested link). Hence, an arc exists from utilization to
delay, U → D, indicating that changes in the former affect the latter. The arcs
in the adaptation graph are annotated by either a “+” or a “−” sign depending
on whether the changes are in the same direction or not. In the example at hand,
since an increase in utilization causes a same-direction change in delay (i.e., also an
increase), the arc is annotated with a “+” sign: U →+ D. Some of the arcs represent
fundamental natural phenomena (for example, an increase in delay is a natural con-
sequence of an increase in utilization). Others represent programmed behavior or



24 T. Abdelzaher

policies. For example, an admission controller may be programmed to decrease the
fraction of admitted requests, R, in response to an increase in delay, D. Hence, an
arc exists in the adaptation graph from delay to admitted requests, D →− R. The
arc is annotated with a “−” sign because an increase in delay results in a change
in the opposite direction (i.e., a decrease) in admitted requests. This arc does not
represent a natural phenomenon but rather the way the admission control policy is
programmed. These arcs are called policy arcs and annotated with the name of the
module implementing the corresponding policy. Hence, we have D →−

AC R, where
AC stands for the admission control module. Figure 1.4a depicts the adaptation
graph of the data server under consideration. The graph is composed of three arcs.
The arc D →−

AC R reflects that the admission controller reduces the number of
admitted requests when delay increases and vice versa. The arc R →+ U reflects
the natural phenomenon that any changes in the number of admitted requests result
in same-direction changes in outgoing link utilization. Finally, the arc U →+ D
expresses the fact that changes in link utilization cause changes in delay (in the same
direction). The three arcs form a cycle (a feedback loop). An interesting property of
the loop is that the product of the signs of the arcs is negative. This indicates a
negative feedback loop, which is expected for stability.

As another example, consider a network power management middleware that
measures links utilization, U. If the link utilization is low, the server workload must
be low. The middleware thus engages dynamic voltage scaling (DVS) on the server
to lower processor voltage, V , and frequency, F , hence reducing power consump-
tion, P , due to the off-peak load condition. This adaptation action can be expressed
as U →+

PM V and U →+
PM F , where PM stands for power management middleware

(i.e., a decrease in link utilization causes the policy to decrease both voltage and
frequency which explains the signs on the arcs). In turn, we have V →+ P and
F →+ P , which says how power consumption changes with voltage and frequency.
Finally, we have F →− D, since lowering frequency (i.e., slowing down a proces-
sor) increases delay and vice versa. Figure 1.4b depicts the adaptation graph for the
network power management middleware.

As might be inferred from above, each component or subsystem of a larger sys-
tem has its own adaptation graph that describes what performance variables this
component is affecting and what causality chains (or loops) exist within. When
a system is composed, the adaptation graphs of individual components are coa-
lesced. Figure 1.4c shows the combined adaptation graph that results when a server
described in Fig. 1.4a operates on top of the middleware described in Fig. 1.4b.
To check for incompatibilities (adverse interactions), the graph is searched for loops
using any common graph traversal algorithm. Loops that traverse component bound-
aries are emergent behavior loops that have not been created by design. In particular,
if the product of signs on one such loop is positive, the cycle indicates an unsafe
feedback loop. In other words, a stimulus reinforces itself causing more change in
the same direction. In control-theoretic terms, such a loop is unstable.

For example, in Fig. 1.4c, the cycle U →+
PM F , F →− D, D →−

AC R,
R →+ U crosses module boundaries and has positive sign product, indicating
that it is unstable. The cycle is an instance of an adverse interaction explained as
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Fig. 1.4 Examples of adaptation graphs and their combination. (a) Adaptation graph of an admis-
sion controller of a performance-aware server; (b) Adaptation graph of a network power manage-
ment middleware; and (c) Combined adaptation graph of the two

follows. Starting with the node labeled, U , when the network utilization decreases
in the server, the power management middleware causes the server to slow down.
This, in turn, increases the delay experienced by served requests causing the admis-
sion controller to accept fewer requests. The reduced accepted number of requests
will further decrease the load on the network link, causing the power management
middleware to slow down processors even more. This, in turn, may cause a more sig-
nificant reduction in admitted requests and a further reduction in network load. This
cycle could ultimately bring the server to a crawl, indeed an adverse consequence
of unintended interaction.

Analytic foundations and tools are needed for the design, composition, and opti-
mization of performance of large-scale distributed, adaptive, sensing systems. Much
of our future infrastructure, such as power grids, homeland defense systems, and
disaster recovery systems will likely be able to make use of insights and contri-
butions of such a theory. It should be noted that despite the promise of control-
theoretic techniques in analysis of system dynamics, they fall short of analysis of
networked sensing systems. This is because computing systems offer new nonlin-
earities and different functionalities not adequately modeled by linear difference
equations. Hence, extensions are needed to non-linear control to address the specific
nonlinear and functional behaviors common to networked sensing systems in order
to reason about their closed loop behavior. Such techniques must further be scaled
to predict emergent behavior of large highly interconnected, interacting systems, as
opposed to analyzing performance of isolated feedback loops.
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1.6 Summary

This chapter described some practical considerations in the design of large net-
worked sensing systems that arise in different interaction spaces between sys-
tem components. Functional, data, temporal, and dynamic interaction spaces were
explored. It was shown that new challenges arise in handling problems that occur by
virtue of scale. Problems and interactions addressed in this chapter do not typically
manifest themselves in smaller deployments. Tools and techniques are needed for
sensor network designers to address the above composition and scaling challenges.
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Chapter 2
Scheduling and Power Assignments
in the Physical Model

Alexander Fanghänel and Berthold Vöcking

Abstract In the interference scheduling problem, one is given a set of n
communication requests each of which corresponds to a sender and a receiver in
a multipoint radio network. Each request must be assigned a power level and a color
such that signals in each color class can be transmitted simultaneously. The feasi-
bility of simultaneous communication within a color class is defined in terms of the
signal to interference plus noise ratio (SINR) that compares the strength of a signal
at a receiver to the sum of the strengths of other signals. This is commonly referred
to as the “physical model” and is the established way of modeling interference in
the engineering community. The objective is to minimize the schedule length corre-
sponding to the number of colors needed to schedule all requests. We study oblivious
power assignments in which the power value of a request only depends on the path
loss between the sender and the receiver, e.g., in a linear fashion. At first, we present
a measure of interference giving lower bounds for the schedule length with respect
to linear and other power assignments. Based on this measure, we devise distributed
scheduling algorithms for the linear power assignment achieving the minimal sched-
ule length up to small factors. In addition, we study a power assignment in which
the signal strength is set to the square root of the path loss. We show that this power
assignment leads to improved approximation guarantees in two kinds of problem
instances defined by directed and bidirectional communication request. Finally, we
study the limitations of oblivious power assignments by proving lower bounds for
this class of algorithms.

2.1 Introduction

Simultaneously transmitted radio signals interfere with each other. Early theoretical
approaches (see, e.g., [11, 13, 17]) about scheduling signals or packets in radio
networks resort to graph-based vicinity models (also known as protocol model) of
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the following flavor. Two nodes in the radio network are connected by an edge in
a communication graph if and only if they are in mutual transmission range. Inter-
ference is modeled through independence constraints: If a node u transmits a signal
to an adjacent node v, then no other node in the vicinity of v, e.g., in the one- or
two-hop neighborhood, can transmit. The problem with this modeling approach is
that it ignores that neither radio signals nor interference ends abruptly at a boundary.

Recent theoretical studies [1–4, 6, 7, 9, 14, 15] use a more realistic model, the
so-called physical model, which is well accepted in the engineering community.
It is assumed that the strength of a signal diminishes with the distance from its
source. More specifically, let d(u, v) denote the distance between the nodes u and v.
We assume the path loss radio propagation model, where a signal sent by node u
with power p is received at node v with p/d(u, v)α , where α ≥ 1 is parameter
of the model, the so-called path loss exponent.1 A signal sent with power p by
node u is received by node v at a strength of p/d(u, v)α . Node v can successfully
decode this signal if its strength is relatively large in comparison to the strength of
other signals received at the same time. This constraint is described in terms of the
signal to interference plus noise ratio (SINR) being defined as the ratio between the
strength of the signal that shall be received and the sum of the strengths of signals
simultaneously sent by other nodes (plus ambient noise). For successfully receiving
a signal, it is required that the SINR is at least β with β > 1 being the second
parameter of the model, the so-called gain.

Let us illustrate the physical model with a simple but intriguing example showing
the importance of choosing the right power assignment. Suppose there are two pairs
of nodes (u1, v1) and (u2, v2). Two signals shall be sent simultaneously, one from u1
to v1 and the other from u2 to v2. Suppose the nodes are placed in a nested fashion
on a line, that is, the points are located on the line in the order u1, u2, v2, v1 such
that the distance between u1 and u2 is two, the distance between u2 and v2 is one,
and the distance between v2 and v1 is two (cf. Fig. 2.1). For simplicity fix α = 2
and β = 1 and neglect the noise.

• At first, let us assume that both u1 and u2 send their signal with the same power
1. Then the strength of u1’s signal at node v1 is 1/25 while the strength of u2’s
signal at the same node is 1/9. Hence, v1 cannot decode the signal sent by node
u1 as it is drowned by u2’s signal. That is, the outer pair is blocked by the inner
pair when using uniform powers.

• At second, let us assume that signals are sent in a way that the path loss is
compensated, that is, both nodes use a strength that is linear in the path loss.
In particular, u1 sends at power 25 and u2 sends at power 1. Now consider the
strengths of the signals received at v2: The strength of u2’s signal is only 1 while
the strength of u1’s signal is 25/9. Thus, the inner pair is blocked by the outer
pair when using powers that are chosen linear in the path loss.

• Finally, let us make an attempt setting the powers equal to the square root of
the path loss, that is, u1 uses power 5 and u2 uses power 1. Now easy calculus

1 Depending on the environment, it is usually assumed that α has a value between 2 and 5.
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u1 v1u2 v2

25

1

9

9

Fig. 2.1 Placement of the nodes and the path loss for α = 2. Linear and uniform power assignment
both need different schedule steps for each of the requests, the square root power assignment can
schedule both requests at once

shows that, at v1, the strength of u1’s signal is larger than the strength of u2s
and, at v2, the strength of u2’s signal is larger than the strength of u1s. Hence,
simultaneous communication between the nested pairs is possible when choosing
the right power assignment.

In this chapter, we investigate interference scheduling problems like the one in the
example above. In general, one is given a set of n communication requests, each
consisting of a pair of points in a metric space. Each pair shall be assigned a power
level and a color such that the pairs in each color class can communicate simultane-
ously at the specified power. The feasibility of simultaneous communication within
a color class is described by SINR constraints. The objective is to minimize the
number of colors, which corresponds to minimizing the time needed to schedule
all communication requests. As this problem is NP-hard [1], we are interested in
approximation algorithms.

The interference scheduling problem consists of two correlated subproblems: the
power assignment and the coloring. By far, most literature focuses on scheduling
with uniform power assignment, in which all pairs send at the same power (see, e.g.,
[8, 12, 18]). In other studies, the linear power assignment is considered, in which
the power level for a pair (u, v) is chosen proportional to the path loss d(u, v)α . In
the example above, we have seen that choosing powers proportional to the square
root of the path loss might be an interesting alternative. All these power assignments
have the advantage that they are locally computable independent of other requests,
which allows for an immediate implementation in a distributed setting. These are
examples of oblivious power assignments which mean the power level assigned to
a pair is defined as a function of the path loss (or the distance) between the nodes of
a pair.

2.1.1 Outline

In Sect. 2.2, we formally introduce the physical model with SINR constraints and
show a helpful robustness property of this model. In Sect. 2.3, we study scheduling
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algorithms for the linear power assignment. In particular, we introduce a measure
of interference giving lower bounds for the schedule length with respect not only
to linear but also to other power assignments. Based on this measure, we devise
distributed scheduling algorithms for the linear power assignment achieving the
minimal schedule length up to small factors. In Sect. 2.4, we study the square root
power assignment. We show that this power assignment leads to better approxima-
tion guarantees in two kinds of problem instances defined by directed and bidirec-
tional communication request. In Sect. 2.5, we study the limitations of oblivious
power assignments by proving lower bounds for this approach. Finally, in Sect. 2.6
we summarize the results from our presentation with pointers to the literature and
open problems.

2.2 Notation and Preliminaries

Let the path loss exponent α ≥ 1 and the gain β > 1 be fixed. Let V be a set of
nodes from a metric space. Let d(u, v) denote the distance between two nodes u
and v. One is given a set R of n requests consisting of pairs (ui , vi ) ∈ V 2, where
ui represents the source and vi the destination of the signal from the i th request.
W.l.o.g., we assume mini∈R d(ui , vi ) = 1. Let Δ = maxi∈R d(ui , vi ) be the aspect
ratio. We say that a set R of requests is a nearly equilength set, if the lengths of the
requests in R differ by at most factor 2.

In the interference scheduling problem one needs to specify a power level pi > 0
and a color ci ∈ [k] := {1, . . . , k} for every i ∈ [n] := {1, . . . , n} such that the
latency, i.e., the number of colors k, is minimized and the pairs in each color class
satisfy the SINR constraint, that is, for every i ∈ [n], it holds

pi

d(ui , vi )α
≥ β

⎛

⎜⎜
⎝
∑

j∈[n]\{i}
c j=ci

p j

d(u j , vi )α
+ ν

⎞

⎟⎟
⎠ (2.1)

The SINR constraint is the central condition for successful communication in the
physical model. It characterizes the received strength of the signal emitted from ui

at receiver vi compared to ambient noise ν and the interference from signals of all
other senders in the same color class. The so-called scheduling complexity of R, as
introduced by Moscribroda and Wattenhofer [14], is the minimal number of colors
(steps) needed to schedule all requests in R.

In this chapter we focus on distance-based power assignments because of their
simplicity and locality, which is a striking conceptual advantage in distributed
wireless systems. An oblivious (or distance-based) power assignment p is given
by pi = φ(d(ui , vi )) with a function φ : [1,Δ] → (0,∞). For uniqueness
we assume that φ is always scaled such that φ(1) = 1. Examples are the uni-
form φ(d(ui , vi )) = 1 or the linear φ(d(ui , vi )) = d(ui , vi )

α power assignment.
Recently, the square root assignment φ(d(ui , vi )) = d(ui , vi )

α/2 has attracted some
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interest [5, 9] as it yields better approximation ratios for request scheduling than the
uniform and the linear power assignment.

We define the relative interference on a request i from a request set R as

RIi (R) = ci · d(ui , vi )
α

pi
·
∑

j∈R

p j

d(u j , vi )α

where

ci = β

1 − β · ν · pi/d(ui , vi )

denotes a constant that indicates the extent to which the ambient noise approaches
the required signal at the receiver of request i . The relative interference describes the
received interference at receiver vi normalized by the received signal strength. The
relative interference satisfies the two following properties for a request set R. First,
R is SINR feasible iff for every i ∈ R, RIi (R) ≤ 1. Second, the relative interference
function is additive, that is, for every partition R = R1∪̇R2 and every request i it
holds RIi (R) = RIi (R1)+ RIi (R2).

We denote with an r-signal set or schedule one where each requests relative
interference is at most 1/r .

2.2.1 Robustness of the Physical Model

The main criticism of graph-based models is that they are too simplistic to model
real wireless networks. The physical model requires simplifying assumptions, too,
as (2.1) models no obstructions, perfectly isotropic radios and a constant ambient
noise level.

In the following proof (from [10]) we show that there are only minor changes
in the schedule length, if there are minor changes in the signal requirements. This
justifies the analytic study of the physical model despite its simplifying assumptions.

Proposition 1 Let R be a r-signal schedule under a power assignment p. Then there
exists a r ′-signal schedule R′ for p that is at most �2r ′/r�2 times longer than R, for
r ′ > r .

Proof Let R be a r -signal schedule and T be a single schedule step. We show that
we can decompose T in at most �2r ′/r� slots T1, T2, . . . that are r ′-signal sets. We
now process the requests in T by increasing index. For request i , assign it to the first
set Tj , in which the relative interference on i is at most 1/2r ′. Since every request
had at most a relative interference of 1/r , it follows from the additivity of relative
interference that there are at most

⌈
1/r

1/2r ′

⌉
=
⌈

2r ′

r

⌉
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such sets. In each of these sets Tj the relative interference from requests with lower
index is at most 1/2r ′. Now, for each of these sets we repeat this process, processing
the requests in Tji , now in reverse order. Using the same arguments Tj is split into
at most �2r ′/r� sets. In that way we make sure that the requests in each set have a
relative interference of at most 1/2r ′ from requests with higher index, which bounds
the total relative interference on each request by 1/r ′, while using at most �2r ′/r�2

times more slots than the original schedule. �

2.3 Scheduling with the Linear Power Assignment

In the first part we focus on the linear power assignment, i.e., the power for a
request pair (ui , vi ) is equal to d(ui , vi )

α and, hence, linear in the path loss. The
linear power assignment has the advantage of being energy efficient as the minimal
transmission power required to transmit along a distance d(ui , vi ) is proportional to
d(ui , vi )

α .
We first present a measure of interference I , which allows us to lower bound the

schedule for general metrics using the linear power assignment byΩ(I ). If we allow
any power assignment, the schedule length can be bounded by Ω(I/logΔ log n).
For α > 2, embedding the instance in the Euclidean space improves this bound to
O(I/logΔ).

These results are complemented by a simple and efficient algorithm computing
a schedule using O(I · log n) steps. A more sophisticated algorithm computes a
schedule using O(I + log2 n) steps. This gives a constant factor approximation of
the optimal schedule using the linear power assignment for dense instances, i.e., if
I ≥ log2 n.

2.3.1 Measure of Interference and Lower Bounds

We first present an instance-based measure of interference I , which allows us to
lower bound the number of steps needed for scheduling a request set R in terms
of I .

Definition 1 (Measure of Interference) Let R ⊆ V × V be a set of requests. For
w ∈ V define

Iw(R) =
∑

(u,v)∈R

min

(
1,

d(u, v)α

d(u, w)α

)

Using this function we define the measure of interference induced by the requests
in R:

I = I (R) = max
w∈V

Iw(R)
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w1

w2

Fig. 2.2 An example for the measure of interference with three requests. Gray circles mark the
areas where the interference from a sender is at least 1. For the red node Iw2 is 1 plus the inter-
ference from the two rightmost senders (each less than 1). The interference is maximal at the blue
node w1, i. e., Iw1 = 3, so the measure of interference I for this instance is I = 3

An example of the measure of interference is illustrated in Fig. 2.2.
Observe that I is subadditive, i.e., for R = R1 ∪ R2 it holds

I (R) = max
w∈V

Iw(R) ≤ max
w∈V

{Iw(R1)+ Iw(R2)}
≤ max

w∈V
Iw(R1)+ max

w∈V
Iw(R2) = I (R1)+ I (R2)

Theorem 1 Let T be the minimum schedule length for a set of requests R with the
linear power assignment. Then we have T = Ω(I ).

Proof Let there be a schedule of length T when using the linear power assign-
ment. Then there exist sets of requests R1, . . . , RT each of which satisfies the SINR

constraint for this power assignment. As I is subadditive we have I
(⋃T

t=1 Rt

)
≤

∑T
t=1 I (Rt ). Thus it suffices to show that I (Rt ) = O(1) for every t ∈ {1, . . . , T },

as this implies T = Ω(I ).
Let Rt = {(u1, v1), . . . , (un̄, vn̄)} and let w ∈ V . Furthermore, let v j be the

receiver from Rt that is closest to w, i.e., j ∈ arg mini∈[n̄] d(vi , w). Possibly
w = v j .

We distinguish between two kinds of requests. We define a set U of indices of
requests whose senders ui lie within a distance of at most 1

2 d(v j , w) from w, i.e.,
U = {i ∈ [n̄] | d(ui , w) ≤ 1

2 d(v j , w)}. Using the triangle inequality we can
conclude for all i ∈ U :

d(ui , v j ) ≤ d(ui , w)+ d(w, v j ) ≤ 3

2
d(v j , w) (2.2)

In addition, we have

d(v j , w) ≤ d(vi , w) ≤ d(vi , ui )+ d(ui , w) ≤ d(vi , ui )+ 1

2
d(v j , w)



38 A. Fanghänel and B. Vöcking

Here the first equation holds since v j is the closest receiver tow, the second equation
holds by triangle inequality and the third step follows from the definition of U . This
implies

d(v j , w) ≤ 2d(ui , vi ) (2.3)

Combining (2.2) and (2.3) we get d(ui , v j ) ≤ 3d(ui , vi ). Thus it holds

|U \ { j}| =
∑

i∈U
i �= j

d(ui , vi )
α

d(ui , vi )α
≤
∑

i∈U
i �= j

d(ui , vi )
α

1
3α d(ui , v j )α

≤ 3α

β

Hence,

Iw(U ) =
∑

i∈U

min

{
1,

d(ui , vi )
α

d(ui , w)α

}
≤ 3α

β
+ 1

Next we upper bound Iw(Rt \ U ). For all i ∈ [n̄] \ U it holds that

d(ui , v j ) ≤ d(ui , w)+ d(w, v j ) ≤ d(ui , w)+ 2d(ui , w) = 3d(ui , w)

by applying triangle inequality and the definition of U . As a consequence

Iw(Rt \ U ) ≤
∑

i∈[n̄]\U
i �= j

d(ui , vi )
α

d(ui , w)α
≤

∑

i∈[n̄]\U
i �= j

d(ui , vi )
α

1
3α d(ui , v j )α

≤ 3α

β

Thus

Iw(Rt ) ≤ Iw(U )+ Iw(Rt \ U ) = 2 · 3α

β
+ 1 = O(1)

�
Theorem 2 Let T denote the optimal schedule length using any power assignment.
Then we have T = Ω (I/logΔ · log n).

Proof We use a similar technique as in the proof of Theorem 1. However, we have
to deal with an unknown power assignment. Since there is a schedule of length T
in this power assignment, there exist sets of requests R1, . . . , RT each of which
satisfies the SINR constraint for this power assignment. We divide such a set Rt into
logΔ classes Ct, j = {(u, v) ∈ Rt | 2 j−1 ≤ d(u, v) < 2 j }. Again, by using the
subadditivity of I , it suffices to show that I (Ct, j ) = O(log n) for such a class. Fix
Ct, j and let Ct, j = {(u1, v1), . . . , (un̄, vn̄)}. Further, for notational simplicity we
write L = 2 j−1.
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As an important fact we can bound the number of requests whose senders are
located around a node within a distance of at most 	.

Lemma 1 For all w ∈ V , 	 ≥ L we have for K	(w) = {i ∈ [n̄] | d(ui , w) ≤ 	}:

|K	(w)| ≤ 1

β

(
4	

L

)α
+ 1

Proof Let p be the power assignment that allows all requests to be served in a single
time slot. Let furthermore (uk, vk) be the request with k ∈ KL(w) that is transmitted
with minimal power pk . As the SINR condition is satisfied for request (uk, vk), we
get

1

β

pk

d(uk, vk)α
≥

∑

i∈K	(w)
i �=k

pi

d(ui , vk)α
≥

∑

i∈K	(w)
i �=k

pi

(2	+ 2L)α
≥ (|K	(w)| − 1) · pk

(2	+ 2L)α

So

|K	(w)| − 1 ≤ 1

β

(
2	+ 2L

d(uk, vk)

)α
≤ 1

β

(
4	

L

)α

�
Now, let w ∈ V . We prove Iw(Ct, j ) = O(log n). W. l. o. g., let u1, . . . , un̄ be

ordered by increasing distance to w. Note that for all 	 > 0 we have K	(w) =
{1, . . . , x} for some x ∈ N by this definition.

For k ≤ log n̄ + 1 let Sk = [2k] \ [2k−1]. Furthermore, let 	k be defined as
	k = mini∈Sk d(ui , w). For the value of Iw(Ct, j ) follows from these definitions:

Iw(Ct, j ) =
n̄∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , w)α

}

≤
log n̄+1∑

k=1

∑

i∈Sk

d(ui , vi )
α

d(ui , w)α
+

∑

i∈KL (w)

1 ≤ (2L)α
log n̄+1∑

k=1

|Sk |
	αk

+ |KL(w)|

As the distances are increasing, we have 	k ≥ d(ui , w) for all i ≤ 2k−1. In other
words [2k−1] ⊆ K	k (w).

Since we add up the interference induced by requests from KL(w) separately, we
may assume 	k ≥ L for all k and thus apply Lemma 1 on |K	k (w)|, which gives

2k−1 = |[2k−1]| ≤ |K	k (w)| ≤
(

4	k

L

)α
+ 1
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Consequently, we have

	αk ≥ (2k−1 − 1)

(
L

4

)α

Using the above results for 	αk and |KL(w)| we can bound Iw(Ct, j ) by

(2L)α
log n̄+1∑

k=1

2k−1

(2k−1 − 1)
( L

4

)α +
(

4α

β
+ 1

)
≤ 8α

log n̄+1∑

k=1

2 + 4α

β
+ 1 = O(log n)

�
Earlier results restricted the instances often to the Euclidean plane and required

α to be strictly greater than 2. Under these assumptions we can use geometric argu-
ments to get an even better bound of Ω(I/logΔ) on the optimal schedule length, as
we show in the following.

Theorem 3 Let the instance be located in the Euclidean plane, let α > 2, and let
T denote the optimal schedule length using any power assignment. Then we have
T = Ω (I/logΔ).

Proof Again, we divide the requests into logΔ · T classes Ct,i . This time, we have
to prove Iw(Ct,i ) = O(1). Let us remark that in the Euclidean plane a ring of inner
radius L · r and width L can be covered by 8(r + 1) circles of radius L . If x is the
center of such a circle, we get from Lemma 1 that |KL(x)| ≤ 4α

β
. Thus we have

|KL(r+1)(w) \ KLr (w)| ≤ 8(r + 1) 4α
β

≤ 16r 4α
β

= r 4α+2

β
for r ≥ 1. We can bound

Iw(Ct, j ) by

Iw(Ct, j ) ≤
∞∑

r=1

|KL(r+1)(w) \ KLr (w)| · (2L)α

(Lr)α
+ |KL(w)|

Using the above result we get

Iw(Ct, j ) ≤ 2α
4α+2

β

∞∑

r=1

r1−α + 4α

β
≤ 4α

β

(
2α42α − 1

α − 2
+ 1

)
= O(1)

�

2.3.2 Upper Bounds for the Linear Power Assignment

The measure of interference enables us to design randomized algorithms using
the linear power assignment, i.e., the power for the transmission from u to v is
c · d(u, v)α for some fixed c ≥ βν. As a key fact, we can simplify the SINR
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constraint in this setting as follows. If R is a set of requests that can be scheduled in
one time slot, we have for all nodes v′ with (u′, v′) ∈ R

∑

(u,v)∈R
(u,v) �=(u′,v′)

c · d(u, v)α

d(u, v′)α
≤ c

β
− ν

Since β > 1 we can write equivalently

Iv′(R) =
∑

(u,v)∈R

min

{
1,

d(u, v)α

d(u, v′)α

}
≤ 1

β
− ν

c
(2.4)

For simplicity of notation we replace 1
β
− ν

c by 1
β ′ in the following proofs.

The idea of our basic algorithm (Algorithm 1) is that each sender decides ran-
domly in each time slot if it tries to transmit until it is successful. The probability of
transmission is set to 1

2β ′ I and is not changed throughout the process.

Algorithm 1 A simple single-hop algorithm
1: while packet has not been successfully transmitted do
2: try transmitting with probability 1

2β ′ I
3: end while

Theorem 4 Algorithm 1 generates a schedule of length at most O(I log n) whp.

Proof Let us first consider the probability of success for a fixed request (uk, vk) in
a single step of the algorithm. Let Xi , i ∈ [n], be the 0/1 random variable indicating
if sender ui tries to transmit in this step. Assume a sender uk tries to transmit in this
step, i.e., Xk = 1. To make this attempt successful, the interference constraint (2.4)
has to be satisfied. We can express this event as Z ≤ 1/β ′ where Z is defined by

Z =
∑

i∈[n]
i �=k

min

{
1,

d(ui , vi )
α

d(ui , vk)α

}
Xi

We have E [Z ] ≤ 1/2β ′ and thus we can use Markov’s inequality to bound the
probability that this packet cannot be transmitted successfully by

PrZ ≥ 1

β ′
≤ PrZ ≥ 2E [Z ] ≤ 1

2

To make the transmission successful the two events Xk = 1 and Z ≤ 1/β ′ 1
β ′ have

to occur. Since they are independent it holds that

PrXk = 1, Z ≤ 1

β ′
= PrXk = 1 · PrZ ≤ 1

β ′
≥ 1

2β ′ I

(
1 − 1

2

)
= 1

4β ′ I
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The probability for packet k not to be successfully transmitted in (k0 + 1)4β ′ I ln n
independent repeats of such a step is therefore at most

(
1 − 1

4β ′ I

)(k0+1)4β ′ I ln n

≤ e−(k0+1) ln n = n−(k0+1)

Applying a union bound we get an overall bound on the probability that one of n
packets is not successfully transmitted in these independent repeats by n−k0 . This
means all senders are successful within O(I log n) steps whp.

An obvious disadvantage of the basic algorithm is that the probability of trans-
mission stays the same throughout the process. To improve it, one idea could be to
increase the probability of transmission after some transmissions have successfully
taken place. This is why we need the following weighted Chernoff bound that can
deal with dependent random variables.

Lemma 2 Let X1, . . . , Xn be 0/1 random variables for which there is a p ∈ [0, 1]
such that for all k ∈ [n] and all a1, . . . , ak−1 ∈ {0, 1}

PrXk = 1 | X1 = a1, . . . Xk−1 = ak−1 ≤ p (2.5)

Let furthermore w1, . . . , wn be reals in (0, 1] and μ ≥ p
∑
wi . Then the weighted

Chernoff bound

Pr
n∑

i=1

wi Xi ≥ (1 + δ)μ ≤
(

eδ

(1 + δ)(1+δ)

)μ

holds.

Proof (Sketch). To show this bound, a standard proof for the weighted Chernoff
bound [16] can be adapted. By using the definition of expectation and repeatedly
applying (2.5), one can show that

E
[
et X
]
≤

n∏

i=1

(
petwi + 1 − p

)

although random variables are no more independent. In the original proof no other
step makes use of the independence. �

We can now use this bound to analyze Algorithm 2. This algorithm assigns ran-
dom delays to all packets. The maximum delay is decreased depending on I curr,
which denotes the measure of interference that is induced by the requests that have
not been scheduled at this point.

The algorithm works as follows: During one iteration of the outer while loop by
repeatedly assigning random delays to the packets the measure of interference is
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Algorithm 2 An O(I + log2 n) whp algorithm
1: while I curr ≥ log n do
2: J := I curr

3: while I curr ≥ J
2 do

4: if packet i has not been successfully transmitted then
5: assign a delay 1 ≤ δi ≤ 16eβ ′ J i. u. r.
6: try transmission after waiting the delay
7: end if
8: end while
9: end while

10: execute algorithm Algorithm 1

reduced to a half of its initial value. This is repeated until we have I curr < log n and
the basic algorithm is applied.

Our first observation is that reducing I curr by factor 2 takes O(I curr) scheduling
steps whp.

Lemma 3 During one iteration of the outer while loop of Algorithm 2, the inner
while loop is executed at most k0 + 2 times with probability at least 1− n−k0 for all
constants k0.

Proof Let us first consider a single iteration of this loop. We assume all senders
are taking part as if none has been successful during this iteration of the outer while
loop yet. We only benefit from any previous success.

Observe, if the senders of a set S are transmitting and there is a collision for
packet i we have

∑

j∈S
j<i

min

{
1,

d(u j , v j )
α

d(u j , vi )α

}
>

1

2β ′
or
∑

j∈S
j>i

min

{
1,

d(u j , v j )
α

d(u j , vi )α

}
>

1

2β ′

In the first case let Y<
i = 1, in the second one Y>

i = 1. We now show
that the random variables Y<

1 , . . . , Y<
n fulfill (2.5) for p = 1

8e . Let us fix
k ∈ [n] and a1, . . . , ak−1 ∈ {0, 1}. We have to show PrY<

k = 1 | Y<
1 = a1,

. . . ,Y<
k−1 = ak−1 ≤ p.

Since the delays δi are drawn independently they can be considered as if they
were drawn one after the other in the order δ1, δ2, . . .. Then the value of Y<

i would
already be determined after drawing δi by definition. In other words, the values of
δ1, . . . , δk−1 already determine the values of Y<

1 , . . . ,Y<
k−1. It follows that there is

a subset M ⊆ [16eβ ′ J ]k−1 of delay values such that Y<
1 = a1, . . . ,Y<

k−1 = ak−1 iff
(δ1, . . . , δk−1) ∈ M .

Now let Xi be a 0/1 random variable for i ∈ [k − 1] such that Xi = 1 iff δi = δk .
We can observe that we have for all (b1, . . . , bk−1) ∈ [16eβ ′ J ]k−1:

E
[
Xi | δ1 = b1, . . . , δk−1 = bk−1

] = 1

16eβ ′ J
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Define furthermore

Z<k =
k−1∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , vk)α

}
Xi

with E
[
Z<k | δ1 = b1, . . . , δk−1 = bk−1

] ≤ 1
16eβ ′ . Now it holds that

Pr [ Y<
k = 1 | δ1 = b1, . . . , δ j−1 = bk−1 ]

= PrZ<k >
1

2β ′

∣∣∣
∣ δ1 = b1, . . . , δk−1 = bk−1

≤ 2β ′E
[
Z<k | δ1 = b1, . . . , δk−1 = bk−1

]

= 1

8e
= p

We now apply the law of alternatives:

PrY<
k = 1 | Y<

1 = a1, . . . ,Y<
k−1 = ak−1

=
∑

(b1,...,bk−1)∈M

Prδ1 = b1, . . . , δk−1 = bk−1 | Y<
1 = a1, . . . ,Y<

k−1 = ak−1

·PrY<
k = 1 | δ1 = b1, . . . , δk−1 = bk−1

≤ p

Thus, for w ∈ V , we may apply Lemma 2 on I<w defined as follows:

I<w =
n∑

i=1

min

{
1,

d(ui , vi )
α

d(ui , w)α

}
Y<

i

This random variable indicates the remaining measure of interference that is caused
by these collisions. Setting δ = 2e − 1 and μ = J

8e Lemma 2 states

PrI<w ≥ J

4
≤ 2−

J
4 ≤ n−1

Now consider the situation after k0+2 iterations of the inner while loop. Since these
are independent repeats we have

PrI<w ≥ J

4
≤ n−(k0+2)

With a symmetric argument this also applies to I>j . For a sender that has not been
successful we have Z<j + Z>j ≥ 1. This means we have the bound I curr

w ≤ I<w + I>w .
For the remaining measure of interference I curr = maxw∈V I curr

w we can conclude
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PrI curr ≥ J

2
≤
∑

w∈V

PrI curr
w ≥ J

2

≤
∑

w∈V

PrI<w ≥ J

4
or I<w ≥ J

4

≤ n
(

n−(k0+2) + n−(k0+2)
)

≤ n−k0

�
Using the previous lemma, we can bound the numbers of steps that are generated

in the while loops.

Theorem 5 Algorithm 2 generates a schedule of length at most O(I + log2 n) steps
whp.

Proof Let Tk denote the number of scheduling steps generated in the kth execution
of the outer while loop. As shown in the previous lemma, it holds that

Prvk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I ≤ 1

nk0+1

Let furthermore U denote the number of scheduling steps generated in the execution
of Algorithm 1. As shown in Lemma 4, it holds that

PrU ≥ (k0 + 2) 4β ′ ln n log n ≤ 1

nk0+1

Thus the total number of steps generated in the while loops
∑

k vk + U can be
estimated by

Pr
∑

k

vk + U ≥ (k0 + 3) 32eβ ′ I + (k0 + 2) 4β ′ ln n log n

≤ Pr
∨

k

vk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I ∨ U ≥ (k0 + 2) 4β ′ ln n log n

≤
∑

k

Prvk ≥ (k0 + 3) 16eβ ′ 1

2k−1
I + PrU ≥ (k0 + 2) 4β ′ ln n log n

≤
∑

k

1

nk0+1
+ 1

nk0+1

≤ (log n + 1)
1

nk0+1

≤ 1

nk0

This means the total number of steps upper bounded by
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(k0 + 3) 32eβ ′ I + (k0 + 2) 4β ′ ln n log n = O(I + log2 n)

with probability at least 1 − 1
nk0

. �
In sufficiently dense instances, i.e., I ≥ log2 n, this algorithm yields a constant-

factor approximation for the optimal schedule compared to the linear power assign-
ment with high probability. Compared to the optimal power assignment the approx-
imation factor then is O(logΔ · log n) whp for general metrics, respectively.
O(logΔ) for the two-dimensional Euclidean plane.

Algorithm 1 can be implemented in a distributed way losing a factor log n in the
following way. In contrast to the centralized problem, the nodes do not know the
correct value of I , thus, they do not know their transmission probability. Now in the
distributed setting the algorithm processes in each while iteration log n steps, where
in each of these steps the transmission probability is halfed, that is, starting by 1/2β ′
down to 1/2β ′n.

Algorithm 2 can be modified analogously, leading to a schedule of length
O(log n · (I + log2 n)) whp.

2.4 Scheduling with the Square Root Power Assignment

The scheduling algorithms for the linear power assignment presented in Sect. 2.3
achieve an approximation factor of order logΔpolylog n in comparison to an opti-
mal solution with respect to general power assignments. In this section, we show
that the square root power assignment admits schedules beating this bound achiev-
ing an approximation factor of order log logΔpolylog n. Furthermore, we present
a bidirectional variant of the interference scheduling problem in which the square
root power assignment yields an approximation of order polylog n and is, hence,
independent of the aspect ratio.

2.4.1 Scheduling Directed Requests

In this section we show how to achieve an O(log logΔ log3 n) approximation on
the interference scheduling problem using square root power. To prove this result
we first show two properties that make use of the following definitions. We call a set
R of requests well separated, if the length of any pair of requests differs by a factor
of either at most 2 or at least 16n2/α . We say that two requests (ui , vi ) and (u j , v j )

are τ -close under the square root power assignment if max{RIi ( j),RI j (i)} ≥ τ .

Lemma 4 Let R be a well-separated SINR-feasible set of requests. Let (u0, v0) be a
request that is shorter than the requests in R by at least a factor of 16n2/α . If all the
requests in R are 1/2n-close to (u0, v0) under the square root power assignment,
then |R| = O(log logΔ).
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Proof Let R′ be a maximum 3α-signal subset of R, let n′ denote the number of
requests in R′ and w.l.o.g. let the requests in R′ be labeled in increasing order of
length. From Proposition 1 we know

∣
∣R′∣∣ = n′ ≥ |R| /9α . As all the requests in R′

are 1/2n-close to (u0, v0), R′ consists of two types of requests:

• Requests j for which the ratio between j’s interference and the received signal
from u0 at receiver v0 is at least 1/2n (or

√
d(u0, v0) · d(u j , v j )

α ≥ d(u j , v0)
α ·

1
2n ) and

• Requests j for which the ratio between u0’s interference and the received signal
from j’s sender at v j is at least 1/2n (or

√
d(u0, v0) · d(u j , v j )

α ≥ d(u0, v j )
α ·

1
2n ).

We only consider the former type, the argument is almost identical for the latter type
and will be left to the reader.

Let j, j ′ ∈ R′, w.l.o.g. assume j ≥ j ′. As they are 1/2n-close to (u0, v0), it
holds

√
d(u0, v0) · d(u j , v j )

α ≥ d(u j , v0)
α · 1

2n (and analogously for j ′). So we get

d(u j , v0) ≤
√

d(u0, v0) · d(u j , v j )(2n)1/α

and

d(u j ′ , v0) ≤
√

d(u0, v0) · d(u j ′ , v j ′)(2n)1/α

With triangle inequality we can conclude

d(u j ′ , v j ) ≤ d(u j ′, vi )+ d(vi , u j )+ d(u j , v j )

≤ d(u j , v j )+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j )

Applying α ≥ 1 and d(u j , v j ) ≥ 16n2/αd(u0, v0) to this inequality, we get

d(u j ′, v j ) ≤ d(u j , v j )+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j ) ≤ 2d(u j , v j )

For technical simplicity, we use the more relaxed d(u j ′ , v j ) < 3d(u j , v j ) in the
following. Using the same arguments as above we get

d(u j , v j ′) ≤ d(u j ′ , v j ′)+ 21+1/αn1/α
√

d(u0, v0) · d(u j , v j )

Multiplying this inequality with d(u j ′ , v j ) < 3d(u j , v j ) it follows

(u j ′ , v j )·d(u j , v j ′)<3d(u j , v j )d(u j ′ , v j ′)+12n1/αd(u j , v j )

√
d(u0, v0) · d(u j , v j )
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Since R′ is a 3α-signal set, we have d(u j ′ , v j ) ·d(u j , v j ′) ≥ 9d(u j , v j ) ·d(u j ′, v j ′).
Again, applying the well separation, the last two inequalities yield (with canceling
a 6d(u j , v j ) factor)

d(u j ′ , v j ′) < 2n1/α
√

d(u0, v0) · d(u j , v j ) (2.6)

This equation implies d(u j , v j ) > 2d(u j ′ , v j ′). By well separation of R it follows
d(u j , v j ) ≥ 16n2/αd(u j ′ , v j ′). Now it follows from (2.6)

d(ui+1, vi+1) ≥ d(ui , vi )
2

4d(u0, v0)n2/α
≥ 2d(ui , vi )

2

d1

for any i ∈ {2, . . . , n′}. Let λi = d(ui , vi )/d(u1, v1). Then λi+1 ≥ 2λ2
i and by

induction λn′ ≥ 22n′−1−1. Hence, n′ = ∣∣R′∣∣ ≤ lg lg λn′ + 2 = lg lgΔ + 2, which
proves the lemma. �

Lemma 5 Let R be a well-separated set of requests. If any subset of R containing
only nearly equilength requests can be scheduled with the linear power assignment
using at most c colors, then all requests in R can be scheduled with O(c log logΔ)
colors using the square root power assignment.

Proof In the following we show that a single step from a schedule of R can be
scheduled in O(log logΔ) steps. Let R = R1∪̇R2∪̇ . . . ∪̇Rt denote the decompo-
sition of R in length groups, such that the length of the requests in each group
differs by at most factor 2 and in different groups by at least factor 16n2/α . First
we transform the schedules for each length group in an r -signal schedule, with
r = 2α/2. This changes the number of schedule steps by at most factor (r + 1)2

(by Proposition 1). Let T =⋃i Ti be a single schedule step from the schedule of R
and let Ti denote the requests in T from length group Ri . W.l.o.g., let the requests
in T be ordered by decreasing length.

Lemma 4 states that for each request i there are at most O(log logΔ) longer
requests in T that are 1/2n-close to i . Let p = O(log logΔ) denote this bound.
Now process the requests i ∈ T by decreasing length: Assign i to a step T ′

j with
j ∈ [p + 1] that does not contain a 1/2n-close request for i .

It remains to show that this assignment yields a feasible schedule. Consider a
request i ∈ T ′

j that originally came from set Rk . The relative interference on i from
nearly equilength requests in T ′

j ∩ Rk under the linear power assignment is at most
1/r , since each length group is an r -signal set. We first analyze the influence from
changing the power assignment from linear to square root in a length class. It holds
for two requests a and b for the linear power assignment

RIa ((ub, vb)) = ca · d(ua, va)
α

pa
· pb

d(ub, va)α
= ca · d(ub, vb)

α

d(ub, va)α
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and for the square root power assignment

RIa ((ub, vb)) = ca ·√d(ua, va)α ·
√

d(ub, vb)
α

d(ub, va)α

Since the requests in the same length class differ by at most factor 2 combining
these two bounds yields that changing the power in a feasible schedule from the
linear power assignment to the square root power assignment changes the relative
interference by a factor of at most 2α/2 in such nearly equilength request sets. Thus,
the relative interference on i from requests in the same length class is at most 1/2.
On the other hand, the relative interference on i from requests not in the same length
class is at most 1/2n each, by construction, which is at most 1/2 in total. The relative
interference on each link is not greater than one, which gives us an SINR-feasible
schedule. �
Theorem 6 Suppose there exists a ρ-approximate algorithm for the interfer-
ence scheduling problem on nearly equilength request sets using uniform power
assignment. Then there exists an O(ρ · log logΔ · log n)-approximate algo-
rithm for the interference scheduling problem using the square root power
assignment.

Proof Let R be the set of requests. We partition R into k =
⌈

2
α

log 16n
⌉

well-

separated sets as follows. Let R1, R2, . . . denote length groups with Ri = { j ∈
R | d(ui , vi ) ∈ [2i−1, 2i )}. Then, partition R into classes Bi = ∪ j Ri+ j ·k , for
i = 1, 2, . . . , k. Now the theorem follows from applying Lemma 5 on each of the
classes Bi separately. �

Recall that Algorithm 2 had an approximation ratio of O(logΔ log2 n) in general
metrics. For nearly equilength request sets this ratio reduces to O(log2 n), which
gives the following result.

Corollary 1 The interference scheduling problem in general metrics has an approx-
imation factor of O(log logΔ · log3 n) for the square root power assignment.

For instances embedded in the Euclidean plane the approximation factor of Algo-
rithm 2 is O(logΔ log n) which reduces to O(log n) for nearly equilength request
sets.

Corollary 2 For α > 2, the interference scheduling problem in the two-dimensional
Euclidean space has an approximation factor of O(log logΔ · log2 n) for the square
root power assignment.

2.4.2 Scheduling Bidirectional Requests

Most communication protocols used in practice rely on bidirectional point-to-point
communication. This is reflected by the following variant of the physical model in
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which requests are undirected, that is, each of the two nodes of a request acts as both
sender and receiver. The SINR constraint is adapted as follows. For every request
pair (ui , vi ) ∈ R and w ∈ {ui , vi }, it must hold

pi

d(ui , vi )α
≥ β

⎛

⎜⎜
⎝
∑

j∈[n]\{i}
c j=ci

p j

min{d(u j , w)α, d(v j , w)α} + ν

⎞

⎟⎟
⎠

In every request set that fulfills this condition the two nodes of a request can
exchange messages in both directions, as long as only one of them acts as sender at
any given time.

In this setting, bounded, linear, and superlinear power functions still can have
schedule lengths of Ω(n), while the optimal schedule has constant length. This can
be shown by a straightforward adaption of the proof for Theorem 8. For sublinear
assignments this adaption is not possible. In fact, we show in the following that the
square root power assignment guarantees an approximation factor of O(log3 n).

First, we need the following technical lemma.

Lemma 6 Let (ui , vi ) and (u j , v j ) be two requests. If they can be scheduled simul-
taneously, then

min{d(wi , w j )}2 ≥ β2/α · d(ui , vi ) · d(u j , v j )

Proof Letw1 ∈ {ui , vi } andw2 ∈ {u j , v j }, such that min{d(wi , w j )} = d(w1, w2).
The SINR constraint gives

pi

d(ui , vi )α
≤ β

p j

d(w1, w2)α

and

p j

d(u j , v j )α
≤ β

pi

d(w1, w2)α

From multiplying both equations follows

d(w1, w2)
2 ≥ β2/α · d(ui , vi ) · d(u j , v j )

�
Lemma 7 Let R be a set of requests that can be scheduled with an arbitrary power
assignment and let i be a request. Then there is at most a constant number of
requests j ∈ R with d(u j , v j ) ≥ n2/α · d(ui , vi ) that cause a relative interference
of at least 1/2n on i under the square root power assignment.
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Proof In the following we show that for fixed β there is at most one request j ∈ R
with d(u j , v j ) ≥ n2/α ·d(ui , vi ) that causes a relative interference of at least 1/2n on
i under the square root power assignment. By Proposition 1 this yields the claimed
result.

Assume that there are two requests j, j ′ ∈ R with d(u j , v j ) and d(u j ′ , v j ′) at
least n2/α · d(ui , vi ) that cause a relative interference of more than 1/2n on i under
the square root power assignment. W.l.o.g, let d(u j , v j ) ≥ d(u j ′ , v j ′). For k ∈
{ j, j ′} and w ∈ {ui , vi } let dm = min{d(uk, w), d(vk, w)}. The relative interference
under the square root power assignment implies

(√
d(uk, vk)d(ui , vi )

dm

)α
≥ 1

2n

This implies

dm ≤ (2n)1/α
√

d(uk, vk) · d(ui , vi ) ≤ (2n)1/α
√

d(u j , v j ) · d(ui , vi )

To avoid notational clutter, let d(u j , v j ′) be the minimal distance between j and j ′.
Applying triangle inequality we get

d(u j , v j ′) ≤ 2dm ≤ 2(2n)1/α
√

d(ui , vi ) · d(u j , v j )

≤ 2(2n)1/α
√

d(u j ′ , v j ′)

n2/α
· d(u j , v j ) ≤ 21+1/α

√
d(u j , v j ) · d(u j ′ , v j ′)

Thus

d(u j , v j ′)
2 ≤

(
2α+1

)2/α
d(u j , v j ) · d(u j ′ , v j ′)

From Lemma 6 follows for β < 2α+1 there is at most one request j ∈ R with
d(u j , v j ) ≥ n2/α · d(ui , vi ) that causes a relative interference of at least 1/2n on i
under the square root power assignment. �

We now can use an almost identical approach like shown in Lemma 5 and Theo-
rem 6 for the unidirectional case.

Lemma 8 Let R be a request set where the length of every pair of links differs by at
most factor 2 or at least n2/α . If any subset of R containing only nearly equilength
requests can be scheduled with the linear power assignment using at most c colors,
then all requests in R can be scheduled with O(c) colors.

Theorem 7 Suppose there exists a ρ-approximate algorithm for the bidirectional
interference scheduling problem on equilength requests. Then there exists an algo-
rithm for the bidirectional interference scheduling problem with approximation fac-
tor O(ρ log n) for the square root power assignment.
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We omit the proofs for these lemmas, as the arguments are analogous to the
unidirectional case. For scheduling the equilength request sets we again can use
Algorithm 2.

Corollary 3 The bidirectional interference scheduling problem in general metrics
has an approximation factor of O(log3 n) for the square root power assignment.

Corollary 4 For α > 2, the bidirectional interference scheduling problem in the
two-dimensional Euclidean space has an approximation factor of O(log2 n) for the
square root power assignment.

2.5 The Gap of Oblivious Power Schemes

Our upper bounds on the approximation ratios of oblivious scheduling algorithms
for directed communication requests depend on the aspect ratio. In this section,
we show that the dependence on the aspect ratio is unavoidable. To prove this we
construct a family of instances for a given oblivious power assignment function f
such that using f requires at least Ω(n) colors or schedule steps while an optimum
power assignment needs only O(1) rounds.

Theorem 8 Let f : R>0 → R>0 be any oblivious power assignment function. There
exists a family of instances on a line that requiresΩ(n) colors when scheduling with
the powers defined by f whereas an optimal schedule has constant length.

Proof We distinguish three cases. In the first case, we assume that f is asymptot-
ically unbounded, that is, for every c > 0 and every x0 > 0 there exists a value
x > x0 with f (x) > c.

We consider the following family of instances. They consist of n pairs (ui , vi ) on
a line, with distances xi between two nodes of a pair and χyi between neighboring
pairs. Depending on β, we choose χ as a suitable constant that is large enough to
get along with different values of β.

Formally, this kind of instance can be defined by u1, v1, . . . , un, vn ∈ R such
that

ui =
{

0 if i = 1

vi−1 + χyi otherwise
and vi = ui + xi

We now define the distances xi and yi between the nodes recursively depending on
the function f :

yi = 2(xi−1 + yi−1)

Given x1, . . . , xi−1 and yi , we choose xi such that xi ≥ yi and

f (xi ) ≥ yαi
f (x j )

xαj
for all j < i
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This is always possible since f is asymptotically unbounded. By this construction it
is ensured that a pair k is exposed to high interference by pairs with larger indices.
To show this, let S ⊆ [n] be a set of indices of pairs that can be scheduled together
in one step; k = min S.

For i ∈ S \ {k} it holds that

d(ui , vk) =
i−1∑

j=k+1

x j +
i∑

j=k+1

χ · y j ≤ 2χ
i∑

j=k

y j ≤ 2χ
i∑

j=k

1

2i− j
yi ≤ 4χyi

Since all pairs in S can be scheduled in one step the SINR condition is satisfied for
pair k:

β
∑

i∈S\{k}

pi

d(ui , vk)α
≤ pk

d(uk, vk)α
= f (xk)

xαk

Putting these facts together

1

β

f (xk)

xαk
≥
∑

i∈S\{k}

pi

d(ui , vk)α
≥
∑

i∈S\{k}

yαi
f (xk )
xαk

(4χyi )α
= |S| − 1

(4χ)α
f (xk)

xαk

This implies |S| ≤ (4χ)α

β
+ 1, which means there are at least β

(4χ)α+β n = Ω(n)
colors needed when using pi = f (d(si , di )).

On the other hand for these instances there is a power assignment, pi = √
2i ,

such that there is a coloring using a constant number of colors. This is caused by the
fact that for all instances described it holds that yi ≤ xi and yi+1 ≥ 2xi . Thus for
any link k the interference by the ones with higher index as well as the ones with
lower index forms a geometric series. This means a constant fraction of all links
may have the same color and therefore there is a coloring using a constant number
of colors.

In the second case, we assume that f is asymptotically bounded from above
by some value c > 0 but does not converge to 0. In this case, there exists a value
b ∈ (0, c] such that for every x0 > 0 there exists a value x > x0 with f (x) ∈ [b, 2b].
Let χ > 1 be a suitable constant. We choose n numbers x1, . . . , xn satisfying the
properties (a) f (xi ) ∈ [b, 2b], for 1 ≤ i ≤ n, and (b) xi ≥ χxi−1, for 2 ≤ i ≤ n.
We set ui = −xi/2 and vi = xi/2. This instance corresponds to nested pairs on
the line, whereas the power assignment is similar to the uniform power assignment,
which already indicates the desired result.

To be more precise, let S ⊆ [n] be a set of indices of requests that can be sched-
uled together and let k = max S. For i ∈ S it holds d(ui , vk) ≤ xk/2. The SINR
condition for k states
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β
∑

i∈S\{k}

pi

d(ui , vk)α
≤ pk

d(uk, vk)α
= f (xk)

xαk

This yields

1

β
· f (xk)

xαk
≥
∑

i∈S\{k}

pi

d(ui , vk)α
≥
∑

i∈S\{k}

b

(xk/2)α
= (|S| − 1) · 2αb

xαk

Since 2b ≥ f (xk), we have |S| ≤ 1/β · 21−α + 1. It follows again that at least Ω(n)
colors are needed to schedule these instances using pi = f (d(ui , vi )).

In contrast, if χ is chosen sufficiently large than the square root power assignment
can schedule all these requests simultaneously.

Finally, in the third case, lim f (x) = 0, we again construct a sequence of
nested pairs analogously to second case but replacing condition (a) by the condition
f (xi ) ≤ f (xi−1). Analogously to the second case, the power assignment defined by
f allows only for scheduling a constant number of pairs simultaneously while the
square root assignment can schedule all pairs simultaneously. �

The last result shows that the dependence onΔ is necessary for nontrivial results.
The following theorem shows that there is a gap of at least Ω

(√
log logΔ

)
between

oblivious and optimal power assignments.

Theorem 9 An instance of the interference scheduling problem exists such that
every schedule using an oblivious power function needs at least Ω

(√
log logΔ

)

more steps than the optimal schedule.

Proof In this proof we construct an instance that can be scheduled in a constant
number of rounds by a non-oblivious power assignment, but every oblivious power
assignment needs at least Ω

(√
log logΔ

)
steps. The instance consist of two nearly

identical requests sets, only the role of sender and receiver in each request is
exchanged. More formally, let x1 = 1, yi = x2

i , and xi+1 = 2yi for every i ∈ [n].
Let the request set R1 consist of the requests (ui , vi ) described by

ui =
{

0 if i = 1

−∑i
j=2 x j otherwise

and vi =
i∑

j=1

yi

and let R2 consist of requests
(
u′

i , v
′
i

)
with

u′
i = M +

i∑

j=1

yi and v′i =
{

M if i = 1

M −∑i
j=2 x j otherwise

where M denotes a constant large enough that interferences between requests from
R1 and R2 become negligible. Since for all i ∈ [n] holds d(ui , vi ) = d

(
u′

i , v
′
i

)
,

every oblivious power assignment uses the same power pi for request (ui , vi ) and(
u′

i , v
′
i

)
.



2 Scheduling and Power Assignments in the Physical Model 55

Let T denote the schedule under an arbitrary, fixed oblivious power assignment.
In this schedule there must be a step where at least n/T requests from R1 are sched-
uled. Let M ⊆ [n] denote their indices. Let i, j ∈ M with i < j . The SINR
constraint states

β
pi

d(ui , v j )α
≤ p j

d(u j , v j )α

Using d(ui , v j ) ≤ x j and d(u j , v j ) ≥ y j = x2
j we get

β
pi

xαj
≤ p j

x2α
j

which implies pi ≤ p j/βxαj . With d
(

u′
j , v

′
i

)
≤ 2x j , the interference from

(
u′

j , v
′
j

)
on
(
u′

i , v
′
i

)
is

β
p j

d
(

u′
j , v

′
i

)α ≥ β
p j

(2x j )α
≥ β2 pi

2α
>

pi

d
(
u′

i , v
′
i

)

Thus, for every i �= j , i, j ∈ M , the requests
(
u′

i , v
′
i

)
and

(
u′

j , v
′
j

)
cannot be sched-

uled in the same step. In fact, for every i ∈ M ,
(
u′

i , v
′
i

)
must be assigned to a differ-

ent schedule step. This yields T ≥ |M | and it follows T ≥ √
n = √Ω(log logΔ).

�

2.6 Summary and Open Problems

We have studied the interference scheduling problem with a focus on oblivious
power assignments, i.e., the power for a signal is defined as a function of the path
loss. Examples of such power assignments are the uniform, the linear, and the square
root power assignment. The major advantage of these power assignments is their
simplicity. In particular, they can be computed for every request without taking into
account other requests. In our study we investigated the approximation factors with
respect to the schedule length that can be achieved with oblivious power assign-
ments.

The linear power assignment is of special interest as it is energy efficient in the
sense that signals are sent at a power level that is only a constant factor larger
than the power level needed to drown out ambient noise. In Sect. 2.3, we pre-
sented lower and upper bounds for the linear power assignment from [5]. The key
to both the lower and upper bounds is the measure of interference I . On the one
hand, we have shown that Ω(I ) is a lower bound on the schedule length when
using linear power assignments. On the other hand, we have presented distributed
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scheduling algorithms for the linear power assignment computing schedules of
length O(I log n) and O(I + log2 n), respectively. For dense instances this gives a
constant factor approximation of the optimal schedule for linear power assignment.

Similar results have been achieved recently for the uniform power assignment.
In [6] it is presented an algorithm that achieves a constant factor approximation
guarantee with respect to the number of requests that can be scheduled simul-
taneously. A straight forward extension of this approach yields an approxima-
tion factor of O(log n) with respect to the schedule length for the uniform power
assignment.

How do these results compare to the schedule length for general power assign-
ments? – In Sect. 2.3, we show a lower bound of Ω(I/logΔ log n) for schedules
with general power assignments, where Δ denotes the aspect ratio of the metric.
When restricting to the two-dimensional Euclidean space the bound improves to
Ω(I/logΔ). Thus, the best known scheduling algorithms for the linear and the
uniform power assignments achieve approximation ratios of order logΔpolylogn
in comparison to the optimal power assignment.

In Sect. 2.4, we present an analysis showing that the square root power assign-
ment can achieve significantly better approximation ratio in terms of the aspect ratio
than the linear and the uniform power assignment: For directed communication
requests the approximation ratio of the square root power assignment is of order
O(logΔpolylog n) and for bidirectional requests even of order only O(polylog n).
Both of these ratios compare the schedule length of the square root power assign-
ment with the schedule length for general power assignments. The result for directed
communication requests is from [9] and the result for bidirectional requests was first
shown in [5] and then improved in [9].

Finally, in Sect. 2.5 we study lower bounds for oblivious power assignments.
We show that the dependence on the aspect ratio cannot be avoided for directed
communication requests and present a lower bound of order Ω

(√
log logΔ

)
on the

approximation ratio holding for every oblivious power assignment. In particular,
one cannot achieve approximation factors better than Ω(n) for directed commu-
nication requests with unbounded aspect ratio when restricting to oblivious power
assignments.

We want to conclude with the major open problems about interference schedul-
ing in the physical model: Devise a polynomial time constant factor approximation
algorithm or approximation scheme for the interference scheduling problem with
general power assignments or show that such an approximation is not possible.
Present improved distributed algorithms beating the currently best known approxi-
mation ratios for oblivious power assignments.
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Chapter 3
Maintaining Connectivity in Sensor Networks
Using Directional Antennae

Evangelos Kranakis, Danny Krizanc, and Oscar Morales

Abstract Connectivity in wireless sensor networks may be established using either
omnidirectional or directional antennae. The former radiate power uniformly in all
directions while the latter emit greater power in a specified direction thus achieving
increased transmission range and encountering reduced interference from unwanted
sources. Regardless of the type of antenna being used the transmission cost of each
antenna is proportional to the coverage area of the antenna. It is of interest to design
efficient algorithms that minimize the overall transmission cost while at the same
time maintaining network connectivity. Consider a set S of n points in the plane
modeling sensors of an ad hoc network. Each sensor is equipped with a fixed num-
ber of directional antennae modeled as a circular sector with a given spread (or
angle) and range (or radius). Construct a network with the sensors as the nodes and
with directed edges (u, v) connecting sensors u and v if v lies within u’s sector.
We survey recent algorithms and study trade-offs on the maximum angle, sum of
angles, maximum range, and the number of antennae per sensor for the problem of
establishing strongly connected networks of sensors.

3.1 Introduction

Connectivity in wireless sensor networks is established using either omnidirectional
or directional antennae. The former transmit signals in all directions while the latter
within a limited predefined angle. Directional antennae can be more efficient and
transmit further in a given direction for the same amount of energy than omnidi-
rectional ones. This is due to the fact that to a first approximation the energy trans-
mission cost of an antenna is proportional to its coverage area. To be more specific,
the coverage area of an omnidirectional antenna with range r is generally modeled
by a circle of radius r and consumes energy proportional to π · r2. Bycontrast, a

E. Kranakis (B)
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directional antennae with angular spread ϕ and range R is modeled as a circular
sector of angle ϕ and radius R and consumes energy proportional to ϕ · R2/2. Thus
for a given energy cost E , an omnidirectional antenna can reach distance

√
E/π ,

while a directional antenna with angular spread ϕ can reach distance
√

2E/ϕ. We
think of the directional antennae as being on a “swivel” that can be oriented toward
a small target area whereas the omnidirectional antennae spread their signal in all
directions. Signals arriving at a sensor within the target area of multiple antennae
will interfere and degrade reception. Thus for reasons of both energy efficiency and
potentially reduced interference (as well as others, e.g., security), it is tempting to
replace omnidirectional with directional antennae.
Replacing omnidirectional with directional antennae: Given a set of sensors posi-
tioned in the plane with omnidirectional and/or directional antennae, a directed net-
work is formed as follows: a directed edge is placed from sensor u to sensor v if v
lies within the coverage area of u (as modeled by circles or circular sectors). Note
that if the radius of all omnidirectional antennae is the same then u is in the range
of v if and only if v is in the range of u, i.e., the edge is bidirectional and is usually
modeled be an undirected edge.

The main issue of concern when replacing omnidirectional with directional
antennae is that this may alter important characteristics such as the degree, diame-
ter, average path length of the resulting network. For example, the first network in
Figure 3.2 is strongly connected with diameter two, and more than one node can
potentially transmit at the same time without interference while in the omnidirec-
tional case (Fig. 3.1) the diameter is one but only one antennae can transmit at a
time without interference. In addition, and depending on the breadth and range of
the directional antennae, the original topology depicted in Fig. 3.1 can be obtained
only by using more than one directional antenna per sensor (see Fig. 3.3).

Replacing omnidirectional with directional antennae enables the sensors to reach
farther using the same energy consumption. As an example consider the graphs
depicted in Figs. 3.4 and 3.5. The line graph network in Fig. 3.4 with undirected
edges {1, 2}, {2, 3}, {3, 4} is replaced by a network of directional antennae depicted
in Fig. 3.5 and having (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (4, 3), (4, 2), (3, 2), (3, 1)
as directed edges. By setting the angular spread of the directional antennae to be
small a significant savings in energy are possible.

Fig. 3.1 Four sensors using
directional antennae. For the
same set of points, the
resulting directed graphs
depend on the antennae
orientations
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Fig. 3.2 Four sensors using
omnidirectional antennae.
They form an underlying
complete network on four
nodes

Fig. 3.3 Four sensors using
directional antennae. Using
three directional antennae per
sensor in order to form an
underlying complete network
on four nodes

Fig. 3.4 Line graph network
with undirected edges
{1, 2}, {2, 3}, {3, 4} resulting
when four sensors 1, 2, 3, 4
use omnidirectional antennae

1 2 43

1 2 43

Fig. 3.5 Directed network resulting from Fig. 3.4 when the four sensors replace omnidirectional
with directional antennae. Sensor number 3 is using two directional antennae while the rest only
one
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3.1.1 Antenna Orientation Problem

The above considerations lead to numerous questions concerning trade-offs between
various factors, such as connectivity, diameter, interference, when using directional
versus omnidirectional antennae in constructing sensor networks. Here we study
how to maintain network connectivity when antennae angles are being reduced
while at the same time the transmission range of the sensors is being kept as low
as possible. More formally this raises the following optimization problem.

Consider a set S of n points in the plane that can be identified with sensors having a range
r > 0. For a given angle 0 ≤ ϕ ≤ 2π and integer k, each sensor is allowed to use at most k
directional antennae each of angle at most ϕ. Determine the minimum range r required so
that by appropriately rotating the antennae, a directed, strongly connected network on S is
formed.

Note that the range of a sensor must be at least the length of the longest edge of a
minimum spanning tree on the set S, since this is the smallest range required just to
attain connectivity.

3.1.2 Preliminaries and Notation

Consider a set S of n points in the plane and an integer k ≥ 1. We give the following
definitions.

Definition 1 rk(S, ϕ) is the minimum range of directed antennae of angular spread
at most ϕ so that if every sensor in S uses at most k such antennae (under an appro-
priate rotation) a strongly connected network on S results.

A special case is when ϕ = 0, for which we use the simpler notation rk(S) instead of
rk(S, 0). Clearly, different directed graphs can be produced depending on the range
and direction of the directional antennae. This gives rise to the following definition.

Definition 2 Let Dk(S) be the set of all strongly connected graphs on S with out-
degree at most k.

For any graph G ∈ Dk(S), let rk(G) be the maximum length of an edge in G. It is
easy to see that rk(S) := minG∈Dk (S) rk(G). It is useful to relate rk(S) to another
quantity which arises from a minimum spanning tree (MST) on S.

Definition 3 Let MST (S) denote the set of all MSTs on S.

Definition 4 For T ∈ MST(S) let r(T ) denote the length of longest edge of T and
let rMST(S) = min{r(T ) : T ∈ MST(S)}.
For a set S of size n, it is easily seen that rMST(S) can be computed in O(n2) time.
Further, for any angle ϕ ≥ 0, it is clear that rMST(S) ≤ rk(S, ϕ) since every strongly
connected, directed graph on S has an underlying spanning tree.
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3.1.3 Related Work

When each sensor has one antenna and the angle ϕ = 0 then our problem is easily
seen to be equivalent to finding a Hamiltonian cycle that minimizes the maximum
length of an edge. This is the well-known bottleneck traveling salesman problem.

3.1.3.1 Bottleneck Traveling Salesman Problem

Let 1, 2, . . . , n be a set of n labeled vertices with associated edge weights w(i, j),
for all i, j . The bottleneck traveling salesman problem (BTSP) asks to find a Hamil-
tonian cycle in the complete (weighted) graph on the n points which minimizes the
maximum weight of an edge, i.e.,

min{ max
(i, j)∈H

w(i, j) : H is a Hamiltonian cycle}

Parker and Rardin [31] study the case where the weights satisfy the triangle inequal-
ity and they give a two-approximation algorithm for this problem. (They also show
that no polynomial time (2 − ε)-approximation algorithm is possible for metric
BTSP unless P = N P .) Clearly, their approximation result applies to our problem
for the special case of one antennae and ϕ = 0. The proof uses a result in [12]
that the square of every two-connected graph is Hamiltonian. (The square G(2)

of a graph G = (V, E) has the same node set V and edge set E (2) defined by
{u, v} ∈ E (2) ⇔ ∃w ∈ V ({u, w} ∈ E & {w, v} ∈ E).) In fact the latter paper
also gives an algorithm for constructing such a Hamiltonian cycle. A generalization
of this problem to finding strongly connected subgraphs with minimum maximum
edge weight is studied by Punnen [32].

3.1.3.2 MST and Out-Degrees of Nodes

It is easy to see that the degree structure of an MST on a point set is constrained
by proximity. If a vertex has many neighbors then some of them have to be too
close together and can thus be connected directly. This can be used to show that for
a given point set there is always a Euclidean minimum spanning tree of maximum
degree six. In turn, this can be improved further to provide an MST with max degree
five [28]. Since for large enough r every set of sensors in the plane has a Euclidean
spanning tree of degree at most five and maximum range r , it is easy to see that
given such minimum r and k ≥ 5, rk(S) = r . A useful parameter is the maximum
degree of a spanning tree. This gives rise to the following definition.

Definition 5 For k ≥ 2, a maximum degree k spanning tree (abbreviated Dk − ST )
is a spanning tree all of whose vertices have degree at most k.

Related literature concerns trade-offs between maximum degree and minimum
weight of the spanning tree. For example, [2] gives a quasi-polynomial time approx-
imation scheme for the minimum weight Euclidean D3 − ST . Similarly, [21] and
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[6] obtain approximations for minimum weight D3− ST and D4− ST . In addition,
[13] shows that it is an NP-hard problem to decide for a given set S of n points in
the Euclidean plane and a given real parameter w, whether S admits a spanning tree
of maximum node degree four (i.e., D4 − ST ) whose sum of edge lengths does not
exceed w. Related is also [22] which gives a simple algorithm to find a spanning
tree that simultaneously approximates a shortest path tree and a minimum spanning
tree. In particular, given the two trees and a γ > 0, the algorithm returns a spanning
tree in which the distance between any node and the root is at most 1 + γ

√
2 times

the shortest path distance, and the total weight of the tree is at most 1+√
2/γ times

the weight of a minimum spanning tree.
Of interest here is the connection between strongly connected geometric spanners

with given out-degree on a point set and the maximum length edge of an MST.
Beyond the connection of BTSP mentioned above we know of no other related
literature on this specific question.

3.1.3.3 Enhancing Network Performance Using Directional Antennae

Directional antennae are known to enhance ad hoc network capacity and per-
formance and when replacing omnidirectional with directional antennae one can
reduce the total energy consumption of the network. A theoretical model to this
effect is presented in [16] showing that when n omnidirectional antennae are opti-
mally placed and assigned optimally chosen traffic patterns the transport capacity is
Θ
(√

W/n
)
, where each antenna can transmit W bits per second over the common

channel(s). When both transmission and reception are directional, [39] proves an√
2π/αβ capacity gain as well as corresponding throughput improvement factors,

where α is the transmission angle and β is a parameter indicating that β/2π is the
average proportion of the number of receivers inside the transmission zone that will
get interfered with.

Additional experimental studies confirm the importance of using directional
antennae in ad hoc networking for enhancing channel capacity and improving mul-
tiaccess control. For example, research in [33] considers several enhancements,
including “aggressive” and “conservative” channel access models for directional
antennae, link power control, and neighbor discovery and analyzes them via simu-
lation. [38] and [37] consider how independent communications between directional
antennae can occur in parallel and calculate interference-based capacity bounds for
a generic antenna model as well as a real-world antenna model and analyze how
these bounds are affected by important antenna parameters like gain and angle. The
authors of [3] propose a distributed receiver-oriented multiple access (ROMA) chan-
nel access scheduling protocol for ad hoc networks with directional antennae, each
of which can form multiple beams and commence several simultaneous communi-
cation sessions. Finally, [24] considers energy consumption thresholds in conjunc-
tion to k-connectivity in networks of sensors with omnidirectional and directional
antennae, while [23] studies how directional antennae affect overall coverage and
connectivity.
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A related problem that has been addressed in the literature is one that studies
connectivity requirements on undirected graphs that will guarantee highest edge
connectivity of its orientation, c.f. [29] and [14].

3.1.3.4 Other Applications

It is interesting to note that beyond reducing the energy consumption, directional
antennae can enhance security. Unlike omnidirectional antennae that spread their
signal in all directions over an angle 2π , directional antennae can attain better secu-
rity because they direct their beam toward the target thus avoiding potential risks
along the transmission path. In particular, in a hostile environment a directional
antenna can decrease the radiation region within which nodes could receive the elec-
tromagnetic signals with high quality. For example, this has led [17] to the design of
several authentication protocols based on directional antennae. In [27] they employ
the average probability of detection to estimate the overall security benefit level
of directional transmission over the omnidirectional one. In [18] they examine the
possibility of key agreement using variable directional antennae. In [30] the use of
directional antennae and beam steering techniques in order to improve performance
of 802.11 links is investigated in the context of communication between a moving
vehicle and roadside access points.

3.1.4 Outline of the Presentation

The following is an outline of the main issues that will be addressed in this survey.
In Sect. 3.2 we discuss approximation algorithms to the main problem introduced
above. The constructions are mainly based on an appropriately defined MST of the
set of points. Section 3.2.1 focuses on the case of a single antenna per sensor while
Sect. 3.2.2 on k antennae per sensor, for a given 2 ≤ k ≤ 4. (Note that the case k ≥ 5
is handled by using a degree five MST.) In Sect. 3.3 we discuss NP-completeness
results for the cases of one and two antennae. In Sect. 3.4 we investigate a variant
of the main problem whereby we want to minimize the sum of the angles of the
antennae given a bound on their radius. Unlike Sect. 3.2 where we have the flexi-
bility to select and adapt an MST on the given point set S, Sect. 3.5 considers the
case whereby the underlying network is given in advance as a planar spanner on the
set S and we study number of antennae and stretch factor trade-offs between the
original graph and the resulting planar spanner. In addition throughout the chapter
we propose several open problems and discuss related questions of interest.

3.2 Orienting the Sensors of a Point Set

In this section we consider several algorithms for orienting antennae so that the
resulting spanner is strongly connected. Moreover we look at trade-offs between
antenna range and breadth.
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3.2.1 Sensors with One Antenna

The first paper to address the problem of converting a connected (undirected) graph
resulting from omnidirectional sensors to a strongly connected graph of directional
sensors having only one directional antenna each was [5].

3.2.1.1 Sensors on the Line

The first scenario to be considered is for sensors on a line. Assume that each sen-
sor’s directional antenna has angle ϕ. Further assume that ϕ ≥ π . The problem of
minimizing the range in this case can be seen to be equivalent to the same problem
for the omnidirectional case, simply by pointing the antennae so as to cover the
same nodes as those covered by the omnidirectional antenna as depicted in Fig. 3.6.
Clearly a range equal to the maximum distance between any pair of adjacent sensors
is necessary and sufficient.

When the angle ϕ of the antennae is less than π then a slightly more complicated
orientation of the antennae is required so as to achieve strong connectivity with
minimum range.

Theorem 1 ([5]) Consider a set of n > 2 points xi , i = 1, 2, . . . , n, sorted accord-
ing to their location on the line. For any π > ϕ ≥ 0 and r > 0, there exists an
orientation of sectors of angle ϕ and radius r at the points so that the transmission
graph is strongly connected if and only if the distance between points i and i + 2 is
at most r , for any i = 1, 2, . . . , n − 2.

Proof Assume d(xi , xi+2) > r , for some i ≤ n − 2. Consider the antenna at xi+1.
There are two cases to consider. First, if the antenna at xi+1 is directed to the left
then the portion of the graph to its left cannot be connected to the portion of the
graph to the right; second, if the antenna at xi+1 is directed to the right then the
portion of the graph to its right cannot be connected to the portion of the graph to
the left. In either case the graph becomes disconnected.

Conversely, assume d(xi , xi+2) ≤ r , for all i ≤ n − 2. Consider the following
antenna orientation for an even number of sensors (see Fig. 3.7). (The odd case is
handled similarly.)

1. antennas x1, x3, x5, . . . labeled with odd integers are oriented right and
2. antennas x2, x4, x6, . . . labeled with even integers are oriented left.

φ

x

φ φ φφ

Fig. 3.6 Antenna orientation for a set of sensors on a line when the angle ϕ ≥ π

x1 x2 x3 x4 x6x5

.....

Fig. 3.7 Antenna orientation for a set of sensors on a line when the angle ϕ < π
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It is easy to see that the resulting orientation leads to a strongly connected graph.
This completes the proof of Theorem 1.

3.2.1.2 Sensors on the Plane

The case of sensors on the plane is more challenging. As was noted above the case
of ϕ = 0 is equivalent to the Euclidean BTSP and thus the minimum range can
be approximated to within a factor of 2. In [5] the authors present a polynomial
time algorithm for the case when the sector angle of the antennae is at least 8π/5.
For smaller sector angles, they present algorithms that approximate the minimum
radius. We present the proof of this last result below.

Theorem 2 (Caragiannis et al. [5]) Given an angle ϕ with π ≤ ϕ < 8π/5 and a
set S of points in the plane, there exists a polynomial time algorithm that computes
an orientation of sectors of angle ϕ and radius 2 sin

(
π − ϕ

2

) · r1(S, ϕ) so that the
transmission graph is strongly connected.

Proof Consider a set S of nodes on the Euclidean plane and let T be a minimum
spanning tree of S. Let r = rMST(S) be the longest edge of T . We will use sectors
of angle ϕ and radius d(ϕ) = 2r sin

(
π − ϕ

2

)
and we will show how to orient them

so that the transmission graph induced is a strongly connected subgraph over S. The
theorem will then follow since r is a lower bound on r1(S, ϕ).

We first construct a matching M consisting of (mutually non-adjacent) edges of
T with the following additional property: any non-leaf node of T is adjacent to an
edge of M . This can be done as follows. Initially, M is empty. We root T at an
arbitrary node s. We pick an edge between s and one of its children and insert it in
M . Then, we visit the remaining nodes of T in a BFS (breadth first search) manner.
When visiting a node u, if u is either a leaf node or a non-leaf node such that the
edge between it and its parent is in M , we do nothing. Otherwise, we pick an edge
between u and one of its children and insert it to M .

We denote by Λ the leaves of T which are not adjacent to edges of M . We also
say that the endpoints of an edge in M form a couple. We use sectors of angle ϕ
and radius d(ϕ) at each point and orient them as follows. At each node u ∈ Λ, the
sector is oriented so that it induces the directed edge from u to its parent in T in the
corresponding transmission graph G. For each two points u and v forming a couple,
we orient the sector at u so that it contains all points p at distance d(ϕ) from u for
which the counterclockwise angle ˆvup is in [0, ϕ], see Fig. 3.8.

We first show that the transmission graph G defined in this way has the following
property, denoted by (P), and stated in the Claim below.

Claim (P) . For any two points u and v forming a couple, G contains the two oppo-
site directed edges between u and v, and, for each neighbor w of either u or v in T ,
it contains a directed edge from either u or v to w.

Consider a point w corresponding to a neighbor of u in T (the argument for the
case where w is a neighbor of v is symmetric). Clearly, w is at distance |uw| ≤ r
from u. Also, note that since ϕ < 8π/5, we have that the radius of the sectors is
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Fig. 3.8 The orientation of
sectors at two nodes u, v
forming a couple, and a
neighbor w of u that is not
contained in the sector of u.
The dashed circles have
radius r and denote the range
in which the neighbors of u
and v lie

w

v

u

d(ϕ) = 2r sin
(
π − ϕ

2

) ≥ 2r sin π
5 > 2r sin π

6 = r . Hence, w is contained in the
sector of u if the counterclockwise angle ˆvuw is at most ϕ; in this case, the graph
G contains a directed edge from u to w. Now, assume that the angle ˆvuw is x > ϕ

(see Fig. 3.8). By the law of cosines in the triangle defined by points u, v, and w,
we have that

|vw| =
√
|uw|2 + |uv|2 − 2|uw||uv| cos x

≤ r
√

2 − 2 cos x

= 2r sin
x

2

≤ 2r sin
(
π − ϕ

2

)

= d(ϕ)

Since the counterclockwise angle ˆvuw is at least π , the counterclockwise angle ˆuvw
is at most π ≤ ϕ and, hence, w is contained in the sector of v; in this case, the graph
G contains a directed edge from v to w. In order to complete the proof of property
(P), observe that since |uv| ≤ r ≤ d(ϕ) the point v is contained in the sector of u
(and vice versa).

Now, in order to complete the proof of the theorem, we will show that for any
two neighbors u and v in T , there exist a directed path from u to v and a directed
path from v to u in G. Without loss of generality, assume that u is closer to the root s
of T than v. If the edge between u and v belongs to M (i.e., u and v form a couple),
property (P) guarantees that there exist two opposite directed edges between u and
v in the transmission graph G. Otherwise, let w1 be the node with which u forms a
couple. Since v is a neighbor of u in T , there is either a directed edge from u to v
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in G or a directed edge from w1 to v in G. Then, there is also a directed edge from
u to w1 in G which means that there exists a directed path from u to v. If v is a leaf
(i.e., it belongs to Λ), then its sector is oriented so that it induces a directed edge to
its parent u. Otherwise, let w2 be the node with which v forms a couple. Since u is
a neighbor of v in T , there is either a directed edge from v to u in G or a directed
edge from w2 to u in G. Then, there is also a directed edge from v to w2 in G which
means that there exists a directed path from v to u.

3.2.1.3 Further Questions and Open Problems

In Sect. 3.3 we present a lower bound from [5] that shows this problem is NP-hard
for angles smaller than 2π/3. This leaves the complexity of the problem open for
angles between 2π/3 and 8π/5. Related problems that deserve investigation include
the complexity of gossiping and broadcasting as well as other related communica-
tion tasks in this geometric setting.

3.2.2 Sensors with Multiple Antennae

We are interested in the problem of providing an algorithm for orienting the anten-
nae and ultimately for estimating the value of rk(S, ϕ). Without loss of generality
antennae ranges will be normalized to the length of the longest edge in any MST,
i.e., rMST(S) = 1. The main result concerns the case ϕ = 0 and was proven in [10]:

Theorem 3 (Dobrev et al. [10]) Consider a set S of n sensors in the plane, and
suppose each sensor has k, 1 ≤ k ≤ 5, directional antennae. Then the antennae can
be oriented at each sensor so that the resulting spanning graph is strongly connected

and the range of each antenna is at most 2 · sin
(

π
k+1

)
times the optimal. Moreover,

given an MST on the set of points the spanner can be constructed with additional
O(n) overhead.

The proof in [10] considers five cases depending on the number of antennae that can
be used by each sensor. As noted in the introduction, the case k = 1 was derived
in [31]. The case k = 5 follows easily from the fact that there is an MST with
maximum vertex degree five. This leaves the remaining three cases for k = 2, 3, 4.
Due to space limitations we will not give the complete proof here. Instead we will
discuss only the simplest case k = 4.

3.2.2.1 Preliminary Definitions

Before proceeding with presentation of the main results we introduce some notation
which is specific to the following proofs. D(u; r) is the open disk with radius r . d
(·, ·) denotes the usual Euclidean distance between two points. In addition, we define
the concept of Antenna-Tree (A-Tree, for short) which isolates the particular prop-
erties of an MST that we need in the course of the proof.
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Definition 6 An A-Tree is a tree T embedded in the plane satisfying the following
three rules:

1. Its maximum degree is five.
2. The minimum angle among nodes with a common parent is at least π/3.
3. For any point u and any edge {u, v} of T , the open disk D(v; d(u, v)) does not

have a point w �= v which is also a neighbor of u in T .

It is well known and easy to prove that for any set of points there is an MST on
the set of points which satisfies Definition 6. Recall that we consider normalized
ranges (i.e., we assume r(T ) = 1).

Definition 7 For each real r > 0, we define the geometric r th power of a A-Tree T ,
denoted by T (r), as the graph obtained from T by adding all edges between vertices
of (Euclidean) distance at most r .

For simplicity, in the sequel we slightly abuse terminology and refer to the geometric
r th power as the r th power.

Definition 8 Let G be a graph. An orientation
−→
G of G is a digraph obtained from

G by orienting every edge of G in at least one direction.

As usual, we denote with (u, v) a directed edge from u to v, whereas {u, v} denotes
an undirected edge between u and v. Let d+(−→G , u) be the out-degree of u in

−→
G and

Δ+(−→G ) the maximum out-degree of a vertex in
−→
G .

3.2.2.2 Maximum Out-Degree four

In this section we prove that there always exists a subgraph of T (2 sinπ/5) that can
be oriented in such a way that it is strongly connected and its maximum out-degree
is four. A precise statement of the theorem is as follows.

Theorem 4 (Dobrev et al. [10]) Let T be an A-Tree. Then there exists a spanning

subgraph G ⊆ T (2 sinπ/5) such that
−→
G is strongly connected and Δ+(−→G ) ≤ 4.

Moreover, d+(−→G , u) ≤ 1 for each leaf u of T and every edge of T incident to a leaf
is contained in G.

Proof We first introduce a definition that we will use in the course of the proof. We
say that two consecutive neighbors of a vertex are close if the smaller angle they
form with their common vertex is at most 2π/5. Observe that if v and w are close,
then |v,w| ≤ 2 sinπ/5. In all the figures in this section an angular sign with a dot
depicts close neighbors. The proof is by induction on the diameter of the tree. First,
we do the base case. Let k be the diameter of T . If k ≤ 1, let G = T and the result
follows trivially. If k = 2, then T is an A-Tree which is a star with 2 ≤ d ≤ 5
leaves. Two cases can occur:

• d < 5. Let G = T and orient every edge in both directions. This results in a
strongly connected digraph which trivially satisfies the hypothesis of the theorem.
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Fig. 3.9 T is a tree with five
leaves and diameter k = 2

uw

v

• d = 5. Let u be the center of T . Since T is a star, two consecutive neighbors of u,
say, v and w, are close. Let G = T ∪ {{v,w}} and orient edges of G as depicted
in Fig. 3.9.1 It is easy to check that G satisfies the hypothesis of the theorem.

Next we continue with the inductive step. Let T ′ be the tree obtained from T
by removing all leaves. Since removal of leaves does not violate the property of
being an A-Tree, T ′ is also an A-Tree and has diameter less than the diameter of T .

Thus, by inductive hypothesis there exists G ′ ⊆ T ′(2 sinπ/5) such that
−→
G ′ is strongly

connected, Δ+(
−→
G ′) ≤ 4. Moreover, d+(−→G , u) ≤ 1 for each leaf u of T ′ and every

edge of T ′ incident to a leaf is contained in G ′.
Let u be a leaf of T ′, u0 be the neighbor of u in T ′, and u1, .., uc be the c

neighbors of u in T \ T ′ in clockwise order around u starting from u0. Two cases
can occur:

• c ≤ 3. Let G = G ′ ∪ {{u, u1}, .., {u, uc}} and orient these c edges in both
directions.

−→
G satisfies the hypothesis since G ⊆ T (2 sinπ/5), Δ+(−→G ) ≤ 4,

d+(−→G , u) ≤ 1 for each leaf u of T and every edge of T incident to a leaf is
contained in G.

• c = 4. We consider two cases. In the first case suppose that two consecutive
neighbors of u in T \ T ′ are close. Consider uk and uk+1 are close, where 1 ≤
k < 4. Define G = G ′ ∪ {{u, u1}, {u, u2}, {u, u3}, {u, u4}, {uk, uk+1}} and orient
edges of G as depicted in Fig. 3.10. In the second case, either u0 and u1 are close
or u0 and u4 are close. Without loss of generality, let assume that u0 and u1 are
close. Thus, let G = {G ′ \ {u, u0}} ∪ {{u, u1}, {u, u2}, {u, u3}, {u, u4}, {u0, u1}},
but now the orientation of G will depend on the orientation of {u, u0} in G ′. Thus,

Fig. 3.10 Depicting the
inductive step when u has
four neighbors in T ′ \ T and
uk and uk+1 are close, where
k = 2. (The dotted curve is
used to separate the tree T ′
from T )

uu0
u2

u3

T ′ T

u4

u1

1 In all figures boldface arrows represent the newly added edges.
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uu0

u1

T
′

T

Fig. 3.11 Depicting the inductive step when u has four neighbors in T ′ \ T , u0 and u1 are close
and (u0, u) is in the orientation of G ′ (The dashed edge {u0, u} indicates that it does not exist in G
but exists in G ′ and the dotted curve is used to separate the tree T ′ from T )

uu0

u1

T ′
T

Fig. 3.12 Depicting the inductive step when u has four neighbors in T ′ \ T , u0 and u1 are close
and (u, u0) is in the orientation of G ′ (The dashed edge {u0, u} indicates that it does not exist in G
but exists in G ′ and the dotted curve is used to separate the tree T ′ from T )

if (u0, u) is in
−→
G ′, then orient edges of G as depicted in Fig. 3.11. Otherwise if

(u, u0) is in
−→
G ′, then orient edges of G as depicted in Fig. 3.12.

−→
G satisfies the

hypothesis since G ⊆ T (2 sinπ/5), Δ+(−→G ) ≤ 4, d+(−→G , u) ≤ 1 for each leaf u of
T and every edge of T incident to a leaf is contained in G.

This completes the proof of the theorem.
The above implies immediately the case k = 4 of Theorem 3. The remaining

cases of k = 3 and k = 2 are similar but more complex. The interested reader can
find details in [10].

3.2.2.3 Further Questions and Open Problems

There are several interesting open problems all related to the optimality of the range

2 sin
(

π
k+1

)
which was derived in Theorem 3. This value is obviously optimal for

k = 5 but the cases 1 ≤ k ≤ 4 remain open. Additional questions concern study-
ing the problem in d-dimensional Euclidean space, d ≥ 3, and more generally
in normed spaces. The case d = 3 would also be of particular interest to sensor
networks.

3.3 Lower Bounds

In this section we discuss the only known lower bounds for the problem.
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3.3.1 One Antenna Per Sensor

When the sector angle is smaller than 2π/3, the authors of [5] show that the problem
of determining the minimum radius in order to achieve strong connectivity is NP-
hard.

Theorem 5 (Caragiannis et al. [5]) For any constant ε > 0, given ϕ such that
0 ≤ ϕ < 2π/3 − ε, r > 0, and a set of points on the plane, determining whether
there exists an orientation of sectors of angle ϕ and radius r so that the transmission
graph is strongly connected is NP-complete.

A simple proof is by reduction from the well-known NP-hard problem for finding
Hamiltonian cycles in degree three planar graphs [15]. In particular, a weaker state-
ment for sector angles smaller than π/2 follows by the same reduction used in [19]
in order to prove that the Hamiltonian circuit problem in grid graphs is NP-complete.
Consider an instance of the problem consisting of points with integer coordinates on
the Euclidean plane (these can be thought of as the nodes of the grid proximity graph
between them). Then, if there exists an orientation of sector angles of radius 1 and
angle ϕ < π/2 at the nodes so that the corresponding transmission graph is strongly
connected, then this must also be a Hamiltonian circuit of the proximity graph. The
construction of [19] can be thought of as reducing the Hamiltonian circuit problem
on bipartite planar graphs of maximum degree three (which is proved in [19] to be
NP-complete) to an instance of the problem with a grid graph as a proximity graph
such that there exists a Hamiltonian circuit in the grid graph if and only if the origi-
nal graph has a Hamiltonian circuit. The proof of [5] uses a slightly more involved
reduction with different gadgets in order to show that the problem is NP-complete
for sector angles smaller than 2π/3.

3.3.2 Two Antennae Per Sensor

For two antennae the best known lower bound is from [10] and can be stated as
follows.

Theorem 6 (Dobrev et al. [10]) For k = 2 antennae, if the angular sum of the
antennae is less than α then it is NP-hard to approximate the optimal radius to
within a factor of x, where x and α are the solutions of equations x = 2 sin(α) =
1 + 2 cos(2α).

Observe that by using the identity cos(2α) = 1 − 2 sin2 α above and by solving
the resulting quadratic equation with unknown sinα we obtain numerical solutions
x ≈ 1.30, α ≈ 0.45π .

As before, the proof is by reduction from the well-known NP-hard problem for
finding Hamiltonian cycles in degree three planar graphs [15]. In particular, the
construction in [10] takes a degree three planar graph G = (V, E) and replaces each
vertex v ∈ V by a vertex graph (meta-vertex) Gv and each edge e ∈ E of G by an
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Fig. 3.13 Connecting meta-edges with meta-vertices. The dashed ovals show the places where
embedding is constrained

edge graph (meta-edge) Ge. Figure 3.13 shows that how meta-edges are connected
with meta-vertices. Further details of the construction can be found in [10].

3.3.2.1 Further Questions and Open Problems

It is interesting to note that in addition to the question of improving the lower bounds
in Theorems 5 and 6 no lower bound or NP-completeness result is known for the
cases of three or four antennae.

3.4 Sum of Angles of Antennae

A variant of the main problem is considered in a subsequent paper [4]. As before
each sensor has fixed number of directional antennae and we are interested in
achieving strong connectivity while minimizing the sum (taken over all sensors)
of angles of the antennae under the assumption that the range is set at the length
of the longest edge in any MST (normalized to 1). The authors present trade-offs
between the antennae range and specified sums of antennae, given that we have k
directional antennae per sensor for 1 ≤ k ≤ 5. The following result is proven in [4].

Lemma 1 (Caragiannis et al. [4]) Assume that a node u has degree d and the
sensor at u is equipped with k antennae, where 1 ≤ k ≤ d, of range at least the
maximum edge length of an edge from u to its neighbors. Then 2(d − k)π/d is
always sufficient and sometimes necessary bound on the sum of the angles of the
antennae at u so that there is an edge from u to all its neighbors in an MST.

Proof The result is trivially true for k = d since we can satisfy the claim by direct-
ing a separate antenna of angle 0 to each node adjacent to u. So we can assume that
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k ≤ d − 1. To prove the necessity of the claim take a point at the center of a circle
and with d adjacent neighbors forming a regular d-gon on the perimeter of the circle
of radius equal to the maximum edge length of the given spanning tree on S. Thus
each angle formed between two consecutive neighbors on the circle is exactly 2π/d.
It is easy to see that for this configuration a sum of 2(d−k)π/d is always necessary.

To prove that sum 2(d − k)π/d is always sufficient we argue as follows. Con-
sider the point u which has d neighbors and consider the sum σ of the largest k
angles formed by k + 1 consecutive points of the regular polygon on the perimeter
of the circle. We claim that σ ≥ 2kπ/d. Indeed, let the d consecutive angles be
α0, α1, ..., αd−1. (see Fig. 3.14). Consider the d sums αi + αi+1 + ...+ αi+k−1, for
i = 0, ..., d − 1, where addition on the indices is modulo d. Observe, that

2kπ =
d−1∑

i=0

(αi + αi+1 + ...+ αi+k−1) ≤ dσ

It follows that the remaining angles sum to at most 2π − σ ≤ 2π − 2kπ/d =
2π(d − k)/d. Now consider the k + 1 consecutive points, say p1, p2, ..., pk+1, such
that the sum σ of the k consecutive angles formed is at least 2kπ/d. Use k − 1
antennae each of size 0 rad to cover each of the points p2, ..., pk , respectively, and
an angle of size 2π(d − k)/d to cover the remaining n − k + 1 points. This proves
the lemma.

The next simple result is an immediate consequence of Lemma 1 and indicates
how antennae spreads affect the range in order to accomplish strong connectivity.

Definition 9 Let ϕk be a given non-negative value in [0, 2π) such that the sum of
angles of k antennae at each sensor location is bounded by ϕk . Further, let rk,ϕk

denote the minimum radius (or range) of directional antennae for a given k and ϕk

that achieves strong connectivity under some rotation of the antennae.

We can prove the following result.

Theorem 7 (Caragiannis et al. [4]) For any 1 ≤ k ≤ 5, if ϕk ≥ 2(5−k)π
5 then

rk,ϕk = 1.

Proof We prove the theorem by showing that if ϕk ≥ 2(5−k)π/5 then the antennae
can be oriented in such a way that for every vertex u there is a directed edge from u
to all its neighbors.

Fig. 3.14 Example of a
vertex of degree d = 5 and
corresponding angles
α1, α2, α3, α4, α5 listed in a
clockwise order

α1

α2

α3

α4α5
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Consider the case k = 2 of two antennae per sensor and take a vertex u of
degree d. We know from Lemma 1 that for k = 2 ≤ d antennae, 2(d − 2)π/d is
always sufficient and sometimes necessary on the sum of the angles of the anten-
nae at u so that there is a directional antenna from u pointing to all its neighbors.
Observe that 2(d − 2)π/d ≤ 6π/5 is always true. Now take an MST with max
degree five. Do a preorder traversal that comes back to the starting vertex (any
starting vertex will do). For any vertex u arrange the two antennae at u so that
there is always a directed edge from u to all its neighbors (if the degree of vertex
is 2 you need only one antenna at that vertex). It is now easy to show by following
the “underlying” preorder traversal on this tree that the resulting graph is strongly
connected.

Consider the case k = 3 of three antennae per sensor. First, assume the sum of
the three angles is at least 4π/5. Consider an arbitrary vertex u of the MST. We
are interested in showing that for this angle there is always a link from u to all its
neighbors. If the degree of u is at most three the proof is easy. If the degree is four
then by Lemma 1, 2(4− 3)π/4 = π/2 is sufficient. Finally, if the degree of u is five
then again by Lemma 1 then 2(5 − 3)π/5 = 4π/5 is sufficient. Thus, in all cases a
sum of 4π/5 is sufficient.

Consider the case k = 4 of four antennae per sensor. First, assume that the sum
of the four angles is at least 2π/5. Consider an arbitrary vertex, say u, of the MST.
If it has degree at most four then clearly four antennae each of angle 0 is sufficient.
If it has degree five then an angle between two adjacent neighbors of u, say u0, u1,
must be ≤ 2π/5 (see left picture in Fig. 3.15). Therefore use the angle 2π/5 to cover
both of these sensors and the remaining three antennae (each of spread 0) to reach
from u the remaining three neighbors.

Finally, for the case k = 5 of five antennae per sensor the result follows immedi-
ately from the fact that the underlying MST has maximum degree five. This proves
the theorem.

In fact, the result of Theorem 3 can be used to provide better trade-offs on the
maximum antennae range and sum of angles. We mention without proof that as
consequence of Lemma 1 and Theorem 3 we can construct Table 3.1, which shows
trade-offs on the number, max range, max angle, and sum of angles of k antennae,

u

u0 u0

u1 u1u

Fig. 3.15 Orienting antennae around u
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Table 3.1 Trade-offs on the number, max range, max angle, and sum of angles of k antennae being
used by a sensor

Number Max range Max angle Sum of angles

1 2 ϕ ≥ 0 0
1

√
3 ϕ ≥ π π

1
√

2 ϕ ≥ 4π/3 4π/3
1 2 sin(π/5) ϕ ≥ 3π/2 3π/2
1 1 ϕ ≥ 8π/5 8π/5
2

√
3 ϕ ≥ 0 0

2
√

2 ϕ ≥ 2π/3 2π/3
2 2 sin(π/5) ϕ ≥ 2π/3 π

2 1 ϕ ≥ 4π/5 6π/5
3

√
2 ϕ ≥ 0 0

3 2 sin(π/5) ϕ ≥ π/2 π/2
3 1 ϕ ≥ 2π/5 4π/5
4

√
2 ϕ ≥ 0 0

4 1 ϕ ≥ 2π/5 2π/5
5 1 ϕ ≥ 0 0

being used per sensor for the problem of converting networks of omnidirectional
sensors into strongly connected networks of sensors.

3.4.1 Further Questions and Open Problems

There are two versions of the antennae orientation problem that have been studied.
In the first, we are concerned with minimizing the max sensor angle. In the second,
discussed in this section, we looked at minimizing the sum of the angles. Aside from
the results outlined in Table 3.1, nothing better is known concerning the optimality
of the sum of the sensor angles for a given sensor range. Interesting open questions
for these problems arise when one has to “respect” a given underlying network of
sensors. One such problem is investigated in the next section.

3.5 Orienting Planar Spanners

All the constructions previously considered relied on orienting antennae of a set S
of sensors in the plane. Regardless of the construction, the underlying structure con-
necting the sensors was always an MST on S. However, there are instances where
an MST on the point set may not be available because of locality restrictions on the
sensors. This is, for example, the case when the spanner results from application
of a local planarizing algorithm on a unit disk graph (e.g., see [7, 26]). Thus, in
this section we consider the case whereby the underlying network is a given planar
spanner on the set S. In particular we have the following problem.

Let G(V, E, F) be a planar geometric graph with V as set of vertices, E as set of edges
and F as set of faces. We would like to orient edges in E so that the resulting digraph is
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strongly connected as well as study trade-offs between the number of directed edges and
stretch factor of the resulting graphs.

A trivial algorithm is to orient each edge in E in both directions. In this case, the
number of directed edges is 2|E | and the stretch factor is 1. Is it possible to orient
some edges in only one direction so that the resulting digraph is strongly connected
with bounded stretch factor? The answer is yes and an intuitive idea of our approach
is based on a c-coloring of faces in F , for some integer c. The idea of using face
coloring was used in [40] to construct directed cycles. Intuitively we give directions
to edges depending on the color of their incident faces.

3.5.1 Basic Construction

Theorem 8 (Kranakis et al. [25]) Let G(V, E, F) be a planar geometric graph
having no cut edges. Suppose G has a face c-coloring for some integer c. There
exists a strongly connected orientation G with at most

(
2 − 4c − 6

c(c − 1)

)
· |E | (3.1)

directed edges, so that its stretch factor is Φ(G) − 1, where Φ(G) is the largest
degree of a face of G.

Before giving the proof, we introduce some useful ideas and results that will be
required. Consider a planar geometric graph G(V, E, F) and a face c-coloring C of
G with colors {1, 2, . . . , c}.
Definition 10 Let G be the orientation resulting from giving two opposite directions
to each edge in E .

Definition 11 For each directed edge (u, v), we define Luv as the face which is
incident to {u, v} on the left of (u, v), and similarly Ruv as the face which is incident
to {u, v} on the right of (u, v).

Observe that for given embedding of G, Luv , and Ruv are well defined. Since G has
no cut edges, Luv �= Ruv . This will be always assumed in the proofs below without
specifically recalling it again. We classify directed edges according to the colors of
their incident faces.

Definition 12 Let E(i, j) be the set of directed edges (u, v) in G such that C(Luv) =
i and C(Ruv) = j .

It is easy to see that each directed edge is exactly in one such set. Hence, the follow-
ing lemma is evident and can be given without proof.

Lemma 2 For any face c-coloring of a planar geometric graph G,
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c∑

i=1

c∑

j=1, j �=i

|E(i, j)| = 2|E |

Definition 13 For any of c(c − 1) ordered pairs of two different colors a and b of
the coloring C , we define the digraph D(G; a, b) as follows: The vertex set of the
digraph D is V and the edge set of D is

⋃

i∈[1,c]]\{b}, j∈[1,c]\{a}
E(i, j)

Along with this definition, for i �= b, j �= a, and i �= j , we say that E(i, j) is in
D(G; a, b). Next consider the following characteristic function

χa,b(E(i, j)) =
{

1 if E(i, j) is in D(G; a, b), and
0 otherwise.

We claim that every set E(i, j) is in exactly c2−3c+3 different digraphs D(G; a, b)
for some a �= b.

Lemma 3 For any face c-coloring of a planar geometric graph G,

c∑

a=1

c∑

b=1,b �=a

χa,b(E(i, j)) = c2 − 3c + 3.

Proof Let i, j ∈ [1, c], i �= j be fixed. For any two distinct colors a and b of the
c-coloring of G, χa,b(E(i, j)) = 1 only if either i = a or j = b, or i and j are
different from a and b. There are (c − 1)+ (c − 2)+ (c − 2)(c − 3) such colorings.
The lemma follows by simple counting.

The following lemma gives a key property of the digraph D(G; a, b).

Lemma 4 Given a face c-coloring of a planar geometric graph G with no cut edges,
and the corresponding digraph D(G; a, b). Every face of D(G; a, b), which has
color a, constitutes a counterclockwise-directed cycle, and every face which has
color b constitutes a clockwise-directed cycle. All edges on such cycles are unidirec-
tional. Moreover, each edge of D(G; a, b) incident to faces having colors different
from either a or b is bidirectional.

Proof Let G be a planar geometric graph with a face c-coloring C with colors a, b,
and c − 2 other colors. Consider D(G; a, b). The sets E(a,x) are in D(G; a, b) for
each color x �= a. Let f be a face and let {u, v} be an edge of f so that Luv = f . Let
f ′ be the other face incident to {u, v}; hence Ruv = f ′. Since G has no cut edges,
f �= f ′, and, since C( f ′) �= a, the directed edge (u, v) ∈ ⋃x �=a E(a,x) and hence
the edge (u, v) is in D(G; a, b). Since {u, v} was an arbitrary edge of f , f will
induce a counterclockwise cycle in D(G; a, b) (see Fig. 3.16). The fact that every
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Fig. 3.16 (u, v) is in
D(G; a, b) if C(Luv) = a
and therefore the edges in the
face Luv form a
counterclockwise-directed
cycle in D(: G, a, b)

C(Luv) = a

u

v

C(Ruv) �= a

Fig. 3.17 A bidirectional
edge is in D(G; a, b) if its
incident faces have color
different than a and b

C(Luv) �= a,b C(Ruv) �= a,b

u

v

face which has color b induces a clockwise cycle in D(G; a, b) is similar. Finally
consider an edge {u, v} such that C(Luv) �= a, b and C(Ruv) �= a, b (see Fig. 3.17).
Hence (u, v) ∈ E(c,d) which is in D(G; a, b) and similarly (v, u) ∈ E(d,c) which is
also in D(G; a, b). This proves the lemma.

We are ready to prove Theorem 8.
Proof (Theorem 8) Let G be a planar geometric graph having no cut edges. Let C
be a face c-coloring of G with colors a, b and other c − 2 colors. Suppose colors a
and b are such that the corresponding digraph D(G; a, b) has the minimum number
of directed edges. Consider D the average number of directed edges in all digraphs
arising from C . Thus,

D = 1

c(c − 1)

c∑

a=1

c∑

b=1,b �=a

‖D(G; a, b)||,where

||D(G; a, b)|| =
c∑

i=1

c∑

j=1, j �=i

χa,b(E(i, j))|E(i, j)|

By Lemma 2 and Lemma 3,
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D = 1

c(c − 1)

c∑

a=1

c∑

b=1,b �=a

c∑

i=1

c∑

j=1, j �=i

χa,b(E(i, j))|E(i, j)|

= 1

c(c − 1)

c∑

i=1

c∑

j=1, j �=i

(c2 − 3c + 3)|E(i, j)|

= 2(c2 − 3c + 3)

c(c − 1)
|E |

=
(

2 − 4c − 6

c(c − 1)

)
· |E |

Hence D(G; a, b) has at most the desired number of directed edges.
To prove the strong connectivity of D(G; a, b), consider any path, say

u = u0, u1, . . . , un = v, in the graph G from u to v. We prove that there exists
a directed path from u to v in D(G; a, b). It is enough to prove that for all i there
is always a directed path from ui to ui+1 for any edge {ui , ui+1} of the above path.
We distinguish several cases.

• Case 1. C(Lui ui+1) = a. Then (ui , ui+1) ∈ E(a,ω) where ω = C(Ruiui+1
).

Since E(a,ω) is in D(G; a, b), the edge (ui , ui+1) is in D(G; a, b). Moreover,
the stretch factor of {ui , ui+1} is one.

• Case 2. C(Lui ui+1) = b. Hence, (ui , ui+1) is not in D(G; a, b). However, by
Lemma 4, the face Lui ui+1 = Rui+1ui constitutes a clockwise-directed cycle and
therefore, a directed path from ui to ui+1. It is easy to see that the stretch factor
of {ui,ui+1} is not more than the size of the face Lui ui+1 minus one, which is at
most Φ(G)− 1.

• Case 3. C(Lui ui+1) �= a, b. Suppose C(Lui ui+1) = c. Three cases can occur.

– C(Rui ui+1) = a. Hence, (ui , ui+1) is not in D(G; a, b). However, by Lemma
4, there exists a counterclockwise-directed cycle around face Rui ui+1 =
Lui+1ui , and consequently a directed path from ui to ui+1. The stretch factor
is at most the size of face Rui ui+1 minus one, which is at most Φ(G)− 1.

– C(Rui ui+1) = b. By Lemma 4, there exists a clockwise-directed cycle around
face Rui ui+1 . This cycle contains (ui ui+1), and in addition the stretch factor of
{ui , ui+1} is one.

– C(Rui ui+1) = d �= a, b, c. By construction, D(G; a, b) has both edges
(ui , ui+1) and (ui+1, ui ). Again, the stretch factor of {ui , ui+1} is one.

This proves the theorem.
As indicated in Theorem 8 the number of directed edges in the strongly oriented

graph depends on the number c of colors according to the formula
(

2 − 4c−6
c(c−1)

)
·|E |.

Thus, for specific values of c we have the following table of values:

c 3 4 5 6 7
2 − (4c − 6)/c(c − 1) 1 7/6 13/10 7/5 31/21
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Regarding the complexity of the algorithm, this depends on the number c of
colors being used. For example, computing a four coloring can be done in O(n2)

[35]. Finding the digraph with minimum number of directed edges among the 12
possible digraphs can be done in linear time. Therefore, for c = 4 it can be computed
in O(n2). For c = 5 a five coloring can be found in linear time O(n). For the case
of geometric planar subgraphs of unit disk graphs and location aware nodes there
is a local seven coloring (see [9]). For more information on colorings the reader is
advised to look at [20].

3.5.1.1 Further Questions and Open Problems

Observe that it is required that the underlying geometric graph in Theorem 8 does
not have any cut edges. Although it is well known how to construct planar graphs
with no cut edges starting from a set of points (e.g., Delaunay triangulation) there
are no known constructions in the literature of “local” spanners from UDGs which
also guarantee planarity, network connectivity, and no cut edges at the same time.
Constructions of spanners obtained by deleting edges from the original graph can
be found in Cheriyan et al. [8] and Dong et al. [11] but the algorithms are not local
and the spanners not planar. Similarly, existing constructions for augmenting (i.e.,
adding edges) graphs into spanners with no cut edges (see Rappaport [34], Abel-
lanas et al. [1], Rutter et al. [36]) are not local algorithms and the resulting spanners
not planar.

3.6 Conclusion

We considered the problem of converting a planar (undirected) graph constructed
using omnidirectional antennae into a planar-directed graph constructed using direc-
tional antennae. In our approach we considered trade-offs on the number of anten-
nae, antennae angle, sum of angles of antennae, stretch factor, lower and upper
bounds on the feasibility of achieving connectivity. In addition to closing several
existing gaps between upper and lower bounds for the algorithms we proposed
there remain several open problems concerning topology control whose solution
can help to illuminate the relation between networks of omnidirectional and direc-
tional antennae. Also of interest is the question of minimizing the amount of energy
required to maintain connectivity given one or more directional antennae of a given
angular spread in replace of a single omnidirectional antennae.
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Chapter 4
Optimal Placement of Ad Hoc Devices Under
a VCG-Style Routing Protocol

Peter Widmayer, Luzi Anderegg, Stephan Eidenbenz, and Leon Peeters

Abstract Motivated by a routing protocol with VCG-style payments, we investigate
the combinatorial problem of placing new devices in an ad hoc network such that
the resulting shortest path transmission costs, defined as sums of squared Euclidean
distances, are minimum. For the cases of only one new device and of one communi-
cation request with multiple devices with identical transmission ranges, we provide
polynomial-time algorithms. On the negative side, we show that even for a single
communication request, placing multiple new devices with different transmission
ranges is NP-hard. For identical transmission ranges, the placement of multiple new
devices is NP-hard under multiple communication requests.

4.1 Introduction

Wireless ad hoc networks promise the functionality of classical networks, without
the burden of having to construct and install a fixed network infrastructure. Each
wireless device in an ad hoc network has a restricted transmission range, and com-
munication between two devices typically takes place in a multi-hop fashion along
intermediate devices. It is far from clear, however, if and why an intermediate device
would be willing to sacrifice its own battery power and bandwidth to forward data
packets destined for other devices.

Recently, several papers have addressed the issues caused by selfish devices in
wireless ad hoc networks. In particular, various routing protocols have been pro-
posed [3, 10] that issue payments to the intermediate wireless devices, so as to
compensate them for their energy costs. This compensation follows the marginal
contribution principle by Vickrey, Clarke, and Groves (VCG), the key idea of the
issued VCG payments being to reward a device for the gain in overall benefit that its
participation causes (a good overview of VCG mechanisms is provided in [19]).

The VCG nature of the payments guarantees that devices will truthfully report
their distances to other devices. In particular, the profit a device makes from the

P. Widmayer (B)
Institute of Theoretical Computer Science, ETH Zürich, Zürich, Switzerland
e-mail: widmayer@inf.ethz.ch

S. Nikoletseas, J.D.P. Rolim (eds.), Theoretical Aspects of Distributed Computing
in Sensor Networks, Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14849-1_4, C© Springer-Verlag Berlin Heidelberg 2011

85



86 P. Widmayer et al.

VCG payments depends on its position in the network. This motivates the main
question studied in this chapter: Where should a device position itself in the net-
work so as to maximize its profit from the VCG payments? Although inspired by a
game-theoretic setting, this is a purely combinatorial question that we study in the
more general setting of several devices to be positioned for several communication
requests, under a transmission cost model that is quadratic in Euclidean distance.

4.1.1 Model and Notation

More formally, we model the above setting as a directed graph G = (V, E), with the
vertex set V = {1, . . . , n} representing the set of incumbent wireless devices. Each
vertex is embedded in the plane, and its coordinates are specified by a placement
function p : V → R

2. We base our cost function on the Euclidean distance measure,
with |uv| denoting the distance between two devices u and v, and also writing |xx ′|
for the Euclidean distance between two points x, x ′ in the plane. We assume that the
distance between any two device positions can be computed in constant time. The
transmission ranges of the devices are modeled by a transmission range function
r : V → R+, specifying the maximal distance r(u) from device u at which another
device can still receive a signal from u via direct communication.

The edge set E of size m contains a directed edge (u, v) whenever device v lies
within the transmission range of device u, that is, if and only if |uv| ≤ r(u). The cost
c(u, v) of a directed edge (u, v) reflects the energy requirement for transmitting a
unit size data packet along the edge. Following the most common theoretical models
of power attenuation, the cost is taken proportional to the squared Euclidean distance
as c(u, v) = γ |uv|2, with γ some constant; powers other than 2 of the Euclidean
distance are easily handled along the same lines. For convenience, we set the cost
of all non-edges (u, v) �∈ E to c(u, v) = ∞.

The network needs to accommodate a number of communication requests
between devices, which we model by a commodity set K = {(s1, t1), . . . , (sk, tk)},
with si and ti being the i th source device and destination device, respectively.
Each communication request is for a single unit size packet, and no two com-
modities share both the source and destination device. Hence, k can be as large as
n × (n − 1). If there is only one commodity, then we denote the source by s and the
destination by t . We refer to a tuple of the form (V, E, K , p, r, c) as a transmission
graph T , where E is a function of p and r and c is a function of p and γ .

The cost of a path P = (v1, . . . , v j ) is c(P) = ∑ j−1
i=1 c(vi , vi+1), as usual. By

S PT (s, t) we denote a shortest directed path in the transmission graph T from s to t
with respect to the edge costs c, i.e., a path P from s to t for which c(P) is smallest.
Further, S P−u

T (s, t) denotes the length of a shortest s − t-path not using the vertex
u, and S P−U

T (s, t) the length of a shortest s − t-path not using any vertex in the set
of vertices U ⊂ V . By c(T ) =∑i∈K c(S PT (si , ti )) we refer to the total path costs
over all commodities. We will assume that every commodity in K is connected by
a path of finite cost.

For finding a shortest path from a source vertex s to a destination vertex t in a
transmission graph T , the following incentive-compatible ad hoc VCG protocol has
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been proposed [3]. First, the protocol basically asks the vertices for their positions
and mutual distances during a flooding broadcast phase. Using this information, the
protocol computes the edge costs c(u, v) and a shortest path S PT (s, t). Finally, it
pays each vertex u ∈ S PT (s, t) an amount c

(
S P−u

T (s, t)
)− c(S PT (s, t))+ c(u, v),

where (u, v) is the outgoing edge of u in S PT (s, t). Because of the VCG nature
of the payments, vertices have no incentive to lie, and hence the computed c(u, v)
can be assumed to equal the true transmission costs. Thus, a vertex u gains a profit
of c

(
S P−u

T (s, t)
)− c(S PT (s, t)). This principle extends to the case where a selfish

agent controls a set of devices U and the mechanism knows about this fact and gains

a profit of c
(

S P−U
T (s, t)

)
− c(S PT (s, t)).

4.1.2 The Device Placement Problem

Inspired by the ad hoc VCG protocol, this chapter takes the perspective of a profit
maximizing selfish agent that enters an existing transmission graph T with a set
ΔV = {n + 1, . . . , n +Δn} of Δn new devices, each with a maximal transmission
range r(v), v ∈ ΔV . Assuming that the communication requests for the near future
are known, the agent’s goal is to determine positions for its Δn devices such that
the profit from the resulting VCG payments is maximum. Denoting by T ′ the new
transmission graph including the new devices ΔV at their chosen positions, the
objective function is defined as

maximize
k∑

i=1

(c(S PT (si , ti ))− c(S PT ′(si , ti ))) = c(T )− c(T ′) (4.1)

Since the first term in (4.1) is independent of the positions of the devices in ΔV , the
problem is equivalent to

minimize c(T ′) (4.2)

More formally, the device placement problem is stated as follows:

Problem: Device Placement.
Instance: An instance I = (T,Δn, r ′) consists of a transmission graph T =
(V, E, K , p, r, c), a positive integer Δn, and a maximal transmission range
r ′(v) for each additional device v ∈ ΔV .

Question: Find a placement for the Δn additional devices such that the differ-
ence c(T )− c(T ′) is maximum, where T ′ is the transmission graph after the
placement of the additional devices.

Thus, besides the game-theoretic motivation, the resulting device placement
problem can also be defined as an optimization problem without any game-theoretic
flavor: place Δn additional devices such that the shortest paths in the resulting
transmission graph T ′ are of minimum length.
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We investigate the algorithmic complexity of the device placement problem for
Δn = 1 as well as for general Δn and for k = 1 communication request as well
as for general k. Depending on the form of the maximal transmission ranges of the
additional devices, we study two problem variants: with identical new devices that
each have the same transmission range r(n +1) = r(n+2) = · · · = r(n+Δn) and
with individual new devices, each having their own transmission range r(v), v ∈
ΔV . Clearly, the two problem variants do not differ for a single additional device.
Hence, we simply refer to this case as the single device placement problem.

We provide a polynomial-time algorithm for the problem of placing Δn new
devices with identical transmission ranges under a single communication request.
To arrive at this result, we first study the case with a single communication request
and a single new device, analyze its geometric structure, and propose geometric
objects that capture this structure. We further present a polynomial-time algorithm
for optimally placing a single new device under k communication requests.

Furthermore, we show that if the wireless devices have individual, potentially
different transmission ranges, the placement problem is NP-hard already for a sin-
gle communication request. The problem of placing Δn new wireless devices with
identical transmission ranges for a number k of communication requests is NP-hard,
where Δn and k are part of the input.

4.1.3 Related Work

Network upgrade problems where an existing network has to be extended such that
the resulting network exhibits certain properties are classical optimization problems.
Several variants of these problems have been considered, and the work closest to
ours, although still quite different, is the thesis by Krumke [18]. Given a graph and a
function specifying the cost of shortening an edge, he investigated how to determine
an optimal strategy to minimize the total weight of a minimum spanning tree within
a budget restriction.

Our approach introduces concepts and methods from computational geometry
into the multi-hop wireless networking domain. A similar combination of tech-
niques has been applied to show hardness results for scheduling on the medium
access control layer in an ad hoc network setting [13, 14].

The idea of our approach in this chapter is in a similar vein to the work on
network creation games in [11]. The main goal there is to explain the structure
of networks constructed by independent selfish agents from a game-theoretic point
of view. Different authors [2, 5–7, 15, 20] continued this line of study in related
network creation models, including a geometric model [16] similar in spirit to ours.

4.2 Placing Multiple Identical Devices for a Single Commodity

This section studies the basic geometric structure of the identical device placement
problem for a single commodity. We first characterize the optimal position of one
additional device. Next, we use that characterization to construct an algorithm for
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optimally placing an additional device and extend that algorithm to compute the
optimal positions of multiple identical devices.

4.2.1 The Optimal Position of a Single Additional Device

Suppose the transmission graph consists of only two devices u and v that wish to
communicate, and we are interested in the best position for an additional device v′.
Let the impact Fuv(v

′) of the additional device v′ be the difference between the cost
of the direct communication from u to v and the cost of the communication from u to
v via the additional device v′. That is, Fuv(v

′) = c(u, v)−(c(u, v′)+c(v′, v)). Note
that the impact may be negative. Figure 4.1 illustrates the following observation
relating the impact Fuv(v

′) to the position of v′.

Observation 1 The impact of an additional device v′ between devices u and v is
equal to Fuv(v

′) = c(u, v)/2 − 2γ · |v′, Muv|2, where Muv is the middle point of
the line segment from u to v.

Observation 1 implies that device positions with the same impact lie on a circle
with center Muv , with the maximum impact achieved at Muv . From there the impact
decreases quadratically in each direction, and it is equal to zero for positions on a
circle with center Muv and radius |uv|/2.

Next, we include a single source–destination pair (s, t) into the impact function.
To that end, we define the impact Fst

uv(v
′) of an additional device v′ on a device

pair (u, v) with respect to the single source–destination pair (s, t) as the difference
between the shortest s − t-path length without v′ and with v′ and (u, v′), (v′, v) as
a mandatory partial path.

Observation 2 The impact of an additional device v′ for a device pair (u, v) and a
source–destination pair (s, t) is

Fig. 4.1 Points with same impact Fuv(v
′) are on circles around M(u, v) (left), and the correspond-

ing graph of Fuv(v
′) in R

3
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Fst
uv(v

′) = c(S PT (s, t))−c(S PT (s, u))−2γ · |v′, Muv|2−c(u, v)/2−c(S PT (v, t))

Proof Fst
uv(v

′) = c(S PT (s, t))−[c(S PT (s, u))+c(u, v′)+c(v′, v)+c(S PT (v, t))],
so the observation follows by using Observation 1. �

Note that the impact is defined for every pair of devices u, v ∈ V , and that it
can be negative. An additional device induces a shortest path along (u, v′, v) if its
impact is positive. The impact is again equal for all positions with the same distance
to Muv , and the maximum impact is achieved at position Muv . Observe that the
circle with positions of zero impact does not necessarily go through the positions of
devices u and v. Indeed, if u and v are not on a shortest path before inserting the
additional device, then the circle with positions of zero impact has a smaller radius
than |Muv, u|.

Some positions with positive impact may be unreachable and hence useless due
to small maximal transmission ranges of both the additional device and the exist-
ing devices. Thus, we define the profit region P Rst

uv as the set of positions for an
additional device v′ where Fst

uv(v
′) is positive, u can reach v′, and v′ can reach v,

given the maximal transmission ranges. Geometrically, a profit region P Rst
uv is the

intersection of three disks: the disk around Muv where Fst
uv(v

′) ≥ 0, the disk with
center u and radius r(u), and the disk with center v and radius r(v′) (see Fig. 4.2 for
three possible shapes of such an intersection). The boundary of a shape consists of
at most four circle segments. We define Gst

uv(·) to be the function Fst
uv(·) restricted to

the corresponding profit region. That is, Gst
uv(v

′) is equal to Fst
uv(v

′) for all positions
of v′ inside P Rst

uv , and −∞ otherwise.
Assuming that the profit region P Rst

uv is not empty and that v′ is placed between
u and v, the position inside P Rst

uv with minimal distance to the point Muv is the best
position for v′ because it maximizes Gst

uv(v
′). If the maximal transmission ranges

of u and v′ are large enough, then this is the same as Muv itself. If the maximal
transmission range of v′ or u is too small, then the best position conceptually moves
on the line segment between u and v from Muv toward device u respectively v until
it enters the profit region. Such a best position is denoted by p∗(u, v, (s, t)), and
it can be computed in constant time given the distance between u and v and the
maximal transmission ranges r(u) and r(v′).

Fig. 4.2 Profit region P R(u, v, (s, t)) building an asymmetric lens, a circle, and a shape bounded
by four arcs
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4.2.2 Multiple Identical Devices

The fact that one additional device reduces the cost between exactly one device
pair enables us to state the following geometric formulation for placing a single
additional device for a single commodity:

max
p(v′)∈R2

max
u,v∈V

Gst
uv(v

′) (4.3)

Below, we use this formulation to derive an algorithm for placing multiple identical
devices for a single commodity. As a first step, however, we note that Observation 2
and problem formulation (4.2) together induce an algorithm for the simpler problem
of optimally placing a single device for a single commodity.

To that end, we define the following expanded 2-layer graph to encode the
restriction that only one additional device is available. The graph has two layers,
labeled 0 and 1, each containing a copy of the transmission graph. We add an edge
from each vertex (u, 0) on layer 0 to each vertex (v, 1) on layer 1, for u �= v. The
cost of such an edge is equal to c(u, p∗)+c(p∗, v), the transmission cost between u
and v via an additional device at position p∗(u, v, (s, t)). For simplicity, we exclude
edges with infinite cost. In this graph, we then search a shortest path from vertex
(s, 0) to vertex (t, 0) and another one from (s, 0) to vertex (t, 1). By construction,
the minimum of these two paths corresponds to optimally placing the additional
device.

The above approach can be extended as follows to optimally place Δn iden-
tical additional devices, instead of only one. In principle, the best positions for
h ≤ Δn additional devices between a fixed pair (u, v) of devices are to distribute the
additional devices in equal distances on the segment connecting u and v. However,
limited maximal transmission ranges of device u or of the additional devices may
make such equal distances impossible. In such a case, the additional devices are
distributed as evenly as possible on the feasible part of the segment connecting u
and v. Based on this insight, we construct a (Δn + 1)-layer graph H = (VH , EH )

with a copy of the transmission graph on each layer. For each layer h < Δn and
each “higher” layer h′ > h, we add an edge from each vertex (u, h) to each vertex
(v, h′), for u �= v, the cost of which is equal to the transmission cost from u to v via
(h′ − h) optimally placed additional devices between u and v, as discussed before.
Edges with infinite cost are again excluded for simplicity.

Theorem 1 The multiple identical device placement problem for a single commodity
can be solved in time O((Δn)2n2).

Proof We use the (Δn+1)-layer graph H described above, compute a shortest path
between (s, 0) and (t, h) for each h, 0 ≤ h ≤ Δn, and output a path with length
min0≤h≤Δn c(S P((s, 0), (t, h))). Since the cost of each edge ((u, h), (v, h′)) ∈ EH

correctly reflects the cost of a subpath from u to v containing exactly (h′ − h) opti-
mally placed additional devices between u and v, the correctness of the algorithm
follows. The construction of H needs time O((Δn)2n2), as there are that many
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potential edges in the graph. All shortest paths can be found in time O((Δn)2n2)

using Dijkstra’s algorithm to find a shortest path tree rooted at (s, 0). �

4.3 Single Device Placement for Multiple Commodities

With multiple commodities (k > 1), the optimal position for a single additional
device may be different from the optimal point p∗(u, v, (si , ti )) between some exist-
ing devices u and v and a specific commodity i . Rather, the best position could be
a position where connections between several source–destination pairs use the new
device. Unfortunately, the ideas from the previous section do not easily extend to
a polynomial-time algorithm for the single device and multiple commodities case.
Therefore, we first present a different algorithm for the single device and single
commodity case, which has worse running time than the algorithm above, but is
extendable to the single device and multiple commodities case.

4.3.1 Single Maximization Diagram Approach

An alternative approach to solve the single device and single commodity case is to
directly use the geometric formulation in (4.3). There, the term maxu,v∈V Gst

uv(·)
defines exactly the upper envelope of the impact functions Gst

uv(·), u, v ∈ V , that
is, the point-wise maximum of the curves Gst

uv(·). The maximization diagram M of
the impact functions Gst

uv(·) divides the plane into maximal connected cells, such
that within one cell the same function Gst

uv(·) attains the upper envelope defining
maximum (see [1] for a detailed description of maximization diagrams). Figure 4.3
shows the upper envelope of two impact functions and the corresponding maxi-
mization diagram. Thus, a cell in M has a characterizing device pair, and for each
point in the cell, that device pair yields the maximum impact. Inside a given cell,
the optimal position for a new device is defined by the maximum of the concave
function Gst

uv(·) for the characterizing device pair (u, v) and is hence easy to com-

Fig. 4.3 Upper envelope of the impact functions for two device pairs and the corresponding max-
imization diagram
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pute. For a polynomially bounded number of cells, this approach gives rise to a
polynomial-time algorithm.

Figure 4.3 illustrates that an edge in M arises either from the intersection of two
impact functions Gst

uv(·) or from a domain boundary of an impact function. These
domain boundaries are circle segments, and the following observation states that an
intersection yields a line segment. Thus, the edges of any maximization diagram cell
are either line or circle segments.

Observation 3 The intersection of two impact functions Gst
u1v1

(·) and Gst
u2v2

(·) is a
line.

Proof Consider the impact functions for device pairs (u1, v1) and (u2, v2) and
an additional device v′. Both impact functions Gst

uivi
(v′) are of the form Hi − 2 ·

γ |v′, Muivi |2, where the constant Hi depends on the positions of the devices, for
i = 1, 2. If we set Gst

u1v1
(·) = Gst

u2v2
(·), then the set of points fulfilling the equation

constitutes a line. �

Lemma 1 Given a two-dimensional maximization diagram cell c, represented by a
list of its nc incident edges, with a characterizing pair (u, v), the optimal position
inside c with respect to Gst

uv(·) can be found in time O(nc).

Proof Inside c, the profit of any position is equal to the concave impact function
Gst

uv(·). Hence, the maximum inside c is either attained at the single point where the
gradient is equal to zero, if this point lies inside c, or attained somewhere on the
boundary of c. For the function Gst

uv(·), the gradient is zero at position Muv , and if
this position is inside c, we are done. Otherwise, we go along the boundary edges
of c, where, for a single edge, the maximum is attained at the position with smallest
distance to Muv .

Algorithm 1 MaxDiagram(s, t)
Output: Optimal position for one additional device for one commodity (s, t).
1: for all device pairs (u, v) do
2: compute Gst

uv(·)
3: end for
4: compute maximization diagram M of ∪u,vGst

uv(·)
5: compute the global optimum over all 2-dimensional max. diagram cells c ∈ M

Testing whether Muv is inside c can be done in time linear in nc by comparing the
position to each edge. The maximum computation for all nc edges needs linear time
as well, since the position on a line segment or circle segment edge with smallest
distance to Muv can be determined in constant time. �

Lemma 2 The single device placement problem for a single commodity can be
solved in time O(n4+ε).

Proof We use Algorithm MaxDiagram that extends the above approach by consid-
ering all maximization diagram cells. First, we compute the single source shortest
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path tree from s and the single destination shortest path tree to t . This can be done
in time O(n log n + m). The for-loop over all device pairs needs time O(n2), and
within one iteration we evaluate Gst

uv for a device pair (u, v). As a single evaluation
can be executed in constant time using the shortest path trees, this step runs in time
O(n2).

It was shown in [1] that the maximization diagram of 	 partially defined functions
in R

3 can be computed in time O(	2+ε′), for any ε′ > 0. Thus, the maximization
diagram M of the O(n2) functions Gst

uv(·) can be computed in time O(n4+ε), and
the combinatorial complexity of M is O(n4+ε) as well. Using Lemma 1 and the
fact that each edge is incident to at most two cells, computing the maximum over
all two-dimensional cells in M takes time O(n4+ε). Altogether, the running time is
O(n4+ε). �

4.3.2 Multiple Maximization Diagrams Approach

Next, we extend the above approach to the single device placement problem for
multiple commodities, by means of the following formulation:

max
p(v′)∈R2

k∑

i=1

max
u,v∈V

Gsi ti
uv (v

′) (4.4)

We first compute the maximization diagram Mi for each commodity i ∈ K . Now,
each point in the plane is part of one cell in each Mi , and that cell determines the
characterizing pair for the corresponding commodity i (if it exists). We use this fact
to determine the regions in which each point has the same characterizing pair for
each single commodity. That is, we intersect the cell partitions of all maximization
diagrams, giving rise to new (smaller) cells. The result can be visualized as the new,
fine-grained partition that arises from superimposing transparent slides containing
the more coarse-grained maximization diagram cells. More precisely, all the points
in a new cell come, for each maximization diagram, from a single cell, and the new
cell is a maximal connected region for which this holds. This construct is known as
the overlay O of the cell sets M1, . . . ,Mk (see chapter 2 in [8] for details on its

Algorithm 2 MaxDiagramOverlay(K )
Output: Optimal position for one additional device for the commodity set K .
1: for all commodities i ∈ K do
2: for all device pairs (u, v) do
3: compute Gsi ti

uv (·)
4: end for
5: compute maximization diagram Mi of ∪u,vGsi ti

uv (·)
6: end for
7: compute O = overlay

(
M1, . . . ,Mk

)

8: compute the global optimum over all 2-dimensional overlay cells c ∈ O
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computation). Then, for every single commodity, the characterizing pair is the same
for every point in an overlay cell. Lemma 3 states the complexity of computing the
optimal position inside a single overlay cell and Theorem 2 the resulting complexity
of the above approach.

Lemma 3 Given a two-dimensional overlay cell c with a (possibly empty) charac-
terizing pair (ui , vi ) for each commodity i ∈ K , and represented by a list of its nc

incident edges, the optimal position inside c with respect to the profit
∑

i Gsi ti
uv (·)

can be found in time O(nc).

Proof The position for which
∑

i Gsi ti
uv (·) attains the maximum is the optimal posi-

tion inside c. As the functions Gsi ti
uv (·) are concave inside c for all characterizing

pairs, and for all commodities i ∈ K , the sum over these functions is concave
as well. As in Lemma 1, the maximum of the resulting concave function is either
attained at the single point where the gradient is zero or on the boundary of c.
Here, the single point where the gradient is zero evaluates to the center of mass
of the positions Muivi . The remainder of the proof is the same as in the proof of
Lemma 1. �

Theorem 2 The single device placement problem for k commodities can be solved
in time O(k2n8+2ε log (kn4+ε)).

Proof We use Algorithm MaxDiagramOverlay that summarizes the above
described approach. The nested for-loop needs time O(kn4+ε) as we compute a
maximization diagram for each of k commodities. The overlay of two sets of pla-
nar geometric objects with combinatorial complexities 	′ and 	′′ can be computed
in time O(	 log (	′ + 	′′)) where 	 is the combinatorial complexity of the result-
ing overlay (see chapter 2 in [8]). As the combinatorial complexity of the over-
lay is O((kn4+ε)2), it can be constructed in time O(k2n8+2ε log (kn4+ε)). Using
Lemma 3 and the fact that each edge is incident to at most two cells, the running
time for computing the global optimum over all overlay cells is in O(k2n8+ε).
Thus, the computation of the overlay dominates the overall running time of the
algorithm. �

4.4 Placing Multiple Individual Devices for a Single Commodity

For individual devices that each have a specific maximal transmission range, we
have to specify exactly which additional device is placed at which position. The
decision version of the corresponding problem is defined as follows.

Problem: Individual Device Placement.
Instance: An instance I=(T,Δn, r, Z ′) consists of a transmission graph T =
(V, E, K , p, r, c), a positive integerΔn, an individual maximal transmission
range r(v) for each additional device v ∈ ΔV , and a positive number Z ′.
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Question: Is there a placement for the Δn additional devices such that c(T ′) ≤
Z ′, where T ′ is the transmission graph after the placement of the additional
devices?

We now prove that this problem is NP-hard already for a single commodity.

Theorem 3 Individual Device Placement is NP-hard for a single commodity.

Proof The proof is by a reduction from Partition (SP12 in [12]). In Partition, we
are given a set A = {a1, . . . , a|A|} of positive integer numbers. The goal is to decide
whether there is a subset A′ ⊆ A such that

∑
ai∈A′ ai = B/2, where B =∑ai∈A ai .

We construct a device placement instance consisting of three devices {1, . . . , 3},
placed equidistant on a line, with device 1 at position 〈0〉, device 2 at position
〈B/2 + 1〉, and device 3 at position 〈B + 2〉. The maximal transmission ranges
of these devices are set to 1. Further, the device pair (1, 3) constitutes the single
commodity. The number Δn of additional devices is set to |A|, and the maximal
transmission range r(u) is set to av−n , for v = n + 1, . . . , n + Δn. Finally, we
set Z ′ to 2 + ∑ai∈A a2

i . A solution of the partition problem immediately gives
a solution for the device placement problem: we place the devices with index in
A′ one after another on the line segment between devices 1 and 2, starting at
distance 1 from device 1, such that their maximal transmission ranges are just
exactly large enough to reach the next device. The remaining devices in A \ A′ are
placed between devices 2 and 3 accordingly. The total cost of the path now equals
1 +∑ai∈A′ a2

i + 1 +∑a j∈A\A′ a2
j , which is B + 2. If the partition problem has no

solution, then no placement of the devices connects devices 1 and 2 and devices 2
and 3, and hence the total shortest path cost of infinity cannot be avoided. �

4.5 Placing Multiple Devices for Multiple Commodities

We show that the problem of placing multiple new devices for multiple commodities
is NP-hard, even if all new devices have the same transmission range. The decision
version of this problem is stated as follows:

Problem: Identical Device Placement.
Instance: An instance I =(T,Δn, r, Z) consists of a transmission graph T =
(V, E, K , p, r, c), a positive integer Δn, an identical maximal transmission
range r(v) for each additional device v ∈ ΔV , and a positive number Z .

Question: Is there a placement for the Δn additional devices such that the dif-
ference c(T ) − c(T ′) ≥ Z , where T ′ is the transmission graph after the
placement of the additional devices?

Theorem 4 Identical Device Placement is NP-hard.

Proof Since the proof is quite lengthy and technical, let us first sketch its main
idea. We reduce a special version of planar Exact Cover By 3-Sets (X3C) to Iden-
tical Device Placement. In an X3C instance I (U, S, b) we are given a set U of 3b
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elements, a collection of 3-element subsets S = {S1, . . . , S|S|} of U , and a budget
b. We are looking for a subcollection of size b from S whose union is U . We use the
restricted version of X3C where the corresponding bipartite graph with elements
on one side and subsets on the other is planar and each element appears in either
two or three sets [9], and denote it by X3C-3.

The idea of the reduction is to introduce a device for every element and every
set from the X3C-3 instance. For embedding these devices in the plane, we limit
ourselves to instances of X3C-3 whose graph can be augmented (by adding edges)
to become triconnected while staying 3-planar. We call this restricted problem aug-
mentable X3C-3 or simply ++X3C-3. We then use a result by Kant [17] for drawing
a triconnected 3-planar graph with horizontal and vertical edge segments on a grid.
Every element device forms one source–destination pair with an additional global
destination device.

Further, we show that one can construct a chain consisting of a polynomial num-
ber of devices at and between any two points x, x ′, such that the cost of the shortest
path between the devices at x and x ′ is bounded by their distance. Using such chains,
we ensure that the only possible paths between an element device and the global
destination device go through the set devices the element is a member of. The cost
of these paths is the same for all source–destination pairs. Moreover, the placement
of an additional device within a chain yields only a small profit. Indeed, only one
position induces a large improvement between each set device and the global desti-
nation device. Hence, the number of reasonable positions for the additional devices
is limited to the number of subsets in S, and there is a one-to-one correspondence
between such a position and a subset. This completes the overview of the proof.

Let us now go into the technical details of the proof, by first mentioning the
details of the graph drawing result that we use. Recall that a graph is triconnected
if no removal of two vertices disconnects the graph. In a 3-planar graph, any vertex
has degree at most 3. Any triconnected 3-planar graph is, hence, 3-regular. �

Lemma 4 (Kant [17]) A triconnected 3-planar graph with n vertices has a planar
drawing with horizontal and vertical segments on an � n

2 �×� n
2 � grid such that every

edge has at most one bend.

NP-hardness of X3C-3 is proved in [9] by a reduction that creates special X3C-3
instances. Each such instance has the property that it can be augmented to a tricon-
nected 3-planar graph by adding extra edges, and these extra edges can of course be
deleted again after drawing the augmented graph.

There are four directions to attach an additional line horizontally or vertically at
a vertex v, namely left, right, up, and down. A direction is called free for a vertex if
no incident line segment goes in this direction, and an additional orthogonal straight
line can be drawn in this direction to the outside of the bounding box of the drawing
without hitting any other vertex.

Observation 4 The algorithm from [17] to draw a 3-planar triconnected graph
guarantees that every vertex v has a free direction for drawing an additional straight
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line segment. Moreover, no two such straight line segments that belong to two dif-
ferent vertices and are orthogonal intersect each other.

As a last ingredient we show how to place devices along line segments in the
plane such that certain properties hold. As our proof does not make use of the
constant γ in the definition of the transmission cost, it works for any value of γ ,
and we will therefore simply choose γ = 1 and not mention γ any further.

Lemma 5 Given two points p1, p2 in Euclidean distance 	, and z ≤ 	2, we can
place two devices u, v at p1, p2 and further devices on the line segment between p1
and p2 such that c(S P(u, v)) = z.

Proof Let s(p1, p2) be the line segment between p1 and p2. We distinguish three
cases. If z = 	2, then we place device u with r(u) = 	 at position p1 and v at
position p2, and no other device on s(p1, p2). If 	2 is a multiple of z, then we place
device u at p1 and v at p2, plus devices on s(p1, p2) at distance h · z/	 from p1, for
h = 1, . . . , 	2/z − 1. The maximal transmission range of all devices is set to z/	.

Otherwise (see Fig. 4.4), we place device u at p1 and v at p2, plus devices on
s(p1, p2) at distance h · z/	 from p1, for h = 1, . . . , �	2/z� − 2. Let r	 = 	 −
�	2/z� · z/	. A further device is placed on s(p1, p2) at distance 	 − r	 + a from

p1, where a =
(√

(z/	)2 − r2
	 − z/	+ r	

)
/2. The maximal transmission range of

the devices is set such that each device reaches the next device on the segment. The
shortest path between u and v goes over each device on s(p1, p2). The sum of the
squared distances is (�	2/z�−2)(z/	)2 + (z/	+a)2 + (r	−a)2, which equals z.�

For ease of description, ch(p1, p2, z) denotes a chain of devices between posi-
tions p1 and p2, with positions as in the proof above, and a path of cost z. Similarly,
ch−(p1, p2, z) is the same set of devices without the device at position p1.

Let us now continue the proof of Theorem 4 by describing in detail the reduction
from the instances of planar X3C-3 that appear in the corresponding NP-hardness
proof in [9]. We make use of the property of these instances that they can be aug-
mented by adding edges to become triconnected 3-planar. Let us call the planar
X3C-3 problem for these instances planar ++X3C-3 and note that the reduction in
[9] proves planar ++X3C-3 to be NP-hard. Let I (U, S, b) be an instance of planar
++X3C-3. By Lemma 4, we can assume that an orthogonal grid embedding is given,
for which we scale all coordinates by a factor ĉ to ensure that vertices are sufficiently

r�

a

z/�

�

p1 p2

Fig. 4.4 Chain construction
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6
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7
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2

vT

V 2,T

V 2,2V 2,1V 1,1

V 7,T

V 6,T

V 1,TV 3,TV 4,TV 5,T
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3

Fig. 4.5 Overview illustration of the reduction where each ve
i corresponds to an element device and

each vs
j to a set device. vT is the global destination device, and each V i, j respectively each V j,T

refers to an element-set chain respectively a set-destination chain. The gaps on the set-destination
chains indicate the potential positions for the additional devices

far away from each other. The factor ĉ is chosen to be 4 × n3 for reasons that will
become clear later. For now, it is sufficient to note that ĉ is polynomially bounded
in n. After the scaling, a vertex i has coordinates 〈ix , iy〉. Also by Lemma 4, each
edge (i, j) between vertex i and j in the embedding consists of at most two line
segments. For element vertex i and set vertex j , we denote the line segment of edge
(i, j) connected to i by si (i, j) and the line segment connected to j by s j (i, j). If
only one line segment builds the edge, then we split the line segment into two line
segments of equal length and assign those to si (i, j) respectively s j (i, j). By l(·)
we refer to the Euclidean length of an edge respectively a line segment. Moreover,
we let fi (i, j) = 1/ l(si (i, j)) and f j (i, j) = 1/ l(s j (i, j)). The reason behind this
definition is to define for any line segment, say of length l, a sequence of devices
that make its cost a fixed constant, say 1. This can be achieved, roughly speaking,
by placing l2 evenly along the line segment, with each device bridging a gap of
length l/ l2 = 1/ l, at a total cost of (1/ l)2 × l2 = 1. In addition, we will modify
the equidistant placement a little on one end of the device path, in order to make the
connection work only in one direction.

We construct the instance Î (T,Δn, r, Z) of Identical Device Placement from I
as follows. We start with the description of the positions and transmission ranges
of the devices in the transmission graph T . The device set V contains five different
kinds of devices, called the element, the set, the global destination, the element-set
chain, and the set-destination chain devices. We describe each kind separately (see
Fig. 4.5 for an overview illustration).
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4.5.1 Set Devices

For each set j ∈ S = {1 . . . , |S|}, we place a set device vs
j at position 〈 jx , jy〉.

These devices have a maximal transmission range equal to 2. We denote the union
of all set devices by V s.

4.5.2 Element Devices

For each element i ∈ U = {1, . . . , |U |}, we place an element device ve
i at position

〈ix , iy〉. The maximal transmission range of such a device is set to max j :(i, j)∈E 3/2 ·
fi (i, j). We denote the union of all element devices by V e.

4.5.3 Global Destination Device

We place one single global destination device vT at position 〈0,−M〉, where M is
a large number to be defined later. The maximal transmission range of this device is
set arbitrarily (since it will not be used for transmission).

4.5.4 Element-Set Chain Devices

These devices model the connections between an element and each set to which the
element belongs. For each element i and set S j for which i ∈ S j , we introduce
an element-set chain V i, j . The element-set chain V i, j looks as follows: we place

devices V i, j =
{
v

i, j
1 , . . . , v

i, j
ni, j

}
, with ni, j = l(si (i, j))2 + l(s j (i, j))2, along the

edges of the embedding (dotted line segments in the overview figure). The place-
ment is done such that the distance between two consecutive devices on a line
segment is at most 1/ĉ, and the cost of a path from an element device to any of
the at most three set devices is the same. To achieve this (see Fig. 4.6), we place a

ve
i

vs
j

fj(i, j)

fi(i, j)

Fig. 4.6 Element-set chain V i, j between element device ve
i and set device vs

j . The dotted lines
respectively circle segments indicate the maximal transmission range of a device



4 Optimal Placement of Ad Hoc Devices Under a VCG-Style Routing Protocol 101

first device vi, j
1 at distance 3/2 · fi (i, j) from the element device ve

i . The maximal
transmission range of this device is set to 1/2 · fi (i, j). Next, we place three devices
v

i, j
h for h = 2, . . . , 4 at distance 3/2 · fi (i, j) + (h − 1)/2 · fi (i, j) from the

element device ve
i . Devices vi, j

2 , v
i, j
3 have a maximal transmission range equal to

1/2 · fi (i, j), and vi, j
4 one of fi (i, j). Devices vi, j

h for h = 5, . . . , l(si (i, j))2 with a
maximal transmission range fi (i, j) are positioned at distances (h−1)· fi (i, j) from
the element device ve

i . At the common endpoint of the two line segments si (i, j) and

s j (i, j), a further device vi, j
l(si (i, j))2+1

with a maximal transmission range f j (i, j) is
placed. We continue with devices on line segment s j (i, j). We uniformly distribute

devices on this line segment by placing devices vi, j
l(si (i, j))2+1+h

at distances h· f j (i, j)

from the common endpoint of si (i, j) and s j (i, j), for h = 1, . . . , l(s j (i, j))2 − 1.
All devices on s j (i, j) have a maximal transmission range of f j (i, j). By the above
construction, there is a path from any element device to a set device through the

devices
(
v

i, j
1 , . . . , v

i, j
ni, j

)
with cost 2. Moreover, a path in the reverse direction is not

possible due to the chosen maximal transmission ranges.

4.5.5 Set-Destination Chain Devices

These devices connect each set device to the global destination device. The
(unavoidable) crossings with the element-set chains have to be constructed care-
fully for the reduction to work. In particular, by defining the transmission ranges
of devices on the element-set chain to be small enough, we will make sure that at
such a crossing, an element-set chain can never “switch” and continue on the set-
destination chain. Moreover, we will make sure that no two set-destination chains
cross. There is a set-destination chain V j,T from each set device vs

j to the global

destination device vT , for j ∈ {1, . . . , |S|} (dashed lines in the overview figure).
In detail, the following devices are set. Let W = � n

2 �. We distinguish three cases
depending on the free direction of the set vertex j . Note that we can choose the
graph drawing from [17] such that for no set vertex the free direction is upward.

Free direction of set vertex j is downward. We place chains of devices inter-
rupted by longer distances without devices in the free direction (see Fig. 4.7 for a
schematic illustration). More precisely, we place (W − 1) chains ch(〈 jx , jy − h ·
ĉ − 2〉, 〈 jx , jy − (h + 1)ĉ + 2〉, 1), where h = 0, . . . ,W − 2. The devices have
a maximal transmission range of 1/(ĉ − 4) except the last device on each chain,
which has a maximal transmission range of 4. Finally, we place one more chain
ch−(〈 jx , jy − (W − 1)ĉ + 2〉, 〈 jx ,−(W − 1)ĉ〉, 4). We denote the “last” device, at
position 〈 jx ,−(W −1)ĉ〉, by vUG

j . The maximal transmission range of these devices

except vUG
j is set such that any device can reach the next device on the chain, and

vUG
j ’s maximal transmission range equals dgap, which will be defined later.

Free direction of set vertex j is to the left. Again, we place chains of devices
interrupted by longer distances without devices in the free direction. More precisely,
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vUG
j

2ĉ

ĉ

〈0,0〉

ch(〈jx, jy−(W−2)ĉ−2〉,〈jx, jy−(W−1)ĉ+2〉,1)

ch(〈jx, jy−ĉ−2〉,〈jx, jy−2ĉ+2〉, 1)

ch(〈jx, jy−2〉,〈jx, jy−ĉ+2〉, 1)

ch(〈jx, jy−2ĉ−2〉,〈jx, jy−3ĉ+2〉, 1)

ĉ 2ĉ

ch−(〈jx, jy−(W−1)ĉ+2〉,〈jx,−(W−1)ĉ〉,4)

vs
j

Fig. 4.7 The black dots on x-coordinate equal to ĉ correspond to the devices of a set-destination
chain V j,T from set device vs

j to device vUG
j . The circles are devices belonging to element-set

chains
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v T

v LG
1

v LG

2
v LG

3
v LG

4
v LG

5

Fig. 4.8 Second part of set-destination chains V 1,T to V 5,T from devices vLG
j to the global desti-

nation device vT

we place (W − 1) chains ch(〈 jx − h · ĉ − 2, jy〉, 〈 jx − (h + 1)ĉ + 2, jy〉, 1) for
h = 0, . . . ,W − 2. The devices in the chains have a maximal transmission range of
1/(ĉ−4), except the last device on each chain, having a maximal transmission range
of 4. We make sure that no two such chains intersect by moving further outward
from the bounding box. To this end, we add a left going chain ch−(〈 jx − (W −
1)ĉ+2, jy〉, 〈−(W −1)ĉ− jy, jy〉, 2), followed by a downward chain ch−(〈−(W −
1)ĉ − jy, jy〉, 〈−(W − 1)ĉ − jy,−(W − 1)ĉ〉, 2). We denote the device at position
〈−(W − 1)ĉ − jy,−(W − 1)ĉ〉 by vUG

j . The maximal transmission range of the

devices in the latter two chains except vUG
j is set such that any device can reach the

next device on the chain, and vUG
j ’s maximal transmission range equals dgap.

Free direction of set vertex j is to the right. This case is similar to the previous
case except that the chain first moves in the other direction. More precisely, we
place (W − 1) chains ch(〈 jx + h · ĉ + 2, jy〉, 〈 jx + (h + 1)ĉ − 2, jy〉, 1) for h =
0, . . . ,W − 2. The devices have a maximal transmission range of 1/(ĉ − 4), except
the last device on each chain, having a maximal transmission range of 4. Further, we
add a chain ch−(〈 jx + (W −1)ĉ+2, jy〉, 〈ĉW + (W −1)ĉ+ jy, jy〉, 2), and a chain
ch−(〈ĉW + (W − 1)ĉ + jy, jy〉, 〈ĉW + (W − 1)ĉ + jy,−(W − 1)ĉ〉, 2). We denote
the device at position 〈ĉW + (W − 1)ĉ + jy,−(W − 1)ĉ〉 by vUG

j . The maximal

transmission range of the devices in the latter two chains except vUG
j is set such that

any device can reach the next device on the chain, and vUG
j ’s maximal transmission

range equals dgap.
The construction of the set-destination chains yields a device vUG

j for every set
device vs

j on the horizontal line y = −(W − 1)ĉ. Moreover, there exists a path

between any set device vs
j and the corresponding device vUG

j with cost 22 + (W −
1) · 1 + (W − 2) · 42 + 4 = 17W − 25.

As a next step in the construction of the set-destination chains, we build a set of
devices resembling a tree (see Fig. 4.8 for a schematic illustration). We place devices
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on the h = �log |S|� consecutive integer y-coordinates y	 = −(W − 1)ĉ− dgap − 	,
for 	 = 0, . . . , h. We refer to these y-coordinates as levels, where level 0 is the level
with the largest y-coordinate. The number of devices placed on level 	 equals n	 =
�|S|/2	�. On level 0, the n0 devices have the same x-coordinate as the devices vUG

j .

We call these devices vLG
j and refer to the gap between vUG

j and vLG
j as the large gap.

On level 1, we compute the x-coordinates from two devices of level 0. We start at the
left side. We place a device on level 1, with its x-coordinate halfway between the two
devices with smallest x-coordinates from level 0. We repeat this procedure with the
two devices with next largest x-coordinate from level 0 until no two devices are left.
If there is one device left, then we place a device with same x-coordinate on level 1.
We iteratively continue this procedure on the other levels until 	 = h. The maximal
transmission range for all these devices is set to 1/2, except for the rightmost device
on a level with an odd number of devices, which has maximal transmission range 1.
Between the levels, we add further devices to connect devices u, v that have been
paired up: we add a chain ch(〈ux , uy − 1/2〉, 〈(ux + vx )/2, uy − 1/2〉, 1/2) and a
chain ch−(〈vx , vy −1/2〉, 〈(ux +vx )/2, vy −1/2〉, 1/2) with maximal transmission
ranges set such that any device can reach the next device on its chain. The device
at position 〈(ux + vx )/2, uy − 1/2〉 has a maximal transmission range of 1/2. To
complete the set-destination chains, two chains of devices are placed between the
single device on level h and the global destination device vT with a path of cost
2, one chain on the vertical line segment down to y-coordinate equal to −M and
one chain on the horizontal line toward vT , with maximal transmission ranges suf-
ficiently large to reach the next device toward the global destination device.

The construction of the set-destination chains leads to a path between any ele-
ment device and the global destination device vT with total cost of 17W − 21 +
(dgap)

2 + �log S�. Depending on whether the element is a member of two or three
sets there are two or three paths with this cost per element device. Since ĉ is poly-
nomial in n, the total number of devices in the instance Î is polynomial in the input
parameters.

As a next step in the reduction, we describe the commodity set K of the trans-
mission graph. We construct k = |U | commodities with each element device
ve

i , i = 1, . . . , |U |, being a source and device vT being the global destination device
for each such source. Without additional devices, a shortest path for any commodity
goes from the source over an element-set chain to a set device to which the source
belongs and from there along a set-destination chain to the global destination device.
Note that we constructed the crossings of element-set chains with set-destination
chains in such a way that the transmission ranges of element-set chain devices are
not large enough to switch to the set-destination chain. Furthermore, even though
switching from a set-destination chain to an element-set chain is possible at such a
crossing, it will only make the path longer, by more than 1 cost unit.

The maximal transmission range r for the additional devices is set to a positive
value t that is small enough to make sure that unless each device is placed in a gap
that a set-destination chain uses, it will not contribute sufficiently to cost savings,
say t < 1

2bd2
gap

. Finally, we set Δn = b and Z = |U | · 2t (dgap − t).
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This justifies to set the scaling factor ĉ to 4n3. Furthermore, we set the distance
of the gap dgap to n2, and the y-coordinate −M of the global destination device to
−n4. This completes the construction, which is computable in polynomial time.

To complete the reduction we show that I is a YES-instance of ++X3C-3 if
and only if Î is a YES-instance of Identical Device Placement. We first show the
forward direction, that is, given a cover of size b we can construct a device place-
ment with an improvement Z . Let the indices of the b sets in the ++X3C-3 solution
be (sol1, . . . , solb). Then, consider the placement of Δn additional devices at posi-

tions

〈(
vUG

soli

)

x
,
(
vLG

soli

)

y
+ t

〉
for i = 1, . . . , Δn, i.e., as far above as possible from

the lower ends of the large gaps on the set-destination chains so that the transmis-
sion range t still suffices to reach the next device. For each commodity j , the cost
between vUG

j and vLG
j goes from d2

gap down to dgap − t2+t2, a savings of 2t (dgap−t)
per commodity, resulting in a total improvement Z = |U | · 2t (dgap − t).

Now we show that a placement of Δn additional devices that saves a cost of at
least Z = |U | · 2t (dgap − t) implies a solution to the ++X3C-3 instance.

Observe that even after an arbitrary placement of all additional devices, it still
does not pay for a set-destination path to switch to an element-set path. The reason
is that the highest possible savings that arise from placing all additional devices
are still less than the extra cost from switching. To see this, recall that the extra
switching cost is more than 1, and note that the highest savings can be achieved
when additional devices bridge gaps that are as large as possible. The largest useful
gaps in the entire construction are our large gaps, of size dgap; all larger ones are
useless, because bridging them with additional devices still leaves them too large to
be part of any communication path. The cost savings for a large gap, however, are
smaller than 1 even if all additional devices are placed optimally in a single large
gap. To see this, note that an optimal placement of b additional devices into a large
gap puts them in series at distances t from each other and from the low vertex vLG

soli
of the gap, with a cost of (dgap − bt)2 + bt2 instead of d2

gap, a savings of less than

1 for our chosen value of t < 1
2bd2

gap
. Since the remaining part of the large gap after

placing all b devices has size dgap − bt , this is still the largest useful gap in the
construction, and therefore any (other) combination of placing the b devices into
gaps also leads to savings smaller than 1. Hence, no set-destination path switches at
a crossing.

Furthermore, observe that the transmission ranges of the new devices are too
small to let any element-set path switch at a crossing. To see this, recall that any
set-destination path has a gap of size 4 at a crossing, and therefore from a device
on an element-set chain a gap of size almost 2 must be bridged, but all new devices
together can only bridge a gap of size bt , which is less than 1

2dgap
and therefore less

than 1
2n2 , not enough by a large margin.

That is, all element-set paths and set-destination paths must use the chains pre-
scribed in our construction and must go over a large gap (possibly shortened by
extra devices) to the destination. It therefore remains to show that the only way to
achieve a savings of |U | · 2t (dgap − t) is to place one device each into the gaps
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that describe the solution (i.e., the chosen subsets) of the instance of ++X3C-3.
Because the highest possible savings per new device are 2t (dgap − t), and this can
only be achieved by placing only single devices in large gaps, the required savings
of |U | · 2t (dgap − t) can only be achieved by letting each element-destination path
go over a large gap with a single new device at distance t from its bottom vertex.
But if this is possible, then the gaps that contain the new devices describe a solution
to the ++X3C-3 instance.
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Chapter 5
Population Protocols and Related Models

Paul G. Spirakis

Abstract This is a joint work with Ioannis Chatzigiannakis and Othon Michail. We
discuss here the population protocol model and most of its well-known extensions.
The population protocol model aims to represent sensor networks consisting of tiny
computational devices with sensing capabilities that follow some unpredictable and
uncontrollable mobility pattern. It adopts a minimalistic approach and, thus, nat-
urally computes a quite restricted class of predicates and exhibits almost no fault
tolerance. Most recent approaches make extra realistic and implementable assump-
tions, in order to gain more computational power and/or speedup the time to conver-
gence and/or improve fault tolerance. In particular, the mediated population proto-
col model, the community protocol model, and the PALOMA model, which are all
extensions of the population protocol model, are thoroughly discussed. Finally, the
inherent difficulty of verifying the correctness of population protocols that run on
complete communication graphs is revealed, but a promising algorithmic solution
is presented.

5.1 Introduction

Wireless Sensor Networks (WSNs) will play an increasingly important role in criti-
cal systems’ infrastructure and should be correct, reliable, and robust. Formal spec-
ification helps to obtain not only a better (more modular) description, but also a
clear understanding and an abstract view of a system [8]. Given the increasing
sophistication of WSN algorithms and the difficulty of modifying an algorithm once
the network is deployed, there is a clear need to use formal methods to validate
system performance and functionality prior to implementing such algorithms [34].
Formalanalysis requires the use of models, trusted to behave like a real system. It
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is therefore critical to find the correct abstraction layer for the models and to verify
the models.

Toward providing a concrete and realistic model for future sensor networks,
Angluin et al. [2] introduced the notion of a computation by a population protocol.
Due to the minimalistic nature of their model, individual agents are extremely lim-
ited and can be represented as finite-state machines. The computation is carried out
by a collection of agents, each of which receives a piece of the input. Information
can be exchanged between two agents whenever they come into contact with (or
sufficiently close to) each other. The goal is to ensure that every agent can eventually
output the value that is to be computed. The critical assumptions that diversify the
population protocol model from traditional distributed systems are that the inter-
action pattern is inherently nondeterministic and that the protocols’ description is
independent of the population size (that is, need O(1) total memory capacity in
each agent). The latter is known as the uniformity property of population protocols.
Moreover, population protocols are anonymous since there is no room in the state
of an agent to store a unique identifier.

The population protocol model was designed to represent sensor networks con-
sisting of very limited mobile agents with no control over their own movement. It
also bears a strong resemblance to models of interacting molecules in theoretical
chemistry [26, 27]. The defining features of the population protocol model are as
follows:

1. Anonymous, finite-state agents. The system consists of a large population of
indistinguishable finite-state agents.

2. Computation by direct interaction. In the original model, agents do not send
messages or share memory; instead, an interaction between two agents updates
both of their states according to a global transition table. The actual mechanism
of such interactions is abstracted away.

3. Unpredictable interaction patterns. The choice of which agents interact is made
by an adversary. Agents have little control over which other agents they inter-
act with, although the adversary may be limited to pairing only agents that are
adjacent in an interaction graph, typically representing distance constraints or
obstacle presence. A strong global fairness condition is imposed on the adversary
to ensure that the protocol makes progress (e.g., the adversary cannot keep the
agents forever disconnected).

4. Distributed inputs and outputs. The input to a population protocol is distributed
across the agents of the entire population. In what concerns predicates, all agents
are expected to give the correct output value (which is known as the predicate
output convention [2]); thus, the output is collected from any agent in the popu-
lation (after, of course, the computation has stabilized).

5. Convergence rather than termination. Population protocols generally cannot
detect when they have finished; instead, the agents’ outputs are required to con-
verge after some finite time to a common correct value.

The population protocol model was inspired in part by work by Diamadi and
Fischer [23] on trust propagation in a social network. The urn automata of [3] can
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be seen as a first draft of the model that retained in vestigial form several features of
classical automata: instead of interacting with each other, agents could only interact
with a finite-state controller, complete with input tape. The motivation given for the
current model in [2] was the study of sensor networks in which passive agents were
carried along by other entities; the canonical example was sensors attached to a flock
of birds. The name of the model was chosen by analogy to population processes [33]
in probability theory.

The initial goal of the model was to study the computational limitations of
cooperative systems consisting of many limited devices (agents), imposed to pas-
sive (but fair) communication by some scheduler. Much work showed that there
exists an exact characterization of the computable predicates: they are precisely the
semilinear predicates or equivalently the predicates definable by first-order logi-
cal formulas in Presburger arithmetic [2, 5–7]. More recent work has concentrated
on performance, supported by a random scheduling assumption. Chatzigiannakis
et al. [16] proposed a collection of fair schedulers and examined the performance
of various protocols. Chatzigiannakis et al. [12] went one step further by proposing
a generic definition of probabilistic schedulers and proving that the schedulers of
[16] are all fair with probability 1 and revealed the need for the protocols to adapt
when natural modifications of the mobility pattern occur. Bournez et al. [11] and
Chatzigiannakis and Spirakis [19] considered a huge population hypothesis (popula-
tion going to infinity) and studied the dynamics, stability, and computational power
of probabilistic population protocols by exploiting the tools of continuous nonlinear
dynamics. In [11] it was also proven that there is a strong relation between classical
finite population protocols and models given by ordinary differential equations.

There exist a few extensions of the population protocol model in the relevant
literature to more accurately reflect the requirements of practical systems. In [1] they
studied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with stabilizing
inputs. The results of [5] show that again the semilinear predicates are all that can
be computed by this model. Finally, some works incorporated agent failures [22]
and gave to some agents slightly increased computational power [9] (heterogeneous
systems). For an excellent introduction to most of the preceding subjects see [7].

In this chapter we start by presenting in detail the basic population protocol
model. Unfortunately, the class of solvable problems by this theoretical model is
fairly small. For instance, it does not include multiplication. Moreover, even for this
restricted class, algorithms tolerate no failures or, at worst, a fixed number of benign
failures [22]. Therefore, we present four interesting extensions of the population
protocol model that investigate the computational benefits of cooperative systems
when adding new features (e.g., to the hardware of the devices). The extended mod-
els are summarized as follows:

• First, based on [17] (see also [18]), the population protocol model is extended to
include a Mediator, i.e., a global storage capable of storing very limited infor-
mation for each communication arc (the state of the arc). When pairs of agents
interact, they can read and update the state of the link (arc). The extended model
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is called the Mediated Population Protocol (MPP) model. Interestingly, although
anonymity and uniformity are preserved in this model, the presence of a medi-
ator provides us with significantly more computational power and gives birth
to a new collection of interesting problems in the area of tiny networked and
possibly moving artifacts; based on this model we can build systems with the
ability of computing subgraphs and solve optimization problems concerning the
communication graph. Moreover, as we shall see, MPPs are capable of computing
nonsemilinear predicates and here any stably computable predicate belongs to
NSPACE(m), where m denotes the number of edges of the communication graph.

• One of the most interesting and applicable capabilities of the mediated popu-
lation protocol model is its ability to decide graph properties. To understand
the properties of the communication graph is an important step in almost any
distributed system. In particular, if we temporarily disregard the input notion of
the population and assume that all agents simply start from a unique initial state
(and the same holds for the edges), then we obtain another interesting model that
is called the GDM (standing for Graph Decision Mediated) model [15]. When
GDM protocols are executed fairly on any communication graph G, after a finite
number of steps stabilize to a configuration where all agents give 1 as output if G
belongs to a graph language L , and 0 otherwise. This is motivated by the idea of
having protocols that eventually accept all communication graphs (on which they
run) that satisfy a specific property, and eventually reject all remaining commu-
nication graphs. The motivation for studying a simplified version of the mediated
population protocol model is that it enables us to study what graph properties are
stably computable by the mediated model without the need to keep in mind its
remaining parameters (which, as a matter of fact, are a lot).

• Another direction for extending the population protocol model is to assume the
existence of a unique identifier for each agent. This is a natural extension since,
although a tiny device’s memory is often very constrained, it is usually sufficient
to store a unique identity. In fact, in most modern tiny devices, the communica-
tion module is often equipped with a unique identifier. For example, they might
contain Maxim’s DS2411 chip, which stores just 64 bits of ROM and is set by
the factory to store a unique serial number. This idea gave birth to the Com-
munity Protocol model [29]. In this model, all n agents have unique identifiers
(ids) and can store O(1) other agents’ ids. The ids are stored in ROM (as in the
DS2411 chip), so that Byzantine agents cannot alter their ids. The usage of ids
is restricted to their fundamental purpose, identification, by assuming that algo-
rithms can only compare ids (an algorithm cannot, for example, perform arith-
metic on ids). In addition to having ids, the ability of agents to remember other
ids is crucial as, otherwise, the model would be as weak as population protocols.
The computational power of this extension is greatly increased; a community pro-
tocol of n agents can simulate a nondeterministic Turing Machine of O(n log n)
space. In particular, it can compute any symmetric predicate in NSPACE(n log n).
Moreover, as in the population protocol model, a single algorithm must work
for all values of n. Furthermore, the simulation is resilient to a constant number
of Byzantine failures. So, although community protocols only make a rational
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additional assumption (that is, the ids equipment), they are much more powerful
than population protocols: they solve a much wider class of problems and tolerate
Byzantine failures.

• Finally, we present another extension called the PALOMA model [14]. In this
model, the system consists of PAssively mobile LOgarithmic space MAchines.
The idea is to provide each agent with a memory whose size is logarithmic in
the population size, which seems a very natural assumption: only 266 bits are
required for 2266 agents (which is an astronomical population size)! Moreover,
we can think of an agent as a small Turing Machine, which also seems natural:
mobile phones, PDAs and many other common mobile devices are in fact sophis-
ticated Turing Machines. The PALOMA model is also extremely strong, since it
can stably compute any symmetric predicate in NSPACE (n log n).

A very important aspect of WSNs is to provide solutions that are verifiably cor-
rect, in the sense of giving a “proof” that the solution will work, given the appli-
cation goals and network set-up. Population protocol models can detect errors in
the design that are not so easily found using emulation or testing. Formal analysis
techniques are also supported by (semi-)automated tools. Such tools can also detect
errors in the design and they can be used to establish correctness. Model checking is
an exhaustive state space exploration technique that is used to validate formally
specified system requirements with respect to a formal system description [21].
Such a system is verified for a fixed configuration; so in most cases, no general
system correctness can be obtained. Using some high-level formal modeling lan-
guage, automatically an underlying state space can be derived, be it implicitly or
symbolically. The system requirements are specified using some logical language,
like LTL, CTL or extensions thereof [32]. Well-known and widely applied model
checking tools are SPIN [31], Uppaal [10] (for timed systems), and PRISM [30]
(for probabilistic systems). The system specification language can, e.g., be based on
process algebra, automata or Petri nets. However, model checking suffers from the
so-called state explosion problem, meaning that the state space of a specified system
grows exponentially with respect to its number of components. The main challenge
for model checking lies in modeling large-scale dynamic systems.

The important feature that diversifies the population protocol model from tradi-
tional distributed systems is that the protocol specifications are independent of the
population size which makes them suitable for the verification of protocols that tar-
get systems spanning thousands of objects. Evaluating if a property is valid or not in
the system can be done with a number of components that is independent to the size
of the population. The most important factor to decide the reachability of a certain
configuration is the size of the protocol. Toward further minimizing the configu-
ration space of the protocols we can apply the protocol composition methodology.
This approach states that one may reduce a protocol into two (or more) protocols of
reduced state space that maintain the same correctness and efficiency properties. The
combination of the above helps overcome the state explosion problem and speed up
the verification process. We expect that population protocol models will be used to
model such networks and the interactions, as dictated by the MAC protocol or the
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overall protocol stack, providing the ability, in a formal and modern way, to define
the system in a minimalist way (in contrast to other approaches).

Section 5.2 discusses the population protocol model of Angluin et al. [2]. Sec-
tion 5.3 deals with a first extension of the population protocol model, the mediated
population protocol model [17]. Section 5.4 goes one step further in the investiga-
tion of the mediated population protocol model by focusing on its ability to decide
interesting graph properties. The simplified version of the mediated population pro-
tocol model discussed there is the GDM model [15]. In Sect. 5.5, the community
protocol model of Guerraoui and Ruppert [29] is discussed and in Sect. 5.6 the
PALOMA model [14]. Both models have the same computational power and are
particularly powerful. Section 5.7 deals with correctness of population protocols
that run on complete communication graphs. In particular, it focuses on the problem
of algorithmically verifying whether a given population protocol is correct w.r.t. its
specifications and is based on [13]. The problem is shown to be hard, but a promising
algorithmic solution is presented. Finally, Sect. 18.6 discusses some interesting open
problems in the area of small passively mobile communicating devices.

For a good introduction and definitions on Computational Complexity (see e.g.,
[35]).

5.2 Population Protocols

We begin with a formal definition of the population protocol model proposed in a
seminal work of Angluin et al. [2]. The model represents sensor networks consisting
of extremely limited agents that may move and interact in pairs.

5.2.1 The Model

Definition 1 A population protocol (PP) is a 6-tuple (X,Y, Q, I, O, δ), where X ,
Y , and Q are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of states,
4. I : X → Q is the input function,
5. O : Q → Y is the output function, and
6. δ : Q × Q → Q × Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b)→ (a′, b′) a transition and we define δ1(a, b) =
a′ and δ2(a, b) = b′. We call δ1 the initiator’s acquisition and δ2 the responder’s
acquisition.

A population protocol A = (X,Y, Q, I, O, δ) runs on a communication graph
G = (V, E) with no self-loops and no multiple edges. From now on, we will denote
by n the number of nodes of the communication graph and by m the number of its
edges. Initially, all agents (i.e. the elements of V ) receive a global start signal, sense
their environment and each one receives an input symbol from X . All agents are
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initially in a special empty state � /∈ Q. When an agent receives an input symbol σ ,
applies the input function to it and goes to its initial state I (σ ) ∈ Q. An adversary
scheduler selects in each step a directed pair of distinct agents (u, υ) ∈ E (that is,
u, υ ∈ V and u �= υ) to interact. The interaction is established only if both agents
are not in the empty state (they must both have been initialized). Assume that the
scheduler selects the pair (u, υ), that the current states of u and υ are a, b ∈ Q,
respectively, and that δ(a, b) = (a′, b′). Agent u plays the role of the initiator in
the interaction (u, υ) and υ that of the responder. During their interaction u and υ
apply the transition function to their directed pair of states (to be more precise, the
initiator applies δ1 while the responder δ2) and, as a result, u goes to a′ and υ to b′
(both update their states according to δ).

A configuration is a snapshot of the population states. Formally, a configuration
is a mapping C : V → Q specifying the state of each agent in the population. C0
is the initial configuration (for simplicity, we assume that all agents apply the input
function at the same time, which is one step before C0, so in C0 all empty states have
been already replaced, and that is the reason why we have chosen not to include � in
the model definition) and, for all u ∈ V , C0(u) = I (x(u)), where x(u) is the input
symbol sensed by agent u. Let C and C ′ be configurations, and let u, υ be distinct
agents. We say that C goes to C ′ via encounter e = (u, υ), denoted C

e→ C ′, if

C ′(u) = δ1(C(u),C(υ)),

C ′(υ) = δ2(C(u),C(υ)), and

C ′(w) = C(w) for all w ∈ V − {u, υ},

that is, C ′ is the result of the interaction of the pair (u, υ) under configuration C
and is the same as C except for the fact that the states of u, υ have been updated
according to δ1 and δ2, respectively. We say that C can go to C ′ in one step, denoted

C → C ′, if C
e→ C ′ for some encounter e ∈ E . We write C

∗→ C ′ if there is a
sequence of configurations C = C0,C1, . . . ,Ct = C ′, such that Ci → Ci+1 for all
i , 0 ≤ i < t , in which case we say that C ′ is reachable from C .

An execution is a finite or infinite sequence of configurations C0,C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have both
finite and infinite kinds of executions since the scheduler may stop in a finite number
of steps or continue selecting pairs for ever. Moreover, note that, according to the
preceding definitions, a scheduler may partition the agents into noncommunicating
clusters. If that is the case, then it is easy to see that no meaningful computation
is possible. To avoid this unpleasant scenario, a strong global fairness condition
is imposed on the scheduler to ensure that the protocol makes progress. Formally,
an infinite execution is fair if for every pair of configurations C and C ′ such that
C → C ′, if C occurs infinitely often in the execution, then C ′ also occurs infinitely
often in the execution. A scheduler is fair if it always leads to fair executions. A
computation is an infinite fair execution.

The above fairness condition, although at first sight may seem too strong, is in
fact absolutely natural. The reason is that in most natural systems, between those
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under consideration, the passive mobility pattern that the agents follow will be the
result of some natural phenomenon, like, for example, birds flying, river flow, and
so on, that usually follows some probability distribution or, possibly, a collection of
such probability distributions. Most of these schedulers, as indicated by [12], satisfy
the above fairness condition; they only have to also satisfy some natural properties.

The following are two critical properties of population protocols:

1. Uniformity: Population protocols are uniform. This means that any protocol’s
description is independent of the population size. Since we assume that the
agents have finite storage capacity, and independent of the population size, uni-
formity enables us to store the protocol code in each agent of the population.

2. Anonymity: Population protocols are anonymous. The set of states is finite and
does not depend on the size of the population. This implies that there is no room
in the state of an agent to store a unique identifier, and, thus, all agents are treated
in the same way by the transition function.

Example 1 A very celebrated population protocol is the “flock of birds” (or “count
to five”) protocol. Every bird in a particular flock is equipped with a sensor node
that can determine whether the bird’s temperature is elevated or not, and we wish to
know whether at least five birds in the flock have elevated temperatures. Moreover,
we assume that all ordered pairs of sensor nodes are permitted interaction. This was
the motivating scenario of population protocols [2].

We think as follows. The sensor senses the temperature of its corresponding bird
(its carrier) and if it is found elevated it outputs 1, otherwise 0. As soon as the agent
receives a global start signal (e.g. from a base station) it reads its sensor’s output
σ ∈ {0, 1} and applies to it the input function I . We can assume here that I maps
0 to initial state q0 and 1 to q1. This means that the number of agents that are in
state q1 under the initial configuration is equal to the number of sick birds, while all
remaining agents are in state q0. Now, when two agents interact, the initiator sets its
state index to the sum of the state indices and the responder goes to q0, except for
the case in which the sum of the indices is at least 5. In the latter case both agents
set their indices to 5. The idea is to try aggregating the initial number of 1 index
to one agent’s state index. Note that the sum of nonzero indices is always equal to
the number of sick birds; obviously, this holds until index 5 first appears. But what
about the output of the protocol? If an agent gets q5 then it knows that initially at
least five birds were sick, and it outputs the value 1 in order to indicate this fact, and
eventually q5 is propagated to all agents. Otherwise, it outputs 0 because it may still
have partial information.

Let us now formalize the above description. The “flock of birds” protocol is F =
(X,Y, Q, I, O, δ). The input and output alphabets are X = Y = {0, 1}, the set of
states is Q = {q0, q1, . . . , q5}, the input function I maps 0 to q0 and 1 to q1, the
output function O maps q5 to 1 and all states in {q0, . . . , q4} to 0, and the transition
function δ(qi , q j ) is defined as follows:
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1. if i + j < 5, then the result is (qi+ j , q0), and
2. if i + j ≥ 5, then the result is (q5, q5). �
Exercise 1 Assume that all agents may err in two different ways. One possibility is
that they do not apply the input function correctly and another is that they do not
apply the transition function correctly. Fortunately, all are equipped with a special
mechanism that automatically overwrites the faulty state with state r ∈ {r1, r2},
where r1 and r2 are the error reports/identifiers for the input function and the transi-
tion function, respectively. Try to adapt the “flock of birds” protocol to this scenario
by keeping in mind that we require the protocol to give the correct output or report
all the errors that have occurred.

Exercise 2 All birds in the flock are now additionally equipped with a sensor that
determines their color, which is either black or white. Try to modify the “flock of
birds” protocol in order to determine whether at least three black birds in the flock
have elevated temperatures. Also exploit the white birds in order to (possibly1)
improve the performance.
Hint: assume that the input symbols are of the form (i, j) where i corresponds to
the temperature and j to the color.

5.2.2 Stable Computation

Assume a fair scheduler that keeps working forever and a protocol A that runs on
a communication graph G = (V, E). As already said, initially, each agent receives
an input symbol from X . An input assignment x : V → X is a mapping specifying
the input symbol of each agent in the population. Let X = X V be the set of all
possible input assignments, given the population V and the input alphabet X of
A. Population protocols, when controlled by infinitely working schedulers, do not
halt. Instead of halting we require any computation of a protocol to stabilize. An
output assignment y : V → Y is a mapping specifying the output symbol of each
agent in the population. Any configuration C ∈C= QV is associated with an output
assignment yC = O ◦ C . A configuration C is said to be output-stable if for any

configuration C ′ such that C
∗→ C ′ (any configuration reachable from C) yC ′ = yC .

In words, a configuration C is output-stable if all agents maintain the output symbol
that have under C in all subsequent steps, no matter how the scheduler proceeds
thereafter. A computation C0,C1,C2, . . . is stable if it contains an output-stable
configuration Ci , where i is finite.

Definition 2 A population protocol A running on a communication graph G =
(V, E) stably computes a predicate p : X → {0, 1}, if, for any x ∈ X , every
computation of A on G beginning from C0 = I◦x reaches in a finite number of steps

1 We say possibly, because performance mainly depends on the scheduler. But if the scheduler is
assumed to be probabilistic, then exploiting all agents should improve expected performance.
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an output-stable configuration Cstable such that yCstable(u) = p(x) for all u ∈ V . A
predicate is stably computable if some population protocol stably computes it.

Assume, for example, that a computation of A on G begins from the initial con-
figuration corresponding to an input assignment x . Assume, also, that p(x) = 1. If
A stably computes p, then we know that after a finite number of steps (if, of course,
the scheduler is fair) all agents will give 1 as output, and will continue doing so for
ever. This means that if we wait for a sufficient, but finite, number of steps we can
obtain the correct answer of p with input x by querying any agent in the population.

Definition 3 The basic population protocol model (or standard) assumes that the
communication graph G is always directed and complete.

In the case of the basic model, a configuration simplifies to a vector of nonnega-
tive integers that sum up to n indexed by states, and similarly for input assignments.
Intuitively, we are allowed to do so because agents are anonymous and fairness
guarantees that it does not matter in which agent each symbol or state lies. More-
over, here, stably computable predicates have to be symmetric. A predicate on input
assignments p is called symmetric if for every x = (σ1, σ2, . . . , σn) ∈ X and any
x ′ which is a permutation of x’s components, it holds that p(x) = p(x ′) (in words,
permuting the input symbols does not affect the predicate’s outcome).

Thus, in the basic model, we can ignore the agents’ underlying names to obtain
a, seemingly, less descriptive, but sufficient for the basic model, definition of
a configuration c as a |Q|-vector of nonnegative integers (ci )i=0,...,|Q|−1, where
ci = |c−1(qi )| and |c−1(qi )| is equal to the number of agents to which state
qi is assigned by configuration c (the cardinality of the preimage of qi ), for all
i ∈ {0, . . . , |Q| − 1}. It is not hard to see that the above definition implies that∑|Q|−1

i=0 ci = n for any configuration c.

Exercise 3 Do the same for the input assignments, that is, define formally their vec-
tor description.

Example 2 Now, that the most important notions have been defined, we are ready to
prove that the “flock of birds” protocol stably computes the predicate

p(x) =
{

1, if x1 >= 5
0, if x1 < 5

where x1 denotes the number of agents that get input symbol 1. Another way to
write the predicate is (x1 ≥ 5), which specifies that the value “true” is expected as
output by all agents for every input assignment that provides at least five agents with
the input symbol 1.

Proof There is no transition in δ that decreases the sum of the indices. In particular,
if i + j < 5 then transitions are of the form (qi , q j )→ (qi+ j , q0) and leave the sum
unaffected, while if i + j ≥ 5 then transitions are of the form (qi , q j ) → (q5, q5)

and all strictly increase it except for (q5, q5) → (q5, q5) that leaves it unaffected.
So the initial sum is always preserved except for the case where state q5 appears. If
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x1<5 then it suffices to prove that state q5 does not appear, because then all agents
will forever remain in states {q0, . . . , q4} that give output 0. Assume that it appears.
When this happened for the first time it was because the sum of the states of two
interacting agents was at least 5. But this is a contradiction, because the initial sum
should have been preserved until q5 appeared. We now prove that if q5 ever appears
then all agents will eventually get it and remain to it forever. Obviously, if all get q5
then they cannot escape from it, because no transition does this; thus, they forever
remain to it. Now assume that q5 has appeared in agent u and that agent υ �= u
never gets it. From the time that u got q5 it could not change its state; thus any
interaction of u and υ would make υ’s state be q5. This implies that u and υ did
not interact for infinitely many steps, but this clearly violates the fairness condition
(a configuration in which υ is in q5 was always reachable in one step but was never
reached). Now, if x1 ≥ 5 then it suffices to prove that q5 appears. To see this,
notice that all reachable configurations c for which cq5 = 0 can reach in one step
themselves and some configurations that preserve the sum but decrease the number
of agents not in state q0. Due to fairness, this will lead to a decrease by 1 in the
number of non-q0 agents in a finite number of steps, implying an increase in one
agent’s state index. This process ends either when all indices have been aggregated
to one agent or when two agents, having a sum of indices at least 5, interact, and it
must end, otherwise the number of q0 agents would increase an unbounded number
of times, being impossible for a fixed n. �

Note that such proofs are simplified a lot when we use arguments of the form
“if q5 appears then due to fairness all agents will eventually obtain it” and “due to
fairness the sum will eventually be aggregated to one agent unless q5 appears first”
without getting into the details of the fairness assumption. Of course, we have to be
very careful when using abstractions of this kind. �

Exercise 4 Consider the following protocol, known as “parity protocol”:

The input and output alphabets are X = Y = {0, 1}. The state of each agent consists of
a data bit and a live bit. Initially, the data bit is equal to the input bit and the live bit is 1.
For each state, the output bit is equal to the data bit. When two agents meet whose live bits
are both 1, one sets its live bit to 0, and the other sets its data bit to the mod 2 sum of their
data bits. When an agent with live bit 0 (a sleeping agent) meets an agent with live bit 1 (an
awake agent), the former copies the data bit of the latter.

Prove that the “parity protocol” stably computes the predicate (x1 mod 2 = 1),
which is true iff there is an odd number of 1’s in the input.

Exercise 5 Given a population protocol A, if Q is the set of A’s states and if A runs
on the complete communication graph of n nodes (basic model), show that there are(

1 + n
|Q|−1

)|Q|−1
different configurations.

Semilinear predicates are predicates whose support is a semilinear set. A semi-
linear set is the finite union of linear sets. A set of vectors in INk is linear if it is of
the form
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{b + l1a1 + l2a2 + · · · + lmam | li ∈ IN},

where b is a base vector, ai are basis vectors, and li are nonnegative integer coef-
ficients. Moreover, semilinear predicates are precisely those predicates that can be
defined by first-order logical formulas in Presburger arithmetic, as was proven by
Ginsburg and Spanier [28].

Angluin et al. proved in [2] that any semilinear predicate is stably computable by
the basic population protocol model and in [5] that any stably computable predicate,
by the same model, is semilinear, thus together providing an exact characterization
of the class of stably computable predicates:

Theorem 1 ([2, 5]) A predicate is stably computable by the basic population proto-
col model iff it is semilinear.

An immediate observation is that predicates like “the number of c’s is the product
of the number of a’s and the number of b’s (in the input assignment)” and “the
number of 1’s is a power of 2” are not stably computable by the basic model.

A graph family, or graph universe, is any set of communication graphs. Let G be a
graph family. For any G ∈ G, and given that X is the input alphabet of some protocol
A, there exists a set XG of all input assignments appropriate for G, defined as XG =
X V (G). Let now XG = ⋃

G∈G(XG × {G}) or, equivalently, XG = {(x,G) | G ∈
G and x is an input assignment appropriate for G}. Then we have the following
definition:

Definition 4 A population protocol A stably computes a predicate p : XG → {0, 1}
in a family of communication graphs G, if, for any G ∈ G and any x ∈ XG , every
computation of A on G beginning from C0 = I ◦ x reaches in a finite number of
steps an output-stable configuration Cstable such that yCstable(u) = p(x,G) for all
u ∈ V (G).

Moreover, if p is a mapping from G to {0, 1}, that is, a graph property (obvi-
ously, independent of the input assignment), then we say that A stably computes
property p.

Note that we can also consider undirected communication graphs. In the case of
an undirected graph we only require that E is symmetric, but we keep the initiator–
responder assumption. The latter is important to ensure deterministic transitions,
since otherwise we would not be able to know which agent applies δ1 and which δ2.

5.3 Mediated Population Protocols

Consider now the following question: “Is there a way to extend the population
protocol model and obtain a stronger model, without violating the uniformity and
anonymity properties”? As we shall, in this section, see, the answer is in the affirma-
tive. Although the idea is simple, it provides us with a model with significantly more
computational power and extra capabilities in comparison to the population protocol
model. The main modification is to allow the edges of the communication graph to
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store states from a finite set, whose cardinality is independent of the population size.
Two interacting agents read the corresponding edge’s state and update it, according
to a global transition function, by also taking into account their own states.

5.3.1 Formal Definition

Definition 5 A mediated population protocol (MPP) is a 12-tuple (X,Y, Q, I, O, S, ι,
ω, r, K , c, δ), where X , Y , Q, S and K are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. Q is the set of agent states,
4. I : X → Q is the agent input function,
5. O : Q → Y is the agent output function,
6. S is the set of edge states,
7. ι : X → S is the edge input function,
8. ω : S → Y is the edge output function,
9. r is the output instruction (informing the output-viewer how to interpret the

output of the protocol),
10. K is the totally ordered cost set,
11. c : E → K is the cost function, and
12. δ : Q × Q × K × S → Q × Q × K × S is the transition function.

We assume that the cost remains the same after applying δ and so we omit specifying

an output cost. If δ(qi , q j , x, s) =
(

q ′
i , q ′

j , s′
)

(which, according to our assump-

tion, is equivalent to δ(qi , q j , x, s) =
(

q ′
i , q ′

j , x, s′
)

), we call (qi , q j , x, s) →
(

q ′
i , q ′

j , s′
)

a transition, and we define δ1(qi , q j , x, s) = q ′
i , δ2(qi , q j , x, s) = q ′

j

and δ3(qi , q j , x, s) = s′. Here, we, additionally, call δ3 the edge acquisition (after
the corresponding interaction).

In most cases we assume that K ⊂ ZZ+ and that cmax = maxw∈K {w} = O(1).
Generally, if cmax = maxw∈K {|w|} = O(1) then any agent is capable of storing at
most k cumulative costs (at most the value kcmax), for some k = O(1), and we say
that the cost function is useful (note that a cost range that depends on the population
size could make the agents incapable for even a single cost storage and any kind of
optimization would be impossible).

A network configuration is a mapping C : V ∪ E → Q ∪ S specifying the
agent state of each agent in the population and the edge state of each edge in the
communication graph. Let C and C ′ be network configurations, and let u, υ be
distinct agents. We say that C goes to C ′ via encounter e = (u, υ), denoted C

e→
C ′, if
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C ′(u) = δ1(C(u),C(υ), x,C(e))

C ′(υ) = δ2(C(u),C(υ), x,C(e))

C ′(e) = δ3(C(u),C(υ), x,C(e))

C ′(z) = C(z), for all z ∈ (V − {u, υ}) ∪ (E − e).

The definitions of execution and computation are the same as in the population pro-
tocol model but concern network configurations. Note that the mediated population
protocol model preserves both uniformity and anonymity properties. As a result, any
MPP’s code is of constant size and, thus, can be stored in each agent (device) of the
population.

A configuration C is called r-stable if one of the following conditions holds:

• If the problem concerns a subgraph to be found, then C should fix a subgraph
that will not change in any C ′ reachable from C .

• If the problem concerns a function to be computed by the agents, then an r-stable
configuration drops down to an output-stable configuration.

We say that a protocol A stably solves a problem Π , if for every instance I of
Π and every computation of A on I , the network reaches an r-stable configuration
C that gives the correct solution for I if interpreted according to the output instruc-
tion r . If instead of a problem Π we have a function f to be computed, we say that
A stably computes f .

In the special case where Π is an optimization problem, a protocol that stably
solves Π is called an optimizing population protocol for problem Π .

Example 3 We will present now a MPP with a leader that stably solves the following
problem:

Problem 1 (Transitive Closure) We are given a complete directed communication
graph G = (V, E). Let E ′ be a subset of E . For all e ∈ E ′ it holds that initially
the state of e is 1. We are asked to find the transitive closure of G ′, that is, find a
new edge set E∗ that will contain a directed edge (u, υ) joining any nodes u, υ for
which there is a non null path from u to υ in G ′ (note that always E ′ ⊆ E∗).

We assume a controlled input assignment W : E → X that allows us to give
input 1 to any edge belonging to E ′ and input 0 to any other edge. Moreover, we
assume that initially all agents are in state q0, except for a unique leader that is in
state l. �

The MPP T ranClos (Protocol 3) stably solves the transitive closure problem
(Problem 1). You are asked to prove this in Exercise 6. Let us, first, explain one
after the other the protocol’s components before explaining its functionality (that is,
what is done by the transition function δ). Both the input alphabet X and the output
alphabet Y are binary, that is, both consist of the symbols 0 and 1. The set of agent
states Q consists of the states l, q0, q1, q ′

1, q2, q ′
2, and q3, which are the states that
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Protocol 3 TranClos

1: X = Y = {0, 1}
2: Q = {l, q0, q1, q ′

1, q2, q ′
2, q3

}

3: S = {0, 1}
4: controlled input assignment: “W (e′) = 1, for all e′ ∈ E ′, and W (e) = 0, for all e ∈ E − E ′”
5: ι(x) = x , for all x ∈ X
6: ω(s) = s, for all s ∈ S
7: r : “Collect the subgraph induced by all e ∈ E for which ω(se) = 1 (where se is the state of

e)”
8: δ:

(l, q0, 0) → (q0, l, 0) (q2, q0, 1) → (
q ′

2, q3, 1
)

(l, q0, 1) → (q1, q2, 1) (q1, q3, x) → (
q ′

1, q0, 1
)
, for x ∈ {0, 1}

(q1, q2, 1) → (q0, l, 1)
(
q ′

1, q ′
2, 1
) → (q0, l, 1)

agents may obtain during the protocol’s computations. The set of edge states S is
binary, which means that the edges joining the agents will at any time be in one of
the states 0 and 1. The controlled input assignment simply specifies that all edges
belonging to E ′ are initially in state 1 (by taking into account that ι(x) = x , for all
x ∈ X ) and all remaining edges of the communication graph are initially in state 0.
This is done in order to help the protocol distinguish E ′. ω(s) = s, for all s ∈ S,
simply says that the output of any edge is its current state, thus, either 0 or 1. Finally,
the output instruction r informs the user that the protocol’s output will consist of all
edges that will eventually output the value 1. In this case, these edges will form the
transitive closure of the communication graph G. We next discuss the protocol’s
functionality, which is described by the transition function δ.

The protocol TranClos (Protocol 3) repeats the following procedure. Initially, by
assumption, there is a unique leader u in state l and all the other agents are in q0.
When the leader u interacts with an agent υ in q0 through (u, υ) in state 0, the agents
swap states, that is, now υ is the unique leader. If, instead, (u, υ) is in state 1, then
the leader gets q1 and υ gets q2. After the latter has happened, all agents are in q0
except for u and υ which are in q1 and q2, respectively, while (u, υ) is in state 1,
and only the rules (q1, q2, 1) → (q0, l, 1) and (q2, q0, 1) → (

q ′
2, q3, 1

)
can apply

(all the other rules have no effect). If the former applies first, then the population
goes to a configuration similar to the initial one, with a unique leader and all the
other agents in q0. This rule is important (although maybe not obvious why) since
it guarantees that, if υ, which is in q2, has no outgoing neighbor w, where qw = q0
and s(υ,w) = 1, then the protocol will not get stuck. If, instead, the latter applies
first, then υ has interacted with an agent w in q0 where (υ,w) is in state 1. Now
υ gets q ′

2 and w gets q3. After this step, the protocol has formed the directed path
uυw, with agent states q1, q ′

2, q3, respectively, and (u, υ), (υ,w) (i.e., the edges of
the path) in state 1. From now on, only (q1, q3, x) → (

q ′
1, q0, 1

)
can apply, which

simply assigns state 1 to the edge (u, w). Finally, the population remains again with
a unique leader, υ, and all the other agents in q0, simply proceeding with the same
general operation that we have just described.
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Exercise 6 Give a formal proof that the MPP TranClos (Protocol 3) stably solves
the transitive closure problem (Problem 1).

Exercise 7 Assume that the input symbols are only 0 and 1 and that the communica-
tion graph G = (V, E) is any directed graph. Let G ′ be the subgraph of G induced
by V ′ = {u ∈ V | u gets the input symbol 1}. Devise a MPP that will construct
a (not necessarily connected) subgraph G ′′ = (V ′′, E ′′) of G ′, in which all nodes
have in degree at most 1 and out degree at most 1.

5.3.2 Computational Power

The population protocol model is a special case of the mediated population protocol
model (try to prove it). Moreover, as we shall see, there exists a MPP protocol that
stably computes the non semilinear predicate (Nc = Na ·Nb). In words, it eventually
decides whether the number of c’s in the input assignment is equal to the product of
the number of a’s and the number of b’s. The following definitions will prove useful
for our purpose.

Definition 6 A MPP A has stabilizing states if in any computation of A, after a
finite number of interactions, the states of all agents stop changing.

Definition 7 We say that a predicate is strongly stably computable by the MPP
model if it is stably computable with the predicate output convention, that is, all
agents eventually agree on the correct output value.

Protocol 4 kkkVarProduct

1: X = {a, b, c, 0}
2: Y = {0, 1}
3: Q = {a, ȧ, b, c, c̄, 0}
4: S = {0, 1}
5: I (x) = x , for all x ∈ X
6: O(a) = O(b) = O(c̄) = O(0) = 1 and O(c) = O(ȧ) = 0
7: ι(x) = 0, for all x ∈ X
8: r : “If there is at least one agent with output 0, reject; otherwise, accept.”
9: δ: (a, b, 0)→ (ȧ, b, 1), (c, ȧ, 0)→ (c̄, a, 0), (ȧ, c, 0)→ (a, c̄, 0)

Theorem 2 The MPP VarProduct (Protocol 4) stably computes (according to the
output instruction r) the predicate (Nc = Na ·Nb) in the family of complete directed
communication graphs.

Proof Notice that the number of links leading from agents in state a to agents in
state b equals Na · Nb. For each a the protocol tries to erase b c’s. Each a is able to
remember the b’s that it has already counted (for every such b a c has been erased)
by marking the corresponding links. If the c’s are less than the product then at least
one ȧ remains and if the c’s are more at least one c remains. In both cases at least one
agent that outputs 0 remains. If Nc = Na · Nb then every agent eventually outputs 1.
�
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Theorem 3 Let p be any predicate on input assignments. Let A be a MPP that
stably computes p with stabilizing states in some family of directed and connected
communication graphs G and also assume that A contains an instruction r that
defines a semilinear predicate t on multisets of A’s agent states. Since t is semilin-
ear, it is stably computable with stabilizing inputs by the PP model [1, 5], and, thus,
by the MPP model. Let B be a MPP that strongly stably computes t with stabilizing
inputs in G.

If all the above hold then A can be composed with B to give a new MPP C
satisfying the following properties:

• C is formed by the composition of A and B,
• its input is A’s input,
• its output is B’s output, and
• C strongly stably computes p (i.e., all agents agree on the correct output) in G.

Exercise 8 Prove Theorem 3.
Hint: B will make use of the stabilizing inputs idea from [1]; its inputs that eventu-
ally stabilize are A’s states.

Theorems 2 and 3 together imply that the MPP model strongly stably computes
VarProduct which is non semilinear. Since the MPP model strongly stably computes
a non semilinear predicate and the PP model is a special case of MPP, it follows
that the class of computable predicates by MPP is a proper superset of the class of
computable predicates by PP. In other words, the MPP model is computationally
stronger than the PP model.

In what concerns the class of stably computable predicates by MPP, recent
(unpublished) research shows that it is a superset of SSPACE(n) (symmetric predi-
cates in LINSPACE). We also know the following upper bound: “Any predicate that
is stably computable by the MPP model in any family of communication graphs
belongs to the space complexity class NSPACE(m)” (recall that m = |E |). The
idea is simple: By using the MPP that stably computes the predicate we construct
a nondeterministic Turing Machine that guesses in each step the next selection of
the scheduler (thus the next configuration). The machine always replaces the current
configuration with a new legal one, and, since any configuration can be represented
explicitly with O(m) space, any branch uses O(m) space. The machine accepts if
some branch reaches a configuration C that satisfies instruction r of the protocol,
and if, moreover, no configuration reachable from C violates r (i.e., C must also be
r-stable).

5.4 The GDM Model

Here we deal with MPP’s ability to decide graph languages. To do so, we consider a
special case of the mediated population protocol model, the Graph Decision Medi-
ated population protocol model, or simply GDM model.
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5.4.1 Formal Definition

Definition 8 A GDM protocol is an 8-tuple (Y, Q, O, S, r, δ, q0, s0), where Y , Q,
and S are all finite sets and

1. Y = {0, 1} is the binary output alphabet,
2. Q is the set of agent states,
3. O : Q → Y is the agent output function,
4. S is the set of edge states,
5. r is the output instruction,
6. δ : Q × Q × S → Q × Q × S is the transition function,
7. q0 ∈ Q is the initial agent state, and
8. s0 ∈ S is the initial edge state.

If δ(a, b, s) = (a′, b′, s′), we call (a, b, s) → (a′, b′, s′) a transition and we define
δ1(a, b, s) = a′, δ2(a, b, s) = b′, and δ3(a, b, s) = s′.

Let U be a graph universe. A graph language L is a subset of U containing
communication graphs that possibly share some common property. For example,
a common graph universe is the set of all possible directed and weakly connected
communication graphs, denoted by G, and L = {G ∈ G | G has an even number of
edges} is a possible graph language w.r.t. G.

A GDM protocol may run on any graph from a specified graph universe. The
graph on which the protocol runs is considered as the input graph of the protocol.
Note that GDM protocols have no sensed input. Instead, we require each agent in
the population to be initially in the initial agent state q0 and each edge of the com-
munication graph to be initially in the initial edge state s0. In other words, the initial
network configuration, C0, of any GDM protocol is defined as C0(u) = q0, for all
u ∈ V , and C0(e) = s0, for all e ∈ E , and any input graph G = (V, E).

We say that a GDM protocol A accepts an input graph G if in any computation
of A on G after finitely many interactions all agents output the value 1 and continue
doing so in all subsequent (infinite) computational steps. By replacing 1 with 0 we
get the definition of the reject case.

Definition 9 We say that a GDM protocol A decides a graph language L ⊆ U if it
accepts any G ∈ L and rejects any G /∈ L .

Definition 10 A graph language is said to be GDM-decidable, or simply decidable,
if some GDM protocol decides it.

5.4.2 Weakly Connected Graphs

5.4.2.1 Decidability

The most meaningful graph universe is G containing all possible directed and
weakly connected communication graphs, without self-loops or multiple edges, of
any finite number of nodes greater than or equal to 2 (we do not allow the empty
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graph, the graph with a unique node and we neither allow infinite graphs). Here the
graph universe is G and, thus, a graph language can only be a subset of G (moreover,
its elements must share some common property).

We begin with some easy to prove, but often useful, closure results.

Theorem 4 The class of decidable graph languages is closed under complement,
union, and intersection operations.

Proof First we show that for any decidable graph language L its complement L is
also decidable. From the definition of decidability there exists a GDM protocol AL

that decides L . Thus, for any G ∈ G and any computation of AL on G all agents
eventually output 1 if G ∈ L and 0 otherwise. By complementing the output map
OA of A we obtain a new protocol A, with output map defined as OA(q) = 1 iff
OA(q) = 0, for all q ∈ QA = QA, whose agents eventually output 1 if G /∈ L and
0 otherwise, thus deciding L .

Now we show that for any decidable graph languages L1 and L2, L3 = L1 ∪ L2
is also decidable. Let A1 and A2 be GDM protocols that decide L1 and L2, respec-
tively (we know their existence). We let the two protocols operate in parallel, i.e., we
devise a new protocol A3 whose agent and edge states consist of two components,
one for protocol A1 and one for A2. Let O1 and O2 be the output maps of the two
protocols. We define the output map O3 of A3 as O3(q, q ′) = 1 iff at least one of
O1(q) and O2(q ′) equals to 1, for all q ∈ QA1 and q ′ ∈ QA2 . If G ∈ L3 then at
least one of the two protocols has eventually all its agent components giving output
1, thus A3 correctly answers “accept”, while if G /∈ L3 then both protocols have
eventually all their agent components giving output 0, thus A3 correctly answers
“reject”. We conclude that A3 decides L3 which proves that L3 is decidable.

By defining the output map O3 of A3 as O3(q, q ′) = 1 iff O1(q) = O2(q ′) = 1,
for all q ∈ QA1 and q ′ ∈ QA2 , and making the same composition as before, it is
easy to see that in this case A3 decides the intersection of L1 and L2.

Note, however, that in each union and intersection operation the resulting proto-
col’s size is the product of the sizes of the composed protocols. It follows that the
closure under these two operations can only hold for a constant number of subse-
quent applications. �
Example 4 Let us now illustrate what we have seen so far by presenting a parametric
GDM protocol that decides the graph language N out

k = {G ∈ G | G has some node
with at least k outgoing neighbors} for any k = O(1).

We provide a high-level description of the protocol. Initially all agents are in
q0 and all edges in 0. The set of agent states is Q = {q0, . . . , qk}, the set of edge
states is binary and the output function is defined as O(qk) = 1 and O(qi ) = 0 for
all i ∈ {0, . . . , k − 1}. We now describe the transition function. In any interaction
through an edge in state 0, the initiator visits an unvisited outgoing edge, so it marks
it by updating the edge’s state to 1 and increases its own state index by one, e.g.,
initially (q0, q0, 0) yields (q1, q0, 1), and, generally (qi , q j , 0) → (qi+1, q j , 1), if
i +1 < k and j < k, and (qi , q j , 0)→ (qk, qk, 1), otherwise. Whenever two agents
meet through a marked edge they do nothing, except for the case where only one



128 P.G. Spirakis

of them is in the special alert state qk . If the latter holds, then both go to the alert
state, since in this case the protocol has located an agent with at least k outgoing
neighbors. To conclude, all agents count their outgoing edges and initially output 0.
Iff one of them marks its kth outgoing edge, both end points of that edge go to an
alert state qk that is eventually propagated to the whole population and whose output
is 1, indicating that G belongs to N out

k . Clearly, the described protocol decides N out
k ,

which means that N out
k is a decidable graph language. Moreover, the same must hold

for N
out
k because, according to Theorem 4, the class of decidable graph languages

is closed under complement. Note that N
out
k contains all graphs that have no node

with at least k = O(1) outgoing neighbors. In other words, the GDM model can
decide if all nodes have less than k outgoing edges, which is simply the well-known
bounded by k out degree predicate. �
Example 5 We show now that the graph language Pk = {G ∈ G | G has at least one
directed path of at least k edges} is decidable for any k = O(1) (the same holds for
Pk).

If k = 1 the protocol that decides P1 is trivial, since it accepts iff at least one
interaction happens (in fact it can always accept since all graphs have at least two
nodes and they are weakly connected, and thus P1 = G). The protocol DirPath
(Protocol 5) that we have constructed decides Pk for any constant k > 1.

Protocol 5 DirPath

1: Q = {q0, q1, 1, . . . , k}
2: S = {0, 1}
3: O(k) = 1, O(q) = 0, for all q ∈ Q − {k}
4: r : “Get any u ∈ V and read its output”
5: δ:

(q0, q0, 0)→ (q1, 1, 1)

(q1, x, 1)→ (x − 1, q0, 0), if x ≥ 2

→ (q0, q0, 0), if x = 1

(x, q0, 0)→ (q1, x + 1, 1), if x + 1 < k

→ (k, k, 0), if x + 1 = k

(k, ·, ·)→ (k, k, ·)
(·, k, ·)→ (k, k, ·)

Initially all nodes are in q0 and all edges in 0. The protocol tries to expand disjoint
paths. When rule (q0, q0, 0)→ (q1, 1, 1) applies, the initiator goes to q1 indicating
that it is a node of an active path, the responder goes to 1 indicating that it is the
head of an active path of length 1, and the edge goes to 1 indicating that it is part
of an active path. By inspecting the transition function it is easy to see that the
nodes of two disjoint active paths have no way of interacting with each other (in
fact, the interactions happening between them leave their interacting components
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unaffected). This holds because all nodes in q1 do nothing when communicating
through an edge in state 0 and disjoint active paths can only communicate through
edges in state 0. Moreover, the heads of the paths only expand by communicating
with nodes in q0 which, of course, cannot be nodes of active paths (all nodes of
active paths are in q1 except for the heads which are in states from {1, . . . , k −
1}). There are two main possibilities for an active path: either the protocol expands
it, thus obtaining a node and an edge and increasing the head counter by one, or
shrinks it, thus releasing a node and an edge and decreasing the head counter by
one. Eventually, a path will either be totally released (all its nodes and edges will
return to the initial states) or it will become of length k. In the first case the protocol
simply keeps working but in the second, a path of length at least k was found and
state k that outputs 1 is correctly propagated. The crucial point is that state k is the
only state that outputs 1 and can only be reached and propagated by the agents iff
there exists some path of length at least k. Moreover, if such a path exists, due to
fairness assumption, the protocol will eventually manage to find it. �

The following graph languages are also decidable by the GDM model:

1. Neven = {G ∈ G | |V (G)| is even}.
2. Eeven = {G ∈ G | |E(G)| is even}.
3. K out

k = {G ∈ G | Any node in G has at least k outgoing neighbors} for any
k = O(1).

4. Mout = {G ∈ G | G has some node with more outgoing than incoming
neighbors}.

Of course, by closure under complement, the same holds for their complements.

Exercise 9 Do you think it is possible to construct a GDM protocol that decides
the graph language consisting of all directed and weakly connected communication
graphs in which all nodes have at most k = O(1) incoming edges and in which the
number of nodes is at least 5% of the number of edges? If yes, construct the protocol
and prove its correctness; if no, explain why.

5.4.2.2 Undecidability

If we allow only GDM protocols with stabilizing states, i.e., GDM protocols that
in any computation after finitely many interactions stop changing their states, then
we can prove that a specific graph language w.r.t. G is undecidable. In particular,
we can prove that there exists no GDM protocol with stabilizing states to decide the
graph language

2C = {G ∈ G | G has at least two nodes u, υ s.t. both (u, υ), (υ, u)

∈ E(G) (in other words, G has at least one 2-cycle)}.

The proof is based on the following lemma.
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(a) Graph G (b) Graph G 

′

Fig. 5.1 G ∈ 2C and G ′ /∈ 2C

Lemma 1 For any GDM protocol A and any computation C0,C1,C2, . . . of A on G
(Fig. 5.1a) there exists a computation C ′

0,C ′
1,C ′

2, . . . ,C ′
i , . . . of A on G ′ (Fig. 5.1b)

s.t.

Ci (υ1) = C ′
2i (u1) = C ′

2i (u3)

Ci (υ2) = C ′
2i (u2) = C ′

2i (u4)

Ci (e1) = C ′
2i (t1) = C ′

2i (t3)

Ci (e2) = C ′
2i (t2) = C ′

2i (t4)

for any finite i ≥ 0.

Exercise 10 Prove Lemma 1 by using induction on i .

Lemma 1 shows that if a GDM protocol A with stabilizing states could decide
2C then there would exist a computation of A on G ′ forcing all agents to output
incorrectly the value 1 in finitely many steps. But G ′ does not belong to 2C , and,
since A decides 2C , all agents must correct their states to eventually output 0. By
taking into account the fact that A has stabilizing states it is easy to reach a con-
tradiction and prove that no GDM protocol with stabilizing states can decide 2C .
Whether the graph language 2C is undecidable by the GDM model in the general
case (not only by GDM protocols with stabilizing states) remains an interesting open
problem.

5.4.3 All Possible Directed Graphs

It is not hard to show that if the graph universe, H, is allowed to contain also dis-
connected communication graphs, then in this case the GDM model is incapable
of deciding even a single nontrivial graph language (we call a graph language L
nontrivial if L �= ∅ and L �= H). Here we assume the graph universe H consisting
of all possible directed communication graphs, without self-loops or multiple edges
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of any finite number of nodes greater or equal to 2 (we now also allow graphs that
are not even weakly connected). So, now, a graph language can only be a subset
of H.

The crucial part is to show that for any nontrivial graph language L , there exists
some disconnected graph G in L where at least one component of G does not belong
to L or there exists some disconnected graph G ′ in L where at least one component
of G ′ does not belong to L (or both). If the statement does not hold then any discon-
nected graph in L has all its components in L and any disconnected graph in L has
all its components in L .

1. All connected graphs belong to L . Then L contains at least one disconnected
graph (since it is nontrivial) that has all its components in L , which contradicts
the fact that the components of any disconnected graph in L also belong to L .

2. All connected graphs belong to L . The contradiction is symmetric to the previous
case.

3. L and L contain connected graphs G and G ′, respectively. Their disjoint union
U = (V ∪ V ′, E ∪ E ′) is disconnected, belongs to L or L but one of its com-
ponents belongs to L and the other to L . The latter contradicts the fact that both
components should belong to the same language.

Now it will not be hard to prove the impossibility result as an exercise.

Exercise 11 Prove that any nontrivial graph language L ⊂ H is undecidable by the
GDM model.
Hint: notice that agents of different components cannot communicate with each
other.

Exercise 12 Do you think that Connectivity property is GDM-decidable?

5.5 Community Protocols

In this section, we present the Community Protocol model, which was proposed
by Guerraoui and Ruppert [29] and is another extension of the population protocol
model. In fact, this, recently proposed, model makes the assumption that the agents
are equipped with unique ids and are also allowed to store a fixed number of other
agents’ ids. The term “community” in the model’s name is used to emphasize the
fact that the agents here form a collection of unique individuals similar to the notion
of a human community, in contrast to a population which is merely an agglomeration
of nameless multitude.

5.5.1 The Model

As usual, we start with a formal definition of the model, and then a somewhat infor-
mal description of its functionality follows.
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Definition 11 Let U be an infinite ordered set containing all possible ids. A Com-
munity Protocol Algorithm is an 8-tuple (X,Y, B, d, I, O, Q, δ), where X , Y , and
B are all finite sets and

1. X is the input alphabet,
2. Y is the output alphabet,
3. B is the set of basic states,
4. d is a nonnegative integer representing the number of ids that can be remembered

by an agent,
5. I : X → B is the input function mapping input symbols to basic states,
6. O : B → Y is the output function mapping basic states to outputs,
7. Q = B × (U ∪ {⊥})d is the set of agent states, and
8. δ : Q × Q → Q × Q is the transition function.

If δ(a, b) = (a′, b′), we call (a, b)→ (a′, b′) a transition and we define δ1(a, b) =
a′ and δ2(a, b) = b′.

The first obvious difference between this and the population protocol model is
that the agent states are allowed to contain up to d ids. Additionally, each agent is
assumed to have its own unique id from the industry (which is an element of U ).
As in the population protocol model, initially each agent i ∈ {1, . . . , n} receives an
input symbol from X . Note that the i th agent is the agent whose id is in position i
in the ascending ordering of agent ids. An input assignment x ∈ X = X V is again
any n-vector of input symbols, where xi is the input to agent i . Moreover, let idi

denote the actual id of agent i and bi = I (xi ) (that is, the initial basic state of agent
i). Then the initial state of each agent i is of the form (bi , idi ,⊥,⊥, . . . ,⊥). Thus,
initially, each agent i is in basic state bi , contains its own unique id idi in the first
position of its list of ids, and the remaining list is filled with d − 1 repetitions of the
symbol ⊥.

A configuration C is a vector in Qn of the form C = (q1, q2, . . . , qn), where qi

is simply the state of agent i for all i ∈ {1, . . . , n}. Thus, the initial configuration
corresponding to input assignment x is ((bi , idi ,⊥,⊥, . . . ,⊥))|x |i=1, where again
bi = I (xi ) and idi is the actual id of agent i . The notions of execution, computa-
tion, and fairness are defined in the same way as in the population protocol model.
Moreover, we will call the community protocol model, in which the communication
graph is directed and complete, basic community protocol model (like we did with
the population protocol model). The scheduler choosing the interactions is again
assumed to be fair.

The output of an agent at any step of the computation is the output of its basic
state. For example, the output of an agent in state (bi , idi , 1, 5, . . . ,⊥) is O(bi ) ∈
Y . A community protocol algorithm for the basic model stably computes a function
f : X≥2 → Y , where X≥2 denotes the set of all finite strings over X of length at
least 2, if for any x ∈ X≥2 and any assignment of the symbols in x to the nodes
of the complete communication graph of |x | nodes, all agents, independently of
the fair computation followed, eventually stabilize to the output f (x), that is, a
configuration is reached under which all agents output f (x) and continue doing so
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forever, no matter how the computation proceeds thereafter (such a configuration is,
as usual, called an output-stable configuration).

As in population protocols, algorithms are uniform (but, clearly, not anonymous).
The reason is that their description makes no assumption of the community size n;
thus their functionality remains identical for all complete communication graphs.
That is why the set of ids U is infinite. The suspicious reader would notice that if
we do not impose further restrictions on the model then the agents can use their
d slots to store arbitrary amounts of information (by exploiting the fact that U is
defined to be infinite), which is artificial. To avoid this, we impose a local knowledge
constraint, according to which agents can only store ids that they have learned from
other agents via interactions with them. To formalize this, let l(q) denote the set
of different ids appearing in the list of ids of state q. If δ(q1, q2) = (

q ′
1, q ′

2

)
and

id ∈ l
(
q ′

1

) ∪ l
(
q ′

2

)
then id ∈ l(q1) ∪ l(q2) (in words, no new ids appear in the

outcome of an interaction).
Additionally, an operational constraint is imposed that allows no other operations

except for comparisons to be performed on ids by the agents. This constraint is only
imposed to keep the model minimal, because it turns out that, even in the presence
of this constraint, the model is surprisingly strong (computationally). Intuitively, if
((b1, . . .), (b2, . . .)) →

((
b′1, . . .

)
,
(
b′2, . . .

))
is a transition in δ, then any transition

with precisely the same basic states in which the ids of the lhs are replaced by ids
that preserve the order (which, according to the local knowledge constraint, implies
that also the ids in the rhs will preserve the order) also belongs to δ. Since this may
be a little subtle, another way to think of it is the following. All interactions that do
not differ w.r.t. the basic states of the agents and whose lists of ids contain ids that
preserve the order, provide the agents with the same new pair of basic states and
with new lists of ids that do not different w.r.t. the order of ids.

To make this precise, let δ(q1, q2) =
(
q ′

1, q ′
2

)
. Moreover, let id1 < id2 < · · · <

idk be all ids in l(q1) ∪ l(q2) ∪ l
(
q ′

1

) ∪ l
(
q ′

2

)
and let id ′

1 < id ′
2 < · · · < id ′

k be ids.
If ρ(q) is the state obtained from q by replacing all occurrences of each id idi by
id ′

i , then we require that δ(ρ(q1), ρ(q2)) =
(
ρ
(
q ′

1

)
, ρ
(
q ′

2

))
also holds.

Example 6 Assume that δ((b1, 1, 2,⊥),(b2, 7,⊥,⊥))=((b′1, 1, 7,⊥),(b′2, 2, 2, 1
))

.
Then it holds that δ((b1, 2, 5,⊥), (b2, 8,⊥,⊥)) = ((

b′1, 2, 8,⊥) , (b′2, 5, 5, 2
))

.
The reason is that 1 < 2 < 7 and 2 < 5 < 8 and we have replaced 1 by 2,
2 by 5, and 7 by 8, thus preserving the order of ids. Generally, δ((b1, id1, id2,⊥),
(b2, id3,⊥,⊥))=

((
b′1, id1, id3,⊥

)
,
(
b′2, id2, id2, id1

))
must hold for all id1, id2,

id3 ∈ U , where id1 < id2 < id3, for the same reason. �

Exercise 13 Consider a transition function δ and let δ(q1, q2) = (
q ′

1, q ′
2

)
be any

transition. Let bq denote the basic state of state q, and idq, j the j th id in the id list
of q. δ is defined as follows. If bq1 = bq2 then nothing happens. If bq1 �= bq2 then

• If idq1, j > idq2, j and idq1, j , idq2, j �= ⊥ for some j ∈ {2, . . . , d}, then idq ′
2,i

=⊥
and idq ′

1,i
= idq2,i for all i ∈ {2, . . . , d}, and bq ′

1
= bq ′

2
= bq1 .

• Else idq ′
1,i

= ⊥ and idq ′
2,i

= idq1,i for all i ∈ {2, . . . , d}, and bq ′
1
= bq ′

2
= bq2 .
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Does δ satisfy the local knowledge and operational constraints? Support your
answer with a formal proof.

5.5.2 Computational Power

The community protocol model turns out to be extremely strong in terms of its
computational power. In fact it turns out that any symmetric predicate p : X≥2 →
{0, 1} is (stably) computable by the basic community protocol model if and only
if it belongs to NSPACE(n log n), where, as usual, n denotes the community size.
The reason that we consider symmetric predicates is that the identifiers of the model
cannot be used to order the input symbols; thus an algorithm’s functionality in the
basic model has to be identical for any permutation of the inputs w.r.t. to the agents’
ordering.

Definition 12 Let CP denote the class of all symmetric predicates p that are stably
computable by the basic community protocol model.

First of all, we prove that any stably computable symmetric predicate p is in
NSPACE (n log n).

Theorem 5 ([29]) CP is a subset of NSPACE(n log n).

Proof We will construct a nondeterministic TM N that decides the language L p =
{x ∈ X≥2 | p(x) = 1} (the support of p) using at most NPSACE(n log n) =
NPSACE(| < x > | log | < x > |) cells on any branch of its computation. The
reason that the latter equality holds is that the input of p consists of n input symbols,
picked from the set X whose cardinality is independent of n. This means that for
any input x to the machine N (any element of L p) it holds that | < x > | = O(n),
where n is the community size.

First of all, we make the following natural assumption: n agents have w.l.o.g. the
unique ids 1, 2, . . . , n. This implies that each id occupies O(log n) cells in a TM.
Moreover, there are d id slots in an agent’s state, and since d is independent of n
again O(log n) cells suffice to store the list of ids of any state. The cardinality of B is
also independent of n; thus we conclude that O(log n) cells suffice to store any state
of Q. A configuration is simply a vector consisting of n states; thus a configuration
will occupy O(n log n) cells of memory storage.

To accept input x , N must verify two conditions: That there exists a configuration
C reachable from I (x) (that here denotes the initial configuration corresponding
to x), in which all basic states output p(x), and that there is no configuration C ′
reachable from C , in which some basic state does not output p(x).

The first condition is verified by guessing and checking a sequence of config-
urations, starting from I (x) and reaching such a C . N guesses a Ci+1 each time,
verifies that Ci → Ci+1 (begins from C0 = I (x), i.e., i = 0) and, if so, replaces
Ci by Ci+1, otherwise drops this Ci+1. The second condition is the complement
of a similar reachability problem. But NSPACE is closed under complement for
all space functions ≥ log n (see Immerman–Szelepcsényi theorem [35]). Thus, by
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taking into account that only one configuration is kept at any step of any branch and
that the size of any configuration is O(n log n), we conclude that N decides L p in
O(n log n) space. �

A Schönhage’s Storage Modification Machine (SMM) is a kind of pointer
machine (not a distributed system). Its memory stores a finite directed graph of con-
stant out degree with a distinguished node called the center. The edges of the graph
are called pointers. The edges out of each node are labeled by distinct directions
drawn from a finite set Δ. For example, a reasonable implementation of Δ could
use all nonnegative integers up to the maximum out degree in the graph minus one.
Any string x ∈ Δ∗ can be used as a reference to the node that is reached if we begin
from the center and follow the pointers whose labels are indicated by the sequence
of symbols in x . We denote the node indicated by x ∈ Δ∗ by p∗(x). The basic
operations of an SM M allow the machine to create nodes, modify pointers, and
follow paths of pointers. We now formalize the above description.

Definition 13 A Nondeterministic Storage Modification Machine (NSMM) is a 3-
tuple (Σ,Δ, P), where Σ and Δ are both finite sets and

1. Σ is the input alphabet,
2. Δ is the set of distinct directions, and
3. P is the program, which is a finite list of instructions.

Inputs to the SMM are finite strings from Σ∗. Programs may use instructions of the
following types:

• new: creates a node, makes it the center, and sets all its outgoing pointers to the
old center.

• recenter x , where x ∈ Δ+: changes the center of the graph to p∗(x).
• set xδ to y, where x, y ∈ Δ∗ and δ ∈ Δ: changes the pointer of node p∗(x) that

is labeled by δ to point to node p∗(y).
• if x = y then goto l, where x, y ∈ Δ∗: jumps to (program) line l if p∗(x) =

p∗(y).
• input l1, . . . , lr , where l1, . . . , lr are (program) line numbers: consumes the next

input symbol (if there is one) and jumps to line li if that symbol is σi .
• output o, where o ∈ {0, 1}: causes the machine to halt and output o.
• choose l0, l1, where l0 and l1 are line numbers: causes the machine to transfer

control either to line l0 or to line l1 nondeterministically.

When a node becomes unreachable from the center, it can be dropped from the
graph, since it plays no further role in the computation. Space complexity is mea-
sured by the maximum number of (reachable) nodes present at any step of any
branch of the machine’s nondeterministic computation.

It can be proved that any language decided by a nondeterministic Turing Machine
using O(S log S) space can be decided by an NSMM using S nodes. Thus, to prove
that all symmetric predicates in NSPACE(n log n) also belong to CP it suffices to
show that there exists a community protocol that simulates an NSMM that uses
O(n) nodes. The latter can be shown but, unfortunately, the construction is quite



136 P.G. Spirakis

involved, so we skip it. Now by taking into account Theorem 5 we get the following
exact characterization.

Theorem 6 ([29]) CP is equal to the class of all symmetric predicates in
NSPACE(n log n).

5.6 Logarithmic Space Machines

In this section, we study another recently proposed model, called the PALOMA
model [14]. In fact, it is a model of PAssively mobile MAchines (that we keep
calling agents) equipped with two-way communication and each having a memory
whose size is LOgarithmic in the population size n.

The reason for studying such an extension is that having logarithmic communi-
cating machines seems to be more natural than communicating automata of constant
memory. First of all, the communicating machines assumption is perfectly consistent
with current technology (cellphones, iPods, PDAs, and so on). Moreover, logarith-
mic is, in fact, extremely small. For a convincing example, it suffices to mention
that for a population consisting of 2266 agents, which is a number greater than the
number of atoms in the observable universe, we only require each agent to have 266
cells of memory (while small-sized flash memory cards nowadays exceed 16GB
of storage capacity)! Interestingly, it turns out that the agents, by assigning unique
ids to themselves, are able to get organized into a distributed nondeterministic TM
that makes full use of the agents’ memories! The TM draws its nondeterminism by
the nondeterminism inherent in the interaction pattern. It is here like the nameless
multitude can turn itself into a well-organized community.

Definition 14 A PALOMA protocol A is a 7-tuple (Σ, X, Γ, Q, δ, γ, q0), where Σ ,
X , Γ , and Q are all finite sets and

1. Σ is the input alphabet, where #,� /∈ Σ ,
2. X ⊆ Σ∗ is the set of input strings,
3. Γ is the tape alphabet, where #,� ∈ Γ and Σ ⊂ Γ ,
4. Q is the set of states,
5. δ : Q × Γ → Q × Γ × {L , R} × {0, 1} is the internal transition function,
6. γ : Q×Q → Q×Q is the external transition function (or interaction transition

function), and
7. q0 ∈ Q is the initial state.

Each agent is equipped with the following:

• A sensor in order to sense its environment and receive a piece of the input (which
is an input string from X ).

• A tape (memory) consisting of O(log n) cells. The tape is partitioned into three
parts each consisting of O(log n) cells: the leftmost part is the working tape, the
middle part is the output tape, and the rightmost part is the message tape (we
call the parts “tapes” because such a partition is equivalent to a 3-tape machine).
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The last cell of each part contains permanently the symbol # (we assume that the
machine never alters it); it is the symbol used to separate the three tapes and to
mark the end of the overall tape.

• A control unit that contains the state of the agent and applies the transition func-
tions.

• A head that reads from and writes to the cells and can move one step at a time,
either to the left or to the right.

• A binary working flag either set to 1 meaning that the agent is working internally
or to 0 meaning that the agent is ready for interaction.

Initially, all agents are in state q0 and all their cells contain the blank symbol
� except for the last cell of the working, output, and message tapes that contain
the separator #. We assume that all agents concurrently receive their sensed input
(different agents may sense different data) as a response to a global start signal. The
input is a string from X and after reception (or, alternatively, during reception, in
an online fashion) it is written symbol by symbol on their working tape beginning
from the leftmost cell. During this process the working flag is set to 1 and remains
to 1 when this process ends (the agent may set it to 0 in future steps).

When its working flag is set to 1 we can think of the agent working as a usual
Turing Machine (but it additionally writes the working flag). In particular, whenever
the working flag is set to 1 the internal transition function δ is applied, the control
unit reads the symbol under the head and its own state and updates its state and the
symbol under the head, moves the head one step to the left or to the right and sets
the working flag to 0 or 1, according to the internal transition function.

We assume that the set of states Q and the tape alphabet Γ , are both sets whose
size is fixed and independent of the population size (i.e., |Q| = |Γ | = O(1)); thus,
there is, clearly, enough room in the memory of an agent to store both the internal
and the external transition functions.

Again here, a fair adversary scheduler selects ordered pairs of agents to interact.
Assume now that two agents u and υ are about to interact with u being the initiator
of the interaction and υ being the responder. Let f : V → {0, 1} be a function
returning the current value of each agent’s working flag. If at least one of f (u)
and f (υ) is equal to 1, then nothing happens, because at least one agent is still
working internally. Otherwise ( f (u) = f (υ) = 0), both agents are ready and an
interaction is established. In the latter case, the external transition function γ is
applied, the states of the agents are updated accordingly, the message of the initiator
is copied to the message tape of the responder (replacing its contents) and vice versa
(the real mechanism would require that each one receives the other’s message and
then copies it to its memory, because instant replacement would make them lose
their own message, but this can be easily implemented with O(log n) extra cells of
memory, so it is not an issue), and finally the working flags of both agents are again
set to 1.

Since each agent is a TM (of logarithmic memory), we use the notion of a con-
figuration to capture its “state”. An agent configuration is a quadruple (q, l, r, f ),
where q ∈ Q, l, r ∈ ΓO(log n) = {s ∈ Γ ∗ | |s| = O(log n)}, and f ∈ {0, 1}.
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q is the state of the control unit, l is the string to the left of the head (including
the symbol scanned), r is the string to the right of the head, and f is the working
flag indicating whether the agent is ready to interact ( f = 0) or carrying out some
internal computation ( f = 1). Let B be the set of all agent configurations. Given
two agent configurations A, A′ ∈ B, we say that A yields A′ if A′ follows A by a
single application of δ.

A population configuration is a mapping C : V → B, specifying the agent
configuration of each agent in the population. Let C , C ′ be population configurations
and let u ∈ V . We say that C yields C ′ via agent transition u, denoted C

u→ C ′, if
C(u) yields C ′(u) and C ′(w) = C(w), ∀w ∈ V − {u}.

Let q(A) denote the state of an agent configuration A, l(A) its string to the left
of the head including the symbol under the head, r(A) its string to the right of the
head, and f (A) its working flag. Given two population configurations C and C ′, we
say that C yields C ′ via encounter e = (u, υ) ∈ E , denoted C

e→ C ′, if one of the
following two cases holds:

Case 1:

• f (C(u)) = f (C(υ)) = 0 which guarantees that both agents u and υ are ready
for interaction under the population configuration C .

• r(C(u)) and r(C(υ)) are precisely the message strings of u and υ, respectively
(this is a simplifying assumption stating that when an agent is ready to interact
its head is over the last # symbol, just before the message tape),

• C ′(u) = (γ1(q(C(u)), q(C(υ))), l(C(u)), r(C(υ)), 1),
• C ′(υ) = (γ2(q(C(u)), q(C(υ))), l(C(υ)), r(C(u)), 1), and
• C ′(w) = C(w), ∀w ∈ V − {u, υ}.
Case 2:

• f (C(u)) = 1 or f (C(υ)) = 1, which means that at least one agent between u
and υ is working internally under the population configuration C , and

• C ′(w) = C(w), ∀w ∈ V . In this case no effective interaction takes place, thus
the population configuration remains the same.

Generally, we say that C yields (or can go in one step to) C ′, and write C → C ′,
if C

e→ C ′ for some e ∈ E (via encounter) or C
u→ C ′ for some u ∈ V (via

agent transition), or both. We say that C ′ is reachable from C , and write C
∗→ C ′

if there is a sequence of population configurations C = C0,C1, . . . ,Ct = C ′ such
that Ci → Ci+1 holds for all i ∈ {0, 1, . . . , t −1}. An execution is a finite or infinite
sequence of population configurations C0,C1 . . . , so that Ci → Ci+1. An infinite
execution is fair if for all population configurations C , C ′ such that C → C ′, if C
appears infinitely often then so does C ′. A computation is an infinite fair execution.

Note that the PALOMA model preserves uniformity, because X , Γ , and Q are
all finite sets whose cardinality is independent of the population size. Thus, protocol
descriptions have also no dependence on the population size. Moreover, PALOMA
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protocols are anonymous, since initially all agents are identical and have no unique
identifiers.

Example 7 We present now a PALOMA protocol that stably computes the predicate
(Nc = Na ·Nb) (on the complete communication graph of n nodes) that is, all agents
eventually decide whether the number of cs in the input assignment is the product
of the number of as and the number of bs. We give a high-level description of the
protocol.

Initially, all agents have one of a, b, and c written on the first cell of their working
memory (according to their sensed value). That is, the set of input strings is X =
Σ = {a, b, c}. Each agent that receives input a goes to state a and becomes ready
for interaction (sets its working flag to 0). Agents both in state a and b do nothing
when interacting with agents in state a and agents in state b. An agent in c initially
creates in its working memory three binary counters, the a-counter that counts the
number of as, the b-counter, and the c-counter, initializes the a and b counters to 0,
the c-counter to 1, and becomes ready. When an agent in state a interacts with an
agent in state c, a becomes ā to indicate that the agent is now sleeping, and c does the
following (in fact, we assume that c goes to a special state ca in which it knows that
it has seen an a, and that all the following are done internally, after the interaction;
finally the agent restores its state to c and becomes again ready for interaction): it
increases its a-counter by one (in binary), multiplies its a- and b-counters, which
can be done in binary in logarithmic space (binary multiplication is in LOGSPACE),
compares the result with the c-counter, copies the result of the comparison to its
output tape, that is, 1 if they are equal and 0 otherwise, and finally it copies the
comparison result and its three counters to the message tape and becomes ready
for interaction. Similar things happen when a b meets a c (interchange the roles of
a and b in the above discussion). When a c meets a c, the responder becomes c̄
and copies to its output tape the output bit contained in the initiator’s message. The
initiator remains to c, adds the a-counter contained in the responder’s message to its
a-counter, the b- and c-counters of the message to its b- and c-counters, respectively,
multiplies again the updated a- and b-counters, compares the result to its updated
c-counter, stores the comparison result to its output and message tapes, copies its
counters to its message tape, and becomes ready again. When a ā, b̄, or c̄ meets a
c they only copy to their output tape the output bit contained in c’s message and
become ready again (e.g., ā remains ā), while c does nothing.

Note that the number of cs is at most n which means that the c-counter will
become at most �log n� bits long, and the same holds for the a- and b-counters, so
there is enough room in the tape of an agent to store them.

Given a fair execution, eventually only one agent in state c will remain, its a-
counter will contain the total number of as, its b-counter the total number of bs,
and its c-counter the total number of cs. By executing the multiplication of the a-
and b-counters and comparing the result to its c-counter it will correctly determine
whether (Nc = Na ·Nb) holds and it will store the correct result (0 or 1) to its output
and message tapes. At that point all other agents will be in one of the states ā, b̄,
and c̄. All these, again due to fairness, will eventually meet the unique agent in state
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c and copy its correct output bit (which they will find in the message they get from
c) to their output tapes. Thus, eventually all agents will output the correct value of
the predicate. �
Exercise 14 Prove that the basic PALOMA model is strictly stronger than the basic
population protocol model, without exploiting the predicate (Nc = Na · Nb).
Hint: Find another non semilinear predicate that is (stably) computable by the basic
PALOMA model. Do not forget to show first that the basic PALOMA model is at
least as strong as the basic population protocol model.

Definition 15 Let PLM denote the class of all symmetric predicates p that are stably
computable by the basic PALOMA model.

Then, one can prove the following exact characterization for PLM [14]. Unfortu-
nately, this proof is also quite involved and due to space restrictions we skip it.

Theorem 7 PLM is equal to the class of all symmetric predicates in
NSPACE(n log n).

5.7 Algorithmic Verification of Population Protocols

In order to apply our protocols to real-critical application scenarios, some form of
computer-aided verification is necessary. Even if a protocol is followed by a formal
proof of correctness it would be safer to verify its code before loading it to the real
sensor nodes.

It seems that the easiest (but not easy) place to start the investigation of veri-
fication is the basic population protocol model. In this model we can exploit the
fact that symmetry allows a configuration to be safely represented as a |Q|-vector
of non-negative integers. This section, based on [13], will reveal the inherent hard-
ness of algorithmic verification of basic population protocols but will also present a
promising algorithmic solution.

Section 5.7.1 provides all necessary definitions. Section 5.7.2 deals with the hard-
ness of algorithmic verification of basic population protocols; the general problem
and many of its special cases are proved to be hard. Section 5.7.3 studies an effi-
ciently solvable, but though almost trivial, special case. Finally, Sect. 5.7.4 presents
some non complete and one complete algorithmic solution.

5.7.1 Necessary Definitions

5.7.1.1 Population Protocols

We begin by revising all relevant definitions concerning the basic population pro-
tocol model, most of which are now presented in an alternative manner, because
throughout this section we will exploit the fact that symmetry allows a configuration
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to be represented as a |Q|-vector of nonnegative integers, and there is no need now
to use a function for this purpose.

In this section, the transition function δ is also treated as a relation Δ ⊆ Q4,
defined as (qi , q j , ql , qt ) ∈ Δ iff δ(qi , q j ) = (ql , qt ). We assume that the commu-
nication graph is a complete digraph, without self-loops and multiple edges (that
is, we deal with the basic model). We denote by Gk the complete communication
graph of k nodes.

Let now k ≡ |V | denote the population size. An input assignment x is a mapping
from V = [k] to X (where [l], for l ∈ ZZ≥1, denotes the set {1, . . . , l}), assigning an
input symbol to each agent of the population. As already mentioned in Sect. 5.2.2,
since the communication graph is complete, due to symmetry, we can, equivalently,
think of an input assignment as a |X |-vector of integers x = (xi )i∈[|X |], where, for
all i , xi is nonnegative and equal to the number of agents that receive the symbol
σi ∈ X , assuming an ordering on the input symbols. We denote by X the set of all
possible input assignments. Note that for all x ∈ X it holds that

∑|X |
i=1 xi = k.

A state q ∈ Q is called initial if I (σ ) = q for some σ ∈ X . A configuration
c is a mapping from [k] to Q, so, again, it is a |Q|-vector of non-negative integers
c = (ci )i∈[|Q|] such that

∑|Q|
i=1 ci = k holds. Each input assignment corresponds

to an initial configuration which is indicated by the input function I . In particular,
input assignment x corresponds to the initial configuration c(x) = (ci (x))i∈[|Q|],
where ci (x) is equal to the number of agents that get some input symbols σ j for
which I (σ j ) = qi (qi is the i th state in Q if we assume the existence of an ordering
on the set of states Q). More formally, ci (x) = ∑

j :I (σ j )=qi
x j for all i ∈ [|Q|].

By extending I to a mapping from input assignments to configurations we can
write I (x) = c to denote that c is the initial configuration corresponding to input

assignment x . Let C =
{
(ci )i∈[|Q|] | ci ∈ ZZ+ and

∑|Q|
i=1 ci = k

}
denote the set of

all possible configurations given the population protocol A and Gk . Moreover, let
CI = {c ∈ C | I (x) = c for some x ∈ X } denote the set of all possible initial
configurations. Any r ∈ Δ has four components which are elements from Q and we
denote by ri , where i ∈ [4], the i th component (i.e., state) of r . r ∈ Q4 belongs to
Δ iff δ(r1, r2) = (r3, r4). We say that a configuration c can go in one step to c′ via
transition r ∈ Δ, and write c

r→ c′, if

• ci ≥ r1,2(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2},
• c′i = ci − r1,2(i)+ r3,4(i), for all i ∈ [|Q|] for which qi ∈ {r1, r2, r3, r4}, and
• c′j = c j , for all j ∈ [|Q|] for which q j ∈ Q − {r1, r2, r3, r4},
where rl,t (i) denotes the number of times state qi appears in (rl , rt ). Moreover,
we say that a configuration c can go in one step to a configuration c′, and write
c → c′ if c

r→ c′ for some r ∈ Δ. We say that a configuration c′ is reachable

from a configuration c, denoted c
∗→ c′ if there is a sequence of configurations

c = c0, c1, . . . , ct = c′, such that ci → ci+1 for all i , 0 ≤ i < t , where ci

denotes here the (i + 1)th configuration of an execution (and not the i th component
of configuration c which is denoted ci ). An execution is a finite or infinite sequence
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of configurations c0, c1, . . ., so that ci → ci+1. An execution is fair if for all con-
figurations c, c′ such that c → c′, if c appears infinitely often then so does c′. A
computation is an infinite fair execution. A predicate p is said to be stably com-
putable by a PP A if, for any input assignment x , any computation of A contains
an output-stable configuration in which all agents output p(x). A configuration c
is called output-stable if O(c) = O(c′), for all c′ reachable from c (where O ,
here, is an extended version of the output function from configurations to output
assignments in Y k). We denote by CF = {c ∈ C | c → c′ ⇒ c′ = c} the set of
all final configurations. We can further extend the output function O to a mapping
from configurations to {−1, 0, 1}, defined as

O(c) =
⎧
⎨

⎩

0, if O(c(u)) = 0, for all u ∈ V
1, if O(c(u)) = 1, for all u ∈ V

−1, if ∃u, υ ∈ V s.t. O(c(u)) �= O(c(υ)).

It is known [2, 6] that a predicate is stably computable by the PP model iff it can
be defined as a first-order logical formula in Presburger arithmetic. Let φ be such a
formula. There exists some PP that stably computes φ, thus φ constitutes, in fact, the
specifications of that protocol. For example, consider the formula φ = (Na ≥ 2Nb).
φ partitions the set of all input assignments, X , to those input assignments that
satisfy the predicate (that is, the number of as assigned is at least two times the
number of bs assigned) and to those that do not. Moreover, φ can be further extended
to a mapping from CI to {−1, 0, 1}. In this case, φ is defined as

φ(c) =
⎧
⎨

⎩

0, if φ(x) = 0, for all x ∈ I−1(c)
1, if φ(x) = 1, for all x ∈ I−1(c)

−1, if ∃x, x ′ ∈ I−1(c) s.t. φ(x) �= φ(x ′),

where I−1(c) denotes the set of all x ∈ X for which I (x) = c holds (the preimage
of c).

We now define the transition graph, which is similar to that defined in [2],
except for the fact that it here contains only those configurations that are reach-
able from some initial configuration in CI . Specifically, given a population protocol
A and an integer k ≥ 2 we can define the transition graph of the pair (A, k) as

GA,k = (Cr , Er ), where the node set Cr = CI ∪{c ∈ C | c′ ∗→ c for some c′ ∈ CI }
of Gr (we use Gr as a shorthand of GA,k) is the subset of C containing all initial
configurations and all configurations that are reachable from some initial one, and
the edge (or arc) set Er = {(c, c′) | c, c′ ∈ Cr and c → c′} of Gr contains a
directed edge (c, c′) for any two (not necessarily distinct) configurations c and c′
of Cr for which it holds that c can go in one step to c′. Note that Gr is a directed
(weakly) connected graph with possible self-loops. It was shown in [2] that given
a computation �, the configurations that appear infinitely often in � form a final
strongly connected component of Gr . We denote by S the collection of all strongly
connected components of Gr . Note that each B ∈ S is simply a set of configurations.
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Moreover, given B, B ′ ∈ S we say that the B can go in one step to B ′, and write

B → B ′, if c → c′ for c ∈ B and c′ ∈ B ′. B
∗→ B ′ is defined as in the case of

configurations. We denote by IS = {B ∈ S | such that B ∩ CI �= ∅} those compo-
nents that contain at least one initial configuration, and by FS = {B ∈ S | such that
B → B ′ ⇒ B ′ = B} the final ones. We can now extend φ to a mapping from IS to
{−1, 0, 1} defined as

φ(B) =
⎧
⎨

⎩

0, if φ(c) = 0, for all c ∈ B ∩ CI

1, if φ(c) = 1, for all c ∈ B ∩ CI

−1, if ∃c, c′ ∈ B ∩ CI s.t. φ(c) �= φ(c′),

and O to a mapping from FS to {−1, 0, 1} defined as

O(B) =
⎧
⎨

⎩

0, if O(c) = 0, for all c ∈ B
1, if O(c) = 1, for all c ∈ B

−1, otherwise.

5.7.1.2 Problems’ Definitions

We begin by defining the most interesting and natural version of the problem of algo-
rithmically verifying basic population protocols. We call it GBPVER (“G” stand-
ing for “General’, “B” for “Basic”, and “P” for “Predicate”) and its complement
GBPVER is defined as follows:

Problem 2 (GBPVER) Given a population protocol A for the basic model whose
output alphabet YA is binary (i.e., YA = {0, 1}) and a first-order logical formula
φ in Presburger arithmetic representing the specifications of A, determine whether
there exists some integer k ≥ 2 and some legal input assignment x for the complete
communication graph of k nodes, Gk , for which not all computations of A on Gk

beginning from the initial configuration corresponding to x stabilize to the correct
output w.r.t. φ.

A special case of GBPVER is BPVER (its nongeneral version as revealed by the
missing “G”), and is defined as follows.

Problem 3 (BPVER) Given a population protocol A for the basic model whose out-
put alphabet YA is binary (i.e., YA = {0, 1}), a first-order logical formula φ in
Presburger arithmetic representing the specifications of A, and an integer k ≥ 2 (in
binary) determine whether A conforms to its specifications on Gk .

“Conforms to φ” here means that for any legal input assignment x , which is a
|XA|-vector with nonnegative integer entries that sum up to k, and any computation
beginning from the initial configuration corresponding to x on Gk , the population
stabilizes to a configuration in which all agents output the value φ(x) ∈ {0, 1} (that
is, it is equivalent to “stably computes”, but we now view it from the verification
perspective). On the other hand, “does not conform” means that there is at least one
computation of A on Gk which is unstable or the stable output does not agree with
φ(x)—i.e., not all agents output the value φ(x).
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Problem 4 (BBPVER) BBPVER (the additional “B” is from “Binary input alpha-
bet”) is BPVER with A’s input alphabet restricted to {0, 1}.

5.7.2 NP-Hardness Results

5.7.2.1 BP Verification

We first show that BPVER is a hard computational problem.

Theorem 8 BPVER is coNP-hard.

Proof We shall present a polynomial-time reduction from HAMPATH = {< D,
s, t > | D is a directed graph with a Hamiltonian path from s to t } to BPVER.
In other words, we will present a procedure that given an instance < D, s, t > of
HAMPATH returns in polynomial time an instance < A, φ, k > of BPVER, such
that < D, s, t >∈ HAMPATH iff < A, φ, k >∈ BPVER. If there is a hamiltonian
path from s to t in D we will return a population protocol A that for some compu-
tation on the complete graph of k nodes fails to conform to its specification φ, and
if there is no such path all computations will conform to φ.

We assume that all nodes in V (D) − {s, t} are named q1, . . . , qn−2, where n
denotes the number of nodes of D (be careful: n does not denote the size of the
population, but the number of nodes of the graph D in HAMPATH’s instance). We
now construct the protocol A = (X,Y, Q, I, O, δ). The output alphabet Y is {0, 1}
by definition. The input alphabet X is E(D) − ({(·, s)} ∪ {t, ·}), that is, consists of
all edges of D except for those leading into s and those going out of t . The set of
states Q is equal to X ∪ T ∪ {r}, where T = {(s, qi , q j , l) | 1 ≤ i, j ≤ n − 2 and
1 ≤ l ≤ n−1} and its usefulness will be explained later. r can be thought of as being
the “reject” state, since we will define it to be the only state giving the output value
0. Notice that |Q| = O(n3). The input function I : X → Q is defined as I (x) = x ,
for all x ∈ X , and for the output function O : Q → {0, 1} we have O(r) = 0 and
O(q) = 1 for all q ∈ Q − {r}. That is, all input symbols are mapped to themselves,
while all states are mapped to the output value 1, except for r which is the only state
giving 0 as output. Thinking of the transition function δ as a transition matrix Δ it
is easy to see that Δ is a |Q| × |Q| matrix whose entries are elements from Q × Q.
Each entry Δq,q ′ corresponds to the rhs of a rule (q, q ′) → (z, z′) in δ. Clearly, Δ
consists of O(n6) entries, which is again polynomial in n.

We shall postpone for a while the definition of Δ to first define the remaining
parameters φ and k of BPVER’s instance. We define formula φ to be a trivial first-
order Presburger arithmetic logical formula that is always false. For example, in the
natural nontrivial case where X �= ∅ (that is, D has at least one edge that is not
leading into s and not going out of t) we can pick any x ∈ X and set φ = (Nx < 0)
which, for Nx denoting the number of x’s appearing in the input assignment, is
obviously always false. It is useful to notice that the only configuration that gives
the correct output w.r.t. φ is the one in which all agents are in state r . φ being always
false means that in a correct protocol all computations must stabilize to the all-zero
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output, and r is the only state giving output 0. On the other hand for A not to be
correct w.r.t. φ it suffices to show that there exists some computation in which r
cannot appear. Moreover, we set k equal to n − 1, that is, the communication graph
on which A’s correctness has to be checked by the verifier is the complete digraph
of n − 1 nodes (or, equivalently, agents).

To complete the reduction, it remains to construct the transition function δ:

• (r, ·) → (r, r) and (·, r) → (r, r) (so r is a propagating state, meaning that once
it appears it eventually becomes the state of every agent in the population)

• ((qi , q j ), (qi , q j )) → (r, r) (if two agents get the same edge of D then the pro-
tocol rejects)

• ((qi , q j ), (qi , ql))→ (r, r) (if two agents get edges of D with adjacent tails then
the protocol rejects)

• ((q j , qi ), (ql , qi )) → (r, r) (if two agents get edges of D with adjacent heads
then the protocol rejects—it also holds if one of q j and ql is s)

• ((qi , t), (q j , t)→ (r, r) (the latter also holds for the sink t)
• ((s, . . .), (s, . . .)) → (r, r) (if two agents have both s as the first component of

their states then the protocol rejects)
• ((s, qi ), (qi , q j )) → ((s, qi , q j , 2), (qi , q j )) (when s meets an agent υ that con-

tains a successor edge it keeps q j to remember the head of υ’s successor edge
and releases a-counter set to 2 - it counts the number of edges encountered so far
on the path trying to reach t from s)

• ((s, qi , q j , i), (q j , ql))→ ((s, qi , ql , i + 1), (q j , ql)), for i < n − 2
• ((s, qi , q j , i), (q j , t)) → (r, r), for i < n − 2 (the protocol rejects if s is con-

nected to t through a directed path with less than n − 1 edges)
• All the transitions not appearing above are identity rules (i.e., they do nothing)

Now we prove that the above, obviously polynomial-time, construction is in fact
the desired reduction. If D contains some hamiltonian path from s to t , then the
n − 1 edges of that path form a possible input assignment to protocol A (since its
input symbols are the edges and the population consists of n − 1 agents). When A
gets that input it cannot reject (r cannot appear) for the following reasons:

• no two agents get the same edge of D
• no two agents get edges of D with adjacent tails
• no two agents get edges of D with adjacent heads
• only one (s, . . .) exists
• s cannot count less than n − 1 edges from itself to t

So, when A gets the input alluded to above, it cannot reach state r ; thus, it cannot
reject, which implies that A for that input always stabilizes to the wrong output
w.r.t. φ (which always requires the “reject” output) when runs on the Gn−1. So,
in this case < A, φ, k > consists of a protocol A that, when runs on Gk , where
k = n − 1, for a specific input it does not conform to its specifications as described
by φ, so clearly it belongs to BPVER.

For the other direction, if< A, φ, k >∈ BPVER then obviously there exists some
computation of A on the complete graph of k = n − 1 nodes in which r does not
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appear at all (if it had appeared once then, due to fairness, the population would have
stabilized to the all-r configuration, resulting to a computation conforming to φ). It
is helpful to keep in mind that most arguments here hold because of the fairness
condition. Since r cannot appear, every agent (of the n − 1 in total) must have
been assigned a different edge of D. Moreover, no two of them contain edges with
common tails or common heads in D. Note that there is only one agent with state
(s, . . .) because if there were two of them they would have rejected when interacted
with each other, and if no (s, . . .) appeared then two agents would have edges with
common tails because there are n−1 edges for n−2 candidate initiating points (we
have not allowed t to be an initiating point) and the pigeonhole principle applies
(and by symmetric arguments only one with state (. . . , t)). So, in the induced graph
formed by the edges that have been assigned to the agents, s has outdegree 1 and
indegree 0, t has indegree 1 and outdegree 0, and all remaining nodes have indegree
at most 1 and outdegree at most 1. This implies that all nodes except for s and t
must have indegree equal to 1 and outdegree equal to 1. If, for example, some node
had indegree 0, then the total indegree could not have been n − 1 because n − 3
other nodes have indegree at most 1, t has indegree 1, and s has 0 (the same holds
for outdegrees). Additionally, there is some path initiating from s and ending to t .
This holds because the path initiating from s (s has outdegree 1) cannot fold upon
itself (this would result in a node with indegree greater than 1) and cannot end to any
other node different from t because this would result to some node other than t with
outdegree equal to 0. Finally, that path has at least n − 1 edges (in fact, precisely
n − 1 edges), since if it had less the protocol would have rejected. Thus, it must be
clear after the above discussion that in this case there must have been a hamiltonian
path from s to t in D, implying that < D, s, t >∈ HAMPATH. �

Note that in the above reduction the communication graph has only O(n) nodes
while the protocol has size O(n6). Although this is not the usual case, it is not
forbidden because this concerns only the correctness of the protocol on this specific
complete graph. The protocol remains independent of the population size; it will still
count up to n−1 while the population can have arbitrarily large size (another way to
think of this is that in the protocol description the population size is not a parameter).
The protocol may be wrong or correct for other combinations of specifications and
communication graphs but we do not care here. However, it is worth considering
the following question: “Can we also prove that the special case of BPVER in which
the protocol has always size less than the size of the communication graph (which
is the natural scenario) is coNP-hard?” Unfortunately, the answer to this question is
that we do not know yet.

5.7.2.2 BBP Verification

We now deal with the hardness of BBPVER (here, additionally, we have a binary
input alphabet).

Theorem 9 BBPVER is coNP-hard.
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Proof The reduction is again from HAMPATH to BBPVER. Let again < D, s, t >
be the instance of HAMPATH. X is equal to {0, 1} as is required by definition and
so is Y . Q is again equal to (E(D) − ({(·, s)} ∪ {t, ·})) ∪ T ∪ {q0, t ′, r}, where
T = {(s, qi , q j , l) | 1 ≤ i, j ≤ n − 2 and 1 ≤ l ≤ n − 1}. The input function I
is defined as I (0) = (s, f +(s)), where f +(s) is the first (smallest) out-neighbor of
s according to the lexicographic order of V (D) (if some node u has no neighbors
we assume that f +(u) = u), and I (1) = q0 (recall that the names that we use for
nodes are s, t, q1, . . . , qn−2 so q0 is just a special initial state). The output function
O again maps all states in Q −{r} to 1 and r to 0. φ is an always false predicate and
k is set to n − 1, where n = |V (G)|.

We now define the transition function.

• (r, ·) → (r, r) and (·, r) → (r, r) (so r is a propagating state, meaning that once
it appears it eventually becomes the state of every agent in the population)

• ((qi , q j ), (qi , q j ))→ (r, r) (if two agents have obtained the same edge of D then
the protocol rejects)

• ((qi , q j ), (qi , ql))→ (r, r) (if two agents have obtained edges of D with adjacent
tails then the protocol rejects)

• ((q j , qi ), (ql , qi ))→ (r, r) (if two agents have obtained edges of D with adjacent
heads then the protocol rejects - it also holds if one of q j and ql is s)

• (q0, q0)→ (r, r)
• ((s, . . .), (s, . . .))→ (r, r)
• (·, t), (·, t)→ (r, r)
• ((s, qi ), q0) → ((s, qi ), ( f −(t), t)) (where f −(t) denotes the first (smallest) in-

neighbor of t according to the lexicographic order; we can w.l.o.g. assume that t
has at least one incoming edge)

• ((s, qi ), (q j , t))→ ((s, h+
s (qi )), (q j , t)) (where h+

s (qi ) denotes the lexicograph-
ically smallest out-neighbor of s that is lexicographically greater than qi (that is,
the next one); note that the lexicographically greatest is matched to the lexico-
graphically smallest in a cyclic fashion)

• ((q j , t), (s, qi )) → ((h−
t (q j ), t), (s, qi )) (where h−

t (q j ) denotes the lexico-
graphically smallest in-neighbor of t that is lexicographically greater than q j )

• ((qi , q j ), (ql , t))→ ((), ())

• (q0, (s, qi )) → ((qi , f +(qi )), (s, qi )), if f +(qi ) �= qi , and (r, r), otherwise (if
f +(qi ) = qi then qi has no outgoing neighbors and the protocol rejects; f + does
not take into account the edges leading into s and t)

• ((qi , q j ), (ql , t))→ ((qi , h+
qi
(q j )), (ql , t))

• ((ql , t), (qi , q j )) → ((ql , t), (q j , f +(q j ))), if f +(q j ) �= q j , and (r, r), other-
wise

• ((s, qi ), (qi , q j )) → ((s, qi , q j , 2), (qi , q j )) (when s meets an agent υ that con-
tains a successor edge it keeps q j to remember the head of υ’s successor edge
and releases a counter set to 2—it counts the number of edges encountered so far
on the path trying to reach t from s)

• ((s, qi , q j , i), (q j , ql))→ ((s, qi , ql , i + 1), (q j , ql)), for i < n − 2



148 P.G. Spirakis

• ((s, qi , q j , i), (q j , t)) → (r, r), for i < n − 2 (the protocol rejects if s is con-
nected to t through a directed path with less than n − 1 edges)

• ((s, qi , q j , n − 2), (q j , t))→ ((s, qi , q j , n − 1), t ′)
• t ′ and q0 reject any t ′ and (·, t) that they encounter
• All the transitions not appearing above are identity rules (i.e., they do nothing)

Given a hamiltonian path s, u1, . . . , un−2, t of D we present an erroneous com-
putation of A on the complete digraph of k = n − 1 nodes w.r.t. φ (that is, a
computation in which state r does not appear). A possible input assignment is
the 2-vector (1, n − 2) in which one agent gets input 0 and (n − 2) agents get
input 1. So, the initial configuration corresponding to this input has one agent in
(s, f +(s)) and all the other agents in q0. The agent in (s, f +(s)) now interacts as
the initiator with some agent and ( f −(t), t) appears. Now we have one agent in
(s, f +(s)), one in ( f −(t), t), and all the remaining in q0. If f +(s) is not equal
to u1 (the second node in the hamiltonian path) we assume that (s, f +(s)) is the
initiator of as many interactions with ( f −(t), t) as needed to make (s, f +(s)) go to
(s, u1). Similarly, with ( f −(t), t) being the initiator we make it interact a sufficient
number of times with (s, u1) so that it becomes (un−2, t). Now one agent contains
(s, u1), which is the first edge of the hamiltonian path, one agent contains (un−2, t)
which is the last edge of the hamiltonian path, and all remaining agents are in q0.
Now interaction (q0, (s, u1)) takes place and the result is ((u1, f +(u1)), (s, u1)),
where f +(u1) is the lexicographically first out-neighbor of u1, which is possibly
not u2. If it is not, then we let the agent which is in (u1, f +(u1)) repeatedly inter-
act as the initiator with (un−2, t), until its state becomes (u1, u2) (e.g., during the
first interaction (u1, f +(u1)) becomes (u1, h+

u1
( f +(u1))), where h+

u1
(u) denotes the

out-neighbor of u1 lexicographically following u). As soon as this happens, (s, u1)

interacts with another agent in q0 which again updates its state to (u1, f +(u1)).
Again (u1, f +(u1)) interacts as the initiator with (un−2, t) as many times as needed
to make its state (u1, u2) and then it interacts once as the responder with (un−2, t)
to change its state to (u2, f +(u2)). Even if f +(u2) does not happen to be u3 we can
force it to be by subsequent interactions with (un−2, t) (with the latter now being
the responder). In this manner we can easily make each agent in the population
contain a different edge of the hamiltonian path. Moreover, notice that we have
not allowed any interaction that leads to failure (i.e., that makes state r appear)
happen. Now (s, u1) meets (u1, u2) and the former becomes (s, u1, u2, 2). Then
it meets (u2, u3) and becomes (s, u1, u3, 3), and so on, and, finally, when it has
become (s, u1, un−2, n − 2) it meets (un−2, t) and after that interaction the former
becomes (s, u1, un−2, n − 1) and the latter t ′. It is easy now to observe that from
this point on there is no possible interaction that could make r appear and thus we
have just presented an erroneous computation (all agents forever output the value 1,
but φ requires that any computation stabilizes to the all-zero output). The convincing
argument that it is a computation (i.e., a fair execution) is that we keep the execution
unfair only for a finite number of steps, which does not violate the fairness condition.

For the inverse, let us assume that there exists some computation of A on the
complete digraph of k = n − 1 nodes in which r never appears. Clearly, only
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one (s, . . .) ever appears (if there were two of them they would eventually meet
and reject, because once s appears as the first component of some state it cannot
be eliminated, and if there was none the population would solely consist of q0,
which would eventually meet and reject). Similarly, only one t ever appears (since,
once they appear, even if they ever become t ′, they cannot be eliminated and will
eventually meet each other and reject). Note also that after a finite number of steps
all agents must have obtained some edge (if some agent remains forever in q0 then
it eventually meets (·, t) or t ′ and rejects). Moreover, t ′ must have appeared for
the following reason: if not, then (·, t) would forever change the agents’ edges,
so due to fairness two agents would, in a finite number of steps, obtain the same
edge, interact with each other, and reject. But since the protocol cannot reject (in
the computation under consideration), s must have counted to n − 2 before meeting
t , and by repeating some of the arguments used in the proof of Theorem 8 one can
again show that any node in the induced graph (constructed by the edges contained
in the agents) has indegree equal to 1 and outdegree equal to 1, which implies that
there must exist some hamiltonian path from s to t in D. Clearly, this completes the
proof. �

Notice now that Theorem 9 constitutes an immediate alternative proof for Theo-
rem 8. To see this, observe that any protocol with binary input is also a protocol with
general input. Thus, in the case where A has a binary input alphabet, < A, φ, k >∈
BBPVER is a sufficient and necessary condition for < A, φ, k >∈ BPVER, which
establishes BBPVER ≤p BPVER.

5.7.2.3 BPVER′ and BBPVER′

Let us denote by BPVER′ the special case of BPVER in which the protocol size is
at least the size k of the communication graph, and similarly for BBPVER′. Clearly,
the proofs of Theorems 8 and 9 establish that both problems are coNP-hard.

5.7.2.4 GBP Verification

We now study the hardness of GBPVER.

Theorem 10 GBPVER is coNP-hard.

Proof We will prove the statement by presenting a polynomial-time reduction from
BPVER′ to GBPVER. Every time that we get an instance < A, φ, k > of BPVER′
(where A is a population protocol for which | < A > | ≥ k holds), if A has a
computation on Gk that does not stabilize to the correct output w.r.t. φ then we will
return a population protocol A′ and a formula φ′ such that there exists some k′ for
which A′ has a computation on Gk′ that does not stabilize to the correct output w.r.t.
φ′. On the other hand, if A has no such erroneous computation on Gk , A′ will also
have no erroneous computation (w.r.t. φ′) for any complete communication graph
(of any size greater than or equal to 2). Moreover, we will achieve that in polynomial
time.
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Keep in mind that the input to the machine computing the reduction is <

A, φ, k >. Let XA be the input alphabet of A. Clearly, φ′′ = ¬(∑x∈XA Nx = k) is
a semilinear predicate if k is treated as a constant (Nx denotes the number of agents
with input x). Thus, there exists a population protocol A′′ for the basic model that
stably computes φ′′. The population protocol A′′ can be constructed efficiently. Its
input alphabet XA′′ is equal to XA. The construction of the protocol can be found in
[2] (in fact they present there a more general protocol for any linear combination of
variables corresponding to a semilinear predicate). When the number of nodes of the
communication graph is equal to k, A′′ always stabilizes to the all-zero output (all
agents output the value 0) and when it is not equal to k, then A′′ always stabilizes to
the all-one output.

We want to construct an instance < A′, φ′ > of GBPVER. We set φ′ = φ ∨ φ′′.
Moreover, A′ is constructed to be the composition of A and A′′. Obviously, QA′ =
QA × QA′′ . We define its output to be the union of its components’ outputs, that is,
O(qA, qA′′) = 1 iff at least one of O(qA) and O(qA′′) is equal to 1. It is easy to
see that the above reduction can be computed in polynomial time.

We first prove that if < A, φ, k >∈ BPVER′ then < A′, φ′ >∈ GBPVER.
When A′ runs on the complete graph of k nodes, the components of its states cor-
responding to A′′ stabilize to the all-zero output, independently of the initial con-
figuration. Clearly, A′ in this case outputs whatever A outputs. Moreover, for this
communication graph, φ′ is true iff φ is true (because φ′′ = ¬(∑x∈XA Nx = k)
is false, and φ′ = φ ∨ φ′′). But there exists some input for which A does not
give the correct output with respect to φ (e.g., φ is true for some input but A
for some computation does not stabilize to the all-one output). Since φ′ expects
the same output as φ and A′ gives the same output as A we conclude that there
exists some erroneous computation of A′ w.r.t. φ′, and the first direction has been
proven.

Now, for the other direction, assume that < A′, φ′ >∈ GBPVER. For any com-
munication graph having a number of nodes not equal to k, φ′ is true and A′ always
stabilizes to the all-one output because of the A′′ component. This means that the
erroneous computation of A′ happens on the Gk . But for that graph, φ′′ is always
false and A′′ always stabilizes its corresponding component to the all-zero output.
Now φ′ is true iff φ is true and A′ outputs whatever A outputs. But there exists
some input and a computation for which A′ does not stabilize to a configuration in
which all agents give the output value that φ′ requires which implies that A does not
stabilize to a configuration in which all agents give the output value required by φ.
Since the latter holds for Gk , the theorem follows. �

5.7.2.5 BBPI Verification

To show the inherent difficulty of the population protocol verification problem we
consider an even simpler special case, namely, the B B P I V E R problem (“I” stand-
ing for “Input”, because an input assignment is additionally provided as part of the
algorithm’s input) that is defined as follows:
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Problem 5 (BBPIVER) Given a population protocol A for the basic model whose
input and output alphabets are binary (i.e., XA = YA = {0, 1}), a two-variable
first-order logical formula φ in Presburger arithmetic representing the specifications
of A, and an input (assignment) x = (x0, x1), where x0 and x1 are nonnegative
integers, determine whether A conforms to its specifications for the complete
digraph of k = x0 + x1 nodes whenever its computation begins from the initial
configuration corresponding to x .

Let BBPIVER′ denote the special case of BBPIVER in which | < A > | ≥ k.

Theorem 11 BBPIVER′ and BBPIVER are coNP-hard.

Proof The reduction is from HAMPATH to BBPIVER′, which proves that both
BBPIVER and BBPIVER′ are coNP-hard. In fact, the reduction is the same as in
Theorem 9, but here, together with the protocol (as described in the proof of The-
orem 9) and the always false specifications, we also return the input assignment
x = (1, n − 2) and do not return the integer k = n − 1. By looking carefully at
the reduction of Theorem 9 it will not be difficult to see that if G has the desired
hamiltonian path, then the protocol returned has an erroneous computation when
beginning from input x , and if G does not have the desired hamiltonian path, then,
for any input (x inclusive), the protocol is correct w.r.t. its specifications. �

5.7.2.6 Alternative Proof of Theorem 9

We have now arrived to an alternative proof that BBPVER is NP-hard. The reduction
is from BBPIVER′ to B B PV E R. Given an instance < A, φ, x = (x0, x1) > of the
former we do as follows (keep in mind that we return an instance of the latter of the
form < A′, φ′, k >). We set k = x0 + x1, φ′ = φ∨¬((N0 = x0)∧ (N1 = x1)), and
A′ is the union (w.r.t. the output functions) composition of A and A′′ (as in Theorem
10), where A′′ is a population protocol for the basic model that stably computes the
predicate ¬((N0 = x0) ∧ (N1 = x1)). It is now easy to see (similarly to Theorem
10) that the reduction is correct and can be performed in polynomial time.

5.7.3 An Efficiently Solvable Special Case

We are now seeking for efficiently solvable special cases of the general GBPVER
problem. A population protocol A is called binary if its input alphabet, its output
alphabet, and its set of states are all equal to {0, 1}. We consider now one of the most
trivial cases, which is the ALLBVER problem: We are given a binary population
protocol A for the basic model and a formula φ representing its specifications. We
want again to determine whether A is always correct w.r.t. φ.

The first question that arises is what can φ be in this case. So we have to find
out first what is stably computable in this simplified model. If the output function of
A is defined as O(0) = O(1) = y, where y ∈ {0, 1}, then any configuration of A
on any communication graph gives the all-y output. For example, if y = 0 then all
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configurations correspond to the all-zero output, and if y = 1 then all configurations
correspond to the all-one output. So we have just shown that the trivial predicates
(those that are always true or always false) are stably computable. To seek for non-
trivial stably computable predicates we have to agree that O(0) = 0 and O(1) = 1
(this is w.l.o.g. since the case O(0) = 1 and O(1) = 0 is symmetric). Moreover, we
agree that (0, 0) → (0, 0) and (1, 1) → (1, 1) in the transition function δ. To see
this, notice that a nontrivial predicate is true for some inputs and false for others.
This means that a protocol for the predicate must be able to stabilize to both the
all-zero and the all-one output, and this cannot hold in the absence of the above
rules.

Now what about the input function I ? Clearly, if I (0) = I (1) = q then the initial
configuration is always the all-q configuration (all agents are in state q). For exam-
ple, if q = 0 then the initial configuration is for any input the all-zero configuration.
But because of the rules (0, 0) → (0, 0) and (1, 1) → (1, 1) the population can
never escape from its initial configuration, and this case again corresponds to trivial
predicates. So, we again agree w.l.o.g. that I (0) = 0 and I (1) = 1.

It suffices to check the predicates that are stably computable by different combi-
nations of right hand sides for the left hand sides (0, 1) and (1, 0) in δ. There are
only 42 such combinations so our job is easy. We have the following cases:

• Both δ(0, 1) and δ(1, 0) do not belong to {(0, 0), (1, 1)}. Assume that an input
assignment contains one 1 and all other agents get 0. In this case no interaction
can increase or decrease the number of 1s so the population forever remains to
an unstable configuration (not all agents agree on their output value). So there is
no additional stably computable predicate from this case.

• Only one of δ(0, 1) and δ(1, 0) belongs to {(0, 0), (1, 1)}. If one of them is (0, 0)
then (since the other offers nothing) if there is at least one 0 in the initial con-
figuration (which is identical to the input assignment, because I (0) = 0 and
I (1) = 1) the protocol rejects, whereas if all inputs are 1 the protocol accepts. We
can call this the AND protocol corresponding to the stably computable predicate
¬(N0 ≥ 1). Similarly, if one of them is (0, 0) then we have one form of the OR
protocol (see e.g., [16]) and the stably computable predicate corresponding to it
is (N1 ≥ 1).

• Both δ(0, 1) and δ(1, 0) belong to {(0, 0), (1, 1)} and δ(0, 1) �= δ(1, 0). In this
case the protocol is unstable. Imagine an initial configuration with exactly one
1 (all other agents get 0) and say that δ(0, 1) = (0, 0) and δ(1, 0) = (1, 1). If
the unique 1 interacts as the initiator with all other agents in state 0 (one after
the other), the protocol in each step replaces a 0 with a 1 and in N0 steps the
population stabilizes to the all-one output. One the other hand if 1 had interacted
as the responder with all other agents in the same way as before, then the popu-
lation would have stabilized to that all-zero output and the protocol is obviously
unstable.

• Both δ(0, 1) and δ(1, 0) belong to {(0, 0), (1, 1)} and δ(0, 1) = δ(1, 0). It is easy
to see that again we get alternative versions of the OR protocol and the AND



5 Population Protocols and Related Models 153

protocol, thus the stably computable predicates resulting from this (last) case are
again ¬(N0 ≥ 1) and (N1 ≥ 1).

So we have arrived to a complete characterization of the class of stably com-
putable predicates for the binary basic population protocol model. They are the
predicates: always-true, always-false, ¬(N0 ≥ 1), and (N1 ≥ 1).

So we require the specifications φ, in the ALLBVER problem, to be a stably
computable predicate of the binary basic population protocol model, i.e. one of
always-true, always-false, ¬(N0 ≥ 1), and (N1 ≥ 1). Obviously, if a binary protocol
A errs on G2 (the complete graph of 2 nodes) w.r.t. φ then it errs in general. But
we can also prove that if it errs on some Gk where k > 2 then it must err also on
G2 (an easy way to get convinced is to check the statement for all possible classes
of protocols as outlined above). This indicates an obvious constant-time algorithm:
The transition graph consists of three configurations. For every possible initial con-
figuration find all the final strongly connected components that are reachable from
it. If all configurations of those components give the correct output w.r.t. φ and this
holds for all possible initial configurations, then < A, φ > belongs to ALLBVER;
otherwise < A, φ >/∈ ALLBVER.

5.7.4 Algorithmic Solutions for BPVER

Since Theorem 8 established the coNP-hardness of BPVER (Problem 3), our only
hope is to devise always-correct algorithms whose worst-case running-time will not
be bounded by a polynomial in the size of the input, or algorithms that are not always
correct, but are, in fact, correct most of the time (the notion of “approximation”
seems to be irrelevant here). Before proceeding, we strongly suggest that the reader
carefully revises the definitions from Sect. 5.7.1.

Our algorithms are search algorithms on the transition graph Gr . The general
idea is that a protocol A does not conform to its specifications φ on k agents if one
of the following criteria is satisfied:

1. φ(c) = −1 for some c ∈ CI .
2. ∃c, c′ ∈ CI such that c

∗→ c′ and φ(c) �= φ(c′).
3. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and O(c′) = −1.
4. ∃c ∈ CI and c′ ∈ CF such that c

∗→ c′ and φ(c) �= O(c′).
5. ∃B ′ ∈ FS such that O(B ′) = −1.
6. ∃B ∈ IS and B ′ ∈ FS such that B

∗→ B ′ and φ(B) �= O(B ′) (possibly B = B ′).

Note that any algorithm that correctly checks some of the above criteria is a
possibly noncomplete verifier. Such a verifier guarantees that it can discover an
error of a specific kind; thus, we can always trust its “reject” answer (the protocol
has some error of this kind). On the other hand, an “accept” answer is a weaker
guarantee, in the sense that it only informs that the protocol does not have some
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error of this specific kind. Of course, it is possible that the protocol has other errors,
violating criteria that are undetectable by this verifier. However, this is a first sign of
BPVER’s parallelizability.

Theorem 12 Any algorithm that checks criteria 1, 5, and 6 decides BPVER.

Exercise 15 Prove Theorem 12.

5.7.4.1 Constructing the Transition Graph

Let FindCI (A, k) be a function that, given a PP A and an integer k ≥ 2, returns the
set CI of all initial configurations. This is not so hard to be implemented. FindCI

simply iterates over the set of all input assignments X and for each x ∈ X com-
putes I (x) and puts it in CI . Alternatively, computing CI is equivalent to finding all
distributions of indistinguishable objects (agents) into distinguishable slots (initial
states), and, thus, Fenichel’s algorithm [24] can be used for this purpose.

Algorithm 1 ConGr

Input: PP A and integer k ≥ 2.
Output: The transition graph Gr .

1: CI ←FindCI (A, k)
2: Cr ← ∅
3: Er ← ∅
4: while CI �= ∅ do
5: Pick a c ∈ CI , CI ← CI − {c}
6: Cr ← Cr ∪ {c}
7: for all r ∈ Δ for which ci ≥ r1,2(i) and all i ∈ [|Q|] for which qi ∈ {r1, r2} do

8: Compute the unique configuration c′ for which c
r→ c′.

9: if c′ /∈ Cr then
10: CI ← CI ∪ {c′}
11: end if
12: Er ← Er ∪ (c, c′)
13: end for
14: end while
15: return (Cr , Er )

The transition graph Gr can be constructed by the procedure ConGr (Algo-
rithm 1), that takes as input a population protocol A and the population size k,
and returns the transition graph Gr . The order in which configurations are put in
and picked out of CI determines whether BFS or DFS is used.

5.7.4.2 Noncomplete Verifiers

Now, that we know how to construct the transition graph, we can begin constructing
some noncomplete verifiers (which are the easiest). In particular, we present two
verifiers, SinkBFS and SinkDFS, that check all criteria but the last two. Both are
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presented via procedure SinkVER (Algorithm 2) and the order in which configura-
tions of Gr are visited determines again whether BFS or DFS is used.

5.7.4.3 SolveBPVER: A Complete Verifier

We now construct the procedure SolveBPVER (Algorithm 3) that checks criteria 1,
5, and 6 (and also 2 for some speedup) presented in the beginning of Sect. 5.7.4,
and, thus, according to Theorem 12, it correctly solves BPVER (i.e., it is a complete
verifier for basic population protocols, when the population size is provided as part
of the input). In particular, SolveBPVER takes as input a PP A, its specifications φ
and an integer k ≥ 2, as outlined in the BPVER problem description, and returns
“accept” if the protocol is correct w.r.t. its specifications on Gk and “reject” other-
wise.

Algorithm 2 SinkVER
Require: A population protocol A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if A is correct w.r.t. its specifications and the criteria 1,2,3, and 4 on Gk and

REJECT otherwise.

1: CI ←FindCI (A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT // Criterion 1 satisfied
4: end if
5: Gr ← ConGr (A, k)
6: for all c ∈ CI do
7: Collect all c′ reachable from c in Gr by BFS or DFS.
8: while searching do
9: if one c′ is found such that c′ ∈ CF and (O(c′) = −1 or φ(c) �= O(c′)) then

10: return REJECT // Criterion 3 or 4 satisfied
11: end if
12: if one c′ is found such that c′ ∈ CI and φ(c) �= φ(c′) then
13: return REJECT // Criterion 2 satisfied
14: end if
15: end while
16: end for
17: return ACCEPT // Tests for criteria 1,2,3, and 4 passed

The algorithmic idea is based on the use of Tarjan’s [36] or Cheriyan–Mehlhorn’s
and Gabow’s [20, 25] (or any other) algorithm for finding the strongly connected
components of Gr . In this manner, we obtain a collection S, where each B ∈ S
is a strongly connected component of Gr , that is, B ⊆ Cr . Given S we can easily
compress Gr w.r.t. its strongly connected components as follows. The compression
of Gr is a dag D = (S, A), where (B, B ′) ∈ A if and only if there exist c ∈ B and
c′ ∈ B ′ such that c → c′ (that is, iff B → B ′). In words, the node set of D consists
of the strongly connected components of Gr and there is a directed edge between
two components of D if a configuration of the second component is reachable in
one step from a configuration in the first one.
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Algorithm 3 SolveBPVER
Require: A population protocol A, a Presburger arithmetic formula φ, and an integer k ≥ 2.
Output: ACCEPT if the protocol is correct w.r.t. its specifications on Gk and REJECT otherwise.

1: CI ←FindCI (A, k)
2: if there exists c ∈ CI such that φ(c) = −1 then
3: return REJECT
4: end if
5: Gr ← ConGr (A, k)
6: Run one of Tarjan’s or Gabow’s algorithms to compute the collection S of all strongly con-

nected components of the transition graph Gr .
7: Compute the dag D = (S, A), where (B, B ′) ∈ A (where B �= B ′) if and only if B → B ′.
8: Compute the collection IS ⊆ S of all connected components B ∈ S that contain some initial

configuration c ∈ CI and the collection FS ⊆ S of all connected components B ∈ S that have
no outgoing edges in A, that is, all final strongly connected components of Gr .

9: for all B ∈ FS do
10: if O(B) = −1 then
11: return REJECT
12: end if
13: // Otherwise, all configurations c ∈ B output the same value O(B) ∈ {0, 1}.
14: end for
15: for all B ∈ IS do
16: if there exist initial configurations c, c′ ∈ B such that φ(c) �= φ(c′) then
17: return REJECT
18: else
19: // all initial configurations c ∈ B expect the same output φ(B) ∈ {0, 1}.
20: Run BFS or DFS from B in D and collect all B ′ ∈ FS s.t. B

∗→ B ′ (possibly
including B itself).

21: if there exists some reachable B ′ ∈ FS for which O(B ′) �= φ(B) then
22: return REJECT
23: end if
24: end if
25: end for
26: return ACCEPT

5.8 Open Problems

The following are some open problems for the interested reader:

• What is the computational power of the variation of the population protocol
model in which the agents interact in groups of k > 2 agents and not in pairs?

• Recent (unpublished for the time being) research shows that SPACE(n) (that is,
LINSPACE) is a lower bound for the class of symmetric predicates that are sta-
bly computable by the basic MPP model, which may be possibly improved to
NSPACE(n) by exploiting the nondeterminism inherent in the interaction pattern.
On the other hand, as mentioned in Sect. 5.3, the best known upper bound is
NSPACE(m), and, since we are dealing with complete communication graphs,
it holds that m = O(n2), which, clearly, leaves a huge gap between the two
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bounds. It is possible that NSPACE(n log n) is a better upper bound. But we do
not expect this to be easy, because it would require to prove that we can encode
the O(n2) sized configurations of MPP by new configurations of O(n log n) size
whose transition graph is, in some sense, isomorphic to the old one (e.g., the new
configurations reach the same stable outputs). Thus, an exact characterization of
this class is still open.

• Is the mediated population protocol model fault tolerant? What are the necessary
preconditions to obtain satisfactory fault tolerance?

• Is there an exact characterization of the class of decidable graph languages by
MPP in the weakly connected case?

• Is the PALOMA model fault tolerant? What are the necessary preconditions to
obtain satisfactory fault tolerance?

• Are there hierarchy theorems concerning all possible models of passively mobile
communicating devices? For example, what is the relationship between MPP’s
class of computable predicates and PLM?

• [12] revealed the need for population protocols to have adaptation capabilities
in order to keep working correctly and/or fast when natural modifications of the
mobility pattern occur. However, we do not know yet how to achieve adaptivity.

• Are there more efficient, possibly logic-based, verification solutions for pop-
ulation protocols? Verifying methods for MPPs, Community Protocols, and
PALOMA protocols are still totally unknown, although the ideas of Sect. 5.7
may also be applicable to these models.
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Chapter 6
Theoretical Aspects of Graph Models
for MANETs

Josep Díaz, Dieter Mitsche, and Paolo Santi

Abstract We survey the main theoretical aspects of models for mobile ad hoc
networks (MANETs). We present theoretical characterizations of mobile network
structural properties, different dynamic graph models of MANETs, and finally we
give detailed summaries of a few selected articles. In particular, we focus on arti-
cles dealing with connectivity of mobile networks and on articles which show that
mobility can be used to propagate information between nodes of the network while
at the same time maintaining small transmission distances and thus saving energy.

6.1 Introduction

In 1961 Edward Gilbert [21] defined random plane networks as a model to study
the communication in networks of short-range stations spread over a large area.
In his model, vertices represent the stations, and edges represent a two-way com-
munication channel between stations. All stations have the same range power, so
there is a direct communication between two stations iff the corresponding vertices
are connected by an edge. Gilbert distributed the vertices in an infinite plane, by
using a Poisson point process in the plane and then connecting two vertices if they
are separated by at most a distance r . He went to study the asymptotic value of
the probability that a vertex belongs to a connected component with all the other
vertices.

Nowadays, Gilbert’s model is better known as random geometric graphs (RGG).
A random geometric graph can be equivalently defined by distributing n points uni-
formly on a given surface; thus, a RGG is a graph resulting from placing a set of n
vertices independently and uniformly at random on the unit square [0, 1]2, and by
connecting two vertices if and only if their distance is at most the given radius r , the
distance depending on the type of metric being used. For convenience, when using
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a Poisson point process to distribute the vertices, sometimes it is better to scatter
the vertices on [√n,

√
n]2, where n is the expected number of points distributed by

the Poisson process. It is well known that the results in this model are just rescaled
versions of the results on [0, 1]2. Some authors consider the torus [0, 1)2 to avoid
the effects of boundaries, which we will mention in Sect. 6.3 in more detail. For
many properties the boundary effects change the results, see, for example, [62]. We
refer to an instance of a RGG with n vertices and radius r as G(n, r).

The deterministic counterparts of random geometric graphs are called unit disk
graphs (UDG). A graph G is a unit disk graph for a radius distance r , if its vertices
can be put in one-to-one correspondence with the centers of circles of radius r in the
plane, in such a way that two vertices in G are connected by an edge if and only if
their corresponding circles intersect [12, 24]. The recognition problem is to decide
whether a given graph G is a U DG. The problem is known to be NP-hard [8]. Since
the vertices of a U DG are points in the real plane, the problem is not known to be
in NP.

Random geometric graphs and unit disk graphs have received quite a bit of atten-
tion in the last years both as a particular mathematical structure different from other
types of known graphs [47, 59] and also because of their applications as models for
wireless networks, in particular as simplified topological models for wireless sensor
networks (see, for example, [55], where UDG was also denoted as point graph model
and [1, 4, 17, 56, 57, 67]). Further applications of unit discs and random geometric
graphs as models for more general ad hoc networks are discussed in the references
[14, 29, 31, 42, 66] and in Chapter 1 of [59].

Wireless networks consist of a set of simple nodes, each one with a wireless
transceiver to communicate with their near neighbors, where near is understood as
the closest in terms of Euclidean distance, and the ability of communication depends
on the transmitting power of the transceivers. The goal of a network is to spread
information through the network, which is done in a multi-hop fashion. In many ad
hoc networks, like sensor networks, due to the simplicity of the nodes, energy con-
sumption is an issue. Therefore, one of the most important questions when modeling
a network is to minimize power consumption. That is, the transmission range should
be made as small as possible but at the same time large enough to make sure that a
packet of information transmitted from a node will arrive to the other nodes in the
network. As we mention in the next section, when modeling wireless networks by
graph topology, one of the main problems is the trade-off between range of transmis-
sion and network connectivity. In Sect. 6.5.3 we will give examples where mobility
boosts message distribution in a network while at the same time maintaining a small
range of transmission.

The choice of whether to use a deterministic model, such as UDG, or a random-
ized model, such as RGG, depends on the application. For example, when using
sensors networks, it is usual that the sensors are scattered from some type of vehicle
and hence in this case the random model is the appropriate one. For other kinds
of wireless networks, the randomized model also could be interesting to obtain the
average behavior of the network. In the next section, we also briefly mention the
case where the transmitting power of each node is different, introducing the range
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assignment problem: the problem of assigning different transmission powers to each
node in such a way that the power used is minimized, while maintaining the network
connected.

The aim of the present work is to survey the recent theoretical results for mobile
ad hoc networks (MANETs), with an emphasis of topological models. It is orga-
nized as follows: in Sect. 6.2 we review a few known results about static RGG,
mainly those related to connectivity; in Sect. 6.3 we discuss issues that play a role
in dynamic models and present different random mobility models; in Sect. 6.4 we
survey theoretical results concerning a very popular mobility model (the random
waypoint model), showing in particular how mathematical tools have been used
to identify problems in wireless mobile network simulation and to solve them; in
Sect. 6.5, we present a few selected recent papers on dynamic MANETs, focusing
on papers which present a formal analysis of mobility model properties and use the
analysis to characterize fundamental network properties such as connectivity and
information propagation speed. Throughout this chapter, “a.a.s.” denotes asymptot-
ically almost surely, that is, with probability tending to 1, as n goes to ∞. For other
concepts in probability, the reader is advised to look into any of the basic references,
for example, [26, 48].

6.2 Static Properties

In this section, we point out some of the known results about static RGG, which will
be helpful for the mobility survey. In this line, we skip many of the very interesting
recent results on RGG that are of combinatorial nature, such as results about the
chromatic number, for example. The main reference on RGG is the book by Mathew
Penrose [47]. Moreover, the reader should be aware that since 2002 a lot of work
has been done on the topic of static RGG. When considering a RGG as topological
model for a wireless network, one of the important issues is to keep the network
connected using the minimal amount of energy consumption, i.e., using the small-
est transmitting distance. This is called the critical power among the networking
community [42] and the connectivity threshold among the mathematical commu-
nity [47]. In the book of Penrose, the results are exposed in full generality, for any
distance norm and any dimension. To make the basic ideas as clear as possible, in
the present survey we stick to the case of dimension 2 and Euclidean distance norm.

Let G(n, r) be the graph representing a wireless ad hoc network with n nodes,
where r denotes the transmitting distance. We assume the ideal case where the area
covered by a node is exactly a circle. Topology control is a technique that uses
the tuning of certain parameters, usually the transmitting range r or the maximum
degree of the graph, to change/form the topology of the graph representing the net-
work in order to maintain the connectivity while optimizing the energy (or minimiz-
ing the interference). There are very good recent surveys on the topic of topology
control, see, for instance, [42, 52]. One of the important problems in topology con-
trol is the critical transmitting range for connectivity: what is the smallest radius,
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denoted by rc, that keeps G connected? If G is a deterministic instance, i.e., a UDG,
it is well known that the value of rc is the length of the longest edge in the minimum
spanning tree (MST) of G. The case where G is a RGG is more interesting. In this
case, Penrose [45] computed the expected length of the longest edge of a MST in

a RGG on [0, 1]2, yielding the well-known connectivity threshold rc =
√

ln n±O(1)
πn

a.a.s., where as usual the abbreviation a.a.s. stands for asymptotically almost surely,
i.e., with probability 1−o(1) as n → ∞. Independently, [22] gave the same bounds
for rc, also for the 	2-norm but considering the unit circle as underlying surface.
Both proofs are quite different.

Notice that real wireless networks cannot be too dense, because a transmitting
node interferes with all the nodes within its interference range. In [53, 54] the
authors have characterized the critical transmission range in the more general model
in which the side 	 of the deployment region is a further parameter, and n and r can
be arbitrary functions of 	. Note that under this model, the asymptotic behavior of
node density (number of nodes per unit area) depends on how n changes with 	. In
particular, n can be chosen in such a way that node density asymptotically converges
to 0, or to an arbitrary constant greater than 0, or diverge. Under this respect, Santi
et al.’s model is more general than the standard RGG model, in which node density
grows to infinity with n. The main finding of [53, 54] is a proof that, as 	 → ∞, if

r ∼ 	

√
c lg 	

n for some constant c > 0, then the graph is connected a.a.s.

Going back to the classical model of RGG on [0, 1]2, we now try to convey the
flavor and intuition behind the value rc for which a RGG becomes connected a.a.s.
Given a set V of n nodes and a positive real r = r(n), each node is placed at some
random position in [0, 1]2 selected uniformly at random. We define G(n, r) as the
random graph having V as the vertex set, and with an edge connecting each pair
of vertices u and v at distance d(u, v) ≤ r , where d(·, ·) denotes the Euclidean
distance. We assume that r = o(1), else G(n, r) is trivially connected a.a.s. Let X
be the random variable counting the number of isolated vertices in G(n, r). Then,
by multiplying the probability that one vertex is isolated by the number of vertices
we obtain

E (X) = n(1 − πr2)n−1 = ne−πr2n−O(r4n)

Define μ = ne−πr2n . Observe that this parameter μ is closely related to E (X). In
fact, μ = o(1) iff E (X) = o(1), and if μ = Ω(1) then E (X) ∼ μ.

Moreover, the asymptotic behavior ofμ characterizes the connectivity of G(n, r).
In fact, if μ → 0, then a.a.s. G(n, r) is connected; if μ = Θ(1), then a.a.s. G(n, r)
consists of one giant component of size > n/2 and a number of isolated vertices
which follows a Poisson distribution with parameter μ; and if μ → ∞, then a.a.s.
G(n, r) is disconnected. Therefore, from the definition of μ we have that μ = Θ(1)

iff rc =
√

ln n±O(1)
πn (see [47]).

Extensions to k-connectivity appear in [46], where the author proves that when
the minimum degree of a RGG is k the graph becomes k-connected. Notice that
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k-connectivity is important in networking as a measure of fault tolerance of the net-
work. Chapter 13 of [47] presents an extensive treatment of connectivity for RGG,
taking into account different norms, higher dimensions, and different underlying
probability distributions.

Recall that a graph property is monotone if it is preserved when edges are added
to the graph. A graph property is said to have a sharp threshold if the window
between having and not having the property can be made arbitrarily small. In [25]
the authors prove that every monotone property on a RGG has a sharp threshold. As
connectivity is a monotone property, we conclude that the property of connectivity

in G(n, r) exhibits a sharp threshold at rc =
√

ln n
πn .

As mentioned before, for a radius r slightly below the connectivity threshold rc,
G(n, r) consists a.a.s. of a giant component and some isolated vertices. It is also
known that in this situation the probability of having a component of size i at rc
is O(1/ logi n), and, if there exists one, it forms a clique [16]. A straightforward
computation yields that when we consider the connectivity regime with r = rc,
the expected degree of a vertex is asymptotically Θ(log n) (plug rc in the expected
number of neighbors of a vertex, which is πr2

c (n−1)). For values of r > rc, G(n, r)
is said to be in the superconnectivity regime and the graph is dense,1 while for values
of r < rc, G(n, r) is said to be in the subconnectivity regime and the graph is sparse.
As we mention in Sect. 6.5.3, in the subconnectivity regime mobility can help to
spread information.

The behavior of RGG for values of r in the subconnectivity regime has been
quite thoroughly studied, see Chapter 10 in [47]. It is known that there exists a
value rt = c√

n
where a giant component of size Θ(n) appears in G(n, r) a.a.s., with

c being a constant that experimentally is conjectured to have a value around 2.35
(recall that we focus on the 	2-norm in two dimensions). In the regime where r < rt,
each vertex has expected degree O(1). The rt is denoted as the thermodynamical
threshold.

The cover time C of G(n, r) is the expected time taken by a simple random walk
of G(n, r) to visit all the nodes in the graph. In [2] the authors prove that a.a.s.

C = Θ(n log n) if r ≥
√

c log n
n , with c > 8. If r ≤

√
log n
πn , the cover time is ∞ with

positive probability, bounded away from zero.
When dealing specifically with wireless sensor networks, an important issue is to

assure that sensors properly cover the entire region being monitored, which is known
as the coverage of the network. Similar to connectivity, coverage can be modeled
using the RGG model, where each vertex represents a sensor and r is the sensing
range of the sensors. Given an integer k, a point is said to be k-covered if it falls into
the sensing range of at least k sensors. If all the points of a region are k-covered,
then the region is k-covered. If Ck

n,r denotes the event that every point of [0, 1]2
is (k + 1)-covered by a network with n sensors of range r , the k-covering problem
consists in giving asymptotic bounds to Pr

[
Ck

n,r

]
, as n → ∞. In [30], the case k = 1

1 Note that a usual graph with n vertices is said to be dense if it has Θ(n2) edges.
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is studied; however, the author uses a toroidal metric to avoid problems with nodes
very near the boundary of the region where the nodes are scattered. Several authors
have been working on this problem [40, 44, 61, 68]. In [62] the authors give bounds
on Pr

[
Ck

n,r

]
for the unit square, taking into consideration the boundary effect of the

unit square, which complicates quite a bit the analytical proof. Sometimes, coverage
and connectivity of a wireless sensor network are jointly studied, with the objective
of forming a network which not only k-covers the entire monitored region but also
is connected. It is easy to see that k-coverage implies k-connectivity of the network
whenever rt ≥ 2rs, where rt is the transmission range and rs is the sensing range of
nodes [63].

Up to now we have considered that all nodes broadcast at the same transmitting
range r , but the efficiency of energy management in a network could be achieved by
tuning every node to a different transmitting range. The range assignment problem is
the following: given a graph with n nodes, each one knowing their position, the goal
is to assign a transmitting range ri to each node i in such a way that the network
is connected with minimum energy cost, where the energy ei used by node i is
proportional to r2

i , i.e., the goal is to minimize
∑

i ei . The problem was first studied
in [39]. Since then, several authors have proposed and studied different variants of
the basic model, see Section 5.5.2 in [52].

Another important issue is the design of efficient protocols for disseminating and
broadcasting information in wireless ad hoc networks. We refer the reader to one of
the multiple surveys treating the topic [34, 42, 49, 50, 52, 66].

6.3 Mobility Models for MANETs

After giving a very concise introduction to the results on static random geometric
graphs, let us focus our attention on mobility issues. When talking about mobility
in MANETs, we mean mobility of the nodes, i.e., the nodes physically move in a
region. There is an alternative version of dynamical wireless networks, where the
dynamicity is caused by the addition and removal of edges between nodes, due to
the temporal evolution of the transmitting range ri , for each node i . This kind of
mobility has been thoroughly studied by the computational geometry community,
see, for example, [3, 20]. The main focus of their research is the design and anal-
ysis of sophisticated algorithms and data structures that easily allow deletion or
addition of very few edges or nodes at each time. In the case of highly dynamic
MANETs, due to the large number of changes in each step, the direct evaluation of
the performance of the network is very time consuming (see, for example, Section
2 in [5]). One way to get an idea of the performance is to use simplified models of
the network. Moreover, due to the fact that real MANETs are mostly deployed in
environments where it is difficult to control the quality of transmission, simulation
could furnish better scenarios to control the experiments. In particular, when design-
ing new protocols for communication, sometimes it is better to start simulating on
a simplified topology than a direct implementation on the real network. However,
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some researchers reason that low-scale simulations are not conclusive and that the
final validation of the viability and efficiency of the new proposed protocol must be
experimented directly on the network (see, for example, [41]).

In the remainder of this survey, we are going to look at the recent preliminary
research done on analytical studies of different mobility models proposed. The goals
of the simplified models are to extract the topological properties of mobile net-
works, which might help both in improving simulation accuracy (see Sect. 6.4), and
in designing new protocols where mobility is used to reduce energy consumption
and/or information propagation speed (see Sect. 6.5). Clearly, this survey does not
cover every property where mobility helps. For example, for the k-covering problem,
in [60] the authors recently proved both analytically and experimentally that, if a
fraction of the nodes is mobile with very limited range of mobility, k-coverage can
be achieved with less sensors than in the static case.

In the last decade, quite a few models for MANETs have been proposed, see the
surveys [5, 6, 10, 69]. Section 2.1.5 of [5] gives a detailed taxonomy of the mobility
models used in the literature. According to the degree of mobility, there are three
types of mobility:

• The deterministic model where nodes move through predetermined paths in a
deterministic manner. The model needs to trace the mobility of nodes, which can
be cumbersome [58].

• The hybrid random model where the model guides the nodes through a predeter-
mined graph, which represents streets, roads, etc. On this graph, however, nodes
move randomly. For example, in [36] the authors consider a region with obstacles
and force the mobility to take place along the Voronoi tessellation of the obsta-
cles. The city selection mobility and the graph-based mobility models described
in [5] are the examples of hybrid random models.

• The pure random model where the nodes move in a random way in the region.
Most of the models, described in the literature, belong to this class. The two
most representative models in this class are the random direction model and the
random waypoint model.

The most frequently used mobility models are the following two and their varia-
tions:

• the random waypoint model (RWP) was first described in [37]. In this model,
as usual, nodes are initially distributed uniformly at random on the region; then,
each node chooses independently and uniformly at random a destination within
the region as well as a travel speed. The node then starts traveling toward the
destination with the selected speed along a linear trajectory. When it reaches
the destination (waypoint), it might optionally pause for a certain time, then
chooses another waypoint in the region and continues according to the same
pattern. Structural properties of RWP model have been deeply investigated in
the literature and are discussed in detail in Sect. 6.4.

• the random direction model (RD): the seed of the RD model is the paper [28], in
which each node i in the region under consideration selects uniformly at random
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a direction θi ∈ [0, 2π) and chooses a speed that is kept constant during a certain
amount of time. After a randomly chosen period of time, each node selects a new
direction and speed and continues moving. As the process evolves over time,
some of the nodes might arrive at the boundary of the region, and a border rule
has to be defined to determine how nodes behave when they hit the border. An
easy way to deal with the boundary effect is to consider the toroidal version
[	1, 	2)

2 instead of the unit square [	1, 	2]2. In fact, when modeling applications
like sensor networks on large terrain, the toroidal model is a fair approximation
to reality. For smaller areas, when the boundary effect is significant, an alter-
native option is to consider the so-called bouncing boundary rule, where the
nodes arriving at a boundary bounce back to the region. When a node hits the
boundary, this bouncing could be done either by choosing a random new angle
θ ′ or by following the mirror reflection rule, i.e. the node returns to the region at
an angle θ ′ = π − θ , where θ is the incidence angle at which the node hits
the boundary. There have been several modifications of the basic RD model,
some of them specifically designed to deal with the border effect [35] (see below
for a definition of border effect). The RD model has been criticized because of
the unrealistic behavior caused by uncorrelated changes in direction and speed
(see, for example, [32]). In [7], the author proposed a variation of the RD model,
with two correlated processes, one to define the speed and another one to define
the changes in direction (no correlation between different nodes). The authors
denoted this variation the smooth random mobility model.

Note that the fact that moves in a bounded region gives rise to the so-called
border effect, which in general can be understood as a modification of the probability
density function (pdf) describing mobile node positions with respect to the initial
pdf (typically, uniform) due to the presence of a border. The border effect arises not
only in models (such as RD) in which nodes can hit the border and border rules are
used to define node behavior in such situation but also in models (such as RWP) in
which nodes can never reach the border of the movement region. Further detailed
explanation of the border effect in RWP mobile networks is reported in the next
section.

Two further models different to the previous ones are the following:

• The Brownian motion model: each of the x- and the y-coordinates describing
the current position of each node undergoes a continuous-time stochastic pro-
cess (these processes are independent for both coordinates and independent for
all nodes), which is almost surely continuous and the changes in the positions
between any two times t1, t2 with 0 ≤ t1 ≤ t2 follow a normal distribution
N (0, t2 − t1). Moreover, the changes between t1 ≤ t2 are independent from the
changes in t3 ≤ t4, if t2 ≤ t3. Brownian motion can be considered as the limit
case of the random direction model, where the period of time after which a new
angle is chosen tends to 0 (see, for example, [11]).

• An approach orthogonal to the previous ones was undertaken in [19] in order to
accomplish group communication tasks between a set of processors. The model
is the following: given n processors executing programs, the communication
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between the processors is established with the help of an agent who visits the
processors. If there are more than one agent and two agents collide at one pro-
cessor, they merge into one, and if there is no agent, after some time an agent is
automatically generated by a processor. The agent performs a random walk on
the processors (the next processor could be chosen from some suitably defined
neighborhood of the current processor or it could be chosen from the whole set of
processors), and whenever it arrives at a processor, the processor stops its current
program and replaces it by a new program using the information the agent is
carrying. The agent’s goal is to broadcast the information in such a way that
each processor is visited by the agent at least every M steps, where M depends
on n, and that each processor executes a step infinitely often. The authors design
agents satisfying these conditions for different group communication tasks and
they prove that starting from any arbitrarily chosen node, these agents have an
expected cover time of at most O(n3).

6.4 Structural Properties of Random Waypoint Mobile Networks

In this section, we present theoretical characterizations of structural properties of
networks whose nodes move according to a very popular mobility model: the ran-
dom waypoint mobility model (RWP). We show that how these characterizations
have been used to considerably improve accuracy of wireless network simulation.
Some of these characterizations (e.g., node spatial distribution) have been used
also to study fundamental mobile network properties, such as connectivity (see
Sect. 6.5).

RWP is by far the most commonly used mobility model used in wireless mobile
network simulation. Given its popularity, the structural properties of RWP mobile
networks have been deeply investigated in the literature as well as their effects on
simulation accuracy.

In the remainder of this section, we focus our attention on two such structural
properties, namely node spatial distribution and instantaneous average nodal speed,
and discuss their impact on accuracy of RWP mobile network simulation. We then
show how theoretical characterizations of the above properties have been used to
define a “perfect” simulation methodology, which completely removes the accuracy
issues previously identified.

6.4.1 RWP Node Spatial Distribution

The first structural property of RWP mobile networks that has been formally studied
is the asymptotic node spatial distribution, which can be formally defined as follows.
Let ft be the pdf describing node position within the movement region at time t
of the mobility process. The asymptotic node spatial distribution is a pdf formally
defined as
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f∞ = lim
t→∞ ft

whenever the limit on the right hand side exists, i.e., that the mobility model has
a stationary node spatial distribution. In the literature, it has been proven that most
mobility models described in the previous section (e.g., RWP, RD, Brownian) indeed
have a stationary node spatial distribution.

In the following, we present a formal characterization of f∞ in the presence of
RWP node mobility, which we denote by fRWP. In particular, we will survey results
that show that fRWP �= fU ( fU is the uniform pdf on the movement region), unless
the expected pause time at the waypoints tends to infinity.2 Thus, we are in presence
of the border effect, which can cause considerable inaccuracies in wireless network
simulation. In fact, if simulation results are gathered after a relatively short time after
network setup, the node spatial distribution of RWP mobile nodes might not have
reached the stationary condition, implying that, from a topological point of view,
network conditions are different from those reached at stationary state. To make
this point clearer, assume that results of a network simulation are averaged over a
time interval starting after 100 s since the beginning of simulation and ending after
900 s (these are quite standard simulation intervals in the networking literature). Fur-
thermore, assume that RWP node spatial distribution takes 1000 s to stabilize (this
is also a reasonable stabilization time, see [9]). Then the outcome of the simulation
experiment might be highly inaccurate, since results are gathered before the network
has reached its stationary state.

Another pitfall of the border effect is on networking protocol performance opti-
mization: typically, networking protocols (e.g., routing protocols) are optimized
under the assumption that nodes are uniformly distributed in a certain region. How-
ever, if nodes move according to RWP mobility, this assumption is no longer true at
stationary state, implying that protocol performance can indeed be highly subopti-
mal in presence of mobility.

The first analytical study of node spatial distribution under RWP mobility is
reported in [9], for the case of nodes moving in the unit square. In that paper, RWP
mobility is described as a stochastic process {Di , Tp,i , Vi }, where Di is a random
variable denoting the two-dimensional coordinates of trip i destination, Tp,i is a ran-
dom variable denoting the pause time at Di , and Vi is a random variable denoting
the node velocity during trip i . The actual value of Di will be represented by di .
First, the authors prove a result concerning ergodicity of the sequence of random
variables {Li }, where Li = ||di − di−1||, that is, Li denotes the length of the i th
trip. In particular, the authors show that repeatedly sampling from a single random
variable in the sequence is statistically equivalent to successively sampling from
the sequence {Li }. This first result allows reducing the problem of characterizing
fRWP,0 when the pause time at waypoint is 0 to one of computing the intersection
between a random trajectory and an arbitrarily small square of side δ > 0 centered

2 Note that the fact that the expected pause time at waypoints tends to infinity implies that nodes
are asymptotically static, i.e., RWP model under this condition degenerates to a static network.
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Qδ

(x,y)

random trajectory

Lxyδ

Fig. 6.1 The pdf of a RWP mobile node can be characterized by computing the expected length
of the segment Lxyδ representing the intersection between a random trajectory and a square Qδ of
side δ centered at (x, y) (shaded area)

at a certain coordinate (x, y) (see Fig. 6.1). This stems from the fact that fRWP can
be considered as constant within Qδ as δ → 0, implying that

fRWP,0(x, y) = lim
δ→0

P(x, y, δ)

δ2
(6.1)

where P(x, y, δ) is the probability that an RWP mobile node is located within a
square of side δ centered at (x, y). Thus, fRWP,0 can be characterized by evaluating
P(x, y, δ). Since ergodicity of {Li } implies for a successively large sample size that

P(x, y, δ) = E[Lxyδ]
E[L]

and E[L] (the expected distance between two random uniform points in a square)
is well known from geometric probability, characterizing fRWP,0 boils down to
computing E[Lxyδ], i.e., the expected length of the intersection between a random
trajectory and a square of side δ centered at (x, y). The value of E[Lxyδ] is closely
approximated in [9] through computing a set of two-dimensional integrals, yielding
the following expression for fRWP in the region (0 ≤ x ≤ 0.5) ∪ (0 ≤ y ≤ x)3:

fRWP,0(x, y) = 6y + 3

4

(
1 − 2x + 2x2

)( y

y − 1
+ y2

x(x − 1)

)
+

+ 3y

2

[
(2x − 1)(y + 1) ln

(
1 − x

x

)
+ (1 − 2x + 2x2 + y) ln

(
1 − y

y

)]

The density function fRWP,0 is drawn in Fig. 6.2. As seen from the figure, fRWP
is bell shaped with a higher concentration in the center of the movement region,

3 Values of fRWP,0 in the other regions of the unit square are obtained by symmetry.
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Fig. 6.2 Density function of a RWP mobile network with pause time set to 0: 3D plot (left), and
contour lines (right)

reflecting the fact that a random trajectory is relatively more likely to cross the
center than the boundary of the region.

After deriving the pdf under the assumption of zero pause time, the authors of
[9] consider the more general case of pause times chosen according to an arbitrary
probability distribution and show that the resulting node spatial distribution has the
following shape:

fRWP = pp fU + (1 − pp) fRWP,0

where pp = limt→∞ pp(t), and pp(t) is the probability that an RWP mobile node is
pausing at time t . Thus, fRWP is the sum of two components: a uniform component,
accounting for the fact that when nodes are resting at a waypoint they are uniformly
distributed, and a non-uniform component, reflecting the fact that when nodes are
moving they are more likely located near the center of the movement region. The
derivation of pp is quite straightforward and yields

pp = E[Tp]
E[Tp] + E[L]

v

under the hypothesis that the node velocity is fixed to v > 0.
In a more recent paper [33], Hyytiä et al. provide the exact characterization of

fRWP,0 and generalize the previously described results to arbitrary convex shapes of
the movement region and arbitrary waypoint distribution.

6.4.2 RWP Average Nodal Speed

A second property of RWP mobile networks that has been extensively studied is the
average nodal speed, which is formally defined as follows. Assume n nodes move
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independently within a region according to the RWP mobility model and denote by
vi (t) the instantaneous speed of the i th node at time t . The asymptotical average
nodal speed vRWP is defined as

vRWP = lim
t→∞

∑n
i=1 vi (t)

n

The first paper that formally investigates the average nodal speed in RWP mobile
networks is [64], where the authors prove that vRWP �= v0 as long as the trip velocity
is randomly chosen in a non-degenerate interval and v0 is the average nodal speed
at time 0. Before giving some details of the derivation, we observe that the fact that
vRWP �= v0 gives rise to the so-called speed decay phenomenon, which displays
many similarities with the border effect described in the previous section. In fact,
similar to border effect, speed decay affects both simulation accuracy and optimiza-
tion of network protocols, for the very same reasons the border effect did, i.e., (i)
stationary conditions for what concerns node velocity are different from initial ones
and (ii) they are reached only after a relatively long stabilization period.

The authors of [64] derive vRWP under the following three assumptions:

1. nodes move in an unlimited, arbitrarily large area; given the current node location
(x, y), the next waypoint is chosen uniformly at random in a circle of radius Rmax
centered at (x, y).

2. the pause time is 0.
3. the node velocity is chosen uniformly at random from [vmin, vmax].

While the second and third assumptions are standard, the first assumption, which
is done to simplify analysis, apparently perturbs quite a bit the properties of the
mobility model. In the paper it is shown that this assumption has no effect on the
value of vRWP, which remain the same as in the case of standard, bounded RWP
mobility.

Similar to [9], the authors of [64] describe the RWP mobility model as a stochas-
tic process {Vi , Ri , Si }, where Vi is the random variable denoting the velocity during
trip i , Ri is the random variable denoting travel distance during trip i , and Si is the
random variable denoting travel time during trip i . Setting

∑n
i=1 vi (t)/n = V (t),

then vRWP can be expressed as follows:

vRWP = lim
t→∞ V (t) = lim

T→∞
1

T

∫

[0,T ]
V (t)dt = lim

T→∞

∑
k=1,...,K (T ) rk

∑
k=1,...,K (T ) sk

= E[Ri ]
E[Si ]

where K (T ) is the total number of trips undertaken within time T , including the
last one (possibly incomplete), and where rk (respectively, sk) is the travel distance
(respectively, time) of trip k.

Thus, the computation of vRWP is reduced to the problem of computing the expec-
tation of the random variables, Ri and Si . In [64], the authors show that
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E[Ri ] = 2

3
Rmax and E[Si ] = 2Rmax

3(vmax − vmin)
· ln

(
vmax

vmin

)

yielding

vRWP = vmax − vmin

ln
(
vmax
vmin

)

Furthermore, several interesting implications of the discussed characterization
for vRWP are presented in [64]. First, it is observed that vRWP ≤ v0 and that
vRWP = v0 if and only if vmin = vmax. This implies that the only way of avoiding
speed decay is to avoid randomness in speed selection, imposing the same speed
to a node during the entire simulation time. While having constant node velocity
may be acceptable in some situations, the range of possible reference application
scenarios for simulation is considerably reduced with this assumption. For instance,
think about a scenario in which mobile nodes represent vehicles moving in a city:
clearly, allowing vehicles to change speed during the travel (e.g., to reflect different
speed limits) considerably increase simulation representativeness with respect to a
situation in which the vehicle speed is fixed throughout the entire simulation time.

The authors of [64] observe that vRWP becomes relatively closer to v0 (thus reduc-
ing speed decay intensity and the time needed to reach stationary node velocity)
as the speed range interval becomes smaller. A general recommendation to lessen
speed decay is to shrink the allowed node speed interval, which comes at the price,
however, of reducing the range of possible application scenarios for simulation.

A final and very interesting implication of the vRWP characterization is that the
pdf of the random variable Si becomes heavy tailed when vmin → 0, implying
that E[Si ] becomes infinite, and vRWP → 0. Thus, if vmin is set to 0, the station-
ary regime of an RW P mobile network actually coincides with a static network
(vRWP = 0) and is reached only after infinite time. It is clear then that setting
vmin = 0, as it is actually very common in wireless network simulation, severely
impacts simulation accuracy, since simulation results cannot be gathered before the
node velocities have reached the stationary state.

6.4.3 The “Perfect” Simulation

In the previous sections, we have shown that how theoretical characterization of
RWP mobile network properties can disclose sources of inaccuracy in wireless net-
work simulation. Possible countermeasures have also been discussed, which essen-
tially amounts to

(a) simulation “warm-up”: run the simulation for a relatively long time interval
before starting collecting simulation results;

(b) reducing speed range: choose velocity from a smaller speed interval.
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Unfortunately, both approaches for improving wireless network simulation
approaches have considerable drawbacks, which discourage their usage in sim-
ulation practice. In particular, (a) causes considerable wastage of computational
resources. Furthermore, estimating the time needed for the network to reach station-
ary conditions is difficult, and in some situations the time needed to reach stationar-
ity can actually be infinite, for instance, when vmin = 0. Moreover, the approach (b)
also has considerable drawbacks, as it considerably reduces the range of possible
reference application scenarios for simulation. Furthermore, (b) has effect only on
the speed decay phenomenon, but cannot be used to mitigate the border effect.

Motivated by the above observations, researchers have made efforts to design a
“perfect” simulation methodology, in which issues with simulation accuracy can be
solved without incurring the drawbacks of approaches (a) and (b). A first notewor-
thy contribution in this direction is [65], where the authors present a methodology
to remove the speed decay effect without reducing the speed range interval, with the
only constraint that vmin > 0. The authors’ goal is to initialize the system directly
in the stationary state, without the need of a “warm-up” period. The authors start
deriving the pdf of the stationary average node velocity VRWP and show that VRWP
cannot be directly used to initialize the system: if VRWP is used instead of a uni-
form distribution in [vmin > 0, vmax] to select initial node velocities, the pdf of the
resulting stationary average node velocity changes, and it is no longer VRWP. Then,
the authors show that a possible way of avoiding this problem is using a composite
mobility model, where the pdf used to select initial node speed is different from that
used to select the speed of next trips. In particular, the authors of [65] formally prove
that the following methodology completely removes speed decay:

1. use VRWP to select speed of the first trip;
2. use default speed distribution (uniform in [vmin > 0, vmax]) to select speed of

next trips.

In [43], the authors generalize the results of [65] to a wide class of mobility
models (including RWP model, RD model) and show that the “perfect” simulation
methodology defined in [65] can be used not only for average node speed but also for
any structural network property admitting a stationary distribution. With respect to
this, the authors of [43] show that a necessary and sufficient condition for a mobility
model to admit stationary structural distributions is that the expected trip duration is
finite. Thus, for models such as RWP, the “perfect” simulation methodology of [65]
can be used to remove not only the speed decay but also the border effect.

6.5 Formal Studies of Connectivity on MANETs’ Models

6.5.1 Connectivity Threshold for Mobility Models

As described in the previous section, the border effect may considerably impact sim-
ulation accuracy. In this section, we analyze the consequence of the border effect on
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the formal analysis of properties for MANETs, in particular referring to the critical
transmission range for connectivity.

• Connectivity threshold for mobile models. Using the previous result, Santi [51]
studies the connectivity threshold for mobile networks. His model is the follow-
ing: There are n vertices deployed uniformly at random in the unit square [0, 1]2.
The nodes move randomly, but the mobility model is not fixed, it only must meet
two conditions: it must be bounded and obstacle free. A mobility model M is
said to be bounded if the support of the probability density function pdf of the
long-term distribution of the nodes is contained in [0, 1]2. Similarly, M is said
to be obstacle free if the support of the pdf contains [0, 1]2 \ ∂[0, 1]2, where
∂[0, 1]2 denotes the boundary. In other words, every subregion with non-zero
measure has to have positive probability to contain at least one node at a given
time. Notice that the random direction model, the random waypoint model, and
Brownian motion are all bounded and obstacle free. Moreover, not necessarily
all nodes have to move at the same speed, each one can choose its speed from an
interval [vmin, vmax]. Also, the nodes can pause for a predefined amount of time
tp after having reached their destination.

In particular, due to border effects and due to different node velocities, the long-
term spatial distribution of the nodes might be different from the starting distribu-
tion, even if they start with the uniform distribution. Define the mobile threshold
for connectivity rM as the minimum value of the radius r , such that when taking a
snapshot of the graph chosen from the long-term spatial distribution of the nodes,
the graph is connected. Notice rM might be different from the threshold of the

static case rc =
√

log n
πn . In fact, the first result of the paper states that if the pdf

of the mobility model fM is continuous on ∂[0, 1]2 and min fM > 0, then a.a.s.

rM = c
√

log n
πn with c ≥ 1. The proof uses the fact that in the static case, a.a.s.

the threshold of connectivity equals the longest edge of the Euclidean minimum
spanning tree built on the n points (see [45]).

The second result the paper states that in the random waypoint model with pause
time tp and v = vmin = vmax, a.a.s. the connectivity threshold of the long-term

spatial distribution rwtp = tp+ 0.521405
v

tp

√
log n
πn , for tp > 0, and r0 ) log n

n , for tp = 0.
Intuitively the results says that when nodes stop at the waypoint for a positive
amount of time before choosing the next waypoint, the connectivity threshold of
the long-term distribution differs from the static case by only a constant factor. In
the case when tp → ∞, rwtp → rc, and the long-term spatial distribution becomes
the uniform distribution. On the other hand, if the nodes start traveling toward the
next waypoint immediately after touching the current waypoint, the connectivity
threshold is asymptotically larger than in the static case. The intuition behind this
result is as follows: the formula for the pdf contains two components; one for the
time a node is resting at a waypoint, which is uniform since the waypoint is chosen
uniformly at random, and a mobility component responsible for border effects. If
the uniform component of the pdf is not 0, it asymptotically dominates over the
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mobility component, and the connectivity threshold is asymptotically the same as in
the static case. On the contrary, if the uniform component is 0, the pdf coincides with
the mobility component, which has a different asymptotic behavior than uniform,
implying a larger connectivity threshold.

6.5.2 Connectivity Periods on Mobile Models

• The walkers’ model on the grid. The authors in [18] present a model of estab-
lishment and maintenance of communication between mobile nodes, denoted
walkers in the paper, where the nodes move in a fixed environment modeled
by a toroidal grid T . Therefore, the authors present a hybrid random model. The
model is defined as follows: given a toroidal square grid in the plane T = (V, E)
with |V | = N = n2, a set W of walkers with |W | = w, and a “transmitting
distance” d (the same for all the walkers), the w walkers are sprinkled randomly
and independently on the N vertices of T (a vertex may contain more than one
walker). Two walkers w1 and w2 can communicate in one hop if the Euclidean
distance between the position of the walkers is at most d. Two walkers can com-
municate if they can reach each other by a sequence of such hops.

Then, in a synchronized way, each walker performs an independent standard ran-
dom walk on the nodes of T . That is, each walker moves at each time step to one of
the four neighboring vertices, all chosen with equal probability 1/4. Hence, for any
time t ∈ N, one can define the random graph of walkers Wt (T, w, d): the vertices
of this graph are the w walkers together with their position they are occupying on
T at time t , and there is an edge between two walkers if their Euclidean distance
is at most d (if more than one walker occupies a vertex of the grid, the authors do
not consider the corresponding multigraph and consider that position of the grid as if
there was only one walker). The authors then study the behavior (as N → ∞) of the
connectivity and disconnectivity of Wt (T, w, d) for any t ∈ N, where W0(T, w, d)
is formed by the initial distribution of the walkers on T (see Fig. 6.3 for a toy
example of one step).

The paper first examines the initial static case W0(T, w, d), which is a snapshot
of the process at one point in time: in particular, the paper studies the distribution of
the number of isolated vertices of W0(T, w, d) as well as some other information
which helps to answer the dynamic questions. Define h to be the number of grid
points within distance d of any fixed point in T . Clearly, h = Θ(d2). If d = Ω(n),
then W0(T, w, d) is connected a.a.s., so the interesting case is d = o(n), i.e., h =
o(N ). Furthermore denote by ρ = w/N be the expected number of walkers at a
vertex and define the parameter μ = N

(
1 − e−ρ

)
e−hρ . The authors first prove that

in the static initial case at time t = 0, Pr [W0(T, w, d) is connected] = e−μ+o(1).
Using the information from the static case, in the dynamic setting, the crux of

the paper is the study, as t evolves, of the birth and death of isolated vertices, and
the sudden connection and disconnection of Wt (T, w, d). Let LDt be the random
variable counting the length of the disconnected period (similarly, a random variable
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t=1, d=3

Fig. 6.3 A step of the walkers’ problem on the grid. The solid line represents direct communica-
tions of the ad hoc network, the dashed line represents communication between nodes that are at
distance more than d

LCt counting the length of the connected period is considered) starting at time step
t provided that it really starts to be disconnected at t . Define the average length of
a disconnected period starting at time t to be LDav := E (LDt | LDt > 0), which
is independent of t , and is a function of N , d, and w. The authors show that the
following hold about LDav:

LDav ∼

⎧
⎪⎨

⎪⎩

eμ−1
μbρ if dρ → 0
eμ−1

1−e−λ if dρ → c

eμ if dρ → ∞

where b = Θ(d) is a function related to the boundary of the ball of radius r in T

and λ =
(

1 − e−bρ
)
μ with 0 < λ < μ for dρ → c. Furthermore, LDt converges

in probability for t → ∞ (N fixed) to a random variable LD, where LD ∼ LDav
a.a.s. Similar results can be given for the average length of connected periods. For
the proof, the authors calculate joint factorial moments of variables accounting for
births, deaths, and survivals of isolated vertices, and they show that the connectivity
(disconnectivity, respectively) of the graph is asymptotically equivalent to the non-
existence (existence, respectively) of isolated vertices.

The results in the paper are proved in full generality, under any norm and for
T = [0, 1)m for m = Θ(1). Also, the paper proves results on the connectivity and
disconnectivity periods for the case when the underlying graph of fixed paths is a
cycle.

• The DRGG model with radii rc. The paper [15] studies the connectivity of a ran-
dom direction type model for MANETs. The model is a RGG at the connectivity
threshold rc, where all vertices move at the same speed. This dynamic model is
denoted by the authors as the dynamic random geometric graph. More formally,
the model is the following: at the starting of the process (t = 0), n nodes are
scattered independently and uniformly at random in the unit torus [0, 1)2. At any
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time t ∈ {0, 1, 2, 3, . . .}, two nodes are connected if their Euclidean distance
is at most r . The authors fix the value of r to be the value at the connectivity

threshold for static RGG, i.e., r = rc =
√

log n±O(1)
πn . The dynamic model is the

following: given two positive reals s = s(n) and m = m(n), at any time step
t , each node i jumps a distance s in some direction αi,t ∈ [0, 2π). The initial
angle αi,0 is chosen independently and uniformly at random for each node i and
then at each time step each node changes its angle independently with probability
1/m. Thus, the number of steps a node has to wait before changing its direction
follows a geometric distribution with expectation m. New angles are also selected
independently and uniformly at random in [0, 2π) (see Fig. 6.4 for a toy example
of the changes of the graph in a single step).

The goal of the paper is to analyze the expected length of (dis)connectivity peri-
ods of the underlying graph. To state the main result more formally, denote by Ct

the event that the random graph is connected at time t and similarly denote by Dt the
event that the graph is disconnected at time t . Furthermore, define Lt (C) to be the
random variable counting the number of consecutive steps that C holds starting from
time t (possibly ∞ and also 0 if Ct does not hold). Lt (D) is defined analogously by
interchanging C with D. It can be shown that the distribution of Lt (C) and Lt (D) is
independent of t . Define also

λC = E (Lt (C) | Dt−1 ∧ Ct ) and λD = E (Lt (D) | Ct−1 ∧Dt )

that is, λC (λD, respectively) count the expected number of steps that the graph stays
connected (disconnected, respectively) starting at time t conditional upon the fact
that it becomes connected (disconnected) precisely at time t . The main result of the
paper is the following: if srn = Θ(1), then

λC ∼ 1

1 − e−μ(1−e−4srn/π )
and λD ∼ eμ − 1

1 − e−μ(1−e−4srn/π )

s

r

s

r

Fig. 6.4 A step in the DRGG. Starting at a given ad hoc graph (left picture), every node chooses a
new direction chosen at random (center picture), creating a new ad hoc graph (right picture)
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Otherwise, it is

λC ∼
{

π
4μsrn if srn = o(1)

1
1−e−μ if srn = ω(1)

and λD ∼
{
π(eμ−1)

4μsrn if srn = o(1)

eμ if srn = ω(1)

One can observe that for srn = o(1) and srn = ω(1) the results of λC and λD
correspond to the respective limits in the case when srn = Θ(1). These results have
various consequences; on the one hand the expected number of steps in a period
of connectivity (disconnectivity) does not depend on m, that is, it does not depend
on how often the nodes change their direction. On the other hand, λC and λD are
non-decreasing in s. The intuition behind this is as follows: if the distances between
two time steps are big, the correlations between two consecutive steps are smaller,
and connectivity/disconnectivity changes more frequently. For a very large s (case
srn = ω(1)), λC and λD do not depend on s anymore, since for such a value of s
two consecutive steps are roughly independent. Finally, one can observe that in the
case srn = o(1) models the underlying continuous-time model very well: denote
by τC = sλC (τD = sλD, respectively) the distance covered by each vertex during
a connectivity (disconnectivity) period. Then,

τC ∼ π

4μrn
∼ π

√
π

4μ
√

n ln n
, τD ∼ π(eμ − 1)

4μrn
∼ π

√
π(eμ − 1)

4μ
√

n ln n

which asymptotically do not depend on s. Since these results also hold if s tends to
0 arbitrarily fast, the related continuous-time model has a similar behavior: in that
model the traveled distance during periods of connectivity (disconnectivity) also
does not depend on the average distance sm between changes of angle.

The main ingredient of the proof is the fact that the probabilities needed to com-
pute λC and λD can be expressed in terms of the probabilities of events involv-
ing only two consecutive steps. This is surprising, since in this case (in contrast to
the article [18]) the sequence of connected/disconnected states is not Markovian—
staying connected for a long period of time makes it more likely to remain connected
for one more step. As in the article [18], it turns out that the existence/non-existence
of isolated vertices is asymptotically equivalent to the disconnectivity/connectivity
of the graph, both in the static case and for two consecutive steps. Although the
proof is technically very different from the one in [18], it is similar in spirit: the
characterization of the changes of the number of isolated vertices between two con-
secutive steps is based on the computation of the joint factorial moments of the
variables accounting for these changes (births/deaths/survivals of isolated vertices).
As in [18], it is not obvious that the probability of existence of components of larger
sizes in the dynamic model is negligible compared to the probability of sudden
appearance of isolated vertices, but in the paper it is shown to be the case.
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6.5.3 The Effect of Mobility to Speed up Message Dissemination
in Sparse Networks

In this section we survey in chronological order three results which show that high
mobility of nodes helps in disseminating information.

• The Source–destination pairs model. The work [27] can be considered as the first
attempt to formally analyze a model of mobility. The model is the following:
there are n nodes (n → ∞) all lying in the disk of unit area. The location
of the i th node at time t is given by the random variable Xi (t). Each of the n
nodes is a source node for one session and a destination node for another session,
and each node i has an infinite stream of packets to send to its destination d(i).
The source–destination (S–D) association is established initially and does not
change over time. The nodes are mobile, but the mobility model described by
the authors is non-constructive: the process {Xi (·)} is stationary and ergodic with
stationary distribution uniform on the disk, and trajectories of different nodes are
independent and identically distributed. It is a drawback of the paper, that the
exact movement of the nodes is not explained: in particular, it is not clear what
happens when a node touches the boundary of the disk. Recall that as mentioned
before, boundary effects can change the distribution. The information exchange
is not restricted to nodes within a certain distance, but it is the following: at
slotted time t , node i has transmission power Pi (t). Denote by γi j (t) the channel
gain from node i to node j , such that the received power at node j is Pi (t)γi j (t).
Formally, γi j (t) is defined as 1

|Xi (t)−X j (t)|α , where α is a parameter greater than 2.
Node i can transmit to node j if

Pi (t)γi j (t)

N0 + 1
L

∑
k �=i Pk(t)γk j (t)

> β (6.2)

where β is the signal-to-interference ratio requirement for successful communi-
cation, N0 is the background noise power, and L is the processing gain of the
system, it can be taken to be 1. Intuitively speaking, on the one hand, the closer j
to i at time t , the bigger γi j (t), and the more likely it is that node i can transmit a
packet to node j . On the other hand, relative distances between nodes also play a
role: if a node i is close to neighbor j , but j has many other neighbors very close,
and at the same time i is further away from another node j ′, whose neighbors are
all further away than i , it might happen that i is able to transmit to j ′ and not
to j . In the following it is assumed that all nodes transmit at the same power
P . Whether or not a node transmits to another one is decided by an external
scheduler. Every node is assumed to have an infinite buffer to store packets, and
when packets are transmitted from source to destination, they can go through one
or more other nodes serving as relays. The goal is to find a scheduling policy
with high long-term throughput. To make this concept more precise, define by
Mπ

i (t) the number of source node i packets that d(i) receives at time t under the
scheduling policy π . A throughput λ(n) is feasible, if there exists a policy π such
that for every S–D pair i we have
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lim
T→∞∞

T∑

t=1

Mπ
i (t) ≥ λ(n)

and the goal is to maximize λ(n).

The authors first prove a lower bound in a dynamic model where relay nodes
are forbidden. More precisely, they show that there exists a constant c > 0 such
that the probability of having a throughput of at least cn−(1/(1+α/2)) tends to 0 for
n sufficiently large. The theorem is stronger if α is closer to 2: if α → 2, the prob-
ability of a throughput of c/

√
n tends to 0. This is the same lower bound as in the

static model [23]. The intuition behind this result is the following: if long distances
are allowed, then interference limits the number of concurrent transmissions. If a
scheduling policy allows only short transmissions, then only a small fraction of
S–D pairs is sufficiently close to transmit a packet.

Next, as a main result of their paper, the authors show that mobility helps if inter-
mediate relay nodes are permitted. If for every S–D pair every other node can serve
as intermediate relay (that is, at different time slots different nodes may contain part
of the packet stream between i and d(i)), an asymptotically optimal throughput of
λ(n) = c for some c > 0 can be attained. To prove this the authors consider the
following scheduling policy: every packet is relayed at most once. For every time
slot t , the set of nodes is randomly partitioned into a set of potential senders (of
size sn for some constant s > 0) and potential receivers. Each sender node may
transmit packets to its nearest neighbor among all receiver nodes, and the sender
indeed transmits if the interference generated by other senders is sufficiently small
(according to the formula given in (6.2)). The algorithm runs in two interleaved
phases: in phase 1 (in odd time slots, say) packets are sent only from source nodes
to relays (or directly to the destination node), in phase 2 (in even time slots, say)
packets are sent only from relays to destination nodes. The proof of the result uses
the fact that at any particular moment in time the distribution of the points is uniform
on the disk, together with some results on the asymptotic distribution of extrema of
i.i.d. random variables. We recall once again, that is not clear how the nodes move
and what happens when touching the boundary.

• The DRGG model below rt. In the work [38] the authors study a very general
random direction-type model with a radius below the threshold of the existence
of a giant component. More precisely, the authors consider the following model:
at the beginning n nodes (n → ∞) are distributed uniformly at random in a
square A = L × L, where L = c

√
n for some large constant c > 0. Two nodes

can exchange information if they are within Euclidean distance 1. It is assumed
that information exchange takes zero time, once two nodes are at distance ≤ 1.
By the choice of L , n/A tends to a small constant (n/A < 1/π ), which in the
static case corresponds to a random geometric graph below the thermodynamical
limit rt = c/

√
n. Recall in Sect. 6.2 we already pointed that for a radius r below

the thermodynamical limit rt, the RGG is disconnected and it does not have
yet a giant component. The mobility model is the following: the nodes follow



6 Theoretical Aspects of Graph Models for MANETs 183

random trajectories with Poisson rate τ , keeping uniform speed between direction
changes. When a node hits the boundary at an incidence angle θ , it follows the
mirror reflection policy, i.e., the node bounces back at angle π − θ . Therefore,
the probability density for a node to travel a time t in a certain direction before
changing the direction is

1

2π
τ exp (−τ t)

where τ is a parameter controlling the speed of change. Notice that if τ → ∞
then the mobility represents Brownian motion, while if τ → 0 the mobility repre-
sents a random waypoint model with the mirror reflection policy, where the nodes
only change direction when touching the boundary of the square. The factor 1

2π
comes from the fact that every angle has the same probability to be chosen.

The authors give an upper bound on the speed at which information can be prop-
agated between any pair of nodes. Recall that in the static case information between
most pairs of nodes cannot be propagated since the largest connected component for
the value of ν := n/A to be considered has size O(log n). The authors show that
mobility helps to propagate information. In order to state the result more precisely,
consider a node that starts at coordinate z0 = (x0, y0) at time t = 0 that wants to
propagate information to a destination node starting at coordinate z1 = (x1, y1). The
authors show that the destination node can be assumed to be fixed without changing
the asymptotic results of the analysis. Denote by qν(z0, z1, t) the probability that the
destination receives the information before time t (n is assumed to be large, but the
density ν is a constant). A scalar s0 > 0 is called an upper bound for the propagation

speed, if for all s > s0, lim qν
(

z0, z1,
|z0−z1|

s

)
= 0 whenever |z1−z0| → ∞. Using

this definition, the authors show that an upper bound on the information propagation
speed is

min
ρ,Θ>0

⎧
⎪⎨

⎪⎩

Θ

ρ
with Θ =

√√√√ρ2v2 +
(

τ +
n
A4πv I0(ρ)

1 − n
Aπ

2
ρ

I1(ρ)

)2

− τ

⎫
⎪⎬

⎪⎭
(6.3)

where v is the maximum node speed, I0() and I1() are modified Bessel functions

defined by I0(x) = ∑
k≥0

( x
2

)2k 1
(k!)2 , and I1(x) = ∑

k≥0

( x
2

)2k+1 1
(k+1)!k! . To get

some intuition about this bound and its involved parameters, note that the quantities
I0(x) and 2

x I1(x) are both larger than 1, and therefore the expression has meaning if
n
A < 1

π
, as above the thermodynamical limit there is a giant component, and there-

fore the information propagation speed is infinity. Observe also that the obtained
value is larger if τ is larger. Such a behavior is expected, since changing directions
more frequently may result in faster information propagation and therefore the prop-
agation speed might be higher. Finally, ρ and Θ are parameters that correspond to
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the Laplace transform of the sequence of nodes such that a piece of information is
visiting on its way from source to destination (see below for a rough explanation).

To prove the result (6.3), the authors decompose the journey (which is the
sequence of nodes a piece of information undergoes from the source to the destina-
tion) into different segments. These segments either correspond to node movements
through which the information is propagated or to direct propagations between two
nodes, when a node immediately, without movement, propagates the information
to another one due to the fact that the two nodes are at distance ≤ 1. The authors
consider the segments as independent, which is not true, since, for example, two
consecutive nodes in the sequence are more likely to move in opposite directions
or node speeds are different, and a faster moving node meets more nodes, but they
show that in this way they prove an upper bound on the propagation speed for the
real model, and hence the assumption is justified.

On the technical side, the authors compute the Laplace transform of the prob-
ability density of a fixed journey of length k, defined as a journey where k + 1
nodes participate in the process of information propagation from the source node
to the destination node. Since the segments are considered to be independent, the
Laplace transform of the journey is the product of the Laplace transform of the
segments. In particular, the Laplace transform of such a journey does not depend
on the particular nodes participating, but only on the length of the journey. As the
journey, however, is not known in advance, the authors consider the Poisson gen-
erating function G(Z , (ρ,Θ)) whose nth coefficient is the Laplace transform of all
journeys in a network with n nodes in a square of size A. They show that this gener-
ating function is equivalent to an ordinary generating function whose kth coefficient
is the Laplace transform of the probability density of a fixed journey of length k.
Hence, for n → ∞ an upper bound for the asymptotic behavior of qn(z0, z1, t)
can be calculated from simpler expressions for journeys composed of independent
segments. The asymptotic growth of the Laplace transform of qν(z0, z1, t) is then
obtained by those values of (ρ,Θ) for which the denominator corresponding to the
nth coefficient of the Poisson generating function G(ν, (ρ,Θ)) vanishes. The final
expression for qν(z0, z1, t) is then obtained using the inverse Laplace transform.

One has to point out that the conference version of the article, although sounding
very plausible, is not easy to read. In particular, the probability spaces are not clearly
defined.

• The hybrid grid model approximating DRGG, for r > rt. In the Chapter, Informa-
tion Spreading in Dynamic Networks: An Analytical Approach, Andrea Clementi
and Francesco Pasquale give an extensive presentation of this model and other
previous related models in the specific framework of information spreading in
dynamic networks. However, for completeness of our survey, we also briefly
sketch the model. We refer the reader to the mentioned chapter in the present
book. In the model used by [13] a RGG is approximated by a very fine grid on
which the nodes are restricted to move. Hence, it is a discretized version (with
respect to both time and space) of the models used in [38]: there are n nodes
(n → ∞) moving on the corner points of a grid inside a square of size

√
n. In
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more detail, for some given ε > 0, at any time t the nodes occupy one position
of L(n, ε), where

L(n, ε) =
{
(iε, jε) | i, j ∈ N ∧ i, j ≤

√
n

ε

}

The position at time t = 0 is chosen uniformly at random, independently for
all nodes, and at any fixed time slot t two nodes are connected by an edge if
their Euclidean distance is less than r . Here r ≥ r0, where r0 is a sufficiently
large constant. Therefore, the graph contains a giant component, but is not nec-
essarily connected a.a.s., which would happen only for r ≥ c log n. The mobil-
ity model is the following: for a given move radius ρ, define the move graph
Mn,ρ,ε = (Ln,ε, En,ρ,ε), where

En,ρ,ε = {(p, q) | p, q ∈ Ln,ε, (p, q) ≤ ρ}

and d(·, ·) is the Euclidean distance. Furthermore, for any position p in the square,
define by Γ (p) = {q | (p, q) ∈ En,ρ,ε}. A node at position p at time t chooses
uniformly at random its position at time t + 1 among all elements of Γ (p). In other
words, it chooses a random node in a ρ-vicinity of the original position (see Fig. 6.5
for toy example of one step in the present model). Initially, at time t = 0, one node,
the source node, contains a message that should be broadcast to every other node of
the network. Whenever at a certain time slot t one node u contains the message and
there is another node v within distance r that does not yet contain it, the message is
broadcast from u to v. It is assumed that transmission takes zero time. Recall that

ε

r ρ

Fig. 6.5 Two consecutive time steps in the model of [13]. On the left the graphs at some fixed
time t , where a node connected with all the other nodes at distance ≤ r . Right picture: the resulting
graph after a movement of each vertex of a distance ≤ ρ. The trajectory of movement is indicated
by the light dotted arrows
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the flooding time is the number of time steps required to broadcast the message to
all nodes in the network.

The authors prove the following: if ρ ≥ c log n for some constant c > 0, then the
flooding is a.a.s. completed after

O

(√
n

ρ
+ log n

)

time steps, which is asymptotically almost tight since the expected flooding time is
Ω
(√

n/ρ
)
. That is, if the move radius is sufficiently large (i.e., the node velocity

is sufficiently high), the flooding time is independent of r (as long as r ≥ r0).
This is especially interesting for r below the connectivity threshold: flooding can be
completed although at every time step the graph is disconnected.

The proof of the result uses a tessellation argument; the square is subdivided into
supercells of side lengthΘ(ρ). The proof proceeds in the following three steps: first,
it is shown that after O(log n) time steps there is a.a.s. at least one supercell which
contains Θ(ρ2) informed nodes (the supercell is called quasi-informed). Next, in a
second phase, it is shown that, with high-probability, any quasi-informed supercell
at time t makes all its adjacent supercells quasi-informed at time t + 1. Since any
supercell set D has a boundary of size at least Θ

(√|D|), after O
(√

n/ρ
)

time
steps all supercells are quasi-informed a.a.s. Finally, in a last phase, it is shown that
in O(log n) time steps a.a.s., any quasi-informed cell becomes completely informed.
That is, all nodes of that cell contain the message that should be broadcast.

6.6 Conclusions

We surveyed the main theoretical issues when studying models for MANETs. We
described some of the models, where properties have been investigated with a cer-
tain degree of formal rigor.

In particular, in Sect. 6.4 we have presented theoretical characterizations of fun-
damental properties such as node spatial distribution and average velocity, under
the assumption that nodes move according to the RWP mobility model. In the
same section, we have shown how such characterizations have been used to disclose
accuracy issues with wireless network simulation practice and to design a “perfect”
simulation methodology solving these issues.

In Sect. 6.5 we presented recent papers dealing with connectivity issues of
dynamical models, where nodes move synchronously on [0, 1)2. The goal in [51]
is to study how mobility affects the threshold of connectivity. The author gives the
threshold under certain conditions affecting mobility parameters. The papers [18]
and [15] compute the expected lengths of connectivity and disconnectivity periods
of vertices that are moving on a predetermined grid (in the case of [18]) and of
vertices of a dynamic geometric graph whose radius is at the threshold of con-
nectivity (in the case of [15]). The remaining three papers deal with the issue of
how mobility can be used to maintain the transmission range small while at the
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same time allowing for connectivity properties. The papers of [38] and [13] are
complementary: whereas the authors in [38] study random geometric graphs with a
radius below the thermodynamical threshold, the paper [13] considers the case of
radii between the thermodynamical threshold and the threshold of connectivity. The
third paper studied here, the work of [27], is orthogonal to these two since there is
no absolute bound on the radius of transmission, but it also supports the hypothesis
that mobility can help in propagating information.
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and I. Stojmenović, editors, Mobile Ad Hoc Networking, chapter 6, pages 175–204. IEEE
Press, New York, NY, 2004.

43. J.-Y. LeBoudec and M. Vojnović. The random trip model: Stability, stationary regime, and
perfect simulation. IEEE/ACM Transactions on Networking, 14:1153–1166, 2006.

44. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Coverage problems in
wireless ad-hoc sensor networks. In Proceeding of the 19th Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), pages 1380–1387, 2001.

45. M. D. Penrose. The longest edge of the random minimal spanning tree. The Annals of Applied
Probability, 7:340–361, 1997.

46. M. D. Penrose. On the k-connectivity for a geometric random graph. Random Structures &
Algorithms, 15(2):145–164, 1999.

47. M. D. Penrose. Random Geometric Graphs. Oxford University Press, Oxford, 2003.
48. J. Pitman. Probability. Springer, New York, NY, 1999.
49. R. Rajaraman. Topology control and routing in ad hoc networks: A survey. SIGACT News,

33:60–73, 2002.
50. E. M. Royer and C-K. Toh. A review of current routing protocols for ad-hoc mobile wireless

networks. IEEE Personal Communications, 7:46–55, 1999.
51. P. Santi. The critical transmitting range for connectivity in mobile ad hoc networks. IEEE

Transactions Mobile Computing, 4(3):310–317, 2005.
52. P. Santi. Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys,

37:164–194, 2005.
53. P. Santi and D. M. Blough. The critical transmitting range for connectivity in sparse wireless

ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):25–39, 2003.
54. P. Santi, D. M. Blough, and F. S. Vainstein. A probabilistic analysis for the range assignment

problem in ad hoc networks. In Proceedings of the 2nd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, (MobiHoc), pages 212–220, 2001.

55. A. Sen and M. L. Huson. A new model for scheduling packet radio networks. In Proceedings
of the 15th Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), IEEE Computer Society, Los Alamitos, CA, 1997.

56. S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proceedings of the
20th International Parallel and Distributed Processing Symposium (IPDPS), IEEE Computer
Society, Los Alamitos, CA, 2006.

57. S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman. A taxonomy of sensor network communi-
cation models. Mobile Computing and Communication Review, 6:28–36, 2002.

58. J. Tian, J. Hahner, C. Becker, I. Stepanov, and K. Rothermel. Graph-based mobility model
for mobile ad hoc network simulation. In Proceedings. 35th Annual Simulation Symposium,
IEEE Computer Society, Los Alamitos, CA, 2002.

59. E. J. van Leeuwen. Optimization and Approximation on Systems of Geometric Objects. PhD
thesis, Universiteit van Amsterdam, 2009.

60. W. Wang, V. Srinivasan, and K.-C. Chua. Trade-offs between mobility and density for cov-
erage in wireless sensor networks. In Proceedings of the 13th annual ACM international
conference on Mobile computing and networking (MobiCom), pages 39–50, ACM, New York,
2007.



190 J. Díaz et al.

61. P.-J. Wan and C.-W. Yi. Asymptotic critical transmission radius and critical neighbor number
for -connectivity in wireless ad hoc networks. In J. Murai, C. E. Perkins, and L. Tassiulas,
editors, Proceedings of the 5th ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing, pages 1–8. ACM, New York, NY, 2004.

62. P.-J. Wan and C.-W. Yi. Coverage by randomly deployed wireless sensor networks. IEEE
Transaction on Information Theory, 52(6):2658–2669, 2006.

63. X.Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and connectivity
configuration in wireless sensor networks. In Proceedings of ACM SenSys, pages 28–39, 2003.

64. J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In Proceeding of he
21st Annual Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM), IEEE Computer Society, Los Alamitos, CA, 2003.

65. J. Yoon, M. Liu, and B. Noble. Sound mobility models. In D. B. Johnson, A. D. Joseph, and
N. H. Vaidya, editors, Proceedings of the Ninth Annual International Conference on Mobile
Computing and Networking (MOBICOM), pages 205–216. ACM, New York, NY, 2003.

66. J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer Networks,
52:2292–2330, 2008.

67. F. Zhao and L. Guibas, editors. Distributed Environmental Monitoring Using Random Sensor
Networks, vol. 2634, Lecture Notes in Computer Science. Springer, 2003.

68. H. Zang and J. Hou. On deriving the upper bound of alpha-lifetime for large sensor networks.
In J. Murai, C. E. Perkins, and L. Tassiulas, editors, Proceedings of the 5th ACM Interational
Symposium on Mobile Ad Hoc Networking and Computing, pages 16–24. ACM, New York,
NY, 2004.

69. Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay tolerant
networks: Overview and challenges. IEEE Communications Surveys and Tutorials, 8(1-4):24–
37, 2006.



Chapter 7
Networked Distributed Source Coding

Shizheng Li and Aditya Ramamoorthy

Abstract The data sensed by different sensors in a sensor network is typically
correlated. A natural question is whether the data correlation can be exploited in
innovative ways along with network information transfer techniques to design effi-
cient and distributed schemes for the operation of such networks. This necessarily
involves a coupling between the issues of compression and networked data trans-
mission that have usually been considered separately. In this work we review the
basics of classical distributed source coding and discuss some practical code design
techniques for it. We argue that the network introduces several new dimensions to
the problem of distributed source coding. The compression rates and the network
information flow constrain each other in intricate ways. In particular, we show that
network coding is often required for optimally combining distributed source coding
and network information transfer and discuss the associated issues in detail. We
also examine the problem of resource allocation in the context of distributed source
coding over networks.

7.1 Introduction

There are various instances of problems where correlated sources need to be trans-
mitted over networks, e.g., a large-scale sensor network deployed for temperature
or humidity monitoring over a large field or for habitat monitoring in a jungle. This
is an example of a network information transfer problem with correlated sources.
A natural question is whether the data correlation can be exploited in innovative
ways along with network information transfer techniques to design efficient and
distributed schemes for the operation of such networks. This necessarily involves a
coupling between the issues of compression and networked data transmission that
have usually been considered separately (see Fig. 7.1 for an illustration).
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Fig. 7.1 (a) Classical Slepian–Wolf problem with sources X and Y with direct links to a terminal.
(b) Practical scenario with multiple sources and terminals communicating over a network with
link capacity and cost constraints. The joint problem of distributed source coding and network
information transfer introduces various issues that are overviewed in this work

The correlation in a sensor network can be exploited in multiple ways. One can
consider protocols where sensor nodes exchange information among themselves,
compress the information, and then transmit the compressed bits to the terminal.
At the other extreme, the sensors may operate independently. Intuitively, one would
expect that the first scenario would be significantly better from a compression per-
spective. A surprising and groundbreaking result of Slepian and Wolf [1] shows that
in fact under certain situations, the case in which the sensors act independently can
be as efficient as the case in which the sensors do communicate with each other.
The work of [1] introduced the idea of distributed source coding and demonstrated
the existence of encoders and decoders that could leverage the correlation without
needing explicit cooperation between the sources.

In this chapter we review various ideas in distributed source coding that are
interesting within the context of sensor networks. We begin by an overview of the
basic concepts and an outline of certain practical code constructions that have been
the focus of much work recently. Next, we examine distributed source coding in
a network context. The network introduces several dimensions to the problem of
distributed source coding that do not exist in the classical case. It may be tempting
to argue that one could simply find paths in the network that act as the direct links in
the classical problem, assuming that the paths have enough capacity. However, such
an approach is not optimal. The compression rates and the network information
flow constrain each other in intricate ways. In particular, it turns out that network
coding [2] is essential in certain cases for optimality. Interestingly enough, the flavor
of results in this area depends upon the number of sources and terminals in the
network. We survey these in a fair amount of detail in this chapter and examine the
relationship between network coding and distributed source coding.

The issue of resource allocation is very important in the field of networking.
For example, optimal routing of packets that maximizes some utility function of
the network is a well-investigated issue in the field of networking [3]. Several tech-
niques for solving these problems in a distributed manner have been studied in the
literature [4]. In this chapter we discuss resource allocation problems in the context
of transmitting correlated sources over a network. The main difference here is that
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one needs to jointly allocate the rates and the flows in the network. In particular, the
network capacity region and the feasible rate regions interact in non-trivial ways.

This chapter is organized as follows. We discuss the basics of distributed source
coding in Sect. 7.2 and introduce the problem of networked distributed coding in
Sect. 7.3. Sect. 7.4 presents the discussion for the case of networks with a single
terminal and Sect. 7.5 considers the case of networks with multiple terminals.

7.2 Basics of Distributed Source Coding

A sensor network consists of various sensors that monitor some physical phe-
nomenon, e.g., an agricultural sensor network may be deployed in a field for tem-
perature or humidity monitoring. In this chapter we will use the terms sensor and
source interchangeably. Furthermore, a sensor output at a given time is assumed to
be a random variable. Hence, over time, the observations of a sensor can be treated as
a vector of random variables. We assume that the source outputs a sequence of inde-
pendent and identically distributed (i.i.d.) random variables. While this assumption
may not hold in a strict sense, we will see that it serves to simplify our exposition.
Many of the results discussed in this chapter also hold for the case of sources with
memory. However, we will not discuss them here.

Formally, we denote n successive realizations of a source X by X1, X2, . . . , Xn ,
such that their joint distribution p(X1, . . . , Xn) = �n

i=1 p(Xi ). If there is
another correlated source Y , the joint distribution p(X1,Y1, X2,Y2, . . . , Xn,Yn) =
�n

i=1 p(Xi ,Yi ), i.e., at a given time instant, the sources are correlated but across
time they are independent.

In a sensor network, the main problem is to convey either the sensor readings or
their functions (e.g., mean, variance) to a terminal. The transmission protocol needs
to be efficient in terms of the number of bits transmitted. If the correlation between
the sources is ignored and if the terminal needs to recover the source without any
distortion, the compression rate should be at least the entropy [5, 6] of the source.
For example, if there are two sources X and Y , this implies that the terminal needs
to receive H(X)+ H(Y ) bits per unit time for recovering both X and Y .

Clearly, if there is correlation across sensors, the overall bit rate required for
transmission to the terminal can be reduced. This is certainly feasible if the sources
communicate with each other. The famous result of Slepian and Wolf [1] shows that
distributed source coding, where the sources do not communicate with each other,
can be as efficient as the case in which the sources communicate with each other.

7.2.1 Slepian–Wolf Theorem

Consider two sources X and Y . Let RX and RY denote the rates at which the sources
operate. This means that the sources X and Y transmit RX and RY bits per unit time
to the terminal.
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Theorem 1 (Slepian–Wolf Theorem [1]) Consider memoryless correlated sources
X and Y from finite-sized alphabets X ,Y respectively, with joint distribution
p(X,Y ). Suppose that

RX ≥ H(X |Y )
RY ≥ H(Y |X)

RX + RY ≥ H(X,Y )

There exist encoding functions f1 : X n → {1, 2, . . . , 2n RX } at source X
and f2 : Yn → {1, 2, . . . , 2n RY } at the source Y and a decoding function
g : {1, 2, . . . , 2n RX } × {1, 2, . . . , 2n RY } → X × Y at the terminal, such that the
terminal is able to recover the source sequences with vanishing error probability
as n goes to infinity. Conversely, if RX , RY do not satisfy those conditions, it is
impossible to recover the sources with vanishing error probability.

The implication of the Slepian–Wolf theorem is rather surprising and profound.
Intuitively, it is clear that there is no hope of compressing the sources to a rate of less
than H(X,Y ) even if they communicate with each other. The Slepian–Wolf theorem
shows that in fact one can do this even when the sources do not communicate with
each other.

The achievability proof goes as follows. A length n X -sequence is compressed
to a binary vector of length n RX by encoding function f1 that is chosen at random.
This process is referred to as random binning [6] in the literature, as each sequence
is assigned a bin whose index is determined by f1. Similarly, f2 returns the bin index
of a Y -sequence. At the terminal, suppose bin indices (i, j) are received. The decod-
ing function finds all the length n sequences x, y such that f1(x) = i, f2(y) = j and
find the pair of sequences that are most likely to have been transmitted. When n is
large, with high probability, such sequence pair is the actual transmitted sequence
pair. In other words, the error probability is vanishing as n goes to infinity.

The rates satisfying conditions are called achievable rates and they form a region
in the 2-D plane shown in Fig. 7.2.

The two corner points on the boundary are interesting. They correspond to a
rate allocation (RX , RY ) = (H(X), H(Y |X)) or (RX , RY ) = (H(X |Y ), H(Y )).
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R2H(X2|X1)

H(X1)

H(X2)

R1+R2=H(X1,X2)
Slope

H(X1|X2)

O

Fig. 7.2 Slepian–Wolf Region in the case of two sources X and Y
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In order to achieve one of these points, say the first one, since RX = H(X), any
lossless compression scheme can be used to compress x. Then, x is used as side
information to help decode y at the decoder. The rate of Y is H(Y |X), i.e., the
amount of uncertainty given X .

Code design in the case when side information is available at the decoder is called
the asymmetric Slepian–Wolf coding problem [7]. Code design for achieving any
general (non-corner) point is called the symmetric Slepian–Wolf coding problem.
There are many practical code designs for both asymmetric coding and symmetric
coding when we have only two sources. In general, asymmetric Slepian–Wolf cod-
ing is easier than the symmetric case, because of a certain equivalence with channel
coding, that we will discuss shortly. We refer the reader to [7] and the references
therein for detailed descriptions.

The theorem above is stated for two sources. In general, when there are N
sources, we have a generalized Slepian–Wolf theorem [8]. Suppose the sources
X1, X2, . . . , X N are generating i.i.d. symbols according to the joint probability dis-
tribution p(X1, X2, . . . , X N ). Let Ri denote the rate for source Xi and S denote
a nonempty subset of node indices: S ⊆ {1, 2, . . . , N }. Let X S denote the set of
random variables {Xi : i ∈ S}. If the rate vector (R1, R2, . . . , RN ) satisfies

∑

i∈S

Ri ≥ H(X S|X Sc ) for all S �= ∅

the decoder is able to recover all sources error free (asymptotically). Conversely, if
the rates do not satisfy the condition, lossless recovery is impossible. When there
are multiple sources, practical code design is a challenging problem. Some coding
schemes exist, e.g., [9–11], but they either suffer suboptimal rate or have strong
assumptions on the correlation model.

7.2.2 Equivalence Between Slepian–Wolf Coding and Channel
Coding

The proof of the Slepian–Wolf theorem is information theoretic in nature and the
corresponding achievability scheme requires exponential (in n) complexity decod-
ing in general. For the case of two sources, and asymmetric Slepian–Wolf coding,
Wyner [12] discovered the relation between channel coding and Slepian–Wolf cod-
ing. Most existing work on Slepian–Wolf coding for two sources relies on Wyner’s
idea and exploits powerful channel codes such as Turbo codes and LDPC codes
[13–19]. Here, we introduce the basic ideas for asymmetric Slepian–Wolf coding.

First we review the concepts of channel coding [20], especially on linear block
codes. A (n, k) linear block code over a finite field G F(q) maps each message of
length k (i.e., a k-length vector ∈ G F(q)) to a codeword c of length n (i.e., an
n-length vector ∈ G F(q)). The codeword is transmitted through a channel, which
introduces an error e. The receive vector is r = c + e (addition over G F(q)), where
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e denotes the error vector. The decoder takes r as input and attempts to find the
correct c. In classical coding theory, the errors are modeled according to their Ham-
ming weight, i.e., the number of nonzero elements in e. An important design param-
eter of a code is the minimum Hamming distance d (the number of positions where
two codewords take different values). A code with minimum distance d is able to
correct up to �(d − 1)/2� errors, i.e., as long as the Hamming weight of e, wt (e) ≤
�(d −1)/2�, the decoder can find the error pattern e and the transmitted codeword c.

The parity check matrix of a linear block code is a (n − k) × n matrix H such
that cH T = 0 (matrix multiplication over G F(q)) for every codeword c. A practical
decoding algorithm for a linear block is called syndrome decoding. The decoder
computes the syndrome of length (n − k) s = rH T . Since rH T = cH T + eH T ,
s = eH T , implying that the syndrome only depends on the error pattern. It then
attempts to find the e with the least weight. This can be done efficiently for specific
classes of codes. For example, Berlekamp–Massey algorithm for BCH codes and
Reed–Solomon codes [20] can be used to find the error pattern e from s as long as
wt (e) ≤ (d − 1)/2. Likewise, binary LDPC codes admit efficient decoding.

We now demonstrate that syndrome decoding can be applied to the asymmetric
Slepian–Wolf coding problem. Assume that the source sequences x, y have length
n and the correlation model is that the Hamming distance between them is no more
than t , i.e., they differ at most t positions. Suppose y is available at the decoder. At
source X , we transmit xH T to the terminal. The terminal computes yH T + xH T =
(x + y)H T = eH T, where e = x + y is the difference between x and y.1 We know
that x and y differ in at most t positions, so wt (e) ≤ t . The decoder is able to find e
as long as the minimum distance of the channel code is at least 2t + 1 based on the
discussions above. Once e is obtained, x = y + e can be easily computed. Thus, a
length n vector x is compressed to a length (n − k) vector xH T . Since the minimum
distance of a code should satisfy Singleton bound d ≤ n − k + 1 [20], the length
n − k should be at least 2t .

In order to establish a concrete relationship with Slepian–Wolf theorem, next we
consider a probabilistic correlation model. Consider binary sources X and Y that
are uniformly distributed. The correlation between them is that the probability that
they are different is p < 0.5. In other words, each bit in the vector e = x + y is
1 with probability p and 0 with probability 1 − p. Then, H(X |Y ) = Hb(p),2 and
H(X,Y ) = 1 + Hb(p).

Now, consider the channel coding problem for the binary symmetric channel
(BSC) with crossover probability p. The codeword c is transmitted and r = c+ e is
received and e is i.i.d. taking value 1 with probability p. The capacity of this channel
is 1 − Hb(p) [6]. The receiver computes the syndrome s = rH T = eH T . It can be
shown that there exists an H and the decoding function fdec(·) such that the code

1 In this chapter, assume that the size of the finite field is a power of 2 so addition and subtraction
are the same.
2 Hb(p) is the binary entropy function defined as Hb(p) = −p log2 p − (1 − p) log2(1 − p).
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rate k/n → 1 − Hb(p) as n → ∞ and the decoding error can be made arbitrarily
small [21]. Such a code is called a capacity-achieving code.

In an asymmetric Slepian–Wolf coding setting, suppose that the decoder knows
y. Let RY = H(Y ) = 1 and apply any lossless entropy coding scheme [6], y can be
recovered at the terminal. Take the parity check matrix of a capacity-achieving code
H and the source X transmits xH T . The terminal finds the estimate of x,

x̂ = y + fdec(xH T + yH T )

The probability that x̂ �= x is arbitrary small. Note that the length of vector trans-
mitted by source X is n − k, so the rate

RX = (n − k)/n = 1 − k/n = Hb(p) = H(X |Y )

Thus, using a capacity-achieving channel code, we can achieve the corner point
(H(X |Y ), H(Y )) of the Slepian–Wolf region.

In practice, LDPC codes [22] come very close to the BSC capacity. The belief
propagation algorithm (BPA) [22] acts as the decoding function fdec(·). Note that in
the channel coding setting, the belief propagation algorithm is designed to output a
codeword c with 0 syndrome, whereas in the distributed source coding setting, the
BPA needs to be modified so that it outputs a vector satisfying a given syndrome.
More generally, even if the correlation model cannot be viewed as a binary sym-
metric channel, we can provide proper initialization to the BP algorithm according
to the correlation model. Turbo codes can also be used to achieve compression via
puncturing at the encoder; the extrinsic information exchange at the decoder exploits
the correlation between the sources [23–25].

The equivalence in the asymmetric case does not carry over in a straightforward
manner to the symmetric case. However, an approach called source splitting [26, 27]
allows us to transform the symmetric Slepian–Wolf coding problem for N sources
to an asymmetric (corner point) problem where there are 2N − 1 sources.

7.2.3 Distributed Source Coding with a Fidelity Criterion

In the previous sections we considered the problem of lossless reconstruction. In
many practical applications, we may allow a certain amount of distortion in the
recovery process. In lossy multiterminal source coding, each source encodes its own
data at a certain rate and transmits it to the terminal. The terminal tries to recover
all the sources under a fidelity criterion. The fidelity is measured with respect to a
distortion metric.

More specifically, the encoders observe source sequences x1, x2, . . . , xN emit-
ted by the sources X1, X2, . . . , X N and encode them at rate R1, R2, . . . , RN sep-
arately (with no communication between the encoders). Given distortion metrics,
D = (D1, D2, . . . , DN ) for each source, we hope to find the region R(D) of all rates
R = (R1, R2, . . . , RN ) that allow the decoder to reconstruct x̂1, x̂2, . . . , x̂N such
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that the expected distortion between xi and x̂i is less than Di for all i = 1, 2, . . . , N .
However, the general region even in the case of very specific distortion metrics
remains unknown.

The inner bound for a given problem refers to a set of rates that can be shown
to be achievable. The outer bound refers to a set of rates that are not achievable
under any strategy. Some inner/outer bounds for the general problem can be found in
[28–30]. In most cases the inner and outer bounds do not meet, i.e., the exact region
is unknown. A tighter outer bound was obtained recently [31] and some insights on
the optimal encoders and decoders are given in [32]. The quadratic Gaussian case
was considered in [33, 34], where the rate-distortion regions for several special cases
are determined. Practical code design for multiterminal rate-distortion problems is
discussed in [35, 36].

Next we discuss two special cases of multiterminal source coding problems, for
which the rate-distortion regions are relatively well studied.

7.2.3.1 Wyner–Ziv Coding

Consider two correlated sources X and Y that follow joint distribution p(X,Y ).
The source sequence x needs to be encoded without knowing y and transmitted to
the decoder, at which side information y is available. Let the distortion between
two n length sequences x and x̂ be measured as 1

n

∑n
i=1 d(xi , x̂i ), where d is a

non-negative function. The rate-distortion function RW Z (D) gives the minimum
required rate such that the expected distortion between the actual source sequence x

and the decoder output x̂ is upper bounded by D, i.e., E
(

1
n

∑n
i=1 d(xi , x̂i )

)
≤ D.

Clearly, if D = 0, it is the special instance of Slepian–Wolf problem at corner point
(H(X |Y ), H(Y )). In general, the rate-distortion function was shown by Wyner and
Ziv [37] to be

RWZ(D) = min
PU |X (·), f (·):E(d(X, f (U,Y )))≤D

I (X;U )− I (Y ;U )

where U is an auxiliary random variable and is such that U → X → Y , i.e.,
U, X,Y form a Markov chain and the expectation is taken over the joint distribution
of X,Y,U . The function f is the decoding function.

In the Slepian–Wolf setting (i.e., D = 0), we know that minimum required rate
is H(X |Y ), whether or not Y is available at the X encoder. When D > 0, let us
denote the rate required when Y is available at the source encoder as RX |Y (D).
It can be shown that in some cases RX |Y (D) < RW Z (D). In other words, we may
lose efficiency when encoding correlated sources separately rather than jointly when
D > 0. In the special case when the sources are correlated by X = Y + Z where Y
and Z are both Gaussian and Z is independent of Y , RX |Y (D) = RW Z (D) [37]. In
many other correlation models, the equality does not hold.

Practical coding schemes for the Wyner–Ziv problem based on nested codes [38,
39] are known. Nested lattice codes can be used in the quadratic Gaussian case and
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can be shown to achieve the Wyner–Ziv bound. Other practical Wyner–Ziv code
designs include trellis-based codes [13], nested coding followed by Slepian–Wolf
coding [40], quantization followed by Slepian–Wolf coding [41, 42]. The discussion
of these techniques is beyond the scope of this survey.

7.2.3.2 The CEO Problem

In the CEO problem [43], there is one source X and N encoders that do not observe
the source directly. Instead, each encoder observes a corrupted version of X , denoted
as Yi , i = 1, 2, . . . , N . The Yi ’s are assumed to be conditionally independent
given X . The encoder encodes yi at rate Ri and such that the total encoding rate
is
∑N

i=1 Ri ≤ R. The decoder finds the x̂ (the estimate of x,), based on the encoded
codewords. The aim is to find the rate-distortion function R(D), i.e., the minimum
total encoding rate needed such that the expected distortion between x and x̂ is
at most D. This is analogous to a situation when a Chief Executive (or Estima-
tion) Officer obtains information from N agents and wants to estimate the source
sequence x that he or she is interested in. In a sensor network application, we can
think of the data fusion center acting as the CEO and the sensors act as the agents.
The problem formulation takes into account the noise in the sensing procedure. The
original paper [43] determined the asymptotic behavior of the error frequency when
R → ∞ for discrete memoryless source. The quadratic Gaussian case of the CEO
problem, where X is Gaussian and the observation noises Yi − X are independently
Gaussian distributed, is studied in [44–46] and the rate-distortion function is deter-
mined in [45, 46].

7.3 Networked Distributed Source Coding: An Introduction

In the previous sections we have discussed the classical Slepian–Wolf result and its
lossy variants. Note that so far we have assumed that there is a direct noiseless link
between the sources and the terminal. This is a useful simple case to analyze and
captures the core of the problem as far as the basic concept of distributed source
coding is concerned. However, in a practical sensor network we expect that the
sensors will be communicating with the terminal over a network, possibly with the
help of various relay nodes. Therefore, it is natural to investigate whether the process
of information transmission over the network influences the compression and vice
versa. Our network model represents a wireline network or a wireless network with
medium access control (MAC) protocols that make the channels look independent
(we discuss the network model in more detail later). In this part of the chapter, we
overview relatively recent work that has contributed toward our understanding of
this field.

The problem of networked distributed source coding differs from the classical
problem in the following ways.
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• Suboptimality of separation between distributed source coding and network
information transfer.
Note that the problem of distributed source coding over networks would be a
straightforward extension of the classical Slepian–Wolf problem if one could
essentially “simulate” the presence of direct links between the sources and the
terminal. Indeed, one could encode the sources using a classical Slepian–Wolf
code and simply “flow” the encoded bits over the appropriate paths. This would
amount to separating the tasks of distributed source code design and the problem
of network information transfer. It turns out that such a strategy is suboptimal in
general.

• Issues of optimal resource allocation over the network.
The network introduces several issues with respect to the allocation of rates and
flows such that they are in some sense “optimal” for the operation of a network.
For example, in sensor networks, the problem of deciding the appropriate paths
over which the data needs to flow for minimum energy or maximum lifetime
[47] is of interest. In the context of correlated sources, these issues become more
complicated since one needs to jointly optimize the rates and the flows.

Our model of a network is a directed graph G = (V, E), where V is the set
of nodes and E is the set of edges. There is a set of source nodes S ⊂ V that
observes the sources and a set of terminals T ⊂ V that needs to reconstruct the
sources. An edge (v1, v2) is a communication channel which allows information
transmission from v1 to v2. The channel can be noisy or deterministic (but typi-
cally capacity constrained). The different channels in the network are in general
dependent, e.g., in a wireless network, broadcast, and interference induces depen-
dence between different channels. However, characterizing the capacity region in
such scenarios, even with independent messages, has proved to be a difficult task
[6]. In fact, in many practical situations, protocols such as time division multiple
access-TDMA, frequency division multiple access-FDMA are used to provide the
semblance of independent channels. In a wireline network, the channels are typi-
cally independent. In the discussion in the sequel, we will mostly work under the
assumption that the channels are independent. It turns out that the results in this area
depend critically on the number of terminals in network. Accordingly, we divide
the discussion into two different sections. In Sect. 7.4 we review the results for the
single terminal case and in Sect. 7.5 we review the corresponding results for multiple
terminals.

7.4 Networked Distributed Source Coding: Single Terminal

In networks with a single terminal, under the assumption that the channels are inde-
pendent, Han [48] gave necessary and sufficient conditions for a network to be able
to transmit the correlated sources to the sink. A simple achievable transmission
scheme was proposed and its optimality was proved. Barros et al.[49] obtained
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the same result under a more general encoding model, where the form of joint
source/channel coding can be arbitrary and the coding can be across multiple blocks.
The achievability proof is almost the same as [48] and the converse is proved in a
different manner and is stronger because of the more general coding model.

Suppose that there are N + 1 nodes v0, v1, . . . , vN in the network observing
sources X0, X1, . . . , X N . The graph G(V, E) is complete and each edge (vi , v j ) is
a discrete memoryless channel with capacity Ci j . Note that the source entropy could
be zero and the capacity could also be zero, so realistic networks can easily fit into
this general framework. Node v0 is the sink that wants to reconstruct the sources
X1, . . . , X N .

The proposed transmission scheme is very simple and intuitive. Apply good
channel codes to each channel so that we can model every edge (vi , v j ) as a noise-
less link with capacity Ci j . Each node performs Slepian–Wolf coding at rate Ri .
Next, the Slepian–Wolf coded bits need to be routed to the sink v0. Knowing the
rates at each source node, we can find a feasible flow that supports rate Ri at source
node vi and terminates at sink node v0 as follows.

Add a virtual supersource s∗ and introduce an edge (s∗, vi ) with capacity Cs∗i =
Ri for i = 1, . . . , N . Then compute the max-flow between s∗ and v0 [50]. This
returns a flow assignment on each edge. The Slepian–Wolf coded bits are routed
according to the flow assignment to v0.

The node v0 receives all Slepian–Wolf coded bits and jointly decodes all
the sources X1, X2, . . . , X N . In order to reconstruct the sources, the rate vector
(R1, . . . , RN ) needs to be in the Slepian–Wolf region, i.e., for any nonempty subset
of {0, . . . , N }, S, such that 0 ∈ Sc (since X0 is available at v0 as side information
and is not encoded)

∑

i∈S

Ri ≥ H(X S|X Sc ) (7.1)

In order to successfully find the flow of value
∑N

i=1 Ri from s∗ to v0, we need
the capacity of any cut separating s∗ and v0 to be greater than

∑N
i=1 Ri . Note that

a cut separates the source nodes into S and Sc, where S ⊆ {0, . . . , N }, 0 ∈ Sc

but s∗ does not connect to v0, its capacity is
∑

j∈Sc\{0} Cs∗ j +∑i∈S, j∈Sc Ci j =∑
j∈Sc\{0} R j +∑i∈S, j∈Sc Ci j . Thus, as long as

∑

i∈S

Ri ≤
∑

i∈S, j∈Sc

Ci j (7.2)

for all nonempty subset S of {0, . . . , N } such that 0 ∈ Sc, the flow exists. This is
illustrated in Fig. 7.3. Moreover, if

H(X S|X Sc ) ≤
∑

i∈S, j∈Sc

Ci j (7.3)
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Fig. 7.3 Illustration of the sufficient condition for routing Slepian–Wolf coded bits to the terminal.
s∗ is the supersource. The cut of interest contains v1, v2 in S and v3, v4 in Sc. The cut capacity
is
∑

j∈Sc\{0} R j +∑i∈S, j∈Sc Ci j , and it should be no less than
∑N

i=1 Ri . Thus,
∑

i∈S, j∈Sc Ci j ≥∑
i∈S Ri

there exists a rate allocation satisfying (7.1) and (7.2) [48]. Therefore, (7.3) is a
sufficient condition for the single sink data collection with Slepian–Wolf coding.

Conversely, it is proved that the above condition is the necessary condition for
successful transmission under any joint coding scheme, i.e., if the capacity does not
satisfy this condition, the sink cannot recover the sources losslessly, under any kind
of coding scheme. Note that the proposed achievability scheme separates source
coding, channel coding, and routing. The converse part implies that it is optimal to
separately perform channel coding, distributed source coding, and treat the Slepian–
Wolf coded bits as commodities and route to the terminal. The main theorem in [49]
can also be viewed as a general source–channel separation theorem for networks
with one terminal, with independent channels. It implies that the source coding,
routing, and channel coding can be put into different layers of the protocol stack
separately.

We emphasize, however, that such a separation does not hold in general, i.e.,
when there are more terminals. As we shall see in Sect. 7.5, even when the channels
are independent, if we have more terminals, the compression rates and the network
flows are closely coupled.

7.4.1 Optimal Rate and Flow Allocation

From the discussion in previous sections, it is clear that distributed source coding
can compress the data effectively. In this section, we discuss resource allocation
problems for networked distributed source coding.

A natural resource allocation problem is to determine the rate at which each
source should be encoded, and the corresponding flows such that some network



7 Networked Distributed Source Coding 203

metric is optimized. For simplicity, we first consider the case when there are direct
channels between the sources and the sink.

7.4.1.1 Direct Source–Sink Channels

Suppose the sources communicate to the sink directly. We consider two metrics as
follows.

1. Sum rate minimization: In this case we consider noiseless source–sink channels
and seek to find a feasible rate vector that minimizes

∑N
i=1 Ri .

2. Sum power minimization: Here we assume orthogonal additive white Gaussian
noise (AWGN) channels between the sources and the sink and seek to minimize
the total power min

∑N
i=1 Pi (where Pi is the power of the i th source), expended

in ensuring that the sources can be reconstructed at the terminal.

For the noisy channel case, the source nodes first use Slepian–Wolf codes to
encode the sources. As long as each rate is less than the channel capacity the sources
can be recovered losslessly at the terminal (assuming capacity-achieving codes are
used). The capacity of the channel between node i and the sink with transmission
power Pi and channel gain γi is Ci (Pi ) ≡ log(1 + γi Pi ), where the noise power is
normalized to one and channel gains are constants that are known to the terminal.
Thus, the rate Ri should satisfy Ri ≤ Ci (Pi ). It is easy to see at the optimum, the
sensor node should transmit at the capacity, i.e., R∗

i = Ci
(
P∗

i

)
. Thus, the power

assignment is given by the inverse function of Ci which we denote by Qi (Ri ), i.e.,

P∗
i = Qi

(
R∗

i

) =
(

2R∗
i − 1

)
/γi . Once we know the optimal rate assignment R∗

i

we know the power assignment P∗
i and vice versa. Therefore, the objective function

of the sum power minimization problem can also be written as

min
N∑

i=1

(
2R

i − 1
)
/γi

For both problems, if N -dimensional Slepian–Wolf codes are used, the rates
should be in the N -dimensional Slepian–Wolf region, which is denoted by SWN .
Then, the sum rate minimization problem can be written as

min
R1,...,RN

N∑

i=1

Ri

subject to (R1, . . . , RN ) ∈ SWN

The solution to this problem is trivial, i.e., any point at the boundary of the N -
dimensional Slepian–Wolf region is the optimal solution. In the sum power mini-
mization problem, besides Slepian–Wolf region constraint, we also add peak power
constraints for the transmission power of each sensor node, taking into account the
fact that every sensor has limited transmission power in a wireless sensor network.
Then, the problem is a convex optimization problem:
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min
R1,...,RN

N∑

i=1

Pi =
N∑

i=1

(2Ri − 1)/γi

subject to (2Ri − 1)/γi ≤ Pmax,∀i

(R1, . . . , RN ) ∈ SWN

This problem can be efficiently solved by, for example, interior-point methods [51].
In practice we do need to impose additional restrictions on the set of feasible

rate vectors. This is primarily because the problem of practical code design for the
N -dimensional Slepian–Wolf region remains open. It is fair to say that at present,
we only know how to design Slepian–Wolf codes for two sources. Thus, it makes
sense to impose “pairwise” constraints on the rate vectors, so that two sources can
be decoded together. Given the state-of-the-art code designs for two sources case,
we could perform encoding and decoding in a pairwise fashion. Before the trans-
mission starts, we determine the source pairs that are jointly decoded together each
time and determine the rates of the sources and the corresponding codes. During the
transmission, the sources encode the message separately (without communication
with other sources) using the preassigned code and the sink performs joint decod-
ing for two nodes each time according to the preassigned combinations. We call
this pairwise distributed source coding, which is simple and practical. The resource
allocation problem is to determine the optimal pairing combinations and the rates for
the sensors such that the sum rate or the sum power is minimized. This problem was
first considered and solved using the notion of matching in undirected graph in [52].
Later, an improved solution using the notion of minimum weight arborescences and
matching forests was proposed in [53] that we shall discuss below.

First, we consider the sum rate minimization problem. Note that any point on
the slope of the Slepian–Wolf boundary achieves the minimum sum rate of two
sources. Thus, for a pair of sources that will be decoded together, simply choosing
the corner point as a rate allocation achieves minimum sum rate. Also note that a
decoded source can be used as side information to help decode other sources at the
terminal so that the rate of other sources being helped can be as low as the con-
ditional entropy given the decoded source. Since we consider pairwise distributed
source coding here and each time only two sources are involved in the decoding,
we do not use more than one decoded sources as helper. We say a rate assignment
has the pairwise property if it allows the terminal decode the sources in a pairwise
fashion. Specifically, the rate assignment is said to satisfy the pairwise property if
for each source Xi , i = 1, 2, . . . , N , there exists an ordered sequence of sources
(Xi1 , Xi2 , . . . , Xik ) such that

Ri1 ≥ H(Xi1) (7.4)

Ri j ≥ H(Xi j |Xi j−1), for 2 ≤ j ≤ k, and (7.5)

Ri ≥ H(Xi |Xik ) (7.6)

Such a rate assignment allows the possibility that each source can be reconstructed
at the decoder by solving a sequence of decoding operations at the SW corner points,
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e.g., for decoding source Xi one can use Xi1 (since Ri1 ≥ H(Xi1)), then decode Xi2

using the knowledge of Xi1 . Continuing in this manner finally Xi can be decoded.
We hope to find rate assignment with pairwise property and with minimum sum rate.
Clearly, the optimal rate assignment satisfies conditions (7.4), (7.5), and (7.6) with
equality. It is easy to see the sequential decoding procedure of a rate assignment
with pairwise property that can be expressed on a tree. The nodes at the higher layer
are decoded first and used as side information to help decode the nodes at the lower
layer. If we assign edge weights to be entropies and conditional entropies, the weight
of the tree is the sum rate. Therefore, this inspires us to find a tree with minimum
weight on a proper defined graph.

Now we formally describe our approach. Construct a directed graph G = (V, E)
as follows. The node set V consists of N regular nodes: 1, 2, . . . , N and N starred
nodes 1∗, 2∗, . . . , N∗. The edge set E consists of edges (i∗ → i) with weight
H(Xi ) for all i = 1, 2, . . . , N , and edges (i → j) with weight H(X j |Xi ) for all
i, j = 1, 2, . . . , N . An example of G is shown in the left figure of Fig. 7.4. Define a
subgraph Gi∗ of G as a graph obtained from G by deleting all starred nodes except
i∗ and all edges of the form ( j∗ → j) for j �= i . For each i , find a minimum weight
directed spanning tree3 on Gi∗ . This tree gives a rate allocation: Ri = H(Xi ),
R j = H(X j |X inc( j)), where inc( j) is the node such that edge (inc( j) → j)
belongs to the tree. Each subgraph Gi∗ gives a rate allocation by a minimum weight

(a) (b)

Fig. 7.4 An example of the rate allocation algorithm. The left figure shows the graph G. The edge
weights on the edges from node i∗ to node i are individual entropies and the edge weights on the
edges between regular nodes are conditional entropies. In this example, the individual entropies
are the same. Thus, H(Xi |X j ) = H(X j |Xi ) and we only label one number between regular nodes
i and j . The right figure shows the minimum weight directed spanning tree found on G1∗ (a) The
graph G; (b) The minimum weight directed spanning tree found on G1∗

3 A directed spanning tree (also called arborescence) of a directed graph G = (V, A) rooted at
vertex r ∈ V is a subgraph T of G such that it is a spanning tree if the orientation of the edges is
ignored and there is a path from r to all v ∈ V when the direction of edges is taken into account.
The minimum weight directed spanning tree can be found by a greedy algorithm in polynomial
time [54].
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directed spanning tree and the one with minimum weight gives the final optimal
rate allocation of the network. Note that if each source has the same entropy, the
weights of minimum weight directed spanning trees of Gi∗ are the same for each i ,
so we only need to pick up an arbitrary subgraph Gi∗ and find the assignment on
it. Clearly, the resulting rate assignment has the pairwise property and is optimal.
In the example in Fig. 7.4, each source has the same entropy and the minimum
weight directed spanning tree rooted at node 1∗ is shown in the right figure. The
optimal rate allocation is R1 = H(X1), R4 = H(X4|X1), R2 = H(X2|X4), and
R3 = H(X3|X4). The corresponding decoding procedure is that first decode source
X1, and use X1 as side information to help decode X4. Then, X4 is used as side
information to help decode X2 and X3.

Next, we show some simulation results. Consider a wireless sensor network
example in a square area where the coordinates of the sensors are randomly chosen
and uniformly distributed in [0, 1]. The sources are assumed to be jointly Gaussian
distributed such that each source has zero mean and unit variance (this model was
also used in [55]). The parameter c indicates the spatial correlation in the data. A
lower value of c indicates higher correlation. The individual entropy of each source
is H1 = 1

2 log(2πeσ 2) = 2.05. In Fig. 7.5, we plot the normalized sum rate found

by minimum weight spanning tree (MST) Rs0 ≡ ∑N
i=1 Ri/H1 vs. the number of

sensors n. If no distributed source coding is used, i.e., the nodes transmit data indi-
vidually to the sink, Ri = H1 and Rs0 = N . Clearly, by pairwise distributed source
coding, the sum rate is reduced. We also plotted the optimal normalized sum rate
when N -dimensional Slepian–Wolf code is used H(X1, . . . , HN )/H1 in the figure.
It is interesting to note that even though we are doing pairwise distributed source
coding, our sum rate is quite close to the theoretical limit which is achieved by
N -dimensional distributed source coding.
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Now we consider the sum power minimization problem. Note that for a pair of
sources that will be decoded together, the optimal rate allocation that minimizes the
sum power of the pair is no longer a corner point but rather a particular point on the
slope (which can be found by solving a simple optimization problem). For a node
pair i and j , denote the optimal power allocation as P∗

i j (i), P∗
i j ( j). We cannot simply

choose the corner points and perform asymmetric Slepian–Wolf coding. We want
some source pairs working at corner points while some others working at the optimal
point on the slope of the 2-D SW region. Taking this into account, we generalize the
concept of pairwise property. Recall that previously, under a rate assignment with
pairwise property, the first source in a sequence is encoded at the rate of its entropy.
Now we allow the first source in a decoding sequence to be paired with another
node and encoded at the rate on the slope of the 2-D Slepian–Wolf region. The
appropriate structure for finding the optimal resource allocation turns out to be one
that combines the directed spanning tree and the matching. Such a structure is the
matching forest first introduced in the work of Giles [56]. In fact, we are interested
in a specific form of matching forest called strict matching forest (SMF). For the
formal definitions, we refer the reader to [53]. Roughly speaking, a strict matching
forest is a subgraph of a mixed graph4 that connects every node only once. The
SMF plays a role similar to the spanning tree in the sum rate minimization problem.
The sequential decoding procedure of a rate assignment with generalized pairwise
property can be expressed on a SMF. The node pairs connecting with undirected
edges work at the slope of the Slepian–Wolf region and a symmetric coding scheme
is used for them. The nodes that are connected with directed edge work at the corner
point of the Slepian–Wolf region and the tail (origin) of a directed edge is used as
side information to help decode the head (destination) of the edge. If we assign edge
weights to be transmission powers, the weight of the SMF is the total transmission
power.

Now we formally describe our approach. Construct a mixed graph G =
(V, E, A) as follows. The node set V consists of N regular nodes: 1, 2, . . . , N
and N starred nodes 1∗, 2∗, . . . , N∗. Recall that Qi (R) is the power consumed in
transmission at rate R. For each i = 1, 2, . . . , N , if Qi (H(Xi )) ≤ Pmax, add edge
(i∗ → i)with weight Qi (H(Xi )). For each i, j = 1, 2, . . . , N , if Qi (H(Xi |X j )) ≤
Pmax, add edge ( j → i) with weight Qi (H(Xi |X j )). For each pair i and j , if the
optimal power allocation P∗

i j (i), P∗
i j ( j) that minimizes the sum power of the pair

of nodes exists, add undirected edge (i, j) with weight P∗
i j (i) + P∗

i j ( j). Then, find
the minimum weight SMF on G, which gives the rate/power assignment with the
generalized pairwise property and minimum sum power. It is shown in [53] that the
problem of finding minimum weight SMF can be transformed and solved in poly-
nomial time [57]. From the simulations we observe that in most cases, the optimal
allocation is such that only one pair works on the slope and all other sources work
at the corner points.

4 “Mixed” graph refers to a graph with directed edges and undirected edges.
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7.4.1.2 General Multihop Communication Between Sources and Sink

The resource allocation problem in a network with general topology and relay nodes
was first considered by Han [48] and a similar formulation is given in [49]. We
reformulate the problem as follows.

The network is given by a directed graph G = (V, E,C), where C = {Ci j :
(i, j) ∈ E} is the capacity of each edge. Edge (i, j) is also associated with a
weight wi j . The cost of a flow of value zi j going through the edge can be written as
F(zi j )wi j , where F(·) is a non-negative, increasing function. Then, the optimization
problem can be written as

min
∑

(i, j)∈E

F(zi j )wi j

s.t. 0 ≤ zi j ≤ Ci j ,∀(i, j) ∈ E (capacity constraint)
∑

j |(i, j)∈E

zi j −
∑

j |( j,i)∈E

z ji = σi ,∀i ∈ V (flow balance constraint)

(R1, R2, . . . , RN ) ∈ SWN (Slepian–Wolf constraint)

where σi = Rl if i is the lth source node, σi = −∑N
i=1 Ri if i is the sink and

otherwise, σi = 0.
For simplicity, we can consider linear cost F(zi j ) = zi j . Then, the above opti-

mization is a linear program. If F(·) is a convex function, it is a convex optimization
problem.

If there is no capacity constraint, the solution of the problem has a simple form
and interpretation [58]. The basic idea is that in the absence of capacity constraints,
there is no need to split the flow across different edges. Once a route (path) from a
given source to the sink with minimum cost is found, the source simply routes all
the data through that path. For example, suppose that the minimum cost path for
source Xl is P l . Then for all edges (i, j) belonging to P l , we set zi j = Rl . In this
case, the cost of transmitting the data from Xl to the sink is

∑
e∈P l F(Rl)we. Thus,

the overall cost function becomes

min{Rl ,dl },l=1,2,...,N

N∑

l=1

F(Rl)dl

where dl is the total weight of path P l , i.e., dl = ∑e∈P l we. Solving this problem
involves finding the optimal paths P l , l = 1, 2, . . . , N and finding the optimal rate
allocation Rl , l = 1, 2, . . . , N . It is shown in [58] that these two steps are separable,
i.e., one can first find the optimal paths P l∗ and then find the optimal rate allocation
based on the optimal paths P l∗. This separation holds even if the function F(·) is
nonlinear. It is easy to see the optimal path P l∗ is the path with minimum total
weight. Then, the optimal routing structure is the shortest path tree rooted at the
sink, which can be found effectively and in a distributed manner. Now, suppose that
the cost function F is such that F(Rl) = Rl . In this case, the problem becomes



7 Networked Distributed Source Coding 209

min
N∑

l=1

RldSPT(l, t)

s.t.(R1, R2, . . . , RN ) ∈ SWN

where dSPT(l, t) (known as a constant) is the weight of the path from source l to ter-
minal t on the shortest path tree. This is a linear programming problem with number
of constraints exponentially with N . However, because of the contra-polymatroidal
structure of the Slepian–Wolf region [59], the solution can be found in a easy greedy
manner as follows [58].

1. Find a permutation π such that dSPT(π(1), t) ≥ dSPT(π(2), t) ≥ · · · ≥
dSPT(π(N ), t).

2. The optimal rate allocations is given by

Rπ(1) = H(X{π(1)}|X{π(2),π(3),...,π(N )})
Rπ(2) = H(X{π(2)}|X{π(3),π(4),...,π(N )})

...

Rπ(N ) = H(X{π(N )}) (7.7)

If the function F(·) is not linear but convex, the problem can still be solved by
convex optimization [51] but the simple greedy algorithm may not work here.

From the previous discussion, we know that Slepian–Wolf coding along with
routing is the optimal solution for the single sink data collection problem. In fact, it
is shown in [60] that in terms of the cost under convex and increasing cost func-
tions, Slepian–Wolf coding plus routing is still the optimal solution even if the
wireless network broadcast advantage is considered. Interestingly, because the N -
dimensional (N > 2) Slepian–Wolf code design problem remains open, [58, 60]
also consider several schemes that do not use distributed source coding but allow
some cooperation among the sources. Clearly, the communication between the
sources will increase the cost. The cost of the Hierarchical Difference Broadcasting
in [60] has been shown to have the same order compared to Slepian–Wolf coding.
However, the explicit communication scheme in [58] will have significant loss com-
pared to Slepian–Wolf under some conditions.

7.5 Networked Distributed Source Coding: Multiple Terminals

We now consider the variant of the problem when there are multiple terminals that
want to reconstruct all the sources. This is called multicast. As before, one could
attempt to treat this scenario as a generalization of the single terminal case. For
example, one could divide the capacity of each edge into various parts, with each
part responsible for conveying the bits to a specific terminal. However, on closer
inspection it is possible to realize that such a strategy will in general be suboptimal.
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Fig. 7.6 A network with unit capacity edges and sources S1 and S2 and terminals T1 and T2. Each
terminal wants to simultaneously recover the pair of bits (a, b). Under routing this is impossible.
However, by computing and sending a⊕b along the bottleneck edge, we can achieve simultaneous
recovery

To see this consider Fig. 7.6 that depicts the celebrated butterfly network of network
coding [2]. In this example, each edge has unit capacity. Each terminal seeks to
obtain the bits from both the sources. It is easy to see that if we only allow routing
in the network, it is impossible to support this since the edge in the middle is a
bottleneck. However, if we allow coding at the intermediate nodes and transmit the
XOR of the two bits, then both terminals can obtain the two bits by simple XOR
decoding. This example shows the potential gain of coding when there are multiple
terminals. Of course, in this case the sources are independent. However, since inde-
pendence is a degenerate case of correlation, one expects that similar conclusions
will hold in the correlated case. As we shall see this is indeed the case. Furthermore,
several interesting conclusions about the relationship of the coding rates and flow
structures can be found.

7.5.1 A network Coding Primer

Traditionally, the intermediate nodes (routers) in the network only copy and forward
packets. In a single source single sink unicast connection, routing achieves maxi-
mum flow, which equals to the minimum cut between the source and the terminal
[61]. However, in a multicast scenario, pure routing may not achieve maximum
flow as shown above. But it has been shown in [2] that network coding achieves
max-flow min-cut upper bound in multicast. Next, we shall mathematically describe
this result.

As usual, we model a network as a graph G = (V, E,C), where C = {ce : e ∈
E} is the capacity of the edges, where ce is the capacity on edge e. The seminal work
on network coding [2] finds a tight capacity characterization for the single source,
multiple terminals multicast problem.

Theorem 2 Consider a network G = (V, E,C) with source s and L terminals:
t1, . . . , tL . Suppose that the source node observes a source X, such that its entropy
H(X) = R. Each terminal can recover X if and only if
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min − cut (s, tl) ≥ R,∀l ∈ {1, . . . , L} (7.8)

The work of [62, 63] shows that the multicast can be supported even with linear
codes. Basically, each intermediate node transmits linear combinations of the pack-
ets, where a packet is treated as a vector over a finite field. It is possible to show that
in this case at each terminal, the received packets are the source messages multiplied
by a transfer matrix. By inverting the transfer matrix, the terminal is able to recover
the source packets. Moreover, as long as the coefficients of the linear combinations
are chosen randomly from a large field and the min-cut between the source and each
destination is greater than the source rate, the probability that the transfer matrix
is invertible is very high [64]. This fact provides a simple distributed scheme for
network coding-based multicast. A practical multicast protocol based on these ideas
was developed in [65].

7.5.2 Multicasting Correlated Sources over a Network

In the discussion in the previous section, we only considered multicast with single
source. The multiple independent sources case can be reduced to single source case
[63], by introducing a virtual supersource that is connected to each source node.

In this section we consider the problem of multicasting correlated sources over a
network. We begin by stating the main result. Consider a network G = (V, E,C),
with terminals ti , i = 1, . . . , L and a set of source node S ⊂ V . Without loss
of generality, we assume a numbering so that these are the first |S| sources in V.
Furthermore, source node i observes a source Xi . The communication requirement
for multicasting correlated sources is that each terminal ti , i = 1, . . . , L needs to
recover all sources (X1, . . . , X |S|) losslessly. The admissible rate region is given by
[66, 67].

Theorem 3 The correlated sources (X1, . . . , X |S|) can be multicast to the terminals
t1, . . . , tL if and only if

H(X S|X Sc ) ≤ min−cut(S, ti ) ∀S ⊆ S (7.9)

An achievability scheme based on random linear network coding for this result was
proposed in [64]. Alternative proofs are provided in [66, 67]. We briefly overview
the achievability scheme in [64] now.

Consider two correlated sources generating binary vectors x1, x2 of length r1 and
r2 according to joint probability distribution Q(x1, x2) each time. After n time slots,
the source messages are xn

1 and xn
2 of length nr1 and nr2, respectively. We assume

that ce is rational for all e. Furthermore assume that n is large enough so that n × ce

is an integer for all e. This implies that when considered over a block of n time slots
we communicate nce bits over edge e.

Simply perform random linear coding at each node over a blocklength of n
including the source nodes and intermediate nodes, i.e., the bits on an outgoing edge
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of node v are a linear combination of bits on incoming edges to node v, where the
coefficients are chosen uniformly randomly from GF(2). Each terminal t receives a
vector zn

t of length n| i (t)|, where | i (t)| is the number of incoming edges to termi-
nal t (before the edges are copied). Using the algebraic network coding framework
[63], we can conclude that

zn
t = [xn

1 xn
2

]
Mt (7.10)

where Mt is a (nr1 + nr2) × n| i (t)| transfer matrix from the sources to terminal
t . When sources are independent, Mt needs to have full rank so that by inversion
we can recover the sources. In the case of correlated sources , Mt need not have full
rank because we can take advantage of the correlation between the sources to find
xn

1 and xn
2.

The decoding is done as follows. Find all possible
[
xn

1 xn
2

]
satisfying (7.10).

Note that xn
1, xn

2 can be viewed as a length n vector of elements from GF(2r1) and
GF(2r2), respectively.5 Let x1i , x2i denote the i th element and i = 1, 2, . . . , n.
The number of appearances of (a,b), a ∈ GF(2r1),b ∈ GF(2r2) is defined to be
N (a,b) = |{i : x1i = a, x2i = b}|. The empirical joint distribution (histogram)
Pxn

1 ,x
n
2

is Pxn
1 ,x

n
2
(a,b) = N (a,b)/n for a ∈ GF(2r1) and b ∈ GF(2r2). The empiri-

cal joint distribution is an approximation of the true joint distribution based on the
observation of two sequences xn

1 and xn
2. Note that the empirical joint distribution

defined for each sequence
[
xn

1, xn
2

]
has a similar form to a probability mass function.

Then, the functions applied on probability mass function, such as entropy function,
relative entropy function, can be applied to Pxn

1 ,x
n
2
.

In the decision procedure, given all sequences
[
xn

1, xn
2

]
that satisfying zn

t =[
xn

1xn
2

]
Mt , find

{
x̂n

1, x̂n
2

} = arg min[
xn

1xn
2

]
Mt=zn

t

α
(

Pxn
1 ,x

n
2

)

where α(·) is a function that needs to be chosen, depending on the metric to be
optimized. The two functions discussed below both achieve the capacity region in
Theorem 3.

1. Maximum-Q probability decoder. α
(

Pxn
1 ,x

n
2

)
= D

(
Pxn

1 ,x
n
2
||Q
)
+ H

(
Pxn

1 ,x
n
2

)
,

where D(·||·) is the relative entropy [6],

D
(

Pxn
1 ,x

n
2
||Q
)
=
∑

a∈F2r1

∑

b∈F2r2

Pxn
1 ,x

n
2
(a,b) log

Pxn
1 ,x

n
2
(a,b)

Q(a,b)

and H(·) is the joint entropy function [6]

5 A length r vector with elements from GF(2) can be viewed as an element from GF(2r ).



7 Networked Distributed Source Coding 213

H
(

Pxn
1 ,x

n
2

)
= −

∑

a∈F2r1

∑

b∈F2r2

Pxn
1 ,x

n
2
(a,b) log Pxn

1 ,x
n
2
(a,b)

From [6, theorem 12.1.2], since
(
xn

1, xn
2

)
are drawn i.i.d. according to Q(x1, x2),

the probability of xn
1, xn

2 is given by

Qn(x1, x2) = 2−n(D(Px1,x2 ||Q)+H(Px1,x2 ))

Therefore, finding xn
1, xn

2 that minimizing α
(

Pxn
1 ,x

n
2

)
is equivalent to finding

xn
1, xn

2 that maximizing the sequence probability.
2. Minimum entropy decoder. α(Px1,x2) = H(Px1,x2).

Note that here the decoder does not need to know the prior source joint distribu-
tion Q. Thus, it is an universal decoder. For a long sequence, the empirical distri-
bution Px1,x2 is very close to the true distribution Q, which causes D(Px1,x2 ||Q)
to approach zero. Therefore, the minimum entropy decoder is an approximation
of maximum-Q probability decoder.

It is shown in [64] that as long as

min − cut (s1, ti ) ≥ H(X1|X2) (7.11)

min − cut (s2, ti ) ≥ H(X2|X1) and (7.12)

min − cut (s1 and s2, ti ) ≥ H(X1, X2) (7.13)

for every i = 1, 2, . . . , L , each terminal ti can recover X1 and X2 with vanishing
error probability when the one of the two decoders shown above is used. Therefore,
the admissible rate region achieves bound (7.9). However, the decoding algorithms
above are based on exhaustive search and have a complexity that is unacceptably
high.

7.5.3 Separating Distributed Source Coding and Network Coding

The achievability scheme described in the previous section performs distributed
source coding and network coding jointly and has high decoding complexity. Per-
haps the simplest way to multicast correlated sources is to perform distributed
source coding and network coding separately, i.e., the source nodes perform dis-
tributed source coding (Slepian–Wolf coding) and the coded bits are multicasted
to the terminals through network coding. The terminals first decode the network
code to obtain the Slepian–Wolf coded bits, then jointly decode the Slepian–Wolf
code (usually is a channel code) to recover the sources. The decoding algorithms for
network code and Slepian–Wolf code have been well studied and have polynomial
time complexity. However, the separation of distributed source coding and network
coding is suboptimal in general [68].
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At an intuitive level, this result can be understood as follows. Suppose that the
network is such that each terminal can operate at the same point in the Slepian–Wolf
region. In such a situation, one could use a Slepian–Wolf code and encode each
source. Next, one could treat the encoded sources as independent and multicast
the encoded bits to each terminal. The terminal then decodes to obtain the origi-
nal sources. Roughly speaking, in this case we can reduce the correlated sources
multicast to an independent sources multicast.

However, if different terminals in the network are forced to operate at different
rate points in the Slepian–Wolf region, because of the nature of their connectivity,
then a reduction to the independent sources multicast is not possible in general.
In this case, clearly one cannot work with a single distributed source code. It can
be shown that there exist instances of networks and source distributions such that
performing separate distributed source coding and network coding can be strictly
suboptimal with respect to the approach in [64]. A surprising conclusion of [68] is
that if there are two sources and two terminals in a network, then it can be shown
that there is no loss in using a separation-based approach. This result forms the basis
of practical approaches to combining distributed source coding and network coding
as explained in the next section.

7.5.4 Practical Joint Distributed Source Coding and Network
Coding

In this section, we describe practical algorithms to perform joint distributed source
coding and network coding. Suppose there are two source nodes s1, s2 ∈ V and
observe two binary sources X and Y , respectively. The sources generate bits i.i.d.
according to the joint distribution p(X,Y ) where the joint distribution satisfies the
following symmetry property, i.e., p(X + Y = 1) = p < 0.5. Then, as discussed
before, the sequences x, y are related by y = x + e, where ei equals to 1 with
probability p < 0.5. Note that H(X,Y ) = 1+Hb(p) and I (X; Y ) = 1−Hb(p). Let
H be the parity check matrix for a channel code approaching the capacity of a binary
symmetric channel with crossover probability p with code rate k/n = I (X; Y ) =
1 − Hb(p), i.e., there is a decoding function f (·) such that Pr(e �= f (eH T )) is
arbitrarily close to zero.

The basic idea is to transmit xH T + yH T = eH T to each terminal such that
e can be recovered. Then, we transmit some additional information so that each
terminal can recover either x or y. We shall see the exact form of this additional
information later. The simplest but not necessarily optimal way to convey the sum
eH T = xH T + yH T to the terminal is to multicast both xH T and yH T to each
terminal and compute the sum at the terminal. Based on this, a practical joint dis-
tributed source coding and network coding is proposed in [69]. We first describe this
scheme and then discuss the optimal schemes to multicast the sum to the terminals.
The scheme in [69] is not optimal in the sense that in general, it requires more
network capacity than the result of [64] requires.
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The design scheme can be summarized as follows. The network capacity resource
C is partitioned into two shares: C1 and C2, where C1 +C2 ≤ C . Each share is used
to support two multicast sessions. Let H̄ be a matrix such that [H̄ T H T ] has full
rank. And let x1 = xH̄ , y1 = yH̄ . The two multicast sessions are described as
follows.

1. In the first session, multicast xH T and yH T to each terminal. This implies eH T

can be computed, and e can be recovered at each terminal since H is the parity
check matrix of a capacity achieving code. Using this, e1 ≡ y1 + x1 = eH̄ T can
be computed.
The length of xH T is (n − k) = nH(X |Y ) (likewise for yH T ). We need to
multicast nH(X |Y ) bits from node s1 to the terminal and nH(Y |X) bits from
node s2 to the terminal. This requires G(V, E,C1) to support a multicast with
rate H(X |Y ) + H(Y |X) from a virtual supersource connected to s1, s2 to each
terminal.

2. In the second session, the sources transmit linear combinations of x1 and y1 to
the network and x1 At + y1 Bt is received by terminal t . At and Bt are transfer
matrices from s1 to terminal t and s2 to terminal t , respectively, and they are
assumed known to the terminal t . At and Bt are such that given e1 and x1 At +
y1 Bt , x1, y1 can be recovered. Since we can compute (x1 + y1)Bt = e1 Bt =
eH̄ T Bt and then x1(At + Bt ) = x1 At + y1 Bt + e1 Bt , as long as At + Bt is
invertible, x1 and y1 can be recovered. The invertibility of At + Bt is guaranteed
with high probability (for details see [69]). After x1 is obtained, we compute
y1 = e1 + x1. Once x1, y1 are known, x, y can be recovered by the inversion of
[H̄ T H T ] since [xH̄ T xH T ] = x[H̄ T H T ] and y = x + e.

The two multicast sessions are illustrated in Fig. 7.7. The admissible rate region
for this design scheme is

C∗ = {C1 + C2 : C1 ∈ C(s̄, T, H(X |Y )+ H(Y |X)) and C2 ∈ C(u, T, I (X; Y ))}

G(V,E,C) = G1(V,E,C1) + G2(V,E,C2)

H(X |Y ) H(Y |X )I(X;Y )

s*

s1 s2

t1 t2 tL

Fig. 7.7 Multicast model for the practical scheme [69]
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In general, C∗ requires more capacity than the optimal capacity region [64] because
separate multicast sessions are usually suboptimal. But if there are only two termi-
nals (and we are only dealing with two sources), C∗ is optimal, i.e., the practical
design scheme is optimal [68, 69].

Computing the sum at the terminals (see [70–72] for related work) may not be
optimal in terms of the capacity region. It may in fact be better in terms of resource
utilization if the sum is computed at some intermediate nodes and then sent to each
terminal. In a network with two sources multiple terminals or two terminals multiple
sources, it is shown in [70, 72] that the optimal scheme to convey the symbol sum
of the sources to the terminals is to compute the sum in some intermediate nodes
and multicast to the terminals. In general, finding the right set of nodes at which the
sum should be computed is an open problem. But, the idea of computing the sum
at the intermediate nodes leads us to a heuristic approach to the joint distributed
source coding and network coding. We can find a set of nodes U and multicast xH T

and yH T to each node in U (multicast session 1). Then, compute the sum eH T at
u ∈ U and multicast to the terminals so that each terminal can recover e (multicast
session 2). Transmit linear combinations xAt + yBt to the terminals (multicast ses-
sion 3) and if (At + Bt ) is invertible then both x and y can be recovered in a similar
manner to the previous scheme. Note that the coded packets in multicast session 1
can be used in multicast session 3 since xH T and yH T are also linear combinations
of x and y. Next we demonstrate an example of this scheme in which we achieve the
optimal capacity region.

Consider the network in Fig. 7.8. The capacity on each edge is 0.5. The source
nodes s1, s2 observe the sources X and Y , and they are correlated such that
H(X) = H(Y ) = 1 and H(Y |X) = H(X |Y ) = 0.5. The terminals are t1, t2, and t3

Fig. 7.8 An example where the strategy in [69] is suboptimal. However, our proposed heuristic for
selecting the right set of nodes for computing the sum works better
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and min−cut(si , t j ) = 0.5 for i = 1, 2, j = 1, 2, 3, min−cut({s1, s2}, ti ) = 1.5 for
i = 1, 2, 3. According to Theorem 3, the capacity of this network supports the
recovery of the sources at the terminals. Consider the following scheme: s1, s2 trans-
mit xH T and yH T to node v2 (multicast session 1). Node v2 computes the sum eH T

and routes it to the terminals (multicast session 2). For multicast session 3, transmit
xH T , yH T on v1 − t1, v3 − t3, respectively.6 In addition, s1, s2 transmit random
linear combinations on edges s1−v4, s2−v6, i.e., M1, M2 are matrices of dimension
n × 0.5n consisting of entries randomly from G F(2). Then, matrices M1, M2, and
[M1 M2] have full rank with high probability. Terminal t1 receives eH T , xM1 and
xH T . From the first one t1 can decode e and from the last two t1 can recover x, then
y = x + e can also be obtained. Terminal t2 acts in a similar fashion as t1, while t3
can decode e from eH T and it also knows xM1 and yM2. Therefore, it can compute
xM2 = eM2 + yM2 then x can be recovered by the inversion of [M1 M2].

As shown in [69], the scheme that multicasts both xH T and yH T to the terminals
cannot achieve the capacity region in the example above. But from some simulations
on random graphs, where the optimal set U is found by integer programming, we
observe that in many cases, multicasting both xH T and yH T to the terminals and
computing the sum there is as good as computing the sum at some intermediate
nodes. Clearly, the best choice of nodes for computing the sum depends on the
network topology. The problem of choosing these nodes in an efficient manner is
still an open problem.

7.5.5 Resource Allocation for Multicasting Correlated Sources
over a Network

Given the admissible region in Sect. 7.5.2, it is natural question to determine the
rate at each source and the flow on each edge such that the total cost is minimized.
The problem is solved in an efficient manner in [73, 74].

The network is modeled as a directed acyclic graph G = (V, E,C) and each
edge is associated with a weight wi j . For simplicity we assume that the cost of the
use of an edge (i, j) when the actual data rate on edge (i, j) is zi j is wi j zi j . To
facilitate the problem formulation we append a virtual super source node s∗ to G,
so that

V ∗ = V ∪ {s∗}
E∗ = {(s∗, v)| v ∈ S} ∪ E and

C∗
i j =

{
Ci j (i, j) ∈ E
H(X j ) if i = s∗ and j ∈ S

We let G∗ = (V ∗, E∗,C∗). Denote the source node set as S and the terminal
set as T . The admissible region in Theorem 3 requires the min-cut between any

6 We could also simply perform random linear network coding on these edges.
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subset S of nodes and every terminal greater than H(S|Sc). From max-flow min-cut
theorem, we know the min-cut can be characterized as max-flow. As long as there
is a flow of value R from a source s to a terminal t , the min-cut between s and
t is R. Thus, to model the conditions on the min-cut, we introduce virtual flows
f(tk ) =

{
f (tk )i j

}
for each terminal tk . Note that we only require the existence of the

flow for every terminal; the flows corresponding to different terminals can coexist
on an edge. So the actual flow rate zi j on edge (i, j) is the maximum (not the sum)

of f (tk )i j ,∀tk ∈ T , i.e., zi j ≥ f (tk )i j ,∀tk ∈ T . Based on the discussions above, the
problem can be formulated as follows:

minimize
∑

(i, j)∈E

wi j zi j

s. t. 0 ≤ f (tk )i j ≤ zi j ≤ C∗
i j , (i, j) ∈ E∗, tk ∈ T

∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , for i ∈ V ∗, tk ∈T, (7.14)

f (tk )s∗i ≥ R(tk )i , for i ∈ S, tk ∈ T (7.15)
(

R(tk )1 , R(tk )2 , . . . , R(tk )N

)
∈ SWN , for tk ∈ T (7.16)

where

σ
(tk )
i =

⎧
⎨

⎩

H(X1, X2, . . . , X N ) if i = s∗
−H(X1, X2, . . . , X N ) if i = tk
0 otherwise

The constraint (7.14) is the flow balance constraint for each virtual flow. The
constraints (7.15) and (7.16) make sure for each terminal tk there is a flow of value
H(X S|X Sc ) from each subset S of sources to tk . The detailed proof of the correct-
ness of the formulation can be found in [73, 74]. The formulation of MIN-COST-SW-
NETWORK as presented above is a linear program and can potentially be solved by
a regular LP solver. However, the number of constraints due to the requirement that
R ∈ SWN is |T |(2N −1) that grows exponentially with the number of sources. For
regular LP solvers the time complexity scales with the number of constraints and
variables. Thus, using a regular LP solver is certainly not time efficient. Moreover
even storing the constraints consumes exponential space and thus using a regular
LP solver would also be space inefficient. We now present efficient techniques for
solving this problem.

Let w, z, f(tk ) denote the column vectors of wi j , zi j , f (tk )i j for (i, j) ∈ E and

R(tk ), f(tk )s∗ denote the column vectors of R(tk )i , f (tk )s∗i for i = 1, 2, . . . , |S|. Let L be
the number of terminals. We form the Lagrangian of the optimization problem with
respect to the constraints R(tk ) ≤ f(tk)s∗ , for tk ∈ T . This is given by
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L(λ, z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL ))

= wT z +
L∑

k=1

λT
k

(
R(tk ) − f(tk)s∗

)

where λ = [λT
1 λT

2 . . . λT
L

]T
and λk = [λk,1, λk,2, . . . , λk,|S|]T are the dual vari-

ables such that λ - 0 (where - denotes component-wise inequality).
For a given λ, let g(λ) denote the dual function obtained by

g(λ) = minimizez,f(t1),...,f(tL ),R(t1),...,R(tL )L
(
λ, z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL )

)

Since strong duality holds in our problem we are guaranteed that the optimal value
of MIN-COST-SW-NETWORK can be equivalently found by maximizing g(λ) sub-
ject to λ - 0 [51]. Thus, if g(λ) can be determined in an efficient manner for a given
λ then we can hope to solve MIN-COST-SW-NETWORK efficiently.

Consider the optimization problem for a given λ - 0.

minimize wT z +
L∑

k=1

λT
k

(
R(tk ) − f(tk )s∗

)

s. t. 0 ≤ f (Tk )
i j ≤ zi j ≤ Ci j , (i, j) ∈ E∗, tk ∈ T

∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , i ∈ V ∗, tk ∈ T

R(tk ) ∈ SWN , tk ∈ T (7.17)

We realize on inspection that this minimization decomposes into a set of inde-
pendent subproblems shown below.

minimize wT f −
L∑

k=1

λT
k f(tk )s∗

s. t. 0 ≤ f (tk )i j ≤ zi j ≤ Ci j , (i, j) ∈ E∗, tk ∈ T
∑

{ j |(i, j)∈E∗}
f (tk )i j −

∑

{ j |( j,i)∈E∗}
f (tk )j i = σ

(tk )
i , i ∈ V ∗, tk ∈ T (7.18)

and for each tk ∈ T ,

minimize λT
k R(tk )

subject to R(tk ) ∈ SWN (7.19)

The optimization problem in (7.18) is a linear program with variables z and x (Tk )

for k = 1, . . . , NR and a total of (2|T | + 1)|E∗| + |T ||V ∗| constraints that can be
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solved efficiently by using a regular LP solver. It can also be solved by treating it
as a minimum cost network flow problem with fixed rates for which many efficient
techniques have been developed [50].

However, each of the subproblems in (7.19) still has 2N −1 constraints and there-
fore the complexity of using an LP solver is still exponential in N . However, recall
the contra-polymatroid property of Slepian–Wolf region mentioned in Sect. 7.4.1.2.
Using the contra-polymatroid property, the solution to this LP can be found by a
greedy allocation of the rates as shown in (7.7), where the permutation π is such
that λk,π(1) ≥ λk,π(2) ≥ · · · ≥ λk,π(N ).

The previous algorithm presents us a technique for finding the value of g(λ)
efficiently. It remains to solve the maximization

max
λ-0

g(λ)

For this purpose we use the fact that the dual function is concave (possibly non-
differentiable) and can therefore be maximized by using the projected subgradient
algorithm [75]. Roughly speaking, the subgradient algorithm is a iterative method to
minimize non-differentiable convex (or maximize concave) functions. It is similar to
the gradient descent method, though there are notable differences. The subgradient
for λk can be found as R(tk ) − f(tk)s∗ [75].

Let λi represent the value of the dual variable λ at the i th iteration and θi be
the step size at the i th iteration. A step-by-step algorithm to solve MIN-COST-SW-
NETWORK is presented below.

1. Initialize λ0 - 0.
2. For given λi solve the problem (7.18) using an LP solver and for each tk ∈ T ,

solve the problem (7.19) using the greedy algorithm presented in (7.7).

3. Set λi+1
k =

[
λi

k + θi

(
R(tk ) − f(tk )s∗

)]+
for all tk ∈ T , where [x]+ = x if x ≥ 0

and zero otherwise. Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approximation on the optimal
value of the primal problem, a primal-optimal solution or even a feasible, near-
optimal solution is usually not available because the objective function is linear. In
our problem, we seek to jointly find the flows and the rate allocations that support
the recovery of the sources at the terminals at minimum cost. Thus, finding the
appropriate flows and rates specified by the primal-optimal or near primal-optimal
z, f(t1), . . . , f(tL ),R(t1), . . . ,R(tL ) is important. Toward this end we use the method of
Sherali and Choi [76]. We skip the details and refer the interested reader to [73, 74].

7.6 Conclusion

In this survey we have examined the problem of distributed source coding over
networks. Distributed source coding has been traditionally studied under a model
where there exist direct source destination links. In a general network, the sources
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communicate with the destinations over a network whose topology may be quite
complicated. It turns out that in this case the problem of distributed source coding
and network information transfer needs to be addressed jointly. In particular, treating
these problems separately can be shown to be suboptimal in general. Moreover,
in certain cases the usage of the network coding [2] becomes essential. We also
discussed various resource allocation problems that occur in this space and provided
an overview of the solution approaches.

There are several problems that need to be addressed in this area. In the area
of sensor networks, it would be interesting to examine if simple protocols can be
developed that leverage joint distributed source coding and network coding. In this
survey we assumed that the source statistics are known to the intended destination.
In practice, the protocols will need to ensure that these statistics are communicated
periodically. In a practical sensor network, it is reasonable to assume that some
limited communication between the sensors is possible. It would be interesting to
see if this reduces the overall complexity of decoding at the destinations.
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Chapter 8
The Spatial Smoothing Method of Clock
Synchronization in Wireless Networks

Arvind Giridhar and P.R. Kumar

Abstract Wireless sensor networks are networks of devices which collaborate to
perform distributed sensing, processing, and possibly even actuation tasks. In this
chapter we consider the problem of the synchronizing clocks in wireless sensor net-
works. We analyze an approach to clock synchronization, called spatial smoothing,
that generally synchronizes clocks in a network more accurately than alternative
tree-based methods. This approach leads to a distributed least-squares vector estima-
tion problem whose goal is to smooth out the noisy estimates of clock differences of
pairs of nodes that can directly exchange packets. We point out connections between
the error variance of such a least squares-based clock synchronization and resistance
in electrical networks. We determine the limiting clock synchronization accuracy for
several types of networks of interest and quantify the improvement over the tree-
based method. For random connected wireless sensor networks we show that the
clock synchronization error can remain bounded even as the number of nodes in the
network increases. This lends support for the feasibility of time-based computation
in large networks. We further analyze the convergence time of a distributed iterative
algorithm to compute the optimally spatial smoothed estimates. We also propose
ways of exploiting the network connectivity graph structure in order to speed up
computation.

8.1 Introduction

Knowledge of time can be important in several wireless sensor networks.
Some wireless communication protocols are slotted, and nodes need to agree on

slot boundaries. An example is slotted ALOHA. More generally, scheduling actions
in a wireless network can improve the performance of the network, for example, by
avoiding the possibility of packet collisions.
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Many wireless sensor networks are used for localization of objects. When this is
performed by triangulation of time-of-flight, the clocks of the various nodes need
to be synchronized. More generally, many applications or tasks require that all the
clocks in the network be synchronized. In one application, described in [1], direc-
tional sensors are used to record the times at which objects cross certain lines. The
only information available is the set of crossing times. From this, it is shown how
the locations of the directional sensors themselves as well as the trajectories of the
objects can be estimated. In this example, the accuracy of estimating the positions
and trajectories depends crucially on the accuracy with which the clocks at the nodes
are synchronized.

In many wireless sensor networks, nodes sleep and wake up on time to receive
or send packets to other nodes, thereby saving energy. The accuracy with which
sleep schedules can be adhered to determines the duty cycles of nodes, and thus the
energy consumptions of nodes. An application described in [2] consists of monitor-
ing a habitat in an environment without any infrastructure for a long period of time.
Increasing awake time intervals of nodes to allow for synchronization errors in such
situations would typically result in higher energy consumption. To minimize such
energy wastage, nodal clocks would have to be tightly synchronized. Accurate clock
synchronization is therefore critical to achieving long lifetimes for low duty cycle
sensor networks.

Last but not least, coordinated action is also important for control systems, featur-
ing sensors and actuators, deployed over wireless networks. Uncoordinated actions
can even destabilize safety-critical networked control systems.

More generally as we move from event-based computation to time-cum-event-
based computation, it becomes critically important to synchronize clocks accurately.

The goal of clock synchronization is to provide to each node in a network the
reference time, as measured at a designated reference node. Since the clocks at the
nodes evolve differently, this can be done by estimating the model of a node’s clock
with respect to the reference node. In particular each node could calculate its own
skew, which describes the speed of its clock with respect to the reference node’s
clock, and its offset, which describes the difference between its clock’s reading at
a particular time and that of the reference clock. In general, the goal of a clock
synchronization algorithm is to compute these correction factors for each node.
Furthermore, the goal is to obtain a distributed algorithm, where each node utilizes
information only from its neighbors. It is also desirable to obtain an algorithm that
does not require knowledge of global network topology.

One way to do so is by nodes exchanging time-stamped packets with their neigh-
bors. From this, each node attempts to determine the relative offset with respect
to its neighbors, and possibly the relative skew. These local estimates of relative
offsets are then pieced together to obtain the global offsets of nodes with respect to
a designated reference node.

In [3], a tree-based algorithm is used. A tree rooted at a given reference node is
constructed. Then the edge offsets are summed along the path from a given node to
the reference node, to yield an estimate of the offset of the node with respect to the
reference node. A similar approach is pursued in [4].
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An alternate approach is to take advantage of the fact that there are available
estimates for every edge in the graph, not just the edges belonging to some spanning
tree. Exploiting the fact that the true values of clock differences across edges must
satisfy Kirchhoff-like laws, i.e., they must sum to zero around every loop in the
graph, yields a set of constraints which can be used to smooth the set of noisy edge
offset and skew estimates obtained by the packet exchange procedure. This approach
is called spatial smoothing. This gives rise, under a simple noise model on the edge
estimates, to a distributed parameter estimation problem on graphs.

The contribution of this chapter is a theoretical analysis of this approach. It was
first introduced in [5], where a connection was established between the optimal
achievable error variance and electrical resistances in topologically identical net-
works. In [6], an algorithm based on the above notion of spatial smoothing was
proposed and implemented, demonstrating superior performance to the tree-based
method.

This chapter contains several results from [7, 8], among others. We begin by
providing an alternate proof of the equality between the error variance of spatial
smoothing and resistance distance by using the different formulations involving
vector least-squares estimation and the incidence matrix of the graph introduced
in [6]. Using this result, we proceed to study the performance of the least-squares
optimal estimate in comparison with the previously proposed tree-based solution.
We show that this approach provides considerably better performance than the tree-
based approach. For example, it scales much better than the tree-based method for
a random connected wireless network. In fact we show that its clock offset error
remains bounded even as the number of nodes in the network increases. This lends
theoretical support for the feasibility of time-based computation in large wireless
sensor network deployments.

We further analyze the convergence properties of the distributed synchronization
algorithm proposed in [6], which seeks to converge to the least-squares optimal
vector of estimates. We prove convergence and also establish bounds on the settling
time in terms of the graph parameters.

For a survey of several previous protocols we refer the reader to [9].

8.2 Synchronizing Two Clocks

We begin by considering the case of just two nodes, numbered 0 and 1, each with
a clock. We show how the clocks of the two nodes can be synchronized by packet
exchanges between the two nodes. Throughout, we will denote the reference time
by t .

We will suppose that the clock of each node i is affine with respect to the true
reference time, i.e., if ci (t) is the time reading on clock i when the reference time is
t , then

ci (t) = αi t + vi (8.1)
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The quantity αi will be called the skew of clock i , and vi will be called the offset of
clock i at reference time 0.

We will call

oi j (t) := c j (t)− ci (t) (8.2)

as the offset of clock j from clock i at reference time t . We will also call

oi j := v j − vi (8.3)

as the offset of clock j from clock i at reference time 0. Similarly, we will call

αi j (t) := α j

αi
(8.4)

as the skew of clock j with respect to clock i .
For simplicity, let us denote one of the clocks, say the clock of node 0, as the

reference clock. Hence its display time is the reference time, i.e., α0 = 1 and v0 = 0.
In order to synchronize the clock of node 1 with respect to the clock of node 0,

one needs to determine the values of α01 and o01. For this purpose the two nodes
exchange time-stamped packets. Consider the i th packet sent from node 0 to node 1.
Suppose that clock 0 sends this i th packet at its local time si

01 to node 1. It inserts
inside the packet the information about the time si

01 according to its own clock at
which this packet is being sent. (This is not strictly necessary. It could communicate
this information in a future packet that it sends to node 1). Let us suppose that node 1
receives the packet at time r i

01 according to its own clock. Similarly, when node 1

sends its j th packet to node 0, it time-stamps the time s j
10 according to its own clock

at which it is sending the packet. Node 0 receives the packet at time r j
10 according

to its own clock. In this way nodes 0 and 1 acquire information about the times they
have sent packets and the times at which the other node has received the packets,
which they can share with each other in future packets.

We shall suppose that when node 0 sends a packet to node 1, there is a delay d01,
measured in reference time units, that it takes the packet to reach node 1. By “delay”
we do not just mean electromagnetic propagation delay. By delay we mean all the
time elapsed from the moment that node 0 time-stamps its packet till the time that
node 1 reads the time that it has received the packet. At the transmitter node, this
includes the time for the operating system at node 0 to process the packet after time
stamping it, followed by the time for the packet to make its way through the rest
of the communication protocol stack. Then there is electromagnetic propagation
delay. Finally, at the receiver end, there is the time taken by the packet to travel
through the communication protocol stack and then the time taken for the clock to
be consulted on what time it is. The component of the delay at the transmitter and
receiver dominates the electromagnetic propagation delay when the nodes are not
very far apart.
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Similarly, when node 1 sends a packet to node 0, we suppose that there is a delay
d10, again measured in reference time units, for the packet to reach node 0.

To begin with, let us suppose that both these delays are deterministic. That is they
do not fluctuate at all from packet to packet.

It should be noted that there are four unknown parameters (α01, o01, d01, d10).
Nodes 0 and 1 wish to determine these four parameters by exchanging packets with
each other.

The relationship between the sending time of the i th packet at node 0 and its
receiving time at node 1 is

r i
01 = α01

(
si

01 + d01

)
+ o01 (8.5)

(To see the above, note that si
01 is the time at which the packet is sent by node 0,

measured according to node 0’s clock. Subsequently,
(
si

01 + d01
)

is the time accord-
ing to node 0’s clock that the packet is received at node i . Converted to the clock
of node i this gives the right-hand side of (8.5)). Similarly, when node 1 sends the
j th packet to node 0, then the relationship between the time at which it is sent by
node 1, and the time at which it is received by node 0, is

s j
10 = α01

(
r j

10 − d10

)
+ o01 (8.6)

Nodes 0 and 1 obtain the values of
(
r i

01, si
01

)
for i = 1, 2, 3, . . ., and

(
r j

10, s j
10

)

for j = 1, 2, 3, . . .. From this data they would like to determine the values of
α01, o01, d01, and d10.

This problem can be written as a problem of solving linear equations in many
unknowns. Simply define

β01 := α01d01 (8.7)

β10 := α01d10 (8.8)

Then (8.5) and (8.6) are linear in (α01, o01, β01, β10):

r i
01 = α01si

01 + β01 + o01 for i = 1, 2, 3, . . . (8.9)

s j
10 = α01r j

10 − β10 + o01 for j = 1, 2, 3, . . . (8.10)

However, it is easy to see [10] from the above that one can determine (α01, β01 +
o01,−β10 + o01), but one cannot separately determine (α01, β01,−β10, o01). Or to
put it another way, these equations have rank 3, and not 4. Hence four parameters
cannot be uniquely determined. (It is of interest, however, that in spite of this a node
can predict when the other node will receive a packet, see [11, 12].)

To overcome this problem, let us make one additional assumption:

d01 = d10 (8.11)
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i.e., the delays in the two directions are symmetric. Then these equations can be
solved. In fact from just two packets i = 1, 2 sent from node 0 to node 1, one can
form an estimate α̂01 of the skew as

α̂01 = r2
01 − r1

01

s2
01 − s1

01

(8.12)

Moreover, from one packet i = 1 from node 0 to node 1, and a later packet j = 1
from node 1 to node 0, an estimate d̂01 can be made as

d̂01 = 1

2

[(
r1

10 − s1
01

)
−
(

s1
10 − r1

01

α̂01

)]

(8.13)

Next, an estimate ô01
(
s1

01 + d01
)

of o01
(
s1

01 + d01
)

can be made as

ô01

(
s1

01 + d01

)
= r1

01 − s1
01 − d̂01 (8.14)

From this, the estimate of the offset of node 1 from node 0 at time 0 can be made by

ô01(0) = ô01 = ô01

(
s1

01 + d01

)
− (α̂01 − 1)

(
s1

01 + d̂01

)
(8.15)

It is easy to check that in the above deterministic model, the above estimates are all
correct, i.e., ô01 = o01, α̂01 = α01, and d̂01 = d01.

In practice, however, the delays experienced by packets will not be deterministic
and are better modeled as random. The only deterministic component of the delay
is the electromagnetic propagation delay. However, when nodes are nearby, this is
dominated by the time taken by the operating system to process the packet and trans-
mit it, after the packet has been time-stamped. At the receiving end, there is also the
time to process the packet before consulting the clock to record the reception time.
There can also be errors in measuring the exact times involved. These quantities
are better modeled as random variables. Since the overall delays are therefore also
random, the estimates α̂01 and ô01 will be erroneous. In Sect. 8.3, when we consider
the case of interest in this chapter, which is a network of clocks, our starting point
will be the availability of noisy estimates of skew and offset for each link. We will
suppose that

ô01 = o01 + N01 (8.16)

where N01 is the error which will be modeled as a random variable.
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8.3 A Network of Clocks

Now we turn to the problem of interest, which is a wireless sensor network
where each node has a clock. We consider a network consisting of (n + 1) nodes
0, 1, 2, . . . , n. We will designate node 0 as the reference node, possessing the refer-
ence clock. If two nodes can transmit packets to each other, then we connect them
by an edge. We will give each such edge an arbitrary orientation. For an oriented
edge (i, j), we will call i the head and j the tail. We will also say that the nodes
i and j are neighbors when they are connected by such an edge. In this way we
obtain a directed graph. We will suppose that the graph is connected, i.e., there is a
multi-hop undirected path between any two nodes.

In the sequel we will use the incidence matrix A of the directed graph. Its rows
correspond to the (n + 1) nodes and its columns correspond to the m edges:

Ai j =

⎧
⎪⎨

⎪⎩

1 if node i is the head of edge j

−1 if node i is the tail of edge j

0 otherwise

(8.17)

Since the graph is connected the rank of A is n. Since it is deficit from full rank by 1,
we will delete the row corresponding to the root node to obtain a reduced incidence
matrix which is of full rank. To save on notation, we will continue to denote this
reduced incidence matrix by A.

Node 0 is the reference node, by which we mean that its clock is the reference
clock, whose time will be denoted by t . Each node i has a clock whose display at
reference time t is denoted by ci (t). We will begin our analysis by supposing that
the skew of all clocks is 1, i.e., the model of each clock is simply

ci (t) := t + vi for i = 1, 2, . . . , n (8.18)

Then the only difference between any clock i and the reference clock 0 is its offset
vi . The goal of clock synchronization is to determine the offset vi of each clock i
from the reference clock at node 0.

Later on, in Sect. 8.6, we will see how the analysis can be extended to the case
where there is indeed a skew at each node that is also unknown, i.e.,

ci (t) = αi t + vi (8.19)

More details can also be found in [6]. The issues arising from the case of randomly
varying skew are further addressed in [13]. We focus for the time being on the case
of this model (8.18) with only the one unknown parameter of offset, for simplicity
of presentation.
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8.4 Estimating Node Offsets from Edge Offsets

We will consider a two-step procedure. In the first step the clock offsets between
neighboring nodes are estimated. This is done by the neighboring nodes exchanging
time-stamped packets between themselves, as described in Sect. 8.2. In the second
step these estimates of offsets along edges are combined to estimate the offset of a
node’s clock with respect to the reference clock.

We begin by revisiting the first step of estimating the offset between neighboring
nodes. In Sect. 8.2 we have modeled the delay as deterministic. Then the offset
estimate ôi j is exactly equal to the true offset oi j . However, in practice, the delays
experienced by packets will not be deterministic, and are better modeled as random.
Hence the estimate ôi j will be erroneous too. We will suppose that for each edge
(i, j) in the network, the estimate ôi j is related to the true value oi j by

ôi j = oi j + Ni j (8.20)

where Ni j is a random variable that captures the sum of all the random effects. We
model it as a normal random variable with mean 0 and variance σ 2. (The distribution
is not specifically important to our analysis; however, the fact that the noise variables
are independent and mean zero is important.) We will assume that the random errors
{Ni j : (i, j) is an edge} are independent and identically distributed (i.i.d.).

The next issue is how to piece together these estimates ôi j of the offsets between
neighboring clocks to obtain an estimate of the offset of a node from the reference
clock. The most straightforward way to do so is to choose a path connecting a node
i with the reference node 0 and then to simply add up the offsets along the edge.
That is, if {(i0, i1), (i1, i2), . . . , (ik−1, ik)} is a path connecting 0 = i0 with ik = i
through a series of edges (i	−1, i	), then the estimate of the offset of node i from the
reference node 0 is

ôi0 =
k∑

	=1

ôi	−1,i	 (8.21)

In a tree, there is only one path, but in a general graph there may be more than one
path and so one would need to choose one of the paths.

How good is this estimate? To determine this, note that the sum of k independent
N (0, 1) random variables is N (0, k). That is, the variance increases linearly in the
number of variables being summed, i.e., like k. So the standard deviation increases
like

√
k, the square root of the number of variables being added up. Since the number

of edges between the reference node and any node is bounded by the diameter of
the graph, i.e., the maximum number of edges needed to connect any node with any
other node, we see that

õi0 = O
(√

Diameter of graph
)

(8.22)

where õi0 := ôi0 − oi0 is the error in the estimate.
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Let us begin by examining how accurate this is.

Example: A tree. Note that if the graph of the network is a tree, then since the
diameter of a tree is O(n), we see that the error is O

(√
n
)
.

Other graphs can have diameters less than O(n); we consider next the class of
geometric graphs.

8.4.1 Geometric Graphs

We now give the wireless sensor network a more physical character by supposing
that the (n + 1) nodes 0, 1, 2, . . . , n are located on a plane. Denote the distance
between two nodes i and j by ρi j . We will suppose that node i can send a packet to
node j if ρi j ≤ r . Here r is the range of communication of the radios at nodes. We
will suppose, as before, that node 0 is the reference node, by which we mean that its
clock is the reference clock.

To examine how good the estimates generated by (8.22) are, we consider several
cases.

Example: A collocated network. Suppose that the range r is so large that r ≥ ρi j

for all i, j . Then all nodes can communicate directly with each other. We call such
a network a collocated network, see Fig. 8.1. The resultant graph is a clique on n
vertices. Its diameter is 1. Hence the synchronization error is Θ(1). While the error
variance is bounded, it does not go to 0 as the number of nodes n → ∞, which is
however what one would desire in such a collocated scenario.

Example: A grid or integer lattice network. Suppose that the (n + 1) nodes are
located at positions with x-coordinates and y-coordinates that are integers, i.e., at
positions (	, k) where 1 ≤ 	, k ≤ √

n + 1 are integers. We call this a grid or integer
lattice network, see Fig. 8.2. Suppose also that the range r = 1. Then every node
can communicate with its nearest neighbors. The diameter of the graph is Θ

(√
n
)
.

Therefore the synchronization error is Θ(n1/4). Hence we see that the synchroniza-
tion error grows polynomially in n.

Fig. 8.1 A collocated
network
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Fig. 8.2 A grid or integer
lattice network

Example: A random network that is connected. Consider now a unit area square in
the plane. Suppose that nodes are randomly distributed in the square, with proba-
bility distribution that is uniform, and independently of each other. This can model
the deployment of the nodes of a wireless sensor network. The first issue in such
a wireless network is that one would like to choose the range r(n), possibly as a
function of the number of nodes, in such a way that the graph of the network is
connected, see Fig. 8.3. Clearly, as n increases there are more nodes packed into the
unit area square, and hence a smaller value of range should suffice. That is, if the
range r(n) chosen can depend on n, then one expects that r(n) can decrease with
n. At what precise rate can it decrease and still be connected? This is answered in
[14, 24].

Theorem: Connectivity of a geometric random graph Suppose that the range of
nodes is r(n), where, as denoted, the range can depend on the number of nodes.

Consider r(n) =
√

log n+ψn
n . Then

limn→+∞ Prob(Graph is connected) = 1 ⇐⇒ limn→+∞ ψn = +∞ (8.23)

Fig. 8.3 A random connected
network
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In particular, note that if r(n) =
√

2 log n
n , then the graph of the network is connected

with high probability (whp) converging to 1 as n → ∞.

Let us suppose that the range has been chosen so that the graph is indeed con-
nected. We shall call such a graph as a connected geometric random graph. Then
since the maximum distance between any two points in the unit area square is

√
2, it

follows that the maximum number of hops to connect any two nodes is O
(√

n
log n

)

in any graph that is connected whp. From this it follows that

Error = O

((
n

log n

)1/4
)

(8.24)

Hence, again the error can grow polynomially in the number of nodes.
In all these cases, one hopes that one can do better. In the collocated network,

one would like to have an error that is o(1), i.e., Error → 0 as the number of nodes
n → +∞. In the connected geometric random graph, one would like Error = O(1),
i.e., the error to be bounded as the number of nodes increases. If the latter is feasible,
then one will be able to achieve bounded error of clock synchronization even in
large wireless sensor networks. This will lend theoretical support for the feasibility
of large sensor networks where accurate time-stamping is important for inference or
control.

To achieve the above goals we will exploit the network aspect of the system as
well as the physical property of time.

8.5 Spatial Smoothing

The key property that we will exploit to improve the accuracy of clock synchroniza-
tion is the nature of time. Consider any cycle or loop in the graph, i.e., any sequence
of edges, L = {(i0, i1), (i1, i2), i2, i3), . . . , (i	−1, i	 = i0)}. Then the sum of the
true edge clock differences added up along the edges in the loop must satisfy

∑

(i, j)∈L

oi j = 0, for every loop L (8.25)

This is analogous to Kirchhoff’s voltage law. The role of node voltages is played by
the nodal offsets {vi }, and the role of potential difference across an edge is played
by the edge offset oi j .

Observe that a graph may in general have several cycles. For each of these cycles
property (8.25) holds.

Let us denote the n-dimensional vector of node offsets by v = (v1, v2, . . . , vn)
T ,

and the corresponding m-dimensional vector of edge offsets by o. Then v and o are
related by

o = AT v (8.26)
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Note that the orientation of the graph is chosen according to the signs of the edge
offsets. From the above it follows that the true offset vector o must belong to the
range space of the transpose of the reduced incidence matrix A. Note that any vector
o of edge offset values arising from a vector v of nodal values through the above
relation (8.26) will necessarily satisfy (8.25).

While the above property (8.25) is satisfied by the true edge offsets, it will gen-
erally not be satisfied by the noisy estimates of the edge offsets. Note now that our
goal is to obtain estimates of the node offsets of the nodes in the graph. Thus, we
can formulate the synchronization problem as one of estimating the vector v of node
clock offsets, given the vector of noisy edge estimates ô = AT v + N . We can pose
this as a least-squares optimization problem.

We now describe such a least-squares synchronization approach for estimating
the clock offsets of all nodes from the reference clock [6]. In effect we have a non-
Bayesian vector parameter estimation problem. The noise vector N is i.i.d. Gaus-
sian, and consequently the maximum likelihood estimate is given by a least-squares
fit of the offset estimate vector to the range space of AT , i.e., the space of offset vec-
tors satisfying the network Kirchhoff constraints. The least-squares optimal vector
estimate is the solution to the following quadratic minimization problem:

v̂ = arg min
v

‖ AT v − ô ‖2 (8.27)

The above formulation of the estimation problem as a standard quadratic optimiza-
tion problem is taken from [6] and suggests a distributed method to compute the
least-squares optimal estimate, as we will subsequently show in Sect. 8.8. An alter-
nate method to obtain the same optimal estimate was proposed in [5].

In effect we have obtained a two-step procedure. First, for each pair of nodes
(i, j) that are neighbors, through bilateral packet exchanges between neighboring
nodes, as explained in Sect. 8.2, we obtain an estimate ôi j of the offset between the
two neighboring nodes i and j . This estimate only takes into account the information
contained in the time-stamps of the packets sent from node i to node j or vice-versa.
However, it does not in any way take into account any information contained in the
time-stamps of packets exchanged between any two other nodes (k, 	).

On the other hand, one does want to take into account all information that is
available, in arriving at estimates (v̂1, v̂2, . . . , v̂n) of the offsets of the nodes. Thus
we need to stitch all the bilateral estimates {ôi j : i and j are neighbors} to produce
estimates of the nodal offsets {vi : i is a node}. We do this by a least-squares fit
(8.27).

We call the second step of this procedure as spatial smoothing. It smooths out
the noise in each individual estimate ôi j by relying on all the other estimates {ôkl}
made all over the network.

There are two questions that arise:

(i) How does one perform such spatial smoothing in a distributed fashion to obtain
node offsets from edge offsets?
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(ii) How well does spatial smoothing approach perform? What is its accuracy, and
how fast does it converge?

We address these questions in the sequel.

8.6 Estimating Nodal Skews

At this point we digress briefly to discuss how clocks with general skews can be han-
dled. If we consider the more general model (8.19) that allows for different skews
for different clocks, then it can be handled in a similar manner to the way offsets
are handled. First note that if {(i0, i1), (i1, i2), . . . , (ik−1, ik)} is a path connecting
0 = i0 with ik = i through a series of edges (i	−1, i	), then

αi0 =
k∏

	=1

αi	−1,i	 (8.28)

This is a multiplicative analog of the additive relation (8.21) that holds for offset
estimates. Hence, instead of dealing with αi j , if we deal with its natural logarithm
log(αi j ), we obtain

log(αi0) =
k∑

	=1

log(αi	−1,i	 ) (8.29)

which is the exact analog of (8.21). It shows that methods for estimating offsets have
multiplicative counterparts that can be used to estimate skews.

Using this, spatial smoothing can be extended to the case of estimating skew.
Instead of (8.25), one has

∑

(i, j)∈L

log(αi j ) = 0 (8.30)

for every loop L . Thus one obtains a relation that is analogous to (8.25), following
which one obtains an optimization problem that is analogous to (8.27). This results
in a two-step procedure for piecing together relative skew estimates (8.12) that are
obtained by bilateral packet exchanges between nodes, to produce skew estimates
of nodes with respect to the reference clock.

8.7 Properties of the Least-Squares Solution

We return to the problem of estimating offsets for the one-parameter model (8.18)
by the least-squares estimate (8.27). First we note some nice properties of the least-
squares estimate v̂ and its error

ṽ := v̂ − v (8.31)
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Theorem 1 1. The optimal solution of (8.27) is

v̂ = (AAT )−1 Aô (8.32)

It is unique.
2. The least-squares estimate is unbiased, i.e., E(v̂) = v. Its error covariance

is E[ṽṽT ] = σ 2(AAT )−1. The least-squares optimal solution v̂ is a minimum
variance unbiased estimate and achieves the Cramer–Rao lower bound.

3. v̂ is the unique minimum variance unbiased estimate.

Proof (i). Since the matrix AAT is positive definite, the unique minimizing solution
is obtained by setting the gradient to 0.

(ii). Let v be the true vector of node offsets and N the noise vector. Because the
noise Ni j is zero mean, we have

E[v̂] = E[(AAT )−1 Aô] = (AAT )−1 AAT v + E[N ] = v (8.33)

Thus, the estimate is unbiased. Now, consider the n × n Fisher information matrix
Iv with i j th element given by

(Iv)i j = E

[(
∂

∂vi
log pv(ô)

)(
∂

∂v j
log pv(ô)

)]
(8.34)

where pv(ô) is the probability density function of the vector ô given node offset
vector v. We have

∂

∂vi
log pv(ô) = ∂

∂vi

(
1

2σ 2

∑

k

(
ôk − AT

k v
)2
)

+ constant

= 1

σ 2

∑

k

(
ôk − AT

k v
)
(AT )ki (8.35)

Therefore, we have

(Iv)i j = E

[
1

σ 4

∑

k

∑

l

(
ôk − AT

k v
) (

ôl − AT
l v
)

AT
ki AT

l j

]

= E

[
σ 4
∑

k

∑

l

Nk Nl AT
ki AT

l j

]

= 1

σ 4
σ 2
∑

k

Aik AT
k j

= 1

σ 2
(AAT )i j (8.36)
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The Cramer–Rao bound [15] states that for any unbiased estimate v̂, the error covari-
ance matrix satisfies E[(v̂ − v)(v̂ − v)T ] ≥ I−1

v . We now evaluate the error covari-
ance matrix of the least-squares optimal solution v̂. The error vector is given by

ṽ = v̂ − v

= (AAT )−1 A(AT v + N )− v

= (AAT )−1 AN (8.37)

The error covariance is therefore E[ṽṽT ] = σ 2(AAT )−1. Thus, E[ṽṽT ] =
(Iv)−1 = σ 2(AAT )−1. Thus, the error covariance matrix of v̂ achieves the Cramer–
Rao bound and is therefore the minimum variance unbiased vector estimate of v.

(iii). Consider the problem of computing the minimum variance linear unbiased
estimate of the offset (with respect to the root node) of a given node i , given the
edge offset estimate vector ô. That is, we wish to find a vector h such that

min E[vi − hT ô]2 (8.38)

subject to

E[hT ô] = vi

From part (i), we know that h∗ = (AT (AAT )−1)i (the subscript i denotes the i th
column of the matrix) is a solution to this problem. We claim that this is the unique
solution. If so, the same is true for any choice of a node i , which proves the result.

Since ô = AT v + N and N is a zero mean vector, the constraint becomes
hT AT v = vi . This has to be true for an arbitrary vector v, which implies that
Ah = ei , where ei is the n-dimensional vector with i th entry 1 and all other entries
0. Modifying the objective function (8.38), we have

E[vi − hT ô]2 = E[hT N ]2
= σ 2hT h (8.39)

Thus, we have the equivalent optimization problem

min hT h (8.40)

subject to

Ah = ei

The Lagrangian of this problem is hT h + λT (Ah − ei ), where λ is the
vector of Lagrange multipliers. Minimizing this with respect to h yields the
solution h∗ = 1

2 AT λ. Maximizing the dual objective function 1
4λ

T AAT λ −
λT
(

1
2 AAT λ− ei

)
over all values of λ gives the solution to the primal optimization

problem. This solution is easily obtained by taking the gradient with respect to λ,
giving the unique solution
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λ∗ = 2(AAT )−1ei

Thus, the solution to the original problem is also unique and given by h∗ = 1
2 AT λ∗,

which gives us back the original solution to the least-squares problem. �
Note that the proof of part (iii) also provides an alternate proof that the least-

squares optimal solution is the same as the minimum variance unbiased estimate.
The following result, previously established in [5], shows an interesting connec-

tion between the performance of the least-squares optimal solution and resistances
in electrical networks. We provide an alternate proof below [7].

Theorem 2 (Karp et al. [5]) Replace each edge in the graph by a 1Ω resistor. Then
the error variance of node i is

E[v̂i − vi ]2 = σ 2 × (Electrical resistance between nodes i and 0) (8.41)

Proof From electrical network theory [16], it is known that the i th diagonal entry
of (AAT )−1 is the resistance between nodes i and 0. This can be obtained by com-
puting the voltage resulting from the addition of current sources between every
node i and the root. The theorem follows immediately by noting that E[ṽṽT ] =
σ 2(AAT )−1, and its i th diagonal entry is the variance of ṽi . �

The connection to electrical resistance via the Laplacian matrix is also exploited
in [17], which considers the problem of node localization in wireless networks.

Let us call the resistance between nodes i and 0 in the above electrical network
as the resistance distance between the two nodes. From the above theorem it fol-
lows that to evaluate the performance of the spatial smoothing algorithm, all we
need to do is evaluate or at least bound the resistance distances. Moreover, from the
electrical analog, several properties become more intuitive:

• Adding more bilateral estimates between nodes is tantamount to adding more
edges. Hence it decreases the electrical resistances and thus improves the accu-
racy of clock synchronization.

• From the above it follows that adding edges to a tree improves the accuracy of
clock synchronization. Hence spatial smoothing performs better than the earlier
described tree-based estimates.

• Adding parallel paths decreases the conductance, which is the reciprocal of resis-
tance. Hence taking advantage of estimates over parallel paths improves the accu-
racy of clock synchronization by averaging the effect of noise.

• For a tree the resistance distance is just the sum of the variances over the edges
in the unique path. Hence the variance of the synchronization error increases
linearly with the number of edges along the path from a node to the reference
node. The tree-based algorithm [3] is optimal in the least-squares sense in this
case, achieving the above error variance.

We now revisit the canonical graphs considered earlier to assess the benefits of
spatial smoothing by the least-squares method [7]. We do this by evaluating the
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maximum error variance Rmax (equivalently, maximum resistance) of the estimated
offset of any node, for the graphs that were considered earlier.

Example: A tree. Rmax = O(diameter), as noted earlier.

Example: A collocated network. For a clique, Rmax = 2/n. This is easily derived
using Kirchhoff’s laws and symmetry. Hence, the error of the least-squares solution
converges to 0 as the number of nodes increases. In contrast, if one does not employ
spatial smoothing and just relies on the bilateral estimates only between a node
i and the reference node, then the error is Θ(1). Spatial smoothing results in the
much better accuracy of Θ

(√
1/n
)
.

Example: A grid or integer lattice network. Determining the resistance of an infinite
lattice is a classical problem in electrical circuit theory. An expression for the resis-
tance between points in a finite lattice has been derived in [18]. We show below that
the resistance between opposite corners of a square lattice of n nodes is Θ(log n).
This shows that spatial smoothing has a much better accuracy of Θ

(√
log n

)
than

the tree-based scheme in large networks since the error in the latter case grows like
Θ
(√

n
)
.

Theorem 3 The maximum resistance between any two nodes in the square lattice of
n nodes is Θ(log n).

Proof The problem of computing resistances between points on a grid goes back to
the classical physics problem of computing resistances between adjacent points on
an infinite grid.

Closed form expressions for the resistance between points on different types
of finite lattice resistive networks have been derived in [18]. These formulae are
expressed in terms of the eigenvalues and eigenvectors of the Laplacian matrices of
the respective networks. In particular, the resistance between two points (x1, x2) and
(y1, y2) in an M × N grid of resistors, where the “horizontal” resistors have value r
and the “vertical” resistors have value s, is shown to be the following:

R((x1, x2), (y1, y2)) = r

N
|x1 − x2| + s

M
|y1 − y2| + 2

M N

×
M−1∑

m=1

N−1∑

n=1
(

cos

(
x1 + 1

2

)
θm cos

(
y1 + 1

2

)
φn − cos

(
x2 + 1

2

)
θm cos

(
y2 + 1

2

)
φn

)2

1 − cos θm

r
+ 1 − cosφn

s
(8.42)

where θm = mπ
2M and φn = nπ

2N .
Here, we use this formula to derive an upper bound on the resistance between

corner points of an M × M grid of unit resistors [7]. The lower bound follows
similarly, but we omit the proof.
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First, we need a couple of simple lemmas.

Lemma 1 For 0 < x ≤ π/2,

sin x ≥ 2

π
x

Proof We prove that sin x
x is a decreasing function of x for 0 < x ≤ π/2. The result

follows since sin x
x <

sinπ/2
π/2 .

d sin x
x

dx
= x cos x − sin x

x2

= (x − tan x)
cos x

x2

Now x − tan x = 0 at x = 0, and d(x−tan x)
dx = 1 − sec2 x < 0 for 0 < x ≤ pi/2.

Therefore x − tan x < 0 for 0 < x ≤ π/2, and so we are done. �

Lemma 2 For M ≥ 1,

M−1∑

m=1

N−1∑

n=1

1

n2 + m2
≤ 1 + log M (8.43)

Proof We make use of the following simple inequality:

M∑

m=L

1

m2
<

∫ M

L−1

1

x2
dx (8.44)

Therefore,

M−1∑

m=1

N−1∑

n=1

1

n2 + m2
<

M−1∑

m=1

N−1∑

n=1

2

(n + m)2

<

M−1∑

m=1

∫ m+M−1

m

1

x2
dx

=
M−1∑

m=1

1

m
− 1

m + M − 1

< 1 +
∫ M

1

1

x
dx

= 1 + log M
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For the corner points in an M × M grid, (8.42) simplifies to

R((0, 0), (M, M)) = 2 + 1

M2

M−1∑

m=1

N−1∑

n=1
(
cos
(mπ

2M

)
cos
( nπ

2N

)− cos
(
mπ + mπ

2M

)
cos
(
nπ + nπ

2M

))2

sin2 mπ
2M + sin2 nπ

2M

(8.45)

Applying Lemma 1, we have the inequality

R((0, 0), (M, M)) ≤ 2 +
M−1∑

m=1

N−1∑

n=1
(
cos
(mπ

2M

)
cos
( nπ

2N

)− cos
(
mπ + mπ

2M

)
cos
(
nπ + nπ

2M

))2

m2 + n2

< 2 + 4
M−1∑

m=1

N−1∑

n=1

1

n2 + m2

< 6 + 4 log M (8.46)

where the last inequality follows from Lemma 2.
Thus, the resistance between corner points in an M × M grid is upper bounded

by 6 + 4 log M . �
Example: A random network that is connected The following result gives the order
of the resistance in a connected geometric random graph. It shows that the synchro-
nization error is bounded in large random connected planar wireless networks. It
thus gives theoretical support to the possibility of time-based computation in large
wireless sensor networks.

Theorem 4 (Giridhar and Kumar [7]) The maximum resistance between any two

nodes in the random planar network with common transmission range c
√

log n
n , c >

5 log(4/e), is O(1).

Proof We make use of a couple of known properties of the random planar network.

• Recall that if r(n) =
√

2 log n
n , the graph of the network is connected with high

probability converging to 1 as n → ∞ [14]. The general statement is that a range

of "

(√
log n+ψn

n

)
with ψn → ∞ is necessary and sufficient for the network

graph to be connected with probability going to one as n → ∞.
• We also need the following lemma, which is proved in [19].

Lemma 3 Consider the tessellation of the unit square into m =
⌈√

n
K log n

⌉2
equally

sized squares s1, s2, . . . , sm. Let ni be the number of nodes in square si . If K >

1/ log(4/e), there exist constants μ1, μ2 > 0 such that
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lim
n→∞ P

[
max

i
ni < μ1 log n

]
= 1 (8.47)

and

lim
n→∞ P

[
min

i
ni > μ2 log n

]
= 1 (8.48)

In other words, for such a tessellation, the number of nodes in each cell is no more
than c log n with high probability, uniformly over all such cells in the unit square.

As a direct consequence of Lemma 3, we have the following corollary.

Corollary 1 Let the unit square be tessellated into m =
⌈√

n
K log n

⌉2
equally sized

square cells. Further, consider the network graph obtained by connecting every pair
of nodes which are either in the same cell or in adjacent cells by an edge. Then, with
probability converging to 1 as n tends to ∞, there are μ2 log n disjoint m node grid
subgraphs, with each subgraph having one node per cell.

Proof As a consequence of Lemma 3, all cells have at least μ2 log n nodes. We can
thus construct μ2 log n disjoint subgraphs by picking one node per cell for each sub-
graph. Each of the resulting subgraphs will be an m node grid due to the adjacency
properties of the original network.

We can now bound the resistance between any two nodes in the random planar
network. Without loss of generality, consider two nodes which are in diametrically
opposite cells in the network. A similar argument holds for any other pair of nodes
as well.

Let K = log(4/e), and divide the unit square into m =
⌈√

n
K log n

⌉2
square cells.

The maximum distance between any two points in adjacent squares is
√

5l, where

l =
√

n
K log n is the length of an individual square cell, as can be seen in Fig. 8.4.

Fig. 8.4 Unit square divided
into cells

range
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Setting the transmit range r(n) to be larger than
√

5K log n
n ensures that every pair

of nodes in adjacent cells will be connected and also that the network as a whole is
connected. Furthermore, the conditions of Lemma 3 are also satisfied, implying that
with probability going to 1 as n → ∞, every square cell will have at least μ2 log n
nodes.

Now, take any two nodes. It is sufficient to consider nodes in the diagonally
opposite corner cells of the unit square. Similar reasoning applies for any other pair
of nodes. By Corollary 1, there existμ2 log n disjoint grids, each with nodes in every
cell. Consider the electrical network consisting of theseμ2 log n grids along with the
two nodes in question, along with all the edges from each of these two nodes to the
μ2 log n grid nodes in their respective cells. This electrical network is a subnetwork
of the original network graph, and so the resistance between the two nodes in this
network is a lower bound for the resistance in the original network.

But this network simply consists of μ2 log n parallel disjoint subgraphs link-
ing the two nodes. The analysis of grid resistance above shows that each of these
grids has resistance less than 6 + 4 log n. Thus, the overall resistance is less than

1
μ2 log n (8 + 4 log n), which itself is less than 8/μ2 . �

From the above examples of networks we see that the spatial smoothing algo-
rithm gives much greater accuracy than tree-based synchronization.

8.8 The Distributed Spatial Smoothing Algorithm Based
on Coordinate Descent

The next question that arises is how to compute the least-squares optimal estimate v̂
in a distributed manner. That is we would like to use a distributed algorithm where
each node only employs information that it obtains from its neighbors. Further, we
would like to obtain a procedure that does not rely on the knowledge of the network
topology that knowledge of A entails. Note that in a mobile ad hoc network, keeping
track of network topology can be challenging, as can be the problem of further
maintaining a tree.

We will employ coordinate descent to solve both these problems. Let F(v) :=‖
AT v − ô ‖2. At each step, one node i minimizes the objective function F(v) with
respect to just the single variable vi .

To determine the minimizing vi , note that

d F(v)

dvi
= (AAT )iv − Ai ô (8.49)

Exploiting the structure of the reduced incidence matrix A shows that

(AAT )i j =

⎧
⎪⎨

⎪⎩

Di if i = j

−1 if i and j are neighbors

0 otherwise

(8.50)



248 A. Giridhar and P.R. Kumar

where Di is the number of neighbors that node vi has, i.e., its degree. Hence, (8.49)
simplifies to

d F(v)

dvi
= Divi −

∑

{ j : j is a neighbor of i}
(v j + ô j i ) (8.51)

The minimum is obtained by setting the above to 0:

vi = 1

Di

∑

{ j : j is a neighbor of i}
(v j + ô j i ) (8.52)

The resulting algorithm is therefore particularly simple. Each node simply
updates its estimate of its offset with respect to the reference node 0 as the average
of all its neighbors’ estimates plus the offset estimates of the corresponding edges
connecting those neighbors to itself. (To put it another way, this is the average of
its neighbors’ estimates of its own estimate.) Thus, nodes need to only communi-
cate with their neighbors. Hence we have a distributed algorithm. Furthermore, the
second goal is also realized since no node needs to know the global topology of the
network.

We summarize the resulting spatial smoothing algorithm, proposed in [6]:
Distributed Asynchronous Spatial Smoothing:

• Each node regularly exchanges time-stamped packets with each of its neighbors
and estimates the corresponding bilateral offsets.

• Each node regularly broadcasts its current estimate of its offset vi to all its neigh-
bors.

• Each node regularly averages the value of (v j + ô j i ) that it has obtained from its
neighbors.

These steps can be combined or run in parallel. They can be performed asyn-
chronously too.

The synchronous version of the above algorithm is the following.
Distributed Synchronous Spatial Smoothing: The bilateral estimates are determined
as earlier. However, all the nodal clock offsets are updated synchronously:

v
(k+1)
i = 1

Di

∑

{ j : j is a neighbor of i}

(
v
(k)
j + ô j i

)
for all nodes i = 1, 2, . . . , n

(8.53)
Here k is the common sequence number of all the updates.
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8.9 Convergence Analysis of the Spatial Smoothing Algorithm

In Sect. 8.7 we have determined how accurate the spatial smoothing-based least-
squares solution is. In this section we will first show that the algorithm does indeed
converge to the least squares solution; see [25]. We will further analyze how long
the algorithm takes to converge to a solution that is nearly the final least-squares
estimate [7]. Thus Theorem 2 provides the property of the asymptotic solution,
while the theorems in this section inform us about the time taken to get close to
this asymptotic estimate. This time will also be related to the number of nodes in
the network, indicating the scaling performance.

Theorem 5 Both the synchronous and asynchronous spatial smoothing algorithms
converge to the least-squares solution v̂.

Proof The asynchronous coordinate descent approach is well known to converge
for quadratic costs, see [20]. So we only consider the synchronous version, which
can be written in vector notation as

v(k+1) = v(k) − D−1(AAT v(k) − Aô) (8.54)

Defining v̄k := v(k)− (AAT )−1 Aô, we only need to show that v̄k converges to 0.
It can be written as

v̄(k+1) = M v̄(k) (8.55)

where M := I − D−1 AAT . We only need to show that the spectral radius of M ,
denoted ρ(M), is strictly less than 1.

Note that

Mi j =
{

0 if i = j

1/Di if i �= j
(8.56)

Hence all row sums of M are equal to 1, except for nodes which are neighbors of
the reference node. For a neighbor i of the reference node, the row sum is Di−1

Di
.

Thus, matrix M is a nonnegative, substochastic matrix. Further it is irreducible, and
at least one row sum is strictly less than 1. Hence ρ(M) < 1 (see [21], Problem
8.3.7). �

Next we obtain [7] a bound on the number of steps, Tε(A, v(0)), taken by
the synchronous algorithm started with an initial estimate v(0), to converge to an
ε-neighborhood of the final estimate v̂. We will call this the ε-settling time of the
algorithm. It involves the edge-connectivity parameter κ of the connected graph,
which is defined as the minimum number of edges that, when deleted, disconnect
the graph.
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Theorem 6 The settling time is bounded as follows:

∑
1≤i≤n Di

D0
log

1

ε ‖ v(0) ‖ < Tε(A, v
(0)) (8.57)

and

Tε(A, v
(0)) <

(∑
1≤i≤n Di

)2

κ2
log

1

ε ‖ v(0) ‖ (8.58)

Proof Note that the number of iterations required for convergence is O
(

1
log 1/ρ(M)

)
.

We will prove the result by bounding ρ(M).
We convert the problem into a problem involving a Markov chain. We augment

M to give a row-stochastic matrix P:

Pi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Mi j if 1 ≤ i, j ≤ n

1/Di if j = n + 1, i ≤ n, and i is a neighbor of z

1 if i = j = N + 1

0 otherwise

(8.59)

One can interpret P as providing the update equation for the reference node also:

(
v̄(k+1)

0

)
= P

(
v̄(k)

0

)
(8.60)

The corresponding Markov chain has a communicating class of n states and a single
absorbing state corresponding to the reference node. Its unique steady-state distri-
bution is therefore [0, 0, . . . , 1].

If λ is an eigenvalue of M , with eigenvector v, then it is also an eigenvalue of P
since

P

(
v

0

)
=
(

Mv

0

)
= λ

(
v

0

)
(8.61)

Hence ρ(M) ≤ |λ2|, where λ2 is the second largest eigenvalue of P in magnitude.
So we only need to bound λ2.

Since our Markov chain is absorbing and not irreducible, to make use of the
results of [22], we define a new Markov chain with transition probability matrix Pε,
where 0 < ε < 1/D0, by only altering the transition probabilities from the reference
node: the probability of transitioning to every neighbor of the reference node is ε,
with a self-loop back to the reference node having probability 1 − D0ε. Now Pε

irreducible and aperiodic. Its invariant distribution π satisfies
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επ0 = πi/Di , for every neighbor i of the reference node, and

πi/Di = π j/D j , for neighboring nodes i, j that are not the reference node.

Hence,

π0 = 1

1 + ε
(∑

1≤ j≤n D j

) , πi = εDi

1 + ε
(∑

1≤ j≤n D j

)

for 1 ≤ i ≤ n. It also follows that Pε is reversible, since πi Pε
i j = π j Pε

j i .
Now we employ Cheeger’s inequality [22] to bound λ2. Define the matrix Q

by Q(i, j) = Pε
i jπi = Pε

i jπ j . Denote π(S) := ∑
i∈S πi , and Q(S × Sc) =∑

i∈S, j∈Sc Qi j . Let

h := min
π(S)≤1/2

Q(S × Sc)

π(S)
(8.62)

By Cheeger’s inequality,

1 − 2h ≤ λ2 ≤ 1 − h2 (8.63)

So now we only need to bound h.
Using S = {1, 2, . . . , n} in (8.62) gives the upper bound

h ≤ D0∑
1≤i≤n Di

(8.64)

and so

λ2 ≥ 1 − 2
D0∑

1≤i≤n Di
(8.65)

Any set S as in (8.62) cannot contain the root node, since its probability would
then exceed 1/2. So S = {1, 2, . . . , n} maximizes the denominator of the right-hand
side of (8.62). Hence

π(S) =
∑

1≤i≤n

πi =
ε
(∑

1≤ j≤n D j

)

1 + ε
(∑

1≤ j≤n D j

) (8.66)

Also, for every i, j ,

Q(i, j) = ε

1 + ε
(∑

1≤ j≤n D j

) (8.67)
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Furthermore, the minimum size of the cut S × Sc is equal to the edge-connectivity
κ of the graph by definition. Hence, numerator of RHS of (8.62) ≥ κε

1+ε
(∑

1≤ j≤n D j

) .

Therefore

h ≥ κ
∑

1≤i≤n Di
(8.68)

and so

λ2 ≤ 1 −
(

κ
∑

1≤i≤n Di )

)2

(8.69)

Since eigenvalues are continuous functions of a matrix (see [23], Appendix 1),
and Pε → P ,

lim
ε→0

λε2 = λ2 (8.70)

Since neither the upper nor the lower bounds derived above depend on ε,

1 − 2
D0∑

1≤i≤n Di
≤ λ2 ≤ 1 −

(
κ

∑
1≤i≤n Di

)2

(8.71)

and the result follows by taking logarithms. �
We can apply Theorem 6 to some of the canonical graphs considered earlier. For

the lattice network, it gives a O(1 − 1/n2) bound on the second largest eigenvalue,
which translates to a O(n2) upper bound on convergence time. The same O(n2)

bound holds with high probability as n → ∞ for the random planar network.

8.10 Decomposition Techniques to Speed Up Convergence

The global iterative algorithm described in the last section converges to the optimal
least-squares solution. However, the convergence time is potentially a significant
bottleneck to performance. This is for two reasons. First, a large convergence time
in effect means a large number of messages to be passed. Each iteration of the
synchronous algorithm requires each node to broadcast a message to its neighbors,
meaning that an Ω(n) convergence time (which is a lower bound for a typical graph
like a lattice) translates to Ω(n2) messages in total, which is a significant overhead.
The second and more important reason is that, in reality, the clock offsets vary with
time (see [13]), and so the edge offset estimates are tracking a time-varying set of
parameters. This in turn implies that for the node offset estimates to be reasonably
accurate, their computation from the edge estimates (which is done via the iterative
algorithm) must be more rapid than the variation time scales.
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We now investigate some structural properties of the graph which could be
exploited to speed up the convergence time of the algorithm. These properties allow
the graph to be decomposed or split into components such that the optimal node esti-
mates on each of the components can be combined in a simple manner to produce the
optimal estimate over the entire graph. Our approach exploits the connection with
electrical resistance: these methods of decomposition are also those which allow the
resistance of the entire network to be computed by combining together resistances
of the decomposed constituents. We call these methods of decomposition series and
parallel splitting.

Series splitting is based on the following simple procedure. Consider a connected
network graph G with root node 0. We wish to compute the optimal (minimum
variance unbiased) estimate of the clock offset of a node i with respect to node 0,
given edge estimates for all the edges in G. Now suppose that there is a cut-vertex
between 0 and i , i.e., a node j such that the induced graph on V (G) − j (where
V (G) is the vertex set of G) is disconnected into two components containing 0 and
i , respectively. Let G1 be the induced subgraph on the nodes of the first component
along with j , and G2 be the induced subgraph on the nodes of the second component
along with j .

Now, let v(1)j0 be the least-squares estimate of the offset between j and 0, given

only the edges in G1, and let v(2)i j be the least-squares estimate of the offset between
i and j , given only the edges in G2. Each of these least-squares estimates could be
computed on the smaller subgraphs G1 and G2 by whatever technique is appropri-
ate. Then, we set the estimate of the offset of i from 0 as v(1)j0 + v

(2)
i j .

Lemma 4 Let v̂i be the least-squares optimal estimate of the offset between i and 0
for the graph G. Then, v̂i = v

(1)
j0 + v

(2)
i j .

Proof The proof of this lemma is quite simple. The estimate v(1)j0 + v
(2)
i j is unbiased

because each of v(1)j0 and v(2)i j is unbiased, and the true value vi is the sum of the true
offsets across 0 j and j i . Furthermore, G1 and G2 are edge-disjoint, which means
that the errors of each of the estimates v(1)j0 and v(2)i j , which are linear combinations
of the corresponding edge estimates on the edges of G1 and G2, respectively, are
also independent. Therefore, the variance of the error of v(1)j0 +v(2)i j is the sum of the
variances of the two estimates. But the resistance between i and 0 in the graph G is
the sum of the resistances R j0 and Ri j over G1 and G2, respectively, because the
two components are in series. Therefore,

var
(
v
(1)
j0 + v

(2)
i j

)
= var

(
v
(1)
j0

)
+ var

(
v
(2)
i j

)

= σ 2 R j0 + σ 2 Ri j

= σ 2 Ri0

Hence, v(1)j0 + v
(2)
i j is also a minimum variance estimate. By the uniqueness of the

minimum variance unbiased estimate shown in Theorem 1, v̂i = v
(1)
j0 + v

(2)
i j . �
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We call the above operation series splitting.
Similarly, parallel splitting can be defined as follows. Consider a node i in a

connected graph G with root node 0. If the induced graph on V (G) − {i, 0} has
more than one component, we say G can be parallel split between i and 0. For
simplicity, suppose that the resulting graph has only two components (in general, it
could have more than two). Define G1 as induced subgraph on the nodes of the first
component along with i and 0 and G2 as the induced subgraph on the nodes of the
second component along with i . Let R1

i0, R2
i0, and Ri0 be the resistances between

i and 0 on the graphs G1, G2, and G, respectively. By the parallel combination of
resistances, we know that 1/Ri0 = 1/R1

i0 + 1/R2
i0.

Let v(1)i0 be the least-squares estimate of the offset between i and 0 on G1 and

v
(2)
i0 be the least-squares estimate on G2. Then, we set the estimate of the offset of i

from 0. We then have the following simple result.

Lemma 5 Let v̂i be the least-squares optimal estimate of the offset between i and 0

for the graph G. Then, v̂i = R2
i0

R1
i0+R2

i0
v
(1)
j0 + R1

i0
R1

i0+R2
i0
v
(2)
i j .

Proof The proof is similar to that of Lemma 4. The estimate is unbiased since
we are taking a convex combination of the two unbiased estimates v(1)i0 and v(2)i0 .
Since G1 and G2 are edge-disjoint, the variance of the linear combination is(

R2
i0

R1
i0+R2

i0

)2

var
(
v
(1)
i0

)
+
(

R1
i0

R1
i0+R2

i0

)2

var
(
v
(2)
i0

)
, which equals σ 2 R1

i0 R2
i0

R1
i0+R2

i0
. But this is

the resistance between i and 0 on G times σ 2, which means that this is the minimum
variance estimate. The result follows. �

The above techniques provide ways to speed up the iterative synchronization
procedure if the network graph has a particular structure which can be exploited. For
example, if a graph can be efficiently split into two parts of approximately equal size,
the iterative algorithms could be carried out in parallel for each subgraph and the
results could then be combined according to the method of splitting, thus yielding
about a factor of 2 improvement.

In general, the graph itself may not have such a structure in its entirety, but may
instead have such a structure embedded within itself. It may then be possible to
achieve some of these savings by only working on an embedded decomposable sub-
graph, which corresponds to throwing away some of the edge estimates. An extreme
example is that of using a spanning tree, which we have discussed before. A slightly
better approach would consist of combining the summed estimates over multiple
edge-disjoint paths in inverse proportion to their length, which would reduce the
error variance by parallelism. Finding topology control techniques to select such
subgraphs for decomposition is an interesting problem in itself and worth investi-
gating.

Another possibility is to find a subgraph which can be recursively split in series
or in parallel. That is, the graph is initially split into components, each of which is
further split into further components in series or in parallel, and so on. The complex-
ity of such an approach would be that a substantial amount of global connectivity
information would have to be maintained, because in each parallel split there would
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be a node which would have to combine the estimates of the components by a linear
combination, depending on the corresponding resistances, which would have to be
known.

8.11 Conclusion

This chapter conducts an investigation into the problem of clock synchronization in
wireless sensor networks. We present an analysis of the spatial smoothing clock syn-
chronization approach based on least-squares optimization and the corresponding
distributed two-step synchronization algorithm. We have analyzed both asymptotic
accuracy and the convergence time and its dependence on graph parameters and
size.

We have restricted attention to the case where there is no clock drift, i.e., the
skews of clocks are constant over time. If the skews do change with time, then one
needs a stochastic model of clocks. This is treated in [13].
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Chapter 9
Algorithmic Aspects of Sensor Localization

Sajal K. Das, Jing Wang, R.K. Ghosh, and Rupert Reiger

Abstract Identifying locations of nodes in wireless sensor networks (WSNs) is
critical to both network operations and most application level tasks. Sensor nodes
equipped with geographical positioning system (GPS) devices are aware of their
locations at a precision level of few meters. However, installing GPS devices on
a large number of sensor nodes not only is expensive but also affects the form
factor of these nodes. Moreover, GPS-based localization is not applicable in the
indoor environments such as buildings. There exists an extensive body of research
literature that aims at obtaining absolute locations as well as relative spatial loca-
tions of nodes in a WSN without requiring specialized hardware at large scale. The
typical approach consists of employing only a limited number of anchor nodes that
are aware of their own locations, and then trying to infer locations of non-anchor
nodes using graph-theoretic, geometric, statistical, optimization, and machine learn-
ing techniques. Thus, the literature represents a very rich ensemble of algorithmic
techniques applicable to low power, highly distributed nodes with resource-optimal
computations. In this chapter we take a close look at the algorithmic aspects of
various important localization techniques for WSNs.

9.1 Introduction

A common vision on applications of wireless sensors is a large number of distributed
devices embedded for tight interactions with physical world. An essential challenge
to work with a wireless sensor network (WSN) is to create a seamless coupling
with the physical world, often as an unattended control system. In order to oper-
ate as a long-lived unattended control system, a WSN must be energy aware, self-
configuring, and should achieve desired global behavior by predominantly localized
algorithms. Understandably, a network-wide collaboration is absolutely essential in
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order to achieve expected global behavior. For meaningful collaborative processing,
individual sensor data should be associated with spatial and temporal coordinates.
Therefore, energy-efficient techniques for sensor localizations are critical to the
operations of a WSN as an unattended system.

9.1.1 Importance of Localization

Sensors are used for gathering environmental data such as temperature, pressure,
humidity, radiosity. The collected data assist in predicting likely occurrence of
events such as bush fire, radio-active leaks, failures in structures, and many other
impending disasters including earthquakes, floods, and weather changes. Early pre-
diction of such events helps in planning adequate response system that may either
prevent those events or mitigate the consequential damages. The response system
should have the ability to extract context from the gathered sensory data if it were to
predict the events correctly and operate at the expected level of efficiency. A context
is defined by ambiences among which location (both spatial and temporal) is the
most critical ingredient.

WSNs with sensing capabilities can gather vital security-related parameters such
as radio communication, signs of accelerated activities, or vigorous movements in
an area to aid in developing a security response and advanced warning system. But
these sensed parameters are useless unless they are accompanied by corresponding
location information. Although location information can be fed manually, it may
not be feasible in a large deployment area . So it is necessary to develop a system
that can automatically update location information of all nodes in the deployment
area.

Navigation and vehicle tracking is another area where the use of WSNs is found
to be extremely useful. Vehicle tracking with autonomous interception mechanism
can be deployed in an outdoor area. It senses entry as well as movement of an
offending evader in the area. A cooperative mobile agent may be dispatched for
intercepting the evader as soon it gets detected before any damage is done. The
successful realization of such a tracking and interception system is dependent on
the location information in two tiers. First, the sensors must be able to detect the
evader as soon as it enters the area and be able to track it while the evader continues
to move around in the area under observation. Second, the update on the location
information of the evader must be routed to intercepting mobile agent so long as it
continues to pursue the evader.

Apart from context-related computations in application level tasks discussed
above, the knowledge of sensor locations is also essential for network level oper-
ations in WSNs. In a WSN environment, some nodes may die out due to fast
drainage of battery. Often, in order to reestablish coverage and connectivity, new
nodes may also be injected into the network, or old dead nodes may become alive
following battery replacements. Under this scenario of frequent changes in topology
of WSNs, geography routings are found to be more efficient than topology-based
routing schemes. The basic issue that should be addressed in a geography routing
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scheme is its ability to gather location information and to have a location track-
ing mechanism for establishing connectivity before routing data. Resource scarcity
prohibits sensors to maintain tables of locations. Moreover, the dynamic nature of
topology configuration renders location tables frequently useless. So, localization
or finding locations of sensor nodes is a fundamental step in routing or transmission
of data in a WSN.

The problem of localization in WSNs attracted a lot of attention from researchers.
A compendium of knowledge representing rich ensemble of algorithmic issues can
be found in the existing literature. In this chapter, we attempt to review the existing
literature with emphasis on the algorithmic roots of sensor localization techniques.

9.1.2 Generic Approach to Solution

Most localization schemes approach the problem with the assumption that there
is a small set of nodes which are aware of their locations. Such nodes, typically
known as anchors, are placed at fixed points or equipped with geographical position
system (GPS) devices. The anchor nodes serve as references for the localization of
other nodes. The number, the density, and the deployment of reference nodes raise a
trade-off with the location accuracies achievable through localization methods based
on proximity to anchor nodes.

In order to alleviate the inherent problem of low accuracy in proximity-based
localization, additional measurements on distance between nodes or angles or com-
bined measurements have been proposed. Distance measurements can be obtained
by utilizing the radio signal strength indicator (RSSI), time of arrival (TOA), time
difference of arrivals (TDoAs), and so on, while angle measurements rely on com-
passes or radio array. Given the reference points and the spatial relationship, nodes
can be localized by exploiting the geometric relationships among them. The trade-
off between hardware cost and the accuracy of measurements motivates the study on
probabilistic model for radio signal strength leading to localization results in terms
of the distribution of locations or deployment regions.

Absolute location can be determined if the anchor nodes are aware of their abso-
lute locations. However, in certain applications absolute locations may not be very
important. Localization methods with the absence of known locations focus on the
problem of forming a map of nodes with respect to a stand-alone coordinate sys-
tem [1]. Given the absolute locations of a subset of the nodes, these relative locations
can be transformed into absolute ones when needed.

The use of mobile reference nodes is advantageous for localization of non-
localized nodes as it becomes possible to get more measurements on spatial rela-
tionships by moving anchors along certain trajectories. A mobile reference node
likely to have more resources compared to the ordinary static nodes that need to be
localized. However, the cost of deploying a mobile anchor can be high. So, only
a limited number of mobile reference nodes can be deployed. Yet mobile-assisted
localization is able to bring significant improvement to the localization of static
nodes.
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9.1.3 Known Algorithmic Approaches

The localization methods proposed for sensor nodes can be categorized into
five groups: distributed algorithms, centralized algorithms, iterative algorithms,
mobility-assisted approach, and statistical techniques.

In distributed algorithms, a sensor node localizes itself through message
exchange with a number of neighbors who are aware of their locations. It is
essentially the propagation of the location information of the anchor nodes, which
know their own locations, through interactions among anchor nodes and non-anchor
nodes. The anchor nodes can be more than one hop away from the non-anchor nodes
when the density of the anchor nodes is low. Less is the number of anchors, the more
the localization relies on the spatial relationship among non-anchor nodes. A dis-
tributed algorithm considers a part of the network when localizing one sensor node.
The densities of anchor and non-anchor nodes play important roles in determining
the size and topology of the partial network. Since the spatial relationship among
sensor nodes can be inaccurate, a partial network consisting of one-hop neighbors
may not be sufficient for estimating accurate locations. However, a partial network
consisting of multihop neighbors may introduce more noises into the localization
process. Therefore, the key point in the design of distributed algorithms is to obtain
the most accurate location estimates given the densities of the nodes and the means
of interpreting the spatial relationship.

When the density of the nodes and the information on their spatial relationship
no longer suffice for good estimates of locations, a centralized algorithm may be
more appropriate to use. It aims at obtaining locations of the non-anchor nodes with
the network-wide message exchange and computations. A centralized algorithm is
usually expensive to implement, although it naturally solves the anchor-free local-
ization problem by providing a network-wide relative locations of the sensor nodes.
It is worth noticing that a centralized algorithm can be transformed into a distributed
algorithm by applying the centralized algorithm on the set of subnetworks that par-
titions the whole network.

The goals of iterative techniques include the control of error propagation and
stitching local maps of sensor nodes. A centralized algorithm can be applied itera-
tively on clusters of sensor nodes. Whereas, a distributed algorithm adopts iterative
techniques to refine the initial estimate on the locations through feeding more range
measurements or information of spatial relationship to the localization process.

In order to deal with low density of anchor nodes, mobile anchors are introduced
to improve the localization accuracy. Furthermore, there exist approaches that take
advantage of the mobility of sensor nodes. These mobility-assisted approaches are
mostly distributed algorithms due to the dynamic nature of the scenario.

Statistical techniques have been proposed to localize sensor nodes when other
approaches tend to fail because of the noisy measurements, especially in indoor
environments. They are a mix of centralized and distributed algorithms and also
rely on the iterative process to refine the location estimates.

From the above discussions, we discern that the classification of distributed algo-
rithms and centralized algorithms provides only little indication about the features
of the localization approaches. Therefore, it is more natural to study localization
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algorithms under four groups, namely, range-free, range-based, anchor-free, and
anchor-based. In addition, we also discuss the iterative process, the mobility-assisted
approach, and the statistical techniques.

9.1.4 Inherent Challenges

The inherent challenges facing the localization approaches include the network den-
sity, the noisy measurements, and the resource constraints. The first two challenges
inspire a variety of approaches of different algorithmic features, while the last chal-
lenge corresponds to the complexity of the algorithm applied in the approach.

Network Density: Localization algorithms are required to deal with different den-
sities of sensor nodes. In a dense network with abundant reference nodes, a good
localization result could be accomplished without much difficulty. In contrast, for
sparse networks, the available knowledge, such as the known locations, proximity
information, range measurements, or angle measurements, could be insufficient for
determining the exact locations of nodes. Thus, the key challenge for the localization
problem in a sparse network is to achieve the maximum localization accuracy given
a limited number of anchor nodes or measurements.

Noisy Measurements: Since measurements on proximity, range, and angle are
subject to noise due to the inherent uncertainty of a wireless signal, localization
algorithms are expected to be able to deal with noisy measurements. Therefore,
additional efforts on modeling the noises and alleviating the impacts on localization
performance are critical to the success of localization methods.

Resource Constraints: To enable cooperation among nodes in the localization
process, information exchange between neighboring nodes adds to the energy con-
sumption and the bandwidth occupancy. For centralized localization algorithms,
where cooperation is orchestrated through a central node (usually the base station),
extra communication cost is incurred for collecting and forwarding the measure-
ments to the base stations and sending the localization results to the nodes.

A number of excellent surveys on localization in sensor networks have been
published in recent years [2–5]. Most of them reported either the early results on
localization in WSNs or methods having origin in cellular networks and robotics.
Our focus in this chapter is not just yet another survey but to provide a comprehen-
sive discussion on sensor node localization problem with representative references
and an inherent perspective on the algorithmic aspects of localization approaches.

9.1.5 Chapter Organization

This chapter has been organized as follows. In Sect. 9.2, we study the algorithmic
aspects of range-free techniques based on the unit disk model and other related
graph theoretic solutions. Section 9.3 deals with range-based techniques which
depend on geometry of nearness exploiting relationships among spatial coordinates
of sensor nodes and anchor nodes. Some of the localization approaches rely on the
use of additional hardware. These techniques are preferable, especially, if accuracy
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is the overriding concern. Section 9.4 provides a summary of such techniques. Opti-
mization techniques work with iterative refinement of crude initial solutions. These
techniques can, therefore, be clubbed as iterative processes. Section 9.5 deals with
two important iterative techniques for localization. Section 9.6 addresses the issue
of low density of anchor nodes by employing few resource-rich mobile reference
nodes. Statistical techniques can be viewed as some sort of fingerprinting mecha-
nism to infer localization by exploiting the relationship between distances and signal
measurements. These techniques are discussed in Sect. 9.7. Section 9.8 deals with
performance issues while Sect. 9.9 talks about open issues in sensor localization.
Finally, Sect. 9.10 concludes this chapter.

9.2 Range-Free Localization

Sometimes, range measurements may not be available due to cost constraints. Under
this situation, proximity information provided by the radios attached to the sensor
nodes could lead to acceptable solutions for the localization problem. A wireless
sensor node is usually represented by a unit disk model to formulate localization
as graph theoretic problem. The localization is accomplished through a graph com-
posed of vertices representing the sensor nodes and edges representing the radio
link between the nodes. Anchor nodes (also known as reference nodes, or beacon
nodes, or landmarks), deployed at fixed locations or equipped with GPS devices,
can feed known locations to the localization process. The location information then
propagates to the other nodes according to spatial relationships among anchor and
non-anchor nodes and also between non-anchor nodes. More precisely, the network
is represented by a graph G(V, E). A subset of nodes H = {v1, v2, . . . , vm} ⊆ V
are aware of their respective locations (r1, r2, . . . , rm) ∈ 0d . The proximity mea-
surements are represented using the adjacency matrix and the distance matrix. The
goal is to obtain the estimation of the locations (s1, s2, . . . , sn−m) ∈ 0d of the
remaining set of nodes V − H .

Figure 9.1 illustrates an example of the above model. Five sensor nodes, whose
locations are denoted as s1, s2, s3, s4, and s5, need to be localized with the help of

Fig. 9.1 An example of
localization
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four reference nodes with known locations r1, r2, r3, and r4. The adjacency matrix
and the distance matrix can be obtained given the proximity information collected
at the sensor nodes and the anchors. Note that different sensors would have different
number of reference nodes in their proximity. The accuracy of location estimates for
the unlocalized sensors increases as a function of the number of reference nodes in
the neighborhood.

9.2.1 Anchor-Based Approaches

Given densely deployed anchors in the network, the locations of sensor nodes can be
estimated with the help of the known locations of the anchors. A simple solution to
the proximity-based localization is to determine the Centroid, as proposed in [6]. It
computes a node’s location approximated by the centroid of the locations of anchors
in its proximity. Consider the example shown in Fig. 9.1. The estimated locations of
nodes s1, s2, s3, s4, and s5 can be obtained as follows using the centroid technique:

(xs1 , ys1) = (xr4 , yr4)

(xs2 , ys2) = (xr3 , yr3)

(xs3 , ys3) =
(

xr1 + xr2

2
,

yr1 + yr2

2

)

(xs4 , ys4) =
(

xr2 + xr3 + xr4

3
,

yr2 + yr3 + yr4

3

)

(xs5 , ys5) =
(

xr2 + xr3

2
,

yr2 + yr3

2

)

The accuracy of the centroid method relies heavily on the density of anchors.
Low anchor density results in the deterioration in performance. The problem of low
anchor density can be tackled through simple modifications to the centroid method.
The underlying idea is to incrementally increase the density of reference nodes
by including freshly localized nodes into the localization process. The modified
method also allows anchors residing several hops away to be involved in local-
izing the nodes. However, this approach leads to the propagation of localization
errors along with the location information. Weighted centroid or confidence-based
centroid were introduced to address the problem of restricting error propagation in
modified centroid methods [7, 8]. Localized nodes are assigned different weights or
confidence levels in order to counterbalance the accumulation of location error from
the localized nodes acting as anchors.

To avoid the accumulation of location error in propagating the location infor-
mation of anchor nodes, geometric characteristic of the spatial relationship among
sensor nodes has been adopted in the graph theoretic techniques. An example is
presented in APIT [9], in which the location of a non-anchor node can be inferred
from the region it could possibly reside in. As shown in Fig. 9.2, each non-anchor
node runs the point in triangle (PIT) tests to find the triangle regions it resides in.
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Fig. 9.2 Overview of APIT

Each triangle region is formed by obtaining locations of three non-collinear anchors.
The location of the non-anchor node is estimated to be the center of gravity of
the intersection of the triangles, where the non-anchor resides. For proximity-based
localization of static nodes, it is hard for the non-anchor nodes to perform the PIT
test. The authors in [9] presented an approximate PIT test, in which the node is only
required to be able to determine if any one of its neighbors is farther/closer to all
the three anchors forming its residing triangle. Therefore, the location error of APIT
roots in the approximate PIT test. Its performance relies heavily on the density of
the network, where it is suggested that the degree of connectivity should exceed 6.

The performance of proximity-based localization schemes depends on the posi-
tions of the anchor nodes. Intentional deployment of anchor nodes was exploited
in [10] to divide the plane into location regions defined by the overlapping regions
of sensing ranges of the anchors as shown in Fig. 9.3. Instead of broadcasting its

Fig. 9.3 Deployment of
anchors
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own position, an anchor node broadcasts the location regions consisting of its sens-
ing range. For instance, the anchor node r0 sends out beacons containing the type
{A, B,C} and the centroid of the location regions {A1, B1, . . . , B6,C1, . . . ,C6},
which are indeed the overlapping regions of the anchor nodes {r0, r1, . . . , r6}. Upon
receiving beacons from multiple anchors, the non-anchor node extracts the over-
lapping region of the anchors and takes the centroid of the overlapping region as
the estimate on its own location. Compared to APIT and the modified centroid, the
cell overlapping approach neither accumulates error in propagating the locations of
anchors nor requires the RSSI value to perform the PIT test.

To overcome the problem of low density of anchors, gradient [11] and DV-
hop [12] focus on localizing non-anchor nodes with the knowledge of radio range
and locations of the anchors multiple hops away. The idea of Gradient is to esti-
mate the distance between a pair of anchor and non-anchor nodes by multiplying
hop count of the non-anchor nodes with the radio range. After obtaining distances
to at least three anchors, the node applies multilateration algorithm to find out its
own location. In contrast, DV-hop computes the average hop distance as anchors
exchange their locations and hop count between them. After obtaining pairwise dis-
tances from a non-anchor node to an anchor by multiplying the average hop distance
and the hop count from that anchor, triangulation is performed to estimate locations
of the non-anchor nodes.

9.2.2 Anchor-Free Approaches

Multidimensional scaling (MDS-MAP) [13] tackles the localization problem with-
out using anchors. It estimates locations with the proximity information and the
radio range. The MDS approach includes three steps. The first step is to form the
distance matrix with distances between all pairs of nodes in the network. In the
absence of anchors, the distance is inferred from the multiplication of the hop count
and radio range. Then, in the second step, the singular vector decomposition (SVD)
is performed to determine an initial relative map of the nodes on the plane. The
last step performs the necessary flip, rotation, and scaling according to the distances
between anchors if there is any. Otherwise, the relative map would be the result of
SVD. It was shown that the time complexities of the first two steps are both O(n3),
where n is the number of nodes in the network. The MDS approach is also applicable
when only a few anchor nodes are available.

9.3 Range-Based Localization

Geometric techniques manage to estimate the locations of the sensor nodes from
the range measurements and geometric computations. The underlying idea is that
Euclidean distance between two sensor nodes can be measured by their radio sig-
nals through RSSI, TOA, TDOA, etc. The presence of anchor nodes also plays an
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important role in geometric techniques in terms of the complexity of the problem
and the difference between the localization goals: absolute versus relative locations.

9.3.1 Range Measurements

Since the nodes are equipped with radios to perform communications, the distance
estimation by measuring the radio signal strength has attracted lot of attention [14].
A simplified model for RSSI-based range measurement is given by the following
equation:

RSSI ∝ d−α (9.1)

where d is the distance and α is a constant relevant to the environment. Given a
RSSI value measured by the radio, the radio receiver is able to infer its distance
from the sender. However, RSSI-based range measurement is extremely susceptible
to noises and known for unreliability. An improvement on RSSI range measure-
ments is proposed in [15] to reduce the distance estimation error by calibrating the
range errors with RSSI values between known locations. Efforts have been made
to obtain the mapping between RSSI measurements and the associated distances
capturing the impacts of multipath fading, variations in temperature and humid-
ity, human mobility, and changes in space layout on RSSI measurements in indoor
localization [16]. The approaches based on the probabilistic model of RSSI range
measurements are also introduced to address the uncertainties and irregularities of
the radio patterns. For instance, a log-normal model was adopted in [17], which
assumes that a particular RSSI value can be mapped to a log-normal distribution of
the distance between the two nodes, as in (9.2).

RSSI −→ lg d ∼ N (μ, σ ) (9.2)

where d is the distance between the nodes, and N (μ, σ ) is a normal distribution
with mean μ and standard deviation σ .

Another common method for range measurement is based on the time difference
of arrivals (TDOAs). It estimates the distance between the nodes from measure-
ments on the time differences of arrivals of signals. The signal could be radio fre-
quency (RF), acoustic, or ultrasound [18–20]. An example of utilizing TDOA was
introduced in [21]. As shown in Fig. 9.4, the radio signal and ultrasound pulses are
sent simultaneously. Given the time difference of the arrivals, the distance between
the sender and the receiver can be obtained by multiplying the time difference and
the speed of the ultrasound signal. Similarly, ranging techniques based on the time of
arrival (TOA), which rely on capturing the signal’s time of flight, obtain the distance
by multiplying the time of flight with the signal speed [22]. The major challenge
facing TOA-based ranging techniques is the difficulty of accurately measuring the
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Fig. 9.4 An example of
TDOA

time of flight, since the propagation speed could be extremely high compared to the
distance to be measured.

9.3.2 Localization Problems Using Range Measurements

Given accurate range measurements, the localization algorithms are expected to
produce the exact locations instead of raw estimations obtained from the proximity-
based localization. The Euclidean distances between nodes can be interpreted both
geometrically and mathematically. And the distance could be from one reference
node to a non-localized node, denoted by di, j , or between two non-localized nodes,
denoted by di, j .

The locations of the nodes satisfy the following equations:

‖ si − s j ‖2= d̄i, j

‖ ri − s j ‖2= di, j

Although computing the distances between each pair of locations is a trivial
problem, the inverse problem, which tries to find locations of the nodes given the
Euclidean distances between each pair of nodes is far from trivial. It can be formu-
lated as a graph realization problem, aiming at mapping the nodes in the graph to
points in the plane so that the Euclidean distances between nodes equal the respec-
tive edge weights. The fundamental problem in graph realization is the rigidity of
the graph. For example, graphs in Fig. 9.5(a), (b) exhibit non-rigidity. Given a set
of nodes and the Euclidean distances between each pair of nodes, the locations of
nodes may not be unique. An example of a rigid graph is provided in Fig. 9.5(c),
in which the nodes are uniquely localized given the distances. More discussions on
graph rigidity and network localization can be found in [23].

The study in [24] proved that the localization with distance information in sparse
networks is an NP-hard problem, while localization with distances of Ω(n2) pairs
of nodes can be solved in polynomial time [25].



268 S. K. Das et al.

Fig. 9.5 Graph rigidity

9.3.3 Anchor-Based Approaches

Multilateration can be applied to obtain exact coordinates of a non-anchor node,
given at least three anchors in the non-anchor node’s proximity and the pairwise
measurements between the anchor and non-anchor nodes. Assume that the coor-
dinates of m anchors are available, and that the distances between nodes can be
obtained through ranging techniques. Let di j denote the measurement of distance
between the i th anchor and the j th non-anchor node. The multilateration problem
concerning localization is then formulated as follows:

di j =
√
(xi − x j )2 + (yi − y j )2 (9.3)

The estimation error E j of the j th node is given by:

E j =
m∑

i=1

(di j − d̂i j )
2 (9.4)

where d̂i j is the estimated distance obtained by substituting the coordinates of the
j th node with the estimated coordinates in (9.3). Gradient descent can be applied to
obtain the coordinates of the j th node achieving the least-squared error. A similar
approach was presented in [26].

The low density of anchors poses a challenge to the multilateration approach.
In order to apply multilateration, DV-distance [27] follows the similar approach as
DV-hop [12]. The distances of each hop are summed up to approximate the distance
between a non-anchor node and an anchor node that is multiple hops away. The
approximated distance is then used in the localization process. Instead of multihop
distance approximation, the Euclidean method was proposed to compute the true
distance through geometric relationships and the single hop distances. A detailed
discussion on a localization protocol that follows the similar idea of Euclidean can
be found in [28].
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Fig. 9.6 Multihop
localization

An example of multihop localization is demonstrated in Fig. 9.6. According to
DV-distance, the distance between the non-anchor node A and the anchor node D
can be approximated as dAB + dBC or dAD + dC D depending on a certain vot-
ing mechanism. In contrast, the Euclidean method manages to obtain the multi-
hop distance dAC by exploiting the geometric property of the quadrilateral ABC D.
Although Euclidean focuses on computing the true distance to the anchor, it faces
the rigidity problem due to low density of nodes. Given the set of single hop dis-
tances, the position of node A is not unique. As shown in Fig. 9.6, node A′ leads to
the same range measurements as node A. Additional neighbors and the correspond-
ing range measurements are needed to eliminate the false estimation. According
to [29], “an average of 11–12 degree of nodes in the ranging neighborhood” is
required to have 90% of the network to be localized with a localization error of 5%.
An iterative algorithm adopting the similar idea can be found in [30].

A trade-off between energy efficiency and location accuracy is unveiled in
the multihop localization approaches facing low density of anchors. The cost of
Euclidean is higher than DV-hop due to the collaboration among neighboring nodes
in order to compute the true Euclidean distances. Whereas, DV-hop suffers from
higher location error introduced by the approximation of multihop distances.

Although the semi-definite programming (SDP) approach [31] can be modified
to incorporate the range measurements in the localization process by replacing the
approximated distances with the measured distances, it tends to produce large local-
ization error when the anchors are placed in the perimeter of the area. A different
SDP problem is formulated in [32]. It manages to improve the localization perfor-
mance by relaxing the equality constraint to the inequality constraint. The original
problem of localizing n nodes using m anchors is formulated as follows:

Find X ∈ R2×n,Y ∈ Rn×n (9.5)

such that (ei − e j )
T Y (ei − e j ) = d2

j i ∀i, j � n
(
αk

−e j

)
T
(

I2 X
X T Y

)(
αk

−e j

)
= d2

jk ∀ j � n, k � m

Y = X T X

where αk is the locations of the m anchors, ei is a vector with zeros except the i th
entry, d ji is the distance between the i th and j th non-anchor nodes pair, and d jk is
the distance between the kth anchor node and the j th non-anchor node. The above
localization problem can be transferred into a standard SDP feasibility problem by
changing Y = X T X to Y � X T X , which is equivalent to
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Z =
(

I X
X T Y

)
� 0

The corresponding SDP problem is defined as follows:

Find Z ∈ R(n+2)×(n+2) (9.6)

such that (1; 0; 0)T Z(1; 0; 0) = 1

(0; 1; 0)T Z(0; 1; 0) = 1

(1; 1; 0)T Z(1; 1; 0) = 2

(0; ei − e j )
T Z(0; ei − e j ) = d2

j i ∀i, j � n

(αk;−e j )
T Z(αk;−e j ) = d2

jk ∀ j � n, k � m

Z � 0

In order to guarantee that the solution of SDP in (9.6) is indeed the solution to
the original problem in (9.5), accurate distance measurements of 2n + n(n + 1)/2
pairs of nodes are required. Given noisy range measurements, the SDP problem can
be formulated using the inequality constraints instead of the equality constraints on
distances between nodes. The computation complexity of SDP is O(n3). Since it is
expensive to apply the SDP method in localizing the whole network in a centralized
process, a distributed SDP method was presented to address the scalability.

While plain MDS has been proposed in localization with connectivity informa-
tion, modified MDS methods were proposed to localize neighboring nodes with
range measurements. An iterative MDS approach was presented in [33] to deal with
the absence of some pairwise distances. It differs from the classic MDS approach
by introducing weights wi j in the objective function as in (9.7):

σ(X) =
∑

i< j

wi j (δi j − di j (X))
2 (9.7)

where σ(X) is the localization error with respect to the location vector X , δi j is the
range measurements, di j is the distance computed from the location vector X , and
wi j is the weight for each pair. For the absent pairwise range measurements, the
corresponding weights are set to 0, and the rest of the weights are set to 1. The loca-
tion vector X is initialized using random values X (0). The localization result X (k)

obtained from the kth round is fed to the (k + 1)th round as the initial estimation on
the location vector for the MDS process. The iteration stops when certain accuracy
level is reached.

9.3.4 Anchor-Free Approaches

Considering the fact that using multilateration, non-anchor nodes could get local-
ized relative to one another with a certain number of range measurements,
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DV-coordinates [27] promoted the idea of a two-stage localization scheme. During
the first stage, neighboring nodes establish a local coordinate system according to
the range measurements. Through registration with neighbors, the nodes transform
their local coordinates into a global coordinate system in the second stage. Due to
the insufficient overlapping or false overlapping between neighboring nodes, the
performance of DV-coordinates suffers from error propagation in the second stage.

The idea of DV-coordinates was explored further in [34]. It led to robust quad
which become the building blocks of the local coordinate system in order to avoid
flip ambiguity. First, the clusters consisting of overlapping robust quads are formed
to establish the local coordinate system. As shown in Fig. 9.5(c), the rigidity of
the robust quad guarantees that two robust quads, ABCD and ABCE, sharing three
vertices form a rigid subgraph with five vertices. The rigidity of the clusters is main-
tained by induction. Then, to mitigate the impact of noisy range measurements, a
threshold on the minimum angle of the robust quad was introduced. With all these
efforts, robust quad is able to significantly reduce the location error in comparison
with other similar approaches.

Triangulation, as proposed in [1], is able to set up a local coordinate system with
three nodes and their pairwise distances. A triangulation example is depicted in
Fig. 9.7. Node A tries to localize its neighbors B and C . A defines its own position
as the origin of the local coordinate system and C to be along its horizontal axis.
The locations of A’s neighbors are as follows:

xC = 0

yC = dAC

xB = dAB cos � B AC

yB = dAB sin � B AC

� B AC = arccos
d2

AB + d2
AC − d2

BC

2dABdAC

Applying similar derivations, any node can transform its locations to the coordi-
nate system of its neighbor with the knowledge of the locations in the two coordinate
systems and the pairwise distances. Therefore, the rest of the network can adjust the
locations to one particular local coordinate system. The propagation of one particu-
lar coordinate system involves high cost of collaboration among nodes, which is not
favorable to the energy-deficient wireless sensor nodes.

Fig. 9.7 Triangulation
example (0,0)A

C

B (xB,yB)

(xC,yC)
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9.4 Techniques with Additional Hardware

Angle-based localization reduces the difficulty of the localization problem with
knowledge on proximity or distances. However, the cost of applying angle measure-
ment is remarkably high because of the antenna array or multiple receivers mounted
on the nodes.

9.4.1 Angle Measurement

With the help of antenna array, it is possible for the nodes to measure the signal’s
angle of arrival (AOA) [35]. More recently, the angles between different edges of the
connectivity graph can be obtained through multiple ultrasound receivers [36]. The
AOA technique is adopted to assist both proximity-based and range-based localiza-
tion as it is capable of improving the localization performance. The idea of angle
measurement is demonstrated in Fig. 9.8, in which every node is able to measure
the angle to its neighbor node and its own axis. For node A that is to be localized,
it is aware of the two angles � ab and � ac. The angle information can provide addi-
tional support to the localization or even localize the nodes solely based on the angle
information [26].

9.4.2 Localization with Angle Measurement

The difficulty of localization solely on angle information has been studied in [37].
Fortunately, the angle information can be combined with the proximity-based local-
ization. With angle information on all pairs of edges in the network, it is possible
to transform the proximity-based localization problem from NP-hard to P class
(polynomial-time solvable) irrespective of the number of anchor nodes available
in the network. A more realistic scenario with angle information and knowledge
on distances in a sparse network is further shown to be a problem in P, while it
has been proved to be NP-hard to localize nodes in a sparse network solely with
knowledge of the distances. Therefore, the AOA technique remains an attractive
option for localization applications in spite of its cost and difficulty of deployment.

Fig. 9.8 Angle measurement

∠ab

∠ca∠ba

∠bc
∠ac

∠cb

A

CB

North
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Fig. 9.9 Localization with
two anchors

When nodes are enabled with AOA capability, localization using AOA can be
reduced to multilateration by simple transformations. As presented in [26], given
a number of anchors and the angle observations, non-anchor nodes obtain their
locations through multilateration process. Examples of localization method using
AOA are shown in Figs. 9.9 and 9.10. The anchors A and B are one-hop neighbors
of non-anchor node S in Fig. 9.9. The location of S is confined to the dashed sector
and the node S observes the AOA to A and B in terms of the angles � ASB or
� BS A. Alternatively, as shown in Fig. 9.10, a triplet of anchors can localize one-hop
non-anchor node using the AOA measurement. The location of S is along the cir-
cumscribed circle for the anchors A, B, and C . The idea is to build a multilateration
equation with the location of the non-anchor node, the center and the radius of the
circle, which can be derived from the angle observed by the non-anchor node and
the locations of the two or three anchors in the proximity of the non-anchor node.
After obtaining a number of multilateration equations,

(xS − xOi )
2 + (yS − yOi )

2 = r2
i (9.8)

the location of the non-anchor node can be computed with similar techniques for
localization based on range measurements.

Although additional hardware is required for localization based on angle infor-
mation, it is shown in [38] that the angle information can significantly reduce the
difficulty of the localization problem based on solely range measurements. Besides,
as shown in [29], the angle information can assist in localization by reducing the
number of anchors and the network density in order to achieve satisfactory localiza-
tion performance.

Fig. 9.10 Localization with
three anchors

O

A

B

C

S
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9.5 Techniques Based on Iterative Process

Local maps can be formed by running the iterative MDS over local range mea-
surements. The alignment of the local maps is performed along the route from
one anchor to another. In order to get absolute locations, at least three anchors are
required to be present in the neighboring local maps. For further discussions on
stitching the local maps, readers may refer to [39].

Forming clusters of nodes within the network has been regarded as an effective
technique to improve performance of WSNs, especially for solving the scalability
problem. Cluster-based local coordinate system has been proposed in [40] to set up
a local coordinate system for a small subset of the network. The master nodes (clus-
ter heads) are responsible for transforming the local coordinate systems into one
global system. A counterpart of the cluster-based localization using only proximity
information was presented in [41].

Another iterative technique is described in dwMDS [42]. It not only formulates
the MDS problem with a novel optimization objective (the weighted cost function
over multiple range measurements of pairwise distances) but also adopts an iterative
algorithm starting from an initial estimation on the locations. Thus, the computa-
tional complexity is reduced from O(n3) in simple MDS to O(nL), where n is the
total number of nodes in the network and L is the number of iterations to satisfy a
predefined accuracy level. dwMDS can also localize networks with no anchors by
providing relative locations.

Since the error can be propagated and accumulated with the iterations, the error
management scheme deserves further attentions in order to improve the perfor-
mance of iterative methods. The potential error control techniques include selecting
localized neighbors with certain level of accuracy in the iterative updates [43].

9.6 Mobility-Assisted Localization

Mobility of sensor nodes can be exploited in the localization process. For instance,
an efficient sensor network design proposed in [44] took advantage of coverage
overlaps over space and time because of the mobility of sensor nodes.

Mobility-assisted localization relieves WSNs from the significant cost of deploy-
ing GPS receivers and the pressure of provisioning energy for interacting with each
other during the localization process. Anchor nodes equipped with GPS are capa-
ble of localizing themselves while moving. With the use of mobile anchor nodes,
localization algorithms show significant savings on the installation cost and energy
consumption and also improve accuracy.

In [45], an example scheme is proposed to localize static sensor nodes with one
mobile beacon. As shown in Fig. 9.11, the mobile beacon periodically broadcasts
beacon packets containing its coordinates while traversing the area where static sen-
sor nodes are deployed. Upon receiving the beacon packets, a sensor node is able to
infer its relative location to the beacon according to the radio signal strength (RSS)
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Fig. 9.11 Localization using
a mobile beacon

of the beacon packet through Bayesian inference. The two key elements that are dis-
cussed by the authors [45] in their approach are calibration and beacon trajectory.

1. Calibration: In order to estimate the node’s relative location to the moving beacon
using the received RSS, it is necessary to calibrate the system, thus obtaining the
propagation characteristic of the beacon packet in the air. The probability distri-
bution function of the distance with respect to the received RSS is established
given the calibration data.

2. Beacon trajectory: It determines the coverage of localization, the number of bea-
con packet broadcasts, and the localization accuracy. It is argued that the closer
a beacon moves to the sensor node, the better is the localization accuracy. As
a beacon trajectory can be regarded as a connected line of placements of static
anchor nodes, it is quite obvious that non-collinearity and fold-freeness are also
important to the beacon trajectory.

The computational complexity of the above localization algorithm is O(n2) and
the storage requirement is also O(n2). As a result, it is possible to implement the
localization algorithms on sensor nodes. Alternatively, the sensor nodes can report
the RSS to a base station to avoid expensive computation with increased communi-
cation cost.

A similar method has been described in [46] as a special case. The idea is that
each time a sensor node receives a beacon, it generates a quadratic constraint on its
own location according to the radio range. Upon receiving all the beacon packets,
the sensor node’s location can be restricted in an intersected area of several bounding
boxes as shown in Fig. 9.12.

Unlike the above GPS-based localization using mobile beacon, it was proposed
in [47] to localize the sensor node using radio range of sensor node instead of that of
mobile beacon. The method is based on a geometry conjecture, named perpendicular
bisector of a chord, which states that a perpendicular bisector of a chord passes
through the center of the circle (see Fig. 9.13 for an illustration).
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Fig. 9.12 Mobile beacon and
bounding box

Fig. 9.13 Perpendicular
bisector of a chord

Given the conjecture on the perpendicular bisector of a chord, it is possible to
calculate a sensor node’s location from its view of mobile beacon’s movement. By
maintaining a visitor’s list, a sensor node is able to determine which beacon packets
are sent when the mobile beacon is entering and leaving the sensor node’s radio
range. As shown in Fig. 9.14, the sensor node selects beacon packets to construct
chords of its radio range and locate itself as the center of the circle. Their approach
showed that range-free localization could also produce fine-grained location infor-
mation with the help of mobile beacon’s location broadcasts. The key factors affect-
ing the localization performance are the following:

1. Beacon scheduling: Beacon packets are scheduled by adding a random jitter time
to the period of beacon packet in order to avoid collisions among broadcasts from
different beacons since the approach is not restricted to one mobile beacon.

2. Chord selection: As the probability of localization failures increases for short
chords, a threshold of the length of the chord is applied to the selection of chords.

3. Radio range: Given a larger radio range, the localization error can be slightly
reduced due to the larger threshold on the length of the chords.
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Fig. 9.14 Localization using intersect of perpendicular bisector of two chords

4. Beacon speed: Increased speed of mobile beacon movements can reduce the exe-
cution time of the localization because more beacon packets are sent during the
same time period. However, it may also increase the localization error due to
higher probability of selecting shorter chords.

9.7 Statistical Techniques

For indoor localization scenarios, the RSSI measurements suffer from severe multi-
path effects. Statistical approaches are regarded as promising candidates in dealing
with noises and uncertainties of the measurements. The attempts to localize objects
in the indoor environment with statistical techniques can be divided into two classes.
One relies on mappings between the RSSI measurements and the locations, while
the other manages to capture the statistical relationship between RSSI measurements
and the distances. Both can work with off-line recording and on-line measurements
in localizing the objects with RSSI measurement capability.

An example of mapping the RSSI profile of the space is RADAR [48], which
involves two stages. As shown in Fig. 9.15, the RSSI values from multiple base
stations (acting as anchors) are recorded at various locations during the first stage.
Following this, a three-step localization process is performed in the second stage. In
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Fig. 9.15 Two-stage RADAR

the first step, the object’s RSSI measurements from the base station are preprocessed
for future matching. The sample mean of the multiple measurements to the base
station can be adopted to represent the object’s location in the signal space. In the
second step, an RSSI map of the space is generated from either the empirical data or
the propagation model akin to the empirical data. In the final step, the sample mean
of the RSSI values from the base station is matched with its nearest neighbor in the
signal space.

The major difficulty in implementing RADAR comes from the off-line recording
of the RSSI from the base stations. The off-line process of recording RSSI is not
cost efficient, because location information needs to be collected together with the
RSSI value at pre-determined spots in the indoor space. A kernel-based learning
method, aiming at relieving the system from cumbersome off-line preparation, was
proposed in [49]. The idea is to formulate the localization problem as a pattern
recognition problem with its kernel matrix established on the signal strength matrix,
whose entries are the pairwise radio signal strength values collected at sensor nodes.
The method requires training data in the learning process. However, the training data
can be obtained through automated signal collecting phase involving the anchors
and RSSI measurements between pairs of anchors. The pattern recognition algo-
rithm focuses on determining the regions that each node resides in. The centroid
of the intersection of the regions, a node belongs to, is thus regarded as the node’s
location.

Although the localization process of the kernel-based learning method can be
executed locally, its training process is inevitably centralized and computation
extensive. A fully distributed localization method without explicit statistical model
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for range measurement was presented in [50]. The location of a node is represented
by the exact location and the corresponding uncertaintie. Each node computes its
belief of the location, which is a normalized estimate of the posterior likelihood
of the location. The node communicates with neighbors on each other’s belief and
updates its location and the associate belief based on the received information from
neighbors. The process iterates until certain convergence criteria are met. The fully
distributed algorithm relies on local information and message exchanges, which
invokes less communication and computation costs compared to centralized algo-
rithms.

LaSLAT [51] is a framework, based on Bayesian filters to accomplish the task
of localizing mobile nodes, in which the location estimates are iteratively updated
given batches of new measurements. Extensive empirical studies have shown that
LaSLAT can tolerate noisy range measurements and achieve satisfactory location
accuracy.

The Kalman filter and particle filter are essentially variants of Bayesian fil-
ters, which estimate the state of a dynamic system statistically through noisy
measurements. Kalman filters approximate the belief of the state by its first- and
second-order moments and achieve the optimality when the initial uncertainty fol-
lows Gaussian distribution. In contrast, particle filters realize the Bayesian filter
using sets of samples with different importance factors. More discussion on the
Bayesian filter and localization can be found in [52].

Statistical approaches are capable of tackling the difficulty of localization intro-
duced by the mobility of nodes. Monte Carlo localization (MCL) method was
adopted in [53] to solve the localization problem in mobile sensor networks. It
follows an approach similar to the Bayesian filter. Unscented Kalman filter, inspired
by MCL, which produces location estimates from a subset of samples, was used to
localize mobile nodes through passive listening [54].

An alternation to the map-assisted localization is the probabilistic model-
based location, in which probabilistic models for range measurements and
location estimates are introduced instead of deterministic relationships between
range measurements and location estimates. A method, proposed in [55], is based on
the probabilistic model of RSSI that is obtained from calibration data corresponding
to an outdoor environment without obstructions. The model is given by the follow-
ing:

p → lgD ∼ N (μD(p), σD(p)) (9.9)

μD(p) = lgd̃ + σ 2
Dln10 (9.10)

σD(p) = σD = σP

10η
(9.11)

where the distance associated with a particular RSSI value follows a log-normal
distribution, σP is the variance of the RSSI value, η is the coefficient determined by
calibration, and d̃ is the average of the distances regarding a particular RSSI value.
The log-normal model has been verified by the experiment data.
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Then the conditional probability density function of the distance can be approxi-
mated using (9.12) given RSS measurement with Ps and σP (s).

fD(s|p) = ξ(s|p)
∫∞

0 ξ(s|p)ds
(9.12)

where

ξ(s|p) = 1√
2πσp(s)

exp

(

− (p − P(s))2

2σ 2
P (s)

)

Initially, the non-anchor node has the estimation of their location to be evenly
distributed in the deployment area. After receiving packets from neighboring nodes,
either anchor or non-anchor nodes update their estimations on the probability den-
sity function (pdf) of the distance. Therefore, the location estimation for the non-
anchor nodes can be updated accordingly.

Additionally, a Bayesian model for the noisy distance measurements was
reported in [56]. The model is demonstrated in Fig. 9.16.

In the above Bayesian graphical model, conditional density for each vertex is as
follows:

X : uniform(0,L), x-ordinate of node, where L is the width of the region.
Y : uniform(0,B), y-ordinate of node, where B is the length of the region.
Si : N (bi0 + bi1 log Dti , τi ), i = 1, 2, 3, 4, RSS, where Dti is the distance to

the i th access point (anchor node).

Fig. 9.16 Bayesian graphical models (from left to right): Bayesian graphical model, hierarchical
Bayesian graphical model, and hierarchical Bayesian graphical model with a corridor effect [56]
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bi0: N (0,0.001), i = 1, 2, 3, 4.
bi1: N (0,0.001), i = 1, 2, 3, 4.

where uniform represents uniform distribution and N (μ, τ) stands for Gaussian dis-
tribution with μ mean and τ standard deviation.

A hierarchical Bayesian graphical model is brought up in order to incorporate the
prior knowledge of linear regression models in accordance with the access points
that the coefficients of the models are similar to each other. The conditional density
for the vertexes is as follows:

X : uniform(0,L), Y : uniform(0,B).
Si : N (bi0 + bi1 log Dti , τi ), i=1, . . ., d.
bi0: N (b0, τb0), i = 1, . . . , d, b0: N (0, 0.001), and τb0: Gamma(0.001,0.001).
bi1: N (b1, τb1), i = 1, . . . , d, b1: N (0,0.001), and τb1: Gamma(0.001,0.001).

where Gamma represents the Gamma distribution.
Both of the models are trained with measurement data. A surprising observa-

tion on the training result is that the location information of the RSS data does
not affect the localization performance obtained from the hierarchical Bayesian
graphical model given same amount of sample size. This observation indicates a
promising benefit of using hierarchical Bayesian graphical model. When the RSS
data are collected, it is not necessary to collect the location associated with the
RSS data. It will save a lot of cost on profiling RSS inside a building. Besides the
modeling efforts using particular distributions, an empirical study on the statistical
characteristics based on probability density functions can be found in [57].

9.8 Summary on Localization Techniques

The focus of our discussion in this section is on the evaluation of localization
schemes. The ability to fix the position of a sensor node in terms of absolute location
would determine the effectiveness of a particular localization scheme. But, in the
absence of GPS or specialized measurement hardware, certain amount of error is
bound to creep in. So there is need for qualitative evaluation of the localization
schemes.

9.8.1 Localization Accuracy

An extensive body of literature exists on the error analysis that examines the accu-
racy of estimated locations obtained from various localization schemes. According
to the localization process, the sources of localization error may include physical
sources, localization algorithms, and refinement process [58, 59].
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Table 9.1 Expected accuracy of different measurement technologies[60]

Technology System Accuracy Range

Ultrasound AHLoS 2 cm 3 m
Ultrawide band PAL UWB 1.5 m N/A
RF time of flight Bluesoft 0.5 m 100 m
Laser time of flight Laser range finder 1 cm 75 m

The errors due to physical sources are represented by wide range of noises and
quantization losses. Ranging techniques vary from ultrasonic to radio, and to laser,
etc. A summary on the range accuracy was presented in [60]. Table 9.1 presents a
comparison of ranging errors among different range-based techniques.

The most attractive among these are the ones with low-cost and ready-to-use
features like time of arrival (TOA) of ultrasonic signal and radio signal strength
(RSS) or radio signal strength indication (RSSI). The only concern about these
techniques is that they produce highly noisy measurements and are over sensitive
to environmental effects.

Localization algorithms encounter two types of error sources. One is system
error, which comes from the localization algorithms themselves that work with
underlying assumption of accurate range measurement or range-free features. The
other source of error is related to connectivity and the fraction of nodes serving
as anchors. The last two parameters have significant impacts on the performance
of localization algorithms. The effect of system error becomes manageable, when
both distance and angle with orientation are available. But the size and the cost of
the hardware capable of measuring distance and angle prevent such system from
implementation, especially for dense WSNs.

It is of particular interest to study the impact of range errors on the performance
of localization algorithms, because range errors are inherent to WSNs employing
simple and low-cost range measurement hardware. According to the empirical study
on the impact of range errors on multihop localizations [61], high density and Gaus-
sian noises are the two prerequisites for the noisy disk model to work. The study
also suggests statistical approaches fix the problem resulted from range errors.

Cramer–Rao lower bound (CRLB) is commonly adopted in the error analysis of
the localization schemes. It is a lower bound on the variance of the estimator that
estimates the locations. Given the knowledge on the distribution of measurements, it
is shown in [62–64] that the bound on the localization error can be obtained through
calculating the CRLB. Therefore, the localization schemes are able to evaluate
their performances by comparing the localization accuracy with the corresponding
CRLB.

9.8.2 Computation and Communication Costs

As energy efficiency is critical to WSNs, it is necessary to consider the computation
and communication costs of the localization process in the evaluation of localization
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schemes. Centralized algorithms like the SDP or MDS-MAP demand range mea-
surements from all the nodes. This is expensive in terms of forwarding the measure-
ments to the processing point and solving the high-dimension matrix. Distributed
algorithms, on the other hand, require collaborations among neighboring nodes to
some extent. In particular, the multihop localization faces the trade-off between the
communication cost on propagating the anchor locations and the degree of accuracy.
For the refinement on location estimations, the number of iterations is apparently
in the center of the trade-off between the energy consumption for refinement of
localization results and the degree of accuracy achievable through refining.

9.8.3 Network and Anchors Density

It is worth noticing that localization algorithms always require a certain level of con-
nectivity. So, localization schemes are based on connectivity, range measurements,
angle information, or any combinations thereof. The discussions on the localiza-
tion algorithms suggest that dense networks lead to better localization performance.
However, a dense network does not necessarily guarantee high accuracy in location
estimations. The density of the network is usually represented by the number of
nodes within an area or the radio range of nodes. The anchor-based localization
schemes, aiming at providing absolute locations, require a high density of anchors
to ensure low level of localization errors [65].

9.8.4 Summary of Performances

In the previous sections, existing localization schemes were discussed under various
scenarios. The difficulty in comparing them is exacerbated by the fact that different
test beds for the evaluation purpose are built separately. In the following, let us
summarize the performance of these schemes with respect to accuracy, communi-
cation/computation costs, and node density.

Table 9.2 presents the simulation results of various localization schemes, where
the accuracy was examined through the trade-offs between accuracy and measure-
ment performance, percentage of anchors, deployment of anchors, density of non-
anchors, etc. Besides randomly generated networks, a typical deployment of nodes
is the grid of non-anchor nodes within a particular area. The localization accuracy
of a solution is usually quantified using the average Euclidean distance between the
estimated locations and the true locations normalized to the radio range or other
system parameters. For mobility-assisted localization, the effect of node density is
not as important as in static localization scenarios. In addition, communication/-
computation cost may not be of same importance to the off-line simulations as to
the real implementations. The table only shows typical values for the items when
various trade-offs for one solution were reported in the literature. For the sake of
conciseness, radio range and node degree are denoted by R and dg, respectively,
in the table, while D represents the average inter-distance of anchors and n is the
number of nodes to be localized in the network.
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Some of the empirical results of localization schemes are listed in Table 9.3. The
number of anchors is usually low due to the cost and the difficulty of deployment.
These results echo the report on the high accuracy achieved by ultrasound ranging
techniques. The analysis on the communication/computation costs was not exten-
sively presented in the empirical studies due to the difficulty in measuring the cost
in real implementations.

9.9 Open Issues

There has been extensive research on sensor localization; however, there are some
important open issues specially relevant to sensor nodes in a WSN which either
remain unresolved or not explored extensively. Some of these issues are listed
below.

1. Energy consumption
Although energy consumption has been addressed in the study on localization
with WSNs, the energy efficiency goal of the localization schemes remains chal-
lenging. The problem of minimizing energy consumption of the localization pro-
cess deserves further attention. As the energy consumption of the localization
application involves measurements, communication with neighbors, and esti-
mation of locations, the task of quantifying the energy consumption demands
system-wide efforts to incorporating energy-efficient design at all communica-
tion layers and all aspects of the localization algorithm.

2. Three-dimensional localization
The typical scenario for localization with WSNs is to find out locations of the
nodes in a 2-D plane. However, nodes are usually deployed in a 3-D space, which
leads to differences on both ranging results and localization algorithms. Analysis
on localization schemes focusing on the 3-D space is of particular interests to
real applications of WSNs, especially when the difference between 2-D space
and 3-D space is significant. For instance, irregularity of the radio transmission
has been investigated in 2-D space, while its counterpart in 3-D space remains to
be unknown [68, 69].

3. Security and privacy
Security and privacy have always been the fundamental issues in large-scale
deployments of WSNs. Since locations of nodes are of importance to the applica-
tions’ tasks, the security of the location needs to be guaranteed. Although some
researches on security of localization schemes are presented [70, 71], the types
of attacks and the related countermeasures are restricted to a few typical cases.
Similarly, researches on privacy of nodes’ locations mostly focus on prevent-
ing the locations of data sources or base stations from being exposed to adver-
saries [72, 73]. The existing sensor localization schemes have not been fully
examined from the perspective of privacy protection.
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9.10 Conclusions

In this chapter, we discussed sensor localization from its algorithmic aspects. Graph-
theoretic techniques solve the localization problem through modeling the proximity
information collected by the sensor nodes into edges of the graph and the nodes
themselves vertices. In order to reduce the estimation error on nodes’ locations,
geometric-based techniques were proposed to incorporate the distance measure-
ments between pairwise nodes in the localization process. Furthermore, techniques
with additional hardware explore the geometric characteristic of the network by
introducing the angle measurements. Besides, iterative techniques focus on refining
the initial estimation of the locations until the goal of high estimation accuracy is
achieved. In contrast to localization of static sensor nodes, mobile-assisted localiza-
tion techniques exploit the presence of mobile nodes that have abundant resources.
The mobile nodes are able to tackle the problem of low density of anchors in the net-
work by moving around static sensor nodes acting as the anchor. However, mobility
poses additional difficulty to the sensor localization problem when all the sensor
nodes are mobile. Statistical techniques are able to accomplish the localization task
for mobile nodes with the help of statistical models for range measurements and
the learning mechanism. The comparison among the existing algorithms for sensor
localization shows that energy efficiency of the localization process remains to be
a critical issue for wireless sensor networks, while security and privacy in sensor
localization among other open issues expect further investigations.
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Chapter 10
Spatio-temporal Context in Wireless Sensor
Networks

Anahit Martirosyan and Azzedine Boukerche

Abstract Context represents any knowledge obtained from Wireless Sensor Net-
works (WSNs) regarding the object being monitored. Context-awareness is an
important feature of WSN applications as it provides an ultimate tool for making
the applications “smart”. The information about a sensed in a WSN phenomenon
is comprehensive only when it includes the geographical location and the time
of occurrence of the phenomenon. Thus, the location and time are essential con-
stituents of WSNs’ context, though the concept of context is not limited to only
space and time. In this chapter, we consider the spatio-temporal context of WSNs
as it serves as a foundation for context-aware systems. In order to build context-
aware WSNs it is necessary to consider three areas concerning the spatio-temporal
correlation of events sensed in WSNs: node localization, temporal event ordering
and time synchronization. While localization’s task is to provide geographic coor-
dinates of a sensed event, preserving temporal relationships of the events in WSNs
is necessary for ensuring their correct interpretation at the monitoring centre and for
taking proper and prompt actions. The latter can be achieved by guaranteeing time
synchronization and temporal event ordering mechanisms. We present an overview
of selected algorithms in each of the areas, first providing the necessary background
and then presenting a comparison of features of the discussed algorithms.

10.1 Introduction

Context represents any knowledge obtained from a Wireless Sensor Network (WSN)
such as the time and location of a sensed event as well as other knowledge about
the object being monitored. Context-awareness is an important feature of WSN
applications as it provides an ultimate tool for making the applications “smart”.
The objective of context-aware applications is to use this knowledge in order to
adapt the application to the specifics of the object being monitored. The knowledge
about a sensed phenomenon is comprehensive only when it is accompanied with the
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geographical location of the node that sensed the phenomenon as well as the time
of the event’s occurrence. Thus, the location and time of a sensed phenomenon in
a WSN are important constituents of context. The task of node localization algo-
rithms is to provide geographic coordinates of sensor nodes. Temporal relationships
of the events in WSNs are ensured by means of time synchronization algorithms
and temporal event ordering algorithms. The concept of context is discussed in the
following section in more detail.

10.1.1 What Is Context?

Even though most people tacitly understand what context is, it is somewhat difficult
to explain. The term context-aware system was first defined by Schilit et al. [41]
as software that adapts according to its location of use, the collection of nearby
people and objects, as well as changes to those objects over time. We adopted the
definition of context given by Dey [10], “Context is any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves”. With an understanding of what context
is, application designers can determine what behaviours or features the applications
should support.

Examples of context-aware computing applications are Smart Homes and Ubiq-
uitous Health Monitoring Systems, in which the environment and user are initially
monitored (generally by means of wireless sensor networking technology) to collect
information about the conditions and preferences of the object being monitored.
This knowledge (context) is then used to adapt the application to the user’s needs.
The spatio-temporal context provides a foundation for context-aware applications.
Once the context about location and space is considered, then the context can be
extended to include other knowledge about the object being monitored. For instance,
in the case of an Ubiquitous Health Monitoring System, the information about a
patient that is being monitored (such as heartbeat, blood pressure, temperature etc.)
will be collected and analyzed by the Sink(s) (such as a physician, hospital etc.). The
knowledge about the patient being monitored will then be included into the context
about the patient. By taking into account the context, the health monitoring system
will thus be adapted to the specific patient: observe his/her conditions and predict
the evolution of events with a certain probability.

The remainder of the chapter is organized as follows. We present an overview
of selected algorithms in the areas of node localization, temporal event ordering
and time synchronization in WSNs in Sects. 10.2, 10.3, and 10.4, respectively. Sec-
tion 10.5 concludes the chapter.

10.2 Node Localization in WSNs

The problem of node localization in WSNs has received an increased attention
in the research community. A survey on localization algorithms can be found in
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the references [3, 19]. There have been proposed a number of approaches to node
localization in static WSNs [1, 9, 38, 42, 46], to name just a few. Other approaches
presented in the references [4, 24, 32, 44, 47, 49] considered mobile node-assisted
localization.

10.2.1 The Task of Localization Algorithms for WSNs

Due to the ad hoc nature of the WSNs and the limited capabilities of sensor nodes,
localization faces the challenges of providing accuracy while minimizing computa-
tional cost and preserving network’s scarce energy resources. A small percentage of
sensor nodes may be equipped with either global or local coordinates (these nodes
are called beacons or anchors), while the rest of the nodes are location unaware
(these nodes are called unknowns). The goal of localization protocols in WSNs is
to provide location information (geographic coordinates) for as many sensor nodes
as possible. In order for a sensor node to be able to locate itself in a two/three-
dimensional space it is necessary for the node to know the positions of three/four
nodes as well as the distances to these nodes (the ranging techniques for obtaining
distances are overviewed in Sect. 10.2.2). After a sensor node obtains the required
information regarding the beacons, it is able to calculate its own geographic coor-
dinates by performing trilateration. In the case when the angles to the beacons are
known instead of the distances, the sensor node will perform triangulation instead in
order to obtain its position. It is not always possible for a node to receive the infor-
mation about the beacon nodes in one hop. In these cases, a multi-hop propagation
of the beacon information is used for the sensor nodes to learn of the positions of
beacons and the corresponding distances/angles to them.

In the following subsection we first briefly overview the ranging techniques for
distance/angle estimation (a detailed description of the techniques can be found in
the reference [3]). We then overview trilateration and multilateration techniques for
obtaining sensor nodes’ geographic coordinates.

10.2.2 Estimation of Distances and Angles

• Received Signal Strength Indication (RSSI) stems from the fact that radio signal
strength is inversely proportional to the distance squared. Thus, if a receiving
sensor node measures the received signal strength of a sending node, it should be
able to obtain the distance between the sending node and itself. RSSI is practical
in the sense of low cost as no additional equipment is required in order to measure
the distance between two nodes. Every sensor node is equipped with a radio
module and thus is able to calculate the distance. However, RSSI is inaccurate as
the measurements are noisy on the order of several meters [2]. The inaccuracy of
RSSI can be explained by the fact that radio signal propagation is not universal
for different materials.



296 A. Martirosyan and A. Boukerche

• Time of Arrival (ToA) estimates the distance between the sender and receiver
sensor nodes by using the time that it takes for the signal to propagate from one
node to another. The radio signal propagates with the speed of light and if the time
that it took the signal to propagate from the sender to the receiver is known, then
the receiver node can compute the distance separating the two nodes. Obviously,
the nodes need to be synchronized in order for the computation to be accurate.

• Angle of Arrival (AoA) is obtained by means of directional antennas or using a
set of receiver nodes. By using the time of arrival of the signal at the receivers it is
possible to calculate the angle of arrival at the sensor node in question. This tech-
nique has an accuracy of a few degrees. However, it requires additional hardware
and thus adds to the cost and size of a sensor node.

• Time Difference of Arrival (TDoA) uses two different kinds of signals to compute
the distance between the sending and receiving nodes. Radio signal can be sent
at the same time (or with a delay) with an acoustic signal [48], for instance. The
difference in the speed of the two signals allows the receiver node to calculate the
distance that the signals have traveled by multiplying the difference in the speeds
by the difference in the time of arrival of the two signals. This ranging technique
has a very high precision, on the order of centimeters. The main disadvantage of
the technique is that it requires extra hardware, which increases the cost and size
of a sensor node.

• Hop Count cannot be categorized as a ranging technique; however the metric
is used by many localization algorithms for WSNs to obtain distance measure-
ments to the beacon nodes. The DV-hop-based algorithm [30] is the pioneering
approach in this category of algorithms. The main idea is based on the fact that
if messages sent by two nodes are able to reach each other, then the distance
between the nodes is bounded by the transmission range of their radios. The hop
count between two nodes is defined as the number of hops on the shortest path
connecting the two nodes. The advantage of the hop count-based approaches is
their simplicity and low cost as they do not require any additional hardware and
simply use the connectivity information to obtain distance estimates between the
nodes. However, the inaccuracy of the approach is high due to the accumulated
error that results from the averaging of the hop distance between two neighboring
nodes. The inaccuracies may be high in the cases when two nodes are separated
by an obstacle.

10.2.3 Trilateration

Once a node has received the information about three beacons and the correspond-
ing distances to them, it performs trilateration and obtains its position estimate. In
order to be able to perform trilateration, the unknown node U depicted in Fig. 10.1
needs to know the coordinates of the beacon nodes B1, B2 and B3 as well as the
distances to these beacon nodes (r1, r2, r3). Using the theorem of Pythagoras the
information about the beacons’ coordinates and the distances to the beacon nodes
from the unknown node U can be expressed in Eqs. (10.1), (10.2), and (10.3).
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Fig. 10.1 Trilateration to the three beacon nodes B1, B2 and B3 is performed by the node U to find
its own coordinates (xu ,yu)
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Subtracting Eq. (10.3) from Eqs. (10.1) and (10.2) will give
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After rearranging the equations, we get a system of two linear equations with two
unknowns as shown below. The coordinates of the unknown node U(xu , yu) can be
obtained by solving the following system of equations.
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When the information about angles to the beacon nodes is used instead of the
distances, triangulation is performed by an unknown node by means of using the
laws of sines and cosines to compute its coordinates.
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10.2.4 Multilateration

When more than three beacon nodes are available, an unknown node can use mul-
tilateration to obtain its geographic coordinates. Multilateration may yield a more
accurate position than trilateration as the information to more beacon nodes is taken
into account by an unknown node to calculate its coordinates. The multilateration
equations are shown in Eqs. (10.4), (10.5), and (10.6), when there are n beacon
nodes and the distance errors e are considered.

(x1 − xu)
2 + (y1 − yu)

2 = r2
1 − e (10.4)

(x2 − xu)
2 + (y2 − yu)

2 = r2
2 − e (10.5)

...

(x3 − xu)
2 + (y3 − yu)

2 = r2
3 − e (10.6)

Similar to the case of trilateration, the system of linear equations can be rewritten
in a matrix form Ax ≈ b by subtracting the last equation as shown in Eq. (10.7).
The system of equations is over-determined as there are more equations than
unknowns. It can be solved by using the least squares method [16, 21, 38]. Then,
x = (AT A)−1(AT b), where AT is a transpose of the matrix A. The least squares
method minimizes the sum of the squares of the differences between estimated and
computed distances.
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(10.7)
Another method for calculating unknown node’s coordinates is bounding box

[3, 39], in which squares around the beacon nodes are used (instead of circles as in
lateration) to represent the boundaries of each beacon node. The unknown node is
then located at the intersection of the squares.

10.2.5 Localization Algorithms for WSNs

The Global Positioning System (GPS) [31] is the most known and used location
system. In GPS, the ranges to at least four from the existing 24 satellites are used
for lateration in order to find the coordinates of the receiver that needs to be local-
ized. However, GPS is not suitable to be used in WSNs for a number of reasons.
From a point of view of the low price and small size of a sensor node, it is not
reasonable to equip every sensor node with a fairly expensive and large in size
GPS unit. Next, GPS’s energy consumption is high and thus its use is prohibitive
in energy-constrained WSNs. Also, GPS cannot be employed indoors as it requires
a line of sight.
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10.2.5.1 Ad Hoc Positioning System

One of the pioneering approaches to node localization for WSNs is the Ad Hoc Posi-
tioning System (APS) [30], which has three different versions as described below.
The APS is similar to distance vector routing, in which every node communicates
only with its immediate neighbours. Each message exchanged in the APS contains
the node’s available estimates to landmarks (beacons). The method uses multi-hop
propagation from landmarks to sensor nodes. Once a node receives three range esti-
mates to three or more landmarks, it is able to compute its own position by using
trilateration.

In the DV-hop propagation method, there are three non-overlapping stages. In the
first stage, each node propagates distances in hops to each landmark in the WSN. In
the second phase, a landmark estimates an average size of a hop after it receives a
message from another landmark. It then floods the networks with the average size
of a hop in meters as a correction to distance measurements. In the third phase, an
arbitrary node, after receiving the correction, estimates distances to a landmark in
meters and uses this information to perform trilateration. Another version of the
algorithm is DV-distance, in which, as opposed to DV-hop, the distances between
neighbouring nodes are measured using radio signal strength RSSI and are prop-
agated in meters rather than hops. Euclidean propagation method propagates true
Euclidean distances to landmarks. The advantage of DV-hop method is its simplic-
ity. The fact that no range measurements are used by an arbitrary node to perform
trilateration frees the approach from the inaccuracies inherent to range measurement
techniques RSSI, AoA, ToA and TDoA [3]. However, the approach is not scalable
mainly due to the high communication cost.

10.2.5.2 Robust Positioning Algorithms for Distributed Ad Hoc
Wireless Sensor Networks

Another DV-hop-based algorithm is Robust Positioning Algorithms for Distributed
Ad Hoc Wireless Sensor Networks (RPA) [37]. The algorithm goes through two
phases, namely Hop-TERRAIN and Refinement. In the Hop-TERRAIN phase, the
algorithm finds the number of hops from a node to each beacon node in the network.
The nodes then multiply the hop count by a shared metric of an average hop distance
to estimate the distance to each of the anchor nodes. Triangulation is performed by
using the least squares algorithm. In the refinement phase, given the position esti-
mates of the Hop-TERRAIN, the goal is to obtain more accurate positions by means
of using ranges between neighbouring nodes. Refinement goes through iterations, in
which each node broadcasts its position estimate and waits for replies with position
estimates from its one-hop neighbours. By using one of the above-mentioned rang-
ing techniques, the node also obtains distance measurements to its neighbouring
nodes. It then computes a least squares lateration to obtain its new position. As
a result, in the majority of cases, after a number of iterations, the node’s position
will change towards its true position. To mitigate error propagation, the refinement
algorithm assigns a confidence level to each node’s position. The confidence levels
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are used to weigh the linear equations when solving the system of linear equations
by means of the least squares trilateration. The anchors have high confidence levels,
whereas a node that observes poor conditions (e.g. few neighbours, poor constella-
tion) associates a low confidence level with its position estimate. Consequently, the
nodes with poor confidence levels about their position estimates have less impact on
the outcome of the triangulations performed by the neighbouring nodes.

10.2.5.3 Ad Hoc Localization System

The Ad Hoc Localization System (AHLoS) [40] goes through a two-phase process—
ranging and estimation—to dynamically discover nodes’ locations. During the rang-
ing phase, each node estimates its distances from neighbouring nodes. In the esti-
mation phase, nodes use the ranging information and the known beacon locations to
estimate their positions. Once a node has a position estimate, it becomes a beacon
and assists other nodes in estimating their positions in an iterative manner. RSSI and
ToA are employed to obtain ranging information in AHLoS.

Two versions of the algorithm are considered, such as centralized and distributed.
In the centralized version of the algorithm, location estimation is performed at a
central, more powerful node. After that the results are forwarded to the nodes. In the
algorithm’s distributed version, the location estimation is performed at the nodes,
without involving a central node. The algorithm uses multilateration when a node
has ranging information to more than three beacons. Atomic multilateration, iter-
ative multilateration and collaborative multilateration algorithms are used in the
AHLoS. In the atomic multilateration, if a node has the ranging information to
more than three beacon nodes, it performs multilateration. In the case of iterative
multilateration, such a node then becomes a beacon after it estimates its position.
It then assists the neighbouring nodes in obtaining position estimates. The col-
laborative multilateration is considered when two neighbouring nodes do not have
ranging information to the required number of beacons, but may assist each other
(collaborate) in obtaining the needed information. The iterative multilateration can
be applied in small-scale networks.

10.2.5.4 The n-Hop Multilateration Primitive for Node Localization Problems

The n-Hop Multilateration approach [39], as its title suggests, considers a multi-
lateration that spans over multiple hops. The algorithm goes through three main
phases and a post-processing phase. In the first phase, the nodes self-organize into
groups, collaborative subtrees, so that the nodes that do not have position estimates
are over-constrained and can have only one possible solution.

If a node does not satisfy the required constraints, it does not become part of
a collaborative subtree. During the second phase, the nodes use geometric rela-
tionships (a method of constructing a bounding box [3, 39]) between measured
distances and beacon locations to obtain initial position estimates. In the third
phase—refinement—iterative least squares approach is used to obtain final position
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estimates. The position estimates are further refined in the post-processing phase of
the algorithm similarly to the process used in the second phase. The n-hop collabo-
rative multilateration approach to node localization is scalable to larger networks as
opposed to multilateration approach described above [40].

10.2.5.5 A Lightweight Iterative Positioning Algorithm for Wireless Sensor
Networks

The Lightweight Iterative Positioning (LIP) [28] algorithm for WSNs is a DV-hop-
based algorithm, in which localization is achieved in two phases: initial position
estimation and iterative refinement. The main objective of the proposed solution
is to reduce the communication overhead of the DV-hop-based localization algo-
rithms without affecting the accuracy. The algorithm stems from the observation
that the synchrony in the nodes’ localization process in the DV-hop-based algo-
rithms may increase communication cost and delay of node localization, in addi-
tion to occurrence of collisions and lost messages. The randomization of node
localization is achieved in a number of ways as discussed below. In the initial
position estimation phase, the algorithm attempts to decrease communication over-
head by randomizing the process of propagation of beacon position information
to the nodes in the network by using a random Time-To-Live (TTL) (number of
hops the message propagates) for the most of the messages with beacons’ position
information.

The method that is used for each beacon node to decide whether or not it is
going to flood the network or use the limited to TTL flood is similar to the dis-
tributed way that nodes are selected as cluster heads in LEACH routing proto-
col [10]. The algorithm selects a fraction of the beacon nodes to flood the whole
network, while the rest use random TTLs to disseminate the beacon’s coordi-
nates. Figure 10.2 demonstrates the process of the beacons flooding the WSN with
a complete and limited (to the TTL) floods with the beacons’ coordinates. The
limited floods initiated by most of the beacons (represented by a black triangle)
propagate the nodes inside the corresponding curved line, whereas the complete
floods by the other beacons (represented by a white triangle) propagate the entire
network.

An important feature of the proposed algorithm is that its phases may be run
in parallel in the network, to utilize message exchange necessary in a following
phase of the algorithm for piggybacking information from a previous phase and
thus reducing communication cost. Thus, when a message containing an average
hop distance traverses the network, it is piggybacked with the information about
known beacon nodes and possibly the initial position estimate of a sender node.
This way, the number of messages exchanged between the nodes is reduced.

The second way in which the LIP proposes to randomize the process of local-
ization is that in the refinement phase of the algorithm, the nodes select random
waiting periods for correcting their position estimates based on the information
received from their neighbouring nodes. Weighted Moving Average is used when
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Fig. 10.2 Beacons use complete and limited floods to propagate their coordinates in the LIP [28]

the nodes receive multiple position corrections from a neighbouring node during
the waiting period to emphasize the corrections with a high confidence. In addition,
in the refinement phase, the algorithm employs low-duty cycling for the nodes that
have low confidence in their position estimates. The goal of this scheme is to first
rely on the nodes that are more confident in their position estimates to settle on their
position estimates. Also, the rationale behind this is to ensure that the nodes that
are not confident in their position estimates do not affect the lateration results of
neighbouring nodes with their potentially erroneous position estimates. Meanwhile,
the nodes using low-duty cycling conserve energy and avoid computation.

10.2.5.6 Comparison of Features of the Localization Algorithms

There exists a trade-off between the overhead of localization algorithms and preci-
sion in node localization that they provide. The algorithms using only the connec-
tivity information (hop-based algorithms) have a lower overhead but the precision
is compromised. On the other hand, the algorithms using ranging techniques may
require additional hardware, which increases the overhead (the cost and size). How-
ever, this also increases the precision of node localization.

The DV-hop algorithm [30] uses only the connectivity information to localize
nodes. DV-distance [30] and AHLoS [40], on the other hand, use ranging techniques
such as RSSI and ToA to obtain distances between the nodes. The RPA [37] and LIP
[28], on the other hand, use both the connectivity information for the initial position
estimation and the ranging techniques for refining the position estimates iteratively.
LIP proposes a lightweight solution to DV-hop-based algorithms by eliminating the
synchronicity of the algorithms by means of randomizing the phases of localization.

Multilateration is used in the approaches RPA, LIP, and AHLoS to improve upon
position estimates, while the method n-Hop Multilateration [39] considers multi-
lateration that spans over multiple hops. The discussed features are summarized in
Table 10.1.
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Table 10.1 Comparison of features of the discussed localization algorithms

Algorithm Connectivity Ranging Iterative
information techniques

DV-hop *
RPA * * *
AHLoS *
n-Hop multilateration * * *
LIP * * *

10.3 Temporal Event Ordering in WSNs

Temporal event ordering has generally been in focus of research on distributed sys-
tems. Event ordering for WSNs is a topic of active research as well. The problem of
event ordering is concerned with the ordering of events (messages) in the chronolog-
ical order of their occurrence. The necessary condition for resolving the problem of
correctly ordering the events is to ensure that the nodes in the network are synchro-
nized, i.e. every message is timestamped and the timestamps are accurate throughout
the network. However, in order to ensure the correct ordering of the events that are
received by a Sink, it is also necessary to make sure that there are no messages still
in transit at the time when the messages are ordered.

The causal ordering in distributed systems is based on employing a “happened
before” relation presented in [25]. Causal ordering algorithms (e.g., [33]) ensure
that if event1 happened before event2, then event1 will be processed before event2
despite the possible violation of the order of the events’ reception at the receiver’s
site. Causal ordering employs logical clocks; no physical clocks are used. WSNs
often require the exact time at which the events occurred, and causal ordering is
thus not sufficient for WSN applications.

10.3.1 Delaying Techniques

In Delaying Techniques [26, 43], there is an assumption about the upper bound of
network delay D that messages can suffer. This time is equal to the maximum time it
takes for a message to be sent by one of the nodes and received by another. There is
a waiting time equal to that delay before the messages are ordered at a receiver’s site
(such as a Sink). The receiver node keeps a list of the messages received. After a time
equal to D, the first message in the list is removed and handed out to the application.
These techniques may not suit WSNs because the delay in these networks is highly
variable and it is thus difficult to choose an optimal value for D. If a longer time
interval is set before the events are ordered, there will be some unnecessary idle time
that will be wasted on waiting at the receiver. A shorter delay, on the other hand,
could result in missing some messages that may still be in transit in the network
(because it takes more time than D to arrive at the destination node).



304 A. Martirosyan and A. Boukerche

10.3.2 Heartbeat

The Heartbeat [18] protocol employs the FIFO property of communication channels
to ensure that all previously sent messages have been received before the events are
ordered. This is achieved by having every node send a message in time intervals
of delta. These messages are the control information to ensure that there are no
delayed messages in the network. A receiver node (Sink) keeps an ordered list of the
received messages. After a message with a timestamp greater than the timestamp of
a received message is received at the receiver node from every node in the network,
the first message in the list is removed and handed out to the application. A message
m1 that was received at the Sink node at time t1 is removed from the list. It is
handed out to the application, when the receiver node has received from every node
in the network a message mi with the timestamp ti > t1. Due to the FIFO property,
all messages prior to the message m1 have been received by the Sink before the
messages mi .

Like in Delaying Techniques, it is difficult to choose an optimal value for the
time interval delta. If a small interval is chosen then the overhead will be too large,
whereas if a large interval is used, then the system will be idle for a long time.
Another drawback of the scheme is that whether or not there are messages generated
in the network, the control messages from every node will be regularly sent to the
Sink.

10.3.3 Temporal Message Ordering Scheme

Another event ordering algorithm for WSNs that is based on the FIFO property is
the Temporal Message Ordering Scheme (TMOS) [35]. It constructs logical rings
in the network. After the logical ring is constructed, when a node has a message to
send, it sends the message in both directions of the logical ring. When both copies
of the message are received by a node, it means that all previously sent messages
have gone through that node due to the FIFO property of communication channels
between the nodes in the network.

As shown in Fig. 10.3, a logical ring including the nodes {1, 2, 3, 4}, connected
with solid lines, is constructed. When node 3 senses an event e3 at time t3, it sends
two copies of the message: m3 and m

′
3 to its neighbouring nodes, each of the mes-

sages is sent in one direction. After receiving the message, the receiver node 1 will
first send all the events that were sensed locally and then send the message m3 to
its neighbouring node 4. Similarly, node 2 will send message m

′
3 after first sending

locally sensed events to the neighbouring node 4 in the logical ring. Node 4 will
insert the received events in a list ordered on the timestamps. Due to the FIFO
property of communication channels, node 4 will receive at least one copy of all
the sensed events which happened before the timestamp t3 of the event e3. After
receiving the second copy of the message m3, node 4 removes the first message of
the ordered list and hands it out to the application.

The concept of this method is interesting, but it basically doubles the network
traffic: for every message, there are two copies that are sent along the logical ring.
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Fig. 10.3 TMOS algorithm (adopted from [35])

For energy-constrained WSNs this will imply a lot of energy dissipation. Also, con-
struction of logical rings is not straightforward.

10.3.4 Ordering by Confirmation

The Ordering by Confirmation (OBC) [7] event ordering method for Wireless Sen-
sor Actor Networks (WSANs) also uses the FIFO property of channels. This method
first constructs a hop tree around the Actor, as is required for the routing proto-
col used for message delivery [8]. When the Actor (depicted as a black triangle in
Fig. 10.4) needs to order events, it sends a temporal acknowledgment (ACK) request
to the leaf nodes (the nodes at the path extremity) in the network. The leaf nodes
are shaded in Fig. 10.4. These nodes then send temporal ACK messages towards the
Actor. When these messages are received from all the nodes closest to the Actor, this
ensures that all earlier messages have already been received. Next, the first message
in the ordered list that is kept at the Actor node is removed and handed out to the
application. This method does not require the nodes in the network to periodically
send messages to the Actor. Only after the Actor broadcasts a temporal ACK request
do the nodes in the network send temporal ACKs. Thus, the OBC does not suffer
from the non-determinism of delay.

In the OBC, a node on a branching path does not forward the temporal ACK
reply message before it has received the temporal ACK replies from all its children
nodes. This is done in order to reduce the number of messages sent towards the Actor
node. In addition, the Actor node maintains buffers for unacknowledged messages.
It is possible that during the time when the Actor node waits to receive temporal
ACKs regarding message m1 (as shown in Fig. 10.4) that is generated by node A,
it receives message m2 generated by node B. If nodes on the path were not yet
traversed by the temporal ACKs, then, both messages m1 and m2, ordered according
to their corresponding timestamps, will be removed from the list and handed out to
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Fig. 10.4 OBC algorithm’s temporal acknowledgment process (adopted from [7])

the application. This way, more than one message can be temporally acknowledged
with a single temporal ACK request. This results in a reduced number of messages
and, consequently, conserves the energy of WSNs. Otherwise, if the nodes were
already traversed by temporal ACKs for the message m1, the message m2 is placed
into a different buffer. It will be handed out to the application after the Actor sends
another temporal ACK request and receives acknowledgments from the nodes in the
network.

10.3.5 An Efficient Algorithm for Preserving Events’ Temporal
Relationships in Wireless Sensor Actor Networks

The approach presented in [5] proposes an algorithm to deal with the problems of
temporal event ordering and time synchronization as a whole as both problems are
concerned with preserving the temporal relationships of the events sensed in WSNs.
Modifications to the OBC [7] algorithm are proposed. At the same time, a hybrid
synchronization scheme for the clustered topology is proposed (the synchronization
part of the algorithm is discussed in Sect. 10.4).

The proposed modifications to OBC consider introducing clustering concept into
network topology (we will refer to the approach as Clustered Ordering by confir-
mation (COBC) hereafter). As discussed in Sect. 10.3.4, when there is a branching
path in the paths created for message delivery in OBC, the parent node waits to
receive the temporal ACK messages from its children nodes before forwarding it
further in order to reduce the number of messages of the temporal acknowledgment
process as compared with Heartbeat protocol. In the clustered topology, clustering
is more general than a branching path because generally most of the nodes belong
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Fig. 10.5 (a) Initiation of the temporal ACK. (b) ACK replies reach the Actor

to clusters. Thus, a cluster head node will wait to receive a temporal ACK message
from its cluster nodes and then forward one acknowledgment message on behalf of
all its cluster nodes. Clustering can further reduce the overhead of event ordering in
terms of delay and energy dissipation. In a clustered topology, only a cluster head
(CH) node waits to receive the flush messages from its cluster nodes before sending
the message further toward the Actor. If there are m nodes in a cluster, the CH will
wait to receive temporal ACK messages from all the nodes and will then forward
one message on behalf of all these nodes. This decreases the delay of temporal
event ordering process. It also results in a reduced energy dissipation. In periodic
event ordering approaches, if these nodes did not belong to a cluster, however, all m
nodes would have to send a separate message toward the Actor.

Figure 10.5a shows the clusters located at the extremities of the area of the
Actor’s monitoring that initiate sending the temporal ACKs after hearing the tempo-
ral ACK request message from the Actor (depicted as a black triangle). In Fig. 10.5b,
the temporal ACKs reach the Actor node by traversing the network using the under-
lying routing algorithm [6]. The latter is based on inter-cluster communication that is
achieved by means of using nearest neighbour nodes between neighbouring clusters.
At this time the Actor will order the messages according to their timestamps.

10.3.6 Comparison of Features of the Temporal Event Ordering
Algorithms

Table 10.2 presents a comparison of features of the discussed algorithms on tempo-
ral event ordering in WSNs. While Delaying Techniques [26, 43] and Heartbeat [18]
algorithms suffer from the non-determinism of delay, the other algorithms discussed
in this chapter overcome this problem. The delay in WSNs is varying, and thus it
is difficult to predict an upper bound of delay D in the former algorithm and the
time interval delta in the latter algorithm. The FIFO property of communication
channels is employed in numerous algorithms to tackle the problem of temporal
event ordering in WSNs [5, 7, 35].
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Table 10.2 Comparison of features of the discussed algorithms on temporal event ordering

Non-determinism
Algorithm of delay FIFO Periodic

Delaying *
techniques
Heartbeat * * *
TMOS *
OBC *
COBC *

In the Heartbeat algorithm, the control messages are sent periodically to ensure
that the straggler messages are delivered to the Sink before the Sink orders the
events. This creates an overhead as the control messages may traverse the network
even when no events were sensed in the network. In the remaining algorithms on
event ordering discussed in this chapter, however, Sink/Actor initiates the temporal
acknowledgment request only after it has received an event notification from sensor
nodes (as in OBC and COBC). In TMOS, the process necessary for event ordering is
also initiated only when a sensor node has an event notification message to forward
towards the Sink: two copies of the message are sent along the logical ring. Thus,
the overhead associated with the process of event ordering is reduced.

10.4 Time Synchronization in WSNs

Time synchronization is essential for any distributed system and it is necessary in
WSNs for performing data fusion, low-duty cycling, temporal event ordering and
other purposes. Synchronization algorithms for traditional networks, such as Net-
work Time Protocol (NTP) [29] used for keeping nodes in the Internet synchronized,
are not well suited for WSNs. NTP uses a hierarchical scheme for time synchro-
nization, in which a server synchronizes a number of clients. The servers in turn are
synchronized by means of external sources (such as GPS). Thus, all the nodes in
the Internet are synchronized to a global timescale. In [11], the authors discuss the
differences between traditional networks and WSNs. The main concern that makes
NTP unsuitable for time synchronization in WSNs is energy efficiency. As already
noted above, in Sect. 10.2, GPS is unsuitable for combining with sensor nodes due
to its energy consumption and cost. Also, it requires a line of sight to GPS satellites
that is not always possible in WSN applications. Among other reasons that suggest
refraining from using a global timescale-based synchronization are the absence of
infrastructure in WSNs and the presence of high dynamics.

Figure 10.6 demonstrates the components of packet delay over a wireless link,
which were first introduced in references [23] and [22] and then extended in refer-
ence [13]. We briefly describe each of the components below:

• Send Time — the time that is spent by the sender to construct a message, i.e.
the highly variable delays introduced by the operating system caused by the syn-
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Fig. 10.6 Components of packet delay over a wireless link (adopted from [13])

chronization application (e.g., for context switches). The Send Time also includes
the time necessary for the message to be transferred from the host to its network
interface.

• Access Time — the time the packet waits for accessing the channel. The delay
is also highly variable as it depends on the MAC protocol that is used (e.g., in
TDMA channels the sender will have to wait for its time slot to transmit).

• Transmission Time — the time it takes the packet to be transmitted bit by bit at
the physical layer over a wireless link. This delay component is deterministic as
it depends on the radio speed.

• Propagation Time — the time that it takes the packet to propagate from the sender
to the receiver. This delay component is very small and is negligible compared to
the other components.

• Reception Time — the time spent on receiving the packet bit by bit at the receiver
node. This component of the delay is deterministic in nature like the Transmission
Time component.

• Receive Time — the time it takes to construct the packet and pass it to the appli-
cation layer. This delay component is highly variable like the Send Time as it is
affected by highly variable delays introduced by the operating system.

The resulting delay of a packet over a wireless link is thus highly affected by the
delay associated with the MAC layer on the sender’s side as well as the variable
delays introduced by the operating system on both the sender’s and receiver’s sides.

10.4.1 Time Synchronization Techniques

The synchronization techniques that are used in synchronization algorithms for
WSNs discussed later in this section can be divided into two broad categories. In
the first category falls the traditional sender–receiver-based technique, while in the
second one falls the receiver–receiver-based synchronization technique. Each one
of the techniques is described in the following subsections.

10.4.1.1 Round-Trip Synchronization

In Round-Trip Synchronization (RTS) [34], the receiver of a sync pulse is synchro-
nized with the sender. Two versions of the RTS technique could be used. In the
first one, the receiver of a sync pulse replies to the sender right away. This way,
the sender node can compute the round-trip delay and thus synchronize the receiver
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Fig. 10.7 Round-trip synchronization (adopted from [45])

node’s time with its own. In the second version, the receiver of the sync pulse does
not need to reply to the sync pulse right away, but only later on. It computes the
delay between the reception of the sync pulse and the time when the reply is sent
and attaches the delay information to the reply. The receiver node, upon receiving
the reply, will subtract the delay time from the time of the reply’s reception. The
receiver node will thus be synchronized with the sender.

Figure 10.7 demonstrates the message exchange required for RTS. In this version
of RTS, node N j sends a request to node Ni about the timestamp at which the
message was received

(
hi

b

)
. Node Ni does not, however, reply to N j right away but

sends the reply message after some time Di . After the reply is received by node N j ,
it calculates the round-trip time (taking into account the delay Di in sending the
reply message).

10.4.1.2 Reference Broadcast Synchronization

Reference Broadcast Synchronization (RBS) [14], unlike traditional synchronization
techniques in which a server synchronizes a set of clients with itself, synchronizes
a set of receivers with each other. A beacon node broadcasts a message to the set of
receivers using the network’s physical layer broadcast. The receivers use the time
of the message’s arrival for comparing their clocks. Due to the nature of broadcast
[17], a message that is sent at the physical layer will be received by the receiver
nodes at approximately the same time. There are a few versions of RBS. In the main
version, a beacon node broadcasts a message to two nodes in a network. Then the
receiver nodes exchange messages with their local time (timestamp) at the time of
the sync pulse’s reception. This way, each node will have information about the
other node’s local time. The two receiving nodes will be synchronized with each
other but not with the sender. In another version of RBS, the nodes receiving the
reference broadcast send their timestamps of the sync pulse’s reception back to the
beacon node. This version of RBS is used when two nodes cannot communicate
with each other [12, 14].

Figure 10.8 demonstrates the version of RBS in which, after two nodes receive a
sync pulse from a beacon node, they send messages back to the beacon node with
their timestamps at the moment of the sync pulse’s reception. The nodes Ni and
N j reply to the beacon node Nk with messages containing their local times at the
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Fig. 10.8 The RBS method’s version, in which local times at the moment when the sync pulse
arrives at nodes Ni and N j , is kept at the beacon node Nk

moment when the pulse was received (hi
a for node Ni and h j

a′ for node N j ). Thus,
the beacon node will store the information about the differences in local times.

10.4.2 Synchronization Algorithms for WSNs

10.4.2.1 Multi-hop Time Synchronization

The Multi-hop Time Synchronization [14] uses RBS synchronization technique
and relies on the use of “gateway” nodes—the nodes that are aware of the local
timescales in more than one broadcast domain. In Fig. 10.9, each one of the nodes
inside a single broadcast domain, such as nodes 1–3, 5, 6, 10, 11, can hear broad-
casts with synchronization pulses coming from only one node labeled with a letter
(such as A, B, C and D). On the other hand, nodes 4, 7, 8 and 9 can hear broadcast
messages coming from two nodes. For instance, the nodes 8 and 9 can hear syn-
chronization pulses coming from nodes C and D. These nodes are then used in the
algorithm to perform multi-hop synchronization. The nodes are aware of the two
local time scales and are able to convert the time scales and thus synchronize the
other nodes within the corresponding broadcast domains. When a node senses an
event Ei it timestamps it with its local time R j . The notation Ei (R j ) represents the
time of event i according to the receiver j’s clock. Thus, to compare the time of event
E1(R1) with E10(R10) the algorithm will go through the following time conversions:
E1(R1) → E1(R4) → E1(R8) → E1(R10).

10.4.2.2 Timing Sync Protocol for Sensor Networks

The Timing Sync Protocol for Sensor Networks (TPSN) [13] is a hierarchical syn-
chronization technique. There are two phases in the protocol: Level Discovery and
Time Synchronization. In the first phase, a spanning tree is built. The root node of
the spanning tree then broadcasts a level_discovery packet. The nodes are assigned
a level in the hierarchy by propagating the broadcast of the root node. After the
hop tree is built the second phase of the protocol starts. Pair-wise synchronization is
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Fig. 10.9 The RBS method’s multi-hop time synchronization

performed by the nodes along the edges of the hierarchical structure, i.e. every child
node is synchronized with its corresponding parent node. The RTS synchronization
technique is used by the nodes to achieve synchronization. Initially, the root node
broadcasts a time_sync packet. After receiving this packet, the nodes in the first
level wait for a random time and then send an acknowledgment to the root node.
The procedure continues to the higher levels of the hierarchy of nodes. This way,
every node in the network is synchronized to the root node. The important feature of
the TPSN is that messages are timestamped at the MAC layer in order to reduce the
delay variability by minimizing the Send Time component of delay. When network
topology changes (for instance, due to node failures), the whole procedure of master
election and tree construction will be repeated.

10.4.2.3 Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol (FTSP) [27] is used for synchronizing
a network to the root node as well. The node with the lowest ID is selected as a leader
to be the reference point for time synchronization. The node periodically floods the
network with messages containing its time. All the nodes that have not received the
message record the timestamp contained in the message as well as the message’s
time of arrival. They then broadcast the message to the neighbouring nodes after
updating the timestamp. Similar to TPSN [13], FTSP timestamps synchronization
messages at the MAC layer as well. After a node has gathered eight pairs of the
timestamp and time of arrival, the node uses linear regression on these data to obtain
phase offset and clock skew with regards to the leader node.
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10.4.2.4 Synchronization for a Clustered Topology

In the synchronization method proposed in reference [5] (we will refer to the method
as Synchronization for a Clustered Topology (SCT) in this chapter), a scheme
suitable for a clustered topology of Wireless Sensor Actor Networks (WSANs)
(depicted in Fig. 10.5) is presented. It consists of the combination of the two syn-
chronization techniques for WSNs — RBS and RTS. The cluster head (CH) nodes
are synchronized with each other by means of the RBS, while the nodes inside
clusters are synchronized with their corresponding CHs with RTS. The version of
RBS depicted in Fig. 10.8 is used for keeping the CH nodes synchronized. The
algorithm uses the Actor node as a beacon node that broadcasts the sync pulses to
the CHs. The CHs in turn will reply to the Actor node with messages about their
timestamps at the moment when the sync pulse was received.

The advantage of using RBS to synchronize CHs with each other, in this
approach, is that the tables of phase offsets of the local times of the CHs are stored at
the Actor. The Actor that has higher capabilities in terms of energy and computation
performs all the time conversions necessary in order to synchronize the CH nodes
with each other. This frees the rest of the energy-constrained nodes of the additional
computations and storage. An example of a table with time offsets of the CH nodes
that is kept at the Actor is presented in Table 10.3. The numbers in the table indicate
the phase offset between two CH nodes. For instance, “−2” in the cell CH1CH2
indicates that the local time at the CH1 is behind the local time at the CH2 by 2 units
of time (e.g., minutes).

Having the information above, let us assume that the Actor receives two events
(E1 and E2) with their corresponding timestamps: E1, timestamped at the CH1 at
the local time 12:02, and E2, timestamped at the CH2 at the local time 12:01. From
these two events, we could conclude that E2 happened before event E1. However,
after converting the local times at the Actor node, it is revealed that E1 happened
before E2, as shown in Table 10.4.

Table 10.3 Table with phase offsets

CH1 CH2 ... CHn

CH1 – −2 1
CH2 2 – 3
.
.
. –

CHn −1 −3 –

Table 10.4 Table with local times and converted times
CH Local time Time after conversion

CH1 12:02 12:00
CH2 12:01 12:01
CHn 12:03 12:02 (when comp. with CH1)

12:00 (when comp. with CH2)
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Table 10.5 Table with local times and phase offsets

Node Local time Phase offset

Actor 12:00
C H1 12:02 +2
C H2 11:59 −1
C Hn 12:03 +3

The method described above is sufficient when only relative synchronization is
required (for instance, for timing the propagation delay of sound [15]), i.e. it is
important to know which event occurred before or after a given event. For appli-
cations requiring absolute time, the method uses the version of RBS that employs
synchronization with an external reference. If the Actor is equipped with a GPS, the
CH’s times are then converted with regard to the Actor’s time. An example is shown
in Table 10.5.

If the Actor receives three events, E1 timestamped at the CH1 (at the local time
13:01), E2, timestamped at the CH2 (with the local time 13:01) and E3 timestamped
at the CH3 (with the local time 13:00), then after conversion the times will be as
follows: E1 12:59; E2 13:00 and E3 12:57. This way, the receivers of the RBS sync
pulses are synchronized to an external time scale.

In the approach, cluster nodes and free nodes are synchronized by means of RBS
synchronization technique. The synchronization pulses and replies are piggybacked
on the message exchange necessary in the temporal event ordering and underlying
routing algorithms. Thus, message exchange that is necessary for synchronizing the
network is significantly reduced.

10.4.3 Comparison of Features of the Time Synchronization
Algorithms

As seen above, the delay of a packet over a wireless link is highly affected by the
Send Time, Access Time, and Receive Time (shown in Fig. 10.6). The traditional
synchronization algorithms based on sender–receiver mode of time synchroniza-
tion, such as RTS [34], in which a receiver node is synchronized with a sender node
in WSNs, suffer from the uncertainty of these components of delay. The receiver–
receiver-based synchronization technique such as RBS [14], on the other hand,
minimizes the uncertainty of the delay by eliminating the Send Time and Access
Time components from the total packet delay. This happens due to the fact that
these components of delay are the same for all the receivers of the packet. The
algorithms employing the RBS method, such as Multi-Hop Time Synchronization
[14] and SCT [5], are thus able to decrease the synchronization error. The reference
[14] also discusses the possibility of further reducing the total delay of a packet if it
is timestamped at the low level in the receiver node host’s operating system kernel.
Therefore, the Receive Time will not include the overhead of system calls, context
switches, etc.
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Table 10.6 Comparison of features of the discussed algorithms on time synchronization

Algorithm Sender–receiver Receiver–
receiver

Tunable

Multi-Hop RBS *
TPSN *
FTSP *
SCT * * *

Another approach to the task of reducing the components of delay are fol-
lowed by the synchronization protocols TPSN [13, 27] that proposed to timestamp
messages at the MAC layer at both the sender’s and receiver’s sides. This way,
delay variability is decreased, and consequently, the message delay uncertainty is
decreased.

The SCT approach presents a hybrid solution to synchronization in WSANs,
where both receiver–receiver (RBS) and sender–receiver (RTS) modes of synchro-
nization are employed as discussed above. The algorithm follows the directions,
identified in reference [11], about designing tunable synchronization algorithms.
The synchronization techniques used in the method are chosen according to the
communication type of the underlying event ordering and routing algorithms (for
instance, as part of the event ordering algorithm, the Actor node broadcasts a tempo-
ral acknowledgment request, which in this method is piggybacked with the synchro-
nization pulse to synchronize the cluster head nodes with each other by means of the
RBS). This approach results in an overall lower overhead of time synchronization.
A comparison of features of the algorithms is presented in Table 10.6.

10.5 Summary

In this chapter, we presented an overview of the algorithms concerning the spatio-
temporal context in WSNs in three areas: node localization, temporal event ordering
and time synchronization.

The localization algorithms for WSNs discussed in this chapter are more pre-
cise when not only connectivity information for localization purposes but also the
ranging techniques are used. However, the overhead is thus increased as well. For
DV-hop-based algorithms, reducing the communication cost is critical in order to
resolve the scalability issue. The iterative algorithms attempt to increase the preci-
sion of node localization, by employing a refinement stage, after the initial position
estimates are obtained by the nodes.

While some of the temporal event ordering algorithms for WSNs overviewed
in this chapter suffered from the non-determinism of delay, the other algorithms
have overcome this problem. In the more recent algorithms, in order to reduce com-
munication cost, the necessary control messages (that ensure there are no straggler
messages in the network before the Sink orders events) are sent by the nodes after a
request from the Sink is received and not periodically, as it was done in the earlier
algorithms.
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The synchronization algorithms for WSNs overviewed in this chapter aimed at
reducing various components of delay. While the sender–receiver-based synchro-
nization technique suffers from the uncertainty of delay, the receiver–receiver-based
synchronization technique achieves a smaller synchronization error by eliminating
some of the components of delay noted above. MAC timestamping was used by
some of the discussed algorithms in order to reduce the delay introduced by the
MAC layer at the sender’s and receiver’s sides. Another direction of synchroniza-
tion algorithms are tunable algorithms, which aim at selecting the synchronization
techniques suitable for the communication mode of the underlying algorithms (such
as a routing algorithm, for instance) and using piggybacking for synchronization
pulses and replies. This results in a reduced communication overhead of time syn-
chronization.

To conclude, with an ultimate goal of making WSNs “intelligent”, it is necessary
to take into account the context of the sensed events. A consideration of the spatio-
temporal context in WSNs enables the building of a foundation for context-aware
systems. Then, the concept of context can be extended past the limits of space and
time.
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Chapter 11
Coordination Problems in Ad Hoc Radio
Networks

Dariusz R. Kowalski

Abstract In this chapter we consider coordination problems in the model of wire-
less communication called ad hoc radio network. This model evolved from a
multiple-access channel, which was introduced as a communication model for
single-hop LANs, such as Ethernet. In radio networks, communication is assumed
to be in (synchronous) slots, and an interference of two or more transmission signals
received by a node results in a failure of delivering any of the colliding messages
to this node. In ad hoc setting nodes are not aware, or have very limited knowl-
edge, of the topology of the system, including the underlying network or distri-
bution of active stations. Moreover, their local clocks may often show different
readings. We consider several coordination problems in the context of ad hoc radio
networks with no a priori given clock synchronization, such as waking up of sleep-
ing nodes, unifying local clock settings, electing a leader, and mutual exclusion. We
present the state of the art in these areas and suggest a few perspective research
directions.

11.1 Introduction

It is a well-known fact that efficient wireless communication is endangered by vari-
ous physical constraints (such as signal attenuation, reflection, and interference), by
the impact of mobility of devices, by malicious attacks, and by many other factors.
One of the ways of overcoming the impact of such obstacles, often unpredictable, is
to impose additional coordination mechanisms for communication and computing
in wireless environment. This chapter presents several examples of coordination
and control problems, together with existing solutions, described and analyzed in
the model of ad hoc radio networks.
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Fig. 11.1 Examples of three different feedbacks provided to a node in a transmission round.
Left-side scenario: no in-neighbor transmits and the middle node hears nothing (background noise);
Middle-side scenario: exactly one in-neighbor transmits and the middle node successfully receives
the message transmitted by the in-neighbor; Right-side scenario: two in-neighbors transmit simul-
taneously and the middle node hears collision (signal interference)

11.1.1 Model and Problems

In radio networks, processing units, called stations or nodes, communicate by trans-
mitting and receiving messages to/from their neighborhoods. Communication has a
property that multiple messages arriving at the same time to a node interfere with
one another and none of them can be successfully received by this node. Radio net-
work is modeled as a directed strongly connected graph G = (V, E), with n = |V |
nodes. We assume V = [1 . . . n] = [n]. Each station is equipped with a capability
to transmit a message and to receive a message or other feedback resulting from
simultaneous transmissions of other nodes. An edge (v,w) in graph G models the
property that node w is in transmission range of node v, i.e., a message sent by node
v can reach node w. A message sent by node v can be heard by, or successfully
delivered to, node w if no other in-neighbor of node w, except v, is transmitting at
the same round; if more than one neighbor transmits then an interference, also called
a collision, is heard (cf. Fig. 11.1). If a node is equipped with a device distinguishing
between background noise, also called a silence (i.e., when no neighbor transmits),
and collision, then we call it a node with collision detection; otherwise it is a node
without collision detection. In this work we focus on networks where all nodes do
not have collision detection capability (though, as we mention later, some work has
also been done in the alternative model where all nodes are with collision detection).

Size n is the only network parameter which can be a part of the input for protocols
we consider. Apart from it, each node knows only its own distinct integer identified
from [n]. We denote by D the maximum directed distance between a pair of nodes
(i.e., the diameter), and by Δ we denote the maximum in-degree of a node.

11.1.1.1 Coordination Problems

In this work we survey solutions for several coordination problems. We start with
the wake-up problem, in which the goal is to activate all nodes in the network. In the
beginning, at least one node is active, while activation of the other nodes—initially
sleeping—may happen either arbitrarily or by receiving a message from the other
active node. Sleeping nodes do not perform any action (they neither do any local
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computation nor transmit). Arbitrary activation is scheduled by some function σ ,
called a shift function or an activation function, from the set of nodes to non-negative
integers such that σv = 0 for at least one node v. This function is unknown to the
nodes, in the sense that it is not provided to the node as a part of the input.

The other two coordination problems considered in this work are leader election
and clock synchronization. In the leader election problem, we want to designate one
node as a leader and to announce its identity to all nodes in the network. In the clock
synchronization problem, upon the completion of the protocol, all nodes must have
the same local clock setting.

All these problems—fundamental from the perspective of network communica-
tion and distributed computing—have been studied in the last decades in various
different environments. They are all examples of one-instance coordination prob-
lems, i.e., they have to reach specified level of coordination only once. We also
define and study a dynamic mutual exclusion problem—an example of “long-live”
coordination problems in which requests for exclusive access to the channel arrive in
a distributed and online fashion and must be accommodated by a distributed protocol
run by the stations (see Sect. 11.5).

11.1.1.2 Complexity Measures

In this chapter we study time complexity of coordination problems, defined as the
number of rounds counted from the first round when some station starts execut-
ing the protocol until the task is finished. Formal definition of the completion time
depends on the particular coordination task. For the purpose of dynamic coordi-
nation problems, such as dynamic mutual exclusion, we will later introduce more
suitable measure called makespan (see Sect. 11.5).

11.1.1.3 Assumptions and Notation

To avoid rounding, we assume that n is a power of 2. The notation log x denotes the
logarithm of x to the base 2.

11.1.2 Results

We start (Sect. 11.2) with presenting the best up-to-date algorithms for determin-
istic and randomized wake-up problem on single-hop networks; they are based on
the results developed in [9, 14, 15, 20, 38]. In Sect. 11.3 we provide extensions
of these protocols to multi-hop networks, based on the result from [14, 20]. The
solutions of clock synchronization and leader election can be found in Sect. 11.4;
they are based on the results from [14, 20]. Mutual exclusion problem is formally
defined and analyzed in Sect. 11.5, based on the results from [9, 25]. Section 11.6
contains final remarks and states several perspective research directions. Below we
give a summary of results concerning the considered problems and other related
coordination tasks.
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11.1.2.1 Wake-Up Problem and Radio Synchronizers

Wake-up protocols were first considered for the multiple-access channel by Gasie-
niec et al. [30]. Such networks are also called single-hop radio networks and are
modeled by complete directed graphs (note that for this network topology wake-up,
leader election and synchronization are equivalent). One of the results is a deter-
ministic protocol accomplishing wake-up in O(n log2 n) rounds. The proof of this
fact was existential. Randomized wake-up protocols for the multiple-access channel
were studied by Jurdzinski and Stachowiak [38]. A generalization of the wake-up
problem for multi-hop networks was first studied by Chrobak et al. [20]. They
introduced the notion of radio synchronizer—a binary array of n rows with the
property that for any admissible row shift1 there is a column with exactly one entry
1—and also developed leader election and synchronization protocols. In particu-
lar, they showed that there are (n, k)-synchronizers of length O(k2 log n) and used
them to solve wake-up problem in multi-hop networks in O(n5/3 log n) rounds.
Generic transformations of wake-up protocols into leader election and synchro-
nization algorithms shown in [20] add a logarithmic factor to the time complexity.
Chlebus and Kowalski [15] introduced the notion of universal radio synchronizers
to improve synchronization algorithms. They showed that for each n there is an
(n, f )-universal synchronizer with delay f (n, k) upper bounded by the function
O
(
k min

{
k,

√
n
}

log n
)
. The fastest known deterministic wake-up protocol, given

by Chlebus et al. [14], is based on improved upper bound O(k log k log n) on delay
function f (n, k) in universal synchronizers. The resulting existential wake-up solu-
tion for multi-hop networks works in time O(min{n, DΔ} logΔ log n).

Clementi et al. [22] showed that slightly simpler structures, called (n, k)-
selective-families, have to be of a size Ω(k log(n/k)). (More precisely, selective
families have the properties of radio synchronizers for the special case where all
rows are shifted by 0.) It follows that (n, k)-synchronizers have to be of length
Ω(k log(n/k)).

A construction of (n, n)-synchronizers of length O(n1+ε), for any con-
stant ε > 0, in a quasi-polynomial time O(2polylog n) was given by Indyk [36].
Chlebus and Kowalski [15] specified explicit (n, k)-synchronizers of length
O(k2 polylog n). Prior to this work, there was no known non-trivial explicit con-
struction of universal synchronizers. Chlebus et al. [14] constructed explicit (n, f )-
universal synchronizers with f (n, k) of order O(k2 polylog n). This was the first
explicit construction of universal synchronizers. The resulting explicit solution for
multi-hop networks works in time O(min{n, DΔ}Δ polylog n). This is the first
explicit sub-quadratic wake-up solution for Δ = o(n/ polylog n).

Two-way synchronizers were introduced by Chlebus et al. [17] under the name
of radio transmitters. The authors showed that there exists n-two-way synchronizers
of length O(n log2 n) and gave a polynomial-time construction of n-two-way syn-

1 Here by “admissible row shift” we mean a specified class of row shifts; in this sense, the actual
definition of a synchronizer depends on a class of row shifts that we allow in the definition; more
details and a few examples of different classes of synchronizers can be found in Sect. 11.2.1.
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chronizers of length O(n2 log n). Two-way synchronizers were applied as a tool for
design-efficient dynamic acknowledgment-based broadcast protocols on a multiple-
access channel (see also Sect. 11.1.2.4).

A slightly different problem of wake-up of anonymous undirected radio network
was considered by Pelc [48]. In this problem, there is a distinguished node initial-
izing the wake-up process, while all other nodes are indistinguishable and without
any additional knowledge. It was shown that this problem is feasible if the commu-
nication is scheduled in synchronous slots, while it is not feasible if transmissions
can be delayed up to some factor t > 1 in the worst-case manner.

11.1.2.2 Leader Election, Clock Synchronization, and Other Related
Problems

Most of the solutions for these problems developed in the context or radio networks
assumed that all nodes are awake from the beginning. For deterministic leader elec-
tion on the multiple-access channel without collision detection, matching bounds
on time O(n log n) and Ω(n log n) follow from [22, 44], with the upper bound
being non-constructive. A constructive upper bound O(n polylog (n)) follows from
[36]. For the expected time of randomized algorithms without collision detection,
the same matching bounds are known: Ω(log n) follows from [45] and O(log n)
from [6]. Leader election problem was extensively studied in the model with col-
lision detection. For the time of deterministic algorithms with collision detection,
matching bounds are also known:Ω(log n) follows from [31], and O(log n) follows
from [11, 34, 53]. Randomized leader election can also be done faster than in the
model without collision detection: matching boundsΩ(log log n) (for fair protocols)
and O(log log n) were proved in [54]. Further references can be found in [37, 47].
Extensions to multi-hop radio networks have also been considered, cf. [21].

The existing leader election and synchronization protocols in our model have
time performance slower than wake-up by an additional factor of O(log n), due to
the generic transformation given in [20].

Farach-Colton and Mosteiro [28] studied so-called group therapy problem in
Weak Sensor Model, which is a model with geometric topologies and uncoordi-
nated wake-ups. Group therapy problem is weaker than the synchronization prob-
lem, it only assumes that each node receives successfully a message from one of its
neighbors. The lower bound Ω(Δ+ logΔ log(1/ε)) for the time complexity estab-
lished in [28], where ε is the probability of error, holds as well for synchronization
problem.

11.1.2.3 Wake-Up in the Channel with Many Frequencies

Alonso et al. [3] studied static wake-up problem in the context of node discovery in
ad hoc networks. They considered randomized protocols with fixed probabilities of
transmission in each frequency. They developed formulas for expected time com-
plexity of node discovery, expressed in terms of the fixed probabilistic distribution.
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Dolev et al. [26] considered wake-up problem in the channel with many frequen-
cies; some of them could be temporarily disrupted. Their model of radio network
consists of F disjoint narrowband communication frequencies, where n ≥ F . Each
round, every node selects a single frequency on which to participate, where partici-
pation means either transmitting or receiving. An interference adversary was consid-
ered that could disrupt up to t < F frequencies per round, where t is a known upper
bound. By disrupting a frequency, the adversary prevents any node from receiving
a message on that frequency. A node receives a message on a frequency f only
if exactly one node broadcasts on f , and the adversary does not disrupt f . The
adversary chooses its behavior for round r based only on knowledge of the protocol
being executed and the completed execution up to the end of round r − 1. The
authors proved that every regular protocol, i.e., a protocol in which devices behave
in a uniform fashion, achieving wake-up with probability at least 1 − 1/n requires

Ω
(

log2 n
(F−t) log log n + Ft

F−t log n
)

rounds. They also gave the Trapdoor Protocol that

almost matches the lower bound, i.e., uses O
(

log2 n
(F−t) log log n + Ft

F−t log n
)

rounds

with high probability. The modified version of this protocol was shown to adapt
to the number of available frequencies if all stations start in the same time. More
precisely, in such scenarios it needs only O(t ′ log3 n) rounds to synchronize if at
most t ′ ≤ t frequencies can be disrupted at a time and all participating stations start
in the same round (t ′ is not a part of the input), and O(F log3 n) rounds otherwise;
all these results hold with high probability.

11.1.2.4 Dynamic Control Problems and Dynamic Broadcast

Kowalski [41] and Bender et al. [8] were the first who considered communica-
tion in the multiple-access channel when packets are injected into the system by
an adversary. They followed different approaches. In [41], deterministic protocols
based on acknowledgment are studied under the assumption that there are no more
than k active stations in a round. Bender et al. [8] studied randomized backoff-
type protocols under queue-free adversarial queuing setting. These two early works
have initiated two slightly different research directions: dynamic mutual exclusion
(control-type problem) and dynamic broadcasting (communication-type problem).

Czyzowicz et al. [25] studied deterministic solutions for mutual exclusion
problem in the multiple-access channel. They developed an algorithm achieving
makespan O(n log2 n), which, in view of the lower boundΩ(n), is close to optimal.
They also studied the impact of the knowledge of parameter n, global clock, and
collision detection on feasibility and efficiency of mutual exclusion. In particular,
the authors proved that with none of those three characteristics mutual exclusion
is infeasible. On the side of efficiency, they presented an optimal—in terms of the
makespan measure—O(log n) algorithm in the model with collision detection.

In [9] randomized solutions for the mutual exclusion problem and its “almost-
always” version, called ε-exclusion, on the multiple-access channel were consid-
ered. The main focus was in fairness, unlike the previous paper [25] where only no-
deadlock property was guaranteed. The authors proved an exponential gap between
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solutions for the classic mutual exclusion and ε-exclusion. More precisely, it was
shown that the expected makespan of algorithms solving the mutual exclusion prob-
lem isΩ(n), while there is an algorithm with expected makespan O(log n · log 1/ε).
They also presented a generic transformation of a mutual exclusion algorithm with
no-deadlock property into the one satisfying stronger no-lockout condition. This
method applied to the deterministic algorithms from [25] produces efficient deter-
ministic solutions satisfying no-lockout property. Similar to the previous paper [25],
other model settings were also considered in this context.

The problem of broadcasting dynamically injected packets on the multiple-access
channel also involves several coordination aspects. The main properties to be guar-
anteed are stability (bounded number of packets in the system) and fairness (each
packet is eventually considered). Different variants of these objectives have been
considered, depending on the model of packet injection. Early work in this direction
included developing randomized protocols such as Aloha [1] and (binary) exponen-
tial backoff [46]. The analysis of broadcasting process focused on scenarios when
packets are injected subject to statistical constraints; see [29] for an overview of
early research and [35, 51] for more recent results. Bender et al. [8] studied stability
of randomized backoff on the multiple-access channel in the adversarial queuing
model.2 In this setting, packet injection is modeled by adversaries and does not
involve any stochastic component in the process of packet generation. An adversary
is limited by the rate of injecting packets and by the burstiness of traffic. Chlebus
et al. [17] studied deterministic protocols for broadcasting dynamically injected
packets on the multiple-access channel. They considered the queuing model, in
which packets are injected into stations communicating via the channel, unlike
in [8], where packets were injected directly to the system as “independent stations”
(queue-free model).

11.1.2.5 Related Research Directions

General radio networks were intensely studied since the seminal paper [15] ana-
lyzing broadcasting in this model. Many different communication tasks have been
considered, such as broadcasting (cf. [2, 6, 13, 22, 24, 43, 45, 50]), gossiping (all-to-
all, cf. [24]), many-to-many (cf. [7, 16]), in various different settings, though most
of them assumed fully synchronized environment (so-called static case). Some of
the algorithmic techniques developed in these works have been later upgraded to
the model without clock synchronization and for the online setting.

Communication with possible failures (such as crashes, Byzantine faults, prob-
abilistic failures) has also been studied in the context of radio networks, see,
e.g., [23, 27, 40, 49]. In [19] feasibility and complexity of agreement in a multiple-
access channel with synchronized starting points and crash failures were studied in
the context of different collision detectors—the tools introduced in that work by

2 Adversarial Queuing Theory (AQT) was introduced by Borodin et al. [10] in the context of
store-and-forward networks.
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the analogy to classic failure detectors. Asynchronous centralized communication
in radio networks was studied by Chlebus and Rokicki [18].

11.2 Wake-Up on a Multiple-Access Channel

Coordination problems are not easily solved even in a relatively simple model of
single-hop networks. This section presents the best known deterministic and ran-
domized solutions to the wake-up problem. Since it is not known how to con-
struct efficiently such deterministic solutions, we conclude by giving an example
of polynomial-time construction of a deterministic wake-up algorithm with slightly
worse properties.

11.2.1 Deterministic Synchronization

A deterministic protocol waking up a single-hop network can be viewed as a binary
array satisfying specific properties. In the protocol associated with such an array,
node v simply follows the pattern defined by row v of the array: it transmits in
every round corresponding to the position with entry 1 in this row and only listens
in the remaining rounds. A single row in this array is also called a transmission
sequence. The number of columns in this structure, also called its length, is the
upper bound on the time complexity of the corresponding wake-up protocol. Such
arrays are called radio synchronizers, or synchronizers for short. We present three
types of synchronizers: (n, k)-synchronizers, (n, f )-universal synchronizers, and
n-two-way synchronizers, where k ≤ n is a positive integer and f is a function from
[n] to positive integers. We also argue about existence of efficient synchronizers of
these three types, by using a randomized construction and applying the probabilistic
argument. The reason for considering several different properties of wake-up arrays
is their possible applicability for multi-hop networks and for other coordination-type
problems.

We will look at a collection of transmission sequences as a binary array of n
rows and m columns, where rows correspond to stations and columns correspond
to communication rounds. A shift function σ is a function from the set of nodes
to non-negative integers,3 corresponding to different wake-up times of nodes in the
channel. We say that a position, or a communication round, t is successful, if there is
exactly one transmitting active node on the channel in round t (i.e., there is exactly
one node v among those shifted by less than t which has entry 1 on the position
t − σv).

3 In case of strong synchronization, e.g., for two-way synchronizers, σ may be subject to slightly
different constraints.
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11.2.1.1 Synchronizers and Universal Synchronizers

The basic synchronizers are defined as follows:

Synchronizers:
A binary n × m array S is a (n, k)-synchronizer, for given integer parameters n,m > 0 and
integer 1 ≤ k ≤ n, if for any shift function σ and any set K of k rows, with the property
that σK = minv∈K σv = 0, there is a successful position for K between positions 1 and m.

An example of a (4, 4)-synchronizer and its shift by function σ1 = 0, σ2 = σ3 =
2, σ4 = 3 is given in Fig. 11.2.

Synchronizers are structures defined to handle scenarios when the number of
competing stations is arbitrarily bounded by parameter k. To allow more flexibility,
the notion of synchronizers was generalized as follows.

Universal synchronizers:

A binary n ×m array S is a (n, f )-universal-radio-synchronizer, for given integer parame-
ters n,m > 0 and integer function f ∈ ([n] × [n])[m], if

• f (n, n) = m, and
• for any shift function σ and any set L of rows, with the property that σL = minv∈L σv =

0, there is a successful position for L between positions 1 and f (n, |L|).

We call function f a delay function. Our goal is to show existence of a universal
synchronizer with relatively small delay function. The proof is by using the proba-
bilistic method.

Random universal synchronizers We start with specifying length m and delay func-
tion f for which we define a random universal synchronizer. Let c ≥ 4 be a constant
to be determined later. Define m(	) = c2		 log n, for every 1 ≤ 	 ≤ log n. Let
m = ∑	≤log n m(	). We define f (n, k) by

∑
	≤�log k� m(	) for k > 1 and f (1) by

m(1). Observe that f (n, k) = O(k log k log n). It also follows that for each j , where
1 ≤ j ≤ m, there is a unique positive integer κ j ≤ log n satisfying the inequalities

Fig. 11.2 Example of (4, 4)-synchronizer of length 6. After applying an arbitrary non-negative
shift σ to the set of rows (in this case σ1 = 0, σ2 = σ3 = 2, σ4 = 3), there must be a column
(number four in this example) with exactly one entry
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∑
	<κ j

m(	) < j ≤∑	≤κ j
m(	) (here, in order to avoid cases in the definition, we

assume that
∑

	<1 m(	) = 0).
Consider a random n × m array S = [S(v, j)], where the binary-valued random

variables S(v, j) are all independent, for 1 ≤ v ≤ n and 1 ≤ j ≤ m, and each
random variable S(v, j) is defined to be equal to 1 with probability 1/(κ j 2κ j ).

Theorem 1 (Chlebus et al. [14]) The array S is an (n, f )-universal synchronizer,
for f (n, k) = O(k log k log n), with the probability of at least 1 − 1/n, for a suffi-
ciently large constant c ≥ 4.

Proof Fix a positive integer n. We will use shorter notation f (k) for f (n, k), since
n is fixed throughout the proof. For a position t , let Aσ (t) be the set of rows σ -active
at t ; we write A(t) when σ is clear from context. We partition shift functions into n
classes in such a way that σ belongs to class Ci if i is the smallest number such that
the inequality |Aσ ( f (i))| ≤ i holds. These classes are well defined because all rows
are active at position m by the assumption that σv < m = f (n), for 1 ≤ v ≤ n.

Our goal is to show that for a shift function σ in class Ci , there is a successful
position by the position f (i) in synchronizer S with rows shifted by σ . To prove
this, it is sufficient to consider only a partial function, denoted by σ | f (i), defined by
the values of σ at rows v such that σv < f (i).

We first consider shift functions in class C1. By definition of the class, there is
only one row v active on positions {1, . . . , 2c log n}. The probability that all these
positions in row v are unsuccessful is at most 2−2c log n ≤ e−c log n . Since there
are at most n possible rows v to be considered, the probability that there is a shift
function in class C1 with all positions t ≤ f (1) = 2c log n unsuccessful is at most
eln n · e−c log n ≤ e−2 ln n = n−2, since c ≥ 4.

Next, consider the general case of shift functions in class Ck , for 1 < k ≤ n. Let
us fix a shift function σ in this class. By definition, number k is the smallest positive
integer such that |Aσ ( f (k))| ≤ k holds. To simplify notation in the remainder of
the proof, we denote set Aσ ( f (k)) by K . For row v ∈ K and position t ≤ f (k), let
p(v, t) denote the probability that there is 1 in shifted row v at position t , i.e., the
probability that S(v, t − σv) = 1, with p(v, t) set to 0 for every t ≤ σv . Let μK (t)
denote

∑
v∈K p(v, t).

We call a position t ≤ f (k) balanced if the inequalities 1/(4κt ) ≤ μK (t) ≤ 4
hold. Let κ stand for κ f (k). Observe that κ ≥ κt and m(κ) = f (k) − f (k/2). We
show that a balanced position is a successful position, with probability Ω(1/κ).

Lemma 1 (Chlebus et al. [14]) A balanced position t ≤ f (k) is successful with
probability at least 1

45κ
.

Proof The probability that position t ≤ f (k) is successful can be estimated from
above as follows:

∑

v∈K

p(v, t) ·
∏

w∈K ,w �=v
(1 − p(w, t)) ≥ μK (t) · 4−μK (t) ≥ 1

4κ
4−4 = 1

45κ

since p(v, t) ≤ 1/2 for every v ∈ K . �
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In the following lemma we estimate the number of balanced positions in the
interval [ f (k/2)+ 1, f (k)].
Lemma 2 (Chlebus et al. [14]) There are at least m(κ)/2 balanced positions in the
interval [ f (k/2)+ 1, f (k)].
Proof We have |A( f (k/2))| > k/2 and A( f (k)) = K has k elements, since k is
the smallest integer i such that |A( f (i))| ≤ i . By changing the order of summation
we obtain

∑

t≤ f (k)

μK (t) =
∑

v∈K

∑

t≤ f (k)

pv(t)

For every v ∈ A( f (k)) we have

∑

t≤ f (k)

pv(t) ≤
∑

	≤κ
m(	) · 1

	2	
= cκ log n

Consequently, an estimate

∑

v∈K

∑

t≤ f (k)

pv(t) ≤ c|K |κ log n

holds, which implies

∑

t≤ f (k)

μK (t) ≤ ckκ log n

By the pigeonhole principle, there are at least 3 f (k)/4 positions t ≤ f (k) such that

μK (t) ≤ 4 · ckκ log n

f (k)
≤ 4

where the last inequality follows from the fact that f (k) ≥ m(κ) ≥ ckκ log n.
Consider the positions t such that f (k/2)+ 1 ≤ t ≤ f (k). Since

k/2 < |A(t)| ≤ k

and

pv(t) ≥ 1

κ2κ

we have that

μK (t) ≥ |A(t)| · 1

κ2κ
> (k/2) · 1

2kκ
= 1

4κ
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Now we put all these partial results together. Since

f (k)− f (k/2) = m(κ) ≥ f (k)/2

we obtain that at least

3 f (k)/4 − f (k/2) = f (k)− f (k/2)− f (k)/4 = m(κ)− f (k)/4 ≥ m(κ)/2

positions t in the interval [ f (k/2)+1, f (k)] satisfy inequality μK (t) ≤ 4, and con-
sequently at least m(κ)/2 positions in the interval [ f (k/2)+ 1, f (k)] are balanced.
This completes the proof of Lemma 2. �

We resume the main proof of Theorem 1. By Lemmas 1 and 2, the probability
that all balanced positions not bigger than f (k) are unsuccessful is at most

(
1 − 1

45κ

)m(κ)/2 ≤ e−(2c/46)2κ log n ≤ e−(2c/46)k log n

The above considerations were for a fixed shift σ from class Ck . We have to show
the existence of a successful position t ≤ f (k) for any shift σ in class Ck and later
for any class. In order to do it, we have to estimate the number of shift functions
that are pairwise “different” from the point of view of their behavior (and thus their
analysis). Note that we may skip from our consideration all rows shifted by σ by
more than f (k) and focus only on different configurations defined by shifts from
class Ck in positions {1, . . . , f (k)}. In particular, if two shifts in class Ck have the
same shift values for rows shifted by at most f (k), they observe the same behavior
by position f (k) and may be represented by the same configuration in positions
{1, . . . , f (k)}. Each different configuration defined by a shift from Ck in positions
{1, . . . , f (k)} is determined by its domain of k rows and an assignment of shift
values in the range from 0 to f (k) − 1 to them. It follows that there are at most(n

k

) · ( f (k))k ≤ ek ln(ne/k)+k ln f (k) different configurations defined by shifts from
class Ck in positions {1, . . . , f (k)}.

The probability that there exists a shift function σ from the class Ck such that
there is no successful position t ≤ f (k) in S shifted by σ is at most

ek ln(ne/k)+k ln f (k) · e−(2c/46)k log n ≤ e−2k ln n

for a sufficiently large constant c ≥ 4, since ln f (k) = O(log n).
Summing up all the probabilities for all classes, the probability of the event that

there is a shift function in some class Ck such that there is no successful position t ≤
g(k) in R is at most

∑n
k=1 e−2k ln n ≤ 1/n, for n > 1. This completes the proof of

Theorem 1. �
Deterministic universal synchronizers By applying probabilistic argument to
Theorem 1, we obtain the following existential result.
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Corollary 1 There exists a deterministic (n, f )-universal synchronizer for some
delay function f (n, k) = O(k log k log n).

11.2.1.2 Toward Stronger Synchronization: Two-Way Synchronizers

In case of (universal-) synchronizers, we restricted to shifts with non-negative values
and at least one row to be non-shifted. It modeled a scenario when there is a clear
“starting point” of wake-up execution. It may not be the case in general execu-
tions, therefore in this section we study executions without clear starting point, i.e.,
a shift function σ has integer values, not necessarily positive, as it was required for
(universal-) synchronizers. Our goal is to argue that there is a successful position in
a period of sufficient “activity” of stations/rows. A formal definition follows.

Consider a binary array S of n rows and m columns and an arbitrary shift function
σ of its rows (i.e., a function from the set of rows to integers). We say that a position
i ∈ {1, . . . ,m} is covered by a shifted row v in S if row v is shifted by at least i −m
and at most i − 1 positions, i.e., i − m ≤ σv ≤ i − 1. We say that the shift function
σ is proper when both conditions hold:

(i) the inequality −m + 1 ≤ σv ≤ m holds, for each row i , and
(ii) each position in {1, . . . ,m} is covered by at least one row in array S

shifted by σ .

Note that the above definition does not depend on the specification of the entries
of S, but only on its size. We call a position i ∈ {1, . . . ,m} in array S shifted by
σ successful if there is a row v in S such that shifted by σv row v has entry 1 at
position i while the other rows of S shifted by σ covering position i have entries 0
at position i .

Two-way synchronizers:
A binary n×m array S is a n-two-way synchronizer of length m, for given integer parameters
n,m > 0, if for any proper shift function σ there is a successful position in S shifted by σ
between positions 1 and m.

An example of a 4-two-way synchronizer and its shift by the function σ1 = −4,
σ2 = σ3 = −2, σ4 = −1 is given in Fig. 11.3.

Similar to the case of universal synchronizers, existence of “good” two-way syn-
chronizers can be shown using the probabilistic method. We define a random n ×m
array S with m = cn log2 n, for a sufficiently large constant c > 0. Let S(v, i) = 1
with probability 1/n, independently over all choices of row v and column i . It can
be shown (cf. [17]) that S is a n-two-way synchronizer of length m with a positive
probability. Consequently, by the probabilistic argument, we obtain:

Theorem 2 (Chlebus et al. [17]) There exists a n-two-way synchronizer of length
O(n log2 n), for any positive integer n.
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Fig. 11.3 Example of 4-two-way synchronizer of length m. After applying an arbitrary shift σ to
the set of rows (in this case σ1 = −4, σ2 = σ3 = −2, σ4 = −1), there must be a column (number
four in our case) with exactly one entry 1 among the columns with number between 1 and m

11.2.2 Randomized Synchronization

Randomized wake-up algorithms appear to be much more efficient than the deter-
ministic ones. The following algorithm IncreaseFromSquare [38] is an example
of efficient application of move-on paradigm in the context of wake-up problem.

Algorithm 1 IncreaseFromSquare
k ← �log32/31(1/ε)�
y ← π2/6
fv ← �log(2y(v + 1)2)�
pv ← 1/2 fv

Upon activation, node v performs the following while pv ≤ 1
2 :

1. if pv ≤ 1/2 then in each of the next k rounds node v transmits with probability pv , indepen-
dently

2. pv ← 2pv

We show that algorithm IncreaseFromSquare [38] solves even stronger T -
persistent selection problem [9], for some function T : N ∪ {0} → N. This stronger
property can be particularly useful in applications to other coordination type of
problems (e.g., dynamic mutual exclusion [9]).

T -persistent selection problem:

We are given a function T : N ∪ {0} → N. A T -persistent selection problem is defined as
follows. Arbitrary nodes are activated by an adversary in arbitrary rounds. Let tv denote the
round in which node v is started. Any solution for the T -persistent selection problem has to
guarantee the following two properties:

1. Node v is allowed to transmit only in rounds tv, tv + 1, . . . , tv + T (v)− 1;
2. A successful transmission occurs in some round t satisfying the following condition: for

any node v activated before round t , it holds that t ≤ tv + T (v)− 1.
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In the analysis of algorithm IncreaseFromSquare the following technical fact is
used. It can be proved (cf. [38]) using standard calculus.

Lemma 3 (Jurdzinski and Stachowiak [38]) We are given k numbers p1, p2, . . . , pk ∈(
0, 1

2

]
such that 1

2 ≤∑k
i=1 pi ≤ 3/2. Then

k∑

i=1

pi

k∏

j=1
j �=i

(1 − p j ) ≥ 31
32

Theorem 3 (Bienkowski et al. [9] and Jurdzinski and Stachowiak [38]) For any
0 < ε < 1, algorithm IncreaseFromSquare solves the T -persistent selection
problem for T (v) = Θ(log v · log(1/ε)), with probability at least 1 − ε.

Proof Let T (v) = k · fv . Observe that T (v) = Θ(log v · log(1/ε)). Note that node
v executes the algorithm only for T (v) consecutive rounds.

Let μ(t) denote the sum, over all nodes, of transmission probabilities pv taken in
round t . Consider the first round, say t1, in which at least one of the nodes is active.
We have

μ(t1) <
∞∑

v=0

1

2 fv
=

∞∑

v=0

1

2�log(2y·(v+1)2)� ≤
∞∑

v=1

1

2y
· 1

v2
= 1

2

It follows from the specification of the algorithm that μ(·) is monotonically non-
decreasing in time. Let t2 be the last round t with the property μ(t) < 1/2. Since
transmission probabilities may only double every k rounds until reaching the thresh-
old value 1

2 , we get that 1/2 ≤ μ(t2 + 1) < 1. Observe that the transmission
probabilities are always powers of 1/2, thus, at round t2, if node v is active then
pv ≤ 1/4. In particular, it follows that no node becomes inactive before round t2.

Now we consider a time period R consisting of rounds t2 + 1, t2 + 2, . . . , t2 + k.
To finish the proof, we need to show that both conditions in the definition of T -
persistent selection are satisfied. Indeed,

1. Nodes that were active at round t2 are still active at least till round t2 + k, since
none of them reached the probability threshold 1/2 by round t2, and thus must
continue for at least k more rounds.

2. In every round t of period R we have 1/2 ≤ μ(t) ≤ 3/2. This is because of the
following four facts: First, 1/4 ≤ μ(t2) < 1/2. Second, μ(t2 + 1) ≥ 1/2. Third,
each station active in round t2 changes (i.e., doubles) its probability only once in
a period of k contiguous rounds, in particular, in R, and thus these stations may
only double their contribution to μ(t) compared to μ(t2), for any t ∈ R. Fourth,
the sum of transmission probabilities of nodes which are activated during period
R is smaller than

∑∞
v=0 1/2 fv ≤ 1/2. By Lemma 3, the probability that there is

no successful transmission during the whole period R is at most (31/32)k ≤ ε.

�
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Note that algorithm IncreaseFromSquare does not need n as an input, and
therefore Theorem 3 holds even if n is unknown to the nodes.

11.2.3 Explicit Constructions

In this section we show how to construct (n, k)-synchronizer with length
O(k2 polylog n) in time polynomial in n. This construction was given by Chle-
bus and Kowalski [15]. Based on their construction, Chlebus et al. [14] devel-
oped explicit (n, f )-universal-synchronizers with delay function f (n, k) =
O(k2 polylog n).

11.2.3.1 Construction of (n, k)-Synchronizers

Assume that number n is sufficiently large and that k divides n. We construct
a (n, k)-synchronizer S. Let P be a set of k different primes between k log n
and 3k log n. Set P is well defined by the Chebyshev Theorem, as given in [5].
Consider a prime p in P . We denote by πp a binary sequence of length 3k2 log n
such that πp( j) = 1, when p divides j , and πp( j) = 0 otherwise. Let π̂ denote a
sequence of zeros of length 3k2 log n. Let h be a function from [n]×[d] to P , where
parameter d is a positive integer, to be determined later, depending on numbers k
and n and on applications. For v ∈ [n], define row S(v) of S to be a concatenation
of schedules of the form 〈πh(v,1), π̂ , πh(v,2), π̂ , . . . , πh(v,d), π̂ , σ

2d〉, where
π̂2d denotes a sequence of zeros of length 6dk2 log n (i.e., sequence π̂ concatenated
6d times). In order to assure synchronization property of the constructed array S,
function h must have specific properties. We show that selective functions are good
for this purpose.

Selective functions:
Function h : [n] × [d] → P is said to be (n, k, d)-selective when for every set W ⊆ [n] of
a size at most k, there is a number p in P such that set h−1(p) ∩ (W × [d]) is a singleton.

Lemma 4 (Chlebus et al. [15]) If function h is (n, k, d)-selective, then the con-
structed array S is a (n, k)-synchronizer of length m(n, k) = O(dk2 log n).

Indyk [36] gave an explicit (n, k, d)-selective function for d = polylog n. His
construction relies on explicit (n, k′, d ′, 1/2 − ε)-dispersers developed by Ta-Shma
et al. [52], for some parameter d ′ polylogarithmic in n and for a constant 0 < ε <

1/2. Using this explicit selective function and Lemma 4, the main result can be
shown:

Theorem 4 (Chlebus et al. [15]) A family of (n, k)-synchronizers of length
m(n, k) = O(k2polylogn), where 1 ≤ k ≤ n are integers, can be constructed
in time polynomial in n.
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11.3 Wake-Up in Multi-hop Radio Networks

Wake-up solutions described in Sect. 11.2 in the context of a multiple-access chan-
nel can be used as a tool in a design of efficient solutions for multi-hop radio net-
works. The key idea of such extensions is based on the concept of path graphs,
i.e., subgraphs consisting of a path and some specific edges incoming to this path
(cf. [42]). This idea occurs in design and analysis of many multi-hop protocols,
which use single-hop protocols as a tool, cf. [20, 42]. Recall that D denotes the
diameter of the directed multi-hop network, and Δ is its maximum in-degree.

11.3.1 Deterministic Wake-Up

The wake-up problem can be solved by a deterministic algorithm in time
O(n polylog n), by using universal synchronizers shown to exist. When explic-
itly constructed universal synchronizers are applied, the wake-up time increases to
O(nΔ polylog n). Recall that universal synchronizers were developed and used in
the context of single-hop networks, cf. Sect. 11.2.

11.3.1.1 Wake-Up Protocol Based on Universal Synchronizer

Let S be a (n, f )-universal synchronizer, where rows correspond to nodes. Each
node v starts executing its sequence S(v), being the vth row in S, immediately after
being activated (spontaneously or by receiving a message). Recall that executing a
transmission sequence means that node v performs a transmission in the i th round
exactly when the i th bit in S(v) is a 1. We refer to this protocol as CK.

For numbers n, D,Δ and a delay function f of a (n, f )-universal synchronizer,
let β(n, D,Δ, f ) denote the supremum of the function

∑D
i=1 f (xi ), where integers

0 ≤ xi ≤ Δ, for 1 ≤ i ≤ D, satisfy an additional constraint
∑D

i=1 xi ≤ n. We show
that β is an upper bound for the wake-up time achieved by protocol CK.

Theorem 5 (Chlebus et al. [15]) Protocol CK based on (n, f )-universal synchro-
nizer wakes up a radio network of n nodes, diameter D, and maximum in-degree Δ
in β(n, D,Δ, f ) rounds.

Proof Let function σ determine the times of spontaneous wake-ups in the execution
of algorithm CK. Note that activation function σ is closely related to shift functions
considered in the context of single-hop networks, cf. Sect. 11.2. Let v0 be among
the nodes that become awaken spontaneously first.

In the analysis we use path graphs Pv , for every node v �= v0, defined as fol-
lows. The graph Pv contains some shortest path from v0 to v, together with all
in-neighbors of nodes on the path and the edges from them to nodes on the path.

For a node v �= v0, we distinguish a shortest path 〈v0, v1, . . . , vL = v〉 of
length L ≤ D in Pv and call it the main path of Pv . Let vi be a node on this
path. Let δ(vi ) denote the number of in-neighbors w of node vi in graph Pv with
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v1 v2 vi v = vLv0 vi+1 vL-1

Fig. 11.4 Path graph Pv and activation status in some round t .
〈
v0, v1, . . . , v j , . . . , vL = v

〉
is the

main path of Pv . Blue color denotes active nodes, while the white nodes are asleep; here vi is the
front node

the property that w neither follows vi on the main path nor is it joined to any node
following vi on the main path, in the sense of the order of indices.

For a round t , there is a unique node vi on the main path
〈
v0, v1, . . . , v j , . . . , vL

〉

= v with the following two properties:

(a) vi is not active in round t , but one of its in-neighbors in Pv is active in round t ,
(b) node v j is not active in round t and none of its in-neighbors in Pv is active in

round t , for every j > i .

We refer to the index i of this vi as the front value ψ(t) and to vi as the front node
in round t (cf. Fig. 11.4). Notice that a sequence of front values is non-decreasing
in any execution. The following fact describes the progress made on the main path
of Pv .

Fact 1 (Chlebus et al. [15]) If ψ(t) < L and δ(vψ(t)) = k, then ψ(t + f (k)) >
ψ(t).

Consider any node v and its graph Pv of L +1 nodes on the main path. It follows
from Fact 1 and from the definition of (n, f )-universal synchronizer that node v
becomes active by round

∑

1≤i≤L

f (δ(vi ))

Each node w in Pv contributes only once to the sum
∑L

i=1 δ(vi ), namely to this
term δ(vi ) where vi has the property that w is an in-neighbor of vi and w is not an
in-neighbor of a node vk for any k > i . Therefore, the inequality

∑

1≤i≤L

δ(vi ) ≤ n

holds. Applying the upper bound Δ on δ(vi ) we get
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L∑

i=1

f (δ(vi )) ≤ β(n, D,Δ, f )

which completes the proof of Theorem 5. �
Applying the existential and explicit constructions of (n, f )-universal synchro-

nizers given in [14] (see also Sects. 11.2.1 and 11.2.3) for functions f (n, k) being
O(k log k log n) and O(k2 polylog n), respectively, we get the following results.

Corollary 2 Protocol CK can be instantiated such that it solves the wake-up prob-
lem in O(min{n, DΔ} logΔ log n) rounds.

Corollary 3 Protocol CK can be explicitly instantiated such that it solves the wake-
up problem within time bound O(min{n, DΔ}Δ polylog n).

The estimate given in Corollary 2 is within a logarithmic factor away from
Ω(min{n log D, DΔ log(n/Δ)}), which is a lower bound on broadcasting given
in [22] that holds also for wake-up.

11.3.2 Randomized Wake-Up

We present a randomized wake-up solution for multi-hop networks that is based
on algorithm IncreaseFromSquare [38] presented in Sect. 11.2.2. More precisely,
each node starts running slightly modified version of IncreaseFromSquare algo-
rithm just after being awakened. There are two changes in the algorithm compared
to the single-hop version:

• instead of starting with its own id, it starts with n;
• it takes parameter ε/n as an error, so that the multi-hop solution could guarantee

correctness with probability at least 1 − ε.

We refer to this algorithm as MultihopIncreaseFromSquare, or MIFS for short.
Note that one could replace the IncreaseFromSquare component in MIFS by
another efficient wake-up solution for single-hop networks and hope to obtain an
efficient modification of the original MIFS.
Combining

• the path-graph methodology used in the analysis of deterministic wake-up proto-
cols in the proof of Theorem 5 and

• the fact that the progress along the main path between the first activated node and
a given node v is in time O(log n log(n/ε)) with probability at least 1 − ε/n,

we obtain the following result:

Theorem 6 (Chrobak et al. [20]) Let ε > 0, let G be a multi-hop radio network with
n nodes, and let σ be an arbitrary wake-up function. With probability at least 1− ε,
algorithm MIFS completes wake-up in network G under wake-up function σ in time
O(D log n log(n/ε)).
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Algorithm MIFS can be used to obtain a Las Vegas protocol with low expected
running time. The protocol has three stages. First, algorithm MIFS is run for ε =
1/n3. Second, each active node suspends itself for T rounds, where T is the upper
bound on time complexity of MIFS from Theorem 6. Finally, a deterministic wake-
up protocol, such as CK described in Sect. 11.3.1, is executed. We refer to the new
protocol as MIFS-LV.

Theorem 7 (Chrobak et al. [20]) Protocol MIFS-LV completes wake-up in
radio network G of n nodes, diameter D, and maximum in-degree Δ, under
a wake-up function σ in expected time O(D log2 n) and worst-case time
O(min{n, DΔ} logΔ log n).

11.4 Leader Election and Clock Synchronization

The goal of this section is to show that any multi-hop wake-up protocol WakeUp
(deterministic or randomized) can be transformed into a leader election protocol
or a clock synchronization protocol, with only a logarithmic overhead. Consider a
multi-hop wake-up protocol WakeUp, and denote by T = T (n) its time complexity
on any n-node radio network. We represent node ids as binary strings of length
log n + 1, and by idv[i, .., j] we denote the string consisting of the bits of idv on
positions i, i + 1, ..., j , counting from left to right.

11.4.1 Leader Election Protocol

The leader election protocol, called Elect, is based on routine WakeUp solving
the wake-up problem. It consists of two parts: wake-up part and election part. The
election part consists of log n stages. Before giving a pseudocode of the protocol,
we provide an informal description of both parts.

11.4.1.1 Wake-Up Part

The goal of this part is to wake up all nodes. Each node v, after being activated by
a message or spontaneously, starts executing the wake-up protocol WakeUp. After
completing this protocol, node v suspends itself for T rounds, in order to ensure that
the execution of the wake-up protocol WakeUp in this part does not overlap with
the election part that follows.

11.4.1.2 Election Part

In this part, all nodes in the network select a node z with the smallest id as the
leader. The selection process proceeds in log n + 1 stages, and the goal of stage
i , for i = 0, 1, . . . , log n, is to distribute the i th highest bit of idz. Assume that
at the beginning of stage i > 0 all nodes know the first i bits of idz, and let
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min_id_prefix = idz[0, ..., i − 1] be the string consisting of these bits; in the begin-
ning of stage i = 0 we assume that this string is empty. Each node v for which
idv[0, ..., i−1] = min_id_prefix holds is a potential candidate for becoming a leader.
If such a candidate node v has a 0 on its i th bit, it executes WakeUp routine in its
stage i in order to inform other nodes about its existence. If at least one wake-up
process is initiated in stage i , by the end of this stage all nodes conclude that the i th
most significant bit in idz must be 0; otherwise this i th bit is set to 1.

Although we do not make any additional assumptions on the routine WakeUp
used in the leader election protocol, except that it solves the wake-up problem,
it needs to be executed in a specific way. Mainly, making a decision to execute
WakeUp routine in a stage corresponds to the spontaneous wake-up of a node.
Nodes that have not made such a decision in the current stage are treated as if they
were asleep, i.e., they stay idle until they make such a decision in the current stage
or till the end of the stage otherwise.

The main difficulty that needs to be overcome in the election part is the lack of
synchronization. More precisely, we cannot guarantee that the executions of stage
i , for i = 0, 1, . . . , log n, in different nodes are synchronized in time. Instead, the
only property we can guarantee is that the maximum offset between the activation
times of any two nodes, and thus also between neighboring stages run in two dif-
ferent nodes, is at most T . In order to avoid simultaneous executions of routines
WakeUp initiated in different stages, it is therefore sufficient to pad each stage with
two waiting periods of length T each: one at the beginning and one at the end of the
stage. More specifically, each stage is split into four sub-stages, each of length T .
If a node v is a candidate for the leader and initiates the wake-up process by itself,
this is done in the beginning of the second sub-stage. On the other hand, v can be
activated to start its wake-up process by another node w at any time during the first,
second, or third sub-stage. This is due to the offset, which is at most the length of a
single sub-stage. This concludes the election part.

Below, we give a pseudocode of the protocol Elect executed at a node v. We
denote by ◦ the concatenation operation on strings.

11.4.1.3 Analysis of Protocol Elect

We first argue about correctness. Let z be the node with the smallest id. After the
wake-up part, the local clocks of nodes differ by at most T . This is because the
activation of all nodes takes place during the execution of WakeUp routine by the
first activated node, and this takes at most T rounds. This implies, in particular, that
two stages of different nodes can overlap only if they are consecutive. Moreover,
they can overlap on at most T rounds. More specifically, the only possible overlap is
when the fourth sub-stage of a node in stage i overlaps the first sub-stage of another
node that is in stage i+1. Consequently, there are no interferences between wake-up
processes run in different stages in the election part. This property together with a
straightforward inductive argument guarantees that there is no wake-up process in
stage i iff the i th bit of the id of node z is 1. This concludes the proof of correctness.
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Algorithm 2 Elect
Upon activation:

clock← 0
Execute WakeUp (in T rounds)
Wait until clock = 2T
min_id_prefix←[ ] // empty string
For r ← 0, 1, . . . , log n do

bit← 1 // stage i starts, local time clock is (4i + 2)T
If idv[0, ..., i] = min_id_prefix ◦ 0 then

bit← 0
Wait until a message received or clock = (4i + 3)T

Else
Wait until a message received or clock = (4i + 5)T
If a message received then bit← 0

If bit = 0 then execute WakeUp (in T rounds)
min_id_prefix←min_id_prefix ◦ bit
Wait until clock = (4i + 6)T

Output: min_id_prefix

The total number of rounds from the first activation until the last termination is
at most 2T + 4T · (log n + 1)+ T , where the last T comes from the offset. Thus we
obtained:

Theorem 8 (Chrobak et al. [20]) Suppose that WakeUp is a wake-up protocol with
running time T (n). Then WakeUp can be converted into a leader election protocol
Elect with running time O(T (n) log n).

Taking deterministic wake-up protocol CK, instantiated as in Corollaries 2 and 3,
or randomized protocol MIFS, as subroutine WakeUp, we get the following result:

Corollary 4 Protocol Elect based on suitably instantiated wake-up protocol CK
solves leader election in O(min{n, DΔ} logΔ log2 n) rounds (existential version)
or in O(min{n, DΔ}Δ polylog n) rounds (explicit version).

Protocol Elect based on randomized wake-up protocol MIFS solves leader elec-
tion in O(D log2 n log(n/ε)) rounds with probability at least 1 − ε.

11.4.2 Clock Synchronization

It is relatively simple to extend the leader election protocol Elect, described in the
previous section, to perform clock synchronization. We start by running the routine
Elect. Once a leader z has been elected, node z waits for T rounds to allow all nodes
to terminate their Elect executions. Next, node z broadcasts its local time to all
other nodes using the same wake-up protocol WakeUp. During this execution, each
round of the propagated value is increased by one. Upon activation, a node adopts
the received value as its local clock setting and joins the execution of WakeUp.
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Theorem 9 (Chrobak et al. [20]) Let WakeUp be a wake-up protocol with running
time T (n). Then WakeUp can be converted into a clock synchronization protocol
ClockSynch with running time O(T (n) log n).

Applying efficient leader election protocol Elect as in Corollary 4, together with
its corresponding wake-up subroutine WakeUp, we obtain the following result:

Corollary 5 Protocol ClockSynch, based on suitably instantiated wake-up pro-
tocol CK and leader election protocol Elect, solves the local clock synchroniza-
tion problem in O(min{n, DΔ} logΔ log2 n) rounds (existential version) or in
O(min{n, DΔ}Δ polylog n) rounds (explicit version).

Protocol ClockSynch, based on randomized wake-up protocol MIFS and leader
election protocol Elect (with MIFS used as the wake-up subroutine), solves the local
clock synchronization problem in O(D log2 n log(n/ε)) rounds with probability at
least 1 − ε.

11.5 Mutual Exclusion

In this section we consider the mutual exclusion problem on the multiple-access
channel. We assume slightly more restricted (and thus more realistic) model when
no node can transmit and listen at the same time. We start with giving a definition of
the problem, followed by case study of one-entry mutual exclusion and its “local”
version, called ε-exclusion. Then we show how to extend one-entry solutions to
general dynamic mutual exclusion or ε-exclusion algorithms, in particular, how to
achieve fairness in potentially unbounded executions.

Mutual Exclusion—Problem Definition

A mutual exclusion is an access control kind of problem, where a concurrent pro-
gram run by independent devices occasionally requests an access to the shared
object. More precisely, each node executes a protocol partitioned into the following
four sections:

Entry (trying) the part of the protocol executed in preparation for entering the crit-
ical section;

Critical the part of the protocol to be protected from concurrent execution;
Exit the part of the protocol executed on leaving the critical section;
Remainder the rest of the protocol.

These sections are executed cyclically in the order remainder, entry, critical, and
exit. Intuitively, the remainder section corresponds to local computation of a node,
the critical section corresponds to the access to the shared object (the channel in our
case), though we abstract from particular purpose and operations done within each
of these sections (it is not a part of the problem). The goal of the mutual exclusion
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problem is to develop entry and exit sections so that for any remainder and critical
sections several properties of execution are guaranteed (they will be specified later).

In the traditional mutual exclusion problem, as defined in [4] in the context of
shared-memory model, the adversary controls the remainder and critical sections.
In particular, it controls their duration in each cycle, only subject to the obvious
assumptions that this duration in each cycle is finite or the last performed section is
the remainder one. The mutual exclusion algorithm, on the other hand, provides a
protocol for the entry and exit sections of each node. In this sense, the mutual exclu-
sion problem can be seen as a game between the adversary controlling the lengths of
remainder and critical sections of each node (each such section for each node may
have different lengths) and the algorithm controlling sections’ entry and exit. The
goal of the algorithm is to guarantee several useful properties of the execution (to be
defined later), while the goal of the adversary is to fail them. Note that the sections
controlled by the adversary and those controlled by the algorithm are interleaved in
the execution. Additionally, in order to make the game fair, it is typically assumed
that every variable used by the algorithm, i.e., in the entry and exit sections, cannot
be accessed by the adversary in the critical and remainder sections.

We consider a multiple-access channel model of communication. In a single
round, a node in the entry or the exit section can do the following: perform some
action on the channel (either transmit a single-bit message or listen), do some local
computation, and change its section either from entry to critical or from exit to
remainder. We assume that changing sections occurs momentarily between consec-
utive rounds, i.e., in each round a node is exactly in one section of the protocol.

A multiple-access channel is both the (only) communication medium and the
exclusively shared object. Therefore, additional restrictions, not used in other classic
models (e.g., in shared memory), must be imposed to bind the use of the channel
during the remainder and the critical sections:

• the channel must not be used by nodes being in the remainder section, i.e., such
nodes neither listen nor transmit a message;

• a node in the critical section transmits a special message, called the critical mes-
sage, in each round.

If some of these conditions were not satisfied, the adversary would have an unlimited
power of creating collisions in the channel, thus preventing any communication.

A solution of the mutual exclusion problem should satisfy the following four
properties:

Exclusion: in every round of any execution, at most one node is in the critical
section.

No deadlock: in every round i of an execution, if there is a node in the entry
section at round i , then some node will enter the critical section eventually
after round i .

No lockout: in every round i of an execution, if a node p is in the entry section at
round i , then node p will enter the critical section eventually after round i .
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Obstruction freedom: in every round i of an execution, if a node p is in the exit
section at round i , then node p will switch to the remainder section eventu-
ally after round i .

Note that the no-lockout property ensures, to some extent, fairness: each node that
demands an access to the critical section will eventually get it. Observe that some
mutual exclusion algorithms considered in the literature do not satisfy this property.

The exclusion condition is, as we will show, difficult to achieve in some cases,
and when achieved, it is often for the price of large complexity. Therefore, we also
consider a slightly weaker condition:

ε-Exclusion for every node p and for every critical section imposed by the
adversary for p, the probability that in any round of this critical section there
is another node being in the critical section is at most ε.

Intuitively, ε-exclusion guarantees mutual exclusion “locally,” i.e., for every single
execution of the critical section by a node and with probability at least 1 − ε.

Complexity Measure

The basic measure of complexity is the maximum number of rounds in any inter-
val in which there is some node in the entry section and there is no node in the
critical section. This measure is called makespan. Observe that an upper bound
on makespan automatically implies no-deadlock property, but not necessarily no-
lockout.

The definition of makespan requires more detailed specification in case of ran-
domized solutions. We define a strategy P of the adversary as a set of n sequences,
where each sequence corresponds to a different node and contains, subsequently
interleaved, the lengths of remainder and critical sections of the corresponding node.
It can be assumed that each sequence is either infinite or of even length; the meaning
of the sequence of even length is that the last remainder section of the correspond-
ing node lasts forever. For a given mutual exclusion algorithm B and adversarial
strategy P , let M(B,P) be a random variable equal to the maximum length of
a time interval in which there is some node in the entry section and there is no
node in the critical section in an execution of algorithm B run against strategy P .
The maximum of expected values of variable M(B,P), taken over all adversarial
strategies P , is the expected makespan of randomized algorithm B. In case of the
ε-mutual exclusion solutions, makespan is defined only for executions where the
mutual exclusion property is always fulfilled, i.e., where there is no round with at
least two nodes being in the critical section.

11.5.1 From Wake-Up to Mutual Exclusion

We start with quoting a Ω(n) lower bound on expected makespan shown in [9].
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Theorem 10 (Bienkowshi et al. [9]) Expected makespan of any randomized mutual
exclusion algorithm is at least n/2 in the absence of collision detection capability,
even in the setting with global clock and with knowledge of the number n of nodes.

11.5.1.1 Deterministic One-Entry Mutual Exclusion Algorithm

Universal synchronizers, or even basic synchronizers, can be used to obtain solution
for a simpler version of mutual exclusion, called one-entry mutual exclusion, which
is a form of (one-instance) consensus problem [25]. In this problem the aim is to
make one of the woken-up nodes (i.e., being in entry section) to enter the critical
section and to possess the channel, while others must remain silent (i.e., remain in
the entry section).

Assume we are given a (n, n)-synchronizer of length m. Note that the main chal-
lenge is to use the synchronizer in the model where a node cannot transmit and
listen simultaneously in a single round. In particular, a successful transmission is
heard only by other active nodes, while the transmitter may not be aware whether
its transmission was successful or not. This problem can be solved by the following
deterministic algorithm.

Algorithm 3 KnownNumber

Upon entering critical section, node v listens for m rounds. If it hears some node id in one
of these rounds, it “decides” on this id to be the winner of the channel and remains silent
forever. If it hears silence in all these m rounds, it starts transmitting its id according to the
schedule defined by the corresponding row of the synchronizer. If it hears some node id in one
of the following m rounds (in some round when it is listening), it decides on this node to be
the “winner” and remains silent forever. If it does not hear any message in all the 2m rounds,
it decides to enter the critical section and transmits the message “my id v won the channel” forever.

Theorem 11 (Czyzowicz et al. [25]) Algorithm KnownNumber solves one-entry
mutual exclusion in time O(n log2 n) after first node enters its entry section, for any
known number n of nodes.

Obviously the above theorem guarantees only exclusion and no-deadlock proper-
ties, since other two properties are specific for dynamic version of mutual exclusion.

11.5.1.2 From One-Entry to Dynamic Mutual Exclusion

We present a generic mutual exclusion algorithm, called MacMEx, which uses a
one-entry algorithm as a subroutine and solves the general problem of dynamic
mutual exclusion, preserving the complexity of the one-entry solution.

First observe that algorithm KnownNumber has the following two properties,
crucial from the point of view of extension to dynamic mutual exclusion:

P1. Every node listens in the round in which it enters the critical section.
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P2. Starting from the round in which node v decides to enter the critical section,
node v transmits the message “my id v won the channel” forever, and all
other nodes listen forever.

We present an algorithm which, given a one-entry mutual exclusion subroutine sat-
isfying properties P1 and P2, guarantees exclusion, no-deadlock, and obstruction
freedom in dynamic mutual exclusion.

Algorithm 4 MacMEx

Entry section. Node i executes a given one-entry subroutine satisfying properties P1 and P2, until
one of the following events occurs:

• node v decides to enter the critical section;
in this case node v enters the critical section

• node v hears either the message “occupied” or the message “my id w won the channel”;
in this case node v stops the execution of the one-entry subroutine and keep listening on the
channel in the next rounds until the next case occurs

• node v hears the message “released”;
in this case node v starts a new execution of the one-entry subroutine

Critical section. Node v transmits the message “occupied” on the channel in each round when it
is in the critical section. The rest of the behavior of the node in this section is controlled by the
adversary.

Exit section. Node v transmits the message “released” on the channel and leaves the exit section.

The proof of correctness of Algorithm MacMEx, including analysis of exclu-
sion, no-deadlock, and obstruction freedom properties, is based on the following
invariant.

Lemma 5 (Czyzowicz et al. [25]) Exactly one of the following properties holds in
any round t:

Q1 the message “occupied” is heard in round t and its sender is the only node in
the critical section in this round; additionally, no node is in the exit section
and no node executes the one-entry subroutine in round t; or

Q2 the message “released” is heard in round t and its sender is the only node in
the exit section in this round; additionally, no node is in the critical section
and no node executes the one-entry subroutine in round t; or

Q3 there is at least one node executing the one-entry subroutine in round t; addi-
tionally, all such nodes are exactly those in the entry section and no node is
in the critical or exit sections in round t; or

Q4 all nodes are in the remainder section in round t.

Using Lemma 5, the following result can be proved, by analyzing how cases
Q1–Q4 interleave in the execution of algorithm MacMEx.

Theorem 12 (Czyzowicz et al. [25]) Algorithm MacMEx with a one-entry sub-
routine satisfying properties P1 and P2 is a mutual exclusion algorithm with
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no-deadlock and no obstruction. Moreover, the makespan of the MacMEx algorithm
is the same as the time complexity of the one-entry subroutine.

Combining Theorems 12 and 11 for the one-entry version of the problem, we
derive the following conclusions for dynamic mutual exclusion.

Theorem 13 (Czyzowicz et al. [25]) Algorithm MacMEx is a dynamic mutual
exclusion algorithm with no-deadlock and no obstruction in a multiple-access chan-
nel, with makespan O(n log2 n).

11.5.1.3 Randomized ε-Exclusion Algorithm

In this scenario, we build our solution based on the IncreaseFromSquare algo-
rithm of [38], studied in Sect. 11.2.2. We describe how to extend it to meet the
requirements of ε-exclusion. It is enough to specify a one-entry mutual exclusion
version of the algorithm satisfying properties P1 and P2 and then apply a generic
scheme analogous to the deterministic MacMEx protocol. An idea of the one-
entry extension is similar to the use of synchronizers in the deterministic algorithm
KnownNumber. When a node enters the entry section, it first goes into the listening
mode and stays in this mode for T = O(log n · log(1/ε)) rounds, where T is the
time complexity of algorithm IncreaseFromSquare. If within this time the node
hears a message from another node, it stops. Afterward, the node starts to execute
the IncreaseFromSquare algorithm. Whenever it is not transmitting, it listens,
and when it hears a message from other nodes it stops. After executing T rounds
of the subroutine IncreaseFromSquare, the node enters the critical section. The
following result holds:

Theorem 14 (Bienkowski et al. [9]) The extended version of the Increase-
FromSquare algorithm solves the ε-exclusion problem with makespan O(log n ·
log(1/ε)).

11.5.1.4 Fairness

The mutual exclusion algorithms presented so far do not guarantee the no-lockout
property, i.e., it may happen that a node never gets out of its entry section, as other
nodes exchange access to the critical section among themselves. In this section we
show how to modify algorithms satisfying only exclusion, no-deadlock, and obstruc-
tion freedom properties in such a way that the additional no-lockout property is also
fulfilled.

The modification is as follows. Each node keeps an additional local counter of
losses. When it starts its entry section, it sets its counter to zero and whenever it
loses the competition for the critical section, it increases this counter by one (it
happens whenever another node enters the critical section). When a node enters its
exit section, it becomes a guard: it will help the nodes currently being in their entry
section to choose one of them with the highest counter of losses. How high the losses
counter can grow is bounded by the number of nodes being in their entry sections
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at the moment when the considered node entered its entry section. This implies that
the time after which the node will enter the critical section is finite.

More details follow. When a node is in the critical section, it still broadcasts
the message “occupied.” When it enters its exit section, it broadcasts the “release”
message. The node still runs its exit section in three-bit/round blocks, where the first
two bits/rounds are broadcasts of 1 and 0 by the guard only; the guard broadcasts a 1
also in the third round of each block in order to simulate collision detection for the
competitors. Simultaneously, after hearing the “release” message on the channel,
nodes awaiting in their entry section start computation as well; they are now com-
petitors for the next successful entry to the critical section. In the i th bit of the first
�log n� blocks, the competitors send a 1 if their i th highest bit is 1. If a competitor
is listening in the third round of a block and it does not hear a 1, it switches off,
as it has lost (the heard 1 comes from the guard, silence means collision and thus
another competitor having a 1 on a higher bit position). After this phase, the guard
continues its exit section for additional �log n� blocks, and only the competitors
with the highest number of losses continue their entry section during this period.
They use their ids instead of the losses counters, in order to choose exactly one of
them. After these 2�log n� blocks, the guard leaves its exit section. If there were
any competitors in the beginning of this phase, exactly one of them survived and it
enters the critical section. If not, the channel is free; in particular, the nodes which
have entered the critical section in the meantime, if any, will start competing for the
channel after the guard leaves its exit section (as they have their losses counter equal
to 0).

Lemma 6 (Bienkowski et al. [9]) The described modification guarantees the no-
lockout property for any mutual exclusion algorithm, at the cost of slowing down
the original algorithm by a constant factor and with an additional cost of O(log n)
rounds.

Combining Lemma 6 with Theorems 13 and 14, we get the following results:

Corollary 6 There exists a deterministic algorithm solving the mutual exclusion
problem with no-lockout and with makespan O(n log2 n).

Corollary 7 There exists an algorithm solving the ε-exclusion problem with no-
lockout and with makespan O(log n · log(1/ε)).

11.6 Remarks and Open Problems

Several interesting research problems remain open. In one-instance coordination
problems, there is a natural question about closing the (poly-)logarithmic gaps
between upper and lower bounds. Moreover, there is an issue of efficient construc-
tions of more sophisticated synchronizers, which can be later used for developing
more efficient and more practical solutions for several dynamic control problems,
such as dynamic broadcast or dynamic mutual exclusion. In case of multi-hop radio
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networks, there is a dearth of solutions for dynamic coordination and communica-
tion problems.

The second group of problems consists of efficient partially synchronous com-
munication. This problem was stated by Pelc [48]. It was also considered in the
context of centralized radio communication by Chlebus and Rokicki [18]. A related
issue of non-deterministic feedback and failures (cf. [19, 23]) and mobility also
becomes important from the point of view of coordination and control problems.

In this work we considered solutions in the context of radio networks without
access to the global clock and without collision detection, while still having disjoint
identifiers from some known range. Other realistic settings can be considered in the
context of coordination problems in wireless networks, including additional knowl-
edge or capabilities, more restricted model, multi-frequency communication [26],
different methods of decoding a transmitted signal (e.g., SINR [33], transmission-
interference model), and specific topologies (e.g., geometric graphs).
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Chapter 12
Probabilistic Data Propagation in Wireless
Sensor Networks

Sotiris Nikoletseas and Paul G. Spirakis

Abstract We study the problem of data propagation in distributed wireless sensor
networks. We present two characteristic methods for data propagation: the first one
performs a local, greedy optimization to minimize the number of data transmissions
needed, while the second creates probabilistically optimized redundant data trans-
missions to trade off energy efficiency with fault tolerance. Both approaches make
use of randomization at both the algorithmic design and analysis; this demonstrates
the suitability for distributed sensor network algorithms of probabilistic techniques,
because of their simplicity, locality, efficiency, and load-balancing features.

12.1 Introduction

12.1.1 A Brief Overview of Wireless Sensor Networks

Recent dramatic developments in micro-electro-mechanical (MEMS) systems,
wireless communications, and digital electronics have already led to the develop-
ment of small in size, low-power, low-cost sensor devices. Such extremely small
devices integrate sensing, data processing, and wireless communication capabili-
ties. Also, they are equipped with a small but effective operating system and are
able to switch between “sleeping” and “awake” modes to save energy. Pioneering
groups (like the “Smart Dust” Project at Berkeley, the “Wireless Integrated Net-
work Sensors” Project at UCLA, and the “Ultra low Wireless Sensor” Project at
MIT) pursue diverse important goals, like a total volume of a few cubic millimeters
and extremely low energy consumption, by using alternative technologies, based on
radio frequency (RF) or optical (laser) transmission.

Examining each such device individually might appear to have small utility,
however, the effective distributed co-ordination of large numbers of such devices
can lead to the efficient accomplishment of large sensing tasks. Large numbers of
sensor nodes can be deployed (usually in an ad hoc manner) in areas of interest
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(such as inaccessible terrains, disaster locations, and ambient intelligence settings)
and use self-organization and collaborative methods to spontaneously form a sensor
network.

Their wide range of applications is based on the possible use of various sensor
types (i.e., thermal, visual, seismic, acoustic, radar, magnetic) in order to monitor a
wide variety of conditions (e.g., temperature, object presence and motion, humidity,
pressure, noise levels). Thus, sensor networks can be used for continuous sensing,
reactive event detection, location sensing as well as micro-sensing. Hence, sen-
sor networks have important applications, including (a) environmental applications
(such as fire detection, flood detection, precision agriculture), (b) health applications
(like telemonitoring of human physiological data), (c) security applications (nuclear,
biological, and chemical attack detection), and (d) home applications (e.g., smart
environments and home automation). For an excellent survey of wireless sensor
networks see [1] and also [7, 14].

We note that a single, universal, and technology independent model is missing in
the state of the art, so in each protocol we present we precisely state the particular
modeling assumptions (weaker or stronger) needed. Also, in Sect. 12.1.3 we make
an attempt to define a hierarchy of models and relations between them.

12.1.2 Critical Challenges

The efficient and robust realization of such large, highly dynamic, complex, non-
conventional networking environments is a challenging algorithmic and techno-
logical task. Features including the huge number of sensor devices involved, the
severe power, computational and memory limitations, their dense deployment and
frequent failures, pose new design, analysis, and implementation aspects which are
essentially different not only with respect to distributed computing and systems
approaches but also to ad hoc (such as mobile or radio) networking techniques.

We emphasize the following characteristic differences between sensor networks
and ad hoc networks:

• The number of sensor particles in a sensor network is extremely large compared
to that in a typical ad hoc network.

• Sensor networks are typically prone to frequent faults.
• Because of faults as well as energy limitations, sensor nodes may (permanently

or temporarily) join or leave the network. This leads to highly dynamic network
topology changes.

• The density of deployed devices in sensor networks is much higher than in ad
hoc networks.

• The limitations in energy, computational power, and memory are much more
severe.

Because of the above rather unique characteristics of sensor networks, efficient
and robust distributed protocols and algorithms should exhibit the following critical
properties:
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12.1.2.1 Scalability

Distributed protocols for sensor networks should be highly scalable, in the sense
that they should operate efficiently in extremely large networks composed of huge
numbers of nodes. This feature calls for an urgent need to prove by analytical means
and also validate (by large scale simulations and experimental testbeds) certain
efficiency and robustness (and their trade-offs) guarantees for asymptotic network
sizes. A protocol may work well for a few sensors, but its performance (or even
correctness) may dramatically deteriorate as the deployment scale increases.

12.1.2.2 Efficiency

Because of the severe energy limitations of sensor networks and also because of
their time-critical application scenarios, protocols for sensor networks should be
very efficient, with respect to both energy and time.

12.1.2.3 Fault Tolerance

Sensor particles are prone to several types of faults and unavailability and may
become inoperative (permanently or temporarily). Various reasons for such faults
include physical damage during either the deployment or the operation phase, per-
manent (or temporary) cease of operation in the case of power exhaustion (or
because of energy saving schemes, respectively). The sensor network should be able
to continue its proper operation for as long as possible despite the fact that certain
nodes in it may fail. Self-stabilization of the protocol is an aspect of fault tolerance
which is especially relevant in this network setting.

12.1.3 Models and Relations Between Them

We note that a single, universal, technology- and cost-independent abstract model is
missing in the state of the art, so for each protocol and problem we precisely state
the particular modeling assumptions (weaker or stronger) needed. Also, we provide
the following hierarchy of models and relations between them. Clearly this is just a
starting point and a partial contribution to this matter of great importance.

12.1.3.1 Basic Model M0

A sensor cloud (a set of sensors, which may be called grain particles) is spread in
a region of interest (for a graphical presentation, see Fig. 12.1). The deployment
is random uniform. Two important network parameters (crucially affecting topol-
ogy and connectivity) are the particle density d (usually measured in numbers of
particles/m2) and the maximum transmission range R of each grain particle. The
sensors do not move. A two-dimensional framework is adopted.

There is a single point in the network, which is called the “sink” S, that represents
the fixed control center where data should be reported to. The sink is very powerful,
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Sensor nodesSensor field

Control Center

Fig. 12.1 A sensor cloud

in terms of both energy and computing power. Sensors can be aware of the direction
(and position) of the sink, as well as of their distance to it. Such information can
be, e.g., obtained during a setup phase, by having the (powerful) sink broadcast tiny
control messages to the entire network region.

We assume that events, that should be reported to the control center, occur in the
network region. Furthermore, we assume that these events are happening at random
uniform positions.

As far as energy dissipation is concerned, we basically assume that the energy
spent at a sensor when transmitting data is proportional to the square of the transmit-
ting distance. Note, however, that the energy dissipation for receiving is not always
negligible with respect to the energy when sending such as in case when transmis-
sions are too short and/or radio electronics energy is high (see [10]).

A variation of this basic model includes multiple and/or mobile sinks. The fol-
lowing “wall” notion generalizes that of the sink and may correspond to multi-
ple (and/or moving) sinks. A receiving wall W is defined to be an infinite (or at
least quite large) line in the sensor cloud plane. Any particle transmission within
range R from the wall W is received by W . W is assumed to have very strong
computing power, is able to collect and analyze received data, and has a constant
power supply, and so it has no energy constraints. The wall represents in fact the
authorities (the fixed control center) which the realization of a crucial event and
collected data should be reported to. Note that a wall of appropriately big (finite)
length may suffice. The notion of multiple sinks which may be static or moving has
also been studied in [19], where Triantafilloy, Ntarmos, Nikoletseas, and Spirakis
introduce “NanoPeer Worlds,” merging notions from Peer-to-Peer Computing and
Sensor Clouds.

The M0 model is assumed for the LTP protocol.

12.1.3.2 A Stronger Model M1

This model is derived by augmenting the model M0 with additional (stronger)
assumptions about the abilities of the sensors and the sensor deployment. In par-
ticular, the network topology can be a lattice (or grid) deployment of sensors. This
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structured placement of grain particles is motivated by certain applications, where it
is possible to have a pre-deployed sensor network, where sensors are put (possibly
by a human or a robot) in a way that they form a 2-dimensional lattice. Note indeed
that such sensor networks, deployed in a structured way, might be useful, e.g., in
precise agriculture or smart buildings, where humans or robots may want to deploy
the sensors in a lattice structure to monitor in a rather homogenous and uniform
way certain conditions in the spatial area of interest. Also, exact terrain monitor-
ing in military applications may also need some sort of a grid-like shaped sensor
network. Note that Akyildiz et al. in a fundamental state of the art survey [1] refer
to the pre-deployment possibility. Also, Intanagonwiwat et al. [11] explicitly refers
to the lattice case. Moreover, as the authors of [11] state in an extended version of
their work [12], they consider, for reasons of “analytic tractability,” a square grid
topology.

We further assume that each grain particle has the following abilities:

(i) It can estimate the direction of a received transmission (e.g., via the technology
of direction-sensing antennae). We note that at least a gross sense of direction
may be technologically possible by smart and/or multiple antennas. Regarding
the extra cost of the antennas and circuitry, we note that certainly such a cost is
introduced but as technology advances this cost may lower.

(ii) It can estimate the distance from a nearby particle that did the transmission
(e.g., via estimation of the attenuation of the received signal).

(iii) It knows the direction toward the sink S. This can be implemented during a
setup phase, where the (very powerful in energy) sink broadcasts the informa-
tion about itself to all particles.

(iv) All particles have a common co-ordinates system.

Notice that GPS information is not assumed by this model. Also, the global struc-
ture of the network is not assumed known.

This model is used in the PFR protocol.

12.1.4 The Energy Efficiency Challenge in Routing

Since one of the most severe limitations of sensor devices is their limited energy
supply (battery), one of the most crucial goals in designing efficient protocols for
wireless sensor networks is minimizing the energy consumption in the network.
This goal has various aspects, including: (a) minimizing the total energy spent in
the network, (b) minimizing the number (or the range) of data transmissions, (c)
combining energy efficiency and fault tolerance, by allowing redundant data trans-
missions which, however, should be optimized to not spend too much energy, (d)
maximizing the number of “alive” particles over time, thus prolonging the system’s
lifetime, and (e) balancing the energy dissipation among the sensors in the network,
in order to avoid the early depletion of certain sensors and thus the breakdown of
the network (see, e.g., [8]). Even energy aspects related to potentially dangerous for
health radiation levels (and their auto balancing) are relevant.
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We note that it is very difficult to achieve all the above goals at the same time.
There even exist trade-offs between some of the goals above. Furthermore, the
importance and priority of each of these goals may depend on the particular applica-
tion domain. Thus, it is important to have a variety of protocols, each of which may
possibly focus at some of the energy efficiency goals above (while still performing
well with respect to the rest goals as well).

In this chapter, we focus on online aspects of energy efficiency related to data
propagation. In particular, for routing we present two methodologically characteris-
tic energy efficient protocols:

• The Local Target Protocol (LTP) that performs a local optimization trying to
minimize the number of data transmissions.

• The Probabilistic Forwarding Protocol (PFR) that creates redundant data trans-
missions that are probabilistically optimized, to trade off energy efficiency with
fault tolerance.

Because of the complex nature of a sensor network (that integrates various
aspects of communication and computing), protocols, algorithmic solutions, and
design schemes for all layers of the networking infrastructure are needed. Far from
being exhaustive, we mention the need for frequency management solutions at the
physical layer and Medium Access Control (MAC) protocols to cope with multi-hop
transmissions at the data link layer. Our approach focuses on routing and does not
directly consider other important issues like link fading and hidden station inter-
ference, i.e., we assume that other network layers are resolving these issues. Also,
regarding reliability, an endemic issue to wireless sensor networks, we consider per-
manent physical failures, i.e., we do not deal with bad values from physical sensing
or transient failures. The interested reader may use the excellent survey by Akyildiz
et al. [2] for a detailed discussion of design aspects and state of the art of all layers
of the networking infrastructure.

12.2 LTP: A Single-Path Data Propagation Protocol

The LTP Protocol was introduced in [3]. The authors assume the basic model M0
defined in Sect. 12.1.3.

12.2.1 The Protocol

Let d(pi , p j ) be the distance (along the corresponding vertical lines toward W) of
particles pi , p j and d(pi ,W) the (vertical) distance of pi from W . Let info(E) the
information about the realization of the crucial event E to be propagated. Let p the
particle sensing the event and starting the execution of the protocol. In this protocol,
each particle p′ that has received info(E) does the following:
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• Search phase: It uses a periodic low-energy directional broadcast in order to dis-
cover a particle nearer to W than itself (i.e., a particle p′′ where d(p′′, W) <

d(p′, W)).
• Direct transmission phase: Then, p′ sends info(E) to p′′.
• Backtrack phase: If consecutive repetitions of the search phase fail to discover

a particle nearer to W , then p′ sends info(E) to the particle that it originally
received the information from.

Note that one can estimate an a priori upper bound on the number of repetitions
of the search phase needed, by calculating the probability of success of each search
phase, as a function of various parameters (such as density, search angle, transmis-
sion range). This bound can be used to decide when to backtrack.

For a graphical representation see Figs. 12.2 and 12.3.

W
p′

beacon circle

a

-a

Fig. 12.2 Example of the search phase

W

p0

p1

p2

p3

a1

a2

a0

Fig. 12.3 Example of a transmission
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12.2.2 Analysis of the Expected Hops Efficiency

We first provide some basic definitions.

Definition 1 Let hopt(p, W) be the (optimal) number of “hops” (direct, vertical to
W transmissions) needed to reach the wall, in the ideal case when particles always
exist in pairwise distances R on the vertical line from p to W . LetΠ be a smart-dust
propagation protocol, using a transmission path of length L(Π, p, W) to send info
about event E to wall W . Let h(Π, p, W) be the actual number of hops (transmis-
sions) taken to reach W . The “hops” efficiency of protocol Π is the ratio

Ch = h(Π, p, W)

hopt(p, W)

Clearly, the number of hops (transmissions) needed characterizes the (order of
the) energy consumption and the time needed to propagate the information E to the

wall. Remark that hopt =
⌈

d(p,W)
R

⌉
, where d(p,W) is the (vertical) distance of p

from the wall W .
In the case where the protocolΠ is randomized, or in the case where the distribu-

tion of the particles in the cloud is a random distribution, the number of hops h and
the efficiency ratio Ch are random variables and one wishes to study their expected
values.

The reason behind these definitions is that when p (or any intermediate particle
in the information propagation to W) “looks around” for a particle as near to W as
possible to pass its information about E , it may not get any particle in the perfect
direction of the line vertical to W . This difficulty comes mainly from three causes:
(a) Due to the initial spreading of particles of the cloud in the area and because
particles do not move, there might not be any particle in that direction. (b) Par-
ticles of sufficient remaining battery power may not be currently available in the
right direction. (c) Particles may be there but temporarily “sleep” (i.e., not listen to
transmissions) in order to save battery power.

Note that any given distribution of particles in the sensor cloud may not allow the
ideal optimal number of hops to be achieved at all. In fact, the least possible number
of hops depends on the input (the positions of the grain particles). We, however,
compare the efficiency of protocols to the ideal case. A comparison with the best
achievable number of hops in each input case will of course give better efficiency
ratios for protocols.

To enable a first step toward a rigorous analysis of routing protocols, we make
the following simplifying assumption: The search phase always finds a p′′ (of suf-
ficiently high battery) in the semicircle of center the particle p′ currently possessing
the information about the event and radius R, in the direction toward W . Note that
this assumption of always finding a particle can be relaxed in the following ways:
(a) by repetitions of the search phase until a particle is found. This makes sense if
at least one particle exists but was sleeping during the failed searches, (b) by con-
sidering, instead of just the semicircle, a cyclic sector defined by circles of radiuses
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R − ΔR, R and also take into account the density of the sensor cloud, and (c) if
the protocol during a search phase ultimately fails to find a particle toward the wall,
it may backtrack.

We also assume that the position of p′′ is uniform in the arc of angle 2a around
the direct line from p′ vertical to W . Each data transmission (one hop) takes con-
stant time t (so the “hops” and time efficiency of our protocols coincide in this case).
It is also assumed that each target selection is stochastically independent of the
others, in the sense that it is always drawn uniformly randomly in the arc (−a, a).

The above assumptions may not be very realistic in practice, however, they can
be relaxed as explained above and in any case allow to perform a first effort toward
providing some concrete analytical results.

Lemma 1 The expected “hops efficiency” of the local target protocol in the a-
uniform case is

E(Ch) 2 α

sinα

for large hopt. Also

1 ≤ E(Ch) ≤ π

2
2 1.57

for 0 ≤ α ≤ π
2 .

Proof Due to the protocol, a sequence of points is generated, p0 = p, p1, p2, . . . ,

ph−1, ph where ph−1 is a particle within W’s range and ph is beyond the wall. Let
αi be the (positive or negative) angle of pi with respect to pi−1’s vertical line to W .
It is

h−1∑

i=1

d(pi−1, pi ) ≤ d(p, W) ≤
h∑

i=1

d(pi−1, pi )

Since the (vertical) progress toward W is then Δi = d(pi−1, pi ) = R cosαi , we
get

h−1∑

i=1

cosαi ≤ hopt ≤
h∑

i=1

cosαi

From Wald’s equation for the expectation of a sum of a random number of indepen-
dent random variables (see [18]), then

E(h − 1) · E(cosαi ) ≤ E(hopt) = hopt ≤ E(h) · E(cosαi )

Now, ∀i , E(cosαi ) = ∫ α
−α cos x 1

2αdx = sinα
α

. Thus
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α

sinα
≤ E(h)

hopt
= E(Ch) ≤ α

sinα
+ 1

hopt

Assuming large values for hopt (i.e., events happening far away from the wall,
which is the most non-trivial and interesting case in practice since the detection and
propagation difficulty increases with distance) we get the result (since for 0 ≤ α ≤
π
2 it is 1 ≤ α

sinα ≤ π
2 ) . �

12.2.3 Local Optimization: The Min-Two Uniform Targets Protocol
(M2TP)

We can further assume that the search phase always returns two points p′′, p′′′ each
uniform in (−α, α) and that a modified protocol M2TP selects the best of the two
points, with respect to the local (vertical) progress. This is in fact an optimized
version of the Local Target Protocol.

In a similar way as in the proof of the previous lemma, we can prove the following
result:

Lemma 2 The expected “hops efficiency” of the “min-two uniform targets” proto-
col in the a-uniform case is

E(Ch) 2 α2

2(1 − cosα)

for 0 ≤ α ≤ π
2 and for large h.

Now remark that

lim
α→0

E(Ch) = lim
α→0

2α

2 sin a
= 1

and

lim
α→ π

2

E(Ch) = (π/2)2

2(1 − 0)
= π2

8
2 1.24

Thus, we have the following:

Lemma 3 The expected “hops” efficiency of the min-two uniform targets protocol is

1 ≤ E(Ch) ≤ π2

8
2 1.24

for large h and for 0 ≤ α ≤ π
2 .

Remark that, with respect to the expected hops efficiency of the local target pro-
tocol, the min-two uniform targets protocol achieves, because of the one additional
search, a relative gain which is (π/2 − π2/8)/(π/2) 2 21.5%. Chatzigiannakis
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et al. [3] also experimentally investigate the further gain of additional (i.e., m > 2)
searches.

12.2.4 Tight Upper Bounds to the Hops Distribution of the General
Target Protocol

Consider the particle p (which senses the crucial event) at distance x from the wall.
Let us assume that when p searches in the sector S defined by angles (−α, α) and
radius R, another particle p′ is returned in the sector with some probability density
f ( 3p′)dA, where 3p′ = (x p′ , yp′) is the position of p′ in S and dA is an infinitesimal
area around p′.

Definition 2 (Horizontal progress) Let Δx be the projection of the line segment
(p, p′) on the line from p vertical to W .

We assume that each search phase returns such a particle, with independent and
identical distribution f ().

Definition 3 (Probability of significant progress) Let m > 0 be the least integer

such that IP
{
Δx > R

m

}
≥ p, where 0 < p < 1 is a given constant.

Lemma 4 For each continuous density f () on the sector S and for any constant p,
there is always an m > 0 as above.

Proof Remark that f () defines a density function f̃ () on (0,R] which is also con-
tinuous. Let F̃() its distribution function. Then we want 1 − F̃(R/m) ≥ p, i.e.,
to find the first m such that 1 − p ≥ F̃(R/m). Such an m always exists since F̃ is
continuous in [0, 1]. �
Definition 4 Consider the (discrete) stochastic process P in which with probability
p the horizontal progress is R/m and with probability q it is zero, where q = 1− p.
Let Q the actual stochastic process of the horizontal progress implied by f ().

Lemma 5 IPP {h ≤ h0} ≤ IPQ{h ≤ h0}
Proof The actual process Q makes always more progress than P . �

Now let t =
⌈

x
R/m

⌉
= ⌈mx

R
⌉

. Consider the integer random variable H such that

IP{H = i} = qi (1 − q) for any i ≥ 0. Then H is geometrically distributed. Let
H1, . . . , Ht be t random variables, independent and identically distributed accord-
ing to H . Clearly then

Lemma 6 IPP{number of hops is h} = IP{H1 + · · · Ht = h}
The probability generating function of H is

H(s) = IP{H = 0} + IP{H = 1}s + · · · + IP{H = i}si + · · ·
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i.e.,

H(s) = p(1 + qs + q2s2 + · · · + qi si + · · · ) = p

1 − qs

But the probability generating function of
∑

t = H1 +· · ·+ Ht is then just
(

p
1−qs

)t

by the convolution property of generating functions. This is just the generating func-
tion of the t-fold convolution of geometric random variables, and it is exactly the
distribution of the negative binomial distribution (see [9], vol. I. p. 253). Thus,

Theorem 1 IPP {the number of hops is h} =(−t
h

)
pt (−q)h = (t+h−1

h

)
pt qh

Corollary 1 For the process P, the mean and variance of the number of hops are

E(h) = tq

p
Var(h) = tq

p2

Note that the method sketched above finds a distribution that upper bounds the
number of hops till the crucial event is reported to the wall. Since for all f () it is
h ≥ x

R = hopt we get that

EP (h)

hopt
≤
⌈mx
R
⌉ q

p

x/R ≤ (m + 1)q

p

Theorem 2 The above upper bound process P estimates the expected number of
hops to the wall with a guaranteed efficiency ratio (m+1)(1−p)

p at most.

Example 1 When for p = 0.5, we have m = 2 and the efficiency ratio is 3, i.e., the
overestimate is three times the optimal number of hops.

12.3 PFR–A Probabilistic Multi-path Forwarding Protocol

The LTP protocol, as shown in the previous section, manages to be very efficient by
always selecting exactly one next-hop particle, with respect to some optimization
criterion. Thus, it tries to minimize the number of data transmissions. LTP is indeed
very successful in the case of dense and robust networks, since in such networks
a next-hop particle is very likely to be discovered. In sparse or faulty networks,
however, the LTP protocol may behave poorly, because of many backtracks due to
frequent failure to find a next-hop particle. To combine energy efficiency and fault
tolerance, the Probabilistic Forwarding Protocol (PFR) has been introduced. The
trade-offs in the performance of the two protocols implied above are shown and
discussed in great detail in [5].

The PFR protocol was introduced in [4]. The authors assume the model M1
(defined in Sect. 12.1.3).
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12.3.1 The Protocol

The PFR protocol is inspired by the probabilistic multi-path design choice for the
directed diffusion paradigm mentioned in [11]. The basic idea of the protocol (intro-
duced in [4]) lies in probabilistically favoring transmissions toward the sink within
a thin zone of particles around the line connecting the particle sensing the event E
and the sink (see Fig. 12.4). Note that transmission along this line is energy opti-
mal. However, it is not always possible to achieve this optimality, basically because
certain sensors on this direct line might be inactive, either permanently (because
their energy has been exhausted) or temporarily (because these sensors might enter
a sleeping mode to save energy). Further reasons include (a) physical damage of
sensors, (b) deliberate removal of some of them (possibly by an adversary in military
applications), (c) changes in the position of the sensors due to a variety of reasons
(weather conditions, human interaction etc.), and (d) physical obstacles blocking
communication.

The protocol evolves in two phases.
Phase 1: The “Front” Creation Phase
Initially the protocol builds (by using a limited, in terms of rounds, flooding)

a sufficiently large “front” of particles, in order to guarantee the survivability of
the data propagation process. During this phase, each particle having received the
data to be propagated, deterministically forward it toward the sink. In particular,
and for a sufficiently large number of steps s = 180

√
2, each particle broadcasts

the information to all its neighbors, toward the sink. Remark that to implement this
phase, and in particular to count the number of steps, we use a counter in each
message. This counter needs at most �log 180

√
2� bits.

Phase 2: The Probabilistic Forwarding Phase
During this phase, each particle P possessing the information under propagation

calculates an angle φ by calling the subprotocol “φ-calculation” (see description
below) and broadcasts in f o(E) to all its neighbors with probability IPfwd (or it does
not propagate any data with probability 1 − IPfwd) defined as follows:

S

E

Particles that
participate in

forwarding path

Fig. 12.4 Thin zone of particles
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IPfwd =
{

1
φ
π

if φ ≥ φthreshold

otherwise

where φ is the angle defined by the line E P and the line P S and φthreshold = 134◦
(the selection reasons of this φthreshold can be found in [4]).

In both phases, if a particle has already broadcast in f o(E) and receives it again,
it ignores it. Also the PFR protocol is presented for a single event tracing. Thus no
multiple paths arise and packet sizes do not increase with time.

Remark that when φ = π then P lies on the line E S and vice versa (and always
transmits).

If the density of particles is appropriately high, then for a line E S there is (with
high probability) a sequence of points “closely surrounding E S” whose angles φ are
larger than φthreshold and so that successive points are within transmission range. All
such points broadcast and thus essentially they follow the line E S (see Fig. 12.4).

12.3.1.1 The φ-Calculation Subprotocol

Let Pprev the particle that transmitted in f o(E) to P (see Fig. 12.5).

(1) When Pprev broadcasts in f o(E), it also attaches the info |E Pprev| and the direc-

tion
−−−−→
Pprev E .

(2) P estimates the direction and length of line segment Pprev P , as described in the
model.

(3) P now computes angle ( ̂EPprev P) and computes |E P| and the direction of
−→
P E

(this will be used in further transmissions from P).
(4) P also computes angle (P̂prevPE) and by subtracting it from (P̂prevPS) it finds φ.

Notice the following:

(i) The direction and distance from activated sensors to E is inductively propagated
(i.e., P becomes Pprev in the next phase).

(ii) The protocol needs only messages of length bounded by log A, where A is some
measure of the size of the network area, since (because of (i) above) there is no
cumulative effect on message lengths.

S
E

Pprev P

Fig. 12.5 Angle φ calculation example
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Essentially, the protocol captures the intuitive, deterministic idea “if my distance
from E S is small, then send, else do not send.” Chatzigiannakis et al. [4] have chosen
to enhance this idea by random decisions (above a threshold) to allow some local
flooding to happen with small probability and thus to cope with local sensor failures.

12.3.2 Properties of PFR

Any protocol Π solving the data propagation problem must satisfy the following
three properties:

• Correctness. Π must guarantee that data arrive to the position S, given that the
whole network exists and is operational.

• Robustness.Π must guarantee that data arrive at enough points in a small interval
around S, in cases where part of the network has become inoperative.

• Efficiency. If Π activates k particles during its operation then Π should have a
small ratio of the number of activated over the total number of particles r = k

N .
Thus r is an energy efficiency measure of Π .

We show that this is indeed the case for PFR.
Consider a partition of the network area into small squares of a fictitious grid

G (see Fig. 12.6). Let the length of the side of each square be l. Let the number
of squares be q. The area covered is bounded by ql2. Assuming that we randomly
throw in the area at least αq log q = N particles (where α > 0 a suitable constant),
then the probability that a particular square is avoided tends to 0. So with very high
probability (tending to 1) all squares get particles.

We condition all the analysis on this event, call it F , of at least one particle in
each square.

S

EParticles

Lattice
Dissection

Fig. 12.6 A lattice dissection G
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12.3.3 The Correctness of PFR

Without loss of generality, we assume each square of the fictitious lattice G to have
side length 1.

Lemma 7 PFR succeeds with probability 1 in sending the information from E to S
given the event F .

Proof In the (trivial) case where |E S| ≤ 180
√

2, the protocol is clearly correct due
to front creation phase.

Let Σ a unit square of G intersecting ES in some way (see Fig. 12.7). Since a
particle always exists somewhere in Σ , we will only need to examine the worst case
of it being in one of the corners of Σ . Consider vertex A. The line E A is always to
the left of AB (since E is at end of E S). The same is true for AS (S is to the right
of B ′).

Let AD the segment from A perpendicular to E S (and D its intersection point)
and let yy′ be the line from A parallel to E S. Then,

φ = (Ê AS) = 180◦ − (ŷ AE)− (ŷ′AS)

= 90◦ − (ŷ AE)+ 90◦ − (ŷ′AS)

= (ŷ AD)− (ŷ AE)+ (D̂ Ay′)− (ŷ′AS)

Let ω̂1 = (ŷ AD)− (ŷ AE) and ω̂2 = (D̂ Ay′)− (ŷ′AS) and, without loss of gener-
ality, let E D < DS. Then always ω̂1 > 45◦, since it includes half of the 90◦-angle
of A in the unit square. Also

sin (ŷ′AS) = sin ( ÂSD) = AD

AS
<

AD

DS

but AD ≤ √
2 (= AB) and DS ≥ E S

2
≥ 90

√
2

4⇒ sin (ŷ′AS) ≤ 1

90
⇐⇒ (ŷ′AS) < 1◦

A

B’B

A’

E

S

D

y

y’

1

1

1

2

Fig. 12.7 The square '
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(Note that here we use the elementary fact that when x < 90◦ then sinx < 1
90 ⇐⇒

x < 1◦). Then ω̂2 > 89◦, since (D̂ Ay′) = 90◦ by construction. Thus

φ = ω̂1 + ω̂2 > 45◦ + 89◦ = 134◦

There are two other ways to place an intersecting to E S unit square Σ , whose anal-
ysis is similar.

But (a) the initial square (from E) always broadcasts due to the first protocol
phase and (b) any intermediate intersecting square will be notified (by induction)
and thus will broadcast. Hence, S is always notified, when the whole grid is opera-
tional. �

12.3.4 The Energy Efficiency of PFR

Consider the fictitious lattice G of the network area and let the event F hold. We
have (at least) one particle inside each square. Now join all “nearby” particles (see
Fig. 12.6) of each particle to it, thus by forming a new graph G ′ which is “lattice
shaped” but its elementary “boxes” may not be orthogonal and may have varied
length. When G ′s squares become smaller and smaller, then G ′ will look like G.
Thus, for reasons of analytic tractability, we will assume in the sequel that our par-
ticles form a lattice (see Fig. 12.8). We also assume length l = 1 in each square,
for normalization purposes. Notice, however, that when l → 0 then “G ′ → G” and
thus all our results in this section hold for any random deployment “in the limit.”
We now prove the following:

Theorem 3 The energy efficiency of the PFR protocol is Θ
(( n0

n

)2)
where n0 =

|E S| and n = √
N. For n0 = |E S| = o(n), this is o(1).

Proof The analysis of the energy efficiency considers particles that are active but are
as far as possible from E S. Thus the approximations we do are suitable for remote
particles.

Sink

Sensor
Particles

E

Fig. 12.8 A lattice sensor network
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Here we estimate an upper bound on the number of particles in an n × n (i.e.,
N = n × n) lattice. If k is this number then r = k

n2 (0 < r ≤ 1) is the “energy
efficiency ratio” of PFR.

We want r to be less than 1 and as small as possible (clearly, r = 1 leads to
flooding). Since, by Lemma 7, E S is always “surrounded” by active particles, we
will now assume without loss of generality that E S is part of a horizontal grid line
(see Fig. 12.9) somewhere in the middle of the lattice.

Recall that |E S| = n0 particles of all the active, via PFR, particles that continue
to transmit, and let Q be a set of points whose shortest distance from particles in
E S is maximum. Then LQ is the locus (curve) of such points Q. The number of
particles included in LQ (i.e., the area inside L Q) is the number k.

Now, if the distance of such points Q of L Q from E S is ω then k ≤ 2(n0 +
2ω)ω (see Fig. 12.10) and thus r ≤ 2ω(n0+2ω)

n2 . Notice, however, that ω is a random

variable hence we will estimate its expected value IE(ω) and the moment IE(ω2) to
get

IE(r) ≤ 4IE(ω2)

n2
+ 2n0

n2
IE(ω) (12.1)

Now, look at points Q : (Ê QS) = φ < 30◦, i.e., φ < π
6 . We want to use the

approximation |E D| 2 x , where x is a random variable depending on the particle
distribution.

E S

n0

Q

LQ

n

Fig. 12.9 The L Q area

SE

n0

Fig. 12.10 The particles inside the L Q area
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Let |E D|
x = 1 + ε. Then a bound on the approximation factor ε determines a

bound on the “cut-off” angle φ0 since |E D| cos
(
φo
2

)
= εx .

(1 + ε) x cos

(
φo

2

)
= x 4⇒ cos

(
φo

2

)
= 1

1 + ε

φ0 above is constant that can be appropriately chosen by the protocol implementer.
We chose φ0 = 30◦ so ε = 0.035. Also, we remark here that the energy spent

increases with x0 = n0

(
1 − ξ

2

)
in the area below x0, where ξ = tan 75◦, but

decreases with x for x > x0. This is a trade-off and one can carefully estimate the
angle φ0 (i.e., ε) to minimize the energy spent.
Let φ1 = (Ê Q D), φ2 = (D̂QS) where Q D ⊥ E S and D in E S. In Fig. 12.11,
φ = φ2 − φ1.
We approximate φ by sinφ2 − sinφ1 (note: φ 2 sinφ ≥ − sinφ1 + sinφ2).

Note sinφ1 2 |E D|
|QE | 2 |E D|

x
and sinφ2 2 |DS|

x

4⇒ sinφ 2 sinφ2 − sinφ1 2 |E S|
x

= n0

x

Thus φ
π

2 n0
πx for such points Q. We note that the analysis is very similar when

(Q̂E S) < π
2 and thus φ = φ1 + φ2.

Let M be the stochastic process that represents the vertical (to E S) distance of
active points from E S, and W be the random walk on the vertical line yy′ (see Fig.
12.12) such that, when the walk is at distance x ≥ x0 from E S then it (a) goes to
x + 1 with probability n0

πx or (b) goes to x − 1 with probability 1 − n0
πx and never

goes below x0, where x0 is the “30◦-distance” i.e. x0 = n0 ξ
2 .

Clearly W dominates M , i.e., IPM {x ≥ x1} ≤ IPW {x ≥ x1}, ∀ x1 > x0.
Furthermore, W is dominated by the continuous time “discouraged arrivals”

birth-death process W ′ (for x ≥ x0) where the rate of going from x to x + 1 in
W ′ is α

x = n0/π
x and the rate of returning to x − 1 is 1 − n0

πx0
= 1 − 2

πξ
= B.

SED

Q

x 1
2

Fig. 12.11 The QE S triangle
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SE

y

y’

x

x

x o

x o

0

Fig. 12.12 The random walk W

We know from [15] that for Δx = x − x0 (x > x0)

IEW ′(Δx) = α

B
= n0

π
(

1 − 2
πξ

)

Thus, IEW ′(x) = x0 + α
B

, hence by domination

IE(ω) ≤ IEM(x) ≤ x0 + α

B
(12.2)

Also from [15] the process W ′ is a Poisson one and IP {Δx = k} = (α/B)k

k! e−(α/B).
From this, the variance of Δx is σ 2 = α/B (again), i.e., for ω = x0 +Δx

IEW ′(ω2) = IEW ′
(
(x0 + Δx)2

)

= x2
0 + 2x0IEW ′(Δx) + IEW ′(Δx2)

= x2
0 + 2

α

B
x0 +

(
σ 2 + IE2(Δx)

)

= x2
0 + 2

α

B
x0 + α

B
+
(α

B

)2

So IEW ′(ω2) = 3n2
0

4
+ 2

α

B

n0 ξ

2
+ α

B
+
(α

B

)2

where
α

B
= n0

π
(

1 − 2
π ξ

) = n0

τ

and τ = π

(
1 − 2

π ξ

)
= π − 2

ξ

thus IEW ′(ω2) = n2
0

(
3

4
+ ξ

τ
+ 1

τ 2

)
+ n0

τ
(12.3)

and by domination IE(ω2) ≤ IEM(ω2) ≤ IEW ′(ω2). So, finally
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IE(r) ≤
4
[
n2

0

(
3
4 + ξ

τ
+ 1

τ 2

)
+ n0

τ

]

n2
+ n2

0

n2

(
ξ + 2

τ

)
(12.4)

which proves the theorem. �

12.3.5 The Robustness of PFR

We now consider the robustness of our protocol, in the sense that PFR must guar-
antee that data arrive at enough points in a small interval around S, in cases where
part of the network has become inoperative, without, however, isolating the sink.

Lemma 8 PFR manages to propagate the crucial data across lines parallel to ES,
and of constant distance, with fixed nonzero probability (not depending on n, |E S|).

Proof Here we consider particles very near the line E S. Thus the approximations
that we do are suitable for nearby particles. Let Q′ an active particle at vertical
distance x from E S and D ∈ E S such that Q′D ⊥ E S.

Let yy′ ‖ E S, drawn from Q′ (see Fig. 12.13) and φ1 = (ŷQ′E), φ2 = (ŜQ′y′).
Then φ = 180◦ − (φ1 + φ2), i.e., φ

π
= 1 − φ1+φ2

π
.

Since φ1, φ2 are small (for small x) we use the approximation φ1 2 sinφ1 and
φ2 2 sinφ2

φ1 + φ2 2 sinφ1 + sinφ2 = x

E Q′ + x

Q′S

Since φ > 90◦, E S is the biggest edge of triangle (Ê Q′S), thus E Q′ ≤ n0 and
Q′S ≤ n0. Hence,

sinφ1 + sinφ2 ≤ 2x

n0

and 1 − sinφ1 + sinφ2

π
≥ 1 − 2x

πn0
(for small x)

DE

Q’

x

S

y y’

1 2

Fig. 12.13 The Q′E S triangle
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Without loss of generality, assume E S is part of a horizontal grid line. Here we
study the case in which some of the particles on E S or very near E S (i.e. at angles
> 134◦) are not operating.

Consider now a horizontal line 	 in the grid, at distance x from E S. Clearly,
some particles of 	 near E will be activated during the initial broadcasting phase
(see Phase 1).

Let A be the event that all the particles of 	 (starting from p) will be activated,
until a vertical line from S is reached. Then

IP(A) ≥
(

1 − 2x

πn0

)n0

2 e−
2x
π �

12.4 An Experimental Comparison of LTP, PFR

We evaluate the performance of four protocols (PFR, LTP, and two variations of
LTP) by a comparative experimental study. The protocols have been implemented as
C++ classes using the data types for two-dimensional geometry of LEDA [17] based
on the environment developed in [3, 6]. Each class is installed in an environment that
generates sensor fields given some parameters (such as the area size of the field, the
distribution function used to drop the particles) and performs a network simulation
for a given number of repetitions, a fixed number of particles, and certain protocol
parameters.

In the experiments, we generate a variety of sensor fields in a 100 m × 100 m
square. In these fields, we drop n ∈ [100, 3000] particles randomly uniformly dis-
tributed on the sensor cloud plane, i.e., for density 0.01 ≤ d ≤ 0.3. Each sensor
particle has a fixed radio range of R = 5m and α = 90◦. The particle p that
initially senses the crucial event is always explicitly positioned at (x, y) = (0, 0)
and the sink is located at (x, y) = (100, 100). Note that this experimental setup is
based on and extends that used in [10, 13, 16]. We repeated each experiment for
more than 5,000 times in order to achieve good average results.
We now define the efficiency measures investigated.

Definition 5 Let hA (for “active”) be the number of “active” sensor particles partic-
ipating in the data propagation and let ETR be the total number of data transmissions
during propagation. Let T be the total time for the propagation process to reach its
final position and H the total number of “hops” required.

Clearly, by minimizing hA we succeed in avoiding flooding and thus we mini-
mize energy consumption. Remark that in LTP we count as active those particles
that transmit info(E) at least once.

Note that hA, ETR, T , and H are random variables. Furthermore, we define the
success probability of the algorithm where we call success the eventual data propa-
gation to the sink.

Definition 6 Let IPs be the success probability of the protocol.
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We also focus on the study of the following parameter. Suppose that the data
propagation fails to reach the sink. In this case, it is very important to know “how
close” to the sink it managed to get. Propagation reaching close to the sink might be
very useful, since the sink (which can be assumed to be mobile) could itself move
(possibly by performing a random walk) to the final point of propagation and get
the desired data from there. Even assuming a fixed sink, proximity to it is important,
since the sink might in this case begin some “limited” flooding to get to where data
propagation stopped. Clearly, the closer to the sink we get, the cheaper the flooding
becomes.

Definition 7 Let F be the final position of the data propagation process. Let D be
F’s (Euclidean) distance from the sink S.

Clearly in the case of total success F coincides with the sink and D = 0.
We start by examining the success rate of the four protocols (see Fig. 12.14), for

different particle densities. Initially, when the density is low (i.e., d ≤ 0.06), the
protocols fail to propagate the data to the sink. However, as the density increases,
the success rate increases quite fast and for high densities all four protocols almost
always succeed in propagating the data to the sink. Thus, all protocols are very
successful. We remark a similar shape of the success rate function in terms of den-
sity. This is due to the fact that all protocols use local information to decide how
to proceed by basically selecting (all protocols) the next particle with respect to a
similar criterion (best progress toward the sink).

In the case when the protocols fail to propagate the data to the sink, we examine
“how close” to the sink they managed to get. Fig. 12.15 depicts the distance of the
final point of propagation to the position of the sink. Note that this figure should

Particle Density (d)

S
u

cc
es

s 
R

at
e 

(P
su

cc
es

s)

0.01
0

0.1

1

0.8

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23 0.25 0.27 0.29

PFR LTPe LTPa LTPr

Fig. 12.14 Success probability (IPs ) over particle density d = [0.01, 0.3]



376 S. Nikoletseas and P.G. Spirakis

Particle Density (d)

D
is

ta
nc

e 
to

 S
in

k 
(D

)

PFR LTPe LTPa LTPr

Fig. 12.15 Average distance from the sink (D) over particle density d = [0.01, 0.3]

be considered in conjunction with Fig. 12.14 on the success rate. Indeed, failures to
reach the sink are very rare and seem to appear in very extreme network topologies
due to bad particle distribution in the network area.

Figure 12.16 depicts the ratio of active particles over the total number of particles
(r = hA

n ) that make up the sensor network. In this figure we clearly see that PFR,
for low densities (i.e., d ≤ 0.07), indeed activates a small number of particles (i.e.,
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Fig. 12.16 Ratio of active particles over total particles (r ) over particle density d = [0.01, 0.3]
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r ≤ 0.3) while the ratio r increases fast as the density of the particles increases. The
LTP-based protocols seem more efficient and the ratio r seems to be independent
of the total number of particles (because only one particle in each hop becomes
active).

Remark 1 Because of the way PFR attempts to avoid flooding (by using angle φ
to capture “distance” from optimality) its merits are not sufficiently shown in the
setting considered here. We expect PFR to behave significantly better with respect
to energy in much larger networks and in cases where the event is sensed in an aver-

age place of the network. Also, stronger probabilistic choices (i.e., IPfwd =
(
φ
π

)α
,

where a > 1 a constant) may further limit the number of activated particles.

Furthermore, examining the total number of transmissions performed by the
particles (see Fig. 12.17), it is evident that because the LTP-based protocols acti-
vate a small number of particles, the overall transmissions are kept low. This is a
surprising finding, since the PFR protocol was originally designed to work without
the need of any control messages so that the energy consumption is low. However,
the comparative study clearly shows that avoiding the use of control messages does
not achieve the expected results. So, even though all four protocols succeed in prop-
agating the data, it is evident that the LTP-based protocols are more energy efficient
in the sense that less particles are involved in the process.

We continue with the following two parameters: (a) the “hops” efficiency and (b)
the time efficiency, measured in terms of rounds needed to reach the sink. As can
be seen in Fig. 12.18, all protocols are very efficient, in the sense that the number
of hops required to get to the sink tends below 40 even for densities d ≥ 0.17.
The value 40 in our setting is close to optimality since in an ideal placement, the
diagonal line is of length 100

√
2 and since for the transmission range R = 5 the

optimal number of hops (in an ideal case) is roughly 29. In particular PFR achieves
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Fig. 12.18 Average number of hops to reach the sink (H ) over particle density d = [0.01, 0.3]
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this for very low densities (d ≥ 0.07). On the other hand, the LTP-based protocols
exhibit a certain pathological behavior for low densities (i.e., d ≤ 0.12) due to a high
number of executions of the backtrack mechanism in the attempt to find a particle
closer to the sink (see also Fig. 12.19).

Finally, in Fig. 12.19 we compare the three LTP-based protocols and the number
of backtracks invoked in the data propagation. It is evident that for very low particle
densities (i.e., d ≤ 0.12), all three protocols perform a large number of backtracks
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in order to find a valid path toward the sink. As the particle density increases, the
number of backtrack reduces fast enough and almost reaches zero.

12.5 Conclusions

We investigated some important aspects of online energy optimization in sensor
networks, like minimizing the total energy spent in the network, minimizing the
number (or the range) of data transmissions, combining energy efficiency and fault
tolerance (by allowing redundant data transmissions which, however, should be opti-
mized to not spend too much energy). Since it is very difficult (if possible at all) to
achieve all the above goals at the same time we presented two characteristic proto-
cols, each of which focuses on some of the energy efficiency goals above (while still
performing well with respect to the rest goals as well). In particular, we presented:
(a) The Local Target Protocol (LTP) that performs a local optimization trying to
minimize the number of data transmissions and (b) the Probabilistic Forwarding
Protocol (PFR) that creates redundant data transmissions that are probabilistically
optimized, to trade off energy efficiency with fault tolerance.

Open issues for further research include considering the impact on protocols’
performance of other important types of faults (malicious, byzantine). Also, it is
worth investigating other performance aspects like congestion (possibly using game-
theoretic methods).
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Chapter 13
Oblivious Routing for Sensor Network
Topologies

Costas Busch, Malik Magdon-Ismail, and Jing Xi

Abstract We present oblivious routing algorithms whose routing paths are con-
structed independent of each other, with no dependence on the routing history.
Oblivious algorithms are inherently adaptive to dynamic packet traffic, exhibit low
congestion, and require low maintenance. All these attributes make oblivious algo-
rithms to be suitable for sensor networks which are characterized by their limited
energy and computational resources. Specifically, low congestion provides load
balancing, and low stretch provides low-energy utilization. We present two sim-
ple oblivious routing algorithms. The first algorithm is for geometric networks in
which nodes are embedded in the Euclidean plane. In this algorithm, a packet path
is constructed by first choosing a random intermediate node in the space between
the source and destination and then the packet is sent to its destination through
the intermediate node. In the second algorithm we study mesh networks, where
the nodes are arranged in a two-dimensional grid. Grids are interesting symmet-
ric topologies which can be used as a testbed for designing efficient new routing
algorithms in sensor networks. The oblivious algorithm in the mesh constructs the
paths by decomposing the network into smaller submeshes in a hierarchical manner.
This algorithm can be extended to d dimensions, which makes it suitable for three-
dimensional sensor network deployments, such as in buildings and tall structures.
We analyze the algorithms in terms of the stretch and congestion of the resulting
paths and demonstrate that they exhibit near optimal performance.

13.1 Introduction

Routing algorithms specify the paths to be followed by packets in a network. A
routing algorithm is oblivious if the path of every packet is given independently of
the paths of the other packets and without considering the history of the previously
routed packets. Oblivious algorithms are by their nature distributed and capable of
solving online routing problems, where packets continuously arrive in the network.
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Hence, oblivious routing is often preferred to non-oblivious routing, since one does
not need to make assumptions regarding the nature of the traffic.

In wireless and sensor network applications the nodes may have power and com-
puting capability constraints. For example, a sensor node is typically operated with
a battery that has limited energy capacity. To maximize the lifetime of the nodes,
the time until nodes run out of power, it is important to minimize the utilization
of individual nodes. This relates directly to balancing the packet traffic for mini-
mizing the node congestion. With load balancing, the lifetime of a battery operated
sensor network is prolonged, since the time that the first node runs out of energy
is extended. Further, using paths of small stretch (ratio of path length to shortest
path) is also beneficial to the sensor network since small stretch implies low overall
energy utilization.

Oblivious routing algorithms are suitable for balancing the congestion in the net-
work and therefore extending the lifetime of the nodes. They can also provide small
stretch in interesting sensor network deployment scenarios. Oblivious algorithms
are easy to implement in wireless and sensor networks, on account of their sim-
plicity. We present two oblivious routing algorithms which are suitable for wireless
sensor networks. The first algorithm is for geometric networks, while the second is
for mesh networks. Both of these algorithms achieve low congestion and stretch. We
continue with describing each of them.

13.1.1 Geometric Networks

We present the oblivious routing algorithm for geometric networks which was orig-
inally proposed in [7]. In geometric networks, the nodes are placed in the two-
dimensional Euclidian space and we assume that all the nodes are contained in some
geographic area A (Fig. 13.1). Suppose that a packet wants to go from a node s to a
node t in the network. The algorithm is to choose a random intermediate node w in
the space between the s and t , then sends the packet to w, and then sends the packet
from w to its destination (see Fig. 13.3). In order to implement this idea, we assume
that between every pair of nodes there is a dedicated path which we call the default
path. For example, the default path between two nodes u and v could be a shortest
path that connects them. We denote the set of all default paths by Q. The choice of
the default paths affects the performance of our algorithm, and the closer the default
paths are to the geodesics, the lines that connect the respective end points of the
paths, the better the performance of the algorithm.

We analyze the algorithm in terms of stretch and congestion. Consider some set
of paths P produced by the routing algorithm. Denote by stretch(P) the maximum
ratio of a path length to the length of the respective shortest path (the length is
measured in the number of node hops). The node congestion Cnode is the maximum
number of paths that use any node in the network. The edge congestion Cedge is the
maximum number of paths that use any edge in the network. Let C∗

node and C∗
edge

denote the optimal node and edge congestions, which could be obtained by a brute
force search through all possible paths from the sources to the destinations in P.
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Fig. 13.1 Example of a geometric network

The stretch and congestion of the paths P produced by our algorithm depend
on the quality of the default paths Q. In particular, provided that the geometric
embedding is “faithful” to the topology of the network (i.e., nodes far apart are
connected with more hops than nodes closer to each other) we obtain:

stretch(P) = O (stretch(Q)) ,

Cnode = O
(

C∗
node · (1 + deviation3(Q)) · log(n + deviation(Q))

)

where n is the number of nodes, and deviation(Q) measures the extent of deviation
of the default paths from geodesics (see Fig. 13.1). We also obtain a corresponding
result for the edge congestion. The congestion results hold with high probability,
while the stretch result is deterministic.

We apply our general result to two particular geometric networks: the two-
dimensional mesh network, and uniformly distributed disk networks. Both of these
kinds of network have geometric embeddings that are faithful to the network topolo-
gies. The mesh network is a two-dimensional grid of nodes (see Fig. 13.2). In disk
networks, each node is connected to any node within a specific disk radius. In the
uniformly distributed disk graphs, each unit square area contains a constant number
of nodes. In these networks, we can choose default paths with constant stretch and
deviation. Therefore, our algorithm gives paths with constant stretch. We obtain
node and edge congestions which are within logarithmic factors of optimal, Cnode =
O
(
C∗

node · log n
)

and Cedge = O
(

C∗
edge · log n

)
, with high probability. Maggs et al.

[21] give a worst case edge congestion lower bound of Ω
(

C∗
edge · log n

)
for any

oblivious routing algorithm in the two-dimensional mesh. Therefore, in addition to



384 C. Busch et al.

Fig. 13.2 The two-dimensional mesh network and a shortest path between two nodes

constant stretch, the congestion we obtain is optimal, within constant factors, for
oblivious algorithms.

13.1.2 Mesh Networks

We continue with an alternative oblivious algorithm for mesh networks. A two-
dimensional mesh with n nodes is simply a

√
n ×√

n grid of nodes (see Fig. 13.2).
The oblivious algorithm for geometric networks that we described above can be
applied to the two-dimensional mesh. However, it cannot be extended to higher
dimensions. Here, we present the oblivious routing algorithm in the mesh which
originally appears in [8]. The algorithm can be used for any d-dimensional mesh
network (d ≥ 2) and it provides near optimal congestion while maintaining a small
stretch.

The benefit of a higher dimensional algorithm is that it can be used in sensor
network deployments in buildings and other tall structures which are not restricted
in the two-dimensional space. Note that the mesh topology has a symmetric topol-
ogy and it may not be directly applicable in real deployment scenarios. However,
the mesh topology exhibits many characteristics which can be found in real sensor
networks (and especially in random uniform area deployment), such as the low node
degree, small ratio of Euclidian to graph distance, and low doubling dimension.
Routing algorithms on the mesh often generalize to other network topologies as
well and typically the mesh is used as an exploration testbed for the design and
analysis of new efficient algorithms.

Given a routing problem (collection of sources and destinations), let C∗ = C∗
edge

denote the optimal edge congestion attainable by any routing algorithm (oblivious
or not). We give an oblivious routing algorithm for the d-dimensional mesh with
n nodes, that achieves congestion O(d · C∗ · log n), and stretch O(d2), For the
d-dimensional mesh with n nodes, Maggs et al. [21] give the lower bound C∗

obl =
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Ω
(

C∗
d · log n

)
in the worst case for any oblivious routing algorithm. Considering

the class of oblivious algorithms, our algorithm is within O(d2) of optimal for both
congestion and dilation. For a fixed d, our algorithm is optimal to within constant
factors.

Our algorithm is based upon a hierarchical decomposition of the mesh. Starting
at its source node, a packet constructs its path by randomly selecting intermediate
points in submeshes of increasing size until the current submesh contains the desti-
nation node. Random intermediate points are then selected in submeshes of decreas-
ing size until the destination node is reached. The key new idea we introduce is the
notion of “bridge” submeshes that make it possible to move from a source to a des-
tination more quickly, without increasing the congestion. These bridge submeshes
are instrumental in controlling the stretch, while maintaining low congestion.

13.2 Geometric Networks

13.2.1 Preliminaries on Geometric Networks

Consider a geometric network G with n nodes which is embedded in the Euclidean
plane, R2 (see Fig. 13.1). We assume that G is un-weighted, undirected, connected,
and stationary. Further, its edges are un-weighted, i.e., the communication cost of
every link is 1 regardless of the link’s Euclidian distance. Every node vi has a posi-
tion xi ∈ R2. We will also use the notation x(v) to denote the position of the node
v. The network is defined over some area A. We will also refer to the network itself
as A when the context is clear. Thus, xi ∈ A for all i . For the area A, we define
a coverage radius R(A) of the area as follows (we drop the A dependence when
the context is clear). If, for every point x ∈ A, there is at least one node v that is
located at most a (Euclidean) distance R from x, then R is a coverage radius, i.e.,
from any point in A, one needs to go a distance of at most R to reach some node in
the network.

We define the pseudo-convexity γ (A) of area A as follows. Let x1, x2 ∈ A, and
consider the line 	 joining x1 to x2. Let 	⊥ be a line of equal length to 	 such that
	 and 	⊥ are mutually perpendicular bisectors. Let 	⊥A ⊆ 	⊥ be the intersection
of 	⊥ with A. Denote by

∣∣	⊥A
∣∣ the measure or “length” of 	⊥A. We define the local

pseudo-convexity at x1, x2 as γ (x1, x2) =
∣∣	⊥A
∣∣ /|	⊥|. The pseudo-convexity γ of

A is the infimum over all pairs x1, x2 ∈ A of γ (x1, x1)

γ = ∞x1,x2∈Aγ (x1, x2)

In words, γ is a lower bound on the fraction of the perpendicular bisector 	⊥ that is
guaranteed to be in A. Note that A is convex if γ ≥ 1

2 but that the converse is not
true (consider a very thin rectangle). For any regular convex polygon, or a circle,
γ ≥ 1

2 . For a network embedded in a fixed area A, γ is independent of n, which
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will have important consequences on the optimality of our path selection algorithm
(provided that γ > 0).

Since the network is embedded in R2, there are two notions of distance between
two nodes u, v that are useful. The first is the Euclidean distance, distE (u, v) which
is the length of the straight line (or geodesic) joining the positions x(u) and x(v).
For two points x, y ∈ R2, || x − y || is the Euclidean distance between them. Thus,
distE (u, v) = || x(u)− x(v) ||. The second useful distance measure is the graph-
theoretic or network distance distG(u, v) which is the length of the shortest path in
G from u to v. For any path p in G, we use |p| to denote the length of the path
(number of edges in the path), and we define the Euclidean path length |p|E to be
the weighted path length, where the weights on the edges are set to the Euclidean
distance between the nodes they connect.

For two nodes u, v, we use the measure distG(u, v)/distE (u, v) to represent how
well the Euclidean distances in the network embedding represent the network dis-
tances. We introduce two parameters α, β to denote lower and upper bounds for this
measure. Thus, for every pair of nodes u, v,

α ≤ distG(u, v)
distE (u, v)

≤ β

Thus, two nodes u, v that are connected by an edge (distG(u, v) = 1) cannot
be separated by more than a distance of 1

α
. Note also that distG(u, v) ≥ 1, so

distE (u, v) ≥ 1
β

. We thus have the following useful lemma.

Lemma 1 For any two nodes, u, v, distE (u, v) ≥ 1
β

. If u and v are adjacent then

distE (u, v) ≤ 1
α

.

Lemma 1 allows us to derive an upper bound on the number of nodes that can be in
a disk.

Lemma 2 Consider a disk of radius r ≥ 1
β

containing M nodes. Then M ≤ c(βr)2,

where c is a constant, c ≤ 1 + π/
(

2π
3 −

√
3

2

)
.

Proof The intuition is that every node accounts for an area of at least π/β2. Since
the total area is πr2, there can be at most πr2/(π/β2) = (βr)2 nodes. The only
complication is that nodes near the boundary do not take up the entire area π/β2, as
part of this area could be outside the disk. Taking this boundary phenomenon into
account gives us the constant c.

To prove the lemma, consider the circle of radius r − 1
β

with M1 nodes and the

remaining ring from r − 1
β

to r with M2 nodes. Since every one of the M1 nodes

defines an area of radius 1
β

that is completely enclosed in the disk, we have M1 ≤
(βr)2. Now consider the ring. The smallest area blocked off by a node occurs when
the node is on the boundary, in which case the area is smallest when r = 1

β
. Some

geometric considerations show that this area blocked off is at least 1
β2

(
2π
3 −

√
3

2

)
,
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and since the area of the ring is at most πr2, M2 ≤ (βr)2π/
(

2π
3 −

√
3

2

)
. To con-

clude, note that M ≤ M1 + M2. �
For every pair of nodes u, v, we assume that a default path q(u, v) in G is pro-

vided. For example, the default paths could be the shortest paths connecting the
pairs of nodes. The default paths should actually have certain good properties and
may not be shortest paths. Denote the set of all n(n − 1) default paths by the set Q.
For a given default path q(u, v), we define the stretch of the path, stretch(q), to be
|q(u, v)|/distG(u, v) which is the factor by which q is longer than the shortest path
between u and v.

Consider the infinite line 	 drawn through the points x(u) and x(v). Let z be
any intermediate node in the path q(u, v). The displacement of z from 	 is the
perpendicular (Euclidean) distance from x(z) to 	. The deviation of q(u, v) from
	, denoted deviation(q), is the maximum displacement of any intermediate node z
of q from 	. In other words, deviation(q) measures how closely the path q(u, v)
stays to the straight line (geodesic) from x(u) to x(v).

The stretch factor for the entire set of paths Q is the maximum stretch of any
path in Q and similarly with the deviation of Q. We use Σ to denote the stretch and
Δ to denote the deviation:

ΣQ = stretch(Q) = max
q∈Q

stretch(q)

ΔQ = deviation(Q) = max
q∈Q

deviation(q)

As we will see later in the analysis of our path selection algorithm, if the default
paths have small stretch and deviation, then the path selection performance is closer
to optimal. Thus, it is beneficial to select default paths that make these parameters as
small as possible. We will see later that for a variety of networks they can be made
constants.

13.2.2 Oblivious Routing on Geometric Networks

Here we describe our oblivious routing algorithm. The task of the algorithm is to
provide a path for each packet in the network. It is assumed that each node knows
the default paths that connect it to other nodes in the network. The algorithm is
randomized and we assume that each node has access to a sequence of random
numbers. The path selection algorithm is executed for each packet independently
of every other packet, so the algorithm is oblivious, and thus distributed and online.
Algorithm 1 is the detailed algorithm for a particular packet. The algorithm is similar
for any other packet. Figure 13.3 graphically illustrates the algorithm.

In the analysis of the algorithm, we consider a set of N packets Π which we will
refer to with their sources and destinations, Π = {si , ti }N

i=1. The result of applying
the algorithm to each packet is a set of paths P = {pi }N

i=1, where each path pi ∈ P
is from the source node si to the destination node ti . We define the stretch for a path
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Fig. 13.3 Path selection with oblivious routing algorithm for geometric networks

Algorithm 1 Oblivious Routing for Geometric Networks
Input: A graph G embedded in an area A with default paths Q; and a packet π with source s and

destination t ;
Output: A path p(s, t) from s to t ;
1: Let 	 be the geodesic line segment that connects x(s) and x(t). Let 	⊥ be the perpendicular

bisector of 	 which has the same length as 	 and is also bisected by 	. Let 	⊥A be the part of 	⊥
inside A;

2: Choose a point y randomly and uniformly on 	⊥A;
3: Find a node w close to y within coverage radius R;
4: The path p(s, t) from s to t is formed by concatenating the default paths q(s, w) and q(w, t):

p(s, t) = q(s, w)q(w, t);

p ∈ P as well as the stretch factor for the entire set P as we did in Sect. 13.2.1 with
the default paths Q. We define D∗ as the maximum shortest path length between
any pair of sources and destinations inΠ , namely, D∗ = maxi distG(si , ti ). We first
analyze the stretch of paths P and then we continue with the node congestion and
edge congestion.

13.2.2.1 Stretch Analysis

We now give a bound on stretch(P), the stretch factor of the paths selected.

Theorem 1 stretch(P) ≤
√

2β
α

·ΣQ ·
(

1 +√
2Rα

)
.

Proof We will refer to Fig. 13.3 in our proof. By construction,
√

2|| x(s)− y || ≤
|| x(s)− x(t) ||, and || x(s)− y || = || x(t)− y ||. Since || x(w)− y || ≤ R, by the tri-
angle inequality, we have that

|| x(s)− x(w) || ≤ || x(s)− y || + || x(w)− y ||
≤ 1√

2
|| x(s)− x(t) || + R
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Similarly,

|| x(t)− x(w) || ≤ 1√
2
|| x(s)− x(t) || + R

From the definition of ΣQ , the stretch factor of the default paths, we have

|q(s, w)| ≤ ΣQ · distG(s, w)

≤ β ·ΣQ · distE (s, w)

and similarly

|q(w, t)| ≤ β ·ΣQ · distE (w, t)

We thus conclude that

|p(s, t)| = |q(s, w)| + |q(w, t)|
≤ β ·ΣQ · (|| x(s)− x(w) || + || x(t)− x(w) ||)
≤ β ·ΣQ ·

(√
2|| x(s)− x(t) || + 2R

)

Since || x(s)− x(t) || ≤ 1
α

distG(s, t), and distG(s, t) ≥ 1, we obtain the theorem.
Typically R, α, β are constants, in which case stretch(P) = O(stretch(Q)),

i.e., the stretch factor of the algorithm is determined by the quality of the default
paths.

13.2.2.2 Node Congestion Analysis

We now turn to the node congestion. We will get a bound on the expected congestion
for any particular node with respect to the optimal congestion. We will then use a
Chernoff bounding argument to obtain a high probability result.

To bound the expected node congestion for a particular node v, we need to under-
stand the probability that a particular packet might use the node. Thus consider a
particular packet π , with source s and destination t , which uses intermediate node
w. Phase I of the path p(s, t) corresponds to the first part q(s, w), while phase II to
the second part q(w, t). Suppose that the packet uses v in phase I of its path (we will
bound the probability that π uses v in phase I of its path, a similar argument applies
to phase II of the path). Let r denote || x(v)− x(s) ||. The situation is illustrated in
Fig. 13.4. A circle of radius ΔQ is drawn around v. We give an upper bound on the
probability that π uses node v in the following lemma.

Lemma 3 Suppose that packet π has source s and destination t. Let PI be the prob-
ability that π uses node v in phase I of its path and PI I be the probability that π
uses node v in phase II of its path. Then,
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Fig. 13.4 Probability of using a node v

PI ≤ 5

γ

(
R

|| x(s)− x(t) || +
ΔQ

|| x(s)− x(v) ||
)

PI I ≤ 5

γ

(
R

|| x(s)− x(t) || +
ΔQ

|| x(t)− x(v) ||
)

Proof Consider the shaded cone subtended by the source s, tangent to the circle
of radius ΔQ centered on v. Since the deviation of the default paths is ΔQ , the
intermediate node must lie within the shaded cone if the path q(s, w) is to pass
through v. If the intermediate node is in the cone, the random intermediate point y
must lie either in the cone or in one of the two shaded strips of thickness R around
the cone. Since y must also be on 	⊥, y must lie on the line segment illustrated by
the thick line of length ε illustrated in Fig. 13.4. The probability of using v is then
bounded by ε/

∣∣	⊥A
∣∣. We use the definitions of θ, φ as shown in Fig. 13.4. Using

some elementary geometry, we find that

ε = R ·
(

1

cos(θ)
+ 1

cos(θ + φ)

)
+ 1

2
|	| · (tan(θ + φ)− tan(θ))

We observe that ε is largest when θ ≤ π
4 and θ + φ ≤ π

4 , so using some trigono-
metric identities we get

ε ≤ 2
√

2R + |	|
2

· tanφ(1 + tan2 θ)

1 − tan θ tanφ

≤ 2
√

2R + |	| · tanφ

1 − tanφ

where the last line follows because tan θ < 1. Since
∣∣	⊥A
∣∣ ≥ γ |	⊥| = γ |	|, we get

that the probability of using v is at most
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Prob ≤ 2
√

2
R

γ |	| +
1

γ

tanφ

1 − tanφ
(a)≤ 2

√
2

R

γ |	| +
2 tanφ

γ

(b)= 2
√

2
R

γ |	| +
4

γ

tan φ
2

1 − tan2 φ
2

(c)≤ 2
√

2
R

γ |	| +
64 tan φ

2

15γ
(d)= 2

√
2

R

γ |	| +
64

15γ

ΔQ/r
√

1 −Δ2
Q/r2

(e)≤ 5

γ

(
R

|	| +
ΔQ

r

)

Inequality (a) follows because when tanφ ≤ 1
2 , tanφ/(1 − tanφ) ≤ 2 tanφ, and

when tanφ > 1
2 , 2 tanφ > 1, in which case it is a trivially valid upper bound for

the probability; (b) follows by using a double angle identity; (c) follows by a similar
argument that leads to (a) by considering separately tan φ

2 ≤ 1
4 and tan φ

2 > 1
4 ; (d)

follows because from Fig. 13.4, we see that tan φ
2 = ΔQ/

√
r2 −Δ2

Q ; and finally,

(e) follows using 2
√

2 < 5 and by considering separately the cases ΔQ/r ≤ 1
5 and

ΔQ/r > 1
5 (similar with (a) and (c)).

To conclude, note that by symmetry, the situation is exactly reversed if the packet
uses v in phase II of its path, except that now r will be the distance from v to the
destination t . �

In order to bound the congestion on node v, we need to bound the number of
packets that can cross v and then using Lemma 3 we will be able to bound the
expected congestion on v. We first compute how far the packets that cross v have
their sources or destinations from v, this will help to bound the number of those
packets. Let X I denote the packets that could possibly use v during phase I of their
path and similarly X I I . Consider only the packets in X I . Let SI = {sk} denote the
sources of all the packets in X I . Let rmax be the maximum (Euclidean) distance
from the positions of these sources to x(v), thus, rmax = maxs∈SI || x(s)− x(v) ||.
We have the following result (a similar result holds for the destinations).

Lemma 4 rmax ≤ D∗√
2α

+ R +ΔQ .

Proof Let s be a source that could possibly use v in phase I and let t be
the corresponding destination. Let w be a possible intermediate node. Then
|| x(s)− x(w) || ≤ 1√

2
|| x(s)− x(t) || + R. Since the path cannot deviate by more

thanΔQ from the line joining x(s) to x(w), and the path passes through v, it follows
that



392 C. Busch et al.

|| x(v)− x(s) || ≤ || x(s)− x(w) || +ΔQ

≤ 1√
2
|| x(s)− x(t) || + R +ΔQ

To conclude, note that || x(s)− x(t) || ≤ 1
α

distG(s, t) and distG(s, t) ≤ D∗. �

In order to bound the congestion on v, we will divide the area around v into
concentric rings with maximum radius rmax. We will then bound the number of
packets that originate in each ring and use v. The number of packets from each ring
will be used to bound the expected congestion caused by each ring. The sum of the
expected congestions from the rings will determine the total congestion on node v.

Consider concentric rings A0, A1, A2, . . . of exponentially increasing radius,
centered at x(v). Ring Ai has radius ri = 2i/β, for i ≥ 0. Let imax = �log(rmaxβ)�
(logarithms are base 2). Note that all the sources in SI are contained in Aimax . For
i > 0, we collect in set SI

i all the sources which are in ring Ai , but not in Ai−1 (that
is, they are in the area between Ai−1 and Ai ). Figure 13.5 illustrates the situation.
Consider a particular i and the packets X I

i with sources in SI
i . Let Ni = ∣∣X I

i

∣∣ be
the number of packets with sources in SI

i . In order to obtain an upper bound on the
expected congestion at v, we will need to bound Ni in terms of the optimal node
congestion C∗

node.

Lemma 5 For any i ≥ 0 :

C∗
node ≥

αhi Ni

4c(βri )2

where,

v

Ai−1

Ai

w
A0

A1

s

t

Si
I

Fig. 13.5 Expected congestion at a node v
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hi = max

{
1

β
,
√

2(ri−1 − R −ΔQ)

}

Proof As in the proof of Lemma 4, || x(s)− x(v) || ≤ |	|√
2
+ R + ΔQ, and since

|| x(s)− x(v) || ≥ ri−1, we get

|	| ≥ √
2(ri−1 − R −ΔQ)

From Lemma 1, |	| ≥ 1
β

, therefore |	| ≥ hi . Furthermore, from the definition of
α and Lemma 1, we have that the minimum number of hops from s to t is at least
α|	| ≥ αhi , and each of these hops moves a distance of at most 1

α
. So, for Ni such

paths, any path selection algorithm will have to use at least αhi hops per path, within
a disk of radius

r = ri + hi ≤ ri + 2ri−1 ≤ 2ri

By Lemma 2, there are at most 4c(βri )
2 nodes within this disk of radius r . The

minimum total number of times these nodes are used by any path selection algorithm
is αhi Ni . Thus, the average number of times Tavg a node is used in radius r is at least

Tavg ≥ αhi Ni

4c(βri )2

where c is the constant defined in Lemma 2. Since one of these nodes has to be used
at least Tavg times, we obtain a lower bound on the congestion for any path selection
algorithm, and hence for the optimal congestion C∗

node ≥ Tavg. �

Note that inverting the bound in Lemma 5, we get an upper bound for Ni , when
i ≥ 1:

Ni ≤ 4c(βri )
2C∗

node

αhi
(13.1)

Note that for i = 0 it holds trivially that N0 ≤ 0, since no node except for v can be
in ring A0 (a consequence of Lemma 1). The upper bound for Ni together with the
upper bound for the probability that any of these packets uses node v (Lemma 3)
allows us to bound the expected congestion.

Theorem 2 The expected congestion on node v is

E[C(v)] ≤ f (γ, α, β, R,ΔQ, D∗) · C∗
node

where,
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f (γ, α, β, R,ΔQ, D∗) =
40cβ2(R + 2ΔQ)

γ α
· ((3 + 4β(R +ΔQ))

2

+4 log

(
βD∗
√

2α
+ β(R +ΔQ)

)
+ 1

)
.

Proof Let Probv(π) be the probability that packet π ∈ X I
i uses node v. Then packet

π ’s contribution to the expected node congestion at v is Probv(π). Using Lemma 3,
we can bound Probv(π) by PI . Then, Ni PI is an upper bound for the contribution
to the expected node congestion at v due to the packets in X I

i . Since every source
in SI

i is distanced at least ri−1 from node v, from Lemma 3 and using 13.1, and the
fact that ri ≥ hi , we obtain for i ≥ 1:

∑

π∈X I
i

Probv(π) ≤ Ni PI

≤ 20c(βri )
2C∗

node

γαhi

(
R

hi
+ ΔQ

ri−1

)

= 20cβ2C∗
node

γα

(

R
r2

i

h2
i

+ 2ΔQ
ri

hi

)

≤ 20cβ2(R + 2ΔQ)C∗
node

γα
· r2

i

h2
i

The expected node congestion at v is obtained by summing the contributions due to
each set X I

i for i = 1, . . . , imax. Thus,

E[C(v)] ≤ 20cβ2(R + 2ΔQ)C∗
node

γα

imax∑

i=1

r2
i

h2
i

Consider now the ratio hi/ri . We have

hi

ri
=

max
{

1
β
,
√

2(ri−1 − R −ΔQ)
}

ri

= max

{
1

2i
,
√

2

(
1

2
− β(R +ΔQ)

2i

)}

Let

i∗ =
⌈

log
(√

2 + 4β(R +ΔQ)
)⌉
.
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Then for i ≥ i∗, it holds hi
ri

≥
√

2
4 or equivalently ri

hi
≤ 23/4 < 2. For 1 ≤ i < i∗,

we have that hi
ri

≥ 1
2i , or in other words, ri

hi
≤ 2i . Since imax = �log(rmaxβ)�, using

the bound in Lemma 4, we get

imax∑

i=1

r2
i

h2
i

=
i∗−1∑

i=1

r2
i

h2
i

+
imax∑

i=i∗

r2
i

h2
i

≤
i∗−1∑

i=1

4i +
imax∑

i=i∗
4

≤ (2i∗)2 + 4imax

≤ (3 + 4β(R +ΔQ))
2

+4 log

(
βD∗
√

2α
+ β(R +ΔQ)

)
+ 1

A symmetrical argument applies to the second phase of the paths, which contributes
an additional factor of 2, concluding the proof. �

Note that without increasing the expected congestion, we can always remove any
cycles in a path, so without loss of generality, we will assume that the paths are
acyclic. We now obtain a concentrated result on the congestion using a straightfor-
ward Chernoff bounding argument and the fact that every packet selects its path
independently of every other packet. To simplify the presentation, we give the result
for constant γ, α, β, R in which case Theorem 2 gives

E[C(v)] = O
(

C∗
node ·

(
Δ3

Q + (1 +ΔQ) log(D∗ +ΔQ)
))

The general case can be handled similarly. We have the following theorem.

Theorem 3 When γ, α, β, R are constants, the node congestion is

Cnode = O
(

C∗
node ·

(
1 +Δ3

Q

)
· log(n +ΔQ)

)

with high probability.

Proof Let Xi = 1 if path p(si , ti ) uses node v, and Xi = 0 otherwise. Then, by
Theorem 2, there is a constant A such that
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E[C(v)] = E

[
∑

i

Xi

]

≤ A · C∗
node

·
(
Δ3

Q + (1 +ΔQ) log(D∗ +ΔQ)
)

≤ A · C∗
node

·
(
Δ3

Q log n + (1 +ΔQ) log(n(D∗ +ΔQ))
)

:= B.

Let κ > 2e. Since
∑

i Xi is a sum of independent Bernoulli trials, by applying a
Chernoff bound [23] we obtain

P[C(v) > κB] < 2−κB ≤ 1/nκA

where we used the facts that C∗
node, D∗ ≥ 1 and ΔQ ≥ 0. Taking a union bound

over the n nodes multiplies by an additional n, reducing the exponent on the right
to κA − 1. Choosing a large enough κ , and noting that D∗ = O(n), we obtain the
theorem. �

13.2.2.3 Edge Congestion Analysis

For the edge congestion, the proof is similar to the node congestion. In order to carry
through the same analysis, we need an upper bound on the number of edges in the
area, so we can get a lower bound on the average edge congestion. If the maximum
degree (maximum number of edges adjacent per node) in the network is δ, then the
maximum number of edges is at most a factor of δ times the maximum number of
nodes. Therefore, the result is that the optimal edge congestion is at most a factor
of δ smaller than the optimal node congestion, giving the following theorem for the
expected edge congestion,

Theorem 4 Let δ be the maximum node degree. The expected congestion on an edge
e is

E[C(e)] ≤ δ · f (γ, α, β, R,ΔQ, D∗) · C∗
edge

A concentrated result can also be obtained for the edge congestion.

Theorem 5 When γ, α, β, R are constants, the edge congestion is

Cedge = O
(
δ · C∗

edge ·
(

1 +Δ3
Q

)
· log(n +ΔQ)

)

with high probability.
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13.2.3 Applications of Geometric Networks

The oblivious algorithm for geometric networks has applications in the two-
dimensional mesh and also in uniformly distributed unit disk graphs. The two-
dimensional mesh is an

√
n × √

n grid of nodes, where each node is connected
with at most four adjacent neighbors (see Fig. 13.2). The nodes are placed at a unit
distance from each other, and thus R = 1/

√
2. The rectangular area A is a square

defined by the border nodes of the mesh so the pseudo-convexity γ = 1/2. For the
default path between a pair of nodes, we choose the shortest path that connects the
nodes which is closest to the geodesic and therefore deviation(Q) ≤ 1/

√
2. Since

the default paths are shortest paths, stretch(Q) = 1. Since adjacent nodes cannot
be further than a unit distance, we have that α = 1. Moreover, the number of nodes
used per unit distance in the shortest path is maximized when the geodesic between
the nodes is 45◦, which gives β = √

2. Since the maximum node degree is 4, using
Theorems 1, 3, and 5, we obtain

Theorem 6 The oblivious algorithm on the mesh has stretch(P) < 2
√

2 and node

congestion O
(
C∗

node · log n
)

and edge congestion O
(

C∗
edge · log n

)
with high prob-

ability.

We consider uniform disk graphs with n nodes distributed in an s1 × s2 rectangle
area A, with constant pseudo-convexity γ = min{s1, s2}/2 max{s1, s2} (i.e., the
sides are proportional to each other). In a disk graph, each node has a constant radius
r and is connected to any node within this radius (see Fig. 13.6). We set the radius
r = 2

√
2 and assume that no two nodes are placed within a constant distance l of

each other. We consider a uniform distribution for the nodes in the area, i.e., the area
is divided into non-overlapping unit squares, and every unit square area contains a

number of nodes between 1 and k = O
(

1
l2

)
nodes, where k is a constant. By

the choice of r , two nodes within the same square or in adjacent squares will be
connected. Thus, R ≤ √

2, and since there are at most 32 squares containing nodes
which could possibly be adjacent to a particular node, the maximum node degree is
bounded by δ ≤ 32k.

We now explain how to construct the default paths (see Fig. 13.6). Consider
two nodes u and v in area A and construct the line 	 that connects x(u) to x(v).
This line passes through a collection of unit squares, forming a path with adjacent
unit squares. We pick one node from each square and construct the default path by
connecting these nodes. Since for every node in the path, the line passes through the
corresponding unit square containing the node, deviation(Q) ≤ √

2. The number
of unit squares in the formation of the default path is no more than 2|	|, so the
longest default path consists of at most 2|	| nodes. The shortest path has to use at
least |	|/r nodes; therefore, stretch(Q) ≤ 2r . Since distG(u, v) ≥ distE (u, v)/r ,
α ≥ 1/r . If distG(u, v) = 1, distE (u, v) ≥ l, so distG(u, v)/distE (u, v) ≤ 1

l . More
generally, we know that distG(u, v) ≤ 2|	| since the default path has 2|	| hops, so
the shortest path cannot have more. Thus, distG(u, v)/distE (u, v) ≤ max{2, 1/ l},
so β ≤ max{2, 1/ l}. Applying Theorems 1, 3, and 5, we obtain
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r

v

u

Fig. 13.6 Connectivity of a disk graph and default path construction

Theorem 7 On uniform disk graphs, the oblivious routing algorithm has
stretch(P) = O(1) and node congestion O

(
C∗

node · log n
)

and edge congestion

O
(

C∗
edge · log n

)
with a high probability.

13.3 Mesh Networks

13.3.1 Preliminaries on Mesh Networks

The d-dimensional mesh M is a d-dimensional grid of nodes with side length mi

in dimension i . There is a link connecting a node with each of its 2d neighbors
(except for the nodes at the boundaries of the mesh). We denote by n the size of
M , n = size(M) = ∏d

i=1 mi , and by |E | the number of edges in the network.
Each node has a coordinate. For example, in the two-dimensional mesh, the top-left
node has coordinate (0, 0). We refer to specific submeshes by giving its end points
in every dimension, for example, [0, 3][2, 5] refers to a 4 × 4 submesh, with the x
coordinate ranging from 0 to 3 and the y coordinate from 2 to 5.

The input for the path selection problem is a set of N sources and destinations
(i.e., packets), Π = {si , ti }N

i=1 and the mesh M . The output is a set of paths,
P = {pi }, where each path pi ∈ P is from node si to node ti . The length of
path p, denoted |p|, is the number of edges it uses. We denote the length of the
shortest path from s to t by dist(s, t). We will denote by D∗ the maximum short-
est distance, maxi dist(si , ti ). The stretch of a path pi , denoted stretch(pi ), is the
ratio of the path length to the shortest path length between its source and destina-
tion, stretch(pi ) = |pi |/dist(si , ti ). The stretch factor for the collection of paths
P , denoted stretch(P), is the maximum stretch of any path in P , stretch(P) =
maxi stretch(pi ).

For a submesh M ′ ⊆ M , let out(M ′) denote the number of edges at the boundary
of M ′, which connect nodes in M ′ with nodes outside M ′. For any routing prob-
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lem Π , we define the boundary congestion as follows. Consider some submesh
of the network M ′. Let Π ′ denote the packets (pairs of sources and destinations)
in Π which have either their source or their destination in M ′, but not both. All
the packets in Π ′ will cross the boundary of M ′. The paths of these packets will
cause congestion at least |Π ′|/out(M ′) times. We define the boundary congestion
of M ′ to be B(M ′,Π) = |Π ′|/out(M ′). For the routing problem Π , the bound-
ary congestion B is the maximum boundary congestion over all its submeshes, i.e.,
B = maxM ′⊆M B(M ′,Π). Clearly, C∗ ≥ B.

13.3.2 Oblivious Routing on Two-Dimensional Mesh Networks

Here we show how to select the paths in a two-dimensional mesh with equal side
lengths m = 2k, k ≥ 0. We consider this case here for expository ease, however,
the result generalizes to the case of unequal side lengths which are not necessarily
powers of 2. We use the two-dimensional case to illustrate the main ideas, before
generalizing to the d-dimensional case in the next section. The path selection algo-
rithm relies on a decomposition of the mesh to submeshes, and then constructing an
access graph, as we describe next.

13.3.2.1 Decomposition to Submeshes

We decompose the mesh M into two types of submeshes, type-1 and type-2, as
follows:

• Type-1 submeshes: We define the type-1 submeshes recursively. There are k + 1
levels of type-1 submeshes, 	 = 0, . . . , k. The mesh M itself is the only level
0 submesh. Every submesh at level 	 can be partitioned into four submeshes by
dividing each side by 2. Each resulting submesh is a type-1 submesh at level
	+ 1. This construction is illustrated in Fig. 13.7. In general, at level 	 there are
22	 submeshes each with side m	 = 2k−	. Note that the level k submeshes are
the individual nodes of the mesh.

• Type-2 submeshes: There are k−1 levels of type-2 submeshes, 	 = 1, . . . , k − 1.
The type-2 submeshes at level 	 are obtained by first extending the grid of type-1
meshes by adding one layer of type-1 meshes along every dimension. The result-
ing grid is then translated by the vector −(m	/2,m	/2). In this enlarged and
translated grid, some of the resulting translated submeshes are entirely within M .
These are the internal type-2 submeshes. For the remaining external type-2
submeshes, we keep only their intersection with M , except that we discard all
the “corner” submeshes, because they will be included in the type-1 submeshes
at the next level. Notice that all the type-2 submeshes have at least one side with
a length of m	 nodes. Fig. 13.7 illustrates the construction.

A submesh of M is regular if it is either type-1 or type-2. Unless otherwise
stated, a submesh will always refer to regular submeshes. The following lemma
follows from the construction of the regular submeshes.
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Level 1, Level 1, Level 2, Level 2,
type 1. type 2. type 1. type 2.

Fig. 13.7 Mesh decomposition for the 23 × 23 mesh. Arrows indicate the parents of a submesh

Lemma 6 The mesh decomposition satisfies the following properties:

(1) The type-1 submeshes at a given level are disjoint, as are the type-2
submeshes.

(2) Every regular submesh at level 	 can be partitioned into type-1 submeshes at
level 	+ 1.

(3) Every regular submesh at level 	 + 1 is completely contained in a submesh at
level 	 of either type-1 or type-2, or both.

13.3.2.2 Access Graph

The access graph G(M), for the mesh M , is a leveled graph with k + 1 levels of
nodes, 	 = 0, . . . , k. The nodes in the access graph correspond to the distinct regular
submeshes. Specifically, every level-	 submesh (type-1 or type-2) corresponds to a
level 	 node in G(M). Edges exist only between adjacent levels of the graph. Let u	,
u	+1 be level 	 and 	+1 nodes of G(M), respectively. The edge (u	, u	+1) exists if
the regular submesh corresponding to u	 completely contains the regular submesh
corresponding to u	+1. We borrow some terminology from trees. We say that u	 is
a parent of u	+1 in G(M); the parent relationship is illustrated in Fig. 13.7, for the
corresponding submeshes. Note that the access graph is not necessarily a tree, since
a node can have two parents (a consequence of Lemma 6, part (3)). The depth of
a node is the same as its level 	, and its height is k − 	. Nodes at height 0 have
no children and are referred to as leaves. The leaves in G(M) correspond to single
nodes in the mesh. There is a unique root at level 0, which corresponds to the whole
mesh M .

Let p = (u1, u2, . . . , uk) be a path in G(M). We say that p is monotonic if every
node is of increasing level (i.e., the level of ui is higher than the level of ui+1), and
the respective submeshes of nodes u2, . . . , uk are all of type-1. If p is monotonic,
then we say that u1 is an ancestor of uk . We will use a function g to map nodes in the
access graph to submeshes. Let u be a node in the access graph with a corresponding
submesh M ′. We define the function g so that g(u) = M ′. Denote by g−1 the inverse
of function g, that is, g−1(M ′) = u. Using induction on the height of G(M) and
part (2) of Lemma 6, we obtain the following lemma:
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Lemma 7 Let v be any node (1 × 1 submesh) of a regular submesh M ′ ⊆ M, then
g−1(M ′) is an ancestor of g−1(v).

Let u and v be two leaves of G(M) and let A be their (not necessarily unique)
deepest common ancestor; note that A exists and in the worst case is g−1(M) (a
consequence of Lemma 7). Let p = (u, . . . , A, . . . , v), be the concatenation of two
monotonic paths, one from A to u and the other from A to v. We will refer to p as the
bitonic path between u and v. Submesh g(A) may be type-1 or type-2, all the other
submeshes in p are of type-1. We will refer to g(A) as a “bridge” submesh, since
it provides the connecting point between two monotonic paths. Note that type-2
submeshes can be used as bridges between type-1 submeshes, when constructing
bitonic paths between leaves. Further, only one type-2 submesh is ever needed in a
bitonic path. These access graph paths will be used by the path selection algorithm.
Suppose that height (A) = h A. The length of a bitonic path from u to v is 2h A. We
now show that h A cannot be too large. This will be important in proving that the
path selection algorithm gives constant stretch.

Lemma 8 The deepest common ancestor of two leaves u and v has a height of at
most �log dist(g(u), g(v))�+2.

Proof Let s, t ∈ M such that s = g(u) and t = g(v). We show that there is a
common ancestor with height at most �log dist(s, t)�+2.

Assume, first, that instead of a mesh, the network is a torus (the same result holds
for the mesh, with a minor technical detail in the proof due to edge effects, which
we will discuss later). In this case, all type-2 meshes are of the same size. We obtain
the regular submeshes in the original mesh after truncation of the submeshes at the
borders of the torus. Note that all distances, however, are measured on the mesh.

Let μ = 2�log dist(s,t)� ≥ dist(s, t). If 4μ ≥ 2k , then the root, g−1(M), is a
common ancestor with, at most, a height of �log dist(s, t)�+2, so assume that 4μ <

2k . Node s is contained in some type-1 submesh of side length 4μ. Without loss of
generality (since we are on a torus), assume that this submesh is M1 = [0, 4μ−1]2.
If M1 also contains t , then we are done, since by Lemma 7, g−1(M1) is a common
ancestor at height �log dist(s, t)�+2. So suppose that t is contained in some other
(adjacent) type-1 submesh M2. There are two possibilities for M2.

1. M1 and M2 are diagonally adjacent, so without loss of generality, let M2 =
[4μ, 8μ − 1][4μ, 8μ − 1]. Since dist(s, t) ≤ μ, s ∈ [3μ, 4μ − 1]2 and t ∈
[4μ, 5μ− 1]2, and so the type-2 submesh [2μ, 6μ− 1]2 contains both s and t .

2. M2 is laterally adjacent to M1, so, without loss of generality, let M2 be to the
right of M1, i.e., M2 = [0, 4μ − 1][4μ, 8μ − 1]. In this case, s must be in the
right half of M1 and t in the left half of M2, i.e., s ∈ [0, 4μ−1][3μ, 4μ−1] and
t ∈ [0, 4μ− 1][4μ, 5μ− 1]. There are four cases:

a. s ∈ [0, 2μ− 1][3μ, 4μ− 1] and t ∈ [0, 2μ− 1][4μ, 5μ− 1], in which case
the type-2 submesh [−2μ, 2μ− 1][2μ, 6μ− 1] contains s, t ;

b. s ∈ [2μ, 4μ − 1][3μ, 4μ − 1] and t ∈ [2μ, 4μ − 1][4μ, 5μ − 1], in which
case the type-2 submesh [2μ, 6μ− 1]2 contains s, t ;



402 C. Busch et al.

c. s ∈ [μ, 2μ − 1][3μ, 4μ − 1] and t ∈ [2μ, 3μ − 1][4μ, 5μ − 1], in which
case the type-2 submesh [μ, 3μ−1][3μ, 5μ−1] at height �log dist(s, t)�+1
contains s, t ;

d. s ∈ [2μ, 3μ − 1][3μ, 4μ − 1] and t ∈ [μ, 2μ − 1][4μ, 5μ − 1], which is
similar to (c).

In all cases, s and t are contained in a submesh of a height of at most
�log dist(s, t)�+2.

To complete the argument, we now suppose that the network is a mesh (instead of
a torus). If the ancestor submesh constructed in the torus is also a regular submesh
in the mesh, then there is nothing to prove. So, assume that the ancestor constructed
in the torus is not a regular submesh of the mesh. In particular, the ancestor con-
structed on the torus must be composed of two type-2 submeshes, on opposite sides
of the mesh. If s, t are both contained in one of these submeshes, then they are
both contained in a type-2 submesh of a height of at most �log dist(s, t)�+2. The
only remaining case is that s is in one of these submeshes and t is in the other. In
this case, dist(s, t) ≥ 2k−1, and since μ ≥ dist(s, t), we have that μ ≥ 2k−1, or
that 4μ ≥ 2k+1 which contradicts the assumption that 4μ < 2k , concluding the
proof. �

Algorithm 2 Oblivious Routing for two-Dimensional Mesh Networks
Input: Source s and destination t in the mesh M ;
Output: Path p(s, t) from s to t in M ;
1: Let (u0, . . . , ul ) denote a bitonic path in G(M) from g−1(s) to g−1(t);
2: for i = 0 to l do
3: Select a node vi in g(ui ) uniformly at random; //v0 = s and vl = t
4: if 1 ≤ i ≤ l then
5: Construct subpath ri from vi−1 to vi by picking a dimension by dimension shortest path1

(an at most one-bend path), according to a random ordering of the dimensions;
6: end if
7: end for
8: The path p(s, t) is obtained by concatenating the subpaths ri , p(s, t) = r0r1 · · · rl−1;

13.3.2.3 Path Selection

Given the access graph, the procedure to determine a path from a given source s to
a destination t is summarized in Algorithm 2. Note that the algorithm is oblivious
and local, since each source–destination pair can obtain a path independently of the
other paths. We will now show that our algorithm with the generalized access graph,
in addition to obtaining optimal congestion, also controls the stretch. First we show
the constant stretch property of the selected paths.

Theorem 8 For any two distinct nodes s, t , stretch(p(s, t)) ≤ 64.

Proof Let h be the height of the deepest common ancestor of s and t . Then p(s, t)
is the concatenation of paths constructed from the dimension by dimension paths
in meshes of sides 21, . . . , 2h−1, 2h, 2h−1, . . . , 21. A path in a mesh of side 	 has
length of at most 2	 − 1, so by adding the lengths of these paths, we have that
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|p(s, t)| ≤ 2(21 + · · · + 2h + 2h + · · · + 21 − 2h) which implies that |p(s, t)| ≤
2h+3 − 4h. Since s and t are distinct, h ≥ 1. By Lemma 8, h ≤ log dist(s, t) + 3,
and the theorem follows. �

We now relate the congestion of the paths selected to the optimal congestion C∗.
Let e denote an edge in M . Let C(e) denote the load on e, i.e., the number of times
that edge e is used by the paths of all the packets. We will get an upper bound on
E[C(e)], and then, using a Chernoff bound, we will obtain a concentrated result.

We start by bounding the probability that some particular subpath formed by the
path selection algorithm uses edge e. Consider the formation of a subpath ri from
a submesh M1 to a submesh M2, such that M2 completely contains M1, and e is a
member of M2. According to the path selection algorithm, mesh M1 is of type-1,
thus all of its sides are equal to m	, where 	 is the level of M1. We show the following
lemma.

Lemma 9 Subpath ri uses edge e with probability at most 2/m	.

Proof For subpath ri , let v1 be the starting node in M1 and v2 the ending node
in M2. Suppose e = (v3, v4). Without loss of generality, suppose e is vertical. Since
the subpath is a one-bend path, edge e can be used only when either v1 or v2 have
the same x coordinate as e. This event occurs at a probability of at most 2/m	. �

Let P ′ be the set of paths that go from M1 to M2 or vice versa. Let C ′(e) denote
the congestion that the packets P ′ cause on e. We show

Lemma 10 E[C ′(e)] ≤ 2|P ′|/m	.

Proof We can write P ′ = P1 ∪ P2, where P1 is the set of subpaths from M1 to
M2 and P2 is the subpaths from M2 to M1. Then, from Lemma 9, the expected
congestion on edge e due to the subpaths in P1 is bounded by 2|P1|/m	. Using a
similar analysis, the expected congestion on e due to subpaths in P2 is bounded
by 2|P2|/m	. Since the congestion on e due to the paths in P ′ is the sum of
the congestions due to P1 and P2, we obtain E[C ′(e)] ≤ 2(|P1| + |P2|)/m	 =
2|P ′|/m	. �

From the definition of the boundary congestion, we have that B ≥ B(M1,Π) ≥
|P ′|/out(M1). Therefore, C∗ ≥ |P ′|/out(M1). Since each side of M1 has m	 nodes,
we have that out(M1) ≤ 4m	. From Lemma 10, we therefore obtain

Lemma 11 E[C ′(e)] ≤ 8C∗.

We “charge” this congestion to submesh M2. By Lemma 8, only submeshes up
to height h < log D∗ + 3 can contribute to the congestion on edge e (submeshes of
type-1). By summing the congestions due to these at most 2(log D∗ +3) submeshes
(a type-1 and a type-2 submesh at each level), and by using Lemma 11, we arrive at
an upper bound for the expected congestion on edge e.

Lemma 12 E[C(e)] ≤ 16C∗(log D∗ + 3).

Note that without increasing the expected congestion, we can always remove any
cycles in a path, so without loss of generality, we will assume that the paths obtained
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are acyclic. We now obtain a concentrated result on the congestion C obtained by
our algorithm, using the fact that every packet selects its path independently of every
other packet.

Theorem 9 C = O(C∗ log n) with high probability.

Proof Let Xi = 1 if path pi uses edge e, and 0 otherwise. Then E[C(e)] =
E[∑i Xi ] ≤ 16C∗(log D∗ + 3). Let |E | be the number of edges in the mesh. For
|E | > 8, E[C(e)] ≤ 16C∗ log(|E |D∗). Let κ > 2e, then applying a Chernoff bound
[23], and using the fact that C∗ ≥ 1 we find that P[C(e) > 16κC∗ log(|E |D∗)] <
(|E |D∗)−16κ . Taking a union bound over all the edges, we obtain

P

[
max
e∈E

C(e) > 16κC∗ log(|E |D∗)
]
<

1

(|E |D∗)16κ−1

Using the fact that D∗ = O(|E |), |E | = O(n2), and choosing κ = 2e + 1, we get
C = O(C∗ log n) with high probability. �
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Chapter 14
Scheduling Algorithms for Tree-Based Data
Collection in Wireless Sensor Networks

Ozlem Durmaz Incel, Amitabha Ghosh, and Bhaskar Krishnamachari

Abstract Data collection is a fundamental operation in wireless sensor networks
(WSN) where sensor nodes measure attributes about a phenomenon of interest
and transmit their readings to a common base station. In this chapter, we survey
contention-free time division multiple access (TDMA)-based scheduling protocols
for such data collection applications over tree-based routing topologies. We classify
the algorithms according to their common design objectives, identifying the follow-
ing four as the most fundamental and most studied with respect to data collection
in WSNs: (i) minimizing schedule length, (ii) minimizing latency, (iii) minimizing
energy consumption, and (iv) maximizing fairness. We also describe the pros and
cons of the underlying design constraints and assumptions and provide a taxonomy
according to these metrics. Finally, we discuss some open problems together with
future research directions.

14.1 Introduction

Data collection from a set of sensors to a common sink over a tree-based rout-
ing topology is a fundamental traffic pattern in wireless sensor networks (WSNs).
This many-to-one communication pattern in which data flows from many nodes to
a single node is known as convergecast. One may view convergecast as opposite to
broadcast or multicast in which data flows from a single node to a set of nodes in
the network. Figure 14.1 shows a simple example that illustrates the characteristics
of a typical broadcast and convergecast. In broadcast, as shown in Fig. 14.1a, node
s is the message source and nodes a, b, and c are expected recipients. Node a hears
the message directly from s and forwards a copy to nodes b and c. In case of a
convergecast, as shown in Fig. 14.1b, nodes a, b, and c each has a message destined
to the sink node s and a serves as a relay for b and c.
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(a) (b)

Fig. 14.1 (a) Broadcast — data flows from a single node s to a set of nodes a, b, c. (b) Converge-
cast — data flows from nodes a, b, and c to a single node s

Once data is collected at the sink, it either can be recorded and stored for future
analysis or can be processed immediately to take certain actions depending on appli-
cation requirements. In a WSN, data collection either can be triggered by external
sources, such as queries to get a snapshot view of the network or events as and when
they appear, or can be for continuous periodic monitoring without any external trig-
gering. In all cases, however, the many-to-one communication pattern is common.

Depending on application requirements, different objectives can be associated
with data collection. For instance, in disaster early warning applications, such as
detection of forest fire [73] and gas/oil leaks [14], or structural damage identifi-
cation [9], bursty traffic generated by events needs to be delivered to the sink as
quickly and as reliably as possible to prevent catastrophes. On the other hand, in
applications where sensor nodes only report periodic data, such as animal habi-
tat monitoring [50], energy efficiency may become a more important concern as
opposed to quick data collection.

Particularly under regular, heavy traffic conditions, contention-free medium
access control (MAC) protocols, such as time division multiple access (TDMA),
where nodes communicate on different time slots to prevent conflicts, offer several
advantages for data collection as compared to contention-based protocols [27]. They
eliminate collisions, overhearing, and idle listening, which are the main sources of
energy consumption in wireless communications [15]. In addition, they also permit
nodes to enter into sleep modes during inactive periods, thus achieving low duty
cycles and conserving energy. Furthermore, TDMA-based communications can pro-
vide provable guarantee on the completion time of data collection, for instance, in
timely detection of events. Another key aspect of time-slotted communication is
robustness during peak loads. When the number of source nodes are many or the
data rates are high, carrier-sense multiple access protocols, such as CSMA, may
fail to successfully allocate the medium, causing retransmissions and collisions. A
number of TDMA-based MAC protocols for WSNs have been proposed to exploit
these advantages [2, 20, 36, 58, 61].

In this chapter, we survey TDMA-based scheduling algorithms for data collec-
tion in sensor networks. We first classify the algorithms based on their common
objectives and then identify different design constraints and assumptions and pro-
vide a taxonomy according to these metrics. We identify the following four objec-
tives as the most studied in literature and the most fundamental with respect to
data collection in WSN: (i) minimizing schedule length, (ii) minimizing latency,
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(iii) minimizing energy consumption, and (iv) maximizing fairness. We also find that
some algorithms target joint optimization of multiple objectives, such as minimizing
delay as well as energy. We note that there exist many other studies, not necessar-
ily about convergecast, that focus on these objectives; however, in this chapter, we
consider only studies that use TDMA scheduling for tree-based data collection.

In terms of design constraints and assumptions, the algorithms differ mainly in
the following dimensions: (a) use of communication and interference models, (b)
implementation methods, such as centralized or distributed, (c) topology assump-
tions, (d) types of data collection, such as use of in-network processing versus raw
data, and (e) capability of transceivers available on the sensor nodes. We briefly
explain the fundamentals of the algorithms, give the details of some of the high-
lighted ones, discuss the advantages and disadvantages of the algorithms, and com-
ment on the pros and cons of the design constraints and assumptions. For instance,
most of the scheduling algorithms use the protocol model [34] for interference,
which is a graph theoretic approach that assumes correct reception of a message
if and only if there is no other simultaneous transmission within proximity of the
receiver. Although this enables the use of simple graph coloring-based scheduling
schemes, the model is idealistic and may fail in practice, because interference is
not a binary phenomenon, and two nearby concurrent transmissions can actually be
successful if the interference level is tolerable. To this end, the use of the physical
model, which is based on the signal-to-interference-plus-noise-ratio (SINR), pro-
vides a better solution in terms of realistic capturing of interference from multiple
transmissions, thus resulting in correct and realizable schedules [33, 38].

Due to its ability to provide time bounds, TDMA-based scheduling algorithms
are widely exploited for fast and timely delivery of data with the objective of mini-
mizing the time to complete convergecast, i.e., minimizing the latency. In a TDMA
schedule, time is slotted and each slot is long enough for transmission or reception
of a single packet. Consecutive time slots are grouped into non-overlapping frames,
and the schedule for each frame is repeated when data collection is periodic. It is
assumed that some form of time synchronization exists among the nodes, which can
be achieved using one of the protocols such as [19]. Under this setting, minimiz-
ing the data collection time for (aggregated/raw-data) convergecast is equivalent to
minimizing the number of time slots required per frame, called the schedule length,
such that all (aggregated/raw) packets from the source nodes reach the sink.

Since multi-hop TDMA allows spatial reuse of time slots, more than one node
can transmit simultaneously if their receivers are in non-conflicting parts of the
network. There are two types of conflicts that arise: (i) primary conflict and (ii)
secondary conflict. A primary conflict occurs when a node transmits and receives
at the same time or receives more than one transmissions destined to it at the same
time. This is due to the single, half-duplex transceiver on each node, which is typical
of current WSN hardware [4, 62]. A secondary conflict occurs when a node, an
intended receiver of a particular transmission, is also within the range of another
transmission intended for other nodes. For instance, in Fig. 14.2, nodes b and d
cannot be scheduled simultaneously under the protocol interference model because
b’s transmission, which is intended for sink s, will interfere with d’s transmission at
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Fig. 14.2 Raw-data convergecast that takes 10 time slots to complete. Table shows the schedule

a due to the presence of the interfering link, as indicated by the dotted line between
b and a. For the same reason, nodes d and e and nodes a and b cannot be scheduled
simultaneously. The figure also illustrates raw-data convergecast where the routing
tree rooted at sink s is indicated by the solid lines. The table on the right shows the
schedule for one frame with the minimum possible schedule length of 10 slots.

The rest of the chapter is organized as follows: Sect. 14.2 explains the details of
the followed classification methodology. Section 14.3 presents the existing work on
scheduling algorithms for data collection with different objectives and comparisons,
along with a taxonomy. Section 14.4 discusses open problems and future research
directions. Section 14.5 draws some relevant conclusions.

14.2 Classification Approach and Methodology

Our surveyed algorithms have the common purpose of “data collection using
TDMA-based communication schedules in WSNs.” However, they differ according
to their objectives, which are usually set by varying application requirements and
the underlying design constraints and assumptions. Our classification methodology
is primarily based on the design objectives. In this section, we summarize the most
studied objectives, describe their importance in the context of data collection appli-
cations, explain the underlying design constraints and assumptions, and comment
on the pros and cons of alternative models or approaches that can be used.

14.2.1 Design Objectives

1. Minimizing Schedule Length: Minimizing the schedule length or, equivalently,
minimizing the time to complete convergecast, is the most studied design objec-
tive for data collection in sensor networks. It translates to quicker data collection
at a fast rate. In many WSN applications, it is of interest to maximize the rate
at which the sink can receive data from the network [52]. For instance, it is
noted that in networked structural health monitoring, more than 500 samples
per second are required to efficiently detect and localize damages [9]. Second,
a minimal length TDMA schedule allows for a longer sleep period in each data
collection cycle, especially for periodic traffic, which contributes to lesser energy
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consumption on the sensor nodes. Minimal schedule length can be achieved by
maximizing the reuse of the time slots. Therefore, most of the existing algorithms
aim to maximize the number of concurrent transmissions and enable spatial
reuse by devising strategies to eliminate interference. In certain cases, a minimal
schedule length may also contribute to minimizing the latency of data collection.
However, the transmission sequence and the number of hops to reach the sink
should also be jointly considered as factors impacting the latency.

2. Minimizing Latency: Minimizing the data collection latency is important for
applications that are required to take certain (precautionary) actions based
on deadlines, such as mission-critical and event-based applications. Although
minimizing the schedule length may as well minimize the latency under certain
conditions, most algorithms do not consider the average latency experienced
by individual packets at each hop. Moreover, the ones that aim to minimize
the schedule length achieve this by maximizing the reuse of time slots, which,
however, for some topologies does not necessarily result in schedules with min-
imal delay. For instance, a line topology may allow higher spatial reuse, but
due to larger number of hops from the sources to the sink, it may cause high
latency. Therefore, minimizing the data collection latency may require consider-
ing additional constraints in addition to those required for minimizing the sched-
ule length.

3. Minimizing Energy Consumption: Minimizing energy consumption and
maximizing network lifetime are fundamental to successfully operating
resource-constrained WSNs for long durations. As a major source for energy
consumption, radio activity should be managed efficiently. The most common
method is to operate the radio in duty cycles with periodic switching between
sleep and wake-up modes, which can be easily incorporated with TDMA sched-
ules by maximizing the sleep time. Transmission power control is another well-
known technique to reduce energy consumption, contention, and packet losses.
Instead of transmitting at maximum power, sending packets at an optimal power
level can save energy and extend network lifetime. It is well known that wireless
links exhibit variable link qualities over time (due to multi-path effects, fading,
etc.), and transmission power control can transform bad quality links into good
ones with high packet delivery rates. In addition, packet losses due to contention
during peak traffic periods can also be mitigated by power control.

4. Maximizing Capacity: Although maximizing the throughput capacity is not con-
sidered to be one of the primary objectives in low-rate data collection applica-
tions over small networks, it is important for large, dense sensor networks and for
complex applications that require efficient delivery of large amounts of data. The
performance of a data-gathering WSN can be characterized by the rate at which
information can be delivered to the sink [52]. However, maximizing capacity and
minimizing energy consumption are conflicting to each other, and so studying
their trade-off is an interesting topic for complex data-gathering applications.

5. Maximizing Fairness: Fairness is one of the key objectives in WSN applications
in order to maintain a balanced view of the sensor environment. In applications
where each of the sensor readings is important, fairness becomes an important
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issue, especially under high data rates. For instance, fair data gathering may
become necessary for reducing the estimation error in an application involving
field reconstruction.

6. Other Objectives: Minimizing communication costs, maximizing parallel trans-
missions, meeting deadlines, minimizing interference, and self-stabilization are
some of the other objectives studied for data collection in WSNs.

7. Joint Objectives: In most applications, there is not always a single objec-
tive, but often multiple, and sometimes conflicting, objectives involved. Some
examples include minimizing communication cost and delay, minimizing energy
consumption and completion time of data collection, maximizing capacity and
minimizing energy. Scheduling algorithms need to address the optimal trade-offs
in satisfying these conflicting objectives.

14.2.2 Design Constraints and Assumptions

In this section, we discuss the underlying design constraints and assumptions that
the algorithms are based on, ranging from communication models to hardware
issues.

1. Communication and Interference Models: In the literature, there are two com-
mon approaches to model interference: (i) protocol model and (ii) physical
model [34], also known as the SINR model. The protocol model states that a
message is correctly received if there is no other sender transmitting at the same
time within a close proximity of the intended receiver. The advantage of this
approach is that it enables the use of simple graph coloring-based scheduling
algorithms. In [33], Gronkvist et al. analyze the performance of the protocol
interference model and indicate that it does not always provide a comprehen-
sive view of reality due to the cumulative effects of interference in wireless
networks. The model can also be pessimistic at times, such as when two nearby
communications, which are concurrently not admissible by protocol model con-
straints, can actually take place if the interference level is tolerable. Other mod-
els, such as those based on RTS/CTS or hop counts, are extensions or special
cases of the protocol model. The physical model, on the other hand, is richer in
the sense that it can capture cumulative interference from multiple concurrent
transmissions and considers a message to be successfully received if the SINR
at the receiver is greater than a certain threshold. Moscibroda [52] studies the
impact of the physical model on the achievable capacity in wireless multi-hop
networks and shows that protocols designed with the SINR model can surpass
the theoretically achievable performance of graph-based scheduling protocols.

2. Types of Data Collection: We identify two fundamental types of data collection
in WSN: (i) raw-data convergecast, where every packet is relayed individually
and (ii) aggregated convergecast, where packets are aggregated at each hop
before being relayed. Aggregated convergecast is applicable when a strong
correlation exists in the sensor readings or the goal is to collect summarized
information, such as the maximum sensor reading. Raw-data convergecast, on
the other hand, is applicable when every measurement is equally important or



14 Scheduling Algorithms for Data Collection 413

the correlation is minimal. These two types correspond to two extreme cases of
data collection in sensor networks.

3. Network Topology: Tree-based routing topologies are most common in many-
to-one data collection; however, line, star, or dynamic routing topologies have
also been considered. Many of the works assume a fixed topology while
some others consider dynamic routing, where the next-hop forwarding node
is selected based on some criteria, such as battery level or link reliability.

4. Sensor Deployment: The sensor deployment method usually varies with appli-
cation requirements. Besides the commonly used random and grid deploy-
ments, some applications may support redeployment of nodes, for instance, to
eliminate sensing holes in the network [29].

5. Buffer Size: As nodes generate and forward packets toward the sink, they may
need to buffer the packets before transmissions. Although some algorithms
assume unlimited buffer sizes, minimizing the buffer size can offer advantages
considering the limited memory resources available at the nodes.

6. Transceiver Assumptions: Each sensor node is typically equipped with a single,
omnidirectional radio that can be tuned to a single channel at any given time.
However, radios with multiple transceivers that can support multiple channels
and directional antennas are also studied in the literature.

7. Implementation Method: While some algorithms rely on the sink node to com-
pute schedules in a centralized way, others take a distributed approach where
nodes compute their schedules based on local information exchanged in their
neighborhood.

8. Use of Joint Solutions: Use of TDMA scheduling together with transmission
power control, multi-channel scheduling, specific routing solutions are common
approaches in the surveyed algorithms.

9. Data Collection Pattern: Data collection can be periodic or one shot. One-
shot data collection is typically query based that provides a snapshot of the
monitored conditions or event based where nodes report data if an event of
interest occurs.

10. Granularity of Assignments: There are two general methods in TDMA
scheduling: (i) node scheduling, also referred to as broadcast scheduling, and
(ii) link scheduling, also known as link activation or point-to-point schedul-
ing. In broadcast scheduling, time slots are assigned to the nodes, and a node’s
transmission is intended for all its neighbors [59]. In link scheduling, individ-
ual links are scheduled such that a transmission is intended for and must be
received collision free by a particular neighbor. Most of the algorithms use link
scheduling in convergecast.

14.3 Scheduling Algorithms for Data Collection

14.3.1 Algorithms on Minimizing Schedule Length

In this section, we survey the TDMA-based scheduling algorithms that identify
minimizing the schedule length as their primary objective. We first describe works
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that pertain to raw-data convergecast and then focus on aggregated convergecast.
Since packets are aggregated at each hop in aggregated convergecast, the number
of packets transmitted and delivered to the sink is substantially lower than that of
raw-data convergecast.

14.3.1.1 Raw-Data Convergecast

For raw-data convergecast, finding a minimum-length, conflict-free assignment of
time slots, such that every packet generated by a node reaches the sink, is fundamen-
tal to efficient network operations. Several variants of the problem exist depending
on network topology, interference model, packet generation scheme, number of fre-
quency channels, buffer constraints, antenna models, etc.

One of the early works in this category is by Florens et al. [22–24], who address
the problem of scheduling for packet distribution in sensor networks and argue that
it can be considered as an inverse of the convergecast problem. Assuming the pro-
tocol interference model, they propose optimal centralized algorithms for special
network topologies, such as line, multi-line, and tree networks, for both omnidirec-
tional and directional antennas.

For packet distribution in line networks, where the sink sends p(i) ≥ 0 packets
to node i which is i hops away, the basic idea is to first transmit packets destined to
the furthest node, then packets for the second furthest node, and so on, as quickly as
possible respecting channel reuse constraints. Nodes between the sink and a packet’s
destination are required to forward that packet as soon as it arrives (i.e., in the next
time slot following its arrival). This basic idea can be extended to a multi-line net-
work and a tree network as well. The upper part of Fig. 14.3 shows an example of
scheduling for packet distribution on a 10-node line network for directional antennas
with p(i) = 2, p(2) = 1, p(8) = 1, and p(9) = 1. Once an optimal schedule is
found, the schedule for the inverse problem of convergecast where node i sends
p(i) packets to the sink is constructed by symmetry as shown in the bottom part of
Fig. 14.3. In particular, a transmission from node i to i + 1 occurring at time slot j
for the distribution problem corresponds to a transmission from node i + 1 to i in
time slot T − j + 1 for the convergecast problem. Here, N is the total number of
nodes and T is the minimal schedule length which for omnidirectional antennas is
given by

T = max
1≤i≤N

⎛

⎝i − 1 + p(i)+ 2p(i + 1)+ 3
N∑

j≥i+2

p( j)

⎞

⎠ (14.1)

and for directional antennas is given by

T = max
1≤i≤N−1

⎛

⎝i − 1 + p(i)+ 2
N∑

j≥i+2

p( j)

⎞

⎠ (14.2)
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Fig. 14.3 Optimal time scheduling for a 10-node line network with minimum schedule length 11.
Upper part shows the schedule for packet distribution, and bottom part shows the schedule for
convergecast, which is obtained by symmetry, i.e., by reflecting the upper schedule with respect
to the fictitious horizontal line. Note that nodes that are closer than or at two hops do not transmit
concurrently to respect interference issue

Ergen et al. in [20] prove that the problem of minimizing the schedule length is
NP-complete by reducing it from the graph coloring problem. The scheduling dif-
ficulty arises since many subsets of non-conflicting nodes are candidates for trans-
mission in each time slot, and the subset chosen in one slot affects the number of
transmissions in the next slot. This is due to the fact that some eligible nodes may not
have any packet to transmit because of the subset selected in the previous slot. When
a graph-based interference model is used, a conflict-free schedule can be found by
coloring a conflict graph. A conflict graph is one in which every node represents
an edge in the original graph and two nodes are connected if their corresponding
edges interfere in the original graph, i.e., give rise to primary or secondary conflicts.
Using such a graph coloring strategy, they propose a node-based and a level-based
scheduling heuristic and show that one outperforms the other depending on the dis-
tribution of packet generation in the network. In particular, node-based scheduling
is better for topologies that have equal density of packets across the network or
higher density of packets at low levels of the tree, whereas level-based scheduling
is better for topologies when the packet density is higher at the upper levels of
the tree.

A virtual node expansion-based approach that also uses graph coloring to find a
minimum-length, conflict-free schedule where every node generates a single packet
in each frame is proposed by Lai et al. [41]. They first construct a conflict graph from
the original graph and then expands it by creating, for each parent node, a number
of virtual nodes equal to the size of the subtree rooted at that node in the original
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(a) (b)

Fig. 14.4 (a) The original graph and the routing tree: arrows indicate tree edges and dotted lines
represent interfering links. (b) Dark circles and lines represent nodes and edges in the conflict
graph, which is expanded by adding virtual nodes and virtual edges, marked in gray

tree. As illustrated in Fig. 14.4b, four virtual nodes, marked as 1, 2, 3, and 4, are
created for node d in the expanded conflict graph as the size of the subtree rooted at
d is four in the original graph, as shown in Fig. 14.4a. This graph expansion is done
to accommodate multiple transmissions by intermediate parent nodes which relay
packets from nodes in its subtree. Since the virtual nodes also conflict with any node
that has an edge to its original node, edges are added between the virtual nodes and
the conflicting node. Similarly, an edge is added between each virtual node and its
original node.

Once the expanded conflict graph is constructed, an approximate coloring algo-
rithm, originally due to Li et al. [45], is used to find a time slot assignment. The
coloring algorithm works by finding a vertex with the least degree and removing it
from all its adjacent edges. This is repeated until all the vertices are removed, after
which it greedily assigns colors in the reverse order of removing the vertices. This
results in a conflict-free schedule for each of the edges in the original graph. As
illustrated in Fig. 14.4b, the following schedule is generated: d transmits in slots
1, 2, 3, and 41; b transmits in slots 5 and 6; a transmits in slot 7; e transmits in slots
7 and 8; and c and f both transmit in slot 9. It is shown that the schedule length
achieved by this coloring algorithm is no more than 2δ/k + 1, where δ is the largest
degree in any subgraph of the conflict graph in which every vertex has a degree at
least δ and k is the maximum size of an independent set in the neighborhood of any
node in the conflict graph.

The authors of this paper also discuss the effect of different routing structures
on the schedule length and propose a disjoint-strip-based approach to construct an
efficient routing topology. This results in uniform flow of data along different paths
in the network and prevents certain nodes from being overloaded. The basic idea is

1 There is no causality constraint, such that node d does not need to wait for data from its children
before being scheduled, and the data collection is periodic.
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to construct several disjoint, equally spaced node strips, all with the same number of
nodes. Two distanced strips are likely to relay data simultaneously without interfer-
ing with each other. It is shown that this disjoint-strip routing, although increases the
total number of transmissions, yields a shorter schedule length for unbalanced node
deployments as compared to shortest path routing, which is suitable for balanced
deployments minimizing the total number of transmissions but not necessarily the
schedule length.

Choi et al. in [12] formulate the scheduling problem as a minimum information
gathering time problem, where every node has a single packet to send and the goal
is to find routing paths from the nodes to the sink as well as an optimal time slot
assignment. By reducing it from the partition problem, they prove that the problem
is NP-complete on general graphs and propose algorithms for line and tree topolo-
gies that take at most 3N − 3 time slots to deliver all the packets to the sink. For
general networks a heuristic is proposed, which starts with a minimum spanning tree
and trims the edges such that transmissions on different branches of the tree do not
interfere with each other and can be scheduled in parallel. This results in a backbone
forest whose segments are then scheduled independently respecting adjacency and
two-hop interfering constraints.

Following a strategy similar to [24], Gandham et al. in [26, 27] propose dis-
tributed scheduling algorithms for raw-data convergecast where every node gen-
erates a single packet in one data collection cycle. They give an integer linear
programming (ILP) formulation of the problem and propose a distributed time slot
assignment scheme that takes (i) at most 3N − 3 time slots for linear networks,
which is optimal, (ii) at most max(3nk − 1, N ) time slots for multi-line and tree
networks, where the lower bound for multi-line networks is max(3nk − 3, N ), and
(iii) at most 3N time slots for general networks. Here nk represents the maximum
number of nodes in any subtree of the routing structure. Similar results are also
obtained by Tsai et al. [69]. We note that (14.1) reduces to 3N − 3 when pi = 1 for
i = 1, . . . , N , which matches with Gandham’s result for line networks.

In addition to minimizing the schedule length, the proposed algorithm in [27] also
considers memory constraints on the sensor nodes and requires storage for at most
two packets in each node buffer. Links are assumed to be symmetric and the interfer-
ence model is assumed to be graph based, with the interference range of a node equal
to its transmission range. Their results also extend to the case where nodes generate
multiple packets and when channel propagation characteristics are not ideal. In the
following, we first give their ILP formulation and then briefly explain the details of
the algorithm.

Let G = (V, E) represent the sensor network, where V is the set of nodes
including the sink s and E is the set of wireless links. Let p0(v) be the number
of packets originated at node v and pt (v) be the number of packets at node v at the
end of slot t . Let ft (u, v) ∈ {0, 1} represent the state of the link (u, v) at slot t ;
ft (u, v) = 1 if node u transmits a packet to node v in slot t and 0 otherwise. Let
N (v) be the number of one-hop neighbors of node v and T be the number of time
slots to complete convergecast. Then the ILP is given by the following:
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Minimize T

subject to :
pT (s) =

∑

u∈V

p0(u) (14.3)

∀u ∈ V, ∀t ∈ {1, . . . , T } :
∑

w∈N (v)

∑

v∈N (u)

ft (v,w) ≤ 1 (14.4)

∀u ∈ V, ∀t ∈ {1, . . . , T } :
∑

v∈N (u)

ft (u, v) ≤ 1 (14.5)

∀u ∈ V, ∀t ∈ {1, . . . , T } :
∑

v∈N (u)

( ft (v, u)+ ft (u, v)) ≤ 1 (14.6)

∀u ∈ V, ∀t ∈ {1, . . . , T } : pt (u)+
∑

v∈N (u)

ft (u, v) = pt−1(u) (14.7)

∀u ∈ V, ∀t ∈ {1, . . . , T } : pt (u)−
∑

v∈N (u)

ft (v, u) = pt−1(u) (14.8)

∀u, v ∈ V : ft (u, v) ∈ {0, 1} (14.9)

The objective is to minimize T , the total number of time slots required to com-
plete convergecast. Constraint (14.3) ensures that all packets are delivered to the
sink at the end of convergecast. Constraint (14.4) states that at most one neigh-
bor of a node can transmit in a slot, thus addressing the hidden terminal problem.
Similarly, constraint (14.5) states that a node transmits to at most one neighbor,
and constraint (14.6) restricts a node from both transmitting and receiving in the
same time slot. Constraints (14.7) and (14.8) are for conservation of messages, and
constraint (14.9) guarantees an integral solution. The above ILP can be solved using
tools like CPLEX; however, typically solutions to ILP’s have exponential running
time. Moreover, such a solution will be centralized and not scalable in nature. Hence
combinatorial solutions are preferred.

Starting from linear networks, the algorithm proposed by Gandham et al. is gen-
eralized for multi-line networks, which are multiple linear networks intersecting
with the sink, and also to tree networks. The basic idea for linear networks is that
each node is assigned an initial state depending on its hop count from the sink. As
illustrated in Fig. 14.5a, a node at hop distance h is assigned a state of transmitting
(T) if h mod 3 is 1, idle (I) if h mod 3 is 2, and receiving (R) if h mod 3 is 0. A
node comes back to this initial state after every three time slots and follows the state
transition diagram as shown in Fig. 14.5b. Effectively, this implies that for every
node in state R, there is only one node in the neighborhood which is in state T , and
so packet transmission is always successful resulting in exactly one packet reception
by the sink in every three time slots.

The above basic idea extends to more complex topologies, such as multi-line
networks, as shown in Fig. 14.5c, tree networks where transmissions are scheduled
at parallel along multiple branches, and general networks where packets are routed
over a breadth first search (BFS) tree. However, for the distributed algorithm to
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(a)

(b) (c)

Fig. 14.5 (a) A linear network with initial state assignment (R, I, T) depending on the hop distance
from the sink s. (b) State transition of the nodes. (c) A multi-line network as a composition of
multiple linear networks

work, each node must know the branch ID and the number of nodes in all the other
branches, but need not be aware of the entire network topology. The scheduling
rule for multi-line networks is that the branch with the largest number of remaining
packets and whose root has at least one packet gets priority to transmit to the sink
(ties are broken based on the lowest branch ID). This results in a schedule length of
max(3nk −1, N ). For general networks, since there are interfering edges that are not
part of the spanning tree, the goal is to first eliminate interference by constructing a
BFS tree and then scheduling as before. However, in addition to knowing the number
of nodes in all the branches and the branch ID, for general networks, a node also has
to know a conflict map at the initialization phase. This gives a schedule length of
3N , although the simulations presented in the paper require only 1.5N time slots.

The use of orthogonal codes, such as direct sequence spread spectrum (DSSS)
and frequency hopping spread spectrum (FHSS), to eliminate interference is studied
by Annamalai et al. [1]. They propose a greedy, top–down tree construction scheme
that chooses the children of a node based on the nearest neighbor criterion starting
from the sink and traversing the graph in BFS order. To reduce interference, nodes
that fall within the transmission range of a parent other than their own are assigned
different codes if available; otherwise, the code that is least used by the interfering
neighbors is used. Once the channel allocation is done, time slots are assigned in a
greedy fashion such that a parent does not transmit before its children. Simulation
results indicate that the schedule length on such a tree constructed specifically for
convergecast is shorter than on a tree constructed for broadcast [11]. However, one
limitation of this approach is that the miniature hardware design of sensor nodes
may not permit employing complex radio transceivers required for spread spectrum
codes or frequency bands systems.

In [37], Incel et al. explore and evaluate a number of different techniques using
realistic simulation models to study the data collection rate for raw-data converge-
cast. First, a simple spatial-reuse TDMA scheme is employed to minimize the sched-
ule length, which is then combined with multiple frequency channels and trans-
mission power control to achieve further improvement. A receiver-based channel
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assignment (RBCA) scheme is proposed where the receivers (i.e., parents) of the
tree are statically assigned a channel and the children of a common receiver trans-
mit on that channel. This avoids pairwise, per-packet channel negotiation over-
heads. Once multiple frequencies are used to completely eliminate interference (i.e.,
secondary conflicts), it is shown that the lower bound on the schedule length is
max(2nk − 1, N ), and a time slot assignment scheme is proposed that achieves this
bound with no nodes requiring to buffer more than one packet at any time. Here, as
in [27], nk is the maximum number of nodes in any branch of the tree.

Next, the authors of [37] show that once interference is eliminated, the data col-
lection rate often becomes limited by the routing topology. To overcome this, trees
with specific properties are constructed, which help in further enhancing the data
collection rate. In particular, capacitated minimum spanning trees [57], which aim to
have an equal number of nodes on each branch, are shown to achieve a factor of two
improvement as compared to single-channel TDMA scheduling on minimum-hop
shortest path trees.

Algorithm 1 LOCAL-TIMESLOTASSIGNMENT

1. node.buffer = full
2. if {node is sink} then
3. Among the eligible top-subtrees, choose the one with the largest number of total

(remaining) packets, say top-subtree i
4. Schedule link (root (i), s) respecting interfering constraint
5. else
6. if {node.buffer == empty} then
7. Choose a random child c of node whose buffer is full
8. Schedule link (c, node) respecting interfering constraint
9. c.buffer = empty

10. node.buffer = full
11. end if
12. end if

The key idea behind our algorithm, which is formally presented in Algorithm 1 as
LOCAL-TIMESLOTASSIGNMENT, is to (i) schedule transmissions in parallel along
multiple branches of the tree and (ii) keep the sink busy in receiving packets for as
many time slots as possible. Each node maintains a buffer and its associated state,
which can be either full or empty depending on whether it contains a packet or not.
Initially, all the buffers are full because every node has a packet to send.

The first block of the algorithm in lines 2–4 gives the scheduling rules between
the sink and the roots of the top-subtrees. A top-subtree TS(r) is defined as one
whose root r is a child of the sink, and it is said to be eligible if r has at least
one packet to send. For instance, in Fig. 14.6a, the top-subtrees are {1, 4}, {2, 5, 6},
and {3, 7}. For a given time slot, the root of an eligible top-subtree which has the
largest number of total remaining packets is scheduled. If none of the top-subtrees
are eligible, the sink does not receive any packet during that time slot. Inside each
top-subtree, nodes are scheduled according to the rules in lines 5–12. A subtree
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(a) (b)

Fig. 14.6 Raw-data convergecast using algorithm LOCAL-TIMESLOTASSIGNMENT: (a) Schedule
length 7 when secondary conflicts are eliminated. (b) Schedule length 10 when secondary conflicts
are present

is defined to be active if there are still packets left in it (excluding its root) to be
relayed. If a node’s buffer is empty and the subtree rooted at this node is active,
one of its children is scheduled at random whose buffer is not empty. The algorithm
guarantees that in an active subtree there will always be at least one child whose
buffer is not empty, and so whenever a node empties its buffer, it will receive a
packet in the next time slot, thus emptying buffers from the bottom of the subtree to
the top.

Figure. 14.6a shows an illustration of the working of the algorithm. In slot 1,
since the eligible top-subtree containing the largest number of remaining packets is
{2, 5, 6}, link (2, s) is scheduled and the sink receives a packet from node 2. In slot
2, the eligible top-subtrees are {1, 4} and {3, 7}, both of which have two remaining
packets. We choose one of them at random, say {1, 4}, and schedule the link (1, s).
Also, in the same time slot since node 2’s buffer is empty, it chooses one of its
children at random, say node 5, and schedule the link (5, 2). In slot 3, the eligible
top-subtrees are {2, 5, 6} and {3, 7}, both of which have two remaining packets. We
choose the first one at random and schedule the link (2, s), and so the sink receives
a packet from node 5 (relayed by node 2). We also schedule the link (4, 1) in slot
3 because node 1’s buffer is empty at this point. This process continues until all
the packets are delivered to the sink, yielding an assignment that requires seven
time slots. Note that, in this example, 2nk − 1 = 5, and so max(2nk − 1, N ) = 7.
In Fig. 14.6b, an assignment is shown when all the interfering links are present,
yielding a schedule length of 10.

A similar result of max(2nk − 1, N ) is obtained by Song et al. [66] where
they also extended it to the case when the nodes have different number of pack-
ets to send. Assuming node i generates di packets, their proposed algorithm takes

max
(

2
∑

i∈TS(rk )
di − drk +

∑k
i=2(dri − 1), N ′

)
time slots, where rk, . . . , r1 are

the roots of the top-subtrees sorted in descending order of the total number of pack-
ets generated in it, k is the total number of top-subtrees, and N ′ is the total number
of packets in the whole network.
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A similar result utilizing multiple channels that minimize the schedule length
for raw-data convergecast in WirelessHART networks [65] is obtained by Zhang
et al. [61]. One significant difference between WirelessHART networks and sen-
sor networks is that the former performs channel hopping on a per-packet basis,
while most existing TDMA convergecast schemes do not support this feature. Thus,
parallel transmissions scheduled in the same time slot must use different chan-
nels, whereas most of the existing TDMA-based multi-channel protocols first stati-
cally assign channels to eliminate potential interference and then perform time slot
scheduling. Like in [37] and [66], they also consider buffer requirements at each
node and show that when nodes can store at most one packet, the minimum schedule
length for line topologies is 2N − 1 using at most �N/2� channels (see Fig. 14.7a
and b). However, when the nodes can buffer multiple packets, the optimal converge-
cast time remains the same while the number of channels required can be reduced to⌈

N −√
N (N − 1)/2

⌉
(see Fig. 14.7c). The basic idea of their proposed approach,

which is similar to [37] and [66], is to schedule as many transmissions as possible in
each time slot in order to maximize the use of available channels and to make sure
that a node which does not have a packet at the beginning of a time slot receives one
packet at the beginning of the next time slot.

Zhang et al. also study the effects of packet copying between the microcontroller
and the radio transceiver [75] and propose a novel method that separates packet
copying from packet transmission in order to improve the schedule length for Wire-
lessHART networks. They show that packet copying could create a bottleneck in the
critical path of packet forwarding and presented in [54] a scheme called conditional
immediate transmission (CIT) which nearly tenfolds multi-hop 802.15.4 through-
put.

The basic idea of CIT stems from the following observation. After receiving a
packet, the microcontroller triggers an interrupt and notifies a process to fetch the
incoming data over the serial peripherals interface (SPI) bus. Before transmitting
a packet, the microcontroller first copies the packet into the radio’s transmit buffer
over the SPI bus and then sends a separate command to the radio to start trans-
mission (see Fig. 14.8a). CIT removes this packet copying off the critical path by
copying packet n − 1 into the transmit buffer before packet n arrives. When packet

(a)

(b) (c)

Fig. 14.7 (a) A line network with five source nodes. (b) Schedule length is 9 using three channels
when nodes can buffer at most one packet. (c) Schedule length is 9 using two channels when nodes
can buffer multiple packets
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(a) (b)

(c)

Fig. 14.8 (a) Packet copying is on the critical path. (b) Packet copying is removed from the critical
path. (c) Optimal CIT-based convergecast schedule for a line network of five source nodes

n arrives, packet n − 1 can be immediately forwarded without any copying (see
Fig. 14.8b), and so the channel can be released immediately after transmitting/re-
ceiving and can be allocated to another node in the next time slot, thereby improving
channel utilization. The authors show that although the number of time slots needed
increases, the length of each slot is significantly reduced, enabling convergecast with
higher throughput.

For line networks with N source nodes each with one packet to send, they show
that the lower bound to complete a CIT-based convergecast in the presence of at
most �N/3� channels is 3N − 2. They also propose an algorithm that achieves this
lower bound, requiring no node to buffer more than one packet at any time slot.
The basic idea, as illustrated with a five-node network in Fig. 14.8c, is to schedule
transmission for the immediate child of the sink at every t = 3m + 1 time slots,
for m = 0, . . . , N − 1 and for every other node, which still has packets to forward
from its subtree, at slot t if its parent was scheduled at slot t − 1. This idea is
extended to tree networks where the root of a top-subtree with the maximum number
of remaining packets is scheduled every three time slots. Within each top-subtree a
node is scheduled at slot t if its parent was scheduled at slot t − 1, and the subtree
rooted at this node has the maximum number of remaining packets among all the
subtrees of the top-subtree. The algorithm requires max{3nk + β, N } time slots,
which is optimal to complete CIT-based convergecast on a tree, requiring number
of channels at most equal to the depth of the tree. Here β = −1 if nk = nk−1, and



424 O. Durmaz Incel et al.

β = −2 otherwise, and nk , as in [37] and [66], is the maximum number of nodes in
any subtree sorted in decreasing order of sizes nk ≥ nk−1 ≥ · · · ≥ n1.

14.3.1.2 Aggregated Data Convergecast

Unlike raw-data convergecast where the application requires every single packet
generated by the nodes to be delivered to the sink, periodic data collection often
requires delivery of only summarized information in the form of aggregated packets.
In general, such aggregated convergecast requires less number of time slots than
raw-data convergecast because of the reduced volume of traffic en route to the sink.
Under this setting, it is assumed that every node generates a single packet at the
beginning of every frame and perfect data aggregation is possible, i.e., each node
is capable of aggregating all the packets received from its children as well as that
generated by itself into a single packet before transmitting to its parent. This means
that the size of aggregated data is constant and does not depend on the actual raw
sensor readings. Typical examples of such aggregation functions are MIN, MAX,
MEDIAN, COUNT, AVERAGE, etc., which are known as algebraic and distributive
functions [49].

Since the goal is to minimize the schedule length, each parent node ideally should
wait to receive all data from its children and then aggregate those with its own data
before transmitting. Thus, in aggregated convergecast, a node transmits only once
per frame and it maintains an intrinsic order of transmission with respect to its chil-
dren. When the routing tree is not specified as part of the application requirements,
the algorithms in this category also construct the routing tree suitable for aggrega-
tion and then perform scheduling. Two of the studies that we discuss below also
consider multiple frequencies to eliminate interference. In the following, we discuss
several of these algorithms that address the aggregated convergecast problem and
its variants.

One of the early works is by Chen et al. [8], where the problem is slightly gen-
eralized by considering only a subset S ⊆ V of nodes generating data instead of
all the nodes. Assuming uniform transmission range and a unit disk graph (UDG)
model, they formulate it as a minimum data aggregation time (MDAT) problem
where the goal is to find a collision-free schedule that routes data from the subset
of nodes to the sink in the minimum possible time. They prove that MDAT is NP-
complete, even when restricted to UDGs, by reducing it from the restricted planar
3-SAT problem and design a centralized (Δ − 1)-approximation algorithm, where
Δ+ 1 is the maximum number of nodes within the transmission range of any node.
Their proposed approach does not assume that the routing tree is known a priori;
instead, the algorithm finds the data aggregation tree after the schedule is made. If
the height of the routing tree is h, then a trivial lower bound on the schedule length
is max{h, log2 |S|}.

The basic idea of the algorithm, called the shortest data aggregation (SDA), is
to incrementally construct smaller and smaller shortest path trees (SPT) rooted at
the sink that span nodes possessing all the data, i.e., in the current iteration, the SPT
rooted at the sink spans a set of nodes that possess all data aggregated from S till
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the previous iteration. The current iteration produces a collision-free schedule that
comprises a set of simultaneously transmitting senders, which are selected from the
leaves of the SPT based on the number of non-leaf neighbors in the graph, and a set
of corresponding receivers.

Malhotra et al. [3] consider the joint routing and scheduling problem for aggre-
gated convergecast with the goal to construct an optimal routing tree that will help
minimizing the schedule length. The basic idea of the tree construction algorithm
is to create a shortest path tree and balance the number of children per node so that
more parallel transmissions can take place without any single node causing bottle-
neck. The authors show that for a given routing tree, a lower bound on the schedule
length is maxi∈V {ξi + hi }, where ξi and hi are the number of children and hop
distance from the sink, respectively, for node i . To balance the number of children
per node, an optimal semi-matching formulation on bipartite graphs, originally due
to Harvey et al. [35], is used where the goal is to assign nodes from level h+1 to the
parents at level h such that every parent has an equal number of children. Once the
balanced tree is constructed, a ranking-based heuristic is used for scheduling, where
the idea is to rank all eligible nodes in decreasing order of their weights which
are taken as the number of non-leaf neighbors. A higher weight gives a higher
relative priority to a node to be scheduled in the current slot over other eligible
nodes.

A variation of the aggregated convergecast problem where nodes can adjust their
transmission ranges is studied by Shang et al. [63]. They propose an approximation
algorithm that has a constant factor guarantee on the optimal schedule length for
unit disk graphs. It first constructs a BFS tree rooted at the sink and then constructs
a maximal independent set using the greedy First-Fit algorithm by choosing nodes
in order of their increasing hop distances from the sink in the BFS tree. Note that this
results in a dominating set which contains the sink but is not a connected set. Then, a
minimal number of connector nodes are added to construct a connected dominating
set, VCDS, and the transmission ranges of all the nodes in this set are set to 1. Next,
the scheduling phase runs in two stages. In the first stage, nodes in V \ VCDS are
scheduled first so that all their data reach the nodes in VCDS. In the second stage,
data is sent from the nodes in VCDS to the sink. It is shown that the first stage takes
15 log2 |V \ VCDS| time slots, whereas the second stage takes 16d(TBFS)− 12 time
slots, where d(TBFS) is the depth of the BFS tree. Combining these two, it is shown
that the schedule length is at most 31 times the optimal.

Zhang et al. extend their work which was focused on minimal time convergecast
scheduling for raw-data convergecast [26] to aggregated convergecast scheduling
in [77]. When the size of data is much smaller than the size of the data frame,
nodes aggregate the received packets instead of sending single packets. They use
the same scheduling algorithm proposed in [26, 27]. They show that using their
scheduling algorithm with packet aggregation requires at most N + 2 time slots in a
linear network with N nodes. According to the algorithm, the sink receives the first
packet in the first time slot. Then in every three time slots it receives an aggregated
packet which contains data from three original unaggregated packets, due to two-
hop scheduling to prevent interference. Hence, the total number of required time
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slots is 1 + 3
⌈

N−1
3

⌉
≤ N + 2. For multi-line networks, the algorithm achieves a

schedule length of max
(

nk + 3
⌈

N+2k
3

⌉)
, where k is the number of branches and nk

is the maximum number of nodes in a branch. Finally, for tree networks aggregation-

enabled convergecast requires max
(

n̂,
⌈

N+2L+2(L−k)
3

⌉)
, where L is the number of

leaf nodes, k is the number of one-hop subtrees, n̂ = maxi (ni + 4li − 2), ni is the
number of nodes, and li is the number of leaf nodes in the i th one-hop subtree.

A variant of the aggregated convergecast problem where a parent node need not
wait to receive all data from its children within a single frame before transmitting is
investigated by Incel et al. [38] and Ghosh et al. [30]. This is particularly applicable
for continuous and periodic monitoring applications that sustain over long durations
of time. As explained in the following, the transmission ordering constraint between
a parent node and its children within a single frame disappears once a pipeline is
established, after which the sink starts receiving aggregated data from all the nodes
in the network once every frame. In [38], the problem is studied through extensive
simulations and experiments, whereas its theoretical aspects are discussed in [30].
In both works, multiple frequency channels are considered as means to eliminate
interference. In the following, we first explain the notion of schedule length and
pipelining in this variant of aggregated convergecast.

In Fig. 14.9, we show a network of six source nodes where the solid lines repre-
sent tree edges and the dotted lines represent interfering links. The numbers beside
the links represent the time slots at which the links are scheduled to transmit. The

(a) (b)

Frame 1 Frame 2

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

s 1 2 3 - - - { 1,4 } { 2,5,6 } 3 - - -

1 - - - 4 - - - - - 4 - -

2 - - - - 5 6 - - - - 5 6

(c)

Fig. 14.9 Aggregated convergecast: (a) Schedule length of 6 for single frequency. (b) Schedule
length of 3 when multiple frequencies are used to eliminate interference. (c) Node IDs from which
aggregated data is received by their corresponding parents in each time slot over different frames
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frequencies assigned to the receivers of the tree are shown in boxes. The entries
in the table list the nodes from which packets are received by their corresponding
receivers in each time slot for Fig. 14.9a. We note that at the end of frame 1, the
sink does not have packets from nodes 5 and 6; however, as the same schedule
is repeated, it receives aggregated packets from nodes 2, 5, and 6 in slot 2 of the
next frame. Similarly, the sink also receives aggregated packets from nodes 1 and 4
starting from slot 1 of frame 2. The entries {1, 4} and {2, 5, 6} in the table represent
single packets comprising aggregated data from nodes 1 and 4 and from nodes 2,
5, and 6, respectively. Thus, a pipeline is established from frame 2, and the sink
continues to receive aggregated packets from all the nodes once every six time slots.
Thus, the minimum schedule length is 6. However, if all nodes are assigned different
frequencies, as shown in Fig. 14.9b, then the minimum schedule length turns out to
be 3.

The authors in [38] explore a number of different techniques that provide a hier-
archy of successive improvements, the simplest among which is an interference-
aware, minimum-length TDMA scheduling that enables spatial reuse. To achieve
further improvement, they combine transmission power control with scheduling
and use multiple frequency channels to enable more concurrent transmissions. The
multiple frequencies are assumed to be orthogonal, and a receiver-based channel
assignment (RBCA) scheme is proposed where the receivers (i.e., parents) in the
tree are statically assigned different frequencies to eliminate interference. It is shown
through extensive simulations that once multiple frequencies are used along with
spatial-reuse TDMA, the data collection rate often no longer remains limited by
interference, but by the topology of the network. Thus, in the final step, degree-
constrained trees are constructed that further enhances the data collection rate.

Ghosh et al. in [30] prove that minimizing the schedule length under multiple fre-
quencies is NP-hard on general graphs and propose approximation algorithms with
worst-case provable performance guarantees for geometric networks. In particular,
they design a constant factor approximation algorithm for unit disk graphs where
every node has a uniform transmission range and a O(Δ(T ) log n) approximation
for general disk graphs where nodes have different transmission ranges, whereΔ(T )
is the maximum node degree in the routing tree. They also show that a constant fac-
tor approximation is still achievable when the routing topology is not known a priori
so long as the maximum node degree in the tree is bounded by a constant. Among
other theoretical results, Yu et al.[72] proposed a greedy distributed aggregation
scheme that takes at most 24D + 6Δ + 16 slots, where D is the network diameter
and Δ is the maximum node degree.

14.3.2 Algorithms on Minimizing Latency

Minimizing the schedule length to complete convergecast certainly contributes to
minimizing latency in data collection; however, in certain cases, it does not guar-
antee minimizing the average latency for individual packets. For instance, in aggre-
gated data collection, where each sensor node is scheduled once per frame, and



428 O. Durmaz Incel et al.

instead of relaying individual packets, they aggregate packets before forwarding
toward the sink node, the minimal schedule length is equal to the maximum degree
of the routing tree, as shown in [38] and discussed in Sect. 14.3.1. If causality is
important, such that a node needs to wait for data from its children before being
scheduled (i.e., when a pipeline, as discussed in Sect. 14.3.1, cannot be established),
data collection cannot be completed in a period equal to this minimal schedule
length. In this section, we survey algorithms that identify minimizing latency as
their primary objective.

In [13], Cui et al. focus on minimizing the latency and analyzing the energy
latency trade-off for data collection in WSNs where each node generates the same
number of packets within each frame of length T . Data is transmitted to a relay node
which forwards it toward the sink node; relay nodes are assumed to be not generat-
ing data. The authors first present sufficient conditions on link scheduling in order
to achieve the minimum worst-case latency T and then present a link scheduling
algorithm satisfying these conditions. They propose and prove that it is sufficient for
every node to schedule its outgoing links after its incoming links in order to achieve
the minimum possible latency T . The proposed algorithm classifies the links into
levels according to their distance in number of hops from the sink, and the schedule
is constructed in reverse order of hop distance, as illustrated in Fig. 14.10. A sim-
ilar study is presented in [16], where it is shown that minimum-length scheduling
does not automatically guarantee minimum latency, and a heuristic is proposed to
minimize latency by scheduling the incoming links before the outgoing links.

In [56], Pan et al. propose algorithms for quick convergecast in ZigBee tree-
based WSNs. The objective is to enable quick convergecast operations with mini-
mum latency and complying with the ZigBee standard. Different from the studies
presented in [12, 27], which minimize latency by minimizing the schedule length
and assigning slots to the senders, this study considers receiver-based scheduling.
This is due to the fixed wake-up/sleep scheduling specified in the ZigBee stack: in
each cycle, nodes wake up twice, first to receive packets from their children and

Fig. 14.10 Scheduling to minimize latency
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second to transmit to their parents in a ZigBee beacon-enabled tree network. The
authors first define a minimum latency beacon scheduling problem for quick con-
vergecast in ZigBee networks and prove it to be NP-complete. Then they propose
an algorithm which gives optimal performance for line topologies and within 1.5
times the optimal for ring topologies. The algorithm is also extended for tree-based
schemes as a heuristic. A centralized tree-based algorithm traverses the nodes on a
tree in a bottom-up manner, starting with the leaf nodes, similar to the previously
discussed algorithm [13]. Nodes at the same depth of the tree are sorted according
to the interference values (i.e., the number of links that cause interference on the
link between the node and its parent) and starting with the most interfered node, and
scheduling continues sequentially by assigning the first minimum available slot.
Finally, a distributed version of the time slot assignment algorithm is proposed. The
Performance of the proposed scheme is evaluated via extensive simulations, and
the results are compared with random and greedy scheduling algorithms. Compared
to the random and greedy schemes, the proposed heuristics can effectively achieve
quicker convergecast. The performance of the heuristics decrease when the number
of interference neighbors is high.

Revah et al. in [60] extends the work of Florens [22] by considering minimizing
both average delivery time and completion time for convergecast. The authors argue
that scheduling strategies that aim to minimize the completion time of a converge-
cast do not take into account the idle time of messages. For instance, it is unrea-
sonable not to transmit a message toward the destination if it can be transmitted
without any delay. Polynomial time solutions are presented for different network
topologies: linear, two-branch, and star (or multi-branch) network. The sink node
is assumed to have full information about the network topology and computes the
schedules on demand. They show that in order to avoid possible delays, an algorithm
should start immediate transmission of packets belonging to different groups, such
that packets belonging to some group can be transmitted without being delayed by
packets from other groups. Although the presented algorithms are centralized, they
provide lower bounds for the problem. The nodes are assumed to be equipped with
directional radios with two separate control channels for upstream and downstream
communication. The protocol interference model is used in the analysis. Evaluations
of the algorithms over tree networks are missing in the paper.

Another variant of scheduling is considered by Lu et al. in [46] where joint
scheduling and routing with minimum latency requirement is studied. They define
the minimum latency joint scheduling and routing (MLSR) problem as follows:
Given a graph G = (V, E), number of slots K , and flows M , the goal is to find
paths P and a slot assignment f such that it maximizes the number of flows with
minimum average latency. The problem is solved using a graph coloring approach:
First a delay graph is constructed and it is shown that the minimum-weight M node-
disjoint paths in the delay graph can be mapped to a solution of MLSR. In the next
step, their proposal iteratively finds M node-disjoint paths.

In [40, 43, 47], the performance of different sleep scheduling techniques to min-
imize latency is evaluated. Although the focus is on sleep scheduling where nodes
stay in low-power or sleep modes for most of the time, periodically waking up to
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check for activity, the proposed algorithms define the transmission rights for nodes
similar to TDMA scheduling. Fully synchronized pattern, shifted even–odd pattern,
ladder pattern, two-ladder pattern, multi-parent pattern, and multi-clustering pattern
are explored, and their latency behaviors are analyzed in terms of minimum, maxi-
mum, and average latency.

14.3.3 Algorithms with Other Objectives

Besides the well-studied objectives of minimizing the schedule length and latency,
which are the main focus of this chapter, there also exist studies that focus on other
criteria. In this section, we briefly survey some of these studies with different objec-
tives, such as minimizing energy and transmission power, maximizing capacity,
maximizing fairness, and meeting deadlines.

14.3.3.1 Algorithms on Minimizing Energy

Energy efficiency is the biggest challenge in designing long-living sensor networks.
Since radio communication consumes a lot of energy, a common method is to
operate the radio with duty cycling that periodically switches the radio between
sleep and wake-up modes. TDMA-based protocols offer the advantage of permit-
ting nodes to enter into sleep mode during inactive periods, thus achieving low
duty cycles and conserving energy. Additionally, TDMA-based medium access effi-
ciently eliminates collisions and prevents overhearing, which are the main sources
of energy consumption in wireless communication. Therefore, all the TDMA-based
protocols proposed for WSNs have the inherent objective of minimizing energy
consumption. Transmission power control is one of the well-studied methods in
minimizing energy consumption and alleviating interference in wireless networks.
Excessive levels of interference can be eliminated if the signals are transmitted with
just enough power instead of maximum power.

In [39], Kalpakis et al. consider the maximum lifetime data-gathering problem,
with and without aggregation, and propose polynomial time algorithms for maxi-
mizing the network lifetime, which is defined as the time until the first sensor runs
out of energy. They formulate the problem for the aggregation case as a network
flow problem using an ILP and propose an iterative algorithm called, maximum
lifetime data aggregation (MLDA), to find a maximum lifetime schedule. The case
without aggregation, called the maximum lifetime data routing (MLDR) problem,
is formulated as a maximum flow problem with energy budgets on the nodes and
again solved using an ILP.

In [51], a TDMA scheduling scheme for many-to-one communication is stud-
ied. TDMA-based communication provides a common energy-saving advantage by
allowing nodes to turn their radio off when not engaged in communication; however,
too much state transitions between the active and the sleep modes can waste energy.
Accordingly, the desired objectives in this paper are to minimize the total time for
data collection as well as to minimize the energy consumed on switching between
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the active and sleep states. To solve this optimization problem, two population-
based stochastic optimization techniques, particle swarm optimization and genetic
algorithm, are hybridized. The former guarantees that there is no empty slot during
scheduling, and the latter ensures a strong searching ability to find the optimal slot
allocation. It is shown by simulations that the hybrid algorithm outperforms the
particle swarm optimization algorithm and the coloring methods in terms of the
energy efficiency and finding minimal schedule lengths.

In [18], ElBatt et al. study the problem of joint scheduling and power control.
Although the ideas presented in this paper are not directly targeted for WSNs, the
problem of joint power control and TDMA scheduling also arises in WSNs, and
the solution presented in the paper has been used for minimizing the data collec-
tion time in [38]. The algorithm proposed in [18] is a cross-layer method for joint
scheduling and power control to improve the throughput capacity. The goal is to find
a TDMA schedule that can support as many transmissions as possible in every time
slot. It has two phases: (i) scheduling and (ii) power control. The scheduling phase
searches for a valid transmission schedule where no node is to transmit and receive
simultaneously or to receive from multiple nodes simultaneously. The power control
phase then iteratively searches for an admissible schedule with power levels chosen
to satisfy all the interfering constraints in the given valid schedule. In each iteration,
the scheduler adjusts the power levels depending on the current RSSI at the receiver
and the SINR threshold according to the iterative rule: Pnew = β

SINR · Pcurrent, which
is the well-known power control algorithm by Foschini and Miljanic [25]. If the
maximum number of iterations is reached and there are nodes which cannot meet
the interfering constraints, the scheduling phase excludes the link with minimum
SINR. The power control phase is then repeated until an admissible transmission
scenario is found.

The problem of joint scheduling and transmission power control is studied by
Moscibroda [52], which will be surveyed in the next section for constant and uni-
form traffic demands in WSNs. In this paper, it is shown that unbounded improve-
ments in the asymptotic capacity of data collection can be achieved by employing
nonlinear power assignment at nodes.

14.3.3.2 Algorithms on Maximizing Capacity

Although maximizing the throughput capacity is not considered to be one of the
prioritized objectives in traditional low-rate data collection applications, it may
become an important concern in dense deployment or during certain periods when
large bursts of packets are generated, for instance, due to a change in the monitored
conditions. Moreover, with the adoption of WSNs in different application areas,
such as industrial monitoring, health care, and surveillance where large amounts of
data need to be collected and sometimes streamed, maximizing the capacity with
limited resources has become a popular topic [17]. In this section, we describe two
data collection studies that focus on this objective.

In [17], Duarte et al. present ideas which, although not based on TDMA schedul-
ing, are very closely related to the problem of many-to-one data gathering. The
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trivial upper bound per node is presented as W/N (W is the transmission capacity
and N is the number of nodes), which can be achieved when the sink is 100% busy
in receiving. They show circumstances under which this bound is achievable, such
as when all the sources can directly transmit to the sink node. On the other hand,
if each source cannot directly reach the sink node and the communication takes
place in multiple hops, it may or may not be possible to achieve the upper bound
depending on the transmission and interference ranges. The bounds presented in the
capacity domain can be translated into bounds on schedule length in TDMA. The
trivial upper bound for the minimal schedule length is N , which similarly can be
achieved when all the sources can directly transmit to the sink node.

The worst-case capacity of wireless sensor networks is studied by Moscibroda
in [52], where it is theoretically shown that nonlinear power control mechanisms
(without discrete power levels) can significantly help in minimizing the schedul-
ing complexity and also in improving the capacity of WSNs. In this work, the
aggregated data capacity and the notion of worst-case capacity, which concerns the
question of how much information can each node transmit to the sink, regardless
of the network’s topology, are investigated for typical worst-case structures, such
as chains. They prove that the achievable rate in the protocol model is θ(1/N ),
whereas it is Ω(1/ log2 N ) in the physical SINR model using transmission power
control techniques (N is the number of nodes). For instance, in Fig. 14.11, two time
slots are required to schedule both transmissions in the protocol model, but in the
physical model both transmissions can be scheduled simultaneously by transmitting
at appropriate power levels. Hence, the most important conclusion of this study is
that there is an exponential gap between these two interference models in terms of
achievable data rates. However, the assumption that the transceivers can set their
power level to any value without considering discrete power levels and limits on the
transmission power is somewhat limiting.

Motivated by Moscibroda’s findings on using SINR-based interference model for
computing capacity, Chafekar et al. in [6] develop polynomial time algorithms to
provably approximate the total throughput. They define a throughput maximization
problem with SINR constraints: Given a set of nodes V , a set of source–destination
pairs, and a transmission power level at each edge, the problem is to (a) choose
routes for the pairs, (b) choose flow rates on the routes, and (c) schedule packets
at each time slot respecting SINR constraints for all parallel transmissions, such
that the total throughput capacity is maximized. They develop a linear program-
ming formulation to approximate the maximum throughput rate vector for SINR
constraints. For the case of uniform power levels, they develop a polynomial time

Fig. 14.11 Transmissions from node 1 to node 2 and from node 3 to node 4 can simultaneously
take place in the physical interference model, whereas two time slots are needed in the protocol
model
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approximation algorithm that finds a feasible rate vector with a total throughput
of at least Ω(ropt/ logΔ), where ropt is the maximum possible throughput for an
instance and Δ is defined as maxu,v∈V d(u, v)/minu′,v′∈V,u′ �=v′ d(u′, v′), where
u, u′, v, v′ represent edges. When non-uniform power levels are used, they show
that O(logΔ logΓ ) approximation can be achieved, where Γ is the ratio between
maximum and minimum power levels used. Similarly, in [21], approximation algo-
rithms for link scheduling with SINR models are proposed.

14.3.3.3 Algorithms on Maximizing Fairness

In WSNs, fairness issue may arise as a problem under high data rates, for instance,
when the data rates are comparable to available channel bandwidths. In this case,
traditional randomized access schemes face the problem of unfair data delivery.

In [67], Sridharan et al. study max–min fair collision-free scheduling in WSNs
by developing a linear programming formulation. They propose a distributed max–
min fair scheduling mechanism suited for continuous traffic on a data-gathering tree
and incorporate it with a time slot-based bandwidth allocation scheme to guarantee
collision-free traffic. The algorithm for max-min fair resource allocation works in
rounds, and at each round source nodes that are not constrained increase their gen-
erated data rate by a small incremental value ε. Nodes become constrained when the
total bandwidth usage (the combination of incoming data, generated data, and inter-
fering data traffic) at those nodes is within ε of the total bandwidth. Also, all nodes
that are in the subtree below a constrained node, and all nodes whose output traffic
interferes at a constrained node also become constrained. The algorithm terminates
when all nodes on the routing tree become constrained and the rate available to
all sources is the allocated rate. The scheme is incorporated with a TDMA-based
scheduling algorithm with the goal to provide enough number of time slots for
the data originating at each source at each frame. First, the root node allocates
the required number of time slots to each of its children. The time slot allocation
algorithm then runs in an iterative manner in a BFS order. At each iteration, only
one node allocates time slots to its children. Simulations show that it outperforms
an overhearing avoidance MAC (similar to S-MAC) and pruned 802.11 (without
ACK’s) in terms of energy consumption, fairness, and delay.

Another TDMA-based scheduling algorithm, called AI-LMAC, focusing on fair-
ness was introduced by Chatterjea et al. in [7], which is an extension to the schedule-
based MAC protocol, LMAC [36]. In the original LMAC protocol, each node on a
data collection tree is allocated one time slot at each frame, whereas in AI-LMAC,
nodes are assigned multiple time slots according to the traffic flowing over them.
This ensures fairness such that the bandwidth allocated to a node corresponds to the
traffic it is expected to encounter. Similar to the scheduling scheme proposed in [67],
time slot allocation is based on a parent–child relationship over a data-gathering
tree. A parent advises a child, i.e., sends a message to every one of its children
indicating the ideal number of slots that a particular node should take up under the
current traffic conditions. The process starts at the root node and percolates down
the branches of the tree toward the leaf nodes.
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14.3.3.4 Algorithms on Meeting Deadlines

Collecting data from a WSN within a specific deadline is closely related with
the objectives of minimizing the schedule length and latency. However, it puts an
additional constraint associated with the maximum latency allowed per message.
For instance, in safety and mission-critical applications where sensor nodes are
deployed to detect events, such as oil/gas leak or structural damages, the actuators or
controllers need to receive data from all the sensors within specific deadlines [10].
Failure to receive data within the deadlines even from a single sensor may lead to
unpredictable and catastrophic failures.

Scheduling messages with deadlines in multi-hop, real-time WSNs is first studied
by Li et al. in [44]. They focus on the problem of providing timeliness guarantees
for multi-hop transmissions in a real-time robotic sensor application where each
message has a specific deadline. They show that the problem of meeting message
deadlines is NP-hard and propose heuristics with deadline constraints. A central
scheduler schedules messages based on their per-hop timeliness constraints and
associated routes, transmission ranges, and the location of the nodes. First, the
scheduler divides the transmission requests into disjoint sets such that transmissions
within each set do not interfere with one another. While constructing these sets, the
scheduler considers an order according to the latest transmission time (LST). The
transmission with the minimum LST is chosen at each iteration and is assigned to
a set where it does not interfere with other parallel transmissions without missing
its deadline and without causing other transmissions in the same set to miss their
deadlines. Performance of the proposed algorithm is compared with a method based
on CSMA-CA where nodes make local scheduling decisions independent of others.
Given a set of messages that are queued up at a node, the node schedules the mes-
sage with the smallest LST. The proposed algorithm outperforms CSMA-CA-based
scheduling in terms of the deadline miss ratio, especially when the utilization is high
and/or the probability of collisions is high.

14.3.4 Algorithms with Joint Objectives

Besides the TDMA scheduling algorithms focusing on a particular objective for
data collection in WSNs, another approach is to consider multiple objectives and
address their trade-offs. One of the most studied joint objectives is minimizing
latency together with minimizing energy consumption [74].

In [51], Mao et al. propose a TDMA scheduling scheme with the objective of
minimizing the total time for completing a convergecast and minimizing the energy
consumed on switching the transceiver between the active and the sleep states. The
details of this algorithm is presented in Sect. 14.3.3.

Similar to [51], Wang et al. in [71] also focus on packet delay and the energy
consumed on node state transitions. They propose a hierarchical solution to solve
the multi-objective TDMA scheduling problem. Particle swarm optimization is
exploited due to its strong search ability in combinatorial optimization and to reach



14 Scheduling Algorithms for Data Collection 435

multi-objective optimality. However, since there exists a conflict between delay and
energy consumption in TDMA scheduling, the objectives cannot be optimized in
parallel. For instance, after collecting data from its child nodes, the sensor node
should wait to transmit packets to its own parent instead of switching off. As a result,
delay performance is sacrificed. To solve this mutually conflicting multi-objective
optimization problem, the concept of Pareto optimality was used in the evaluation
system. Minimizing delay and energy consumption is presented as a case study in
this paper for the evaluation of the proposed multi-objective optimization algorithm.

In [48], Macedo et al. propose a TDMA-based MAC protocol for latency–energy
minimization and interference avoidance for alarm-driven, event-based WSN appli-
cations, such as surveillance of sensitive areas. The authors emphasize the trade-off
between end-to-end delay and energy efficiency. As in the other protocols discussed
in Sect. 14.3.2, a cascading time slot assignment is used to minimize the end-to-end
transmission delay. With this slot assignment, the algorithm achieves very low duty
cycles, since each node should only listen during the slots assigned to its children
at the beginning of each frame and switch to sleep mode afterward. Allocation of
slots is performed by parent nodes in a localized manner without requiring a central
scheduler. The algorithm to assign the slots is based on Request To Assign and Clear
to Assign messages exchanged by the parents and their children that are similar to
RTS/CTS messages in CSMA-CA protocols. Instead of using a simple hop-based
interference model, the algorithm checks the link quality directly experienced by
the nodes.

In [68], Trigoni et al. propose wave scheduling and routing in sensor networks for
energy efficiency in WSNs by considering data dissemination strategies that avoid
collisions and message retransmissions at the cost of higher message latency. They
define the energy minimization problem with the goal to determine a data dissemina-
tion scheme that minimizes the energy consumed in delivering all messages within
a bounded delay. First, they prove that the problem is NP-hard. For the analysis, unit
disk graphs are used such that two nodes are connected by an edge if and only if the
Euclidean distance between them is at most 1. Moreover, to simplify the problem,
they use a partitioning scheme that allows to schedule communication tasks at the
cell level, rather than at the node level. They partition the network into square cells,
where the length of each cell is set so that a node anywhere in a cell can typically
communicate directly with nodes in adjacent cells. In their proposal, the scheduler
schedules concurrently activate cells that are sufficiently spaced apart so that the
message transmissions within these cells do not interfere with one another. In the
wave scheduling algorithm, directed edges of the rectilinear grid that connect two
adjacent cells are activated periodically in a sequential manner by avoiding interfer-
ence at the MAC layer and allowing nodes to turn off their radios whenever they
do not need to communicate. The algorithm jointly works with a routing protocol
to reduce interference, and extensive simulations show that the proposed scheduling
method results in significant energy savings at the expense of increased message
latency.

Similar to [68], Oswald et al. present tight bounds for delay-sensitive aggrega-
tion in [55] by studying the trade-off between latency and energy cost. In order to
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reduce the communication cost, nodes aggregate messages while forwarding toward
the sink node. In other words, nodes wait to receive/generate more packets before
relaying so as to decrease the communication cost at the expense of late delivery
at the sink node. The authors present competitive ratios (a metric, in which the
performance of an on-line algorithm is compared to the performance of an optimal
off-line algorithm) for a simple algorithm that aims to balance the total latency and
energy cost in which nodes aggregate information about multiple events in one mes-
sage until a forwarding condition is satisfied. The forwarding condition implies that
a message should be forwarded to the parent node as soon as the current latency
exceeds the transmission cost. They prove that any oblivious algorithm (i.e., given
the packet arrival times all nodes react in the same way, independent of its distance
to the sink node) achieves a competitive ratio of O(min(h, c)), where h is the the
height of the tree and c is the transmission cost per edge, for tree networks and

Θ
(

min
(√

h, c
))

for chain networks.

In [42], Lee et al. study the scheduling problem with the objective of energy effi-
ciency and reliability. In this work, besides collision-free scheduling, network flow
optimization techniques and optimized tree topologies are used to achieve energy
efficiency. Moreover, reliability is guaranteed by including many retransmission
opportunities in the schedules. The protocol proposed gets the connectivity graph
as the input and first assigns layers to the nodes to create a hierarchy in the network.
The sink node is assigned to layer 0 and the nodes connected to the sink are assigned
to layer 1. By using a BFS order, all nodes in the graph are assigned layers. After
the layer assignment, a parent graph is created by removing the links among the
nodes at the same layer. By using the parent graph, all the potential parent sets are
created for the nodes. Based on the parent graph, optimal flow rates are calculated
that minimize the energy consumption and accordingly usage percentages of links
are calculated. Based on these percentages, the algorithm constructs a set of trees to
be used in each data collection cycle. Finally, for each tree a collision-free schedule
list is created by the sink node and the schedule is broadcast back to the nodes in
the network.

14.3.5 Taxonomy

In this section, we provide a classification and a summary of the surveyed TDMA-
based scheduling algorithms for data collection in WSNs. The classification is based
on the design objectives, model constraints, and assumptions that are presented in
Sect. 14.2. Table 14.1 summarizes the general aspects of the algorithms that are
discussed in Sect. 14.3, ordered by the design objectives.

Most of the algorithms focus on the objective of minimizing the schedule length
using an interference model that is a variant of the graph-based protocol model.
Both aggregated and raw-data collection operations are investigated in the surveyed
solutions. Most of the algorithms consider data collection operation over tree topolo-
gies, whereas some of them focus on specific topologies, such as chain, ring, or
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star. All of the algorithms require time synchronization to operate under a TDMA
schedule, but none of them mention the granularity of the synchronization or the
kind of synchronization schemes used. It is assumed that nodes are synchronized by
a technique available in the literature [64]. Most of the algorithms work with simple
transceivers available on the sensor nodes, while some only work with transceivers
with a special capability, such as directional antennas. Additionally, some of the
solutions explore the benefits of using transceivers that can adjust its transmission
power level and/or operating frequency (these types of radios are commonly avail-
able on widely used sensor mote platforms [4, 62]), besides the use of simple radios.
Most of the algorithms aim to find lower bounds or compute approximation algo-
rithms for the studied NP-complete problems. Therefore, the algorithms provide
centralized solutions which are usually computed by the sink node. Some of the
algorithms present scheduling solutions that are coupled with additional methods,
such as multiple frequencies, transmission power control, and CDMA to eliminate
interference. The surveyed algorithms usually support all patterns of convergecast,
such as one-shot or continuous data collection, while some are optimized for a spe-
cific one. Lastly, almost all the algorithms consider scheduling at link level rather
than node level.

14.4 Future Research Directions/Open Problems

As we have seen, extensive research has been done with many different objectives
in the field of TDMA scheduling for data gathering in WSNs. However, there still
exist some open questions to be addressed, especially related to real implementation
and evaluation of the proposals on testbeds or on real deployments. There also exist
several theoretical questions that need to be addressed. In this section, we briefly
summarize these open problems.

Most of the solutions are theoretical or simulation based (except [75]) offering
only centralized solutions. Real implementation on sensor nodes where schedules
are computed locally and are adaptive to network dynamics is necessary to enhance
the operation of WSNs and to meet application requirements. For instance, we
observe a trend in using WSNs to support more complex operations ranging from
industrial control to health care, which require complex operations like detection
of events in real time or responsive querying of the network by collecting streams
of data in a timely manner. Thus, supporting QoS (quality of service) metrics such
as delay and reliability become more important [31]. Therefore, distributed imple-
mentation and performance testing of the proposed algorithms on testbed or real
deployments become essential. Additionally, real implementation and deployment
will help in addressing the problems of intermittent connectivity and channel errors
with unreliable links and handling asymmetric links. We should note that many
of the existing algorithms provide lower bounds for the studied problems, and so
they can be used as benchmarks for comparing the performance of the distributed
solutions.
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Although there exist some works that address multiple joint objectives, more
detailed investigations to address the trade-offs between conflicting objectives will
be beneficial. Most of the studies consider the trade-offs between energy efficiency
and latency objectives. Different trade-offs can be identified between other objec-
tives, such as minimizing latency and maximizing reliability or maximizing capacity
and minimizing energy consumption. For instance, with the extension of WSNs in
the visual domain where embedded cameras act as sensors, criteria such as relia-
bility, QoS, and timeliness of the streamed data are becoming important. Solutions
to address different objectives and trade-offs, for instance, consumed energy ver-
sus reconstructed image quality, should be explored within the perspective of data
collection in WSNs.

Most of the surveyed algorithms consider fixed traffic patterns, i.e., every node
generates a fixed number of packets in each data collection cycle. In a real scenario,
some nodes may have a lot of packets that require more than one time slot per
frame, while some others may not have any data to send in a time slot, thus wasting
bandwidth. It will be interesting to explore the performance in such scenarios with
random packet arrivals and combining the solutions of TDMA scheduling with rate
allocation algorithms, especially in applications where high data rates are necessary.

In the surveyed papers, either raw-data collection or aggregated data collection
are considered. Another possibility is to investigate different levels of aggregation,
i.e., how much of the data received from the children is forwarded to the parent node.
Investigating different levels of aggregation was proposed in [70] where the effi-
ciency of different tree construction mechanisms was analyzed in terms of latency
and energy metrics. This study can be extended for TDMA-based data collection
algorithms in WSNs.

Some of the surveyed algorithms provide cross-layer solutions, where the sched-
ules are computed together with methods such as transmission power control, opti-
mal routing trees, and multi-frequency scheduling. It is indeed essential to address
the problems from a cross-layer perspective to achieve the target functions and offer
better performances. Along this line of research, Chafekar et al. in [5] extend
the work by Moscibroda [53] in designing cross-layer protocols using the SINR
model and proposed polynomial time algorithms with provable worst-case perfor-
mance guarantee for the latency minimization problem. Their cross-layer approach
chooses power level for all transceivers, routes for all connections, and constructs an
end-to-end schedule such that SINR constraints are satisfied. A prominent research
direction is to consider such cross-layer approaches from a theoretical point of view.
More research can be done in this direction to combine the existing work with the
solutions at different layers. In most studies, static topologies are assumed. Problems
related to dynamic topologies, such as topological changes and addition of new
nodes, are open. In addition, the time complexity of data gathering under various
hypothesis [28], such as when some nodes have no packet to transmit, or when no
buffering is allowed, remains open.

As was pointed by Moscibroda in [52], the type of interference model may
heavily impact the achievable results. Use of realistic models for communication
and interference is another direction that can be further investigated. Along this



14 Scheduling Algorithms for Data Collection 441

direction, Goussevskaia et al. [32] present the first NP-completeness proofs (by
reducing from the partition problem) on two scheduling problems using the SINR
interference model. The first problem consists in finding a minimum-length sched-
ule for a given set of links. The second problem receives a weighted set of links
as input and consists in finding a maximum-weight subset of links to be scheduled
simultaneously in one shot. In [53], Moscibroda et al. study a generalized version of
the SINR interference model and obtain theoretical upper bounds on the scheduling
complexity of arbitrary topologies. They prove that if signals are transmitted with
correctly assigned transmission power levels, the number of time slots required to
successfully schedule all links in an arbitrary topology is proportional to the squared
logarithm of the number of nodes times a previously defined static interference mea-
sure. More of such works that bridge the gap between static graph-based interference
models and the physical models are needed.

14.5 Conclusions

In this chapter, we have surveyed TDMA-based scheduling algorithms for data col-
lection in wireless sensor networks. We classified the algorithms according to their
design objectives and constraints and provided a survey of existing algorithms with
comparisons. In terms of the design objectives, most of the surveyed algorithms
aim at (i) minimizing schedule length, (ii) minimizing latency, (iii) minimizing
energy, and (iv) maximizing fairness, whereas some algorithms aim for joint objec-
tives, such as maximizing capacity and minimizing energy or minimizing delay and
energy. The surveyed algorithms also vary according to the design constraints and
assumptions. For instance, some of the algorithms use simple models for communi-
cation and interference while some of them assume complex transceivers available
on the nodes. As it was shown in some of the surveyed papers, the unrealistic models
or assumptions may heavily impact the achievable results. Use of realistic models
for communication, modification of those solutions that base their assumptions on
unrealistic models, implementations on real sensor nodes and performance evalu-
ations over real testbeds and deployments, and addressing the trade-offs between
conflicting design objectives are identified as some of the important directions for
future research.
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Chapter 15
Position-Based Routing in Wireless Ad Hoc
and Sensor Networks

Nathalie Mitton, Tahiry Razafindralambo, and David Simplot-Ryl

Abstract Geometric routing protocols are a memoryless and scalable approach
which uses position information for routing. Principles of geometric routing
approaches are very simple. Every node is assumed to be aware of the location of
itself, of its neighbors, and of the destination. Based only on these information, every
node is able to perform a routing decision. The location can be determined by either
geographic coordinates (we thus talk of geographic routing) or logical coordinates
extracted from the environment. In the former case, location coordinates may be
derived thanks to GPS or estimated thanks to any other positioning mean such as
triangulation. In the latter case, a new coordinate system has to be built. This chapter
reviews the main routing algorithms in every coordinate-based system, highlighting
the strengths and weaknesses of each of them.

15.1 Introduction

Routing in wireless sensor networks is a challenging task. Many different
approaches have been proposed in the literature. We can identify three main classes
of routing protocols: (i) proactive routing such as OLSR [10], (ii) reactive routing
such as AODV [29], and (iii) geometric routing or georouting. This latter approach
is receiving more and more attention since it is a memoryless and scalable approach,
unlike the two other ones. In addition, it better suits the constraints of wireless
sensor networks in which memory and processing capacities are very low and in
which the number of entities is expected to be very high. The idea of using position
information for routing was first proposed in the 1980s in the area of packet radio
networks and interconnection networks.
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Principles of geometric routing approaches are very simple. Every node is
assumed to be aware of the location of itself, of its neighbors, and of the destination.
Based only on these information, every node is able to perform a routing decision.
The location can be determined by either geographic coordinates (we thus talk of
geographic routing) or logical coordinates extracted from the environment. In the
former case, location coordinates may be derived thanks to GPS or estimated thanks
to any other positioning mean such as triangulation [2, 27]. In the latter case, a new
coordinate system has to be built. Coordinates are said as virtual coordinates. Yet,
geometric routing is

• localized: only local information such as the position of the current node holding
a packet, the one of its neighbors, and the one of the destination is required to take
a routing decision. Localized algorithms avoid communication overhead, which
yields a scalable protocol;

• distributed: every node performs the same algorithm;
• memoryless: no additional information has to be stored neither on the nodes on

the path nor in the message;
• scalable.

Indeed, unlike traditional routing schemes (either proactive or reactive), georouting
does not need to flood the whole network and does not store any routing tables.
These features make them more scalable (in terms of memory and bandwidth over-
head) and more energy efficient (since no useless message is sent to discover routes).

Each of both families of georouting protocols (either with exact or with virtual
coordinates) can be divided based on its properties with respect to the metric used
(hop count or power) and whether or not it guarantees delivery. Therefore, there are
four classes of algorithms: (i) simple hop count-based algorithms without guaran-
teed delivery, (ii) hop count based with guaranteed delivery, (iii) energy efficient
without guaranteed delivery, or (iv) energy efficient and guaranteed delivery.

In this chapter, we review the different geometric routing protocols from the lit-
erature with respect to the kind of coordinates they use. Section 15.2 reviews the
propositions based on geographic coordinates (latitude, longitude, altitude) while
Sect. 15.3 focuses on protocols based on virtual coordinates. In each of these sec-
tions, we will see different approaches that have been proposed to achieve energy
efficiency and packet delivery. In addition, Sect. 15.3 reviews several ways proposed
to provide the virtual coordinate systems, highlighting strengths and weaknesses of
each one. Finally, Sect. 15.4 summarizes the different solutions.

15.2 Geometric Routing Based on Geographic Coordinates

In this section, we consider that nodes are aware of their geographic coordinates.
Like already mentioned, in such protocols, the routing decision is performed by a
node holding a packet only based on the information of the position of itself, of its
neighbors, and of the destination node. These positions may be exact if retrieved
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from a positioning device (GPS or Galileo). If only a part of nodes are equipped
with a positioning device, geographical coordinates may be estimated through tri-
angulation [27] or any other mean [6], based on the neighborhood tables and the
coordinates of GPS nodes.

In order to cope with the lack of positioning information and take benefit from
georouting paradigms, some works have proposed to evaluate the distance between
each node in order to approximate the relative geographical position of the node in a
two-dimensional plane. The approach proposed in [6] uses techniques such as RSSI
(receive signal strength information), TOA (time of arrival), AOA (angle of arrival),
or TDOA (time difference of arrival) [28] to estimate the distance between two
nodes. Based on regular packet sending, every node knows its one-hop and two-hop
neighborhood and knows some of the distances between its one-hop and two-hop
neighbors. First, each node i chooses two nodes j and k from its one-hop neighbors
that do not lie on the same line and with a known distance greater than 0. Node i then
defines a local coordinate system based on i , j , and k. It holds coordinates (0, 0).
Using triangulation, each neighbor of node i can be positioned based on this local
coordinate system. In a second phase, all local coordinate systems are modified by
rotation or mirroring to achieve the same direction. In the third phase, an election
algorithm is applied to choose the center of the network coordinate system and this
network coordinate system is broadcast in the network. As a result, we obtain a
relative and approximate (due to distance approximation) positioning system which
is used exactly as coordinates provided by a GPS.

The position of the neighbors may be achieved through periodic exchange
within a neighborhood where every node broadcasts its position in Hello packets.
The position of the destination may be achieved through a localization algorithm
like [6, 30, 40], but the review of localization scheme is beyond the scope of this
chapter.

15.2.1 Greedy and Directional Approaches

First routing approaches were pretty simple and intuitive. For instance, in [26], the
node holding a packet has to choose at random a forwarder among the neighbors in
the forwarding direction of the destination. Yet, in Fig. 15.1, s will choose at random
between nodes in the gray area, i.e., a, b, c, or e. Choosing the next hop only among
the nodes in the forwarding direction guarantees that at each step, a progress is made
toward the destination and no loop is created.

Then, in the greedy method [14], a node s holding a packet forwards it to its
neighbor a that is the closest to the destination d. Greedy forwarding tries to bring
the message closer to the destination at each step using only local information, aim-
ing at reducing the overall number of hops. Thus, each node forwards the message
to the neighbor that is most suitable from a local point of view. The most suitable
neighbor in the “Greedy case” is the one who minimizes the distance to the destina-
tion at each step. In Fig. 15.1, node s sends its message to node a.
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Fig. 15.1 Illustration of
geographic greedy routings
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Alternatively, one can consider another notion of progress. MFR [35] (most for-
ward routing) and NFP [16] (nearest with forwarding progress) consider the pro-
jected distance on the source–destination line. In MFR, the sending node selects as
the next forwarder the node with maximum projected distance while NFP selects
the one with the smallest one. MFR tries to get closer to the destination at each step
by sticking to the initial direction in order to limit the number of hops needed to
reach the destination. NFP suggests to adjust the transmission power to the distance
between the two nodes in order to save energy during the transmission. In Fig. 15.1,
MFR would select node b while NFP would designate node c as the next forwarder.

Another alternative considers the neighbor which provides the minimum angle
between source–neighbor and source–destination. This approach is known as DIrec-
tional routing (DIR) or compass routing [18]. With such an algorithm, node a selects
node e in Fig. 15.1. The idea here is to stick to the direct direction in order to reduce
the stretch factor of the resulting routing path.

Basagni et al. incorporate mobility concerns by introducing DREAM [1]. Indeed,
the source node first determines an angular sector for forwarding, based on the
mobility information of the destination node d. Then, the message is forwarded
to every node lying in that angular sector. To determine this angular sector, node
s computes the circle centered on d with radius equal to the maximum possible
movement of d since the last update. Then, the angular sector is defined by the
tangent to that circle passing by node s. For instance, in Fig. 15.2, a forwards the
message to every node in the gray area, i.e., nodes a and b. A very similar approach
has been proposed in parallel than DREAM in the same conference. It is called
LAR, for location-aided routing [17], and presents only few modifications. Here, if
there is no node in the computed angular sector, this sector is enlarged till including
one.

For all these methods, if the routing ends up at a node which has no neighbor
closer than itself to the destination, the routing fails. In such a case, Finn [14] pro-
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Fig. 15.2 Illustration of
DREAM
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poses to search all n-hop neighbors (nodes at distance at most n hops away from
the current node, where n is a network-dependent parameter) by flooding the nodes
until a node closer to destination than the current node is found. The algorithm has
non-trivial details and does not guarantee delivery nor optimize flooding rate.

A variant of greedy algorithms, called GEDIR, is proposed in [33]. In this vari-
ant, the message is dropped if the best choice for a current node is to return the
message to the node the message came from. It increases delivery rate by prolonging
failure. The same criterion can be applied to MFR method and directional methods.
GEDIR is often used as the basic ingredient in other routines. For instance, it is used
in several location update schemes, such as quorum-based and home agent-based
schemes.

Globally, basic greedy strategy based on distance is loop free. Indeed, at each
step, the message has to move forward to the destination and thus cannot loop by
going through a node it has already visited. MFR has also been proved to be loop
free [33] while DIR is not loop free as shown in Fig. 15.3. Indeed, in Fig. 15.3, let
us suppose that nodes a and b are not neighbors. By applying DIR, node s forwards
to node a. c is the best choice for a as the next forwarder since it is the node which
minimizes the angle toward d, which makes the message go backward. A loop then
appears.

All the greedy approaches described to that point are based either on the distance
or on the direction. None of them but NFP has energy consumption concerns. As
already mentioned, NFP tries to minimize the energy consumption by sending the

Fig. 15.3 DIR is not loop
free
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message to the closest node to a in the direction of the destination. This leads to
a succession of small hops, less energy consuming than long hops. Nevertheless,
generally, the energy consumed depends indeed not only on the transmission range
r but also on the overhead c due to signal processing. The most commonly used
energy model is

cost(r) =
{

rα + c if r �= 0
0 otherwise

(15.1)

where α is a real constant greater than 1 that represents the signal attenuation. Yet, a
succession of small hops is not necessarily less energy consuming than a succession
of a smaller number of greater hops.

In [34] the optimal transmission radius, r∗, that minimizes the total power con-
sumption for a routing task is computed and it is equal to

r∗ = α

√
c

α − 1
(15.2)

Based on these observations, the first power-aware localized routing algorithms
were described in [34]. Cost-over-progress (COP) framework with power as the cost
has been applied in [19]. Let us take Fig. 15.4 to illustrate it. To forward a packet to
destination node d, source node s considers only nodes in the forwarding direction
of d (nodes in the gray area). It selects among them its neighbor a such that the ratio
of the energy consumed to reach that neighbor (cost(|sa|)) to the progress made
(measured as the reduction in distance to d, i.e., |sd|− |ad|) is minimized. The idea
is the following. Ideally all hops from nodes s to d provide the same progress as the
first one via candidate neighbor a. The number of such hops along the path from s
to d is then |sd|/|sd| − |ad)|, and cost of each is cost(|sa|). |sd| being a constant,
at each step, the algorithm tries to optimize the ratio cost(|sa|)/|sd| − |ad|.

Fig. 15.4 Illustration of COP
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Fig. 15.5 Illustration of a
failure routing. Source and
destination nodes are the
green nodes. Nodes on the
routing path appear in red.
Routing reaches a coverage
hole and fails

The same paper [19] proposes and analyzes another algorithm. The iterative
power progress algorithm is an improvement of the basic COP algorithm. It works as
follows. As in COP, a node s, currently holding a message destined to d, first finds
a neighbor a that minimizes cost(|sa|)/(|ds| − |da|). Then, the search continues
for an intermediate node b which (i) is closer to d than s, (ii) is neighbor to both s
and a, and (iii) satisfies cost(|sb|) + cost(|ba|) < cost(|sa|) and has the minimum
cost(|sb|)+ cost(|ba|) measure. If found, such node b replaces a as selected neigh-
bor, and the search for a better intermediate node repeats. This process is iteratively
repeated until no improvement is possible, and node s forwards the message to the
selected neighbor, which then applies the same scheme for its own forwarding.

Till that point, we have reviewed most of the greedy routing protocols, hop count
based or energy aware. Though these routing algorithms work well in dense net-
works, they fail if the node holding the message is closer to the destination than
any of its neighbors. Indeed, in sparse graphs, these algorithms suffer from cover-
age hole and may fail, as Fig. 15.5 illustrates. Therefore, some studies introduce
solutions that guarantee delivery.

Yet, several propositions have been proposed in the literature for greedy routing
in wireless networks, with energy concern when the radius range can be adapted
on demand by nodes. Nevertheless, none of these approaches guarantee the packet
delivery even if the network is connected. Therefore, more investigations have been
performed on this track.

15.2.2 Guaranteed Delivery Approaches

In order to guarantee the message delivery, the authors of [4] have proposed the
face routing. Face routing guarantees delivery in two-dimensional UDG. Face rout-
ing requires the network topology to be a planar graph (i.e., no edges intersect
each other). To planarize a graph, several algorithms can be used such as Gabriel
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vu

(a) Case edge uv belongs
to GG.

vu

w

(b) Case edge uv does not
belong to GG.

Fig. 15.6 Illustration of Gabriel graph building. In (a), there is no node lying in the disc with
diameter [u, v], edge uv belongs to the GG. But, in (b), the presence of node w in the disc removes
edge uv from GG

graph(GG) [4, 20], the relative neighborhood graph (RNG) [36], or the Morelia
graph [3]. Gabriel graph, for instance, contains edges between nodes u and v if and
only if no other nodes are located inside the circle of diameter |uv|, as illustrated
in Fig. 15.6. GG has some desirable properties when used for routing in wireless
networks such as localized message, free computation, planarity, and preserving
connectivity [4]. If the initial underlying graph is a graph G = (V, E), the outcome
planarized graph is a subgraph G ′ = (V, E ′) ⊂ G where every intersecting edge
has been removed.

Planarization divides the network into faces. Face routing then performs as fol-
lows on the planarized graph G ′. The face that contains the line (sd), where s is the
source node and d is the destination node, is traversed by right-hand or left-hand rule
(placing a virtual hand on the wall of the face). When edge which has to be followed
intersects with the imaginary dash line (sd), the message changes face, and so on, till
reaching the destination node. Figure 15.7 illustrates the face algorithm. To send a
message to node d, s follows the first face (composed by nodes sabgh) and forwards
it to node a. a applies the same algorithm and forwards to b. If b continued to follow
the same face, it would send the message to node g and by doing so would cross
red line (sd). Therefore, b changes face and sends the message to node c. The same
algorithm is applied by every node on the path. Finally, the message follows blue
edges in figure, going through nodes sabcie f d.

Fig. 15.7 Illustration of face
routing. Path from s to d
appears in blue, path from s
to j in green
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Theorem 1 FACE guarantees the packet delivery.

Proof We give a sketch of proof of a variation of the FACE routing algorithm. This
version of FACE is the following. We consider the current node s with the destina-
tion node d. At each step, the current node s knows the position of the destination
d and has in input a reference point r which is used to decide the face traversal
and the change of face. At the starting point, we take r = s. The current node s
selects the face which contains the segment [rd], and the message starts the face
traversal according to the right-hand or left-hand principle. The change of face is
decided when the message crosses the segment [rd] by using an edge (b, g) (by
using Fig. 15.7 notations). In this case, we set r =]rd] ∩ [bg] and s = b. We can
note that it has been shown that we can also apply s = g without real impact on the
correctness of the algorithm or on the performances of the routing protocol. After
changing face, we apply the same algorithm in order to select the next face.

If at each face traversal we find an edge (b, g)which crosses ]rd], we can observe
easily that the distance |rd| is strictly decreasing and then the delivery is guaranteed.
Then, without loss of generality, it is enough to show that the edge ]rd] is always
crossed in the face traversal. This is equivalent to show that there always exists an
intersection between the segment ]rd] and the selected face.

We distinguish two cases: the selected face is an internal face or the selected face
is an external face of the graph of the whole network. In the case of internal face,
the crossing of the segment is guaranteed if the destination node is not isolated in
the middle of the selected face since the selected face contains the segment. This
case cannot happen if the network is connected. In the case of external face, if the
destination node is not part of the external face, the existence of an intersection
between the segment and the face is sure since a part of the external face is situated
under the ]rd] segment and another part is situated above the segment. Indeed, the
segment ]rd] “enters” in the graph at a point A which is at the intersection of the
face and the segment. If the destination node D is part of the external face, the
existence of the intersection is trivial. �

Yet, face routing guarantees message delivery. But using only face routing may
generate very long paths in cases where the message has to follow the external
face of the network. This is, for instance, the case in Fig. 15.7 when node s needs
to reach node j . The message follows the green line. Therefore, to overcome this
drawback and to take advantages of both greedy and face solutions, the authors
of [4] propose the GFG (greedy–face–greedy)-based approach. It applies greedy
routing until either the message is delivered or the routing fails. In the latter case,
face routing is applied to recover from failure. It has been shown in [15] that face
routing guarantees recovery traversing the first face. Greedy routing continues from
a until delivery or another failure node is encountered. Through guaranteed delivery
and providing path with a fairer stretch factor than face, GFG remains not energy
efficient.
The first tentative to address guaranteed delivery in power-aware localized routing is
[32]. It is a greedy–face–greedy (GFG) approach where greedy routing is the COP
as in [34] while face routing is similar to the one in [4]. One of the drawbacks of face
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routing is that it is likely to follow a long sequence of short edges of GG. Although
short edges are less energy consuming than long edges, a succession of short edges
will be more energy consuming than a short sequence of medium edges. Yet, for
sparse networks where the face step is often triggered, this approach is not energy
efficient.

In LEARN [39], a localized energy-aware routing is proposed. LEARN assumes
that every node is aware to adapt its transmission range. A node s aiming at des-
tination d selects neighbor b inside a restricted neighborhood (b̂sd ≤ α for a
parameter α < π/3) that has the largest energy mileage, determined as the ratio
|sb|/power(|sb|) where power(|sb|) represents the cost to send a message from
node s to node b. If no such neighbor exists inside the restricted neighborhood,
LEARN fails. In the variant LEARN-G, a node switches to greedy routing [14] in
case of failure and selects the neighbor closest to the destination. Finally, in the
variant LEARN-GFG, a node invokes face routing when a failure occurs. Thus, as
previously, LEARN can be energy efficient only when the network is dense enough
and that every node on the path may find a neighbor of it in the α angular sector
toward the destination (no invocation to greedy or face procedures).

The authors of [39] show that when LEARN indeed finds a path without needing
to invoke neither greedy nor face routing, the total Euclidean length of the final path
from s to d is within a constant factor of the optimum direct path (see Theorem 2)
and that this path is energy efficient. These proofs have then been generalized and
extended in [12] to any protocol, providing paths meeting angular constraints as
follows:

Definition 1 A path meets angular constraints if every hop is within an angle θ ≤
α < π

3 , θ → 0 toward the destination.

Theorem 2 (Wang et al. [39]) Any path from s to d meeting angular constraint has
length that is a constant of the optimum |sd|.

Proof The proof is made by induction on the number of hops. The theorem is
clearly true when the path has only one hop (the path has optimal length). Assume
that it is true for the path with (k − 1) hops. Then consider any k-hop path
v0v1v2 . . . vk−1vk . By induction, the length of path v0v1 . . . vk−1 is at most a con-
stant δ from the optimum:

∑k−1
i=1 |vi−1vi | = δ × |v0vk−1|. Then it is sufficient to

show that |vk−1vk | + δ × |v0vk−1| ≤ δ × |v0vk |.
Let us consider triangle v0v1vk , in which, by the routing protocol, v0 is the

longest link and � v1v0vk = θ < α (angular constraints). Let us note � v0vkv1 = 2x .

Then a simple geometry computation shows that |v0v1||vkv0|−|vkv1| = sin(x+ π
2 )

π
2 −x−θ =

cos x
cos(x+θ) . This means that we need x < π

2 − θ and x < π−θ
4 . Simple computation

shows that cos x
cos(x+θ) <

1
1−2 sin θ

2
< 1

1−2 sin α
2

for x < min
(
π
2 − θ, π−θ4

)
. And thus

|vk−1vk | + δ × |v0vk−1| ≤ δ × |v0vk | for every routing protocol respecting angular
constraints. �
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Fig. 15.8 Illustration of the
greedy step of the SPFSP and
EtE. Dash links are the links
with high weights
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In [31], SPFSP (shortest path face shortest path), a GFG-based energy-aware
routing with guaranteed delivery, has been proposed. The energy awareness is
introduced via the computation of an energy-weighted shortest path (with power
consumption as weights) at both greedy and face steps. Let us take the example
plotted in Fig. 15.8 to illustrate this greedy step. Node s currently holding a packet
first selects a target node by using the plain greedy algorithm [14], i.e., its closest
neighbor to destination d: node b in figure. Instead of transmitting directly to b, s
computes the energy-weighted shortest path to b over its whole neighborhood. In
the figure, this path is sce f b. Indeed, node s also considers its neighbors that are
not in the forwarding direction of d like nodes c and e. This path is then followed
by the packet until reaching node f , which is the first node on the path closer to
d than s. Node f then recursively applies the same protocol till either reaching the
destination node d or to fail. Note that, to ensure no loop, the shortest path has to be
embedded in the message, creating an overhead. To recover from failure points, a
face routing [4] is used in the following way. If we suppose that node s in Fig. 15.7
is the failure node, it applies face routing only to determine the target node: node a
in Fig. 15.7. But, once again, instead of reaching that target node directly, node s
computes an energy-weighted shortest path over its neighborhood and reaches node
a via this shortest path. Nevertheless, simulations have shown that most of the time,
this enhancement added to the recovery step is of no use since the shortest path is
most of the time the edge of the face itself. This is due to the fact that GG keeps only
small edges in the underlying graph and, thus, face edges are among the smallest
ones and thus among the less consuming edges within a node neighborhood.

Figure 15.9a illustrates a sample execution of the SPFSP algorithm. Greedy rout-
ing proceeds from node 1 which first chooses its next forwarder among nodes 2, 19,
and 21 (node 23 is not included in the selection since it is further from the destination
than node 1). Node 1 selects node 19 as temporary destination since it provides the
best progress toward destination and sends the packet to node 23, the first node on
the shortest path toward node 19. Note that even if node 23 was not among the
potential targets, it may be included in the path to it. Node 23 then forwards to node
2, second node on the path embedded in the packet by the source node. Node 2
being closer to node 8 than the source, it performs the selection algorithm and finds
node 19 as its best forwarder and in this case, the shortest path in that link. Node
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(a) Illustration of SPFSP.
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(b) Illustration of EtE.

Fig. 15.9 Comparison of SPFSP and EtE. Continuous links are the links to be followed in the
recovery step (GG). GG is built over every node in plain face routing or in SPFSP (a), while it is
computed only over dominant nodes (blue nodes) in EtE (b)

19 selects node 18 by following a shortest path through node 22 to which it sends
the message. The latter then forwards to node 18 where greedy routing fails. Face
routing is then invoked to follow edges 18-16 (directly), 16-14, 14-15, and 15-11.
Greedy routing then continues till final delivery.

Based on these observations, the authors of [12] have proposed EtE (end-to-end)
protocol which guarantees the packet delivery with energy concerns at both greedy
and face steps. EtE draws its inspiration from SPFSP. The greedy step is modified in
two ways: (i) in the way the selected target is chosen and (ii) on the set of nodes over
which the shortest path is computed. Indeed, in order to avoid to embed the path in
the packet, the shortest path is computed only on nodes in the forwarding direction
of the destination d. In Fig. 15.8, s computes the shortest path only over nodes in the
blue dash area, i.e., b, f, j, k, o, and p. The selection of the target node is modified
as follows. Instead of selecting the closest node to the destination, node s selects
its target node in a cost-over-progress fashion [19] where the cost is the cost of the
energy-weighted path from node s to the considered node u. Let v0v1...vivi+1..vn

be the nodes on the shortest path from s to k with v0 = s and vn = u. The cost of
the shortest path costSP(s, u) from s to u is defined as

costSP(s, u) =
n−1∑

i=0

cost(|vivi+1|)

Then, node s selects node b which minimizes the cost of the shortest path from s to
u divided by the progress it makes toward destination node d.

The target node k is then the one which is such that

costSP(s, k)

||sd| − |kd|| = minu∈Nd (s)
costSP(s, u)

||sd| − |ud||
Once that node is determined, node s forwards the message to the first node

on the shortest path from s to k, i.e., node p in figure. Then, node p reiterates
the same process. No loop is possible since the next hop is computed only over
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nodes in the forwarding direction of the destination. This algorithm goes on till
the destination is reached or there is no node closer to the destination than the one
currently holding the message. In this latter case, an energy-efficient face routing is
applied for recovering from failure.

As already mentioned, regular face routing guarantees delivery but is not energy
efficient since it may use very short edges compared to the energy-optimal trans-
mission length r∗ since GG removes longer edges. To overcome this drawback,
the authors of EtE have introduced an energy-efficient variant to face routing.
For it, they add a step in the planarization of the graph. From the original graph
G = (V, E) (Fig. 15.10a) they compute a connected dominating set (CDS), V ′ of
V . Since source s and destination d may not be in the CDS, the set V ′ is expanded
with s and d. Let G ′ = (V ′, E ′) ⊂ G where V ′ ⊂ V is the expanded set of
dominant nodes and E ′ ⊂ E is the set of edges between nodes in V ′. Then, a
CDS election protocol is applied on V ′. The authors use the CDS election proto-
col introduced in [5], but any other election protocol may be applied. Since face
routing must be applied on a planarized graph, the Gabriel graph G ′′ = (V ′, E ′′) is
extracted from G ′, where E ′′ ⊂ E ′ is the set of edges remaining in the planarized
graph (Fig. 15.10c). Face routing is lastly run over G ′′. This face routing guarantees
delivery in the constructed subset since it contains source and destination nodes
and preserves connectivity. Moreover, by considering only edges connecting two
dominating nodes, the routing process avoids to choose too short edges. Each node
needs to know its neighbors that are in the CDS.

Based on G ′′, the same principles of the recovery step of [31] are applied. Cur-
rent node s that is in recovery mode applies face routing on G ′′ only to decide
on which edge (s, b) to follow to reach the destination node from a given node s.
However, that edge does not need to be selected since it may be too long (|sb| > r∗).
Node b is thus reached through an energy-weighted shortest path. If b is closer to
the destination node than the node which has initiated the face routing step, node
b selects the next hop in the routing path following the greedy routing described
above. Otherwise, it determines the node following face routing over CDS nodes
and computes the energy-based shortest path to reach it.

(a) Initial graph G (b) GG on G
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Fig. 15.10 When using regular face routing over graph G (a) (like SPFSP), messages follow GG
edges of G (b). Edges of G ′′ (c) are used instead when applying the energy-efficient face routing
of EtE
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Figure 15.9b illustrates a sample execution of EtE algorithm. Greedy routing
proceeds from node 1 which first computes the cost of the shortest path toward nodes
2, 19, and 21. Node 1 selects node 19 as temporary destination since it provides the
lowest cost over progress and sends the packet to node 21, the first node on the
shortest path toward 19. (Node 23 is not included in the computation since it does
not provide any progress to destination.) Node 21 finds node 20 as its best forwarder
and in this case, the shortest path is that link. Node 20 selects node 18 by following a
shortest path through node 16 to which it sends the message. The latter then forwards
to node 18 where greedy routing fails. Face routing is then invoked to follow edges
18-16 (directly), 16-15 (directly), and 15-11 (which is replaced by path 15-13-11
for energy efficiency). Greedy routing then continues till delivery to 11 selecting 10
via 9, 9 selecting 10, and 10 selecting destination 8 and delivering via node 7.

Yet, we have reviewed most of the geographic routing for wireless sensor and ad
hoc networks in the literature. Even if along the years the solutions proposed are
better and better, the ones of them that guarantees delivery all assume a unit disc
graph. Indeed, if this assumption does not hold, there is no way to planarize the
graph, and thus face routing and variants cannot be applied anymore. Unfortunately,
last experiments have shown that the UDG does not hold in a realistic network. Yet,
the new challenge appearing here is to investigate geographic routing solutions that
both are energy efficient and guarantee delivery but in any arbitrary graph (not only
unit disk graph).

15.2.3 Anycasting

In the anycasting problem, a sensor wants to report event information to one of sinks
or actors. The authors of [25] describe the first localized anycasting algorithms that
guarantee delivery for connected multi-sink sensor and sensor–actor networks.

Three geographic anycast algorithms are proposed: GFGA, COPA, and EEGDA
which are inspired, respectively, by GFG [4], COP [34], and EtE [12]. Each of
them consists of greedy and recovery phases, and they all guarantee delivery for
a report from a sensor if it is connected to at least one sink or actor. GFGA uses
hop count as the metric, while others apply power consumption, where both greedy
and recovery steps are energy efficient. The two energy-efficient algorithms have
different computing complexities.

All algorithms construct a path from the source sensor node to one of sinks/ac-
tors. During the path construction, there exists a single destination to reach. The
main feature of these algorithms is that this destination may change along the path of
the message according to the network topology. Anycasting may start from current
node s toward sink/actor S(s) that is the closest to it. However, s could in fact be
even disconnected from S(s) or closer in number of hops to another sink.

In greedy phase, and with hop count as the metric, i.e., GFGA, node s currently
holding the packet forwards it to its neighbor v that minimizes |vS(v)| (is closest to
its nearest actor/sink). When an arbitrary cost metric is used (COPA), the selected
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neighbor v minimizes the ratio of cost cost(|sv|) of sending packet to v over the
reduction in distance (|sS(s)| − |vS(v)|) to the closest actor/sink. An improved
variant, EEGDA, is to forward to the first neighbor on the shortest weighted path
toward v instead of sending directly to v, like in EtE. If none of neighbors reduces
that distance then recovery mode is invoked. It is done by face traversal toward the
nearest connected actor/sink, where edges are replaced by paths optimizing given
cost. A hop count-based (FACE-like) and two variants of localized power-aware
(Ete-recovery-like) anycasting algorithms are described.

15.3 Virtual Coordinate Systems

As noticed in previous sections, georouting solutions are very promising solutions
for wireless sensor networks since coordinates simplify the routing decision at each
node by limiting bandwidth and memory overheads. Nevertheless, geographical
position information provided by devices such as GPS or Galileo is not always a
feasible solution. Indeed GPS-like positioning systems are bulky, energy costly, and
expensive and are not adapted for every environment [28]. Therefore, literature has
witnessed the birth of protocols that assign “virtual” coordinates to each node to
take benefit from georouting techniques.

Indeed, it is worth noting that virtual coordinates do not necessarily need to
embed global positioning information, and they just have to be consistent enough
to allow georouting. Two well-spread methods have been proposed. The most used
positioning technique is based on hop count distance from given landmarks and is
described in Sect. 15.3.1. Many routing protocols are based on this virtual coordi-
nate system. They mainly differ in the distance functions and routing progress they
use, as we will see. Though simple, such a landmark-based system exhibits some
drawbacks due to coordinate constructions that we will detail. Therefore, a new
tree-based coordinate system has been proposed (Sect. 15.3.2).

15.3.1 Landmark-Based Coordinate System

Landmark-based coordinate system is based on hop distance between the sensors
and some specific nodes and do not try to approximate physical coordinates. There-
fore, the virtual topology can be unrelated to the physical topology of the network.

15.3.1.1 Landmark-Based Coordinate System Construction

The landmark-based coordinate system is built into two steps: (i) flooding by land-
marks and (ii) computation of coordinates. The first step is common to every
landmark-based georouting protocol while the second one differs from one to
another.

The first step can be split into two phases. In the first phase, a global and dis-
tributed election mechanism elects a set of nodes as landmarks or anchors. Nodes



462 N. Mitton et al.

acting as landmarks can be explicitly designated by an external process at the boot-
strap of the network. During the second phase, every landmark floods a message
containing a counter which is incremented at each hop. In the sequel, the term
“broadcast” stands for message propagation in a node’s neighborhood and the term
“flooding” refers to network-wide message propagation. At the end of this second
phase, every arbitrary node i can thus determine a vector V (i) = (hi

1, ..., hi
n

)
where

n is the number of landmarks and hn is the hop distance between node i and each
anchor node (node i is hi

1 hops away from landmark 1).
The second step allows every node i to compute its virtual coordinates based on

vector V (i) = (hi
1, ..., hi

n

)
. To do so, different functions can be used depending on

the protocol. The virtual coordinates of node i are X (i) =  (V (i)) where X (i) =(
xi

1, ..., xi
m

)
and m ≤ n where different  functions are used in the literature. The

most common  functions are the following ones:

• The “identity” function denoted by  id where X (i) = V (i) with m = n. This is
the simplest function used, for instance, in VCap [2, 7] or VCost [11].

• The “centered virtual coordinates” function [13] denoted by  cvc and xi
j =

(
hi

j

)2 − μ for m = n, j = 1, . . . , n where μ = 1
n

∑n
j=1

(
hi

j

)2
.

• The “averaging” function [23] denoted by  av gives the following relationship
between X (i) and V (i):

xi
k =

∑|N (i)|
t=1 ht

k|N (i)| + hi
k

2

where |N (i)| is the number of neighbors of node i .
All these Γ functions are used to compute the virtual coordinates of nodes based

on their hop distance to every landmark. As next section will show, they all exhibit
different features and impact the routing process. Figure 15.11 illustrates the results
of coordinate assignment with identity Γ function (Γid) such as in VCap [7] and/or
JUMPS [2]. In this figure, landmarks (anchors) are arbitrarily chosen as nodes L1,
L2, and L3. Therefore, every node has a three-dimensional vector as coordinates
constituted by the number of hops between itself and every landmark. In this figure,
landmark L3 has coordinates (4, 3, 0) since it is four hops away from landmark L1
(through nodes 2, 3, and 11), three hops away from landmark L2 (through nodes 7
and 11), and zero hop away from itself. Since flooding message from each landmark
may be received more than once, a node chooses the minimum hop distance to each
landmark.

Georouting is then performed on top of X (i) coordinates. In greedy methods, as
in geographic routing based on real coordinates, the next hop is the node u that mini-
mizes the distance δ(u, d) to the destination d (maximal progress). Distance δ(u, d)
is computed over virtual coordinates and once again, several distance functions can
be used according to the routing protocol. The most common distances found in the
literature are the following:
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Fig. 15.11 Illustration of hop distance coordinate assignment. In this figure, L1, L2, and L3 are
the landmarks. Each node, including landmarks, has a three-dimensional vector as coordinates

• Euclidean distance δe(u, d) =
√
∑n

j=1

(
xu

j − xd
j

)2
,

• Hamming distance δh(u, d) =∑n
j=1

∣∣∣xu
j − xd

j

∣∣∣,

• Square Euclidean distance δs(u, d) = δe(u, d)2.

It is worth noting that combining the different Γ and δ functions provides a great
amount of different techniques. In the next section, we review the protocols from
the literature, explaining what combination they use.

15.3.1.2 Routing on Top of Landmark-Based Coordinates

Even if routing based on landmarks coordinate system may not always be suc-
cessful, there exists many georouting protocols based on hop distance but their
performances differ due to the distance (δ function) and coordinate (Γ function)
computation used in each protocol. This section reviews and classifies georouting
based on landmark-based system.

The simplest algorithm is VCap. In Vcap [7], greedy georouting is performed
on top of landmark-based coordinates by combining the  id function to compute
node coordinates and the δe distance function. The system is composed of three
landmarks. The next hop is the node u that minimizes the Euclidean distance
δe(u, d) to the destination d. δe(u, d) is computed over virtual coordinates as fol-

lows: δe(u, d) =
√
∑n

j=0

(
hu

j − hd
j

)2
. To illustrate a routing process, let us assume

that node L2 needs to send a packet to node L3. To select the next hop, node L2
computes the distance from all its neighbors to the destination. If the Euclidean
distance is used, δe(7, L3) = √

(9), δe(8, L3) =
√

13, and δe(L2, L3) =
√

18. L2
chooses among its neighbors u with positive progress (δ(u, L3) < δ(L1, L3)), the
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closest one to the destination. Since δe(7, L3) < δe(8, L3), L2 chooses node 7 as its
next hop. Then, node 7 elects node 11 since δe(11, L3) < δe(15, L3) < δe(5, L3) <

δe(4, L3) < δe(L1, L3). As node 11 is a neighbor of node L3, the greedy routing
technique is successful.

JUMPS [2] provides a coordinate system similar to VCap. JUMPS only differs
from VCap in the fact that it may use more than three anchor nodes. Similar to
VCap,  id is chosen as the basis of the coordinate system. Obviously, using these
kinds of coordinates may end up to several nodes holding the same virtual coordi-
nates leading to routing ties, which reduces the delivery ratio. Therefore, in addi-
tion, JUMPS provides a study on the impact of the landmark placement on routing
delivery rate. It happens that the better landmark placement is when landmarks are
spread at equal distance one from each other all around the network. This is indeed
the placement which reduces the number of nodes holding the same coordinate.

To palliate or at least reduce this drawback and thus increase the delivery rate,
the authors of AVCS [23] do not use necessarily integer coordinates. Floating coor-
dinates depending on the neighborhood of each node are used instead of hop count.
AVCS uses the  av which performs a centroid transformation as an averaging func-
tion to compute the floating coordinates of the node. The authors of AVCS use
the Euclidean distance but with different virtual coordinates. Indeed, the distance
between the current node i and the destination node v is δe(V (v), X (i)). Results
show that a greedy routing on top of AVCS coordinate system outperforms greedy
routing protocol on top of geographical coordinates since using virtual coordinates
avoids the routing holes. It is worth noting that in AVCS, each node keeps the
V (i) and X (i) coordinates which increases memory consumption. The authors also
suggest the possibility of applying the  av function more than once to reduce the
probability of having the same coordinates for two nodes. That is, the  av function is
applied on X (i) coordinates. Moreover, and in order to even more reduce redundant
coordinates, the authors suggest to apply the  av function by using the two-hop
neighborhood of a node.

In Gliders [13] another way of assigning virtual coordinates is described to avoid
bad placement of landmarks by taking into account holes in the network. Nodes
are partitioned into tiles and landmarks are selected using Voronoi cells [38]; com-
binatorial Delaunay triangulation is used to estimate the global topology. Virtual
coordinates for each node are derived from the node’s distance (hop distance) to
nearby landmarks by using  CVC function. The authors of [13] also describe a
routing protocol associated with this coordinate system. In their routing protocol,
nodes have to compute a sequence of tiles for inter-tile routing paths, then a gra-
dient descent procedure based on a proper distance function close to the Euclidean
distance is used to route packets in a greedy way for intra-tile routing. However,
if the coordinate system proposed in [13] can avoid routing ties depending on
the density, the routing protocol does not guarantee packet delivery since packet
may still reach dead ends. In addition, such a coordinate system associated with
such a routing algorithm are very complex and induce a huge memory, band-
width, and computational overhead, which makes it not scalable and difficultly
implemented.



15 Position-Based Routing in Wireless Ad Hoc and Sensor Networks 465

15.3.1.3 Energy Efficiency

In order to increase the delivery rate of georouting protocols using landmark-based
coordinates, the authors of VCost [11] explore the use of several kinds of  and
δ functions for coordinates construction and compare their performance. Moreover,
they suggest the use of the Hamming distance δh instead of using Euclidean distance
for routing decision. Results show that the use of Hamming distance increases the
delivery rate and can reduce the path length compared to Euclidean distance since
Euclidean distance first tries to minimize the maximum difference between coordi-
nates (see Sect. 15.3.1.4). But the main goal of the work presented in [11] is first
to provide an energy-efficient georouting on top of virtual coordinates. Therefore,
the authors of [11] evaluate and reduce the energy consumption by using a cost-
over-progress fashion (see Sect. 15.2.1) to reach the destination on top of virtual
coordinates achieved through the Γid function. Authors assume that nodes are able
to tune their transmission range and to estimate the cost of a transmission to each
of their neighbors. Nodes select their following next forwarder as the node which
minimizes the ratio between the cost of the transmission to the progress provided by
this neighbor. The progress is thus computed as the Hamming distance between con-
sidered neighbor and destination node. VCost is the first power-aware georouting on
top of virtual coordinates.

To illustrate the routing decision of VCost, let us consider the network depicted
in Fig. 15.11 and assume a routing from node 4 to node L2. The cost of each link
is given on each edge, and we can see that the cost of the link between node 4 and
node 5 is 1. Therefore, we have δh(L2, 4) = 4, δh(L2, 5) = 3, and δh(L2, 7) = 3.
The progresses are equal for node 5 and node 7. However, the cost of each link is
different, and node 5 is chosen as the next hop of the routing process. The path from
node 4 to node L2 uses nodes 5, 15, and 8.

15.3.1.4 Landmark-Based Positioning System Issues

Yet, routing performed over landmark-based positioning system exhibits some inter-
esting properties. Nevertheless, landmark-based coordinate systems show some
issues due to its construction. This section illustrates such particular issues which
may reduce the performance of the routing protocol.

Dead End

Let us first consider a packet from node 6 to node 15 in Fig. 15.11. In this case, the
greedy technique does not succeed since δe(6, 15) < δe(15, 5) = δe(15, 8) and thus,
there is no neighbor of node 6 closest than itself to node 15. This leads to a dead
end at node 6. This can arise when using the Γid function to compute coordinates,
but such a situation may also be reached when using other Γ functions. The choice
of this function will only impact the number of such situations.

But dead ends can also occur because of another configuration illustrated by
Fig. 15.12a. In this figure, node 0 wants to send a packet to node 4. Since, δe(5, 4) <
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Fig. 15.12 Dead end: (a) due to holes and (b) due to duplication

δe(1, 4) < δe(0, 4), node 5 is chosen as the next hop, which leads to a dead end. This
latter case is actually the same as the one encountered with greedy algorithms based
on geographical coordinates.

Duplicated Addresses

Landmark-based coordinate system may lead to multiple nodes holding the same
coordinates. This duplication may have no effect since nodes with the same coordi-
nates are geographically close to each other. However, this is not always the case.
Duplication may also lead to dead end since coordinate uniqueness is mandatory
to ensure the packet delivery. In Fig. 15.12b, node 3 and node 1 have the same
coordinates, therefore, a packet transiting from node 0 aiming to node 4 will go
through node 1 and then will stop at node 2 since δe(2, 4) < δe(3, 4).

Duplicated addresses may also lead to routing ties. Figure 15.13a shows how it
can happen. In this figure, node 0 and node 1 hold the same coordinates while they
can be geographically far from each other. This duplication is due to the alignment
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Fig. 15.13 Routing ties: (a) bad placement of landmarks and (b) one-connected networks
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Fig. 15.14 Euclidean versus
Hamming distance
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of landmarks, which may lead to routing ties. In Fig. 15.13b a part of the network is
one-connected, which may lead to the same effect.

Euclidean Versus Hamming Distance

Figure 15.14 shows an example where Hamming distance can reduce the number of
hops. In this figure, node 0 wants to send a packet to node 3 with virtual coordinates
(c+k+1, c+k+1, c+k+1). When using the Euclidean distance we have δe(3, 2) <
δe(3, 1) < δe(3, 0) for k > 1. Therefore, node 0 would choose node 2 as its next hop.
While considering the Hamming distance, we have δh(3, 1) < δh(3, 2) < δh(3, 0)
for k > 1; thus, node 0 selects node 1 as its next forwarder. Based on the virtual
coordinates, node 1 is the best choice for forwarding since it minimizes the number
of hops to reach the destination. For numerical example we can consider c = 0
and k = 2; thus, we have δe(3, 2) = 1.73 < δe(3, 1) = 2 < δe(3, 0) = 2.44 and
δh(3, 1) = 2 < δh(3, 2) = 3 < δh(3, 0) = 4.

15.3.2 Tree-Based Coordinate System

As illustrated so far in this section, although simple and easy to implement, a plain
hop-based coordinate system presents some drawbacks, especially regarding deliv-
ery ratio. In the following tree-based coordinate systems are developed with asso-
ciated routing protocols to overcome the issues of classical landmark-based coordi-
nate systems.

15.3.2.1 Tree-Based Coordinate System Construction

A tree-based coordinate system is built into two phases. In the first phase, a global
election mechanism chooses a node that acts as the tree root. This node, also called
root, initiates the tree construction. Nodes are assigned a unique ID by being labeled
either through a depth-first search method or through a breadth-first search method.
Routing is performed following the tree. Therefore, routing on top of trees guar-
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antees message delivery since by definition, there exists exactly one path between
any pair of nodes. However, the bootstrap phase may be much more complex than
in a landmark-based coordinate system according to the protocols. In the following
section, the different ways of assigning labels to nodes are explained.

15.3.2.2 Routing on Top of Trees

Liu and Abu-Ghazaleh [22] propose a stateless and guaranteed delivery georouting
on tree-based virtual coordinates. They propose a one-dimensional virtual coordi-
nate system based on a depth-first search pre-order traversal of the graph. A tree-
style topology is constructed with only connectivity information. Starting from a
root node with value 0, which may be randomly chosen, nodes are labeled by send-
ing depth-first search packet to one of their neighbors. The node that receives the
packet is assigned a unique identity which is the identity of the packet’s sender
incremented by 1. If a node does not have any unlabeled neighbor, it sends an
end of search packet to its parent. As long as the network is connected, all nodes
will eventually receive a unique identifier. Each node m is also given an interval
I (m) = [m, p] starting from its label to the greater identity of its children before
traversal returns back to its parent. Routing is based on these labels, and current
node forwards a packet to the node holding the interval containing the destination.
Figure 15.151 shows the resulting tree building used for routing. The resulting tree
depicted in the figure is based on an optimized and balanced construction of the tree
using a breadth-first search algorithm.

Fig. 15.15 Tree construction after the virtual coordinates assignment [22]

1 Figure is taken from [22].



15 Position-Based Routing in Wireless Ad Hoc and Sensor Networks 469

In the same way the proximal labeling process presented in [9] uses a depth-first
traversal to build a tree. A flood tree is a tree obtained as follows. A root node is
selected and it transmits a request message accepting up to a constant number, k, of
replies. All the nodes accepted are linked to the root network, and the procedure is
repeated recursively until all the nodes in the network are linked to the tree. After
the flood tree is built the nodes are labeled in increasing order following a depth-first
traversal of tree, leaving gaps between successive labels. Unlike [22] the skipping
in the labeling procedure allows room for later insertions of new nodes.

The LTP protocol proposed in [8] also uses a tree for routing decision but in
such a way that the path from any two nodes in the network is embedded in the
label. In LTP, the tree is built iteratively from the root to the leaves. At bootstrap, a
node is designed as root. This node may be a special node such as a fixed landmark
or a selected node. At each step, every freshly labeled node queries its unlabeled
neighbors and then gives a label to each answering node. If l(u) is the label of
node u and |l(u)| the size of this label, the kth neighbor of node u is labeled l(u)k.
Note that a node y already labeled as l(y) may also answer to a node v to get a
new label if and only if |l(y)| > |l(v)| + 1. The built tree gives the shortest path
in the number of hops from the root to any other node. The distance used in the
tree is based on label size and common prefix which can give the hop distance
between any two nodes of the network. Thus the distance between node a and node
b is dT (a, b) = ||l(a)| − |l(c)|| + ||l(c)| − |l(b)|| where c is the lowest common
ancestor of a and b and |l(a)| (resp. |l(b)|) is the label size of node a (resp. of
node b). Figure 15.16 shows an example of the labeling of LTP. However, this is
worth noting that though reducing the stretch factor compared to other tree-based
georouting protocols, LTP still presents a non-negligible stretch factor. This latter
one can be even more reduced by using several trees and letting nodes following the
most adequate tree at each routing decision. Indeed, additional trees mean additional
bootstrap costs to build them. Nevertheless, studies have shown that using two trees
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Fig. 15.16 Label results from the LTP protocol [8]
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is enough to get a very low stretch factor. The main drawback of LTP (independently
of drawbacks relative to tree construction and common to all protocols) is that if the
tree is not well balanced, some labels may be very huge and generate a memory
overhead.

The tree root is node 4 and has label R. Node 13 is labeled R211 since it is
the first child of node 0 which has label R21. Node 3 has label R2 as the second
child of the root. From Fig. 15.16 the distance between node 9 and node 5 is thus
dT (9, 5) = ||l(9)| − |l(4)|| + ||l(4)| − |l(5)|| = |3 − 1| + |1 − 2| = 3 hops.

As in every georouting protocol, each node is aware of the labels of itself, of
its neighbors, and of the destination. Routing decision is then performed based on
all these information and will try as much as possible to avoid to go through the
root. The packet is forwarded to the neighbor whose dT distance to destination is
the lowest one. In this way, the routing path may follow “shortcuts” in the tree,
decreasing the stretch factor. An example of such a case is given in Fig. 15.16 while
considering the routing from node 9 to node 5. Node 7 sends directly to node 5,
avoiding the tree root. This allows to reduce the stretch factor.

Algorithms based on tree constructions guarantee packet delivery but generate
a much overhead, moreover resulting paths have high stretch factor since routes
follow the tree and usually pass through the tree root.

In [37] the stretch factor is even more reduced but at the price of a huge message
overhead and construction latency. In this paper, the authors propose ABVCap, an
axis-based virtual coordinate assignment which is very close to tree-based coordi-
nate system with multiple trees. In ABVCap, a node u is assigned at least one 5-tuple
virtual coordinate (ulo, ula, urp, uup, udown). According to its relative geographical
position and node density (mean node degree), every node will be assigned one
or more 5-tuple virtual coordinates (to an infinity). It is worth noting here that
every node in the network does not have the same number of 5-tuple coordinate
unlike all other proposals. The first two coordinates (ulo, ula) are used as location
information. These locations are longitude and latitude. The three last coordinates
(urp, uup, udown) are used for routing. The coordinate assignment is split into four
phases. In the first phase, four anchors (X,Y,Z,Z’) are selected. In the second phase
axes are established: latitude parallel (X–Y) and meridians (Z,Z’). These anchors
and axis are fixed for the whole network and the same for every node. Based on these
axis, some virtual meridians and parallels are virtually drawn over nodes through
flooding from every anchor. Based on this, nodes are assigned their lo, la, and rp
coordinates according to their relative distance to nodes that lie on meridian and/or
parallel lines through a complex method. In the last phase, up and down coordinates
are assigned. Figure 15.17 shows the resulting axis assignment of ABVCap.2

The routing process is then performed as follows. The routing packet contains
the longitude and the latitude of the destination and a direction bit which is set to 1
if slo < dlo where s is the source and d the destination. Each node knows its multiple

2 The figure is taken from [37].
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Fig. 15.17 ABVCap virtual coordinates assignment [37]

own coordinates, all multiple coordinates of all of its one-hop neighbors and of the
destination. The routing decision is done in two phases. First, the source chooses
the 5-tuple coordinates of the destination (among the set of coordinates of the desti-
nation) that minimizes the difference slo − dlo. Second, the next hop choice is done
based on Euclidean distance computed as δe(u, v) =

√
(ulo − vlo)2 + (ula − vla)2.

The authors prove that their routing protocol guarantees delivery and only use
greedy forwarding such as in LTP. However, compared to LTP, the stretch factor3 of
ABVCap is lower and it is more robust to changes in the network, but the initializa-
tion phase is costly in number of messages and latency.

So far in this section, literature has witnessed enhancements in terms of guaran-
teed delivery to the detriment of stretch factor (and thus energy consumption and
bandwidth overhead). In addition, energy efficiency has been poorly addressed.

15.3.2.3 Energy Efficiency

In this section, we provide an in-depth description of HECTOR [24] which is, to
the best of our knowledge, the only georouting protocol that both is energy efficient
and guarantees packet delivery on top of virtual coordinates. This protocol mixes
the use of tree-based coordinate system and landmark-based coordinate system and
therefore highlights the previous sections.

3 The stretch factor is the difference in route length between the one computed by the algorithm
and the optimal path.
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The routing protocol and virtual coordinate assignment used in [24] take bene-
fits from both tree-based labels like in [8] and landmark-based coordinates like in
VCap [7] or VCost [11], with the use of Hamming distance to provide a routing
solution based on virtual coordinates with a short initialization phase. The aim of
this work was to provide a georouting algorithm with no position information which
guarantees delivery and is energy efficient. The authors of [24] propose two algo-
rithms according to the ability of nodes to adjust their range: HECTOR’ when nodes
cannot tune their transmission range and HECTOR when they can. HECTOR is thus
also energy efficient. Both algorithms use both kinds of coordinates: LTP labels and
landmark-based labels.

The routing decision of HECTOR’ (resp. HECTOR) is done in such a way that
the tree label distance (computes on T labels, noted dT like for LTP) is always
decreasing or at least stationary, and the V coordinates (VCap-like coordinates,
Hamming distance on V coordinates is noted dV ) are used to reduce the stretch
factor. The basic idea is the following. A source node s holding a packet for a
destination node d performs a greedy routing scheme in a VCap (resp. VCost)
fashion for HECTOR’ (resp. HECTOR). In order to avoid to be trapped in a local
minimum, the routing algorithm selects the next hop with regard to not only the
V coordinates but also the T labels. The routing process runs as follows. When
node u receives a message for node d, it first considers its neighbors in the forward
direction, based on both their T and V coordinates. It only considers node v for
which dT distance (distance based on the tree) toward d is equal or smaller than
the tree distance between u and d (dT (v, d) ≤ dT (u, d)). We note NT (u) the set
of neighbors of node u such that dT (v, d) ≤ dT (u, d). Such neighbors always exist
(NT (u) �= ∅) if the network is connected because of the tree construction. The node
u first checks whether any one of these nodes also provides a progress with respect to
V coordinates. We note NV (u) the set of neighbors of u providing a progress toward
the destination with regard to V coordinates, i.e., such that dV (v, d) ≤ dV (u, d). If
H = NT (u)∩{NV (u) ∪ v |dT (v, d) = dT (u, d)} is the set of such nodes and H �= ∅
then u selects its next hop among the nodes in H thus reducing the distance (resp.
optimizing the cost over progress) toward the destination regarding coordinates V
and not increasing distance regarding T labels. If H = ∅, node u selects its neighbor
v which provides the best progress to the destination regarding T labels. Such a node
always exists since there always exists exactly one path in the tree between any two
nodes. In case of ties, the next hop is chosen at random between candidates.

As already mentioned, the progress in HECTOR is computed based on a cost-
over-progress fashion. If H �= ∅ then u selects its next hop among the nodes in H as
the node v which provides the best ratio cost over progress to the destination regard-
ing the virtual coordinates (v such that COPV (u, v, d) = minw∈NV (u) COPV (w)).
If H = ∅, v is chosen such that COPT (u, v, d) = minw∈NT (u) COPT (u, w, d). This
variant needs the distance between nodes to evaluate the cost of the transmission.

Let us take Figs. 15.11 and 15.16 to illustrate the behavior of HECTOR and
HECTOR’. The routing between node 14 (L3) and node 5 gives an example of
the guaranteed delivery provided by HECTOR’ and HECTOR. Following VCap or
VCost scheme, node 11 is the next hop chosen by node 14. In VCap or VCost, node
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(d)(c)(b)(a)

Fig. 15.18 Illustration of the paths followed by each algorithm with the use of five landmarks.
VCost/VCap fails after the second hop, and LTP passes through the tree root. HECTOR and HEC-
TOR’ combine both T and V coordinates: (a) VCost, (b) LTP, (c) HECTOR’, (d) HECTOR

11 is a dead end if we use Hamming distance since distance from node 11 to node
5 is equal to 2 and distance from node 7 to node 5 is also 2. As HECTOR’ and
HECTOR use T labels to avoid reaching a dead end, node 3 is chosen as the next
hop of node 11 since dT (3, 5) < dT (11, 5). Packet will then go through node 4 as
its last relay to node 5.

Figure 15.18 shows the path shapes of different routing algorithms depending on
the coordinate system used. This figure shows how HECTOR’ and HECTOR take
benefit from T labels and V coordinates to provide a guaranteed delivery routing
with an enhanced stretch factor.

The following theorems and lemmas prove that (in Lemma 1) at each step of
the algorithm there is always a progress at least on T coordinates, that the resulting
path is loop free (Lemma 2), and that there is always a next hop that is closer to
the destination than the current node (Lemma 3). These lemmas lead to Theorem 3
which shows that the routing process guarantees packet delivery.

Lemma 1 A packet cannot transit from a node u to another node v if V (u) = V (v)
(or if dV (u, d) < dV (v, d)) unless there is a positive progress regarding T coordi-
nates (if dT (u, d) > dT (d, v)).

Proof Let us assume that node u holds a packet for a destination w. Suppose that
nodes u and v have the same V coordinates (V (u) = V (v)) or that v is farther
than node u regarding the V coordinates (dV (u, w) < dV (v,w)), then by defi-
nition node v /∈ NV (u, w). Thus v /∈ H . The selected next hop is thus part of
H ′ = {x |COPT (u, x, w) = mini∈NT (u) COPT (u, i, w)}, which only contains neigh-
bors of u closer to w than u regarding T labels. Thus, if node v is chosen as the next
hop, that means that v ∈ H ′ and thus provides a progress regarding T coordinates.
Note that in the worst case, i.e., when the progress on T coordinates is minimal, the
next hop is either the parent or a child of node u. �

Lemma 2 HECTOR is loop free.

Proof Let us assume that node u0 is the source of a packet, w its destination, and
node u1 the next hop chosen by node u0. This means that dT (u0, w) ≥ dT (u1, w)

is based on H and H ′ construction. It suffices to show that the next hop chosen by
node u1 cannot be node u0.
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• CASE (1) Let us first assume that node u1 ∈ NV (u0, w). This means that
dV (u1, w) < dV (u0, w), thus u0 /∈ NV (u1, w). Thus, node u0 could be selected
as the next hop of u1 if and only if it provides a progress regarding T coordi-
nates dT (u0, w) < dT (u1, w) (Lemma 1). But according to Lemma 1, if u1 is
the next hop chosen by u0, we have dT (u1, w) ≤ dT (u0, w). We thus reach a
contradiction and thus, the next hop chosen by node u1 cannot be node u0.

• CASE (2) Let us now assume that node u1 /∈ NV (u0, w), Lemma 1 tells us that
u1 is a parent, a child, or a node that maximizes the cost over progress toward w
from node u0 thus, if u1 is the next hop for u0, dT (u0, w) > dT (u1, w) and node
u0 cannot be selected as the next hop for node u1.

By transitivity of dT () and dV () we cannot have a path u0, ..., ui , ..., uO . These
two cases imply that the routing protocol is loop free. �

Lemma 3 Using HECTOR’s coordinate system, there always is a next hop that is
closer to the destination regarding virtual coordinates.

Proof Let us consider a source u and a destination w. By construction, if a node in
NV (u, w) is chosen as the next hop, this ensures a progress in the V coordinates.
If the next hop is chosen in NT (u, w) this ensures a progress in the tree toward the
destination. �

It is worth noting that the progress made on V coordinates is more important
than the progress made on T coordinates in the geographical space. Indeed, the next
hop in the T labels can have the same V coordinates and thus more or less the same
Euclidean distance to the destination. The greedy aspect provided by this algorithm
makes it simple, memoryless, and scalable. It is interesting to see here how the
simple combination of two coordinates system can enhance the performances (path
length, energy efficiency, guaranteed delivery) of georouting protocols. It is worth
noting that the authors of [24] mainly focus their work on energy efficiency by the
use of cost over progress for next hop selection. As a result, the idea defended by
authors can be applied to reduce the hop distance, the Euclidean distance, and any
metric for next hop selection. The authors also highlight that V coordinates can be
replaced by real geographic routing if real geographic coordinates are available.

Theorem 3 HECTOR guarantees packet delivery.

Proof Each node has a unique label due to the labeling process. This ensures that
the destination of a packet is unique and that at each step of the routing protocol, a
next hop closer to the destination can be found. Based on Lemma 1, Lemma 2, and
Lemma 3 if a path exists (if the network is connected), the routing protocol will find
one in a greedy way. �

15.3.2.4 Tree-Based Positioning System Issues

The main drawbacks of tree-based coordinate systems are the building process and
tree maintenance. First, the root’s choice can strongly impact the tree shape and
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thus the routing performance in terms of path length. Second, since tree construc-
tion is associated with a labeling process and is done in a depth-first search of a
breadth-first search process, the label’s size may have different sizes for each node.
Finally, the tree maintenance is a difficult task since the tree construction is based
and initialized by centralized nodes; if a node dies, the whole tree has to be rebuilt.

15.4 Conclusion

Indeed, in this chapter, we have reviewed most of the literature georouting protocols.
Table 15.1 sums up the different categories and algorithms, with respect to their
characteristics.

Table 15.1 Classification of georouting protocols

Exact position Virtual position

Hop based Greedy [14], MFR [35] VCap [7], Gliders [13]
Directional DIR [18], DREAM [1], LAR [17]
Energy efficient (EE) COP [19], NFP [16] VCost [11]
Guaranteed delivery (GD) GFG [4] LTP [8], [22], ABVCap [37]
EE+GD SPFSP [31], EtE [12] HECTOR [24]

Energy-efficient algorithms assume that nodes are able to compute the Euclidean
distance between themselves and their neighbors. Indeed, each algorithm presents
its strengths and weaknesses.

Most of the time, there is no more suitable algorithm. Trade-offs have to be
made with respect to the context, their environment, and node abilities: geograph-
ical or virtual coordinates, abilities to compute an Euclidean distance, computing
resources, memory size, etc.

Wireless links are prone to multiple physical phenomena such as interference,
collisions, shadowing, fading. They also are impacted by obstacles, buildings, and
meteorology conditions. All these features make the transmission unpredictable and
unreliable. Thus, next steps of research will be to cope the different algorithm char-
acteristics mentioned in this chapter with the impact of their application in real
wireless environments.
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Chapter 16
Energy-Balanced Data Propagation in Wireless
Sensor Networks

Pierre Leone, Sotiris Nikoletseas, and José D.P. Rolim

Abstract We study the problem of energy-balanced data propagation in wireless
sensor networks. The energy balance property guarantees that the average per sensor
energy dissipation is the same for all sensors in the network, during the entire execu-
tion of the data propagation protocol. This property is important since it prolongs the
network’s lifetime by avoiding early energy depletion of sensors. We first present a
basic algorithm that in each step probabilistically decides whether to propagate data
one-hop towards the final destination (the sink), or to send data directly to the sink.
This randomized choice balances the (cheap, but slow) one-hop transmissions with
the direct transmissions to the sink, which are more expensive but “bypass” the
bottleneck region around the sink and propagate data fast. Note that in most proto-
cols, the sensors lying closer to the sink tend to be overused and “die out” early.
By a detailed analysis we precisely estimate the probabilities for each propagation
choice in order to guarantee energy balance. The needed estimations can easily
be performed by current technology sensors using simple to obtain information.
Under some assumptions, we also derive a closed form for these probabilities. The
fact (shown by our analysis) that direct (expensive) transmissions to the sink are
needed only rarely, shows that our protocol, besides energy balanced, is also energy
efficient. We then enhance this basic result with some recent findings including a
generalized algorithm and demonstrating the optimality of this two-way probabilis-
tic data propagation, as well as providing formal proofs of the energy optimality of
the energy balance property.

16.1 Introduction

Wireless sensor networks are usually comprised of a very large number of low cost
micro-sensors, which distributively form an ad hoc network by locally communicat-
ing with each other wirelessly. The micro-sensors are deployed in an area of interest,
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in order to, e.g. monitor crucial events and propagate the collected results to a base
station, which is usually called the sink. There are many important applications
of such networks ranging from security applications to environmental monitoring,
based on the existence of a wide variety of sensor types, such as for temperature,
motion, noise, seismic activity (see [1, 2] for excellent surveys).

The recent dramatic progress in micro-electro-mechanical systems (MEMS)
regarding the design and implementation of low-power electronics and low-power
RF and laser communication systems has already led to small sized, low power
and relatively inexpensive wireless sensors. However, wireless micro-sensors have
to operate under severe limitations of their computational power, data storage, the
quality of communication and, most crucially, their available amount of energy (bat-
tery). Thus, the efficient distributed cooperation of sensor devices towards achieving
a large computational and communication goal is a challenging task.

An important goal in the design and efficient implementation of wireless sensor
networks is to save energy and keep the network functional for as long as possi-
ble. Towards this goal, various approaches including hop-by-hop transmission tech-
niques [4, 12, 13], as well as clustering techniques [11] and alternating power saving
modes [21] have been proposed. Energy aware data gathering protocols have been
introduced in [3].

All such techniques do not explici tly take care of possible overuse of certain
sensors in the network. As an example, we remark that in hop-by-hop transmissions
towards the sink, the sensors lying closer to the sink tend to be utilized exhaus-
tively (since all data pass through them). Thus, these sensors may die out very early,
thus resulting to network collapse although there may be still significant amounts
of energy in the other sensors of the network. Also, distant transmissions, e.g. by
cluster heads, tend to overuse the cluster heads; in large networks of high data traffic
the rotation of cluster heads may not suffice for preventing their energy depletion.

16.1.1 The Main Idea

In the light of the above, one should try to combine energy efficiency with a bal-
anced spread of energy consumption among sensors.

In this chapter, we first present and analyze an energy-efficient and energy-
balanced protocol (EBP) for data propagation in sensor networks. The energy bal-
ance property of the algorithm ensures that the average energy dissipation per sensor
is the same throughout the execution of the protocol in all sensors.

In particular, for the analysis we assume a random uniform placement of sensors
in the network area and a random uniform generation of events. Once a data message
reaches a sensor, it is either propagated one-hop closer to the sink or it is sent directly
to the sink. The choice of whether to forward one-hop or send directly is done locally
at each sensor in a probabilistic manner.

By a detailed analysis, we accurately estimate these probabilities in a recurrent
way that can be supported by current sensors’ technology. We note that these proba-
bilities are found to be dependent only on the network size and the distance of each
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particular sensor from the sink. Under certain assumptions, we also provide a simple
closed form for the probability pi to forward data one-hop further. In particular, we
show that pi = 1 − 3x

(i+1)(i−1) , where x is a free (e.g. controlling) parameter and i
is related to the sensor’s distance to the sink.

We note that although we here present a specific model for energy dissipation in
data transmission, our results can be easily extended to any energy cost model.

We also note that this basic protocol, besides being energy balanced is also
energy efficient, in the sense that our analysis shows that for guaranteeing energy
balancedness, most transmissions must be one-hop transmissions; thus data are
mostly transmitted along small distances and thus the overall energy consumption in
the network is kept low. We then enhance this basic result with some recent findings
demonstrating the optimality of this two-way probabilistic data propagation, as well
as formal proofs of the energy optimality of the energy balance property.

Our work has been inspired by the important relevant work of [22] where the
authors define the energy balancedness property and propose, analyse and evalu-
ate an energy-optimal and energy-balanced algorithm for sorting in wireless sensor
networks. In particular, they consider a single-hop sensor network. Thus, our work
extends their approach to the general case of a multi-hop network and for the (quite
general) problem of propagating data to the sink.

16.1.2 Roadmap

In the next section we present the network model and define the problem of energy-
balanced data propagation. In Sect. 16.3 we provide the basic distributed algorithm.
After some preliminary material in Sect. 16.4, in Sect. 16.5 we carry out a detailed
analysis of the general case leading to an accurate estimation of data forwarding
probabilities and discuss its behaviour for when we vary some parameters of the
network. In Sect. 16.6 we provide a simple closed form for these probabilities under
some assumptions that we discuss. Finally, in Sect. 16.7 we present a generalized
energy balance algorithm, while in Sect. 16.8 we further elaborate on the energy
optimality of energy balance algorithms.

16.2 The Model and the Problem

We assume that crucial events, that should be reported to a control centre, occur in
the network area. Furthermore, we assume that these events are happening at random
uniform positions. Let N be their total number in a certain period (i.e. during the
execution of the protocol).

The sensors are spread in the network area randomly uniformly so their number
in a certain area is proportional to the area’s size. There is a single point in the
network, which we call the “sink” S, that represents the fixed control centre where
data about event realization should be reported to. The sink is very powerful, in
terms of both energy and computing power. Sensors can be aware of the direction
(and position) of the sink, as well as of their distance to the sink. Such information
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can be easily obtained during a set-up phase by having the (powerful) sink broadcast
low overhead control messages to the entire network area. We assume that the trans-
mission range of sensors can vary with time (in fact for each sensor our protocol may
use only two different ranges: R and i · R, where R is set by the network operator
and i can be defined as �d/R� with d being the sensor’s distance from the sink).
We assume a strong network model where all sensors are able to reach the sink in
one-hop. Similar modelling assumptions are made in the state of the art (see, e.g.
the LEACH clustering protocol [11]). However, we note that this strong assumption
does not trivialize the problem: former protocols with the same strong modelling
assumptions are not energy balanced (see Sect. 16.2). We do not address what is
the largest allowable transmission range (e.g. the largest i above); this would be
limited by technology and interferences. However, taking a sufficiently large angle
φ and/or by hierarchically taking multiple sets of sectors, we can cover the whole
area without increasing i beyond the maximum allowable limit. The sensors in our
model do not move.

We virtually “cover” the network area by a disk sector of angle φ (see Fig. 16.1).
The disk sector is divided into n ring sectors or “slices”. The first slice has radius
R (i.e. the sensors’ transmission range). Slice i (2 ≤ i ≤ n) is defined by two suc-
cessive disk sectors, one of radius i · R and the other of radius (i − 1) · R. Taking
a sufficiently large angle φ and/or by taking multiple sectors in a hierarchical way,
we can cover the whole network area.

As far as energy dissipation is concerned, we assume that the energy spent at a
sensor when transmitting data messages is proportional to the square of the trans-
mitting distance. Our protocol’s performance analysis can be however extended to
any energy cost model. The size of messages is considered to be constant. We note
that the energy dissipation for receiving a data message is not always negligible
with respect to the energy when sending such as in case when transmissions are
too short and/or radio electronics energy is high (see [11]). In the analysis, initially,
we only count (for simplicity) energy spent during transmissions. Since however
in our protocol (see next section) there is one receipt for each transmission, it is

ϕ
1

2

n
R

Fig. 16.1 Sensor network with n ring sectors, angle φ and ring “width” R
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clear that even when energy during receipt is more or less the same as energy during
transmissions, the analysis can be extended easily to the full case (counting both
transmissions and receipts).

Definition 1 The area between two consecutive cycle sectors is called a ring sector
(or “slice”). Let Ti (1 ≤ i ≤ n) be the ith ring sector of the network. T1 stands for
the ring sector with centre the sink and radius equal to R.

Definition 2 Let Si be the area size of the ring sector Ti of the network (1 ≤ i ≤ n).

We wish to solve the “energy-balanced data propagation problem”, i.e. to prop-
agate data to the sink in such a way that the “average”energy dissipation in each
sensor is at each time the same. The average energy dissipation per sensor is taken
to be the fraction of the total energy spent by sensors in a ring sector over the number
of sensors in that sector. Because of our assumption that the number of sensors in
an area is proportional to the area size, the average energy dissipation per sensor is
calculated by dividing the total energy spent in a sector by the sector size.

We do not consider medium access aspects, assuming the existence of an ideal
underlying MAC protocol.

16.3 The EBP Distributed Data Propagation Protocol

We assume that each event is sensed by only one sensor. This assumption is not
restrictive since we may consider multiple sensing and propagation of an event
by various sensors as sensing and propagation of many different events, assum-
ing methods to resolve symmetry (such as clustering, leader election) in cases like
when sensors are acoustic and the event is a thunderclap. A sensor sensing an event
generates a data message which should be eventually delivered to the sink. On each
ring sector, Ti , a number of events occur and a corresponding number of messages
(one for each event) are generated.

Randomization is used to achieve some “load balancing” by evenly spreading the
“load” (energy dissipation). In particular, on ring sector Ti each event is propagated
to Ti−1 (i.e. the “next” sector towards the sink) with probability pi , while with
probability 1 − pi it is propagated directly to the sink S. Each message in Ti is
handled stochastically independently of the other events’ messages.

The choice of probability pi for Ti is made so as the average energy consump-
tion per area unit (and thus per sensor) is the same for the whole network. There
is a trade-off from choosing pi : if pi increases then transmissions tend to happen
locally, thus energy consumption is low, however sensors closer to the sink tend to be
overused since all data pass through them. On the other hand, if pi decreases, there
are distant transmissions (thus a lot of energy is consumed) however propagation is
faster and closer to sink particles are bypassed. Calculating the appropriate proba-
bility pi for each Ti and solving the problem of energy balance are very important
since it combines efficient data propagation with increased network’s lifetime.
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By using an underlying subprotocol (such as [4, 12]) we can guarantee that only
one “next hop” sensor receives the transmitted message. Such a subprotocol can be
any protocol that uses a (cheap) search phase to locate a “next” particle towards the
sink and then directly transmits to that particle only. Note also that data messages are
of fixed size, i.e. no further information is added to a message on its route towards
the sink.

Our protocol is (a) distributed, since each sensor chooses the propagation proba-
bility independently of other sensors, (b) it uses only local information, in the sense
that pi depends only on i , i.e. a parameter related to the distance from the sink. Note
that the distance from the sink information for each sensor can be easily obtained,
i.e. during a set-up phase when the sink broadcasts lightweight control messages
to the network. Several techniques (including signal attenuation evaluation) can be
used to estimate each sensor’s distance from the sink. (c) The protocol is simple,
since it just uses a random choice based only on parameter i .

16.4 Basic Definitions–Preliminaries

We aim at calculating probability pi for each i in order to ensure the energy balance
property.

Lemma 1 The area size, S1, of the ring sector T1 is S1 = φ
2 · R2

Proof From geometry, see also [9]. �
Lemma 2 The relation between the area size of the ring sector Ti and that of T1 is
Si = (2i − 1) · S1

Proof By using Lemma 1, see also [9]. �

Definition 3 Let λi be the probability that an event will occur on the ring sector Ti .

There are n ring sectors in the network.

Lemma 3 Assuming a random uniform generation of events in the network area,
the probability λi of an event occurring on the ring sector Ti (1 ≤ i ≤ n) is

λi = (2i − 1)

n2

Proof Firstly, we will compute the probability λ1. Because of the fact that events
occur randomly uniformly in the network area we have that

λ1 = S1∑n
i=1 Si

= S1∑n
i=1(2i − 1)S1

= 1
∑n

i=1(2i − 1)

λ1 = 1

n2
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Taking into consideration the random uniform distribution of the events in the net-
work area and using Lemma 2, we have that λi = (2i−1)λ1 and the result is proved.
�

Let us now consider sector Ti .

Definition 4 An area Ti “handles” an event generated in ring sector j if either the
message was generated in the area Ti (i.e. j = i) or the message was propagated to
Ti from the ring sector Ti+1.

Definition 5 Let hi be the number of the messages that are “handled” by the area Ti .

We now define energy εi j spent for message j when sector i handles it.

Definition 6 Let εi j be a random variable which measures the energy that dissipates
the sector Ti so as to handle the message j . For εi j we have that

εi j =
{

cR2 with probability pi

c(i R)2 with probability 1 − pi

where cR2 is the energy dissipation for sending a message j from Ti to its adjacent
ring sector Ti−1 and c is a constant.

Thus, the expected energy dissipation in sector i for handling a message is

E[εi, j ] = cR2 ·
[
i2 − pi (i

2 − 1)
]

(16.1)

Note: The expected energy above is the same for all messages; we use j just for
counting purposes.

Definition 7 Let Ei be the total energy spent by sensors in Ti . Clearly

Ei =
hi∑

j=1

εi j (16.2)

Energy balance is defined as follows:

Definition 8 (energy balance) The network is energy balanced if the average per
sensor energy dissipation is the same for all sectors, i.e. when

E[Ei ]
Si

= E[E j ]
S j

i, j = 1, . . . , n (16.3)

16.5 The General Solution

We next provide a lemma useful in the estimation of the total energy dissipation in
a sector.
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Lemma 4 The expected total energy dissipation in sector i is

E[Ei ] = E[hi ] · E[εik]

Proof

E[Ei ] = E
[∑hi

k=1 εik

]

=∑N
n=0 E

[∑hi
k=0 (εik ∩ hi = n)

]

=∑N
n=0 E

[∑hi
k=1 εik |hi = n

]
· IP{hi = n}

Furthermore,

E
[∑hi

k=1 εik |hi = n
]
= E

[∑n
k=1 εik

] =∑n
k=1 E[εik]

= n · E[εik]
Thus, we have from the above that

E[Ei ] =∑N
n=0 E

[∑hi
k=1 εik |hi = n

]
· IP{hi = n}

= E[εik] · E[hi ]

Definition 9 Let gi be the number of the messages that are generated in the area Ti .

Note that messages are generated in an area only when events occur in this area.

Definition 10 Let fi be the number of the messages that are forwarded to the
area Ti .

We note that messages are forwarded to a ring sector (say i) only because of an
event generation at a sector j > i and successive one-hop propagations from sector
j to sector i .
We notice the following important relation:

hi = gi + fi (16.4)

which means that the number of messages that area Ti handles equals the number
of the messages that are generated in Ti , plus the number of messages that are for-
warded to it. Because of event generation according to a probability distribution and
also because of the probabilistic nature of message propagation, all three quantities
above are random variables. By linearity of expectation, we get

Lemma 5 E[hi ] = E[gi ] + E[ fi ]
We establish a relationship between E[ fi ] and E[hi+1].
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Lemma 6 E[ fi ] = pi+1 · E[hi+1]
Proof Let δi, j be an indicator random variable that is equal to 1 if area Ti forwards
the message j to the area Ti−1 and 0 otherwise. Thus

δi, j =
{

1 with probability pi

0 with probability 1 − pi

Clearly, δi, j depends only on i , but we add j for counting purposes. Obviously,
E[δi, j ] = pi . It is

fi =
hi+1∑

j=0

δi+1, j

Similarly to the proof of Lemma 4, we get

E[ fi ] =
N∑

n=0

E

⎡

⎣
hi+1∑

j=0

δi+1, j |hi+1 = n

⎤

⎦ · IP{hi+1 = n}

and the proof is completed. �

Recall that according to Definition 8, to achieve the same on the average energy
dissipation per area unit (and thus per sensor) in the network area, the following
equality should hold:

E

[∑hi
k=1 εik

Si

]

= E

[∑h j
k=1 ε jk

S j

]

∀i, j ∈ {1, . . . n} (16.5)

i.e. the average energy consumption per sensor should be equal in any two ring
sectors. By induction, it suffices to guarantee this for any two adjacent sectors. In
what follows, we guarantee the above balance property, requiring a certain recur-
rence relation to hold. This recurrence basically relates three successive terms of the
E[ fi ] sequence (the E[gi ] terms depend only on i and on input parameters).

Theorem 1 To achieve energy balance in the network, the following recurrence
equation should hold:

ai+1 E[ fi+1] − (di + ai )E[ fi ] + di−1 E[ fi−1] =
= ai E[gi ] − ai+1 E[gi+1]

where

ai = i2

2i − 1
di = (i + 1)2 − 1

2i + 1



490 P. Leone et al.

Proof For the case j = i + 1 of Eq. (16.5) and using Lemmas 2 and 4 we have

E[hi ]E[εi, j ]
Si

= E[hi+1]E[εi+1, j ]
Si+1

⇔

E[hi ]
[
i2 − pi (i2 − 1)

]

(2i − 1)
= E[hi+1]

{
(i + 1)2 − pi+1[(i + 1)2 − 1]}

(2i + 1)
⇔

i2

2i−1 E[hi ] − pi E[hi ] i2 − 1

2i − 1
=

= (i + 1)2

2i + 1
E[hi+1] − pi+1 E[hi+1] (i + 1)2 − 1

2i + 1

Let ai , di be defined as in the theorem statement above. By Lemma 6 we know that
pi E[hi ] = E[ fi−1] and by Lemma 5 it is E[hi ] = E[gi ] + E[ fi ]; thus the last
equation becomes

ai+1 E[ fi+1] − (di + ai )E[ fi ] + di−1 E[ fi−1] =

= ai E[gi ] − ai+1 E[gi+1]

To solve the above recurrence we must compute E[gi ].

Lemma 7 If N is the total number of events that are generated in the network, the
mean value of gi is given by the following relationship:

E[gi ] = N · λi

Proof Because the position of each event is independent of other events and because
for each sector i , probability λi is the same; clearly gi is binomial with parameters
N , λi . �

In order to have a simpler recurrence involving only two (successive in fact)
terms of the E[ fi ] sequence, we will transform the recurrence relation of Theorem
1. It is

ai+1 E[ fi+1] − (di + ai )E[ fi ] + di−1 E[ fi−1] =

= ai E[gi ] − ai+1 E[gi+1] ⇔

(ai+1 E[ fi+1] − di E[ fi ])− (ai E[ fi ] − di−1 E[ fi−1])
= ai E[gi ] − ai+1 E[gi+1]

Definition 11 Let ti = ai+1 E[gi+1] − di E[gi ], for i ∈ {0, 1, . . . , n − 1}.
The recurrence relation of Lemma 1 can be expressed as
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ti − ti−1 = ai · E[ fi ] − ai+1 · E[ fi+1]
for i = 1, . . . n − 1
with t0 = a1 · E[ f1]

Note that although we do not know yet the value of E[ f1], we can compute the
values of ti as a function of E[ f1]. Furthermore, as we prove in the next lemma, this
function is linear in E[ f1].
Lemma 8 The recurrence relation

ti − ti−1 = ai · E[ fi ] − ai+1 · E[ fi+1]
for i = 1, . . . n − 1
with t0 = a1 · E[ f1]

has as a solution the function

ti =
i∑

j=1

(
a j E[g j ] − a j+1 E[g j+1]

)+ a1 · E[ f1]

Proof The proof is done by induction on i . For i = 0, it is obviously true. Let it be
true for i − 1. For i we have

ti = ti−1 + ai · E[gi ] − ai+1 · E[gi+1]

By the induction hypothesis we get the solution

ti =
i∑

j=1

(
a j E[g j ] − a j+1 E[g j+1]

)+ a1 · E[ f1] �

Now the recurrence relation of Theorem 1 is simplified as

ai+1 · E[ fi+1] − di · E[ fi ] = ti i = 1, . . . , n − 1 �

Thus, we get a recurrence for sequence E[ fi ] involving only two successive terms
of the sequence

Theorem 2 The recurrence relation

ai+1 E[ fi+1] − di E[ fi ] = ti i = 1, . . . n − 1

where ti is defined in Lemma 8 has the following solution:

E[ fn−i ] = −
i∑

k=1

∏i−1
j=k an− j

∏i
j=k dn− j

· tn−k
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Proof To get an intuitive feeling of the solution, we first present a small case, i.e.
n = 4. The recurrence relation can be written as a linear system of three variables,
E[ f1], E[ f2], E[ f3], and three equations:

a2 E[ f2] − d1 E[ f1] = t1
a3 E[ f3] − d2 E[ f2] = t2
a4 E[ f4] − d3 E[ f3] = t3

We note that E[ f4] = 0 because no messages are forwarded to the outmost sector.
Thus we have

E[ f3] = − t3
d3

E[ f2] = − a3t3
d3d2

− t2
d2

E[ f1] = − a3a2t3
d3d2d1

− a2t2
d2d1

− t1
d1

We can express ti as a linear function of E[ f1]; thus, the last equation depends only
on E[ f1] while the others on E[ fi ] and E[ f1]. The last of the three equations can
give the E[ f1] and then we can calculate the rest E[ fi ].

We now proceed to the general n. The proof is done by induction on i . For i = 1,
we compute the value of E[ fn−1]. From the recurrence relation we have for E[ fn−1]

an E[ fn] − dn−1 E[ fn−1] = tn−1

But, E[ fn] is the number of events that are propagated to ring sector n, which is
zero. Also notice that di = 0 ⇔ i = 0. Thus

E[ fn−1] = − tn−1

dn−1

which is equal to the solution. So we are done with the base of the induction.
Assuming that the induction hypothesis is correct for i − 1, we will prove that it

is also correct for i . From the recurrence relation we have that

E[ fn−i ] = an−i+1

dn−i
· E[ fn−i+1] − tn−i

dn−i

We can safely divide with di because the recurrence is defined for i = 1, . . . , n − 1
and no value of these makes di zero. But, from the induction hypothesis we know
that

E[ fn−i+1] = −
i−1∑

k=1

∏i−2
j=k an− j

∏i−1
j=k dn− j

· tn−k
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Replacing E[ fn−i+1] in the first relation we have

E[ fn−i ] = an−i+1

dn−i
·
(

−∑i−1
k=1

∏i−2
j=k an− j

∏i−1
j=k dn− j

· tn−k

)

− tn−i

dn−i

We finally get

E[ fn−i ] = −∑i
k=1

∏i−1
j=k an− j

∏i
j=k dn− j

· tn−k

where
∏i−1

i ai = 1

The full expression for E[ fi ] can be found by substituting i with n − i , thus

E[ fi ] = −∑n−i
k=1

∏n−i+1
j=k an− j
∏n−i

j=k dn− j
·

·
(∑n−k

j=1(a j E[g j ] − a j+1 E[g j+1])+ a1 · E[ f1]
)

where
∏i−1

i ai = 1.

We note that all the parameters of the recurrence solution above are expressed as a
function of E[ f1] and i . So as to compute them, we first compute the value of E[ f1].
Then we can compute all the other parameters by replacing the already computed
E[ f1]. �

Now, the calculation of the probabilities pi is quite easy.

Theorem 3 The energy balance property is achieved if any ring sector (say Ti )
propagates each message it handles with probability pi to the next ring sector, Ti−1,
and with probability 1− pi it propagates the message directly to the sink. The value
of each pi is given by the following relation:

pi = E[ fi−1]
E[gi ] + E[ fi ]

where the values of E[ fi ] and E[gi ] are obtained from Theorem 2 and Lemma 7,
respectively.

Proof From Lemma 6 we know that E[ fi−1] = pi E[hi ] and also by Lemma 5 we
know that E[hi ] = E[gi ] + E[ fi ]. � �

Remark 1 Note that interestingly, pi ’s are independent of the number N of the
events that occur in the network, since pi ’s depend only on i and on the number of
ring sectors n (which is broadcast to sectors by the sink). Thus the protocol assumes
only local information.
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We note that the analysis above allows the exact derivation of probabilities pi ’s
as a function of i and n which (although complicated and not obviously leading to a
closed form) can be easily calculated by the sensors in the network by carrying out
very simple calculations.

We conclude with a correctness proof of the data propagation protocol.

Theorem 4 Given that the energy is each time on the average the same in all net-
work sensors, each message will finally get to the sink.

Proof Consider a message that is generated in a certain ring sector, say Ti . Because
of the energy balance property, all sensors are operational; thus, in each step of the
protocol the message is either propagated to the “next” (i.e. immediately closer to
the sink) ring sector, Ti−1, or is directly propagated to the sink. Consequently, after
a maximum of i steps, the message will finally reach the sink. �

We note that we guarantee that the energy per sensor is the same on the average;
we plan to study in future work energy balance properties guarantees with high
probability as well, by taking into account the distribution (both spatial and in time)
of event generation.

16.6 A Closed Form for the Forwarding Probability

Under specific assumptions (that we discuss and motivate below) we can make the
calculation of probabilities pi simpler. Combining Lemma 5 and Lemma 7 we have
that

E[hi ] = λi N + E[ fi ] = 2i − 1

n2
N + E[ fi ] (16.6)

By the corresponding relation for E[hi−1] it must be

2i − 1

n2
N + E[ fi ]

(2i − 1)
φ

2
R2

[
pi + (1 − pi )i2

]
R2 =

=
2i − 3

n2
N + E[ fi−1]

(2i − 3)
φ

2
R2

[pi−1 + (1 − pi−1)(i − 1)2]R2

But 2i − 1 2 2i − 3 and φ
2 , R2 cancel. Dividing by N we get

[
1 + E[ fi ]

N

]
[

pi + (1 − pi )i2
] 2

2
[

1 + E[ fi−1]
N

] [
pi−1 + (1 − pi−1)(i − 1)2

]
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If E[ fi ] 2 E[ fi−1] then the previous relation becomes

pi + (1 − pi )i
2 = pi−1 + (1 − pi−1)(i − 1)2 (16.7)

By solving the recurrence (see [9]), we get the following theorem.

Theorem 5 If E[ fi ] 2 E[ fi−1], 3 ≤ i ≤ n, then the one-hop forwarding probabil-
ity guaranteeing energy balance is

pi = 1 − 3x

(i + 1)(i − 1)

where p2 = x ∈ (0, 1) a free parameter and p1 = 0.

We remark that the assumption E[ fi ] 2 E[ fi−1] is quite reasonable and well
motivated. We provide the following intuitive explanation of why this happens. We
remark indeed that the area sizes of adjacent sectors (and thus the number of events
generated in such sections) are more or less the same, especially when i increases.
Furthermore, the probability pi of forwarding to the adjacent (towards the sink)
sector increases very fast with i and becomes 1 in most sectors of the network (in
the middle territory). Thus, the expected number of messages forwarded to adjacent
sectors seems to be almost the same.

In Fig. 16.2, we graphically display both functions of pi (i.e. the general solution
and that obtained by the simple closed form). We can remark that the curves are
very similar in shape and very close to each other. In particular in the “middle”
territory (i.e. for 50 ≤ i ≤ 950 when n = 1000) the two curves almost coincide.
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For 1 ≤ i ≤ 50 (in the initial territory) the exact and approximation probability
is in most sections less than 0.08 (Fig. 16.3) apart and only in very few sectors
the difference becomes 0.16. Finally, at the third territory (950 ≤ i ≤ 1000) the
accurate solution and the approximation differ by less than 0.08 (Fig. 16.4). This
shows that our solution under the simplifying assumptions is very tight (Fig. 16.5).
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Fig. 16.5 “Absolute Error” in logarithmic scale for the whole network

16.7 A Generalized Algorithm

To enlarge the scope of the energy-balanced propagation protocol, we consider a
more general model by removing the geometrical assumption that the sensors are
uniformly distributed. Instead, we assume that the total energy budget of sensors
located in the ring sector Ti is bi . The price to pay to deal with this more general case
is that we are no longer able to provide a closed form solution, like in Sect. 16.6,
which leads easily to a distributed implementation. The worst case complexity of
the algorithm is O(n3) where n is the number of ring sectors in the network. As the
presentation of the algorithm shows, this is due to the fact that sensors need to know
all the network’s parameters (message generation rate and energy budget of all the
ring sectors).

However, the algorithm is able to compute some related solution to the problem
even in the case when no energy-balanced solution exists. In that case, the solution
produced by the algorithm is optimal in the sense that the lifetime of the network is
maximized if we define the lifetime as follows:

Definition 12 (network lifetime) The lifetime of the sensor network is the minimal
lifetime of the ring sectors Ti , 1 ≤ i ≤ n.

The lifetime of the ring sector Ti is estimated by bi/
(

pi hi cR2 + (1 − pi )hi (i R)2
)
.

Indeed, hi is the number of messages handled by the ring sector Ti while we assume
that N messages are generated. Then, hi is proportional to the number of messages
handled in each unit of time and the fraction is proportional to the total energy
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budget divided by the energy consumed in each unit of time. In the following, we
introduce the notation

Pi = pi hi cR2 + (1 − pi )hi (i R)2

We start by considering a particular situation where messages are generated only
in the ring sector Tk , and we look for a propagation strategy that leads to an even
energy consumption in the ring sectors Ti , 1 ≤ i ≤ k. We point out that it is not
possible to balance the energy consumption in the ring sectors Ti , k < i ≤ n. Let
us denote εi , 1 ≤ i ≤ k the probability to forward one-hop further from ring sector
i to i − 1. The mean energy consumption per message handled in ring sector i is

εi cR2 + (1 − εi )c(i R)2

and the number of messages allowed with the energy budget bi is

bi

cR2εi + c(i R)2(1 − εi )
(16.8)

Among this total number of messages, an εi fraction is forwarded to the next ring
sector. So, to ensure energy-balanced consumption, the parameters εi have to satisfy

εi
bi

cR2εi + c(i R)2(1 − εi )
= bi−1

cR2εi−1 + c((i − 1)R)2(1 − εi−1)
(16.9)

By taking into account that ε1 = 1, we use Eq. (16.9) to compute the parameters
εi , 1 < i ≤ k recursively. We notice that the computed parameters satisfy εi ≥
0, 1 < i ≤ k, but it may happen that εi > 1 a situation that we consider later.

The idea of the algorithm is the following. We start by inspecting the messages
generated in the first ring sector; we expect Nλ1 messages and this leads to an
expected energy consumption Nλ1cR. We compute the power to battery ratio by
normalizing this mean energy consumption with the energy budget b1, i.e. we con-
sider (Nλ1cR)/b1, see the phase 1 in Fig. 16.6.

Next, we consider the messages generated in the second ring sector; the total
expected number is Nλ2. Among these messages, we select J2 that are sent directly
to the sink and such that

b2

J2c(2R)2
= b1

Nλ1cR
(16.10)

The next λ2 N−J2 messages are forwarded to the first ring sector with probability
ε2, with ε2 defined by formula (16.9) (with i = 2). This ensures that the ratio of
the power dissipated to the energy budget is the same in the first two ring sectors.
Notice that if we interpret λi as the rate of messages generated per unit of time,
this amounts to say that both ring sectors are running out of energy at the same
time. Finally, notice that the probability that a message is forwarded to the first ring
sector from the second one is
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ε2 J2

N

To continue, we select successively all the ring sectors and proceed accordingly.
The process is shown in Fig. 16.6.

If the algorithm can run in this way, the complexity of the algorithm is O(n2),
see [19]. However, there are two difficulties that prevent the algorithm from running
straightforwardly. The value εi computed with the help of formula (16.9) can be
larger than 1 or the value J2 (in general Ji ) computed with Eq. (16.10) can be larger
than λ2 N (λi N in general).

The case when εi > 1 indicates that the energy budget of the ring sector i is
not large enough to balance the energy consumption with the next ring sectors. In
the model we describe in Sect. 16.2, this may happen if the number of sensors in
the slice i is not large enough. Basically, the algorithm presented in [19] deals with
this situation by enforcing εi = 1. However, as messages are forwarded to the next
slices, the algorithm takes care of not leading to a situation where εi > 1 by limiting
the total number of messages forwarded.

The second case corresponds to the situation where a ring sector Ti does not
generate enough messages to equalize the energy consumption with the next ring
sectors. The algorithm proceeds by looking to ring sectors Tk, k > i and forwards
the necessary messages to the ring sector Ti .

In both situations, the complexity of the algorithm is O(n3), which corresponds
to the worst case.

Unfortunately, it may happen that the algorithm does not provide an energy bal-
ance solution. This happens when all the strategies fail. We denote by Pi the mean
energy consumption in the ring sector i (see Eq. (16.8))

Pi = pi cR2 + (1 − pi )c(ir)
2

where pi is the value computed by the algorithm and, P̃i , 1 ≤ i ≤ n, the mean
energy consumption computed for some others values p̃i , i ≤ i ≤ n. With these
notations, it can be proved ([19]) that there always exists an index l such that

Pl

bl
≥ P̃l

bl

This means that there does not exist a solution which improves the lifetime of all
the ring sectors or equivalently, the solution computed by the algorithm is a (weak)
Pareto optimal solution.

Moreover, it is proved in [19] that the solution provided by the algorithm satisfies

min{bi/Pi } ≥ min{b̃i/P̃i }
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Since Definition 12 of the network’s lifetime is equivalent to computing min{bi/Pi },
the result shows that the solution computed by the algorithm maximizes the lifetime
of the network.

An alternative solution of dealing with the problem described in this section is
to consider the problem as a multiobjective optimization problem, i.e. to look for
a solution maximizing the set of equations {Pi/bi }i . Multiobjective problems have
rarely a unique solution, and a classical way of dealing with these problems is to
search for Pareto optimal solutions [17].

16.7.1 A Remark About the Underlying Assumption

The model introduced in Sect. 21.2 assumes that the sensors are located uniformly
in the ring sectors and it is expected that the number of messages handled by sensors
belonging to the same ring sector will be equivalent. However, numerical simula-
tions show that sensors that are located far away from the border of the next (towards
the sink) ring sector consume more energy than the ones situated closely. This is due
to the fact that sensors close to the border of the next ring sector have less incoming
links than the ones located farther, see the left part of Fig. 16.7.

To deal with this uneven energy consumption, a spreading strategy is suggested
in [19] to balance the energy consumption among sensors belonging to the same ring
sector. Instead of transmitting a message directly to the sink, sensors take advantage
of the possibility to transmit the message to a sensor belonging to the same ring
sector that will, in turn, transmit to the sink.

Numerical validation of the spreading technique is displayed in Fig. 16.8 where
we plot the radius of each of the 6280 sensors scattered in a 90 degrees sector divided
into 20 ring sectors. The simulation runs for a total of 1, 18, 000 rounds.

Sink

Fig. 16.7 Uneven distribution of the number of incoming links
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In the upper part of Fig. 16.8 we observe that energy consumption increases with
the radius, then decreases suddenly to a minimal value and continues to follow this
pattern repeatedly. Actually, we observe that as we are close to the next ring sector
the energy consumption is close to a minimal value and that the energy increases as
the distance from the border increases.

In the lower part of Fig. 16.8 we observe the result produced with the spread-
ing technique. We observe that the spreading technique equalizes the energy
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consumption among sensors belonging to the same ring sector. Besides these
remarks, it is fair to conclude that the numerical simulations validate the good per-
formance of the protocol for most of the sensors composing the network.

16.8 On the Optimality of Energy-Balance Protocols

In the preceding sections, we consider energy-balance data propagation algorithms.
This particular class of protocols was first introduced with the motivation that they
make the lifetime of the network longer. The next result that we present in this
section is more surprising. Indeed, we show that besides prolonging the lifetime of
the network, energy-balance propagation protocols maximize the flow of data in the
network [10, 14]. In turn, this result supports Definition 12 of the network’s lifetime.
Actually, it is intuitive that the longer the network’s lifetime the more the messages
are handled.

To be more precise, the result that we discuss in this section is that if there exists
probabilities pi , i ≤ i ≤ n, such that the protocol balances the energy among the
ring sectors then the flow is maximal and adding any link in the communication
network does not increase the flow. It is relevant to emphasize that besides the fact
that the flow is maximized by energy-balance protocols, the communication strategy
that is described in Sect. 21.2 (sensors send to the next ring sector towards the sink or
directly to the sink) is optimal. Rephrased in another way, provided that the protocol
is energy balanced, only two levels of transmission power are sufficient to maximize
the flow of data in the network.

The model of the network that we use in this section is the one introduced in
Sect. 21.2 that we generalize by introducing the energy budget bi , 1 ≤ i ≤ n,
available in ring sectors Ti , 1 ≤ i ≤ n, similar to Sect. 16.7. Moreover, we assume
that the distances are normalized in such a way that the energy cost of transmitting
one ring sector away costs 1 unit of energy. This means that sending a message j
ring sectors away costs j2 units of energy.

In our setting, the total flow of messages in the network is the total flow getting
to the sink. If we denote the flow by T , looking for the maximal flow in the network
amounts to solve the linear program (16.11):

max T, such that
f0,i = Tλi 1 ≤ i ≤ n∑n

i=0 fi, j =∑n
i=0 f j,i 1 ≤ i ≤ n∑n

i=1 fi, j (i − j)2 ≤ bi 1 ≤ i ≤ n

(16.11)

In [14], this problem is referred as the generalized flow maximization problem.
This problem considers all the possible flows (line 3) with the constraints that the
energy budgets are respected (line 4) and that messages are generated in ring sectors
Ti with probability λi . By restricting the flow to the topology described in Sect. 21.2,
the optimization problem reads
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max T, such that
f0,i = Tλi 1 ≤ i ≤ n∑n

i=0 fi, j =∑n
i=0 f j,i 1 ≤ i ≤ n∑n

i=1 fi, j (i − j)2 ≤ bi 1 ≤ i ≤ n
fi, j = 0 1 ≤ i ≤ N , j �∈ {0, j − 1}

(16.12)

The problem (16.12) is called the mixed-flow maximization problem in [14] since
the routing algorithm mixes single-hops and multi-hops. We notice that problems
(16.11) and (16.12) describe the routing algorithm by considering that messages
emerge virtually from the sink node 0 to be sent to the ring sector Ti with probability
λi (line 2) to be conveyed back towards the sink.

With this setting, we formally define the notion of energy-balance flow.

Definition 13 (energy balance) A flow F = (T, fi, j ) is energy-balanced if

n∑

j=0

fi, j (i − j)2 = bi , 1 ≤ i ≤ n

The definition stipulates that energy-balanced flows exhaust the energy budget of all
the ring sectors simultaneously.

Let us consider the particular path where a message is generated in the ring sector
Ti , forwarded towards the ring sector Ti−1 and finally transmitted towards the sink.
The total cost for conveying this message from the ring sector Ti to the sink is
1+(i−1)2, while transmitting directly towards the sink from the ring sector costs i2

units of energy. Simple computation shows that the scaled total energy consumption
of both paths is the same, i.e.

∀i,
1

i(i + 1)
+ (i − 1)2

i(i − 1)
= i2

i(i + 1)

This result can be generalized to every mix-flow path. If a message is generated in
ring sector i and transits through ring sectors i − 1, i − 2, . . . , i − k to the sink, then
the total scaled energy cost satisfies

1

i(i + 1)
+ 1

(i − 1)i
+ 1

(i − 2)(i − 1)
+ · · · + (i − k)2

(i − k)(i − k + 1)
= i2

i(i + 1)
(16.13)

With the help of Eq. (16.13) we prove that energy-balanced flows are maximal.
We denote F = (T, fi, j ) as an energy-balanced mixed-flow and we compute the
total scaled cost of conveying messages generated from the ring sector i towards the
sink. Equation (16.13) says that this total scaled cost is

Tλi
i2

i(i + 1)
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The factor Tλi is the number of messages generated in ring sector i . By proceeding
similarly for each ring sector we get the total scaled energy cost for the flow F =
(T, fi, j ) as

n∑

i=1

n∑

j=0

fi, j
(i − j)2

i(i + 1)
= T

n∑

i=1

λi
i2

i(i + 1)
(16.14)

Notice that fi, j = 0 if j �∈ {0, i − 1} because the flow is solution to (16.12).
We consider a second mixed flow F̄ = (T̄ , f̄i, j ). Equation (16.14) is still valid

for the flow T̄ but, because the flow is not necessarily energy balanced, we have

n∑

j=0

f̄i, j (i − j)2 ≤ bi , 1 ≤ i ≤ n

Using this last equation and (16.14), we obtain

T
n∑

i=1

λi
i2

i(i + 1)
=

n∑

i=0

bi

i(i + 1)
≥

n∑

i=1

n∑

j=0

f̄i, j
(i − j)2

i(i + 1)
= T̄

n∑

i=1

λi
i2

i(i + 1)

The extreme terms of the inequality show that T ≥ T̄ . So, we finally have proved
the following:

Theorem 6 (Jarry et al. [14]) Energy-balanced mixed-flows flows are solutions to
the mixed-flow maximization problem, i.e. they are maximal.

Remark 2 We emphasize the meaning of the result. Energy-balance flows are moti-
vated by the need of maximizing the lifetime of the sensor network. The result
shows that unexpectedly, such flows are maximal. Moreover, the result offers a
convenient way of maximizing the flow in a distributed environment. Indeed, the
energy-balance property is a local characteristic of the flow since it is enough
to show that each sensor balances the energy consumption with its neighbouring
sensors to ensure that the flow is globally balanced (provided that the network is
connected). The locality of the property allows for distributed implementation, an
aspect that we discuss later. We also point out here that the characterization of the
conditions (the λi ) ensuring the existence of an energy-balance flow is still an open
question.

Actually, we can prove that energy-balance mix-flows are maximal even if we
enlarge the class of flows, i.e. energy-balanced solutions of (16.12) are maximal
among the solutions of (16.11).

For a general flow, simple computation shows that

∀i,
(i − j)2

i(i + 1)
+ j2

j ( j + 1)
≥ i2

i(i + 1)
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More generally, for some path i, i2, . . . , ik (compare with (16.13)), we get that the
scaled total cost of conveying a message from the ring sector i to the sink satisfies

(i − i2)

i(i + 1)
+ (i2 − i3)

2

i2(i2 + 1)
+ · · · + i2

k

ik(ik + 1)
≥ i2

i(i + 1)
(16.15)

Decomposing flows into paths enables us to deduce that for a general flow F̄ =
(T̄ , f̄i, j ) and an energy-balanced mix-flow (F = (T, fi, j )) it is:

T
n∑

i=1

λi
i2

i(i + 1)
=

n∑

i=1

bi
1

i(i + 1)
≥

n∑

i=1

n∑

j=0

f̄i, j
(i − j)2

i(i + 1)
≥ T̄

n∑

i=1

λi
i2

i(i + 1)

This last inequality shows that T ≥ T̄ and the energy-balance mixed-flow is then
maximal. Notice that the inequality (16.15) is strict if there are successive indices
such that | ik − ik+1 |> 1. This shows that an energy-balance mixed-flow cannot be
increased by adding edges to the communication graph. Thus, we get the following
theorem:

Theorem 7 (Jarry et al. [14]) An energy-balance solution to the mix-flow maximiza-
tion problem (16.12) is also a solution to the general flow maximization problem
(16.11).

16.8.1 Learning the Protocol’s Parameters

Given the protocol’s parameters λi , 1 ≤ i ≤ n, we have discussed the computation
of the appropriate values for the probability of transmitting to the next ring sector
pi , 1 ≤ i ≤ n. To take into account the situations where these parameters are not
known, we present here a learning strategy [16, 17].

We start by redefining the necessary key equations. Given that a ring sector gen-
erates a message, we compute the probability that the message is handled by the
ring sector Ti . This happens if the message is generated in Ti or in the ring sector
Ti+1 and forwarded to Ti or so on up to the ring sector n. Then, the probability xi

that a generated message is handled by the ring sector Ti is given by

xi = λi + λi+1 pi+1,i + λi+2 pi+2,i+1 pi+1,i + · · · + λn pn,n−1 pn−1,n−2 . . . . .pi+1,i

A message induces a mean energy consumption in Ti which is given by

xi

(
pi

1

bi
+ (1 − pi )

i2

bi

)

where we normalize the energy consumption by the energy budget bi since we
search for probabilities pi that balance the energy consumption. Actually, the
energy-balance condition can be restated as.
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xi

(
pi

1

bi
+ (1 − pi )

i2

bi

)
= λ, ∀1 ≤ i ≤ n

Solving this equation for pi leads to

pi = i2

i2 − 1
− bi

(i2 − 1)xi
λ (16.16)

We observe that the probabilities xi satisfy the recursion xi = pi+1xi+1 + λi . Then,
it is possible to compute the probabilities pi starting for ring sector Tn up to T1
provided that the value of λ is known. The value of λ is given by

λ = x1

b1

By using the recursion xi = pi+1xi+1 + λi and Eq. (16.16) we get that λ satisfies

λ = f (λ) = a + bλ (16.17)

with

b1a = λ1 + λ2C2 + λ3C3C2 + · · · + λnCnCn−1 . . . . .C2

b1b = −D2 − D3C2 − D4C3C2 − · · · − DnCn−1 . . . . .C2

Ci = i2

i2−1
, Di = bi

i2−1
, 2 ≤ i ≤ n

Because a > 0, b < 0, the linear equation (16.17) has a unique solution. This
proves that provided there are probabilities pi balancing the energy consumption,
the solution is unique.

We consider the situation where the parameters λi are not known. To simplify
the expression, we assume bi = 1, the general case following straightforwardly.
Looking at Eq. (16.16), we observe that the probabilities that a message is handled
by the ring sectors xi are sufficient for computing the probabilities pi (remember
that λ = x1). By observing the paths followed by the different messages, the sink
can estimate these probabilities. Moreover, since it is usual to assume that the sink is
not energy limited, it is reasonable that the sink transmits the estimate to the sensors.
The implementation of the learning strategy requires that sensors add the number of
ring sectors they belong to as they handle a message.

The sink estimates the probabilities xi by looking at the path followed by each
message. A first attempt would be to compute the ratio of the number of messages
that passed through the ring sector i over the total number of received messages.
However, with such a solution the protocol uses a poor estimate of the pi for a
long time before the sensors can compute a better estimate by using the xi ’s values
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transmitted by the sink. We then use a recursive estimation method. The estimates
xi are updated after the arrival of each message, see Fig. 16.9 for the pseudocode.

Initialise x̃0 = λ, . . . , x̃n
Initialise NbrLoop=1
repeat forever

Send x̃i values to the stations which compute their pi probability
wait for a data
process the data
for i=0 to n

if the data passed through slice i then
X ← 1

else
X ← 0

end if
Generate R a x̃i -bernoulli random variable
x̃i ← x̃i + 1

Nbr Loop (X − R)
Increment Nbr Loop by one.

end for
end repeat

Fig. 16.9 Pseudocode for estimation of the xi value by the sink

Recursive estimation is relevant in our context since the probability pi can be
updated online. This ensures that the protocol does not waste energy by using a poor
estimate for a long time. The convergence time of the method is hard to compute
and bounds are overestimated, typically of order O(1/

√
Nbr Loop). However, it is

a well-known result that the estimated values quickly approximate the right value
and the estimate shows damped oscillation around the true value.

We display in Fig. 16.10 some numerical validations of the learning strategy. We
choose the parameters λi = (2i − 1)/n2, equal energy budget bi and networks with
3, 10, 20, 30 ring sectors. We plot the figure of the successive approximation of the
value λ = x1. The probabilities are all initialized with the value 0.5.

We observe in Fig. 16.10 that the estimation quickly reaches a value close to the
final one and progressively refines the value. Although the total time of convergence
appears to be long, the estimates are quickly of the right order of magnitude.

16.8.2 A Simple Distributed Strategy

In this last section, we present a very simple strategy which consists in forwarding
to the next ring sector only if the current energy consumption is lower and sending
directly to the sink in the other case. The implementation of this strategy requires
to know the energy consumption level of the next ring and this does not require any
extra message. Indeed, while a sensor transmits a message, it includes a supplemen-
tary data that indicate the current level of energy consumption. Since the message is
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Fig. 16.10 Numerical validation of the learning strategy. On the left of the top figure a network
with three ring sectors and, on the right 10 ring sectors. On the left of the bottom figure a network
with 20 ring sectors, and, on the right 30 ring sectors

received by all the sensors belonging to adjacent ring sectors, they can be aware of
the current level of energy consumption.

The analysis of the simple strategy is based on the Markovian character of the
process. We denote by xi (t) the energy consumption of the ring sector i at time
t . Since we are only interested in the transmission of messages, we assume that
the time is discrete, t = 0, 1, 2, . . . and that each time instant corresponds to the
transmission of a message. The discrete dynamics is expressed as a map

⎛

⎜⎜⎜
⎝

xn(t)
xn−1(t)

...

x1(t)

⎞

⎟⎟⎟
⎠

4⇒

⎛

⎜⎜⎜
⎝

xn(t + 1)
xn−1(t + 1)

...

x1(t + 1)

⎞

⎟⎟⎟
⎠

Actually, since our main concern is to balance the energy consumption, it is more
convenient to work with the reduced state vector given by
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X (t) =

⎛

⎜⎜
⎜
⎝

xn(t)− xn−1(t)
xn−1(t)− xn−2(t)

...

x2(t)− x1(t)

⎞

⎟⎟
⎟
⎠

The (reduced) state vector changes as a new message is sent from one ring sec-
tor. A new message is generated with probability λi . The discrete dynamics can
be assumed Markovian, since the evolution of the state vector depends only on the
current state.

We can prove that the Markov chain is irreducible [14] by showing that from any
state the system reaches the null state X (t) = (0, 0, . . . , 0)with positive probability.
This is important because, if the chain is not irreducible, the long-time dynamic
might depend on the initial state.

The simple strategy aims at balancing the energy consumption. With our formu-
lation this amounts to expect that X (t) ≈ (0, 0, . . . , 0), ∀t sufficiently large. It is
clear that this is a too strong requirement. We then require that the Markov chain is
stable in the following sense:

Definition 14 (stability) The Markov chain {X (t)}t≥0 is stable if there exists a
neighborhood D of the origin which is positive recurrent. This means that

P
(
X (t) ∈ D, t <∞) = 1

The statement of the next theorem contains sufficient conditions ensuring the
stability of the Markov chain.

Theorem 8 [14] We assume that λi > 0, 1 ≤ i ≤ n. Then the set

D =
{

X = (Xn, . . . , X2) s.t. | Xi |≤ i2

2
, i = 2, . . . , n

}

is positive recurrent if

i2λi > (i − 1)2λi−1, i = 2, . . . , n

Before discussing informally how the result is proved, we consider more closely
the conditions ensuring the stability. If we impose the conditions λi i2 = λi−1(i −
1)2, it is possible to balance the energy consumption if all ring sectors transmit
directly to the sink. However, with these conditions our proof of the stability is
not valid and we cannot conclude. Anyway, let us think that the frontier between
conditions ensuring the stability or the instability of the strategy might be well char-
acterized by direct transmissions towards the sink.

To proceed further, let us assume that λn = 0. In this case, it is clear that the
energy consumption of the last ring sector Tn cannot be balanced since no messages
are generated in Tn and Tn has no way of receiving messages.
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Let us then assume that λi = 0, i < n. The protocol ensures that xi+1(t)−xi (t) <
i2. The bound is attained in the case where xi+1(t) < xi (t) and a message is sent
directly to the sink from Ti+1. A similar argument shows that xi (t)− xi+1(t) < i2,
so we finally have | xi (t)− xi+1(t) |< i2.

The preceding reasoning can be expanded to the case where we have λi+ j =
λi+ j−1 = · · · = λi = 0 to show that, provided λi+ j+1 �= 0, the entries of the
reduced state vector are bounded. Then, it seems reasonable to expect that the only
pathological situation is when external ring sectors do not generate enough mes-
sages to balance the energy consumption with the lower ring sectors.

To conclude this section, we discuss informally the proof of the result which can
be found in [14]. We use the function

f (x) =
n∑

i=2

| xi (t)− xi−1(t) |

With the sufficient conditions, we can prove that

E
(

f (X (t + 1))− f (X (t)) | X (t)
) ≤ −ε, ε > 0 (16.18)

for all X (t) �∈ D. This means that on average the value of the function f decreases
outside the domain D. Formally, we have that f (X (t)) is a positive supermartin-
gale outside of D. Since positive supermartingales converge, the orbit of X (t) has
to enter the domain D at some time. If not, the supermartingale will converge to
a point and this is in contradiction with (16.18). Once the orbit of X (t) is in D,
the supermartingale property no longer holds, and the value of f (x(t)) is going to
increase while the orbit of X (t) is escaping from D. The process then evolves in this
way, escaping D, returning to D, and so on. This shows that D is positive recurrent
and that the discrete dynamics is stable.

16.9 Conclusions

We have studied a particular aspect of energy optimization in wireless sensor net-
works, that of energy balance, i.e. guaranteeing that all sensors in the network have
the same energy throughout the protocol evolution. The importance of the energy
balance property is based on the fact that it prolongs the network lifetime by avoid-
ing an early disconnection of overused network regions.

For the energy balance problem we presented a few characteristic algorithms,
assuming different levels of network knowledge in each case. Our algorithms basi-
cally use randomization in choosing the right data propagation pattern in order to
appropriately handle the energy-latency trade-off and achieve energy balance. We
finally provide formal evidence that energy balance leads at the same time to energy
optimality.
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Chapter 17
Dense, Concentric, and Non-uniform Multi-hop
Sensor Networks

Sajal K. Das, Alfredo Navarra, and Cristina M. Pinotti

Abstract In this chapter, we consider a large-scale sensor network, in a circular
field, modeled as concentric coronas centered at a sink node. The tiny wireless
sensors, severely limited by battery energy, alternate between sleep and awake peri-
ods, whereas the sink is equipped with high transmission power and long battery
life. The traffic from sensors to the sink follows multi-hop paths in a many-to-one
communication pattern. We consider two fundamental and strictly related problems,
the localization and the energy hole problems. We first survey on recent algorithms
most extensively studied in the literature and summarize their pros and cons with
respect to our assumptions. Then we present our solutions tailored for dense and
randomly deployed networks. In our localization protocol, the sensors learn their
coarse-grain position with respect to the sink, and hence the sink acts as a reference
point for the network algorithms, in particular the routing algorithm. For this role of
the sink, the network may incur in a special energy hole problem, known as the sink
hole problem. From this perspective, the localization and energy hole problems are
strictly related. Our solution for the energy hole problem adopts a non-uniform sen-
sor distribution, compatible with the proposed localization solutions, that adds more
sensors to the coronas with heavier traffic. In conclusion, we show that the network
model under consideration can solve the localization and energy hole problems by
properly tuning some network parameters, such as network density.

17.1 Introduction

A wireless sensor network (WSN) consists of a large number of distributed sen-
sors which cooperate for collecting and disseminating information (see [2, 5, 58]
for a survey on WSNs). Sensors usually monitor some local events like tempera-
ture, humidity, motion, and radiation. Combined with a microprocessor and a low-
power radio transceiver, each of them represents a smart network-enabled node.
Sensors are severely constrained in battery power and their longevity in the network
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is crucial for the life span of the whole network. Energy-efficient architectures,
algorithms, and protocols are at the basis of research in the field of WSNs. One
of the most important strategies for prolonging the lifetime of the sensors is to allow
them to switch off their transceiver as much as possible, thus alternating between
sleep and awake periods according to the running protocol or to the occurrence of
events.

Data collected by the sensors are sent via multi-hop paths to some sink nodes
where data are processed and stored. The sink node might be some fixed infrastruc-
ture close to or around which the sensor network has been deployed; or it could be
some temporary data collector which moves through the network for that purpose.
In either case, in order to allow the sink to regenerate the map of the sensed events,
sensors must relate the collected information to their position. The procedure by
which a sensor gets known of its actual position is referred to as the localization
process. The simplest but expensive way to provide sensors with such information
is to empower them with global positioning system (GPS) receiver. However, this
contradicts the requirement of inexpensive sensors with limited energy. Therefore
many strategies have been proposed in the literature to overcome the use of special
hardware [31, 45, 87]. Based on the requirements or the applications, the localiza-
tion process might provide coarse- or fine-grain coordinates to the sensors at the
expenses of different levels of energy consumption.

In this chapter, we are mainly interested in coarse-grain localization schemes that
associate each sensor with two coordinates. We refer to a circular sensor field, cen-
tered at a sink node, subdivided into sectors and concentric coronas (see Fig. 17.1d).
In the simplest setting, sectors cut the circular area into equiangular portions and the
coronas have the same width. At the end of a localization process, each sensor must
be aware of the sector and the corona where it resides. Clearly, special cases of this
model can be easily defined and managed once the basic problem is solved. For
example, coronas and sectors might span different areas; more than one sink node
can be considered and/or mobile sink nodes; sensors might be of different types
according to their capabilities, available energy, running protocols.

Once the localization procedure terminates, sensors are ready to accomplish their
specific tasks and start to sense and route the collected data. Events and protocols
determine some traffic in the network toward the sink nodes. Recently, it has been
experimentally noticed and theoretically supported that sensors closer to the sink
consume their battery rather faster than the others. This process tends to isolate the
sink node from the rest of the network which becomes useless. Such a problem
is referred to in the literature as the energy hole problem. A careful strategy to
avoid such a side-effect would prolong the life span of the network and optimize
its performances. The main idea behind the resolution of the energy hole problem
is to propose a balanced consumption of the batteries among all the sensors. This
helps to avoid the situation that a few sensors drain their batteries compromising the
network behavior. In [16] for instance, the authors present a distributed algorithm
that in each step probabilistically chooses between either forwarding data one-hop
further toward the sink or sending data directly to the sink. This randomized design
is meant to balance the one-hop transmissions (which are cheap regarding energy but
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Fig. 17.1 A sink-centric subnetwork: (a) the sensors deployed in a circular field of radius ρ, (b) a
sink broadcast of range R, (c) a sink broadcast of angle α, (d) the virtual coordinate system

need a lot of time) with the long, direct transmissions (which are more expensive and
fast but bypass the critical region around the sink). This result is nicely generalized
in [23, 42] where the authors provide adaptive methods for weaker models, formally
show the optimality of this two-way propagation, and also investigate the deeper
relation between energy balance and energy optimality.

A uniform consumption of the available energy in the network might also be
accomplished by various approaches such as different node distributions and differ-
ent communication protocols or heterogeneous sensors (see for instance [13, 38, 40,
53, 55, 60, 62] for different strategies). In this chapter, we present recent theoretical
results in this field and also provide the most promising techniques to avoid energy
holes.

The remainder of the chapter is organized as follows. Section 17.2 surveys the
existing literature related to the localization and energy hole problems. Section 17.3
provides the model under consideration, the definitions and the underlying assump-
tions of our discussion. Section 17.4 describes our recent work on localization algo-
rithms, while Sect. 17.5 summarizes our recent work on the energy hole problem.
Finally, Sect. 17.6 provides concluding remarks and some hints for future works.
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17.2 Related Work

Wireless sensor networks have been extensively studied in recent years. By reducing
the deployment overhead in terms of unit cost or installation time, the development
of dense distributed sensor systems becomes feasible and sensors can be placed
closer to the phenomena they sense, thus yielding increased signal quality. Sensors
are strongly coupled to the physical world, and their spatial positions, or localiza-
tion, is a crucial factor in any task they perform [87]. As mentioned, an impor-
tant factor that influences the system performance is the energy consumption. For
example, as sensors in dense networks are generally powered by small inexpensive
batteries, the life span of the whole network depends on the longevity of the sensors
in the system. This suggests us to maintain the sensors activity and hence energy
consumption as low as possible. The lifetime of sensors is usually divided into two
phases that alternate: the awake and sleep periods [8, 13, 29]. In the former, sensors
act with their full capabilities, while in the latter, only few operations are performed.
Energy consumption also drives the communication protocols. Direct sensor-to-sink
transmissions are the easiest way for reporting the sensed data to the external world,
but the sensors farther away from the sink would run out of energy quickly due to
the long transmission distance. Thus, to save energy, multi-hop routing schemes are
more preferable, which, however, tend to overuse the intermediate sensors, particu-
larly those close to the sink, thus leading to what are called energy holes around the
sink.

In this chapter, we focus our attention on these two basic problems for sensor
networks, the localization and the energy hole problems.

17.2.1 About Localization

In the literature, the task of determining the geographic position of sensors in the
physical world, referred to as localization, is recognized as a fundamental problem
in designing sensor networks and has been extensively studied (see, e.g., [5, 22,
31, 87]).

We restrict our attention to those systems in which the sensors are helpful during
the localization process. Note that this is not always the case. For example, a system
to localize animals which relies on sensors tied to the animal’s neck cannot assume
that the animal is acting with the intent to be localized, and thus sensors must be
always awake with a considerable energy cost.

As indicated earlier, localization hardware, such as GPS for each sensor, is expen-
sive in terms of both unit sensor cost and energy consumption especially when used
in dense sensor networks. Prominent solutions assume the existence of anchor nodes
which are aware of their location (because they are the only sensors provided with
GPS) and allow other sensors to infer their locations by exchanging information
with them. Such localization algorithms can be divided into three categories: range-
based [15, 34], range-free [18, 45], and coarse-grained [ 2, 6– 9, 33, 39, 52, 56]
localization schemes, as summarized below.
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In range-based algorithms, sensors estimate their distance to anchors, using some
specialized hardware. The technique to measure the distance anchor–sensor with
minimum hardware requirement is the received signal strength indication (RSSI)
because all sensors have a radio and can measure the strength of the received signal.
Since the energy of a radio signal diminishes with the square of the distance from the
signal’s source, measuring the strength received by the sensor allows to calculate the
source–sensor distance. However, this technique assumes regular radio propagation,
while it is highly non-uniform and, thus, vulnerable to fading and occlusions [5].
The time difference of arrival (TDoA) measures the time required by a signal (say,
sound) to traverse the distance from a localized source to a sensor. This method,
which requires that sensors are provided with microphone, is extremely accurate
(up to a few centimeters) when the sensor and the source have the line of sight
[20]. Similar to TDoA, in angle of arrival (AoA), the phase difference of arrival
is measured to get the anchor–sensor distance [4, 10, 14]. Such measurements are
then applied to range-based methods, like triangulation, trilateration, which com-
pute the position of a sensor by measuring distances from at least three reference
anchors [4, 10, 15, 34, 36]. Another range-based algorithm is the centralized multi-
dimensional scaling (MDS) which finds the locations of n sensors by computing
their n2 relative distances [5]. In the distributed centroid algorithm [11], the sen-
sors simply localize themselves by averaging the positions of all anchors that their
radio can receive. Despite simplicity of the method, the resulting localization is not
accurate, especially when the number of anchors is low.

On the other hand, range-free algorithms do not use any special hardware to
measure distance and accept a less accurate localization. Some methods, similar
to distance vector routing, allow the sensors to find the number of hops from the
anchors. Anchors flood their location throughout the network maintaining a running
hop count at each sensor along the way. Sensors calculate their positions based on
the received anchor locations, namely the hop count from the corresponding anchor,
and the average distance per hop [35]. In [18], an iterative method is proposed
to narrow down the position accuracy until a tolerable error in the positioning is
reached. In practice, each sensor repeatedly chooses a triple of anchors from all
audible anchors and tests whether it is inside the triangle formed by them, until all
triples are exhausted or the required accuracy is achieved. At this point, the center of
gravity of all of the triangles in which a sensor resides is assumed to be the sensor’s
estimated position. Interesting experimental results are shown in [14], where the
positioning is obtained either by means of some anchors in the system or as a rela-
tive positioning without anchors. In practice, sensors become aware of the relative
positions with respect to their distance to other sensors, but without obtaining real
coordinates.

The localization algorithms discussed so far assume that the radio can receive
multiple anchor nodes and that anchors are special sensors mainly because they
know their spatial coordinates. Instead, several recent papers [2, 6– 9, 33, 39, 52, 56]
have considered the localization problem in heterogeneous networks where a sin-
gle node, called sink, is provided with special transmission capabilities and steady
power supply in order to localize the sensors around it. In practice, the goal is to
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provide coordinates to the sensors with respect to the sink and not to acquire the
real absolute positions. In such a context, localization is intended as the task of
making each sensor able to acquire a coarse-grain location with respect to a given
sink node and is referred to as training. The main characteristic of such training
protocols relies on using a single sink node to impose a discrete polar coordinate
system. The process might be executed mainly by the sink by means of asymmet-
ric broadcasts (from the sink to the sensors) without multi-hop communications
among the sensors. The sensors compute their coarse-grain location by exploiting
the information received from the sink without performing any local communica-
tion. This must be intended to save energy in order to accomplish their real task
of sensing. In particular, the two protocols presented in [8] assume that all the sen-
sors are synchronized to the master clock running at the sink. Exploiting the fully
synchronized model among sensors and sink and the capability of irregularly alter-
nating between sleep and awake periods (whose frequency and length depend on
the protocol computation) such protocols achieve an optimal time (in the number of
coronas/sectors) for terminating the training process. Clearly, different assumption-
s/environments lead to different strategies. Further in the chapter will be described
two new approaches [6, 9, 33], which assume that sensors and the sink are not
synchronized. Moreover, also the case where sensors can exchange data in order to
speed up the training process is considered in Sect. 17.4.3.

17.2.2 About the Energy Hole Problem

Concerning the energy hole problem, we classify the related work into three cate-
gories: analysis of energy hole problem, energy-efficiency design, and non-uniform
sensor distribution strategies.

There has been some work on the analysis of the energy hole problem in WSNs.
In [25, 26], the authors present a mathematical model to analyze the energy hole
problem in circular WSNs with uniform sensor distribution and consisting of con-
centric coronas. They examine the validity of several possible schemes to mitigate
the energy hole problem from a traffic perspective. It has been observed that in a uni-
formly distributed sensor network, hierarchical deployment and data compression
have positive effects on the problem. Increasing data generating rate only makes it
worse, whereas simply adding more sensors in the network makes little difference
provided that the uniform sensor distribution is maintained. This work does not
explore the possibility of avoiding energy hole in WSNs.

The authors in [38] are the first to analyze how to avoid the energy hole problem,
assuming a WSN with uniform sensor distribution and constant data reporting. They
use a common energy model (see [44]) that the energy consumed in transmitting a
message of unit length is E = dα + c, where α is the energy attenuation parameter
related to specific field, d is the distance between the data sender and receiver, and
c is a positive system parameter. They demonstrate that if the transmission range of
each sensor is adjustable, the energy spent in routing is minimized when each corona
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has the same width. This however would lead to unbalanced energy depletion in the
network. They prove that for α > 2, the unbalanced energy depletion is preventable,
but for α = 2, it is inevitable.

In existing protocols like LEACH [19], HEED [59], UCS [50], EECS [57],
EEUC [24], and VIBE [40], hierarchical structures of the sensor network are con-
structed and clustering schemes are proposed for the purpose of distributing energy
depletion among all the sensors. In LEACH, the cluster head rotation is used as
a mechanism to balance the energy depletion, whereas both communication cost
and remaining energy of sensors are considered when selecting the cluster head
in HEED. Noticing that some cluster heads near or far from the sink take a heav-
ier energy burden, schemes such as UCS, EECS, and EEUC are proposed to form
clusters with different sizes. These methods produce smaller clusters in which the
cluster heads consume more energy. VIBE describes a way to avoid the problem by
changing the routing path to the sink nodes and by exploiting mobility aspects of
the network.

In [41], two cases are summarized in which energy imbalance could appear in
a network with uniform sensor distribution. In one case, with the assumption that
all the sensors can communicate directly with the sink, the sensors send data to the
sink via a single hop, thus the sensors farther away would consume their energy
faster. In the other case, data are forwarded to the sink via multiple hops. Therefore,
the sensors near the sink take more traffic loads and would drain earlier their bat-
tery. When the first such sensor uses up its energy, the network lifetime ends. The
authors in [41] assume that each sensor can vary its transmission range and model
the network lifetime maximization as a linear optimization problem. They state that
the maximization of network lifetime can only be attained at the expense of loss in
energy efficiencies. In [17], the maximization of network lifetime is formulated as
a linear programming problem. The lifetime bounds of WSNs are derived with two
regular topologies, namely regular linear network and regular two-dimensional net-
work. It is shown that simply transmitting data to the nearest neighbors can achieve
asymptotical near-optimal network lifetime.

Under the mixed data gathering scheme [21], an intermediate sensor either trans-
mits data to one of its neighbors or sends directly to the sink when it forwards
data, assuming that each sensor is able to communicate directly with the sink. A
distributed data gathering algorithm is also proposed in [21] for evenly distributing
the energy consumption among all the sensors in WSNs. It is proved that an energy-
balanced mixed data gathering scheme could be better than other possible routing
schemes due to the fact that the lifetime maximization, data flow maximization,
and balanced energy consumption among the sensors are equivalent. However, the
assumption that each sensor is within the direct reach of the sink might be infea-
sible. A related solution proposed in [49] models a WSN by concentric coronas,
in which sensors in the same corona use the same transmission range, but differ-
ent coronas have different transmission ranges. A right transmission range list is
thus the decision factor for optimizing network lifetime after node deployment. The
authors in [49] show that searching for the optimal transmission range list is a multi-
objective optimization problem which is NP-hard and thus propose algorithms to
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reduce the searching complexity. Compared with existing algorithms, their solutions
can make the network lifetime more than twice longer. The ideas of localized zone-
based corona network division and mixed-routing strategy with data aggregation
are combined in [61] to design an offline centralized solution for a transmitting
data distribution which guarantees balanced energy consumption among the sensor
nodes.

In order to tackle the unbalanced energy depletion and extend the network life-
time, other endeavors introduce mobility into the WSNs. In [54], the authors make
use of mobile relays which stay only within two hops away from the sink to enhance
the network lifetime by nearly four times. They also propose two joint mobility and
routing algorithms capable of attaining the claimed results. A mobile sink is used
in [30] to improve the network lifetime. The sensors near the sink would change
over time with a sink moving in the network, thus mitigating the energy imbalance
around the sink. It is proved that for extending the network lifetime, the best position
for a static sink is the center of the circle when the WSN covers a circular area.
It is further demonstrated that using a mobile sink is beneficial and the mobility
trajectory should follow the periphery of the network. A joint mobility and rout-
ing scheme is also devised. The work in [30] is extended in [47] by studying the
relationship between energy efficiency and load balancing. It is concluded that the
optimum trajectory of the sink movement is a stationary annularity area. All sensed
data are first transmitted into this area taking the shortest path and then collecting
by the sink which moves along the area at an appropriate speed. Finally, energy
hole healing protocol is presented in [48] using mobile sensors when energy hole
appears.

Non-uniform sensor distribution strategy can be adopted to mitigate the energy
hole problem. To this end, a non-uniform sensor distribution strategy is described
in [27] to increase the network data capacity, defined as the amount of data received
by the sink node. Additional sensors acting as pure relays are added to the network.
A routing algorithm is also proposed in which some sensors sleep once in a while
to save energy. Hence, some kind of awake–sleep scheduling is necessary.

Recently, a power-aware non-uniform sensor distribution scheme has been sug-
gested in [28] to deal with the so-called sink-routing hole problem and aim for
long-term connectivity in WSNs. Here the authors derive sensor distribution func-
tions based on the hop counts. The sink-routing hole problem is essentially the same
as the energy hole problem discussed in this chapter. However, neither [27] nor [28]
addresses the possibility of avoiding the energy hole problem.

The possibility of avoiding energy hole by a non-uniform sensor distribution
strategy in WSNs is discussed in [37]. Considering only energy consumption for
data transmission, the authors state that balanced energy depletion can be achieved
when the sensor density δi of the i th corona is proportional to (k+1− i), where k is
the optimal number of coronas. Under this scheme, sensors closer to the sink have
to send data with lower rates.

In Sect. 17.5, we find that a nearly balanced energy depletion is achievable in the
network if the number of sensors in coronas increases in geometric proportion as
they get closer to the sink. We assume that the sensors constantly report data to the
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sink as in [26, 38] and we adopt a more practical energy consumption model than
the one assumed in [37], which considers the energy lost in both data transmission
and reception.

17.3 Our Model and Assumptions

We consider a wireless sensor and sink network to consist of one single, fixed sink,
centrally placed with respect to a set of sensors uniformly and randomly deployed,
as illustrated in Fig. 17.1a. The circular area containing the sensors and centered at
the sink is called the sink zone.

It is assumed that the time is divided into slots. The sensors and the sink use
equally long, in-phase slots, but they do not necessarily start counting time from
the same slot. A sensor possesses three basic capabilities, sensing, computation,
and wireless communication, and operates subject to the following fundamental
constraints:

a. Each sensor alternates between sleep periods and awake periods—sleep–awake
cycle has a total length of L time slots, out of which the sensor is in sleep mode
for L − d slots and in awake mode for d slots;

b. Each sensor is asynchronous—it wakes up for the first time according to its inter-
nal clock and is not engaging in an explicit synchronization protocol with either
the sink or other sensors. We say that sensors that wake up simultaneously at time
slot x are of type x ;

c. Individual sensors are unattended—once deployed it is neither feasible nor prac-
tical to devote attention to individual sensors;

d. No sensor has global information about the network topology, but can hear trans-
missions from the sink;

e. Each sensor has a modest non-renewable energy budget and a limited transmis-
sion range r .

As shown in Fig. 17.1d, the training imposes a virtual coordinate system onto the
sensor network by establishing

1. Coronas: The sink-zone area is divided into k coronas C0,C1, . . . ,Ck−1 each of
fixed width ρ > 0. The coronas are centered at the sink and determined by k
concentric circles whose radii are ρ, 2ρ, . . . , kρ, respectively;

2. Sectors: The sink-zone area is divided into h equiangular sectors S0, S1, . . . , Sh−1,
originated at the sink, each having a width of 2π

h radians.

For the sake of simplicity, it is assumed that all the coronas and all the sectors
have the same width, although this is not strictly required. In a practical setting,
the corona width might be equal to the sensor transmission range, and hence the
(outer) radius ri of corona Ci might be equal to (i + 1)ρ = (i + 1)r . In such a case,
the corona number plus one gives the number of hops needed for a sensor-to-sink



524 S.K. Das et al.

communication inside a sector. At the end of the training period each sensor acquires
two coordinates: the identity of the corona in which it lies and the identity of the
sector to which it belongs. In particular, a cluster is the intersection between a corona
and a sector where all sensors have to acquire the same coordinates.

Once the training period has terminated, we assume a data logging application,
where the sensors are required to send their sensed data constantly at a certain rate.
For the sake of simplicity, we assume that each sensor generates and sends B bits of
data per unit time. Sensors belonging to a corona {Ci |i �= k − 1} will forward data
generated by themselves and also by sensors from coronas {C j |(i+1) ≤ j ≤ k−1}.
The sensors in the outmost corona Ck−1 need to forward only their own data. Here
we do not assume data aggregation at any forwarding sensor.

The energy model in our discussion is as follows. The initial energy of each
sensor is ε > 0, while the sink has no energy limitation. It has been observed that
the communication-related energy dissipation usually dominates the total energy
consumption in WSNs [41, 43]. In our model, we consider the energy loss related to
both data transmission and reception. We further assume that a sensor consumes e1
units of energy for sending one bit, while it depletes e2 units of energy for receiving
one bit, where e1 > e2 > 0. Later we will see how the constraint e1 > e2 can be
relaxed. Note that the energy model in [19, 44] assumes that the energy consumption
for transmitting l bits of data over a distance of d is given by l(Eelec + εdα) and the
corresponding energy dissipation in data reception is l Eelec, where Eelec, ε, and α
are all system parameters. Thus, the values of e1 and e2 in our model can be com-
puted as Eelec + εdα and Eelec, respectively, where d is the maximum transmission
range of each sensor.

For ease of exposition, we consider the following two terms from [55]:

Definition Balanced energy depletion is attained in the network when sensors in all
coronas use up their energy simultaneously.

Definition Sub-balanced energy depletion is attained in the network when sensors
in all coronas except the outmost one exhaust their energy simultaneously.

17.3.1 Basic Modular Arithmetic

Since several derivations in this chapter employ modular arithmetic, let us offer a
quick refresher of the terminology and basic results used hereafter.

Given any two integers x and m, with m �= 0, let |x |m denote the modulo oper-
ation, that is, the non-negative remainder of the division of x by m (see [51]). Two
integers x and y are congruent modulo m, denoted by x ≡ y mod m, if and only if
|x |m = |y|m .

Let • indicate one of the three basic operations: addition, subtraction, and
multiplication. The modulo operation distributes over such operations and hence
|x • y|m = ||x |m • y|m = |x • |y|m |m = ||x |m • |y|m |m . Moreover, it is easy to prove
that
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Property 1 For any integers a, x , and m, with a �= 0 and m �= 0, |ax |am = a|x |m .

Let the greatest common divisor of integers x and y be denoted by (x, y). There-
fore, letting x = x ′(x,m), m = m′(x,m), and applying Property 1, one derives
|x |m = (x,m)|x ′|m′ . It is worth noting that the division of x by y modulo m is
possible only when y and m are coprime, i.e., when (m, y) = 1. Indeed, only in
such a case there exists the inverse multiplicative of y modulo m, which is denoted

by
∣∣∣ 1

x

∣∣∣
m

(as used in [51]) and is defined as that integer satisfying x
∣∣∣ 1

x

∣∣∣
m
≡ 1 mod m.

The following property is widely used in this chapter:

Property 2 Given any integers x, y, z, w, and m �= 0, the following holds:

1. If ax ≡ ay mod m and a �= 0 is such that (a,m) = 1, then x ≡ y mod m
2. If ax ≡ ay mod m and (a,m) = g, then x ≡ y mod m′, where m = m′g
The next property shows how the values generated by the expression |i x |m vary
when i assumes any integer value.

Property 3 Given two integers x and m �= 0 such that (x,m) = g, the congruence
i x ≡ y mod m has solution for any y = gy′ with y′ ∈ [0, . . . ,m′ − 1], where m′ =
m
g . Moreover, |i x |m generates only the values multiple of g in [0, 1, . . . ,m−1], one
for each different value of |i |m′ .

In the particular case where (x,m) = 1, the property above shows that, when i
assumes all the m integer values in [0, . . . ,m − 1], the expression |i x |m generates
all the m integer values in [0, . . . ,m − 1].

17.4 Localization Problem

The main goal of this section is to present the details of the basic training pro-
tocol, called Flat– [6]. Other protocols can be found in the literature for training
purposes [7, 9, 33] in similar environments.

With Flat– protocol, each sensor acquires a coarse-grained localization (namely,
the corona and the sector of the virtual coordinate system where it resides) just
listening to the beacons of the sink and performing very simple local operations.
As said, to stress the role of the sink which alone guides the sensors in the process
of learning their virtual coordinates, Flat– is said to be a training protocol. Flat–
consists of two phases: the corona phase and the sector one. During the corona
training protocol, the sensors learn the corona where they reside and the sink broad-
casts using the isotropic antenna, whose transmissions cover circles of fixed radius,
centered at the sink itself. For example, Fig. 17.1b shows a sink (isotropic) broadcast
in which the isotropic antenna transmits over a circle of radius R. The isotropic
antenna can modulate transmissions with the discrete radii ρ, 2ρ, . . . , (k − 1)ρ.
When the sink transmits up to a distance (c + 1)ρ, it broadcasts beacon c. Such a
beacon is heard by any awake sensor that resides up to corona c, i.e., at a distance
≤ cρ from the sink, whereas the beacon c cannot be heard by any awake sensor that
resides in corona c + 1 or in a larger one.
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Similarly, during the sector training protocol, the sensors learn the sector where
they reside and the sink broadcasts using the directional antenna. A sink (directional)
broadcast of width α covers a portion of a circle of radius kρ, with center in the sink,
enclosed between two radii forming the angle of α radians (see Fig. 17.1c). The

directional antenna can modulate h different discrete angles of width (i + 1)
2π

h
,

with 0 ≤ i ≤ h − 1. When the sink transmission covers an angle of width

(i + 1)
2π

h
, the sink broadcasts beacon i . Figure 17.1c illustrates a sink broadcast of

width 5
2π

8
.

During the corona (sector) protocol, each sensor saves in a register R the beacons
that it hears while it is awake. At the end of protocol, if each sensor has been awake
while the sink has transmitted all the possible k corona (h sector) beacons, it surely
becomes trained, that is, it knows the corona (sector) where it resides. Specifically,
the sensor resides in the corona (sector) corresponding to the smallest beacon it has
heard.

In detail, the corona protocol executed by sink is described in Fig. 17.2. Imme-
diately after deployment, the sink cyclically repeats a transmission cycle which
involves k (isotropic) broadcasts at successively lower power levels. Each broadcast
lasts for a slot and transmits a beacon equal to the identity of the outermost corona
reached. Specifically, the sink starts out by transmitting the beacon k − 1 with the
highest power, sufficient to reach the sensors up to the outermost corona Ck−1; next,
the sink transmits the beacon k−2 at a power level that can be received up to corona
Ck−2, but not by the sensors in corona Ck−1. For the subsequent k−2 slots, the sink
continues to transmit at decreasing power levels until it concludes its transmission
cycle with a broadcast of beacon 0 that can be received only by the sensors in corona
C0. In general, at time slot z, with z ≥ 0, the sink transmits the beacon k−1−|z|k at a
power level sufficient to cover the distance rk−|z|k and hence to reach all the sensors
up to corona Ck−1−|z|k , but not those beyond Ck−1−|z|k . The sink transmission cycle
is repeated for a given time τ1 which is sufficient to accomplish the entire corona
training protocol.

Two periods of the corona protocol performed by the sink are illustrated in
Fig. 17.3.

The sector sink training task is analogous to the corona training task, except that
now the sink broadcasts using the directional antenna. Indeed, the sink cyclically
repeats a transmission cycle of h directional broadcasts with successively smaller
angles. Specifically, at time slot z, with z > 0, the sink transmits the beacon h −1−
|z|h which can reach all the sensors up to sector Sh−1−|z|h , namely, using an angle
of transmission α = (h − |z|h) 2π

h .

Procedure Sink (k, τ1);
for z := 0 to τ1 − 1 do

transmit the beacon |k − 1 − z|k up to corona C|k−1−z|k ;

Fig. 17.2 The corona training Flat-protocol for the sink
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15 15

0

Fig. 17.3 The sink behavior when k = 16. A bar of height c represents a sink isotropic broadcast
up to corona c, with 0 ≤ c ≤ k − 1

In order to describe the basic corona protocol for sensors, we assume that each
sensor is aware of the sink behavior and of the total number k of coronas. In particu-
lar, k can be either stored in the sensor memory before deployment or transmitted by
the sink in the beacon along with the corona identity. Immediately after deployment,
each sensor wakes up at random within the 0th and the (k − 1)th time slot and starts
listening to the sink for d time slots (that is, its awake period). Then, the sensor goes
back to sleep for L − d time slots (that is, its sleep period). Such a sleep/awake
transition will be repeated until the sensor learns the identity of the corona to which
it belongs, that is, until the sensor will be trained. Each sensor, during the training
process, uses a k-bit register R to keep track of the beacons, i.e., corona identities,
transmitted by the sink while the sensor is awake. As soon as the sensor hears a sink
transmission for the first time, it starts to fill its register R and it is able to learn the
sink global time t within the current sink transmission cycle, that is, t = |z|k . From
now on, such a time will regularly increase so that the sensor can derive from t the
beacon |k − 1 − t |k that the sink is transmitting. Then, in each time slot when the
sensor is awake, one entry of R can always be set to either 0 or 1. In fact, if the
sensor hears beacon c, then it sets Rc = 1, while if the sensor hears nothing, it sets
R|k−1−t |k = 0.

Note that an awake sensor in corona Cc hears any broadcast which transmits
beacon b, with c ≤ b ≤ k − 1 (clearly, different beacons are heard in different
broadcasts). In contrast, an awake sensor in corona Cc cannot hear the broadcasts
transmitting beacon b, with 0 ≤ b ≤ c− 1, because it is out of the range covered by
the sink transmission. Hence, if a sensor sets Rc = 0 (resp., Rc = 1), then it belongs
to a corona whose identity is higher than (resp., smaller than or equal to) c. Note
that only the sensors in corona C0 can hear beacon 0 and thus they are the only ones
which can set R0 = 1. From the above discussions, the following training condition
holds:

Lemma 1 [56] A sensor which belongs to corona Cc, with c > 0, is trained as
soon as the entries Rc and Rc−1 of its register R are set to 1 and 0, respectively. A
sensor which is in corona C0 is trained as soon as R0 is set to 1.
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Procedure Flat– (k, L , d);
1 heard := trained := false; ν := 0;
2 while wakeup and ¬ trained do
3 ν := ν + 1;
4 for i := 0 to d − 1 do
5 if received beacon c then
6 if ¬ heard then
7 heard := true, t := k − 1 − c;
8 Rc := 1;
9 if c = 0 or (Rc = 1 and Rc−1 = 0) then

10 mycorona := c, trained := true;
11 t := t + 1;
12 else
14 if heard then
15 c := k − 1 − |t |k ;
16 Rc := 0;
17 if Rc+1 = 1 then
18 mycorona := c, trained := true;
19 t := t + 1;
20 if heard then
21 alarm-clock := t := t + L − d;
22 else
23 alarm-clock := alarm-clock + L;
24 go to sleep until the alarm-clock rings;

Fig. 17.4 The Flat– corona protocol for a sensor

In the resulting Flat– sensor protocol (Fig. 17.4), each sensor counts in ν the
number of its sleep/awake transitions needed to be trained (line 1),1 initializing its
local time when the sensor receives a beacon for the first time from the sink (that is,
when heard is set to true in line 7) and stores in alarm-clock the time when the next
sleep/awake transition is planned (lines 21–23). It is worthy to note that after having
set heard to true, if a sensor is awake and does not hear the beacon, since it knows
the beacon broadcast by the sink, it can set the corresponding register entry to 0
(lines 14–16). After any entry of R is filled, the sensor checks the training condition
stated in Lemma 1. In the procedure, each sensor executes O(1) arithmetic/logic
operations per time slot.

When k = 12, L = 16, and d = 4, a sensor of type x = 5 (i.e., it wakes up for the
first time at time slot 5) belonging to corona c = 3 fills the register R during the Flat–
protocol as reported in Fig. 17.5 (where register R is depicted as a circular register).
The sensor wakes up for the first time while the sink transmits |k − 1 − x |12 = 6
and fills R6 = 1. During the same awake period, also R5 = R4 = 1 = R3 = 1
are filled. In the first slot of the second awake period (i.e., i = 1), the sensor sets
R2 = 0 because it cannot hear the beacon, but it knows that the sink is transmitting
|k − 1 − (x + L)|k = |6 − 16|12 = 2. At this point, the sensor becomes trained, but

1 Since the behavior of the sensor does not depend on which awake period it is, ν could be omitted
from the algorithm description. Indeed this is required just for the analysis purpose.
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Fig. 17.5 Status of the
register R of a sensor of type
x = 5 belonging to corona
c = 3 when L = 16, k = 12,
and d = 4 at the i th awake
period, with 0 ≤ i ≤ 1
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it continues to fill the register R, setting R1 = R0 = 0 and R11 = 1 until it goes
to sleep. Note that the sensor becomes trained during the awake period i = 1 and
ignores further sink transmissions.

Sector training is the same as corona training also for the sensor behavior, once
one has replaced h with k, mysector with mycorona. Clearly, a similar sector training
condition can be stated:

Lemma 2 A sensor which belongs to sector Sc, with 0 < c ≤ h − 1, is trained as
soon as the entries Rc and Rc−1 of its register R are set to 1 and 0, respectively. A
sensor which is in sector S0 is trained as soon as R0 is set to 1.

Thus, sector training protocol for sensors will not be further discussed and all the
results that follow will be presented for coronas only.

17.4.1 Correctness and Performance Analysis

The challenge now is to derive conditions on k, L , and d which guarantee that all
the sensors are trained, independent of their type and of the corona c they belong to.

By the training conditions discussed above, a sensor could not be trained if it does
not receive at least the beacon of the corona where it resides. Then, it is sufficient
to guarantee that, while a sensor is awake, all the beacons are transmitted by the
sink. This is trivially true if d ≥ k. However, when d < k, let us look on special
values of L , k, and d for which the training protocol succeeds for all sensors. Let
|L|k = d. Consider now two consecutive awake periods, say i and i +1, for a sensor
of type x , 0 ≤ x ≤ k − 1. The i th period covers the time slots x + i L , x + i L +
1, . . . , x + i L + (d −1), while the (i +1)th period covers the slots x + (i +1)L , x +
(i + 1)L + 1, . . . , x + (i + 1)L + (d − 1). During two such awake periods, the
sink transmits the beacons |x + i L|k, |x + i L + 1|k, . . . , |x + i L + (d − 1)|k and
|x + (i + 1)L|k, |x + (i + 1)L + 1|k, . . . , |x + (i + 1)L + (d − 1)|k , respectively,
which are consecutive. Indeed, by the modular arithmetic properties refreshed in
Sect. 17.3.1, during the last time slot of the i th period the sink transmits beacon
|x + i L + (d − 1)|k = |x + id + (d − 1)|k , while during the first time slot of the
(i+1)th period it transmits beacon |x+(i+1)L|k = |x+id+d|k . Although the time
slots covered by the i th and the (i + 1)th awake periods are not consecutive in the
global time, the beacons transmitted by the sink are consecutive. In other words, the
sensor receives the sink transmissions as it was awake without interruptions. Thus,
regardless of the sensor type, when |L|k = d, a sensor requires

⌈ k
d

⌉
consecutive
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Fig. 17.6 Status of the register R of a sensor of type x = 5 when L = 16, k = 12, and d = 4 at
the i th awake period, with 0 ≤ i ≤ 2. Initially R is empty. When the sink transmits beacon c, Rc
is filled

sleep–awake cycles to become trained because during such a period all the corona
beacons are transmitted by the sink.

Figure 17.6 shows how a sensor of type x = 5 fills its register R during the Flat–
protocol when L = 16, k = 12, and d = |L|k = |16|12 = 4. Since we are just
interested in the positions of R which are filled, we mark Rc with F , independent
of the value 0 or 1 saved in R.

For arbitrary values of L and k, since any two consecutive awake periods differ
by L time slots, they start when the sink is transmitting two corona beacons that
differ, by Property 1, by (L , k)|L ′|k′ ≥ (L , k), k′ = k

(L ,k) and L ′ = L
(L ,k) . Thus, the

beacon heard at the wakeup time repeats every k′ awake periods, and the process
is periodic. In each awake period, the sensor is awake while the sink transmits d
consecutive beacons. Clearly, if d < (L , k),2 the sensor cannot be awake during the
transmissions of all corona beacons, independent of how long it stays awake. As
an example, consider Fig. 17.7 where x = 5, L = 16, k = 12, and d = 3. When
the sensor wakes up in two consecutive awake periods, the sink is transmitting two
beacons whose values differ by 4 because k′ = 3, L ′ = 4, and (L , k)|L ′|k′ = 4.
Thus, since k′ = 3, even if the Flat– protocol runs longer, the register R cannot
be entirely filled. Therefore, if d < (L , k), there are sensors that cannot hear the
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Fig. 17.7 Status of the register R of a sensor of type x = 5, when L = 16, k = 12, and d = 3 at
the i th awake period, with 0 ≤ i ≤ 2. The empty positions R3, R11, and R7 will remain unfilled
independent of how long the protocol runs

2 Recall that (L , k) denotes the greatest common divisor between L and k.
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Fig. 17.8 Status of the register R of a sensor of type x = 5, when L = 21, k = 12, and d = 6
at the i th awake period, with 0 ≤ i ≤ 2. The positions filled more than once are depicted in bold.
Note that (L , k) = 3 and the beacons transmitted first by the sink in each awake period differ by a
multiple of 3

beacon of the corona where they reside and then remain untrained. In other words,
d ≥ (L , k) is a necessary condition for training all the sensors.

Whereas, if d ≥ (L , k), each sensor completely fills register R. In this case,
each sensor can hear the same beacon more than once and R can be filled in a
not consecutive manner. However, each sensor is trained after at most k′ awake
periods. In the example in Fig. 17.8, the first awake period starts while the sink
transmits beacon |k − 1 − x |k = |11 − 5|12 = 6, the second period while beacon
|k−1−(x +L)|k = |11−(5+21)|12 = 9 is transmitted, and the third while beacon
|k − 1− (x + 2 ∗ L)|k = |11− (5+ 42)|12 = 0 is transmitted. Although the process
starts repeating after the fourth sleep–awake cycle because k′ = 12

3 = 4, the register
R is filled already at the end of the third cycle since d > (L , k) = 3.

The previous discussion has been formalized in [6]. Let us survey here the formal
results that we obtained.

Lemma 3 (Barsi et al. [6]) Given L, d, and k, there are exactly k′ = k
(L ,k) different

beacons (or corona identities) that can be transmitted by the sink when the sensor
starts any awake period. Consider a sensor of type x, 0 ≤ x ≤ k − 1. The beacon
transmitted when the sensor starts its i th awake period is given by |Kx − i L|k =∣∣Kx − i(L , k)|L ′|k′

∣∣
k , where Kx = C|k−1−x |k is the beacon transmitted at time x.

Overall only k′ different beacons can be transmitted by the sink when the sensor
starts its awake periods, independent of how long the training process will be. Such
k′ beacons can be reindexed as |Kx − s(L , k)|k , for 0 ≤ s ≤ k′ − 1.

Obviously, the process is repeated every k′ sleep–awake cycles. At the beginning
of the k′th awake period, the sensor and the sink are in the same reciprocal state as
they were at the beginning of the 0th one, with the only difference that the sensor
has heard the sink at least once. Thus, in at most k′ further sleep–awake cycles, the
sensor can be trained. It follows:

Lemma 4 (Barsi et al. [6]) Given L , d, and k, all the entries of R that the sensor
can fill are set within the first 2k

(L ,k) sleep–awake cycles. Moreover, all the sensors
are trained if and only if d ≥ (L , k).
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Recalling that
∣∣∣ 1

L ′

∣∣∣
k′

denotes the inverse multiplicative of L ′ mod k′, that is, the

smallest integer μ such that |L ′μ|k′ = 1, the following two lemmas determine, for
d = (L , k) and d = |L|k , respectively, exactly in which awake period ic,x a sensor
of type x is awake while the sink transmits a given beacon c.

Lemma 5 (Barsi et al. [6]) Let c be any corona identity and assume d = (L , k).
The sink transmits the beacon c during the ic,x th awake period of a sensor of type

x, where ic,x =
∣∣
∣
⌊ |Kx−c|k

d

⌋ ∣∣
∣ 1

L ′

∣∣
∣
k′

∣∣
∣
k′

, L ′ = L
d , and k′ = k

d .

Lemma 6 (Barsi et al. [6]) Let c be any corona identity and assume d = |L|k . The
sink transmits beacon c during the ic,x th awake period of a sensor of type x, where

ic,x =
⌊ |Kx−c|k

d

⌋
.

Since a sensor belonging to corona c is trained when it has filled both Rc and
Rc−1, it yields:

Lemma 7 (Barsi et al. [6]) Let d = (L , k). A sensor of type x which belongs to
corona c, with c > 0, is trained during the i th awake period where i = ic−1,x , if

ic,x ≤ ic−1,x , or i ≤ ic,x +
∣∣∣ 1

L ′

∣∣∣
k′

, if ic,x > ic−1,x . If c = 0, then i = i0,x .

Lemma 8 (Barsi et al. [6]) Let d = |L|k . A sensor of type x which belongs to
corona c, with c > 0, is trained during the i th awake period where i = ic−1,x , if
ic,x ≤ ic−1,x , or i ≤ ic,x + 1, if ic,x > ic−1,x . If c = 0, then i = i0,x .

From Lemmas 7 and 8, one knows the number of sleep–awake periods required
by any sensor in the network to be trained.

Since the protocol terminates when all the sensors are trained, we measure the
protocol performance by counting the maximum number of transitions, say νmax,
required by any sensor to be trained.

Thus, the worst-case performance for the Flat– protocol is stated as follows:

Theorem 1 (Barsi et al. [6]) Given L, d, and k, if d < (L , k) then there are sensors
that cannot be trained by the Flat– protocol; otherwise all the sensors are trained,
and

1. If (L , k) ≤ d < |L|k , then νmax ≤ k

(L , k)
+
∣∣∣∣

1

L ′

∣∣∣∣
k′

, where k′ = k

(L , k)
and

L ′ = L

(L , k)
;

2. If |L|k ≤ d < k, then νmax ≤
⌊

k

|L|k
⌋
+ 1;

3. If d = k, then νmax = 2.

We now turn to the analysis of the average case performance of the Flat– pro-
tocol, where it is assumed that the type x is a discrete random variable uniformly
distributed in [0, k − 1]. Let N be the total number of sensors, let Nc be the number
of sensors that belong to corona c and, among them, let Nc,x be those of type x ,
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with 0 ≤ c, x ≤ k − 1. Since x is uniformly distributed, Nc,x = Nc

k
and, clearly,

∑k−1
c=0 Nc = N . Letting νavg and ωavg denote the average number of transitions and

the average overall sensor awake time, respectively, one has the following result.

Theorem 2 (Barsi et al. [6]) Given L, d, and k, if d < (L , k) then there are sensors
which cannot be trained by the Flat– protocol; otherwise all the sensors are trained,
and:

1. If (L , k) ≤ d < |L|k , then νavg ≤ k′ + 1

2
+ 1

(L , k)

∣∣∣∣
1

L ′

∣∣∣∣
k′

, where k′ = k

(L , k)

and L ′ = L

(L , k)
;

2. If |L|k ≤ d < k, then νavg ≤
(⌊

k

|L|k
⌋
+ 1

) (
1

2
+ |k||L|k + 1

k

)
− 1

k
;

3. If d = k, then νavg ≤ 1 + 1

k
.

It is worthy to point out that, as shown by Theorems 1 and 2, the performance of
the Flat– protocol depends on the values of k, d, and L . Therefore, it is conceivable
that in mission critical systems these parameters could be tuned before the sensor
deployment in order to guarantee a predefined performance quality.

17.4.2 Improvements

By exploiting two basic observations, some improvements to the Flat– protocol are
proposed below. First of all, notice that as soon as a sensor hears the sink trans-
mission for the first time, it learns from the beacon the sink global time modulo
the sink transmission cycle. Therefore, it can immediately retrieve backward the
beacons which it did not hear and which were transmitted by the sink during its
previous awake periods, setting to 0 the corresponding entries of R. This results in
the so-called Flat protocol. Second, when a sensor hears a beacon c, it knows that
it will also hear all the beacons greater than c, and thus it can immediately set to 1
the entries from Rc up to Rk−1. Similarly, when a sensor sets an entry Rc to 0, it
knows that it cannot hear any beacon smaller than c, and thus it can immediately
set to 0 the entries from Rc−1 down to R0. In contrast to the original protocol, the
sensor now fills entries of R relative to beacons not yet transmitted during its awake
periods. Therefore, it can look ahead to decide whether it is worthy or not to wake
up in the next awake period. If the d entries of R that will be transmitted by the sink
in the next awake period have already been filled, then the sensor can skip its next
awake period, thus saving energy. The sensor repeats the look-ahead process above
until it finds a future awake period whose corresponding d entries are not already
filled. The resulting protocol, called Flat+, leads to the following results:

Theorem 3 (Barsi et al. [6]) Given L, d, and k, if d < (L , k) then there are sensors
which cannot be trained by the Flat+ protocol; otherwise all the sensors are trained,
and
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1. If (L , k) ≤ d < |L|k , then νmax ≤ k

(L , k)
;

2. If |L|k ≤ d < k, then νmax ≤
⌈

k

|L|k
⌉

;

3. If d = k, then νmax = 1.

17.4.3 The Cooperative Protocol

Another interesting approach used to accomplish the training procedure is the so-
called Cooperative protocol (Coop, for short) [33]. The key idea here is to train only
a subset of sensors, uniformly spread over all the coronas composing the network, so
that the time while the sink transmits is reduced. Then, by means of local and cheap
transmissions, the trained sensors propagate the acquired coordinates to the large
number of remaining untrained sensors which share the same coordinates. Finally,
exploiting the periodicity of the awake–sleep cycle, the sensors become trained
independent of their type. So, one further assumption with respect to the model
described in Sect. 17.3 is that during an awake period, sensors can listen to the sink
(as usual) or listen to the surrounding sensors or transmit to the sensor neighbors.
Moreover, a sensor can perform transmissions in two modalities by switching the
transmission range to r = ρ for routing purposes or to r <

ρ
2 for the cooperative

training protocol. If an awake sensor receives more than one message at the same
time, we assume that it correctly receives the message only if all the transmissions
refer to the same message. Otherwise, the sensor hears noise. The rationale behind
the latter assumption comes from a common engineering technique used in today’s
commodities. To boost the communication range, for example, wireless LAN access
points use several antennas connected via hardware that transmit simultaneously.
Not only is the packet received correctly, but also it can be transmitted further. The
same idea has already been adopted to strengthen the sensor radio communication
(see for instance [32]). From now on, we assume d ≥ 2.

The cooperative training consists of three stages. The first stage is deterministic
and it trains sensors independent of the network density, whereas the success of the
other two stages strictly depends on the network density.

From now on, we will assume the awake–sleep period L = k and the corona
width ρ = 1. In the first stage, which starts immediately after the deployment or
the movement of the sink, the Flat− protocol, described in the previous section, is
performed for only k+d−1 time slots (Fig. 17.9). Thus, at the end of the first stage,
a subset of sensors, called seeds, has been trained directly by the sink. Hence, the
localization acquired by the seeds is always correct. Although the seeds in different
coronas have different types, in each corona we have almost the same density of
seeds because there are d − 1 types which are seeds in each corona and the sensors
of the same type are uniformly distributed in the network.

In the second stage, the seed sensors boost the cooperative process. When the
seeds wake up, they broadcast the corona identity just learnt in their transmission
area of range r < ρ/2. The awake untrained sensors are in the receiving mode. If an
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Procedure Sink (k, d);
for t := 0 to k + d − 2 do

transmit the beacon |k − 1 − t |k up to corona C|k−1−t |k ;

Fig. 17.9 The corona training Cooperative protocol for the sink

untrained sensor receives a corona identity from one sensor or concordant corona
identities in the same time slot from more than one sensor, it becomes trained and
starts to broadcast at its turn. In contrast, if an untrained sensor receives different
corona identities because it is in the transmission area of two trained sensors belong-
ing to two different coronas, it hears noise. Such a sensor becomes a white-flag
sensor, and it has to wait the third stage to acquire its localization. The second stage
proceeds for 2k time slots. Note that, at this stage the sink does not participate. In
fact, at this point sensors are completely independent of the sink which might have
been already moving for covering other zones.

The third stage involves all the white-flag sensors and only the trained sensors
that belong to the coronas with even identities. This stage lasts for one awake–sleep
cycle. Specifically, the trained sensors in the coronas with even identities broadcast
their corona identity, while the awake white-flag sensors listen in order to acquire
their localization. Clearly, in this way, a white-flag sensor can only learn an even
corona identity, thus acquiring an approximate localization.

The sensor protocol is shown in Fig. 17.10.

17.4.3.1 Analysis of the Coop Protocol

In order to analyze which sensors become seeds in the first stage in each corona,
let us observe that the sensors of type x receive the same beacons independent of
the corona to which they belong, but they behave differently from one corona to
another. In fact:

Lemma 9 (Navarra et al. [33]) The seed in corona γ , 1 ≤ γ ≤ k−1, is the sensors
of type x = |k − 1 − γ − w|k with w = [0, d − 2], or equivalently:

x ∈ [|k − γ − d + 1|k , |k − 1 − γ |k
]

if |k − γ − d + 1|k ≤ |k − 1 − γ |k , x ∈[|k − γ − d + 1|k, k − 1
] ∪ [0, |k − 1 − γ |k

]
if |k − γ − d + 1|k > |k − 1 − γ |k .

Similarly, the seeds in corona 0 are those with type x = |k − 1 − w|k with w =
[0, d − 1], or equivalently x ∈ [|k − d|k, |k − 1|k].

The sensors enter in their second stage at a global time t ≥ k + d − 1, when the
sink does not broadcast anymore. Specifically, the sensors of type 0 ≤ x ≤ d − 2
enter in the second stage at their third awake period and thus they remain inactive
during their second awake period. Whereas the sensors of type d − 1 ≤ x ≤ k − 1
enter in the second stage at their second awake period.

The second stage lasts 2k time slots, starting from the global time slot k + d − 1.
Recalling that a sensor of type x wakes up for the i th awake period, with i ≥ 1, at
time slot x + (i − 1)L , and that L = k, in the interval t ∈ [k + d − 1, 2k + d − 2],
all the types of sensors enter in the second stage. In fact, at time t , the sensors of
type x = |t |L = |t |k wake up. Thus, during the interval t ∈ [k + d − 1, 2k − 1] the



536 S.K. Das et al.

Procedure Sensor
Input: x, d, L , k, r, j ;

1. case j :
j = 1 :

2. for t := 0 to d − 1 {Initialize}
3. C[t] := −1;
4. trained := white-flag := seed := false;
5. corona := −∞; τ := −1;
6. for t := 0 to d − 1 {First stage}
7. C[t] := listen-sink(γ );
8. if C[t] = 0
9. then trained:= seed := true; corona:= 0;
10. else if (t ≥ 1 and C[t] = ∅ and C[t − 1] = γ )
11. then trained:= seed:=true, corona:= C[t − 1];
12. τ := τ + 1;
13. if x ≥ d − 2
14. then j := 2; set-alarm-clock(τ + L − d);
15. else j := 3; set-alarm-clock(τ + 2L − d);

j = 2, 3 :
16. for i := j to 3 {Second stage}
17. for t := 0 to d − 1
18. if trained
19. then broadcast(corona)
20. else if ¬ white-flag
21. then listen-sensor(corona);
22. if corona �= ∅
23. then corona := compatible(corona);
24. trained := true;
25. if corona =noise then white-flag:=true;
26. τ := τ + 1;
27. if (white-flag or (trained and ¬ seed) or

(seed and x �∈ [d − 1, |2d − 3|k ]))
28. then j := 4; set-alarm-clock (τ + (3 − i)L + L − d);
29. else j := j + 1; set-alarm-clock (τ + L − d);

j = 4 :
30. for t := 0 to d − 1 {Third stage}
31. if trained and |corona|2 = 0
32. then broadcast(corona)
33. else if white-flag
34. then listen-sensor(corona);
35. if corona �= ∅ then trained:=true;
36. τ := τ + 1;
37. set-alarm-clock(τ + L − d);

Fig. 17.10 The corona training protocol for the sensor

sensors of type x ∈ [d − 1, k − 1] wake up because they enter in the second stage
in their second awake period, while during the period t ∈ [2k, 2k + d − 2] those of
type x ∈ [0, d −2] wake up because they enter in the second stage during their third
awake period. Moreover:
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Lemma 10 (Navarr et al. [33]) In the interval t ∈ [k + 2d − 3, 2k + 2d − 3], all the
sensors of the d − 1 types |t −w|k , with w = [0, d − 2], are awake simultaneously.

The cooperative process becomes effective in each corona when all the seeds are
awake and broadcast. Thus, this happens for the first time, by Lemma 9, in corona
γ = |k − 2d + 2|k at time slot k + 2d − 3. Since d ≥ 2, i.e., the seeds are awake
simultaneously for two time slots, the seeds in corona γ = |k − 2d + 2|k are awake
simultaneously and broadcast also at time slot k + 2d − 2 (lines 18–19). At that
time, the sensors of the type |2d − 2|k , which are untrained in corona |k − 2d + 2|k ,
wake up and listening to their seed neighbors, they become trained (lines 22–23).
The new trained sensors start to broadcast for the remaining d −1 time slots of their
awake period, replacing the seed of type |t − d + 1|k = d − 1 that go back to sleep.
This is repeated for k − d time slots up to time 2k + 2d − 3, training all the types of
sensors in corona |k − 2d + 2|k .

The above reasoning can be generalized as follows:

Theorem 4 (Navarr et al. [33]) The cooperative training process is effective during
the time slot k + 2d − 2 + y, with 0 ≤ y ≤ k − 1 in corona γ = |k − 2d + 2 − y|k ,
and in such a corona, all the types of sensors are trained at time 2k +d −2+ y, with
0 ≤ y ≤ k − 1.

Observe that the last corona to be trained is corona |k − 2d + 3|k where the
process lasts from time 2k + 2d − 3 up to 3k + d − 3. Moreover, note that at time
slot 3k + d − 3 the sensors of type d − 2, which entered as last in the second stage,
have just completed their third sleep–awake cycle.

Up to now, it has been assumed that during the second stage each untrained sen-
sor receives concordant and correct corona identities. Nonetheless, since all the sen-
sors of the same type are always awake simultaneously independent of the corona to
which they belong, it may happen that sensors of the same type have learnt different
corona identities in different coronas and broadcast discordant coronas or may have
different status (i.e., seed, untrained, trained) and they can produce errors. Consider,
for example, the sensors of type x = |k − γ − d + 1|k , with 0 ≤ γ ≤ k − 1 during
the second stage. When such sensors wake up, they start to broadcast in corona γ
where they are seed, whereas they listen in corona γ −1 where they are untrained. A
sensor of type x on the border of corona γ − 1 can receive only the corona identity
γ and thus it could acquire a wrong localization. In this case, however, the correct
localization can still be derived by the beacon received in the first stage:

Lemma 11 (Navarr et al. [33]) If a sensor receives the corona identity γ and it
has already heard beacon γ − 1 in the first stage, it learns to belong to corona
γ − 1.

Unfortunately, not always the error can be repaired. Thus, at the end of second
stage, on the border of the coronas there are white-flag sensors as well as trained
sensors whose localization is not correct. However, if the density of the trained
sensors is sufficiently high, mainly white-flags are in the corona borders. During
the third phase, then, the white-flag sensors in the coronas with even identities are
turned into trained sensors, while those in the coronas with odd identities acquire a
corona identity which differs at most ±1 from the correct one.



538 S.K. Das et al.

So far we have not paid attention to the untrained sensors, that is, those sensors
that, during the entire training process, cannot hear the transmissions of the sink
or of any trained sensor. However, by exploiting the density of the network and
stochastic arguments, with high probability, there are no untrained sensors when

N

k
≥ (1 + ε) log

(
N

k

)
k2

r2
(17.1)

for any fixed ε > 0.

17.4.4 Experimental Results

In [33], the Flat and the Coop protocols have been compared with respect to the
quality of the achieved localization and the power consumption per sensor. In the
simulation, each corona has a unit width and N sensors are uniformly distributed
within a circle of radius k, centered at the sink. Moreover, each sensor independently
generates its type x , as an integer, selected at random and uniformly distributed in
the range [0, k − 1].

By varying among the three parameters N , k, and r , we consider two different
settings, as shown in Table 17.1. Moreover, let E(Ns) = O

( N
k

)
be the expected

number of sensors of the same type x ∈ [0, k − 1] and λs = O
(

Nr2

k3

)
be the

number of sensors for each type in a small disk of radius r . Table 17.1 reports also
E(Ns), λs , and log (Ns) for the settings used in the experiments.

Clearly, both the settings simulate massive sensor networks: for example, assum-
ing the corona width ρ = 100 m, there are 0.15 and 0.025 sensors per square meter
in S1 and S2, respectively. At the present state of the technology, small sensors,
supporting communications in a range varying from 10 to 100 m, like TinyNode
584 produced by Shockfish S.A. or T-node developed by SOWNet Technologies
can be used for building such massive networks [1, 12].

The Flat and Coop protocols assume the same parameter values, except that Flat
uses an awake–sleep cycle of length L = k + 1 instead of k. Indeed, when L =
k, Flat cannot complete the training process [6], and thus the smallest value of L
acceptable for Flat has been used.

Concerning the power consumptions, Table 17.2 reports the values, measured in
the field, of a T-node in different operational modes [1] to have a realistic setting.

For each protocol, the maximum pmax (minimum pmin, resp.) power consumed
by each sensor along with the average pavg power, obtained by summing up over

Table 17.1 Experimental settings

N k r E(Ns) λs log (Ns)

S1 700000 12 1
7 58333 8.15 10.97

S2 819200 32 1
4 25600 9.56 10.15
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Table 17.2 Estimate of sensor power consumption in different operational modes with a sensor
transmission range r of 20 m

Sensor mode Power consumption

µC sleep with timer on 60 µW
µC switch on, radio startup 30 mW
µC switch off, radio shutdown 30 mW
µC active, radio idle listening 60 mW
µC active, radio TX 80 mW

all the sensor power consumptions and dividing by the number of sensors in the
experiment, has been measured.

One can note that although Coop and Flat consume overall almost the same
power as shown in Fig. 17.11, the difference between the sensor maximum and
minimum power consumption in the Coop protocol is much less than that measured
for Flat. In other words, the Coop training protocol drains the sensors in a balanced
way, and therefore it works in favor of the network life span.

When k increases, like in Fig. 17.11 scenario S2, the power effectiveness of the
Coop protocol is neat. The power pmax of Coop is smaller than or equal to the pavg
of the Flat protocol for any value of d.

It is worthy to note, however, that the Flat protocol correctly trains all the sensors
while the Coop protocol admits a very small percentage of mistrained sensors.

17.5 Energy Hole Problem

In this section, we analyze the non-uniform sensor distribution strategy from an
energy perspective. Let us recall that we consider the following two terms from [55]:

Definition Balanced energy depletion is attained in the network, when sensors in
all coronas use up their energy simultaneously.

Definition Sub-balanced energy depletion is attained in the network, when sensors
in all coronas except the outmost one exhaust their energy simultaneously.

In the following, we demonstrate that the sub-balanced energy depletion in the
network is possible if the sensors have a non-uniform geographic distribution. Note
that if the minimum density of the network is sufficiently high to satisfy the density
requirements of the Coop protocol, both the localization algorithms presented in the
previous sections work under this assumption.

17.5.1 General Non-uniform Sensor Distribution Strategy

Adding more sensors to the traffic-intensive areas is a natural way to mitigate the
energy hole problem and also a salient feature of the general non-uniform sensor
distribution strategy. The basic idea is that the nearer the corona is to the sink, the
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Fig. 17.11 Power consumption per sensor during the Coop protocol on setting S1 and S2, respec-
tively
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Fig. 17.12 A circular area
consisting of five coronas

higher is its sensor density. Recall that in our network model, sensors belonging to
inner coronas not only transmit data sensed by themselves but also forward data gen-
erated by outer coronas. As a result, these sensors deplete their energy much faster
than their counterparts farther away from the sink. Hence we assign more sensors
to the inner coronas of the network. Different numbers of sensors are deployed in
different coronas, depending on their distance to the sink. Let us assume that sensors
in the corona Ci are distributed with a density of δi , for 0 ≤ i < k. The sensor’s
density increases from the outermost corona Ck−1 to the innermost one C0. From the
viewpoint of the whole network, the nodes are distributed non-uniformly. Therefore,

δ0 > δ2 > δ3 > · · · > δk−1 (17.2)

In Fig. 17.12, darker corona shows higher sensor density.

17.5.2 Energy Depletion Analysis

Let Ni and Ei , respectively, denote the number of sensors in corona Ci and the
energy consumed per unit time by sensors in corona Ci . It is obvious that Ni > N j

and Ei > E j when i < j by non-uniform sensor distribution strategy. Data can be
transmitted to the next inner corona via one hop and to the sink via i hops since we
assume the width of each corona is 1 unit length, equal to the maximum transmission
range of each sensor. We assume that there always exists a shortest path of i hops
starting from itself and ending at the sink for each sensor in Ci , but not necessarily
the same path. We show this afterward, when describing the proposed non-uniform
sensor distribution strategy. Then we can calculate the total energy consumed by
each corona.

Sensors in the outermost corona Ck−1 only need to forward data generated by
themselves according to the above assumptions and network model. Recalling that
sensors are assumed to transmit B bits of data per unit time consuming e1 units of
energy per bit, the energy consumed per unit time by this corona is given by

Ek−1 = Nk−1e1 B
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In contrast, all the sensors in other coronas have to transmit data generated by
themselves as well as data originated from outer coronas. It follows that

Ei = B

⎡

⎣Ni e1 +
k−1∑

j=i+1

N j (e1 + e2)

⎤

⎦ , 1 ≤ i < k − 1

Thus,

Ei =

⎧
⎪⎪⎨

⎪⎪⎩

Nk−1e1 B, i = k − 1

B

[

Ni e1 +
k−1∑

j=i+1
N j (e1 + e2)

]

, 0 ≤ i < k − 1
(17.3)

Ideally, the energy depletion across the network is balanced and the energy effi-
ciency is optimized when all the sensors of the network exhaust their energy at the
same time.

Theorem 5 (Wu et al. [55]) Balanced energy depletion is not achievable in the
model under consideration.

It is easy to understand that this impossibility is rooted in the traffic pattern that
the sensors in the outermost corona Ck−1 only need to transmit their own data, but
the sensors in the corona Ck−2 or other inner coronas need to forward their own data
as well as those from outer coronas.

17.5.3 Sub-balanced Energy Depletion

We show that it is possible to achieve the sub-balanced energy depletion
although it is impossible to attain balanced energy depletion in the network.
In fact,

Theorem 6 (Wu et al. [55]) If the network achieves the sub-balanced energy deple-
tion, then the number of sensors in coronas grows in geometric progression from
the outer coronas to the inner ones, except Ck−1.

Therefore, the sub-balanced energy depletion of the whole network is possible
only if the number of sensors in coronas grows in geometric progression from Ck−2
to C0.

Theorem 7 (Wu et al. [55]) If the number of sensors in coronas increases from
Ck−2 to C0 in geometric progression with common ratio q > 1, and there are
Nk−2/(q−1) sensors in Ck−1, then the network can achieve the sub-balanced energy
depletion.

In this section, armed with the above results, we present a novel non-uniform sen-
sor distribution strategy for achieving sub-balanced energy depletion and validate it
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Fig. 17.13 Reachable area in
Ci of a sensor in Ci+1

Ci+1

Ci

by a distributed shortest path routing algorithm, q-Switch Routing. Moreover, in
order to make easier the discussion of such routing algorithm, we assume that the
sensors are always awake. This is achievable in our model by replacing each routing
node with a group of adjacent sensors with different types, in such a way that when
the sensor in charge of routing goes back to sleep, another awake sensor takes over
the routing duty.

The proposed non-uniform sensor distribution strategy regulates the number of
sensors in different coronas with the aim of achieving the sub-balanced energy
depletion in the network. All the sensors are assumed to have been deployed a priori
from the outermost corona to the innermost one such that the number of sensors in
the coronas satisfies the following constraint:

Ni

Ni+1
=
⎧
⎨

⎩

q, q > 1, 0 ≤ i < k − 2

q − 1, i = k − 2
(17.4)

It is possible that the sensors are assigned in such a way that each sensor in
the corona Ck−1 can communicate directly with (q − 1) different sensors in Ck−2,
and sensors in Ci+1 can communicate directly with q different sensors in Ci , where
0 ≤ i < k−2. In Fig. 17.13, we show that we can deploy corresponding (q−1) or q
sensors in the reachable area3 (the shadow area in the figure) in the next inner corona
for each sensor in Ci , unless it is on the border. The processes can be repeated until
the deployment in C0 is finished. Therefore, shortest paths that start from sensors
in Ci and end at the sink via i hops can be constructed. We do not assign sensors
on the border of any corona, due to the fact that when a sensor is placed there, the
reachable area in the adjacent coronas reduces to a point.

Let Si denote the area of corona Ci . Then the sensors density is given by

δi = Ni

Si
= Ni

π(2i − 1)
(17.5)

Now, the ratio between the sensor densities of two adjacent coronas Ci+1 and Ci is

3 Obviously, q is limited to the maximum number of sensors that can be deployed in the reachable
area. On the one hand, we will see later that the network can achieve very high energy efficiency
even with a small q, e.g., q = 2. On the other hand, the size of a sensor could be insignificant
compared with a real field for deployment. Therefore this restriction is not a concern.
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δi+1

δi
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2i − 1

q(2i + 1)
, q > 1, 0 ≤ i < k − 2

2k − 5

(q − 1)(2k − 3)
, q > 1, i = k − 2

(17.6)

This implies that the ratio is only related to the common ratio (q) of the geometric
progression and the index of the corona.

17.5.4 q-Switch Routing and Comparison with Other Node
Distribution Strategies

We start sketching the q-switch routing algorithm for WSNs used to evaluate the
proposed non-uniform sensor distribution strategy. We call it q-Switch Routing, for
any sensor in the network has q or (q − 1) relay candidates directing to the sink in
the adjacent inner corona. We assume that there is a network initialization process in
which sensors find their downstream relay candidates and record them. Then there
are Nk−1 q-ary trees formed when the network finishes the initialization process. In
order to evenly distribute energy depletion among the relay sensors, the source sen-
sor always selects one relay sensor with maximum residual energy. This can be done
by exchanging messages on the energy status with the relays in the neighborhood.
The source sensor can switch to next relay candidate sequentially because only one
sensor among the q or (q−1) relay candidates has been selected to forward data last
time. After the source sensor chooses the relay sensor, it forwards data of its own and
those from the upstream sensor or so-called parent sensor. For sensors without data
to forward, they just send their own data to the downstream selected relay sensor
or so-called child sensor. The chosen relay sensor will repeat this process until the
data arrive at a sensor in corona C1, then the data will be delivered to the sink.
The pseudo-code of the routing algorithm is presented in Fig. 17.14. Figure 17.15
illustrates part of the constructed q-ary tree and the data forwarding process.

We have performed simulations to compare the proposed strategy with two other
possible node distribution strategies: (i) non-uniform random node distribution: the
number of nodes in each corona is regulated as the proposed one, but nodes are

Procedure q-Switch Routing;
On receiving a DATA_FORWARD_MSG from sensor i

1 j = Select Next Relay(q);
2 if I s Parent (i) = T RU E then
3 Send( j, DATA_FORWARD_MSG(data));
4 else
5 Discard Msg;

On receiving no message
6 j = Select Next Relay(q);
7 Send( j, DATA_FORWARD_MSG(own − data));

Fig. 17.14 The q-Switch routing algorithm
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Fig. 17.15 q-Switch Routing,
q = 3: data traverses from the
root to the leaves of the q-ary
tree and to the sink eventually

deployed randomly instead of being assigned a priori; and (ii) uniform node distri-
bution: nodes can appear at any place with equal probability; different from the two
non-uniform node distribution strategies, the number of nodes in each corona is not
regulated. We deploy eight nodes in the outermost corona when we implement the
two non-uniform node distribution strategies including the proposed one. The num-
ber of nodes in the inner coronas increases in geometric progression with a common
ratio of 2 (q = 2). We have examined the performance in terms of network lifetime,
residual energy ratio, and data delivery ratio with the network radius increasing from
3 to 9.

For the sake of simplicity, we have implemented the routing assuming that the
sensors are always awake. We have respectively implemented two similar algo-
rithms as the q-Switch Routing in the networks with non-uniform random node
distribution and uniform node distribution for the purpose of comparison. The com-
mon basic idea of them is that each node keeps forwarding its data to one of its
neighbors with maximum remaining energy.

Figure 17.16 shows the lifetime of the network using the three strategies. We
see that networks with uniform node distribution strategy and non-uniform random
node distribution strategy decrease with the growth of the network radius, i.e., the
number of coronas, while network with the proposed strategy enjoys quite stable
lifetime. Note that the strategy of non-uniform random node distribution performs
better than that of uniform node distribution, offering some hints on the application
of our theory with less difficulty in real node deployment. The fact that the net-
work lifetime maintains longer and steadier shows better scalability of the proposed
strategy in terms of network lifetime.

Residual energy ratios of networks using the strategies are shown in Fig. 17.17.
We observe that the residual energy ratios of networks with non-uniform random
node distribution and uniform node distribution are over three times greater than that
of network with the proposed non-uniform node distribution. Nevertheless, network
with non-uniform random node distribution performs better than that with uniform
node distribution in most simulations. This also implies the effectiveness of the
proposed strategy.

While the non-uniform node distribution strategy appears to be quite energy
efficient, it incurs some costs. The total number of nodes in the network grows
exponentially with the number of nodes increasing from outer coronas to the inner



546 S.K. Das et al.

3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

Network radius

N
et

w
or

k 
lif

et
im

e 
(in

 M
in

s.
) Nonuniform deterministic

Nonuniform random
Uniform 

Fig. 17.16 Network lifetime of different node distributions

ones in geometric progression. Consequently, the cost of sensor nodes needs to be
reduced significantly in order for this non-uniform node distribution strategy to be
more practical.
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Fig. 17.17 Residual energy ratios of different node distributions



17 Dense, Concentric, and Non-uniform Multi-hop Sensor Networks 547

17.6 Concluding Remarks

In this chapter, we have presented two interesting problems in the field of dense and
random deployed sensor networks. Namely, we have considered the localization
and the energy hole problems in sensor networks deployed in a circular area around
a special node, called sink, which is used upstream for localization purposes and
downstream for gathering sensed data.

The localization problem deals with the requirement in sensor networks to relate
the sensed data with some kind of coordinates of the sensors which accomplished
the measurements. In fact, without such a relation, the sensed data might be com-
pletely useless. For this purpose, we have presented a series of protocols which
provide sensors with coarse-grain coordinate system based on the subdivision of
the sink zone (the circular sensor network) into concentric coronas of equal width
and equiangular sectors centered at the sink. The Flat– protocol is the simplest one
from computational viewpoint because each sensor performs O(1) operations per
time slot. In contrast, Flat+ has the better performance, but it cannot be used if
sensors are not allowed to skip one or more awake periods. In Flat– as well as in its
improvements, we assume an asynchronous model and the sensors never commu-
nicate. Concerning the Cooperative protocol, this is one of the few protocols which
exploits the high density of sensor networks in favor of a fast and cheap training
process. The results presented in this chapter show that the protocols are flexible, in
the sense that their parameters can be properly tuned. For instance, fixing the number
k of coronas, one can decide the optimal values of d and L so as to minimize the
number of sleep/awake transitions and/or the overall awake time per sensor. Con-
versely, one can fix the desired number of sleep/awake transitions and then select
suitable values of d and L .

Concerning the energy hole problem, we have explored the theoretical aspects of
the non-uniform node distribution strategy. We find that although it is impossible to
achieve balanced energy depletion among all the nodes due to the traffic pattern of
WSNs, the sub-balanced energy depletion in the network is possible. We show that
with the proposed non-uniform node distribution strategy, the network can achieve
very high energy efficiency. We formulate the ratio between the node densities of the
adjacent (i + 1)th corona and the i th one by this strategy. We present a new routing
algorithm called q-Switch Routing which is tailored for the proposed non-uniform
node distribution strategy. In conclusion, we have shown how the network density
can offer a solution, compatible with our new localization algorithms, for the sink
energy hole problem, which is ineluctable in our sensor network model.

Other interesting extensions to the presented model concern different shapes for
the deployment area, more sink nodes in the network, and mobility aspects for both
sensors and sink. Determining the “best” path for a mobile sink which collects data
over all the network might be a decisive factor for prolonging the network lifetime
taking into consideration the possibility of varying density. Also considering more
collaborative sink nodes deployed or moving in the network might prove vital for the
network as well. Finally, providing localization when the sensors move is definitely
a challenging problem still open in our model.
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Chapter 18
Prolong the Lifetime of Wireless Sensor
Networks Through Mobility: A General
Optimization Framework

Jun Luo and Liu Xiang

Abstract Though mobility is rarely considered in traditional wireless sensor net-
works (WSNs), actively exploiting mobility to improve the performance of WSNs
has been increasingly recognized as an important aspect of designing WSNs. This
chapter focuses on exploiting mobility to improve the network lifetime of a WSN.
We present a general optimization framework that is able to capture several aspects
of maximizing network lifetime (MNL) involving mobile entities. Based on this
framework, we conduct an in-depth analysis on each of these aspects and also
describe algorithms that can be used to solve the resulting optimization prob-
lems. We also present certain numerical results where engineering insights can be
acquired.

18.1 Mobile Elements in Wireless Sensor Networks:
Stir Up the Pond

Traditionally, mainstream research envisioned wireless sensor networks (WSNs) as
an avatar of static multi-hop wireless networks [1]. Although the mobility issues
were present even from the early stage of the WSN-related investigations (e.g., [27]),
those issues failed to attract a lot of attention until very recently. The reason is
twofold. On one hand, it is much more difficult, from both theoretical and practical
point of views, to deal with networks with mobile entities. On the other hand, we
only recently realized that we could actively utilize mobility rather than having
to passively accept its inevitable presence. In this chapter, we will focus on one
of the active applications of mobility to improve an important aspect of network
performance — lifetime. However, instead of directly addressing the main topic, we
will start with a brief survey of various aspects of WSNs that are concerned with
mobility, which should provide the readers with a better technological context in
understanding the main topic.
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Typically, mobility gets involved in WSNs in two ways: either passively or
actively. In the former case, mobility comes as input to certain system design aspects
of WSNs, and a certain design has to cope with the negative effects (e.g., unreliable
communication channels and high cost of route maintenance) brought by mobility.
Typical instances of this case exist where either sensor nodes1 or sinks2 need to
move according to the application requirements: for example, a sensor node or a
sink may be attached to a tactic unit in a battle field [16, 37], or a sink is someone’s
PDA that helps him/her to navigate within a sensor field [20]. Another approach
(e.g., [17]) exploits the anyway present mobility as an efficient replacement for con-
nectivity and data propagation redundancy. In the latter case, mobility is actively
introduced to a network by system designers, aiming at improving certain perfor-
mance aspects of the original design that consists of only static network compo-
nents. Here, both theoreticians and practitioners are trying to make the best use of
mobility while still coping with its side-effects. Typical performance aspects that
may benefit from the introduction of mobile entities are load balancing/lifetime
maximization [7, 21, 22, 24, 30, 32, 35, 36], buffer overflow prevention [15, 33],
coverage enhancement [34], and high fidelity data collection [3].

Although many performance aspects of WSNs may benefit from mobility, the
lifetime issue seems to have attracted the majority of attention and contributions.
Therefore, we focus on the issue of prolonging network lifetime using mobility
in this chapter. As shown in Fig. 18.1, the traffic load within a WSN is highly
unbalanced among nodes that have different distances from the sink. Whereas no
routing strategy may alleviate such an imbalance, actively moving certain network
entities may further balance the load and hence improve the lifetime. Basically,
two approaches, namely fast mobility and slow mobility, are used to exploit entity
(sink or node) mobility to improve network lifetime. They are distinguished by the
relationship between the moving speed of an entity and the tolerable delay of the
data delivery. In the former case, an entity (typically a sink) can transport data with
its mechanical movements if its speed is sufficiently high so that the mechanical
data transportation yields a tolerable data delivery delay. In this case, nodes may
be totally or partially spared from the traffic forwarding load and can hence save
their energy. We term this approach fast mobility approach, as the entity should
move at a sufficiently high speed. In the latter case, moving an entity, even very
infrequently (say once a day or week), may still benefit the network lifetime, thanks
to the distribution of the role of bottleneck nodes within the entire network. We
denote this approach as slow mobility, because the moving speed of a mobile entity
is too low to be used for transporting data within a tolerable delay (but it barely
affects the delay due to the way it is used).

The general reason that mobility, no matter fast or slow, can improve network
lifetime lies in the fact that mobility increases the dimension (thus the degree of
freedom) of the problem. This follows the general principle that optimizing an

1 In this chapter, the words sensor node and node are used interchangeably.
2 These are the entities that collect data from WSNs; sometimes they are also termed base stations.
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Fig. 18.1 The unbalanced traffic load in a WSN due to the converging traffic pattern that accumu-
lates traffic toward the “last hop” nodes

objective in a high-dimension space always leads to a result no worse than what
can be achieved in a subspace of reduced dimension. However, solving problems in
high-dimension space incurs a higher complexity. In the remainder of this chapter,
we will discuss a general optimization framework that can be used to model and
formulate such problems, and we will highlight the solution techniques that are
used.

Under the slow mobility regime, the mobility may take a discrete form: the
movement trace consists of several anchor points between which the mobile entities
move and at which they pause. Consequently, data packets have to be carried from
their origins to the sinks through multi-hop routing. In Sects. 18.2 and 18.3, we
discuss the approach that makes use of the slow sink mobility to balance the traffic
load within a WSN and hence to improve the network lifetime, and we introduce
a general optimization framework to model, formulate, and solve the problem. The
approach considered in Sect. 18.2 aims at obtaining or approximating the optimal
movement traces of multiple mobile sinks, but the anchor points that constitute the
traces can only be chosen from a predefined set of locations. The extension reported
in Sect. 18.3 takes one step further by relaxing the location constraint: should the
algorithm in Sect. 18.2 obtain an optimal solution, an optimal unconstrained trace
could be obtained exactly or be approximated to an arbitrarily small granularity, at
a cost of solving many instances of the problem addressed in Sect. 18.2.

In Sect. 18.4, we present an approach that extends the general framework dis-
cussed in Sect. 18.2 to a distinct direction. This approach, though still categorized
as a slow mobility approach, chooses to move certain powerful (in terms of energy
reserve) nodes rather than sinks. The underlying rationale is to use these powerful
(mobile) nodes to replace certain highly loaded (static) nodes from time to time,
which could substantially reduce the energy consumption of those static nodes and
hence prolong the network lifetime. Although it has been shown that this mobile
node approach is in general inferior to the mobile sink approaches discussed in
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Sects. 18.2 and 18.3, the proposal is still meaningful because moving sink(s) might
not always be feasible. Also, as shown by our numerical results in Sect. 18.4.3,
the performance of this approach can be comparable to that of the mobile sink
approach.

Under the fast mobility regime, entities may move fast enough to deliver data
with a tolerable delay, WSNs can hence take advantage of mobility capacity [14].
We term this approach mobile relay, although the mobile entities are the sinks,
because the mobile sink, instead of only receiving multi-hop transmissions, may
“pick up” data from nodes (through one-hop transmissions) and transport the data
with mechanical movements. In Sect. 18.5, we first extend our framework to show
the complexity of finding an optimal tour for the mobile relay, and then we will
introduce a possible simplification of the problem along with the approximation
algorithms designed for a single mobile relay.

Although the algorithms we discuss are centralized, they serve as benchmarks or
guidance for distributed implementations (e.g., [7, 24]). The intention of this chapter
is to give an in-depth treatment on the issue of using mobility to prolong network
lifetime from the theoretical perspective, so we do not claim any thoroughness in
surveying the vast literature on the mobility-related issues in WSNs; such literature
is too vast even for this specific topic.

18.2 Balancing Traffic Load with Mobile Sinks: The Case
of Constrained Mobility

As shown in Fig. 18.1, it is the converging traffic pattern of WSNs that leads to
the unbalanced traffic load within a network. Consequently, simply manipulating
the routing protocols would not fully address the lifetime issue. Fortunately, recent
proposals (e.g., [11, 21]) suggest that moving the sinks could distribute the role
of bottleneck nodes (those close the sinks) over time and thus even out the load,
as illustrated in Fig. 18.2. To support the feasibility of such an approach, a simple
implementation is also reported later [23]. In this section, we are aiming at develop-
ing an optimization framework to analyze the problem and also a solution technique
to solve the optimization problem. In addition, we are making this framework suffi-
ciently general such that we can extend it in different directions later on.

18.2.1 Network Model and Problem Formulation

For a WSN, we use set N : |N | = n to represent all the sensor nodes and set
S : |S| = m<n for the sinks. The former set is static and it determines the basic
topology of the network, while the latter changes its layout occasionally so as to col-
lect data and to balance the traffic load. We allow the sinks to choose their locations
only within a finite set V . We denote by on-graph mobility the case V = N , and by
off-graph mobility the case V ⊃ N . There is a cost assignment c : V × V → R

+,
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Day 3Day 2Day 1

Fig. 18.2 Using a mobile sink to balance the traffic load within a WSN. The star represents the
sink, and nodes with a darker color are the bottleneck nodes. Note that the mobility is slow, as the
sink may change it location very infrequently

such that a link (i, j) exists (or ∃(i, j) ∈ E) if and only if (1) i ∈ N , (2) j ∈ N or
j is a sink, and (3) the transmission energy3 eT

i of node i is no less than c(i, j). All
these allow us to model the WSN as a digraph G = (V, E). We assume that wireless
communication is the dominating energy-consuming factor and hence omit other
energy consuming functions such as sensing. We emphasize the crucial behaviors of
mobile sinks in our investigation: each sink travels among a set of locations chosen
within V and stays with each one of them to collect data from the whole WSN for
a relatively long time, which makes the traveling time negligible. When co-located
with a node i ∈ N , the sink, apart from collecting data from other nodes, inherits
all the energy-consuming functions of the co-located node.

Initialized with an energy reserve Ei for each node i ∈ N , the network is said to
be “dead” once some node runs out of battery. In other words, the network lifetime
T is defined as the time when the first node dies [6]. Taking into account the fact
that sinks change their locations from time to time, we define an epoch as a time
duration within which no sink changes its position. Thus T can be represented by
the summation of time duration of each epoch tk . In formulating the maximizing
network lifetime (MNL) problem, we consider the constraints related to V and S
separately: each node i ∈ V is associated with a flow conservation and an energy
conservation, while each sink s ∈ S is constrained by its location choices. The two
sets of constraints are coupled by an indicator matrix

[
δk

is

]
where δk

is = 1 if sink
s is co-located with node i ∈ V during the kth epoch and δk

is = 0 otherwise. We
formally present the mixed-integer nonlinear programming of MNL as below, and
the detailed notations can be found in Table 18.1.

3 The physical features of the radio of node i are usually specified by a tuple (Pi , R, μ); here
Pi is the transmission power, R is the data rate, μ is the threshold (specified by the required bit
error rate (BER) of a given modulation scheme that produces the rate R) such that a link (i, j)
may operate on rate R iff Pi · ηi, j ≥ μ, where ηi, j represents the fading, shadowing, and path
loss effects between nodes i and j . Our model can be considered as a more generalized form of

the aforementioned model, as eT
i = Pi

R
≥ μ

Rηi, j
= c(i, j) is indeed the criterion to indicate the

existence of link (i, j). Note that, under our model, eT
i may have a unit of, for example, Joules/Bit.
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Table 18.1 Notations used through out this section

Notations of The Network

N The set of sensor nodes in the WSN
n = |N |, the number of sensor nodes in the WSN
S The set of sinks in the WSN
m = |S|, the number of sinks in the WSN
V ⊃ N , the potential locations of the mobile sinks
E The set of all feasible wireless links
c Cost assignment that defines feasible links
T Network lifetime
T̂ Maximum network lifetime
tk The duration of the kth epoch

Notations of Sensor Nodes

Ei Initial energy reserve of node i
eT

i Energy consumption for node i to transmit a unit of data
eR Energy consumption for any node to receive a unit of data
λi Information generation rate of node i
r k

i j Data rate from node i to node j during the kth epoch
rk

i Data rate drained out of the WSN from node i during the kth epoch
qk

i j Quantity of data from node i to node j during the kth epoch
qk

is Quantity of data from node i to sink s during the kth epoch
Pk

is The set of paths from node i to sink s during the kth epoch
Pk

i The set of paths going through node i during the kth epoch

Notations of Sinks

Lk ⊂ V , the set of sink locations during the kth epoch
δk

is Indicator for the location of sink s during the kth epoch
slk = [δk

is

]
i∈V,s∈S : the sink layout during the kth epoch

maximize T =
∑

k

tk (18.1)

subject to
∑

(i, j),( j,i)∈E

(
rk

i j − rk
ji

)
+ rk

i δ
k
is ≥ λi ∀i, k (18.2)

∑

k:δk
is �=1

⎡

⎣
∑

(i, j),( j,i)∈E

(
rk

i j e
T
i + rk

ji e
R
)
⎤

⎦ tk ≤ Ei ∀i (18.3)

∑

s∈S
δk

is ≤ 1 ∀i, k (18.4)

∑

i∈N

∑

s∈S
δk

is = m ∀k (18.5)

tk, rk
i j , rk

i ≥ 0 ∀i, j, s, k (18.6)

δk
is ∈ {0, 1} ∀i, s, k (18.7)
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By this formulation, we implicitly assume that the data rate between any two
nodes i and j , rk

i j , is feasible under the corresponding link capacity; otherwise, we
can always make it feasible by adjusting the data generation rate vector Λ = [λi ].
Note that the data can be drained out from node or location i only if a sink s happens
to be there, i.e., δk

is = 1; otherwise that draining rate equals zero. We also assume
that all nodes use an identical receiving power eR, whereas the transmitting power eT

i
is set by a node i according to, for example, certain topology control mechanisms
[18, 19]. Therefore, transmission and reception together contribute to the energy
consumption of a node, and the energy consumed by other activities (e.g., data
sensing) is considered as negligible. Finally, as a sink inherits the functions of a
co-located node, we do not count the energy consumption of that node during the
epoch when there is a sink co-located with it. We denote this phenomenon substitu-
tion effect, and we will discuss it in detail later on.

In the remainder of this section, we will first analyze the complexity of MNL
and derive a duality theory to characterize the optimal solution of the problem. We
will then use a simplified version of MNL to motivate a polynomial-time algorithm.
Finally, we show that the polynomial-time algorithm can be used to approximate
MNL with a provable ratio.

18.2.2 Complexity Analysis of MNL

Merging the explicit sink location constraints (18.4) and (18.5) into the conservation
constraints for sensor nodes, we can reformulate MNL into the Arc-Flow form:

maximize T =
∑

k

tk (18.8)

subject to
∑

(i, j),( j,i)∈E

(
qk

i j − qk
ji

)
≥ λi tk ∀k, i /∈ Lk (18.9)

∑

k:i /∈Lk

⎡

⎣
∑

(i, j),( j,i)∈E

(
qk

i j e
T
i + qk

ji e
R
)
⎤

⎦ ≤ Ei ∀i (18.10)

tk, qk
i j ≥ 0 ∀i, j, k (18.11)

where qk
i j = rk

i j tk represents the amount of data going from node i to node j during
the kth epoch, and Lk ⊂ V indicates the set of sink locations during that period.

This seemingly simple formulation hides the actual complexity of MNL: There
could be a tremendous number of possible Lk , because, to place m sinks on |V| pos-
sible positions, we have

(|V |
m

)
choices of Lk , which means the numbers of variables

and constraints of MNL problem are both exponential in n. This motivates us to
formally evaluate the complexity of MNL in the following. Let us reformulate the
MNL problem into a Path-Flow form:
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maximize T =
∑

k

tk (18.12)

subject to
∑

s

∑

p∈Pk
is

f (p) ≥ λi tk ∀k, i /∈ Lk (18.13)

∑

k:i /∈Lk

⎡

⎢
⎣
∑

p∈Pk
i

f (p)
(

eT
i + Ip/∈Pk

is ,∀s · eR
)
⎤

⎥
⎦ ≤ Ei ∀i (18.14)

tk, f (p) ≥ 0 ∀k, p (18.15)

where IA is the indicator function of event A, p is a path between a node and a
sink, and f (p) is the flow going through that path. Furthermore, we denote by Pk

is
the path set from node i to sink s and by Pk

i the set of paths going through node i ,
both in the kth epoch. Note that the data originated at a node may split into several
fractions and flow to different sinks via various paths simultaneously, according to
the multi-path formulation of the routing strategy. Since the primal formulation of
MNL (18.13) and (18.14) is a linear program, the strong duality holds and hence we
could instead investigate the dual problem of MNL shown as follows.

minimize G(w) =
∑

i

Eiw(i) (18.16)

subject to
∑

i

λi W (i, k) ≥ 1 ∀k (18.17)

∑

j∈p∈Pk
is , j /∈Lk

w( j)
(

eT
j + I j �=i · eR

)
− W (i, k) ≥ 0 ∀i, k, s, p (18.18)

w(i),W (i, k) ≥ 0 ∀i, k (18.19)

where the w(i) is the weight assigned to node i , representing the marginal cost
of using an additional unit energy of node i ; and W (i, k) is the weight of a com-
modity, i.e., data flow going from node i to all possible destination sinks during
epoch k; it indicates the marginal cost of rejecting a unit demand of the commodity.
We can interpret the dual problem as follows: given the optimal solution T̂ of the
primal, if there existed a solution T ′ longer than T̂ , the benefit from the prolonged
time period T ′ − T̂ would not cover the cost of maintaining the network for that
time period, as either performing the data routing (18.18) or not (18.17) would at
least offset the benefit. As a result, the dual formulation implies that such T ′ should
not exist.

As the dual objective is to minimize G(w), implying that w(i) is preferred to
be as small as possible. However, we cannot make it as small as we want since it
is bounded in (18.18) by W (i, k), which is in turn constrained in (18.17). Thus we
conduct the variable elimination by plugging (18.18) into (18.17). For an arbitrary
vector w = [w(i)], the overall cost of rejecting a demand of the commodity from
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node i to any sink s, according to (18.18), can at most be the minimum transmission
cost from i to the destination sinks. Therefore, we set

W (i, k) =
∑

j∈min
{

p|p∈Pk
is ,s∈S

}
, j /∈Lk

w( j)
(

eT
j + I j �=i · eR

)
(18.20)

Using (18.20) to eliminate W (i, k) in (18.18), we get the combined new constraint
as

∑

i

λi

⎛

⎜
⎝

∑

j∈min
{

p|p∈Pk
is ,s∈S

}
, j /∈Lk

w( j)
(

eT
j + I j �=i · eR

)
⎞

⎟
⎠ ≥ 1 ∀k (18.21)

Actually, an arbitrary vector w may violate (18.21) and in turn (18.17) and hence
be infeasible. But if we can find the most violated constraint and scale up w accord-
ingly, we are always able to turn it into a feasible solution. More specifically, sup-
pose there is an oracle ρ(w), which is the minimum value of the LHS of (18.21)
over k,

ρ(w) = min
k

⎡

⎢
⎣
∑

i

λi

⎛

⎜
⎝

∑

j∈min
{

p|p∈Pk
is ,s∈S

}
, j /∈Lk

w( j)
(

eT
j + I j �=i · eR

)
⎞

⎟
⎠

⎤

⎥
⎦ (18.22)

then testing ρ(w)<1 or not will suggest the feasibility of w. This is called sep-
aration oracle in the terminology of linear programming [26]. If ρ(w)<1, we
can scale up w and W (i, k) by ρ−1(w) to make them feasible under the con-
straints. As a result, we transform the dual problem of MNL into an equivalent

one, which is to find a vector w to minimize
G(w)
ρ(w)

. Unfortunately, the oracle is

not easy to compute; we hereby show it is actually an NP-complete problem for
on-graph mobility (N = V), which implies that it is NP-hard for off-graph mobility

(N ⊂ V). Let K = |S| = m, ω(i) = λi , 	( j) = w( j)
(

eT
j + I j �=i · eR

)
, and

d(i) = ∑
j∈min

{
p|p∈Pk

is ,s∈S
}
, j /∈Lk

	( j), then the separation oracle is equivalent to
the following decision problem:

INSTANCE: A graph G = (N , E), a weight assignment ω(i) : N → R
+
0 , a

length assignment 	(i) : N → R
+
0 , positive integer K ≤ |N |, and positive

real number B.

QUESTION: Is there a set P of K points on G such that, if d(i) is the length of
the shortest path from i to the closest point in P , then

∑
i ω(i) · d(i) ≤ B?
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This is known as the p-median problem and is NP-complete [12]. As stated in [26]
(Theorem 3), a linear programming problem is NP-hard if the corresponding sepa-
ration oracle problem is NP-complete, hence we conclude that:

Proposition 1 The MNL problem is NP-hard.

18.2.3 Duality Theory and TMNTM

Before developing the algorithm to solve MNL, we will first harvest the benefit
coming with the primal–dual interpretation provided in Sect. 18.2.2: it helps us
to build the related duality theory, and it also allows us to address the TMNTM
decision problem stated as follows:

TO MOVE OR NOT TO MOVE (TMNTM): Is there a sink layout schedule
{(slk, tk)} (slk is a vector of

[
δk

is

]
) such that the lifetime T = ∑

k tk is
longer than what is achieved by any fixed layout sl?

This was never fully addressed in the previous work such as [11, 21].
We recapitulate the observation that we make on the dual problem of MNL in the

following theorem:

Theorem 1 (MAX-LIFETIME MIN-POTENTIAL RATIO THEOREM) Given the life-
time maximization problem formulated in (18.12)–(18.15), the optimal lifetime T̂ is
such that

T̂ = min
w

[
G(w)
ρ(w)

]

where G(w) = ∑
i Eiw(i) is a linear combination of the energy reserves of all

nodes with coefficients w(i), and

ρ(w) ≡ min
k
ρk(w) = min

k

⎡

⎢
⎣
∑

i

λi

⎛

⎜
⎝

∑

j∈min
{

p|p∈Pk
is ,s∈S

}
, j /∈Lk

w( j)
(

eT
j + I j �=i · eR

)
⎞

⎟
⎠

⎤

⎥
⎦

is the minimum “potential” (computed as the sum of the minimum “cost,” given
w(i), to route λi from node i to one of the m centers) achieved among all possible
center layouts (or sink layouts) {Lk}.
Likewise, for a fixed scheduling (or static sinks), the analogous theorem (first given
in [29] and improved in [13]) is cited below:

Theorem 2 (MAX-FLOW MIN-DISTANCE RATIO THEOREM) Given the maximiz-
ing lifetime problem formulated in (18.12)–(18.15) but with a fixed schedule con-
sisting of only one element (sl, t), the optimal lifetime T̂sl is such that
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T̂sl = min
w

[
G(w)
ρk(w)

]

where G(w) and ρk(w) are defined in the previous theorem, and the center layout
is defined by sl.

One can easily see that Theorem 1 is a non-trivial extension of Theorem 2, which
is in turn extended from the MAX-FLOW MIN-CUT theorem of Ford and Fulkerson
[10] for a single s-t flow. Equipped with these two theorems, we are now ready to
answer TMNTM.

Proposition 2 For on-graph mobility, T̂ > T̂ f s , where T̂ f s = maxsl T̂sl . Literally,
the answer to the TMNTM decision problem is positive.

Proof Assume that T̂sl > 0 is the optimal solution for a certain sl, and w∗
sl is

the corresponding weight assignment. By plugging w∗
sl into the dual problem of

MNL (18.16-18.19), we can always identify a violated constraint with the oracle
that computes mink ρk

(
w∗

sl

)
. For instance, assume that one of the sinks is co-located

with i and its most loaded neighbor is j . We know that (18.14) is active for j ;
otherwise it contradicts the optimality of T̂sl . Applying complementary slackness,
we have ρi

(
w∗

sl

) = 1 (by T̂sl > 0), w∗
sl(i) = 0 (by the fact that (18.14) is inactive

for i due to the substitution effect defined in Sect. 18.2.1), and w∗
sl( j) > 0 (by

the fact that (18.14) is active for j and j is the bottleneck of all the paths passing
through it). The potential ρ j

(
w∗

sl

)
is bound to be less than 1, because, by moving the

sink from i to j , we shorten the length of some paths by w∗
sl( j) without increasing

the length of other paths going through i . Therefore, we identify that w∗
sl , as the

dual solution, is infeasible. Consequently, according to the principle of certificate of
optimality, we know that T̂sl , as the primal solution for the fixed schedule case, is
not optimal for the MNL problem and thus T̂ > T̂sl . Let T̂ f s = maxsl T̂sl , we also
have T̂ > T̂ f s . Q.E.D.

Note that this proof implicitly assumes that the minimum potential mink ρk
(
w∗

sl

)

and the maximum lifetime T̂sl for a fixed sink layout is computable. As we show in
Sect. 18.2.2, however, the separation oracle problem is NP-complete. Also, results
in [4] suggest that computing T̂sl is NP-hard. Therefore, Proposition 2 only gives a
qualitative comparison rather than a quantitative one.

Interestingly, the proof of Proposition 2 stresses the importance of a hidden fac-
tor behind the evident load balancing effect, namely the substitution effect. Recall
from the model description in Sect. 18.2.1, we assume that whenever a sink is colo-
cated with a node, it inherits all the functions of that node, i.e., it takes the place
of that node in the network and hence saves the energy consumption for that node.
While the load balancing effect is the driving force behind a significant lifetime
improvement, the substitution effect, as presented in the above proof, makes moving
sinks superior to keeping them static if the sinks are constrained to be on-graph. In
Sect. 18.4, we will discuss an extension that fully exerts the substitution effect to
improve lifetime.

It is also worth noting that Proposition 2 holds only for on-graph mobility. In
Figure 18.3, we give two examples showing that a static sink layout is already
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(a) (b)

Fig. 18.3 Two examples to show that Proposition 2 might not hold if sink locations can be off-
graph. The solid lines represent the original links of the ring networks, and the dash lines represent
the new links introduced by an off-graph sink (located at the optimal position). It is straightforward
to see that sink mobility does not help in these cases: (a) 4-node ring and (b) 6-node ring

the optimal choice for certain network topologies. Fortunately, we might not have
such pathological scenarios in practice. Even if such a case occurs, the optimal (off-
graph) sink location might not be available (we refer to [23] for a practical example
we have experienced). All the examples we give in Sect. 18.2.5 confirm that moving
the sink, no matter on-graph or off-graph, is always superior to keeping it static.

18.2.4 A Primal–Dual Algorithm to Solve MNL

It is straightforward to see that, if there is only one mobile sink, the MNL problem is
solvable in polynomial time, because the separation oracle is a P problem. However,
directly solving it is practically ineffective on all but very small-scale problems
(similar to the case of the concurrent flow problem [29]). In addition, common
techniques such as the interior point or simplex algorithms cannot be extended to
address the MNL problem involving multiple mobile sinks. In Sect. 18.2.4.1, we
will discuss a primal–dual algorithm that solves the MNL problem with a single
mobile sink efficiently. Moreover, we will extend the algorithm to approximate the
solution of the general MNL in Sect. 18.2.4.2.

18.2.4.1 MNL with a Single Mobile Sink (MNL–SMS)

Differing from the usual network flow problems that involve multiple s-t flows,
MNL–SMS combines two types of problems, namely maximum concurrent flow
problem and maximum multicommodity flow problem. It is a maximum concurrent
flow problem because for each demand λi associated with node i , we want to find
the maximum multiplier T . Meanwhile it is also a maximum multicommodity flow
problem, as for each demand tk , our objective is to maximize

∑
k tk without caring

the particular value of individual tk . Therefore, we need to design a new algorithm
to address it, and our design is based on the proposal of Garg and Könemann [13].

For the case of single mobile sink, S includes only one sink referred to as s.
Clearly, s can choose its location from those indicated by V , implying that Lk has
|V| possibilities. Therefore, the dimension of [tk] is at most |V|, and thus we further
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simplify the problem by assuming that s is coincident with location k ∈ V during
the kth epoch. Due to the symmetry of the MNL–SMS problem, the order of the
sink locations does not affect the optimal solution. In other words, this assumption
leads to the solution applicable to a general case without location ordering. We omit
the formulation of the MNL–SMS problem, as it is indeed the same as that of the
general MNL case (18.12)–(18.19) under the condition that Lk = {k}. Similarly, let

W (i, k) =∑ j∈min
{

p|p∈Pk
ik

}
, j �=k w( j)

(
eT

j + I j �=i · eR
)

, we get the separation oracle

for MNL–SMS as follows:

ρ(w) = min
k
ρk(w) = min

k

⎡

⎢
⎣
∑

i

λi

⎛

⎜
⎝

∑

j∈min
{

p|p∈Pk
ik

}
, j �=k

w( j)
(

eT
j + I j �=i · eR

)
⎞

⎟
⎠

⎤

⎥
⎦

(18.23)
Here the oracle computes mink ρk(w) by first using the Floyd–Warshall algorithm
[9] to compute all-pairs shortest path with a time complexity Θ(n3). Paths ended
at a common node are then clustered into groups, and the algorithm searches for
the best “median” k that achieves mink ρk(w). As the complexity of clustering
and searching is negligible compared to the Floyd–Warshall algorithm, this ora-
cle has a complexity of Θ(n3). Now, we are ready to derive the algorithm for
solving the MNL–SMS problem. The pseudo-code is provided, where superscript
+ indicates the updated value, δ = (1 + ε)[(1 + ε)n]−1/ε, and ε is the required
error bound.

Algorithm 1 MNL_ALGO
Input: N , E,Λ = [λi ],E = [Ei ], e = [eT

i

]
, eR, and initial weight assignment w = [δ/Ei ],∀i ∈

N
1: repeat
2: Identify the most violated element by the oracle: k+ = arg mink ρk(w);
3: Increase the kth epoch by 1 unit: t+k = tk + 1;
4: Follow the shortest path p+ik (suggested by the oracle) from each node i to the sink, route

λi units of commodity along that paths, and update the flow through node j ∈ p+ik :
f +( j) = f ( j)+ λi ;

5: Update the weight of node i : w+(i) = w(i)
(
1 + ε f +(i)

(
eT

i + I j �=i · eR
)
/Ei
)
;

6: Calculate the dual objective:
G(w+) =∑i Eiw

+(i) = G(w)+ ε
∑

i w(i) f +(i)
(
eR

i + eT
) = G(w)+ ε · ρ(w);

7: until G(w+) ≥ 1

8: return maximum network lifetime: T̃ = log−1
1+ε

1 + ε

δ

∑
k t+k

The algorithm proceeds in iterations. In each iteration, the oracle identifies k+
that gives the minimum “potential,” and it also suggests the paths from each node to
that sink. Then the weight assignments w, time schedule tk , flow assignments [ f (i)],
and dual objective G(w) are all updated accordingly; they will serve as the input to
the next round of iteration. The algorithm runs until the dual objective exceeds the
threshold 1. We show the correctness and the time complexity of this algorithm by
the following proposition.
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Proposition 3 Given
∑

i λi ≤ Ei/
(
eT

i + I j �=i · eR
)
,∀i ,4 MNL_ALGO computes a

(1−ε)−2-approximation to the MNL–SMS problem in timeΘ(n log n)·Toracle, where
Toracle is the time complexity for the oracle to compute mink ρk(w).

Proof Let the dual optimal value be β. According to the 6th step, we have at the
end of each iteration

G(w+) ≤ G(w)(1 + ε/β) ≤ G(w)eε/β

where
G(w)
ρ(w)

≥ β accounts for the first inequality. Suppose that G(w+) ≥ 1 at the

end of the t th iteration and given initially G(w) = nδ, we have

1 ≤ G(w+) ≤ nδetε/β ⇒ β

t
≤ ε

ln(nδ)−1

The ratio between the dual and primal solutions is given by

γ = β

T̃
= β

t
log1+ε

1 + ε

δ
≤
ε log1+ε

1 + ε

δ

ln(nδ)−1
= ε

ln(1 + ε)
·

ln
1 + ε

δ

ln(nδ)−1

As δ = (1 + ε)[(1 + ε)n]−1/ε, we have

γ ≤ ε

(1 − ε) ln(1 + ε)
≤ ε

(1 − ε)(ε − ε2/2)
<(1 − ε)−2

As the maximal lifetime T̂ = β due to strong duality, we have T̃ = t ·
log−1

1+ε
1 + ε

δ
> (1 − ε)2T̂ ≥ (1 − 2ε)T̂ . Q.E.D.

We only sketch the proof here but omit the detailed proof for feasibility and time
complexity. Interested readers are referred to [22] for details.

18.2.4.2 Approximation Algorithm for General MNL

As we pointed out in Sect. 18.2.2, if we had an oracle to solve the p-median prob-
lem, then we would be able to solve the general MNL problem under the on-graph
mobility scenario, because the dual LP (18.17) and (18.18) serves as a polynomial-
time reduction from the separation oracle (a p-median problem) to the general MNL
problem. For the off-graph mobility, we could extend the graph G by assigning zero

4 This assumption is reasonable because each sensor node should be equipped with an energy
source that is at least enough for the node to forward data for all nodes in one time unit. Otherwise
if a node i : Ei/

(
eT

i + I j �=i · eR
)
<
∑

i λi is deployed close to a static sink (assuming a randomly
deployed WSN), the network lifetime can be even less than one time unit. In addition, it can be
proved that an approximation ratio of (1 − ε)−3 is still achievable without this assumption.



18 Maximizing Network Lifetime Using Mobility 567

weight to every vertex in V\N and connecting it to every other vertex through a
directed edge. This extension allows us to run the p-median solver on G without
being interfered by the vertices representing those potential off-graph sink locations.

However, unless P = NP, no efficient p-median solver would exist. Although
there exist approximation algorithms for the p-median problem, there is no guaran-
tee that the dual LP may accommodate an approximate oracle. Fortunately, the algo-
rithm we proposed in Sect. 18.2.4.1, MNL_ALGO, does accommodate an approx-
imate oracle, with a slight change in the 2nd step as Lk+ : k+ = arg mink ρk(w).
Therefore, combining any PTAS for p-median with MNL_ALGO will yield a PTAS
for MNL, as shown by the following proposition.

Proposition 4 If the p-median oracle can be approximated within a ratio of α > 1
(i.e., the oracle has an α-approximation), then MNL_ALGO along with this oracle
provides an α · (1 − ε)−2-approximation to the general MNL problem.

Proof The main difference between MNL and MNL–SMS is that, instead of having
an oracle that returns the exact ρ(w), we only have an α-approximation of the oracle.
It means that the oracle always returns ρ̃(w) ≤ αρ(w) with α > 1. Since we have
G(w)
ρ(w)

> β for MNL–SMS, we now have
G(w)
ρ̃(w)

> β̃, where β̃ = β

α
. Therefore,

we basically follow the line of proving Proposition 3 but replacing β by β̃, and we

will finally have T̃ >
(1 − ε)2

α
T̂ . Q.E.D.

In fact, Arya et al. [2] gave a (3 + ω)-approximation algorithm for the p-median
problem. Therefore, we have an algorithm to approximate the general MNL problem
with a factor of (3 + ω)(1 − ε)−2.

18.2.5 Numerical Results

In this section, we show the quantitative improvement on lifetime by using a mobile
sink for WSNs. We always assign a homogeneous λ, eT, eR, and E to all nodes
in order to facilitate the interpretation of the results. Without loss of generality, we
assume λ = 1, eT = eR = 0.5, and E = |N | = n. We set ε = 0.01. Here we
only investigate two metrics, namely lifetime and pause time distribution, and refer
to [23] for the evaluation of other metrics. We only focus on a single mobile sink as
we surely have optimal solution for this case. Note that the pause time distribution
given by an approximate solution may differ a lot from the optimal solution. The
numerical results are obtained for networks with regular and arbitrary topologies.
We consider both on-graph and off-graph sink mobilities and compare them for all
networks. All these problems are solved using the primal-dual algorithm presented
in Sect. 18.2.4.1.
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18.2.5.1 Grid Network

For grid networks on
√

n×√
n lattices, the maximum achievable lifetime by a static

sink is n/(�(n − 5)/4� + 1), because the lifetime is maximized if the forwarding
load is balanced among the four neighbors of the sink. This lifetime can be obtained
by putting the sink at the network center (if

√
n is odd) or at any of the four nodes

close to the center (if
√

n is even). While this lifetime is converging to 4 when
n → ∞, the lifetime achieved by a mobile sink increases dramatically with the
network size (Table 18.2). For small-size networks (e.g., |V| = 9 in Table 18.2),
the substitution effect dominates the load balancing effect, so the relative improve-
ment is small. With an increasing network size, the number of alternative paths
between an s–t pair is also increasing. Consequently, the load balancing effect
becomes increasingly remarkable and thus produces significant improvement on the
lifetime.

We illustrate the pause time distribution in four networks in Fig. 18.4. Our
observation is that the sink tends to move toward the periphery of a network
with an increasing n. The intuition is that, for a 3D grid on a sphere, the sink
should pause everywhere with the same time period. Therefore, the pause times
spread out when the network grows in size and thus appears more and more like
a sphere grid to the nodes close to the center. This observation also corrobo-
rates the result in [21]: the network periphery, as a sink moving trace, is asymp-
totically optimal. Note that we investigate in [21] the asymptotical case where
the node density is large enough to make the necessary radio ranges infinitely
small. In that case, the shortest paths between any s–t pair happen to be straight
lines.

We also consider the off-graph sink mobility, where the sink can also move to
the vertices of another grid that is complementary to the original network, as shown
in Fig. 18.5(a). The results show that, for all the networks shown in Table 18.2,
off-graph mobility does not further improve the lifetime compared with on-graph
mobility. In fact, even the pause time distribution remains to be the same after relax-
ing the on-graph constraint on the sink mobility. This interesting observation shows
that, for networks that are well connected, on-graph sink mobility is sufficient to
achieve the maximum lifetime.

Table 18.2 Comparing the achievable lifetime between using a mobile sink and a static sink in
grid networks of different size

Network lifetime T

|V| Mobile sink Static sink (optimal) Improvement (%)

9 5.331 4.500 18.47
16 6.509 4.000 62.72
49 11.09 4.084 171.7

121 17.07 4.033 323.2
144 18.71 4.000 376.8
225 23.29 4.018 479.7
289 26.33 4.014 555.9
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Fig. 18.4 Pause time distribution of a mobile sink in grid networks. The x and y axes indicate the
location of the nodes, and the z-axis represents the pause time: (a) 25 nodes, (b) 49 nodes, (c) 81
nodes, (d) 121 nodes

(a) Grid Network (b) Arbitrary Network

Fig. 18.5 Illustrations of off-graph sink mobility. The original network is represented by (a) the
solid grid and (b) the black nodes. The sink, in addition to being able to move on-graph, may also
move to locations represented by the vertices of the dash grid

18.2.5.2 Arbitrary Network

We also perform experiments on arbitrary networks (nodes uniformly distributed
within a square). Figure 18.5 (b) shows such a network and the possible off-graph
sink locations (represented by the dash grid). We consider both 100-node and 200-
node networks with a 10×10 off-graph grid, and each with 30 trials. In Fig. 18.6, we
compare the maximum lifetime achieved in four cases, namely, static on-graph sink,
mobile on-graph sink, static off-graph sink, and mobile off-graph sink. We use the
boxplot to summarize the results we have obtained, in which each case is depicted
by five quantities: lower quartile (25%), median, upper quartile (75%), and the
two extreme observations. It can immediately be seen that moving the sink always
improves the lifetime compared with fixing it, whether on-graph or off-graph. Also,
it is not a surprise that allowing off-graph sink locations (for both mobile and static
sinks) outperforms constraining those locations on-graph, this is, of course, at a cost
of higher complexity in solving the problem. Fortunately, our algorithm handles this
complexity very well given a reasonable number of the off-graph locations.

It is also interesting to look at the pause time distribution, Fig. 18.7 illustrates
one such case (other cases exhibit the same trend). A direct observation is that the
sink tends to pause at the nodes whose degrees are high (for on-graph locations) and
at the off-graph locations around which the node density is high. This is intuitive
because the more neighbors a node or a location has, the more a balanced load can
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Fig. 18.6 Comparing different sink behaviors in arbitrary networks with 100 and 200 nodes

be achieved by co-locating the sink with it. A slightly surprising observation is that
not many locations are chosen by the optimal sink mobility: only 5 positions for
on-graph mobility and 10 positions for off-graph mobility. This is quite different
from the grid network. In fact, most arbitrarily deployed networks have a topology
close to a tree rather than a mesh. It is quite intuitive to see that the sink mobility
will concentrate around the root of a balanced tree.
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Fig. 18.7 Pause time distribution of a mobile sink in an arbitrary network. The x and y axes
indicate the location of the nodes, and the z-axis represents the pause time: (a) On-graph mobility
and (b) Off-graph mobility

18.2.6 Summary

By far, we have formulated the optimization problem for maximizing network life-
time using mobile sinks. We have analyzed the complexity of the problem and char-
acterized the optimal solution through duality theory. Finally, we have developed an
algorithm to solve the problem with one mobile sink and to approximate the solution
if there are multiple sinks. In the remainder of this chapter, we will present several
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extensions to the optimization framework defined in this section. In Sect. 18.3, we
explain how to obtain optimal solution if we do not put any constraints on the sink
locations and hence allow them to be chosen within, for example, a 2D Euclidean
space. Recall that the reason accounting for the lifetime improvement in the mobile
sink approach is twofold, namely load balancing effect and substitution effect, while
the former is the dominating factor. In Sect. 18.4, we will look into another extension
where the substitution effect will be fully utilized, which is called the mobile node
approach. Finally, we will show, in Sect. 18.5, that certain slight changes of the
terminology allow us to model the mobile relay approach. Also, we will describe a
variance of the problem formulation, which, by simplifying several assumptions of
the model, may actually lead to more efficient solutions.

18.3 Balancing Traffic Load with Mobile Sinks: The Case
of Unconstrained Mobility

Although it seems that the problem formulation we present in Sect. 18.2 is limited
to the case where a finite set of potential sink locations is provided, we show in this
section that it is not true: given a continuous space (e.g., a Euclidean one), we only
need to search among a finite number of locations in order to obtain the optimal
solution or to closely approximate the optimal solution. In the following, we first
discuss, in Sect. 18.3.1, the case where the transmission energy is associated with
a node (as assumed in Sect. 18.2.1); the approach we present in Sect. 18.2 still
yields the optimal solution even after relaxing the constraints on the potential loca-
tions. In Sect. 18.3.2, we slightly change one of the assumptions by associating the
transmission cost with a link. The problem does become harder under this circum-
stance, but we will describe an extension to the approximation scheme presented in
[30],5 which may give a solution that is arbitrarily close to the optimal one for a
single mobile sink and provide good approximation for multiple mobile sinks, at an
increasing (sometimes drastically) computational complexity.

18.3.1 Node-Associated Transmission Energy

If the transmission energy is associated with individual nodes, we could always
come up with a virtual circle around a certain node, such that a link can be estab-
lished iff the destination node falls within this circle. As shown in Fig. 18.8, the
potential locations for the mobile sinks are constrained by these circles. In particular,
these circles partition the continuous space into many subareas, whose boundaries
are one or more portions of certain circles. Most importantly, we only need one sink

5 The original work by Shi and Hou [30] is only designed for a single mobile sink. In this section,
we extend their approach by combining it with MNL_ALGO presented in Sect. 18.2.4 to deal with
multiple mobile sinks.
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Fig. 18.8 All possible
off-graph sink locations
(represented by the stars)
given a certain assignment of
the node-associated
transmission energy

location to represent each of these subareas (which can be arbitrarily chosen within
a subarea), as the resulting network topology graph remains the same if we move
the sink within a subarea. In a nutshell, given a WSN along with its transmission
energy assignment and a specific way of defining the mapping c, we can compute
the radius of the circle for each node. Drawing all these circles will give us a finite
set of subareas and hence a finite set A of potential sink locations. Let V = N ∪A,
we are back to the off-graph mobility problem addressed in Sect. 18.2.

We consider the model that associates the transmission energy with individual
nodes to be more realistic than the link-associated version, because, although nodes
may have a tunable transmission power, it is not cost-effective to dynamically tune
the power for destinations at different distances. In addition, tuning transmission
power according to transmission distances is not always feasible either, as a node
might not know the distances. Therefore, a reasonable scenario, in our opinion, is
that each node sets up a transmission power according to certain topology control
mechanisms [18, 19] at the network initialization phase and fixes this power until
some topology changes happen. However, since the link-associated model is also
popularly used, we will treat the MNL problem under that model in Sect. 18.3.2.

18.3.2 Link-Associated Transmission Energy

Under on-graph mobility, it is pretty straightforward to switch from the node-
associated model to the link-associated version: we simply need to replace eT

i with
eT

i, j .
6 However, allowing off-graph mobility drastically increases the complexity of

the problem. As the (link) transmission energy can be tuned freely, any location in a
continuous space is virtually unique as it may yield a different transmission energy
from some sensor node to that location.

Whereas it is true that finding the optimal solution will incur a tremendous com-
plexity, obtaining good approximation is still possible [30]. To better illustrate the
idea, we first reformulate the MNL problem by modifying the constraint (18.14)
as follows (constraint (18.13) is not affected by switching to the link-associated

6 A byproduct of this change is that the cost assignment c is not needed anymore, as any link (i, j)
is feasible given a sufficiently high transmission energy eT

i, j .
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version).

∑

k:i /∈Lk

∑

p∈Pk
i

f (p)
(

I(i, j)∈p, j /∈Lk · eT
i, j + I(i, j)∈p, j∈Lk · eT

i, j + Ip/∈Pk
is ,∀s · eR

)
≤ Ei ∀i

(18.24)
Note that, apart from replacing eT

i with eT
i, j , we also split the first term in the paren-

theses into two parts: while the first part is independent of the sink locations in the
current epoch, the second part is not. We call this problem maximizing network life-
time with link-associated transmission energy (MNL–LATE). In theory, the possible
choices of eT

i, j for arbitrary i ∈ N and j ∈ Lk are infinite, this makes the searching
for an optimal solution enormously hard. Fortunately, it is possible to develop a
(1 + κ)-approximation (where κ is the error bound) for a single mobile sink or a
(1 + κ)(3 + ω)(1 − ε)−2-approximation for multiple mobile sinks based on the
algorithm given in Sect. 18.2. In the following, we first briefly present the basic
idea of the approach in Sect. 18.3.2.1, then we describe the algorithm along with
propositions that strictly prove its correctness in Sect. 18.3.2.2.

18.3.2.1 Parameterization Using Geometric Sequence

We first parameterize MNL–LATE by taking eT
i, j in the second term of (18.24) as

the parameters. Instead of letting each eT
i, j to be any possible real number, we limit

the choice to be a sequence of numbers ei, j =
{

eT
i, j;0, eT

i, j;1, · · · , eT
i, j;h, · · ·

}
,∀i ∈

N , j ∈ S, where eT
i, j;0 = a and eT

i, j;h = a(1 + κ)h . Obviously, this sequence is a
geometric sequence with factor a and common ratio (1 + κ). Assume that there is a
set A of the off-graph locations such that, for each j ∈ A, we have eT

i, j ∈ ei, j ,∀i ∈
N and for each j : eT

i, j ∈ ei, j , i ∈ N , we have j ∈ A. In other words, A enumerates
any possible off-graph location j whose incurred transmission energy from any node
i to itself is given in ei, j . If we could also make A to be finite, then letting V = N∪A
would bring us back to the off-graph mobility problem addressed in Sect. 18.2. We
call this problem MNL–DLATE. Of course, the solution to MNL–DLATE may not
be optimal to MNL–LATE, as A does not include all possible off-graph locations.
However, it is intuitive to see that the solution should not be far from optimal if the
granularity (1 + κ) we use to discretize the continuous space is sufficiently small.

It is worth noting that the aforementioned discrete parametrization applies
to many optimization problems, especially those with linear constraints. In
Sect. 18.3.2.2, we first show that this discretizaton is possible within a Euclidean
space and A can indeed be made finite. Then we show that the solution to MNL–
DLATE is a good approximation to that of MNL–LATE and we also give the approx-
imation ratio. We note that, if the error bound κ , thus the common ratio (1 + κ), is
small , the cardinality of A (hence that of V) becomes huge, which makes the prob-
lem much harder to solve than the node-associated version presented in Sect. 18.3.1.
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18.3.2.2 Algorithm Implementation

Based on what is described in Sect. 18.3.2.1, a practical algorithm to approximate
the solution of MNL–LATE needs three components: (1) A finite set A defined by
a set of geometric sequences {ei, j }i∈N , j∈A, (2) The algorithm MNL_ALGO we
have presented in Sect. 18.2.4, and (3) A proof to show the approximation ratio.
Since the second component is ready, we present in the following the procedures
that justify both the first and the third components, assuming a Euclidean space and
a link transmission power assignment that is strictly increasing in the Euclidean
distance from the source to the destination.

As we assume that eT
i, j is an increasing function of d(i, j), the Euclidean distance

between node i and node j , the sequence eT
i, j can be generated by properly drawing

concentric circles around i and let eT
i, j;h be the transmission energy to reach from

i to the hth circle, as shown in Fig. 18.9. Although to reach any location between
the (h − 1)th and the hth circles only requires a transmission energy in the interval(

eT
i, j;h−1, eT

i, j;h
)

, we deliberately amplify it to eT
i, j;h . According to (18.24), such an

amplification tightens the constraint. Therefore, the optimal solution to this special
version of MNL–DLATE, called MNL–DALATE, is bounded to be feasible under
the general MNL–DLATE where each location is associated with the actual trans-
mission energy derived from the exact distance. Consequently, the optimal solution
to MNL–DLATE is no smaller than that of MNL–DALATE. This is summarized by
the following proposition.

Proposition 5 If the solution to MNL–DALATE is an α-approximation of the solu-
tion to MNL-LATE, where α>1, the approximation ratio given by the solution to
MNL-DLATE is at most α.

The finiteness of A is the direct consequence of a bounded search region and of
the increasing radius of the circles that generate the geometric sequences, and the
boundedness of the search region is shown by the following proposition.

Proposition 6 An optimal solution of MNL–LATE always has its sink locations con-
strained within the smallest enclosing disk (SED) that contains N .

1

2

3

Fig. 18.9 Generating geometric sequences using concentric circles. According to our definition of
MNL-DALATE, any potential sink location j within the shaded region is assigned with a trans-

mission energy vector
(

eT
1, j;2, eT

2, j;3, eT
3, j;3

)
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Proof Assume that the statement in the proposition is not true, then there exists
at least one optimal sink location that is outside of the SED. We first draw a line
segment from this location to the center of the SED, which yields a (point) intersec-
tion with the boundary of the SED. Then we mirror the location with respect to the
tangent (of the boundary of the SED) that goes through the intersection point. It can
be easily seen that this new location is superior to the old one, as it is closer to all
the nodes in terms of Euclidean distance. This outcome contradicts the optimality
of the assumed “out of SED” location, and hence proves the proposition. Q.E.D.

Now, the algorithm construction becomes pretty clear; we illustrate the algorithm
MNL–LATE_ALGO as follows. Note that, if there is only one mobile sink, we can
also replace the 4th step by an LP, which removes the (albeit negligible) approxi-
mation ratio (1 − ε)−2. The performance of MNL–LATE_ALGO is shown by the
following propositions.

Algorithm 2 MNL–LATE_ALGO
Input: N ,Λ,E
1: Compute the SED that contains N , and generate eT

i, j for all i, j ∈ N ;

2: Generate the geometric sequence eT
i, j for all i ∈ N using the sequence of concentric circles,

and produce the location set A, within the boundary of SED, according to the subareas demar-
cated by these circles;

3: Applying the amplification rule to generate eT
i, j for all i ∈ N , j ∈ A;

4: Call MNL_ALGO upon the instance (V, E,Λ,E, e), where V = N ∪ A, E includes all the

edges among N and those from N to A and e =
[
eT

i, j

]
, and get the return value T̃ .

5: return maximum network lifetime: T̃

Proposition 7 With a single mobile sink, the value returned by MNL–LATE_ALGO,
T̃ , is a (1+κ)-approximation to the optimal value T̂ of MNL–LATE, in other words,
T̃ ≥ (1 + κ)−1T̂ .

Proof The proof goes very similar to the discussion made before Proposition 5.
We first notice that any location that belongs to an optimal solution of MNL–LATE
must fall into one of the subareas demarcated by the concentric circles and the SED.
Then it is straightforward to see that the amplification rule simply exaggerates the
transmission energy incurred by an optimal location, which, in effect, tightens the
constraint (18.24). The other important fact is that the amplification is bounded: it is
at most (1 + κ) to the value that would have been incurred by an optimal location.
Given T̂ as the optimal value of MNL–LATE, we can scale it down by a factor
(1+ κ), which effectively scales down all f (p)’s in (18.24), and makes it a feasible
solution to MNL–DALATE. As T̃ is the optimal value of MNL–DALATE (assume
the use of LP for the 4th step), we have T̃ ≥ (1 + κ)−1T̂ . Q.E.D.

Similar arguments lead us to the approximation ratio for multiple mobile sinks.

Proposition 8 With multiple mobile sinks, T̃ is a (1 + κ)(3 + ω)(1 − ε)−2-
approximation to the optimal value T̂ of MNL–LATE.
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Note that the amplification procedure is simply used to facilitate the proof of
approximation ratio. In a practical implementation of MNL–LATE_ALGO, we
may skip it and simply choose an arbitrary location within a particular subarea
to represent that subarea. In other words, we solve MNL–DLATE rather than
MNL–DALATE. The solution, though bearing the same worst-case performance
as the one with amplification, is in general better, i.e., closer to the optimal value.

18.3.3 Summary

We demonstrate in this section that though the formulation and solution presented
in Sect. 18.2 have a constrained set of locations for mobile sinks to choose, it is not
difficult, in theory, to extend them by relaxing the constraint. However, we believe
that all the results presented in the section are more for pure theoretical purpose, as
the improvement (in terms of the absolute value of the lifetime) can be very marginal
and the cost to obtain this improvement is huge. Especially in the link associated

case, the cardinality of A is in the order of
(n

κ

)2
, which can be enormous if we are

chasing an accurate approximation with very small κ . Therefore, while appreciating
the beauty of the theory, we do caution the readers for any practical use of it.

18.4 Energy Conservation with Mobile Nodes: The Extreme
Usage of the Substitution Effect

Although the substitution effect (see Sects. 18.2.1 and 18.2.3) is overwhelmed by
the load balancing effect in the mobile sink approach, one might still wonder if it is
possible to fully exert the benefit of this effect. As illustrated by Fig. 18.10, such an
approach does exist [35], where the sink is kept static while some powerful mobile
nodes are changing their location from time to time to replace certain overloaded
(static) nodes. However, the analysis performed in [35] is based on a fluid model
(similar to [21]), hence the results hold only in an asymptotic sense and cannot be

Day 2Day 1 Day 3

Fig. 18.10 Using mobile nodes to balance the traffic load within a WSN. The star represents the
static sink, and nodes with darker color are the mobile nodes. Note that the mobility is (again) slow,
as the mobile nodes may change their locations very infrequently
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applied whenever a specific network topology is given. Therefore, we reformulate
the problem following the general framework presented in Sect. 18.2. The great
benefit is that, as we will show later, almost all the results presented in Sect. 18.2
apply here, only with a change of the separation oracle.

18.4.1 MNL with Multiple Mobile Nodes (MNL–MMN)

We keep using the model and terminologies presented in Sect. 18.2.1. The differ-
ences are (1) there is only one static sink s ∈ N and (2) Lk ∈ N denotes the mobile
node (rather than sink) locations during the kth epoch. Note that, as the substitution
effect demands co-locations of mobile nodes with certain sensor nodes, the problem
only has an on-graph version, i.e., V = N , where V represents potential locations
of the mobile nodes. Let us directly formulate the MNL–MMN problem into its
Path-Flow form:

maximize T =
∑

k

tk (18.25)

subject to
∑

p∈Pk
is

f (p) ≥ λi tk ∀i �= s, k (18.26)

∑

k:i /∈Lk

∑

p∈Pk
i

f (p)
(

eT
i + Ip/∈Pk

is
· eR
)

≤ Ei ∀i �= s (18.27)

tk, f (p) ≥ 0 ∀k, p (18.28)

where IA is the indicator function of event A, p is a path between a node and the
sink s, and f (p) is the flow going through that path. Furthermore, we denote by Pk

is
the path set from node i to the sink s and by Pk

i the set of paths going through node
i , both in the kth epoch. Splitting a flow among a set of paths implies that we allow
multi-path routing strategy to be taken by the optimal solution. As this formulation
is very similar to that of MNL (18.13) and (18.14), the same happens to the dual
problem of MNL–MMN.

minimize G(w) =
∑

i

Eiw(i) (18.29)

subject to
∑

i �=s

λi W (i, k) ≥ 1 ∀k (18.30)

∑

j∈p∈Pk
is , j /∈Lk , j �=s

w( j)
(

eT
j + I j �=i · eR

)
− W (i, k) ≥ 0 ∀i �= s, k, p (18.31)

w(i),W (i, k) ≥ 0 ∀i �= s, k (18.32)

where the w(i) is the weight assigned to node i , representing the marginal cost of
using an additional unit energy of node i ; and W (i, k) is the weight of a commodity,
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i.e., data flow going from node i to sink s during epoch k; it indicates the marginal
cost of rejecting a unit demand of the commodity. The striking similarity between
MNL and MNL–MMN immediately suggests the validity of applying most of the
results obtained in Sect. 18.2 to MNL–MMN, with, of course, certain exceptions, as
we will discuss in Sect. 18.4.2.

18.4.2 Theorem, Complexity, and Algorithm

We directly use the following theorem to characterize the optimal solution of MNL–
MMN; detailed analysis is omitted as it basically follows the same line as in
Sects. 18.2.2 and 18.2.3.

Theorem 3 (MAX-LIFETIME MIN-POTENTIAL RATIO THEOREM RELOADED)
Given the lifetime maximization problem formulated in (18.25, 18.26, 18.27, 18.28),
the optimal lifetime T̂ is such that

T̂ = min
w

[
G(w)
ρ(w)

]

where G(w) = ∑
i Eiw(i) is a linear combination of the energy reserves of all

nodes with coefficients w(i), and

ρ(w) ≡ min
k
ρk(w) = min

k

⎡

⎢
⎣
∑

i

λi

⎛

⎜
⎝

∑

j∈min
{

p|p∈Pk
is

}
, j /∈Lk , j �=s

w( j)
(

eT
j + I j �=i · eR

)
⎞

⎟
⎠

⎤

⎥
⎦

is the minimum “potential” (computed as the sum of the minimum “cost,” given
w(i), to route λi from node i to the sink s) achieved among all possible mobile node
layouts {Lk}.
Similar to the on-graph MNL, the answer to TMNTM is also positive for
MNL–MMN. We omit the proof here; it follows the same line as the proof for
Proposition 2. Note that the question asked by TMNTM for MNL–MMN is whether
moving the mobile nodes is superior to keeping them static. Moreover, for certain
cases where (off-graph) sink mobility does not improve network lifetime, adding
(on-graph) mobile nodes may still benefit network lifetime. Taking the networks
shown in Fig. 18.3 as examples, moving some mobile nodes (even just one) around
the rings to replace those static nodes in turn is bounded to improve the network
lifetime. The latter fact seems to suggest that it would be better to combine mobile
nodes and mobile sinks.

Note that ρ(w) is also the separation oracle of the dual MNL-MMN. Let

K = |Lk | = m, ω(i) = λi , 	( j) = w( j)
(

eT
j + I j �=i · eR

)
, and d(i) =
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∑
j∈min

{
p|p∈Pk

is

}
, j �=s 	( j), then the separation oracle is equivalent to the following

decision problem:

INSTANCE: A graph G = (N , E), a weight assignment ω(i) : N → R
+
0 , a

length assignment 	(i) : N → R
+
0 , positive integer K ≤ |N |, a special

vertex s ∈ N , and positive real number B.
QUESTION: Is there a set P of K points on G such that, if we set 	(i) =

0, i ∈ P and let d(i) be the length of the shortest path from i to s, then∑
i ω(i) · d(i) ≤ B?

If we could solve this decision problem or give a proper approximation to its opti-
mization version, we would be able to apply MNL_ALGO introduced in Sect. 18.2.4
to solve MNL–MMN. However, we show in the following that the separation oracle
of dual MNL–MMN is NP-hard, and hence MNL–MMN is also NP-hard, again due
to [26] (Theorem 3).

Proposition 9 The separation oracle of MNL–MMN is NP-hard.

Proof The NP-hardness of the separation oracle can be shown by transforming
from the p-median problem on special cases such as the one shown in Fig. 18.11.
It is straightforward to see that P has to be chosen among V2, in order to get a
maximum weight reduction M(K + |V1|) in

∑
i ω(i) · d(i). However, which P

vertices to be chosen among V2 are determined by the solution of the p-median
problem on G̃(V1, E1), where E1 refers to the set of edges whose both ends are in
V1. This is so because the answer to the separation oracle is true iff the answer to
the p-median problem with B ′ = B − M(|V2| − K ) is true. Conversely, if we could
address the separation oracle for G(V1 ∪ V2 ∪ {s}, E), we would actually solve the
p-median problem in G̃(V1, E1), as the medians are indicated by the chosen P ⊂ V2.

Q.E.D.
The existence of efficient PTAS with provable approximation ratio to this sepa-

ration oracle, to our best knowledge, is unfortunately unknown, although heuristics
with good empirical performance can be derived based on short-path algorithms.

1 2 s

Fig. 18.11 A graph G(V1 ∪ V2 ∪ {s}, E), where vertices in V1 are connected to s only through
some vertices in V2, and vertices in V2 are not directly connected to each other. We assign uniform
ω(i) = 1 to all vertices in both V1 and V2, and we assign 	(i) = 1 to vertices in V1 and 	(i) = M
to vertices in V2, where M > |V1|
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Therefore, we restrict ourselves to the single mobile node case when making com-
parisons between the mobile node and mobile sink approach in Sect. 18.4.3.

18.4.3 Numerical Results

We apply the same settings as those in Sect. 18.2.5, and we compare the two
approaches, namely mobile sink and mobile node, for both grid networks of dif-
ferent sizes and arbitrary networks with 100 nodes. We illustrate these comparisons
in Fig. 18.12. Figure 18.12a shows that whereas the improvement (against the static
sink approach) brought by the mobile node approach is more or less a constant,
the mobile sink approach yields an increasing improvement in larger networks. The
better performance for the mobile node approach in small networks is not a sur-
prise: the substitution effect is the dominating factor of the lifetime improvement in
these networks, as already explained in Sect. 18.2.5. In Fig. 18.12b, we use MS,
SS, and MN to refer to mobile sink, static sink, and mobile node, respectively.
When the mobile node approach is used, the static sink is always put at its opti-
mal location. Although the mobile node approach is still inferior to the mobile sink
approach in most cases, the difference is much less significant than the cases of grid
networks.
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Fig. 18.12 Comparing mobile node with mobile sink: (a) Grid networks of different size and (b)
Arbitrary Networks with 100 nodes

18.4.4 Summary

In this section, we have shown the close relation between the mobile sink and mobile
node approaches, by unifying their problem formulations and solution techniques.
The other benefit of formulating the mobile node approach into our general opti-
mization framework is to allow detailed investigations on particular network topolo-
gies. This actually brings us a slight surprise: Although the mobile sink approach
appears to be superior to the mobile node approach in regular topologies (or their
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asymptotic version [35]), their performances are not very different from each other
in arbitrary topologies.

18.5 Energy Conservation with Mobile Relays: Using Mechanical
Data Transportation Smartly

Although running WSNs under the slow mobility regime (such as the mobile sink
and mobile node approaches presented in the previous sections) may significantly
improve the network lifetime, the need for dynamic routing configurations accord-
ing to the specific locations of the mobile entities could incur additional mainte-
nance overhead in practice. An alternative solution is to use mobile relays to “pick
up” data from node through one-hop transmissions and then to transport the data
with mechanical movements [5, 28]. Unfortunately, this extreme approach incurs
a large transmission delay due to the limited speed of mechanical movements. In
this section, we discuss a good compromise made between the aforementioned two
extremes: A hybrid approach that jointly considers multi-hop transmissions and
mechanical data transportation [32]. As shown in Fig. 18.13, certain locations in
the Euclidean plane where the considered WSN locates are chosen as rendezvous
points (RPs) [36]. A mobile relay periodically travels along a predefined tour and
picks up data at RPs, while nodes that may directly reach a RP buffer (or even
aggregate7) data originated from other nodes and transfer the data to the relay when
it arrives at the RP. The advantage of this approach, compared with those slow
mobility approaches, is that the multi-hop routing can be configured offline, as it
does not change with different locations of the mobile relays.

Fig. 18.13 Using a mobile relay to reduce the energy consumption of sensor nodes. The star rep-
resents the relay, the pentagons are its RPs, and nodes with darker color are those that buffer or
aggregate data sent from other nodes. In other words, a darker colored node is the root of one data
collection tree; one of such trees is illustrated at the upper-left corner. The mobility is fast in this
case, as the mobile relay is usually required to finish the tour through all RPs within a given time
period

7 By aggregation, we refer to any transformation that summarizes or compresses the data acquired
and received by a certain node and hence reduce the volume of the data to be sent out, e.g., [25].
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18.5.1 The Single Mobile Relay Positioning (SMRP) Problem

We discuss the problem of identifying the RPs for one mobile relay, which we
term single mobile relay position (SMRP) problem. Our discussion will be based
on the general framework introduced in Sect. 18.2.1. This means that there is a set
of potential locations V within which we would like to identify the optimal subset
S as the RPs. The relay mobility is on-graph if V = N or is off-graph if V ⊃ N .
Usually, |S| is bounded by a certain integer, as the relay can only visit up to that
number of locations given a certain data delivery deadline. Also, we assume there is
no data aggregation involved in the routing configuration. The reason we focus only
on a single mobile relay is twofold: first, it is already very hard to solve the problem
involving only a single relay, and second, solutions for multiple mobile relays could
always be based on those for a single mobile relay.

To simplify the exposition, we present the problem formulation as a decision
problem rather than an optimization problem. It is well known that these two for-
mulations are equivalent as there always exists a polynomial-time reduction from
one to the other.8 We present the problem for on-graph mobility first and then show
how to extend it to off-graph mobility.

INSTANCE: A set of nodes N , a cost assignment c : c(i, j) = e,∀i, j ∈ N ,
a set S of virtual sink locations with |S|<|N |, and for each i ∈ N , a
transmission energy eT

i , a receiving energy eR, an energy reserve Ei , a rate
λi , a constraint that i sends data to only one s ∈ S, and a positive real
number t .

QUESTION: Is there a rendezvous schedule {δis}, where δis : N × S → {0, 1},∑
i δis = 1 (only one mobile relay is allowed) and

∑
i
∑

s δis ≤ |S|, such
that the lifetime T is at least t?

In order to extend the formulation to accommodate off-graph mobility, we simply
need to assign a zero rate to those vertices in V\N . It is obvious that the nodes that
take a higher traffic load are those that are one-hop from one of the RPs (those darker
colored ones shown in Fig. 18.13). Therefore, the objective of the optimization
problem is, again, to minimize the maximum load, or, in other words, to balance
the traffic load. If we assume the same transmission energy eT for all nodes, the
bottleneck node that constrains the lifetime is the one that serves as the root of the
“heaviest” data collection tree, where the weight of a tree is the total traffic load
generated by all the nodes in the tree. It is straightforward to see that SMRP is

8 As an example, the decision problem related to MNL (on-graph) is the following:

INSTANCE: A set of nodes N , a cost assignment c : c(i, j) = e,∀i, j ∈ N , a set S of sinks
with |S|<|N |, and for each i ∈ N , a transmission energy eT

i , a receiving energy eR, an
energy reserve Ei , a rate λi , and a positive real number t .

QUESTION: Is there a sink layout schedule {(slk , tk)} (slk is a vector of [δk
is ] where δk

is : N×S →
{0, 1} and

∑
i
∑

s δ
k
is = |S|) such that the lifetime T =∑k tk is at least t?

This problem can be shown as NP-hard by, for example, a polynomial-time reduction from the
DOMINATING SET on a unit disk graph [22].
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equivalent to the notoriously hard base station placement (BSP) problem [4], which
has been shown as NP-hard and whose PTAS is not known by far.9

18.5.2 A Variation of SMRP

The difficulty of the problem formulated in Sect. 18.5.1 stems from the fact that it is
the property of individual data collection trees that needs to be optimized. In a recent
proposal, Xing et al. [36] suggest a simplified problem formulation by (1) assuming
a uniform data rate from all nodes that produce sensory data (or source nodes),10

(2) identical transmission energy and zero receiving energy for all nodes, (3) allow-
ing “many-to-one” data aggregation, and (4) optimizing total energy consumption
instead of lifetime. While the first three lead to identical traffic load on each node,11

the last change shifts the objective from individual data collection trees to the WSN
as a whole. The direct consequence of these simplifications is the following:

• The problem formulation may explicitly involve the data delay factor as a design
constraint. This eventually translates to the constraint on the length of the tour
through all RPs, which appears to be at least as hard as the EUCLIDEAN TRAV-
ELING SALESMAN (ETS) problem.

• The problem objective becomes minimizing the number of links that are needed
to connect all the source nodes to the RPs. Due to the identical transmission
energy for every node, the energy consumption of transmitting data along a rout-
ing path can be approximated by the Euclidean distance between the source and
the destination, which in turn suggests an approximation of the objective by the
Euclidean length of all routing trees. This approximated objective is actually a
GEOMETRIC STEINER TREE (GST) problem.

Although both ETS and GST are NP-complete, ETS actually has a straightforward
2-approximation algorithm given by GST, while GST admits a PTAS whose ratio

is pretty close to 1 (can be, in fact, smaller than
2√
3

[8]). Based on these observa-

tions, efficient approximation algorithms can be designed to identify RPs within an
unconstrained Euclidean space, unlike SMRP whose RPs are limited to V . In the
original proposal [36], two algorithms are given, respectively, for choosing RPs in
2D (e.g., the region covered by a WSN) and 1D (e.g., a fixed track) spaces. We only
discuss the first algorithm in this section.

9 Although Shi et al. [31] have proposed an approximation algorithm for BSP, using a technique
similar to the one presented in Sect. 18.3.2.1 that algorithm is only pesudo-polynomial in time, as
the time complexity is actually exponential in the number of base stations.
10 This is a special case of our general formulation, which assigns a uniform data rate to the source
nodes and a zero rate to others.
11 The “many-to-one” data aggregation implies that, no matter how many unit of flows converge at
an intermediate node, node only send one unit flow out. These are cases where special aggregation
functions such as AVERAGE, MAX, or MIN are used.
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Assume the tolerable data delivery delay is D, meaning that the total length of
the relay tour must be no more than L = Dv̄, where v̄ is the average speed of the
mobile relay. The problem (decision version) can be specified as

INSTANCE: A set of source nodes N , two positive real numbers L and C .

QUESTION: Is there a mobile relay tour U no longer than L and a set of
geometric trees {Tk(Vk, Ek)} rooted on U such that 1) Vk ⊆ V and
N ⊆ ⋃k Vk , and 2)

∑
k
∑

(i, j)∈Ek
d(i, j) (where d(i, j) is the Euclidean

distance between node i and node j) is no greater than C?

Note that a tree edge (i, j) : i, j ∈ Vk does not necessarily represent a physical link;
it instead may represent a routing path that goes through other non-source nodes
(nodes not in N but belong to the WSN). Obviously, the optimization version of
the problem aims at minimizing the total Euclidean length of all routing paths that
are involved in data transmission. This problem can be shown to be NP-hard by a
reduction from the ETS problem. Fortunately, due to the reason explained earlier,
there exists good approximation algorithms to solve this problem.

To motivate the algorithm, let us first consider an extreme situation where the
mobile relay is replaced by a static sink. In this case, the optimal routing tree con-
necting all source nodes with minimum total length is given by the GEOMETRIC

STEINER TREE (GST). Now, we let the sink start moving and thus serve as the
mobile relay. As GST provides a lower bound of ETS, moving the relay along the
GST appears to be a reasonable choice: as it may strike a good balance between
minimizing the transmission cost and limiting the tour length. Based on these obser-
vations, the approximation algorithm rendezvous design for variable tracks (RD–
VT) makes use of approximate GST and ETS solvers as the oracles to address
the problem of minimizing

∑
k
∑

(i, j)∈Ek
d(i, j) under constrained tour length L .

The algorithm first constructs an approximate minimum GST, and then recursively
traverses it in depth-first manner to find proper RPs. Initially, the length to be tra-
versed on the GST is set as L/2. For each recursion, the visited subtree is expanded
according to the length to be traversed and RPs are identified on the subtree (5th
step), then an approximate EST oracle is called to connect the current RPs, finally
the additional length to be traversed in the next recursion is set to be half of the
difference between L and the EST tour length (computed by the EST oracle) in the
current recursion (7th step). The algorithm terminates if this difference becomes no
larger than a threshold σ . The following proposition confirms the performance of
RD–VT.

Proposition 10 Let α be the best known approximation ratio for the GST problem

and β = L/
(∑

(i, j)∈E∗
N

d(i, j)
)

, where T ∗
N = (N , E∗

N

)
is the minimum GST of N ,

the approximation ratio of the RD-VT algorithm is no greater than
α − β/2

1 − β
.

Proof For simplicity, we represent the total edge length of a tree T (V, E) by c(T ) =∑
(i, j)∈E d(i, j). Suppose the optimal set of RPs is R∗ and its minimum GST is T ∗

R ,
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Algorithm 3 RD–VT
Input: Node set N , tour length bound L , and threshold σ
1: Find an approximate GST of N : TN = (VN , EN ), where VN ⊇ N ;
2: Initialize the tour length Γ = L/2 and a starting point Θ ∈ VN ;
3: repeat
4: Traverse TN in depth-first manner from Θ until the length visited is Γ , denote the subtree

traveled as TR = (VR, ER);
5: Let R = {ri |ri is the first intersection between TR and the path from the i th node in N to

Θ on TN };
6: Find the ETS tour U that goes through R and denote its length by |U |;
7: Update trial step: Γ = Γ +Δ, where Δ = (L − |U |)/2;
8: until Δ ≤ σ

9: return a set R of RPs and a set of trees {Tk(Vk , Ek)} = TN \ TR

and the optimal set of routing trees is
{
T ∗

k

}
, we have

∑
k c
(
T ∗

k

)+c
(
T ∗

R

) ≥ c
(
T ∗

N

)
,

as the union of
{
T ∗

k

}
and T ∗

R is a GST. As we have discussed, GST gives a lower
bound of EST and the tour length of EST is bounded above by L , meaning c

(
T ∗

R

) ≤
L , thus β = L/c

(
T ∗

N

) ≥ L/
(∑

k c
(
T ∗

k

)+ c
(
T ∗

R

)) ≥ L/
(∑

k c
(
T ∗

k

)+ L
)
, which

leads to L ≤ β

1 − β

∑
k c
(
T ∗

k

)
. Therefore we have

∑

k

c
(
T ∗

k

) ≥ c
(
T ∗

N

)− c
(
T ∗

R

)

≥ c(TN )

α
− L

= c(TN )− c(TR)

α
+ c(TR)

α
− L

≥
∑

k c(Tk)

α
+ L/2

α
− L

≥
∑

k c(Tk)

α
+ 1 − 2α

2α

β

1 − β

∑

k

c
(
T ∗

k

)

The approximation ratio is hence

∑
k c(Tk)∑

k c
(
T ∗

k

) ≤ α + β(2α − 1)

2(1 − β)
= α − β/2

1 − β
.

Q.E.D.

For β ≤ 0.56 and α = 2√
3

, the ratio is smaller than 2. Since β is usually small

(otherwise the mobile sink may almost visit every source node), the performance
of RD–VT is pretty satisfactory. In particular, if N includes the whole WSN, the
minimum GST is actually a MINIMUM SPANNING TREE (MST) and hence α = 1
(MST can be perfectly solved efficiently), in which case the performance of RD–VT
is further improved.
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18.5.3 Summary

In this section, we focus on exploiting entity mobility in the fast mobility regime.
We first formulate the mobile relay problem based on the optimization framework
described in Sect. 18.2. As the resulting problem is very hard and there is no known
PTAS for it, we discuss instead a variation appearing in the literature. This varia-
tion admits a PTAS with satisfactory performance at a cost of several simplifying
assumptions. It is still an open question if we can handle the problem efficiently in
more general settings where some of these simplifying assumptions may not hold.

18.6 Conclusion

No matter how advanced the stage we are in designing WSNs, network lifetime
and energy efficiency will always be recurring issues pertaining to WSNs. To fully
utilize the limited energy reserve of sensor nodes, we have to really “think out of the
box” and explore new approaches. In our opinion, actively exploiting entity mobility
in WSNs is such an approach, and an optimization framework is a powerful tool to
guide the designs using this approach. By providing an in-depth description of the
construction and application of such a general optimization framework as well as the
engineering insights we can acquire from it, we are hoping to stimulate the invention
of new design methodologies for WSNs.
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Chapter 19
Information Spreading in Dynamic Networks:
An Analytical Approach

Andrea Clementi and Francesco Pasquale

Abstract Sensor networks are one of the most relevant concrete examples of
dynamic networks. Their dynamic behavior is mainly due to the presence of
node/link faults and node mobility. The aim of this chapter is to survey a new
approach to study such dynamic networks, recently introduced in [15–19]. The
major novelty of this approach relies on two basic issues.
1. The dynamic network is modeled as an evolving graph whose topology changes at
every time according to some law/adversary. Both worst-case adversarial scenarios
and graphs that evolve randomly are deeply studied.
2. This new approach provides a general framework where it is possible to determine
the speed of information spreading from an analytical point of view.
Does the dynamic unknown behavior of sensor networks always slow down the
speed of information spreading? What is the real impact of this dynamic behavior on
the completion time of some basic communication protocols? Can unknown random
node mobility be exploited to asymptotically speedup information spreading?
This new general approach provides some clean mathematical answers to the above
fundamental questions.

19.1 Introduction

Sensor networks have an intrinsic dynamic behavior: their topology uses to evolve
over time. Topology changes are caused by several factors, two of the most critical
ones are faults and node mobility.

This chapter is not a survey of the most relevant models and results for dynamic
sensor networks. Rather, it aims to describe a new mathematical approach to ana-
lyze the impact of such dynamic behavior on the speed of information spreading.
Dynamic sensor networks have been previously investigated in many different
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contexts and from several points of view [23, 31, 34, 35, 38]. We here provide a
general framework where a simple communication primitive can be asymptotically
analyzed in order to better understand the main structural features of such dynamic
systems and eventually exploit them in the protocol design.

As a first step, we thus have to define abstract models of concrete scenarios. The
foundational nature of this approach introduces a crucial trade-off: the more a model
is realistic, the more it is hard to analyze. Finding the right balance between these
two poles is one of the hardest part of the work.

We model a dynamic network as an evolving graph [6, 8, 26]. In general, an
evolving graph is a sequence of graphs (i.e., the snapshots) with the same set of
nodes. Inspired by the two major sources of topology dynamicity mentioned above,
we will consider three major classes of evolving graphs. The first two classes of
evolving graphs are both defined by a random Markovian process: Edge-Markovian
Evolving graphs and Geometric-Markovian Evolving Graphs. In the first class,
the existence of every edge stochastically depends on its existence at the previ-
ous time step. As for the second Markovian class, the topology changes accord-
ing to the current positions of the nodes and to their transmission range: every
node performs a sort of random walk over a two-dimensional square of bounded
size. Finally, we consider Adversarial networks: this is a worst-case scenario where
link changes are managed by an adversary that tries to slow down communication
protocols.

We will focus on the basic communication task called broadcast: one distin-
guished node of the network (the source node) aims to send a message to all the
other nodes of the network. This chapter provides a revised version of the results
presented in [15–19].

19.1.1 Warm-Up and Road Map

Let us consider the simplest broadcast protocol called flooding (or flooding mecha-
nism). A node is informed if it is the source or if it has received the source message
from one of its (informed) neighbors. Then, in the flooding protocol, every informed
node sends the source message to all of its neighbors, at every time step.

The speed of information spreading can be then formalized by means of the fol-
lowing question: How long does it take to get all the nodes informed?

Given an evolving graph and a source node, the completion time of the flood-
ing process is the first time step in which all the nodes are informed. The flooding
time of an evolving graph is the maximum completion time over all possible source
choices. The flooding process in a static graph looks exactly like a breadth-first
search procedure. So, in a static graph, the flooding time equals the diameter of the
graph; in particular flooding time is finite if and only if the graph is connected. Can
we say something like that for evolving graphs? Is it true that, for example, if every
snapshot of an evolving graph G has small diameter then the flooding time of G is
small? In order to investigate such kind of issues in a clean way, let us make some
thought experiments and introduce the concept of adversarial evolving graph.
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19.1.1.1 Adversarial Evolving Graphs

How can a graph evolve in a worst-case way with respect to a communication
task? Assume to have a set of nodes V and suppose there is an adversary that,
at every time step t , can choose the set of edges Et , thus yielding an evolving graph
G = {Gt : t ∈ N} where Gt = (V, Et ) is the snapshot at time step t . Fix some
constraints for the adversary, for example, all the snapshots must be connected and
must have small diameter. For how long can the adversary slow down the flooding
process? And, what is the flooding time of this adversarial evolving graph? On the
one hand, it is clear that if all the snapshots are connected, then at every time step
there is at least one new informed node. So the flooding time is upper bounded by
the number of nodes. On the other hand, we may ask if it is possible to define an
adversarial strategy such that at every time step the graph has small diameter, but
the flooding time is still big. The answer is yes and finding an example is left as an
easy exercise to the reader.

We say that an adversary is meaningful if the set of constraints makes the com-
munication task feasible in the resulting adversarial evolving graph. For example,
an adversary that makes all the snapshots connected is meaningful. We may ask
whether this requirement is minimal or it can be relaxed. In other words, do we
really need connectivity in order to complete the flooding process? No, we do not.
Consider the following weaker connectivity constraint: at every time step, there
must exist at least one link connecting a non-informed node with an informed one. It
is easy to see that if the adversary satisfies this requirement, even if all the snapshots
of the resulting evolving graph are fully disconnected, the flooding time is still upper
bounded by the number of nodes. We say that a meaningful adversary with such a
weak connectivity constraint is a worst-case adversary.

The above remarks show that concepts like connectivity and diameter, issues
strongly related to communication tasks in static graphs, should be revised in evolv-
ing graphs. In a static graph, the spread of information is faster in graphs with small
diameter, whereas if the graph is not connected, then there is no way to commu-
nicate. We have just pointed out that both those observations are false in evolving
graphs. In Sect. 19.4, we will present a simple randomized broadcasting protocol
and its full analysis for the worst-case adversarial model. The worst-case adver-
sarial model and, thus, the obtained results consider the interference phenomenon
too [4].

19.1.1.2 Random Evolving Graphs: Faults and Mobility

Graphs that evolve randomly are not a new subject in the networking area. For
instance, a lot of effort has been devoted to define random mobility models that
well approximate realistic mobile sensor networks [9, 30]. Typically, the network-
evolution model is suitably chosen according to the particular application we are
studying. Most of these models are very useful to analyze concrete communication
problems and perform accurate and meaningful simulations; on the other hand, they
are often too complicated to allow a general and deep mathematical analysis of basic
communication tasks.
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In this chapter, we instead adopt a different approach: starting from a random graph
model that is well established in the static case, we try to extend it to the dynamic
case inspired by faulty sensor networks and mobile sensor networks.
One of the most elegant and widely studied model of random graphs is the Erdös–
Rényi model Gn,p [25]. Informally speaking, it can be described as follows: given
a set of n nodes, every edge between two nodes exists with probability p, indepen-
dently from the other edges. As p grows from 0 to 1, the random graph becomes
denser and denser, and the expected number of edges in the graph is p times the
total number of possible edges. The properties of random graphs Gn,p have been
extensively studied [7, 42]. In order to analyze communication problems on random
evolving graphs, our first purpose is to define a natural evolving version of the Gn,p

model motivated by the presence of random link failures.
In order to define a reasonable evolving graph, we observe that the state of the

links at a given time step must somehow depend on the state of the links at the
previous time steps. The simplest way to introduce this time dependence in a random
process is to consider Markovian dependence: the random graph at time step t (only)
depends on the random graph at time step t − 1. Let us take this property and try to
“mix” it with the Erdös–Rényi model. Since in a Gn,p the links are independent, it
seems natural to consider the following model of random evolving graph: start with
an arbitrary initial graph and, at every time step, if an edge exists then it will die
at the next time step with probability q, while if a link does not exist, then it will
appear in the next time step with probability p. We call this model edge-Markovian
evolving graph (edge-MEG, in short).

In Sect. 19.2, we present an almost-tight analysis on the flooding time of edge-
MEGs. The analysis provides a deep insight of the roles played by the crucial param-
eters of this evolving model. In particular, we will see that the role of the death rate
q is almost negligible w.r.t. that of the birth rate p; moreover, a key ingredient in the
information spreading process is the dynamic expansion property of the edge-MEG:
a dynamic version of the classic concept of node expansion of static graphs. The
above analysis concerns the flooding time of edge-MEGs with respect to the worst-
case initial graph. One natural question is the following: What happens if the initial
graph is “already” random according to the stationary distribution of the Markov
chain that defines the process? In this case, all the snapshots of the evolving graph
have the same marginal distribution. A random process with this property is called
stationary [1]. In experimental papers, this situation is often referred to as perfect
simulation [33].

In Sect. 19.3 we thus study stationary edge-MEGs and realize that our approach
can be used to give upper bounds on the flooding time of a very general class of
models recently introduced in [3] and called Markovian evolving graphs. Roughly
speaking, a Markovian evolving graph (MEG, in short) is a Markov chain with a
finite set of graphs as state space. Clearly, an edge-MEG is a very restricted case of
MEG.

Let us now consider the following model called geometric-MEG. Take a set of n
nodes over a two-dimensional grid, each of them performing a random walk. Con-
sider the random evolving graph where there is an edge between two nodes if their
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Euclidean distance is less than some fixed parameter r (i.e., the transmission range).
Clearly, a geometric-MEG is a special case of MEG as well. Moreover it is a sort of
prototype for a lot of random mobility models of sensor networks where the physical
random node movements over some metric space determine the evolution of the
overlay random graph: the random walk model [22, 28] and the Walkers model [21]
are important examples of MEGs. Previous works on any basic communication task
on such mobility models do not provide any relevant analytical result.

In Sect. 19.3.4, we apply our general method for MEG to analyze geometric-
MEG. We then obtain almost-tight bounds for the flooding time of the latter when
the stationary graph is (with high probability) connected.
What happens when this stationary graph is instead (with high probability) sparse
and disconnected? This question captures the important phenomenon of opportunis-
tic networks [27, 36] where information spreading is significantly helped by high
node mobility rather than radio transmissions of large ranges. In this case, we can-
not exploit any expansion property of the snapshots. In Sect. 19.3.5, we address
this question by studying geometric-MEG where node transmission range is under
the connectivity threshold while node speed is relatively high. We derive almost
tight bounds on the flooding time that provide a mathematical evidence of the fact
that, in some sensor scenarios, random node mobility significantly helps information
spreading.

19.2 Edge-Markovian Evolving Graphs

An evolving graph G is a sequence of graphs with the same set of nodes V ,

G = {Gt : t ∈ N} where Gt = (V, Et ) and Et ⊆
(

V

2

)

A random evolving graph is a probability distribution over a family of evolving
graphs. We introduce the following model of random evolving graph, the edge-
Markovian evolving graph, that is a natural evolving version of the Erdös–Rényi ran-
dom graph model Gn,p. Starting from an arbitrary initial graph G0 = ([n], E0)with
n nodes, at every time step every edge changes its state (existing or not) according
to a two-state Markovian process with probabilities p(n) and q(n) independently of
the other edges. If an edge exists at time t then at time t + 1, it dies with probability
q(n). If instead the edge does not exist at time t then it will come into existence at
time t + 1 with probability p(n). For brevity’s sake, edge birth rate p(n) and edge
death rate q(n) will be simply denoted as p and q, respectively.1 Formally, we have
the following definition.

1 Hence, any inequality p � (�)b(n) means that p(n) is eventually not larger (not smaller) than
b(n). The same holds for q = q(n).
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Definition 1 (Edge-Markovian Evolving Graph) Given a positive integer n ∈ N,
two probabilities 0 � p, q � 1, and a set E0 ⊆ ([n]2

)
, the edge-Markovian evolving

graph G(n, p, q, E0) is the random evolving graph

G(n, p, q, E0) = {Gt = ([n], Et ) : t ∈ N}

where

Et =
{

e ∈
([n]

2

)
: Xt (e) = 1

}

and for every e ∈ ([n]2

)
, {Xt (e) : t ∈ N} is a Markov chain with transition matrix

M =
⎛

⎜
⎝

0 1

0 1 − p p

1 q 1 − q

⎞

⎟
⎠

and with initial condition X0(e) = 1 if and only if e ∈ E0. Markov chains{
Xt (e) : e ∈ ([n]2

)}
are independent.

Observe that setting q = 1 − p yields the random evolving graph where links, at
every time, are chosen independently at random, that is, a sequence of independent
Erdös–Rényi Gn,p.
The flooding process. In order to evaluate the speed of information spreading in
evolving graphs, we use a simple procedure usually called flooding. Start with one
single informed node and, during the evolution of the graph, when a non-informed
node gets in touch with an informed one, it collects the information. More formally
we give the following definition.

Definition 2 (Flooding Process) Let G be an evolving graph and let s ∈ [n] be a
node. The flooding process in G with source s is the sequence {It : t ∈ N} of sets
of nodes defined recursively as follows:

• I0 = {s} (at the beginning only the source node is informed);
• It+1 = It ∪ Nt (It ) (the neighbors of informed nodes become informed)

where Nt (It ) is the neighborhood of It in graph Gt ,

Nt (It ) = {v ∈ [n] \ It : {u, v} ∈ E for some u ∈ It }

Given an evolving graph G and a source node s ∈ [n], the completion time T (G, s)
of the flooding process is the first time step in which all nodes of the network are
informed. The flooding time T (G) is the maximum completion time over all possible
choices of source s ∈ [n].
In this section we study the flooding time of edge-Markovian evolving graphs.
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19.2.1 The Upper Bound

The flooding time of an evolving graph is strictly related to the dynamic expan-
sion properties of the evolving graph (we will exploit this relation in the next
section in a deeper way). Let us consider an edge-Markovian evolving graph
G ∼ G(n, p, q, E0). Let I ⊆ [n] be a subset of nodes and let t0, t ∈ N be two
integers; we define Ht0,t (I ) as the set of nodes (not in I ) that have been connected
to I in at least one time step i ∈ {t0 + 1, . . . , t0 + t}, i.e.,

Ht0,t (I ) =
⎧
⎨

⎩
v ∈ [n] \ I :

{u, v} ∈ Ei

for some u ∈ I and for
some i = t0 + 1, . . . , t0 + t

⎫
⎬

⎭
(19.1)

The size of set Ht0,t (I ) somewhat evaluates the dynamic expansion property of the
evolving graph. A good lower bound on such parameter is used in the proof of the
next lemma. If I is the set of informed nodes at time t0 then all nodes in Ht0,t (I )
will be informed within time t0 + t . Indeed, from Definition 2 and from definition
of set Ht0,t in (19.1), it holds that

1. For any t ∈ N, It−1 ⊆ It ;
2. For any t0, t ∈ N, It0 ∪ Ht0,t (It0) ⊆ It0+t .

In order to evaluate the size of It0+t , we will always use property 2 above.

Lemma 1 After t = O

(
log n

log(1 + np)

)
time steps, the number mt of informed node

is at least βn w.h.p., where β is a positive constant.

Idea of the Proof Consider the stochastic process {mt : t ∈ N}, where mt is the
random variable counting the number of informed nodes at time step t . We want to
evaluate how large t must be in order to have that mt is at least a constant fraction
of all the nodes w.h.p.
Assume we could prove that for every fixed t , the following relation holds w.h.p

mt+1 � (1 + np)mt (19.2)

This inequality could be obtained by providing a lower bound on the size of Ht,1(It ).
Informally speaking, Eq. (19.2) says that the number mt+1 of informed nodes at time
step t +1 is at least the number mt of informed nodes at the previous time step, plus
some multiple (or fraction, depending on how large np is) of mt itself. Then, by
using union bound and some technical effort, we could prove that such a relation
holds w.h.p. for every t in a sufficiently large range, and iterating we would have
w.h.p.

mt � (1 + np)t m0
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Since m0 = 1, it would easily follow that in order to have mt � βn, it is sufficient

to have t � logβn

log(1 + np)
, that is, exactly what we want to prove.

Unfortunately, recurrence 19.2 does not hold for every t , but only for some ranges
of mt and p. However, if recurrence 19.2 is false, it happens for one of the following
two reasons: (1) mt is too large, so that np mt is greater than n; (2) mt is too small,
so that even if recurrence 19.2 holds in expectation (i.e., we have E

[
mt+1

]
� (1 +

np)E [mt ]), we cannot prove concentration results to achieve the high probability
that we need.
The first case is easy to handle because, when mt is sufficiently large, we can prove
that in the next time step the number of informed nodes will be a constant fraction
of all nodes, with high probability. As for the second case, waiting a suitable amount
of time τ , i.e., by evaluating the size of Ht,τ (It ) instead of Ht,1(It ), the number of
new informed nodes mt+τ is significantly bigger than mt . �

Once we have a constant fraction of informed nodes, it is easy to show that after

further O

(
log n

np

)
time steps all nodes will be informed w.h.p.

Lemma 2 Let 0 < β < 1 be any constant and m � βn be the number of informed

nodes at time step t0 � 0. Then, after O

(
log n

np

)
time steps, all nodes will be

informed w.h.p.

Idea of the Proof Let v be a non-informed node. The probability that node v will not
be a neighbor of anyone of the βn informed nodes in anyone of the next t time steps
is less than (1 − p)βnt . Hence, for t � c log n/(βnp), such probability becomes
less than n−c. The thesis follows by taking the union bound over all (1 − β)n non-
informed nodes. �

By combining Lemmas 1 and 2 we have the following upper bound on the flooding
time.

Theorem 1 Let G ∼ G(n, p, q, E0) be any edge-Markovian evolving graph. Then,

the flooding time of G is O

(
log n

log(1 + np)

)
w.h.p.

19.2.2 The Lower Bounds

In this section, we show that the upper bound in Theorem 1 is tight for a large
range of the parameters. We will make use of the following natural “monotonicity”
property: the flooding time decreases as birth rate p increases while it increases as
death rate q increases.

Lemma 3 Consider two edge-Markovian evolving graphs G ∼ G(n, p, q,∅) and
G′ ∼ G(n, p′, q ′,∅) where
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p � p′ ; q ′ � q ; p + q ′ � 1

Then, it holds that

P (T (G) � t) � P
(
T (G′) � t

)
for any t ∈ N

Observe that the above result requires the somewhat “artificial” condition p + q ′ �
1. Indeed, its proof relies on a suitable application (stated in the next lemma) of
the coupling technique of Markov chains that works only under the above condi-
tion. Proving the monotonicity property without this condition by using any other
technique is an open problem which seems far from easy.

Lemma 4 (Markov-coupling Lemma) Let {Zt = (Xt ,Yt ) : t ∈ N} be a Markov
chain with state space {(0, 0), (0, 1), (1, 1)} and transition matrix

M Z =

⎛

⎜⎜⎜⎜
⎝

(0, 0) (0, 1) (1, 1)

(0, 0) 1 − p′ p′ − p p

(0, 1) q ′ 1 − p − q ′ p

(1, 1) q ′ q − q ′ 1 − q

⎞

⎟⎟⎟⎟
⎠

(19.3)

where p � p′, q � q ′, and p + q ′ � 1. Then, {Xt : t ∈ N} and {Yt : t ∈ N} are
Markov chains with state space {0, 1} and transition matrices, respectively,

M X =
⎛

⎜
⎝

0 1

0 1 − p p

1 q 1 − q

⎞

⎟
⎠ MY =

⎛

⎜
⎝

0 1

0 1 − p′ p′

1 q ′ 1 − q ′

⎞

⎟
⎠

In order to obtain a general lower bound on the flooding time, as a first approxima-
tion we can prove a lower bound in the special case q = 0, and thanks to Lemma 3,
it will be a lower bound for any q ∈ [0, 1]. At first this may seem quite a rough
approximation; instead it turns out to be asymptotically tight for most of the cases,
as we will see soon.
Notice that starting from the empty graph (i.e., E0 = ∅), and if edges do not die (i.e.,
q = 0), the resulting edge-MEG G(n, p, 0,∅) is just a sequence of Erdös–Rényi
random graphs with edge probabilities depending on the time step t . Indeed, when
q = 0 the Markov chain {Xt : t ∈ N} that defines the edge-Markovian evolving
graph has transition matrix

⎛

⎜
⎝

0 1

0 1 − p p

1 0 1

⎞

⎟
⎠



600 A. Clementi and F. Pasquale

And given the initial condition E0 = ∅, that yields X0 = 0 with probability 1, with
an easy calculation we obtain

P (Xt = 1) = 1 − (1 − p)t (19.4)

So if G = {Gt : t ∈ N} is an edge-MEG G = G(n, p, 0,∅), then G0 is the empty
graph by definition, G1 is a Gn,p random graph, G2 is a Gn,1−(1−p)2 , and in general
Gt is a random graph Gn,pt with pt = 1 − (1 − p)t . It is worth remarking that
random graphs {Gt : t ∈ N} are not independent, but we are interested here in their
marginal distributions.
Moreover, when q = 0 we have another important property that will turn out to
be useful: The graph is densifying, i.e., Et ⊆ Et+1. This means that for exam-
ple, if Gt is not connected, then Gt ′ is not connected for every t ′ � t , more
formally

P (Gt ′ connected | Gt not connected) = 0 if t ′ � t

Lemma 5 Let G be an edge-Markovian evolving graph with initial condition E0 =
∅ and death rate q = 0, G ∼ G(n, p, 0,∅), then the flooding time of G isΩ

(
log n

np

)

w.h.p.

Idea of the Proof Graph Gt is an Erdös–Rényi Gn,pt with pt = 1− (1− p)t ≈ pt .
It is well-known that if pt � (1 − ε) log n/n random graph Gn,pt is not connected
w.h.p. Hence, in order to have flooding be completed at time t w.h.p., Gt must be
connected w.h.p. and so t must be Ω(log n/(np)). �

Lemma 6 Let G be an edge-Markovian evolving graph with initial condition E0 =
∅ and death rate q = 0, G ∼ G(n, p, 0,∅). If p � log n

n
then the flooding time of G

is Ω

(
log n

log(np)

)
w.h.p.

Idea of the Proof Since q = 0 edges do not die, i.e., Et ⊆ Et+1 for every t . Since
E0 = ∅ it is easy to see that if the flooding process is completed at time t , then
the diameter of Gt is at most 2t . Random graph Gt is an Erdös–Rényi Gn,pt with
pt = 1 − (1 − p)t ≈ pt and it is well known [13] that the diameter of a connected

random graph Gn,pt isΘ

(
log n

log(npt )

)
. Hence if t̄ is the flooding time, it must satisfy

t̄ = Ω

(
log n

log(npt̄)

)
.

By hypothesis p � log n

n
thus log n

log(npt̄) � log n

log log n
. Since log(npt̄) = Θ(log(np))

whenever t̄ = O(poly (np)) = O(polylog n) it follows that t̄ = Ω

(
log n

log(np)

)
. �
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We can now consider arbitrary death rate q. Indeed, from Lemma 3, Lemma 5, and
Lemma 6, we obtain the two following lower bounds.

Theorem 2 Let G be an edge-Markovian evolving graph with initial condition the

empty graph G ∼ G(n, p, q,∅). Then the flooding time of G is Ω

(
log n

np

)
w.h.p.

Observe that when p = O(1/n), the previous lower bound matches the upper bound
in Theorem 1 because log(1 + np) = Θ(np) when np = O(1).

Theorem 3 Let G be an edge-Markovian evolving graph with initial condition the

empty graph G ∼ G(n, p, q,∅). If p � log n

n
, then the flooding time of G is

Ω

(
log n

log(np)

)
w.h.p.

Observe that this lower bound matches the upper bound in Theorem 1, because
log(1 + np) = Θ(log(np)) when np = ω(1).

Consequences of the bounds In Table 19.1 we summarize the results of this section,
then we point out some observations arising from them.

(1) Flooding can be exponentially faster than mixing. As we will see in Sect. 19.3.2,
the stationary distribution of any edge-MEG G = G(n, p, q, E0) with 0 <

p, q < 1 is an Erdös–Rényi random graph. We emphasize that our previous
bounds on flooding time concern the (worst-case) transient phase of edge-
MEG: in several cases, the flooding time can be exponentially shorter than the
mixing time (see [14]).

(2) Sparseness and disconnectivity do not prevent fast flooding. Another important
consequence of the upper bound in Theorem 1 is that starting from any initial
distribution E0, the flooding time can be logarithmic even for p = o(log n/n)
(whatever is q), i.e., even below the connectivity threshold of the stationary
random graph. In particular, the flooding time is at most logarithmic even when
the expected “stationary” node degree is 1.

(3) Flooding time may be independent from the initial graph. When p � 1/nδ for
some constant 0 < δ < 1 and arbitrary q, the upper bound in Theorem 1 turns
out to be constant regardless of the initial distribution E0.

(4) Tightness. For p � log n/n, the obtained upper bound and lower bound are
tight in the standard “computational-complexity” sense: the upper bound holds

Table 19.1 Flooding time of edge-MEG G(n, p, q, E0)

p < 1
n

1 + ε

n
< p <

log n

n
p>

log n

n

Θ

(
log n

np

)
O

(
log n

log(np)

)

Θ

(
log n

log(np)

)

Ω

(
log n

np

)



602 A. Clementi and F. Pasquale

for any initial graph while the lower bound is satisfied by at least one initial
graph and they are asymptotically tight. We can state the same tightness for
p � 1/n since, in this case, np = Θ(log(1 + np)).

(5) The role of the death rate. In Sect. 19.2.1, we proved an upper bound (see The-
orem 1) on the flooding time of edge-MEGs. Our upper bound does not depend
on the death rate q. Despite this seeming roughness, in Sect. 19.2.2 we proved

that the upper bound is tight whenever p /∈
[

1

n
,

log n

n

]
. Indeed, Theorems 2

and 3 state that an initial condition (i.e., the empty graph E0 = ∅) exists such
that the flooding time is lower bounded by two q-independent formulas: such
formulas, outside the above p-range, match the upper bound. On the other hand,
when p ∈ [1/n, (log n)/n

]
there is a gap between our upper and lower bounds.

It turns out that when p is in that small range, the role of the death rate q is
no longer asymptotically negligible. We do not know what actual asymptotic
formula for the flooding time holds in that range; however, it is possible to
prove it must depend on the death rate q as well (see [17]).

19.3 Stationary Markovian Evolving Graphs

Markovian evolving graphs are a natural and very general class of models for evolv-
ing graphs introduced in [3]. In these models, the set of nodes is fixed and the edge
set at time t stochastically depends on the edge set at time t − 1.

Definition 3 (Markovian evolving graph [3]) Let G be a family of graphs with the
same node set [n]. A Markovian evolving graph M = {Gt : t ∈ N} is a Markov
chain with state space G.
A stationary Markovian evolving graph is a Markovian evolving graph M = {Gt :
t ∈ N} such that G0 is random with a stationary distribution of M.

In this section we study the flooding time of stationary Markovian evolving graphs.
We prove an upper bound on the flooding time of any stationary Markovian evolving
graph. This upper bound is expressed in terms of the parametrized node-expansion
properties satisfied by the stationary graphs.
We then show the tightness of this bound in two relevant and natural dynamic
scenarios: edge-Markovian evolving graphs (in short, edge-MEG) and geometric
Markovian evolving graphs (in short, geometric-MEG).

19.3.1 Flooding Time and Expansion Properties

The following definition concerns a sort of parametrized node expansion. This is
a key ingredient in the analysis of flooding in Markovian evolving graphs to cope
with the difficulties due to stochastic dependence.

Definition 4 (Expander) A graph G = ([n], E) is a (h, k)-expander if, for every set
of nodes I ⊆ [n] with |I | � h, it holds that |N (I )| � k|I |.
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The above definition naturally extends to random variables and their probability
distributions.

Definition 5 (Expander II) Let X be a random variable with values in a family of
graphs with the same node set [n]. Then X is a (h, k)-expander with probability p if

P (X is a (h, k)-expander) � p

In this case, we also say that the probability distribution of X yields an (h, k)-
expander with probability p.

We are now able to provide the main result for general stationary Markovian evolv-
ing graphs.

Theorem 4 Let M = {Gt : t ∈ N} be a stationary Markovian evolving graph.
Assume an increasing sequence 1 = h0 � h1 < · · · < hs = n/2 and a decreas-
ing sequence k1 � · · · � ks of positive real numbers exist such that, for every
i = 1, . . . , s, the stationary distribution of M yields an (hi , ki )-expander with
probability 1 − 1

n4 . Then the flooding time of M is w.h.p.

O

(
s∑

i=1

log(hi/hi−1)

log(1 + ki )

)

Idea of the Proof Since by the theorem’s hypothesis, the distribution of G0 is the
stationary distribution of the Markov chain M, for every t ∈ N, r.v. Gt has the same
distribution of G0.
Let us call mt = |It | the number of informed nodes at time step t ; at the beginning
we have m0 = 1. Since every r.v. Gt is an (h1, k1)-expander w.h.p. then, as long as
mt � h1, the recurrence

mt+1 � (1 + k1)mt (19.5)

holds w.h.p. Indeed, whatever the stochastic dependence were till time step t , the
node-expansion property guarantees that |N (It )| is at least k1mt . The closed form
of the above recurrence is mt � (1 + k1)

t m0, hence

O

(
log(h1/m0)

log(1 + k1)

)

time steps are enough to get mt � h1 w.h.p. However, the latter bound might be
o(1) and this requires some technical care to be treated (see the full proof in [18]).
Now, let t1 be the smallest time step such that mt1 � h1. From that time step on, we
cannot use recurrence (19.5) anymore, but as Gt is also an (h2, k2)-expander w.h.p.,
as long as mt � h2, the new recurrence mt+1+t1 � (1 + k2)mt+t1 holds w.h.p.
By solving the recurrence, we obtain mt+t1 � (1 + k2)

t mt1 � (1 + k2)
t h1. So the

number of time steps required to reach h2 informed nodes is w.h.p.
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O

(
log(h2/h1)

log(1 + k2)

)
+ O

(
log h1

log(1 + k1)

)

We apply this way of reasoning over all sequence of expansion parameters and we
thus get that at least n/2 nodes will be informed within a number of time steps that
is w.h.p. within the bound of the theorem.
Once there are n/2 informed nodes, a symmetric argument shows that the number
of non-informed nodes decreases at the same rate. �
Definition 3 naturally extends in the following way. We will need this generalization
to include geometric-MEG (see Sect. 19.3.4).

Definition 6 (Markovian Evolving Graph II) Let G be a family of graphs with the
same node set [n]. A Markovian evolving graph G = {Gt : t ∈ N} is a sequence of
random variables with state space G and such that there exist both a Markov chain
X = {Xt : t ∈ N} and a function f so that Gt = f (Xt ).
A stationary Markovian evolving graph is a Markovian evolving graph G = {Gt :
t ∈ N} such that G0 is random with a stationary distribution of X translated by f .

It is not hard to show that Theorem 4 easily extends to the above generalized defini-
tion of Markovian evolving graphs.

19.3.2 Stationary Edge-MEGs

We recall the model introduced in the previous chapter. A stationary edge-MEG
M(n, p, q) = {Gt : t ∈ N} is a Markov chain such that Gt = ([n], Et ) with

Et =
{

e ∈
([n]

2

)
: Xt (e) = 1

}

where {Xt (e) : e ∈ ([n]
2

)} are independent Markov chains with transition
matrix

M =
⎛

⎜
⎝

0 1

0 1 − p p

1 q 1 − q

⎞

⎟
⎠

and for every e ∈ (V2
)
, X0(e) is random according to the stationary distribution

of M . Clearly, a stationary edge-MEG is a stationary Markovian evolving graph
according to Definition 3. Observe that the stationary distribution of the Markov
chains {Xt (e) : t ∈ N} is

πe =
(

q

p + q
,

p

p + q

)
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Hence, the stationary distribution of M(n, p, q) is Gn, p̂ (i.e., Erdös–Rényi distri-
bution in which each possible edge occurs independently with probability p̂) where
here and in the sequel

p̂ = p

p + q

Theorem 5 Let M(n, p, q) be a stationary edge-MEG such that p̂ � c log n
n for a

sufficiently large constant c. Then the flooding time of M(n, p, q) is w.h.p.

O

(
log n

log(n p̂)
+ log log(n p̂)

)

Idea of the Proof The stationary distribution of an edge-MEG is an Erdös–Rényi
random graph, whose expansion properties are well known and easy to calculate.
The thesis follows by applying Theorem 4 with such expansion parameters. �
The next theorem gives a lower bound on the flooding time of stationary edge-
MEGs.

Theorem 6 Let M(n, p, q) be a stationary edge-MEG such that p̂ � c log n
n for a

sufficiently large constant c. Then the flooding time of M(n, p, q) is w.h.p.

Ω

(
log n

log(n p̂)

)

Idea of the Proof For a fixed time step t , the degree of any node in the network is
Θ(n p̂) w.h.p. By taking the union bound we have that it holds w.h.p. for a suffi-
ciently long sequence of time steps, say Θ(n) time steps. Hence, the number of new
informed nodes at every time step is at most Θ(n p̂) times the current number of
informed nodes w.h.p. �
Consequences of the bounds In Sect. 19.2, the maximal flooding time in edge-
MEG has been studied with respect to any initial probability distribution. However,
those results do not say whether flooding can be (significantly) faster in station-
ary edge-MEG. Interestingly enough, the stationary bound implies that whenever
the birth rate p is O(1/n1+ε) and the death rate q is O(np/ log n), there is an
exponential gap between the stationary case and the worst case. An exponential
gap also holds whenever p = O(log n/n) and q = O

(
p
√

n
)

(for instance, set
q = (polylog n)/n).

19.3.3 Parsimonious Flooding in Stationary Edge-MEGs

The flooding process can be seen as a broadcasting protocol where, when a node gets
the source message, the node forwards it for all the following time steps. In [5] the
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authors introduce a variant of this protocol in which every node forwards the source
message only for the next k time steps after the message reception: this variant is
called the k-active flooding protocol.
Two main questions arise:

1. How large k must be in order to guarantee (w.h.p.) that the flooding process is
completed?

2. When k is large enough to accomplish the task in (1), what is the
completion time of the k-active flooding, compared to the unrestricted
flooding?

Let M(n, p, q) = {Gt : t ∈ N} be a stationary edge-MEG and let s ∈ [n] be a
source node. The completion time of the k-active flooding protocol is the first time
step (if any) such that all nodes are informed

T (k)
s = ∞{t � 0 : It = [n]}

The reachability threshold for the flooding protocol is the smallest integer k such
that T (k)

s <∞ almost surely (a.s. in short)2 for any s ∈ [n].
Informally speaking, it turns out that (i) when p̂ is large enough, namely greater
than log n/n, k = 1 suffices to complete flooding a.s.; (ii) when 1 < n p̂ < log n/n,
the reachability threshold k is a decreasing function of the birth rate p; (iii) when
p̂ < 1/n all nodes must be active for the whole execution of the protocol in order
to guarantee the flooding task a.s. Interestingly enough, whenever k is sufficiently
large to guarantee the flooding task, the completion time of the k-active flooding
protocol is the same as the completion time of the unrestricted flooding protocol up
to a constant factor.
More formally, in the following theorem we summarize the results
in [5].

Theorem 7 Let M(n, p, q) = {Gt : t ∈ N} be a stationary edge-MEG and let

p̂ = p

p + q
be the stationary edge probability.

1. If p̂ = ω

(
log n

n

)
then the reachability threshold is k = 1 and the 1-active

flooding time is O

(
log n

log n p̂

)
a.s.;

2. If 1/n � p̂ � c log n
n then

• The reachability threshold is Θ

(
log n

np

)
a.s.;

• For any k = Ω

(
log n

np

)
the k-active flooding time is Θ

(
log n

np
+ log n

n p̂

)

a.s.;

2 Almost surely here means with probability that tends to 1 as n goes to infinity, without requiring
the rate of convergence to be the inverse of a polynomial in n, as it is for w.h.p.
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3. If p̂ � c/n then both the reachability threshold and the flooding time are

Θ

(
log n

np

)
a.s.

Idea of the Proof The main step in the proof is a reduction lemma in which the
authors show that the completion time of the k-active flooding process in stationary
edge-MEG M(n, p, q) is equal to the diameter of a suitable weighted random graph
G(k)

n, p̂,p. The analysis of the reachability threshold and of the k-active flooding time
is then obtained by analyzing the connectivity property and the diameter of this
weighted random graph G(k)

n, p̂,p. �

19.3.4 Stationary Geometric-MEGs

We introduce a model of evolving graphs that is a discrete version of the random
walk mobility model for radio networks [9]. In the latter model, nodes (i.e., radio
stations) move on a bounded region of the plane (typically a square region) and
each node performs, independently from the others, a sort of Brownian motion. At
any time there is an edge (i.e., a bidirectional connection link) between two nodes
if they are at distance at most r (in the language of radio networks it represents
the transmission range). In our model we discretize time and space. We choose to
keep constant the density (i.e., the ratio between the number of nodes and the area)
as the number n of nodes grows. The region in which nodes move is a square of
side

√
n and the density equals 1. We remark that this choice is only for the sake

of convenience and all the results can be scaled to any density δ(n). The nodes can
assume positions whose coordinates are integer multiple of a resolution coefficient
ε>0. Formally, nodes move on the following set of points:

Ln,ε =
{
(iε, jε) | i, j ∈ N ∧ i, j �

√
n

ε

}

At any time step, a node can move to one of the positions of Ln,ε within distance
ρ from the previous position. The positive real number ρ is a fixed parameter that
we call move radius. It can be interpreted as the maximum velocity of a node.3

Formally, we introduce the move graph Mn,ρ,ε = (Ln,ε, En,ρ,ε), where

En,ρ,ε = {(x, y) | x, y ∈ Ln,ε d(x, y) � ρ}

and d(·, ·) is the Euclidean distance. A node in position x, in one time step, can
move in any position in Γ (x), where Γ (x) = {y | (x, y) ∈ En,ρ,ε}. The nodes are
identified by the first n positive integers [n]. The time evolution of the movement
of a single node i is represented by a Markov chain {Pi,t ; t ∈ N} where Pi,t are
random variables whose state space is Ln,ε and

3 Indeed, a node can run through a distance of at most ρ in a unit of time.
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P
(
Pi,t+1 = x

) =
{

1
|Γ (Pi,t )| if x ∈ Γ (Pi,t )

0 otherwise

In other words, Pi,t is the position of node i at time t . Thus, the time evolution of
the movements of all the nodes is represented by a Markov chain P(n, ρ, ε) = {Pt :
t ∈ N} whose state space is Ln,ε × Ln,ε × · · · × Ln,ε (n times) and

Pt = (P1,t , P2,t , . . . , Pn,t )

Let us fix a transmission radius r>0. A geometric-MEG is a sequence of random
variables G(n, ρ, r, ε) = {Gt : t ∈ N} such that Gt = ([n], Et ) with

Et = {(i, j) | d(Pi,t , Pj,t ) � r}

Clearly, a geometric-MEG is a Markovian evolving graph according to Definition 6.
As for the stationary case, we observe that the stationary distribution πi of Markov
chain {Pi,t ; t ∈ N} is (see for example [1])

πi (x) = |Γ (x)|
∑

y∈Ln,ε
|Γ (y)|

Moreover, the stationary distribution of P(n, ρ, ε) is the product of the independent
distributions πi for all i ∈ [n]. We say that a geometric-MEG G(n, ρ, r, ε) = {Gt :
t ∈ N} is a stationary geometric-MEG if the underlying P0 is random with the
stationary distribution of the Markov chain P(n, ρ, ε) = {Pt : t ∈ N}. Notice
that if G(n, ρ, r, ε) = {Gt : t ∈ N} is a stationary geometric-MEG then all
random variables Gt have the same probability distribution that we call stationary
distribution of G(n, ρ, r, ε).

Theorem 8 Let G(n, ρ, r, ε) be a stationary geometric-MEG. If ε � 1 and
c
√

log n � r � √
n for a sufficiently large constant c, then the flooding time of

G(n, ρ, r, ε) is w.h.p.

O

(√
n

r
+ log log r

)

Idea of the Proof The stationary distribution of a geometric-MEG is approximately
(up to a small border effect) a geometric random graph in which points are thrown
uniformly and independently at random in the square. The expansion parameters of
the geometric random graph (and of its approximate version) are well known and
easy to calculate. The thesis follows by applying Theorem 4 with such expansion
parameters. �

We remark that the proof of the expansion properties only relies on the fact that the
stationary distribution of node positions is almost uniform. In fact we can get the
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same expansion properties for any mobility model yielding a stationary distribution
of node position that is uniform or almost uniform. Several relevant mobility models
enjoy this uniformity property. So, thanks to our Theorem 4, we can get an upper
bound on flooding time similar to that of Theorem 8.
The next theorem shows a lower bound on the flooding time of stationary geometric-
MEGs.

Theorem 9 Let G(n, ρ, r, ε) be a stationary geometric-MEG. If ε � 1, then the
flooding time of G(n, ρ, r, ε) is w.h.p.

Ω

( √
n

r + ρ

)

Idea of the Proof There are two nodes at distance Ω
(√

n
)

w.h.p. Take one of them
as source node and observe that at every time step the information can get closer to
the destination only for an additive factor r + ρ. �
Under the very reasonable conditions of the above theorem, the general bound on
the flooding time of Markovian evolving graphs thus turns out to be asymptotically
tight for stationary geometric-MEG.

19.3.5 Stationary Geometric-MEGs Under the Connectivity
Threshold

The upper bound on flooding time in the previous section is achieved thanks to the
expanding properties of the connected snapshots of the geometric-MEG which are,
in turn, guaranteed by two facts: (1) the stationary node distribution at every time
step is almost uniform and (2) the transmission radius r is over the connectivity
threshold. In particular, they imply that starting from the second time step, the num-
ber of informed nodes is large enough to apply standard Chernoff-like bounds. This
allowed us to evaluate the number of new informed nodes at any successive step.
The role of node mobility is thus shown to have a negligible impact on the flooding
process.

That scenario is no longer true when the transmission radius r is below the con-
nectivity threshold (say constant). This can be viewed as a model for opportunistic
MANETS where mobile nodes, in order to save energy, perform message transmis-
sions at a relatively low rate. The resulting unit time (i.e., the time interval between
two consecutive message transmissions) is large enough so that the mobility param-
eter ρ is greater than the transmission radius r .
When ρ ) r , the flooding process is mainly due to node mobility that, roughly
speaking, brings the source information outside the small connected components
of the sparse snapshots. The next theorem provides an analytical statement of this
phenomenon.
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Theorem 10 Let G(n, ρ, r, ε) be a stationary geometric-MEG. If r � r0 and ρ �
c
√

log n for sufficiently large constants r0 and c, then the flooding time is w.h.p.

O

(√
n

ρ
+ log n

)

Idea of the Proof The proof consists of a probabilistic analysis of the number of new
informed nodes at every time step of the flooding process. In order to cope with this
analysis, the temporal process is organized in three consecutive phases. Even though
it is likely that in the real process these phases happen simultaneously rather than
consecutively, our analysis yields the desired upper bound. The phases depend on
the current number of informed nodes and on the “locality degree” of the process. As
for the latter, we need to partition the square into equal supercells, i.e., subsquares
of area Θ(ρ2). This partition guarantees that any node v in a supercell S, after
the move-action, can reach any position in any neighboring supercell with almost-
uniform probability. Another crucial property yielded by the partition is that for the
first—say—O(n) time steps, every supercell will contain Θ(ρ2) nodes, w.h.p.
The Bootstrap Phase. In this initial phase, we start our analysis focusing on what
happens inside the neighborhood of the supercell S0 containing the source, i.e.,
the supercell set N (S0) formed by S0 and its adjacent supercells. We can say that
with positive-constant probability, S0 contains Θ(r2) informed nodes after the first
time step. Observe that this is the crucial analysis point where we need to go from
positive-constant probability to high probability and we cannot use Chernoff-like
bounds. Indeed, in the successive time steps t > 0 of this phase, we consider
the flooding rate inside the supercell S′

t having the maximal number of informed
nodes at time step t . We will then prove that after O(log n) time steps, there will
be (at least) one supercell quasi-informed w.h.p., i.e., a supercell containing Θ(ρ2)

informed nodes.
The Spreading Phase. After the Bootstrap there is (at least) one quasi-informed
supercell w.h.p. We can thus look at the flooding from a quasi-informed supercell
to its adjacent ones. We show that if a supercell is quasi-informed at a given time
step, then all its adjacent supercells will be quasi-informed within the next time
step w.h.p. Since the boundary of any supercell set D has size at least Ω

(√|D|),
it turns out that this flooding phase makes all the supercells quasi-informed within
O
(√

n/ρ
)

time steps w.h.p.
The Filling Phase. At the end of the previous phase, we thus have all supercells
quasi-informed w.h.p. The Filling phase consists of the sequence of time steps
required to get all supercells informed. We prove that this final process is completed
in O(log n) time steps w.h.p. �
Consequences of the bounds The results on stationary geometric-MEGs are sum-
marized in Table 19.2.
In general, our upper bound in Theorem 10 says that in this case, the flooding time
does not asymptotically depend on the transmission radius.
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Table 19.2 Flooding time of stationary geometric-MEG G(n, ρ, r)

r>
√

log n ρ>
√

log n and r = Ω(1)

O

(√
n

r
+ log log r

)
O

(√
n

ρ
+ log n

)

Ω

( √
n

r + ρ

)

This fact has important technological consequences in the futuristic scenario of
large, high-mobile MANETS. The two major goals in MANETS are (i) guaran-
tee good and fast data communication and (ii) minimize node energy consumption
(which is clearly an increasing function of r ). It is well known that in classic (static
or low-mobile) MANETS such two goals are in contrast with each other and, thus, a
suitable trade-off must be determined (actually, optimizing this trade-off is currently
a major research issue in ad hoc networking [2, 32, 41]). In particular, we know that
[29, 37] in order to guarantee global connectivity (and thus data communication) in
static random geometric graphs, the transmission radius must be Ω

(√
log n

)
, so it

must increase with the network size.
In this context, our bound is a strong mathematical evidence of the fact that when

node mobility is relatively high and random, the two above goals are not competing
anymore. We can achieve fast data forwarding by using small transmission radius
(so, saving node energy). More importantly, the transmission radius can be an abso-
lute constant and, so, it does not need to increase as the network size does. The
technology of node transmitter devices can be thus scalable. Observe that node
mobility in such opportunistic networks is due to the host mobility which is often
fully independent of sensor devices: high sensor mobility does not (necessarily)
imply high energy consumption [36].

19.4 Radio Broadcasting in Dynamic Networks

In this section we study the radio broadcast task [10] in dynamic networks. Accord-
ing to the series of previous theoretical works [4, 10–12, 20, 39, 40], the commu-
nication is assumed to be synchronous. Synchronous communication allows us to
focus on the impact of the interference phenomenon on the network performance.
When a node sends a message, the latter is sent in parallel on all outgoing edges.
On the other hand, a node can receive a message during a time step if and only
if there is exactly one of its in-coming neighbors that sends the message during
that time step. If two or more neighbors send a message during the same time step,
then a collision occurs and the node receives nothing because of the interference
phenomenon. It follows that broadcast protocols for the radio model must cope with
message collisions. For instance, the flooding mechanism clearly does not work on
general graphs.
In order to model a dynamic network, we use our general framework of evolving
graphs. We consider two extremal cases: In the next section we analyze the radio
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broadcast problem when the network dynamics is governed by an adaptive adver-
sary, in Sects. 19.4.2 and 19.4.3 we consider the case in which the network dynamics
is given by a sequence of independent Erdös–Rényi random graphs.

19.4.1 The Worst-Case Evolving Graph

Given a set of nodes V , we consider an adversary A that, at every time step t ,
chooses the set of edges Et ⊆ (V

Et

)
: this yields an evolving graph GA = {Gt :

t ∈ N}. The adversary has complete knowledge of the broadcasting protocol and
it is adaptive: at every time step t he knows the set It ⊆ V of the informed nodes.
However, the adversary must be “meaningful.” An adversary is meaningful if, at any
time step, it keeps at least one link on from an informed node to a non-informed one.
The next theorem shows a simple randomized protocol that completes radio broad-
casting for any choice of the meaningful adversary. We then prove that this simple
protocol is asymptotically optimal.

Theorem 11 A randomized protocol exists that, for any adaptive worst-case adver-

sary, completes broadcasting within O

(
n2

log n

)
time steps, w.h.p.

Idea of the Proof Consider the following protocol: At every time step every informed

node sends the message with probability p = log n

n
. Since the adversary is mean-

ingful, at every time step a non-informed node u exists that is connected to k � 1
informed nodes. Since each one of those nodes sends the message independently
with probability log n/n, node u gets the message with probability larger than
log n/n. �
It is important to observe that no deterministic protocol can complete broadcast
against meaningful adversaries. So, the above theorem shows another relevant case
in distributed computing where random computations are provably more powerful
than deterministic ones.
The next theorem shows that for every protocol we can define an adaptive meaning-

ful adversary so that the resulting expected completion time is Ω
(

n2

log n

)
.

Theorem 12 For every randomized broadcast protocol, an adaptive worst-case

adversary exists that forces the protocol to have Ω

(
n2

log n

)
expected completion

time.

Idea of the Proof Consider the following adversarial strategy. At every time step,
choose an arbitrary non-informed node v; if a node u exists that is transmitting with
probability pu � log m/m, where m is the number of informed nodes in the current
time step, then connect node u with v and leave all the other edges down. Otherwise
connect to v all the informed nodes and leave all the other edges down. In both
cases the probability that node v gets the information is at most log m/m; hence the



19 Information Spreading in Dynamic Networks: An Analytical Approach 613

expected number of time steps required to have one newly informed node is at least
m

log m
. This implies that the expected completion time of the protocol is at least

∞∑

m=2

m

log m
= Ω

(
n2

log n

)

�

19.4.2 The Random Evolving Graph: Case p Known

For any n and for any probability p, the random evolving graph, denoted as
dynamic Gn,p, is an infinite sequence of random graphs G0,G1, . . . ,Gt , . . . where
each Gt is independently selected according to the random graph model Gn,p.
In the sequel p will denote the edge probability of random graphs. A broad-
cast protocol in dynamic Gn,p, at any time step t , acts in graph Gt . Notice
that this is a special case of edge-Markovian evolving graph (see Definition 1
with q = 1 − p).
We now present an oblivious randomized protocol that makes use of an oblivious
version (the third loop below) of the BGI’s Decay procedure [4].

DynBroad(n,p)

for �c log n� time steps (where c is a suitable constant)
The source sends the message;

for �c log n� time steps
Each informed node sends the message;

for k = 0, 1, . . . �log n�
Each informed node sends the message with probability q = e−k

for �c log n� time steps
Each informed node sends the message with probability q = 1/(np)

The protocol clearly terminates within O(log n) time steps. In what follows we show
that for p � 1/n, DynBroad(n,p) completes broadcasting in dynamic Gn,p, w.h.p.
The proof evaluates the number of informed nodes after each of the four loops of
the protocol. Note that the analysis significantly departs from those in [4] and [24]
for static unknown graphs.

Theorem 13 Let p � 1/n. Protocol DynBroad(n,p) completes broadcasting in
dynamic Gn,p, w.h.p.

Idea of the Proof Phase 1 (First loop) In this phase there are no collisions, because
only the source node is transmitting. A node u receives the message if and only
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if a time step exists such that u is connected to the source node. At every time
step the link between u and the source is up with probability p independently
of the other time steps; hence the probability that node u will never be con-
nected to the source in this phase is (1 − p)Θ(log n) ≈ e−Θ(p log n). The expected
number of informed nodes at the end of the phase is thus n

(
1 − e−Θ(p log n)

)
. If

p � 1/ log n this is a constant fraction of n, while if 1/n � p � 1/ log n it holds
that n

(
1 − e−Θ(p log n)

) ≈ np log n � log n. In both cases we can apply Chernoff
bounds to obtain concentration results. Thus, if p � 1/ log n, then after the first
phase a constant fraction of nodes is informed w.h.p., and we can directly jump to
the analysis of the fourth phase; while if 1/n � p � 1/ log n, after the first phase
there are at least log n informed nodes w.h.p. and we proceed with the analysis of
the second and third phases.
Phase 2 (Second loop) Our aim is to show that at the end of this phase, at least 1/p
nodes are informed w.h.p. We may assume that we start with at least log n informed
nodes (because of the previous phase), and that 1/n � p � 1/ log n (because
otherwise we can directly go to phase 4).

In this phase all the informed nodes send the message at every time step; hence
a node u, that is not informed at the beginning of the phase, receives the message if
and only if a time step exists such that u is connected to exactly one of the informed
nodes in such time step.
Let t be an arbitrary time step, let mt be the number of informed nodes in such
time step, and let u be a non-informed node at time step t . If mt � 1/p we have
done; otherwise the probability that u receives the message in the current time step is
mt p(1− p)mt−1. Since by hypothesis mt � 1/p and p � 1/n we have that mt p(1−
p)mt−1 is approximately at least as large as mt p � mt/n. The expected number of
new informed nodes in the current time step is thus at least (n − mt )mt/n � αmt

for a suitable positive constant α. By using Chernoff bound, since mt � log n, once
again this holds w.h.p.
Hence, in every time step t of this phase, either the number of informed nodes mt

is already larger than 1/p or the recurrence mt � (1 + α)mt holds w.h.p. for some
positive constant α. By iterating the recurrence for O(log n) time step it follows that
at the end of the phase there must be at least 1/p informed nodes w.h.p.
Phase 3 (Third loop) Now we show that if we start the third loop with at least 1/p
informed nodes, then at the end of the phase a constant fraction of nodes will be
informed w.h.p.
At time step t of this phase every informed node sends the message with probability
qt = e−t ; hence the probability that a non-informed node u receive the message
in such time step is mt pqt (1 − pqt )

mt−1. Since qt decreases exponentially from 1
to 1/n, and since mt can only increase, a time step t must exist such that mt p is
close to 1/qt up to a constant factor. In that time step, every non-informed node has
constant probability to be informed. Hence, after that, the total number of informed
nodes is at least a constant fraction of n.
Observe that we cannot directly use Chernoff bounds here to achieve concentration
results: the involved random variables are not independent. However, by using a
suitable conditioning trick (we refer the interested reader to the full proof in [16, 17])
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it is possible to prove that the number of informed nodes at the end of the phase is
at least a constant fraction of n, w.h.p.
Phase 4 (Fourth loop) At the beginning of this phase there are at least a constant
fraction of informed nodes. If every informed node sends the message with probabil-
ity 1/np, then every non-informed node u has a constant probability to be informed
in every time step. Hence node u will be informed by the end of the phase w.h.p.
By using union bound, it follows that every node will be informed by the end of the
phase w.h.p. �
We observe that if p is 1 − o(1), the broadcast task can be completed in o(log n) by
considering the simple protocol where only the source transmits with probability 1
(e.g., if p = 1 − 1/n2 broadcasting is completed w.h.p. in one time step). Instead
when p does not tend to 1 as n goes to infinity, we now show a lower bound matching
the previous logarithmic upper bound.

Theorem 14 Let ε be any positive constant and let p � 1 − ε. Any broadcast
protocol in dynamic Gn,p has expected completion time Ω(log n).

Idea of the Proof Let mt be the number of informed nodes at time step t . Assume
k nodes are transmitting at time step t , with 0 � k � mt . The probability that a
non-informed node u receives the information is thus kp(1 − p)k−1 which is less
than some constant δ < 1 for every k if p � 1 − ε. Hence the expected number
of new informed nodes cannot be larger than a δ-fraction of all the non-informed
nodes. In order to get all the nodes informed, the protocol thus needs Ω(log n) time
steps. �
Protocol DynBroad(n,p) requires the knowledge of the edge probability p. In the
next section we investigate what happens when this is not the case.

19.4.3 The Random Evolving Graph: Case p Unknown

Let us consider the following variant of the BGI’s Decay procedure [4] denoted as
BGI(n).

BGI(n)

for �c log n� time steps (where c is a suitable constant)
for k = 0, 1, . . . �log n�

Each informed node sends the message with probability q = e−k

Protocol BGI(n) terminates within O(log2 n) time steps. Now we show that it com-
pletes broadcasting in dynamic Gn,p, w.h.p. Through the following we call phase
each execution of the inner for of the protocol BGI(n).

Theorem 15 Protocol BGI(n) completes broadcasting in dynamic Gn,p w.h.p. for
any p � 1/n.
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Idea of the Proof The proof proceeds as follows: first we show that after O(log2 n)
time step there are at least Ω(log n) informed nodes. Then observe that protocol
BGI(n) simulates phases 2, 3, and 4 of protocol DynBroad(n, p). Indeed, (i) a sub-
sequence ofΘ(log n) time steps exists in which every informed node sends the mes-
sage (whenever k = 0, protocol BGI(n) simulates phase 2 of DynBroad(n, p)); (ii)
the third loop of DynBroad(n, p) is just one of the inner loops of BGI(n); (iii) a
subsequence of Θ(log n) time steps exists in which every informed node sends the
message with probability close to 1/(np) (whenever k ≈ log(np), protocol BGI(n)
simulates phase 4 of DynBroad(n, p)). Hence, even though those subsequences are
made by non-consecutive time steps, it is possible to prove the thesis by adapting
the strategy used in the proof of Theorem 13. �
A protocol is said homogeneous if at every time step every informed node fol-
lows the same rule. Protocol BGI(n) is thus homogeneous because at every time
step every informed node transmits with the same probability, while protocol
DynBroad(n,p) is not homogeneous, because in its first phase the source is the
only one sending the message.

For homogeneous protocols, we can give a lower bound that almost matches the
completion time of BGI(n). In the next theorem we show that when a homogeneous
randomized protocol does not know p, an adversary can choose p in order to force
the protocol to run for Ω(log2 n/ log log n) expected time.

Theorem 16 Given any homogeneous broadcast protocol P , a probability p exists

such that P has expected completion time Ω

(
log2 n

log log n

)

in dynamic Gn,p.

Idea of the Proof For any fixed edge probability p, there exists an interval of
transmission probabilities such that if the protocol’s transmission probability is
out of this interval then the number of new informed nodes is small. There exist

Ω

(
log n

log log n

)
edge probabilities such that their corresponding intervals are pair-

wise disjoint. A homogeneous broadcast protocol that does not know the probability
p of the dynamic Gn,p cannot avoid that at least one of these intervals (and the corre-
sponding edge probability p̃) does exist that contains at most O(log n) transmission
probabilities of the protocol. Hence, for most of the time steps in dynamic Gn, p̃, the
number of new informed nodes will be small. �

It is an interesting open question whether a non-homogeneous protocol exists that
beats this lower bound. Any positive answer to this question would be very surpris-
ing in such dynamic and unknown scenario.

19.4.3.1 Consequences of the bounds

The analysis of the worst-case evolving graphs shows that meaningful network
dynamics cannot arbitrarily slow down the information propagation. In particu-
lar, our quadratic upper bound implies that no meaningful adversary exists that
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forces exponential broadcast completion time. On the other hand, the analysis of
the dynamic Gn,p evolving graph shows that, if the network evolution is somewhat
random, then such dynamic environment can allow fast broadcast completion time
even on networks that are very sparse and disconnected at every time step (e.g.,
dynamic Gn,p with p ≈ 1/n).

Throughout the chapter we used the expression w.h.p. as a shortcut to say that
an event holds with probability at least 1 − 1/nα for some positive constant α. For
example, we showed the probability that protocols DynBroad(n,p) and BGI(n) do
not complete the broadcast task is less than n−α for some positive constant α. It
may be worth noticing that constant α depends on constant “c” that appears in the
protocols. By choosing a sufficiently large c, we can thus make the probability of
failure polynomially small while keeping the same asymptotic running time.

19.5 Conclusions and Open Problems

In this chapter we analyzed the speed of information spreading in dynamic networks
by using the general framework of evolving graphs and simple communication pro-
cedures like flooding. The flooding time plays the same role for evolving graphs
as the diameter does for static graphs, and it is thus a natural lower bound on the
completion time of any communication procedure in dynamic networks.

A comparison of the results on flooding time (Theorems 1, 2, and 3) with the
ones on radio broadcast time (Theorems 13 and 14) in the dynamic Gn,p model
highlights the impact of collisions on the speed of information spreading. When the
random evolving graph is very sparse and disconnected (p ≈ 1/n) both flooding
time and radio broadcast time are logarithmic, but when p grows and the graph
becomes denser and denser, the flooding time drops down fast to a constant value,
while the radio broadcast time stays logarithmic for the whole range of p, slacken
by the interference phenomenon.

Several open challenging issues in dynamic sensor networks are still far to be
well formalized and studied from a foundational point of view. Among them, we
briefly discuss the ones we believe more relevant and more suitable to be addressed
by our approach.

Modeling faulty sensor networks by a more concrete class of Markovian evolving
graphs still keeping its analytical study a possible task represents one of the most
important open challenges in this area. In particular, a good direction could be that
of introducing stochastic dependence among faults in the same local area.

Our method provides “good” upper bounds in Markovian evolving graphs having
an almost homogeneous topology. Another important issue is to investigate evolving
graphs that are somewhat non-homogeneous. For instance, we can consider mobil-
ity models yielded by node random walks over highly irregular support graphs. A
further instance is that yielded by the random waypoint model over a non-convex,
irregular region.

Finally, it would be interesting to extend our analysis to other basic communica-
tion tasks such as data gathering and routing.
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Chapter 20
Self-Stabilizing and Self-Organizing Virtual
Infrastructures for Mobile Networks

Shlomi Dolev and Nir Tzachar

Abstract Self-stabilizing algorithms can be started in any arbitrary state to exhibit
a desired behavior following a convergence period. The class of self-organizing
distributed algorithms is regarded here as a subclass of the self-stabilizing class
of algorithms, where convergence is sub-linear in the size of the system and local
perturbation of state is handled locally converging faster than the convergence from
an arbitrary state. The chapter starts with a short overview of several virtual infras-
tructures and fitting self-stabilizing and self-organizing techniques:

• Group communication by random walks [23]
• Polygon-based stateless infrastructure [19]
• Geographic quorum systems [1, 16]
• Autonomous virtual node [18]
• Secret swarm units [20]
• Spanners, spanning expanders

The last design, which is based on expanders and short random walks, is described
in detail.

20.1 Introduction

In the scope of sensor networks, traditional paradigms and techniques for form-
ing communication infrastructure among computing devices must be reexamined.
In particular, the self-stabilization [9], [10] property, an important property of any
dynamic long-lived system, must be taken into account. Self-stabilizing systems
may start operating in any arbitrary state and can therefore recover following a
temporary violation of the assumption made by the system designer. Mobile ad hoc
networks are very dynamic in nature and must cope with unreliable and sometimes
unpredictable environments. Thus, the design of self-stabilizing mobile and ad hoc
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networks is of great importance. Self-stabilizing networks are self-organizing if they
are very efficient in terms of the time it takes for the system to converge. Namely,
self-stabilizing and self-organizing systems start to operate as they should in sub-
linear time, and once they start to operate correctly, they react to dynamic changes
even faster. We overview several recent works demonstrating several directions
for creating adaptive infrastructures and abstractions, namely, self-stabilizing and
self-organizing infrastructures. These infrastructures fit the mobile ad hoc network
characteristic.

This chapter is devoted to several self-stabilizing and self-organizing infrastruc-
tures; where one of them, which is based on expanders and short random walks, is
described in detail (Sect. 20.2 and onward).

• Group Communication by random walks [23]. Random walk forms an impor-
tant tool to cope with the frequent changes of dynamic networks, as it does not
need to maintain and update a distributed (routing) data structure. Using random
walks for implementing group communication abstractions is suggested in [23].
The system design is based on a mobile agent, collecting and distributing infor-
mation, during a random walk. Three possible settings for modeling the location
of the processors in the ad hoc network are presented:

• Slow location change: Where the random walk is analyzed as if acting on
a fixed network. Thus, the expected cover time in terms of agent moves is
O(n3), where n is the number of nodes in the network.

• Complete random change: Where a reduction to a random walk in the com-
plete graph case is appropriate. In this case the expected cover time in terms
of agent moves is O(n log n).

• Neighbors with probability: Where one may tune the random walk by the
probability differences to mimic equal probability transfer, which is in fact
a reduction to the case of a fixed network.

The new techniques that are based on random walks support group membership
and multicast and also support resource allocation. To support group membership
the agent maintains a list of members with the number of steps elapsed since they
were visited. Since the system should be self-stabilizing, we must consider cases
in which the list of members carried with the agent totally does not correspond to
the members of the group. Thus, members that are not visited during a too long
period, where period is measured in terms of number of agent steps, are removed.
Moreover, if the sorted list of last visiting times, v1, v2, . . . , vm , indicates that
vi+1 is much larger than the cover time of a component with i + 1 nodes, then
all members but the first i are suspected as a result of a corruption or a dynamic
change and are excluded from the group.

• Polygon-based stateless infrastructure [19]. Another approach to create an
infrastructure without maintaining a distributed data structure, or in other words
to use stateless routing suggested in [19], where the idea is to form routing infor-
mation on the fly. Consider communication among sensors that are deployed in
a geographic region. Each sensor is a computing device with severe resource
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limitations, low power, slow processing, and small memory. The devices are
distributed (uniformly) in the geographic region. Imaginary polygon tilings are
presented as a general scheme for supporting communication in sensor networks.
The tiling system is built on the fly, ensuring that most of the sensors do not
have to transmit. Assume that a certain sensor that is planning to broadcast a
message (a) chooses a coordinate system in which it is in the center of a tile; (b)
locally broadcasts the message to the sensors in its tile; (c) notifies sensors in the
centers of the neighboring tiles that they should locally broadcast the message
to their tile and forward the message to the center of their neighboring tiles.
This way, eventually local transmissions are received in the entire geographic
region. Definition of virtual tiles is used to implement self-stabilizing broadcast,
flooding, and sense of direction procedures that fit the special characteristics of
the system. In addition, the tiles communication primitives allow a scheme for
distributing secrets that activate the sensors simultaneously at a particular time
without revealing the nature of the upcoming activity.

• Geographic quorum systems [1, 16]. Having a fixed infrastructure for ad hoc
networks seems an impossible task. An approach that is based on associat-
ing object with certain geographic locations is suggested in [1, 16]. This new
approach, called the GeoQuorums approach, supports implementing atomic read-
/write shared memory in mobile ad hoc networks. The existence of focal points,
geographic areas that are normally “populated” by mobile nodes, is assumed.
For example, a focal point may be a road junction, a scenic observation point,
or a water resource in the desert. Mobile nodes that happen to populate a focal
point participate in implementing a shared atomic object, using a replicated state
machine approach. When a mobile node joins a geographic region, the mobile
node receives a copy of the memory from the nodes in the region; when the node
leaves the region the node does not have to maintain the copy anymore. A read
request from an object that resides in a certain region may be answered by any
of the nodes that populate the region; a write is an update of the copies of all
the nodes in the region. These objects, which are called focal point objects, are
then used to implement atomic read/write operations on a virtual shared object,
using the GeoQuorums algorithm. The GeoQuorums algorithm uses a quorum-
based strategy in which each quorum consists of a set of focal point objects.
The quorums are used to maintain the consistency of the shared memory and to
tolerate limited failures of the focal point objects, caused by depopulation of the
corresponding geographic areas.

• Autonomous virtual node [18]. The next step is to allow the object to act as an
automaton rather than only memory. Consider the case where each mobile node is
a car, assuming further that the focal point is a road junction. One may implement
a virtual traffic light using the focal point abstraction. When a car arrives to the
junction it starts the virtual traffic light with green light in its direction. Cars that
arrive to a junction that is already populated will copy the state of the traffic light
from the other cars and continue executing the (common) program of the traffic
light. One may even let the virtual object move according to its own decisions
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(scan the traffic jam using the communication capabilities of the cars and trans-
fer summary information, possibly information on the length of the jam). A new
abstraction for virtual infrastructure in mobile ad hoc networks is presented in
[18]. An autonomous virtual mobile node (AVMN) is a robust and reliable entity
that is designed to cope with the inherent difficulties caused by processors arriv-
ing, leaving, and moving according to their own agendas, as well as with fail-
ures and energy limitations. The AVMN is a virtual general-purpose computing
entity, an automaton that can make autonomous on-line decisions concerning its
own movement. A self-stabilizing implementation of this new abstraction that
provides automatic recovery from any corrupted state is presented in [18].

• Secret swarm units [20]. Security considerations must be a part of network
design (e.g., [15]). Secret sharing is a fundamental cryptographic task. Motivated
by the virtual automata abstraction and swarm computing, an extension of the
k-secret sharing scheme is investigated in [20]; in the suggested extension the
secret shares are changed on the fly, independently, and without (internal) com-
munication as a reaction to a global external trigger. The changes are made while
maintaining the requirement that k or more secret shares may reconstruct the
secret and no k − 1 or fewer can do so. The application considered is a swarm
of mobile processes, each maintaining a share of the secret which may change
according to common outside inputs, e.g., inputs received by sensors attached to
each process. The proposed schemes support the addition and removal of pro-
cesses from the swarm, as well as corruption of a small portion of the processes
in the swarm. There are three approaches, one is based on secret sharing and the
linearity of operations on the shares, thus supporting addition and multiplication
by constants. The swarm members simultaneously receive the constant and add
or multiply the constant to the shares, and by doing so, the secret is modified in
the same manner. Interestingly, no communication among the swarm members is
required. The second scheme is based on the Chinese remainder theorem, encod-
ing the secret by different components of the counter value computed modulo
distinct prime numbers. The last scheme encodes the actual state of the swarm
as the state that appears the most in the copy maintained by the members. This
approach, though it may leak some information on the current state of the swarm,
allows the implementation of any automaton. Support for cases of partial cor-
ruption is suggested for any of the schemes. The use of an efficient multi-party
computation [11, 12] may process an infinite sequence of inputs using one round
of communication to perform a step of a universal Turing machine.

20.2 Self-Stabilizing and Self-Organizing Distributed Algorithms

Constructing spanning infrastructures, such as spanning trees or expanders, in
a way that fits the speed of convergence needed for mobile networks is pre-
sented in [24, 26]. Self-stabilization ensures automatic recovery from an arbitrary
state; self-organization is defined as a property of algorithms which displays local
attributes. More precisely, an algorithm is self-organizing if it (a) converges in sub-
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linear time and (b) reacts “fast” to topology changes. If s(n) is an upper bound on
the convergence time and d(n) is an upper bound on the convergence time follow-
ing a topology change, then s(n) ∈ o(n) and d(n) ∈ o(s(n)). The self-organization
property can then be used for gaining, in sub-linear time, global properties and reac-
tion to changes. Self-stabilizing and self-organizing algorithms for many distributed
algorithms, including distributed snapshot and leader election, are presented in [24].
The algorithms assume that it is possible to locally define (and then use) hyperlinks,
just like phone connections. A new randomized self-stabilizing distributed algo-
rithm for cluster definition in communication graphs of bounded degree processors
is presented in [24]. These graphs reflect sensor networks deployment. The algo-
rithm converges in O(log n) expected number of rounds, handles dynamic changes
locally, and is, therefore, self-organizing.

20.2.1 Spanders, Spanning Expanders

Expanders are useful for the cases in which hyperlinks are not supported. In [25, 26]
self-stabilizing and self-organizing distributed construction of a spanner that forms
an expander is considered, namely, constructions that are extremely local, robust,
and dynamic. Folklore results for randomly defining an expander are used. Given
the randomized nature of the algorithms, a monitoring technique is presented for
ensuring the desired results. The monitoring is based on the fact that expanders
have a rapid mixing time and the possibility of examining the rapid mixing time by
O(n · log n) short (O(log4 n) length) random walks even for non-regular expanders.
We then employ our results to construct a hierarchical sequence of spanders, each
of them an expander spanning the previous one. Such a sequence of spanders may
be used to achieve different quality of service assurances in different applications.

20.2.2 Distributed Expander Construction, Related Work

To the best of our knowledge, there is a limited number of works that address the
problem of distributed expander construction. In [31], the authors propose to con-
struct an expander graph by composing a sufficient number of Hamiltonian cycles.
The proposed construction makes the following assumptions: the communication
network is an overlay network (two nodes can directly communicate as long as their
identifiers are known to each other), the algorithm starts from a predefined graph of
at least three nodes, and nodes wishing to join the graph must send a special message
to a node that has already joined the graph. Unfortunately, the proposed algorithms
cannot be started in an arbitrary state and therefore are not self-stabilizing.

A different approach for distributed construction of expanders is proposed in
[35]. The authors suggest using uniform sampling to select, for each node, a set
of expander-neighbors. The goal in [35] is to construct an “almost” regular graph,
where each node maintains a list of expander neighbors of size between d − c
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and d + c, where d is the desired degree of the almost regular graph and c is
a small constant. When a node v selects a node u to be its neighbor, v sends a
JOIN message to u. However, u might already have more than d + c neighbors,
so u throws one neighbor, chosen uniformly, from u’s neighbor list and inserts v
instead. u then sends a LEAVE message to the thrown neighbor, w, to notify w to
remove u from w’s neighbor list. As a result, it is not straightforward to predict
whether the given algorithm converges or oscillates among different incomplete
graphs.

The definition of self-organization we use was first presented in [24]. However,
the system model of [24] differs in the present chapter; in [24] we assumed that the
system is designed to support hyperlinks. That is, given a path between two nodes, u
and v, a direct link between u and v may be established. Moreover, the communica-
tion overhead of such links is assumed to take one time unit. In contrast, our model
assumes a more conventional system, in which hyperlinks cannot be defined. The
algorithms we present achieve self-organization by employing the characteristics of
the underlying expander graph.

Expansion evaluation has been considered in the past. For example, from a math-
ematical viewpoint, our techniques for expansion evaluation resemble those seen
in [27]. However, the authors of [27] only deal with bounded degree graphs, and
their methods are not readily converted to distributed settings. Independently (of
[26]), in a recent work, Czumaj and Sohler [8] extend the result of [27], select-
ing optimal parameters for the expansion testing algorithm. Recently, [29, 34]
have improved upon the results of [8]. The results obtained are closely related
to our own. However, the question of a distributed implementation remains in all
of the above.

20.3 System Settings

The system is defined by a communication graph, G = (V, E), where V is a
set of nodes {v1, v2 . . . , vn} and E is a set of undirected communication links; if
(v, u) ∈ E then v and u can communicate by sending messages of bounded size
to each other. Message sizes are restricted to O(log n) bits. We further assume
that each communication link is a bounded capacity FIFO queue. Let lc denote
the capacity of the links. When messages are sent over a full link, we assume that
one of the messages (either already in the link, or the new one) is lost. We only
require messages which are sent infinitely often and are received infinitely often.
We present data-link algorithms to ensure that communication over such links is
snap-stabilizing (see Sect. 20.5.3.1).

Nodes may join and leave the system at any time. We make no distinction
between a node that leaves and a node that crashes, assuming that both can be
detected by neighboring nodes in a timely fashion.

For a graph G = (V, E), given two sets of nodes, V1 and V2, we define the
following: E(V1, V2) = {e = (v1, v2) ∈ E |v1 ∈ V1 ∧ v2 ∈ V2} (e.g., the set of
edges between V1 and V2). We also define V1 = V \ V1, the set of nodes not in V1.
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A graph G = (V, E) is an edge expander if there exists a constant a, such that
for each set S of vertices (where |S| < |V |/2) it follows that |E(S, S)|/|S| > a.
For a comprehensive overview of expander graphs, their properties and sample uses
thereof, we recommend for the reader the excellent text found in [28].

Given a graph G = (V, E), a spander, S = (V, E ′), is a spanning subgraph of
G if there exists a constant p > 0, such that |E ′| ≤ p|E | and the edge expansion of
S is at worst p times the edge expansion of G.

A configuration c of the system is a tuple c = (S, L); S is a vector of states,
〈s1, s2, · · · sn〉, where the state si is a state of node vi ; L is a vector of link states
〈li, j , · · · 〉 for each (i, j) ∈ E . A link li, j is modeled by a FIFO queue of messages
that are waiting to be received by v j and the content of the queue is the state of the
link. Whenever vi sends a message m to v j , m is enqueued in li, j (if the link is full,
an arbitrary message in the queue will be dropped). Also, whenever v j receives a
message m from vi , m is dequeued from li, j . A node changes its state according to
its transition function (or program). A transition of node vi from a state s j to state
sk is called an atomic step (or simply a step) and is denoted by a. A step a consists
of local computation and terminates with either a single send or a single receive
operation.

The system is asynchronous, meaning that there is no correlation between the
non-constant rate of steps taken by the nodes. We model our system using the
interleaving model. An execution is a sequence of global configurations and steps,
E =< c0, a0, c1, a1, . . . >, so that configuration ci is reached from ci−1 by a step
ai of one node v j . The states changed in ci , due to ai , are the one of v j (which is
changed according to the transition function of v j ) and possibly the state of a link
attached to v j . The content of a link state is changed when v j sends or receives a
message during ai . An execution E is fair if every node executes a step infinitely
often in E . Within the scope of self-stabilization we consider executions that are
started in an arbitrary initial configuration.

A task is defined by a set of executions called legal executions and is denoted
by L E . A configuration c is a safe configuration for a system and a set of legal
executions L E if every fair execution that starts in c is in L E . A system is self-
stabilizing for a task and a set of legal executions L E if every infinite execution
reaches a safe configuration in relation to L E . We sometimes use the term “the
algorithm stabilizes” to note that the algorithm has reached a safe configuration
with regard to the legal execution of the corresponding task.

To measure time we use the notion of communication rounds: a communication
round (or just a round) is a sequence of atomic steps such that each node has taken
at least one atomic step during this sequence. If this atomic step involves a send
operation of a message m over link l, then we require that the atomic step which
corresponds to receiving a message from l, which was sent during this sequence
of atomic steps, will also appear in the sequence. Such time measurements are
appropriate when a protocol involves the entire system. When measuring the time
complexity of a protocol which involves only a subset of nodes in the system, we
use the notion of the happened before relation (see [30]). We then say that the time
complexity of the protocol is the longest chain of happened before relation induced
by the protocol.
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A distributed algorithm is termed self-organizing ([24]) if it satisfies the follow-
ing properties: (1) the algorithm is self-stabilizing, (2) convergence time to a safe
configuration, s(n), is in o(n), and (3) after reaching a safe configuration, conver-
gence time following a dynamic change, d(n), is in o(s(n)).

A distributed algorithm is termed snap-stabilizing if the algorithm stabilizes fol-
lowing the first request by any node and before, or simultaneously with, a notifi-
cation arriving to the requesting node at the completion of the request (for more
information, see e.g., [7]).

For the sake of readability, a summary of the definitions appears in the last page
of the chapter.

20.4 Expander Extraction

In this section we develop a simple, yet effective, technique for building a span-
der given an arbitrary expander. The first example we consider, namely, building a
spander from the complete graph, is applicable to anonymous distributed networks
where a centralized, deterministic solution cannot be used. Although the example is
based on folklore results, it serves us in building intuition.

20.4.1 The Complete Graph

Consider the following generation of an expander: given a set of nodes, |V | = n,
for each v ∈ V choose d neighbors, independently at random. With overwhelming
probability1 the resulting graph is a good2 vertex expander (for some constant c >
0):

P

⎡

⎢⎢
⎣ min

S⊂V,|S|≤n

2

|Γ (S) \ S|
|S| < c

⎤

⎥⎥
⎦ < o(1)

It is known that a vertex expander is also a good edge expander. Moreover,
the average degree of such an expander is constant and the maximal degree is in
O(log n/ log log n) with very high probability.

To prove the above, we follow the proof in [33]. First fix a set S ⊂ V of size
s. Let Γ (S) = {u ∈ V |∃v ∈ S, (u, v) ∈ E} be the set of all neighbors of S. We
wish to bound the probability that there exists a set T of size t < c · s, such that

1 We use the term “overwhelming probability” to denote a probability approaching 1 at least lin-

early with the size of the problem. For example, for a given n, 1− 1

n
is an overwhelming probability.

2 An expander is considered “good” if it has a constant expansion parameter.
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Γ (S) \ S ⊆ T . If no such set exists, then it holds that
|Γ (S) \ S|

|S| > c. Furthermore,

if there exists such T of size smaller than c · |S|−2, then there exists such T ′ of size
exactly c · |S| − 1. As a result, the probability that S is “bad” is

Prob
[
S is bad

] = P[∃T : Γ (S) \ S ⊆ T ]
≤ Prob

[∃T : |T | = c · |S| − 1 ∧ Γ (S) \ S ⊆ T ]
≤

∑

|T |=c·|S|
P[Γ (S) \ S ⊆ T ]

=
(

n

c · s

)
·
(

s + c · s

n

)d·s

Using the above we show that the probability that the aforementioned construc-
tion has “bad” expansion is in o(1).

Prob

⎡

⎢⎢
⎣ min

S⊂V,|S|≤n

2

|Γ (S) \ S|
|S| < c

⎤

⎥⎥
⎦ = Prob

[
∃S ⊂ V, |S| ≤ n

2
such that

|Γ (S) \ S|
|S| < c

]

≤
n/2∑

s=1

Prob

[
∃S ⊂ V, |S| = s such that

|Γ (S) \ S|
|S| < c

]

≤
n/2∑

s=1

(
n

s

)(
n

c · s

)(
s + c · s

n

)d·s

≤
n/2∑

s=1

(
n · e

s

)s(n · e

c · s

)c·s( s + c · s

n

)d·s

=
n/2∑

s=1

[(
s

n

)d−c−1( e

c

)c

· e · (1 + c)d
]s

≤
log n∑

s=1

[(
log n

n

)d−c−1( e

c

)c

· e · (1 + c)d
]s

+

n/2∑

s=log n

[(
1

2

)d−c−1( e

c

)c

· e · (1 + c)d
]s

≤
log n∑

s=1

qs +
n/2∑

s=log n

rs for r, q << 1

≤ q

1 − q
+ r

1 − r
= o(1)
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If the initial graph is complete, a simple random choice of edges yields a good
expander with high probability. Moreover, the average degree of such an expander is
constant and the maximal degree is in O(log n/ log log n)with very high probability.

To realize such a construction in a distributed manner, the need for a monitoring
tool which validates the expansion of the spander arises. In the next section we will
discuss such a self-organizing monitoring algorithm.

20.4.2 An Arbitrary Expander

In some cases, the initial topology of the graph is unknown at each node or cannot
be stored at each node due to memory constraints (consider, for example, a peer-to-
peer system with millions of nodes). The only input may be that the initial graph
is a good expander. Yet, a spander construction needs to be carried out under such
constraints; one may wish to employ the technique used for the complete graph
to define a spander over any given expander graph. However, when the graph is
not complete, choosing a constant number of neighbors at each node may result in
non-expander graphs. As an example, consider the following graph: let G = (V, E)
be a regular (degree) expander graph. Now, let V1 be a set of half the nodes in
V and V2 = V \ V1. Consider the following graph, G ′ = (V, E ′), where E ′ =
E ∪{(v, u) : v, u ∈ V1}∪{(v, u) : v, u ∈ V2}. Since adding edges can only increase
the expansion of a graph, G ′ is a good expander (at least as good as G). Suppose we
then proceed to generate a constant degree expander from G ′ by choosing for each
node a constant number of neighbors, independently at random. It is easy to see
that with a non-negligible probability, we will get a disconnected graph and, with
an overwhelming probability, the resulting graph will not be a good expander.

Taking the above observation into account, we still wish to reduce the number
of edges of an arbitrary expander without sacrificing the expansion property. When
considering a graph G = (V, E) such that each cut in the graph contains enough
edges, implying that the graph is a good edge expander, one may notice that each
edge is selected using a constant probability, with very high probability that all the
cuts will remain large — thus keeping the edge expansion of the graph.

In the following Lemma we prove that starting from a graph with good enough
edge expansion, namely with edge expansion in Θ(log n) and a selection of each
edge with a constant probability, results in an edge expander with overwhelming
probability:

Lemma 1 Let G = (V, E) be a graph with edge expansion c · log n, where c is a
constant and n = |V |. The graph G∗ = (V, E∗), such that P[(u, v) ∈ E∗] = p has
edge expansion of pc log n with overwhelming probability for appropriate p and c.

For example, when p = 1

2
, c = 48 the probability is at least 1 − 1

n
.

Proof First consider a set S ⊂ V such that |S| = s ≤ n

2
. Since G is an edge

expander, we know that h = |E(S, S)| > sc log n. Next, we calculate the probability
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that such a cut is “small” in G∗, applying Chernoff’s inequality for the cumulative
distribution function of the binomial distribution:

P

[
|EG∗(S, S)| < ph

2

]
≤ exp

(
− (ph − ph/2)2

2ph

)

= exp

(
− ph

8

)
≤ exp

(
− psc log n

8

)
= n

− psc

8

Now, using the union bound, and denoting a “bad” cut as a cut S such that

|EG∗(S, S)| < ph

2
, the probability that no such “bad” cut exists is

P [!∃a “bad” set S] ≤
∑

1≤s≤n/2

(
n

s

)
n
− psc

8 ≤
∑

1≤s≤n/2

n
s

(
1− pc

8

)

≤ n
2− pc

8

It is easy to see that appropriate values of c, p (for example, p = 1

2
, c = 48)

imply a probability of failure that is less than 1/n.
Realizing such a construction in a distributed manner is simple; in order for each

edge to be chosen with probability p, each node must choose each of its adjacent
edges with probability 1 −√

1 − p (hence, the probability the edge is not chosen is√
1 − p · √1 − p = 1 − p). The edge is chosen if at least one node choses it.

20.5 Expansion Monitoring

Assuming that with high probability we can construct an expander, sometimes it
might be necessary to evaluate our construction; we may wish to check that the
resulting graph is a good enough expander (or even whether it forms a connected
component) and whether enough edges were removed. Moreover, if the construction
resulted in a good expander, we wish to preserve the current state of the network,
so as to not disrupt service. As a result, periodically reconstructing the network
is unacceptable, which implies the need for an algorithm to monitor the resulting
construction.

When message sizes, memory, and processing power of a single node are not
restricted, it is easy to collect the entire topology of the graph at each node and check
if the resulting graph is a good expander. When restricting message sizes, memory
requirements at each node, and convergence time to O(log n), such solutions are no
longer feasible.

In the remainder of this section we tackle the task of monitoring the result of our
construction when message sizes are limited to O(log n) by employing the mixing
rate of expanders. We present a distributed expansion evaluation algorithm, which
displays an inherent two-sided error; when the evaluated graph has expansion in
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Θ(log n), the algorithm returns “good” with overwhelming probability. When the
graph has expansion less than O(1/ log3 n), the algorithm returns “bad” with prob-

ability at least
1

2
. When the graph’s expansion is in between the above values, our

monitoring algorithm will return an arbitrary answer.

20.5.1 Monitoring by Random Sampling

Our first approach to monitoring is presented for the sake of building intuition, as
the time it takes for detection is exponential. The monitoring is done by sampling
the sets of nodes from the graph and calculating the expansion for each such set. If
a set of nodes is found to be of small expansion, a reset procedure will follow which
will reinitialize the nodes to a predetermined, consistent state.

Sets are sampled in the following manner: a node repeatedly starts a randomized
propagation of information with feedback (PIF) flooding of the graph, which defines
the set of nodes. Each of these sampled nodes will report back to the number of
neighboring nodes which were not selected. This information will then propagate
back to the initiating node which will then calculate the expansion of the selected
set.

The main observation is given in Lemma 2.

Lemma 2 Let G = (V, E) be a graph. If there exists a set of nodes, S ⊂ V, |S| ≤
n

2
, such that

|E(S, S)|
|S| ≤ c for some c, then there exists a subset S′ ⊆ S, |S| ≤ n

2
,

|E(S′, S′)|
|S′| ≤ c and S′ induces a connected subgraph of G.

Proof The set S can be decomposed in the following fashion: S = ⋃
i Si , ∀i, j :

E(Si , S j ) = ∅ and ∀i : Si induces a connected subgraph, where each Si is maxi-
mal (vertex-wise). Such a decomposition is easily obtained using greedy selection.
Assume to the contrary that none of these subsets satisfies Lemma 2. It follows that

for each subset Si ,
|E(Si , Si )|

|Si | > c. Now

|E(S, S)|
|S| =

∑
i |E(Si , Si )|∑

i |Si | ≤ c

c <

∑
i c · |Si |∑

i |Si | ≤ c

it follows that c < c, which is a contradiction. Hence, one of the sets Si must satisfy
Lemma 2. �
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More details on the way to implement analogous self-stabilizing monitoring will
be presented in the next section as part of the description of the efficient monitoring
scheme.

20.5.2 Mixing Rate-Based Monitoring

Expander graphs are rapidly mixing graphs (O(log n) mixing rate, implying that a
random walk on the graph converges to the uniform distribution following O(log n)
steps), and it follows that the cover time of such graphs is also short (O(n log n)).
We can employ this fact in the following way: assume that a node, v, wishes to
check if the graph is rapidly mixing. v will start a random walk of length O(n log n)
and attach a random color to this walk, chosen from a large enough domain. Fur-
thermore, v associates three counters of O(log n) bits each to the random walk; one
to limit the number of hops taken by the token, one to count the nodes discovered by
the walk, and one to count the edges of the graph. Each time the walk visits a node
for the first time (Fig. 20.1, line 1), the node increments the node counter by 1 and
the edges counter by the number of its neighbors. Afterward, the token is transferred
to a random neighbor (line 8). When the walk terminates (line 6), the counters are
examined, either by the last node or by v after routing a message with the counters
back to v. In case the walk covered less than n nodes, which implies that the graph is
not rapidly mixing, or there are too many edges in the graph (relative to the original
graph, which implies that the construction is not as productive as desired) a reset is
initiated.

When the exact n is unknown, the protocol needs to be slightly adjusted; since
counting the nodes cannot be used to determine coverage, each node should remem-
ber the last color of a token traversing it. After the random walk is terminated at node
v, v initiates a flooding of the network to check if all nodes were colored by the same
color of the token. If the flooding detects a node which has not been colored, a reset
procedure will ensue.

N = list of neighbors
L = an upper limit on the length of the walk
last_seen = ∅

Receive(color, node_counter, edge_counter, length):
1 if color /∈ last_seen then
2 last_seen ← last_seen ∪ {color}
3 node_counter ← node_counter + 1
4 edge_counter ← edge_counter + |N |
5 fi
6 if length > L then
7 Report counters to initiating node
8 else
9 choose u ∈ N uniformly at random
10 Send(u, color, counter, length + 1)
11 fi

Fig. 20.1 Rules for node u
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To speed up the detection rate we need to use a shorter random walk. To achieve
this, v may send out many random walks in parallel instead of one, each of polyloga-
rithmic length, and attach the same color to all of these walks. This elegant technique
was suggested in [3] and analyzed for regular expanders (expanders with a regular
edge degree); the proof therein is not applicable to non-regular graphs, as the authors
employ the symmetric nature of the random walk on a regular graph in their proof.
Namely, the probability that a random walk of length i visits a specific node at step

i does not deviate by more than

(
λ

d

i)
(where λ is the second largest eigenvalue of

the transition matrix and d is the degree of the graph) from the uniform distribution.
Here, we employ more general bounds on the mixing time, derived from bounds
on the stationary distribution of a random walk on an edge expander, to extend the
analogy for the non-regular case.

Each of the random walks will hold counters in a fashion similar to the single
random walk solution (see Fig. 20.1). These random walks will cover the graph
with high probability (see Lemmas 4 and 5). To count the number of visited nodes,
the final counters must be routed back to v (we will elaborate more on that in
Sect. 20.5.3.4). If the total number of nodes visited is less than n then, with very
high probability, the graph is not a good expander. Analogously to the discussion
above, coloring and checking nodes can be used for the case in which n is not
known.

In case the graph is not a good expander, we argue that initiating the random
walks from a random edge results in failure with probability larger than half (see
Lemma 6).

The proof determines, for a given walk length, the probability of visiting a spe-
cific node. Next, we calculate the number of walks needed to cover the entire graph
with high probability. We begin by deriving a lower bound for the second largest
eigenvalue of the Laplacian of the graph, which we later employ.

Lemma 3 Let G be a connected, non-bipartite graph, such that the second largest
eigenvalue of the Laplacian of G is λ and the expansion of the graph is h. Let

Δ2 = dmax

dmin
be the ratio between the maximal and minimal degrees of nodes in G.

Then 1 − λ >
h2

2Δ8d2
max

.

Proof Let π(v) be the stationary distribution of v. It easily follows that for each

v,
1

2nΔ2
≤ π(v) ≤ Δ2

2n
. Let Φ(S) = Φ(S) = |E(S, S)|

2|E |π(S)π(S) the conductance of

a set S ⊂ V . The conductance of the graph is defined by Φ = minS Φ(S). From

[32], we know that 1 − λ >
Φ2

8
. For each set S, such that |S| < n/2, we use the

following:

2|E |π(S)π(S) < 2|E ||S||S| Δ
4

4n2
<
Δ4|S|dmax

2
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It follows that ∀S, |S| < n/2, Φ(S) ≥ 2|E(S, S)|
Δ4|S|dmax

. which further implies that Φ ≥
2h

Δ4dmax
. Plugging into the bound given in [32], we get the desired bound. �

Lemma 4 Using the notations of Lemma 3, let s = 8 log n

1 − λ
>

log 4nΔ3

log
1

λ

. The prob-

ability of a random walk of length 2 · s, starting at any vertex u ∈ V , to visit a given

vertex v ∈ V , is at least
log n

2Δ4n

Proof We will follow the proofs presented in [3]. Fix u as the node from which the
random walk starts and fix a node, v. Let Yi , s ≤ i ≤ 2s, be the indicator of random
variables such that Yi = 1 if the walk visited v at step i . Let Y =∑2s

i=s Yi be the sum

of these random variables. We will show that P[Y > 0] > s

4Δ2n + 4sΔ4 + 8Δ3n

1 − λ
Using the Cauchy–Schwartz inequality, we can see that

⎛

⎝
∑

j>0

P[Y = j]
⎞

⎠

⎛

⎝
∑

j>0

j2 P[Y = j]
⎞

⎠ ≥
⎛

⎝
∑

j>0

j P[Y = j]
⎞

⎠

2

(20.1)

P[Y > 0] =
⎛

⎝
∑

j>0

P[Y = j]
⎞

⎠ ≥
(∑

j>0 j P[Y = j]
)2

(∑
j>0 j2 P[Y = j]

) = (E(Y ))2

E(Y 2)
(20.2)

From now on, we will focus on estimating both E(Y ) and E(Y 2). From linearity
of expectation, E(Y ) = ∑2s

i=s E(Yi ) and for each i , E(Yi ) equals the probability
that the walk which started at u visits v precisely at step i .

In [32], the following bound is given, where Pk(u, v) is the probability of a
random walk of length k, started at u, to terminate at v:

|Pk(u, v)− π(v)| ≤ λkΔ

which implies the following:

π(v)− λkΔ ≤ Pk(u, v) ≤ π(v)+ λkΔ

A simple calculation shows that when s = 8 log n

1 − λ
>

log 4nΔ3

log
1

λ

, for each Yi and

k > s we get that P(Yi = 1) = Pk(u, v) ≥ π(v)/2 ≥ 1

4Δ2n
. From linearity of

expectation, we get E(Y ) ≥ s

4Δ2n
.
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We now turn our attention to calculating an upper bound for E(Y 2). From the
definition of Y we get

E(Y 2) = E

⎛

⎜
⎝

⎛

⎝
2s∑

i=s+1

Yi

⎞

⎠

2
⎞

⎟
⎠ =

∑

i, j

E(Yi Y j ) =
∑

i

E
(

Y 2
i

)
+
∑

i �= j

E(Yi Y j )

=
∑

i

E(Yi )+ 2
∑

s<i< j<2s

E(Yi Y j )

Now, E(Yi Y j ) is exactly the probability that the walk visits v at step i and then
at step j (i < j), which is the probability of visiting v at step i times the probability
of returning to v after a walk of length j − i . The probability of returning to v after

k steps equals Pk(v, v) < π(v)+Δλk <
2Δ2

n
+Δλk .

E(Y 2) = E(Y )+ 2
∑

s≤i< j≤2s

E(Yi )P(Y j |Yi )

≤ E(Y )+ 2
∑

s≤i≤2s

E(Yi )

(
sΔ2

2n
+
∑

k>0

Δλk

)

≤ E(Y )

(
1 + sΔ2

n
+ 2Δ

1 − λ

)

Therefore,

P[Y > 0] ≥ E(Y )2

E(Y 2)
≥ E(Y )

1 + sΔ2

n
+ 2Δ

1 − λ

≥
s

4Δ2n

1 + sΔ2

n
+ 2Δ

1 − λ

≥ s

4Δ2n + 4sΔ4 + 8Δ3n

1 − λ

Using the facts that s = 8 log n

1 − λ
, log 1/λ > 1 − λ and plugging into the equation

above, one can show that P[Y > 0] > log n

2Δ4n
. �

Lemma 5 Using the notations of Lemma 3, k = 4nΔ4 random walks started from
the same node in the graph, u, each of length 2s, cover the entire graph with a

probability of at least 1 − 1

n
.

Proof For each node v, the probability that it is not visited by a specific random

walk is less than 1 − log n

2Δ4n
. The probability that none of the k random walks

visit v is less than

(
1 − log n

2Δ4n

)k

. When k = 4nΔ2, we get that this probability

is smaller than
1

n2
. Using the union bound, we get that the probability that all nodes

are covered is larger than 1 − 1

n
. �
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Corollary 1 When Δ2 < log n and h > log n, we get that k < 4n log3 n random

walks, each of length 2s, where s = 8 log n

1 − λ
<

16Δ8d2
max log n

h2
< 16d2

max log2 n ∈
O(log4 n), cover the graph with overwhelming probability.

Corollary 1, in fact, implies that a single instance of a monitoring session on such
a graph takes O(log4 n) rounds and requires O(n log7 n) messages.

Following lemma 5, we now know that if a graph is a good expander, the short
random walks we use will cover the graph with high probability. However, we also
wish to investigate the case in which a graph is not a good expander. The following
Lemma illustrates that when a graph has less than constant expansion, the short
random walks used will not cover the graph with a probability of at least half. For
brevity, constants are omitted, and we assume that Δ ∈ o(log n).

Lemma 6 Let G = (V, E) be a graph, such that there exists S ⊂ V, |S| ≤ |V |
2

= n

2

for which |E(S, S)| < |S|
8 log3 n

. n log n random walks started from a uniformly cho-

sen edge, each of length O(log n), will not cover the entire graph with a probability

of at least
1

2
.

Proof Let (u, v) ∈ E be a directed edge, chosen uniformly at random. Start the
n log n random walks from v. For each edge e ∈ E define Xe as a random variable
counting the number of times one of the random walks traverses e. Now, since (u, v)
is chosen uniformly, which is the stationary distribution of the edges of the graph,

for each directed edge e ∈ E we have E(Xe) = n log2 n

|E | . Let Y = ∑e∈E(S,S) Xe

(where e is a directed edge). Linearity of expectation implies

E(Y ) = 2n log2 n · |E(S, S)|
|E | ≤ 2n log2 n|S|

8n log3 n
= |S|

4 log n

From Markov’s inequality, we get that with a probability of at least
1

2
, the cut

between S and S is not crossed more than
|S|

2 log n
times (in both directions). Assum-

ing v /∈ S, and since each walk is of length log n, we cover at most
|S|
2

nodes within

S. If v ∈ S, we get that we cover even less of the nodes of S, since |S| ≤ |S|. It

follows that with a probability of at least
1

2
, we do not cover the entire graph.

20.5.3 Self-Stabilizing Distributed Monitoring

In the next sections we present a self-stabilizing distributed monitoring algorithm to
monitor the mixing rate of a graph. The algorithm is based on the repeated selection
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of a random edge from the graph and starting random walks from this edge. When-
ever a problem is observed in the graph, the snap-stabilizing reset that we describe
here will be utilized to reset the monitoring algorithm and to rebuild the current
graph (if it is not a good spander). As the entire construction and monitoring must
be logarithmic in the number of nodes, we had to introduce, reform, and augment
new techniques.

20.5.3.1 Snap-Stabilizing Data Link

A distributed algorithm is termed snap-stabilizing if the algorithm stabilizes follow-
ing the first request by any node and before, or simultaneously with, a notification
arriving to the requesting node at the completion of the request.

Throughout the text we assume the use of a snap-stabilizing data-link layer. We
consider several algorithms which can be used to realize a snap-stabilizing data-link
layer.

• Spontaneous receiver. When the receiver may send duplicated answers for a
single frame sent (or the duplication may be caused by the underlying physical
layer), we suggest the following algorithm (see [24]): when the sender, s, wishes
to send a frame, f , to the receiver, r , s will send f to r repeatedly and attach
a sequence number to f . At first, s will attach the number 1 to f and repeat-
edly send f to r with sequence number 1. Once s receives an acknowledgment
from r upon the receipt of f with sequence number 1, s will repeatedly send f
with sequence number 2. s will keep incrementing the sequence number of f
each time s receives an acknowledgment on the current sequence number, until s
reaches 2 · lc + 1 times (where lc is the bound on the link capacity). At this point
f is assured to be delivered at r .
When r receives a frame f with a sequence number 2 · lc + 1, following a frame
with a different sequence number, r will deliver the frame upward in r ’s network
stack.

• Non-spontaneous receiver. When frames are not duplicated (either by r or by
the physical layer), we suggest the following algorithm: s will first repeatedly
send f to r , but will mark f with 0. s will then count the number of acknowledg-
ments it receives from r . When s has received 2 · lc + 1 acknowledgments, s will
then mark f with 1 and repeat the process. After s receives 2 · lc + 1 additional
acknowledgments for f , f is assured to be delivered at r .
When r receives a frame f with a mark 0 that is immediately followed by a frame
with a mark 1, r will deliver the frame upward in r ’s network protocol stack.
The algorithm for the non-spontaneous receiver is more efficient both communi-
cation-wise and time-wise.

20.5.3.2 Snap-Stabilizing Message Passing Reset

A reset procedure ensures that once it is initiated, and before the reset is terminated,
each node receives a logical “reset” signal (possibly resetting the node’s state to a
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predetermined state). Moreover, following a logical reset at node u, if u sends a
message to node v, then node v will have received a reset signal before processing
the message from u.

We present a reset procedure for message passing networks. The reset is executed
on a graph G, which in our case is of diameter d ∈ O(log n). We assume the
use of a snap-stabilizing data-link protocol for passing messages between nodes.
A similar technique appears in [4, 5, 10], although here we present and prove
snap-stabilization and termination, while fitting anonymous networks. The reset
procedure for a single node, u, appears in Fig. 20.2.

The reset procedure is based on bounded counters of 3d at each node. Each node
u maintains a reset counter. To initiate a reset, u just sets u’s counter to zero (line 1).
The technique used by the reset procedure is that a node, u, will only increment u’s
counter after u is certain that all of u’s neighbors have counters which are greater
than or equal to u’s counter. This is achieved by first saving the counter values
received from the neighbors (line 3) and assigning u’s counter with the minimal
value among the counters of all of u’s neighbors, plus one (line 14).

u must also repeatedly broadcast u’s counter value to u’s neighbors. The broad-
cast is based on the snap-stabilizing data-link algorithm presented above. The
SnapSend procedure used in line 17 ensures that the counter value C is sent to the

cntu = a counter
d = the diameter of the graph
N [i] = the last counter received

from neighbor i
f lag = a boolean flag

Reset
1 cntu ← 0
2 f lag ← true

Receive Counter value c from neighbor v
3 N [v] ← c
4 if c < cntu then
5 f lag ← true
6 cntu ← c + 1
7 fi

While cntu < 3d
8 while f lag = true do
9 f lag = f alse
10 Broadcast()
11 done
12 if ∀i ∈ N : N [i] ≤ cntu + 1 then
13 f lag ← true
14 cntu ← min{cntu ,mini N [i]} + 1
15 fi

Broadcast
16 foreach neighbor v do
17 c ←SnapSend cntu to v
18 Receive(c, v)
19 done

Fig. 20.2 Snap-stabilizing reset procedure for u
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neighbor v using a snap-stabilizing data-link algorithm, thus ensuring the delivery
of the new value. The receiving node of the SnapSend procedure piggybacks its
own counter value while sending acknowledgments, which is returned from the
SnapSend procedure on the initiator side. This ensures that upon the termination
of a single SnapSend procedure both ends hold the other side’s counter values that
existed during the SnapSend execution.

The f lag variable is used to ensure that u will not reassign u’s counter before
updating all of u’s neighbors with u’s current value. This property is vital to our
proof and establishes a happened before relation between counter updates across
the graph.

The proof is based on the following observation: when a node, v, assigns 0 to its
counter (starting a reset), this value will propagate in the graph, causing other nodes
to adopt a counter value not greater than their distance to v. First, v’s immediate
neighbors will set their counters to at most 1. Afterward, v’s neighbors’ neighbors
will set their counter to (at most) 2, and so on. We then show that when v reaches
2d, the counter of each node cannot exceed 3d.

Definition 1 Given an execution E , a happened before path during E between a node
u and a node v is a path in the graph induced by a happened before relation between
u and v. Assume the happened before relation is u � p1 � p2 � · · · � pi � v,
where u sent a message to p1, p1 sent a message to p2 after receiving the message
from u, etc. The happened before path is defined to be u, p1, p2, . . . , pi , v.

Lemma 7 Let cv be a configuration in which a node, v, has started the reset (line 1).
For every node u, and in every fair execution, there exists a configuration c′ such that
u receives a counter value (line 2) in c′ and a happened before relation between the
atomic step of v in cv , which started the reset, and the atomic step of u in c′ exists.
Moreover, there exists such a happened before relation and a configuration cu such
that the happened before path induced by the happened before relation forms a
shortest path from v to u.

Proof The proof is by induction over the distance between u and v. When d(u, v) =
0, the claim obviously holds as u = v. Assume that the claim holds for all p ∈ V
such that d(p, v) < d(u, v). Since the graph is connected, there exists a node p
such that d(u, v) > d(p, v) and (u, p) ∈ E . According to the induction assumption,
there exists a configuration cp satisfying the lemma. Let cu be the first configura-
tion following cp in which u receives a counter value from p which was sent in a
configuration following cp. Clearly, cu satisfies the conditions of the lemma. �
Lemma 8 Let cv be a configuration in which a node, v, has started the reset (line 1).
For a node u, let cu be the earliest configuration satisfying Lemma 7. The counter
value of u in cu, cntu(cu), may not exceed d(v, u), the distance between v and u.

Proof By induction on d(v, u). When d(u, v) = 0, the assumption clearly follows
since v = u and cu = cv . Assume that the claim holds for all values smaller than
i . Let u be a node such that d(v, u) = i and mark cu as the first configuration
which satisfies Lemma 7. Let w be u’s neighbor such that d(w, v) = i − 1 and
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w is u’s predecessor in the happened before relation which defined cu . Let cw be
the configuration which satisfies Lemma 7 with regard to w. It follows, from the
inductive assumption, that cntw(cw) ≤ i − 1. Since w repeatedly broadcasts its
counter value and will only increase w’s counter value after the broadcast phase is
completed at least once (this is due to the f lag variable), there exists a configuration
c′, between cw and cu , in which u received a value i − 1 or less from w for the
first time. It follows that c′ = cu , and since u adopts the counter value (plus one)
received if the value is smaller than its own, we conclude that u’s counter value may
not exceed (i − 1)+ 1 = i in cu . �

Lemma 9 Let cv be a configuration in which a node, v, has started the reset (line 1).
For a node, u, let cu be the earliest configuration satisfying Lemma 7, and let w be
a node on the happened before path from v to u. For every fair execution, and in
every configuration c′ between cw and cu, cntw(c′) ≤ d(u, v)+ d(u, w).

Proof Let u be a node and cu be a configuration as defined in Lemma 7. Let w be a
node on the happened before path from v to u. The proof is by induction on d(u, w).
For d(u, w) = 0, it follows that u = w and the claim clearly holds from Lemma 8.
Assume the claim is correct for all values smaller than i .

Let x be a node on the happened before path between u andw, such that d(u, x)+
1 = d(u, w). First note that according to Lemma 8, we know that cntw(cw) ≤
d(w, v). From the induction assumption, it follows that in every configuration c′
between cx and cu cntx (c′) ≤ d(u, v) + d(u, x). Furthermore, in each such c′ it
clearly follows that cntw(c′) ≤ cntx (c′) + 1, since w always adopts the lowest
counter value in its neighborhood plus one. As a result, in every configuration c′
between cx and cu , we get that cntw(c′) ≤ d(u, v)+d(u, x)+1 = d(u, v)+d(u, w).

According to Lemma 8, cntw(cw) ≤ d(w, v). Note now that w will only incre-
ment its counter in consecutive steps and will make sure that w communicates
with all of w’s neighbors afterward; this is due to the f lag used in the algorithm.
This in turn ensures that between cw and cx w may increment w’s counter by
not more than 1. Hence, in every configuration c′ between cw and cx we get that
cntw(c′) ≤ d(w, v)+ 1.

To conclude, we get that in every configuration c′ between cw and cu , cntw(c′) ≤
d(u, v)+ d(u, w). �

Lemma 10 Let cv be a configuration in which a node, v, has started the reset (line 1)
and u be a node such that for each node w cw preceded cu. It follows that in every
configuration c′ between cw and cu, cntw(c′) ≤ 3d.

Proof Assume, toward contradiction, that there exists a node w and a configuration
c′ such that c′ is between cw and cu and cntw(c′) > 3d. Consider the shortest
path between v and w, (v, v1, v2, . . . , vk, w) induced by Lemma 7. It follows that
cntvk (c

′) > 3d − 1, since w and vk have exchanged counter values. In a similar
way, we can show that cntv(c′) > 3d − i − 1. Now, since i ≤ d − 1, it follows that
cntv(c′) > 2d. However, according to Lemma 9, we know that in each configuration
between cv and cu , the counter value of v may not exceed 2d, which yields the
contradiction. �
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Lemma 11 Let cv be a configuration in which a node, v, started a reset. In every
fair execution there exists a configuration c′, which follows cv after at most d com-
munication rounds, such that for each node u it holds that cntu(c′) < 3d.

Proof The proof follows from the fact that after d communication rounds there is a
happened before relation between v and any nodes u on a shortest path between v
and u. Moreover, from Lemma 10 it follows that all nodes have counter values less
than 3d.

Lemma 12 Liveness: let c be a configuration in which at least one node has a
counter value less than 3d. Let v be a node such that cntv(c) < 3d and for every
node u cntu(c) ≥ cntv(c). Let c′ be a configuration following c after d communi-
cation rounds, during which no node has started a reset. For every node u ∈ V ,
cntu(c′) ≥ cntv(c)+ 1.

Proof The proof is by the fact that every node v with a minimal counter will not set
v’s f lag to true and hence will finish the broadcast phase and advance v’s counter
value by 1.

To ensure the termination of the reset algorithm, we enable nodes to start a reset
only when their counter value is larger than 3d. Such a restriction gives rise to the
following: assume a node, v, has started the reset. Following Lemma 11, we will
reach a configuration in which all counter values are less than 3d. Combining that
with Lemma 12 and assuming that once a successful reset is performed, no new reset
will be started for a long time, such that nodes reaching 3d will not start a reset for a
long enough period, the reset algorithm will terminate. Namely, all nodes’ counters
will reach 3d.

Theorem 1 The reset protocol of Fig. 20.2 is a snap-stabilizing reset protocol,
which terminates after at most 3d rounds following initialization.

The snap-stabilization paradigm requires that once one node initiates the (reset)
algorithm, the algorithm will terminate successfully, namely, the initiator receives
a notification on the termination and no more messages are sent. The termination
property of the snap-stabilizing reset is a rare property in the scope of self-stabilizing
algorithms (see [2]). The reset algorithm is snap-stabilizing since once a node, v,
starts the reset algorithm, each node in the system will go through a reset, namely
lower its counter value below 3d, before v receives an indication on the reset termi-
nation.

In the context of our monitoring algorithm presented in the following section, a
leader must be elected following the reset, and a BFS tree rooted in the leader needs
to be defined. We suggest the following algorithm: once the counter of a node, v,
reaches 3d, v will start broadcasting to v’s neighbors v’s candidate for the BFS leader
and the distance to the candidate, starting with v: (v, 0). v will repeatedly collect the
BFS leaders of v’s neighbors. If there exists a BFS leader with a lower identifier than
v’s current BFS leader or one of v’s neighbors is closer to the leader than v, v will
adopt this BFS leader, mark the node from which v received this BFS leader as v’s
predecessor in the BFS tree, and add one to the distance to the BFS leader. Once any
BFS leader has a distance larger than d, v can safely discard this BFS leader.
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It is easy to see that this leader election algorithm, when started after a reset,
will elect a leader, define a BFS tree rooted in the leader, and establish correct dis-
tances. After further 2d communication rounds (due to the liveness property, see
Lemma 12) all nodes will agree on one leader, the node with the lowest id in the
system. If we let nodes continue the counting of the reset algorithm, starting to
execute the leader election algorithm at 3d and up to 5d, then the leader can start a
new monitoring session once its counter reaches 5d. In the sequel, once the counter
reaches 5d, the tree structure remains fixed in the sense that parent pointers are not
changed.

20.5.3.3 Monitoring Algorithm for a Single Node

We next present a self-stabilizing expansion monitoring algorithm. In fact, given
the self-stabilizing reset presented earlier, a simpler non-stabilizing version can
be used, as long as there is a local predicate for checking the consistency of the
monitoring that triggers the reset. Still, the self-stabilizing monitoring may be of
independent interest. Next, we consider an instance of the algorithm which is started
from one node, which we denote ml (for monitoring leader). The monitoring algo-
rithm is a self-stabilizing version of the technique presented in Sect. 20.5. Namely,
a node starting a monitoring session will send the required number of tokens (see
Lemma 5), each performing a random walk, counting the number of nodes and
edges in the graph.

When designing the self-stabilizing version of the monitoring algorithm, we may
notice two problems which we need to solve; one, we need to ensure that tokens
can be routed back to ml once they have traveled the required length. Second, if
ml assumes that a monitoring session has started, and none of ml’s tokens exist in
the graph, we need to prevent ml from waiting forever. To overcome both of these
obstacles, we use the same repeated token sending mechanism.

Each node u will follow the algorithm presented in Fig. 20.3: ml will add a serial
number to each token it sends, e.g., they will be consecutively numbered, t1, t2, . . ..
Each node u records not only the color of the token, but also, for each token ti , to
which neighbor,w, u sent token ti following the last arrival of ti in u (lines 8 and 11).
We call this the forward pointer of ti at u. u then repeatedly sends all the tokens u
has received to ensure delivery (line 20). We use the repeated send technique to
argue concerning the termination of each monitoring phase.

To ensure the delivery of the tokens back to ml, when they have reached the
end of their random walk, we need the following mechanism: when a random walk
terminates (reached its maximum hop count), the node in which the walk terminated
saves the information collected by the walk (line 11). Each time a node u receives a
token (whether for the first time or not), if u currently holds an answer to the token,
u forwards the answer to the sender of the token (line 15).

We next show that the traversal of a single token sent by ml will terminate, and
the information contained in the token (node count and edge count) will be propa-
gated back to ml. The proof considers one token, ti . Denote by k the length of the
random walks according to the previous section (k ∈ O(log n)).
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N = list of neighbors
L = an upper limit on the length of a walk
tokens[] = an array, holding the last tokens received
answers[] = an array, holding the last hop of a token (if exists)

Start Walks
1 choose a random color c
2 for i ∈ tokens do
3 choose a random neighbor p
4 tokens[i] ← (c, 0, 0, 0, p)
5 done

Receive(color, index, origin, hop_counter, node_counter, edge_counter) from v

6 choose a random neighbor p
7 if tokens[index].color �= color
8 tokens[index] ← (color, hop_counter, node_counter + 1,
9 edge_counter + |N |, p)
10 else if tokens[index].hop_counter < hop_counter then
11 tokens[index] ← (color, hop_counter, node_counter,
12 edge_counter, p)
13 fi
14 if answers[index].color = color then
15 Send (i, answers[index]) to v
16 fi

Repeatedly
17 foreach i ∈ tokens do
18 (color, hop_counter, node_counter, edge_counter, p)← tokens[i]
19 if hop_counter < L then
20 Send (color, i, v, hop_counter + 1, node_counter, edge_counter) to p
21 else
22 answers[i] ← (color, node_counter, edge_counter)
23 fi
24 done

Receive(index, answer) from v

25 (c, hop_counter, node_counter, edge_counter, p)← tokens[index]
26 if color = answer.color then
27 answers[index] = answer
28 fi

Fig. 20.3 Self-stabilizing monitoring algorithm for u

Definition 2 We say that a node v contains a token ti in configuration c if one of the
following conditions holds:

• v has received ti in c for the first time.
• v has a forward pointer for ti (with a hop count of j < k), which points at u, and

the maximal hop count of ti in u (if it exists) is smaller than j .

Lemma 13 Let c0 be a configuration, and Tc be the set of all instances of ti in a con-
figuration c (ti might appear twice due to faults). Further, let ck be a configuration
following c0, in a fair execution, after the first k communication rounds. Assuming
that ml has not initiated a new monitoring phase using a new color, then Tck = ∅.

Proof Nodes repeatedly forward token messages to their neighbors. As a result,
if at configuration ci node v contained a token, then after one communication
round v would have forwarded the token and increased the token’s hop counter.
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Define H(Tc) as the minimal hop counter of a token in Tc and ci+1 as the first
configuration following a single communication round. It immediately follows that
H(Tci ) < H(Tci+1). Now, since tokens are terminated after reaching a large enough
hop counter, k, we get that after k rounds, starting in c0, there can be no tokens in
ck . �

It easily follows from Lemma 13 that for any configuration c j , such that j ≥ k, if
ml does not initiate a new monitoring phase, no node will change its forward pointer
that is related to ti .

Lemma 14 Under the notation of Lemma 13, in ck there exists a path from ml to a
node t, in which ti terminated, which is defined by the forward pointers of ti starting
from ml. Moreover, this path will not change unless ml initiates a new monitoring
phase.

Proof Let cm , c0 ≤ cm ≤ ck , be the last configuration in which ml contained ti (if
no such m exists, set m = 0). Since ml does not hold ti between cm and ck , ml’s
forward pointer for ti will not change.

Let v1 be the node to which ml’s forward pointer points. Let cm1 be the last
configuration in which v1 contained ti . There exists such a configuration cm1 , since
according to Lemma 13 there are no tokens in ck . Since v1 does not hold ti between
cm1 and ck , v1’s forward pointer for ti will not change.

Using the same argument, we define a sequence of nodes, r = v0, v1, v2, . . . , vl ,
such that v j ’s forward pointer for ti points at v j+1 in ck and will not change until
ml starts a new monitoring phase.

Lemma 15 Under the notation of Lemma 13, after further k communication rounds
at most ml will receive a notification for the termination of ti .

Proof The proof is by induction, showing that after each round, the notification
advances at least one node backward on the path defined by Lemma 14. �

The next theorem follows immediately from the lemmas above. In particular it
follows that after the first time ml initiates a new monitoring phase using a new
color, the monitoring phase will complete successfully. Thus, assuming that ml
initiates t random walks, each of length k, in a system with N nodes, we get the
following:

Theorem 2 The monitoring algorithm is a self-stabilizing algorithm which stabi-
lizes in O(k) rounds. Furthermore, the monitoring algorithm requires O(t (log t +
log k + log N )) bits of memory at each node.

20.5.3.4 Global Monitoring Algorithm

Given the monitoring algorithm and the reset procedure above, we present a self-
stabilizing expansion monitoring algorithm. The algorithm is based on repeatedly
invoking the monitoring algorithm for a single node, each instance from a different
node.



646 S. Dolev and N. Tzachar

To coordinate between the nodes and to ensure only one monitoring session is
active at a time, we employ a single leader in the system, with a BFS tree rooted
in this same leader. Repeatedly, the BFS leader, bl, selects a directed edge, 〈u, v〉,
uniformly among all directed edges, and informs v, the edge’s endpoint, to start a
new monitoring session as the monitoring session leader. If a specific percentage of
monitoring sessions failed, bl may conclude that the graph is not a good expander
and initiate a reset to rebuild the graph.

We next detail the specific techniques used to realize the global monitoring algo-
rithm.

• Self-Stabilizing BFS tree. The BFS tree is assumed to be defined. Nodes will
repeatedly inspect the status of the tree, and upon finding any error will initiate
a reset. Namely, each node v repeatedly checks that v’s neighbors have the same
leader v has. In case v is the leader, v also checks whether its distance to the BFS

root is 0. Otherwise, when v is not a leader, v checks whether v’s parent in the
BFS is closer to the leader than v by exactly one and there is no neighbor that is
closer to the leader. Once any node (either a leader or a non-leader node) detects
a violation of the above assertions, the node will initiate a snap-stabilizing reset,
ensuring that a single BFS leader will be elected and a correct BFS tree will be
constructed.

To facilitate communications between the BFS leader and the rest of the nodes,
the BFS leader will repeatedly color the BFS defined by the parent child relation,
using randomly selected colors. Such a self-stabilizing coloring technique using
broadcast and convergecast over a tree has been well investigated, see [10].

When coloring the BFS tree with a new color, the BFS leader may piggyback
messages on the messages used for coloring, and nodes may piggyback information
back to the BFS leader with their replies.

• Selecting the next monitoring node. Each monitoring session must start from
a directed edge, chosen uniformly. To select the edge, the BFS leader, bl, will
employ the coloring of the tree defined above.

During and after the construction of the BFS tree each node v will be repeatedly
notified by its children on seu , the number of edges connected to all nodes in the sub-
tree rooted in each child u. v will repeatedly define sev to be Δv +∑u child of v seu ,
where Δv is the number of edges directly connected to v. In particular, a leaf u
will repeatedly notify its parent with Δu . Moreover, each node maintains a local
ordering of the node’s children.

Each node u associates a set of natural numbers between 1 and seu with u’s
children and with u itself, so that each number is associated with a single node
and each node v receives a set of numbers, Nv , of cardinality sev so that Nv =
{i1, i2, . . . , isev }.

The BFS leader, bl, initiates the selection of the new node by first selecting, uni-
formly at random, a natural number k between 1 and sebl . If k is associated with
bl, bl is the new monitoring leader. Otherwise, let v be bl’s child with which k is
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associated, and let k = i j ∈ Nv . bl will inform v (by piggybacking on the coloring
algorithm’s messages) that v should continue the process with the number j .

When a node v receives a message that v should select the next monitoring leader
using the number k, v first checks with which node k is associated. If k is associated
with v itself, v selects itself as the new monitoring leader. Otherwise, assume k is
associated with a child, u, such that k = i j ∈ Nu . v will notify u that u should
continue the process with the number j . Note that the selection algorithm always
terminates and selects a node with a uniform distribution over all edges’ endpoints.

At the end of the coloring of the BFS tree, bl learns the identity of the node
which was selected as the next monitoring session. Moreover, the natural number,
k, which bl has randomly chosen, uniquely identifies the next monitoring leader. bl
will then initiate a new coloring of the tree, in which bl broadcasts the identity of
the new monitoring leader. Next, we describe the mechanism used to ensure that the
monitoring leader indeed performs the monitoring.

• Ensuring a monitoring leader exists. bl must ensure that the current monitoring
leader is active. There are several ways to achieve this, amongst them is using the
coloring to communicate with the current monitoring leader. A different way,
which does not involve the coloring algorithm is by routing messages directly
to the monitoring leader, down the BFS tree, by employing the same mechanism
used to select the monitoring leader; as bl remembers k, the randomly chosen
natural number which identifies the monitoring leader, bl can route messages to
the monitoring leader which can then send replies up the tree toward bl. To ensure
self-stabilization, each time bl sends a message, bl will attach a random color to
the message and expect a reply containing the same random color.

If bl does not receive a confirmation that a monitoring leader exists, bl will per-
form a reset to reinitialize the BFS tree.

• Detecting bad expansion. There exists a small constant c, such that if the
monitoring algorithm (for a single node) indicated that the graph is not a good
expander at least c/2 times when running c monitoring sessions consecutively
(from different nodes), then with probability 1 − o(1) the graph is not a good
expander. This follows by examining the conditional probability that the graph
is not a good expander given that the monitoring algorithm indicated so in more
than half the times of c successive sessions, and that the probability of a wrong
answer on a good expander and the probability of getting a good expander a priori
are both 1 − o(1).

bl will employ this constant to check the last c invocations of the monitoring
algorithm. If more than c/2 invocations failed, bl will initiate a reset to rebuild the
graph. We wish to draw the reader’s attention to the fact that monitoring results may
not be reused; for example, once c successive monitoring sessions are finished, a
new set of successive monitoring sessions will start.

Note that one may employ more than one monitoring session in parallel by uni-
formly choosing a set of edges which, in turn, define a set of nodes such that each
such node is a monitoring leader, hence boosting the speed of the detection time.
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• Stretch factor. The diameter of the resulting spander graph is in O(log n). This,
in turn, implies that the spander has an additive stretch factor in O(log n).

20.6 Distributed Hierarchical Spanner Construction

Given a graph G = (V, E) satisfying the conditions of Lemma 1 (namely, having
an edge expansion of at least c · log n), we wish to define a hierarchical structure of
spanders such that each spander will have fewer edges than the one before it (and, as
a by-product, smaller expansion). This hierarchical construction can then be used to
ensure the quality of service in a wide variety of applications; the system can auto-
matically adjust the communication graph used in order to achieve its goals, taking
into account the underlying structure of the chosen graph and the fitting number of
edges versus the probability of expansion.

We propose a self-stabilizing and self-organizing distributed algorithm based on
the techniques shown above. Namely, we propose to distributively define a sequence
of spanders, {Gi }k

i=0,G0 = G, where k is an input to the construction algorithm,
such that each graph Gi results from Gi−1 by applying the algorithm portrayed in
Sect. 20.4.2. Furthermore, to ensure that each spander is indeed up to the standard,
we apply the monitoring technique portrayed in Sect. 20.5.2 by starting a monitoring
phase from each node and for each spander in the hierarchy. If one node discovers
that a given spander Gi is either not sparse enough or not a good expander, it will
start a snap-stabilizing reset which restarts the construction from Gi onward.

It immediately follows that the proposed hierarchical construction is self-
stabilizing; since each graph of the hierarchy is constantly monitored by a self-
stabilizing monitoring protocol, once one of the graphs is found to be faulty the
snap-stabilizing reset protocol will tear down the hierarchy from the faulty graph
forward (using the reset procedure). The construction will then resume from the
latest graph known to be a good expander. It follows, according to the fair compo-
sition technique ([10], Sect. 2.7), that the hierarchical construction will eventually
stabilize.

• Maximal hierarchy height. When considering possible values for k, the height
of the hierarchy, several considerations come to mind; assuming that the proba-
bility of edge selection in each level of the hierarchy is p, at each level i there are
at most pi |E0| edges. In fact, we check that the number of edges in each level is
not too large. As a result, when i ∈ O(log n) the spander construction will fail.
This implies that at most O(log n) levels in the hierarchy can exist, and therefore
appropriate memory and communications resources for this number of levels are
needed.

• Self-organization. The construction is self-organizing; the construction of the
graph is a local computation carried by each node locally and independently
of neighboring nodes. Each instance of the monitoring protocol takes O(log n)
communication rounds to complete. Taking into account that following a constant
number of successful monitoring phases, with very high probability the graph
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is a good expander, we then get that a hierarchy of height k will stabilize in
O(k log n) communication rounds, if a reset procedure is invoked at every level
of the hierarchy in the worst case.

Another property of self-organizing algorithms is fast reaction time to topology
changes after the algorithm has converged. Consider a node, v, joining G0. If G0
will remain a good expander and satisfy the conditions of Lemma 1, then the fol-
lowing simple procedure, carried by v, will ensure that each graph in the hierarchy
will be a good expander: v will select each edge of Gi (i > 0) to be in Gi+1 with
probability p (the same probability as in the construction algorithm); each Gi can
still be seen as a random graph drawn from the probability space induced by our
construction algorithm, from which it follows that each graph is a good expander
with high probability.

Now, consider the effect v has on the monitoring algorithm. We first require that
v will join the BFS tree by selecting the neighbor with the shortest distance to the
BFS leader as v’s BFS parent. v will then notify v’s parent with Δv , such that the
sum of degrees held by each node on the path from v to the BFS leader will also
be updated. Next, v will check that the height of the BFS tree is not too big, say,
bigger than 2 log n. If the height is too big, v will initiate a reset to rebuild the
BFS tree.

Overall, if the pattern of nodes joining G0 is symmetric, meaning each node
joining the graph is connected to other nodes using a uniform distribution, then the
number of nodes joining the network between two successive resets is large. Hence,
the expected, in fact, amortized, convergence time following a join is short and in
O(1).

Next, consider a node, v, leaving the graph or crashing. If the basic graph,
G0, remains an expander with the required properties as in Lemma 1 even after
v is removed, then from a similar argument as the one for nodes joining the net-
work, each graph Gi in our hierarchy will remain a good expander with high
probability. Let us now consider the implications of v’s crash on the monitoring
algorithm.

Each of v’s neighbors in G0 will detect that v has crashed. Each node u such that
v was u’s parent in the BFS tree will need to select a different parent and update this
new parent with seu . Moreover, v’s parent, w, will need to deduce sev from sew.
Regarding the current monitoring session, each node v will need to check if v is
currently holding a token which it needs to forward to a crashed node. If so, v will
need to forward the token to a different node.

If v was the monitoring leader, then a new monitoring leader will be selected by
the BFS leader. In the case that v is itself the BFS leader, a new reset procedure will
be started.

Overall, the correct behavior of the monitoring algorithm will not be harmed. The
total communication round which it would take to update the BFS tree following a
crash is expected to be in O(1) when the probability of node failure is uniform.
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Furthermore, the same argument holds when edges are removed or added, as
long as G0 satisfies Lemma 1. As a result, the construction algorithm converges in
an expected (amortized) O(1) communication rounds following a topology change.

• Hierarchical reset. Consider the reset protocol presented earlier, which we per-
form on the original graph, G, when building the hierarchy. The message com-
plexity of the reset algorithm is in O(d · |E |), where d is the diameter of the
graph and E is the set of edges. When G is sparse, the reset algorithm is efficient.
However, when G is dense, i.e., |E | ∈ O(n2), the communication complexity of
the reset algorithm is in O(n2).

To lower the communication cost of the reset algorithm we propose to perform
the reset algorithm associated with the monitoring algorithm of Gi+1 on Gi . How-
ever, one problem may arise; we need to ensure that Gi is indeed connected. Oth-
erwise, the reset algorithm will fail to reset the entire graph. To ensure that Gi is
connected, we augment the reset protocol in the following way: the BFS leader will
count the nodes in the tree in addition to coloring the tree. If the number of nodes is
too small or differs from the number of nodes in G = G0, then a reset on Gi−1 will
need to be started to rebuild Gi . Alternatively, the BFS of G0 will be used to update
the leader identity of each level.

Theorem 3 The proposed hierarchical distributed expander construction algorithm
is self-stabilizing and self-organizing. The convergence time of a hierarchy of height
k is in O(k log n) and the memory required at each node, imposed by the monitoring
algorithm, is in O(kn log n).
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Definitions Summary

Definition For a graph G = (V, E), given two sets of nodes, V1, V2, define
E(V1, V2) = {e = (v1, v2) ∈ E |v1 ∈ V1 ∧ v2 ∈ V2} (e.g., the set of edges between
V1 and V2). We also define V1 = V \ V1, the set of nodes not in V1.

Definition For a graph G = (V, E) and a given set of nodes, S, define Γ (S) =
{u ∈ V |∃s ∈ ∧(u, s) ∈ E}.
Definition A graph G = (V, E) is an edge expander if there exists a con-
stant c, such that for each set S of vertices (where |S| < |V |/2) it follows that
|E(S, S)|/|S| > c.

Definition An expander is considered “good” if it has a constant expansion param-
eter.

Definition A graph G = (V, E) is a vertex expander if there exists a constant c,
such that for each set S of vertices (where |S| < |V |/2) it follows that

P

⎡

⎢⎢
⎣ min

S⊂V,|S|≤n

2

|Γ (S) \ S|
|S| < c

⎤

⎥⎥
⎦ < o(1)

Definition Given a graph G = (V, E), a spander, S = (V, E ′), is a spanning
subgraph of G if there exists a constant p > 0, such that |E ′| ≤ p|E | and the edge
expansion of S is at worst p times the edge expansion of G.

Definition The mixing rate of a graph is the measure of how fast a random walk on
the graph converges to its stationary distribution.

Definition The mixing time of a graph gives the time scale (in steps) for a random
walk to reach the stationary distribution.

Definition A task is defined by a set of legal executions.

Definition A fair execution is an execution of the system in which every node
makes steps infinitely often.
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Definition A configuration c is a safe configuration for a system and a set of legal
executions L E if every fair execution that starts in c is in L E .

Definition A system is self-stabilizing for a task and a set of legal executions L E
if every infinite execution reaches a safe configuration in relation to L E .

Definition A communication round (or just a round) is a sequence of atomic steps
such that each node has taken at least one atomic step during this sequence. If this
atomic step involves a send operation of a message m over link l, then we require
that the atomic step which corresponds to receiving a message from l, which was
sent during this sequence of atomic steps, will also appear in the sequence.

Definition A distributed algorithm is termed self-organizing ([24]) if it satisfies the
following properties: (1) the algorithm is self-stabilizing, (2) convergence time to
a safe configuration, s(n), is in o(n), and (3) after reaching a safe configuration,
convergence time following a dynamic change, d(n), is in o(s(n)).

Definition A distributed algorithm is termed snap-stabilizing if the algorithm sta-
bilizes following the first request by any node and before, or simultaneously with,
a notification arriving to the requesting node at the completion of the request (for
more information, see [7]).



Chapter 21
Computing by Mobile Robotic Sensors

Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro

Abstract The research areas of mobile robotic sensors lie in the intersection of
two major fields of investigations carried out by quite distinct communities of
researchers: autonomous robots and mobile sensor networks. Robotic sensors are
micro-robots capable of locomotion and sensing. Like the sensors in wireless sensor
networks, they are myopic: their sensing range is limited. Unlike the sensors in wire-
less sensor networks, robotic sensors are silent: they have no direct communication
capabilities. This means that synchronization, interaction, and communication of
information among the robotic sensors can be achieved solely by means of their
sensing capability, usually called vision. In this chapter, we review the results of the
investigations on the computability and complexity aspects of systems formed by
these myopic and silent mobile sensors.

21.1 Introduction

21.1.1 Distributed Computing and Mobile Entities

In distributed computing the research focus is on the computational and complexity
issues of systems composed of autonomous computational entities interacting with
each other (e.g., to solve a problem, to perform a task). While traditionally the enti-
ties have been assumed to be static, recent advances in a variety of fields, ranging
from robotics to artificial intelligence to software engineering to networking, have
motivated the distributed computing community to address the situation of mobile
entities. Indeed, recently an increasing number of investigations are being carried
out on the computational and complexity issues arising in systems of autonomous
mobile entities located in a spatial universe U . The entities have storage and pro-
cessing capabilities, exhibit the same behavior (i.e., execute the same protocol), and
can move in U (their movement is constrained by the nature of U).
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Depending on the nature of U , there are two basic settings in which autonomous
mobile entities are being investigated. The first setting, sometimes called graph
world or discrete universe, is when the universe is a simple graph; this is, for exam-
ple, the case of mobile agents in communication networks (e.g., [15, 26, 36]). The
second setting, called sometimes continuous universe, is when U is a region of the
2D (or 3D) space. This is, for example, the case of robotic swarms, mobile sensor
networks, mobile robotic sensors, etc. (e.g., [1, 13, 16, 21, 31, 34, 35, 38, 45, 47,
48, 56, 66, 75, 79, 81–83]). In both settings, the research concern is on determining
what tasks can be performed by such entities, under what conditions, and at what
cost. In particular, a central question is to determine what minimal hypotheses allow
a given problem to be solved.

In the continuous setting two major research areas can be distinguished, their
difference resting on the types of assumptions made, carried out by quite distinct
communities of investigators:

• autonomous robots, an established and mature research field (which includes
swarm robotics and robotic networks), investigated mainly by researchers
in robotics, control, artificial intelligence, and more recently by algorithmic
researchers;

• mobile sensor networks, a new and emerging research field whose investigations
are carried out mostly as an extension of the more traditional (static) sensor net-
works.

These two areas have overlapping boundaries, and their intersection is a region
of surprising and interesting convergence of research interests. An important such
region is the area of mobile robotic sensors, the topic of this chapter.

21.1.2 Robots, Sensors, and Mobility

The addition of motorial capabilities to a computational entity not only empow-
ers the entity in non-trivial ways, but it also, and more importantly, empowers the
system employing such entities. This empowerment takes many forms and displays
different aspects. This is particularly evident in the case of wireless sensor networks.
Indeed, empowering the sensors with mobility allows the network to perform tasks
and solve problems which would be impossible to do with static sensors. Indeed,
mobile sensors have gained attention lately as important tools for a wide range of
applications and tasks, such as search and rescue, exploration and mapping, evalua-
tion of civil infrastructure, military operations.

The first proposals for the use of mobility in sensor networks have been for exoge-
nous solutions: mobile robots are introduced into the network of static sensors to
augment the capacities of the system or to simplify the management of the network
(e.g., to repair failed sensors, to redeploy sensors so to improve overall coverage,
to gather information from the robots), and this research still continues (e.g., see
[5, 6, 27, 54, 67, 84, 86]).
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At the same time, a large number of investigators have suggested and studied
the use of endogenous mobility in sensor networks: mobile sensor networks, in
which the sensors have processing power, wireless communication, and motion
capabilities. The sensors operate in a totally distributed way, moving under their
own control, and reacting to the inputs received from the environment where they
operate, thus creating computational systems capable of interacting with the physi-
cal environment (e.g., see [11, 14, 44–46, 50, 57, 58, 61, 71, 82, 88]).

At this point, the research results start to merge with the rich existing literature
on autonomous robots, in particular with that of systems of micro-robots and of
robotic sensors, studied also from the control and the computing point of view (e.g.,
[1, 7, 13, 18, 21, 28, 31, 34, 38, 56, 66, 76, 82, 83]). These investigations differ
greatly from each other depending on the assumptions they make. Major differences
exist depending on whether the entities’ actions are synchronized (e.g., [13, 47, 81,
83]) or no timing assumptions exist (e.g., [31, 35, 53]); the sensors have persistent
memory (e.g., [13, 43, 83]) or are oblivious (e.g., [35, 46, 79]); the sensors have
the computational power of Turing machines (e.g., [81, 83]) or are simple Finite-
State machines (e.g., [4, 16, 30, 47]); the visibility/communication range is limited
(e.g., [31, 38, 43, 47, 79]) or extends to the entire region (e.g., [1, 10, 12, 35, 83]).

21.1.3 Mobile Robotic Sensors

The crucial difference between systems of robotic sensors and wireless sensor net-
works is the following. In sensor networks, regardless of whether mobile or static,
the entities are endowed with both sensing and (wireless) communication capabili-
ties. However, of these two capabilities, only the latter—wireless communication —
is used for synchronization, interaction, and communication of information among
the sensors and within the network.

On the contrary, robotic sensors are generally endowed solely with sensing capa-
bility. In other words, they are silent: they have no direct communication capabili-
ties. This means that synchronization, interaction, and communication of informa-
tion among the sensors and within the network can be achieved solely by means of
their sensing capability, usually called vision. This characteristic is indeed the same
one assumed in most of the traditional research on autonomous robots.1

The lack of direct means of communication has many computational drawbacks;
indeed, the fact that robotic sensors must rely solely on their sensing capabilities
for all their interactions is a severe limitation. It does however have one advantage
in the determination of an entity’s neighbors. In fact, in systems of robotic sen-
sors, the determination of one’s neighbours is done by sensing capabilities (e.g.,
vision): any sensor in the sensing radius is detected even if inactive, and thus no
other mechanisms are needed. On the other hand, in traditional wireless sensor

1 The notable exceptions are the robotic networks studied in the control community that assume
and use direct communication, e.g., [7, 65].
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networks, determination of the neighbors is achieved by radio communication; since
an inactive sensor does not participate in any communication, the simple activity of
determining one’s neighbors, to be completed, requires the use of randomization
or the presence of sophisticated synchronization and scheduling mechanisms (e.g.,
[63, 69, 74]).

Another important difference with mobile sensor networks is that robotic sensors,
like most autonomous robots, are often equipped with a much larger energy reserve,
or have self-charging capability (e.g., on board PV or ability to plug into the power
grid to recharge their batteries). Hence energy is a concern but not as crucial as in
mobile sensor networks.

The key feature that robotic sensors share with mobile sensor networks is that
they are myopic: their sensing range is limited (see Fig. 21.1). Precisely this feature
constitutes the key difference between robotic sensors and traditional models of
autonomous robots and micro-robots. In fact, algorithmic robotic research usually
assumes unlimited visibility: the entities are capable of determining the location of
all other regardless of their position in the region, e.g., [1, 9, 12, 19, 35, 52, 53,
70, 77, 81, 83, 91]. Additional differences between robotic sensors and traditional
models of autonomous robots and micro-robots robotic sensors are that usually the
robots are more powerful (both memory-wise and computationally) than sensors,
and typically there is no requirement for the robots to reach a state of static equi-
librium (e.g., in most cases the swarm just converges toward a desired formation or
pattern).

Summarizing, robotic sensors are

1. mobile, like mobile sensor networks and autonomous robots;
2. silent, like traditional autonomous robots;
3. myopic, like sensor networks.

The purpose of this chapter is to present and discuss the research efforts on sys-
tems of robotic sensors. It is organized as follows. In Sect. 21.2 we will present in
detail the computational model and introduce the formalism and terminology. We
will then review the research results on computing by mobile robotic sensors. The
investigations have been focusing on three fundamental problems: Self-Deployment,

Fig. 21.1 Limited visibility:
a sensor can only see sensors
that are within its radius of
visibility

s

s
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Pattern Formation, and Gathering; they will be discussed in Sects. 21.3, 21.4, and
21.5, respectively.

21.2 Modeling Mobile Robotic Sensors

21.2.1 Capabilities

The system is composed of a set S = {s1, . . . , sn} of n mobile robotic sensors
operating in a spatial universe U ⊆ R

2.
A mobile robotic sensor (or simply sensor) s ∈ S is modeled as a computational

unit: it has its own local memory and it is capable of performing local computations.
A sensor is endowed with sensorial capabilities and it can perceive the spatial

environment U and the sensors in it, within a fixed distance v > 0, called visibility
radius. Each sensor has its own local coordinate system: a unit of length, an origin,
and a Cartesian coordinate system defined by the directions of two coordinate axes,
identified as the x- and y-axis, together with their orientations, identified as the
positive and negative sides of the axes. However, the local coordinate systems of the
sensors might not be consistent with each other.

Each sensor is endowed with motorial capabilities; it can turn and move in any
direction. A move may stop before the sensor reaches its destination, e.g., because
of limits to its motion energy; however, it is assumed that the distance traveled in
a move by s is not infinitesimally small (unless it brings the sensor to its destina-
tion): there exists a constant δs > 0, such that, if the destination is closer than δs , s
will reach it; otherwise, s will move toward it by at least δs . Note that without this
assumption, it would be impossible for s to ever reach its destination, following a
classical Zenonian argument. In the following, we shall use δ = mins δs .

The sensors are silent: they have no means of direct communication of informa-
tion to other sensors. Thus, any communication occurs in a totally implicit manner,
by observing the other sensors’ positions. Let s(t) denote the position of sensor s at
time t ; when no ambiguity arises, we shall omit the temporal indication.

The sensors are autonomous (i.e., without a central control) and identical (i.e.,
they execute the same protocol). They might be anonymous (i.e., a priori indistin-
guishable by their appearance and without identifiers that can be used during the
computation).

21.2.2 Behavior

At any point of time, a sensor is either active or inactive. When active, a sensor s
performs the following three operations, each in a different state:

1. (State Locate) It observes the spatial environment U and the sensors in it, within
its visibility radius v > 0. As a result, it determines, in its own coordinate system,
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a snaphshot of the positions of the sensors in its circle of visibility at that time.
The circle of visibility of s at time t is the surrounding circle of s in its most
recent Locate. The Locate state can be assumed, without loss of generality, to be
instantaneous.2

2. (State Compute) It performs a local computation, according to an algorithm (the
same for all sensors) that takes in input the result of its previous Locate, and
returns a destination point. Hence, the algorithm, the same for all sensors, will
specify which operations a sensor must perform whenever it is active.

3. (State Move) It moves toward the computed destination point; if the destina-
tion point is the current location, the sensor stays still. A move may stop before
the sensor reaches its destination, e.g., because of limits to the sensor’s motion
energy.

When inactive a sensor is in Sleep state:

4. (State Sleep) It is idle and does not perform any operation.

In summary, the sensors operate in a continuous Locate-Compute-Move-Sleep
life cycle.

21.2.3 Synchronization

Depending on the degree of synchronization among the life cycles of different sen-
sors, three sub-models are traditionally identified: synchronous, semi-synchronous,
and asynchronous.

In the synchronous model (SYNC), the cycles of all sensors are fully synchro-
nized: the sensors become active all at the same time and each operation of the life
cycle is performed by all sensors simultaneously. Alternatively, there is a global
clock tick reaching all sensors simultaneously, and a sensor’s cycle is an instanta-
neous event that starts at a clock tick and ends by the next. As a consequence, no
sensor will ever be observed while moving. This model is used, e.g., in [21, 38, 83].

In the semi-synchronous model (SSYNC), there is a global clock tick reaching
all sensors simultaneously, and a sensor’s activities are an instantaneous event that
starts at a clock tick and ends by the next. Hence, also in this model, no sensor will
ever be observed while moving. However, at each clock tick, some sensors might
not become active. The unpredictability of which sensors become active at a clock
tick is restricted by the fact that at every clock tick at least one sensor is active, and
every sensor becomes active infinitely often. This model, sometimes called ATOM,
is used, e.g., in [1, 9, 12, 13, 19, 21, 83].

In the asynchronous model (ASYNC), there is no global clock and the sensors do
not have a common notion of time. Furthermore, the duration of each activity (or

2 Any time spent to activate its sensors (before the snapshot is taken) and to process the information
retrieved with the snapshot will be charged to the Sleep and the Compute state, respectively.
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r

s

Fig. 21.2 When s starts moving (the left end of the arrow), r and s do not see each other. While
s is moving, r enters state Locate and sees s; however, s is still unaware of r . After s passes the
visibility circle of r , it is still unaware of r

inactivity) is finite but unpredictable. As a result, sensors can be seen while moving,
and computations can be made based on obsolete observations. For example
(see Fig. 21.2), sensor s in transit toward its destination is seen by r ; however, s
is not aware of r ’s existence and, if it starts the next cycle before r starts moving, s
will continue to be unaware of r . This (realistic but more difficult) model, sometimes
called CORDA, is used, e.g., in [9, 33–35, 52, 53, 70].

21.2.4 Memory

In addition to its programs, each sensor has a local working memory, or workspace,
used for computations and to store different amount of information (e.g., regarding
the location of its neighbors) obtained during the cycles. Two sub-models have been
identified, depending on whether or not this workspace is persistent.

In the oblivious model, all the information contained in the workspace is cleared
at the end of each cycle. In other words, the sensors have no memory of past
actions and computations, and the computation is based solely on what is deter-
mined in the current cycle. The importance of obliviousness comes from its link
to self-stabilization and fault tolerance. This model, sometimes improperly called
memoryless, is used, e.g., in [9, 12, 13, 19, 34, 35, 53].

In the persistent memory model, all the information contained in the workspace is
legacy: unless explicitly erased by the sensor, it will persist throughout the sensor’s
cycles. This model is commonly used for both wireless sensor networks and micro-
robots.

An additional important parameter is the size of the persistent workspace. Notice-
able are the two extreme cases. One extreme is the unbounded memory case,
where no information is ever erased; hence sensors can remember all past com-
putations and actions (e.g., see [81, 83]). The other extreme is when the size of the
workspace is constant; in this case, the sensors are just Finite-State Machines (e.g.,
[4, 16, 47]) .
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21.3 Self-Deployment

21.3.1 Introduction

The first important problem faced with sensor systems is the effective deployment
of the sensors within the spatial universe U, assumed to be finite. The deployment
must usually satisfy some optimization criteria with respect to the space U (e.g., uni-
formity, maximum coverage). In case of static sensors, they are usually deployed by
external means, either carefully (e.g., manually installed) or randomly (e.g., dropped
by an airplane); in the latter case, the distribution of the sensors may not satisfy the
desired optimization criteria.

If the sensing entities are mobile, as in the case of mobile sensor networks, vehic-
ular networks, and robotic sensor networks, they are potentially capable to position
themselves in appropriate locations without the help of any central coordination or
external control, a task called Self-Deployment.

In this section we consider some of the problems and issues we must face to
achieve such a rather complex task; indeed, designing localized algorithms for effi-
cient and effective deployment of the mobile entities is a challenging research issue.

Some of the initial proposals on the deployment of mobile sensors were still
based on centralized approaches, e.g., employing a powerful cluster head to collect
the initial location of the mobile sensors and determine their target location [92].
The current research efforts are on the development of local protocols that allow the
sensors to move from an initial random configuration to a uniform one acting in a
purely local, decentralized, distributed fashion. An essential requirement is clearly
that the sensors will reach a state of static equilibrium, that is, the self-deployment
will be completed within finite time. How this task can be efficiently accomplished
continues to be the subject of extensive research in the mobile sensor networks com-
munity (e.g., see [43–46, 58, 62, 72, 87, 88]). Similar questions have been posed in
terms of scattering or coverage in cooperative mobile robotics and swarm robotics
(e.g., [8, 47]), as well as in terms of the formation problem for those entities (e.g.,
[9, 13, 19, 33, 35, 53, 81, 83, 85]).

The existing self-deployment protocols differ greatly from each other depend-
ing on the assumptions they make; for example, some require the sensors to be
deployed one at a time [16, 45, 47], while others require prespecified destinations
for the sensors [62]. However, sensors are usually dispersed in the environment all
together, more or less at the same time, with no a priori knowledge of where their
final location should be. Actually, unlike the case of ad hoc networks, for small
sensors localization is very hard, so it cannot be generally assumed that the sensors
know where they are.

The self-deployment problem has been investigated with the goal to cover the
area so to satisfy some optimization criteria, typically to maximize the coverage
(e.g., see [43–46, 58, 62, 72, 87, 88]). For example, in [88] the problem is to max-
imize the sensor coverage of the target area minimizing the time needed to cover
the area, while in [72] the additional constraint is a minimum requirement on the
degree of all nodes. Typically, distributed self-deployment protocols first discover
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the existence of coverage holes (the area not covered by any sensor) in the target
area based on the sensing service required by the application. After discovering a
coverage hole, the protocols calculate the target positions of these sensors, that is,
the positions where they should move.

All of these solutions to the self-deployment problem require direct communi-
cation between sensors, hence cannot be employed by robotic sensors. It is also
interesting to observe that even with communication, none of the existing self-
deployment proposals is capable of providing a complete uniform coverage. This
impossibility is hardly surprising since those protocols are generic, that is, they must
work in any environment regardless of its topology or structure. This fact opens a
series of interesting questions, first of all whether it is possible for the sensors to
self-deploy achieving uniform coverage in specific environments (e.g., corridors,
grids, rims). The next important question is on the capabilities and a priori knowl-
edge needed by the sensors to achieve this goal; in other words, how “weak” the
sensors can be and still be able to uniformly self-deploy. In particular, the focus of
this section is on conditions for self-deployment of mobile robotic sensors so as to
obtain uniform coverage of specific spaces U.

21.3.2 Uniform Deployment on Linear Borders

The first spatial universe U considered is possibly the simplest: a linear border or
corridor, along which the sensors are required to place themselves evenly.

A corridor can be viewed as a line L on which the sensors are initially located at
random distinct points. From an external point of view, the sensors can be ordered
based on their position on the line from left to right; without loss of generality, let
s1 be the leftmost sensor and let si be to the right of si−1, 2 ≤ i ≤ n. This order is
clearly unknown to the sensors.

The goal is for the sensors to self-deploy evenly in the segment of the line
delimited by the positions of the leftmost and rightmost sensors s1 and sn (that,
alternatively, could represent some perimeter marks rather than sensors).

Assuming that each sensor si is capable of viewing its neighbors si−1 and si+1 if
they exist, the self-deployment algorithm, by Cohen and Peleg [13], is remarkably
simple:

Protocol CORRIDOR SPREAD (for sensor si )

• If no other sensor is seen on the left or on the right, then do
nothing;

• Otherwise, move to point x = 1
2 (si+1 + si−1).

With sensors that are anonymous, oblivious, and with no common coordinate
system, the above protocol converges to a uniform deployment in the SSYNC (and
thus also in the SYNC) model.
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Let us show the idea of the convergence proof in the SYNC model. Note that
since the sensors operate in one dimension, any coordinate system will give the
same resulting destination. Therefore, in order to analyze the protocol, an external
global coordinate system is used, of which the sensors have clearly no knowledge.
In the following, the coordinate system where s0(t) = 0 and sn−1(t) = 1 is chosen
as the global coordinate system. The goal is to spread the sensors uniformly; that is,
at the end, sensor si should occupy position i

n−1 . Let μi [t] be the shift of the si ’s
location at time t from its final position. According to the protocol, the position of
sensor si changes from si (t) to

si (t + 1) = 1

2
(si−1(t)+ si+1(t))

for 2 ≤ i ≤ n − 1, while sensors s1 and sn never move. Therefore, the shifts change
with time as

μi [t + 1] = 1

2
(μi+1[t] + μi−1[t])

Consider the following progress measure:

ψ[t] = Σ i=n
i=1 μ

2[t]

Then

Lemma 1 ψ[t] is a decreasing function of t unless the robots are already equally
spread.

Finally,

Theorem 1 In the SYNC model, every O(n2) cycles, ψ[t] is at least halved; fur-
thermore, the sensors converge to equidistant positions.

The idea of the convergence prove in SSYNC is similar; in fact, first a non-
decreasing quantity is defined, and its monotonicity proven. Then, by relating this
quantity to the non-constant terms of the cosine series, it is proven that it decreases
by a constant factor on every round, proving convergence.

Theorem 2 In the SSYNC model, anonymous, oblivious sensors on a line L with no
common coordinate system converge to uniform deployment.

21.3.3 Uniform Deployment Along Circular Borders

Consider next an important class of spatial regions, that of circular borders or
circular rims. Deployment in these spaces occurs, for example, when the sensors
have to surround a dangerous area and can only move along its outer perimeter.
This situation is modeled by describing the space U as a ring C. Starting from an
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Fig. 21.3 Starting from an
initial arbitrary placement (a),
the sensors must move to a
uniform cover of the ring (b)

initial arbitrary placement on the ring, the sensors must within finite time position
themselves along the ring at (approximately) equal distance, see Fig. 21.3.

The self-deployment problem along a ring is related to the well-studied problem
in the field of swarm robotics of uniform circle formation [9, 19, 22, 23, 53, 77, 85].
In this problem (discussed in more detail in Sect. 21.4.2), the robots are required
to uniformly place themselves on the circumference of a circle not determined in
advance (i.e., the entities do not know the location of the circle to form). The main
difference between the uniform circle formation and the self-deployment problem
in the ring is that in uniform circle formation the entities can freely move on the
two-dimensional plane in which they have to form a ring; in contrast, our sensors
can move only on the ring, which is the entire environment.

Let S = {s1, . . . , sn} be the n sensors initially arbitrarily placed on the ring C (see
Fig. 21.3). Initially no two sensors are placed at the same location; the algorithms
should avoid collisions, i.e., having two sensors simultaneously occupying the same
point; without loss of generality, let si be the sensor immediately before si+1 in
the clockwise direction, with sn preceding s1. Let di (t) be the distance between
sensor si and sensor si+1 at time t ; when no ambiguity arises, we will omit the
time and simply indicate the distance as di . Let d = L/n, where L denotes the
length of the ring C. The sensors have reached an exact self-deployment at time t if
di (t) = d for all 1 ≤ i ≤ n. Given ε > 0, the sensors have reached an ε-approximate
self-deployment at time t if d − ε ≤ di (t) ≤ d + ε for all 1 ≤ i ≤ n.

An algorithm Acorrectly solves the exact (resp. ε-approximate) self-deployment
problem if, in any execution of Aby the sensors in C, regardless of their initial
position in C, there exists a time t ′ such that the sensors have reached an exact (resp.
ε-approximate) self-deployment at time t ′ and are in a quiescent state.

21.3.3.1 Impossibility Without Orientation

There is a strong negative result for the SSYNC (and thus for the ASYNC) model. In
fact, exact self-deployment is actually impossible if the sensors do not share a com-
mon orientation of the ring; notice that this is much less a requirement than having
global coordinates or sharing a common coordinate system. This impossibility result
by Focchini et al. [31] holds even if the sensors have unlimited memory of the past
computations and actions (i.e., unlimited persistent memory, see Sect. 21.2.4), and
their visibility radius is unlimited.

Theorem 3 Let the sensors be on a ring C. In the absence of common orientation of
C, there is no deterministic exact self-deployment algorithm even if the sensors have
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unbounded persistent memory, their visibility radius in unlimited. and the schedul-
ing is SSYNC.

To see why this is the case, consider the following setting. Let n be even; partition
the sensors into two sets, S1= {s1, . . . , sn/2} and S2= S\ S1, and place the sensors
of S1and S2on the vertices of two regular (n/2)-gons on Circle, rotated of an angle
α < 360◦/n. Furthermore, all sensors have their local coordinate axes rotated so
that they all have the same view of the world (refer to Fig. 21.4.a for an example).
In other words, the sensors in S1share the same orientation, while those in S2share
the opposite orientation of C. Denote a configuration with such properties by Y (α).
A key property of Y (α) is the following.

Property 1 Let the system be in a configuration Y (α) at time step ti .

1. If activating only the sensors in S1, no exact self-deployment on C is reached at
time step ti+1, then also activating only the ones in S2 no exact self-deployment
on C would be reached at time step ti+1; furthermore, in either case the system
would be in a configuration Y (α′) for some α′ < 360◦/n.

2. If activating only the sensors in S1 an exact self-deployment on C is reached at
time step ti+1, then also activating only the sensors in S2an exact self-deployment
on C would be reached at time step ti+1.

3. If activating only the sensors in S1 an exact self-deployment on C is reached at
time step ti+1, then activating both sets no exact self-deployment on C would be
reached at time step ti+1, and the system would be in a configuration Y (α′) for
some α′ < 360◦/n.

Using this property it is easy to design an adversary that will force any self-
deployment A to never succeed in solving the problem: the adversary will choose
Y (α) as the initial configuration and behave as follows (refer to Figure 21.5):
(Step a) If activating only the sensors in S1 no exact self-deployment on C is reached:
then activate all sensors in S1, while all sensors in S2 are inactive; otherwise, activate
all sensors. Go to (b).

αα

b.

s1

s4

s3

s2

s1

s4

s3

s2

a.

Fig. 21.4 (a) An example of starting configuration for the proof of Theorem 3. The black sensors
are in S1, while the white ones in S2. (b) Theorem 3: the adversary moves only sensors in S1
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Fig. 21.5 Theorem 3. (a) If only the sensors in S1are activated at t , all sensors would be uniformly
placed at time t + 1, with β + γ =45◦. (b) If only the sensors in S2are activated at t , all sensors
would be uniformly placed at time t + 1, with β + γ = 45◦. (c) Therefore, if all sensors would be
activated at t , they would not be in an exact self-deployment on C, having γ+β+δ �= 2π/n = 45◦.
In all figures, the squares represent the destination of the active sensors

(Step b) If activating only the sensors in S2 no exact self-deployment on C is reached:
then activate all sensors in S2, while all sensors in S1are inactive; otherwise, activate
all sensors. Go to (a).

By Property 1, if the configuration at time ti ≥ t0 is Y (α) for some α < 360◦/n,
then regardless of whether the adversary executes step (a) or (b), the resulting con-
figuration is Y (α′) for some α′ < 360◦/n, and hence no exact self-deployment on C
is reached at time step ti+1. Hence, there exists an infinite execution of A in which
no exact self-deployment will ever be reached. The alternating between steps (a)
and (b) by the adversary ensures the feasibility of this execution: every sensor will
in fact become active infinitely often.

Recently, the impossibility without orientation has been announced to hold also
for the stronger SYNC model [29].

Since the impossibility result of Theorem 3 holds in the absence of common
orientation of the ring, the focus will now be on oriented rings; two cases will be
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considered depending on whether or not the desired final distance d is known to the
sensors.

21.3.3.2 Exact Deployment

Faced with this strong negative result of Theorem 3, the interesting question
becomes under what restrictions the self-deployment problem can be solved with
an exact algorithm. Since the impossibility result holds in the absence of common
orientation of the ring, consider the problem in oriented rings.

In an oriented ring, if the desired final distance d is known or computable (e.g.,
both the number of sensors and the length of the ring are known), exact self-
deployment is indeed possible. This positive result holds even if the sensors are
oblivious and asynchronous, provided their visibility radius is at least 2d.

The algorithm by Focchini, Prencipe, and Santoro [31] proves this result is very
simple:

Protocol RING - KNOWN INTERDISTANCE (for sensor si )

• Locate clockwise at distance 2d. Let di be the distance to si+1
(if visible, else di = 2d).

• If di ≤ d do not move.
• If di > d move clockwise and place yourself at distance d

from si+1 (if visible, else at distance d from current location).

Like in other cases (e.g., [12, 13]), the difficulty is not in the protocol but in the proof
of its correctness. Using this protocol, and observing that the algorithm operates in
ASYNC, we have

Theorem 4 Let the sensors share a common orientation of the ring C and be able
to locate to distance 2d. If they know d, then exact self-deployment is possible even
if the sensors are oblivious and the scheduling is ASYNC.

21.3.3.3 ε-Approximate Deployment

In an oriented ring, if the sensors do not know the desired final distance d, then
ε-approximate self-deployment is still possible for any ε > 0; also in this case, the
protocol works even for the weakest sensors: oblivious and asynchronous, provided
their visibility radius is greater than 2d.

Also in this case the proof is provided by a simple protocol [31]: sensors asyn-
chronously and independently locate in both directions at distance v, then they posi-
tion themselves in the middle between the closest observed sensor (if any).
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Protocol RING - UNKNOWN INTERDISTANCE (for sensor si )

• Locate around at distance v. Let di be the distance to next sensor, di−1 the
distance to the previous (if no sensor is visible clockwise, di = v, analo-
gously for counterclockwise).

• If di ≤ di−1 do not move.
• If di > di−1 move to di+di−1

2 − di−1 clockwise.

This algorithm converges to a uniform deployment. The crucial property is that

Property 2 For any ε > 0 there exists a time t , such that ∀t ′ > t,∀i : |di (t ′)−d| ≤ ε.

Hence, by adding to the protocol a test on whether both di and di−1 are within ε
from d (in which case no move is performed by si ), it follows that ε-approximate
self-deployment is possible even if the scheduling is ASYNC, if the sensors share a
common orientation of the ring C and are able to locate to distance v > 2d.

The strategy used by the protocol described here is go-to-half. Interestingly, it
was shown by Dijkstra ([25] pp. 34–35) that in an unoriented ring go-to-half does
not converge, and hence cannot be used for approximate self-deployment in an
unoriented ring. However, a different strategy, go-to-quarter, does converge in an
unoriented ring [19, 77] and can thus be used for ε-approximate self-deployment in
an unoriented ring with unknown d, yielding the following more powerful result:

Theorem 5 Let the sensors in the ring C be able to locate to distance v > 2d.
Then ε-approximate self-deployment is possible even if the sensors are oblivious,
the scheduling is ASYNC, and the ring is not oriented.

21.3.4 Uniform Deployment in Rectangular Spaces

21.3.4.1 Problem Definition and Notation

The next class of spaces U considered is that of rectangular spaces, that is, spaces
delimited by a rectangular border B. The sensors are capable of detecting any part
of B within their visibility radius. Assume that there is a local sense of orientation:
each sensor has a consistent notion of “up-down” and “left-right” (e.g., as provided
by a compass), where the “up-down” axis is parallel to the longest side of the border.

A rectangular space of size L × W can be logically subdivided into equal sized
square of size d2 by considering a (l + 1) × (w + 1) rectangular grid G, where
l = L/d and w = W/d and the distance between neighboring nodes is d, and the
visibility radius is v ≥ 2d. The uniform self-deployment problem in rectangular
spaces thus consists of reaching an equilibrium configuration where the sensors are
evenly placed among the grid points (see Fig. 21.6).

Let us indicate by (0, 0) the leftmost lower corner of G and by (i, j) the node
belonging to column i and row j . For simplicity, assume n = (k + 1)2, that G is a
square grid with l = w = k · d, and that the sensors are initially arbitrarily located
at distinct grid points. In this case, an equilibrium configuration consists of nodes
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Fig. 21.6 A random initial
configuration and a uniform
deployment

(i · d, j · d), with i, j ∈ [0, k] hosting exactly one sensor each (see Fig. 21.6). The
goal is to design a collision-free protocol for positioning the sensors at those grid
points. Note that the (i, j) coordinates of the grid nodes are global and thus not
known to the sensors, which use only relative coordinates. The common orientation
will be modeled by assuming that the edges of the grid are consistently labeled Up,
Down, Left, and Right, and edge labels are visible to the sensors.

21.3.4.2 Uniform Deployment Protocol

The uniform deployment algorithm SCATTER is a set of local rules for the robots
designed by Barriére et al. [4]. Each sensor has a state variable belonging to a set
of states {−1, 0, 1, 2, 3, 4} (initialized to −1) which determines the set of rules to
be followed, which solely depend on the robot’s current state, its position, and the
positions of the robots within its visibility radius.

Upon start-up, the execution of the algorithm is logically divided into three
phases: Cleaning, Collecting, and Deploying. Waking up for the first time (in state
−1), each sensor determines what phase to start, depending on its relative position. If
a sensor is at the left-upper corner it directly enters state 3 (i.e., it starts Deploying).
If a robot is on the left or bottom border, it enters state 0 (i.e., it starts Cleaning).
Otherwise, it enters state 1 (i.e., it starts Collecting).

• Cleaning: robots (if any) on the left and bottom borders move leaving those nodes
empty (it is performed only by robots in state 0).

• Collecting: robots move toward the left-upper corner of the grid (it is performed
by robots in states 1 and 2).

• Deploying: robots follow a distinguished path on the grid, called snake-path,
eventually occupying their final positions (it is performed by robots in states 3
and 4).

Note that due to asynchrony, at any point in time robots could be performing
actions belonging to different phases. The asynchronous execution of the various
phases requires special care in order to insure that robots continue to progress in
their phase avoiding collisions and the creation of deadlocks.
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Cleaning

The Cleaning phase is performed only by robots in state 0 and the goal is to have the
robots move from the left and bottom borders toward the interior of the grid. This
is done by having robots on the left border move down (if the down node is empty)
and robots on the bottom border move up (if the top node is empty) or right (if the
top node is occupied but the right node is empty). When moving up from the bottom
border, a sensor enters state 1 and starts the Collecting phase.

Collecting

The Collecting phase is performed by robots in states 1 or 2 and the goal of the
robots is to arrive to the left-upper corner. To avoid conflicts with robots possibly
already in the Deploying phase, during the Collecting phase a sensor should not
consider robots that are on the left border. The general rule for a sensor in the
Collecting phase is to go up toward the upper-left corner (i.e., highest priority is
given to movements up). However, depending on the neighboring conditions, to
guarantee progress and avoid deadlocks, robots might have to move also left or
right as described below.

Whenever a sensor (in state 1 or 2) has an empty upper node it goes up and stays
in (or enters) state 1. If a sensor in state 1 is on the right neighbor of the upper left
corner and the upper left corner is empty, it goes left and enters state 3 (Deploying
phase). If a sensor in state 1 has all the visible nodes in its same column above
itself occupied, and the left and bottom-left nodes are empty, it goes left and stays
in state 1. Finally, a sensor (in state 1 or 2) goes right and stays in (or enters) state 2
if within its visibility radius all the following conditions are satisfied: all the nodes
neither below nor right are occupied, the lower right node is empty, all the nodes
in its same row on the right are empty, at least one of the above and right nodes is
empty, and none of the robots in the above and right nodes at distance strictly less
than 2d can go up. In all other cases a sensor stays in (or enters) state 1.

The movements of robots in the Collecting phase allow them to accumulate in a
convenient shape around the upper left corner.

Deploying

This phase is executed by robots in states 3 and 4. A sensor starts this phase when it
arrives to the upper left corner and enters state 3. In this phase the robots move on
the snake-path (see Fig. 21.7) and eventually stop in their final positions, that is, the
nodes (i · d, j · d), with 0 ≤ i, j ≤ k, called final nodes.

Let k be odd; the snake-path is the path n0, n1, . . . n(K−1)d , that starts at n0 =
(0, n), ends at n(K−1)d = (d, n), and passes through every final node as shown in
Fig. 21.7. By a slight modification of this path and, consequently, of the algorithm,
the snake-path can be defined for k even.

Because of asynchrony, complications may arise. For example, if a sensor in the
Deploying phase enters in contact with robots that are still in the Collecting phase,
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Starting point

Fig. 21.7 The snake-path for N = 212, K = 36, k = 5, and d = 4

the sensor has to wait before continuing on the snake-path. Special care has to be
taken and it can be shown that deadlocks are avoided and progress is guaranteed.

A sensor s enters state 3 when it reaches the left-upper corner. In this state, s
follows the left border moving only if it sees above another sensor at distance lower
than d and if the lower node is empty. If the sensor is in the left-upper corner it only
moves if the right node is occupied, insuring in this way that there is at least one
node in the Collecting phase. When the last node enters the Deploying phase it will
stay at the upper-left corner and eventually the other nodes will position themselves
at distance d from each other. When in state 3, a sensor s is following the left border
of the grid. It enters state 4 when it reaches the bottom-left corner. A sensor in state
4 follows the snake-path from the left-bottom corner. A sensor s in the Deploying
phase might see in the rows above some robots still performing the Collecting phase
(the presence of these robots can be detected because of their “wrong” positions).
In this case s does not move. If s does not see any sensor out of the snake-path but
there are no robots in the d −1 preceding nodes or the next node is occupied, then it
waits. Otherwise s moves forward on the snake-path. When the last node enters the
Deploying phase it will stay at the upper-left corner and eventually all other nodes
will stop at their final position.

The correctness of the algorithm is proven by showing that no deadlocks can
occur and that progress is guaranteed. Notice that although described for a square
grid, the protocol works in any rectangular grid, provided the direction of the largest
dimension is known. Since protocol SCATTER terminates within finite time with a
uniform scattering, we have the following theorem.

Theorem 6 The uniform deployment in rectangular spaces G can be solved without
any collisions by sensors each having a constant amount of memory and a discrete
visibility radius 2d in the ASYNC model.
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21.3.5 Incremental Deployment and Filling

21.3.5.1 Incremental Deployment as Filling

The task of uniform self-deployment is usually performed after the sensors have
entered the space U. This is because typically the sensors enter the space, all at
once or in groups, without attention to the desired final placement criterion,3 in
a process called injection. Indeed, this is true in many situations especially in the
case of very simple sensors. However, the separation between injection and self-
deployment does not always occur. In fact, there are applications where the sensing
entities are injected into the system one at a time, from one or few entry points; this
is particularly true in the case of more complex (and/or delicate) sensorial entities
(e.g., to avoid damage). In these situations, instead of having two separate processes,
injection and self-deployment, the focus is on achieving the final goal directly, in a
single process, called incremental deployment.

Howard et al. [45] proposed an incremental deployment algorithm for mobile
robotic networks. Under the assumptions of global coordination, location aware-
ness, and nodal visibility, that algorithm deploys robots one-at-a-time from a single
entry point (door) and maintains a line of sight relationship between robots. They
assume that every sensor is equipped with an ideal localization sensor; however,
localization is very hard, especially for small sensors, so it cannot be generally
assumed that the sensors know where they are. A very important and interesting
mechanism they use is a logical orthogonal grid, superimposed on the space, that
divides the space into cells, transforming the continuous space into an orthogonal
cellular space. Let us stress that orthogonal spaces are interesting of their own,
because they can be used to model indoor and urban environment; furthermore, the
discretization of a continuous space into a cellular space is a rather common process
used in a variety of contexts.

This approach has the additional advantage of reducing the problem of incre-
mental deployment of an unknown arbitrary space U to the problem of filling an
unknown cellular space. In the Filling problem, the mobile entities have to occupy
all the cells of an unknown cellular space, entering through one or more designated
entry points called doors; within finite time, the entities must reach a quiescent state,
with exactly one entity in each cell. If two sensors are in the same cell at the same
time then there is a collision. The algorithm executed by the sensors should avoid
collisions (e.g., to prevent damage to the sensor or its sensory equipment).

The reduction to the filling problem is obtained by superimposing on the space
U a logical orthogonal grid of the appropriate size; this will divide the space into
cells (boundary cells might not be all within U). Notice that the resulting cellular
space M is orthogonal, i.e., polygonal with sides either parallel or perpendicular to
one another (e.g., see Fig. 21.8). The space can be completed to become a bicolored

3 For example, in some applications, sensors are dropped from the air.
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Fig. 21.8 A orthogonal space M (white cells) to be filled by the sensors and its enclosing cellular
rectangle A

cellular rectangle4 A, where each cell, called pixel, is colored white if it is part of
M, otherwise black (see Fig. 21.8).

At this point, to achieve an incremental deployment in the unknown arbitrary
space U it is sufficient to perform a filling of the unknown orthogonal space M; that
is, filling the white pixels of A.

The problem of filling unknown orthogonal space M has been investigated by
Hsiang et al. [47] for mobile sensors, and by Das et al., [16] for robotic networks.

In the study of Hsiang et al. [47], the sensors enter M from one or more doors.
Their results are based on an ingenious follow-the-leader technique where each sen-
sor communicates with the one following it and instructions to move are commu
nicated from predecessor to successor. The sensors are anonymous but they need
some persistent memory to remember whether or not is a leader and the direction of
its movement. Since the algorithm uses only O(1) bits of working memory in total,
computationally the sensors can be just finite-state machines. In addition to requir-
ing explicit communication, the solution of [47] assumes that the sensors operate in
the SYNC model, which allows perfect coordination and synchronization between
the sensors.

21.3.5.2 Filling by Robotic Sensors

For robotic sensors (where no direct communication exists), the filling problem of
orthogonal spaces (and thus the incremental deployment problem) has been inves-
tigated by Das et al. [16]. First of all they proved that the sensors must have some
persistent memory of the past for solving the filling problem successfully.

4 A is the smallest cellular rectangle enclosing M
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Theorem 7 The filling problem cannot be solved by oblivious sensors, even if they
have unbounded visibility. This result holds even if there is only a single door and
the model is SSYNC.

Thus, some persistent memory is required. Indeed with just a constant amount
of persistent memory, filling can be done in the case of a single door. This result is
obtained in [16] with visibility radius of one in the SSYNC model.

Let the bicolored cellular rectangle A containing M be formed of pixels pi, j ,
1 ≤ i ≤ l, 1 ≤ j ≤ c; let discrete visibility radius of 1 mean that the sensor sees
all eight neighboring cells (i.e., v ≥ √

2q, where q is the cell length). To understand
the protocol, the structure of M will be represented by a graph G = (V, E) defined
as follows: First, partition each column into segments of consecutive white pixels
ended by a black pixel in both extremes and numbered from top to down. Each
segment is a node of G. Denote by vk

j ∈ V the node corresponding to the kth

segment of column j , and by dk
j the bottommost pixel of the segment vk

j . There is

an edge
(
vk

j , v
k′
j ′
)
∈ E if and only if (a) j = j ′ + 1 or j = j ′ − 1 and (b) there is a

pixel pi, j ′ ∈ vk′
j ′ neighbor to dk

j or there is a pixel pi, j ∈ vk
j neighbor to dk′

j ′ .
It is easy to verify that the graph G so obtained is an acyclic connected graph

(i.e., a tree). If there is an edge
(
vk

j , v
k′
j ′
)

such that the bottommost pixel dk
j = pi, j

of vk
j is a neighbor of the pixel pi, j ′ ∈, vk′

j ′ , we say that pi, j is the entry point from

vk
j to vk′

j ′ and pi, j ′ is the entry point from vk′
j ′ to vk

j .
The idea of the algorithm (FILLING — SINGLE DOOR) is to move the robots

along the paths in G, starting from the node containing the door. Since the sensor
can see the eight neighboring pixels, it can determine when it has reached an entry
point. Let
block+(pi, j ) ≡ (pi, j is empty ) ∧ ((pi−1, j is black) ∨ (pi−1, j+1 is black)))
and let
block−(pi, j ) ≡ (pi, j is empty ) ∧ ((pi−1, j is black) ∨ (pi−1, j−1 is black))).

Protocol FILLING - SINGLE DOOR

Meta-Rule: A sensor never backtracks.
Sensor s in pixel pi, j :

if ( pi+1, j is empty ) then
s moves to pi+1, j .

else if ( pi−1, j is empty ) then
s moves to pi−1, j .

else if ( ( block−(pi, j−1) ) ) then
s moves to pi, j−1.

else if ( ( block−(pi, j+1) ) ) then
s moves to pi, j+1.

else
s does not move.

end if
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Since algorithm SINGLE DOOR is collision free, it terminates in finite time and
completely fills the space [16], we have the following theorem.

Theorem 8 The filling problem for any space orthogonal space M with a single
door can be solved without any collisions by sensors each having a constant amount
of memory and a discrete visibility radius 1 in the SSYNC model.

In the case of multiple doors, there are other strong limitations: the sensors must
have a discrete visibility radius of at least 2 and they should not be indistinguishable
[16]. Thus, for the problem to be solvable at all, sensors entering the space from
different doors must be distinguishable, i.e., have different colors, and each sensor
must have discrete visibility radius of at least 2. Indeed, under this assumption, the
problem can be solved. However, the algorithm in this case is more complex with
respect to the one with only a single door.

The idea of the algorithm, presented in [16], is as follows. Sensors coming from
different doors (i.e., sensors of different colors) follow distinct paths in G and these
paths do not intersect. In other words, the algorithm ensures that the cells visited by
sensors of color ci are occupied by sensors of the same color (and never by sensors
of any other color). To achieve this, a sensor before moving to a pixel pi, j needs to
determine if this pixel was visited by sensors of another color; fortunately, this can
be done. Hence

Theorem 9 The filling problem for any orthogonal space M with multiple doors
can be solved without any collisions by sensors (with distinct color for distinct
doors) each having a constant amount of memory and a discrete visibility radius
2 in the SSYNC model.

21.4 Pattern Formation

The pattern formation problem is one of the most important coordination problem
for robotic systems. The geometric pattern to be formed is a set of points (given
by their Cartesian coordinates) in the plane, initially known by the entities. Initially
the entities are in arbitrary positions, with the only requirement that no two entities
are in the same position, and that, of course, the number of points prescribed in
the pattern and the number of entities are the same. The robots are said to form
the pattern if, at the end of the computation, the positions of the robots coincide, in
everybody’s local view, with the points of the pattern. Depending on the application,
the formed pattern may be translated, and/or rotated, and/or scaled, and/or flipped
into its mirror position with respect to the initial pattern. In particular, the pattern
formation problem is said to be scale free if the formed pattern can be an arbitrarily
scaled version of the input pattern.

The pattern formation problem is practically relevant because, if the robots
can form a given pattern, they can agree on their respective roles in a subse-
quent, coordinated action. For this reason, it has been extensively investigated in
the literature on autonomous robots (thus, without using communication), e.g., see
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[3, 9, 19, 20, 35, 51, 53, 81, 83, 85, 89]. It has also been studied in systems using
direct wireless communication (e.g., [37, 40, 56]).

The basic research questions are which patterns can be formed, and how they
can be formed. In this section, we review the existing results on pattern formation
by mobile robotic sensors, that is, by mobile entities that are silent and myopic. The
spatial universe U is assumed to be the 2D space, and it is assumed that initially the
sensors are arbitrarily dispersed in U but the visibility graph is connected.

21.4.1 Forming Scale-Free Patterns

Almost all protocols for pattern formation of silent autonomous robots assume
unlimited visibility; in particular, they use the fact that each sensor can see all the
other robots (e.g., [3, 9, 19, 20, 35, 51, 53, 81, 83, 85, 89, 90]). Thus, these protocols
cannot be employed directly by robotic sensors, which by definition have a limited
sensing range.

However, those same algorithms can be effectively used if the formed pattern can
be an arbitrarily scaled version of the input pattern, i.e., for the scale-free pattern
formation problem. This can be achieved by the following two-step strategy:

GATHER & FORM

1. Every sensors gets within the visibility range of every other sensor.
2. The sensors execute the relevant pattern formation protocol that

assumes unlimited visibility.

The first step of this strategy requires solving the problem called Near Gather-
ing [32]: starting from an initial arbitrary distribution in U, the sensors, avoiding
any collision, must within finite time reach a static equilibrium in which they are
all mutually visible and on distinct locations; that is, there exists a time t when
all sensors are in a state of static equilibrium, and for any two sensors s and r ,
0 < |s(t)− r(t)| ≤ v. This problem is closely related to the Rendezvous or Gather-
ing problem that will be discussed in detail in Sect. 21.5.

Once the first step has been performed, then the appropriate unlimited visibility
pattern formation protocol can be started. In particular, the algorithms for arbitrary
pattern formation (e.g., [35, 83, 90]) can be used by the sensors to form any input
pattern. There are some provisos. In particular, to start the second step, a sensor must
know that the execution of the first step has been completed; that is, all sensors are
within its visibility range. However this implies that the number n of sensors must be
known to the sensors. Another important point is that global mutual visibility, once
reached in the first step, must be maintained throughout the execution of the second
step. This necessary condition might not be of trivial enforcement; for example,
there are some pattern formation algorithms that require, during their execution,
some entities to move away from the others at a distance that (because of the limited
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visibility range of the sensors) might bring them out of the range of some other
sensors.

In other words, the execution of the unlimited visibility pattern formation pro-
tocol must be carefully planned, tailored to the requirements of the pattern being
formed, taking into account the movements of the sensors required by the algorithm:
a non-trivial task. To date, no generic protocol is available for scale-free pattern
formation by robotic sensors.

21.4.2 Circle Formation

A particular pattern extensively studied in the literature is the circle: the sensors,
starting from arbitrary positions in the plane, have to arrange themselves in a circle
of a given diameter D. Observe that this pattern formation problem is not scale free,
and thus requires the agreement of the robots on the same unit distance.

If the sensors must be arranged at regular intervals on the boundary of a circle
the problem is also called uniform circle formation. This kind of formation can be
usefully deployed in surveillance tasks: the sensors are placed on the border of the
area (or around the target) to surveil.

One of the first discussion on circle formation by a group of mobile entities was
by Debest [17], who introduced it as an illustration of self-stabilizing distributed
algorithms. He discussed the problem, but did not provide an algorithm.

The uniform circle formation problem was first studied by Sugihara and
Suzuki [81]. They presented an heuristic that allowed the sensors to form an approx-
imation of a circle having a given diameter D ≤ v; it works without requiring com-
mon coordinate systems, the sensors can be oblivious, and the scheduling ASYNC.
For sensor s, let s f (t) and sc(t) denote the position of the farthest and of the closest
sensors at time t , respectively; let ε > 0 be an arbitrarily small predefined quantity.
The protocol is rather simple:

Protocol CIRCLE CONVERGENCE (for sensor s at time t)

1. If |s f (t)− s(t)| > 2D then move toward s f (t).
2. If |s f (t)− s(t)| < 2D − ε, then move away from s f (t).
3. If 2D − ε ≤ |s f (t)− s(t)| ≤ 2D, then move away from sc(t).

Experiments have shown that sometimes the sensors converge toward a configura-
tion similar to a Reuleaux triangle rather than a circle. Successively, the protocol
has been improved by Tanaka [85], which proposed a new solution that produces a
better approximation of the circle.

For the simpler SYNC model, a protocol that allows oblivious sensors without
common coordinate system to converge toward a uniform placement on a circle
has been recently proposed by Lee et al. as part of their investigation on forming
concentric circles [55].
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There are many other protocols for uniform circle formation [9, 19, 20, 22, 23,
53, 77]. For instance, the problem has been studied in the SSYNC setting by Défago
and Konagaya [19], with anonymous and oblivious sensors, by presenting a solu-
tion that is a composition of two independent algorithms whereby the sensors first
deterministically form a circle, and then converge to a situation in which all sensors
are arranged uniformly on its boundary; simulation results of these studies have
been presented in [77]. The solution in [19] is, however, computationally expensive:
in fact, it involves the use of Voronoi diagrams, necessary to avoid the very specific
possibility in which at least two robots share at some time the same position and also
have total agreement on the coordinate system. Based on this observation, in [9] it is
presented a new algorithm that avoids these expensive calculations; unfortunately,
their solution relies on the simplifying assumption that sensors must not be located
on the same radius, that radically changes the difficulty of the problem. Katreniak
in [53], employing anonymous and oblivious sensors with no common coordinate
system, handles to task of forming a biangular circle when the number of sensors
is even: the sensors place themselves on the rim of a circle, each pair of adjacent
sensors on the rim of the circle form with its center either an angle α or an angle β,
and the angles alternate; the sensors act under ASYNC scheduling. When the number
of sensors is odd, the sensors achieve the uniform circle. A solution that does not
work for any number of robots has also been presented in [23], where the proposed
oblivious algorithm works for a prime number of sensors in the semi-synchronous
model. Dieudonné et al. [22] build upon the work of Katreniak [53] and extend it
for the case with an even number of sensors; the algorithm solves the problem in
finite time for any number n of sensors, except when n = 4, 6, and 8, under the
SSYNC schedule. Also, here the sensors have the ability to reach exactly in one
step their computed destination and cannot stop on the way. This assumption was
later dropped in [24]; however, the algorithm in [24] still does not work for n = 4.
Successively, Défago and Souissi presented in [20] an algorithm by which sensors
deterministically form a circle in a finite number of steps and then asymptotically
converge toward a situation in which they are positioned at regular intervals on
the boundary of this circle, again under the SSYNC schedule. In contrast with the
analogous two-part solutions previously presented in [19], here the two parts are
combined in a single and simpler algorithm. However, even if this solution works
for any number of sensors, it only converges to the uniform circle formation, in
contrast with the solution in [24].

There are two major problems with all these solutions [9, 19, 20, 22, 23, 53, 77].
The first problem is that these protocols assume unlimited visibility; hence they can
not be used directly by robotic sensors, by definition myopic. This means that first
of all, robotic sensors can use these protocols only if the sensors are all mutually
visible (i.e., the visibility graph is complete) and continue to be so throughout the
execution of the protocol. The second problem is that these protocols are for scale-
free circle formation; however, the problem we are facing has a fixed scale (given
by the diameter D).

To overcome the first problem, the sensors can obtain an initial global mutually
visibility by first performing a Near Gathering [32] and then execute the protocol
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(i.e., using the strategy GATHER & FORM discussed in Sect. 21.4.1); the difficulty of
ensuring maintenance of global mutual visibility during execution clearly depends
on which of those protocols is being used. To overcome the second problem, once
a uniform circle formation has been obtained, an additional step is needed to scale
the circle to the required dimension; this is not difficult provided v ≥ D.

The problem of arranging robotic sensors in circular shapes has been studied by
Miyamae et al., [68], considering robotic sensors whose vision is not only limited
(i.e., within the visibility range v) but also directional. In fact, the vision function
of each sensor detects another sensor within distance v with the center of the sensor
assumed to be the origin and the direction of movement the reference angle (0◦);
however, the detection occurs only within three areas: forward (FV), and its left (LV)
right (RV) sides; the backward area is that not detecting a sensor (see Fig. 21.9),

Furthermore, the sensors can only detect the presence of other sensors within
their visibility areas, and not the exact number of sensors in their surrounding. In
particular, each sensor can distinguish two scenarios for the forward area: zero sen-
sors (FV= 0) or ≥ 1 sensors (FV= 1); for the left area, each sensor can distinguish
three scenarios: zero sensor (LV= 00), one sensor (LV= 01), or more than one
sensor (RV= 10); symmetrically, three scenarios can be detected for the right area
as well. Based on this simple information, each sensor acts as described in the fol-
lowing protocol.

Protocol EMERGENT CIRCLE (for sensor si )

1. If FV= 0, LV= 01, and RV= 00, then turn left.
2. If FV= 0, LV= 00, and RV= 01, then turn right.
3. If FV= 0, LV= 01, and RV= 01, then turn to the last previous direction.
4. For the others scenarios, proceed straight.

The emergent behavior of the sensors following these simple rules has been
analyzed by computer simulations in [68]. The experimental results show that the
formation of the circle depends on the number of sensors and the front and side view
angles of local vision, demonstrating that the front view angle must be between 15◦

Fig. 21.9 The vision model
for the emergent approach to
circle formation. The black
circle represents the robots;
the dark area is the blind
zone of the robot

FV

LV RV
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and 75◦, while the side view angles between 60◦ and 120◦. Another interesting
observation arising from the simulations is that the circle formation rate decreases
the larger the number of sensors is; that is, an excessive number of sensors affects
negatively the formation process.

21.5 Gathering

In systems of mobile entities, one of the most basic coordination and synchroniza-
tion task is that of gathering: the entities, placed in arbitrary positions in U, must
congregate at a single location (the choice of the location is not predetermined). This
fundamental problem is also called rendezvous or homing. If the entities are seen as
points, the gathering problem is the one of having all entities move to the same
point, that is, forming the special pattern point; hence the problem is sometimes
called point formation.

The gathering problem has been extensively investigated both experimentally and
theoretically in the unlimited visibility setting, that is, assuming that the entities are
capable to sense (“see”) the entire space (e.g., see [1, 10, 12, 18, 35, 49, 81, 83]).

In general, and more realistically, sensors can sense only a surrounding within
a radius of bounded size (refer to the example depicted in Fig. 21.1). This setting,
which is the one in which robotic sensors operate, is understandably more difficult;
for example, a sensor might not even know the total number of sensors nor where
they are located if outside its radius of visibility. Not surprisingly, not many algo-
rithmic results are known (e.g., [2, 3, 34, 59, 60, 79]). They are reviewed in this
section according to the scheduling model assumed: ASYNC, SSYNC, and SYNC.

21.5.1 Asynchronous Gathering

The most difficult setting for the gathering problem is clearly the asynchronous one,
where little or no timing assumptions are made. In the literature, there are only few
algorithms tackling asynchrony when gathering robotic sensors [34, 60].

In the investigation of Lin et al. [60], a limited form of asynchrony is considered
where the time required by the Wait, Locate, and Compute states is bounded by a
globally predefined amount, while the time spent in the Move state by sensor i is
bounded by a locally predefined quantity (i.e., not necessarily the same for each
sensor). This form of asynchrony lies in between the ASYNC model and the SSYNC

model. The resulting solution allows a set of non-oblivious sensors with limited
visibility to converge toward a single point.

The fully asynchronous model ASYNC is considered only in the investigation
of Flocchini et al. [34]. They show that the availability of orientation5 allows a
set of anonymous oblivious sensors with limited visibility to gather at a single

5 i.e., agreement on axes and directions (positive vs. negative) of a common coordinate system, but
not necessarily on the origin nor on the unit distance.
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point in finite time. This result holds not only allowing each activity and inactivity
of the sensors to be totally unpredictable (but finite) in duration, but also making
their movement toward a destination unpredictable (but not infinitesimally small) in
length. In the rest of this section, we look at this result in more detail.

Let Right be the rightmost vertical axis where some sensor initially lie. The idea
of the algorithm is to make the sensors move toward Right, in such a way that, after
a finite number of steps, they will reach it and gather at the bottommost position
occupied by a sensor at that time.

Let s perform a Locate operation at time t ; as a result, it has available its circle
of visibility Ct (s) with the positions of all the sensors in it at time t . The algorithm
describes the computation that s will now do with this input. Different destination
points will be computed depending on the positions of the sensors in its circle of
visibility; once the computation is completed, s starts moving toward its destination
(but it may stop before the destination is reached). Informally,

• If s sees sensors to its left or above on its vertical axis, it does not move.
• If s sees sensors only below on its vertical axis, it moves down toward the nearest

sensor.
• If s sees sensors only to its right, it moves horizontally toward the vertical axis of

the nearest sensor.
• If s sees sensors both below on its axis and on its right, it computes a destination

point and performs a diagonal move to the right and down, as explained below.

To describe the diagonal movement in detail we need to introduce some notation
(refer to Fig. 21.10). Let AA′ be the vertical diameter of Ct (s) with A′ as the top
end point and A the bottom end point; let Rs denote the topologically open region
(with respect to AA′) inside Ct (s) and to the right of s and let S = s A and S′ = s A′,
where both S′ and S are topologically open on the s side (i.e., s belongs neither to
S′ nor to S). Let Ψ be the vertical axis of the sensor in Rs , if any, nearest to s with
respect to its projection on the horizontal axis. We are now ready to describe the
details of the diagonal movement routine:

Diagonal_Movement(Ψ )
B := upper intersection between Ct (s) and Ψ ;
C := lower intersection between Ct (s) and Ψ ;
A := point on S at distance v from s;
2β = Âs B;
if β < 60◦ then
(B, Ψ ) := Rotate(s, B);

end if
H := Diagonal_Destination(Ψ, A, B);
Move(H).

where Rotate() and Diagonal_Destination() are as follows:
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Fig. 21.10 (a) Notation used in the Gathering algorithm; (b) horizontal move; and (c) diagonal
move

– Rotate(s, B) rotates the segment s B in such a way that β = 60◦ and returns
the new position of B and Ψ . This choice of angle ensures that the destination
point is not outside the circle (see Fig. 21.11).

– Diagonal_Destination(Ψ, A, B) computes the destination of s in the follow-
ing way: the direction of s’s movement is given by the perpendicular to the seg-
ment AB; the destination of s is the point H on the intersection of the direction
of its movement and of the axis Ψ .

The correctness of the algorithm is proven by first showing that the sensors which
are initially visible will stay visible until the end of the computation, and then that
the robots’ movement leads to non-infinitesimally small progress toward gathering
thus concluding that all sensors will gather in a point on Right in finite time. We
then have the following theorem.

Ψ

β
β

A

s

C

B

A

s

H

B

Ψ

60°

b.a.

Fig. 21.11 Routine Rotate(): in (a), β < 60◦; in (b) the scenario after Rotate() has been
executed
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Theorem 10 In the ASYNC model a set of anonymous oblivious sensors in R
2,

endowed with orientation, can gather at a single point in finite time.

Notice that the proposed algorithm does not assume that the sensors have the
capability of multiplicity detection (i.e., the ability to determine in the sensing phase
if more than one sensor is in a given location).

As mentioned, the above algorithm requires an agreement on the coordinate
system. The problem of creating such an agreement in ASYNC has been stud-
ied by Samiloglu, Gazi, and Bugra Koku, who have proposed several strate-
gies that have been experimentally observed to converge toward a common
orientation [78].

Probabilistic protocols for gathering in the absence of agreement on the coordi-
nate systems have been proposed and experimentally analyzed by Soysal et al. [80].

21.5.2 Semi-Synchronous Gathering

In the SSYNC model, the gathering problem has also been tackled by Ando et al.
[2]. In contrast with the setting considered in Sect. 21.5.1, here the sensors do not
have any kind of common orientation. However, the compass has been traded with
the semi-synchronicity of the sensors. Moreover, with the solution of [2], the robots
only converge toward a gathering point.

Let P(t) = {s1(t), . . . , sn(t)} denote the set of the n sensors’ positions at time
t . Also, let Si (t) denote the set of sensors that are within distance v from si at time
t ; that is, the set of sensors that are visible from si (note that si ∈ Si (t)). SCi (t)
denotes the smallest enclosing circle of the set {s j (t)|s j ∈ Si (t)} of the positions of
the sensors in Si (t) at t ; let ci (t) be the center of SCi (t).

The algorithm is described below (refer also to Fig. 21.12).

b.

mj

si(t) sj (t)

D j

dj

mj

lj

Dj

v⁄ 2
v⁄ 2

si (t) sj (t)θj

ci(t)

a.
Fig. 21.12 The algorithm for the gathering problem in SSYNC
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SEMI-SYNCH GATHERING ALGORITHM

1. If Si (t) = {si }, then x = si (t).
2. ∀s j ∈ Si (t) \ {si },

2.1. d j = dist (si (t), s j (t)),
2.2. θj = ci (t)ŝi (t)s j (t),

2.3. l j = (d j/2) cos θj +
√
(v/2)2 − ((d j/2) sin θ j )2,

3. L I M I T = mins j∈Si (t)\{si }{l j },
4. G O AL = dist (si (t), ci (t)),
5. M OV E = min{G O AL , L I M I T, σ },
6. x = point on [si (t)ci (t)] at distance M OV E from si (t).

Every time a sensor si becomes active, it moves toward ci (t), but only over a
certain distance M OV E . Specifically, if si does not see any sensor other than itself,
then si does not move at all. Otherwise, the algorithm chooses as next position for
si the point x on the segment si (t)ci (t) that is closest to ci (t) and that satisfies the
following conditions:

1. dist (si (t), x) ≤ σ . Note that this means that the sensors agree on an arbitrary
small constant σ > 0, a priori known, and they use it to bound the distance
traveled by a sensor in one step.

2. For every sensor s j ∈ Si (t), x lies in the disk D j whose center is the midpoint m j

of si (t) and s j (t) and whose radius is v/2. This condition ensures that si and s j

will still be visible after the movement of si (and possibly of s j , see Fig. 21.12.a).

The correctness proof is based on the following reasoning: First, two sensors that
are connected in the visibility graph at time t will stay connected at time t + 1. In
fact, if si (t) and s j (t) are connected, then s j (t) ∈ Si (t) and si (t) ∈ S j (t) and then,
by definition of L I M I T , both si (t + 1) and s j (t + 1) lie inside the disc with center
m j (Fig. 21.12a). Second, let C H(t) be the convex hull of the sensors at time t , for
any t ≥ t0, C H(t + 1) ⊆ C H(t) leading to the proof that C H(t) converges to a
point. Then we have

Theorem 11 In the SSYNC model, a set of anonymous oblivious sensors in R
2 can

converge to a gathering point.

The problem has also been examined in the same model SSYNC when there are
inaccuracies or faults. In particular, Gordon, Wagner, and Bruckstein have investi-
gated the case when the sensors cannot accurately measure the distance from their
neighbors and hence cannot rely on this information [41, 42]. The gathering problem
has also been examined with respect to the availability of compasses. As discussed
in Sect. 21.5.1, the presence of reliable compasses allows the sensors to gather in
finite time even in the ASYNC model (Theorem 10) (and thus also in the SSYNC

model). The problem of gathering when compasses are unstable for some arbitrary
long periods has been studied by Soussi et al. [79]. They proved that in the SSYNC
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model, the sensors will gather in finite time, provided that the compasses stabilize
eventually.

21.5.3 Fully Synchronous Gathering

There have been several investigations on the gathering problem with sensors oper-
ating in the fully synchronous scenario, i.e., in model SYNC [39, 59, 64, 91]. The
starting point of these investigations is the convergence protocol of Ando et al. [2],
described in Sect. 21.5.2, operating in the SSYNC and thus in the SYNC models.
Like [2], these protocols work for oblivious sensors with no common coordinate
system, and they all converge toward a unique point; unlike [2], they are only for
the SYNC model.

Lin et al. [59] propose and analyze a family of convergence algorithms for gath-
ering in the plane based on [2]. In [64] variants of the general strategy described
in [59] are developed: Martínez considers the presence of noisy measurements of
neighbors [64].

In all the above investigations on gathering, as well as those in the ASYNC and
SSYNC models discussed before, the universe U in which the gathering was taking
place was (implicitly) assumed to be either the entire plane or a convex region of the
plane.

The case when the sensors operate in a non-convex region (see Fig. 21.13), of
which they have no map, has been considered only by Ganguli, Cortés, and Bullo
in [39]. In such a space, two sensors s and s′ are said to be mutually visible at
time t if not only their distance is at most v but also the segment connecting their
positions at time t is completely contained in U;. for instance, sensors s and s′ in
Fig. 21.13 are within distance v, but they are not mutually visible. The approach
used to solve the problem is that of computing a set of constraints that the sensors
have to follow when moving so that (a) the mutual visibility graph stays connected
during the movements and (b) the distances between sensor strictly decrease at each
time step.

s
s

Fig. 21.13 An example of non-convex environment for the gathering problem in [39]. The edges
between sensors represent the edges of the visibility graph



21 Computing by Mobile Robotic Sensors 687

The first set of constraints is derived from those by Ando et al. [2] discussed in
Sect. 21.5.2 and guarantees that condition (a) is met; in particular, it imposes that
if two sensors si and s j are mutually visible at time t , they stay connected at time
t + 1: let pi = si (t) and p j = s j (t) be the positions of sensors si and s j at time
t , respectively, then si and s j are allowed to move inside the ball B of radius v

2
centered in the midpoint of pi and p j (see Fig. 21.12). Clearly, since the sensors
operate in a non-convex environment, the sensors are limited to move inside any
convex area contained in the intersection between B and U: in [39] the Constraint
Set Generator Algorithm is given to allow the computation of such a convex area by
any pair of mutually visible sensors.

The overall idea of the gathering algorithm, called the Perimeter Minimizing
Algorithm, can be summarized as follows: at each time step t , each sensor computes
all convex areas resulting from executing the Constraint Set Generator Algorithm
for all its neighbors in the v-range visibility graph at t ; the area where it is allowed to
move in order to verify condition (a) is therefore the intersection of all these areas.
The sensor moves now toward the circumcenter of its allowed moving zone, i.e.,
the center of the smallest circle enclosing this area. It can be proven that this choice
satisfies condition (b) above.

Theorem 12 In the SYNC model, a set of anonymous oblivious sensors in operating
in a non-convex environment can converge to a gathering point.

The behavior of this protocol has been analyzed experimentally in [39] also when
(i) the sensors operate asynchronously or (ii) the sensors can introduce distance and
direction errors in both sensing and moving, or (iii) the sensors are modeled as disks;
the results give an indication of the robustness of the protocol with respect to those
three factors.

21.5.4 Coalescence

An interesting problem related to the gathering is Coalescence: arbitrarily dispersed
(and possibly isolated) mobile sensors must independently search for their fellow
sensors with the goal of being all within a given distance. Note that if that distance
is not greater than v, this is precisely the Near Gathering problem whose goal is to
form a single connected visibility graph.

COALESCENCE

3. An isolated sensor

a. uniformly chooses a direction of movement θ in [0, 2π).
b. moves following the chosen direction with a constant speed for a con-

stant distance.

4. When two sensors “meet” (i.e., they are within distance v) they form a single
cluster: they stay connected to each other and move together following the
same (random) path.

5. When two clusters meet they coalesce to form a single cluster.
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The coalescence problem has been investigated by Poduri and Sukhatme in [73].
They consider sensors performing an independent random search of the other sen-
sors according to the following set of rules.

Given this set of rules, considering a fully synchronous scenario (i.e., the SYNC

model), the main question addressed in [73] is how long will it take for the sensors to
coalesce into a single connected visibility graph. Clearly, the spread of the clusters
plays an important role: in fact, if the sensors in each cluster remain spread out, the
disconnected sensors have higher probability of being discovered. That is, here the
focus is on connectivity rather than on colocation. They show analytically that coa-
lescence time has an exponential distribution which is a function of the number of
sensors, spread, communication range, and size of the domain. Also, as the number

of sensors increases, coalescence time decreases as O
(

1√
n

)
and Ω

(
1
n log n

)
. Sim-

ulation experiments support the analytical results, suggesting that the lower bounds
derived analytically for coalescence time is tight.

21.6 Conclusions and Open Problems

Several research questions are still open. With respect to gathering, the outstand-
ing open problem is whether it is possible to gather when the robotic sensors are
asynchronous, oblivious, and without common orientation.

For self-deployment, the foremost open problem is the determination of whether
knowledge of d is indeed necessary for exact self-deployment in an oriented ring.
Should this be the case, the research goal becomes to determine which is the “weak-
est” additional assumption (e.g., a priori knowledge, capability) that would make
exact self-deployment possible. A more general and challenging open problem is
to find additional sensors’ capabilities that would enable the existence of an asyn-
chronous exact self-deployment protocol in unoriented rings.

The impact that sensorial errors and inaccuracies have on the correctness of the
algorithms should be studied in detail. New algorithms are needed for different
assumptions on the visibility power of the sensors; for instance, the accuracy of
the sensors’ ability to detect the other sensors’ positions might decrease with the
distance. Another important concern is clearly the one of the presence of possible
faulty sensors. The fault tolerant issues have been recently addressed in [1, 52, 79],
but only in the unlimited visibility setting.

Finally, an open and important research direction is to identify meaningful effi-
ciency parameters and study the computational complexity of the problem. In fact,
in all existing investigations, the complexity of the solutions has never been an issue;
indeed, there is an absence of cost measures.

Slightly faulty snapshots, obstacles that limit the visibility and that moving sen-
sors must avoid or push aside, sensors that appear and disappear from the scene,
as well as precise cost measures, clearly suggest that the algorithmic nature of
distributed coordination of autonomous, mobile robotic sensors is far from been
completed and further investigations are clearly needed.
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Chapter 22
Security and Trust in Sensor Networks

Przemysław Błaśkiewicz and Mirosław Kutyłowski

Abstract The concept of security for tiny artifacts has been studied in a wide range
of aspects, from authentication through data integrity to intrusion detection. This
chapter provides a broad overview of some of the techniques developed for con-
strained devices where computational power, memory capacity, and energy limi-
tations enforce slightly different approaches to these problems, when compared to
standard high-end devices. In the following, we present ideas that leverage unique
properties of sensor networks (also wireless sensor networks) to provide consistent
and secure systems for information gathering and sensing.

22.1 Security in (Wireless) Sensor Networks

When thinking of any modern computer system, in most scenarios some level of
concern about its security comes into the spotlight. From a simple authorization of
data through illegitimate access discovery and prevention to obfuscation and pri-
vacy of communication—security aspects are becoming inherent characteristics of
modern digital world. In what follows, wireless sensor networks will be our world,
with all their possible functionalities, constraints, and systematic features influenc-
ing our perception of security and trust. On the other hand, we will be faced with all
problems that follow from lack of direct physical control over such networks, their
diversity, and rapid evolution.

Model

We shall focus on a more-or-less adequate model of the network, for which solu-
tion ideas will be presented. We assume a network of nodes communicating via
shared radio channels, with their own identities and some small storage and com-
putation capabilities. As single entities, nodes are capable of gathering information
and reporting it to one another or some high-end station. As a system, they are able
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to perform some more intricate operations, such as detection, alarming. A more
detailed description is given elsewhere in this book, and for our use the above model
is enough as a starting point.

22.1.1 Types of Attacks

First of all, let us describe some feasible attacks that are of particular interest for
sensor networks.

Node capture. In many scenarios nodes operate in an open environment without
any supervision. The attacker can simply pick out a node and run
any form of cryptanalysis on its material; this can leak all secret
data stored in the node or allow reconfiguration so that it serves
the attacker. Of course, malicious interception of all nodes from
the network is also possible, but here we focus on an adversary
that wants to utilize the network for his own purposes.

Sybil attacks. For Sybil attack, an adversary introduces multiple identities for
one physical node. Even though he does not gain hardware advan-
tage, it enables him to undermine the protocols, such as leader
election, voting. Sybil attacks are in particular aimed against trust
and reputation systems: if an adversarial node behaves in a wrong
way and its reputation goes down, then it can leave the network
and return with a different identity.

Cloning attacks. By cloning we mean inserting multiple physical nodes with the
same identity. This provides hardware advantage (e.g., multiple
locations). In a hybrid approach, the malicious nodes gain their
own identities. Cloning attacks may be a consequence of node
capture: in this case the original node may be still functioning,
but an adversary deploys additional nodes with the same identity
for his own purposes.

Wormhole. In this scenario the attacker utilizes an additional communication
channel to capture the data in one point of a network and present
it in another, and vice versa. Of course, this introduces confusion
in all protocols relying on nodes’ location, such as terrain moni-
toring or topography discovery.

Key interception. A key can be compromised either by means of physical extraction
from a captured node, or by breach in protocol, including crypt-
analysis. A particular challenge here arises from the fact that the
attacker can be using powerful equipment which by far outper-
forms simple hardware to be found on sensor nodes. With inter-
cepted keys the adversary may threaten communication, create
fake nodes.

DoS. The Denial of Service attack renders a node, part, or whole
network inoperable due to overloading it with unnecessary
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operations. Attacks of this kind often are performed on proto-
cols where in normal operation some heavy computations are
executed as occasional but indispensable element. An attacker
controlling many nodes may perform a distributed DoS, which
is by its nature more difficult to localize and lock out. Further-
more, DoS attacks can target radio communication links, block-
ing exchange of useful information.

Replay. Some protocols are stateless, i.e., one execution of an algorithm
can be repeated at a later moment to yield proper results. This
allows an attacker to record messages at one instance and replay
them later on or at different locations. Note that even if authoriza-
tion algorithm is in use, the attacker is in possession of authorized
messages.

22.1.2 Threats

Of course, performing an attack on a network should have its purpose. In the case
of wireless sensors this can be twofold: either disabling the network or accessing
and/or distorting data the network reports. Depending on a case, either form may be
chosen by an attacker, resulting in some of the following outcomes:

Battery drainage. In most cases, the sensors are battery-run devices.
This limited source of energy can be prematurely
used up for bogus operations and extra communi-
cation, induced by the attacker. A drained battery
renders given node useless, requiring replacing the
batteries or recharging them. Moreover, the work-
load from a disabled node, when shifted to other
nodes, can cause an avalanche effect and prema-
turely disable other nodes.

Network control loss. A successful attack can lead to compromising a
number of nodes in the network, if not the entire
network at all. The compromised nodes can per-
form further attacks, thus spreading the attacker’s
control, or render the network less efficient or even
useless. Taking back the control over the network,
if possible at all, can entail such cumbersome activ-
ities as physical collection of compromised nodes
and re-programming them back to the original state.

Data leakage and ambiguity. If an attacker can make the network leak some use-
ful information or influence it to perform his own
algorithm this poses a serious threat to the net-
work’s owner. On the other hand, an arbitrary or
random data injected to the network can in fact
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render the network useless in that sometimes noisy
or uncertain information is worse than no informa-
tion; especially if the breach is not detected.

Goals

Typical goals for security and trust, which we will discuss in this chapter, are the
following:

Authorization. This applies to the devices. In short—an authorized
device is one that has right to operate within the net-
work, obtain access to its resources, and communicate
with other stations.

Data authentication. Data authenticity is the concept that follows device
authorization. Namely, an authorized station is assumed
to provide authentic (i.e., true) data. However, since
wireless communication is open (at least in terms of
medium access), everyone can potentially transmit infor-
mation or disturb messages in the network. Authenticity
paradigm assures that the received data either originated
from authorized device or is disregarded.

Data secrecy. As mentioned above, the wireless transmission can be
easily eavesdropped. Therefore, means must be taken
so that important information is unintelligible for every-
one except the recipient. Forward secrecy assumes that
should the protection scheme be broken into, all future
messages will continue to be safely transmitted. On the
other hand, backward secrecy assures that all messages
previous to the breaking of the scheme remain safe.

Compromise detection. Finally, schemes are designed to reveal illegitimate
behavior in the network. Depending on the type of fraud,
adequate actions should be taken.

In the following sections recently proposed or widely used mechanisms for secur-
ing some aspects of wireless sensor networks are presented. Detailed descriptions
are omitted; instead, we put particular stress on inherent and emergent properties
of sensor networks that make some approaches more feasible than other. It seems
that despite new ideas that show up every year in the field, these general guidelines
remain the same and lay at the basis of many protocols.

22.2 Information and Node Authentication

A continuous flow of information in the network often requires, depending on the
application, that data be authenticated, i.e., its origin is known and legitimate. This
can be achieved by means of shared key authentication, where the originator of the
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information uses a secret to mark the data in a way that allows its verification by
all other owners of the secret. A serious drawback of this approach becomes clearly
visible when more than two parties take part in the communication. This would
either require each subset of communicating parties to share own secret, or that each
two parties share a secret and the message is encrypted/decrypted on a hop-by-hop
basis along its route from the source to the recipient. The former solution can, in
the worst case, result in an exponential growth in storage requirements, while the
latter rises the computation requirements for each sent message linearly with the
number of parties relaying the message. On the opposite extreme, one may have
one common secret among all. This however makes it then possible for any party to
forge a false message without being recognized or simply losing the secret whenever
it is leaked from one single device.

Another approach would be to implement solutions based on asymmetric cryp-
tography. There, each message would be signed by the issuer in a way that makes it
possible to verify its validity. The difference between this and the previous solution
is that each entity has two keys: one, secret used for authentication and the other,
made publically known, for verification by the information recipients. For such
solutions, however, problems such as availability of public keys or dealing with
compromised secret keys exist. Also, computations required in such asymmetric
cryptosystems usually are more complex and include large numbers and/or complex
algebraic structures arising feasibility problems in terms of storage and timing.

Below we present an overview of standard contemporary techniques for authen-
ticating traffic in a network of, by design small and slow, sensor nodes. The sections
below describe protocols allowing secure generation of message authentication
codes (MACs), establishing common secrets and signature creation and verification.
The selection is made to present possibly different approaches to the problem and
introduce techniques from different corners of cryptology.

22.2.1 Chaining Protocols

In a node-to-node communication over a multi-hop path there is always a possibility
of data being altered by intermediate nodes or even simply substituted with another
information. In essence, this can be alleviated by using MAC (Message Authenti-
cation Code): a form of a fingerprint of the message that can be calculated by both
communicating parties. An obvious condition here is that the MAC should not be
computable by any of the other parties at the time of transmission, which would
obviously let them change the message along with its associated MAC on the fly.

The main trick of chaining protocols is to connect data packages transmitted at
different moments into a chain such that it becomes infeasible to remove or add a
package into a chain without detection. Once a chain gets started, it authenticates
itself so that we can trust the whole chain if we can trust any of its elements. To
do this, the sender (originator) of the message appends some secret value K to a
message M and only then does he compute MAC(M, K ). On receipt, the receiver
cannot verify the MAC without knowing the secret used to generate it, so it has to
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wait for it (or request it) from the sender. Note that the secret K can then be sent out
in plain text as it is only to verify the validity of the message already transmitted.

This concept is often referred to as deferred disclosure, wherein the information
used to calculate some validity codes is revealed after the codes have been computed
and transmitted. Noticeably, deferred disclosure can be implemented with relatively
simple operations available on weak devices.

22.2.1.1 μTesla

The assumption that data do not have to be authenticated in an on-line fashion at
the moment of reception lies at the heart of TESLA [44] protocol by Perrig et al.
In fact, the messages are sent with their MACs and temporarily accepted and stored
in receiver’s buffer. The MAC is generated using some value r (by applying hash
chain, see below) at first known only to the sender, so it cannot be verified at the
moment of reception of the message. However, the protocol assures that r is revealed
on timely basis, thus allowing verification of all MACs. After a timeout without
hearing r the messages marked using r are dropped as invalid.

The idea got further extended into modified TESLA [45], making the protocol
more suited to wireless sensor network applications. The authors introduced tech-
niques such as Merkle trees or hash chains to enable time synchronization or DoS
attack prevention (see [45] and the rest of this chapter). However, perhaps the most
instructive solution is that dealing with packet buffering requirement.

Primarily, TESLA is a protocol for broadcast authentication; as such, in the world
of sensor networks the sender can be associated with a more powerful base node.
Assume that a node sends t packets with data chunks authenticated with the same
r . The hash value of the next packet payload is appended to the current one, and
the MAC is calculated over their concatenation. Namely, the j th packet Pj contain-
ing the j th data chunk M j and authenticated by the i th instance of r = Ki is the
following tuple:

Pj = 〈D j ,MAC(Ki , D j ), Ki−1〉, where D j = (M j‖H(M j+t ))

After t packets have been sent, the current authorizing key r changes to be r = Ki+1
and the packets have the form:

Pj+t = 〈D j+t ,MAC(Ki+1, D j+t ), Ki 〉

Observe that packet Pj+t contains Ki : the key used to authenticate previous t
messages, which enables the receiver to perform validity check. If this succeeds,
it follows that H(M j+t ) is also authentic, and so is the whole Pj+t . As we see,
there is a two-way dependency between packets and one can really say that they are
chained. This dependency between packets can be extended by adding extra fields
with adequate hashes in each packet. With this assumption, the protocol provides
a way of on-line message authentication without requiring the nodes to buffer too
much information. This responsibility is shifted to the sender.
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Further modifications to TESLA resulted inμTesla [46]. As before, the messages
are MAC’ed by consecutive hash chain keys Ki on time-epoch basis, i.e., the i th
key is used to authenticate all messages in time interval i , but epoch duration is
constant. Addressing the ad hoc nature of sensor networks, and keeping in mind
limited memory of sensors, μTesla allows bootstrapping of a new device at any
time. To join the network, a node needs to verify the authenticity of one (any already
used) key from sender’s key chain and get loosely time synchronized. To this end,
the new device sends a join request containing a nonce NM . The sender responds to
the request with the following nonce:

〈Ts‖Ki‖Ti‖Tint‖δ,MAC(KMS, NM‖Ts‖Ki‖Tint‖δ)〉

where Ts is current sender’s time, Ki is a key that was used starting at time Ti for
a period of Tint (epoch duration); δ is a parameter describing time interval to elapse
after an epoch end before this epoch’s key is revealed. KMS is a symmetric key
shared between the sender and the new device; the protocol allows only for a limited
number of sender–receiver pairs in the network, thus saving memory for storing such
symmetric keys. The joining node can, using the information from sender, establish
the beginning of the next (say, j th) epoch and start receiving. When K j is revealed,
the receiver should be able to rebuild j − i steps of the hash chain from Ki to K j .
If it cannot, it should drop messages from epoch j and restart the join procedure.

22.2.1.2 Hash-Chained Authentication

The idea of a hash chain is closely related to TESLA protocol, as it provides a good
mechanism for generation of secrets for deferred disclosure. In the naïve approach
this value could be taken to be any random string. This solution however suffers
from a serious drawback: there is no way of telling who in fact sent the message. It
follows that the secret value must be uniquely associable with a given entity in the
network. A one time solution would be to use a secret (key) shared by the two com-
municating parties, but after a single authentication the secret should be renewed,
due to replay attack possibility. Updating the key brings up the problems of key
establishment (cf. Sect. 22.3.6.1). Moreover, in a many-to-one type of communica-
tion the receiving party would have to store the secrets for each possible sender—a
solution that is unacceptable in many lightweight applications.

The basic scheme of ALPHA protocol by Heer et al. [23] assumes the use of hash
chains designed as follows. First, the sender (S) chooses a random value h0, and S
computes h1, h2, . . . , hn using the equation

hi = H(hi−1)

where H(·) is a one-way hash function (which means in particular that it is infeasi-
ble to compute preimages for H ). Parameter n depends on the storage capabilities
and foreseen demand for authentication operations. Each result is stored in memory
and the last element hn (the anchor) is made known (in a secure way) to the receiver
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Fig. 22.1 A two-way authenticated message passing scheme using ALPHA. Relaying nodes can
verify the values hk in transmissions S1 and A1 and refuse to route the corresponding packet in
case the values do not match the hash chain of the corresponding transmitting node

(R). Note that if hi is known to the receiver, it can verify the sender when presented
with hi−1 by checking

H(hi−1)
?= hi

as a hash cannot be inverted by design.
Sending of an (n − i)th message M involves the following operations (see also

Fig. 22.1):

1. sender S generates MAC(hi−1‖M) and sends it along with hi to receiver R
(transmission S1);

2. R acknowledges replying with hi and its own hash chain element h R
j (transmis-

sion A1);
3. S discloses the next element of his hash chain hi−1 and sends it along with the

message M (transmission S2).

Of course, R has committed to its hash chain anchor beforehand and reveals
its consecutive elements to authenticate its acknowledgments. A two-way authen-
ticated channel is constructed. However, intercepting the data in message S2
(specifically, the value hi−1) allows an attacker to authenticate the next message
S1 as if from a legitimate sender. Even though injecting an arbitrary message M is
not possible, the attacker can force the transmitting nodes into storing and running
calculations on bogus messages.

To counteract this, the scheme is extended by using two distinguishable hash
chains: one to provide authentication in Step 1 and the other for generating MAC
secrets. Moreover, to enable two-way reliable transmission, the responses of R can
include precomputed acknowledgments and non-acknowledgments, later on dis-
closed in the fourth, additional step of the algorithm:

1. S generates MAC(hi−1‖M) and sends it along with hi to R.

2. R acknowledges by replying with h R
j and provides two hashes: H

(
h R

j−1‖1‖sack

)

and H
(

h R
j−1‖0‖snack

)
, for acknowledgement and refusal, respectively; the ran-

dom strings sack, snack are to obfuscate the result.
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3. S discloses the next element of his hash chain hi−1 and sends it along with the
message M .

4. R verifies M against received MAC and responds disclosing its next authentica-
tion chain element h R

j−1 and either sack or snack required to compute H(·) from
Step 2 above.

By using the chain it is possible to issue pre-signatures for large amounts of data.
If such data is to be sent, it first needs to be split into a number of packets, but it
is more convenient if all the parts are sent in one burst transmission. Therefore, all
signatures for the packets are generated with the same undisclosed element of a hash
chain and sent en masse in Step 1 of the algorithm. Next, without ACK message
from receiver, the data packets can be sent out at high rates. Now, since the receiver
already has the signatures for the pieces of data it is receiving, it can verify their
validity on the fly and issue an ACK only after the burst transmission is finished.
On the other hand, should any of the parts be discovered invalid, the receiver can
instantly reject the entire transmission.

Mechanisms of ALPHA allow also for en route authentication and bandwidth
adaptation. Specifically, each relaying node can maintain current state of hash chain
for all nodes routing traffic through this relay. After receiving such packet, the relay
can check if the authenticating part (hi in Fig. 22.1) of each transmission is indeed
a part of the hash chain of the node originating the message. A natural profit for the
network is that unwanted (injected) traffic is simply dropped at the very first relaying
node, saving the bandwith for legitimate routing. In other words, at the expense of
some additional overhead for storing current state of hash chains of transmitting
nodes, the network can be protected against flooding with messages. This is a good
illustration of emergent inter-network cooperation to be observed in wireless sensor
networks.

22.2.1.3 Merkle Trees Authentication

As with the last example above, authenticating multiple messages with hash chain
values can introduce additional overhead for storing the pre-signatures of each data
item. Note that if data are split into n parts, then the receiver needs to be able to
store all n pre-signatures that is sent in Step 1 of the algorithm. While this approach
requires memory size linear to the number of signatures (n), the Merkle tree (MT)
can limit this requirement to log(n). MT is a plain binary tree, where the leaves store
hashes of chunks of the information to be authenticated and each node has a label
value calculated to be the hash of the concatenated values of its two children. That
way the root of the tree depends on each leaf, but in order to verify the validity of a
single leaf only log(n) values are needed, n being the number of leaves in the tree.
These values are siblings of the nodes on the path from the leaf to the root, and the
root itself (see Fig. 22.2).

This mechanism is used in ALPHA ([23]) to alleviate the storage problem of
multiple pre-signatures in high-rate transfers. There, a message is split in chunks
and these are used as hash arguments to calculate values in the leaves. Addition-
ally, the transmission is authenticated by means of a hash chain (see the paragraph
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Fig. 22.2 Merkle tree for message M = m0|m1| . . . |mn . To authenticate message chunk m j only
values of siblings (in circles) of nodes on the path (dotted line) to the root are needed

above). The sender calculates the values for nodes MT as described above, with the
exception of the value of the root:

r = H(hi−1‖n0‖n1)

where n0 and n1 are values of children of the root, and the hi−1 is the next-to-
be-revealed value of the sender’s hash chain. So calculated r is sent as the pre-
signature of the transmission in Step 1 of the algorithm (see the previous section).
Next, each chunk of the message is sent along with hi−1 and all information needed
to authenticate it by means of the MT. Here, the overhead in storage is balanced with
overhead in transfer. Moreover, the messages can be sent out in a carefully designed
sequence in order to allow efficient caching of the values of the nodes in MT.

Slightly different use of Merkle trees is described in [40]. There, Miller and
Vaidya present a system where a MT is generated globally by a trusted third party.
The leaves of MT contain unique identifiers of nodes combined with a Bloom filter1

with hashed in all keys a given node is preloaded with. In such scenario, the MT
provides a lightweight and efficient means for verifying the validity of a node–key
pair. Each node is loaded with root value of the tree and the set of nodes necessary
to authenticate its own leaf value. In the course of the protocol the Bloom filter is
broadcast along with credentials from the MT in order to allow other nodes to verify
the validity of the Bloom filter and hence the validity of the identity of the node. (For
an in-depth description of Miller and Vaidya protocol refer to Sect. 22.3.2.2.)

22.2.1.4 Maintaining Link Consistency

A selection of lightweight mechanisms for maintaining secure channel over a num-
ber of consecutive sessions is presented in [8]. In general, the assumption is to
generate some information in an impossible to guess way and exchange it during

1 A Bloom filter [7] is a bit-vector of length n, originally set to all-zeroes. To insert a value into
the filter one calculates a hash function H : {0, 1}∗ → {1, . . . n} and sets the corresponding bit in
the filter to one. At later time it is possible to effectively check if a given value does not belong to
the filter by calculating the H(·) on the value; on the other hand, due to possible collisions in the
hash function, the Bloom filter is liable to false positives.
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initialization phase. Then, in each transmission, new authorization keys are derived
from this secret which guarantees logical continuity and consistency of the link.

The first technique employs a chain of keys, where the key for the next transmis-
sion Knext is sent under current key Know encryption. To countermeasure the threat
of leaking a single key that would lead to compromising all next transmissions, two
secret seeds, s1 and s2, are exchanged during initialization phase. Then, both keys
are additionally masked with these seeds and the final ciphertext transmitted takes
the form:

EncKnow⊕s1(Knext ⊕ s2)

where EncA(B) denotes the ciphertext of B obtained with key A. Compromising
encryption keys Know ⊕ s1 from consecutive transmissions leads to compromising
all future encryptors; yet the keys Know remain secure as long as seed values remain
secret.

To the same avail, one can use one-way functions. In the initialization phase a
product N of k large primes is exchanged between parties. To logically link consecu-
tive transmissions, particular factors of N are revealed. Since the problem of integer
factorization is computationally hard, guessing correct value is difficult but simply
checking if the revealed number is a divisor of N allows a quick authentication
of the sender. Also, the receiver may request additional random factors to prevent
lucky-guesses and replay attacks.

Authorizing n sessions using the concept of logarithmic keying requires genera-

tion of 2 log n symmetric keys, grouped in pairs
(

K 0
j , K 1

j

)
, j ∈ (0 . . . log n). The

keys, along with a constant message M , are committed to during initialization. The
kth session is identified by the binary representation (i j ), j ∈ (0, log n) of k, and the

authentication key for session is generated by XORing all keys K
i j
j . The key is used

to hash M and the resulting value is sent as authenticator for the current session.
Note that compromising the hash function does not reveal any secret keys so less
requirements can be placed on this potentially computation-demanding operation.
Also, the parameter n depends exponentially on the number of keys that need to be
stored, a feature that allows for good scaling of the scheme.

22.2.2 Asymmetric Methods

22.2.2.1 Rabin Scheme

When data is sent from computationally constrained tiny nodes to a more powerful
device such as a base station one can utilize this disproportion and apply similarly
asymmetric operations to assure secrecy or security of data. In fact, one can think of
a normal operation of a sensing network that gathers data and forwards it in a secure
(encrypted) manner to a base station and receives authenticated commands in return.
Results published in [21] show that Rabin scheme with carefully picked parameters
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and slight improvements can result in a very effective method for encryption and
signature verification. At the same time, decryption and signature generation times
are prohibitively long (the difference is almost by factor 500). Similar conclusion is
to be found in [49], a recent survey of cryptographic primitives for sensor nodes.

In Rabin scheme the private key is a pair of large distinct primes (p, q), and the
public key is their product n = pq. The ciphertext of message M is then

c = M2 mod n

An inherent property of this operation is that the same value c can be generated for
four different messages M and additional information is needed to select the correct
one. Decryption is by far more complex and requires knowledge of both p and q,
because general solution for M is M ≡ √

c mod pq, and this can only be solved if
the decomposition of the modulus is known. Essentially, the problem boils down to
calculating square roots (mod p) and (mod q) and, by Chinese reminder theorem,
reconstruction of the four possible messages. This calculation can be particularly
simplified by setting p ≡ q ≡ 3 mod 4 (cf. [21]), but it still remains challenging for
a small sensor node.

Similar problems arise in signature schemes. There, the public key is a pair
(n, b), b ∈ {1, n}, secret key is (p, q) as before. Additionally, the scheme utilizes a
hash function H : {0, 1}∗ → {0, 1}k . To sign a message M one appends a random
string u to it and attempts to solve

x(x + b) = H(M |u)mod n

which is an instance of the decryption problem described above. Only for one in
four values of u can the solution be found, and this process runs with different u
until x is calculated. The signature is then the pair (u, x). Verification is as simple
as comparing if x(x + b) and H(M |u), computed with values obtained from the
signature, are the same.

The scheme requires squaring to generate a ciphertext and hash function and
multiplication to verify a signature. Both these tasks can be easily performed in
low-end nodes, while the more demanding operations are shifted to more powerful
devices.

22.2.2.2 Diffie–Hellman Key Exchange

Here we briefly describe how the Diffie–Hellman protocol allows two nodes com-
municating in open text to agree on a common secret.

The protocol assumes that two parameters are publically known: the generator g
and a prime modulus p. The run of the protocol is as follows:

1. node A generates a random value r1 and blinds it by calculating xA = grA mod p;
this value is sent to node B over an insecure channel;
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2. node B performs identical operation with its own random value rB to obtain xB

and transmits it to A;
3. both nodes calculate common secret to be

(xA)
rB mod p = (xB)

rA mod p = grA∗rB mod p

For the scheme to be sound we need to assume that discrete logarithm prob-
lem, DLP (i.e., extracting x from gx ), is computationally hard. Then in particular
extracting rA from xA or rB from xB is infeasible. Therefore, an eavesdropper can-
not calculate the common key as she is only in possession of part of the needed
information. Hardness of DLP is a frequently used assumption in cryptographic
schemes.

The tinyPK [52], a set of public key-based protocols developed in TinyOS for
Mica2, utilizes DH protocol for establishing common secrets between two motes
(see Sect. 22.2.2.6). Setting g = 2 resulted in 80 s operation time for 1024 bits long
modulus and 30 bytes exponent size for exponentiation in Steps 1 and 2 and 110 s
operation time for the exponentiation in Step 3. As this may seem prohibitively
long, the parameters here provide strong security level as considered in standard,
unconstrained machines. At the same time, taking the modulus to be 512 bits long
and exponent 16 bytes keeps both timings well below 20 s, which may be more
feasible for securing traffic in wireless networks. Moreover, one can use Diffie–
Hellman only for initializing a connection between two nodes, later they can use a
shared secret to derive a session key with fast methods.

22.2.2.3 Polynomial-Based Authentication

A slightly different method, also employing exponentiation but to smaller expo-
nents, involves use of polynomials [55]. The polynomials here are secrets, and
message verification is performed by comparing the offered value of the secret
polynomial at given points to the value calculated based on the message fed into
a verification polynomial. Specifically, the secret bivariate polynomial coefficients
Ai, j are chosen randomly from finite field Fq , where q is prime and dx and dy are
degrees of x and y:

f (x, y) =∑i, j Ai, j x i y j , 0 ≤ i ≤ dx , 0 ≤ j ≤ dy

f (x, y) is stored at the base station along with a hash function H(·). Each sensor
stores its ID = u along with a verification polynomial ver fu(y) = f (u, y) and the
same function H(·).

Sending an authenticated message M follows these steps:

1. f (x, y) is evaluated at y = H(M) to yield an univariate polynomial of x , called
message authentication function:

MAFM (x) = f (x, H(M))
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2. a tuple 〈M,MAFM (x)〉 is sent;
3. on receipt, a sensor calculates its verification value for y = H(M):

ver fu(H(M)) = f (u, H(M))

4. the received MAFM (x) is evaluated for x = u and the result compared to the
one obtained in Step 3. Message authenticity is confirmed by their equality.

An obvious problem here is that coefficients of f (x, y) can be interpolated
either by obtaining more than dy MAFs for different messages, or by combining
the knowledge of more than dx nodes. One way to solve this would be to increase
both dx and dy parameters, which would lead to significant overhead in storage
(coefficients of ver fu(y)) and transmission (coefficients of MAF(x)). The authors
employ probabilistic solution introducing random perturbations to calculations done
on communicating devices. Specifically, to prevent interpolation of f (x, y) from
MAFs, the latter ones get perturbed by a small factor picked at random from Fq .
Also, the ver fu(y) for each node is not given exactly but perturbed by a small
number from Fq . The verification at the node then changes to checking if the differ-
ence between computed verification code and the one sent along with the message
is in a given set, dependent on the parameters of the distortion, given as system
parameters.

So far, the proposed schemes leveraged bivariate polynomials and allowed for
one-way communication of a trusted station to other nodes. This idea can be
further extended to accommodate bi-directional authenticated communication by
means of tri-variate polynomials. However, this extension involves more intri-
cate operations since naïve approach leads to slight security flaws. For specifics
of this process see [55], while here we state that the scheme for bi-directional
communication uses two different polynomials (perturbed with carefully chosen
polynomials, instead of numbers as in the second scheme) for verification and
authentication.

The last scheme was implemented on Mica2 motes. Timings obtained for authen-
tication and verification are much smaller than those offered by, e.g., tinyPK library
[52] or elliptic curve cryptography and only slightly worse than those obtained for
Rabin scheme and NtruEncrypt [21]. The two last schemes however produce larger
signatures which in turn increase communication overhead.

As a remark, it is worth noting that [55] proposes a novel way of dealing with
problems of limited capabilities of sensors by employing probabilistic techniques.
This merging of probability with basic algebra allows for relaxation of constraints
(i.e., minimal degrees of polynomials that provide measurable security) while keep-
ing the properties of the system within frames of usability. Another idea for exploit-
ing polynomial shares is for pairwise key establishment [36]. We describe this algo-
rithm in greater detail in Sect. 22.3.3.

Another direction is to perform all operations in the exponent, i.e., instead of
f (x, y) we use g f (x,y), instead of addition we use multiplication, and instead of
multiplication by a known factor we use exponentiation. Computationally, this is
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much harder, but offers higher level of security, due to the fact that getting gab from
ga and gb is infeasible. This technique has been used by many authors for construct-
ing broadcast revocation schemes (i.e., broadcast schemes where some participants
can be excluded so that they cannot decrypt the message received).

22.2.2.4 NtruSign

In a number of contemporary cryptographic systems the amount and type of exe-
cuted computations make them prohibitively too complex for use in constrained
devices. However, some systems build up on simple operations and use some level
of probability to achieve comparable results in terms of security, but by far better
performance in terms of execution times and, therefore, energy consumption. One
such system is NTRU [25], where basic operations involve multiplication, convo-
lution (that is, in fact, multiplication), and reduction modulo a reasonably small
number. The system is built on a number of parameters: numbers N , p, q, where
N is prime and p and q are coprime and q ) p, and four sets of polynomials of
degree N − 1: L f ,Lg,Lφ , and Lm . Its safety relies on difficulty of factorization
of a polynomial into two polynomials with small coefficients, a problem relating to
closest vector problem (CVP) and shortest vector problem (SVP) known for lattices
[1, 39].

In key generation phase two polynomials, f and g, are selected randomly from
Lg , so that f has inversion modulo q and p. Let q−1 and p−1 be these inverses,
respectively. The public key h is calculated as

h ≡ q−1 � g (mod q)

where � represents cyclic convolution of polynomials, i.e., the kth coefficient of
F � G to be

(F � G)k =
∑

i+ j≡k(modN )

Fi · Gi

The private key is set to be f . To encrypt message M ∈ Lm one chooses a polyno-
mial φ ∈ Lφ and computes

e ≡ pφ � h + M (mod q)

This ciphertext can then be decrypted in two steps. First, a polynomial a is selected
to have its coefficients in the range (−q/2, q/2) and to satisfy

a ≡ f � e (mod q)
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Then, M can be decrypted by simply calculating:2

M = p−1 � a (mod p)

The probabilistic criterion is that this reduction can lead to different results for cer-
tain combinations of a and p−1. The authors argue that this can happen with small
probability and provide methods to alleviate this problem.

Based on this scheme, a signing protocol NtruSign [24] was also proposed. In
comparison to different public key systems with application to sensor networks pre-
sented in [21] it can be noted that protocols based on NTRU are relatively fast and
liable to parallelization. In fact, most of the operations performed in the scheme are
cyclic convolutions that can be effectively run in parallel for each coefficient. This
drastically reduces execution time (by a factor up to 100), but has its reflection in
power consumption. On the other hand, Roman et al. [49] report that NtruEncrypt
can be implemented with as little as 3000 gates, which makes it particularly suited
for low-end devices.

22.2.2.5 Elliptic Curve Cryptosystems

In recent years, Elliptic Curve Cryptography (ECC) has gained a lot of attention
in application to security problems of wireless sensor networks. Schemes utilizing
ECC employ smaller key and signature sizes and simpler operations as compared to,
say, RSA, while providing the same desired features of Public Key Cryptography.
In ECC [29, 41] it is typical to consider the cubic equation:

y2 = x3 + ax + b

where a, b ∈ Fp are constant parameters and p is a large prime. Then, an elliptic
curve over Fp is a set of all points (x, y) such that x, y ∈ Fp satisfy the above
equation, and a point in infinity, O. Cryptographic systems using elliptic curves
base on the elliptic curve discrete logarithm problem—ECDLP. This is an analogue
to discrete logarithm problem: here the cyclic group is the set {O,G, 2G, 3G, . . .}
for any point G on the curve, and calculating k given G and kG is the ECDLP. The
hardness of ECDLP allows setting a randomw to be a private key and corresponding
wG to be the public key, once parameters a, b, p and point G on the curve are agreed
upon.

With these primitives as building blocks, ECC cryptosystem consists of a number
of schemes for signing, verification, encryption, and key establishment. TinyECC
[35], a library of ECC modules for sensors running TinyOS implements elliptic
curve variant for Diffie–Hellman key establishment for DSA (digital signature algo-

2 In fact this is a two-step process: first, a polynomial a ≡ f � e(mod q) is calculated such that
its coefficients are in the range < −q/2, q/2 >, which cancels out (mod q) operation. Then, the
blinding polynomial p·φ is reduced (mod p) and by inverse p−1 the message (mod p) is recovered.
For detailed discussion, see [25].
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rithm) and IES (integrated encryption scheme). A number of optimization tricks
were implemented in the library and a user has free choice as to whether enable
them or not. This is particularly important as the nature of such optimizations is that
they trade one overhead with another, e.g., providing faster calculations at the extra
cost of RAM or ROM memory.

Code Optimization

Reportedly, there have been many attempts to make the ECC schemes more fea-
sible for sensor networks. One example is work by Blass and Zitterbart ([5]). The
authors make a thorough analysis of features that different parameters of the scheme
provide and contrast them with a particular hardware (an ATmega128 in their case,
the microcontroller to be found in Mica2 motes). In the course of analysis, they
pick key size to be 113 bits, perform some possible precomputations, and store
results in ROM memory in order to save the main RAM storage, fiddle with the
code organization and assembler code optimization switches. As a result, timings of
34 s for signing (ECDSA) and 68 s for verification were obtained.

Special Purpose Hardware

Even further acceleration can be obtained by designing special purpose hardware
and delegating some parts of the computation to a satellite chip, just the same way
as data aggregation is delegated to sensors mounted on a sensor mote. In [21], not
only special values for p and m were chosen to facilitate modular scaling, but also
all standard arithmetic operations were hardwired in serialized fashion. As a result,
the signing time with ECDSA is reported to be 410 ms and verification—820 mil-
liseconds. A specially tailored processor for ECC operations (multiplication and
summation) is presented in [3], where particular focus was put on the area required
for an implementation. A similar presentation was given by Wolkerstorfer ([53]).

In conclusion, it seems that purely software-based solutions to ECC remain infea-
sible for wide application. On the other hand, offloading the burden of specific cal-
culations to a designated hardware and careful selection of parameters may lead
to more realistic solutions. This trend is readily observable in the realm of cryp-
tographic smart cards, where heavy computation is done in designated hardware,
whenever such heavy cryptography is required.

22.2.2.6 RSA

RSA is one of the most widely used Public Key Cryptography schemes used for
encryption and authentication. However, due to its specific calculations and rela-
tively large size of operands, it has long been considered inadequate for tiny con-
strained devices.

Specifically, to derive keys, two prime numbers (the RSA numbers), p and q,
are selected, and their product n = pq is calculated. Next, the public exponent e is
picked to satisfy
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gcd(e, ϕ) = 1

where ϕ = lcm(p − 1, q − 1) is the least common multiply of p − 1 and q − 1.
Similarly, the private exponent d is chosen to satisfy

de ≡ 1modϕ

The public key then is the pair (e, n) while the secret key is the triple (d, p, q). So
far, all the information can be performed off-line and only the credentials be loaded
onto devices. The two operations, encryption and decryption, is done on-line:
encryption of a message M into ciphertext C :

C = Memod n

decryption with secret value d:

M = Cdmod n

As said before, the two operations and keys are complementary, which means that
in order to calculate a signature S of a message M , it is enough to set:

S = hash(M)dmod n

To verify, one applies public key and the first equation to extract the value C to be
checked against the hash of the signed message.

It is suggested that the length of public key (n) be at least 1024 bits, and choosing
e too small (e.g., less than 16 bits) can significantly weaken the scheme. Therefore
the RSA arithmetics is so problematic in application to resource constrained nodes.
In [27] Hu et al. present secFleck, a trusted platform module designed to cooperate
with Flec sensor nodes. Basic functionality is implemented and software interface
provided to perform operations such as symmetric and asymmetric de/encryption,
signature calculation, and verification. Performance analysis shows that offloading
execution to external hardware accelerates the RSA encryption by the factor of
10,000 and takes 55 ms for 2048 bit key and 16-bit exponent.

By comparison, TinyPK is a library of optimized code implementing RSA cryp-
tography for sensor motes, limited to operations with the public key, as these require
less computation [52]. The infrastructure of TinyPK includes a publicly trusted certi-
fication authority (CA) where all entities willing to get access to the network should
obtain their credentials. This is done by means of signing (in fact, by encrypting) by
the CA the public key of the entity. The CA’s public key is deployed in each mote
prior to deployment.

The protocol is run between a third party (TP) joining the network and a sensor
node (SN) in the following steps:
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1. TP generates a tuple consisting of a nonce (timestamp) n and a checksum of its
public key; TP encrypts the tuple with its private key to form ciphertext C1.

2. TP sends C1 and its public key signed by CA to SN.
3. SN can decrypt TP’s public key using CA’s public key and, consequently, extract

n and checksum of TP’s public key from C1.
4. SN encodes a session key sK and n with TP’s public key and sends it to TP.
5. TP decrypts the message and validates n; both parties now share the same

secret sK .

The value n in the protocol is used to prevent replay attacks. Note that the above
scheme ensures that TP gains access to the network only if it obtained adequate cre-
dentials from CA. However, the authorization in the opposite way is not achieved:
the TP cannot know if the sensor is a legitimate network device. A standard approach
to this problem would be to have the sensor issue a signature, which requires cal-
culations on its secret key. These in turn are computationally challenging to be
implemented in standard power-constrained nodes to provide effective solutions.
Instead, the authors propose that sensor be preloaded with the following additional
information:

Diffie–Hellman: public value pDH = gr , for some publically known g and a
secret random integer r , precomputed by the CA prior to deployment of the
node, along with its signature {pDH }C A by the CA;

text identification: string I Dtext, consisting some proprietary information such as
manufacturer, serial ID.

Next, after sK is established, Steps 1 and 2 of the above protocol are run again,
and additionally TP sends the first public value for Diffie–Hellman protocol (see
Sect. 22.2.2.2). After that the SN

• calculates the secret key sDH according to Diffie–Hellman protocol, which
proves its legitimate connection with CA;

• calculates message authentication function MAC under I Dtext and the nonce n
obtained from TP, using sDH ;

• responds with tuple: (pDH , {pDH }C A ,MAC(I Dtext, n)).

After these steps, TP can verify if sDH was calculated properly with the public value
signed by CA and extract node information from I Dtext. This way heavy computa-
tions with private key are replaced by two tricks: (1) most information required for
authentication is pre-computed and stored on the node and (2) credentials are in the
form that is unique for each node, yet easily obtainable.

By comparison with fully fledged public key cryptography schemes, the TinyPK
lacks the ability to revoke credentials in case of private key compromise. This
is normally achieved by means of certificates and certificate lists maintained by
designated servers. This approach is however not feasible to implement in sensor
networks both in terms of infrastructure and computation overhead.
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22.2.3 Sensing Mobile Artifacts

In some cases the sensor nodes are not only sensing the environment but also other
artifacts of the network. A good example of such an architecture are networks sens-
ing mobile objects equipped with electronic tags: a batteryless electronic devices
capable of storing small amounts of data and performing basic operations. Their
performance is extremely limited, as they gain all the energy needed for operation
via radio inductance only when confronted with a reader. The tag readers in turn are
powerful nodes, with an efficient communication and information infrastructure,
often carefully designed and maintained.

Depending on the application, such a network might demand strong privacy guar-
antees, reliable authentication, prevention against cloning, and so on. At the same
time the mobile nodes should be as simple as possible. There are many efforts to
provide appropriate algorithms and protocols of this kind (e.g., recall NtruEncrypt
[21] mentioned earlier in Sect. 22.2.2.4). On the other hand, the system design is
facilitated by the fact that the mobile devices communicate with a powerful infras-
tructure and not between themselves.

In this section we discuss two extreme cases of this kind: lightweight nodes that
cannot be equipped even with symmetric cryptography, and powerful chips such as
embedded in electronic travel documents.

22.2.3.1 Lightweight Node Protocols

The main problem we are focusing on in this section is designing a protocol
that would be immune against an adversary that may eavesdrop the whole com-
munication but does not capture the devices. The adversary’s goal is to clone a
device based on information gained from the radio channel. Of course, if a tag is
merely transmitting its ID (as in case of simple RFID tags), breaking the system is
immediate.

HB Family of Protocols

The background of the HB (Hopper-Blum) protocols is hardness of the problem of
Learning Parity with Noise (LNP). Namely, let x be a secret bit-vector, A be a ran-
dom binary matrix, and v be a noise vector where each single bit is set independently
to 1 with probability ε. The goal is to find x given A and y, where y = A · x ⊕v and
⊕ is a bitwise XOR operation. For ε = 0, finding x is a trivial linear algebra task.
On the other hand, for ε = 0.5 the vector y is fully random, and therefore it brings
no information on x . For authentication purposes we use intermediate values ε such
that a sufficiently large fraction of bits in y coincide with A · x , but LNP is still hard.

The HB authentication protocol [26] assumes that a tag and a reader share a
secret x . The reader performs the protocol to check that it is talking with the tag
holding x . The protocol consists of N trials. Within a single trial:
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1. the reader sends a challenge a;
2. the tag responds with z = 〈a, x〉 ⊕ v, where 〈a, x〉 is the scalar product of a and

x , ⊕ is the XOR operation, and v is a noise bit equal to 1 with probability ε;
3. the reader counts the trial as successful if the response z equals 〈a, x〉.

Finally, the reader checks if the number of successful trials does not deviate too
much (according to the rules of statistics) from N · (1 − ε).

HB protocol can be used for identification of tags. In this case the reader per-
forms computations for each secret x stored in its database, which can become a
serious problem in large-scale systems. Another problem is that a malicious reader
can easily retrieve secret x from a tag. Namely, in order to remove the noise it sends
the same challenge a many times. Majority of the answers show the value 〈a, x〉.
This problem is addressed by HB+ protocol, where the tag and the reader share two
secrets, say x and y. During a trial, the tag determines the second random challenge
b and the answer of the tag equals 〈a, x〉 ⊕ 〈b, y〉 ⊕ v. Still, this does not solve
all problems – man-in-the-middle attack is still possible. Regarding algorithm effi-
ciency, one can perform all trials in parallel avoiding the overhead due to interaction.
However, the communication volume is still high.

Another variant of HB protocol is HB# [22], where the secrets are the matrices
X and Y , and the answer of the tag equals

X · a ⊕ Y · b ⊕ v

for challenges a and b. This reduces communication volume, since the challenges
are two single vectors and not a set of vectors.

Hidden Subsets

Another idea to provide untraceable identification with simple means is to use hid-
den subset identifiers [14]. The idea is that the ID returned by a tag is a random string
generated by tag’s hardware, except for a few bits that are not random. Specifically,
they are computed as XOR of a (hidden) subset of bits from other secret positions
(see Fig. 22.3).

C1

C2

C3

C4

10 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1

random response

ID

Fig. 22.3 Hardware setting for four-bit-dependent part calculation with hidden subsets C1, C2,
C3, and C4. XOR operators are represented by black circles, random part is filled with reader’s
challenge. Note that for example, the first bit of ID is independent
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Strictly speaking, the bit positions in an ID string are independent and dependent
ones. The location of the dependent positions is secret. For the i th dependent bit bi

we have a subset Ci of independent positions; Ci is secret, too. Once a tag becomes
activated by the reader, then

• the bits in independent positions are set at random by hardware,
• for each dependent position, with probability p the bit bi is set to the XOR of all

bits in Ci , otherwise it is set at random.

Probability p is substantially higher than 1
2 , but also substantially lower than 1. The

reader knowing all dependent positions and the hidden subsets computes for how
many i’s bi equals XOR of the bits in Ci . If the fraction of these i’s is substantially
higher than 1

2 , according to the rules of statistics, then the reader gets a confirmation
of the tag’s identity.

Since the adversary may reactivate tags many times it is easy to collect a lot of
data for cryptanalysis. However, the number of possible subsets is enormous even
for relatively short identifiers, which makes brute force attacks extremely hard. On
the other hand, noise introduced into tag’s answers makes it problematic to start
algebraic attacks (like the one from [32]).

Pseudo-Random Sequence

The idea presented in [9] is to share a pseudo-random sequence by the tag and
the system running the tag. Namely, the system uses a pseudo-random keyed func-
tion F . Each tag T holds a unique key kT and a couple of values computed
with F(·, kT ). The system and the tag use pseudo-random numbers RN T

i , where
RN T

i+1 = F
(
RN T

i , kT
)

for each i . The system and the tag should be synchronized.
In a simplified version of the protocol both the tag and the system hold the same
value RN T

i . The tag authenticates itself with RN T
i ; the system response is RN T

i+1.
After this on both ends they switch the current string to RN T

i+2, which can be com-
puted with the secret key kT .

The full version of the protocol is slightly more complicated as it has to handle
the situations where the exchange gets interrupted, and the fact that the readers must
not contain the secret kT but only a few values RN T

i in order to avoid breaking
security of the system in case of corrupting a reader.

A similar idea is given in [50] for achieving transfer of authentication information
of a tag from one organization to another so that afterward the first organization
cannot trace the tag. The idea is that a tag holds a value t , while the owner holds
(u, t) such that hash(u) = t . In order to authenticate a tag, the reader sends it
a random string r1; the tag chooses r2 at random and computes M1 = t ⊕ r2,
M2 = ft (r1 ⊕ r2) and sends M1, M2 to the reader. The reader consults the system
server, which computes r2 as M1 ⊕ t and checks if M2 = ft (r1 ⊕ r2). If they are
equal, the tag is authenticated. In order to change the tag’s identity t , the system
sends it u masked with r2 (shifted circularly). Then the new u is determined as
(u 7 l/4)⊕ (t ) l/4)⊕ r1 ⊕ r2 and the tag stores the value h(u) as the new t (l is
the length of the strings used).
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22.2.3.2 A Scalable Solution: Authentication of Travel Documents

Schemes based on symmetric methods are not easily scalable. If the number of
objects is fixed and/or small they are quite attractive; for large-scale systems the
readers have to handle huge amounts of data and perform nontrivial computations.
Therefore, for big open systems, solutions based on asymmetric cryptography seem
to be inevitable. A high-end example of this kind are protocols for communication
with electronic identification documents [4].

The easiest way to establish communication with mobile devices is to use static
Diffie–Hellman protocol. Static means here that the value xX = grA mod p for
unit A is fixed and used for establishing each session key. So xA is the pub-
lic key of A and can be signed by the system provider. The value rA is the
secret used by A exactly as for the usual Diffie–Hellman protocol (cf. TinyPK in
Sect. 22.2.2.6).

Apart from establishing a shared session key, the protocol should enable authen-
tication of the reader against the tag (Terminal Authentication). The architecture
built for this purpose is a public key infrastructure with the public key of the root
known to the mobile unit. The infrastructure provides each entitled reader a chain of
certificates for a public key of this reader and statement of the reader’s rights. The
chain of certificates has the property that it can be verified with a single public key
of the root. The certificate given for the reader should have a short validity period
so that the mobile unit can be sure that the right statement is fresh.

The mobile unit performs two steps: first, it has to check the chain of certificates.
Then it sends a random challenge to the reader, which has to answer with digital
signature of the challenge signed with the private key corresponding to the key con-
tained in the certificate. If the verification of the signature is positive, then the tag
can assume that the reader holds the private key and therefore is the one certified by
the infrastructure with the root as anchor point of trust.

Another important idea is to protect devices from being used without consent of
the owner. According to the PACE protocol [4] activating a device A (knowing a
password p) requires knowledge of p (it is a secret of the owner of A or an optically
readible code). In the first step a random nonce s encrypted with the password p is
sent to A.

Then a modified Diffie-Hellman key agreement is executed – a possible modifi-
cation is that the agreed common secret gxa∗xB is multiplied by gs . A nice feature
of this scheme is that s is hidden and therefore passive attacks are hard even for low
entropy passwords.

22.2.4 Communication Authentication: A Framework Example

By design, wireless sensor networks are susceptible to distortions in messages
passed among nodes. Partially it is caused by specifics of a radio channel, but here
we shall focus on problem of false data generation and injection into the network by
malicious nodes and attackers. Since networks usually work without human super-
vision, physical tampering with stations is practically possible, and it is relatively
easy to eavesdrop and intervene with radio transmissions.
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22.2.4.1 Multi-hop Group Authentication

For an energy-constrained network it is important in that an attacker may try to inject
data aiming at congesting the entire network or depleting nodes’ energy on message
relaying. Hence limiting the area where malicious data propagate may spare the rest
of the network.

A framework responding to these threats is presented in [57]. The goal is to
authenticate information regarding some events detected by a cluster of sensors in
a local area and contained in a single report sent to a base station. The origin of the
report needs to be checked not only at the destination place, but also en route so that
fake injected reports can be deleted early.

The network is initiated in so that it consists of clusters containing t + 1 nodes,
with a cluster head (CH) in each cluster. For each cluster there is a fixed communica-
tion path to the base station (BS). In the following we consider a cluster C consisting
of the nodes u1, . . . , ut ,C H (C H being the cluster head) and a path v1, v2, . . . , vk

between C H and the base station. Within the framework we use shared symmet-
ric keys. Namely, each node u holds a key K BS

u shared with the base station, the
keys to communicate within the cluster (and in particular with the cluster head),
and the keys for authentication with “associated nodes.” Specifically, the associated
nodes of vi are the nodes t + 1 steps ahead and t + 1 behind on the way to the
base station. Additionally, vt+1 is associated with C H , and for i ≤ t node vi is
associated with ui . For clarity, for a given node, U A is its associated node closer to
the base station. Similarly, call L A the associated node further away from the base
station.

If an event E occurs in the cluster C , then the cluster issues collectively a report
on E together with a set of message authentication codes. The first of them is a
compressed version of MACs computed with the keys shared with the base station:

XMAC(E) =
⊕

u∈C

MAC
(

K BS
u , E

)
.

XMAC(E) is forwarded to the base station along the path, its verification against E
is possible by the base station only. Additionally, each cluster node u contributes a
so-called pairwise MAC, PMAC, used for en route authentication by its U A:

MAC
(

K U A
u , E

)
.

The report sent to the base station contains event description E , XMAC(E), and
t + 1 PMACs. The initial PMACs are collected by CH and then sent to the base
station. Each station on the route checks exactly one PMAC—the one coming from
its L A-associated node. If the MAC is correct, then the checked PMAC is removed
and a new PMAC, to be checked by its U A, is inserted.

The design of the protocol allows that if at most t compromised nodes inject
false information, the breach will be detected after no more than t hops. In fact, t
compromised nodes can, at best, generate t consecutive valid PMACs that will check
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with t non-compromised nodes. However, the PMAC list contains t+1 elements, so
at least one of them will contain a PMAC calculated for true data and its verification
will fail. On the other hand, if the injection takes place at point less than t hops from
base station, the verification will fail at calculating XMAC(E) at the base station.
Similar argumentation passes for t compromised nodes in a cluster.

The proposed scheme again illustrates the concept of cooperation between sen-
sors and resistance to injected data as an emergent property of the network. The
calculations are spread evenly among the units and the overall outcome (i.e., data
integrity) is probably greater than the summarized contributions of all the nodes
acting by themselves could be.

22.3 Key Management

In many cases the usage of asymmetric cryptography for establishing secure links
is prohibited by hardware limitations. In this case we have to depend on symmetric
methods which require that the communicating parties share secret keys. The keys
have to be preinstalled in the devices before they are deployed in the field, or there is
an initialization protocol, such that the shared keys are initialized under controlled
security conditions.

Predistribution of the keys might be a hard problem, since quite often we do not
know in advance which pairs of stations will communicate. In particular, this is the
case when devices are mobile and their routes are unknown in advance.

22.3.1 Master Key Schemes

If all devices are deployed by the same provider, then the simplest solution is to
preload each of them with the same secret key. This method has however a strong
drawback—an adversary only needs to capture a single device to break system secu-
rity entirely.

If the nodes have fixed positions one can avoid most of these problems by using
a single master key [16]. The idea is that the master secret Km stored in each newly
deployed node will be removed from the node immediately after establishing secure
links with the neighbors. Namely, when the network is initiated, then the nodes i and
j establish their shared key Ki, j = F(Km, i, j), where F should have properties of
a cryptographic hash function. Therefore, each link should have a dedicated key
and leaking one Ki, j should not endanger other link keys. Of course, this method
is limited to system initialization: if a new node s is installed, then no old node i
can compute the key Ki,s , as Km is already removed from the memory of node i .
The solution to this problem is that node i retains a key Ki = F(Km, i). In this
scenario the new node s computes the keys Ki, j and Ki using Km and sends Ki, j

encrypted with Ki to node i . Since node i holds the key Ki , it can recover Ki, j . On
the other hand, if an adversary breaks into i and learns Ki , he can get automatically
all the keys Ki, j . However, after breaking into Ki he can do it anyway. Moreover,
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knowledge of Ki does not directly endanger any other node. For more discussion
about the scheme see also Sect. 22.3.7.

A more structured design for determining pairwise keys is the classical Blom’s
scheme [6]. It offers a separate key for every pair of devices that remains secure
as long as less than λ devices are corrupted. The general idea of the scheme is
as follows: if there are n devices, then the system provider chooses appropriate
(λ+1)×n matrix G over a finite field with more than n elements. G is public. Then
the provider chooses a secret (λ+ 1)× (λ+ 1) symmetric matrix D and computes
A = (D ·G)T . The device i gets the i th row of A; the pairwise keys are derived from
the matrix K = A · G. Let us observe that K is symmetric: K = (D · G)T · G =
GT · DT · G = GT · D · G = GT · AT = (A · G)T = K T . The key shared by
devices i and j is Ki j = K ji . In order to find it, device i multiplies the row i of A
by column j of G. Device j gets the same result by multiplying the row j of A by
the column i of G.

22.3.2 Random Assignment Schemes

22.3.2.1 Basic Scheme

The idea from [20] is to generate a large pool of keys and to assign to each device
its random subset. By the birthday paradox we know that if the key pool K has size
n, then two random k-element subsets of K are disjoint with probability less than
1
2 for k of order

√
n. In this scenario each device gets a random subset of k keys

from the pool. If such devices want to establish communication, they use the key(s)
shared by them for establishing the link key.

The problem with the basic scheme is that an adversary can still retrieve keys
from the devices under his control. However, since each device holds only a limited
number of keys, this does not lead to a complete breaking the system.

In order to increase immunity of the scheme against an adversary collecting the
keys from the pool one can use q-composite schemes [12]. Then, in order to estab-
lish a link at least q shared keys are necessary. This seems to decrease the chances
of the adversary: he has to own all shared keys used by communicating parties. On
the other hand, the scheme has the drawback that the number of keys in each device
must be higher (for sharing k keys the size of the random subsets needs to be at least
of the order n(k−1)/k). This in turn increases the efficiency of collecting the keys by
the adversary: q-composite key is superior over the basic key only if the number of
devices corrupted by the adversary is relatively low.

Another attempt to make the system more resilient to the adversary collecting
the keys is to use multipath key establishment [2, 12]. The idea is that in order to
establish a key between the nodes A and B we use some number of intermediate
nodes, say E1, . . . , Ek , where each Ei can connect both with A and B. Over each
link A, Ei , B the nodes A and B establish a separate key, the final key for the link
A, B is a combination of all these keys (for instance, the keys can be XOR-ed). If
at least one of these links cannot be eavesdropped by the adversary, then the key
established for the link A, B is secure.
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The second important issue for random key predistribution is that randomized
assignment of the keys implies that some pairs of nodes have more shared keys
than average. On the other hand – for some pairs the number of shared keys is far
lower than average. The way to reach a more regular system design is to use more
structured subsets of the key pool. One idea of such a combinatorial design [11] is
to assign the keys to points of a projective space. Then, each device gets a subset
of keys that corresponds to a line in a projective space. Since each two lines in the
space intersect we can be sure that two devices share a key.

One can also use hybrid techniques such as [17] that combines Blom’s
scheme and random predistribution. Furthermore, deterministic and quasi-random
approaches based on combinatorial design theory were proposed [10]. Specifically,
BIBD (Balanced Incomplete Block Design) problem and the concept of finite gen-
eralized quadrangles are employed to create adequate and effective (in terms of the
size of key share) mappings from the space of key pool.

22.3.2.2 Exploiting Properties of the Communication Channel

In the work we mentioned before in Sect. 22.2.1, Miller and Vaida present a protocol
that allows for efficient pairwise keys establishing in the network with the help of
both powerful third party and some aspects of radio communication [40]. First, prior
to deployment, the third party masterminds the security infrastructure of the future
network at some level of generality. To this end, each sensor is given α distinct keys,
a set that is not shared with any other node. Furthermore, a Bloom filter3 containing
all node’s keys is calculated for each station and a Merkle Tree (MT) with ID’s of
nodes and the values of corresponding filters as leaves is computed. Next, each node
is given its Bloom filter along with MT values needed to authenticate the filter.

Initialization phase: Immediately after deployment, each sensor broadcasts its
Bloom filter and MT credentials to make them known to all its one-hop
neighbors. This information is next used in the second stage, where all sen-
sors switch to a randomly and uniformly chosen radio channel, listen to it,
and then broadcast one of its keys in plain text. This procedure is repeated
on different channels until all α keys have been transmitted. Upon hearing a
key from its neighbor, the node confronts its value with the Bloom filter it
received from this neighbor during the first stage and accepts the key only
if it is a positive match. Due to randomness of the process, spatial diversity
of nodes’ location, and possible packet loss due to interference, at the end of
this phase with high probability there will be at least one key shared between
two nodes that will not be known to any third node.

Key discovery phase: After key broadcast is over, each node computes a new
Bloom filter (Bd ) hashing in all its α keys and some predetermined frac-
tion of keys it heard during previous phase. The new filter is broadcast on
a common channel. Upon receiving such filter from all its neighbors, the

3 see footnote in Sect. 22.2.1.3
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node can attempt to determine the keys it shares with each of them. To do
that it chooses a set of ν keys that all belong to both its Bd filter and the
filter it received from a neighbor and performs a hash on their concatenation,
obtaining a candidate key Kc to be used in the last phase. When no ν common
keys can be selected for a given neighbor, the node may decide to give up this
link or request to re-run the initialization phase.

Key establishment phase: In the final phase the node challenges its neighbor with
candidate key Kc. It sends a message containing a random nonce encrypted
with Kc along with Bloom filter Bν containing all ν keys contributing to Kc.
If the neighbor is able to reconstruct the Kc using the information stored in
Bν it will answer with the same nonce incremented by one and encrypted
with Kc, the now pairwise secret key. Since Bloom filters are liable to false
positives, it is possible that either the node or the neighbor came across such
key causing false positive during construction or verification of Bν , respec-
tively. Should it happen, they can re-attempt to establish the Kc by choosing
another set of ν keys.

Using Bloom filters the sensors are able to effectively transmit information about
their shared keys and authenticate them with Merkle Tree mechanism. More impor-
tantly, the resulting security (and privacy) of communication comes as a result of
physical properties of the radio channel, and not only by the implicit mechanisms
of the protocol.

22.3.3 Polynomial Share

In Sect. 22.2.2.3 we have seen how bi- and tri-variate polynomials can be used for
authenticating messages. In [36] Liu and Ning provide descriptions for two instan-
tiations of such framework: an extension of “basic scheme” pool-based predistribu-
tion and grid-based approach. Recall that we are interested in polynomials of degree
t such that f (x, y) = f (y, x). Then, the polynomial share of a node i is f (i, y) and,
once two nodes i and j have agreed on a common polynomial f , they can compute
pairwise key to be f (i, j) = f ( j, i). With these assumptions, the key problem to
be addressed is the way to establish a common polynomial.

In the first instantiation, the polynomial shares are distributed prior to deployment
at random from a set of polynomials generated by a setup server. Next, the nodes
attempt to directly establish keys with one another. That can be achieved either by
using some pre-deployment information preloaded by the server or in real time. The
downside of the former solution is that if an attacker captures a single node he can
learn the polynomial shares for all its neighbors-to-be. This problem is mitigated in
the latter solution at the expense of additional communication overhead. Here, nodes
discover their common polynomials in an on-line fashion. For example, a node can
blindly calculate the set of potential pairwise keys with its neighbors to be Kv and
for all keys k broadcast pairs {α,Enc(α)k}, k ∈ Kv . If any other node can decrypt
α with some key in its possession, it can reply to this broadcast to establish the
common key. On the other hand, if no such decryption is possible, a node attempts
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to establish a path-key. To do that, the node will send out key establishment requests
via the nodes it has already established pairwise keys with and the process will
continue until the targeted node is reached.

In the second instantiation all sensors are mapped into a two-dimensional grid,
and the server assigns two polynomial shares to each of them: one corresponding
to the row, and another corresponding to the column in the grid where the node is
located. To discover a common polynomial with some other node the station needs
to verify if it is located on the same column or row in the grid and attempt to use
corresponding polynomial to calculate a common key. If the nodes do not share
either polynomial, they run a path-key establishment protocol querying possible
intermediate nodes (ones at the crossing of adequate column and row). The exact
mechanism employing this framework is explained in detail in Sect. 22.3.4. Here
we stress only the cooperative nature of proposed mechanism, where a sensor net-
work works out a particular feature (i.e., pairwise keys) based on limited informa-
tion stored in each node. In essence, the proposed framework illustrates a common
mechanism where a powerful server in pre-deployment stage preloads nodes with
limited data, which then is combined into a coherent and complete knowledge in a
cooperative system.

22.3.4 Multi-group Deployment

Design of key distribution scheme might be based on splitting the network nodes
into groups, and building up the overall system on the subsystems designed for
groups. An example of such an approach is presented by Liu et al. in [37]. The
idea is that first we split the nodes into groups Gi based on their (approximate)
location (so-called deployment groups). For each group, a different instance of key
predistribution scheme D is run to establish keys, called in-group keys. Next, cross-
group keys are established. Namely, the sensors are further subdivided into m cross-
groups G ′

i and for each such group a new, different instance of D is applied. The
requirement on G ′

i is that (1) each cross-group includes exactly one sensor from
each deployment group and (2) no sensor belongs to more than one cross-group.
One can imagine that the sensors are assigned to a grid, so that the nodes assigned
to row i form group Gi and the nodes assigned to column j form group G ′

j .
Simply put, each sensor is in possession of pairwise keys with all nodes in the

same row and column, but in order to establish a communication with other nodes
it needs to use one of the already associated nodes as proxy. This path is called
a bridge and it can be built in two ways: either by querying a node in the same
cross-group to establish connection using its in-group key, or using own in-group
key to query other node in the same deployment group to use its cross-group key.

Yet another approach is based on recursive splitting into subgroups [33]. The
idea is to split the set of nodes into two groups, say A and B. Then we assign
master keys K A and K B for inter-group communication: K A is stored in all nodes
of A and K B is stored in all nodes of B. Additionally, during the predistribution
phase a node Ai ∈ A gets a key K Ai = F(K B, Ai ) and node B j ∈ B gets a
key K B j = F(K A, B j ) (again, F is a function having properties of a secure hash
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function). The communication link between Ai and B j can be then secured by a key
derived from K Ai and K B j . Observe that Ai holds K Ai and can compute K B j using
K A. Likewise, B j holds K B j and can compute K Ai using K B . Moreover, no other
node of the network has access to both K Ai and K B j , so the communication between
Ai and B j remains private. In order to provide the keys for communication within A
and B, we use exactly the same procedure recursively (and independently for each
instance). Finally, the number of keys stored by a single device is 2�log n�, where
n is the number of keys. This is much less than in the case of Bloom’s scheme. On
the downside, it suffices to break into a single device of group A and a single device
of group B to get full access to any communication between a node in A and a
node in B.

Similar ideas are presented in [19]. The problem addressed is adjusting the key
assignment to particular communication graph architectures. Tailored solutions for
diverse families of graphs (e.g., planar graphs, bipartite graphs) are presented.

22.3.5 Powerful Third Party

By introducing a slightly different model of a network, Traynor et al. discuss the
issues of security in heterogeneous networks of sensors [51]. In such a network
there are two kinds of nodes: the small sensory stations (L1 level) with limited
capabilities performing data collection tasks, and the more powerful ones (L2) able
to perform some effective encryption algorithms and equipped with a better radio.
In their scheme all the nodes follow the basic scheme [20], with the difference that
nodes in level L2 store bigger subset of keys from the pool than these in L1. It
naturally follows that more powerful (and secure) nodes have better connectivity in
the network, which supports the three following modes of trusted communication:

Backhaul trust —when L1 nodes simply transmit information to an external sink
through their nearest L2 neighbor; this imposes trust requirements
only on one particular L2 node as the entire second layer can be
considered secure and well connected.

L1 limited trust —for transmissions within L1 layer across different neighbor-
hoods; to this end either the two L1 nodes share a common key
as a result of the basic scheme or can establish a session key via a
path of L2 nodes.

L1 liberal trust —for similar case as above, but where session key is agreed along
a path within L1 layer only; this increases the risk of losing
secrecy as any intermediate node can leak information when cap-
tured, and potentially many nodes involved in the process increase
this threat.

Two schemes are presented in [51]. First, LION, for stand-alone key management in
a system without a central trusted station. Second, TIGER, leveraging the presence
of a Key Distribution Center (KDC) to facilitate pairwise key establishment. LIGER,
a merge of the two, enables the network to maintain its functionality both with and
without the KDC.
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LION. This protocol is an extension of the basic scheme described in [20], imple-
menting the concept of limited trust as described above. First, an L1 node
learns its neighborhood and discovers the keys shared with the nodes
therein. For all nodes in the neighborhood not sharing a key with the
given node a request for assistance message is sent to the nearby L2 nodes,
requesting that pairwise keys with these L1 nodes be established with L2
node acting as a proxy. Finally, all nodes participating in establishing such
keys change or delete the keying material involved in this operation so that
should a single node be compromised, it does not reveal any other secrets.

TIGER. The nodes are preloaded with a subset of the keys from a pool as in the
basic scheme. Additionally, L2 nodes can perform public key authentica-
tion with the KDC. Also, each L1 node creates an authenticator key as
a result of XOR-ing a subset of its key share, and a bitmap representing
the keys used in this operation. Node A, to request a pairwise key estab-
lishment with a peer node in L1, say B, creates a token containing its
authenticator and the bitmap. Node B generates its own token and for-
wards both tokens through L2 to the KDC. The KDC can verify, based
on the bitmaps, the validity of authenticator keys and therefore confirm
authenticity of both nodes. Then, the KDC generates new authenticator
keys kA, kB and adequate bitmaps bA, bB for A and B, respectively, and
randomly chooses a pairwise key K AB for them. Lastly, it encrypts the key
with the new authenticator keys and sends back pairs: (Enc(K AB)kA , bA)

to A and (Enc(K AB)kB , bB) to B. The nodes can then regenerate authenti-
cator keys and extract K AB .
In a similar way, L1–L2 nodes authentication is performed. On request, the
L1 node issues a token to L2. The token is forwarded to KDC to confirm
the authenticity of the L1 node. KDC establishes a session key and sends
it to L2 along with its copy encrypted with the L1’s authenticator key. L2
forwards this message to L1 where the session key can be recovered, and
hence L2 authenticated to L1. In essence, TIGER is a lightweight version
of Kerberos (see e.g., [30]) tailored to the needs of sensor network in that
the number of exchanged messages is limited and encryption is modified
for less demanding devices. Both presented schemes utilize the same pool
of keys which saves storage on constrained nodes and provides seamless
transition between the two scenarios.

22.3.6 Dynamic Key Structures

22.3.6.1 Key Evolution

If a device is not under continuous supervision and is not tamper resistant, then an
adversary may get access to it, read the keys from the internal memory, and then
let the device work as before. Even the strongest key assignment and encryption/au-
thentication methods do not provide any protection against such attacks.
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One costly method to cope with this problem is to provide tamper-resistant or
tamper-evident devices. However, there is an alternative way due to Ren, Tanmoy,
and Zhou based on key evolution [47] for securing pairwise keys. The idea for man-
aging a key for securing the link between devices A and B is as follows:

• A and B initialize their shared symmetric key K using any method available;
• each time when devices A and B communicate, they change slightly the key K

in a random way.

Moreover, the changes of the key do not involve any additional communication. In
more detail, if A sends a message M to B, then the following steps are executed:

1. A chooses at random a bit in K and flips it. It stores K ′ as the shared key for
communication with B. Then A encrypts M with the new key K ′ and sends the
resulting ciphertext C to B.

2. B receives C and performs trial decryption with all keys that can be derived from
K by flipping a single bit. Only the result for key K ′ turns out to be valid, so B
can recognize that the key has been changed to K ′. B replaces K by K ′.

In fact, the protocol is slightly more complicated to keep the changes of the shared
key synchronized in the case when some messages get lost (see [47] for details).

The main properties of the protocol are the following:

• Coordination of key changes requires no additional communication, the overhead
is on computation. This is motivated by the fact that communication consumes
much more energy and time than computation.

• The solution is forward-secure. Namely, if the adversary breaks into device A
at time t and gets the shared key K , but later does not observe some number of
messages exchanged between A and B, then the adversary loses his knowledge
about the shared key. Indeed, each communication changes one of the bits at
random. So after some number of steps the key changes completely.

A single drawback is that the scheme is not backward-secure: if the adversary
records all communication and then breaks into A, then the recorded communication
can be decrypted by reversing the key changes step by step. However, as observed in
[28], we can get backward-security if we adopt the following key evolution scheme:

K ′ := F(K , i, t)

where F is a pseudo-random one-way function, i is a parameter chosen at random
form a small range, and t is the change number. In this case, even if the adversary
has the key K ′, it is implausible (with minor assumptions regarding F(·)) to derive
the previous key.

22.3.6.2 Key Levels

Hash chains can be used in a yet another way in order to improve resilience
against capturing nodes and compromising the keys assigned via key predistribution
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schemes. According to [13] assume that each key Ki from the pool of keys appears
in n different versions K1, K2, . . . , Kn , where

K1 = K and Ki+1 = F(Ki ) for i = 2, 3, . . .

and F is a one-way function. In place where the original predistribution scheme
assigns the key K , the scheme with levels chooses one of the levels i and assigns
Ki . Observe that if two devices have to use the shared K , in the modified scheme
they hold some Ki and K j and both can use Kmax{i, j}. Simply, if i < j , then the
device holding Ki can derive K j as F j−i (Ki ). So, the only cost is a certain increase
in local computation.

The point is that in the original scheme if the adversary corrupts a single device
holding K , then K becomes useless. In the scheme with key levels with some luck
the adversary corrupts a device holding Kt , but the communicating devices hold
Ki , K j , where i, j < t . Then the adversary is still unable to decrypt the commu-
nication. Unfortunately, it turns out that the probability of this event is at most 1

3 .
On the other hand, it is close to 1

3 already for 10 levels. If we use multiple keys to
establish a connection and two level schemes, then the expected number of devices
that we have to break into increases at most by 50%.

22.3.6.3 Dynamic Key Management with Key Levels

Assume that a provider supports mobile devices using random key predistribution
and that the devices may be updated at kiosks which they visit from time to time.
One can apply key levels to keep the system immune against an adversary capturing
devices and retrieving keys from them.

Each key K has infinitely many levels Ki , for i = 1, 0,−1, . . .. The system
provider keeps a trapdoor to F and therefore can compute Ki−1 from Ki . On the
other hand, a user device (or a kiosk) holding Ki can derive only keys K j for j > i .
The keys are uploaded to the kiosks periodically, each time decreasing the current
level. If a device has not updated the keys recently, the probability that the keys it
holds are already known by the adversary increases. So any other device may decide
whether the key levels supported by such communication partner are fresh enough
to offer sufficient level of security.

22.3.7 LEAP: A Full Key Infrastructure

Even in relatively simple scenarios, there are different types of messages exchanged
in a sensor network. Some are local by nature, e.g., neighbor discovery packets,
some are spread globally to all (broadcast) or sent to specific nodes (node-to-node
communication). This observation along with conclusion that different mechanisms
are best suited for securing different communications is at the basis of LEAP (Local-
ized Encryption and Authentication Protocol) [56]. The basic building block for key
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generation in LEAP is a family pseudo-random functions { fk(·)}, parameterized
with some key k. In implementation, the RC5 family was used for both key genera-
tion and MAC computation, which resulted in better code reuse and implementation
size reduction. Below are details on each type of keys proposed by LEAP.

Individual key: This is a key shared by a node with the base station. For node u
the key is K m

u = fK m (u), where K m is the secret master key of the network
controller. Note that there is no need for the controller to store all nodes’ keys
as they can be generated on-the-fly. K m

u is put into node’s memory before
deployment.

Pairwise shared keys: Most communication happens locally and should be pro-
tected by pairwise shared keys. A natural scenario for establishing such key
would be that a newly deployed node wishes to gain access to the network
and gain necessary credentials for further operation. However, an attacker
can capture the newly arriving node before it manages to receive creden-
tials and use the node’s secrets to gain access to the network. The protocol
assumes that such an attack requires at least time Tmin. The pairwise keys are
generated as follows:

• in the pre-deployment phase, a common key K I is stored in every node’s
memory; each node u can then compute its master key: Ku = fK I (u);

• on deployment, node u sets a timer to fire after Tmin;
• node u sends out a HELLO message; on receipt, each node v responds

with an ACK in the form {v,MAC(Kv, u, v)}; since u knows v’s ID and
(still) it knows K I , it can compute Kv and use it to verify the ACK;

• node u then computes its pairwise key with v to be Kuv = fKv (u); v per-
forms the same operation; note that no additional exchange of messages is
required; all consecutive communication using Kuv will authenticate both
u and v;

• when timer fires, the node deletes permanently K I and all master keys Kv

of its neighbors; it keeps however its own master key Ku .

Note that when a new node arrives, it can join the network using K I , while
the nodes already present in the network do not need K I to issue ACK. Also,
even if an adversary captures one node, the only information that leaks is
that of the node’s keys with its neighbors, and no general secret information
can be extracted. Furthermore, in an event of a cloning attack, the credentials
stored in a duplicated node are not sufficient to establish pairwise keys with
other nodes; hence planting the duplicate in a remote location is thwarted.
Finally, an extension of the above protocol is provided to cope with the case
when K I is compromised. In essence, the idea is to use a sequence of initial
keys to be used at each time interval wherein a new node arrives, rather than
one global K I . The proposed approach provides both forward and backward
confidentiality (see [56]).

Cluster keys: One common key shared by all nodes in a cluster enables in-network
processing and, more broadly, an insight into messages transmitted within the
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cluster, while at the same time keeping it hidden from nodes in other clusters.
If a forwarding node can decrypt a, say, “cluster-MAX-query” message, it
can decide whether its own readings contribute to the reported value or not
and save energy on computations. Establishing a cluster key is straightfor-
ward in that a sensor u generates a random cluster key K c

u and sends it to all
nodes it wishes to, using the appropriate pairwise keys.

Group keys: A group key Kg is a key shared by all nodes in the network used
to secure network-wide communication. While the first group key may be
loaded to sensors at deployment, the essential case here is re-keying, as pro-
longed use of the same key makes some attacks more feasible. The simplest
solution would be for all nodes to perform substitution: Kg := fKg (0) on
timely basis, given that time synchronization can be achieved. More impor-
tantly, the group key needs to be changed whenever some node gets revoked
as malicious. To invoke the procedure, the controller (base station) broadcasts
a revocation message

〈
u, fK ′

g
(0), M AC

(
kT

i , u, fK ′
g
(0)
)〉

where u is the revoked node ID, K ′
g the new group key, and kT

i the to-be-

revealed hash chain value (cf. Sect. 22.2.1.2). As in μTesla, kT
i is revealed

after certain time and can be used to verify the authenticity of revocation
message. If it succeeds, fK ′

g
(0) is stored for further use and the second stage

commences. This basically uses breadth-first message passing, originating
at the base station. The base station informs all nodes in its cluster about
the new group key K ′

g , securing the communication with its cluster key. The
informed nodes pass the information further using their own cluster keys.
On receiving the new key, a node can compute fK ′

g
(0) and verify it with the

value obtained from the revocation message.

22.4 Encoding

Once the nodes of the network share symmetric keys, one can use them for securing
transmissions, in the sense of confidentiality (encryption) and integrity (message
authentication codes, packet counters). The technique that we discuss here concerns
appropriate message encoding that minimizes risk of information leakage.

22.4.1 Multiple Paths

If a data stream is sent via a single path, then the adversary has to compromise only
a single node on the path in order to break security of the transmission completely.
A simple countermeasure is to split messages into two parts and sent them through
different paths. For instance, if A sends a message M to B, then it encrypts M
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with a key K shared with B, C = EK (M), and splits C into C1 and C2. Namely, C1
contains all odd bits of C and C2 contains all even bits of C . Then C1 and C2 are sent
via separate paths. On each hop of such a path, Ci is additionally encrypted with the
key shared by the sender and the receiver. Observe that even if the adversary learns
some Ci , it cannot even start standard cryptanalysis, since only half of the ciphertext
is available.

The approach with two different paths has an additional advantage for typical
security applications: if the nodes are deployed in the field, it is much harder to find
two nodes (say in the grass), than only one. This technique is announced in [31]: a
path from A to B is chosen such that it goes through pairs of intermediate nodes, say(
P1, P ′

1

)
,
(
P2, P ′

2

)
, . . . ,

(
Pm, P ′

m

)
. The nodes Pi and P ′

i receive, respectively, Ci and
C ′

i from Pi−1 and P ′
i−1, with C = Ci ⊕C ′

i . Then Pi splits Ci at random into Ci and
Ci , Ci = Ci ⊕ Ci , and sends them over encrypted links to, respectively, Pi+1 and

P ′
i+1. Similarly, P ′

i splits C ′
i at random into C ′

i and C ′
i and sends them over encrypted

links to, respectively, Pi+1 and P ′
i+1. Then Pi+1 computes Ci+1 = Ci ⊕ C ′

i , while

P ′
i+1 computes C ′

i+1 = Ci ⊕ C ′
i . Note that if we apply the method of two parallel

paths described before, then compromising any two nodes of different paths reveals
C . For the last method it would be necessary to compromise two nodes with the
same distance from the destination.

22.4.2 Block Ciphers

Block ciphers employ a symmetric key shared by both communicating parties in
order to provide both encryption and decryption. The name comes from the way
they operate on data: it is split into blocks of fixed length and each part undergoes
the same modifications. The key can be used as initial vector or as a parameter
controlling these operations. The two widely known and used block ciphers are DES
(Data Encryption Standard) and AES (Advanced Encryption Standard). These two
however are problematic for use in sensor motes due to their relatively high demand
for memory and calculations. Below we present some recent protocols implement-
ing block ciphers schemes that fit better in such constrained hardware.

The first one, MiniSec [38], proposed by Luk et al. uses an OCB (Offset Code
Book) mode of operation [48] with Skipjack as the underlying cipher. The OCB
allows both encryption and authentication of data with very little overhead in
packet size and only a single scan over the plain text. That is, for a message
M of length |M | the resulting codeword at the output has length |M | + τ , and
the probability of forging a valid message is 2−τ . Generation of a ciphertext C
is parameterized by a nonce N and a symmetric key K , whereas the resulting
tag, authenticating the message is concurrently calculated as a function of C, M ,
and an optional header. More precisely, during encryption the algorithm uses an
auxiliary value Δ, which chains the ciphertexts of the blocks together. It is ini-
tialized as EK (N ). For each block the value of Δ is updated by shifting it left
by one position Δ := Δ 7 1, if the most significant bit of Δ is 0, or as
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Δ := (Δ 7 1) ⊕ 0x00000000000000000000000000000087, if this bit of Δ
is 1. For encryption of a block we use the formula:

Ci = Δ⊕ EK (Mi ⊕Δ)

Slightly different rules are applied when constructing the last ciphertext block that
holds the tag.

In MiniSec each pair of nodes shares two secret keys, each for securing com-
munication in one way. Additionally, for each such key an internal counter is kept
and for each use of the key incremented by one. For encryption, adequate secret key
is used and the corresponding counter value set for nonce N . For decryption, the
receiver uses its own counter value for the key used in encryption and increments it
afterward. As in many algorithms presented so far, the communicating parties can
get desynchronized. A simple countermeasure is that the last x bits of the counter
are sent along with the message (in the header). By piggybacking this information
with the packet, MiniSec achieves counter synchronization for free: the receiver
can temporarily update its counter according to the value in the packet and attempt
to decrypt/authenticate it with the new value. If it fails, the counter is rolled back,
while it gets synchronized in opposite case. In normal circumstances, it suffices to
take small x , so the bandwidth overhead is low.

For broadcast messages usage of counters is problematic: since this is not a
one-to-one transmission, each node would have to store a large set of counters for
each potential broadcasting source, which, to begin with, may be hard to define.
The authors propose two solutions. First, to use loose time synchronization, as
the one in μTesla ([46]) and split the time into epochs. The epoch number during
which communication takes place is used as the nonce N . This brings the threat of
an attacker being able to forge a valid message throughout the same epoch. This
drawback is addressed in the second solution. Here the sender S with identifier I D
keeps an internal counter CS of packets sent in the current epoch. This is short
enough to be sent along with the message and pose no significant overhead. Then,
in epoch Ei the nonce N = I D‖CS‖Ei is used for OCB encoding. On reception,
the node checks the validity of the packet using the supplied value CS . Additionally,
to prevent playback attacks it stores the value CS‖I D in a Bloom filter ([7]) or
rises an alarm when the filter already contains it. Due to small confusion caused by
splitting time into epochs, two filters need to be kept for two consecutive epochs,
but their size is relatively small and depends on the number of messages sent per
epoch.

An interesting attempt to capture the multitude of devices using wireless commu-
nication (and as such, wireless sensor networks) under one hood is ZigBee Alliance
[42]. This is a complete communication framework, and one of its building blocks
include communication security by encryption and authentication. In fact, the pro-
posed solutions are similar to the ones used in TinySec with only slight differences.
ZigBee uses AES-128 as the underlying block cipher protocol, run in CCM∗ mode
[18], offering both authentication and encryption, or either of the two. Both com-
municating parties are required to be in possession of a secret key and keep the
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associated counter for each key and security level. On reception, the local value of
the counter is compared with the one transmitted, and the whole message is dis-
carded when the local value is greater. This mechanism is used to prevent replay
attacks (e.g., in DoS attempt) that can be performed with the same counter value.
Additionally, the counter value concatenated with source’s identification sequence
and security level parameter constitutes a nonce N that is used as one of the input
parameters to the CCM∗ algorithm.

The implementation details can be found in [42], while here it is worth mention-
ing that as is, the ZigBee framework could be found problematic to implement in
some standard sensor node hardware. This is mainly due to the use of AES block
cipher with relatively long (128 bits) key, as well as additional transmission over-
head. On the other hand, some interesting mechanisms are built in the ZigBee. For
example, after successful verification of the packet, the receiver checks the status of
the sending node on its internal NeighbourhoodList, and updates the entry to reflect
the level of authorization or “trust” for this device. The good idea behind this is that
such trust building is done at no additional cost (except for storage) and can be used
in other protocols during normal operation.

To conclude this section we refer the reader to [34], where a comprehensive
evaluation of block ciphers for use in wireless sensor networks can be found. Law
et al. present there a systematic framework for assessing different aspects including
such important factors as energy consumption, timing, and storage efficiency.

22.5 Compromised Node Detection

By design, wireless sensor networks are an effective tool for data gathering in a
decentralized way. However, the interactions between single nodes are strictly local-
ized, as the nodes (usually) do not move. Despite this local interconnections such
networks remind more of a distributed system rather than a heterogeneous network
of autonomic devices. That is, data collection is performed in a collective manner
and the “welfare” of the network does not depend strictly on a single node, given
that adequate routing algorithms are running. This regularity in the network, when
viewed from datacentric point of view, may provide valuable information on mis-
behaving nodes. Next, the information can be used to raise an alarm and implement
adequate measures against such units.

22.5.1 Alert-Based Protocols

In [54] a general model of alert-based protocols is given. The authors make no
assumption on the way malicious nodes behave, instead, they introduce a num-
ber of idealized models for their framework. These include sensor behavior model,
observer model, and an identification function. The network itself is also mapped to
an idealized observability graph, wherein an edge between two nodes exists if and
only if these two nodes can observe each others’ activity. The role of an observer
is to report an alert whenever it sees abnormal activity in one of its neighbors. To
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reflect different physical properties of network operation (e.g., sleep mode, interfer-
ence) the decision on reporting the alert is parameterized by a probabilistic function
of observer’s reliability, accuracy, and effectiveness.

The alerts are collected by a base station and if, during a given time window, their
number for a particular edge in the network graph exceeds a preset threshold, this
edge is classified as abnormal. The next step is to construct an induced graph from
the observability graph, containing (1) all abnormal edges and (2) edges between
such two nodes that have a common neighbor connected with exactly one of them
by an abnormal edge. The later option corresponds to the case of a triangle ABC ,
where the edge AB is abnormal, but AC and BC are not. It is easy to see that
in this case at least two of nodes A, B, C must be compromised. Indeed, if say
A is compromised and B is not, then C must be cheating too by not reporting the
problems with A. If both A and B are compromised, then they may behave correctly
against C , but send reports concerning the edge AB in order to pretend that the first
case occurs. Lastly, an algorithm detecting a minimal vertex cover on the induced
graph selects these nodes that are compromised, taking a security parameter K to
be the maximal number of compromised nodes. The complexity of this last step is
O
(
mn

√
n
)
, where n is the number of vertices and m the number of edges in the

inferred graph.
The intuition behind this framework is that one sensor node can have a good

insight into what its neighbors are doing due to locality property of the network and
sensed data. Reporting abnormal activity can signify both the reported or reporting
sensor’s misbehavior; therefore both units are “shortlisted” for future investigation.

22.5.2 Detect and Tolerate

One of the attacks possible in sensor networks is the replication attack. The solution
to discovery of replicated nodes is by means of centralized comparison of all nodes’
neighbor lists and localizations. This however brings considerable communication
overhead, as whole lists from each node need to be transmitted. Alternatively, one
can run a localized version of the above algorithm, thus reducing communication
overhead. However, this algorithm will not detect replicas planted by the adversary
in distant enough locations. Parno et al. in [43] present two protocols that allow
detection of replicas in a network and, consequently, their effective revocation. The
following steps describe the first approach, the Randomized Multicast:

1. each node α sends to each of its d neighbors a location claim containing its
identifier, locator (e.g., from a GPS unit), and a valid signature of the claim:

〈I Dα, lα, Sign (H(I Dα, lα))〉

2. each of the neighbors checks the signature and plausibility of lα;
3. with probability p each neighbor chooses g different locations in the net-

work and forwards the location claim to the nodes in the proximity of these
locations;
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4. each node that receives the forwarded claim becomes a witness for its issuer;
5. if a witness receives two different claims lα and l ′α for the same I Dα it floods the

network with lα, l ′α , thus informing about the discovered duplicate.

While it provides high probability p of detecting multiple replicas, the algorithm
poses huge storage overhead to the witnesses, as they need to store on average p·d ·g
claims, which induce O(n2) communication costs. This drawback is fixed in the
second protocol, the Line-Selected Multicast, where each location claim is sent to
proximity of r locations chosen at random. The improvement here relies on the fact
that in a multi-hop network packets follow a path and all nodes relying the packet
can store it. This draws virtual lines across the network plane and everywhere the
lines intersect, a corresponding node may perform cross-check for duplicate claims.
Very few lines (i.e., duplicate I D’s claims “arriving” from different points in the
network) are needed for the intersection to happen. In the complexity analysis, let-
ting r be small value independent of n (which still makes the intersection probability
high) leaves the communication complexity O

(√
n
)
.

22.5.3 Suicidal Pointer

The aforementioned concept of voting, or any reputation-based system of punishing
misbehaving nodes suffers from one, difficult to avoid problem. The misbehaving
nodes can actively take part in voting or reputation building protocols. If such node
can perform a Sybil attack, or more nodes collude, any voting can be taken over by
the attacker. Moreover, false accusations can be set against legitimate nodes, e.g., in
order to divert traffic routes from them and pass it through a node in possession of
the attacker. Last but not least, as already seen, the protocols designed to counter-
measure misbehavior are time and message consuming.

A simple and worthwhile solution is presented in [15]. There, a revocation deci-
sion is made by a single node. The cost of denunciation is honest node’s suicide, i.e.,
the misbehaving and the honest nodes are treated the same way by the network, be
it timely revocation, mutual session keys deletion, or permanent blacklisting. High
as the cost may seem, an inherent property of sensor network is here used, namely
high redundancy. Application of such solution should be balanced against possible
merits of using a network without a single sensor but without potential intruders.
Additionally, this protocol defends itself in that it is simple, provides almost no
communication overhead, and runs independently of other nodes.
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Chapter 23
Key Management in Sensor Networks

Dahai Xu, Jeffrey Dwoskin, Jianwei Huang, Tian Lan, Ruby Lee, and Mung
Chiang

Abstract Secure communications in wireless ad hoc networks require setting up
end-to-end secret keys for communicating node pairs. It is widely believed that
although being more complex, a probabilistic key predistribution scheme is much
more resilient against node capture than a deterministic one in lightweight wireless
ad hoc networks. Supported by the surprisingly large successful attack probabilities
(SAPs) computed in this chapter, we show that the probabilistic approaches have
only limited performance advantages over deterministic ones. We first consider a
static network scenario as originally considered in the seminal paper by Eschenauer
and Gligor [9], where any node capture happens after the establishment of all pair-
wise links. In this scenario, we show that the deterministic approach can achieve a
performance as good as the probabilistic one. In a mobile network scenario, how-
ever, the probabilistic key management as described in [9] can lead to a SAP of one
order of magnitude larger than the one in a static network due to node fabrication
attacks.
The above analysis motivates us to propose two low-cost secure-architecture-based
techniques to improve the security against such attacks. Our new architectures,
specifically targeted at the sensor-node platform, protect long-term keys using a
root of trust embedded in the hardware System-on-a-Chip (SoC). This prevents an
adversary from extracting these protected long-term keys from a captured node to
fabricate new nodes. The extensive simulation results show that the proposed archi-
tecture can significantly decrease the SAP and increase the security level of key
management for mobile ad hoc networks.
Finally, we develop an analytical framework for the on-demand key establishment
approach. We propose a novel security metric, the REM resilience vector, to quan-
tify the resilience of any key establishment schemes against Revealing, Erasure, and
Modification (REM) attacks. Our analysis shows that previous key establishment
schemes are vulnerable under REM attacks. Relying on the new security metric, we
prove a universal bound on achievable REM resilience vectors for any on-demand
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key establishment scheme. This bound that characterizes the optimal security per-
formance analytically is shown to be tight, as we propose a REM-resilient key
establishment scheme which achieves any vector within this bound. In addition, we
develop a class of low-complexity key establishment schemes which achieve nearly
optimal REM attack resilience.

23.1 Introduction

23.1.1 Motivation

Lightweight ad hoc networks typically consist of nodes that are distributed and have
very limited computation and energy resources. Examples include portable mobile
devices and tiny low-cost sensors used for environment surveillance and emergency
response. Providing secure communication over this kind of network is challenging.
Various key management schemes have been proposed with an attempt to provide a
highly secure communication environment in lightweight ad hoc networks against
various malicious attacks. Among the proposed schemes, symmetric key predistri-
bution schemes (e.g., [1, 5, 15, 16, 23–25, 27]) are more suitable to the lightweight
ad hoc network than asymmetric public-key schemes, because the former schemes
require less resources (e.g., battery, memory, and computation power) and there is
no need for a trusted third party for authorization.

There are two main approaches for symmetric key predistribution: probabilistic
(e.g., [4, 5, 9, 17, 22, 27]) and deterministic (e.g., [2, 19, 30, 31]). In a probabilis-
tic approach, the keys in each node’s key ring are randomly chosen from a large
key pool. In a deterministic approach, the key ring is chosen deterministically. In
general, probabilistic approach end up with a large key pool, a larger key ring per
node, and poorer network connectivity than a deterministic one.1 On the other hand,
a typical deterministic algorithm preloads each node with a single common key and
reaches connectivity of 100%. More related references can be found in the survey
[3].

It is often believed that a typical probabilistic scheme is much more resilient
against node captures than a typical deterministic approach [4, 5, 9, 32], thus mak-
ing probabilistic schemes popular despite their clear disadvantage on many other
metrics. In this chapter, we show that the probabilistic approaches have only lim-
ited advantages over deterministic approaches even when considering node capture.
Our performance measurement is the Successful Attack Probability (SAP). In par-
ticular, we consider an attack on a pairwise link between two authorized nodes to
be successful if a compromised node can intercept and decipher the information
transmitted through that link.

1 For example, the probabilistic scheme in [9] requires preloading each node with 83 keys out of a
key pool size of 10, 000 and achieves a local direct connectivity of 50%.
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23.1.2 Summary of Our Study Between Representative
Probabilistic and Deterministic Schemes

The probabilistic scheme was first proposed in the seminal and widely cited paper
by Eschenauer and Gligor [9], and we call the corresponding scheme the EG
scheme. It consists of three phases: key distribution, shared key discovery, and
path-key establishment. In the key distribution phase, each node is loaded with k
keys randomly chosen from a large key pool of size m, where k 7 m. The shared
key discovery is the process of establishing a pairwise link between two neigh-
bor nodes if they share one or more key(s). Finally, in the path-key establishment
phase, a pairwise link is established between any two neighboring nodes who do
not share any key but can establish a path between them through one or more
relay nodes. In this case, a path-key is sent from one node to its neighbor through
the relay(s), and then a link is established similarly to the shared-key discovery
phase.

A typical deterministic scheme uses only a single common key, and each
node is preloaded with the same initial key. After the deployment, each pair of
neighbor nodes exchanges the messages encrypted by the common initial key
to derive a unique (and are often random) key for all later communications
between them.

Throughout the chapter, we will compare the performance of probabilistic and
deterministic key management schemes based on the EG scheme [9] and single
common key scheme. We will show that the probabilistic scheme is not significantly
better than the deterministic scheme measured in terms of SAP. Since the single
common key is one of the simplest deterministic schemes, any further improvement
over it (e.g., [31]) will only reinforce our conclusion.

We consider two network scenarios: static network and mobile network. In a
static network, all pairwise links have been established before an adversary captures
any node. This is the case previously considered in [9]. This could happen, for
example, if all nodes are deployed almost at the same time and remain stationary
after deployment. In contrast, in a mobile network, an adversary can capture a node
before all pairwise links have been established. This is true for a network where
nodes are constantly on the move and need to establish new links. This includes, for
example, a sensor network of buoys floating freely on the ocean to gather environ-
mental data[28], or a network consisting of sensors moving around in an unknown
environment to form reasonable coverage [13].

In a static network, the single common key deterministic scheme can achieve
almost perfect resiliency against node capture (i.e., SAP ≈ 0). This is because the
initial common key can be deleted permanently from all nodes after the establish-
ment of all pairwise keys (as in [30]). Since all pairwise keys are randomly generated
and known only to the corresponding two neighbor nodes, they cannot be deduced
by a captured node even if the common initial key is disclosed. In the EG scheme,
however, the SAP equals k/m with only one captured node where each neighbor
node pair uses one of the shared keys to encrypt the communication. It is possible to
reduce the SAP to almost 0 as in the single common key case if two neighbor nodes
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also generate a random key for future communication. In short, the deterministic
scheme can achieve performance as good as the probabilistic approach in a static
network, but with much lower complexity.

In a mobile network, the single common key deterministic scheme could lead
to an SAP as high as 100% if the common initial key is obtained by an adversary
before any link is established. However, we show that the EG algorithm is also quite
vulnerable in this case and may lead to a value of SAP one order of magnitude larger
than in the static network case (e.g., as high as 60%), especially when the adversary
can fully utilize the keys obtained from several compromised nodes. The intuition
for the surprising result is as follows. In the static network, there is only one way to
attack a link successfully, i.e., knowing the key with which the communications on
that link is encrypted. In a mobile network, however, a compromised node can also
attack a link by acting as a relay during the path-key establishment phase. By inter-
cepting the key information that is being relayed, a compromised node can figure out
the key which the two authorized nodes will use for future mutual communication.
This new man-in-the-middle attack opportunity can significantly increase the value
of SAP for a probabilistic approach, since nodes frequently use a relay for link
establishment.

After thus re-examining the performance difference between probabilistic and
deterministic key predistribution schemes, we propose two secure hardware-based
techniques, specifically targeted to the sensor-node platform, which protect long-
term keys. Such techniques can be used to improve the performance of both deter-
ministic and probabilistic key management schemes for mobile networks. They
ensure that protected secrets cannot be extracted from a captured node. This is
the first step toward building a comprehensive low-cost secure-hardware design for
sensor nodes.

The rest of this chapter is organized as follows. In Section 23.2, we calculate the
values of SAP in both static and mobile networks, with a focus on the probabilistic
approach (i.e., EG scheme). In Sect. 23.3, we propose processor architecture-based
techniques for securing secret keys and critical software on a node. In Sect. 23.4
we analyze the security of the proposed architecture under several specific attacks.
In Sect. 23.5, we validate the analytical results from Sect. 23.2 and the security
improvement of the proposed architecture with simulations based on a C++ simu-
lator. In Sect. 23.6, we reexamine other probabilistic key predistribution schemes.
In Sect. 23.7, we introduce our REM resilient key establishment framework and a
low-complexity protocol. We conclude in Sect. 23.8.

23.2 Fragility Analysis for Probabilistic Key Management

In this section, we first review the results in [9], where the successful attack proba-
bility (SAP) is calculated for a static network. We then consider a mobile network
and show how the value of SAP is significantly larger in that case. We only consider
the attacks on the pairwise link between two authorized nodes that are within each
other’s communication range. The SAP will be even higher if A and B are far away
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and can only be connected with a multi-hop path, since a successful attack on any
hop will jeopardize the confidentiality of the whole communication.

The establishment of a link requires two neighbor nodes, A and B, to be able
to encrypt the communication over such a link using a common key. This could be
achieved in two ways:

(i) A and B share a key within their preloaded key rings, thus can establish the link
directly.

(ii) A and B do not share a key initially and need to exchange additional infor-
mation through one or more relay nodes, with whom the pairwise links have
already been established. For example, A can randomly choose an unused key
from its key ring and send it to B through the relay node(s). Then A and B can
use this key to encrypt the pairwise key between them.

In either case, SAP of the link between A and B is defined as

S AP � P(A ⊗ B|A ↔ B)

where A ⊗ B denotes the event that the link between A and B is successfully
attacked, and A ↔ B denotes the event that A and B establish a link between
them. Since a link can only be attacked if it has been established, we have (23.1)
and (23.2):

P(A ⊗ B ∩ A ↔ B) = P(A ⊗ B) (23.1)

S AP = P(A ⊗ B)

P(A ↔ B)
(23.2)

All the notation used in this section is defined in Table 23.1 to enable a cleaner
presentation of later derivations. A, B, and C denote three generic nodes, and C

h

denotes a set of h nodes. Each node is preloaded with a key ring of k randomly
chosen keys out of a key pool of size m.

Table 23.1 Summary of notation

Notations Meaning

A ↔ B A and B establish a pairwise link between them
A ↔ C

h ↔ B A and B communicate through one node in C
h

A ⊗ B The link between A and B is successfully attacked
A+B A and B share at least one key
(A+B)� C C has all the keys (≥ 1) shared by A and B

At least one node of C
h has all the keys (≥ 1)

(A+B)� C
h

shared by A and B
At least one node in C

h shares at least one key with
(A, B)+Ch

A and at least one key with B
Exactly r nodes out of C

h , each of which shares
(A, B)+Ch

r at least one key with A and at least one key with B
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23.2.1 SAP for a Static Network

If a compromised node wants to attack an established link, it needs to know the key
that is used to encrypt the link. Therefore, a compromised node can successfully
attack an existing link with probability k/m, as stated in [9].

23.2.2 SAP for a Mobile Network

In a mobile network, a compromised node C can attack the link between A and B
in three ways:

(i) If A and B share a key initially and establish the link directly, then C needs to
know the key chosen by A and B to encrypt the link.

(ii) If A and B do not share a key initially and use C as a relay, then C can get the
desired information while relaying the information between A and B. A first
communicates with C via encrypted messages protected by shared key Kac. C
decrypts this with Kac giving it access to the plain text message, re-encrypts it
with Kcb, a key it shares with node B, and then sends the re-encrypted message
to B. This sets C up as a man-in-the-middle eavesdropper between A and B,
since C can see the plain text of all messages going from A to B.

(iii) If A and B do not share a key and do not choose C within the relay path, C can
still attack the communication between A and B by either eavesdropping on
the links along the relay path or attacking the eventual pairwise link established
between A and B, if it has any of the keys used for these links.

Overall, the value of SAP depends on the number of compromised nodes and autho-
rized nodes within both A and B’s communication range, as well as how A and B
choose the relay nodes. To simplify the analysis, we only consider cases (i) and (ii),
and further assume only one node relay in case (ii). In the simulation in Sect. 23.5,
we calculate SAP for all three cases.

It will be useful to know the probability of sharing at least one key between any
two nodes in the network. Denote δk

m as the probability that any two nodes A and B
do not share any key, then

δk
m � P

(
A+B

) =
(

m − k

k

)/(
m

k

)

where A+B denotes A and B share at least one key. The value of δk
m can be either

accurately calculated as
∏k−1

i=0 (m − k − i)/(m − i), or approximated using Stirling’s
approximation for n! as in [9], i.e.,
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δk
m =

(m−k
k

)

(m
k

) ≈

(
1 − k

m

)2(m−k+0.5)

(
1 − 2k

m

)m−2k+0.5

Then the probability of A and B sharing at least one key is

P(A+B) = 1 − δk
m (23.3)

For example, if k = 83, m = 10000, P(A+B) ≈ 50%.
Next, we derive the value of SAP based on the number of authorized users and

compromised users within both A and B’s communication range. We start with
the simplest case, where there is only one compromised node available. We then
consider the case where there are h compromised nodes. Finally, we consider the
case with h compromised nodes and g authorized nodes.

23.2.2.1 Scenario I: Only One Compromised Node C is Within Both A and
B’s Communication Range

Depending on whether A and B share a key initially, they may establish the pairwise
link with or without the relay of C . The probability of successfully establishing the
link is (23.4) and the probability of attacking the link is (23.5).

P(A ↔ B) = P(A+B)+ P((A+C ∩ B+C) ∩ A+B) (23.4)

P(A ⊗ B) ≥ P((A+B)� C)+ P((A+C ∩ B+C) ∩ A+B) (23.5)

Here ((A+B) � C) means that A and B share at least one key, and all the shared
keys between A and B are within the key ring of node C . Since we ignore the case
where C only knows a subset of the shared keys between A and B, where C still has
a chance to successfully attack the link between A and B, we have an inequality in
(23.5) instead of an equality.

Let us calculate each term in (23.4) and (23.5). We know the value of P(A+B)
from (23.3). Also,

P(A+C ∩ B+C |A+B)

= 1 − P(A+C)− P(B+C)+ P(A+C ∩ B+C |A+B)

= 1 − 2δk
m +

(
m − 2k

k

)/(
m

k

)

= 1 − 2δk
m +

(
m − k

k

)/(
m

k

)
·
(

m − 2k

k

)/(
m − k

k

)

= 1 − 2δk
m + δk

m · δk
m−k
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Define

φk
m � P(A+C ∩ B+C |A+B)

we then have

P(A+C ∩ B+C ∩ A+B) = P(A+B) · P(A+C ∩ B+C |A+B) = δk
mφ

k
m (23.6)

Thus from (23.3), (23.4), and (23.6),

P(A ↔ B) = 1 − δk
m + δk

mφ
k
m

Meanwhile,

P((A+B)� C)

=
k∑

i=1

((
k

i

)
·
((m−k

k−i

)

(m
k

)

)

·
((m−i

k−i

)

(m
k

)

))

≥
(

k

1

)
·
((m−k

k−1

)

(m
k

)

)

·
((m−1

k−1

)

(m
k

)

)

(23.7)

= k

(
k

m − 2k + 1
·
(m−k

k

)

(m
k

)

)

·

⎛

⎜⎜
⎝

(m − 1)!
(k − 1)!(m − k)!

m!
k!(m − k)!

⎞

⎟⎟
⎠

= δk
mk3

m(m − 2k + 1)

whereas in (23.7), for simplicity we ignore the event that A, B, and C share more
than one key. Define

γ k
m � P((A+B)� C)

we then have

S AP = P(A ⊗ B)

P(A ↔ B)
≥ γ k

m + δk
mφ

k
m

1 − δk
m + δk

mφ
k
m

23.2.2.2 Scenario II: h Compromised Nodes are Within Both A and B’s
Communication Range

We use C
h to denote the set of h compromised nodes. Since
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P((A, B)+Ch ∩ A+B)

=P(A+B) · P((A, B)+Ch |A+B)

=P(A+B) · (1 − (1 − P(A+C ∩ B+C |A+B))h)

=δk
m ·
(

1 −
(

1 − φk
m

)h
)

then using a similar argument as in Scenario I, we have

S AP ≥ P((A+B)� C
h)+ P((A, B)+Ch ∩ A+B)

P(A+B)+ P((A, B)+Ch ∩ A+B)

≥
1 − (1 − γ k

m

)h + δk
m ·
(

1 − (1 − φk
m

)h)

1 − δk
m + δk

m ·
(

1 − (1 − φk
m

)h)

23.2.2.3 Scenario III: h Compromised Nodes and g Authorized Nodes are
Within Both A and B’s Communication Range

In this case, if A and B do not share any key initially and need to communicate
through a relay, a successful attack can happen if one compromised node is chosen
as the relay. Assuming there are a total of a qualified relays (i.e., nodes who can
establish pairwise links with both A and B), b out of which are compromised nodes.
Denote μb

a as the probability of A and B picking a compromised node as the relay,
which can have different values depending on the specific attack models (details in
the next section).

The probability of having r useable relays out of all h compromised nodes when
A and B do not share keys is

P
(
(A, B)+Ch

r |A+B
)
=
(

h

r

)(
P(A+C ∩ B+C |A+B)

)r (
1−P(A+C ∩ B+C |A+B)

)h−r

=
(

h

r

)(
φk

m

)r (
1 − φk

m

)h−r

Similarly, the probability of having w useable relays out of all g authorized nodes
when A and B do not share keys is

P
(
(A, B)+Cg

w|A+B
) =

(
g

w

)(
φk

m

)w (
1 − φk

m

)g−w
(23.8)

Then the probability of sending a message through a compromised node given the
existence of h compromised nodes, g authorized nodes, and A and B do not share
any key is
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P(A ↔ C
h ↔ B|A+B)

=
h∑

r=1

g∑

w=0

μr
r+w

(
P
(
(A, B)+Ch

r |A+B
)
· P
(
(A, B)+Cg

w|A+B
))

=
h∑

r=1

g∑

w=0

μr
r+w

((
h

r

)(
g

w

)((
φk

m

)r+w (
1 − φk

m

)h+g−(r+w)))

Since

P(A ↔ C
h ↔ B ∩ A+B) = P(A+B) · P(A ↔ C

h ↔ B|A+B)

we have the following lower bound on SAP:

S AP = P(A ⊗ B)

P(A ↔ B)

≥ P((A+B)� C
h)+ P(A ↔ C

h ↔ B ∩ A+B)

P(A+B)+ P(A ↔ Ch+g ↔ B ∩ A+B)

=
1 − (1 − γ k

m

)h + δk
m ·
(∑h

r=1
∑g

w=0 μ
r
r+w

((h
r

)(g
w

) ((
φk

m

)r+w (
1 − φk

m

)h+g−(r+w))))

1 − δk
m + δk

m ·
(

1 − (1 − φk
m

)h+g
)

23.2.2.4 Numerical Results

Table 23.2 shows the SAP for different values of h and g based on the previous
analysis. The key ring size is k = 83, with a key pool size of m = 10, 000.

Table 23.2 Successful attack probability (SAP) for different numbers of authorized nodes (g) and
compromised nodes (h). We assume there are a total of a qualified relays, b out of which are
compromised nodes. μb

a is the probability of picking a compromised node as the relay. The key
pool size m = 10000, the preloaded key ring size k = 83, and the original SAP estimation is hk/m

g = 10 g = 20
h g = 0

μb
a = b/a μb

a = 1 μb
a = b/a μb

a = 1 hk/m

1 20.4% 4.7% 13.0% 2.7% 12.8% 0.8%
2 31.1% 8.8% 22.7% 5.1% 22.4% 1.7%
3 37.6% 12.3% 30.0% 7.4% 29.7% 2.5%
4 41.9% 15.3% 35.5% 9.5% 35.2% 3.3%
5 44.8% 18.0% 39.7% 11.4% 39.5% 4.2%
6 46.9% 20.4% 42.9% 13.2% 42.7% 5.0%
7 48.5% 22.5% 45.4% 15.0% 45.2% 5.8%
8 49.7% 24.4% 47.3% 16.6% 47.2% 6.6%
9 50.6% 26.2% 48.8% 18.1% 48.7% 7.5%



23 Key Management in Sensor Networks 751

Several observations are in order. When the probability of picking a compro-
mised node as the relayμb

a = b/a, the SAP increases with h (the number of compro-
mised nodes) under a fixed g (the number of authorized nodes). When μb

a = 1, the
general trend is similar, but the SAP is not very sensitive to g between the cases of
g = 10 and g = 20, since A and B will always choose a compromised node as relay
if possible. Comparing with the value of SAP estimated in [9], which is approxi-
mated as hk/m, the SAP in Table 23.2 is much larger. For example, with μb

a = b/a,
h = 9 and g = 20, we have an SAP of 18.1%, as opposed to hk/m = 7.5%. The
value of SAP further increases when μb

a = 1.
The value of μb

a depends heavily on the attack model used by the compromised
nodes. We define two attack models, honest attack and smart attack. In an honest
attack, the relay nodes are randomly chosen and μb

a = b/a. In a smart attack, how-
ever, the compromised nodes will improve the value of μb

a by various methods. In
a smart attack with incentive, the compromised nodes provide incentives for nodes
A and B to choose one of them as a relay. If the choice of relay is determined
by a shortest path routing protocol, the compromised nodes can announce distance
metrics of the links connected to them smaller than the actual values. If the choice
of relay is based on energy efficiency, the compromised nodes can pretend to be
very energy efficient. In most cases, the incentives provided by the compromised
nodes can make the value of μb

a very close to 1. In a smart attack with virtual
node fabrication, each compromised node is able to collect the keys from all other
compromised nodes and can then fabricate up to

(hk
k

)
nodes with distinct key rings.

The number will be very large if h ≥ 2. For example, when two nodes are captured
with non-overlapping key rings, then

(
2k

k

)
= (2k)!

k! ≈
√

2π(2k)2k+0.5e−2k

(√
2π(k)k+0.5e−k

)2
= 22k+0.5

√
2πk

(23.9)

which is around 5.8 × 1048 if k = 83. As a result, the value of μb
a will be closer to

1 as the number of fabricated nodes increases.

23.3 Secret-Protecting Processor Architecture

The analysis in the previous section is based on the assumption that an adversary
can obtain the long-term key information from the captured nodes. In particular, we
assume an adversary with physical access to the device, so software protections are
easily bypassed. The keys are accessible to an adversary if the existing software is
exploited or if the software is replaced entirely with malicious code. He might also
read the keys directly from a flash memory chip or other permanent storage when
the device is offline.

We propose a solution that protects secrets by storing them inside the System
on a Chip (SoC) [8]. The chip includes the processor core and main memory. It
is quite expensive for an adversary to remove the packaging and directly probe
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the registers and memory. The SoC chip can further implement physical tamper-
resistance mechanisms, which will clear the secrets whenever probing attempts are
detected, cut the power supply to the chip, and erase any intermediate data based on
those secrets. Therefore, the assumption of protected on-chip secrets is valid for a
large class of attacks.

Our solution is to provide a Secret Protecting (SP) architecture which minimizes
the trusted computing base (TCB) of hardware and software that has to be fully
correct, verified, and trusted in order to protect the long-term secrets. Our TCB com-
prises some SP hardware features (described below) and a small Trusted Software
Module (TSM) that performs the key management on the node.

We first present the Reduced Sensor-mode SP that is suitable for the simplest
sensors. We then extend the solution for slightly more capable sensors. Our work
is inspired by the SP architecture proposed for general-purpose microprocessors
[7, 20], but stripped to the bare minimum for sensors with very constrained comput-
ing and storage resources.

23.3.1 Reduced Hardware Architecture

The simplest version of our architecture, Reduced Sensor-mode SP, is shown in
Fig. 23.1. It only requires one new register — the Device Key—and one bit to indi-
cate protected mode. A Trusted Software Module (TSM) is stored in the on-chip
instruction EEPROM. The long-term keys for the probabilistic key management
scheme, provided by a central authority, are stored in the on-chip data EEPROM.
A portion of the main memory of the node is reserved for the TSM Scratchpad
Memory.

The key feature of our design is that the TSM is the only software module that can
use the Device Key and the protected long-term keys. Since the TSM code is stored
within the trusted SoC chip in ROM, it cannot be changed by other software—
whether by a malevolent application or by a compromised operating system. Sim-
ilarly, the long-term keys never leave the SoC chip. Any intermediate data (which
may leak key bits) generated during TSM execution are placed in the TSM scratch-
pad memory and also never leave the SoC chip. We will discuss how this prevents
node fabrication attacks in Sect. 23.4.

The TSM code is stored on-chip in a segment of the existing instruction EEP-
ROM along with other system software for the node. Correspondingly, the long-term
keys from the authority are stored in a TSM segment of the data EEPROM. The keys
are encrypted with the device key or with another encryption key derived from it by
the TSM.

The device key is the SP master key and is protected by the processor hardware;
it can only be used by the TSM running in protected mode and can never be read by
any other software.

When the unprotected software wants to make use of protected keys, it calls
the TSM. The TSM functions access the protected keys, perform the requested
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Fig. 23.1 Reduced sensor-mode SP

operation, and return the results, never revealing the protected keys themselves to
the unprotected software. Each TSM function starts with a Begin_TSM instruc-
tion, which disables interrupts, sets the protected mode bit, and enters protected
mode for the next instruction. Begin_TSM is only valid for code executing from
the instruction-EEPROM; any code executed from main memory or off-chip stor-
age cannot enter the protected mode at all. The end of the TSM code is indicated
by the End_TSM instruction which clears the mode bit and re-enables interrupts.
Table 23.3 shows the set of instructions used only by the TSM and for initialization
in the Sensor-mode SP architectures.

The TSM Scratchpad Memory is a section of main memory reserved for the
exclusive use of the TSM. It is addressed separately from the regular on-chip mem-
ory and accessed only with special Secure_Load and Secure_Store instructions (see
Table 23.3). These new instructions are available only to the TSM, making it safe
for storing sensitive intermediate data in the TSM scratchpad memory. The TSM
can also use this extra space to spill general registers, to decrypt and store keys, and
to encrypt data for storage in regular unprotected memory.

Initialization of a new device takes place at the authority’s depot. First the author-
ity must generate a new random device key. Long-term keys and other secrets are
encrypted with it are then stored along with the TSM code on the on-chip EEPROM.
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Table 23.3 New sensor-mode SP instructions
Instruction Description

Begin_TSM Begins execution of the TSM
End_TSM Ends execution of the TSM
Secure_Store Secure store from processor to TSM scratchpad memory (TSM only)
Secure_Load Secure load from TSM scratchpad memory to processor (TSM only)
DeviceKey_Read Read the Device Key (TSM only)
DeviceKey_Set Sets the Device Key register. First clears the TSM scratchpad memory
ASH_Set Sets the ASH register. First clears the device key and TSM scratchpad

memory

Next it uses the DeviceKey_Set instruction to store the device key. Finally, any other
unprotected software and data can be copied to the flash storage.

Any time the Device Key register is set (or cleared), the processor will auto-
matically clear the TSM scratchpad memory, wiping any intermediate data that are
protected by the old key. If in protected mode at the time, the mode bit is also
cleared along with the general-purpose registers. Similarly, the processor will clear
the device key upon writing to either the instruction or data EEPROM; this in turn
clears the other intermediate data.

23.3.2 Expanded Sensor-Mode SP Architecture

The Reduced Sensor-mode SP architecture is ideal for the smallest sensor nodes
which use minimal software and have very limited resources. In slightly larger
lightweight sensor nodes, the software will be more complex. The additional appli-
cations that run on this sensor combined with the TSM and long-term keys will
be too large to store on-chip. This greater flexibility in the sensor also requires
additional support for security. Hence, we propose the Expanded Sensor-mode SP
architecture shown in Fig. 23.2.

The TSM code and encrypted long-term keys are moved to the off-chip device
storage. This makes them susceptible to modification by other software or through
physical attacks. Therefore we must verify their integrity before they can be used.
To do this, we add a new register—the Authority Storage Hash (ASH), a hardware
hashing engine (implementing SHA-1, MD5, or another cryptographic hash func-
tion), a small ROM, and an additional initialization instruction.

The ASH register contains a hash over the entire memory region of the TSM code
and long-term keys. It is set by the authority during initialization and is rechecked
by the processor each time the TSM is called. The checking code is stored in the
on-chip ROM and is fixed and therefore safe from modification; it uses the hardware
hashing engine to compute the hash over the TSM code and the encrypted keys.
When Begin_TSM is called, the processor disables interrupts and jumps to the TSM-
checking routine. If the hash check succeeds, the protected mode bit is set, and
execution jumps to the newly verified TSM code. If the check fails, an exception is
triggered. The ASH_Set instruction sets the ASH register and also causes the device
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key register to be cleared. As the ASH is used to verify the TSM code, installing a
new TSM requires writing a new value to the ASH value. Clearing the device key
therefore ensures that a new TSM cannot be installed and still have access to the
protected keys that belonged to another TSM.

23.4 Security and Economics Analysis of SP
Architecture-Based Solution

23.4.1 Attacks on Protected Keys

Our new Sensor-mode SP architectures safeguard a sensor node’s long-term keys,
preventing extraction by an adversary in the event of node capture. The keys are
always stored in encrypted form in the permanent storage in either on-chip EEP-
ROM or off-chip storage. The adversary cannot obtain the device key needed to
decrypt them. The device key never leaves the SP processor or its protected software
environment. Therefore, rather than access the keys directly, regular software must
call TSM functions which perform operations with the keys on its behalf. Thus,
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software can use the keys in any way permitted by the TSM, but can never extract
the keys themselves even under physical attacks.

23.4.1.1 Node Fabrication Attacks

Without the SP protection, an adversary maximizes his SAP by cloning multiple
copies of compromised nodes and combining their long-term keys. This increases
his ability to observe link establishment and the likelihood of being used as a relay.
With the SP protection, he cannot create any clones and is limited to using only the
keys originally stored on the captured node.

23.4.1.2 Node Capture Attacks

Node capture attacks use long-term keys in the node to observe pairwise links
between other nodes in the network. With SP, an adversary can no longer extract
the keys. However, he can still change unprotected software which calls the TSM.
A simple TSM might provide functions like Encrypt(key, data) and Decrypt(key,
data). The adversary can use the keys through this TSM interface to observe or
attack pairwise links without ever seeing the actual keys. While we do not prevent
node capture attacks outright, such attacks are limited since the adversary can only
observe links within the communication range of the compromised node. We show
in Sect. 23.5 that this severely limits the SAP, which is constrained by the number
of captured nodes.

23.4.2 Attacks on Changing the TSM or the Device Key

The security of the long-term keys relies on the correctness and proper design of the
authority’s TSM. As part of the trusted computing base of the system, this software
must not leak secrets it has access to. This includes any intermediate data written to
general-purpose memory, placed in off-chip storage, or left in general registers when
it exits. The TSM runs with interrupts disabled, so no other software will have an
opportunity to observe its registers or modify its code or data while it is executing. If
the TSM ever exists abnormally due to an exception, the processor clears the general
registers before ending protected mode. Any other sensitive data will be in the TSM
scratchpad memory which other software cannot access.

In order to circumvent the access control provided by the authority’s TSM, the
attacker might try to replace it with his own TSM or modify the existing TSM.
In the Reduced Sensor-mode, the TSM and long-term keys are stored in on-chip
EEPROM where they cannot be modified without also clearing the device key. In
the Expanded Sensor-mode, the attacker could modify or replace the TSM code in
off-chip storage. The hash checking routine will detect any such modifications made
to the TSM before execution. We assume that the data in off-chip storage cannot be
modified through a physical attack during execution. If this is not the case, the TSM
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and keys should first be copied to the general-purpose memory on-chip before being
verified, where they will be safe from physical attacks.

Finally, if the attacker tries to modify the ASH register to match the new TSM
code, the device key will be cleared, irrevocably cutting off his access to all of the
keys that were encrypted with that device key. Clearing or setting the device key
also clears the TSM scratchpad memory, so any intermediate data stored there that
might have leaked secrets are also unavailable to the new TSM.

23.4.3 Economics Analysis

When considering low-cost sensors, any new hardware must be designed for high
volume in order to keep down fabrication costs. Our Sensor-mode SP provides basic
security primitives and a hardware root of trust using a design that is easily inte-
grated into the SoC of standard embedded processors. It therefore supports a wide
range of software protection mechanisms with only a slight increase in chip area.

Our hardware also provides physical security. SP prevents attacks by an adver-
sary with physical control over a captured node, who tries to modify the code or data
in storage while the device is in operation or offline. The physical integrity of the
SoC itself is sufficient to prevent adversaries from probing the SP registers inside
the chip, without requiring more costly tamper-proofing mechanisms in most cases.

23.5 Simulation Results

To verify our probability computations in Sect. 23.2 and demonstrate the improve-
ment of security performance of the proposed architecture in Sect. 23.3, we evaluate
the SAP of the probabilistic and deterministic key predistribution scheme (the EG
scheme) through a simulator written in C++.

23.5.1 Comparison of Probabilistic and Deterministic
Key Predistribution

To compare probabilistic and deterministic key predistribution schemes, we con-
sider a unit disk network model, as shown in Fig. 23.3. A total of g authorized
nodes (denoted by symbol A) are uniformly distributed in the unit disk. All the
compromised nodes (including any virtually fabricated nodes) are placed at the cen-
ter of the unit disk and denoted with symbol C . All nodes are assumed to have the
same transmission range equal to the radius of the disk. This means an adversary
can eavesdrop on any communication in the unit disk through the compromised
nodes as long as it has the right key(s). Two neighbor nodes will set up a pairwise
link directly if they share one or more keys. Otherwise, they will try to find a relay
path through one or more nodes to exchange additional key information, so that
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Fig. 23.3 Unit disk network
model with a unit radius. The
authorized nodes are
uniformly distributed in the
unit disk and denoted by the
symbol A. The compromised
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are placed in the center of the
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same communication range
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they can set up pairwise link between them. When there is more than one quali-
fied relay node available, the authorized nodes will choose a relay randomly in the
case of μb

a = b/a (i.e., honest attack or finite virtual node fabrication), or search
for a shortest relay path in an attack with incentive.2 Any two nodes that are not
neighbors cannot establish pairwise links among themselves. The main reason of
using the above unit disk network model is to derive a uniform and fair metric (i.e.,
SAP) among various approaches where failing to attack is only due to the lacking
of appropriate keys rather than the limitation of transmission range.

The SAP is calculated as the fraction of the links (among all the pairwise links)
that can be eavesdropped by the compromised nodes. As we explained in Sect. 23.1,
a basic deterministic scheme like single common key either enables nearly zero
SAP in a static network, or leads to 100% SAP for the unit disk model in a mobile
network. Hence, our focus here is to determine the SAP for the probabilistic key
predistribution scheme (i.e., the EG scheme). All the simulation results are averaged
over 10 sets of random seeds which affect the distribution of the authorized nodes
within the unit disk, the key ring preloaded to each node and the choices in case of
multiple qualified relays.

Figures 23.5, 23.6, and 23.7 illustrate the values of SAP under different assump-
tions on the number of compromised nodes (h), number of authorized nodes (g),
and different attack models (honest attack, smart attack with incentive, or smart
attack with fabrication). Unless otherwise specified, each node is preloaded with a
key ring consisting of k = 83 keys that are randomly chosen from a key pool of size
m = 10, 000.

Fig. 23.5 shows the SAP for various values of h and g under the honest attack.
For a fixed value of h, the SAP decreases when the density of authorized nodes
increases. This is because in a denser network, there are more qualified relay nodes
available between any two neighbor nodes; thus the probability of choosing a com-
promised node as the relay is smaller under honest attack. For a fixed number of

2 In the simulation, the smart attack with incentive is approximated as setting the cost of the links
adjacent to the compromised nodes as 0.9999 instead of as 1 unit (hop) for other authorized nodes.
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Fig. 23.4 Successful attack probability with various numbers of captured nodes (h) and authorized
nodes (g), (a) Honest attack; (b) Smart attack; (c) Smart attack (node fabrication); and (d) Different
attack models

authorized nodes g, a higher value of h increases the probability of picking a com-
promised node as the relay, thus leads to a higher value of SAP. In a network with 9
compromised nodes and 15 authorized nodes, the SAP could be as high as 42%.

Figure 23.4(b) shows the SAP for various values of h and g under the smart
attack with incentive. In this case, two neighbor nodes without a common key will
have a high chance to pick a compromised node as relay if it is qualified. There is
a high probability of finding a qualified relay node among the compromised nodes
when h is large, in which case the SAP is insensitive to the number of authorized
nodes g. Similarly as in Fig. 23.5, a higher value of h also leads to a higher value
of SAP. In a network with 40 authorized nodes and 9 compromised nodes, the SAP
would be around 50%.

Figure 23.6 shows the SAP for the smart attack of various numbers of compro-
mised nodes and different total numbers of virtually fabricated nodes. The total
number of authorized nodes is kept at 40. The node fabrication is achieved as
follows. All the keys collected from the h compromised nodes will constitute a
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Fig. 23.5 Successful attack probability for various numbers of captured nodes (h) and authorized
nodes (g) under an honest attack
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Fig. 23.6 Successful attack probability for various numbers of captured nodes (h) and different
numbers of node fabrications in smart attack

compromised key pool. Then each fabricated node will be loaded with k = 83 keys
randomly chosen from the compromised key pool. A larger number of fabricated
nodes increase the chance of such a node being chosen as a relay node, thus increas-
ing SAP. A larger value of h leads to a larger compromised key pool, which again
increases the chance of a fabricated node serving as a qualified relay.
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Fig. 23.7 Successful attack probability under different numbers of captured nodes (h), for different
attack models as well as the estimation in [9].

Figure 23.7 shows the SAP under different numbers of captured nodes, for dif-
ferent kinds of attacks, as well as the estimation based on the result in [9]3. The
number of authorized nodes is fixed at 40. It is clear that the results in [9] signifi-
cantly underestimate the SAP in mobile networks. With a large enough number of
compromised nodes, the SAP can easily reach an unacceptably high value of 50%
with all attack models.

Figure 23.9 shows the SAP under different sizes of the preloaded key ring, k,
for different attack models as well as the estimation based on the results in [9]. We
also plot the link connectivity (i.e., the probability that two neighbor nodes share at
least one key, 1 − δk

m) under different values of k. With the increase in k, the link
connectivity increases, as well as the SAP estimation based on the analysis in [9],
which is linear in k. On the other hand, the SAPs for all three attack models actually
decrease with an increasing k, due to less need of going through a relay to establish
a pairwise link. However, they are still much higher than the original estimation of
SAP in [9] and the nodes need more memory to store so many keys.

23.5.2 Security Improvement with SP architecture

In this section, we show the security performance of the proposed SP architecture for
lightweight ad hoc networks. We focus on the evaluation of the basic probabilistic

3 When the network is static, an adversary captures h nodes, then its successful attack probability

on a link is 1 −
(

1 − k

m

)h

≈ hk

m
. if

k

m
is small
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Fig. 23.8 Successful attack probability for different key ring sizes (k), for different attack models
as well as the estimation in [9].
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Fig. 23.9 Successful attack probability for different key ring sizes (k), for different attack models,
as well as the estimation in [9]

key predistribution approach (the EG scheme) since the deterministic approach (e.g.,
single common key) is a special case of the probabilistic approach. In addition,
many advanced versions of probabilistic key predistribution (e.g., [4, 6]) are also
vulnerable to node capture attacks and can benefit from the proposed architecture.

We have run the simulation for a 10×10 grid network, with all nodes assumed to
have the same (1 unit) transmission range. A total of 400 nodes are randomly placed
in the network. Network-wide SAP is calculated as the fraction of links that can
be intercepted by the compromised nodes among all the pairwise links established
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among the authorized nodes. Again, all simulation results are averaged over 10 sets
of random seeds that affect the distributions of the location of each node, the key
rings preloaded to nodes, and the relay choices.

We consider several possible attack models depending on whether the SP archi-
tecture is used. If every node is equipped with the Sensor-mode SP architecture, the
adversary can only launch a node capture attack, where the adversary utilizes the
captured nodes themselves to intercept pairwise-key establishment. Without the SP
architecture, the adversary can further launch node fabrication attacks where he can
turn the captured nodes into super-nodes by loading each of them with all of the keys
from all captured nodes. Each super-node can mimic multiple nodes. A straightfor-
ward method to achieve this is to let each super-node stay at its original location
but announce the existence of all the captured nodes. The adversary can even make
more copies of the super-nodes and deploy them into the network to eavesdrop addi-
tional communication. We note that it is difficult to detect the duplication of nodes
within the network, since it requires knowledge of the location of each node (possi-
bly using Global Positioning System) and non-trivial communication and memory
overhead [26].

Figure 23.10 shows the network-wide SAP under different numbers of captured
nodes for different kinds of attacks. “SP” means launching only the node capture
attack with the SP architecture. “0 copies” means changing captured nodes into
super-nodes (i.e., node fabrication attack) due to the lack of the SP architecture. “x
copies” means making x extra copies of these super-nodes elsewhere in the network.
We note that the effect of node capture can be serious without SP. When only 3% of
the nodes are captured, the SAP for the network will be 9.7% even with “0 copies”,
and becomes 42.6% if the adversary makes six copies of the captured nodes to cover
more area. Whereas the SAP for the nodes with SP is only 2.1%—a reduction by
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Fig. 23.10 Network-wide successful attack probability under different numbers of captured nodes
for different attack models
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Fig. 23.11 Network-wide successful attack probability for different key ring sizes (k) with differ-
ent attack models

roughly an order of magnitude. Therefore, SP provides significant benefits in terms
of alleviating node fabrication attacks.

Figure 23.11 shows the network-wide SAP under different sizes of the preloaded
key ring, k, for different attack models, assuming 2% of nodes have been captured.
An increasing value of k has two effects on the network. First, the link connectivity
increases; this reduces the probability of two neighboring nodes establishing a pair-
wise link through a relay node, and thus can improve the network security. Second,
each node captured by the adversary contains more keys, which will increase the
chance of intercepting the communications on other pairwise links. This is detri-
mental to the network security. Figure 23.11 shows that the advantage of the first
effect dominates and the overall SAP decreases with an increasing value of k. Notice
that the SP architecture offers significant advantages over the other schemes for all
values of k.

Finally, the single common key scheme also benefits from SP. This is because
the adversary, without the ability to learn the common key, can only eavesdrop on
the information exchanged within the communication range of the captured nodes.

23.6 Implications to Related Work

23.6.1 Reinforcements on the Basic EG Scheme

Many probabilistic schemes based on the EG scheme have been proposed, e.g.,
[4, 5, 23, 27, 32]. We show that many of them are also very vulnerable to node
capture in the mobile networks, or that the proposed improvements in those schemes
can benefit deterministic approaches as well.
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In the q-composite key scheme [4], two nodes can only establish a pairwise link
between them if they share at least q keys initially (i.e., within the preloaded key
rings). The real key for encrypting the communication is a hash result of all q keys.
Though this approach can reduce SAP in a static network, it is almost as fragile as
the EG scheme in a mobile network, following similar analysis as in Sect. 23.2. In
addition, to keep the link connectivity comparable to the EG scheme, the key ring
size has to be substantially increased, which means fewer node captures are needed
to disclose a sufficiently large key space to the adversary.

The concept of multiple disjoint path key reinforcement was proposed in [4] and
[32]. A node will send partial keys to its neighbor through several disjoint paths. The
counterpart then regenerates the original key after receiving all these partial keys.
A compromised node can only regenerate the key if it intercepts all partial keys.
However, this approach requires each node to maintain a global network topology
to calculate disjoint paths, and the ability to do source routing. In addition, if virtual
node fabrication is possible, there is still a high probability that every path passes
through a compromised node. Finally, the approach is also fragile to the attack of
deliberate modification by a compromised node along the path, so that the neighbor
node cannot successfully regenerate the key.

Some schemes utilize the “partial” deployment information to increase the
resilience against node capture (e.g., [5, 23]). In particular, two nodes have a higher
probability of sharing keys if they are supposed to be deployed in a group (e.g.,
in the same geographic area), or have a lower probability if they will be deployed
in different groups. Therefore, a node captured in a particular group will have little
effect on the security of nodes in other groups. However, the same technique can also
be used to enhance the security of a deterministic scheme. For example, a different
common key can be assigned to the nodes deployed in the same group, and a node
is then equipped with all the keys of the groups it belongs to. Thus capturing one
node will not have much adverse effect on the nodes in other groups. Therefore,
such improvements do not change the nature of our comparisons of deterministic
and probabilistic key management.

23.6.2 Selective Node Capture

So far we have only considered random node capture, i.e., the adversary randomly
captures nodes to collect sufficient keys to attack the whole network. Another new
attack mode, called selective node capture, can further weaken the security levels
of the probabilistic approaches. As originally proposed in [27], the adversary can
listen to the information exchanges when each node tries to identify the keys to be
shared with its neighbors. By identifying the key indices in each node and physically
locating any node, the adversary can selectively capture nodes with the least overlap
in keys. Compared with random node capture, fewer selective node captures are
needed to disclose a certain number of unique keys. Although several methods have
been proposed to reduce the communication overhead and avoid unnecessary key
index disclosure, none of them can completely preclude selective node capture.
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One class of key discovery methods is “key indices notification.” A basic
approach is that each node announces all of the key indices, with a message size
of O(k), as in [1]. Zhu et al. [32] proposed a refined approach that uses a publicly
known pseudo-random key index generation function. In the key predistribution
phase, the authority’s server chooses a random seed for each node, which calculates
a set of k outputs (i.e., key indices) using the key index generation function. The
node then uses the random seed as its ID and announces this ID to its neighbors in
the key discovery phase. Each of its neighbors can figure out the key indices stored
in the node from its ID, since they all have the same key index generation function.
As a result, the communication overhead is only of order O(1). However, since the
adversary can also figure out all the key index information from the announcements,
the scheme is still fragile to selective node capture.

A more complicated challenge-response-like key discovery technique was pro-
posed in [6, 9, 23], where a node can determine whether its neighbor has a particular
key if and only if it also has the key. In this scheme, a node announces k challenges
separately encrypted by its own k keys. A neighbor node then tries to decrypt the k
challenges with its own k keys. Only after the successful decryption of a challenge,
can the neighbor node figure out the key from the node who announced the chal-
lenge. The process involves k2 decryption operations and O(k) message exchanges
between any two neighbor nodes. To further reduce the computation and commu-
nication overhead, Pietro et al. [27] designed a verification function Φ(I D‖key)
using a one-way hash function, like SHA-1, where ‖ is the concatenation operation.
The function Φ(I D‖key) returns “true” for any argument (i.e., I D‖key) with a
(pseudo-random) probability of k/m. In the key distribution phase, each node uses
Φ(I D‖key) to test each key ki from the key pool with its ID and uses that key only
if the result is “true”. Therefore, around k keys out of an m sized key pool will be
stored on each node. In the key discovery phase, the node just needs to announce its
ID, and a neighbor node will execute Φ(I D‖ki ) k times (i.e., with all its own k keys
and the ID it hears) to discover the shared key(s). In short, the procedure involves
only k hashing operations and O(1) message exchange between any two neighbor
nodes. However, these challenge-response-like methods are still subject to selective
node capture. The major difference here is that the selective node capture is only
more meaningful than random node capture in sequential node capture mode. That
is, in each step, the adversary identifies and captures the node with the fewest keys
existing in the compromised key pool. While in “key indices notification” methods,
the adversary can identify a set of nodes with the least key overlap and capture them
concurrently.

23.7 Key Establishment Approach

As discussed in Sect. 23.1, key pre-distribution schemes have to struggle with the
conflicts among node resource limits, desired key-connectivity probability, scalabil-
ity in network size, and resilience against malicious attacks. Due to the limitation
of node memory and computation ability, key predistribution schemes scale poorly
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in very large networks and the resulting pairwise key-connectivity probability is
relatively low. In order to provide an end-to-end key to any communicating node
pair, on-demand key establishment becomes a necessary approach. From a secu-
rity perspective, most key predistribution schemes are designed to protect only the
confidentiality of secret keys, while two other security components, integrity and
availability, are not accounted for. Key pre-distribution schemes are vulnerable when
various attacks occur simultaneously.

To address these issues, a key establishment approach that employs pre-
distributed keys as local link keys has been proposed in [4, 14, 32]. The problem
is similar to the verifiable secret sharing [10, 11] in cryptography literature, where
most existing algorithms rely on complicated algebraic operations, and thus are
unsuitable for ad hoc network applications under computation constraints. In the
key establishment approach, to set up an end-to-end secret key between two nodes,
the source node generates a set of keying messages, from which a secret key can
be derived. Each keying message is sent through a different communication path
from the source node to the destination node, which then computes the secret key
locally. The transmission is protected by existing link keys at each hop. Since it is
difficult to attack a large fraction of keying messages simultaneously in an ad hoc
network, the key establishment approach using multi-path is able to guard against
various attacks efficiently. In particular, an XOR-based key establishment scheme
was proposed in [4, 32], where a secret key is derived by the XOR of all keying
messages. This scheme prevents malicious attackers from deriving the secret key if
not all keying messages are revealed. In [14], Huang et al. proposed a Reed-Solomon
code-based scheme that allows node pairs to derive secret keys when both erasure
and modification of keying messages occur. In a closely related problem known as
secret sharing [29], it is shown that there exists a scheme to divide a secret into n
messages in such a way that the key is easily reconstructable from any r + 1 pieces,
but even complete knowledge of r pieces reveals no information about the secret.
When applied to sensor networks, this technique enables the construction of a key
establishment scheme that can guard against both revealing and erasure of keying
messages.

However, these key establishment schemes only deal with a subset of the fol-
lowing three attacks, in which malicious nodes (i.e., compromised or fabricated
nodes by attackers) can (a) reveal the keying messages passing through them to
make secret keys computable to the attackers; (b) erase and not-forward keying
messages to prevent other nodes from establishing secret keys; or (c) modify the
forwarded keying messages to prevent other nodes from deriving the correct secret
keys. These attacks violate the three security properties, confidentiality, availability,
and integrity of the keying messages, respectively. To provide a unifying analyti-
cal framework for key establishment, in [18] the authors proposed a novel secu-
rity metric, called the REM resilience vector to quantify the resilience of any key
establishment scheme against Revealing, Erasure, and Modification (REM) attacks.
Relying on the new security metric, a universal bound on achievable REM resilience
vectors was proven for any on-demand key establishment scheme. This bound that
characterizes the optimal security performance analytically is shown to be tight,
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using a REM-resilient key establishment scheme which achieves any vector within
this bound. In addition, a low-complexity key establishment scheme which achieves
nearly optimal REM attack resilience has been developed in [18].

The remaining parts of this section are organized as follows: In Sect. 23.7.1, we
first introduce the analytical framework for key establishment developed in [18],
and analyze the security of [4, 14, 29, 32] under the framework. The result in [18]
that characterizes the optimal security performance is summarized in Sect. 23.7.2,
followed by the low-complexity key establishment scheme in Sect. 23.7.3. Sec-
tion 23.7.4 contains a simulation, which compares the security performance of all
key establishment algorithms.

23.7.1 An Analytical Framework for Key Establishment

Consider a wireless ad hoc network where nodes are not tamper resistant. Com-
promised or fabricated nodes may reveal all their forwarded keying messages to
attackers and also try to disrupt normal key establishment in the network.

In Fig. 23.12, an end-to-end secret key is provided for nodes S and D, who do
not share a common key from key predistribution. The procedure is described as
follows. After receiving a request message, source node S first employs a network
routing protocol and finds m paths (which can be non-disjoint) to the destination
node D. Then n keying messages, denoted by M1, . . . , Mn , are generated by the
source node and sent to the destination node, each via a different path, i.e., message
Mi is send via path (S, Ri,1, Ri,2, . . . , D). To secure keying messages during trans-
mission, encryptions by existing link keys are performed at each intermediate node
before forwarding keying messages, and nodes at the next hop decrypt the messages
with the same link keys. More precisely, the following message is sent from node
Ri, j to node Ri, j+1:

Ri, j → Ri, j+1 : E
[

Mi , K i, j+1
i, j

]

DS

R11

R21

R12

R1j

R2 j
M1
M2

Mn

Rn1 Rn2 Rn j

KSD = f(M1, . . . ,Mn)

Fig. 23.12 A general key establishment where n messages are sent from the source node S to the
destination node D
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where E[·] denotes the encryption function and K i, j+1
i, j is a link key from key pre-

distribution. Upon receiving the keying messages, node D employs a function f (·)
to reconstruct the secret key KSD = f (M1, . . . , Mn) for future communication with
node S. Since secret keys are set up on demand, the key establishment approach
allows rekeying or key refreshing to be easily implemented in wireless ad hoc net-
works.

In [18], a REM attack is defined as any arbitrary combination of revealing, era-
sure, and modification attacks. Each type of attack targets at a different security
property:

• Revealing attacks on keying message confidentiality: Compromised or fabricated
nodes reveal to attackers the content of keying messages traveling through them.
To quantify the resilience against this attack, we define a threshold value r ≥ 0,
such that if no more than r messages are revealed to attackers, the resulting secret
keys remain completely unknown even if all attackers collude.

Definition 1 A secret key generated by a key establishment scheme with function
f (·) is completely unknown under r revealed messages if

Prob
{

f (M1, . . . , Mn) = K̂
∣∣Mi1, . . . , Mir

}
= Prob

{
f (M1, . . . , Mn) = K̂

}
.

(23.10)
for any i1, . . . , ir and any choice of key K̂ .

Definition 1 implies that revealing any set of no more than r keying messages
does not change the original probability distribution of Prob { f (M1, . . . , Mn)}.
Thus, attacks obtain 0 information by knowing r out of n keying messages.
However, neither S nor D will know if the key is revealed as long as sufficient
messages are passed through intact to generate a successful key.

• Erasure attacks on keying message availability: In an attempt to prevent the end-
to-end secret key from being established, compromised or fabricated nodes make
keying messages unavailable to the destination by not forwarding keying mes-
sages or jamming the forwarding link. We define e ≥ 0 to be a threshold such
that the secret key can be recovered at the destination node if no more than e
messages are erased or dropped.

• Modification attacks on keying message integrity: Since complicated authentica-
tion methods (e.g., digital signatures using public-key cryptography) are imprac-
tical in ad hoc networks, keying messages are subject to modification attacks,
in which compromised or fabricated nodes forward modified keying messages
to cause confusion. A threshold value m ≥ 0 is chosen to denote the maxi-
mum number of modified messages that can be corrected by a key establishment
scheme.

Definition 2 A REM attack in wireless ad hoc networks is defined as any arbitrary
combination of the revealing, erasure, and modification attacks, defined above.

Although erasure and modification attacks can also be regarded as transmission
erasures and errors from a classical error control coding perspective, this REM
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attack model is different, because providing confidentiality (which is irrelevant to
error control coding applications) jointly with integrity and availability is a must for
establishing secret keys. Given that n keying messages are used for establishing a
secret key in a key establishment scheme, we quantify its REM attack resilience by
introducing a new security metric (r, e,m)n denoted as a REM resilience vector.

Definition 3 A key establishment scheme using n messages achieves REM
resilience (r, e,m)n if a secret key can be successfully established under no more
than e erasure attacks and m modification attacks, and at the same time, the key is
completely unknown to attackers for up to r revealed keying messages.

For a key establishment scheme using n keying messages, the set of achievable
REM resilience vectors lies in a three-dimensional region, which illustrates security
of the particular scheme along three axes: confidentiality, availability, and integrity
(see Fig. 23.13).

We can use this unifying framework to analyze the security of any key estab-
lishment schemes. In [4, 32], secret keys of length k are derived at destination
nodes by the bitwise XOR of all keying messages, each being exactly k bits, i.e.,
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Fig. 23.13 For n = 30, this figure plots the 3D optimal REM resilience region (i.e., the tetrahedron
defined by r + e + 2m ≤ n − 1) and 2D sub-planes achieved by previous schemes
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KSD = M1 ⊕ · · · ⊕ Mn . It is easy to verify that a secret key remains com-
pletely unknown if not all keying messages are revealed to attackers. Thus, this
scheme achieves REM resilience (r = n − 1, e = 0,m = 0)n . In another scheme
based on secret sharing [29], a secret key is regarded as an integer coefficient of
a degree t random polynomial in G F2k , such that it can be recovered from any
t + 1 evaluations of the polynomial and remains completely unknown if only t
evaluations are given. Thus, it achieves (r = t, e = n − t − 1,m = 0)n . By
varying the degree t , we denote the set of achievable REM resilience vectors by
(r + e = n − 1,m = 0)n .

Another scheme in [14] employs Reed–Solomon (RS) codes to deal with keying
message erasures and modifications. The Reed–Solomon codes (RS codes) are non-
binary cyclic codes in G F(2q). RS codes have length n = 2q − 1 with dimension
k and minimum Hamming distance s = n − k + 1 [21]. Using a secret key of size
kq as an input, keying messages are constructed by dividing the output codeword
into n pieces, such that the key can be recovered if no more than e and m keying
messages are erased and modified respectively, given that 2m + e ≤ s − 1. Since
each keying message is a linear combination of the secret key, revealing any keying
message makes some choices of keys impossible. Consider a simple scheme with
three-bit secret keys KSD = [b1b2b3] and a (7,4,3) binary code. If an attack obtains
just one bit of the codeword b1 ⊕ b2 = 1, it immediately derives that the secret
key cannot be [00b3] or [11b3]. According to Definition 1, the secret key is not
completely unknown to the attacker, and he can remove four possible keys from
his entire search space. Thus, we have r = 0 for the RS code scheme. Further, by
extending this scheme to general non-binary error control codes, a REM resilience
of (r = 0, e + 2m = n − 1)n can be achieved. Table 23.4 summarizes the security
analysis of previous key establishment schemes, whose vulnerabilities under REM
attacks (i.e., entries with zero resilience) are marked by ∗ in the table.

Table 23.4 Security analysis for key establishment schemes [4, 14, 29, 32]. This shows that these
schemes are designed to deal with only a subset of possible attacks

Previous schemes Resilience vector (r, e,m)n

r e m

XOR [4, 32] r = n − 1 e = 0∗ m = 0∗
Polynomial [29] r + e = n − 1 m = 0∗
RS code [14] r = 0∗ 2m + e = n − 1

23.7.2 Characterization of Optimal Resilience

We summarize the results in [18], which analyzes the optimal REM resilience for
arbitrary key establishment schemes. For n paths and n keying messages, it is shown
that no matter what keying-message construction and function f (·) are used, it is
impossible to achieve any REM resilience vector with r + e + 2m > n − 1. This
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result states that r + e+ 2m ≤ n − 1 is a universal upper bound on achievable REM
resilience vectors. The upper bound is also tight, as the authors in [18] proposed
an optimal key establishment scheme which can achieve any REM resilience vector
within this bound.

At first glance, it may appear that both optimality and achievability of bound
r + e + 2m ≤ n − 1 can be readily proved by encoding secret keys using an
(n, r + 1, s) linear error control code, since the keys are undecodable from r
pieces of output codewords, and a direct application of the Hamming distance gives
2m + e ≤ n − r − 1. However, the result in [18] is much stronger and requires more
interesting proofs. First, the definition of security for key establishment requires
secret keys to be completely unknown, not even partially decodable. Any piece of
output codeword from a simple (n, r + 1, s)-encoding reveals certain linear con-
straints of the secret keys, and thus violates the desired security. Second, our upper
bound r + e + 2m ≤ n − 1 is applicable to any key establishment schemes with an
arbitrary keying-message construction and function f (·), while a linear error control
code is just one possible approach. The following analysis provides a fundamental
limit for the security performance of key establishment, quantified by the proposed
REM resilience vector.

Theorem 1 (Optimal Resilience of Key Establishment Approach [18]) Let each
keying message be the same length as the secret key. For n paths and n key-
ing messages, a REM resilience vector (r, e,m)n can be achieved if and only if
r + e + 2m ≤ n − 1. When the length of keying messages is less than that of
the secret key (i.e., length(Mi ) < k, ∀i ), it can be proven that a REM resilience

(r, e,m)n can be achieved if and only if r + e + 2m ≤ n −
⌈

k

length(Mi )

⌉
.

See Sect. 23.7.5 for proof. Theorem 1 states that for n > 1, the set of all
achievable REM resilience vectors (r, e,m)n form a three-dimensional tetrahedron
r + e + 2m ≤ n − 1 as shown in Fig. 23.13, while key establishment schemes in
Sect. 23.7.1 only explored certain two-dimensional sub-planes in the tetrahedron:
the polynomial-based approach based on [29] achieves {r + e ≤ n − 1,m = 0},
the Reed–Solomon code-based approach in [14] achieves {r = 0, e + 2m ≤ n − 1},
and the XOR-based approach in [4] only achieves a single line {r ≤ n − 1, e = 0,
m = 0}. Theorem 1 for key establishment includes all previous results as lower-
dimensional special cases.

23.7.3 Low-Complexity Algorithm for Key Establishment

It is shown in [18] that achieving REM resilience vectors on the optimal bound
requires multiplications of large integers in G Fp with p > 2k for constructing
keying messages and a complicated sphere decoder. This complexity is prohibitive
for wireless ad hoc networks. Therefore, the authors also derived a class of low-
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complexity key establishment schemes that makes use of binary linear error control
codes, and only requires bitwise XOR operations and simple table lookups. The
algorithm can achieve a nearly optimal REM resilience. In this section, we first
explain the basics of binary linear error control codes, describe the low-complexity
algorithm in [18], and then provide a security analysis.

Classical linear coding theory focuses on error correcting. A linear code C over a
finite field with q elements is a linear subspace of the field G F N

q . If C is an (n, k, s)-
code, then it encodes a vector of length k as a codeword of length n. Let G of size
k × n be the generating matrix for this linear code. Codewords can be obtained
by linear combinations of the rows of G, i.e., if 3x is a vector of length k, then
y = GT x has length N and is the codeword for x. Parameter s is the distance of the
linear code, which is equal to the minimal weight (i.e., number of non-zero compo-
nents) among all non-zero codewords and measures the error correcting capability
of code C. In this chapter, we focus on binary linear codes in G F2 such that each
component is either 0 or 1, although most results can be extended to linear codes
in general.

To describe the error correcting procedure, we first introduce the concept of dual
code and parity check matrix. The orthogonal complement of C, i.e., the set of all
vectors in G Fn

q which are orthogonal to every vector in C, is also a subspace and
thus another linear code called the dual code of C, denoted by C⊥. It is easy to
see that if C is an (n, k, s)-code, then C⊥ is an (n, n − k, s′)-code. A generating
matrix, denoted by H , for C⊥ is called a parity check matrix for C and has size
(n − k) × n. A parity check matrix H can be used to recover the codewords of C
because they must be orthogonal to every row of H . Suppose ŷ = y + t is a faulty
codeword with an error vector t. Then we can compute r = H ŷ = H y + Ht = Ht .
The vector r is called the syndrome of ŷ, which voices information about the error
vector t, since Hy = 0 for all codeword y ∈ C. To recover the original codeword y
from the faulty codeword ŷ, we only need to store a syndrome table containing all
possible syndromes together with corresponding error patterns. In decoding, when
ŷ = y + t is received, we first calculate the syndrome r = H ŷ, look up the syn-
drome table with index r to the error vector t, and then recover codeword y by
y = ŷ − t.

When both error and erasure occur, the following syndrome decoding procedure
for binary linear codes is employed: We first replace the erased coordinates by all
zeros and ones and compute two different syndromes (i.e., r0 and r1) respectively.
After looking up r0 and r1 in the syndrome table to obtain two different error vectors
t0 and t1, the one that contains less number of errors on non-erased coordinates
gives us the correct syndrome that should be chosen. More precisely, if r0 (or r1

instead) gives less error, then the original codeword can be recovered by inserting
0 (or ones) on the erased coordinates and then abstracting the error vector t0 (or
t1). In classical coding theory, it has been proven that an (n, k, s)-code is able to
correct any e erasures and m errors at the same time, given that 2m + e ≤ s − 1.
The following example contains a generating matrix and a parity check matrix for a
(8, 2, 5) linear binary code
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G =
[

1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1

]

H =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 1 1 1 0 1 1 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

For an input vector x = [1 1]T , the corresponding codeword is given by y = GT x =
[1 1 1 0 0 1 1 1]T . Now, suppose that the fist two bits of y are erased and the
third bit is flipped, i.e., ŷ = [∗ ∗ 0 0 0 1 1 1]T . In order to recover the original
codeword from ŷ, we compute two syndromes respectively, r0 = [0 0 0 0 0 1]T and
r1 = [0 1 0 0 0 1]T . By looking up the syndrome table for this (8, 2, 5)-code, we
get t0 = [0 0 0 1 1 0 0 0] and t1 = [0 0 1 0 0 0 0 0]. Since t0 contains two errors
on non-erased coordinates, while t1 contains only one error, we choose all ones on
the erased bits in ŷ and subtract t1 from it. This gives us the correct codeword y. In
the next, we generalize this syndrome decoding method and derive an algorithm for
secure key establishment. The proposed algorithm not only corrects modifications
and erasures, but also makes secret keys completely unknown to attackers.

Now, we summarize the protocol in [18], for key establishment in wireless ad
hoc networks—the low-complexity algorithm relying on linear binary codes. The
protocol is divided into four phases: (1) Request and Path-discovery, (2) Sending
Keying Messages, (3) Recovering Key, and (4) Verification. Packets transmitted in
the protocol have the structure

I D1 I D2 Payload CmdType

where I D1 and I D2 are the IDs of the source node and the destination node, respec-
tively. In phase 1, any standard ad hoc network routing, such as the Zone Routing
Protocol [12], is employed to discover n paths, after receiving a request for key
establishment. In phase 2, a (n + 1, t, s) error control code is used to generate n
keying messages. Let G be a generating matrix for the code

G =

⎡

⎢
⎢⎢
⎣

g01 g02 . . . g0t

g11 g12 . . . g1t
...

...
. . .

...

gn1 gn2 . . . gnt

⎤

⎥
⎥⎥
⎦

(n+1)×t

(23.11)

In order to add freshness to the algorithm, the source node constructs t
length-k pseudo-random vectors X1, . . . , Xt and encodes each column of matrix
[X1, . . . , Xt ] using G:

[KSD, M1, . . . , Mn]T = G · [X1, . . . , Xt ]T (23.12)
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where the first row of the output codeword is chosen as a secret key and the (i +1)th
row as keying message Mi for i = 1, . . . , n. Since linear binary codes are used, all
operations required in this phase are simply binary XORs, denoted by ⊕.

Without loss of generality, assume that the last e keying messages are unavail-
able to the destination node due to erasure attacks and the remaining n − e keying
messages contain m faulty ones due to modification attacks. Let H be a parity check
matrix of size (n + 1)× (n + 1− t) for the generating matrix in (23.11). In phase 3,
the destination node implements a key-recovery algorithm based on the syndrome
decoding for linear binary codes, as described in Sect. 23.7.3.A. Since the secret
key KSD is just the first row of the codeword in (23.12), the algorithm only needs
to restore the first row of the codeword, rather than to decode all random vectors
X1, . . . , Xt . In phase 4, the secret key is verified between the source and destination
node. Our protocol for establishing a secret key between two nodes S and D is
summarized as follows:

Phase 1 Request and Path-discovery

1. Node D broadcasts a request for key establishment:

D: D S Void ReqKey

2. Node S responses to the request and starts a routing query for node D using the
standard Zone Routing Protocol [12].

3. Node S recodes the first n replies to its routing query and prepares n paths to D:

(S, Ri,1, Ri,2, Ri,3, . . . , D), for i = 1, . . . , n

Phase 2 Sending Keying Messages

1. Node S constructs t length-k pseudo-random vectors X1, . . . , Xt .
2. The secret key is derived by

KSD = (g01 X1)⊕ (g02 X2)⊕ . . .⊕ (g0t Xt )

3. Initialize i = 1.
4. Node S generates keying message Mi :

Mi = (gi1 X1)⊕ (gi2 X2)⊕ . . .⊕ (git Xt )

5. Node S sends Mi to node Ri,1 and erases Mi locally

S → Ri,1: D Ri,1 E
[

Mi , K i,1
s

]
EstKey

6. If i < n, let i = i + 1 and go to step 4.
7. Node S erases X1, . . . , Xt from his memory.
8. Messages are forwarded to node D, for i = 1, . . . , n:
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Ri,1 → Ri,2: Ri,1 Ri,2 E
[

Mi , K i,2
i,1

]
EstKey

Ri,2 → Ri,3: Ri,2 Ri,3 E
[

Mi , K i,3
i,2

]
EstKey

...

Ri, j → D: Ri, j D E
[

Mi , K D
i, j

]
EstKey

Phase 3 Recovering Key

1. Node D receives at least n − e keying messages M̂1, . . . , M̂n−e.
2. Define a mask vector A according to the indices of received keying messages:

A1 = 0 and

Ai+1 =
{

1, if M̂i is received
0, otherwise

∀i = 1, . . . , n

3. Node D computes a submatrix H̃ , consisting of the n − e non-erased rows of
H :

H̃i = Hi+1, for i = 1, . . . , n − e

4. Node D computes a syndrome perturbation vector r̃ as the XOR of the e + 1
erased rows of H :

r̃ = H1 ⊕ Hn−e+2 . . .⊕ Hn+1

5. Node D computes R0 = H̃ T ·
[
M̂1, . . . , M̂n−e

]T
.

6. Initialize i = 1. Let ADDR be the base address of the syndrome table stored
at the destination node.

7. Retrieve t0 from address ADDR + R0
i .

8. Retrieve t1 from address ADDR + (R0
i ⊕ r̃

)
.

9. The i th bit of KSD is given by

KSD,i =
{

t0
1, if popcnt (t0∧ A) < popcnt (t1∧ A)

1 ⊕ t1
1, otherwise

10. If i < k, let i = i + 1 and go to step 5.



23 Key Management in Sensor Networks 777

Phase 4 Verifying Key

1. Node D generates a random message R and computes its hash value h(R).
2. Node D broadcasts a challenge using secret key KSD:

D: D S E[(R, h(R)), KSD] GotKey

3. Node S decrypts E[(R, h(R)), KSD]] using its version of secret key KSD and
obtains R̂.

4. Node S broadcasts an acknowledgement

S: S D R̂ ACK

5. Node D accepts KSD if it receives R̂ = R.

In Step 5 of phase 3 above, each row of
[

M̂1, . . . , M̂n−e

]
is a valid codeword

generated by (23.11) with e + 1 erasures and m modifications. According to the
syndrome decoding procedure described in Sect. 23.7.3.A, if we assume that the
erased keying messages are all zero vectors, we can compute a syndrome matrix

R0 = H̃ T ·
[

M̂1, . . . , M̂n−e

]T
, where each column of R0 is a syndrome vector. On

the other hand, if we assume that the erased keying messages are all one vectors,

it is easy to show that the syndrome for the i th row of
[

M̂1, . . . , M̂n−e

]
becomes

r̃ ⊕ R0
i , with r̃ as a perturbation vector defined in Step 4. Therefore, by looking up

the syndrome table and comparing resulting error vectors, we can recover the first
bit of the secret key, and thereafter bit by bit. In Step 9 of Phase Recovering Key,
popcnt is a population count instruction which counts the number of “1” bits in a
word.

The low-complexity key establishment algorithm is able to achieve nearly opti-
mal REM resilience vectors (r, e,m)n by choosing different linear error control
codes. For n paths and n keying messages, the security performance of the algorithm
is characterized as follows.

Theorem 2 (Resilience of Low-Complexity Key Establishment [18]) For a linear
binary error control code (n + 1, t, s) with dual code (n + 1, n + 1− t, s′), the low-
complexity key establishment algorithm in [18] achieves a REM resilience vector
(r, e,m)n for r = s′ − 2 and 2m + e = s − 2. In particular, when both codes
are maximum distance separable (MDS), the algorithm achieves an optimal REM
resilience of 2m + e + r = s + s′ − 4 = n − 3.

See Sect. 23.7.6 for proof.

23.7.4 Numerical Simulations

Consider a wireless ad hoc network with Z = 1000 nodes, uniformly distributed
in a square area of size L = 100. We assume that nodes in the neighborhood of
communication range R = 15 share pre-installed keys with probability p. These



778 D. Xu et al.

pre-installed link keys are used to secure keying messages during transmission. The
standard Zone Routing Protocol (ZRP) [12] with a zone radius of ρ = 2 hops is
employed to discover n paths for each node pair. Due to the page limitation, we
focus on security comparisons in this section and do not provide a network-aspect
simulation with complexity evaluations. In all numerical examples, compromised
nodes are randomly selected from the Z nodes such that the locations of com-
promised nodes are uniformly distributed in the area. All security performance is
evaluated over 40,000 different realizations and node selections.

We define the probability of secure and successful key establishment as the aver-
age probability that two nodes can successfully establish a secret key, and at the
same time, the secret key remains completely unknown to attackers. For p = 0.5
and optimal key establishment, Fig. 23.14 plots the probability of secure and suc-
cessful key establishment for the use of n = 1, 5, 10, 20, 30, 40 keying messages,
under REM attacks with equal probability of each type of attack. It can be observed
that the optimal key establishment with n ≥ 20 can safeguard secret keys with a
probability of over 80% for as many as 80 (i.e., 8%) malicious nodes, and its security
performance benefits from the increase in keying messages as more path diversity is
exploited. This figure provides an important benchmark for the design of practical
key establishment algorithm for given security requirements and expected fractions
of compromised nodes.

For the same network model with p = 0.5 and n = 30, we compare in
Fig. 23.15 the security performance of different schemes: the optimal key establish-
ment algorithm in Sect. 23.7.5, the low-complexity key establishment algorithm in
Sect. 23.7.3, key establishment using single path, and the three previous multi-path
key establishment schemes. Our low-complexity algorithm proposed in Sect. 23.7.3,
which is based on a (31, 11, 11) linear code and its dual (31,20,6) code for achieving
resilience (r = 4, e + 2m = 9)31, has a performance that is close to the opti-
mal one and is more suitable for practical implementations. This comparison high-
lights the importance of defending against multiple attacks simultaneously: under
REM attacks, the overall security performance of a key establishment algorithm is
largely determined by the worst individual-attack resilience (i.e., min(r, e,m)). It
also demonstrates the excellent security-complexity properties of our proposed key
establishment protocol.

For the same network model with p = 0.5 and n = 30, we compare the security
performance of different schemes: the optimal key establishment algorithm in The-
orem 1, the low-complexity key establishment algorithm in [18], key establishment
using single path, and the three multi-path key establishment schemes discussed
in Sect. 23.7.1. The low-complexity algorithm in [18] has a performance that is
close to the optimal one and is more suitable for practical implementations. This
comparison highlights the importance of defending against multiple attacks simul-
taneously: under REM attacks, the overall security performance of a key establish-
ment algorithm is largely determined by the worst individual-attack resilience (i.e.,
min(r, e,m)).
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Fig. 23.14 Probability of secure and successful key establishment vs. number of compromised
nodes for n = 1, 5, 10, 20, 30, 40 keying messages. A diminishing security improvement is
observed when more messages are used for key establishment

23.7.5 Proof of Theorem 1

Proof The theorem states that the bound r + e + 2m = n − 1 is both optimal and
tight. In the following, we start by showing the optimality and then propose a new
key establishment scheme to prove the achievability.

To show r +e+2m = n−1 is optimal. If e = m = 0, then we immediately have
r ≤ n − 1, since the secret key becomes deterministic given all n keying messages.
For e + m > 0, we denote [M1, . . . , Mn] as a feasible message vector, in which
M1, . . . , Mn are a set of allowable keying messages that can be used to establish
a secret key KSD = f (M1, . . . , Mn). Without loss of generality, we assume that
the first r keying messages M1, . . . , Mr are revealed to attackers who are able to
collude. Then, with this information, the attackers can rule out any feasible message
vector whose first r keying messages are not equal to M1, . . . , Mr . To guarantee
that the secret key remains completely unknown, it is necessary that the number of
remaining feasible message vectors with the first r messages in common must be
no less than 2k , i.e., the number of all possible secret keys of length k. Formally,
if H(·) denotes the entropy function and feasible message vectors are random, we
derive
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Fig. 23.15 Compare security performance of key establishment schemes under our REM attacks.
Our low-complexity algorithm is based on a (1, 31) linear code and its dual (6,20,31) code, and
achieves REM resilience (r = 4, e + 2m = 9)31

H([M1, . . . , Mn]|M1, . . . , Mr )

≥ H( f (M1, . . . , Mm)|M1, . . . , Mr )

= H(KSD|M1, . . . , Mr )

= H(KSD) = k (23.13)

where KSD is the secret key. The second step is from the information processing
inequality and the last step holds because all keys are equally likely due to the def-
inition of completely unknown (23.10). Equation (23.13) implies that with the first
r messages fixed, there exists at least 2k feasible message vectors. These 2k feasible
message vectors are different only in the last m − r messages, each of length k.
Thus, the minimum Hamming distance of these feasible message vectors (i.e., the
minimum number of different messages in any two feasible message vectors) can be
no more than m − r . According to error control coding theory, given e erasures and
m modifications, two feasible message vectors with a Hamming distance of m − r
remain distinct and separable only if

2m + e + 1 ≤ n − r ⇔ r + e + 2m ≤ n − 1 (23.14)

This gives the optimality of bound r + e + 2m ≤ n − 1.
For achievability of the bound, we propose a new key establishment scheme

that achieves any REM resilience vector (r, e,m)n satisfying the upper bound
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r + e + 2m + 1 = n. The proposed algorithm for generating n keying messages
is similar to the polynomial evaluation used in [29]. However, we employ a dif-
ferent decoding strategy and show that the algorithm can deal with revealing, era-
sure, and modification attacks at the same time. Let p > 2k be a prime number.
Thus the desired secret key can be regarded as an integer in the field G Fp, i.e.,
KSD ∈ [0, 2k − 1]. We generate a random degree r polynomial in G Fp as follows:

q(z) = KSD + A1z + · · · + Ar zrv (23.15)

where Ai ∈ G Fp for i = 1, . . . , r are randomly chosen integers. Then n keying
messages are computed by evaluating q(x) at n distinct points for z = 1, . . . , n, i.e.,

[M1, M2, . . . , Mn] = [q(1), q(2), . . . , q(n)] (23.16)

Since the polynomial has degree r , it has been shown in [29] that revealing no
more than r keying messages would leave the secret key KSD completely unknown.
So we only need to show that the destination node can recover key KSD under e
erasures and m modifications, given that 2m + e = m − r − 1. Toward this end, we
rewrite (23.16) using a matrix representation:

⎡

⎢
⎢⎢
⎣

M1
M2
...

Mn

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

1 11 12 . . . 1r

1 21 22 . . . 2r

...
...

...
...

...

1 m1 m2 . . . mr

⎤

⎥
⎥⎥
⎦
·

⎡

⎢
⎢⎢
⎣

KSD

A1
...

Ar

⎤

⎥
⎥⎥
⎦

It is easy to verify that the n× (r +1) coefficient matrix (denoted by G) on the right
hand side is a Vandermonde matrix, whose any r + 1 rows are full rank. Thus, any
non-zero vector x in G F (r+1)

p of size 1× (r +1) can be orthogonal to at most r rows
of matrix G. We have

∀x �= 0, Hamming(Gx, 0) ≥ n − r (23.17)

where 0 is a zero vector and Hamming(·) is the Hamming distance function. This
implies that matrix G is a generating matrix for a (n, r + 1, s) linear error control
code in G Fp with a minimum Hamming distance of at least n − r . According to
error control coding theory, given that 2m + e+1 ≤ n− r , any m modifications and
e erasures of the keying messages can be corrected at the destination node using
a sphere decoding algorithm which finds the closest feasible message vector to
the received one [21]. We summarize the optimal key establishment algorithm as
follows:
This complete the proof of Theorem 1. �
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Optimal Key Establishment Algorithm

1. Source node generates a random key KSD and r random integers A1, . . . , Ar .

2. Source node generates Mi = KSD + A1i + . . . + Ar ir and sends it to destination node, for
i = 1, . . . , n.

3. Destination node employs sphere decoding to derive KSD upon receiving the keying messages.

23.7.6 Proof of Theorem 2

Proof We first prove that the proposed algorithm can recover the secret key under
e erasure and m modification attacks and then show that attacks have absolutely no
information about the secret key with r revealing attacks.

Since each row of the codeword matrix [KSD, M1, . . . , Mn] is a valid codeword
for the (n + 1, t, s) error control code, classical coding theory shows that up to⌊

s − 1

2

⌋
errors can be corrected by syndrome decoding. In Algorithm 3, we choose

the e + 1 erased keying messages to be all zeros and all ones respectively. Because
the error control code is binary, one of the two choices introduces no more than⌊

e + 1

2

⌋
new errors, and thus leads to no more than m +

⌊
e + 1

2

⌋
errors totally.

These errors can be corrected by the syndrome decoding in Algorithm 3 if the fol-
lowing is satisfied:

m +
⌊

e + 1

2

⌋
=
⌊

2m + e + 1

2

⌋
≤
⌊

s − 1

2

⌋
(23.18)

This establishes 2m + e ≤ s − 2 as a sufficient condition for recovering secret key
KSD .

To show that secret key KSD remains completely unknown to attacks, without
loss of generality, we assume that keying messages M1, . . . , Mr are revealed to
attackers. According to the construction of messages, attackers have r +1 equations
in the following matrix representation:

⎡

⎢⎢
⎢
⎣

K T
SD

MT
1
...

MT
r

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

g01 g02 . . . g0t

g11 g12 . . . g1t
...

...
. . .

...

gr1 gr2 . . . grt

⎤

⎥⎥
⎥
⎦
·

⎡

⎢⎢
⎢
⎣

X T
1

X T
2
...

X T
t

⎤

⎥⎥
⎥
⎦

(23.19)

Because the dual error control code (n + 1, n + 1 − t, s′) has distance s′, classical
coding theory shows that any s′ − 1 rows of the G matrix are linearly independent.
Further, s′ is upper bounded by s′ ≤ t + 1. When r ≤ s′ − 2 as claimed in the
statement of Theorem 2, we also have r + 1 ≤ t . This implies that the first matrix
on the right-hand side of (23.19) is full row-rank.
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Thus, when M1, . . . , Mr are fixed in (23.19), for each possible choice of secret
key KSD , (23.19) defines a system of r + 1 linear equations with t unknowns, i.e.,
X1, . . . ,Xt . There exists 2t−r−1 possible X1, . . . ,Xt vectors such that (23.19) is
satisfied. More precisely, since vectors X1, . . . ,Xt are generated randomly by a
uniform distribution, we have

Prob
{

KSD = K̂
∣∣ [M1, . . . , Mr ] = M̂

}

=
Prob

{
KSD = K̂ , [M1, . . . , Mr ] = M̂

}

∑
K Prob

{
KSD = K , [M1, . . . , Mr ] = M̂

}

=
Prob

{
[X1, . . . , Xt ] ∈ XK̂ ,M̂

}

∑
K Prob

{
[X1, . . . , Xt ] ∈ XK ,M̂

}

= 1

2k
(23.20)

where XK̂ ,M̂ is the set of all X1, . . . , Xt satisfying (23.19) for KSD = K̂ and

[M1, . . . , Mr ] = M̂ . Equation (23.20) used the fact that
∣∣∣XK̂ ,M̂

∣∣∣ = 2t−r for all

K̂ and M̂ and that X1, . . . ,Xt are uniformly distributed. From (23.20), we con-
clude that given keying messages M1, . . . ,Mr , unconditional secrecy as defined in
(23.10) is achieved if v ≤ s′ − 2.

In addition, according to classical coding theory, for binary error control codes,
we have s + s′ = n + 1 when both the primal and the dual codes are maximum
distance separable.Thus, we derive r + 2m + e = s + s′ − 4 = n − 3, which is the
desired result. �

23.8 Concluding Remarks

In this chapter, we discuss key management in lightweight mobile ad hoc networks.
Backed up by the large successful attack probabilities computed in this chapter, we
show that the probabilistic key predistribution schemes are in fact quite vulnerable
to node captures in many practical cases. Considering the large key pool and key
ring sizes, complex key predistribution, low network connectivity, and complex
pairwise link establishments, the advantage of the probabilistic approach over the
deterministic approach is not as much as people have believed. We also generalize
the re-examination to other probabilistic key predistribution schemes, including the
q-composite key scheme, the multiple disjoint path key reinforcement scheme, and
the scheme based on partial deployment information. All of these schemes are vul-
nerable to node capture in a mobile network. A selective node capture will further
weaken the performance of a probabilistic approach.
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We then propose two low-cost hardware-based architectures to enhance the secu-
rity of key management schemes against the attack of sensor node fabrication for a
lightweight mobile ad hoc network, which can benefit both probabilistic and deter-
ministic key management.

Finally, we propose a unifying framework for analyzing the security of any key
establishment scheme, quantified by a new metric we call a REM resilience vector.
A universal bound on achievable REM resilience vectors is derived in closed-form
and is shown to be attained by an optimal key establishment algorithm. For practical
implementations, we also develop a low-complexity XOR-based key establishment
protocol that achieves nearly optimal REM resilience. Our analysis and simulation
show that the capability of simultaneously defending against multiple attack classes,
critical for the security of wireless ad hoc networks, can indeed be achieved with
provable REM resilience and low complexity.
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Chapter 24
Key Predistribution in Wireless Sensor
Networks When Sensors
Are Within Communication Range

Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic

Abstract Wireless networks are more vulnerable to security threats than wired net-
works. Since sensors are resource constrained, the use of traditional cryptographic
key management techniques is not practical. Hence keys are distributed in sen-
sor nodes prior to their deployment. This method, called key predistribution, was
investigated recently in a number of studies. This chapter restricts the discussion
to single-hop networks, where any two sensors are within communication range of
each other. The goal is to enable any two sensor nodes to exchange information
using their common key, so that other sensors, or an adversary, are unable to decode
the message. If two sensor nodes do not share a common key then a path between
them, via other sensor nodes, is established, with sensors on the path being able to
decode a message and forward it encrypted with a new key. We describe different
types of key predistribution schemes for single-hop networks and discuss their mer-
its and demerits in terms of resiliency (impact of node compromises), scalability,
connectivity, and memory, computation, and communication resources. Shared-key
discovery process should minimize the use of communication bandwidth. We also
discuss the identification of compromised nodes and revocation techniques.

24.1 Introduction

Recently, there has been a lot of research in the field of sensor networks. Sensor
devices have a wide variety of application both in military and in civilian areas.
They are used to collect magnetic, seismic, and acoustic information and sense the
temperature and pressure of a given region. Sensors are used in wildlife exploration,
ocean water monitoring, plantation monitoring, cold chain management, rescue
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operation, vital sign monitoring, and other civilian purposes [76]. They are widely
used in military areas for tracking military vehicles, sniper localization, and collect-
ing and transmitting secure information.

Sensor nodes are very small devices with limited memory, battery power, band-
width, transmission range, and computation power which are scattered in large num-
bers in the target region and work unattended for large periods of time. Depending
upon the battery power, their communication is effective within a region, which is
called the radio frequency (RF) region. The RF region is generally a circular region
around the sensor node. The radius of this region is called the RF radius. Since
they are deployed in large numbers, their cost has to be minimized. An example
of a typical sensor is the MICAz mote, which has a low-powered processor with
4 kb of RAM, 512 kb of program memory, an advanced encryption standard (AES)
cryptographic hardware and run the TinyOS [1] operating system. The transmitter
of the UC Berkley Mica platform has bandwidth of 10 kbps. For more discussion on
the resource-constrained nature of sensor networks one may refer to [9, 75].

Data in the sensor nodes deployed in military, health care, or commercial appli-
cations need to be securely transmitted. The interception of such data can cause
havoc and must thus be prevented. Security in wireless sensor networks (WSN)
poses the following challenges [11]: wireless nature of communication, resource
limitation on sensor nodes, very large and dense WSN, lack of a fixed infrastructure,
unknown network topology prior to deployment, and high risk of physical attacks
to unattended sensors.

For security reasons cryptographic keys must be embedded in the sensor nodes
which can carry on communication securely. Hence key management becomes of
utmost importance in sensor networks. Sensor networks must arrange several types
of data packets, including packets of routing protocols and packets of key manage-
ment protocols. The key establishment techniques must incorporate the following
properties [93]:

1. Availability : Ensuring that the service offered by the whole WSN, by any part
of it, or by a single sensor node must be available whenever required.

2. Authenticity: Ability for verifying that the message sent by a node is authentic.
3. Confidentiality : The key establishment technique should protect the disclosure

of data to unauthorized parties.
4. Integrity : No falsification of data during transmission.
5. Scalability: The key establishment technique must allow for the variation in the

size of the network.
6. Flexibility : Key establishment technique should be useful in multiple applica-

tions and allow for adding nodes at any time.
7. Non-repudiation: Preventing malicious nodes to hide their activities.
8. Survivability: Ability to provide service in the case of power failure or attacks.
9. Adaptive security service: Ability to change security levels as resource availabil-

ity changes.

Security protocols in sensor networks have the following constraints and require-
ments.
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1. Memory: The number of keys must be as small as possible.
2. Computation overhead: The amount of calculation for key establishment must

be as low as possible.
3. Communication overhead: For key establishment, the nodes must broadcast as

little information as possible.
4. Scalability : The system must be able to add more nodes when need arises.
5. Key connectivity: Probability that two sensor nodes share some common key (or

share intermediate nodes which share common keys) and thus communicate with
each other must be high.

6. Resistance to node fabrication: The schemes must be able to resist node replica-
tion to guard against Sybil attacks [25].

7. Revocation: There must be some efficient way to revoke corrupted nodes.
8. Resilience: Once nodes are captured or compromised, the impact of the compro-

mise on the rest of the network must be as low as possible.

One method to establish secret keys is by using public-key protocols. Though
there are instances of such schemes [36, 37, 56, 57] using elliptic curves or RSA,
such protocols are quite expensive (especially in computation requirements in sen-
sors) and require control and maintenance of keys by base stations and are thus not
used much in practice.

Another approach involves the key distribution center (KDC) which is a resource-
rich center and acts as a trusted arbiter for key establishment. Examples of such
scheme include transport layer security (TLS) [23], security protocols for sensor
networks-SPINS [71], and Kerberos [86]. Kerberos is an authentication protocol
which is based on Needham and Schroeder’s protocol [65]. In Kerberos, the trusted
server shares long-lived keys with every node in the network and transmits session
keys to sensor nodes on request. This method is extremely expensive for message
relay so is not suitable for sensor networks.

The third method is to preload the keys in sensor nodes prior to deployment. This
process is called key predistribution. There has been an extensive research on key
predistribution schemes. Extensive surveys can be found in [2, 11, 77, 93]. In this
chapter we describe the problem of key predistribution and discuss different key
predistribution schemes, pointing out their merits and demerits.

WSNs use symmetric key mechanism for key establishment, which consists of
the following three steps.

1. Key predistribution: Preloading keys in sensor nodes prior to deployment. The
keys present in a sensor node constitute the key ring (also called key chain) of
the sensor. A link exists between two nodes if they share a common key and
therefore can communicate directly with each other.

2. Shared-key discovery: Communication protocol to find shared key(s) between
two communicating nodes.

3. Path-key establishment: If a common key does not exists between two commu-
nicating nodes, then a path has to be found between the communicating nodes.
This path is composed of links among nodes sharing common keys. A path-key
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is generated and communicated through the established path. The two commu-
nicating nodes communicate using the path-key.

Key predistribution in WSN can be done in any of the following three ways.

1. Probabilistic: Key rings are randomly drawn from a key pool and placed in the
sensor nodes. Two nodes communicate with each other with certain probability.

2. Deterministic: Key chains are placed in sensor nodes following some definite
pattern.

3. Hybrid: Is a combination of the above two approaches.

In discussing key predistribution it is important to discuss shared-key discovery
and path-key establishment, because key predistribution is incomplete without the
two. A naive approach to predistribute keys is to use a single master key in all the
nodes. Thus each node can communicate with every other node in the network using
this common key. This scheme is most efficient in terms of storage. However, each
node is a single point of failure that brings the whole network down. On the other
extreme consider a network of N nodes, each node containing N − 1 keys, sharing
one key with each of the other N − 1 nodes in the network. Such nodes are said to
share pairwise keys. This guarantees that any node is connected to all other nodes in
the network. More importantly, the compromise of one or more nodes does not affect
the connection between any other uncompromised nodes. However, since sensors
have limited storage, this choice may not be feasible for large sensor networks.
Thus there is a trade-off between the storage, key connectivity, and resiliency.

24.1.1 Shared-Key Discovery

When two nodes A and B want to exchange message securely between them,
they first use a shared-key discovery algorithm to find some common key between
them. Suppose this common key is K . Then node A encrypts a message M and
sends EK (M) to a node B, where EK (.) is the encryption function using the key
K . B on receiving EK (M), decrypts it using the same common key K such that
DK (EK (M)) = M , DK (.) is the decryption function using the key K .

There are a few methods of shared-key discovery.

1. Broadcasting key identifiers: Two nodes, wishing to communicate, broadcast
(without any encryption) the list of key identifiers that each of them pos-
sess. Then each node compares the list of identifiers obtained from the other
node with its set of identifiers and finds a common key identifier. Commu-
nication takes place using the corresponding key. Suppose A has the keys
Ki1 , Ki2 , . . . , Kik and B has K j1 , K j2 , . . . , K jk . So node A creates the list of
identifiers L A = (i1, i2, . . . , ik) and B has the identifiers L B = ( j1, j2, . . . , jk),
such that i1 < i2 < · · · < ik and j1 < j2 < · · · < jk . Then A broadcasts this
list L A. Upon receiving L A, B compares L A with its own list L B and finds a
common key identifier. Suppose ia = jb. Then communication takes place using
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the key Kia = K jb . The list of identifiers can be sorted in O(k log k) time. Once
the lists are sorted, comparing the lists takes O(k) time. So the computation costs
is O(k log k). Each key identifier can be represented by O(log v) bits (since there
are a total of v keys in the key pool). Hence, to broadcast k identifiers, O(k log v)
bits are required. So the communication overhead is O(k log v) bits per sensor.
Note: An adversary does not know which key identifier maps to which key
(assuming that length of key can be recognized somehow). Unless a node is
compromised, the adversary does not know what keys the node contains. How-
ever, by knowing the key identifiers in some nodes, an adversary can launch
selective node capture attack to speed up full key disclosure (select to capture a
node containing the largest number of new keys).

Example 1 Suppose there are 10 keys in the key pool. Let each of the keys be
of size 5 bits. These are indexed by 1, 2, 3, . . . , 10, such that K1 = 10010,
K2 = 00011, K3 = 00010, K4 = 10110, K5 = 10111, K6 = 11000,
K7 = 11010, K8 = 10100, K9 = 11111, and K10 = 11011. Suppose A has the
keys {K2, K3, K4} and B has the set of keys {K4, K7, K10}. Then A transmits
the list of identifiers L A = (2, 3, 4) and B transmits L B = (4, 7, 10). So A
and B compare the list of keys obtained from each other and finds out that 4
is the common key identifier and encrypts messages using K4. An adversary
eavesdropping on the network knows what keys A and B possess, but not their
values. Therefore the adversary also learns that K4 is the common key between
nodes A and B. However, she does not know the value of K4, because A and
B transmit only the key identifiers and not the exact values. If the adversary
compromises node A, then she will learn keys in A. She then also learns that the
value of the common key between A and B is K4 = 10110. However, she still
does not know the values of the other keys that B possesses.

2. Using challenge–response protocol: To find one or more shared keys between
two nodes, each node has to broadcast a list {α, EKi (α), i = 1, 2, . . . , k}, where
α is a challenge. The decryption of EKi (α) with proper key by the other node
would reveal the challenge α and agree on a common key with the broad-
casting node. This approach has been adopted in schemes like [19, 33]. Sup-
pose the communicating nodes A and B have the keys Ki1 , Ki2 , . . . , Kik and
K j1 , K j2 , . . . , K jk , respectively. A chooses a challenge α which is a bit string and
encodes α with each of the keys that it possesses. A then broadcasts the following
information {α, EKi1

(α), EKi2
(α), . . . , EKik

(α)}. Upon receiving this informa-
tion B decrypts each EKix

(α) (x = 1, 2, . . . , k) with its own keys. Suppose
i A ∈ {i1, i2, . . . , ik} and jB ∈ { j1, j2, . . . , jk}. Suppose DK jB

(EKi A
(α)) = α,

then Ki A = K jB is the common key between A and B. The communication
overhead is O(k log v), where v is the number of keys in the key pool. The cal-
culation of EKix

(α), x = 1, 2, . . . , k encryption will require O(ek) time, where
e is the encryption/decryption time.

3. Using pseudo-random sequence generators: This method was adopted by Park
and Blake [68] and Pietro, Macini, and Mei [72]. The key pool (which consists
of v keys) is partitioned into k subsets Si , where i = 1, 2, . . . , k, such that each
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set has t = v/k keys. Each key in a subset has an identifier of length log t bits.
The j th key in the key pool Si is represented by ki, j .
A (l,m)-bit generator is a function f : Z

l
2 → Z

m
2 , that can be computed in

polynomial time (as a function of l). The input s0 ∈ Z
l
2 is called a seed and the

output f (s0) ∈ Z
m
2 is called the generated bit stream [88]. f is called pseudo-

random bit generator (PRBG), if no polynomial time adversary can distinguish
the output of f from a truly random binary string of length m.
We note that if there are N nodes in the network, then each node identifier can
be represented by l = �log N� bits. Let m = k log t , where t = v/k.
The keys are distributed in sensor networks, such that there are k keys in each
node, one from each of k key pools S1, S2, . . . , Sk . To choose the key chain for
a node i , a PRBG function f is applied, which takes as input the l = �log N�
bit identifier of the node i and outputs a m bit string such that, f (sensor ID) =
j1|| j2|| . . . || jk , where jx is the identifier of the key in the key pool Sx .

Example 2 Suppose there are N = 60 nodes in the network and l = �log N� =
6. Let the size of the key chain be k = 5. Thus the key pool is partitioned into
five subsets S1, S2, S3, S4, S5. Let the size of the entire key pool be v = 20, thus
t = v/k = 4. Each key identifier in subset Si will be represented by log t = 2
bits, therefore possible key identifiers are 00, 01, 10, 11. Consider node A = 35.
It is represented by the string 100011. A PRBG function f is now applied.
Let f (100011) = 1010110100. The key identifiers chosen from the subsets
S1, S2, S3, S4, S5 are represented by 10, 10, 11, 01, and 00, respectively. Thus the
keys present in node 35 are k1,2, k2,2, k3,3, k4,1, and k5,0. Suppose two nodes A
and B want to communicate with each other. Given the node id of B, node A can
find out the key identifiers that node B has, using the PRBG function f . Then
node A compares this list of key identifiers with its own list of identifiers and
finds out the common key identifier. The nodes communicate using this common
key. Let B = 33 be represented by node identifier 100001. Upon receiving key
identifier of B, A uses the function f and calculates f (100001) = 1100100101.
A then derives key identifiers possessed by B: (1, 3), (2, 0), (3, 2), (4, 1), and
(5, 1). It compares its own list of identifiers with that of B and finds that (4, 1)
is the common key identifier, so communication takes place using the key k4,1.

The communication overhead is O(log N ) bits (to broadcast the node identifier).
If a node is compromised, all the key identifiers belonging to all the nodes could
be extracted by the adversary using the PRBG function that is embedded in the
node. An adversary cannot simply learn the key identifiers by eavesdropping on
the network. It needs to have access to the PRBG function f to find the identifiers
of the keys in each node. While in the first method the entire list of identifiers is
broadcasted, in this approach only the node identifier is broadcasted. The com-
munication overhead of this approach is less than in the first one. However, since
the list of identifiers are sorted, the time taken for comparing is O(k log k) in the
first approach. In the second one the time taken is in the worst case O(ke).

4. Using only the identifier of the sensor: In deterministic methods of key predistri-
bution, nodes broadcast only their node identifiers using which the shared keys
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can be calculated. There is no need to exchange key identifiers. The commu-
nication overhead is O(log N ) bits per node. This technique is mostly used in
deterministic key predistribution schemes like [45, 80]. There is a short algorithm
embedded in the sensors which generally runs in time, which is polylogarithmic
in N . The algorithm takes the identifier of the broadcasting node B as an input
and outputs the common key between itself and B. In this way, no node can
know all the key identifiers that any other node possesses. In the case of node
compromise, the adversary can only find the common keys between the node it
has compromised and any other broadcasting node.
We consider the key predistribution scheme given by Lee and Stinson [45]. This
has been described in detail in Sect. 24.6.2. Suppose a network contains N ≤ p2

nodes, where p is a prime power. To each sensor node we assign an identifier
(i, j) such that i, j ∈ Zp. Let the number of keys per node be k. The identifiers
of the keys are given by (x, y), where 0 ≤ x < k and y ∈ Zp. A node (i, j) is
preloaded with k keys, whose identifiers are (x, (xi+ j) mod p), where 0 ≤ x <
k. Suppose node (i, j) wants to find the key that it shares with a node (i ′, j ′).
Shared key identifier is (x, (xi + j) mod p) = (x, (xi ′ + j ′) mod p). Thus
(xi + j) mod p = (xi ′ + j ′) mod p. Node (i ′, j ′) broadcasts its node identifier.
Upon receiving it, node (i, j) calculates x = (i − i ′)( j ′ − j)−1 (mod p), if
exists, and then checks if 0 ≤ x < k. If no such x exists, then no shared key
exists between nodes (i, j) and (i ′, j ′). Note that the inverse b = a−1 satisfies
ba mod p = 1 and can be calculated in O((log p)3) time [88].

Example 3 Consider a network containing N = 25 nodes. Thus p = 5. Let the
number of keys in each node k = 3. Then the node (2, 3) contains the keys
{(0, 3), (1, 0), (2, 2)}. Suppose node (i, j) = (2, 3) wants to find common key
with node (i ′, j ′) = (1, 4). Then using the algorithm above, x = (2−1)(4−3)−1

(mod 5) = 1 which is less than k = 3. Hence the common key identifier between
the two nodes is (1, 0). Both nodes have the key determined by (1, 0) and can
communicate.

An adversary who compromises node (i, j) learns all its key identifiers and cor-
responding keys. However, she does not know any of the other identifiers and
keys that are present in the other node (i ′, j ′). This approach does not reveal the
identifiers in each node and so prevents selective node capture attack (choosing
which node to capture in order to learn the most new keys).

In the first approach all the key identifiers are broadcasted, whereas in the third
approach only the node identifier is broadcasted and the key identifiers of any node
can be calculated from this information. The inherent difficulty with these two
approaches is that all the key identifiers are known and this fact can be exploited
by an adversary to mount a selective node capture attack. Once an adversary com-
promises some nodes, it can learn the identifiers of other uncompromised nodes. In
the last approach only the common key (if it exists) can be calculated by two nodes,
without revealing information about other keys in the nodes.
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24.1.2 Network Models

There are several ways of classifying WSN, based upon the type of operation and
application [59, 60]. Broadly they can be classified as distributed (homogeneous)
or hierarchical (heterogeneous) WSNs. Distributed WSN (DWSN) have no fixed
infrastructure, and the network topology is unknown prior to deployment. Sensor
nodes are randomly scattered in the target region. Generally all nodes in a DWSN
have equal capabilities and are thus homogeneous.

Single-hop networks (called also clique graphs) are the ones in which any two
nodes are within communication range of each other. However, two nodes may
not share a common key and therefore are forced to communicate through inter-
mediate nodes. A base station or a control node monitors the entire network and
receives and processes the information from the sensor nodes. When links joining
two nodes without shared key are eliminated, the network becomes multi-hop one.
Such network can be modeled as a random graph G(N , pc) as defined by Erdös
and Rényi [32]. A random graph G(N , pc) is a graph consisting of N nodes and pc

representing the probability of establishing a link between two nodes.
Blackburn and Gerke [4] described random graphs as a uniform random intersec-

tion graph G(N , v, k). A uniform random intersection graph G(N , v, k) is a random
graph consisting of a set V of N nodes, |V | = N . Let M be the set of v colors. We
assign a subset Fa ⊂ M of k distinct colors chosen uniformly and independently at
random from M (|M | = v) to each node a ∈ V . Two distinct nodes a, b ∈ V are
joined by an edge if and only if Fa

⋂
Fb �= ∅. For distinct nodes a, b ∈ G(N , v, k),

the probability that ab is an edge is

pc = 1 −
(
v−k

k

)

(
v
k

) ≈ k2

v

This approximation holds because a node a is assigned k colors and the probability
that each color is assigned to b is k/v. Therefore in a WSN, a G(N , v, k) is modeled

by a G(N , pc), where pc = k2

v
.

Sensor networks containing pairs of nodes which are outside communication
range of each other (although they might share a common key) are multi-hop net-
works, which can be modeled as unit disk graphs. Two nodes are able to send
messages to each other (which could be encrypted and therefore received but not
understood) if and only if they are within the communication range, which is equal
for all sensors. In this chapter we will, however, consider only single-hop networks.
We will give a brief overview of the key predistribution schemes for multi-hop net-
works in Sect. 24.7.

Where a shared key exists between nodes, a secure channel is created and all
communications between the nodes are performed using the common key. How-
ever, there may exist situations where nodes may not share common keys (as in the
scheme of [24] which uses 3- designs) or when common shared keys are exposed
because of node compromise. In such cases a path needs to be established between
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nodes. Suppose nodes A = U0 and B = UL having no common key need to
communicate with each other. A establishes communication with some node U1
through some common key which further establishes communication with U2 and
so on. Let A,U1,U2, . . . ,UL−1, B be the path between A and B. Suppose A shares
a common key k1 with U1, U1 shares a common key k2 with U2, and so on, UL−2
shares a common key kL−1 with UL−1 and UL−1 shares a common key kL with B.
To send secure message from A to B, A encrypts it with k1 and sends it to U1. U1
decrypts the message using k1 and encrypts it using k2 and sends it to U2 and the
process continues. Ultimately the message reaches B encrypted by key kL known
to B thus B can decrypt it and obtain the original message. The message could be
a path-key K between A and B, which can subsequently be used for sending other
messages. In this case, the path-key is revealed to the nodes on the path where K
was originally communicated. In [29], the path for communicating path-key and
messages is found in a breadth first manner.

The problem with this approach is that if any node in the path is compromised,
then the path-key is also compromised. To resolve this issue, a multi-path key estab-
lishment scheme is used. In this technique [19] several paths are considered between
the communicating nodes and a hash of all the keys is taken as a common key. For
example, let there be n paths p1, p2, . . . , pn between the nodes A and B. Let the
path-keys be pk1, pk2, . . . , pkn . Then the final path-key between the nodes A and
B is the hash of all these path-keys and calculated as hash(pk1||pk2|| . . . ||pkn).
The hash function chosen may be SHA-1. This improves the resiliency of the
network.

24.1.3 Performance Measures and Notation

The following performance measures, definitions, and notations are used henceforth
in the chapter. Table 24.1 gives a list of notations used throughout this chapter.

1. Storage: The number of keys in the key chain of a sensor node.
2. Connectivity: The probability that two nodes within communication range share

a common key or a path-key. It can be further specified as follows (for single-hop
networks).

a. s-connectivity (strict connectivity) which is the probability that two nodes
share at least one common key.

b. p-connectivity (path connectivity) which is the probability that two nodes A
and B have a secure path between them (can communicate either directly or
via other nodes).

3. Degree of a node: The number of neighbors with which it shares one or more
common keys.

4. Average path length: The average number of hops between nodes that do not
share a common key with one another.
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Table 24.1 Notations
Symbol Meaning

N Number of nodes in the network
X Key pool
v = |X | Size of the key pool
Ui Sensor node i
k Number of keys possessed by a sensor node
s Number of compromised sensor nodes
t Security parameter, such that if t or fewer nodes are compromised,

The network remains secure
GF(q) Finite field containing q elements

5. Scalability: The scope of increasing the size of the network, without redistribut-
ing keys in the original network.

6. Resiliency: The measure of the tolerance of the sensor network to node compro-
mise. Different authors have used different measures of resilience. Some of these
are

a. number of keys compromised,
b. probability that a given link is broken,
c. probability that a (uncompromised) node is disconnected,
d. collusion resistance, minimum number of nodes to be compromised to have

information about the rest of the network and thus break all links in the net-
work. Network is t-secure, if at least t + 1 nodes are to be compromised, to
break the security of the network.

A scheme is called fully resilient if the compromise of a few nodes does not affect
any link between nodes which are not compromised, for example a pairwise
scheme that we discussed in Sect. 26.1.

7. Computation and communication overhead: The computation and communica-
tion costs incurred during key establishment.

24.1.4 Identifying Compromised Nodes

There are various ways of dealing with compromised nodes. These fall into the
following categories.

1. Detect and tolerate false information introduced by attackers [28, 94]. They, how-
ever, are not effective in knowing where false information has been introduced
and by whom.

2. The other category is application-driven detection mechanism, which enables
sensor nodes to monitor the activities of other nodes nearby. If abnormal activity
is observed, then a node raises alert signals to the base station or other nodes,
which further detects the compromised nodes. Some examples of these alert-
based techniques have been presented in [35, 50].
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3. Sometimes, however, compromised nodes can raise false alarms to mislead the
base station or the other nodes. Compromised nodes may also collude (i.e., they
behave consistently and do not raise alerts against one another) and increase
their influence on the network. In a recent paper, Zhang et al. [97] present an
application-independent framework of accurately identifying compromised sen-
sor nodes. The alert reasoning algorithm also takes care of the fact that compro-
mised nodes may collude sometimes. It is optimal in the sense that it identifies
the largest number of compromised nodes without introducing false positives.

In the algorithm proposed by Zhang et al. [97], it is assumed that there exists
detection mechanism to enable sensor nodes to observe each other’s behavior. Node
Ui is called the observer of node U j , if for each event at U j , Ui will determine
whether U j has behaved correctly. If Ui believes U j ’s behavior is suspicious, then
an alert will be raised and sent back to the base station. The base station cannot draw
any definite assumption from a single alert, so the alerts are observed over a certain
period of time (called time windows). Within a given time window, the number of
events of U j is a random variable x with the distribution f j (x). Given the sensor
behavior of U j , observations of Ui and distribution f j (x), the expected number of
alerts raised by Ui against U j (when Ui and U j are both uncompromised), within
the time window can be derived. This is compared with the actual alerts raised by
Ui against U j . If this actual number is greater than the expected number, within sta-
tistical significance, then it is considered abnormal. A graph called the observability
graph is constructed, which consists of nodes as vertices. An edge exists between
two nodes Ui and U j , if the two nodes communicate with one another. The set of
edges is divided into two classes, normal and abnormal edges depending on the fact
that alerts being less than or greater than the estimated values, respectively.

Example 4 We consider the example in [97]. Figure 24.1 shows an observability
graph with nine nodes. The normal edges are represented by dotted lines and the
abnormal edges by solid lines. Given an observability graph G(V, E), let Ea and
En be the set of abnormal and normal edges in G, respectively. Then two sensor
nodes Ui and U j are said to be a suspicious pair if one of the following is true:

1. (Ui ,U j ) ∈ Ea or (U j ,Ui ) ∈ Ea

2. There exists a sensor node U ′, such that either (Ui ,U ′) ∈ Ea and (U j ,U ′) ∈ En

or (Ui ,U ′) ∈ En and (U j ,U ′) ∈ Ea .

321

654

1 2 3

4 5

Fig. 24.1 An observability graph (left) and the corresponding inferred graph (right). The solid
lines represent abnormal edges and the dotted lines represent normal edges in the observability
graph
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Let
(
U1,U ′

1

)
, . . . ,

(
Un,U ′

n

)
be the suspicious pairs derived from an observabil-

ity graph G. The inferred graph of G is an undirected graph I (V ′, E ′) such that
V ′ =⋃1≤i≤n

{
Ui ,U ′

i

}
and E ′ = {(Ui ,U ′

i

) |1 ≤ i ≤ n
}
. If (Ui ,U j ) is a suspicious

pair, then at least one of them is compromised. We note that if a pair of nodes is
not suspicious, it does not mean that they are both uncompromised. It only means
we cannot infer anything about them. Since (2,1) is normal and (2,5) is abnormal,
shouldn’t (1,5) be also a suspicious pair? It is not always so because it is possible
that node 2 is compromised and selectively issues bogus alerts against node 1 but not
node 5, even though both nodes 1 and 5 are uncompromised. Similarly, a compro-
mised node may sense data normally but issue bogus alerts or vice versa. Therefore
(1, 3) is not a suspicious pair even though (3, 2) is abnormal and (2, 1) is normal. In
other words, transitivity does not hold when constructing suspicious pairs.

If all the nodes in the network are compromised, then the base station cannot
identify with certainty which nodes are compromised based on alerts. We assume
that the total number of compromised nodes is less than C . C is also called the secu-
rity estimation of the network. The security estimation depends on several factors
like the attacker’s capabilities or the strength of the sensors.

Given an inferred graph I (V, E) and a security estimation C , a valid assignment
with regard to I and C is a pair (Sg, Sb), where Sg (good set) and Sb (bad set) are
two sets of sensor nodes that satisfy all the following conditions:

1. Sg and Sb is a partition of V , i.e., Sg
⋃

Sb = V and Sg
⋂

Sb = ∅,
2. For any two sensor nodes Ui and U j , if Ui ∈ Sg and U j ∈ Sg , then {Ui ,U j } /∈ E ,

and
3. |Sb| ≤ C .

For a given graph and a security estimation C , there are several valid assign-
ments. The common nodes Sb in all possible assignments are always compromised
and the others may or may not be compromised depending on which assignment
is true for the system. Given an inferred graph I (V, E) and a security estima-
tion C , let {(Sg1 , Sb1), . . . , (Sgn , Sbn )} be the set of all the valid assignments with
regard to I and C .

⋂
1≤i≤n Sbi is called the compromised core of the inferred

graph I with security estimation C denoted CompromisedCore(I,C). Similarly,⋂
1≤i≤n Sgi is called the uncompromised core of I with security estimation C ,

denoted UncompromisedCore(I,C).
The main task is to identify the compromised core. It can be seen that for an

inferred graph I (V, E), the size of compromised core is no less than the size of the
vertex cover of I . This is because, when we assign an edge (i, j) in I , either i ∈ Sb

or j ∈ Sb or both i, j ∈ Sb. Thus Sb is essentially the vertex cover of I , denoted by
V C(I ). This leads to the following theorem.

Theorem 1 [97] Given an inferred graph I (V, E), let V C(I ) be a minimum vertex
cover of I . Then the number of compromised nodes is no less than |V C(I )|.

The following theorem will be used in finding the compromised nodes in a net-
work.
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Theorem 2 Given an inferred graph I and a security estimation C, for any node A
in I , A ∈ CompromisedCore(I,C) if and only if |NA| +

∣∣V C
(
I ′A
)∣∣ > C, where

NA is the set of neighboring nodes of A and I ′A is the graph obtained after removing
A and its neighbors from I .

Proof ⇒: Suppose there exists some node A satisfying the relation |NA| +∣∣V C
(
I ′A
)∣∣ > C and A ∈ Sg for some assignment (Sg, Sb). Then we will have

NA ⊆ Sb. From Theorem 1, we know the minimum number of malicious nodes in
I ′A is

∣∣V C
(
I ′A
)∣∣. Thus we have |Sb| ≥ |NA| +

∣∣V C
(
I ′A
)∣∣ > C . This is a contradic-

tion since the maximum number of compromised sensor nodes is C . Thus A must
be in Sb under any assignment. Therefore A ∈ CompromisedCore(I,C).

⇐: Now suppose there exists A ∈ CompromisedCore(I,C) that satisfies
|NA| +

∣∣V C
(
I ′A
)∣∣ ≤ C . Then we can always construct an assignment of Sb such

that Sb = NA
⋃

VI ′A . Then, however, A /∈ Sb, which is a contradiction, since
A ∈ CompromisedCore(I,C). Therefore if A ∈ CompromisedCore(I,C) then
|NA| +

∣∣V C
(
I ′A
)∣∣ > C . �

Now it can be seen clearly that the algorithm to find the CompromisedCore(I,C)
reduces to checking for each node A if |NA| +

∣∣V C
(
I ′A
)∣∣ > C . For this we need

to calculate the minimum vertex cover, which is an NP complete problem. So we
use an approximation algorithm based on maximum matching of G. Finding size
of maximum matching and minimum vertex cover is a related problem, and the
following result holds: Given an undirected graph G, MG ≤ V C(G) ≤ 2MG

where MG is the size of the maximum matching of G. If |NA| + MI ′A > C , then

|NA| +
∣
∣V C

(
I ′A
)∣∣ > |Ns | + MI ′A > C .

Using these results the CompromisedCore(I,C) can be efficiently calculated
using the Algorithm 7.

Algorithm 7 AppCompromisedCore(I,C)
1: Sb = ∅
2: for Each sensor A in I do
3: Let NA be the neighbors of A
4: Find the size of the maximum matching MI ′A of I ′A
5: if |NA| + MI ′A > C then
6: Sb = Sb

⋃{A}
7: end if
8: end for
9: return Sb

We consider the graphs in Fig. 24.1. Let the security estimation C = 3. Then for
node 1, NA = 1 and MI ′A = 3. Therefore NA + MI ′A ≤ 3, so 1 is not a compromised
node. Table 24.2 below shows the values of NA, MI ′A and states whether or not the
node is compromised.

Some finer adjustments are made such that no false positives are included in the
set of compromised nodes. This is presented in [97].
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Table 24.2 Finding compromised nodes from inferred graph in Fig. 24.1

Node Ns MI ′s Compromised or not

1 1 2 Not compromised
2 3 0 Not compromised
3 1 2 Not compromised
4 3 1 Compromised
5 3 1 Compromised
7 2 1 Not compromised
8 1 2 Not compromised

24.1.5 Node and Key Revocation

Compromised nodes can block the normal functioning of the network by inject-
ing false messages, exhausting resources of legitimate nodes, refusing to carry out
the protocol steps, and colluding among themselves to compromise more nodes. It
is therefore important to design techniques for sensor and key revocation. It is a
challenge to design protocols that will revoke nodes compromised by an adversary
despite the presence of the adversary in the system. Also the revocation protocols
must use only limited computing and communication resources. Revocation proto-
cols are largely dependent on the underlying key predistribution protocols.

There are two types of revocation protocols: centralized and distributed. In the
centralized approach, upon detection of a compromised node, base station broad-
casts a revocation message to all sensors nodes that the particular node has been
compromised and all copies of keys present in the node must be revoked.

In a distributed approach (first introduced by Chan et al. [19]), the revocation
decisions are made by the neighbors of the compromised node. The neighboring
nodes cast votes against a compromised node. If the number of votes exceeds a cer-
tain predefined threshold t , then the node is revoked and this message is broadcasted
throughout the network. Distributed approaches require local broadcasts and are not
prone to single point of failure as in the centralized approaches. This approach,
however, can result in denial-of-service attacks. Revocation also requires each node
to maintain a record of which votes have been heard, which demands appropriate
storage.

In [19] the neighboring nodes of a compromised node B cast public votes (that
is, by flooding). Each node receives hash value of the votes of all the neighbors of
B. Once a vote is cast by a neighbor of B, all the other neighbors check the validity
of the vote by comparing the hash value of the vote with that already stored in the
node. If the number of valid votes exceeds a predefined threshold, then the node is
revoked. However, since all the votes that have been cast by other neighbors of B
since the beginning of the lifetime of the network must be stored, this method is
memory intensive.

In [17], the votes are not flooded as in the previous case. Neighbors of a node
perform voting in sessions to agree to revoke the node. The reason for having voting
sessions is to assure that revocation is performed within a certain period of time
starting from the time of sending the first revocation vote. This prevents a node to
store votes for indefinite period of time. In each voting session, a secret sharing
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scheme is used to tally the revocation vote from neighbors. Each vote is a secret
share. When the number of votes are above a threshold, the secret can be recovered
from the shares and this information is broadcasted. Such a broadcast means that
the node is compromised and should be revoked.

For each voting session during node initialization, a random polynomial of
degree t is generated for each node in the network. The coefficients of the poly-
nomial are random uniformly distributed values in a certain range [0, l − 1] (l may
be 264). We note that t must be less than the minimum degree of the network graph.
We denote the neighbors of node A by NA. For each session, node A is given a
degree t random polynomial qA(x). For each node i ∈ NA, a secret share of qA(i) is
generated. This secret share is masked with MaskA. A delivers this MaskA to each
of its neighbors using the common key that it shares with the respective neighbor.
EMaskA(qA(i)) is stored in each node i . The mask is used so that only neighbors of
A can decrypt the shares of polynomial qA(x), while a non-neighbor cannot decrypt
it. So this scheme works only when nodes share pairwise keys. Each node i ∈ NA

also stores hash values of secret shares of each of neighbors of A, i.e., hash(qA( j)),
where j ∈ NA and j �= i . A hash function hash(y) = x is a mapping of a large input
y which has a long representation to a short representation x , such that the function
hash() is one way. This means that it is easy (polynomial time algorithm exists) to
calculate x = hash(y); however, given the value of x , it is difficult to find y, such
that hash(y) = x . In other words it is difficult to invert hash(). Each node also stores
the hash of the hash value of qA(x), i.e., hash(hash(qA(x))) = hash2(qA(x)).

When a node B wants to revoke a node A, it sends the revocation vote masked
with MaskA, i.e., EMaskA (qA(B)). Suppose a node C has collected t revocation
votes against A. Using the mask, it decrypts and obtains t values of the revocation
shares. For each of the shares, it verifies it with the hash value already in its memory.
Once validated, it can calculate the revocation polynomial qA(x) of node A from
the t shares. It then calculates hash(qA(x)) and broadcasts this value throughout the
network. The reason for sending the hash value and not the original polynomial is
that it is costly to broadcast a lengthy set of large polynomial coefficients. The other
neighbors i ∈ NA (i �= C) of A then verify this using the value of hash2(qA(x))
stored in their memory and delete all connections with A. Node A is said to be
revoked from the network. Instead of storing all the hash values of the neighbors
of a node, a Merkle tree [62] can be used. Only a unifying hash value is stored.
However, now instead of sending only one voting information, O(log k) (k is the
number of neighbors of a node) information needs to be revealed and also the secret
voting value of a node and log k internal nodes needs to be send. This reduces the
storage space.

24.2 Key Predistribution Schemes in WSN

We discuss two approaches which form the basis of several key predistribution
schemes. These schemes, though not introduced for WSN, have been modified and
suitably applied by several researchers for key predistribution in sensor networks.
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24.2.1 Blom’s Scheme

Blom [6] proposed a key predistribution scheme that allows any two nodes of a
group to find a pairwise key. The security parameter of the scheme is t . As long
as no more than t nodes are compromised, the network is secure (the t-secure
property). During the pre-deployment phase, the distribution server first constructs
a (t + 1) × N matrix G over a finite field GF(q), q is a prime power, and N is
the size of the network. G is public information; any node can know the contents
of G, and even adversaries are allowed to know G. Then the base station creates
a random (t + 1) × (t + 1) symmetric matrix D over GF(q) and computes an
N × (t + 1) matrix A = (D.G)T , where V T is the transpose of V . Matrix D
needs to be kept secret and should not be disclosed to adversaries or any node (how-
ever, one row of (D.G)T will be disclosed to each node). Since D is symmetric,
A.G = (D.G)T .G = GT .DT .G = GT .D.G = (A.G)T . Thus K = A.G is a
symmetric matrix. Ki j (or K ji ) is the pairwise key between node Ui and node
U j . To carry out the above computation, nodes Ui and U j need to compute Ki j

and K ji , respectively. This can be achieved using the following key predistribution
scheme, forw = 1, . . . , N : store thewth row of matrix A andwth column of matrix
G at node Uw. Therefore, when nodes Ui and U j need to find the pairwise key
between them, they first exchange their columns of G and then they can compute
Ki j using their private rows of A. Because G is public information, its columns can
be transmitted in plaintext. It has been proven that the above scheme is t-secure if
any t + 1 columns of G are linearly independent. This property guarantees that no
member other than Ui and U j can compute Ki j or K ji if no more than t members
are compromised.

Construction for matrix G [27]: We note that if any t + 1 columns of G are
be linearly independent, then the scheme is t-secure. Since each pairwise key is
represented by an element in the finite field GF(q), if the length of pairwise keys is
64 bits, then q can be chosen as the smallest prime number that is larger than 264.
Let a be a primitive element of GF(q) and N < q. That is, each nonzero element in
GF(q) can be represented by some power of a, namely ai for some 0 < i ≤ q − 1.
The i j th element of G is given by Gi j = ai∗ j , where 0 ≤ i ≤ t and 1 ≤ j ≤ N [55].
It is well known that ai �= a j if i �= j (this is a property of primitive elements).
Since G is a Vandermonde matrix, it can be shown that any t + 1 columns of G
are linearly independent when a, a2, a3, . . . , aN are all distinct. To store the wth
column of G at node Uw, it is only required to store the seed aw, and any node can
regenerate the column given the seed.

24.2.2 Blundo et al.’s Scheme

This scheme was proposed by Blundo et al. [7] and was not originally used for
sensor networks. It uses a symmetric bivariate polynomial over some finite field
GF(q), i.e., a polynomial P(x, y) ∈ GF(q)[x, y] with the property that P(i, j) =
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P( j, i) for all i, j ∈ GF(q). The base station calculates the univariate value of
fi (y) = P(i, y) and gives this polynomial to node Ui . In order to communicate
with node U j , node i computes the common key Ki j = fi ( j) = f j (i); this process
enables any two nodes to share a common key. If P has degree t , then each share
consists of a degree t univariate polynomial; each node must then store the t + 1
coefficients of this polynomial. These are elements of GF(q), as are the pairwise
keys that are established; thus, storing a degree t share requires as much space as
storing t + 1 keys. We consider the following example.

Example 5 Suppose q = 7 and P(x, y) = x2 + y2 + 5xy. Then P(x, y) =
P(y, x) and there are at most N = 7 nodes. The polynomials distributed to nodes
U1,U2, . . . ,U7 are

f0(x) = x2, f1(x) = x2 + 5x + 1, f2(x) = x2 + 3x + 4, f3(x) = x2 + x + 2,
f4(x) = x2 + 6x + 2, f5(x) = x2 + 4x + 4, f6(x) = x2 + 2x + 1

For instance, U2 and U6 can calculate the common key as f2(6) = 62+3×6+4 = 2
or f6(2) = 22 + 2 × 2 + 1 = 2.

If an adversary captures s nodes, where s ≤ t , then it does not learn any informa-
tion about keys established between uncompromised nodes; however, if it captures
t + 1 or more nodes then it can interpolate to compute polynomial P and hence
learn all the keys. This follows from the Lagrange’s interpolation formula which
states that

Theorem 3 Suppose q is a prime and y0, y1, . . . , yt are distinct elements in Zq .
Suppose f0(x), f1(x), . . ., ft (x) ∈ Zq [x] are polynomials of degree at most t . Then
there exists a unique polynomial P(x, y) ∈ Zq [x, y] of degree at most t in two
variables x and y, such that P(x, yi ) = fi (x), where 0 ≤ i ≤ t . P(x, y) is given
by

P(x, y) =
t∑

j=0

f j (x)Π0≤h≤t, j �=h
y − yh

y j − yh

Consider shares f1(x) = x2+5x+1, f2(x) = x2+3x+4, and f3(x) = x2+x+2
in Example 5. Then

(y − 2)(y − 3)

(1 − 2)(1 − 3)
= 4y2 + y + 3,

(y − 1)(y − 3)

(2 − 1)(2 − 3)
= 6y2 + 4y + 4,

(y − 1)(y − 2)

(3 − 1)(3 − 2)

= 4y2 + 2y + 1
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Hence,

P(x, y) = (x2 + 5x + 1)(4y2 + y + 3)+ (x2 + 3x + 4)(6y2 + 4y + 4)

+ (x2 + x + 2)(4y2 + 2y + 1)

= x2 + y2 + 5xy

If an attacker compromises t +1 or more nodes, then she can obtain shares fi (x)
and using Lagrange’s interpolation method, calculate the polynomial P(x, y). Then
the entire network is compromised.

We will show that if an adversary compromises less than t + 1 nodes
c1, c2, . . . , ct , then she cannot construct P(x, y) [88]. Let k be the real key, which
can be calculated from the compromised nodes and k- be an arbitrary key. We
show that there is a symmetric polynomial that is consistent with the information
that is known from the compromised nodes and such that the secret key associ-
ated with the polynomial f -(x, y) is k-. Therefore the adversary cannot rule out
any possible values of the key. Let u and v be any two nodes. f -(x, y) can be
defined as

f -(x, y) = f (x, y)+ (k- − k)Π0≤i≤t
(x − ci )(y − ci )

(u − ci )(v − ci )

We see that f -(x, y) is a symmetric polynomial. We also note that f -(x, ci ) =
f (x, ci ) = fci (x). Finally we see that f -(u, v) = f (u, v) + k- − k = k-. These
results show that for any possible value of k-, there is a polynomial f -(u, v), such
that f -(u, v) = k- and such that the secret information held by t compromised
nodes is unchanged. Thus we conclude that Blundo’s key predistribution scheme is
unconditionally secure against any adversary who compromises ≤ t nodes.

24.3 The Basic and Q-Composite Schemes

In the next few sections we discuss several key predistribution schemes specifically
designed for sensor networks. We assume that the number of nodes in the network
is N . Let X be the key pool, such that |X | = v, k is the number of keys in each
node, and pc is the probability that two nodes share a common key. Consider the
neighbors of a node A which share keys with it. The degree of node A is the number
of such neighbors of A. The degree d of a node is the average of the degrees of all
the nodes in the network. d = pc ∗ (N − 1), where N is the number of nodes in the
network.

The first random key predistribution scheme for WSN was proposed by
Eschenauer and Gligor [33]. This scheme is known as the basic scheme. Many pre-
distribution techniques use this as the underlying scheme. The basic scheme consists
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of three steps: key predistribution, shared-key discovery, and path-key establish-
ment. We have discussed them in Sect. 24.1.

The network can be modeled as a random graph G(N , pc) as defined by
Erdös and Rényi [32], as discussed in Sect. 24.1.2. The event that two nodes
do not share any key arises when k keys in the second node are disjoint from
the set of k keys in the first node. The probability that this event happens is
(v−k

k )
(vk)

= ((v−k)!)2
(v−2k)!v! . Probability that two nodes share a common key is given by

pc = 1 − Pr [two nodes do not share any key] = 1 − ((v−k)!)2
(v−2k)!v! . For example, if

v = 10, 000 and k = 75 then pc = 0.5.
The main advantages of this scheme are that it is flexible, efficient, and easy

to implement. However, the main disadvantage is that since the keys are randomly
selected from the key pool, all the key identifiers have to be broadcasted as is or
by challenge–response protocol. This consumes a lot of bandwidth. Hwang and
Kim [41] revisited the random graph theory and used giant component theory by
Erdös and Rényi to show that even if node degree is small, most of the nodes in the
network can be connected.

A variation of the basic scheme was proposed by Chan et al. [19]. This scheme
is called the Q-composite scheme. According to this scheme two nodes can com-
municate with each other provided they share q ′ ≥ q keys between them. The key
predistribution step is the same as in the basic scheme, in which k keys are selected
from a key pool X and placed in sensor nodes. Two nodes wishing to communicate
either broadcast their key identifiers or use a challenge–response protocol (given
in Sect. 24.1.1) to find out the common shared keys. If q ′ ≥ q keys are shared
between two nodes, then a link key K is generated as the hash of all shared keys
as K = hash(k1||k2|| · · · ||kq ′). The keys are hashed in some canonical order, for
example, based on the order in which they occur in the original key pool X .

Let p(i) be the probability that any two nodes have exactly i keys in common.
Any node has

(
v
i

)
ways of picking up i keys from the key pool X . After i keys are

drawn from the key pool X , there are 2(k − i) keys to be drawn from X for the
two sensor nodes. This can be done in

(
v−i

2(k−i)

)
ways. These 2(k − i) keys must be

partitioned into equal parts for each of the nodes. This can be done in
(2(k−i)

k−i

)
ways.

Thus p(i) = (vi)(
v−i

2(k−i))(
2(k−i)

k−i )

(vk)
2 . The probability of establishing a link between two

nodes is given by pc = 1− (p(0)+ p(1)+ · · · + p(q − 1)). For a given key ring of
size k, minimum key overlap q and minimum connection probability p, the largest
v is chosen, such that pc ≥ p.

Suppose the number of compromised nodes is s. Since each key ring is of size
k, the probability that a given key is not compromised is

(
1 − k

v

)s
. The fraction of

keys compromised is 1 − (1 − k
v

)s
. Probability that a link which is composed of

hash values of i shared keys is compromised is
(

1 − (1 − k
v

)s)i
. The probability of

setting up a secure link is p(q)+ p(q + 1)+ · · · + p(k). So, the probability that an
existing link is broken when s nodes are compromised is
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k∑

i=q

Pr(Link is broken | The link has i common keys)Pr(Link is has i common keys)

=
k∑

i=q

(
1 −

(
1 − k

v

)s)i p(i)

p

The Q-composite scheme has very high resiliency when the number of nodes
compromised is small. However, as the number of nodes compromised increases,
more keys are compromised until nodes share fewer than q keys and hence no link
key exists.

The choice of q also depends on the requirements of the network. If q is small,
then the initial s-connectivity is higher. However, the network is more vulnerable to
node compromise if the compromise takes place during the setup phase. With large
q the initial connectivity is low, but the compromise of nodes during the setup phase
does not affect the network greatly. However, as the number of compromised nodes
increases, the resilience drastically reduces.

24.4 Random Pairwise Schemes

In a pairwise scheme each pair of nodes shares a secret key. For a network consisting
of N nodes, each node has N − 1 keys, one key shared with each of the remaining
N −1 nodes. This becomes bottleneck if sensor memory is limited. We now discuss
some pairwise schemes.

24.4.1 Chan–Perrig–Song Scheme

The random pairwise keys scheme, proposed by Chan, Perrig, and Song [19] is
a modification of the pairwise scheme (discussed in Sect. 24.1), in which not all
the N − 1 keys are to be stored in the nodes. Let pc be the probability that two
nodes are s-connected. In the setup phase, the base station generates N = k/pc key
identifiers. Each node identifier is matched with k other IDs, and a pairwise key is
generated for each of these k nodes. Then this pairwise key is stored in both the
node’s key rings along with the identifier of the other node. This helps in node-to-
node authentication. The node broadcasts its id. By looking at the id, another node
can decide if it shares pairwise keys with this node. A cryptographic handshake
is then done between the nodes. Revocation of node is done via public voting as
discussed in Sect. 24.1.5.

Advantages of the scheme are that it is fully resilient, ensure node-to-node autho-
rization, and are resistant to node replication. Disadvantage of public voting for
revocation may lead to DOS attacks. The technique also has reduced scalability. If
new nodes are deployed in the network, then keys need to be redistributed in the
system.
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24.4.2 Liu–Ning–Li Polynomial-Pool-Based Key Predistribution

The pairwise key scheme of Liu and Ning [48] (later extended by Liu et al. [53])
using polynomial pool-based key predistribution is based on the scheme given by
Blundo et al. [7]. However, instead of a single polynomial in Blundo’s scheme, there
exists a set of polynomials. Two sensor nodes share some secret key if the keys
are generated from the same polynomial. The polynomial scheme has been used in
two different ways: a grid-based predistribution scheme and a hypercube-based key
predistribution scheme.

According to the polynomial-based scheme, a key pool is generated which con-

sists of a set of F bivariate t-degree polynomials f (x, y) =
∑t

i, j=0
ai j xi y j over

a finite field GF(q), (where q is a prime number) such that the function has the
property that f (x, y) = f (y, x). Generally q has the value 28 + 1 or 216 + 1. A
node Ui is given a set of Fi ⊆ F of s′ polynomial shares. The polynomial share
given to node Ui is f (i, y), where f ∈ Fi . Two nodes share a common key, if their
polynomial shares are drawn from the same polynomial. f (i, j) = f ( j, i) is the
common key between the nodes Ui and U j . According to this approach, each key
occupies (t + 1) log q storage space. The s-connectivity is given by

pc = 1 − (|F | − s′)!2
(|F | − 2s′)!(|F |)! = 1 −

s′−1∏

i=0

|F | − s′ − i

|F | − i

The scheme is t collusion resistant meaning that a minimum of t + 1 nodes have
to be compromised to compromise the entire network. The probability that a key is
compromised is given by

pcomp = pc × Pcd + (1 − pc)
[
1 − (1 − p′c

)
(1 − Pcd)

2
]

where

Pcd = 1 −
t∑

i=0

s!
(s − i)!i !

(
s′

|F |
)i (

1 − s′

|F |
)s−i

where s is the number of compromised nodes, pc is the fraction of direct links, 1−pc

is the fraction of indirect links, and p′c = s/N . They also extended their scheme to
n-dimensional hypercube-based scheme. The above is a special case when n = 2.

24.4.3 Probabilistic scheme of Zhu et al.

Zhu et al. [100] proposed a scheme to establish pairwise keys using probabilistic
key sharing [8] and threshold secret sharing [84]. This scheme enables any two
nodes to establish a pairwise key on the fly, without the use of an online key pre-
distribution center. Nodes find their pairwise keys only by knowing the key ids, and
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no key identifier list is to be broadcasted. Hence the communication overhead is
minimized.

Consider two nodes Ui and U j that want to communicate. The goal of the algo-
rithm is to establish a key, S, that is known exclusively to Ui and U j . The basic
idea underlying the establishment of such a key S is as follows. The sender node
splits S into multiple shares using an appropriate secret sharing scheme. The sender
then transmits to the recipient node all these shares, using a different logical path
for each share. A logical path is said to exist between nodes if either they already
share one or more keys (direct logical path) or they do not share any keys, but can
exchange message securely through other intermediate nodes (indirect logical path).
The recipient node then reconstructs S after it receives all (or a certain number of)
the shares. This is similar to the multipath key reinforcement of Chan et al. [19].

Initially k keys are predistributed in each sensor from a key pool consisting of
v keys. During pairwise key establishment, any node Ui randomly generates the
secret key S and derives shares sk1, sk2, . . ., skn from S. The random strings sk1,
sk2, . . ., skn−1 are such that |sk1| = |sk2| = · · · = |skn−1| = |S| and skn =
S ⊕ sk1 ⊕ sk2 ⊕ · · · ⊕ skn−1, where ⊕ is the XOR operation.

Example 6 Consider two nodes A and B. They are connected via nodes C and D
such that there are two paths between A and B, i.e., path p1 : A − C − B and path
p2 : A−D−B. Node A generates a random share S and create two secret shares sk1
and sk2 of S, such that |sk1| = |sk2| = |S| and S = sk1 ⊕ sk2. Then node A sends
the share sk1 encrypted with the common key that it shares with C . C decrypts it
and then re-encrypts it using the common key that it shares with B and sends to B.
So B decrypts and obtains sk1. Similarly A sends the secret share sk2 to B. Now B
can obtain S by calculating S = sk1 ⊕ sk2. We note that none of the nodes C or D
can calculate S because they do not have both the secret shares sk1 and sk2.

The advantages of this approach are that the communication overhead is very low,
since only the identifiers of the nodes need to be broadcasted to find the common
keys. The disadvantage is that if some node in a path is compromised, creation of
shares and pairwise key establishment process has to be started afresh.

24.5 Grid-Based Key Predistribution Schemes

In this section we discuss grid-based key predistribution schemes. In these schemes
the nodes/keys are assumed to be arranged logically on a grid. The geometry of the
grid is used to preload the keys in the sensors thus giving rise to different determin-
istic key predistribution schemes.

24.5.1 PIKE Scheme of Chan and Perrig

In many schemes a path between two nodes is established where the trusted inter-
mediary is the base station. This leads to the problem that the nodes close to the
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base station forward most of the information and continually lose battery power. As
a result these nodes die out before the other nodes in the network. To overcome this
problem Chan and Perrig proposed the PIKE scheme [18]. PIKE stands for peer
intermediaries for key establishment. According to this scheme keys are established
between nodes such that other sensor nodes act as trusted intermediaries. PIKE
achieves an overhead of O

(√
N
)

and establishes keys between any two nodes

regardless of the network topology or node density.
Suppose the maximum number of nodes in the network is N . In PIKE the node

identifiers are arranged in a square grid structure having a dimension
√

N × √
N .

Each node (x, y) is loaded with secret pairwise keys shared solely with each node
in the two sets:
{i, y} for all i ∈

{
0, 1, 2, . . . ,

√
N − 1

}
and {x, j} for all j ∈ {0, 1, 2, . . . ,

√
N − 1

}
.

Each key is unique and shared only between two nodes, hence they are called

pairwise keys. Each node thus stores 2
(√

N − 1
)

keys.

Suppose two nodes UA and UB having identifiers (xA, yA) and (xB, yB), respec-
tively, want to communicate. If UA and UB are either in the same row or in the same
column, then they share a pairwise key and can thus communicate directly. If they
lie in different row and column, then they can establish a communication between
each other through two nodes U1 and U2, such that U1 is in the same row as UA and
same column as UB and U2 is in the same column as UA and same row as UB . Thus
for every pair of nodes, there are two intermediaries.

The deterministic nature of key predistribution guarantees that two nodes will be
able to establish a common key. The disadvantages of PIKE are that the communica-
tion overhead is high. A large fraction of keys do not share common keys and, path
must be established through intermediary nodes which may be time consuming.

Sadi et al. [83] proposed another two-dimensional grid-based random scheme
based on bivariate polynomials which they called GBR (grid-based random) key
predistribution scheme. Mohaisen et al. [64] introduced a three-dimensional grid-
based scheme in which each sensor node corresponds to a grid-intersection point.
They also use symmetric polynomials for key predistribution.

24.5.2 Liu–Ning–Du Scheme

In many applications, for example, when nodes are scattered from an airship, nodes
may be deployed in groups. The sensors belonging to one group are in close prox-
imity to one another. Liu et al. [51, 52] proposed framework of group-based deploy-
ment and presented two key predistribution schemes which are very suitable in this
framework. The first scheme is a hash key-based scheme and the other a polynomial-
based scheme.

Each group of sensors that are deployed together forms a deployment group.
Since in this chapter we discuss only single-hop networks, any sensor is in
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communication proximity of any other, regardless of group belonging. The sensor
nodes to be deployed are divided into n groups each consisting of m sensor nodes.
A predistribution scheme exists to establish pairwise keys within each group (called
in-group predistribution), and a key predistribution method is used to establish pair-
wise keys in different deployment groups (called the cross-group predistribution).
The in-group instance Di can be any existing key predistribution technique. The m
cross groups

{
G ′

i

}
i=1,2,...,m are constructed such that

1. each cross-group includes exactly one sensor node from the deployment group,
that is,

∣∣G ′
i

⋂
G j
∣∣ = 1, i �= j

2. there are no common sensor nodes between any two different cross groups, that
is, G ′

i

⋂
G ′

j = ∅.

In the hash-based scheme before deployment, every sensor node Ui is predis-
tributed with a master key Ki , known only by the base station and the node Ui .
Let G be either a deployment group or a cross group. Assume that the node IDs in
G have already been sorted in an ascending order. For any sensor node Ui ∈ G, let
Pos(i) be the position of this node in the ordered group G. For any two nodes Ui and
U j (Pos(i) < Pos( j)) in this group, the value (Pos(i)+ Pos( j)) is checked. If it is an
odd value, node U j is predistributed H(Ki || j); otherwise, node Ui is predistributed
H(K j ||i), where H is a one-way hash function. Due to the group construction
method, the positions of a sensor node in its deployment group and cross group,
Pos(i) = ((i − 1) mod m) + 1; in the case of the cross group, Pos(i) = �i/m�.
Position of any sensor is part of deployment plan and is therefore recorded at sen-
sor. This method is a variant of grid-based scheme, where ki, j is defined as either
H(Ki || j) or H(K j ||i).
Example 7 We refer to Fig. 24.2. There are four groups and three cross groups.
The groups contain the following node ids: G1 = {1, 2, 3}, G2 = {4, 5, 6}, G3 =
{7, 8, 9}, G4 = {10, 11, 12} and the cross groups are G ′

1 = {1, 4, 7, 10}, G ′
2 =

{2, 5, 8, 11}, G ′
3 = {3, 6, 9, 12}. For example, node 1 and node 2 are in the same

deployment group. In this case, we will simply predistribute the key H(K1||2) to
node 2. Node 1 can calculate the value H(K1||2) because it has key K1 and knows
the id of node 2. Suppose nodes 3 and 11 want to communicate, then they can do so
via nodes 2 or 12, since both 3 and 11 share common keys with both nodes 2 and 12.

The purpose of using a hash function is twofold. It reduces storage space and,
more importantly, makes the network more secure. For instance, consider node 2,
which receives the value H(K1||2). Even if an adversary compromises node 2, she
will be unable to learn the value of key K1 that only node 1 possesses.

The polynomial-based technique (also a variant of grid scheme with key defined
appropriately) uses Blundo’s scheme [7]. The framework is scalable and can be used
to improve any existing predistribution schemes. The disadvantages of this scheme
are that the probability of secure communication between cross-group neighbors is
very low. The scheme is not suitable for networks which have small group size.
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Fig. 24.2 Group-based
deployment scheme
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24.5.3 Martin–Paterson–Stinson’s Improvement of Liu et al.’s
Scheme

To alleviate the problems of Liu et al.’s scheme [51, 52] Martin et al. [61] proposed a
group-based design using resolvable transversal designs. In their scheme a TD(m, n)
is considered.

A transversal design [91, Sect. 6.3] TD(m, λ; n), with m groups of size n and
index λ, is a triple (X,G, A) where

1. X is a set of mn elements,
2. G = {G1,G2, . . . ,Gm} is a family of m sets (each of size n) which form a

partition of X ,
3. A is a family of m sets (or blocks) of elements such that each m set in A intersects

each group Gi in precisely one element, and any pair of element which belongs
to different groups occurs together in precisely λ blocks in A.

When λ = 1 we can simply denote this by TD(m, n). A TD(m, n) is resolvable if
the blocks can be partitioned into parallel classes, such that each point of the design
is contained in exactly one block of each class.

The nodes are divided into groups as the previous scheme.
The key predistribution scheme can be described as follows. The key pool con-

sists of n(m + 1) symmetric bivariate polynomials of degree t with coefficients in
GF(q), where q may be 28 or 216. There are N = n2 nodes divided into n groups of
n nodes each. Each node is given m +1 polynomial shares from the key pool as was
done in Blundo’s scheme (Sect. 24.2.2), such that the nodes in the same group have
shares from only one common polynomial. The nodes in different groups may have
shares from at most one common polynomial. We explain the key predistribution
scheme using Example 8. The following observations can be made.



812 S. Ruj et al.

1. Each node stores the equivalent of (m + 1)(t + 1) keys.
2. For each instance of Blundo’s scheme (polynomial of Blundo’s scheme), there

are n nodes possessing shares of that polynomial in that scheme.
3. Probability p1 that two nodes from different groups share a key is k/n.
4. Probability p2 that two nodes from the same groups share a key is n−1

n2/λ−1
+

n2/λ−n
n2/λ−1

mn.
5. Probability that a uncompromised link is broken when s nodes are compromised

is

fail(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if s ≤ t,

1 −
t∑

i=0

(n−2
i

)(n2−n
s−i

)

(n2−2
s

) if s > t

Example 8 Let us consider the TD(3,5). Let the set of mn = 15 elements be
{A, B,C, D, E, F,G, H, I, J, K , L , M, N , O}. There are n = 5 parallel classes.
Each element occurs in a parallel class only once. We say group of SN and group
of TD to mean the groups of nodes in the sensor network and the groups of the
underlying transversal designs, respectively. The groups of the design are

Group 1 of TD : {A, B,C, D, E}
Group 2 of TD : {F,G, H, I, J }

Group 3 of TD : {K , L , M, N , O}
Class 1 Class 2 Class 3 Class 4 Class 5

{A, F, K } {A,G, M} {A, H, O} {A, I, L} {A, J, N }
{B,G, L} {B, H, N } {B, I, K } {B, J, M} {B, F, O}
{C, H, M} {C, I, O} {C, J, L} {C, F, N } {C,G, K }
{D, I, N } {D, J, K } {D, F, M} {D,G, O} {D, H, L}
{E, J, O} {E, F, L} {E,G, N } {E, H, K } {E, I, M}

This gives rise to a network with n2 = 25 nodes deployed in five groups of sensor
nodes (SN) of five nodes each. If the nodes have ids 1, 2, . . . , 25 then the sensors in
each group of sensor nodes will be as follows.

Group 1 of SN Group 2 of SN Group 3 of SN Group 4 of SN{
f A
1 , f F

1 , f K
1 , f 1

1

} {
f A
6 , f G

6 , f M
6 , f 2

6

} {
f A
11, f H

11 , f O
11 , f 3

11

} {
f A
16, f I

16, f L
16, f 4

16

}
{

f B
2 , f G

2 , f L
2 , f 1

2

} {
f B
7 , f H

7 , f N
7 , f 2

7

} {
f B
12, f I

12, f K
12 , f 3

12

} {
f B
17, f J

17, f M
17 , f 4

17

}
{

f C
3 , f H

3 , f M
3 , f 1

3

} {
f C
8 , f I

8 , f O
8 , f 2

8

} {
f C
13, f J

13, f L
13, f 3

13

} {
f C
18, f F

18, f N
18 , f 4

18

}
{

f D
4 , f I

4 , f N
4 , f 1

4

} {
f D
9 , f J

9 , f K
9 , f 2

9

} {
f D
14, f F

14, f M
14 , f 3

14

} {
f D
19, f G

19, f O
19 , f 4

19

}
{

f E
5 , f J

5 , f O
5 , f 1

5

} {
f E
10, f F

10, f L
10, f 2

10

} {
f E
15, f G

15, f N
15 , f 3

15

} {
f E
20, f H

20 , f K
20 , f 4

20

}
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Group 5 of SN{
f A
21, f J

21, f N
21 , f 5

21

}
{

f B
22, f F

22, f O
22 , f 5

22

}
{

f C
23, f G

23, f K
23 , f 5

23

}
{

f D
24, f H

24 , f L
24, f 5

24

}
{

f E
25, f I

25, f M
25 , f 5

25

}

We recall from Sect. 24.2.2 that f j (x, y) is a symmetric bivariate polynomial of
degree t with co-efficients in GF(q), where q is a prime power. The polynomial is
evaluated at x = i and the share f j (i, y) is given to node i . For ease of representa-
tion we refer to f j (i, y) by f j

i . So in this example, there are n(m+1) = 20 symmet-
ric bivariate polynomials f A(x, y), f B(x, y), . . ., f O(x, y) and f 1(x, y), f 2(x, y),
. . ., f 5(x, y). Each node receives shares of four such polynomials. The shares
are univariate polynomials of degree t . For example, node 11 receives and stores
the four univariate polynomials f A(11, y), f H (11, y), f O(11, y), and f 3(11, y),
which have been represented as f A

11, f H
11 , f 0

11, and f 3
11, respectively. If f j (x, y) has

degree t = 2 (say), then each node stores eight values in GF(q) or an equivalent of
eight keys.

Suppose nodes 3 and 17 want to communicate. They find out which polynomi-
als they have in common and find that they have shares of the same polynomial
f M (x, y). Node 3 has the univariate polynomial f M

3 = f M (3, y) and node 17 has
the univariate polynomial f M

7 = f M (17, y) = f M (y, 17). So the common key
between nodes 3 and 17 is f M (3, 17), which can be calculated by both 3 and 17. If
two nodes A and B do not share a common polynomial they do so via other nodes
which have polynomials common to A and B. If nodes 3 and 9 want to communi-
cate, they can do so via node 8. In this case f C (3, 8) is the common key between
the nodes 3 and 8 and f 2(8, 9) is the common key between nodes 8 and 9.

The disadvantage with this scheme is that the resolvable designs can be applied
where such designs exists. No particular algorithm is given for the construction of
such designs for a given set of parameters.

24.6 Key Predistribution Using Combinatorial Structures

Mitchell and Piper [63] were the first to apply combinatorial designs in key dis-
tribution in networks. Combinatorial designs were used for the first time in key
predistribution by Çamtepe and Yener [10, 12]. Before discussing the key predis-
tribution schemes in WSN, define set systems or designs. More on designs can be
found in [87, 91]. A set system or design [45] is a pair (X,A), where A is a set of
subsets of X , called blocks. The elements of X are called elements. The degree of
a point x ∈ X is the number of blocks that contain x . (X,A) is regular of degree
r if all points have the same degree r . The size of the largest block is called rank.
Rank is denoted by k. A BIBD(v, b, r, k; λ) is a design which satisfies the following
conditions:
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1. |X | = v, |A| = b,
2. The set system is regular of degree r ,
3. All sets have the same size equal to k,
4. Each pair of elements in X is contained in exactly λ blocks in A.

Example 9 Consider the following set system (X,A), such that X =
{0, 1, 2, 3, 4, 5}, A = {{0, 1, 2}, {0, 1, 3}, {0, 2, 4}, {0, 3, 5}, {0, 4, 5}, {1, 2, 5},
{1, 3, 4}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}}. Here v = 6, b = 10, r = 5, k = 3, and
λ = 2. The above example is a BIBD(6,10,5,3;2).

The mapping from set system to key predistribution is done in the following way.

Design parameters Network parameters

The set of elements X The set of key identifiers in the key pool
Block Sensor node
Rank k Number of keys per node
Degree r Number of blocks in which a given key is present

The set of elements X represents the key identifiers (ids). Each block represents one
sensor node. The subsets of keys denote the key chains. If an element x belongs to
block A ∈ A, then the key having identifier x is placed in the block A. Thus our
sensor network consists of a key pool of size |X | and a maximum of |A| nodes.

Different authors have used different combinatorial structures in devising key
predistribution schemes. Key predistribution using combinatorial designs has sev-
eral advantages. Resiliency can be improved by properly choosing the design. Some
designs result in sensor networks where every pairs of nodes share key. The most
important point in favor of using combinatorial designs is that because of the pattern
inherent in the designs efficient shared-key discovery algorithms can be devised.

The significance of the parameter λ in a BIBD design had not been identified
earlier. It is being investigated in [79]. Let us consider a (v, b, r, k; 2) design. Thus
λ = 2. The network arising from this design consists of nodes such that any pair of
keys occur in exactly two nodes. So a pairwise key can be constructed between two
nodes in the following way. Suppose K1 and K2 are two keys which occur only in
the nodes A and B. We create a pairwise key K AB = hash(K1||K2). The key pre-
distribution scheme combines the merits of a deterministic scheme as well provides
node-to-node authentication (as in pairwise schemes). A closer look reveals that this
is essentially a two-composite scheme. It is yet to be verified how well this scheme
performs compared to other existing schemes.

24.6.1 Çamtepe and Yener’s Scheme

Çamtepe and Yener [10, 12] were the first to use combinatorial designs for key
predistribution in WSN. They used projective planes and generalized quadrangles



24 Key Predistribution in Sensor Networks 815

for predistribution. We note that a finite projective plane PG(2, q) (q is a prime
power) is the symmetric BIBD, BIBD(q2 + q + 1, q2 + q + 1, q + 1, q + 1, 1).
This results in a network with q2 + q + 1 nodes, each having q + 1 keys. The size
of the key pool is q2 + q + 1. Let the nodes (or blocks) be indexed by (a, b, c)
where a, b, c ∈ GF(q). Nodes are given by the identifiers (1, b, c), (0, 1, c), and
(0, 0, 1), where b, c ∈ GF(q). Thus there are a total of q2 + q + 1 nodes. Similarly
the keys are indexed by (x, y, z) where x, y, z,∈ GF(q). The identifiers of the keys
are given by (x, y, 1), (x, 1, 0), and (1, 0, 0), where x, y ∈ GF(q). So there are a
total of q2 + q + 1 keys ( or elements). A key (x, y, z) is assigned to node (a, b, c)
if ax + by + cz = 0.

Example 10 Let q = 5. There are 31 nodes, each node containing six keys. The total
number of keys is 31. The nodes are represented by (1, b, c) for b, c ∈ {0, 1, 2, 3, 4},
(0, 1, c) for c ∈ {0, 1, 2, 3, 4}, and (0, 0, 1). The keys have identifiers (x, y, 1) for
x, y ∈ {0, 1, 2, 3, 4}, (x, 1, 0) for x ∈ {0, 1, 2, 3, 4}, and (1, 0, 0). The distribution
of keys for each node is shown in Table 24.3.

Table 24.3 Distribution of keys in nodes

Node Keys

(1, 0, 0) (0, 0, 1), (0, 1, 1), (0, 2, 1), (0, 3, 1), (0, 4, 1), (0, 1, 0)
(1, 0, 1) (4, 0, 1), (4, 1, 1), (4, 2, 1), (4, 3, 1), (4, 4, 1), (0, 1, 0)
(1, 0, 2) (3, 0, 1), (3, 1, 1), (3, 2, 1), (3, 3, 1), (3, 4, 1), (0, 1, 0)
(1, 0, 3) (2, 0, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (2, 4, 1), (0, 1, 0)
(1, 0, 4) (1, 0, 1), (1, 1, 1), (1, 2, 1), (1, 3, 1), (1, 4, 1), (0, 1, 0)
(1, 1, 0) (0, 0, 1), (1, 4, 1), (2, 3, 1), (3, 2, 1), (4, 1, 1), (4, 1, 0)
(1, 1, 1) (0, 4, 1), (1, 3, 1), (2, 2, 1), (3, 1, 1), (4, 0, 1), (4, 1, 0)
(1, 1, 2) (0, 3, 1), (1, 2, 1), (2, 1, 1), (3, 0, 1), (4, 4, 1), (4, 1, 0)
(1, 1, 3) (0, 2, 1), (1, 1, 1), (2, 0, 1), (3, 4, 1), (4, 3, 1), (4, 1, 0)
(1, 1, 4) (0, 1, 1), (1, 0, 1), (2, 4, 1), (3, 3, 1), (4, 2, 1), (4, 1, 0)
(1, 2, 0) (0, 0, 1), (1, 2, 1), (2, 4, 1), (3, 1, 1), (4, 3, 1), (3, 1, 0)
(1, 2, 1) (0, 2, 1), (1, 4, 1), (2, 1, 1), (3, 3, 1), (4, 0, 1), (3, 1, 0)
(1, 2, 2) (0, 4, 1), (1, 1, 1), (2, 3, 1), (3, 0, 1), (4, 2, 1), (3, 1, 0)
(1, 2, 3) (0, 1, 1), (1, 3, 1), (2, 0, 1), (3, 2, 1), (4, 4, 1), (3, 1, 0)
(1, 2, 4) (0, 3, 1), (1, 0, 1), (2, 2, 1), (3, 4, 1), (4, 1, 1), (3, 1, 0)
(1, 3, 0) (0, 0, 1), (1, 3, 1), (2, 1, 1), (3, 4, 1), (4, 2, 1), (2, 1, 0)
(1, 3, 1) (0, 3, 1), (1, 1, 1), (2, 4, 1), (3, 2, 1), (4, 0, 1), (2, 1, 0)
(1, 3, 2) (0, 1, 1), (1, 4, 1), (2, 2, 1), (3, 0, 1), (4, 3, 1), (2, 1, 0)
(1, 3, 3) (0, 4, 1), (1, 2, 1), (2, 0, 1), (3, 3, 1), (4, 1, 1), (2, 1, 0)
(1, 3, 4) (0, 2, 1), (1, 0, 1), (2, 3, 1), (3, 1, 1), (4, 4, 1), (2, 1, 0)
(1, 4, 0) (0, 0, 1), (1, 1, 1), (2, 2, 1), (3, 3, 1), (4, 4, 1), (1, 1, 0)
(1, 4, 1) (0, 1, 1), (1, 2, 1), (2, 3, 1), (3, 4, 1), (4, 0, 1), (1, 1, 0)
(1, 4, 2) (0, 2, 1), (1, 3, 1), (2, 4, 1), (3, 0, 1), (4, 1, 1), (1, 1, 0)
(1, 4, 3) (0, 3, 1), (1, 4, 1), (2, 0, 1), (3, 1, 1), (4, 2, 1), (1, 1, 0)
(1, 4, 4) (0, 4, 1), (1, 0, 1), (2, 1, 1), (3, 2, 1), (4, 3, 1), (1, 1, 0)
(0, 1, 0) (0, 0, 1), (1, 0, 1), (2, 0, 1), (3, 0, 1), (4, 0, 1), (1, 0, 0)
(0, 1, 1) (0, 4, 1), (1, 4, 1), (2, 4, 1), (3, 4, 1), (4, 4, 1), (1, 0, 0)
(0, 1, 2) (0, 3, 1), (1, 3, 1), (2, 3, 1), (3, 3, 1), (4, 3, 1), (1, 0, 0)
(0, 1, 3) (0, 2, 1), (1, 2, 1), (2, 2, 1), (3, 2, 1), (4, 2, 1), (1, 0, 0)
(0, 1, 4) (0, 1, 1), (1, 1, 1), (2, 1, 1), (3, 1, 1), (4, 1, 1), (1, 0, 0)
(0, 0, 1) (0, 1, 0), (4, 1, 0), (3, 1, 0), (2, 1, 0), (1, 1, 0), (1, 0, 0)
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The other predistribution scheme involves generalized quadrangles. Three known
designs for generalized quadrangles have been used: G Q(q, q), G Q(q, q2), and
G Q(q2, q3). The construction of G Q(q, q), G Q(q, q2), and G Q(q2, q3) has been
done from PG(4, q), PG(5, q), and H(4, q2), respectively. Details can be found
in [12, Section B]. Although the first scheme using symmetric design results in full
connectivity of the network, the resiliency is poorer than in the second scheme using
generalized quadrangles.

24.6.2 Lee and Stinson’s Schemes

Lee and Stinson [45] formalized the definition of key predistribution schemes using
set systems. They introduced the concept of common intersection designs [46] and
discussed the use of block graphs for sensors, since by this design every pair of
nodes is connected by a maximum of two hop paths. They also used transversal
designs for key predistribution. The following construction of a transversal design
TD(k, r) [45] is used.

1. X = {(x, y) : 0 ≤ x < k, 0 ≤ y < r}
2. For all i , Gi = {(i, y) : 0 ≤ y < r}
3. A = {Ai, j : 0 ≤ i < r & 0 ≤ j < r}

Each of the r2 nodes (r is a prime power) is assigned a set of k keys, in such a way
that node (i, j) receives the keys {(x, xi + j mod r) : 0 ≤ x < k}.

The design is such that two nodes share 0 or 1 common key. The expected number
of common keys between two nodes is given by p1 = k(r−1)

r2−1
= k

r+1 . When two
nodes want to communicate they broadcast their identifiers (i1, j1) and (i2, j2). The
nodes can communicate if they share some common key. This happens when xi1 +
j1 = xi2 + j2 (mod r), such that
x = ( j2 − j1)(i1 − i2)

−1 (mod r) < k. Sect. 24.1.1 shows how shared keys are
calculated in this scheme. A generalization of the above scheme was made by Lee
and Stinson [47]. A TD(t, k, p) (where p is prime and t ≤ k ≤ p) is constructed in
the following way.

Let X1 ⊆ X , |X1| = k, X = X1 × Zp. For x ∈ X1 define Hx = {x} × Zp

and define H = {Hx : x ∈ X1}. For every ordered t-tuple c = (c0, c1, . . . , ct−1) ∈
(Zp)

t , define a block Ac =
{(

x,
∑t−1

i=0
ci xi

)
: x ∈ X1

}
and A = {Ac : c ∈

(Zp)
t }. Here μ2(A, A′) between two blocks A and A′ is defined as μ2(A, A′) =

|{A′′ : |A⋂ A′′| = |A′⋂ A′′| = 2}|, where μ2 = min{μ2(A, A′) : |A⋂ A′| ≤ 1}
and η denotes the number of nodes in the intersection of the neighborhood of the
two nodes Ui and U j within communication range.

Ac are the blocks of the design. We can see that for t = 2 the construction is
same as given in [45]. In [44] a quadratic scheme with TD(3, k, p) is considered.
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Let p be a prime and let Fp be a finite field of order p. We define a set system
(X,A) such that X = D×Fp , D = {0, . . . , k−1} and A = {Aa,b,c : a, b, c ∈ Fp},
where Aa,b,c = {(x, ax2 + bx + c) : x ∈ D}.

The s − connectivi t y of such a network is given by Pr1 = k(k−1)
2(p2+p+1)

.
The probability that two nodes are connected by paths of length 2 is given by

Pr2 =
(

1 − k(k−1)
2(p2+p+1)

) (
1 −

(
1 − μ2

p3−2

)η)
. Probability that a link is broken when

s nodes are compromised is fail(s) = 1 − 2
(

1 − p2−2
p3−2

)s +
(

1 − 2p2−p−2
p3−2

)s
.

The resiliency of the linear scheme is better than the quadratic scheme. A multi-
ple space scheme has also been presented in [47].

Another grid-based deployment scheme was proposed by Chakrabarti [13]. This
was further studied by Ruj et al. [78]. Here the predistribution scheme uses transver-
sal design. The keys are distributed following the transversal design as done by Lee
and Stinson. Blackburn et al. [5] proposed a grid-based deployment schemes in
which the keys are predistributed using Costas arrays and distinct difference config-
uration.

24.6.3 Chakrabarti–Maitra–Roy Scheme

Chakrabarti et al. [14, 15] proposed a hybrid key predistribution scheme by merging
the blocks in combinatorial designs. They considered the blocks constructed from
the transversal design proposed by Lee and Stinson and randomly selected them and
merged them to form the sensor nodes. Though this scheme increases the number
of the keys per node, it improves the resiliency of the network. The probability
that two nodes share a common key is also higher. Thus it has a better connectivity.
Consider a transversal design TD(r, k). Let v = rk, b = r2, and z blocks be selected
independently at random to form a sensor node. We note the following features
about the design.

1. There will be N =
⌊

b
z

⌋
sensor nodes.

2. The probability that any two nodes share no common key is (1 − p1)
z2

, where
p1 = k

r+1 .

3. The expected number of keys shared between two nodes is z2 p1.
4. Each node will contain M distinct keys, where zk − (z2

) ≤ M ≤ zk. The average
value of M is â = zk − (z2

) k
r+1 .

5. The expected number of links in the merged system is L̂ =
((r2

2

)− (z2
) ⌊ r2

z

⌋)

k
r+1 − (r2 mod z)k.

6. Each key will be present in Q nodes, where
⌈ r

2

⌉ ≤ Q ≤ r . The average value of

Q is Q̂ = 1
kr

(⌊
b
z

⌋) (
zk − (z2

) k
r+1

)
.

7. Given that s nodes are compromised the fraction of links broken is given by
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Fail(s) =
∑z2

i=1
(γi )

(kr
i )

(z2

i

) ( k
r+1

)i (
1 − k

r+1

)z2−i

1 −
(

1 − k
r+1

)2
where γ = szk

(
1 − sz − 1

2(r + 1)

)

In this scheme each of the nodes has the identifiers of the blocks which form that
node. These identifiers are stored as a list in the node. To find a shared common key
between two blocks, say U1 and U2, U1 compares each identifier with z identifiers
of U2. For this, O(z log N ) bits must be broadcasted by each node and z2 inverse
calculations are done.

24.6.4 Ruj and Roy Scheme

A key predistribution scheme using partially balanced incomplete block designs
(PBIBD) was proposed by Ruj and Roy [80]. We defined a BIBD(v, b, r, k, λ)
design earlier in this section. A pair of elements occur in exactly λ elements. A
m-associate PBIBD(v, b, r, k, λ1, λ2, . . . , λm) is a design which consists of v ele-
ments. There are b blocks each of size k, such that each element is repeated in r
blocks. The difference from BIBD is that a pair of elements together occur either in
λ1 or in λ2, . . . , λm blocks. A PBIBD is symmetric, if v = b.

The authors [80] use a two-associate PBIBD. The underlying construction comes
from a triangular PBIBD design [21]. The PBIBD is constructed in the following
way. Consider the matrix A given by

A =

∗ 1 2 · · · n − 2 n − 1
1 ∗ n n + 1 · · · 2n − 3
2 n ∗ 2n − 2 · · · 3n − 6
...

...
... ∗ ...

...

n − 1 2n − 3 · · · · · · n(n − 1)/2 ∗

We know that the matrix is symmetric about the principal diagonal. Corresponding
to each position (x, y) a block is created which consists of elements in the x th row
and yth column. So there are n(n − 1)/2 elements and n(n − 1)/2 blocks. Each
block contains 2(n − 1) elements. A pair of elements occur together either in four
or n − 2 blocks. Any two blocks have either four or n − 2 elements in common. So
v = b = n(n − 1)/2, r = k = 2(n − 2), λ1 = 4, and λ2 = n − 2. It can be noted
that given the position (x, y) of the matrix A, the element ax,y = ay,x in the x th
row and yth column is given by
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ax,y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∗, for x = y

y − x, for x = 1, x < y

x − y, for y = 1, x > y

n + y − x − 1, for x = 2, x < y

n + x − y − 1, for y = 2, x > y

(x − 1)n − (x + 1)(x − 2)/2 + (y − x − 1), for x < y, x > 2

(y − 1)n − (y + 1)(y − 2)/2 + (x − y − 1). for x > y, y > 2

Each entry in the matrix corresponds to a node. Each node nai, j , (i �= j) in
position (i, j) of the matrix has the key identifiers {ax, j : x = 1, 2, . . . , n, and
x �= i, j}⋃{ai,y : y = 1, 2, . . . , n and y �= i, j}. Thus there are n(n − 1)/2 sensor
nodes, each having 2(n − 2) keys. Any two nodes share either n − 2 (or 4) keys
depending on the fact that are (or are not) in the same row or same column.

Example 11 We present an example to demonstrate the above scheme. We consider
n = 5. Then the array A containing the elements will be represented by

A =

∗ 1 2 3 4
1 ∗ 5 6 7
2 5 ∗ 8 9
3 6 8 ∗ 10
4 7 9 10 ∗

There are 10 sensor nodes ni , i = 1, 2, . . . , 10, and 10 keys with identifiers
ai, j (i �= j) in the key pool. Each node has 2(n − 2) = 6 keys. For example,
node na2,4 = n6 will contain the keys having identifiers 3, 8, 10 (belonging to
the same column as 6) and 1, 5, 7 (belonging to the same row as 6). The sensor
nodes ni , i = 1, 2, . . . , 10, have the following keys: n1 : {2, 3, 4, 5, 6, 7}, n2 :
{1, 3, 4, 5, 8, 9}, n3 : {1, 2, 4, 6, 8, 10}, n4 : {1, 2, 3, 7, 9, 10}, n5 : {1, 2, 6, 7, 8, 9},
n6 : {1, 3, 5, 7, 8, 10}, n7 : {1, 4, 5, 6, 9, 10}, n8 : {2, 3, 5, 6, 9, 10}, n9 :
{2, 4, 5, 7, 8, 10}, n10 : {3, 4, 6, 7, 8, 9}.

Let nodes ni = nax,y and n j = nax ′,y′ want to communicate with each other.
For this purpose the location (x, y) of the node in the array A is stored in the node.
Nodes broadcast their position in the array A.

Given any node ni at location (x, y), it can find the identifiers of the keys in
common with another node n j at position (x ′, y′) in the following way.

1. If x = x ′, then ax,t and ay,y′ are the common keys between ni and n j for t =
1, 2, . . . , n and t �= x, y, y′.

2. If y = y′, then at,y and ax,x ′ are the common keys between ni and n j for t =
1, 2, . . . , n and t �= x, y, x ′.

3. If x �= x ′ and y �= y′, then the keys ax,x ′ , ax,y′ , ay,x ′ and ay,y′ are common
between ni and n j .
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Since there are more than one key in common, the nodes can choose any of the
common keys for communication. Since ax,y can be calculated in constant time,
key agreement can be done in O(1) time. Also the memory overhead is O(log n) =
O
(

log
√

N
)

bits, since only the position of the node in the array is sent.

The construction above can be used to construct a key predistribution scheme
having double the number of sensor nodes as the previous scheme. In addition to
the matrix A another matrix A′ is constructed in the following way.

A′ =

∗ 1 n · · · n(n − 1)/2 − 2 n(n − 1)/2
1 ∗ 2 · · · · · · n(n − 1)/2 − 1
n 2 ∗ 3 · · · n(n − 1)/2 − 3
...

...
... ∗ ...

...

n(n − 1)/2 n(n − 3)/2 − 1 · · · · · · n − 1 ∗

The first n(n − 1)/2 nodes are each assigned 2(n − 2) according to the matrix
A. The next n(n − 1)/2 nodes are each assigned 2(n − 2) elements according to the
matrix A′. Suppose the element in the (i, j)th position of the matrix A′ is a′(i, j).
The node in position (i, j)(i �= j) of the matrix A′ is denoted by nn(n−1)/2+a′(i, j)
and has the keys with identifiers {a′

x, j : x = 1, 2, . . . , n, and x �= i, j}⋃{a′
i,y : y =

1, 2, . . . , n and y �= i, j}.
Example 11 (contd). We consider the following matrix.

A′ =

∗ 1 5 8 10
1 ∗ 2 6 9
5 2 ∗ 3 7
8 6 3 ∗ 4
10 9 7 4 ∗

The nodes 11–20 are assigned keys in the following way : n10+a′1,2 = n11 :
{2, 5, 6, 9, 8, 10}, n10+a′2,3 = n12 : {1, 3, 5, 6, 7, 9}, n10+a′3,4 = n13 :
{2, 4, 5, 6, 7, 8}, n10+a′4,5 = n14 : {3, 6, 7, 8, 9, 10}, n10+a′1,3 = n15 :
{1, 2, 3, 7, 8, 10}, n10+a′2,4 = n16 : {1, 2, 3, 4, 8, 9}, n10+a′3,5 = n17 :
{2, 3, 4, 5, 9, 10}, n10+a′1,4 = n18 : {1, 3, 4, 5, 6, 10}, n10+a′2,5 = n19 :
{1, 2, 4, 6, 7, 10}, and n10+a′1,5 = n20 : {1, 4, 5, 7, 8, 9}. So now the entire network
has 20 nodes, each having six keys as before. Also the key pool remains the same.
So if the first 10 nodes have already been deployed, another set of 10 nodes can be
deployed without redistributing keys in the old nodes.

This scheme has several advantages. All the nodes can directly communicate
with each other, thus reducing the time for communication. The resiliency is
improved compared to the other approaches. The system can also be scaled to twice

the original size. The number of keys is O
(√

N
)

, where N is the size of the net-

work.
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The drawback of this scheme is that since some nodes can share a large number
of keys, resiliency drops rapidly when large number of nodes are compromised.

24.6.5 Key Predistribution Schemes Using Codes

In [3], Al-Shurman and Yoo proposed a key management scheme based on maxi-
mum distance separable (MDS) codes to satisfy the properties of cover free family
(CFF). A set system (X,A) is called a t cover-free family (or t − CFF) if, for any t
blocks A1, A2, . . . , At ∈ A and any other block A0 ∈ A, we have

A0 �

t⋃

i=1

Ai

Their construction satisfies the properties of CFF with certain probability. CFF
was first studied by Kautz [43]. CFF has also been studied in [89, 90]. Chan [16]
proposed a practical scheme, based on probabilistic method called distributed key
selection to construct CFF.

The main idea was to use MDS code to generate node key chains. To construct
the public matrix G of Blom’s scheme (refer to Sect. 24.2.1), Reed–Solomon codes
are used. G is defined in GF(q) as k rows and n columns with d = n − k + 1. The
i j th element of G is given by Gi j = α(i−1)( j−1) where α is the primitive element of
q. Node i generates a random vector vi of length k and calculates ki , the key chain.
From the definition of CFF, we see that even if t nodes are compromised, not all
keys in an uncompromised node are exposed. Al-Shurman et al’s scheme satisfies
the CFF property with certain probability.

In [82], Ruj and Roy proposed a key predistribution scheme using codes. This
is a generalized scheme which can be used with any code with suitable parameters.
The basic approach is to generate key chains from a key pool in a deterministic
fashion. Let c = (c1, c2, . . . , cn) be a codeword. The codewords are mapped to
sensor nodes. For any sensor Ui the codeword c is used such that the keys {(ci , i) :
i = 1, 2, . . . , n} are in its key ring. Suppose (n, M, d, q)-code [87, Section 10.2]
having length n, distance d, and number of codewords equal to M . Let Q be the
set of symbols, such that |Q| = q. The key pool consists of keys {(i, j) : i ∈
Q, j = 1, 2, . . . , n}. The size of the key pool is qn. Suppose the i th codeword be(
a(i)1 , a(i)2 , . . . , a(i)n

)
. We assign the key identifiers

(
a(i)j , j

)
for j = 1, 2, . . . , n to

sensor Ui .
Thus each sensor contains n keys. Suppose d be the minimum distance between

two codewords x and y, then the number of common keys between two sensor nodes
x and y is at the maximum n − d. The authors use Reed–Solomon codes [74], but
in general any code with a suitable parameter can be considered.

Let GF(q) be a finite field of q>2 elements. Let P be the set of polynomials over
GF(q) of degree at most k−1. |P| = qk . d = n−k+1. Let F∗

q = {α1, α2, . . . , αq−1}
be the set of non-zero elements of GF(q). For each polynomial pi (x) ∈ P , we define
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cpi = (pi (α1), pi (α2), . . . , pi (αq−1)) to be the i th codeword of length q − 1. We
define C = {cpi : pi (x) ∈ P}. Thus C is a Reed–Solomon code.

Example 12 Let us consider a Reed–Solomon code having parameters q = 4, n = 3,
k = 2. Thus d = n − k + 1 = 2. Let the elements of the field be represented by
{0, 1, β = 2, 1 + β = 3}. Let the codewords be as shown below.

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0 0 0
1 1 1
2 2 2
3 3 3
1 2 3
0 3 2
3 0 1
2 1 0
2 3 1
3 2 0
0 1 3
1 0 2
3 1 2
2 0 3
1 3 0
0 2 1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

This results in a network having q2 = 16 nodes, each having three keys. The node
ids, polynomials corresponding to the nodes, and keys belonging to the nodes are
given in Table 24.4. For example, node 5 corresponds to the polynomial p5(x) =

Table 24.4 Nodes, corresponding polynomials, and keys

Node id (i) Polynomial (pi (x)) Keys

0 0 {(0, 1), (0, 2), (0, 3)}
1 1 {(1, 1), (1, 2), (1, 3)}
2 2 {(2, 1), (2, 2), (2, 3)}
3 3 {(3, 1), (3, 2), (3, 3)}
4 x {(1, 1), (2, 2), (3, 3)}
5 1 + x {(0, 1), (3, 2), (2, 3)}
6 2 + x {(3, 1), (0, 2), (1, 3)}
7 3 + x {(2, 1), (1, 2), (0, 3)}
8 2x {(2, 1), (3, 2), (1, 3)}
9 1 + 2x {(3, 1), (2, 2), (0, 3)}
10 2 + 2x {(0, 1), (1, 2), (3, 3)}
11 3 + 2x {(1, 1), (0, 2), (2, 3)}
12 3x {(3, 1), (1, 2), (2, 3)}
13 1 + 3x {(2, 1), (0, 2), (3, 3)}
14 2 + 3x {(1, 1), (3, 2), (0, 3)}
15 3 + 3x {(0, 1), (2, 2), (1, 3)}
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1+x . Therefore key identifiers contained in it are (p5(1), 1), (p5(β), 2), and (p5(1+
β), 3), i.e., (0, 1), (β + 1, 2), and (β, 3), i.e., (0, 1), (3, 2), (2, 3).

The advantage of this scheme is that new nodes can be added without reloading the
keys in the existing sensor nodes.

Dong et al. [24] design a key predistribution scheme based on three-designs.
Wei and Wu [92] use construction from set systems which optimize the product
construction of [27, 48]. The scheme is based on the product of key distribution
scheme and set systems. They deduce conditions of the set systems that provide
optimum connectivity and resiliency of the network.

24.7 Key Predistribution in Multi-hop Networks

In multi-hop networks nodes may not be within communication range of one another
and so must communicate through intermediary nodes. The networks are modeled
as unit disk graphs. Radio (transmit and sense) coverage area for each sensor node
is assumed to be a circle with radius r (radio range) centered at its (x, y)-coordinate.
If two nodes are within each other’s radio range, then there is a link between them.

When considering the multi-hop networks the deployment pattern of the nodes
become important, because the nodes in the physical proximity must be able to
communicate efficiently. This deployment knowledge has been exploited by var-
ious researchers for improving the security of the systems. According to these
schemes the sensors are deployed according to some given pattern. The pattern is
then exploited in key predistribution.

The first key predistribution scheme for multi-hop networks was proposed by
Liu and Ning [49]. They proposed two predistribution schemes both of which take
advantage of the deployment knowledge of sensor nodes. The first scheme called
the closest pairwise scheme was a modification of the pairwise key predistribution
scheme. The second predistribution scheme uses the polynomial-based key pre-
distribution scheme of Blundo et al. [7]. Independently Du et al. proposed a key
predistribution scheme using deployment knowledge in [26], which they extended
in [29]. This scheme uses a grid group-based deployment scheme in which sensors
are deployed in groups, such that a group of sensors are deployed at a single deploy-
ment point, and the pdfs (probability distribution functions) of the final resident
points of all the sensors in a group are the same. The key predistribution scheme
uses multiple space Blom scheme as in [27, 30]. There are several other schemes
available in literature, which employ deployment knowledge during key predistri-
bution [5, 26, 29, 39, 40, 49, 85, 95, 96, 98].

In multi-hop networks, since nodes communicate via intermediary nodes, steps
should be taken such that even if the intermediary nodes are compromised, the path-
keys between the communicating nodes are not known. Sometimes heterogeneous
networks are constructed. In such networks there are different types of nodes having
varying battery power and memory. Some nodes are tamper proof and others are not.
They also differ in the mode of operation and are placed in different environments.
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In a heterogeneous/hierarchical network there are three types of nodes: sensor
nodes, cluster heads (CH), and a base station (BS), also called command node in
increasing order of battery and memory capacities. The BS is very powerful and is
placed in a safe place and is thus assumed to be fully resilient to adversarial attacks.
The CHs and sensors nodes are deployed in the adversarial region. The CHs are
responsible for aggregating the information from the sensor nodes and forwarding
to the BS. Thus the CHs are more powerful than the sensor nodes and fewer in
number compared to the sensor nodes.

Some key predistribution schemes in heterogeneous networks have been
proposed are SPINS protocol by Perrig et al. [71] and localized encryption and
authentication protocol (LEAP) by Zhu et al. [99]. SPINS has two components:
secure network encryption protocol (SNEP) and μTESLA (time efficient stream
loss-tolerant authentication). SNEP provides data confidentiality and two-party
data authentication. μTESLA provides efficient broadcast for severely resource-
constrained environments. μTESLA is an improvement of TESLA proposed by
Perrig et al. [70].

A number of cluster-based schemes [20, 22, 42, 69] have been proposed in
which sensor nodes are divided into groups or clusters, each having one or more
cluster heads. The sensor nodes in each cluster send their data to its cluster
head(s) (CH), which processes it and sends it to the BS. Another cluster-based
approach in heterogeneous networks was taken by Oliveira et al. [66, 67]. The
scheme is known as SecLEACH, which is a modification of the low energy adap-
tive clustering hierarchy—LEACH [38] (proposed by Heinzelman et al.) and F-
LEACH [34](proposed Ferreira et al.). Other heterogeneous schemes include [31,
54]. Heterogeneous schemes using combinatorial designs have been proposed by
Ruj and Roy [81] and Younis et al. [95].

24.8 Conclusion

Having studied different kinds of predistribution schemes, probabilistic, determinis-
tic, and hybrid, we are now in a position to compare them. In Table 24.5, we compare
the scalability, key connectivity, resiliency, key storage, communication overhead,
and computation required for key establishment. We also state the nature of the key
predistribution scheme—probabilistic, deterministic, and hybrid. To compute the
resiliency we consider either of the two aspects.

1. Probability that a link is broken when a node is compromised.
2. We also consider t-secure resiliency meaning that the network remains connected

if t or less nodes are compromised.

For larger expressions we refer to the respective section in the chapters where they
appear.

To compute the key storage, either we give the exact number of keys or, when
comparing the number of keys with the size of the network, we give the order in
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terms of the size of the network. In some cases we simply write the number of keys
as k meaning that the number of keys can be chosen arbitrarily, that there is no
relation with the parameters of the design. The same holds for the communication
overhead, where we either give the exact number of bits required or its order. The
computation required for shared-key discovery is calculated in the same way. The
symbols have their usual meaning as discussed in the chapter.

We observe that deterministic designs have efficient (both in terms of commu-
nication and computation) shared-key discovery algorithms because of the inherent
patterns they possess. However, as Martin [58] pointed out that the deterministic
schemes may not be flexible enough to trade-off the important parameters. For
example, we see that the predistribution using combinatorial structures have nice
shared-key discovery but have some scalability, storage, and resiliency issues. On
the other hand, the random schemes are highly configurable.

We also note that there is a tradeoff between connectivity and resiliency. As the
connectivity increases, resiliency increases up to a certain point. However, as more
nodes get compromised the resiliency decreases rapidly as connectivity increases.
Also we note that full connectivity ( connectivity between every pair of nodes) may
not be required. It is sufficient if the nodes within communication range are directly
connected to each other. However, Pietro et al. [73] proved by mathematical analysis
that connectivity via secure links and resiliency against malicious attacks can be
obtained simultaneously. They show that there is a discrepancy between the other-
wise widely used Erdös–Rényi model and the real networks generated by random
predistribution schemes. They defined a redoubtable network as one in which an
adversary has to compromise a large number of nodes to compromise the confiden-
tiality of the network. More formally, a network is redoubtable if the probability that
a collusion of o(N ) nodes uniformly chosen at random in the network compromises
a constant fraction of the network links is o(1). Suppose the aim of the adversary
is to split the network into two large chunks, both of linear size to compromise all
links between them and thus partition the network. They show that the probability
that this is achieved by compromising a sublinear number of nodes is negligible.
Assume that after compromising o(N ) nodes, there exists two disjoint set of vertices
A and B such that all edges between A and B are compromised and both A and B
have linear size. Such a pair A, B exists then the network is said to have a bad
split. A network is unsplittable if there are no bad splits after the adversary has
compromised o(N ) networks. They show that if v ≥ N log N and the relation

k2

v
∼ log N

N

holds, then the networks are not only connected with a high probability but also
redoubtable. They also show that the network is unsplittable if the above conditions
hold.

Though a lot of research is being carried out, the following problems deserve to
be explored further. The path-key establishment poses a threat to security because
if the intermediary nodes are compromised then the path is compromised. This is
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taken care of by multipath key establishment. However, it may be expensive find-
ing all the paths. So a better method needs to be designed. Another problem is of
efficient authentication techniques. Many of the authentication techniques make use
of public key cryptography which may not be efficient for sensor networks. The
implementation of the schemes needs to be addressed.
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Chapter 25
Realistic Applications for Wireless
Sensor Networks

John A. Stankovic, Anthony D. Wood, and Tian He

Abstract Military surveillance, home health care or assisted living, and environ-
mental science are three major application areas for wireless sensor networks. Rev-
olutionary changes are possible in these application areas by using wireless sen-
sor networks. To show the breadth and advantages of this technology, design and
implementation details are presented for three systems, one in each of these three
application domains. Key research challenges and the approaches taken to address
them are highlighted. Challenges requiring significantly improved solutions are also
identified. These systems and others like them provide significant evidence for the
utility of wireless sensor networks.

25.1 Introduction

Wireless sensor networks (WSN) is an important and exciting new technology with
great potential for improving many current applications in medicine, transporta-
tion, agriculture, industrial process control, and the military as well as creating
new revolutionary systems in areas such as global-scale environmental monitor-
ing, precision agriculture, home and assisted-living medical care, smart buildings
and cities, and numerous future military applications [29]. In fact, it is difficult
to consider any major application area that cannot benefit from WSN technology.
Typically, WSN are composed of large numbers of minimal capacity sensing, com-
puting, and communicating devices and various types of actuators. WSN operate
in complex and noisy real world, real-time environments. To date, research and
real-world implementations have produced many excellent low-level mechanisms
and protocols to collect, transport, perform sensor fusion of this raw data, and react
with control actions. This chapter discusses three implemented WSN systems which
cover important application areas of wireless sensor networks: military surveillance
(VigilNet [10, 34]), home medical care (AlarmNet [39]), and environmental sci-
ence (Luster [27]). One goal of this chapter is to illustrate key WSN technology as
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required by diverse application areas. Before describing each of these systems, key
overarching research challenges for WSN are briefly presented.

25.2 Challenges

Many challenging research problems must be addressed to produce a realistic WSN
application. This section discusses a number of the critical challenges, specifically
entitled: from raw data to knowledge, robust system operation, openness and het-
erogeneity, security, privacy, real time, energy management, and control (actuation).
All of these challenges must deal with noisy, uncertain, and evolving environments.
Each of the following three applications addresses a subset of these challenges
appropriate to their purpose.

25.2.1 From Raw Data to Knowledge

Many WSNs can produce vast amounts of raw data. It is necessary to develop
techniques that convert this raw data into usable knowledge in an energy efficient
manner. For example, in the medical area, raw streams of sensor values must be
converted into semantically meaningful activities performed by or about a person
such as eating, poor respiration, or exhibiting signs of depression. Main challenges
for data interpretation and the formation of knowledge include addressing noisy,
physical world data, and developing new inference techniques. In addition, the over-
all system solution must deal with the fact that no inference method is 100% correct.
Consequently, uncertainty in interpreted data can easily cause users not to trust the
system. For example, in making decisions it is necessary to minimize the number of
false negatives and false positives and guarantee safety, otherwise the system will
be dismissed as unreliable. Location (the sensor node or base station) of the data
processing is another critical issue: processing at the sensor node consumes energy
and is limited by the device capacity, but it saves transmission energy and network
contention. The correct trade-offs on processing location seem system dependent.

25.2.2 Robust System Operation

Many applications in wireless sensor networks typically initialize themselves by
self-organizing after deployment [4]. At the conclusion of the self-organizing stage
it is common for the nodes of the WSN to know their locations, have synchro-
nized clocks, know their neighbors, and have a coherent set of parameter settings
such as consistent sleep/wake-up schedules, appropriate power levels for commu-
nication, and pairwise security keys [5]. However, over time these conditions can
deteriorate. The most common (and simple) example of this deterioration problem
is with clock synchronization. Over time, clock drift causes nodes to have differ-
ent enough times to result in application failures. While it is widely recognized
that clock synchronization must re-occur, this principle is much more general. For
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example, even in static WSN some nodes may be physically moved unexpectedly.
More and more nodes may become out of place over time. To make system-wide
node locations coherent again, node re-localization needs to occur (albeit at a much
slower rate than for clock sync).

These types of required coherence services must combine with many other
approaches to produce robust system operation. This includes formal methods to
develop reliable code, in situ debugging techniques [25], online fault tolerance [22],
in-field maintenance [2], and general health monitoring services [26]. These prob-
lems are exacerbated due to the unattended operation of the system, the need for a
long lifetime, the openness of the systems, and the realities of the physical world.
The goal is for this collection of solutions to create a robust system [9] in spite of
noisy, faulty, and non-deterministic underlying physical world realities.

25.2.3 Openness and Heterogeneity

Traditionally, the majority of sensor-based systems have been closed systems. For
example, cars, airplanes, and ships have had networked sensor systems that operate
largely within that vehicle. However, these systems and other WSN systems are
expanding rapidly. Cars are automatically transmitting maintenance information and
airplanes are sending real-time jet engine information to manufacturers. WSN will
enable an even greater cooperation and two-way control on a wide scale: cars (and
aircraft) talking to each other and controlling each other to avoid collisions, humans
exchanging data automatically when they meet and this possibly affecting their next
actions, and physiological data uploaded to doctors in real time with real-time feed-
back from the doctor. WSN require openness to achieve these benefits. However,
supporting openness creates many new research problems including dealing with
heterogeneity. All of our current composition techniques, analysis techniques, and
tools need to be re-thought and developed to account for this openness and hetero-
geneity. New unified communication interfaces will be required to enable efficient
information exchange across diverse systems and nodes. Of course, openness also
causes difficulty with security and privacy, the topics of the next two sections. Con-
sequently, openness must provide a correct balance between access to functionality
and security and privacy.

25.2.4 Security

A fundamental problem that must be solved in WSN is dealing with security attacks
[3, 23, 41]. Security attacks are problematic for WSN because of the minimal
capacity devices being used in parts of the systems, the physical accessibility to
sensor and actuator devices, and the openness of the systems including the fact
that most devices will communicate wirelessly. The security problem is further
exacerbated because transient and permanent random failures are commonplace in
WSN and failures are vulnerabilities that can be exploited by attackers. However,
the considerable redundancy in WSN creates great potential for designing them to
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continue to provide their specified services even in the face of failures. To meet
realistic system requirements that derive from long-lived and unattended operation,
WSN must be able to continue to operate satisfactorily in the presence of and to
recover effectively from security attacks. The system must also be able to adapt to
new attacks unanticipated when the system was first deployed.

25.2.5 Privacy

The ubiquity and interactions of WSN not only provide many conveniences and
useful services for individuals, but also create many opportunities to violate privacy
[15]. To solve the privacy problem created by single and interacting WSN of the
future, the privacy policies for each (system) domain must be specified. Once speci-
fied, the WSN system must enforce privacy. Consequently, the system must be able
to express users’ requests for data access and the system’s policies such that the
requests can be evaluated against the policies in order to decide if they should be
granted or denied. One of the more difficult privacy problems is that systems may
interact with other systems, each having their own privacy policies. Consequently,
inconsistencies may arise across systems. Once again, online consistency checking
and notification and resolution schemes are required.

25.2.6 Real Time

Classical real-time analyses assume a rigorously defined and highly deterministic
underlying system model, a set of tasks with known properties, a system that oper-
ates in a well-controlled environment, and they abstract away from properties of the
physical world. For WSN systems, none of these assumptions are true and stream
models rather than tasks models are prevalent. Further, WSN often support many
real-time sensor streams in noisy, uncertain, and open environments. In particular,
a very difficult issue is that wireless communication packet delivery is subject to
burst losses. New concepts of guarantees must be developed that will likely span
a spectrum from deterministic to probabilistic depending on the application, the
environment, and noise and interference models [11].

25.2.7 Energy Management

Wireless sensor networks must often operate for long periods of time. This gives
rise to a significant energy management challenge. Most sensor nodes are built
with the capability to control wake-sleep of each of the node’s parts (cpu, mem-
ory, radio, sensors, and actuators). Many algorithms have been developed to extend
the lifetime of a WSN by judiciously managing the wake–sleep for nodes and their
components. In addition, many protocols found in WSN operate in a manner to min-
imize energy consumption. For example, MAC, routing, time synchronization, and
localization protocols have been developed to function in highly efficient manners
so as to extend WSN lifetimes. Recently, energy scavenging is becoming a viable
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addition for sensor nodes. In spite of all these solutions, energy mangement remains
an important research challenge.

25.2.8 Control and Actuation

Many WSN utilize feedback control theory when actuation is involved. The classi-
cal methodology includes creating a model of the system and then deriving a con-
troller using well-known techniques to meet stability, overshoot, settling time, and
accuracy requirements. A sensitivity analysis is also performed. However, openness
and scale create many difficulties for this methodology. Openness means that the
model of the system is constantly changing. Human interaction is an integral aspect
of openness and this makes modeling extremely difficult. In addition, scaling and
interactions across systems also dynamically change the models and create a need
for decentralized control. While some work has been performed in topics such as
stochastic control, robust control, distributed control, and adaptive control, these
areas are not developed well enough to support the degree of openness and dynam-
ics expected in WSN. A new and richer set of techniques and theory is required.
It is especially important to understand how large numbers of control loops might
interact with each other. To date there have already been examples of WSN where
control loops have competed with each other, one indicating an increase in a control
variable while the other loop indicating a decrease in the same variable at the same
time. Such dependencies must be addressed in real time and in an adaptive manner
to support the expected openness of WSN.

25.2.9 Challenges and Applications

Based on application requirements, one or more of the above challenges must be
addressed. Figure 25.1 identifies which of these challenges are addressed by the
following three application case studies presented in the rest of the chapter.

Fig. 25.1 Challenges and applications
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25.3 Surveillance Application—VigilNet

VigilNet [10] is a military wireless sensor network that acquires and verifies infor-
mation about enemy capabilities and positions of hostile targets. It has been suc-
cessfully designed, built, demonstrated, and delivered to the Defense Intelligence
Agency for realistic deployment. To accomplish different mission objectives, the
VigilNet system consists of 40,000 lines of code, supporting multiple existing mote
platforms including MICA2DOT, MICA2, and XSM. This section provides detailed
technical description of the VigilNet system.

25.3.1 Application Requirements

The objective of a typical ground surveillance system is to alert the military com-
mand to targets of interest, such as moving vehicles and personnel in hostile regions.
Such missions often involve a high element of risk for human personnel and require
a high degree of stealthiness. Hence, the ability to deploy unmanned surveillance
missions, by using wireless sensor networks, is of great practical importance for
the military. Successful detection, classification, and tracking require a surveillance
system to obtain the current position of a vehicle and its signature with acceptable
precision and confidence. When the information is obtained, it has to be reported to
a remote base station within an acceptable latency. Several application requirements
must be satisfied to make this system useful in realistic environments:

• Longevity: Military surveillance missions typically last from a few days to several
months. Due to the confidential nature of the mission and the inaccessibility of
the hostile territory, it may not be possible to manually replenish the energy of the
power-constrained sensor devices during the course of the mission. In addition,
the static nature of the nodes in the field prevents the scavenging of the power
from ambient motion or vibration. The small form factor and possible lack of
the line of sight (e.g., deployment in the forest) make it difficult to harvest solar
power. Hence, the application requires energy-aware schemes that can extend the
lifetime of the sensor devices, so that they remain available for the duration of
the mission.

• Configuration flexibility: It is envisioned that VigilNet will be deployed under dif-
ferent densities, topologies, sensing, and communication capabilities. Therefore,
it is essential to design an architecture that is flexible enough to accommodate
various system scenarios. For example, the system should have an adjustable
sensitivity to accommodate different kinds of environment noise and security
requirements. In critical missions, a high degree of sensitivity is desired to cap-
ture all potential targets even at the expense of possible false alarms. In other
cases, it is desired to decrease the sensitivity of the system, maintaining a low
probability of false alarms in order to avoid inappropriate actions and unneces-
sary power dissipation.
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• Stealthiness: It is crucial for military surveillance systems to have a very low pos-
sibility of being detected and intercepted. Miniaturization makes sensor devices
hard to detect physically; however, RF signals can be easily intercepted if sensor
devices actively communicate during the surveillance stage. During the surveil-
lance phase, a zero communication exposure is desired in the absence of signifi-
cant events.

• Real time: As a real-time online system for target tracking, VigilNet is required
to cope with fast changing events in a responsive manner. For example, a sensor
node has to detect and classify a fast-moving target within a few seconds before
the target moves out of the sensing range. The real-time guarantee for sensor net-
works is more challenging due to the following reasons. First, sensor networks
directly interact with the real world, in which the physical events may exhibit
unpredictable spatiotemporal properties. These properties are hard to character-
ize with traditional methods. Second, although the real-time performance is a
key concern, it should be performance compatible with many other critical issues
such as energy efficiency and system robustness. For example, the delays intro-
duced by power management directly affect the maximum target speed VigilNet
can track. It is an essential design trade-off to balance between network longevity
and responsiveness.

25.3.2 VigilNet Architecture

The VigilNet system is designed with a layered architecture as shown in Fig. 25.2.
This architecture provides an end-to-end solution for supporting military surveil-
lance applications with multiple essential subsystems.

Fig. 25.2 The VigilNet system architecture
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25.3.2.1 Sensing Subsystem

Sensing is the basis for any surveillance system. The VigilNet sensing subsystem
implements detection and classification of targets using continuous online sensor
calibration (to a changing environment) and frequency filters to determine critical
target features. These filters extract the target signatures from a specific spectrum
band, eliminating the burden of applying a computation-intensive fast Fourier trans-
form. The sensing subsystem contains three detection algorithms for the magnetic
sensor, acoustic sensor, and passive infrared sensor (PIR), respectively.

• The magnetic sensor detection algorithm computes two moving averages over the
most recent magnetic readings. The slower moving average, with more weight on
previous readings, establishes a baseline to follow the thermal drift noise caused
by the changing temperature during the day. The faster moving average, with
more weight on the current reading, detects the swift change in magnetic filed
caused by ferrous targets. To make a detection decision, the difference between
the two moving average values is compared to a dynamic threshold, which is
established during the calibration phase.

• The acoustic sensor detection algorithm uses a lightweight power-based
approach. It first computes a moving average of multiple recent acoustic readings,
then establishes an auto-adapting acoustic threshold by calculating a moving
standard deviation of readings over a certain time window. If an acoustic read-
ing is larger than the sum of the moving average and its corresponding moving
standard deviation, it is considered to be a crossover. If the number of crossovers
exceeds a certain threshold during a unit of time, this algorithm signals a detec-
tion to the upper layer components.

• The passive infrared sensor is designed to sense changes in thermal radiation
that are indicative of motion. When there is no movement, the thermal reading
is stable and does not trigger detections. If an object is moving in front of a
PIR sensor, this object causes a thermal disturbance, triggering the PIR. Most
moving objects, such as shaking leaves, rain drops, and vehicles, can trigger the
PIR sensor. However, different thermal signatures generate trigger events with
different frequencies. Low-frequency detections (< 2 Hz) are normally triggered
by wind-induced motion and other slow moving objects. On the other hand, fast-
moving targets such as vehicles generate signals with a much higher frequency.
Therefore, it is sufficient to design a high-pass ARMA filter to filter out the fre-
quency components lower than 2 Hz. Since in realistic environments temperature
and humidity vary significantly over the course of a day, similar to other detection
algorithms, PIR’s detection threshold is dynamically adjusted to accommodate
such environmental changes.

25.3.2.2 Context-Awareness Subsystem

Sensed data are meaningful only when it is interpreted along with the context in
which it is obtained. For example, a temperature reading is useless if it is not asso-
ciated with a location and time that the value is measured. The context-awareness
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subsystem comprises lower level context detection components such as time syn-
chronization and localization. These components form the basis for implementing
other subsystems, such as the tracking subsystem. Localization ensures that each
node is aware of its location, in order to determine the location of detected targets.
Time synchronization is responsible for synchronizing the local clocks of nodes
with the clock of the base station, so that every node in the network has a consistent
global view of time. Combining time synchronization and localization, it is feasible
to estimate the velocity of targets.

The VigilNet system uses a variation of the time synchronization protocol devel-
oped by Maroti et al. [21]. This variation eliminates the periodic time adjustments
for the sake of stealthiness. To localize sensor nodes, VigilNet uses a walking GPS
solution [30], in which the deployer (either person or vehicle) carries a GPS device
that periodically broadcasts its location. The sensor nodes being deployed infer their
position from the location broadcast by the GPS device.

25.3.2.3 Tracking and Classification Subsystem

When a target is detected by a set of nearby nodes, the tracking component creates
a group. All nodes that detect the same event join a tracking group to ensure the
uniqueness (one-to-one mapping of external events to logical groups) and consistent
identification (immutability of the mapping function) of targets, as long as targets
are far enough apart from each other or have different signatures. When targets
are very near to each other and possess an identical signature, a disambiguation
mechanism based on their path histories is used.

Classification is achieved through a hierarchical structure consisting of four tiers:
sensor level, node level, group level, and base level. The classification result is repre-
sented by a data structure called the confidence vector. The confidence vector com-
prises the confidence levels for specific classes of targets and is used as a common
data structure to transport information between different levels of the classification
hierarchy.

• The sensor level deals with individual sensors and comprises the sensing algo-
rithms for the corresponding sensors. With communication being an energy
costly operation, the sensing algorithms need to perform local detection and
classification as much as possible. After processing the sensor data, each sens-
ing algorithm delivers the confidence vector to the higher level module — the
node-level detection and classification module.

• The node-level classification deals with output from multiple sensors on the node.
The fusion of the data from various sensors exposes more useful information than
can be obtained from any individual sensor. Hence, the node-level sensing algo-
rithm must correlate the sensor data from individual sensors and form node-level
classification results. Such a correlation can enhance the detection and classifi-
cation accuracy on individual nodes; and different sensors may strengthen the
confidence of each other’s classification results and invalidate false positives.
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• The group-level classification is performed by groups of nodes. Such groups
are managed by a middleware called EnviroSuite [17], which provides a set of
distributed group management protocols to dynamically organize nodes in the
vicinity of targets into groups and elect leaders among them. These leaders are
designated to collect the node-level classification results from individual mem-
bers and, based on them, perform the group-level classification. Thus, the input
to the group-level classification is the node-level confidence vectors rather than a
bulk of sample points. This greatly reduces the volume of information transmitted
between group leaders and members.

• The highest level in the hierarchical classification architecture is the base-level
classification. The group-level classification results are transported via mul-
tiple hops to the base station, serving as the input to the base-level classi-
fication algorithm. The base-level classification algorithm finalizes the sens-
ing and classification result and computes various event attributes (e.g., target
velocity).

25.3.2.4 Networking Subsystem

After VigilNet collects detection information about incoming targets through the
tracking and classification subsystem, it needs to deliver detection reports back to
the control center through a multi-hop network. The networking subsystem con-
sists of three major components: a link symmetry detection service, a robust dif-
fusion service, and a radio-based wakeup service. Low-power radio components,
such as Chipcon CC1000 used by MICA2 [6], exhibit very irregular communica-
tion patterns. To address this problem, a link symmetry detection (LSD) module is
used to reduce the impact of radio irregularity on upper layer protocols. The main
idea of the LSD module is to build a symmetric overlay on top of the anisotropic
radio layer, so that those protocols whose correctness depends on the link symme-
try can be used without modification. More details on this solution can be found
in [42]. The robust diffusion service utilizes a well-known path-reversal technique.
Basically, a base node disseminates tree construction requests to the rest of the
network with a running hop count initialized to zero. Requests are flooded out-
ward with hop count incremented at every intermediate hop. After receiving tree
construction requests, nodes establish multiple reverse paths toward the sending
node. As a result, a multi-parent diffusion tree is constructed with the base node
residing at the root. The radio-based wake-up service is designed to ensure end-
to-end data delivery even if intermediate nodes are in the dormant state (due to
power management). To support the illusion of on-demand wake-up, a dormant
node wakes up and checks the radio activity periodically (e.g., for 5 ms every sev-
eral hundred milliseconds). If no radio activity is detected, this node goes back
to sleep. Otherwise, it remains active to receive and relay messages. If an active
node wants to wake-up all neighboring nodes, it only needs to send out a mes-
sage with a long enough preamble to last longer than the checking period of the
dormant nodes.
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25.3.2.5 Graphic User Interface and Control Subsystem

The networking subsystem delivers the reports to one or more command and control
centers, where the graphic user interface and control subsystem is located. This
subsystem provides three major functionalities. First, it accepts the reports from
the sensor field and displays such information graphically to the mission operators.
Second, it allows the mission operators to disseminate the system configurations
through the reconfiguration subsystem. Third, based on the initial detections from
the sensor field, it makes final decisions on whether to wake-up more advanced
sensors. These advanced sensors not only classify the type of targets, but also dif-
ferentiate the model of the targets. Since they are extremely power consuming, they
are normally turned off and only used when awakened by initial detections coming
from the sensor field.

25.3.2.6 The Power Management Subsystem

One of the key design objectives of the VigilNet system is to increase the system
lifetime to 3 ∼ 6 months in a realistic deployment. Due to the small form factor and
low-cost requirements, sensor devices such as XSM motes [7] are equipped with
limited power sources (e.g., two AA batteries). The normal lifetime for such a sensor
node is about 4 days if it remains active all the time. To bridge such a gap, VigilNet is
equipped with a power management subsystem. Among all the middleware services,
the tripwire service, sentry selection, duty cycle scheduling, and wake-up service
form the basis for the power management subsystem. These services are organized
into a multi-dimensional architecture. At the top level, the tripwire service is used
to divide the sensor field into multiple sections, called tripwire sections. A trip wire
section can be scheduled into either an active or a dormant state at a given point
of time. When a trip wire section is dormant, all nodes within this section are in
a deep-sleep state to conserve energy. When a trip wire section is active, a second-
level sentry service is applied within this section. The basic idea of the sentry service
is to select only a subset of nodes, defined as sentries, to be in charge of surveillance.
Other nodes, defined as non-sentries, can be put into a deep-sleep state to conserve
energy. Rotation is periodically done among all nodes, selecting the nodes with more
remaining energy as sentries. At the third level, since a target can normally be sensed
for a non-negligible period of time, it is not necessary to turn sentry nodes on all the
time. Instead, a sentry node can be scheduled in and out of sleep state to conserve
energy. The sleep/awake schedule of a sentry node can be either independent of
other nodes or coordinated with that of others in order to further reduce the detection
delay and increase the detection probability. More information on VigilNet power
management can be found in [12].

25.3.2.7 The Reconfiguration Subsystem

The VigilNet system is designed to accommodate different node densities, net-
work topologies, sensing and communication capabilities, and different mission
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objectives. Therefore, it is important to design an architecture that is flexible enough
to accommodate various system scenarios. The reconfiguration subsystem addresses
this issue through two major components: a multi-hop reconfiguration module and a
multi-hop reprogramming module. The reconfiguration module allows fast param-
eter tuning through a data dissemination service, which supports limited flooding.
Data fragmentation and defragmentation are supported in the reconfiguration sub-
system to allow various sizes of the system parameters. The reprogramming module
provides a high level of flexibility by reprogramming the nodes. More information
on reprogramming can be found in [13].

25.3.2.8 The Debugging Subsystem

Debugging and tuning event-driven sensor network applications such as VigilNet are
difficult for the following reasons: (i) big discrepancies exist between simulations
and empirical results due to various practical issues (e.g., radio and sensing irregu-
larity) not captured in simulators, which makes them less accurate and (ii) in-field
tests of the system require walking or driving through the field to generate events of
interest actively, which makes in-field tests extremely costly. To address this issue,
a debugging subsystem called EnviroLog [18] is added into VigilNet. EnviroLog
logs environmental events into non-volatile storage on the motes (e.g., the 512 KB
external flash memory) with time stamps. These events can then be replayed in their
original time sequence on demand. EnviroLog reduces experimental overhead by
eliminating the need to physically re-generate events of interest hundreds of times
for debugging or parameter tuning purposes. It also facilitates comparisons between
different evaluated protocols.

25.3.3 The Programming Interface

The programming interface in VigilNet is an extension of the prior work on Envi-
roSuite [17]. It adopts an object-based programming model that combines logical
objects and physical elements in the external environment into the same object
space. EnviroSuite differs from traditional object-oriented languages in that its
objects may be representatives of physical environmental elements. EnviroSuite
makes such objects the basic computation, communication, and actuation unit, as
opposed to individual nodes. Thus, it hides implementation details such as individ-
ual node activities and interactions among nodes. Using language primitives pro-
vided by EnviroSuite, developers of tracking or monitoring applications can simply
specify object creation conditions (sensory signatures of targets), object attributes
(monitored aggregate properties of targets), and object methods (desired computa-
tion, communication, or actuation in the vicinity of targets). Such specifications can
be translated by an EnviroSuite compiler into real applications that are directly exe-
cutable on motes. When defined object conditions are met, dynamic object instances
are automatically created by the runtime system of EnviroSuite to collect object
attributes and execute object methods. Such instances float across the network fol-
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lowing the targets they represent and are destroyed when the targets disappear or
move out of the network.

25.3.4 System Work Flow

To avoid interference among different operations, VigilNet employs a multiple-
phase work flow. The transition between phases is time driven, as shown in Fig. 25.3.
Phases I through VII comprise the initialization process which normally takes about
several minutes. In phase I, the reconfiguration subsystem initializes the whole net-
work with a set of parameters. In phase II, the context-awareness subsystem syn-
chronizes all nodes in the field with the master clock at the base, followed by the
localization process in phase III. In phases IV and V, the networking subsystem
establishes a robust diffusion tree for end-to-end data delivery. Phase VI invokes the
power management subsystem to activate trip wire sections and select a subset of
the nodes as sentries. The system layout, sentry distribution, and network topology
are reported to the graphic user interface and control subsystem in phase VII. After
that, the nodes enter into the main phase VIII—the surveillance phase. In this phase,
nodes enable the power management subsystem in the absence of significant events
and activate the tracking subsystem once a target enters into the area of interest.

Fig. 25.3 Phase transition and rotation

25.3.5 VigilNet Summary

Surveillance using wireless sensor networks is a very practical application. It has
many advantages such as fast ad hoc deployment, fine-grained robust sensing and
tracking, low-power consumption, and low cost. From the experience in building
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VigilNet, it is clear that realistic issues must not be ignored in developing usable
solutions. This includes sensor failures, environmental changes, asymmetries in
communication, and false alarms. Because of these issues, debugging and perfor-
mance tuning in distributed sensor networks are extremely time consuming, espe-
cially during field tests. Therefore, it is critical to have appropriate built-in system
support for these functions, such as the reconfiguration subsystem and the debug-
ging subsystem. Since the sensor nodes fail at a much higher rate in hostile outdoor
environments, self-healing should be supported by every protocol integrated into
the system. Despite these realistic challenges faced, VigilNet presents a proof that
viable surveillance systems can be implemented and successfully deployed on low-
power sensor devices.

25.4 Healthcare Applications—AlarmNet

In this section the AlarmNet system is described. AlarmNet is an assisted-living
and residential monitoring network for pervasive, adaptive health care in assisted-
living communities with residents or patients with diverse needs. The system con-
tains over 15 types of sensor nodes (pulse ox, ECG, temperature, etc.), runs on
TelosBs, MicaZs, PDAs, and PCs. Various parts of AlarmNet have been described
before [8, 28, 36, 39, 40], but here the focus is on the following aspects:

• An extensible, heterogeneous network middleware that addresses the challenges
of an ad hoc wide-scale deployment and integrates embedded devices, back-end
systems, online analysis, and user interfaces;

• SenQ, a query protocol for efficiently streaming online sensor data to the system
and to users, integrated with privacy, power management, and activity analysis,
and

• Novel context-aware protocols using two-way network information flow: envi-
ronmental, system, and resident data flow into the back end, and circadian activity
rhythm analysis feeds back into the system to enable smart power management
and dynamic alert-driven privacy tailored to an individual’s activity patterns.

25.4.1 Application Requirements

An aging baby-boom generation is stressing the US healthcare system, causing hos-
pitals and other medical caregivers to look for ways to reduce costs while maintain-
ing quality of care. It is economically and socially beneficial to reduce the burden of
disease treatment by enhancing prevention and early detection. This requires a long-
term shift from a centralized, expert-driven, crisis-care model to one that permeates
personal living spaces and involves informal caregivers, such as family, friends, and
community.

Systems for enhancing medical diagnosis and information technology often
focus on the clinical environment and depend on the extensive infrastructure present
in traditional healthcare settings. The expense of high-fidelity sensors limits the
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number that are available for outpatient deployment and some requires specialized
training to operate. Manual record keeping has been identified as a key source of
medical errors [24], and at its best, traditional data collection is intermittent, leaving
gaps in the medical record.

Wireless sensor networks (WSNs) provide capabilities that are valuable for con-
tinuous, remote monitoring, as research into military and environmental systems
attest. For healthcare applications, they can be deployed inexpensively in existing
structures without IT infrastructure. Data are collected automatically, enabling daily
care and longitudinal medical monitoring and diagnosis. The wireless devices can
integrate with a wide variety of environmental and medical sensors.

While addressing some of the needs of distributed health care, WSNs also present
their own challenges, both practical and theoretical, to being robust platforms for
pervasive deployment. Privacy and security of collected medical data may be jeop-
ardized by careless use of a wireless medium. Without smart power management,
battery-powered sensors have short lifetimes of a few days or require continual
maintenance.

25.4.2 AlarmNet Architecture

A key requirement for healthcare systems is the ability to operate continuously over
long time periods and still integrate new technologies as they become available.
AlarmNet satisfies these objectives by unifying and accommodating heterogeneous
devices in a common architecture (see Fig. 25.4) that spans wearable body networks,
emplaced wireless sensors, user interfaces, and back-end processing elements.

Gateway

Emplaced Sensor Network:

User Interfaces

PDA

PC

Motion, Tripwire, ...
Temp., Dust, Light,

Body Area Networks:
Pulse, SpO2, BP, Fall,
ECG, Accel., PositionSeeQuery

Interfaces:
In−Network

Database Analysis
Back−End

IP Network

Fig. 25.4 Multi-tier AlarmNet architecture with emplaced sensors, mobile body area networks, a
backbone of gateways, user interfaces, and back-end storage and processing
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Mobile body networks are wireless sensor devices worn by a resident which pro-
vide activity classification or physiological sensing, such as an ECG, pulse oximeter,
or accelerometers. The body network is tailored to the patient’s own medical needs
and can provide notifications (e.g., alerts to take medicine) using an in-network
wearable interface (e.g., the SeeMote [28] that has a color LCD).

It also integrates SATIRE [8], a body network that classifies activities of daily
living (ADLs) [16] by analyzing accelerometer data generated by a wearer’s move-
ments.

Body networks contain a designated gateway device that mediates interaction
with the surrounding WSN. This modularizes the system’s interaction with the body
network to ease its integration. Data are streamed directly or multi-hop through the
emplaced network to the AlarmGate gateways for storage, analysis, or distribution
to user interfaces.

Emplaced sensors are deployed in living spaces to sense environmental quality,
such as temperature, dust, and light, or resident activities. Motion and trip wire
sensors, in particular, provide a spatial context for activities and enable location
tracking.

Due to their low cost, small form factor, and limited power budget, the devices
answer queries for local data and perform limited processing and caching. Though
some deployment environments may enable the use of wired electrical power, it is
not required so as to support ad hoc retro-fitting of existing structures. Figure 25.5a
shows the lightweight stack resident on sensor devices.

AlarmNet supports dynamically adding new devices to the network, which
register their capabilities and are initialized. This flexibility allows the sys-
tem to change over time as sensors are developed or new pathologies require
monitoring.

AlarmGate applications run on an embedded platform, such as the Crossbow
stargate, and serve as a communication backbone and application-level gateway
between the wireless sensor and IP networks. Owing to their greater resources, these
devices perform major aspects system operation related to dynamic privacy, power
management, query management, and security. The AlarmGate software stack is
shown in Fig. 25.5b.

Back-end programs perform online analysis of sensor data, feeding back behavior
profiles to aid context-aware power management and privacy. A database provides
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Fig. 25.5 AlarmNet software architecture. (a) Embedded software stack on sensor devices. (b)
AlarmGate software stack on network gateways. (c) Back-end analysis and persistent storage
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long-term storage of system configuration, user information, privacy policies, and
audit records.

One such program, for circadian activity rhythm (CAR) analysis, processes sen-
sor data stored in the database and learns behavior patterns of residents. These are
used to detect deviations from personal norms that may signal a short- or long-term
decline in resident health.

The back end is extensible to new analyses using a modular framework, wherein
programs consume input sensor streams, filter and process them, and produce output
streams in the database for other modules to use. These are composed hierarchically
from low-level sensor streams to high-level inference of symptoms and diseases.

User interfaces allow doctors, nurses, residents, family, and others to query sen-
sor data, subject to enforced privacy policies. We developed a patient-tracking GUI
for a nurse’s station and a query issuer for a PDA that graphs sensor data in real time.
These programs are not trusted components—they must connect through AlarmGate
and do not have direct access to the database. This makes it easier to develop and
deploy new interfaces customized to the application’s needs.

In summary, AlarmNet’s architecture supports health-monitoring applications
due to its flexibility and extensibility in (1) supporting dynamic addition of het-
erogeneous devices, sensors, and body networks, (2) feeding learned resident and
system context back into the network, and (3) providing an open client model for
future extension.

25.4.3 Query Management

A primary reason for developing AlarmNet was to use environmental, physiological,
and activity data of assisted-living residents to improve their health outcomes. The
automated analysis programs need to automatically collect data in the background,
but the system must also support ad hoc queries by healthcare providers and the
addition of new analysis programs over time. Existing data management solutions
were mostly optimized for tree-based aggregation [19] or else used general-purpose
virtual machines for arbitrary computation.

SenQ is a query system that satisfies the requirements of the healthcare domain:
reconfigurable in-network sensing and processing, dynamic query origination by
embedded devices, and high-level abstractions for expressing queries. A detailed
treatment of SenQ’s lower layers and their performance was given in [40], with
focus on sensing and in-network query processing. Here the system-level query
management functions and their integration with other components of AlarmNet
are presented.

The back-end system, user interfaces, and embedded devices all issue queries
using a common network protocol, in which queries are uniquely identified by
<source ID, query ID> tuples. Users may request a snapshot of the current value or
a periodic stream of a sensing modality. To reduce repetitive query parsing overhead
on resource-constrained motes, both types of queries may be cached and efficiently
restarted (or reissued) later.



852 J.A. Stankovic et al.

Since radio communication in the WSN is expensive, it is desirable to process
data at its source, if possible, to reduce the amount that is reported. However, sensor
devices have limited memories and processors, and so only relatively lightweight
processing is practical. SenQ dynamically constructs a scalar processing chain on
the mote to perform spatial and temporal aggregation and filtering to reduce the
energy consumed by communication.

Query manager is a major actor in the query subsystem and resides on the gate-
way, in the AlarmGate software. Devices are commonly added to and removed from
the system, particularly in the healthcare domain where monitoring needs evolve
over time. To enable the query manager to maintain device state, nodes register
with the nearest gateway upon power-up, providing their device type, sensors, and
hardware ID. They are assigned dynamic network IDs and localized via application-
specific means.

The query manager issues background queries to devices as they are added to
the network to satisfy the system’s core management and tracking functionalities.
Examples of background queries in AlarmNet are

• All devices sample and report their battery supply voltage every 4 h, but only if
it is below 2.8 V (indicating imminent failure);

• Motion, trip-wire, and contact-switch sensors report activations on demand, but
no more often than every 100 ms to debounce or dampen spurious bursts;

• Pulse oximetry devices, which are intermittently switched on, collect heart rate
and SpO2 samples every 250 ms, but report them every 750 ms, each an average
of three samples until the device is switched off; and

• ECG sensors immediately begin reporting a stream of raw samples every 20 ms,
using full buffering to reduce network load and energy usage.

The query manager is the main point of access for user interfaces, translating
between higher level query abstractions and the SenQ protocol exchanged with par-
ticular sensor devices. Connected users receive a list of active devices that is updated
in real time as registrations are received. However, most users of the system will
not have detailed knowledge of its current topology. Usability is improved if they
can request sensor data semantically for people and locations. This presents a few
challenges for query management on the gateway.

A request for sensor information about person P must be mapped to a device (or
group of devices) D for execution. Some have static associations, such as a wear-
able device owned or assigned to a user. Likewise for locations L in which fixed
sensor nodes are placed. But since networks for assisted living are more human ori-
ented and heterogeneous than most other types of WSNs, many sensor types require
dynamic binding based on a person’s context (location, activity, etc). Externalizing
such bindings, as in other common approaches for WSNs, results in duplicated effort
to track user and device state by both the query system and the application that
uses it.

Dynamic semantic binding simplifies data access for users, but the challenge is
how to provide it in a modular way that does not limit SenQ to a particular deploy-
ment environment. Our approach is to share the core of a context model, shown in
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Fig. 25.6 SenQ’s context model. AlarmNet extensions are in grey

Fig. 25.6, with applications co-resident on the query management gateway. Rela-
tions among the core components (device, sensor, location, person, and data) are
maintained by SenQ and consulted for mapping queries to devices.

Instantiations of the system extend the model as appropriate; for example,
AlarmNet adds privacy, power management, and activity analysis. These and
any future extensions can access and mutate the core shared context to change
SenQ’s bindings of queries to sensors. AlarmNet’s context-aware modules are
described next, beginning with activity analysis which also interacts with the
others.

25.4.4 Circadian Activity Rhythms

It is known that most people exhibit behavioral trends in the home with 24-h cycles
are called “circadian activity rhythms” (CAR). AlarmNet includes a CAR analy-
sis program that measures the rhythmic behavioral activity of residents and detects
changes within these patterns.

The CAR algorithm is statistical and predictive and was first presented in [35].
Here we present its integration with AlarmNet and some recent extensions. CAR
is used to improve both medical care and network performance. In particular, CAR
supports context-aware protocols based on learned activity patterns for smart het-
erogeneous power management and dynamic alarm-driven privacy.

Rhythms based on an hourly distribution of the probability of user presence
in every room are called presence-based CAR. Those based on the density of the
number of events per hour are called activity level-based CAR. The CAR analysis
program runs on a PC on the back end of the system and reads a database of resident
activity.

The CAR program provides a GUI to display various information related
to the activity analysis, such as the number of abnormal time periods (under-
presence or over-presence in a room for presence-based CAR), the degree of
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Fig. 25.7 Circadian activity rhythm (CAR) analysis GUIs. Sums of daily deviations from the user’s
norm are on the right side of each GUI, showing a learning period after initial deployment (a)
Presence based CAR analysis GUI; � average time spent in every room per hour is graphed on the
left side. (b) Activity level based CAR analysis GUI; � average number of motion sensor events
in every room per hour is on the left side. Each colored curve is a different room in the house

activity that occurred per hour and day during day or night (hypo or hyper-
activity level for activity level-based CAR), and the length and dates of stay of the
resident.

Other graphs of the GUI display the main results of the CAR analysis. The graphs
in Fig. 25.7 present data from a clinical case study for a healthy resident who stayed
25 days in an assisted-living facility. The first one (Fig. 25.7a) displays the aver-
age time the user spends in every room each hour, calculated over the number of
days of the stay of the resident. On the right side, the graph indicates deviations
in room presence. The experiments demonstrated that the CAR program needed a
period of approximately 2 weeks to learn normal behavior patterns. The graphs in
Fig. 25.7b represent the same experiment (same subject, same clinical protocol, and
same period of study), but for his activity levels.

Comparing both graphs gives complementary information concerning normal
and abnormal activity levels in the different rooms of the dwelling. These graphs
can provide a wealth of information about activity patterns such as the sleep/wake
cycle or some medical hints to the physician about some activities of daily living
(ADLs) [16] of the resident such as eating, hygiene, and sleeping. In the future,
more specific ADLs will also be inferred.
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After the learning period, any statistically significant deviations from learned
patterns are displayed as alerts on a GUI and are sent to the AlarmGate applica-
tion. Nurses or physicians can investigate the source of the trouble by focusing on
the region of the anomaly as identified by CAR �. The hypothesis is that devi-
ations from a resident’s own in-home behaviors can support medical diagnosis.
For example, increased sleep time and multiple missed meals may indicate ill-
ness in the short-term or reveal overall decline in the health of the resident in the
long term.

This hypothesis was investigated clinically in collaboration with the Medical
Automation Research Center (MARC) at the University of Virginia School of
Medicine. Clinical behavioral patterns of older adults in assisted-living facilities
were extracted from real data sets, and behavioral changes were studied by consult-
ing the medical notebooks of the caregivers in charge of the monitored residents.
The capability to detect anomalies from the norm calculated over multiple days was
proved [36], but inferring pathologies or onsets of chronic pathologies remains to
be explored.

25.4.5 Dynamic Context-Aware Privacy

Data collected in AlarmNet reveals intimate details about a person’s life activities
and health status. As WSNs grow stronger in their capability to collect, process,
and store data, personal information privacy becomes a rising concern. AlarmNet
includes a framework to protect privacy and still support timely assistance to resi-
dents in critical health situations.

Emergency-aware applications demand a privacy protection framework capable
of responding adaptively to each resident’s health condition and privacy require-
ments in real time. Traditional role-based access control, which makes access autho-
rization decisions based on users’ static roles and policies, is not flexible enough to
meet this demand. A privacy protection framework was designed which is dynam-
ically adjustable to residents’ context, allows data access authorization to be evalu-
ated at runtime, and is able to adapt to residents’ health emergencies.

A key novelty is that access rulings are dynamically altered based on context
inferred by the CAR and other back-end programs, when necessary. For example, if
a resident has blocked access to his ECG data for nurses, but the CAR has detected
serious anomalous behavior that might indicate a heart problem, then a nurse is
alerted and access to the data is allowed for a period of time.

In case of an alarming health status, privacy may be restricted or relaxed
depending on context and who requests the data. This decision is recorded in
the database with details of the mitigating context. It can be used to notify resi-
dents later about what transpired and why and who accessed their data during the
emergency.

Other context in our system includes the resident’s physiological condition
(ECG, pulse, blood pressure), living environment conditions (room temperature,
light levels, dust), activities, and autonomy (inferred from ADLs by the CAR).
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Fig. 25.8 Privacy-related components in AlarmNet

System designers may specify privacy policies at different levels of granularity,
from individual sensors to residents or groups of residents.

The privacy management framework resides in the AlarmGate application and
has three main functional components: the context manager, the request authorizer,
and the auditor (shown in Fig. 25.8).

Context manager, as described before, maintains residents’ current locations,
activities, and health conditions. In the privacy module, context is indexed by the
tuple <context id, context subject, context value>.

Request authorizer is consulted when data queries are received at the query man-
ager. It makes access decisions by consulting the system’s privacy policies and the
context of the query subject. After each access request is decided, it is recorded by
the auditor module.

SenQ allows queries for locations and devices, which must be mapped to a res-
ident for authorization by the request authorizer. Locations may be assigned an
owner, such as the resident living in a particular unit. Common areas without an
owner use a default subject or policy. Devices also may have an owner, for example,
an ECG that is worn by a particular resident. Otherwise, the device’s assigned or
current location is used to determine the context subject.

Auditor maintains a trace of access requests in an audit trail, including the autho-
rization decision made for each request (granted or denied). Dynamic decisions
during alarming situations trigger the storage of details of the context for later
notification of residents and investigation of misuse. Such records may be crucial
in heavily regulated environments like health care.

25.4.6 AlarmNet Summary

AlarmNet is a wireless sensor network system designed for long-term health mon-
itoring in assisted-living environments with two central design goals. First, system
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operation adapts to the individual context and behavior patterns of the residents,
which feeds back to influence power management and privacy policy enforcement.
Second, the system is extensible and supports a diverse collection of sensors, user
interfaces, and power and privacy policies. Systems such as AlarmNet and the pro-
liferation of individual wireless medical devices are having a transformative effect
on medical care. It is being referred to as wireless medicine.

25.5 Environmental Science Applications—Luster

One of the most beneficial and interesting applications of WSNs is the ability to
create a “macroscope”—to take a look at the big picture of the monitored environ-
ment. There have been many implementations of macroscopes, for example, a WSN
deployed on redwood trees [33], a wildlife monitoring site on Great Duck Island
[20, 31, 32], tracking zebras in their natural habitat [14], and monitoring volcanic
eruptions [37, 38].

In this section, Luster, an environmental science application for measuring the
effect of sunlight on under shrub growth on barrier islands is described. Luster is
built with custom light sensor boards that support up to eight light sensors each and
these boards are attached to MicaZs. Luster also uses a custom built SeeMote [28]
that contains an SD card with 2 GB of memory.

The main features of Luster are

• An overlay network architecture—A hierarchical structure for sensing, commu-
nication, and storage allows replication of the system in clusters for scalability.

• Reliable, transparent, and distributed storage—Fault-tolerant storage is provided
by unobtrusively listening to sensor node communications, thus minimizing
power requirements without the need of dedicated queries.

• Delay-tolerant networking—Access is provided to the measured data over an
unreliable or intermittent network connection.

• Custom hardware—New hardware designs provide combined sensing and energy
harvesting, removable storage, and lightweight in situ WSN interfaces for deploy-
ment time validation.

• Deployment time validation—New techniques and tools were developed to
increase the probability of successful deployment and long-term operation of the
system by looking for problems and fixing them early.

• Customizable web interface—Remote access to the WSN and visualization of
sensor data are provided using reconfigurable hypertext templates.

25.5.1 Application Requirements

Shrub cover is increasing worldwide, most often by replacing herbaceous-
dominated communities, especially grasslands [1]. In North America, this phe-
nomenon has been documented in a range of environments from desert grasslands
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and arctic tundra to Atlantic coast barrier islands. Shrub encroachment has been
linked to climate change and anthropogenic factors; however, the causes have not
been thoroughly investigated. Perhaps most dramatic is the change in the light envi-
ronment as community structure shifts from grassland to shrubland. Most studies
measure light either at a single point in time or over periods of minutes or hours.
However, there is a need to quantify light at finer temporal scales because photo-
synthetic responses occur within seconds and courser measurements often underes-
timate the effects of brief, but intense, direct light. Measuring light at a fine spatial
and temporal granularity is the primary purpose of the Luster system.

Luster addresses many WSN issues including the harsh elements of nature that
cause rapid device and sensor malfunction and network links to back-end monitor-
ing and collection systems that may be intermittent due to weather or other prob-
lems.

25.5.2 Luster’s Architecture

As can be inferred from the above list of capabilities, the primary challenges
addressed by Luster are robust system operation, openness, and real time. To address
these challenges, Luster’s architecture is composed of several layers, shown in
Fig. 25.9. The sensor node layer is responsible for gathering, aggregating, and trans-
mitting the measurement data. The report rate and sensor selection are configurable
remotely using the SenQ sensor network query system [39]. Communication among
nodes in the cluster uses LiteTDMA, a novel MAC protocol developed specifically
to address the robust and real-time aspects of the system.

The storage layer transparently blankets the sensor layer, collecting and filtering
the data reported by sensor nodes without initiating any communication to them.
Thus, bandwidth and power consumption are improved. The configuration specifies
the data filtering and collection policies for each storage node, alleviating conges-
tion internal to the storage hardware due to the flash memory delays. Reliability
is provided through redundant coverage: each sensor node is monitored by at least
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two storage nodes. The configuration and the number of storage nodes are subject
to application requirements for the fault tolerance required and cost limitations.

Above the storage layer is the delay-tolerant networking (DTN) component of
the system. This consists of a base mote (denoted BM in Fig. 25.9) attached to
a stargate (SG) acting as a gateway between the IEEE 802.15.4 and IEEE 802.11
networks. Absolute reliability of this communication link is not assumed. Instead,
distributed storage is used to capture all the data and either serve it in response to
queries after the communication link between the WSN and the Internet is reestab-
lished or in a delayed fashion by collecting the removable storage cards during
a subsequent visit to the deployment area. The latter is the most energy efficient
method for the WSN, especially when many sensors are required.

The data monitored by the WSN is accessible over the Internet by connecting
to the Luster back-end server. The server stores the incoming WSN data stream to
a database and also issues data queries to the WSN as a DTN component detects
losses.

Using a web browser, a user can request and view historical data as well as the last
captured “almost real-time” data from the back-end server. Web pages are generated
from HTML templates, in which the WSN data, including the sensor readings, are
embedded in the HTML as custom tags. This allows for a user-centric customizable
web interface that is specific to the chosen application.

An example of an application-neutral display is shown in Fig. 25.10, in which a
node’s current sensor readings have been requested. Values from the eight ADC
channels are tabulated and graphed. Using custom HTML tags, a user can add
semantically meaningful labels for the channels and their values. Near real-time
display of sensor readings supports online diagnostics to determine, for example,
that ADC channel two in Fig. 25.10 is faulty and stuck at a low value.

For scalability, the WSN architecture described (and shown on the left side of
Fig. 25.9) is replicated into multiple clusters that cover the entire deployment area.
Clusters use single-hop communication internally, and are adjoined and managed
by the stargate node using several techniques.

Fig. 25.10 Luster web server generated page reporting ADC levels for a pre-selected remote sensor
node
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First, each cluster is assigned a communication channel that avoids or minimizes
interference with its neighbors. One challenge with a multiple channel approach is
the likelihood of the base mote missing communications on one channel while lis-
tening to another. This challenge is met by the delay-tolerant design of Luster, which
operates even when communications from the WSN clusters to the main back-end
server are lost. Distributed storage and delay-tolerant networking components allow
recovery of data as described above.

A second approach for inter-cluster interference minimization is to interleave the
LiteTDMA MAC communication schedules so that when one cluster is communi-
cating, the others are asleep. The stargate node acts as a super-master to coordinate
the schedules. Finally, the transmission power of nodes can be adjusted to match the
cluster’s coverage area.

25.5.3 Luster Summary

Many environmental science applications have been implemented with WSN tech-
nology. Many of them have similar requirements to Luster such as remote access,
reliable data collection and storage, and real-time viewing. There is often a need for
a specialized network, e.g., in Luster the coverage area for each of the 124 sensors is
on the order of meters allowing a single-hop local network based on a TDMA access
control protocol. In other cases, e.g., Zebranet, there is a requirement to support
mobility. In the future, as the underlying WSN technology matures, there should be
more emphasis placed on creating knowledge from the data.

25.6 Summary

Wireless sensor networks are entering a second generation. The first generation has
seen many new research challenges being defined and solved. This has resulted
in many interesting systems being implemented. Three of these systems, VigilNet
(for military surveillance), AlarmNet (home health care and assisted living), and
Luster (environmental science) are described in this chapter as representative of
this first generation. New challenges have emerged for second generation wire-
less sensor networks including: creating knowledge from raw data, robust system
operation, dealing with openness and heterogeneity, security, privacy, real-time, and
control and actuation. This is not a complete list of challenges, but these do consti-
tute some of the major challenges as wireless sensor networks become widespread
and move into many other application domains such as agriculture, energy, and
transportation.
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Chapter 26
High-Level Application Development for Sensor
Networks: Data-Driven Approach

Animesh Pathak and Viktor K. Prasanna

Abstract Owing to the large scale of networked sensor systems, ease of program-
ming remains a hurdle in their wide acceptance. High-level application development
techniques, or macroprogramming provides an easy-to-use high-level representation
to the application developer, who can focus on specifying the behavior of the system,
as opposed to the constituent nodes of the wireless sensor network (WSN). This
chapter provides an overview of the current approaches to high-level application
design for WSNs, going into the details related to data-driven macroprogramming.
Details of one such language are provided, in addition to the approach taken to
the compilation of data-driven macroprograms to node-level code. An implementa-
tion of the modular compilation framework is also discussed, as well as a graphical
toolkit built around it that supports data-driven macroprogramming. Through exper-
iments, it is shown that the code generated by the compiler matches hand-generated
implementations of the applications, while drastically reducing the time and effort
involved in developing real-world WSN applications.

26.1 Introduction

Wireless sensor networks (WSNs) enable low-cost, dense monitoring of the physical
environment through collaborative computation, and communication in a network
of autonomous sensor nodes, and are an area of active research [7]. Owing to the
work done on system-level services such as energy-efficient medium access [25]
and data-propagation [44] techniques, sensor networks are being deployed in the
real world, with an accompanied increase in network sizes, amount of data handled,
and the variety of applications [19, 26, 28, 45]. The early networked sensor systems
were programmed by the scientists who designed their hardware, much like the
early computers. However, the intended developer of sensor network applications is
not the computer scientist, but the designer of the system using the sensor networks
which might be deployed in a building or a highway. Throughout this chapter, the
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term domain expert will be used to mean the class of individuals most likely to
use WSNs—people who may have basic programming skills but lack the training
required to program distributed systems. Examples of domain experts include archi-
tects, civil and environmental engineers, traffic system engineers, medical system
designers. We believe that the wide acceptance of networked sensing is dependent
on the ease of use experienced by the domain expert in developing applications on
them.

The various approaches of application development currently available to the
domain expert are discussed next.

26.1.1 Node-Level Programming

Since their early days, WSNs have been viewed as a special class of distributed
systems and have been approached as such from an application development per-
spective as well. Consequently, application developers have thus far specified their
applications at the level of the individual node where they use a language such
as nesC [16], galsC, or Java to write the program, directly interacting with the
node-level services stated earlier or a middleware [14, 36, 49] that aids in the pro-
gramming process. The developer can read the values from local sensing interfaces,
maintain application level state in the local memory, send messages to other nodes
addressed by node ID or location, and process incoming messages from other nodes.
However, in all these approaches, the application developer is responsible for ensur-
ing that these individual finite state machines executing on the individual nodes of
the WSN will interact to produce the desired result.

Owing to the large size and heterogeneity of the systems involved, as well as
the limited distributed programming expertize of the domain experts, the above
paradigm of node-level programming is not easy to use for sensor networks. This
is believed to be a large obstacle holding back the wide acceptance of WSNs. For
example, to develop an environment management application in nesC, a commonly
used language in WSNs, the developer has to specify the functions at each node in
terms of the respective components—one each for sensing the environment, com-
municating with other nodes, as well as controlling the actuators attached to each
nodes.

One of the earliest toolkits proposed to reduce the programming effort was
the sensor network application construction kit (SNACK) [20], which provides a
component composition environment that allows developers to define explicit con-
figurable parameters for application-level components. The SNACK user develops
applications at the node level using a text-based description of wiring between com-
ponents, several of which are libraries provided by the authors. These programs
are analyzed by the compiler to generate maximally shared nesC expansions, which
then have to be deployed just like normal nesC applications. The Flask language [33]
facilitates node-level programming using data-flow graphs and provides facilities
for composing atomic subgraphs across the network using a flow communication
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model. The application is specified in a variant of OCaml, and the behavior of
individual processing elements is specified in nesC. The Flask compiler then gen-
erates node-level nesC code from the datagraph. In addition to the above, some
graphical toolkits have also been proposed for WSN application development. The
authors of Viptos [11] allow developers to model and simulate TinyOS applications
in a graphical manner. A similar functionality is provided by GRATIS [18] where
developers can use GME for easy modeling of TinyOS applications.

26.1.2 High-Level Abstractions for WSNs

In spite of the tools available for easing node-level application development, the
application developer is still responsible for ensuring that the distributed appli-
cation that results from these communicating node-level programs performs the
necessary functions as desired and is also efficient in terms of the energy spent
during its operations. Several techniques have been proposed to provide a higher
level view of the sensor network. TinyDB [32] and Cougar [53] were the first works
to abstract the sensor field as a database, allowing the user to execute queries over
the sensed data in an SQL-like manner. The Task [9] tool kit makes designing and
deploying TinyDB query-based application easy, where users can query the sen-
sor data using SQL-like queries and also provide a visualizer for monitoring the
network health and sensor readings. SenQ [52] enables user-driven and peer-to-
peer in-network query issue by wearable interfaces and other resource-constrained
devices. Complex virtual sensors and user-created streams can be dynamically
discovered and shared, and SenQ is extensible to new sensors and processing
algorithms.

Semantic streams [50] present each user with a 3-D rendering of the sensors in
the test bed as well as all predicates that are queryable. The work in [51] builds on it
by providing a spreadsheet approach to programming and managing data-querying
applications in WSNs. In semantic middleware [6], applications are represented in
a graphical interface as composable data sources and inference units which can be
connected to retrieve required data by composition engines. jWebDust [10] provides
a multi-tier application environment, where different sensor networks can be visu-
alized as one to query the sensed data in a user-friendly manner.

In addition to database-like abstractions, another active area of resarch for WSNs
has been abstractions for the target-tracking applications. EnviroSuite [30] is an
object-based programming system that introduces the environmentally immersive
paradigm. Its abstractions revolve directly around elements of the environment as
opposed to sensor network constructs, such as regions, neighborhoods, or sensor
groups. Object instances float across the network following (geographically) the
elements they represent. The EnviroSuite Compiler (EIPLC) takes EnviroSuite code
as input and outputs desired environmental monitoring applications in nesC, which
then can be compiled by a standard nesC compiler and uploaded to the motes. The
recent EnviroMic [31] application focuses on a distributed acoustic monitoring, stor-
age, and trace retrieval system designed for disconnected operation.
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Moving beyond domain-specific application of system-level thinking, there have
been attempts to provide more general-purpose high-level application design for
sensor networks. The work on SensorWare [8] and State-centric programming [29]
provided some of the initial thoughts on the matter. This was followed by increased
research in the field of sensor network macroprogramming, which aims to aid the
wide adoption of networked sensing by providing the domain expert the ability
to specify their applications at a high level of abstraction. In macroprogramming,
abstractions are provided to specify the high-level collaborative behavior at the sys-
tem level, while intentionally hiding most of the low-level details concerning state
maintenance or message passing from the programmer.

Kairos [21] (and later, Pleiades [27]) is an imperative, control-driven macro-
programming language where the application designer can write a single program
in a Python-like language with additional keywords to express parallelism. A ‘cen-
tralized’ program describes the activities at all nodes in the system and is translated
into node-level binaries by a dedicated compiler.

Regiment [40] is a functional programming language, with support for region-
based functions like filtering, aggregation, and function mapping. The Regiment
primitives operate on a model of the sensor network as a set of continuous data
streams. In [38], the authors introduced the TML intermediate language to represent
the actions being performed at individual nodes. Regiment programs can be seen
as data-flow graphs, with primitives such as afold combining functions and data
on actual nodes to produce data. The work in [39] extends this to the WaveScript
language which addresses applications working on live data streams.

In their work on COSMOS [1], the authors have presented the mPL macropro-
gramming language and the mOS operating system which can be used to program
WSNs by way of task graphs, as long as all nodes of a single type have the same set
of tasks running on them. Finally, MacroLab [22] (now supported by MacroDebug-
ging [46]) provides a Matlab-like interface to WSN application developers, so that
they can use operations such as addition, max, and find on sensor data addressed
as macrovectors. This paradigm focuses on accessing and operating on data pre-
sented in matrix form, sometimes using different implementations (centralized ver-
sus distributed) of the same operation (e.g., max). The work in ATaG [3] is focused
on data-driven macroprogramming (discussed in detail in Sect. 26.2), which allows
the developer to specify the functionality of their application in terms of tasks that
interact with each other only using the data items that they produce and consume.

For a detailed discussion of the various techniques available for application
development on sensor networks, the reader is recommended to read the survey
by Mottola et al. [37].

26.1.3 Macroprogram Compilation

In the context of macroprogramming for WSNs, we define compilation as the
semantics-preserving transformation of a high-level application specification into
a distributed software system collaboratively hosted by the individual nodes. The
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macroprogram compilation process has several challenges (highlighted in [42]),
which must be addressed by the designers of compilation frameworks for macro-
programming languages. The process of semantics-preserving transformation itself
involves addressing challenges of correct and efficient conversion of representation.
In addition, developers should be given the ability to express performance goals for
the deployed system (e.g., in terms of expected network lifetime or latency) that the
compiler should consider in optimizing the configuration of individual nodes and
the allocation of different functionality to them.

As illustrated in Fig. 26.1, the ease of design provided by macroprogramming
comes at a cost when compared to traditional node-centric programming. In the
former approach, application developers reason at a high level of abstraction, while
the process of converting the high-level representation to that of the individual nodes
is delegated to a compiler. The higher the level of abstraction, the more work needs
to be done by the compiler. This makes the process of generating the final running
code significantly different from one solved by the node-level compilers currently
seen in WSNs.

Fig. 26.1 Comparing node-centric and macro-programming
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Data-driven macroprogramming languages allow the developer to specify the
functionality of their application in terms of tasks that interact with each other only
using the data items that they produce and consume. The focus of the rest of this
chapter is to discuss in detail the design, implementation, and evaluation of a com-
pilation framework to support a data-driven macroprogramming model called the
Abstract Task Graph (ATaG) [3], whose salient features are described in Sect. 26.2.
Overall, this chapter discusses the following:

• A general framework for compilation data-driven macroprogramming languages
like ATaG: An overview of the compilation process is given in Sect. 26.3. The
framework breaks down the process of converting the high-level specification to
node-level functionality into a set of independent, isolated procedures—such as
optimizing the placement of functionality on the real nodes or predicting commu-
nication costs. These different stages are connected through well-defined inter-
faces that allow for plugging in different modules implementing the various steps
of compilation. The compilation framework is described in detail in Sect. 26.4.

• A demonstration of the flexibility and generality of the above framework by
describing an end-to-end solution for compiling ATaG macroprograms. The
proof-of-concept compiler, obtained by instantiating the different modules in the
framework, provides the code to be deployed on each node, as well as an estimate
of the message passing costs of the same. Moreover, the resulting code can be
deployed on real-world nodes as well as in a simulation environment.

• Section 26.5 presents the design and implementation of Srijan—a graphical
toolkit for WSN application development.

• Section 26.6 shows results from developing two realistic applications—building
environment management (HVAC) [15] and highway traffic management [24].
The functionality of the compiler is assessed by inspecting and comparing the
auto-generated code against a manually developed version of the same. The
experiments show that using Srijan, application developers can specify and
deploy their applications in a timely fashion, while having to write ∼2% of total
system code (or <10% of application-specific code).

The details of the data-driven programming model of ATaG are discussed next.

26.2 Data-Driven Macroprogramming

As discussed in the previous section, macroprogramming of WSNs is an active area
of research, with several programming paradigms currently being investigated. In
this chapter, we focus on the data-driven macroprogramming paradigm, where the
developers break up the functionality of their application into of tasks that interact
with each other only using the data items that they produce and consume and do
not share any state otherwise. This technique is shown to be especially useful in
specifying a wide range of sense-and-respond applications [41]. The specific data-
driven macroprogramming that we focus on here is called the Abstract Task Graph
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(ATaG) [3]. ATaG includes an extensible, high-level programming model to specify
the application behavior and a corresponding node-level runtime support, the data-
driven ATaG runtime (DART) [2]. The compilation of ATaG programs consists of
mapping the high-level ATaG abstractions to the functionality provided by DART.
We now provide some background on these topics, as they represent the inputs and
outputs of the transformation process, respectively.

26.2.1 Programming Model

ATaG provides a data-driven programming model and a mixed imperative–
declarative program specification. A data-driven model provides natural abstrac-
tions for specifying reactive behaviors, while declarative specifications are used to
express the placement of processing locations and the patterns of interactions.

The declarative portion of an ATaG program—a task graph—consists of the fol-
lowing components (see Fig. 26.2 for details).

• Abstract Data Items: The main currency of information in an ATaG program.
They represent the information in its various stages of processing inside a WSN.

• Abstract Tasks: These represent the processing performed on the abstract data
items in the system. Tasks do not share state with other tasks and can commu-
nicate only by producing and consuming data items. Tasks are annotated with
instantiation rules, specifying where they can be located, as well as firing rules,
specifying whether a task is triggered periodically or due to the production of
certain data item(s).

• Abstract Channels: These connect tasks to the data items consumed or produced
by them and are annotated with logical scopes [34], which express the interest of
a task in a data item. In an ATaG program, a data item can only be produced by
one abstract task, but can be consumed by many.

For each ATaG task, the developer also specifies the actions taken by the task
using imperative code such as C or Java. Note that this code is concerned mostly
with the processing of the data that the task has received and generating the data

Fig. 26.2 ATaG program for data-gathering
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items that the task will produce. To interact with the underlying runtime system,
each task must implement a handleDataItemReceived() method for each type
of data item that it is supposed to process. The task can output its data by calling the
putData() method implemented by the underlying runtime system. Additionally,
the developer needs to specify the details of each data item using imperative code.

Figure 26.2 illustrates an example ATaG program specifying a data gathering
application [12] for building environment monitoring. Sensors within a cluster take
periodic temperature readings, which are then collected by the corresponding clus-
ter head. The Sampler task represents the sensing in this application, while the
Cluster-Head task takes care of the collection. The Temperature data item is con-
nected to both tasks using abstract channels. The Sampler is triggered every 10 s
according to the periodic firing rule. The any-data rule requires Cluster-Head
to run when a data item is ready to be consumed on any of its incoming chan-
nels. The nodes-per-instance:q@Device instantiation rule requires the task
to be instantiated once every q nodes equipped with a specific device. Accord-
ing to @TemperatureSensor, the Sampler task in the example will be instanti-
ated on every node equipped with a temperature device. Since the programmer
requires a single Cluster-Head to be instantiated on every floor in the building,
the partition-per-instance:1/Floor instantiation rule is used for this task.
Its semantics is to derive a system partitioning based on the values of the node
attribute provided (Floor). In this case, the programmer requires only one task to
be instantiated in each partition.

As discussed earlier, the channels in the example program are annotated to
express the interest of the producer and consumer tasks. The Sampler task gen-
erates data items of type Temperature kept local to the node where they have been
generated. The Cluster-Head collects data not only from its own partition (floor),
but also from adjacent ones. The logical-hops:1(Floor) annotation specifies a
number of hops counted in terms of how many system partitions can be crossed,
independent of the physical connectivity. Since Temperature data items are to be
used within one partition (floor) from where they generated, they will be delivered
to cluster heads running on the same floor as the task that produced them, as well as
adjacent floors.

26.2.2 Runtime System

The node-level code output by the ATaG compiler is designed to run atop a sup-
porting runtime hiding the underlying, platform-specific details. Figure 26.3 depicts
the architecture of the data-driven ATaG runtime (DART) [2]. The functionality is
divided into a set of modules to facilitate customization to various deployments.

The ATaGManager stores the declarative portion of the user-specified ATaG pro-
gram that is relevant to the particular node. This information includes task anno-
tations such as firing rule and I/O dependencies and the annotations of input and
output channels associated with the data items that are produced or consumed by
tasks on the node. The DataPool is responsible for managing all instances of abstract
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Fig. 26.3 DART: Data-driven ATaG runtime system

data items produced or consumed at the node. The NetworkStack module is in charge
of delivering data across nodes. The routing layer in it provides data-delivery across
logical scopes [35, 36] by implementing a dedicated routing scheme. In particular,
the inputs to this module include the data items and the scope specifications those are
addressed to. A scope identifies, in a logical manner, the nodes an item is addressed
to by referring to the relevant node attributes. For instance, a scope may specify all
the nodes running the Cluster-Head tasks deployed on the first Floor as intended
recipients. Other subsystems of the NetworkStack are in charge of communication
with other nodes in the network and managing the physical layer protocols. Note
that by itself, ATaG does not deal with fault tolerance. However, the runtime system
and compiler developers are free to provide the user with an implementation that
takes desired fault-tolerance requirements and suppors them by techniques such as
task migration.

26.3 Compilation Process

In the previous section, we described the ATaG data-driven macroprogramming
paradigm. In this section, we provide a formal definition of the process of com-
piling data-driven macroprograms to node-level code using the application given in
Fig. 26.2 as example.
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26.3.1 Input

The input to the compilation process consists of the following three components.
Abstract task graph (declarative part): Formally, an abstract task graph A(AT,
AD, AC) consists of a set AT of abstract tasks and a set AD of abstract data items.
The set of abstract channels AC can be divided into two subsets — the set of output
channels AOC ⊆ AT × AD and a set of input channels AI C ⊆ AD × AT . In our
example, the Sampler is AT1 and Cluster-Head is AT2, while Temperature is AD1.
AOC is {AT1 → AD1} and AI C is {AD1 → AT2}.
Imperative code for each task: For each task and data item, the developer provides
imperative code, which describes the actions taken at the host node when a task
fires, and the internal details of the data item.
Network description: For every node in the target network N , the compiler is also
given the following information:

• j : its unique ID.
• S j : the list of sensors attached to j .
• A j : the list of actuators attached to j .
• R j : a set of (RegionLabel, RegionI D) attribute-value pairs to denote its mem-

bership in the regions of the network (e.g., {(Floor, 5), (Room, 2)}).
Runtime library files: These files contain the code for the basic modules of
the runtime system that are not changed during compilation, including routing
protocols.

26.3.2 Output

The goal of the compilation process is to generate a distributed application for the
target network description commiserate with what the developer specified in the
ATaG program. The output consists of the following parts:
Task assignments: The compiler must decide on the mapping to allocate the instanti-
ated copies of the abstract tasks in AT to the nodes in N so as to satisfy all placement
constraints specified by the developer.
Customized runtime modules: The compiler must customize the DataPool of each
node to contain a list of the data items produced or consumed by the tasks hosted
by it. It also needs to configure the ATaGManager module with a list of composed
channel annotations, so when a data item is produced, the runtime can compute the
constraints imposed on the nodes which are hosting the recipient tasks for it.
Cost estimates: The compiler also provides an estimate of the running cost of the
application on the target deployment to provide feedback to the application devel-
oper. Note that the actual nature of the cost estimates returned can vary depending
on the developer’s needs. The costs returned may simply represent a measure of the
communication overhead involved, e.g., in terms of messages exchanged per minute
on a system-wide scale. Alternatively, finer-grained information may be computed,
such as the expected per-node lifetime.
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26.3.3 Process Overview

The abstract nature of the task graph is precisely what provides the application
developer the desired high-level of abstraction needed to easily develop large and
complex sense-and-respond applications for networked sensing systems. However,
converting this high-level specification to a distributed application while preserving
program semantics can be quite challenging. In this approach to the data-driven
macroprogram compilation problem, the following major steps are envisaged.
Composition of abstract channels: Owing to ATaG’s purely data-driven program-
ming model, the developer only specifies relations between tasks and the data items
they are producing (via AOC) and consuming (via AI C). While this provides a
clean model to the application developer, traditional task allocation techniques work
on task graphs with direct dependency links between tasks. To address the problem
of generating such task graphs, each path ATi → ADk → ATj in the abstract task
graph is converted to an edge ATi → ATj .
Instantiating abstract tasks: The annotations of the abstract tasks in AT allow the
developer to design one macroprogram for a variety of deployments. For example,
the developer does not need to worry about the number of floors in the building,
because he can use the region-per-instance:1/Floor instantiation rule. After
the channels are composed, the compiler has the responsibility of expand this com-
pact representation to the tasks into a full-fledged task graph that truly represents
the data processing happening in the system.

The instantiated task graph (ITaG) is the internal representation used for this
stage of the compilation process. It consists of multiple copies of each abstract task
specified in the ATaG program, each ready to be assigned to individual nodes. The
(directed) edges of the ITaG connect each task to the tasks that depend on it, i.e.,
the tasks that (a) copies of abstract tasks that consume the data item produced by
it and (b) belong to the logical scope specified by the constraints in the connecting
composed channel. Formally, the ITaG I (I T, I C) is a graph whose vertices are in
a set I T of instantiated tasks and whose edges are from the set I C of instantiated
channels. For each task ATi in the abstract task graph from which I is instantiated,
there are f (ATi , N ) elements in I T , where f maps the abstract task to the number
of times it is instantiated in N . I C ⊆ I T × I T connects the instantiated version of
the tasks. The ITaG I can also be represented as a graph G(V, E), where V = I T
and E = I C . Additionally, each I Tj in the ITaG has a label indicating the subset
of nodes in N it is to be deployed on. This overlay of communicating tasks over
the target deployment enables the use of modified versions of classical techniques
meant for analyzing task graphs.

For example, for the application in Fig. 26.4, since there are seven nodes with
attached temperature sensors, f (AT1, N ) = 7, following the 1@Temperature
Sensor instantiation rule of the Sampler task. Similarly, f (AT2, N ) = 3, since
the Cluster-Head task is to be instantiated once on each of the three floors. The
figure shows one allocation of the tasks in I T , with arrows representing the instan-
tiated channels in I C (it shows channels leading to only one instance of AT2 for
clarity). Note that although the ITaG notation captures the information stored in the
abstract task graph (including the instantiation rules of the tasks and the scopes of
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Fig. 26.4 An example illustrating the compilation process of our sample program

the connecting channels) it does not capture the firing rules associated with each
task. The compiler’s task involves incorporating the firing rule information while
making decisions about allocating the tasks on the nodes.
Task mapping: This task graph with composed channels is then instantiated on the
given target network. Figure 26.4 illustrates an example of a target network. The
nodes are on three different floors and those marked with a thermometer have tem-
perature sensors attached to them. In this stage, the compiler computes the mapping
M : I T → N , while satisfying the placement constraints on the tasks.
Customization of runtime modules: Based on the final mapping of tasks to nodes,
and the composed channels, the Datapool and ATaGManager modules are config-
ured for each node to handle the tasks and data items associated with it.

26.3.4 Challenges

The various stages described above each pose their own set of challenges. Since the
channels in ATaG have logical scopes associated with them, the process of com-
posing channels results in the (composed abstract channel) C ACi jk being annotated
with the union of three constraints. The first is that the node should have task ATj

assigned to it. The second(third) constraint is obtained by combining the instantia-
tion rule of ATi (ATj ) with the annotation on the abstract channel connecting it to
ADk . For instance, in our example, after composition, AC121 is {(Cluster-Head is
instantiated) && (Floor = Floor of Sampler or ±1)}. Depending on the complexity
of scopes used in the channels, the resultant constraint can be further simplified by
set operations to get a more compact constraint for the composed channel.

During the creation of the ITaG, maintaining the connections between the instan-
tiated tasks in accordance with the placement rules on the tasks and the scope anno-
tations on the channels is of utmost importance and can be time consuming if not
done efficiently. Finally, an added complexity in the compilation process is brought
by the large space of optimizations possible in the process to meet the user-specified
performance goals (e.g., energy efficiency). Note that although tasks are assigned
fixed locations at the end of the compilation process, task migration can happen
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later if the underlying system supports it. Even in such situations, a good initial
task placement by a compiler using global knowledge can go a long way in creating
efficient systems.

The following section describes how the components of the compilation frame-
work act together to produce the outputs from the inputs, using the ITaG notation
internally, and the implementation details of the ATaG compiler.

26.4 Compilation Framework

ATaG is designed to enable the addition of domain-specific constructs and customize
the abstractions offered depending on the application requirements. This requires a
flexible and extensible approach to the compilation problem. Ideally, the system
designer should be given the ability to add new language constructs by implement-
ing the required mappings without modifying any of the pre-existing compilation
mechanisms. For instance, creating a new instantiation rule should not require mod-
ifications to the algorithms used to map tasks to nodes using an existing rule.

To address this issue, first the different steps involved in the compilation of ATaG
programs were identified by factoring out orthogonal concerns and mechanisms.
Next, considering the decomposition obtained, a modular compilation framework
was designed, upon which the construction of the ATaG compiler was based. In
this section, we describe the different modules of the framework (illustrated in
Fig. 26.5), based on the problem definition of Sect. 26.3. The compilation stages
are encapsulated in separated modules and defined generic interfaces between them
so as to minimize inter-module dependencies. The modules are as follows:

Parser. The parser converts text files containing the declarative part of the program
to an internal representation that is then used by the other modules. This process
also involves a syntax check where errors such as duplicate task/data names and
the existence of more than one producer task for one data item are identified and
reported to the programmer.

In the current implementation, the declarative part of the ATaG program is spec-
ified using XML. This allows an easy integration of tools for the automated genera-
tion of XML specifications from graphical representations. The parser module is a
simple XML parser that performs the aforementioned checks, assigns unique IDs to
tasks and data items, and populates an internal data structure with the information.

Imperative code generator. Based on the parser output, the imperative code gener-
ator creates a set of files containing the basic declaration of the variables associated
with each task and data items. The imperative part of the code provided by the
programmer can then be plugged into these templates.

In the prototype implementation, the imperative part of an ATaG program is
expressed using Java. As such, the current code generator creates Java files with
unique numerical constants for each abstract task and data item corresponding to
their ID. Then, it creates a separate class for each abstract task with basic function-
ality filled in (e.g., a thread instance with a loop for periodic tasks).
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Fig. 26.5 The ATaG Compilation Framework

Channel composer. Based on the declarative part of the ATaG program returned by
the parser, this module performs the composition of channels to and from each data
item to form edges of the ITaG, as described in Sect. 26.3.

Depending on the actual channel annotations supported, the prototype implemen-
tation may perform a range of operations, from a simple concatenation to complex
operations that also consider the instantiation rules of the producer/consumer tasks.

ITaG creator. Based on the network description and the output of the channel
translator, the ITaG creator first computes the number of distinct target regions for
each task, i.e., the set of candidate nodes for hosting a given task. For instance,
tasks instantiated with nodes-per-instance:x as instantiation rule have the
entire system as target region. For tasks assigned by partition-per-instance:
x/PLabel, each set of nodes with the same value for PLabel is a target region (e.g.,
each node in Floor 5). The ITaG creator then instantiates the required number of
copies of each abstract task, attaching metadata to each instantiated task signifying
its target region. The ITaG creator also computes the edges in this new graph, based
on the composed channels. Note that, at this stage, tasks are instantiated but not yet
assigned to nodes. That is done by the task allocator module, discussed next.
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The implementation of this module performs the above operations using the net-
work description read from a text file containing basic information on the nodes,
e.g., their identifier, and set of attributes describing their characteristics, such as the
sensing devices installed.

Task allocation module. As such, the allocation module is one of the most important
parts of the compilation process, since it is responsible for computing a mapping
from the set of instantiated tasks to the set of nodes. Note the task instantiation
rules can be characterized as either fixed location (e.g., nodes-per-instance:1)
or variable location (e.g., nodes-per-instance:3), depending on whether or not
there is a unique way of instantiating the copies of a task given the network descrip-
tion. In this respect, an extremely large problem space exists depending on the anno-
tations used, metrics to be optimized, and properties of the network. To perform its
job, the allocation module relies on two further modules—the estimator and the
task-firing model—described next.

In this implementation, this module performs task allocation in two passes. In the
first pass, it assigns all the tasks with fixed locations. In the second pass, it assigns
variable location tasks. For the latter, one of the initial implementations used a ran-
dom task-assignment policy, with each node in the target region having an equal
probability of hosting the instances of the task. However, due to the generality of
the framework, more sophisticated mechanisms can be plugged in to achieve perfor-
mance goals specified by the application designer. Several task-mapping algorithms
for improved performance have also been proposed [43].

Estimator. Taking as inputs the network description and the task placement returned
by the allocation module, the estimator computes the cost metric returned at the end
of the compilation process. The framework gives great flexibility in instantiating
this module, as its interface is designed to be generic w.r.t. the nature of information
required. This allows application developers to explore the trade-off between the
quality of the estimate obtained and the time required to obtain it. For instance,
during the early design stages it is usually helpful to have a quick estimate of the
communication costs, so that many alternative solutions can be explored. In this
case, a simple but fast estimation algorithm can be employed that does not account
for message losses. Conversely, when the application developer is to fine-tune the
application, an actual simulation of the deployed application can be run within the
estimator.

In the prototype system, both ends of the spectrum were implemented. On one
hand, there is a naive estimator returning communication costs as if all the tasks
produced data when fired and the underlying routing mechanisms were able to iden-
tify the optimal message routes. On the other hand, there is also a wrapper around
SWANS/Jist [4]: a simulator able to run unmodified Java code on top of a simulated
network. This plug-and-play capability highlights the power of the framework.

Task-firing model. It would appear that if one knew the exact paths taken by the data
items, one can precisely estimate the cost of running a given task allocation. How-
ever, not all instantiated tasks produce data when they fire. For instance, although
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a Temperature Sampler task may produce a Temperature data item whenever it
fires, an Alarm task may or may not produce an alarm depending on whether or
not the temperature of the region is high enough. The task-firing model’s function
is to assign probabilities to the firing of various tasks in the program. Although
this module is not mandatory for a working compiler, various approaches can be
used to obtain the needed information — ranging from the developer providing
profiling data obtained from previous runs of the system to static code analysis
techniques [5, 13].

System linker. At the end of the whole process, the linker module combines the
information generated by the various modules of the compiler into the code to be
deployed on the nodes of the target system. More specifically, it configures the
ATaGManager and DataPool modules in the node-level runtime depending on the
task and data items handled at each node, and merges the imperative code provided
by the application developer with the templates generated by the imperative code
generator.

In the current implementation, the output of this module is a set of Java packages
for each node. Note that these files are not binaries. They still need to be compiled
in the classical sense, but that can be done by any node-level compiler designed for
the target platform.

26.5 Srijan: Graphical Toolkit for Data-Driven WSN
Macroprogramming

Since the goal of WSN macroprogramming research is to make application devel-
opment easier for the domain expert, we believe that it is absolutely necessary to
make easy-to-use toolkits for macroprogramming available to them in order to both
make their task easier, as well as to gain feedback about the macroprogramming
paradigms themselves. Although various efforts exist in literature for making WSN
application development easier, very few general-purpose graphical toolkits for
macroprogramming are publicly available for the application developer to choose
from. In this section, we show how the macroprogram compilation framework dis-
cussed above has been incorporated into Srijan (named after the Sanskrit word for
creation), an easy-to-use graphical front end to the various steps involved in devel-
oping an application using ATaG. Figure 26.6 shows the various components of this
toolkit. The clear arrows show the inputs, while the gray arrows show the output of
each component. The various components of Srijan are as follows.

Task graph description GUI

The ability of specifying a WSN application in a graphical manner as interconnected
task and data items is a major part of ease of use provided by ATaG. In Srijan, the
generic modeling environment (GME) [17] has been customized so that develop-
ers can easily specify their abstract task graphs, complete with channel and task
annotations. Figure 26.7 shows how a developer can specify the task graph of a
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Fig. 26.6 Overview of application development using Srijan

building environment management application (detailed in Sect. 26.6.1) using the
Srijan GUI. Once the details of the task graph are specified, Srijan generates an
equivalent XML file, which can be used by the other modules.

Network description, compilation, and deployment GUI

The second part of Srijan (shown in Fig. 26.8) allows the developer to perform a set
of actions. First, he can graphically specify the target network description, including
the attributes of each node (alternatively, he can upload the specifications in a file).
Second, the toolkit uses the task graph to generate a separate Java file for each task
and data item with auto-generated communication and task-firing code.

Using the GUI, the developer can then invoke the compiler with the necessary
parameters (optimization option, randomizer seed, etc.), which results in the gen-
eration of a set of Java files, one for each node in the target system, including the
task and data code, as well as the customized runtime system modules. Finally, the
developer can use Srijan to generate the bytecode for each node and deploy it to each
Sun SPOT [48] over the air. The toolkit is currently under actively development and
has been released for download [47].
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Fig. 26.7 Building environment management (HVAC) application in the Srijan task description
GUI

Fig. 26.8 Network description, compilation, and deployment using Srijan
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26.6 Evaluation

26.6.1 Reference Applications

To demonstrate the effectiveness of the ATaG compiler, we consider two non-trivial
applications and report on the functionality of the code generated, as well as the
performance of the compilation process.

The first application, illustrated in Fig. 26.9, describes a highway traffic manage-
ment system. In this case, two different sub-goals must be achieved — regulating
the speed of vehicles on the highway by controlling speed limit displays and con-
trolling the access to the highway by means of red/green signals on the ramps. The
highway is divided into sectors, and sensors are deployed on the highway lanes
and ramps to sense the speed and presence of vehicles, respectively. The sensed
data goes through a multi-stage process where it is first aggregated w.r.t. a single
sector to derive an average measure (AvgSpeedCalculator and AvgQueueLength-
Calculator tasks) and then delivered to tasks deciding the actions taken in adjacent
highway sectors (SpeedLimitCalculator and RampSignalCalculator tasks). The lat-
ter is expressed using the logical-hops construct relative to the HighwaySector
attribute. Finally, data items describing the actions to perform are delivered to dedi-
cated tasks instantiated on nodes equipped with the corresponding device, i.e., speed
limit displays for the SpeedLimitDisplayer and ramp signals for the RampSignalD-
isplayer.

The second application, depicted in Fig. 26.10, targets a building environment
management system. Essentially, the processing is similar to the cluster-based data
aggregation of Fig. 26.2, but now gathering data from two different types of sensors.
The @TemperatureSensor and @HumiditySensor constructs are used to distin-
guish nodes with different types of sensing devices. Additionally, the cluster head
also outputs data items representing actions to perform on the environment. These

Fig. 26.9 An ATaG program for highway traffic management
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Fig. 26.10 An ATaG program for building environment management

items are input to an additional task that actually operates the heating, ventilation,
and air conditioner (HVAC) devices in the building. As for this, the programmer
requires the task to be instantiated on nodes with HVAC devices installed by means
of the @hvacActuator construct.

26.6.2 Evaluation of the Compiler

Code functionality

The logic for both applications was hand coded to perform simulation studies on the
underlying routing mechanisms [34]. The hand-written code also allowed to verify
the functionality of the ATaG compiler, by comparing the automatically generated
code with the one used in the aforementioned studies. Indeed, by comparing the
simulation logs obtained using the SWANS/Jist [4] simulator, it was confirmed that
the compiler-generated code is functionally equivalent to the hand-written version.

Settings for performance studies

Here we look at the time and memory taken to compile the above ATaG programs.
Since the task-firing model used assumes that all tasks produce data when fired,
the specific imperative code of the tasks does not influence the complexity of com-
pilation. Rather, the compiler’s performance is mainly dictated by the declarative
part of an ATaG program and the characteristics of the deployment environment.
More specifically, the following factors were seen to be pivotal in determining the
time/memory taken to compile:

1. the number of abstract tasks, data items, and channels,
2. the nature of instantiation rules and channel interests, and
3. the number of nodes specified in the network description.

The complexity of the compilation task comes from different sources. The effort
in composing channels is dependent on the actual channel annotations used, as
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well as the number of channels themselves. The ITaG creation stage becomes more
complex as the complexity of the network grows. Note that this includes the num-
ber of logical regions the network can be divided into, as well as the variation in
the attributes of the nodes. The size of the problem addressed by the task alloca-
tion module depends both on the network size as well as the constraints used in
the program. For instance, placing a task whose instantiation rule is in the form
partition-per-instance:x/PLabel requires more processing than placing a
task with nodes-per-instance:1. All this in turn affects the performance of the
system linker as it customizes the runtime on each node. Figure 26.11 reports the
values of these factors seen in the sample applications.

In these tests, the compilation framework has been instantiated with the prototype
implementations described in Sect. 26.4 for each module. In particular, the naive
estimator and an always-firing task-firing model were employed. For each test per-
formed, the compilation process was repeated 500 times to account for fluctuations
due to concurrent processes.

Performance results

Figure 26.12 illustrates the performance of the compiler as a function of the number
of target nodes. As expected, the time taken to compile an ATaG program grows
quadratically as the number of nodes increases. This is due to the naive estimator
used that computes the all-to-all shortest path with an algorithm whose time com-
plexity is quadratic w.r.t. the number of vertices. However, fairly large instances can
be compiled in reasonable time. For instance, slightly more than 10 s are needed to
compile the traffic application for a target system with >250 nodes.

In addition, the memory consumed during the compilation process exhibits a
linear increase with respect to the number of nodes in the deployed system. The
source of this behavior is in the data structures employed in the ITaG creator and
allocation modules that allocate a fixed amount of data for each target node. The
memory consumed is always well within the limits of standard desktop PCs (<100
MB).

Building Traffic

Abstract Tasks 4 8
nodes-per-instance:x@PLabel 3 4
partition-per-instance:x/PLabel 1 4

Abstract Data Items 3 6

Abstract Channels 6 14
local 3 6
domain 3 4
logical-hops:1(PLabel) 0 4

Fig. 26.11 Complexity of the task graphs of sample applications
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Fig. 26.12 Performance of the ATaG compiler w.r.t target network size. (a) Time taken to compile.
(b) Maximum memory consumed during compilation

In exchange for the above costs in term of memory and time, the framework
buys the developer ease of use in implementing the application using ATaG macro-
programs, as discussed next.

26.6.3 Evaluation of the Toolkit

To evaluate the performance of Srijan, both the applications discussed in Sec-
tion 26.6.1 were developed using it. For each of the applications, the complete
end-to-end development was performed—starting from specifying the ATaG task
graph to deployment of code on the nodes—using Srijan. The developer used a
Pentium-4 2.8 GHz laptop with 1 GB of RAM running Windows XP for evalua-
tion. The deployment was done onto the Sun SPOT [48] nodes, with a 180 MHz 32
bit ARM920T processor, 512K RAM, and 4 M flash memory. The nodes run the
Squawk Java virtual machine directly out of flash memory and can run programs
written using J2ME libraries. The Sun SPOT base station was used to deploy the
code over the air (OTA) to the SPOTs. The Java hProf profiler [23] was used for
measuring execution time.

During the experiments, a variety of statistics was collected. The first metric
was the time taken by the toolkit to (a) create the auto-generated imperative code
templates, (b) allocate tasks to the nodes and generate per-node customized Java
files, and (c) generate the Java bytecode for each node and deploy it over the air.
In addition to the above times, the experiment also collected statistics regarding the
amount of total code that was written by the application developer versus the code
auto-generated by Srijan. Although the line-of-code metric is more a measure of the
power of the ATaG compiler, the numbers are reported because (a) these numbers
are of the J2ME-targeted implementation of the ATaG compilation framework and
(b) this emphasizes the power of the ATaG macroprogramming paradigm which is
made accessible to the application developer in a graphical manner by the Srijan
toolkit.
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HVAC Traffic

Imperative Code Gen. Time (ms) 1766 3422
Node-Specific Code Gen. Time (ms) 31967 77089
Per-node Deployment Time (s) 21 23

Source Files Edited by Developer 11 18
Total Number of Source Files 57 64

Lines of Application-specific Auto-generated Code 569 1019
Lines of Application-specific Code Written by Developer 60 81
Total Lines of Code 3433 3904

Task Graph Specification Time (min) 10 25
Imperative Code Editing Time (min) 17 60

Fig. 26.13 Costs involved in various stages of application development using Srijan

In addition to the above objective metrics, the experiment also measured the time
it took for an application developer using Srijan to specify the ATaG task graph as
well as the time taken in customizing the imperative code generated by it. Note that
that these timings are variable from person to person, and more accurate statements
can be made only after doing large user studies.

The experimental data is summarized in Fig. 26.13. Note that the time taken
by Srijan to generate the files are within acceptable limits and are limited only
by the hardware it is being run on, and in the case of deployment, also on the
Java compiler used by the Sun SPOT SDK. More importantly, the developer had
to write only a very small fraction of Java source files. The total code deployed

Code Distribution in HVAC Application

81%

17% 2%
Base Template Code

Application Specific
Auto-Generated Code

User Generated Code

Code Distribution in Traffic Application

72%

26%
2%

Base Template Code

Application Specific
Auto-Generated Code

User Generated Code

Fig. 26.14 Distribution of code generation effort
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on each node consists of three components: (a) base template code—containing the
DART libraries, (b) application-specific auto-generated code—generated by Srijan,
and (c) user-generated code—written by the application developer to specify the
details of the task and data. Figure 26.14 shows that the user-generated code is only
around 2% of the total code. Even if the library code is neglected, Srijan generated
> 90% of the application-specific code in each case. The importance of the time
taken by the application developer in specifying the task graph and customizing
the auto-generated code is highlighted by the fact that under normal circumstances,
Srijan will be used by domain experts, e.g., civil engineers, who would have taken
much more time customizing the runtime protocols and figuring out the task place-
ments if it was not available as part of Srijan. These initial experiments demonstrate
that the toolkit makes application development for WSNs more convenient for the
domain expert.

26.7 Concluding Remarks

In spite of the developments in various areas of supporting applications on wireless
sensor networks, the difficulty in application development still presents a hurdle to
their wide acceptance. This chapter presented an overview of the various approaches
available to WSN application developers for creating their applications, both at the
node level and at the system level. Focussing specifically on data-driven macropro-
gramming, we discussed a general compilation framework for a data-driven macro-
programming language for sensor networks. The framework was then shown to be
used for developing a compiler that can convert macroprograms written in ATaG
into a running sensor system, which was followed by a discussion of Srijan—a
graphical toolkit for end-to-end development of WSN applications using the ATaG
data-driven macroprogramming language. Through experiments, it was shown that
the time taken to compile the macroprogram depends closely on the complexity of
both the macroprogram and that of the target sensor system, and also that using
Srijan, developers can quickly develop realistic WSN applications while writing a
very small fraction of the actual application code.

Although data-driven macroprogramming aims to help make WSN application
design easy, it is up to the designers of the compiler and runtime system to make up
for the loss of performance (e.g., high energy costs, shorter lifetimes) that inevitably
accompany a rise in the level of abstraction by incorporating optimizations in the
compilation process. Two such optimizations that can be looked at are placing tasks
to reduce to communication costs and increase the system lifetime and performing
logical-expression sharing when combining the scopes in the channel annotations
of the task graph. We believe that future research in the domain will see experts in
each stage of the compilation process developing better techniques and algorithms
for their part.
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Chapter 27
Toward Integrated Real-World Sensing
Environment — Applications and Challenges

Srdjan Krco and Konrad Wrona

Abstract Growing popularity of wireless sensor network (WSN) applications and
machine-to-machine (M2M) communication has recently led to emergence of a new
class of network traffic. The communication between things introduces network traf-
fic characteristics very different from traditional human-centric communication. As
more WSN and M2M services are expected to use mobile network as a backhaul, it
is important to understand the impact that their traffic will have on the radio access
network. WCDMA radio access networks are dimensioned using traffic models con-
taining traffic characteristics for a number of services offered by the operators and
their networks today. In this chapter, the potential capacity impact of several selected
sensor-based applications on the WCDMA radio access network, both dedicated and
common channels, is presented. The results thus far have shown that currently 3G
mobile networks can successfully cope with the new WSN traffic. With the increase
of WSN traffic, optimizations of protocols and solutions will be required and radio
bearer mapping can be a deciding factor in determining the size of the radio access
network and the required resources.

27.1 Introduction

Over the last 10 years, wireless sensor networks have become an important research
topic. Starting as a subfield of ad hoc networking research and then slowly differ-
entiating into a research area on its own, wireless sensor networks (WSN) have
covered the path from a purely academic research to a commercial reality.

The ubiquitous computing was originally defined by Mark Weiser [46] as disap-
pearing technologies that weave themselves into the fabric of everyday life until they
are indistinguishable from it. This vision of ubiquitous computing was based on a
number of small sensors and actuators, machines in general, embedded in everyday
items, tied together by a communication network, with a range of applications utiliz-
ing this infrastructure. With this vision that connects physical and digital worlds in
mind, a plethora of applications and scenarios was envisaged ranging from military
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to health to environment monitoring. The early scenarios were mainly considering
large sensor networks, with thousands or more homogeneous sensors deployed in an
ad hoc manner over an area. The sensors would self-organize, automatically estab-
lish communication channels, discover routes to sink nodes, and collaboratively
aggregate collected data before delivering it to a sink node. Usually, these networks
were deployed with one particular task in mind, such as monitoring temperature,
monitoring movement of people and vehicles, or monitoring health parameters of
a person. The WSNs were considered as isolated and self-contained systems with
a WSN gateway as the only node that interacts with the outer world, i.e., the users
of the sensor information. This view has changed over the years toward deployment
of not so large, heterogeneous sensor networks, considering the networks as sensor
service providers and enabling their interaction over Internet, fixed and mobile, in
order to create complex services and information to the end users [3, 13, 20].

In this chapter, we discuss two important tiers of research and development
in wireless sensor networks. One of them is integration of WSN into civilian
applications and, in particular, the influence of wide deployment of WSNs on
the public mobile systems. The other one is integration of WSNs into military
applications, which contrary to the civilian applications rely on dedicated and
closed communication information systems, but introduce many specific security
challenges.

In Sects. 27.4, 27.5, 27.6, and 27.7 we present the initial results of a WCDMA
radio access network capacity calculation and analysis as affected by a few selected
WSN-based applications. Impacts of the traffic generated by these applications
on the radio network resources and configuration have been analyzed, in par-
ticular regarding the most efficient mapping of traffic to the radio access bear-
ers (RAB) from both the application and the network point of view. The analy-
sis was done based on the features and characteristics of the existing WCDMA
networks.

27.2 Military Perspective

Military applications were one of the main drivers for early development of WSN
technology. Over the years wireless sensor networks and RFID technology have
constantly continued to gain importance in the military environment. Situational
awareness and informational superiority are important elements of the modern mili-
tary doctrine — the network-centric operations [5]. Both WSN and RFID are critical
technologies for enabling this capability. The main objective of using WSN and
RFID in military systems is to provide the so-called information superiority [4].
Information superiority derives from the ability to create a relative information
advantage vis-a-vis an adversary.

The typical applications where use of WSN and RFID can offer information
superiority include logistics, force protection, and combat assistance [47]. Exam-
ple of current NATO projects related to remote sensing and tracking includes
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perimeter monitoring and convoy tracking in Afghanistan. DARPA has sponsored
several projects related to use of sensor networks in military applications. Mobile
mines equipped with wireless communication interface and a micro controller were
designed to self-organize, form a mine field as well as to redeploy to cover potential
gaps in the mine field coverage [32]. Large networks of sensors that are deployed
by scattering the sensor nodes over a battlefield from an airplane were designed to
monitor movement of people and vehicles [29]. Wireless sensor networks were also
used to accurately detect the location of the sniper shooters [45].

Use of sensor networks and RFID technology in military environment introduces
several challenges. In addition to high reliability and environmental resistance, the
military systems, especially deployed in areas potentially controlled by an adver-
sary, have to provide an adequate level of tamper resistance or tamper evidence. The
communication links, especially wireless channels, have to be adequately secured,
too. The system has to be easy to deploy, operate, maintain, and recover from possi-
ble faults and attacks. And, finally, the solution has to be easily integrated with the
existing military systems.

One of the fundamental challenges in military communications and information
systems (CIS) is dealing with different security classification levels of information.
Most of the current military systems operate according to Bell-La Padula security
model [8]. Extra care has to be taken when designing information flows within the
system in order to meet the relevant organizational security policies. In particular,
a flow of information from the low domain (e.g., unclassified network of sensors)
to the high domain (e.g., secret network including intelligence analysis system and
repository of historical data) requires enforcement of a one-way information flow,
e.g., by using a data diode [41]. However, use of such one-way communication
device implies also that no control information or queries can be sent back directly
from the secret network to the sensors. Simple solutions, such as including sensor
network itself in the secret domain, are not practical because of the cost and techni-
cal constraints.

Discussion of classification of information leads also to an interesting question
concerning when the data collected by sensors becomes a classified information.
As the raw data collected by sensor nodes can be in most cases sensed by anybody,
including the enemy, it is often regarded as unclassified information. Therefore, both
sensors and communication channels between and from the sensors do not need to
meet the strict requirements on security of classified CIS, which would be difficult to
meet due to the technological limitations. However, the aggregated or processed data
is often regarded as classified, which implies that sink nodes or systems performing
in-network processing might be regarded as classified, too.

Another interesting question is the definition of a term sensor network. Typical
WSN scenarios studied in academia assume a large-scale distributed network of tiny
autonomous devices. This challenging environment provides an interesting platform
for identification and investigation of many new research issues and can lead to
interesting practical solutions in the future. However, most of the currently deployed
military sensing systems rely on much bigger sensors and much more centralized
communication topologies. In fact, the term sensor network is often used in military
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environment in order to describe an interconnected system of radar stations and
other long-range sensing instruments.

One of the important challenges that have to be addressed before the WSN gains
widespread acceptance in military applications is that the currently proposed WSN
architectures often do not provide adequate security. Wireless sensor networks face
some usual security threats, including threats to confidentiality, integrity, and avail-
ability [19]. However, the constraint resources available to the nodes make address-
ing these threats a challenging task [26]. The spectrum of the technical security
issues introduced by the classical WSN scenarios is extremely wide, ranging from
physical security of the nodes through lightweight cryptographic mechanisms [11]
and efficient security protocols to secure data aggregation [36] and secure integra-
tion into context-aware applications [10]. The highly distributed character of the
WSN has also an important impact on choice of security mechanisms which are
suitable for securing communication and data processing within the network. Inter-
estingly enough, although the distributed character and the large scale of sensor
networks may be an obstacle for using some well-known security mechanism, e.g.,
used in the Internet, at the same time these characteristics open opportunities for
developing new approaches to security. The possible approaches include relying on
redundancy of evidence and on limited ability of an attacker to gain control over
substantial number of nodes or to monitor the substantial amount of communication
exchange between nodes.

The security in WSN is an important R&D topic, which not only is critical for
enabling real-life applications of sensor networks but also allows us to better under-
stand limitations of existing security mechanism and fosters development of new,
more efficient, alternatives. Despite substantial amount of research performed in this
area in the recent years, many of the security problems are still open and provide
interesting area for further investigation.

27.3 Civilian Perspective

The range of civilian WSN applications is huge. Sensors and actuators embedded
into our environment can be of great benefit in numerous situations and everyday
life. Environmental monitoring is one such domain. Monitoring of Great Barrier
Reef [17] provides data about this remote and vast area ensuring continuous insights
into the current status of sea life thus helping in protecting and preserving it. For-
est fires have caused huge destructions globally, with Greece and Australia being
recent examples. Deployment of a large number of wireless sensor nodes across
endangered forests can help in identifying the fires at early stages thus facilitating
rapid reaction of public services and consequently saving lives and property as well
as minimizing forest destruction [16]. Air quality is a topic of great importance,
especially in urban settings where air pollution caused by traffic and other sources of
pollution is concentrated. In [33], a prototype air quality reporting system described
tries to model the world from a sensor-centric view, with each observed value being
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associated with a geographic and temporal position, as well as the unit of measure-
ment, data quality value, and process description.

The increasing cost of providing health care in medical institutions combined
with the advancements in sensor and wireless technology has created a lot of interest
in research and design of mobile and personal health monitoring systems, the so-
called mHealth solutions [18, 21, 44]. Small sensors capable of monitoring various
health parameters (ECG, temperature, pulse oximetry, blood pressure, blood sugar
level, posture monitoring, etc.) communicate wirelessly (for example, using Blue-
tooth or other short-range wireless technology) with a mobile phone or a specialized
device and transmit measured data to a central repository where it can be accessed
by medical personnel over Internet [22, 25, 43]. In addition to the body-worn sen-
sors, the systems often include sensors deployed in the user’s home environment to
monitor user’s activity and movement. This is of particular interest for elderly moni-
toring applications to enable monitoring of the daily routine and execution of various
tasks by the users in addition to the health parameters. The research addresses not
only monitoring of users with health problems (for example, after hospitalization or
with chronic health problems) but also supporting healthy people during workouts
and training or specialized programs like weight loss to enable adaptation of the
workout intensity to the overall health conditions as well as to provide motivation
to users to endure throughout the training [6].

With the rapid proliferation of mobile networks and advancement of mobile
devices, the list of interesting WSN application domains has been extended by the
so-called participatory sensing that relies on people and their mobile devices (e.g.,
mobile phones) to gather information about the physical world [9, 14, 37]. Further
on, actuators have been included into the networks of sensors [38] as well as static
and mobile robots [40]. Machine-to-machine (M2M) communication as the way to
connect individual machines and devices over Internet (and primarily over mobile
networks) has been perceived by mobile network operators as a way to substantially
increase the number of subscribers, create new services, and generate additional
revenue utilizing the existing network infrastructure.

In the recent years, with the first commercial deployments, the focus of the
WSN research has slowly started to shift toward integration of sensor networks with
Internet and mashing up of information provided by these networks to create new
service and added value to the users [13]. Opening up WSNs and making them a
part of a wider system led to creation of wireless sensor network frameworks that
aim at providing a set of standardized interfaces, protocols, and services to facilitate
an efficient interaction with heterogenous WSN. The offered services range from
discovering suitable WSNs and sensor nodes based on semantic queries through
aggregating and processing observed data to dynamically creating new, virtual sen-
sors by combining existing ones to provide information that otherwise would not
be available [2, 15, 23, 35]. With these solutions in place, a tighter integration of
WSNs with other networks and systems will be possible thus facilitating creation
of a range of new services and supporting innovative concepts, such as smart cities,
smart transport, smart health, and smart homes, and leading to the overall vision of
the Internet of Things and, more general, the Future Internet. In fact, one of the most
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important aspects and envisioned innovations of the Future Internet is the support
for inclusion of context information about the physical environment and making it
available to all users in a similar manner the web services are available and used
today. All these applications and technologies that enable interaction of the physical
and the digital worlds and integration of the information about the physical world to
Internet are referred to as Internet of Things or Real World Internet [42].

As the Internet of Things (IoT) is becoming a very important element of the
modern communication systems, it is necessary to fully understand how the traffic
generated by a plethora of IoT applications impacts the networks today and how to
improve network protocols and procedures to ensure more efficient handling of new
network users, applications, and services.

A significant number of WSNs and things will be connected to Internet via
mobile networks. In comparison to the number of the traditional mobile network
subscribers (currently around 4 billion subscribers in the world), wireless sensor net-
work deployments are still low in numbers and are not currently seen as a significant
source of additional traffic load for mobile networks. However, if the existing trends
continue and the forecasts prove to be correct [12], we can expect that the number
of WSNs, machines, and in general things using mobile networks will be growing
rapidly and will eventually outnumber the traditional, human subscribers. To ensure
optimum dimensioning of the networks and utilization of network resources, it is
necessary to understand how this new class of users will use mobile networks and
how will the traffic they generate impact the existing networks in terms of the capac-
ity requirements, network configuration, quality of service, impact on the existing
services, etc.

27.4 Selected WSN Applications and Traffic Models

WSN and M2M application space is broad and diverse as highlighted above. For the
purpose of traffic modeling, we focus on the application domains that are already
on the market or will most likely be available on the market very soon [7, 27]. From
the WCDMA networks point of view, the most important applications are those
that are expected to have high penetration levels and to use mobile networks to
transfer data and interact with remote users. The important application parameters
that affect mobile network include application requirements in relation to delay and
service guarantees, predominant direction of data transfer of the application (down-
link or uplink) data transfer, data volume per transaction, and frequency with which
transactions are generated.

Based on these criteria and taking into account the available market forecasts
for each of the domains [27], we selected a subset of applications that are expected
to have the most significant impact on mobile networks in the coming years. The
following application domains were included in our analysis: control and automa-
tion, transportation, environmental monitoring for emergency services, health care
as well as frequent transfer of small amounts of data that is likely to be generated
by WSN frameworks [13].
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Within these domains, particular use cases were analyzed and their data deliv-
ery models included in the overall WSN applications traffic mix. Considering a
wide range of WSN applications, it is natural that they have different expectations
of mobile networks with regard to the quality of service provided. This makes it
impossible to create one WSN traffic model as an input to the WCDMA radio access
network dimensioning. Instead, each selected application was analyzed separately,
categorized according to its service class, and mapped to the appropriate existing
RABs. Although the study considers sampling periods on a sensor level, these are
only used as references for determining a reasonable data generation period by the
WSN gateways. It is assumed that WSN gateways perform data aggregation and
processing of sensor data before forwarding it to remote users. From the mobile
network point of view, the WSN gateways are seen as standard mobile users gener-
ating traffic.

Several data delivery models, e.g., event driven, query driven or periodic, can be
used by the WSN networks internally as well as by the WSN gateways to transfer
data across WCDMA radio access network [1]. Our initial analysis includes periodic
data delivery method only. This method was selected because we expect that it will
result, on average, in the highest traffic load and will have the biggest impact on the
radio network.

27.4.1 Control and Automation Domain Applications

Control and automation domain applications provide distributed control and
automation in both industrial and residential environments [7]. A typical use case
in the industrial domain is monitoring of machines and production equipment, both
indoor and in the field. Management of heating and air-conditioning systems, light-
ing, and security in residential and non-residential buildings is an example of build-
ing automation applications [27].

Typically, the machinery monitoring applications use a number of sensors per
monitored machine. The frequency of sampling and reporting depends on the
machinery complexity and their current status but is generally considered to be a
high-frequency process [39]. For the use case of interest, i.e., where the data is
to be sent from a WSN gateway to a monitoring center using mobile network as a
backbone, we will assume that data packets of average size of 50 bytes are generated
by the WSN gateway once a minute.

HVAC (heating, ventilation and air-conditioning control) applications include
monitoring and control of industrial and residential premises. A significant number
of such applications will use an internal network or fixed Internet to establish com-
munication between the monitored locations and the control center [31]. However,
it is expected that mobile networks may be used in some scenarios, especially for
remote buildings and buildings without fixed telecom infrastructure. In the commer-
cial domain, we assume that 10 Hz sampling frequency is used. The obtained data
is then aggregated and forwarded to control centers every 30 s, using 60-byte long
packets [28].
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In the residential domain, the sampling is estimated to take place every 30 s [31].
This resulted in an assumption that 60-byte long packets are sent once a minute
by the WSN gateway to the control centers. The automatic gas/water/electricity
metering applications (AMR) were assumed to send files of up to 2.5 kB twice a
day. This is based on the assumption that a reading was done using 15-byte raw data
per utility, every 15 min.

27.4.2 Transport Applications

Applications addressing safety of drivers and passengers, traffic monitoring, road
toll, and fleet management are typical use cases in the transportation domain [27].
In our analysis, we examined the use cases where mobile terminals (built in the
vehicles) in the role of WSN gateways report about the driver’s vehicle state, state
of the road, and traffic conditions (e.g., monitoring lane occupancy, vehicle count
and travel speeds). The measurements are sent every minute by the WSN gateways
using 50-byte long data packets [30, 34].

The second considered application in this domain is vehicle tracking application,
already being deployed either as a part of corporate processes (security, asset man-
agement) or as a car insurance tool. In this application the assumption was that WSN
gateways send 50 bytes every 15 s.

27.4.3 Environmental Monitoring for Emergency Services

In the environmental monitoring domain, the flood detection and structural integrity
monitoring applications were selected. Environmental processes do not require
high-frequency sampling as control and automation processes. For the purpose
of our analysis we assume that the sensors will collect 15 bytes of data every
30 s [24]. Gateways will collect and aggregate the data and forward it to the moni-
toring centers every 3 h. The estimated average file size sent to monitoring centers
is 5.4 kB.

27.4.4 Health Monitoring Application Traffic Model

In the health-care domain, the personal health monitoring systems were taken into
consideration. These systems use mobile devices to transfer physiological measure-
ments from the sensors attached to a patient’s body or located in their immedi-
ate vicinity. We assumed that an electrocardiogram (ECG) is monitored using a
3-channel ECG system with 250 Hz sampling rate per channel. Data is transmit-
ted to a monitoring center every 6 h. The amount of data in this case is around
16 Mbytes, which results in 5.4-MByte files every 6 h, with ECG compression
rates of 3:1.
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27.4.5 Traffic Model Summary

Table 27.1 gives a summary of selected applications, estimated data sizes, and
frequencies of data transfer. For all applications interactive traffic class has been
adopted and interactive PS radio bearer selected. The frequency of data trans-
fers spans periods of 15 s to 3 h with packet sizes ranging from 50 bytes to few
megabytes.

Table 27.1 Selected WSN applications and traffic model

Application Data size and frequency

Automatic meter reading 2.5 kB every 12 h
Transport 50 B/min or 50 B/15 s
Environmental monitoring 5.5 kB/3 h
HVAC commercial or residential 60 B/30 s or 60 B/min
Health monitoring 5.48 MB/6 h
Machinery monitoring 50 B/min

27.5 Characteristics of the WCDMA Networks

In this section we briefly introduce the main principles and concepts of the mobile
networks architecture and protocols to allow easier understanding of the detailed
analysis provided in the following sections.

The overall WCDMA mobile networks architecture is given in Fig. 27.1. Mobile
terminals (UE — user equipment) interact with radio base stations (NodeB) over
the air interface. A number of NodeBs are controlled by a radio network controller
(RNC) which on the other hand interacts with the core network elements. When a
user wants to set up a call or access Internet, his UE informs the NodeB it’s attached
to and the corresponding RNC about the required service. Based on this information
appropriate resources gets allocated along the path and the service becomes avail-
able. Depending on the service needs, different types of radio bearers get allocated.
The 3rd Generation Partnership Project (3GPP)1 R99 release specifications have
defined a number of bearers that can be broadly categorized as CS (circuit switched)
and PS (packet switched). The PS channels are primarily used for data transfer and
are characterized by the throughput they provide. The highest throughput available
is provided by the PS384 bearer which provides throughput, as the name implies,
of 384 kbit/s. 3GPP Release 5 and Release 6 have introduced high-speed packet
access which provides up to 14 Mbit/s in the downlink (HSDPA — High Speed
Downlink Packet Access) and up to 5.8 Mbit/s in the uplink (EUL — Enhanced
Uplink). Coupled with improvements in the radio access network for continuous
packet connectivity, HSPA+ will allow uplink speeds of 11 Mbit/s and downlink
speeds of 42 Mbit/s within the 3GPP Release 8 time frame.

1 www.3gpp.org

www.3gpp.org
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Fig. 27.1 The WCDMA mobile networks architecture

Two types of channels are available to WCDMA users: common and dedicated.
Common channels are shared by all users in a radio cell, have a low setup delay,
and are used to carry control information to and from the UEs and to transfer short
user packets. If a user needs to transfer more data and with a specified quality of
service, a dedicated channel (DCH) is set up and allocated to the user. DCH setup is
performed based on the signaling exchanged between the user’s UE, NodeB the UE
is attached to, and the handling RNC.

3GPP defines four traffic classes in WCDMA networks: conversational, stream-
ing, interactive, and background [1]. Each of these classes is mapped onto a RAB,
which provides a specific level of quality of service defined by a number of param-
eters such as transfer delay, delivery order, guaranteed bit rate. Each application
is mapped to one of the traffic classes based on its requirements. For example,
the voice application is mapped to the conversational class, while web browsing
and e-mail download belong to more delay-tolerant classes — i.e., interactive and
background.

In [1], examples of applications and the corresponding end-user performance
expectations are outlined, using the classification based on the four traffic classes.
Telemetry applications have been identified as being suitable to fall into the follow-
ing traffic classes:

Conversational (real-time): for two-way control telemetry (e.g., controlling an
important industrial process)

Streaming (non-real time): for monitoring services

The WSN applications considered here, bar the ones generating frequent trans-
fers of small amount of data, are mapped onto the interactive class. Selected appli-
cations in the domains of automatic meter reading and health and environmental
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monitoring typically do not have strict delay requirements (unless real-time moni-
toring is required) and therefore are mapped onto interactive class.

Interactive class can be also used for WSN applications that are delay sensitive
(e.g., applications reporting on industrial process control and monitoring). These
applications typically send periodic updates containing a small amount of data. If
a dedicated channel (DCH) is required to be setup to transport such small amount
of data, a delay due to the time required to set up such a channel is introduced
which might be prohibiting. In addition, using DCH to transfer small amounts of
data also results in poor utilization of radio resources (user data to signaling ratio
is very small). Hence, when there is no existing DCH channel carrying interactive
traffic, these applications may use common channels — forward access channel
(FACH) and random access channel (RACH). Of particular interest to M2M and
WSN applications is performance of the uplink common channel (RACH), particu-
larly in relation to delay and interference as a function of the number of the users in
a cell.

For the purpose of the network dimensioning evaluation we have considered that
UEs are in the so-called CELL_DCH state, i.e., dedicated channels are already set
up and are ready to be used by WSN applications. The aggregated amount of data
generated by the above-mentioned WSN applications during BH is calculated and
mapped onto different PS interactive RABs.

For the applications that generate frequent transfers of small amount of data
we used common channels for data transfer. This type of traffic is expected to be
common in future context-aware networks where all devices interacting with the
physical world (sensors, actuators) are registering their capabilities in a registry or
directory so that the users of the system can search and find devices capable of
answering their queries. For example, the FP7 SENSEI architecture envisages exis-
tence of a resource directory as the core functionality [13]. The resource directory
stores descriptions of all sensors, actuators, and other devices in the network. It is
the responsibility of these devices to keep the description up to date and to regularly
inform the resource directory about their availability. This approach will result in a
huge number of periodic messages extending the lifetime of records in the directory
or updating description due to changes in the environment (in the case of a mobile
sensor this could mean updating location).

As the amount of data per transfer is small it is important to keep signaling
overhead as low as possible to optimize the transfer. Since the common channels
are always on and can be used without additional signaling required to establish
dedicated channels, this type of channels seem to be more suitable for short bursts
of data. However, the capacity of common channels is limited, and therefore it is
necessary to evaluate the overall performance of the system when WSN traffic is
sent over these channels. As the data is primarily originating from the edge devices
and is transferred to the core network entities, of particular interest is performance
of the uplink common channel (RACH). The most important parameters considered
in this case are the delay in data transfer and interference as a function of the number
of users in the cell (as RACH is shared by all users in the cell). Therefore, only the
uplink channel was modeled.
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27.6 Network Dimensioning Methodology

Radio network dimensioning is a complex task that depends on many parameters.
In this process, the main input parameters that include projected number of network
users, applications that will be used, required quality of service for each appli-
cation, and the size of the area and the type of the environment where the net-
work will be deployed are analyzed. The ultimate goal of the radio access network
dimensioning phase is an indication of the size of the radio access network, i.e.,
number of sites (number of Node B) and the site configuration. This phase is nor-
mally followed by the planning phase. The main input parameters used in our study
include

• Coverage area and the number of subscribers: 300 km2 with 455,000 mobile sub-
scribers (an average EU city);

• Average user traffic profile: Expected Circuit-Switched (CS), High Speed Packet
Access (HSPA), and Release 99 Packet Switched (PS) traffic has been defined in
the form of average subscriber profile during busy hour (BH);

• Site configuration: Node B configuration is a standard solution (20 W) with 3×1
(three sectors and one carrier per sector);

• Number of codes: 10 HSPA codes are used in dense urban, urban and suburban
environment and 5 in rural environment.

Six different scenarios were used:

Scenario 1: Standard traffic mix only (no WSN traffic). This scenario was used as
a benchmark in the analysis

Scenario 2: WSN-generated traffic only. WSN gateways act as mobile subscribers
(same number as in scenario 1), assuming equal WSN application weigh-
ing (all WSN applications weigh 1). This scenario was split into two sub-
scenarios:

Scenario 2A — WSN traffic only, mapped onto PS64
Scenario 2B — WSN traffic only, mapped onto EUL/HSDPA

Scenario 3: Combined scenarios 1 and 2 traffic profiles, with WSN application pen-
etration 10 and 50%, respectively. WSN application domains are assumed
to be equally distributed, i.e., carry the same weight across the application
domains and all WSN gateways use all selected WSN applications equally

3A1 — 10% WSN penetration, using PS64 bearer
3A2 — 50% WSN penetration, using PS64 bearer
3B — 50% WSN penetration using EUL/HSDPA RABs

Scenario 4: Combined standard and WSN traffic with non-equal distribution of
WSN applications. WSN traffic was mapped to PS64 RAB and EUL/HSDPA
RABs in sub-scenarios 4A and 4B, respectively. The overall WSN penetration
of 50% with the following weights based on the expected penetration rate of
different application domains [2] was used:
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• Control & Automation: 0.744 (Machine Monitoring 0.35, Advanced Meter-
ing 0.18, HVAC Residential 0.18, HVAC Commercial 0.29)

• Transport: 0.083 (equally split among two use cases)
• Emergency Monitoring: 0.1
• Health: 0.079

Scenario 5: Combined standard and WSN traffic with equal application mix and
100% WSN penetration, using EUL/HSDPA bearers

Scenario 6: Combined standard and double WSN traffic with equal application mix
and 200% penetration, using EUL/HSDPA bearers

In scenarios 3, 4, 5, and 6, the average traffic profile was normalized across
455,000 subscribers, taking into account standard and WSN application mix as well
as the penetration levels of WSN applications.

The performance of a RACH channel (common uplink channel) is simulated in
an Ericsson simulation tool. The following simulation parameters were used:

• Simulation time: 400 s
• Sources of traffic: five per M2M client generating traffic every 15, 30, and 60 s
• Packet sizes: 50, 100, 150, and 200 bytes
• Number of users per cell: 1, 40, 80, 160, 320, and 640.

The following parameters were monitored:

1. One-way delay (uplink): this is a delay the packet experiences from the moment
it is sent by the client until its reception by the server.

2. RACH access delay: this is the time since the first RACH preamble is sent until
the acknowledgment is received by the mobile user, i.e., until data transfer can
start.

3. Attempts by the UE: total preamble attempts before the data is actually transmit-
ted.

4. Uplink interference: level of interference on the uplink.

These parameters were selected as they give a good insight into the performance
of the RACH channel both from user perspective (delay) and from the system’s
point of view (uplink interference) [1]. The combination of delays in accessing
RACH channel and the data transfer delay can have a detrimental impact on the
application while the uplink interference has impact on the overall capacity of the
mobile network.

27.7 Results

The main results of a radio access network dimensioning exercise are the num-
ber of (radio) sites required, site configuration, traffic per site/cell, and capac-
ity per site/cell. Figure 27.2 depicts the total number of required sites for all
scenarios.
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Fig. 27.2 Total number of sites

In relation to the results of scenario 1, the following can be noted:

• Required number of sites to support 455,000 users with standard traffic mix is
451. This value is used as a benchmark for analysis of scenarios involving WSN
traffic.

• WCDMA RAN dimensioning process envisages separate calculation of the
required network resources for uplink and downlink; the final allocation of
resources is done according to the higher requirements of the two. In this sce-
nario, the size of the network is determined by the downlink (DL) require-
ments in terms of the number of sites as the standard traffic mix is downlink
heavy.

• The size of the network is also impacted by a near-100% utilization of the code
tree in most environments, considering that each WCDMA cell has a limited
number of codes available.

In contrast to scenario 1, the size of the network in scenario 2 is determined
by the uplink requirements, which was expected considering the nature of WSN
traffic (uplink mainly). The capacity per site and the number of sites quite differ
between scenarios 2A and 2B, despite the fact that the same traffic mix is used.
This is due to the fact that WSN traffic in scenario 2A uses PS64 RAB, and in
scenario 2B it uses EUL/HSDPA RABs. Usage of PS64 RAB results in high traffic
intensity (Erlang/subscriber — the amount of traffic generated by a subscriber over
a period of time, usually 1 h), which reduces capacity per site and hence increases
the number of sites. In scenarios 3A2 and 3B, the number of sites is determined by
the requirements for the DL traffic. This means that the increase in the number of
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sites on the uplink due to WSN traffic, with a given WSN penetration, still does not
outweigh the number of sites required to support the downlink traffic.

The traffic mix in scenarios 4A and 4B, which take into account different appli-
cation penetration levels, is determined on the uplink mainly by the WSN-generated
traffic and on the downlink by the standard mix. The number of sites to support the
downlink traffic again outweighs the number of sites on the uplink; therefore, their
results require networks of the same size as in scenario 1.

Scenarios 5 and 6 see an increase in the required number of sites compared to
scenario 1 due to the increase of traffic per subscriber. However, it should be noted
that out of all scenarios that feature standard traffic profile (scenarios 3, 4, 5, and 6),
only in scenario 6, where WSN traffic is doubled, the resulting number of sites is
determined by the requirements on the uplink. Figure 27.3 shows relative increase in
the traffic intensity per subscriber during BH for scenarios 3, 4, 5, and 6 when com-
pared to scenario 1. Relative increase in the traffic intensity (Erlang) per subscriber
is particularly noticeable in scenario 3A2 due to the use of PS64 bearer and is even
higher than in scenario 6 in which the WSN traffic is doubled and EUL/HSDPA
RABs are used.

Relative change in the total hardware processing capacity required across all
sites on the uplink and downlink on Node Bs to handle R’99/HSPA traffic is given
in Fig. 27.4. It should be noted that the required processing resources at Node Bs
depend on the characteristics of the actual hardware components and vary between
the vendors. Hence, only relative increases are depicted by this figure.

As we can see from Figs. 27.2, 27.3, and 27.4, significant increase in scenario
3A2 in Erlang per subscriber (as a consequence of additional WSN-related traffic
and the use of PS64 bearer to carry it) has resulted in a correspondingly significant
increase of the total required processing capacity both on the uplink and on the

Fig. 27.3 Relative increase in traffic demand (Erlang) per average user during BH — scenarios 3,
4, 5, and 6
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Fig. 27.4 Relative change of the total required R’99/EUL processing resources compared to
scenario 1

downlink. Scenario 3B features the same WSN traffic profile, however with a much
lower Erlang/subscriber increase (14%) compared to scenario 3A2. This comes as a
result of using high-speed RABs — EUL/HSDPA. An increase of traffic intensity is
observed mainly on the uplink due to the nature of WSN traffic, hence the increase
in the use of total uplink R’99/HSPA resources.

In scenarios 4A and 4B a very small increase in Erlang/subscriber (5.9 and 2%,
respectively) is introduced, which explains no requirement for additional processing
capacity.

Scenarios 5 and 6 both feature high-speed bearers — EUL/HSDPA to carry the
additional WSN traffic assumed to be equally distributed among the WSN applica-
tions. With 100 and 200% WSN penetration for scenarios 5 and 6, respectively, the
normalized traffic profile on the uplink is entirely determined by the WSN traffic,
resulting in significant increase in number of sites and total processing R’99/EUL
resources on the uplink. It should be noted, however, that only in scenario 6, the
number of sites is determined by the uplink requirements (except for suburban envi-
ronment).

All HSPA resources that are in place to support standard traffic mix (i.e., codes,
EUL license, HS-capable boards) are reused in scenarios 3B, 4B, 5, and 6.

27.7.1 Common Channels Analysis

One-way data transfer delay as a function of the number of users in a cell using
RACH for different packet sizes (50, 100, 150, and 200 bytes) is presented in
Fig. 27.5. It can be noted that for smaller packet sizes, the delay increases linearly
and relatively slow (from 90 up to 110 ms for 50-byte packets) with the increase
in the numbers of users in a radio cell (from 1 to 640), while the curves are getting
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Fig. 27.5 One-way delay for different packet sizes

steeper as the packet sizes get bigger. The delay reaches up to 1.1 s when packet
size of 200 bytes is used with 640 users in the cell.

Delay of 100 ms is a relatively short one and will be acceptable for a range of
applications. However, delays of more than 1 s, particularly for applications requir-
ing return control information, will most likely be exceeding the delay budget as
these applications would typically require a sub-second end-to-end delay.

Figure 27.6 presents RACH channel access delay. RACH channel delay is the
time from the moment the first RACH preamble is sent until the acknowledgment is
received by the mobile user. In tested scenarios, this delay ranges from 2 to 16 ms,

Fig. 27.6 RACH channel access delay
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Fig. 27.7 RACH channel — attempts by UE

depending on the number of users and packet sizes. This delay is relatively small
in comparison with the one-way delay presented in Fig. 27.5. Therefore, it does not
present a problem from the M2M application point of view and can be disregarded.

The mean number of total preamble attempts before data is transmitted increases
with the increase in the number of users and packet sizes and ranges on average 1.4–
3.4 (Fig. 27.7). It should be noted that the maximum number of preamble attempts
by user equipment (UE) per cycle is normally set to 8 (default), while maximum
number of cycles is normally set to 4, before RACH procedure is aborted. It can
be concluded that this factor does not impact execution of data transfers apart from
adding a small delay which can be disregarded in comparison to the one-way delay
presented in Fig. 27.5.

Figure 27.8 shows interference on the uplink as the function of the number of
users in a radio cell and packet sizes. While previous graphs are showing various
data transfer delays introduced by the network and giving information on suitability
of RACH channel for M2M traffic from the application point of view, the interfer-
ence graph is showing impact of M2M traffic on the overall network performance
as interference is one of the main limiting factors for the uplink.

Typical thermal noise interference for WCDMA is −105 dB m including the
receiver noise. With the traffic growth and increased network load interference is
increasing, which is defined as noise rise. Due to the increased interference the cell
breathing phenomenon occurs in WCDMA systems, which is visible as radio cell
coverage shrinking. Usually, mobile systems are designed to cope with the noise rise
of up to 5 dB. As it can be seen in Fig. 27.8, for packet size of 50 bytes interference
on the uplink is always acceptable, i.e., less than −100 dB m. However, for the larger
packet sizes (i.e., 100, 150, and 200 bytes), the maximum number of simultaneous
users is falling to 320, 220, and 170 users, respectively. This is one of the most
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Fig. 27.8 Interference on uplink

limiting factors for the use of RACH channels for M2M traffic as it significantly
reduces the number of simultaneous users.

In addition to the impact on radio cell coverage, the growing interference will
degrade uplink performance, especially for the EUL, where scheduler allocates
resources to EUL users taking into account the uplink interference in the cell. Due
to the increased interference, the EUL users will experience degradation of HSUPA
performance in terms of achieved throughput and delays. Therefore, usage of RACH
channels has to be controlled and its use is limited so that it does not affect other
users.

27.8 Conclusions

The study described is one of the first attempts to quantify the potential impact of the
so-called Internet of Things on mobile access networks. The study used projections
of traffic profiles and standard reference values for system parameters. Assumptions
in relation to the WSN traffic were based on a number of studies and descrip-
tions of prototype applications, as well as live commercial systems. The analysis
encompassed a range of M2M applications, with data size that range from a few
kilobytes to more than 1 MByte during BH. All selected WSN/M2M applications
were mapped to interactive RABs. The capacity analysis showed that the number
of radio sites in a network remains mainly determined by the downlink traffic in
scenarios featuring standard traffic mix, except in scenario 6 where WSN traffic
was doubled. The observed increase of the required R’99/HSPA resources due to the
WSN/M2M traffic is dependent on the bearer use (PS64 or high-speed bearers). The
use of EUL/HSDPA bearers is recommended for data-heavy applications. RACH
performance, particularly in relation to delay and interference, has to be analyzed
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separately, as well as the delay when dedicated/HS channels are used. Finally, it
should be noted that the number of concurrent users on the radio network controller
(RNC) represents a potential bottleneck in the above setup, as all UEs that are also
WSN gateways will be in connected mode (in Cell-FACH state when using common
channels or in Cell-DCH state when using dedicated channels), i.e., active from
the RNC point of view. This aspect will be further explored in the future. Further
refinement of the selected WSN traffic models, the actual penetration levels of WSN
applications as well as inclusion of new applications like social networking into the
analysis are some of the activities planned in the future.

Simulations show one-way packet delay ranging from 110 ms for 50-byte data to
1.1 s for 200-byte data for 640 users per cell when using RACH. The delay budget
has to be drawn for every particular M2M application, but in general delays of more
than 1 s can be a limiting factor for a range of applications. Intensive usage of RACH
for M2M traffic may affect network performance in general and other users, partic-
ularly EUL users, due to the increased interference. Interference increases with the
number of simultaneous RACH users and data packet sizes which limits the number
of M2M users that can simultaneously use RACH. This has to be taken into account
when bearer mapping for M2M users is selected.
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