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Foreword

We first thank all authors of this book for their high-quality contributions; the will-
ingness of these leading researchers to participate in this effort has been vital to its
success and a great honor for us.

This book is organized into eight thematic sections, namely (i) Challenges for
Wireless Sensor Networks; (ii) Models, Topology, Connectivity; (iii) Localiza-
tion, Time Synchronization, Coordination; (iv) Data Propagation and Collection;
(v) Energy Optimization; (vi) Mobility Management; (vii) Security Aspects; and
(viii) Tools, Applications, and Use Cases. It spans a large spectrum of fundamental
aspects for sensor networks such as topology management, node interactions and
connectivity, information dissemination and obstacle avoidance, localization and
synchronization, mobility management and robotic entities, energy optimization
and power assignment, security, as well as relations of sensor networks to other
network types such as radio and mobile. The book is meant for use by researchers,
developers, educators, and students interested in the area of sensor networks. Since
sensor networking is applied to a variety of domains, the ideas, methods, and tech-
niques illustrated in this book may be useful to a very wide audience. Furthermore,
this book can also be used as a supplement to any course on algorithms, wireless
protocols, and distributed computing and networking.

‘We wish to thank Springer, Lecture Notes in Computer Science (LNCS), for pub-
lishing this book; in particular, we thank Alfred Hofmann for our long cooperation
and his persistent willingness to encourage high-quality publications in emerging
research topics. Also, we thank his Springer colleague Ronan Nugent for a fruit-
ful cooperation in realizing this volume. Many thanks go to Dionysios Efstathiou
(MSc), a brilliant PhD student at the University of Patras and CTI, actively working
on sensor networks, for integrating the Volume material so timely and efficiently.

Finally, we acknowledge support from the EU research project AEOLUS (“Algo-
rithmic Principles for Building Efficient Overlay Computers™) of the Sixth Frame-
work Programme/FET Proactive Initiative on Global Computing. Several of our
research perspectives have been positively influenced by AEOLUS, while many
AEOQOLUS researchers are contributors of this book.

Patras, Greece Sotiris Nikoletseas
Geneva, Switzerland José D.P. Rolim
November 2010



Preface

Wireless ad hoc sensor networks have recently become a very active research subject
as well as a topic of rapid technological progress and large-scale practical devel-
opment and application activities. However, a solid foundational and theoretical
background seems still necessary for sensor networking to achieve its full potential.
The provision of relevant abstract modeling, novel algorithmic design, and analysis
methodologies toward efficient and robust realizations of such very large, highly
dynamic, complex, non-conventional networks is a challenging task for the theoret-
ical computer science community (and that of distributed computing in particular).

Several models, algorithms, and interesting research results have already
appeared, in specialized and generic theory journals, conferences and workshops.
This book aims to reinforce the emergence of a critical mass of theoretical and
algorithmic foundations by bringing together, for the first time in a systematic
way, high-quality research contributions (invited book chapters) by leading experts
worldwide relevant to important algorithmic and complexity-theoretic aspects of
wireless sensor networks and related ad hoc network types.

The intended audience of this book includes researchers and advanced graduate
students working on sensor networks and the broader areas of wireless network-
ing and distributed computing, as well as practitioners in the relevant application
domains interested to obtain a broader foundational perspective and insight. The
book can also serve as a text for advanced university courses and research seminars.

The book is structured into eight themes covering respective common aspects,
issues, and methodologies. This division is rather indicative; because of the inherent
relations of different topics, layers, and problems, many chapters could be associ-
ated to more than one theme, and the themes themselves could have been chosen in a
different manner. Still, we hope that the particular structure will be methodologically
useful for the reader.

We now briefly describe each theme. The first one discusses characteristic chal-
lenges for distributed sensor networking; although the perspective stems from sys-
tems methodologies, the implications to algorithms and theory are relevant.

The second theme presents current abstract modeling proposals for sensor net-
works related to different layers (physical, network), diverse (yet highly related)
aspects such as the topology management and mobility plane, as well as the impor-
tant aspect of network coding.

vii



viii Preface

The next theme concerns basic primitives for distributed computing in sensor
networks such as localization, time synchronization, and decentralized coordination.
Efficient distributed solutions to such primitives are necessary for higher layer net-
work services, such as the (rather canonical) problem of data routing. Data routing
(and information dissemination, more general) is studied in the fourth theme, in
terms of both propagating data to a sink destination as well as collecting data from
the network nodes.

The fifth theme covers one of the most important challenges in sensor net-
working, that of energy optimization. Different aspects of energy management are
addressed, such as prolonging the network lifetime via probabilistically optimized
routing decisions as well as via mobility optimization. This mobility-based approach
nicely connects to the next theme which addresses mobility and its complications;
also, how to exploit mobility anyway present in the network to, e.g., optimize infor-
mation spreading.

The important aspect of security in sensor networks is investigated in the seventh
theme by addressing complementary aspects, such as the efficient distribution and
management of secure keys. The book concludes with an interesting more practi-
cal theme on characteristic applications and representative tools for programming
sensor networks, as well as the discussion of a use case scenario in the context of a
Future Internet perspective.

We hope that this book will be helpful to its readers and contribute to a solid foun-
dation and deeper understanding of the fascinating and rapidly evolving research
area of distributed sensor networking.

Patras, Greece Sotiris Nikoletseas
Geneva, Switzerland José D.P. Rolim
November 2010
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Challenges for Wireless Sensor Networks



Chapter 1
Composition and Scaling Challenges in Sensor
Networks: An Interaction-Centric View

T. Abdelzaher

Abstract Moore’s law, automation considerations, and the pervasive need for
timely information lead to a next generation of distributed systems that are open,
highly interconnected, and deeply embedded in the physical world by virtue of per-
vasive sensing and sensor-based decision-making. These systems offer new research
challenges that stem from scale, composition of large numbers of components, and
tight coupling between computation, communication, and distributed interaction
with both physical and social contexts. These growing challenges span a large spec-
trum ranging from new models of computation for systems that live in physical
and social spaces, to the enforcement of reliable, predictable, and timely end-to-
end behavior in the face of high interactive complexity, increased uncertainty, and
imperfect implementation. This chapter discusses the top challenges in composing
large-scale sensing systems and conjectures on research directions of increasing
interest in this realm.

1.1 Introduction

The envisioned proliferation of networked sensing devices, predicted in the 1990s,
has given rise to myriads of challenges that arise from interconnecting sensors at
large scale. Future distributed sensing systems will surpass the current paradigms
for embedded computing, where a number of sensors and actuators implement
well-understood and tightly managed control loops. New paradigms will involve
data acquisition at a significantly wider scale, offering less structure and less control
over the properties of the resulting loops from sensing to decision-making. It is envi-
sioned that by the end of the next decade, a significant number (if not the majority) of
Internet clients will constitute sensors and embedded devices. Indeed, the main role
of future networks will shift from offering a mere communication medium between
end-points to offering information distillation services bridging the gap between the

T. Abdelzaher (=)
University of Illinois at Urbana-Champaign, Champaign, IL, USA
e-mail: zaher@cs.uiuc.edu

S. Nikoletseas, J.D.P. Rolim (eds.), Theoretical Aspects of Distributed Computing 3
in Sensor Networks, Monographs in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-14849-1_1, © Springer-Verlag Berlin Heidelberg 2011



4 T. Abdelzaher

myriads of real-time low-level data feeds and the high-level human decision needs.
The success of Google, built around the mission of organizing and “distilling” Web
content, attests to the increasing use of networks as information sources. The pro-
liferation of sensing devices gives rise to new information acquisition paradigms,
such as opportunistic and participatory sensing [1, 4, 9, 15, 18], that rely on sensory
data collection by individuals or devices acting on their behalf and on sharing these
data at large scale to extract information of common use. New challenges arise in
supporting the information distillation requirements of such emerging applications.
These challenges are brought about primarily by scale and the need to compose
sensing systems of large numbers of components, while maintaining predictable
end-to-end properties.

Composition challenges arise from the complex interactions that large-scale
sensing systems exhibit in several spaces including functional, data, and tempo-
ral interactions. This chapter focuses on four important interaction challenges that
arise by virtue of scale. Namely, we elaborate on composition challenges in the face
of functional interactions, data interactions, timing interactions, and interactions of
system dynamics in largely distributed sensing systems.

It should be noted that this chapter is by no means a complete account of sensor
network design and performance challenges. Most prominently, the chapter does not
directly address the issues of heterogeneity, programming interfaces, middleware,
and architectural paradigms used to facilitate building large systems. These software
and architectural solutions, as well as examples of large-scale deployed networks,
are detailed elsewhere in this book. The chapter also does not address the issues of
security; a growing concern in recent literature as sensor networks empark on new
mission-critical application domains where secure operation must be assured. The
interaction challenges mentioned above present a more basic categorization of chal-
lenges, classifying them not by the software layer in which they arise (such as oper-
ating systems, communication protocols, middleware, or programming support), but
rather by the conceptual space in which they occur, such as functional, temporal, or
data related. These spaces are described in the following sections, respectively.

1.2 Functional Interactions

The first interaction space for components of sensor network applications is the
space of functional interactions. Most deployed distributed system failures are
attributed to unexpected interactions between multiple components that lead to new
subtle failure modes. In sensor networks, the space of such interactions often cannot
be fully explored at design time. Significant advances have been made in the area
of formal methods and verification techniques. However, they remain limited by
scalability challenges that arise due to massive concurrency and unreliable com-
ponents (e.g., wireless). Most of the system development time, therefore, is spent
on debugging as opposed to new component development. Debugging individual
components is relatively simple. The problem lies in understanding failures that
arise due to component composition in complex systems.



1 Composition and Scaling Challenges in Sensor Networks 5
1.2.1 Troubleshooting Interactive Complexity

New fundamental theory, algorithms, analysis techniques, and software tools are
needed to help uncover root causes of errors resulting from interactions of large
numbers of components in heterogeneous networked sensing systems. System het-
erogeneity and tight integration between computation, communication, sensing, and
control lead to a high interactive complexity. Moreover, the lack of layering and
isolation, attributed to resource constraints, make it hard to apply the usual soft-
ware engineering techniques aimed at reducing interactive complexity, thus further
increasing the possibility of distributed errors and unexpected failures. On the other
hand, software reuse is impaired by the customized nature of application code and
deployment environments, making it harder to amortize debugging, troubleshooting,
and tuning cost. Hence, while individual devices and subsystems may operate well
in isolation, their composition may result in incompatibilities, anomalies, or failures
that are very difficult to troubleshoot. At the same time, users of such systems (such
as domain scientists) may not be experts on networking and system administration.

Automated techniques are needed for troubleshooting the system both at develop-
ment time and after deployment in order to reduce production as well as ownership
costs. Using such automated techniques, developers of future networked sensing
systems should be able to significantly curtail debugging effort. Similarly, upon
network deployment, service agents should be able to quickly diagnose and resolve
problems in unique customer installations, hence reducing ownership cost. The aim
is to answer developer or user questions such as “Why does this sensor network suf-
fer unusually high service delays?”, “Why is data throughput low despite availability
of resources and service requests?”, “Why does my time synchronization protocol
fail to synchronize clocks when the localization protocol is run concurrently?”, or
“Why does this vehicle tracking system suffer increased false alarms when it is
windy?!” Building efficient troubleshooting support to address the above questions
offers significant research challenges brought about by the nature of interaction
bugs, such as:

e Non-reproducible behavior: Interactions in networked sensing systems feature an
increased level of concurrency and thus an increased level of non-determinism.
In turn, non-determinism generates non-reproducible bugs that are hard to find
using traditional debugging tools.

e Non-local emergent behavior: By definition, interaction bugs do not manifest
themselves when components are tested in isolation. Current debugging tools are
very good at finding bugs that can be traced to individual components. Interaction
bugs manifest only at scale as a result of component composition. They result in
emergent behavior that arises when a number of seemingly individually sound
components are combined into a network, which makes them hard to find.

!'In a previous deployment of a magnetometer-based wireless tracking system, wind resulted in
antennae vibration which was caught by the magnetometers and interpreted as the passage of
nearby ferrous objects (vehicles).
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A successful approach to the automation of diagnosis of interactive complexity
failures must rely on two main design principles aimed at exploiting concurrency,
interactions, and non-determinism to improve the ability to diagnose problems in
resource-constrained systems. These principles are as follows:

e Exploiting non-reproducible behavior: Exploitation of non-determinism to
improve understanding of system behavior is not new to computing literature.
For example, many techniques in estimation theory, concerned with estimation
of system models, rely on introducing noise to explore a wider range of system
states and hence arrive at more accurate models. Machine learning and data min-
ing approaches have the same desirable property. They require examples of both
good and bad system behavior to be able to classify the conditions correlated
with good and bad. In particular, note that conditions that cause a problem to
occur are correlated (by causality) with the resulting bad behavior. Root causes
of non-reproducible bugs are thus inherently suited for discovery using data min-
ing and machine learning approaches as the lack of reproducibility itself and the
inherent system non-determinism improve the odds of occurrence of sufficiently
diverse behavior examples to train the troubleshooting system to understand the
relevant correlations and identify causes of problems.

e Exploiting interactive complexity: Interactive complexity describes a system
where scale and complexity cause components to interact in unexpected ways. A
failure that occurs due to such unexpected interactions is therefore not localized
and is hard to “blame” on any single component. This fundamentally changes the
objective of a troubleshooting tool from aiding in stepping through code (which
is more suitable for finding a localized error in some line, such as an incorrect
pointer reference), to aiding with diagnosing a sequence of events (component
interactions) that lead to a failure state. For example, sequence mining algorithms
present a suitable core analytic engine for diagnostic debugging.

1.2.2 Troubleshooting Examples

An example application of the above principles is reported in a previous investiga-
tion of a diagnostic debugging tool prototype. This prototype was experimented with
over the course of 1 year to understand the strengths and limitations of the afore-
mentioned approach [24-26]. The examples below give a feel for how diagnostic
debugging is used according to this investigation.

1.2.2.1 A “Design” Bug

As an example of catching a design bug, we summarize a case study, published
in [26], involving a multi-channel sensor network MAC-layer protocol from prior
literature [27] that attempts to utilize channel diversity to improve throughput. The
protocol assigned a home channel to every node, grouping nodes that communi-
cated much into a cluster on the same channel. It allowed occasional communi-
cation between nodes in different clusters by letting senders change their channel
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temporary to the home channel of a receiver to send a message. If communication
failed (e.g., because home channel information became stale), senders would scan
all channels looking for the receiver on a new channel and update home channel
information accordingly. Testing revealed that total network throughput was some-
times worse than that of a single-channel MAC. Initially, the designer attributed it
to the heavy cost of communication across clusters. To verify this hypothesis, the
original protocol, written for MicaZ motes, was instrumented to log radio channel
change events and message communication events (send, receive, acknowledge)
as well as related timeouts. It was tested on a motes network. Event logs from
runs where it outperformed a single-channel MAC were marked “good.” Event
logs from runs where it did worse were marked “bad.” Discriminative sequence
mining applied to the two sets of logs revealed a common pattern associated
prominently with bad logs. The pattern included the events No Ack Received,
Retry Transmission on Channel (1), Retry Transmission on Channel
(2), Retry Transmission on Channel (3), executed on a large number of
nodes. This quickly led the designer to understand a much deeper problem. When
a sender failed to communicate with a receiver in another cluster, it would leave its
home channel and start scanning other channels causing communication addressed
to it from upstream nodes in its cluster to fail as well. Those nodes would start
scanning too, resulting in a cascading effect that propagated up the network until
everyone was scanning and communication was entirely disrupted everywhere (both
within and across clusters). The protocol had to be redesigned.

1.2.2.2 An “Accumulative Effect’” Bug

Often failures or performance problems arise because of accumulative effects such
as gradual memory leakage or clock overflow. While such effects evolve over a large
period of time, the example summarized below [24] shows how it may be possible to
use diagnostic debugging to understand the “tipping point” that causes the problem
to manifest. In this case, the operators observed sudden onset of successive message
loss in an implementation of directed diffusion [19], a well-known sensor network
routing protocol. As before, communication was logged together with timeout and
message drop events. Parts of logs coinciding with or closely preceding instances of
successive message losses were labeled “bad.” The rest were labeled “good.” Dis-
criminative sequence mining revealed the following sequential patterns correlated
with successive message loss:

Message Send (timestamp = 255), Message Send (timestamp = 0),
Message Dropped (Reason = "SameDataOlderTimeStamp").

The problem became apparent. A timestamp counter overflow caused subsequent
messages received to be erroneously interpreted as “old” duplicates (i.e., having
previously seen sequence numbers) and discarded.

1.2.2.3 A “Race Condition” Bug

Race conditions are a significant cause of failures in systems with a high degree of
concurrency. A previous case study [26] demonstrated how diagnostic debugging
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helped catch a bug caused by a race condition in their embedded operating sys-
tem called LiteOS [5]. When the communication subsystem of an early ver-
sion of LiteOS was stress-tested, some nodes would crash occasionally and non-
deterministically. LiteOS allows logging system call events. Such logs were col-
lected from (the flash memory of) nodes that crashed and nodes that did not, giving
rise to “good” and “bad” data sets, respectively. Discriminative sequence mining
revealed that the following sequence of events occurred in the good logs but not in
the bad logs: Packet Received, Get Current Radio Handle, whereas the fol-
lowing occurred in the bad logs but not in the good logs: Packet Received, Get
Serial Send Function. From these observations, it is clear that failure occurs
when Packet Received is followed by Get Serial Send Function before
Get Current Radio Handle is called. Indeed, the latter prepares the application
for receiving a new packet. At high data rates, another communication event may
occur before the application is prepared, causing a node crash. The race condition
was eliminated by proper synchronization.

1.2.2.4 An “Assumptions Mismatch” Bug

In systems that interact with the physical world, problems may occur when the
assumptions made in protocol design regarding the physical environment do not
match physical reality. In this case study [25], a distributed target tracking proto-
col, implemented on motes, occasionally generated spurious targets. The protocol
required that nodes sensing a target form a group and elect a group leader who
assigned a new ID to the target. Subsequently, the leader passed the target ID
on in a leader handoff operation as the target moved. Communication logs were
taken from runs where spurious targets were observed (“bad” logs) and runs where
they were not (“good” logs). Discriminative pattern mining revealed the absence of
member-to-leader messages in the bad logs. This suggested that a singleton group
was present (i.e., the leader was the only group member). Indeed, it turned out that
the leader hand off protocol was not designed to deal with a singleton group because
the developer assumed that a target would always be sensed by multiple sensors (an
assumption on physical sensing range) and hence a group would always have more
than one member. The protocol had to be realigned with physical reality.

While these preliminary results are encouraging, significant challenges remain.
For example, non-trivial scalability enhancements are needed. Scalability limita-
tions imply that the designer should have some intuition into which event types
and which event attributes to monitor. Since it is hard to tell which event types
are relevant to a bug in advance, ideally, we would like to be able to monitor a
large number of different event types and attributes, leaving it to a software tool
to ignore irrelevant ones automatically, without degrading efficiency in identifying
culprit event sequences. The patterns suspected of causing failures often have a false
dependence on workload. For example, the frequency of occurrence of many events
depends on the communication rate. If communication rates vary from one experi-
ment to the next, discriminative sequence mining often zooms-in on differences in
event traces caused by differences in communication rates and not by bugs. Some



1 Composition and Scaling Challenges in Sensor Networks 9

form of normalization is needed. Often one or a small number of initial (bad) events
create a cascading wave, where a larger number of repercussions follow, in turn
setting off an even larger number of measurable consequences (manifestations of
anomalous behavior). Identifying this causal chain (or, in many cases, tree) is hard
due to the difference in the frequency of occurrence of events at different levels in
the tree. Unsynchronized clocks often result in finding incorrect sequences making
it hard to infer distributed patterns correctly. Existence of multiple bugs often causes
decreased diagnostic accuracy. Events with multiple attributes (e.g., function calls
with multiple parameters) cause problems and have to be broken up into series of
events with single attributes, which in turn generates false event sequences. Address-
ing such challenges may require interdisciplinary collaboration between data min-
ing experts, machine learning experts, sensor networks experts, and troubleshooting
experts in order to provide solutions that both consider peculiarities and require-
ments of sensor network troubleshooting and leverage algorithmic expertise needed
for root cause diagnosis.

1.3 Data Interactions

Another important interaction space for sensor networks is the space of data inter-
actions. An emerging application model for networked sensing systems is that of
social sensing [1, 4], which broadly refers to applications that employ sensors used
by individuals in their homes, cars, offices, or on their person, whose measure-
ments may be shared for purposes of various application-related services. Social
sensing systems range from medical devices that measure human biometrics and
share them with medical repositories available to care-givers [29], location sen-
sors, and accelerometers in phones and cars that can be used to compute aggregate
information of community interest such as pollution or traffic patterns [9, 11, 17].
Traditional embedded and networked sensing systems research typically considers
computing systems that interact with physical and engineering artifacts and assumes
a single trust domain. Interaction of future embedded sensing devices with both
physical and social spaces (in multiple trust domains) creates new challenges, such
as loss of privacy, that can be broadly classified as data interaction challenges.

1.3.1 Privacy and Data Aggregation

Protection mechanisms from involuntary physical exposure are needed to enforce
physical privacy. Innovative optimization problems can be formulated by recog-
nizing that privacy is not a binary concept. When data are continuous and noisy,
privacy is more akin to a degree of uncertainty; a concept closely related to noise
and filtering in control applications. Control of voluntary information sharing must
facilitate privacy-preserving exchange of time-series data. A predominant use of
data in social sensing applications is for aggregation purposes such as mapping dis-
tributed phenomena or computing statistical trends. New mathematically based data
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perturbation and anonymization schemes are needed to hide user data but allow
fusion operations on perturbed or partial data to return correct results to a high
degree of approximation. These problems are difficult due to interactions between
data streams.

When sharing a single data item or stream, it is easy to reason about what
information is releaved and what information is withheld. When multiple streams
are shared, however (possibly by different individuals), correlations between these
streams may be exploited to make additional inferences that make it harder to con-
trol what exactly is being revealed. For example, sharing an acoustic energy signa-
ture from the neighborhood of a person on a campaign to reduce noise pollution may
reveal something about the person’s location if the noise level correlates with a train
or bus schedule on a known route. This data interaction challenge makes it espe-
cially hard to reason about privacy in a social sensing system. Nevertheless, certain
privacy assurances are often needed to encourage people to share the information
needed for the social sensing application to function. Hence, an important challenge
becomes one of understanding how to perturb (or decorrelate) data in such a way
that it becomes impossible to make additional privacy-violating inferences, beyond
what is explicitly allowed by the data owner.

Data aggregation operations are most common in social sensing systems where
multiple data streams need to be combined to compute some community-wide infor-
mation such as energy consumption trends, driving patterns, or fitness and weight
loss statistics. The challenge is to perturb a user’s sequence of data values such that
(1) the individual data items and their trend (i.e., their changes with time) cannot be
estimated without large error, whereas (ii) the distribution of the data aggregation
results at any point in time is estimated with high accuracy. Intuitively, privacy in
this context refers to the degree of uncertainty or error regarding a user’s individual
data. For instance, in a health-and-fitness application, it may be desired to find the
average weight loss trend of those on a particular diet or exercise routine as well
as the distribution of weight loss as a function of time on the diet. This is to be
accomplished without being able to reconstruct any individual’s weight and weight
trend without significant error.

1.3.2 Perturbation Examples and Time-Series Data

Examples of data perturbation techniques can be found in [2, 3, 10]. The general
idea is to add random noise with a known distribution to the user’s data, after which
a reconstruction algorithm is used to estimate the distribution of the original data.
Early approaches relied on adding independent random noise. These approaches
were shown to be inadequate. For example, a special technique based on random
matrix theory has been proposed in [23] to recover the user data with high accuracy.
Later approaches considered hiding individual data values collected from differ-
ent private parties, taking into account that data from different individuals may be
correlated [16]. However, they do not make assumptions on the model describing
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the evolution of data values from a given party over time, which can be used to
jeopardize privacy of data streams. By developing a perturbation technique that
specifically considers the data evolution model, one can prevent attacks that extract
regularities in correlated data such as spectral filtering [23] and principal component
analysis (PCA) [16].

In other work [11], it was shown that privacy of time-series data can be preserved
if the noise used to perturb the data is itself generated from a process that approx-
imately models the measured phenomenon. For instance, in the weight watchers
example, we may have an intuitive feel for the time scales and ranges of weight evo-
lution when humans gain or lose weight. Hence, a noise model can be constructed
that exports realistic-looking parameters for both the direction and time constant
of weight changes. We can think of this noise as the (possibly scaled) output of a
virtual user. Once the noise model is available, its structure and probability dis-
tributions of all parameters are agreed upon among all parties contributing to the
aggregation result. By choosing random values for these noise parameters from the
specified distribution, it is possible to generate arbitrary weight curves (of virtual
people) showing weight gain or loss. A real user can then add their true weight
curve to that of one or several locally generated virtual users obtained from the noise
model. The actual model parameters used to generate the noise are kept private. The
resulting perturbed stream is shared with the pool where it can be aggregated with
that of others in the community. Since the distributions of noise model parameters
are statistically known, it is possible to estimate the sum, average, and distribution
of added noise (of the entire community) as a function of time. Subtracting that
known average noise time series from the sum of perturbed community curves will
thus yield the true community trend. The distribution of community data at a given
time can similarly be estimated (using deconvolution methods) since the distribu-
tion of noise (i.e., data from virtual users) is known. The estimate improves with
community size.

An important question relates to the issue of trust. Given that non-expert users
cannot be asked to derive good noise models for their private data, how does a
non-expert client know that a given noise model is privacy-preserving? Obtaining
the noise model from an external party is risky. If the party is malicious, it could
send a “bad” model that is, say, a constant, or a very fast-changing function (that
can be easily separated from real data using a low-pass filter), or perhaps a function
with a very small range that perturbs real data by only a negligible amount. Such
noise models will not perturb data in a way that protects privacy.

Consider an information aggregation service that announces a suggested noise
model structure and parameter distribution to the community of users over which
aggregation is performed. The model announced by the server can be trusted by a
user only if that user’s own data could have been generated from some parameter
instantiation of that model with a non-trivial probability. This can be tested locally
by a curve fitting tool on the user’s side. Informally, a noise model structure and
parameter distributions are accepted by a user only if (i) the curve fitting error for
user’s own data is not too large and (ii) the identified model parameter values for
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user’s data (that result from curve fitting) are not too improbable (given the proba-
bility distributions of model parameters). A friendly user interface can be developed
to automate the verification of the noise model on the user’s behalf.

More formally, consider a particular application where an aggregation server
collects data from a community to perform statistics. In previous work [11], a
perturbation algorithm is described for a community of N individuals who share
M data points with the aggregation each (we assume this to be the same across
users for notational simplicity). Let xt=(xl,xb, oo x), 0t = (N, o0l
and y' = (yi, Voronns ij) represent the data stream, noise, and perturbed data
shared by user i, respectively. At time instant k, let f;(x) be the empirical com-
munity distribution, f(x) be the exact community distribution, fi(n) be the noise
distribution, and fi(y) be the perturbed community distribution. Most user data
streams can be generated according to either linear or non-linear discrete models.
In general, a model can be written as a discrete function of index k, which can
be time, distance, or other (depending on the application), parameters # and inputs
u, and is denoted as g(k, @, u). Notice that @ is a fixed length parameters vector
characterizing the model while u is a vector of length M characterizing the input
to the model at each instance. Given the data x' = (x{,x}, ..., x%,), the model
g(k, 0, u), and the approximated distributions f' (@), f,’(w), the perturbed data for
user i is generated by (i) generating samples QL and gil, from the distributions f' (6)
and f) (u), respectively, (ii) generating noise stream n' = (n’l, né, ceey n’M), where

n}( =g (k, 011, gil), and (iii) generating perturbed data by adding the noise stream

to the data stream y! = x/ 4+ n'.

Now, consider reconstructing the distribution of community data at a given point
in time. At time instance k, the perturbed data of each user are the sum of the actual
data and the noise y,i = x,i + n}{ Thus, the distribution of the perturbed data fi(y)
is the convolution of the community distribution f;(x) and the noise distribution
fr(n), fr(y) = fr(n) * fr(x). All the distributions above can be discretized and
the equation can be rewritten as: fx(y) = Hfi(x), where H is a Toeplitz cyclic
matrix, which is also called the blurring kernel, constructed from the elements of the
discrete distribution f(n), fx(x) is the community distribution at time k that needs
to be estimated, H is known, and fi(y) is the empirical perturbed data distribution.
This problem is well known in the literature as the deconvolution problem. The
Tikhonov-Miller restoration method [34] can be employed to compute the com-
munity distribution. It requires an a priori bound e for the L? norm of the noise,
together with an a priori bound M for the L? norm of the community distribution,
|HfE @) = fi)]], < e and [|(HTH) ™Y fE 0], < M.

The approach preserves individual user privacy while allowing accurate recon-
struction of community statistics. A multi-dimensional extension of this approach
was presented in recent literature [32]. In this example, perturbation was added to
the GPS trajectories of individual vehicles. The perturbed trajectories were then
shared with a central server, whose responsibility was to reconstruct traffic statistics
in a city. While the individuals who shared their data were allowed to “lie” about
their (i) GPS location, (ii) velocity, and (iii) time of day, the reconstruction was
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shown to be accurate in that it reported the true average speed on city streets as
a function of correct actual location and time. Figure 1.1 (reproduced from [32])
depicts the manner in which GPS trajectories are perturbed in this approach.
Figure 1.2 (reproduced from [32]) compares the distribution of ground truth speed
data to the reconstructed distribution obtained from perturbed shared data. It can
be seen that the two distributions are rather similar. As a measure of similarity,
Table 1.1 (reproduced from [32]) compares the percentages of speeding vehicles on
four city streets, obtained using original and perturbed data, respectively. It can be
seen that the estimates obtained from perturbed data are reasonably accurate.
Several research questions remain. For example, what is a good upper bound on
the reconstruction error of the data aggregation result as a function of the noise
statistics introduced to perturb the individual inputs? What are noise generation
techniques that minimize the former error (to achieve accurate aggregation results)
while maximizing the noise (for privacy)? How to ensure that data of individual
data streams cannot be inferred from the perturbed signal? Intuitively, this is doable
because traditional filtering methods such as PCA and spectral filtering work based
on the assumptions that additive noise is time independent, independent of the sig-
nal, and has a small variance compared to the signal variance. With a good per-
turbation scheme, these assumptions are violated. What are some bounds on mini-
mum error in reconstruction of individual data streams? What are noise generation
techniques that maximize such error for privacy? Privacy challenges further include
the investigation of attack models involving corrupt noise models (e.g., ones that
attempt to deceive non-expert users into using perturbation techniques that do not
achieve adequate privacy protection), malicious clients (e.g., ones that do not follow

Table 1.1 Percentage of speeding vehicles

Street Real % Reconstructed %
University Ave 15.60 17.89

Neil Street 21.43 23.67
Washington Street 0.5 0.15

Elm Street 6.95 8.6
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Fig. 1.1 Real and perturbed traffic trajectories for different perturbation levels
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Fig. 1.2 Real and reconstructed traffic speed distributions. (a) Real community speed distribution;
(b) Reconstructed speed distribution; (¢) Real speed distribution on University Ave.; (d) Recon-
structed speed distribution on University Ave.; (e) Real speed distribution on Washington Ave.;
and (f) Reconstructed speed distribution on Washington Ave.

the correct perturbation schemes or send bogus data), and repeated server queries
(e.g., to infer additional information about evolution of client data from incremental
differences in query responses). For example, given that it is fundamentally impos-
sible to tell if a user is sharing a properly perturbed version of their real weight
or just some random value, what fractions of malicious users can be accommodated
without significantly affecting reconstruction accuracy of community statistics? Can
damage imposed by a single user be bounded using outlier detection techniques
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that exclude obviously malicious users? How does the accuracy of outlier detec-
tion depend on the scale of allowable perturbation? In general, how to quantify
the trade-off between privacy and robustness to malicious user data? How tolerant
is the perturbation scheme to collusion among users that aims to bias community
statistics? Importantly, how does the time-series nature of data affect answers to the
above questions compared to previous solutions to similar problems in other con-
texts (e.g., in relational databases)? The above challenges offer significant research
opportunities in the area of data interactions and social sensing.

The above perturbation techniques, defense solutions, and bounds are especially
challenging due to the presence of multiple correlated data streams, or data streams
with related context. For example, consider a social sensing application where users
share vehicular GPS data to compute traffic speed statistics in a city. In this case,
in order to compute the statistics correctly as a function of time and location, each
vehicle’s speed must be shared together with its current GPS location and time of
day. Perturbing the speed alone does not help privacy if the correct location of the
user must be revealed at all times. What is needed is a perturbation and reconstruc-
tion technique that allows a user to “lie” about their speed, location, and time of
day, altogether, in a manner that makes it impossible to reconstruct their true values,
yet allow an aggregation service to average out the added multi-dimensional noise
and accurately map the true aggregate traffic speed as a function of actual time and
space. This problem is related to the more general concern of privacy-preserving
classification [36, 37], except that it is applied to the challenging case of aggregates
of time-series data. Understanding the relation between multi-dimensional error
bounds on reconstruction accuracy and bounds on privacy, together with optimal
perturbation algorithms in the sense of minimizing the former while maximizing
the latter, remains an open research problem.

1.4 Temporal Interactions

The third important interaction space for computing applications that interface with
the physical world is the space of temporal interactions. Embedded computations
must generally obey not only functional integrity constraints but also timeliness con-
straints on results. Early applications of sensor networks focused on soft domains
where it was not critical to analyze timing properties. Eventually, as the range of
sensor network applications extends to include mission-criticial and safety-critical
ones, the timeliness of interactions with the physical world will become important.
Recent sensor network literature reflects increasing interest in analysis of real-time
behavior and time constraints [6, 13, 28, 33]. Hence, theory is needed to analyze
end-to-end delay in large networked sensing systems that execute a set of distributed
real-time tasks.

Timing correctness requirements arise due to data volatility, interaction with
mobile objects, and the need for timely reaction to environmental events. The time-
sensitive nature of sensor network applications and environmental interactions moti-
vates understanding of the real-time limitations of information transfer, such that
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future networks could be properly sized for the desired real-time transfer capability.
Real-time information transfer is characterized by deadlines on data communica-
tion. In a hard real-time application, only those bits that are transferred prior to
their deadlines contribute useful information. Missed deadlines result in adverse
consequences that range from utility loss to significant physical damage. Deadlines
could arise for various reasons, for example, the necessity to react to external events
in a timely manner, and the need to deliver dynamically changing data prior to the
expiration of their respective validity intervals.

Recently, information-theoretic bounds were derived for sensor networks that
quantify the ability of the network to transfer bytes across distance [12, 30]. For
time-sensitive applications, a more useful bound should also be a function of delay.
Observe that network delay and throughput are interrelated. Intuitively, the network
should be able to transfer more bits by their deadlines if the deadlines are more
relaxed. Finding a function that bounds achievable total capacity subject to delay
constraints is a new objective that has not been addressed in sensor network litera-
ture. We call it real-time capacity of distributed sensing systems.

1.4.1 Temporal Analysis of Distributed Systems

As a step toward a fundamental understanding of real-time capacity, significant
advances were independently made in the embedded systems and networking com-
munities to quantify the timing properties of distributed computation or communi-
cation. Existing techniques for analyzing delay/throughput trade-offs in distributed
systems can be broadly called decomposition based. Decomposition-based tech-
niques break the system into multiple subsystems, analyze each subsystem indepen-
dently, then combine the results. Network calculus [7, 8] (developed in the network-
ing community) and holistic analysis [31, 35] (developed in the embedded systems
community) fall into this category.

A deficiency with decomposition-based approaches is that by viewing the aggre-
gate problem as a set of smaller subproblems, often interactions between the sub-
problems are ignored or simplified. For example, network calculus does not accu-
rately account for the effects of pipelining between stages when multiple flows share
the same set of successive hops. It merely computes a delay bound on each hop
based on its service curve and its arrival curve (computed from the service curve
on the previous hop). Pipelining, however, makes it impossible for the same flow
to suffer the delay bound on several successive hops in a row. Intuitively, this is
because if a packet waits for many other packets to get processed on one hop, by the
time its turn comes, most of the other packets have already moved sufficiently down-
stream that they may not interfere with it again. Hence, this packet’s interference at
the downstream hop is lower than what the bound predicts. This is an example of
a temporal interaction between stages in a distributed system that leads to a sub-
additive property of individual (i.e., per hop) worst-case delay bounds. Generally
speaking, the worst-case delay of a task on two successive stages of processing is
deterministically less than the sum of its worst-case delays on the individual stages.
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An exception is the top priority task that suffers no interference on its path. There
is a need to quantify these subadditive delay properties of distributed computation.
At present, very little work exists toward a general theory for delay composition
and the relation of delay composition results to priorities of tasks and the amount of
present interference.

Consider, by contrast, the fundamental laws of circuit theory used to analyze lin-
ear electric circuits. In that theory, a small number of fundamental rules (e.g., Kirch-
hoff laws) allow a designer to analyze complex circuits of arbitrary interconnection
topology, reducing them to their effective transfer functions and deducing their exact
end-to-end characteristics, such as total impedance, current draw, and voltage drop.
The same compositionality is observed in feedback control theory, where compo-
nent models, represented by block diagrams, can be collapsed into an equivalent sin-
gle block that accurately expresses the overall system model and enables controller
design. A similar theory is needed for networked sensing systems that develop rules
for composition of temporal behavior of real-time system components. We call
this category of techniques for analyzing distributed systems reduction-based (as
opposed to decomposition-based) techniques. It is key for reductions to capture the
essential properties of components involved and the properties of their interactions.
This ensures that reductions do not lead to inaccuracies caused by ignored or over-
simplified dependencies.

1.4.2 Reduction-Based Analysis and Delay Composition Algebra

A recent reduction-based approach to composition of timing properties of dis-
tributed sensing systems is delay composition algebra [21]. Given a graph of sys-
tem resources, where nodes represent processing resources and arcs represent the
direction of job flow, algebraic operators systematically “merge” resource nodes,
composing their workloads per rules of the algebra, until only one node remains.
The workload of that node represents a single resource job set called the uniproces-
sor job set. Uniprocessor schedulability analysis can then be used to determine the
schedulability of the set.

Workload of any one node (that may represent a single resource or the result of
reducing an entire subsystem) is described generically by a two-dimensional matrix
stating the worst-case delay that each job, J;, imposes on each other job, J, in
the subsystem the node represents. Let us call it the load matrix of the subsystem
in question. Observe that on a node that represents a single resource j, any job
J; that is of higher priority than job J; can delay the latter by at most J;’s worst-
case computation time, C; ;, on that resource. This allows one to trivially produce
the load matrix for a single resource given job computation times, C; ;, on that

resource. Element (i, k) of the load matrix for resource j, denoted qi{ i (or just g; x
for notational simplicity where no ambiguity arises), is simply equal to C; ; as long
as J; is of (equal or) higher priority than Ji. It is zero otherwise.

The main question becomes, in a distributed system, how to compute the worst-
case delay that a job imposes on another when the two meet on more than one
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resource? The answer decides how delay components of two load matrices are com-
bined when the resource nodes corresponding to these matrices are merged using
appropriate algebraic operators. Intuitions derived from single resource systems
suggest that delays are combined additively. This is not true in distributed systems.
In particular, it was shown in [20] that worst-case delays in pipelines are subad-
ditive because of gains due to parallelism caused by pipelining. More specifically,
the worst-case delay imposed by a higher priority job, J;, on a lower priority job,
Ji, when both traverse the same set of stages varies with the maximum of J;’s per-
stage computation times, not their sum (plus another component we shall mention
shortly).

The delay composition algebra leverages the aforementioned result. Neighbor-
ing nodes in the resource DAG present an instance of pipelining, in that jobs that
complete execution at one node move on to execute at the next. Hence, when these
neighboring nodes are combined, the delay components, g; «, in their load matrices
are composed by a maximization operation. In delay composition algebra, this is
done by the PIPE operator. It reduces two neighboring nodes to one and combines
the corresponding elements, g; i, of their respective load matrices by taking the
maximum of each pair. For this reason, we call g;  the max term.

It could be, however, that two jobs travel together in a pipelined fashion for a
few stages (which we call a pipeline segment), then split and later merge again for
several more stages (i.e., another pipeline segment). Consider a higher priority job
J; and a lower priority job, Ji. In this case, the max terms of each of the pipeline
segments (computed by the maximization operator) must be added up to compute
the total delay that J; imposes on Ji. It is convenient to use a running counter or
“accumulator” for such addition. Whenever the jobs are pipelined together, delays
are composed by maximization (kept in the max term) as discussed above. Every
time J; splits away from Ji, signaling the termination of one pipeline segment,
the max term (i.e., the delay imposed by J; on Jj in that segment) is added to the
accumulator. Let the accumulator be denoted by r; x. Hence, r; x represents the total
delay imposed by J; on a lower priority job Ji over all past pipeline segments they
shared. Observe that jobs can split apart only at those nodes in the DAG that have
more than one outgoing arc. Hence, in the algebra, a SPLIT operator is used when
a node in the DAG has more than one outgoing arc. SPLIT updates the respective
accumulator variables, r; i, of all those jobs Ji, where J; and a higher priority job
J; part on different arcs. The update simply adds g; x to r; x and resets g; x to zero.

In summary, in a distributed system, it is useful to represent the delay that one
job J; imposes on another J; as the sum of two components ¢; x and r; ;. The g; x
term is updated upon PIPEs using the maximization operator (the max term). The
ri k is the accumulator term. The g; ; is added to the r; x (and reset) upon SPLITs,
when J; splits from the path of J;. PIPE and SPLIT are thus the main operators of
the algebra. In the final resulting matrix, the ¢; x and r; x components are added to
yield the total delay that each job imposes on another in the entire system.

The final matrix is indistinguishable from one that represents a uniprocessor
task set. In particular, each column k in the final matrix denotes a uniprocessor
job set of jobs that delay Ji. In this column, each non-zero element determines
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the computation time of one such job J;. Since the transformation is agnostic to
periodicity, in the case of periodic tasks, J; and J; simply represent the parameters
of the corresponding periodic task invocations. Hence, for any task, T, in the origi-
nal distributed system, the final matrix yields a uniprocessor task set (in column k),
from which the schedulability of task 7} can be analyzed using uniprocessor schedu-
lability analysis.

Finally, the above discussion omitted the fact that the results in [20] also speci-
fied a component of pipeline delay that grows with the number of stages traversed
by a job and is independent of the number of higher priority jobs, called the stage-
additive component, si. Hence, the load matrix, in fact, has an extra row to represent
this component. As the name suggests, when two nodes are merged, this component
is combined by addition. A detailed account of delay composition algebra, including
a complete exact specification of its operators and examples of its use, can be found
in [20-22]. One can easily envision examples from the sensor networks domain,
where aggregation trees, for instance, lead to traffic patterns where transmission of
individual flows (represented as a pipeline of forwarding stages) forms a DAG or
convergecast graph, whose end-to-end delay may need to be bounded. Other exam-
ples include query processing applications, where a single query may be divided
across multiple nodes to be evaluated against different subsets of data, then the
results combined. Given multiple queries of different query processing graphs, their
end-to-end timing behavior can be analyzed using the above approach.

Delay composition algebra is a step toward understanding temporal interactions
and composition of timing properties in distributed sensing systems. In turn, this
understanding can lead to a quantification of new notions of real-time capacity. Sev-
eral questions must be answered for a useful real-time capacity theory to emerge:

e Load metrics: Real-time capacity must be expressed in appropriate load metrics.
For example, classical schedulability bounds are expressed in terms of utilization.
For distributed systems, one must determine which of the family of viable load
metrics is the “best” metric to use to quantify the ability of the system to meet
timing constraints.

e Sufficient capacity regions: Real-time capacity quantifies system load that can
be supported within time constraints, which known as the schedulability prob-
lem. Schedulability, however, is an NP-hard problem and gives rise to very com-
plex (porcupine) scheduable state spaces. To derive practical analytic capacity
expressions, sufficient schedulability conditions must be found, meaning those
defined by simple surfaces that encompass most (but not necessarily all) states
in which timing constraints are met. We call them capacity regions. There is an
inherent trade-off between the simplicity of capacity regions and their degree
of approximation. Good compromises must be sought that maintain simplicity
without introducing excessive pessimism.

e Composition rules: Rules must be defined for composing capacity regions of
large systems from those of their subsystems. In general, starting with capac-
ity regions of elementary components, one should be able to compose capac-
ity regions of arbitrarily large systems. Most importantly, capacity expressions
should not become more pessimistic with composition. For very large systems,



20 T. Abdelzaher

where the number of components can be viewed as infinite, continuous forms
of composition rules are needed. Composition becomes an integration operation
over functions of component densities as opposed to an operation that is carried
out on individual components. Delay composition algebra is a first step toward
defining such composition rules.

e Optimization algorithms: Capacity regions define sets of system states that meet
sufficient time constraints. It may be desired to optimize various metrics within
those constraints. For example, one might want to derive points of maximum
sensor network throughput or minimum total energy consumption within capac-
ity region boundaries.

A new real-time capacity theory should make it possible to understand the timing
behavior of large real-time sensing networks with in-network computation at inter-
mediate hops. It should also become possible to quantify end-to-end behavior of
complex distributed sensing applications such as distributed power grid control and
telepresence. The theory should help understand how prioritization affects real-time
capacity. It will be possible, for example, to do a cost/benefit analysis of prioritizing
different sensor data queues in a complex distributed sensing application since the
theory will quantify the effect of prioritization on the load/timeliness trade-off. The
needed theory is different from previous foundations for analysis of network delay
that consider networks as graphs of links that carry packets in that the role of com-
putation on network nodes must be considered together with communication. The
real-time capacity is a general notion that does not make limiting assumptions on
the types of processing resources involved. Hence, both network transmissions and
CPU processing should be analyzable within the same framework. This framework
is needed to understand the end-to-end timing behavior of large systems involving
tightly intertwined computation, communication, and sensing.

1.5 Interactions of System Dynamics

The final interaction space for distributed sensing systems addressed in this chapter
is the space of system dynamics. Control engineers are trained to analyze dynamics
of physical and embedded systems and verify their adherence to desired specifi-
cations. Unfortunately, dynamics (in a control-theoretic sense) are not a term that
computer scientists normally come in contact with in their education. As a result,
dynamics of feedback loops that pervade the design of computing software are often
poorly accounted for and poorly understood. While it is easy to use simple heuris-
tics to ensure the stability of feedback loops within smaller subsystems, unexpected
consequences may arise when such subsystems are combined.

1.5.1 Sources of Dynamics in Software

Informally, software dynamics occur when systems involve “delayed” or “cumu-
lative” response that may be approximated by differential or difference equation
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models. An example of software features that generate dynamics is an action taken
by one system component that depends on results of another action taken by another
component in the past. Another example is when some action or system parameter
depends on a previously accumulated value of another parameter. For example,
the number of packets waiting in a network queue depends on the accumulation
(i.e., integral) of differences between past enqueue and dequeue rates. This depen-
dency on previous values can be captured by a difference equation creating software
dynamics.

If all causal responses within a software system were instantaneous, the system
becomes strictly reactive in that it instantly reaches a state that is a function of only
currently applied stimuli. However, in most systems, effects depend not only on
current state but also on previous states. This is especially true in sensor networks,
where queues and other communication delays create significant dependencies on
past states. Hence, analysis of dynamics is needed. This analysis is especially crit-
ical in computing systems when feedback is used. Dynamics imply that software
decisions are made based on past information (e.g., due to delays in acquiring
or communicating the information) or that effects of actions are not immediately
observed (for example, a reduction in source sending rates in a congested network
will take some time before it diffuses network delays). If software feedback loops
do not properly address dynamics, they may “under-" or “over-react.” For example,
sending rates might not be decreased enough to eliminate congestion, or conversely
might be cut too much, thereby unnecessarily degrading performance. Stability is
the property of a feedback loop that allows it to converge over time to desired per-
formance. Control theory allows designers to analyze stability, convergence rate,
overshoot, and other dynamic response properties of computing systems. In partic-
ular, control theory explains that while individual components may be stable, their
composition may not be necessarily so. Hence, using ad hoc techniques in designing
feedback in software systems may result in components that work well in isolation,
but have poor performance when combined.

The above discussion suggests that composing, analyzing, controlling, and opti-
mizing performance of large-scale networked sensing systems is an important prob-
lem, complicated by increased system size, a growing number of tunable parameters
(and hence feedback loops that tune them), subtle interactions among distributed
components, and limited observability of internal software state at run-time.

The problem is of growing importance. The increasing cost of managing large
systems suggests that sensor networks and the information processing systems
they serve will operate with progressively less human oversight. The trend toward
increasingly autonomous, larger, and more interconnected systems exacerbates the
problem in two important ways:

e First, autonomy implies increasing need for adaptive or self-tuning behavior.
Many aspects of system functionality will be automated, creating a large number
of feedback loops. For example, MAC-layer algorithms may automatically deter-
mine the best line transmission rates such that reliability is maximized. Routing
may automatically determine the least-cost routes as load on different network
components changes. Congestion control may automatically determine the best
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application sending rate to prevent bottlenecks and overload. Application knobs
such as fidelity of information processing may be manipulated depending on fac-
tors such as currently available energy or user demand.

e Second, increased system scale implies interactions among a larger number of
components, which makes component composition a growing problem. As devel-
oper teams that build software systems grow, each developer becomes responsible
for a progressively smaller fraction of the system, essentially leading to myopic
design. Unintended interactions among different feedback loops in such a design
can lead to unexpected effects on aggregate performance. Individually designed
adaptive or automated modules with efficient performance management poli-
cies (when considered in isolation) might contribute to significant performance
degradation when put together. Research and management tools are needed to
address these performance composability problems, especially when designers
and operators do not have the analytic background to analyze overall dynamics
and stability of their systems.

1.5.2 Examples of Dynamic Interactions

To give an example of adverse interactions and illustrate the importance of address-
ing composability of dynamic behavior in the context of distributed sensing sys-
tems, consider a scenario drawn from the domain of communication protocols. Let
shortest path routing be one policy that constantly discovers shorter routes between
sources and destinations. Let the MAC-layer rate adaptation policy, on the other
hand, tune the radio transmission rate to match channel quality (a lower rate is used
on lower quality channels). While each policy is individually well motivated, com-
posing the two policies leads to an adverse interaction. Shortest path routing may
prefer longer hops (so there are fewer of them on the path). Longer hops tend to have
lower quality, which causes the radio to lower its transmission rate. At the lower rate,
new more distant neighbors may be discovered leading to shorter routes. Switching
to those routes reduces channel quality again, leading to further rate reductions.
This adverse feedback cycle ultimately diminishes throughput. Such composition
problems are expected to increase in software systems as these systems become
more complex (i.e., made of more components) and feature more capabilities for
adaptation.

Interestingly, adverse interactions may result even when the different adaptive
policies have the same objective. These unintended interactions stem from subtle
incompatibilities between their performance management mechanisms. Consider a
distributed data processing back-end that performs multistage data fusion for a large
sensing system. Two mechanisms are installed to save energy during off-peak load
conditions. The first mechanism is to power off those machines that are underuti-
lized and distribute their load across other machines in their tier. When all machines
exhibit high utilization, extra machines are powered on. We call it the On/Off policy.
The second mechanism is to employ dynamic voltage scaling (DVS) on individual
processors such that the speed and voltage of a machine are reduced when the
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machine is underutilized and increased when it is overloaded. We call it the DVS
policy. The two policies work well in isolation. Previous literature reports [14] that
the two policies combined may actually result in a higher energy consumption than
when one policy is used in isolation. This effect is shown in Fig. 1.3.

The explanation lies in unmodeled dynamics. If the DVS policy is aggressive
enough, whenever the utilization of a machine decreases, the policy reduces clock
frequency (and voltage) thus slowing down the machine and restoring a high uti-
lization value. From the perspective of the (DVS-oblivious) On/Off policy, the farm
becomes “fully utilized,” as the measured utilization of all machines is high. This
drives the On/Off policy to needlessly turn machines on in an attempt to relieve
the full utilization condition. DVS will slow down the clock further, causing more
machines to be turned on, and so on. Figure 1.3 also shows that proper joint control
of both knobs (labeled “our approach” in the figure) does improve performance over
tuning either knob in isolation.

To uncover unintended loops, a formal analysis of the system should use stability
notions from control theory. A simplified analysis technique, based on the notion of
adaptation graphs, was presented in previous computing literature [14]. Nodes in an
adaptation graph represent the key variables in the system such as delay, throughput,
utilization, length of different queues, and settings of different policy knobs. Arcs
represent the direction of causality. For example, consider a back-end data server
that serves queries over a network. When the utilization, U, of the outgoing link
increases, the delay, D, of served requests increases as well (because they wait
longer to be sent over the congested link). Hence, an arc exists from utilization to
delay, U — D, indicating that changes in the former affect the latter. The arcs
in the adaptation graph are annotated by either a “+” or a “—” sign depending
on whether the changes are in the same direction or not. In the example at hand,
since an increase in utilization causes a same-direction change in delay (i.e., also an
increase), the arc is annotated with a “+” sign: U —* D. Some of the arcs represent
fundamental natural phenomena (for example, an increase in delay is a natural con-
sequence of an increase in utilization). Others represent programmed behavior or
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policies. For example, an admission controller may be programmed to decrease the
fraction of admitted requests, R, in response to an increase in delay, D. Hence, an
arc exists in the adaptation graph from delay to admitted requests, D —~ R. The
arc is annotated with a “—"" sign because an increase in delay results in a change
in the opposite direction (i.e., a decrease) in admitted requests. This arc does not
represent a natural phenomenon but rather the way the admission control policy is
programmed. These arcs are called policy arcs and annotated with the name of the
module implementing the corresponding policy. Hence, we have D — ,~ R, where
AC stands for the admission control module. Figure 1.4a depicts the adaptation
graph of the data server under consideration. The graph is composed of three arcs.
The arc D —~ R reflects that the admission controller reduces the number of
admitted requests when delay increases and vice versa. The arc R — T U reflects
the natural phenomenon that any changes in the number of admitted requests result
in same-direction changes in outgoing link utilization. Finally, the arc U —* D
expresses the fact that changes in link utilization cause changes in delay (in the same
direction). The three arcs form a cycle (a feedback loop). An interesting property of
the loop is that the product of the signs of the arcs is negative. This indicates a
negative feedback loop, which is expected for stability.

As another example, consider a network power management middleware that
measures links utilization, U. If the link utilization is low, the server workload must
be low. The middleware thus engages dynamic voltage scaling (DVS) on the server
to lower processor voltage, V, and frequency, F, hence reducing power consump-
tion, P, due to the off-peak load condition. This adaptation action can be expressed
asU —y V and U — f; F, where PM stands for power management middleware
(i.e., a decrease in link utilization causes the policy to decrease both voltage and
frequency which explains the signs on the arcs). In turn, we have V. —%1 P and
F —* P, which says how power consumption changes with voltage and frequency.
Finally, we have F —~ D, since lowering frequency (i.e., slowing down a proces-
sor) increases delay and vice versa. Figure 1.4b depicts the adaptation graph for the
network power management middleware.

As might be inferred from above, each component or subsystem of a larger sys-
tem has its own adaptation graph that describes what performance variables this
component is affecting and what causality chains (or loops) exist within. When
a system is composed, the adaptation graphs of individual components are coa-
lesced. Figure 1.4c shows the combined adaptation graph that results when a server
described in Fig. 1.4a operates on top of the middleware described in Fig. 1.4b.
To check for incompatibilities (adverse interactions), the graph is searched for loops
using any common graph traversal algorithm. Loops that traverse component bound-
aries are emergent behavior loops that have not been created by design. In particular,
if the product of signs on one such loop is positive, the cycle indicates an unsafe
feedback loop. In other words, a stimulus reinforces itself causing more change in
the same direction. In control-theoretic terms, such a loop is unstable.

For example, in Fig. 1.4c, the cycle U _’;M F,F -7 D, D —,c R,
R —7T U crosses module boundaries and has positive sign product, indicating
that it is unstable. The cycle is an instance of an adverse interaction explained as
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(b)

Fig. 1.4 Examples of adaptation graphs and their combination. (a) Adaptation graph of an admis-
sion controller of a performance-aware server; (b) Adaptation graph of a network power manage-
ment middleware; and (¢) Combined adaptation graph of the two

follows. Starting with the node labeled, U, when the network utilization decreases
in the server, the power management middleware causes the server to slow down.
This, in turn, increases the delay experienced by served requests causing the admis-
sion controller to accept fewer requests. The reduced accepted number of requests
will further decrease the load on the network link, causing the power management
middleware to slow down processors even more. This, in turn, may cause a more sig-
nificant reduction in admitted requests and a further reduction in network load. This
cycle could ultimately bring the server to a crawl, indeed an adverse consequence
of unintended interaction.

Analytic foundations and tools are needed for the design, composition, and opti-
mization of performance of large-scale distributed, adaptive, sensing systems. Much
of our future infrastructure, such as power grids, homeland defense systems, and
disaster recovery systems will likely be able to make use of insights and contri-
butions of such a theory. It should be noted that despite the promise of control-
theoretic techniques in analysis of system dynamics, they fall short of analysis of
networked sensing systems. This is because computing systems offer new nonlin-
earities and different functionalities not adequately modeled by linear difference
equations. Hence, extensions are needed to non-linear control to address the specific
nonlinear and functional behaviors common to networked sensing systems in order
to reason about their closed loop behavior. Such techniques must further be scaled
to predict emergent behavior of large highly interconnected, interacting systems, as
opposed to analyzing performance of isolated feedback loops.
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1.6 Summary

This chapter described some practical considerations in the design of large net-
worked sensing systems that arise in different interaction spaces between sys-
tem components. Functional, data, temporal, and dynamic interaction spaces were
explored. It was shown that new challenges arise in handling problems that occur by
virtue of scale. Problems and interactions addressed in this chapter do not typically
manifest themselves in smaller deployments. Tools and techniques are needed for
sensor network designers to address the above composition and scaling challenges.
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Chapter 2
Scheduling and Power Assignments
in the Physical Model

Alexander Fanghiinel and Berthold Vocking

Abstract In the interference scheduling problem, one is given a set of n
communication requests each of which corresponds to a sender and a receiver in
a multipoint radio network. Each request must be assigned a power level and a color
such that signals in each color class can be transmitted simultaneously. The feasi-
bility of simultaneous communication within a color class is defined in terms of the
signal to interference plus noise ratio (SINR) that compares the strength of a signal
at a receiver to the sum of the strengths of other signals. This is commonly referred
to as the “physical model” and is the established way of modeling interference in
the engineering community. The objective is to minimize the schedule length corre-
sponding to the number of colors needed to schedule all requests. We study oblivious
power assignments in which the power value of a request only depends on the path
loss between the sender and the receiver, e.g., in a linear fashion. At first, we present
a measure of interference giving lower bounds for the schedule length with respect
to linear and other power assignments. Based on this measure, we devise distributed
scheduling algorithms for the linear power assignment achieving the minimal sched-
ule length up to small factors. In addition, we study a power assignment in which
the signal strength is set to the square root of the path loss. We show that this power
assignment leads to improved approximation guarantees in two kinds of problem
instances defined by directed and bidirectional communication request. Finally, we
study the limitations of oblivious power assignments by proving lower bounds for
this class of algorithms.

2.1 Introduction

Simultaneously transmitted radio signals interfere with each other. Early theoretical
approaches (see, e.g., [11, 13, 17]) about scheduling signals or packets in radio
networks resort to graph-based vicinity models (also known as protocol model) of
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the following flavor. Two nodes in the radio network are connected by an edge in
a communication graph if and only if they are in mutual transmission range. Inter-
ference is modeled through independence constraints: If a node u transmits a signal
to an adjacent node v, then no other node in the vicinity of v, e.g., in the one- or
two-hop neighborhood, can transmit. The problem with this modeling approach is
that it ignores that neither radio signals nor interference ends abruptly at a boundary.

Recent theoretical studies [1-4, 6, 7, 9, 14, 15] use a more realistic model, the
so-called physical model, which is well accepted in the engineering community.
It is assumed that the strength of a signal diminishes with the distance from its
source. More specifically, let d (u, v) denote the distance between the nodes u and v.
We assume the path loss radio propagation model, where a signal sent by node u
with power p is received at node v with p/d(u, v)¥, where @ > 1 is parameter
of the model, the so-called path loss exponent." A signal sent with power p by
node u is received by node v at a strength of p/d(u, v)*. Node v can successfully
decode this signal if its strength is relatively large in comparison to the strength of
other signals received at the same time. This constraint is described in terms of the
signal to interference plus noise ratio (SINR) being defined as the ratio between the
strength of the signal that shall be received and the sum of the strengths of signals
simultaneously sent by other nodes (plus ambient noise). For successfully receiving
a signal, it is required that the SINR is at least 8 with § > 1 being the second
parameter of the model, the so-called gain.

Let us illustrate the physical model with a simple but intriguing example showing
the importance of choosing the right power assignment. Suppose there are two pairs
of nodes (11, v1) and (u2, v2). Two signals shall be sent simultaneously, one from
to v and the other from u» to vy. Suppose the nodes are placed in a nested fashion
on a line, that is, the points are located on the line in the order u1, us, v, v1 such
that the distance between 1| and u; is two, the distance between u, and v, is one,
and the distance between vy and v is two (cf. Fig. 2.1). For simplicity fix ¢ = 2
and B = 1 and neglect the noise.

e At first, let us assume that both u1 and u» send their signal with the same power
1. Then the strength of u;’s signal at node vy is 1/25 while the strength of u>’s
signal at the same node is 1/9. Hence, v; cannot decode the signal sent by node
u1 as it is drowned by u5’s signal. That is, the outer pair is blocked by the inner
pair when using uniform powers.

e At second, let us assume that signals are sent in a way that the path loss is
compensated, that is, both nodes use a strength that is linear in the path loss.
In particular, #; sends at power 25 and u> sends at power 1. Now consider the
strengths of the signals received at v,: The strength of u,’s signal is only 1 while
the strength of u;’s signal is 25/9. Thus, the inner pair is blocked by the outer
pair when using powers that are chosen linear in the path loss.

e Finally, let us make an attempt setting the powers equal to the square root of
the path loss, that is, u; uses power 5 and u» uses power 1. Now easy calculus

! Depending on the environment, it is usually assumed that o has a value between 2 and 5.
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25

9

Fig. 2.1 Placement of the nodes and the path loss for « = 2. Linear and uniform power assignment
both need different schedule steps for each of the requests, the square root power assignment can
schedule both requests at once

shows that, at vy, the strength of u1’s signal is larger than the strength of u;s
and, at vy, the strength of us’s signal is larger than the strength of u;s. Hence,
simultaneous communication between the nested pairs is possible when choosing
the right power assignment.

In this chapter, we investigate interference scheduling problems like the one in the
example above. In general, one is given a set of n communication requests, each
consisting of a pair of points in a metric space. Each pair shall be assigned a power
level and a color such that the pairs in each color class can communicate simultane-
ously at the specified power. The feasibility of simultaneous communication within
a color class is described by SINR constraints. The objective is to minimize the
number of colors, which corresponds to minimizing the time needed to schedule
all communication requests. As this problem is NP-hard [1], we are interested in
approximation algorithms.

The interference scheduling problem consists of two correlated subproblems: the
power assignment and the coloring. By far, most literature focuses on scheduling
with uniform power assignment, in which all pairs send at the same power (see, e.g.,
[8, 12, 18]). In other studies, the linear power assignment is considered, in which
the power level for a pair (u, v) is chosen proportional to the path loss d(u, v)¥. In
the example above, we have seen that choosing powers proportional to the square
root of the path loss might be an interesting alternative. All these power assignments
have the advantage that they are locally computable independent of other requests,
which allows for an immediate implementation in a distributed setting. These are
examples of oblivious power assignments which mean the power level assigned to
a pair is defined as a function of the path loss (or the distance) between the nodes of
a pair.

2.1.1 Outline

In Sect. 2.2, we formally introduce the physical model with SINR constraints and
show a helpful robustness property of this model. In Sect. 2.3, we study scheduling
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algorithms for the linear power assignment. In particular, we introduce a measure
of interference giving lower bounds for the schedule length with respect not only
to linear but also to other power assignments. Based on this measure, we devise
distributed scheduling algorithms for the linear power assignment achieving the
minimal schedule length up to small factors. In Sect. 2.4, we study the square root
power assignment. We show that this power assignment leads to better approxima-
tion guarantees in two kinds of problem instances defined by directed and bidirec-
tional communication request. In Sect. 2.5, we study the limitations of oblivious
power assignments by proving lower bounds for this approach. Finally, in Sect. 2.6
we summarize the results from our presentation with pointers to the literature and
open problems.

2.2 Notation and Preliminaries

Let the path loss exponent ¢ > 1 and the gain 8 > 1 be fixed. Let V be a set of
nodes from a metric space. Let d(u, v) denote the distance between two nodes u
and v. One is given a set R of n requests consisting of pairs (u;, v;) € V2, where
u; represents the source and v; the destination of the signal from the ith request.
W.lLo.g., we assume min;cg d(u;, v;) = 1. Let A = max;cg d(u;, v;) be the aspect
ratio. We say that a set R of requests is a nearly equilength set, if the lengths of the
requests in R differ by at most factor 2.

In the interference scheduling problem one needs to specify a power level p; > 0
and a color ¢; € [k] := {1,...,k} forevery i € [n] := {1, ..., n} such that the
latency, i.e., the number of colors k, is minimized and the pairs in each color class
satisfy the SINR constraint, that is, for every i € [n], it holds

Pi Pj
— >p E — +tvV 2.1)
d(u;, v;)® ety d(uj, v;)®
j=Ci

The SINR constraint is the central condition for successful communication in the
physical model. It characterizes the received strength of the signal emitted from u;
at receiver v; compared to ambient noise v and the interference from signals of all
other senders in the same color class. The so-called scheduling complexity of R, as
introduced by Moscribroda and Wattenhofer [14], is the minimal number of colors
(steps) needed to schedule all requests in R.

In this chapter we focus on distance-based power assignments because of their
simplicity and locality, which is a striking conceptual advantage in distributed
wireless systems. An oblivious (or distance-based) power assignment p is given
by pi = ¢(d(u;,v;)) with a function ¢ : [1, A] — (0, c0). For uniqueness
we assume that ¢ is always scaled such that ¢ (1) = 1. Examples are the uni-
form ¢ (d(u;, v;)) = 1 or the linear ¢ (d(u;, v;)) = d(u;, v;)* power assignment.
Recently, the square root assignment ¢ (d (u;, v;)) = d(u;, vi)“/ 2 has attracted some
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interest [5, 9] as it yields better approximation ratios for request scheduling than the
uniform and the linear power assignment.
We define the relative interference on a request i from a request set R as

d(ui, v;)* Dj
RI;(R) = ¢; - :
((R)=ci Di Zd(uj,vi)“

JER
where

_ B
1= B-vepi/du;i,v)

Ci

denotes a constant that indicates the extent to which the ambient noise approaches
the required signal at the receiver of request i. The relative interference describes the
received interference at receiver v; normalized by the received signal strength. The
relative interference satisfies the two following properties for a request set R. First,
R is SINR feasible iff for every i € R, RI;(R) < 1. Second, the relative interference
function is additive, that is, for every partition R = R{UR, and every request i it
holds RI; (R) = RI; (R1) + RI; (R2).

We denote with an r-signal set or schedule one where each requests relative
interference is at most 1/r.

2.2.1 Robustness of the Physical Model

The main criticism of graph-based models is that they are too simplistic to model
real wireless networks. The physical model requires simplifying assumptions, too,
as (2.1) models no obstructions, perfectly isotropic radios and a constant ambient
noise level.

In the following proof (from [10]) we show that there are only minor changes
in the schedule length, if there are minor changes in the signal requirements. This
justifies the analytic study of the physical model despite its simplifying assumptions.

Proposition 1 Let R be a r-signal schedule under a power assignment p. Then there
exists a r'-signal schedule R’ for p that is at most [2r' /r1? times longer than R, for
r'>r.

Proof Let R be a r-signal schedule and 7 be a single schedule step. We show that
we can decompose T in at most [2r'/r] slots Ty, T», . .. that are r’-signal sets. We
now process the requests in 7' by increasing index. For request i, assign it to the first
set T, in which the relative interference on i is at most 1/2r’. Since every request
had at most a relative interference of 1/r, it follows from the additivity of relative
interference that there are at most

1/r] 2r’
=]
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such sets. In each of these sets 7 the relative interference from requests with lower
index is at most 1/2r’. Now, for each of these sets we repeat this process, processing
the requests in 7j;, now in reverse order. Using the same arguments 7 is split into
at most [2r'/r] sets. In that way we make sure that the requests in each set have a
relative interference of at most 1/2r’ from requests with higher index, which bounds
the total relative interference on each request by 1/r/, while using at most [2r/r1?
times more slots than the original schedule. O

2.3 Scheduling with the Linear Power Assignment

In the first part we focus on the linear power assignment, i.e., the power for a
request pair (u;, v;) is equal to d(u;, v;)* and, hence, linear in the path loss. The
linear power assignment has the advantage of being energy efficient as the minimal
transmission power required to transmit along a distance d (u;, v;) is proportional to
d (u,- , Uj )a'

We first present a measure of interference /, which allows us to lower bound the
schedule for general metrics using the linear power assignment by £2 (7). If we allow
any power assignment, the schedule length can be bounded by £2(//log Alogn).
For « > 2, embedding the instance in the Euclidean space improves this bound to
O(I/log A).

These results are complemented by a simple and efficient algorithm computing
a schedule using O(I - logn) steps. A more sophisticated algorithm computes a
schedule using O(I + log? n) steps. This gives a constant factor approximation of
the optimal schedule using the linear power assignment for dense instances, i.e., if
1> log2 n.

2.3.1 Measure of Interference and Lower Bounds

We first present an instance-based measure of interference I, which allows us to
lower bound the number of steps needed for scheduling a request set R in terms
of I.

Definition 1 (Measure of Interference) Let R € V x V be a set of requests. For
w € V define

I,(R) = Z min(l,%)
(u,v)eR ’

Using this function we define the measure of interference induced by the requests
in R:

I = I(R) = max I,,(R)
weV
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O\O

w2

Fig. 2.2 An example for the measure of interference with three requests. Gray circles mark the
areas where the interference from a sender is at least 1. For the red node I, is 1 plus the inter-
ference from the two rightmost senders (each less than 1). The interference is maximal at the blue
node wy, i.e., Iy, = 3, so the measure of interference / for this instance is / = 3

An example of the measure of interference is illustrated in Fig. 2.2.
Observe that / is subadditive, i.e., for R = R; U R; it holds

I(R) = max I,(R) < max {I,(Ry) + I,(R2)}
weV weV

max I, (R1) + max I, (Ry) = I (R1) + I (Ry)
weV weV

IA

Theorem 1 Let T be the minimum schedule length for a set of requests R with the
linear power assignment. Then we have T = §2(I).

Proof Let there be a schedule of length 7 when using the linear power assign-
ment. Then there exist sets of requests Ry, ..., Ry each of which satisfies the SINR
constraint for this power assignment. As [ is subadditive we have [ (U,T: 1 R,) <

Z,T=1 I (R;). Thus it suffices to show that 1 (R;) = O(1) forevery ¢t € {1,..., T},
as this implies T = £2(1).

Let Ry = {(u1,v1),..., (uz, v7)} and let w € V. Furthermore, let v; be the
receiver from R; that is closest to w, i.e., j € argmin;epz)d(v;, w). Possibly
w = Uj.

We distinguish between two kinds of requests. We define a set U of indices of
requests whose senders u; lie within a distance of at most %d (vj, w) from w, ie.,

U= {i € [n] | dluj,w) < %d(vj, w)}. Using the triangle inequality we can
conclude foralli € U:
3
d(u;,vj) <dui,w)+d(w,vj) < zd(vj,w) (2.2)

In addition, we have

1
dj, w) <d(vi, w) <dv;, u;) +du;, w) <d;, u;) + Ed(vj’ w)
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Here the first equation holds since v is the closest receiver to w, the second equation
holds by triangle inequality and the third step follows from the definition of U. This
implies

dj, w) < 2d(u;, v;) (2.3)

Combining (2.2) and (2.3) we get d(u;, v;) < 3d(u;, v;). Thus it holds

. d(u;, v; d(u;, v;) 30‘

|U\{]}|:Zd(lv1)a Z T a0 o\ _— F

icU Ui, v iU 3ad(ul,v])
i#] t#/

Hence,

d(u;, v;) 3
I,(U <—+41
W) = gmln{ d(u“w)a} ;

Next we upper bound 7, (R, \ U). For alli € [n] \ U it holds that
d(ui,vj) < dui, w) +dw,v;) < du;, w) +2du;, w) = 3du;, w)

by applying triangle inequality and the definition of U. As a consequence

d(u;, v;)* d(u;, v;)* 3“
= Z d(ula v;)* 13

L(RAU)< Y
ie[n

. o —
A\U d(ui, ) iela\U 3%
i#] i#j

Thus

LR

Ly(Ry) = Iy(U) + Iy(R \U) =

+1=0()

O

Theorem 2 Let T denote the optimal schedule length using any power assignment.
Then we have T = £2 (I /log A - logn).

Proof We use a similar technique as in the proof of Theorem 1. However, we have
to deal with an unknown power assignment. Since there is a schedule of length 7
in this power assignment, there exist sets of requests Ry, ..., Ry each of which
satisfies the SINR constraint for this power assignment. We divide such a set R; into
log A classes C; ; = {(u,v) € R, | 277! < d(u,v) < 2/}. Again, by using the
subadditivity of I, it suffices to show that /(C; ;) = O(logn) for such a class. Fix
C;,j and let C, j = {(u1,v1), ..., (uz, vy)}. Further, for notational simplicity we
write L = 2/~
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As an important fact we can bound the number of requests whose senders are
located around a node within a distance of at most £.

Lemma 1 Forall w € V, £ > L we have for K¢y(w) = {i € [n] | d(u;, w) < £}:

1 /40\%
|Ke(w)|§E(f£> 1

Proof Let p be the power assignment that allows all requests to be served in a single
time slot. Let furthermore (uy, vx) be the request with k € Ky (w) that is transmitted
with minimal power py. As the SINR condition is satisfied for request (u, vr), we
get

1 Dk Pi Di (|Ke(w)| — 1)
B dlur, o) 2 A 00" ) 201207 — QL1 2L)

ieKo(w) ieKe(w)
i#k i#k
So
1 /20+2L\% 1 [40)\*
Kew)| 1< = (") <—(=
B \d(ui, vi) p\L
]
Now, let w € V. We prove I,,(C; ;) = O(logn). W.l.o.g., let uy,...,u; be
ordered by increasing distance to w. Note that for all £ > 0 we have K;(w) =
{1,..., x} for some x € N by this definition.

For k < logn + 1 let Sy = [2¥] \ [2¥—1]. Furthermore, let £ be defined as
Ly = min;cg, d(u;, w). For the value of I,,(C;, ;) follows from these definitions:

"o d(ui, v;)*
I, (Cyj) = me{l’ W}

i=1

logn+1 d(u i) logn+1 IS¢
< §:§: P Y 1<ent Y Py kw)l
_ ieS d(ulaw) K _ E
= k ieKp(w) k=1

As the distances are increasing, we have £, > d(u;, w) for alli < 2%=1 In other
words [2K71] € Ky, (w).

Since we add up the interference induced by requests from K (w) separately, we
may assume £, > L for all k and thus apply Lemma 1 on K¢, (w)|, which gives

- _ 40\
27 = 2N < K ()] < <Tk) +1
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Consequently, we have

> -y (%)

Using the above results for ¢’ and | Kz (w)| we can bound 7,,(C;, ;) by

10%1 k-1 42 10%1 o
o @T-1(3) B k=1 p

O

Earlier results restricted the instances often to the Euclidean plane and required

« to be strictly greater than 2. Under these assumptions we can use geometric argu-

ments to get an even better bound of £2(/ /log A) on the optimal schedule length, as
we show in the following.

Theorem 3 Let the instance be located in the Euclidean plane, let « > 2, and let

T denote the optimal schedule length using any power assignment. Then we have
T = 2 (I/log A).

Proof Again, we divide the requests into log A - T classes C; ;. This time, we have
to prove I, (C; ;) = O(1). Let us remark that in the Euclidean plane a ring of inner
radius L - r and width L can be covered by 8(r + 1) circles of radius L. If x is the

center of such a circle, we get from Lemma 1 that |Ky (x)| < %. Thus we have

|K L1y (w) \ Kir(w)| < 8(r + 1)% < 16r% = r% for r > 1. We can bound
Iy (Ct ;) by

2L)*
(Lr)®

Ly(Crj) < ) IKLg41y(w) \ Kip(w)] - + K (w)]

r=1

Using the above result we get

Iy (Crj) < 2%

4oc+2 © 4¢ 4¢ <

r=1

2.3.2 Upper Bounds for the Linear Power Assignment

The measure of interference enables us to design randomized algorithms using
the linear power assignment, i.e., the power for the transmission from u to v is
¢ - d(u,v)* for some fixed ¢ > Bv. As a key fact, we can simplify the SINR
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constraint in this setting as follows. If R is a set of requests that can be scheduled in
one time slot, we have for all nodes v’ with (u/, v') € R

c-du,v)” c
2 dw <F
(u,v)eR ’

(u,v)#W' v
Since 8 > 1 we can write equivalently

LR= Y min{l,M}fé—E 2.4)

(u,v)€R

For simplicity of notation we replace % — = by # in the following proofs.

The idea of our basic algorithm (Algorithm 1) is that each sender decides ran-
domly in each time slot if it tries to transmit until it is successful. The probability of
transmission is set to 2/3;/1 and is not changed throughout the process.

Algorithm 1 A simple single-hop algorithm
1: while packet has not been successfully transmitted do
2:  try transmitting with probability 2;.‘%’1
3: end while

Theorem 4 Algorithm I generates a schedule of length at most O (I logn) whp.

Proof Let us first consider the probability of success for a fixed request (ux, vg) in
a single step of the algorithm. Let X;, i € [n], be the 0/1 random variable indicating
if sender u; tries to transmit in this step. Assume a sender uy tries to transmit in this
step, i.e., Xy = 1. To make this attempt successful, the interference constraint (2.4)
has to be satisfied. We can express this event as Z < 1/8’ where Z is defined by

d
Z= me i, vi)” X;
d(uls Uk)a
i€[n)

i#k

We have E[Z] < 1/28’ and thus we can use Markov’s inequality to bound the
probability that this packet cannot be transmitted successfully by

1
Prz > F <PrZ >2E[Z] <

To make the transmission successful the two events X; = 1 and Z < 1/8’ é have
to occur. Since they are independent it holds that

1 1 1 1 1
PrX;,=1,Z2<—=PrX;=1-PrZ<—>—|1—-=-)=
B B~ 2p1
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The probability for packet k not to be successfully transmitted in (ko + 1)48’I Inn
independent repeats of such a step is therefore at most

1\ ko+D4p/TInn
<1 ) < e—(ko+1)1nn —(ko+1)

- —n
4p'1

Applying a union bound we get an overall bound on the probability that one of n
packets is not successfully transmitted in these independent repeats by n 0. This
means all senders are successful within O (I logn) steps whp.

An obvious disadvantage of the basic algorithm is that the probability of trans-
mission stays the same throughout the process. To improve it, one idea could be to
increase the probability of transmission after some transmissions have successfully
taken place. This is why we need the following weighted Chernoff bound that can
deal with dependent random variables.

Lemma 2 Let X1, ..., X,, be 0/1 random variables for which there is a p € [0, 1]
such that for all k € [n]and all a1, ..., ar—1 € {0, 1}

PrXy=1|X1=a1,.. X1 =ar—1 <p (2.5)
Let furthermore wy, . .., w, be reals in (0, 1] and u > p > w;. Then the weighted
Chernoff bound
n 68 "
Pr; wiX; >4+ < (m)
i=
holds.

Proof (Sketch). To show this bound, a standard proof for the weighted Chernoff
bound [16] can be adapted. By using the definition of expectation and repeatedly
applying (2.5), one can show that

Ble] < [T +1- 1)
i=1

although random variables are no more independent. In the original proof no other
step makes use of the independence. O

We can now use this bound to analyze Algorithm 2. This algorithm assigns ran-
dom delays to all packets. The maximum delay is decreased depending on /"™,
which denotes the measure of interference that is induced by the requests that have
not been scheduled at this point.

The algorithm works as follows: During one iteration of the outer while loop by
repeatedly assigning random delays to the packets the measure of interference is
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Algorithm 2 An O(I + log? n) whp algorithm

1: while /°"" > logn do

2 J =1

3:  while /" > Z do

4: if packet i has not been successfully transmitted then
5: assignadelay 1 <§; < 16eB'J i.u.r.

6 try transmission after waiting the delay

7 end if

8:  end while

9: end while

10: execute algorithm Algorithm 1

reduced to a half of its initial value. This is repeated until we have I°""™ < logn and
the basic algorithm is applied.

Our first observation is that reducing 7°"™ by factor 2 takes O (/°*'") scheduling
steps whp.

Lemma 3 During one iteration of the outer while loop of Algorithm 2, the inner
while loop is executed at most ko + 2 times with probability at least 1 —n=%0 for all
constants k.

Proof Let us first consider a single iteration of this loop. We assume all senders
are taking part as if none has been successful during this iteration of the outer while
loop yet. We only benefit from any previous success.

Observe, if the senders of a set S are transmitting and there is a collision for
packet i we have

me{ dluj, v))” }>— or me{ dluj, )" }>L
d(u],v,)“ 2 d(u],vl)“ 28/

=

j<i j>l
In the first case let ¥, = 1, in the second one ¥;” = 1. We now show
that the random variables Y=, ..., Y= fulfill (2.5) for p = 8—18. Let us fix
k € [n] and ay,...,ar—1 € {0,1}. We have to show Pr¥,= =1|Y~ =ay,

Yo =ak-1 < p.
Since the delays §; are drawn independently they can be considered as if they

were drawn one after the other in the order 81, 87, . ... Then the value of Yl.< would
already be determined after drawing §; by definition. In other words, the values of
81, ..., 8—1 already determine the values of Y=, ..., Y= . It follows that there is
asubset M C [16¢B’ J1¥~! of delay values such that Yo=ap,....Y " = a1 iff
81,...,0k-1) EM.

Now let X; be a 0/1 random variable for i € [k — 1] such that X; = 1 iff §; = §y.
We can observe that we have for all (by, ..., br_1) € [16e,3/J]k_1:

1
16¢'J

E[X,' | 81 =b1, ..., 81 Zbk_l]z
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Define furthermore
d(ui, v;)*
Zk = me { d(ul, ") } X

with E [Zk< |81 =b1,...,0k-1 = bk—l] Now it holds that

= 16/3/

PI‘[Yk<=1 | 61 =0b1,...,8j_1=br_1]

1
=PrZ; > — |81 =b1,..., 801 = by
1'k>2ﬂ, 1 1 k—1 k—1
<28'E[Z{ |81 =b1,.... 81 = br—1]
_1_
_Se_p

We now apply the law of alternatives:

Pl‘Yk< == 1 | Y]< =dl,..., Ykil = daj—1

= Z Pré;y =by,.... 001 =bi1 | YT =a1,.... Y, =a
(b1, bp—1)EM

'Pl‘Yk< =1|61=by,...,0—1 =br_1
=p

Thus, for w € V, we may apply Lemma 2 on /;; defined as follows:
d ’
me (ul vi)” Y=
d(”l , w)*

This random variable indicates the remaining measure of interference that is caused
by these collisions. Setting § = 2¢ — 1 and = é Lemma 2 states

-1

N[

J
Pri; >— <274 <n
4

Now consider the situation after ko + 2 iterations of the inner while loop. Since these
are independent repeats we have

Pri; > — < n~ko+2)

NS

With a symmetric argument this also applies to /7. For a sender that has not been
successful we have Z7 + Z7 > 1. This means we have the bound Ij*" < 15+ 17
For the remaining measure of interference /°*"" = max,cv I we can conclude
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Pr/c%r > i < Pr/cYT > 1
-2 -2

weV

< P ]< > 1= > 4
Z r — Or w = Z
weV

<n (n—(k()+2) + n—(k0+2))

<n ko

O
Using the previous lemma, we can bound the numbers of steps that are generated
in the while loops.

Theorem 5 Algorithm 2 generates a schedule of length at most O (I + log2 n) steps
whp.

Proof Let Ty denote the number of scheduling steps generated in the kth execution
of the outer while loop. As shown in the previous lemma, it holds that

1

Pru; > (ko + 3) 16ep’ T 7! Y

Let furthermore U denote the number of scheduling steps generated in the execution
of Algorithm 1. As shown in Lemma 4, it holds that

PrU > (kg +2)4B Innlogn < Tt

Thus the total number of steps generated in the while loops Y, vy + U can be
estimated by

Pr) v+ U > (ko +3)32e8'T + (ko +2) 4p Innlogn
k

1
<Pr\/ v > (ko +3) 16eﬁ/F1 VU > (ko+2)4B8 Innlogn
k

1
< ZPrvk > (ko + 3) 16eﬁ/F1 +PrU > (ko +2)4B Innlogn

<
Z ko+l ko+l

(logn +

IA

1) nk0+1

<
= ko

This means the total number of steps upper bounded by
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(ko 4+ 3)32¢B'I + (ko +2) 48" Innlogn = O(I + log” n)

. o 1
with probability at least 1 — T O

In sufficiently dense instances, i.e., [ > log2 n, this algorithm yields a constant-
factor approximation for the optimal schedule compared to the linear power assign-
ment with high probability. Compared to the optimal power assignment the approx-
imation factor then is O(log A - logn) whp for general metrics, respectively.
O (log A) for the two-dimensional Euclidean plane.

Algorithm 1 can be implemented in a distributed way losing a factor log n in the
following way. In contrast to the centralized problem, the nodes do not know the
correct value of 7, thus, they do not know their transmission probability. Now in the
distributed setting the algorithm processes in each while iteration log n steps, where
in each of these steps the transmission probability is halfed, that is, starting by 1/28’
down to 1/28'n.

Algorithm 2 can be modified analogously, leading to a schedule of length
O(logn - (I + log®n)) whp.

2.4 Scheduling with the Square Root Power Assignment

The scheduling algorithms for the linear power assignment presented in Sect. 2.3
achieve an approximation factor of order log Apolylogn in comparison to an opti-
mal solution with respect to general power assignments. In this section, we show
that the square root power assignment admits schedules beating this bound achiev-
ing an approximation factor of order loglog Apolylog n. Furthermore, we present
a bidirectional variant of the interference scheduling problem in which the square
root power assignment yields an approximation of order polylogn and is, hence,
independent of the aspect ratio.

2.4.1 Scheduling Directed Requests

In this section we show how to achieve an O (loglog A log® n) approximation on
the interference scheduling problem using square root power. To prove this result
we first show two properties that make use of the following definitions. We call a set
R of requests well separated, if the length of any pair of requests differs by a factor
of either at most 2 or at least 16n%/%. We say that two requests (u;, v;) and (uj,vj)
are t-close under the square root power assignment if max{RI;(j), RI; (i)} > 7.

Lemma 4 Let R be a well-separated SINR-feasible set of requests. Let (ug, vo) be a
request that is shorter than the requests in R by at least a factor of 16n*/%. If all the
requests in R are 1/2n-close to (uo, vo) under the square root power assignment,
then |R| = O(loglog A).
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Proof Let R’ be a maximum 3%-signal subset of R, let n’ denote the number of
requests in R’ and w.l.0.g. let the requests in R’ be labeled in increasing order of
length. From Proposition 1 we know |R’| =n’ > |R| /9. As all the requests in R’
are 1/2n-close to (ug, vg), R’ consists of two types of requests:

e Requests j for which the ratio between j’s interference and the received signal
from u at receiver vy is at least 1/2n (or \/d(uo, vo) - d(uj, vj)a >d(uj,vg)-
%) and

e Requests j for which the ratio between u(’s interference and the received signal
from j’s sender at v; is at least 1/2n (or \/d(uo, vo) - d(uj, vj)a > d(ug, v;)* -

1
)

We only consider the former type, the argument is almost identical for the latter type
and will be left to the reader.

Let j, j € R’, wlo.g. assume j > j'. As they are 1/2n-close to (ug, vg), it
holds \/d(uo, vo) - d(uj, vj)a >d(uj, vo)* - % (and analogously for j"). So we get

d(uj, v) < \[d(wo, vo) - d(uz, v)@m)

and

d(uj,v0) < \Jd(wo, vo) - d(uyr, vy)2m) '/
With triangle inequality we can conclude

duj,vj) <duj,v)+dWi,u;) +duj,vj)
<d(uj,vj)+ 21+1/an1/a\/d(uo, vo) -d(uj,vj)

Applying o« > 1and d(u;, v;) > 16n*/%d(ug, vo) to this inequality, we get

d(”.l'” vj) <d(uj,vj)+ 21+1/otn1/01\/d(u0’ vo) - d(uj, vj) <2d(uj,v;)

For technical simplicity, we use the more relaxed d(u;/, vj) < 3d(uj, v;) in the
following. Using the same arguments as above we get

d(uj, ) < djr,vp) + 2540V Gy, vo) - d(uj. v))

Multiplying this inequality with d(uj/, v;) < 3d(u;, v;) it follows

(wjr,vj)d(uj,vi)<3duj,vj)duj, vj/)+12nl/°‘d(uj, vj)\/d(uo, vo) -d(uj,vj)
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Since R’ is a 3%-signal set, we have d(ujr, v;)-d(uj, vj) = 9d(uj,v;)-d(uj, vj).
Again, applying the well separation, the last two inequalities yield (with canceling
a6d(uj,v;) factor)

d(ujr,vy) < 20V Jd(uo. vo) - d(uj, v)) (2.6)

This equation implies d(u;, vj) > 2d(u;/, vj). By well separation of R it follows
duj,v;) > 16n**d(u, vj)). Now it follows from (2.6)

vial) > d(u;, v;)? . 2d(u;, v;)?
4d (uy, vo)n2/"‘ d;

d(uit1,

forany i € {2,...,n'}. Let A; = d(u;, v;)/d(uy,vy). Then ;1 > 2)»,.2 and by

induction 4, > 22 '~1. Hence, ' = |R/| < lglghA,y +2 = Iglg A + 2, which
proves the lemma. O

Lemma 5 Let R be a well-separated set of requests. If any subset of R containing
only nearly equilength requests can be scheduled with the linear power assignment
using at most c colors, then all requests in R can be scheduled with O (cloglog A)
colors using the square root power assignment.

Proof 1In the following we show that a single step from a schedule of R can be
scheduled in O(loglog A) steps. Let R = R{UR,U...UR; denote the decompo-
sition of R in length groups, such that the length of the requests in each group
differs by at most factor 2 and in different groups by at least factor 16n2/*. First
we transform the schedules for each length group in an r-signal schedule, with
r = 2%2_ This changes the number of schedule steps by at most factor (r + 1)2
(by Proposition 1). Let T = | J; 7; be a single schedule step from the schedule of R
and let 7; denote the requests in 7 from length group R;. W.l.o.g., let the requests
in T be ordered by decreasing length.

Lemma 4 states that for each request i there are at most O (loglog A) longer
requests in 7 that are 1/2n-close to i. Let p = O(loglog A) denote this bound.
Now process the requests i € T by decreasing length: Assign i to a step T/f with
J € [p + 1] that does not contain a 1/2n-close request for i.

It remains to show that this assignment yields a feasible schedule. Consider a
requesti € T]f that originally came from set Ry. The relative interference on i from
nearly equilength requests in Tj( N Ry under the linear power assignment is at most
1/r, since each length group is an r-signal set. We first analyze the influence from
changing the power assignment from linear to square root in a length class. It holds
for two requests a and b for the linear power assignment

d(”as Ua)a pb _ d(ubs Ub)a

RI , = . . — .
a U, 00)) = o o~ Ay, v)®
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and for the square root power assignment

JdGia v d(up, vp)

RI, ((up, vb)) =cq-VdUug, vy)* d(ubv Va)®

Since the requests in the same length class differ by at most factor 2 combining
these two bounds yields that changing the power in a feasible schedule from the
linear power assignment to the square root power assignment changes the relative
interference by a factor of at most 2%/2 in such nearly equilength request sets. Thus,
the relative interference on i from requests in the same length class is at most 1/2.
On the other hand, the relative interference on i from requests not in the same length
class is at most 1/2n each, by construction, which is at most 1/2 in total. The relative
interference on each link is not greater than one, which gives us an SINR-feasible
schedule. O

Theorem 6 Suppose there exists a p-approximate algorithm for the interfer-
ence scheduling problem on nearly equilength request sets using uniform power
assignment. Then there exists an O(p - loglog A - logn)-approximate algo-
rithm for the interference scheduling problem using the square root power
assignment.

Proof Let R be the set of requests. We partition R into k = |—§ log 16n-| well-

separated sets as follows. Let Ry, R, ... denote length groups with R; = {j €
R | d(u;,v;) € [2i=1,2%)}. Then, partition R into classes B; = U;R;y;, for
i =1,2,..., k. Now the theorem follows from applying Lemma 5 on each of the
classes B; separately. O

Recall that Algorithm 2 had an approximation ratio of O (log A log? n) in general
metrics. For nearly equilength request sets this ratio reduces to O (log” n), which
gives the following result.

Corollary 1 The interference scheduling problem in general metrics has an approx-
imation factor of O(loglog A - log> n) for the square root power assignment.

For instances embedded in the Euclidean plane the approximation factor of Algo-
rithm 2 is O (log Alogn) which reduces to O (logn) for nearly equilength request
sets.

Corollary 2 For o > 2, the interference scheduling problem in the two-dimensional
Euclidean space has an approximation factor of O (loglog A - log2 n) for the square
root power assignment.

2.4.2 Scheduling Bidirectional Requests

Most communication protocols used in practice rely on bidirectional point-to-point
communication. This is reflected by the following variant of the physical model in
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which requests are undirected, that is, each of the two nodes of a request acts as both
sender and receiver. The SINR constraint is adapted as follows. For every request
pair (#;, v;) € R and w € {u;, v;}, it must hold

Di Pj
— =g > = +v
d(ui, v;)* ety min{d (uj, w)*, d (v, w))

Cj=¢i

In every request set that fulfills this condition the two nodes of a request can
exchange messages in both directions, as long as only one of them acts as sender at
any given time.

In this setting, bounded, linear, and superlinear power functions still can have
schedule lengths of £2(n), while the optimal schedule has constant length. This can
be shown by a straightforward adaption of the proof for Theorem 8. For sublinear
assignments this adaption is not possible. In fact, we show in the following that the
square root power assignment guarantees an approximation factor of O (log> n).

First, we need the following technical lemma.

Lemma 6 Let (u;, v;) and (uj, v;) be two requests. If they can be scheduled simul-
taneously, then

min{d (w;, w;)}* > B - d(u;, vi) -d(uj, v;)

Proof Letw; € {u;, v;} and wy € {u}, v;}, such that min{d(w;, w;)} = d(wy, w7).
The SINR constraint gives
Pi <8 Pj
d(u;, v;)* d(wy, wp)¥

and

Pj <8 pi
d(uj,vj)* — d(wy, w)*

From multiplying both equations follows
d(wi, w2)* = B2 - d(ui, vi) - d(uj, v))

O

Lemma 7 Let R be a set of requests that can be scheduled with an arbitrary power
assignment and let i be a request. Then there is at most a constant number of
requests j € R withd(uj,v;) > n2/% . d(u;, v;) that cause a relative interference
of at least 1/2n on i under the square root power assignment.
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Proof In the following we show that for fixed § there is at most one request j € R
withd(uj,v;) > n?/®.d(u;, v;) that causes a relative interference of at least 1/2n on
i under the square root power assignment. By Proposition 1 this yields the claimed
result.

Assume that there are two requests j, j € R with d(uj,vj) and d(uj, vj) at
least n2/® - d(u;, v;) that cause a relative interference of more than 1 /2n on i under
the square root power assignment. W.Lo.g, let d(uj, v;) > d(uj,v;). For k €
{j, j'Yand w € {u;, v;}letd, = min{d(u;, w), d(vg, w)}. The relative interference
under the square root power assignment implies

<¢d(uk, vod s, v»)a L
dy, ~ 2n

This implies

dn < @)V i v0) - i, vi) < @)V Jd Gy, 0p) - d (s, )

To avoid notational clutter, let d(u;, v;) be the minimal distance between j and j.
Applying triangle inequality we get

d(uj. vp) < 2dy < 200" Jd(wi, v) - ;. v))

d(uj,vj)
< 2<2n)‘/°‘\/ — e v = 21V fa(uj, v5) - dwjr, vj0)
Thus
2/
d(uj, vjr)2 < (2‘”1) ad(uj, vj) - duj, vjr)

From Lemma 6 follows for B < 2%*! there is at most one request j € R with
d(uj,vj) > n?/® . d(u;, v;) that causes a relative interference of at least 1/2n oni
under the square root power assignment. O

We now can use an almost identical approach like shown in Lemma 5 and Theo-
rem 6 for the unidirectional case.

Lemma 8 Let R be a request set where the length of every pair of links differs by at
most factor 2 or at least n*'®. If any subset of R containing only nearly equilength
requests can be scheduled with the linear power assignment using at most c colors,
then all requests in R can be scheduled with O(c) colors.

Theorem 7 Suppose there exists a p-approximate algorithm for the bidirectional
interference scheduling problem on equilength requests. Then there exists an algo-
rithm for the bidirectional interference scheduling problem with approximation fac-
tor O(p logn) for the square root power assignment.
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We omit the proofs for these lemmas, as the arguments are analogous to the
unidirectional case. For scheduling the equilength request sets we again can use
Algorithm 2.

Corollary 3 The bidirectional interference scheduling problem in general metrics
has an approximation factor of O (log3 n) for the square root power assignment.

Corollary 4 For a > 2, the bidirectional interference scheduling problem in the
two-dimensional Euclidean space has an approximation factor of O (log? n) for the
square root power assignment.

2.5 The Gap of Oblivious Power Schemes

Our upper bounds on the approximation ratios of oblivious scheduling algorithms
for directed communication requests depend on the aspect ratio. In this section,
we show that the dependence on the aspect ratio is unavoidable. To prove this we
construct a family of instances for a given oblivious power assignment function f
such that using f requires at least £2(n) colors or schedule steps while an optimum
power assignment needs only O (1) rounds.

Theorem 8 Let f : R.g — R be any oblivious power assignment function. There
exists a family of instances on a line that requires 2 (n) colors when scheduling with
the powers defined by f whereas an optimal schedule has constant length.

Proof We distinguish three cases. In the first case, we assume that f is asymptot-
ically unbounded, that is, for every ¢ > 0 and every xo > 0 there exists a value
x > xo with f(x) > c.

We consider the following family of instances. They consist of n pairs (u;, v;) on
a line, with distances x; between two nodes of a pair and yy; between neighboring
pairs. Depending on 8, we choose x as a suitable constant that is large enough to
get along with different values of 8.

Formally, this kind of instance can be defined by u1, vy, ..., u,, v, € R such
that

0 ifi =1
U = . and v = u;j +x;
vi—1 + xy; otherwise

We now define the distances x; and y; between the nodes recursively depending on
the function f:

yi =21 +yi-1)
Given x1, ..., x;j—1 and y;, we choose x; such that x; > y; and

fxj)

J

fGi) =y forall j < i
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This is always possible since f is asymptotically unbounded. By this construction it
is ensured that a pair k is exposed to high interference by pairs with larger indices.
To show this, let S C [r] be a set of indices of pairs that can be scheduled together
in one step; k = min S.

Fori € S\ {k} it holds that

d(ui, vp) = Z xj+ Z X )’152)(2)’/52)(2_)’1_4)()’[

Jj=k+1 J=k+1

Since all pairs in S can be scheduled in one step the SINR condition is satisfied for
pair k:

Pk S )
A Z d(u lvvk) d(uk Y xf

ieS\{k}
Putting these facts together

S ()
VERE O SI— 1 f ()

1 f () pi T
B xi = Z d(u;, vp)® = Z @Gxy)® — @x)*  xf

ieS\{k} ieS\{k}

This implies |S| < % + 1, which means there are at least W}’l = 2(n)
colors needed when using p; = f(d(s;, d;)).

On the other hand for these instances there is a power assignment, p; = V2i,
such that there is a coloring using a constant number of colors. This is caused by the
fact that for all instances described it holds that y; < x; and y;4+; > 2x;. Thus for
any link k the interference by the ones with higher index as well as the ones with
lower index forms a geometric series. This means a constant fraction of all links
may have the same color and therefore there is a coloring using a constant number
of colors.

In the second case, we assume that f is asymptotically bounded from above
by some value ¢ > 0 but does not converge to 0. In this case, there exists a value
b € (0, c] such that for every xo > 0 there exists a value x > xo with f(x) € [b, 2b].

Let x > 1 be a suitable constant. We choose n numbers xi, ..., x;, satisfying the
properties (a) f(x;) € [b,2b],for 1 <i < n,and (b) x; > xxj_1,for2 <i < n.
We set u; = —x;/2 and v; = x;/2. This instance corresponds to nested pairs on

the line, whereas the power assignment is similar to the uniform power assignment,
which already indicates the desired result.

To be more precise, let § C [n] be a set of indices of requests that can be sched-
uled together and let k = max S. For i € § it holds d(u;, vr) < xi/2. The SINR
condition for k states
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5 Z pi _ Pk JOw)
e d(ui, ve)* — d(ug, vp)® xg
This yields
1 (xx) i b 2%b
5 D ez X =m0y
k ies\ky W Uk ies\() k

Since 2b > f(xx), we have |S| < 1/8-2'% 4+ 1. It follows again that at least £2(n)
colors are needed to schedule these instances using p; = f(d(u;, v;)).

In contrast, if x is chosen sufficiently large than the square root power assignment
can schedule all these requests simultaneously.

Finally, in the third case, lim f(x) = 0, we again construct a sequence of
nested pairs analogously to second case but replacing condition (a) by the condition
f(xi) < f(xi—1). Analogously to the second case, the power assignment defined by
f allows only for scheduling a constant number of pairs simultaneously while the
square root assignment can schedule all pairs simultaneously. O

The last result shows that the dependence on A is necessary for nontrivial results.
The following theorem shows that there is a gap of at least 2 («/ log log A) between
oblivious and optimal power assignments.

Theorem 9 An instance of the interference scheduling problem exists such that
every schedule using an oblivious power function needs at least §2 («/log log A)
more steps than the optimal schedule.

Proof In this proof we construct an instance that can be scheduled in a constant
number of rounds by a non-oblivious power assignment, but every oblivious power
assignment needs at least £2 (v/Toglog A) steps. The instance consist of two nearly
identical requests sets, only the role of sender and receiver in each request is
exchanged. More formally, let x; = 1, y; = xiz, and x;11 = 2y; forevery i € [n].
Let the request set R consist of the requests (i;, v;) described by

0 ifi=1 "
up = ; and v = i
' {— > i—axj otherwise ' ; Y

and let R; consist of requests (u; V] ) with

i :

M ifi =1

u =M + Vi and V= ] .
' ]X_} "M - x;  otherwise

where M denotes a constant large enough that interferences between requests from
Ry and R, become negligible. Since for all i € [n] holds d(u;, v;) = d (u}, v}),
every oblivious power assignment uses the same power p; for request (u;, v;) and

A%
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Let T denote the schedule under an arbitrary, fixed oblivious power assignment.
In this schedule there must be a step where at least n/ T requests from R are sched-
uled. Let M C [n] denote their indices. Let i, j € M with i < j. The SINR
constraint states

Di - Pj
d(ui,vj))* = d(uj,vj)*

B

Using d(u;, v;) < xjandd(u;,v;) > y; :sz. we get

por = oL
- o
)Cj x]

/

which implies p; < p;/Bx%. With d (”/j’ Ui

,) < 2xj, the interference from
!/ / / / :
(uj, vj) on (u}, v}) is

. 2. :
_ =8 Pj . > B 51 - lfz :
d(u’.,vlf> (2xj) 2 d (uj, vy)

Thus, forevery i # j, i, j € M, the requests (u;, vl’) and (u/j, v;) cannot be sched-

uled in the same step. In fact, for every i € M, (u:, v,’) must be assigned to a differ-
ent schedule step. This yields T > |M| and it follows T > /n = \/£2(loglog A).
|

2.6 Summary and Open Problems

We have studied the interference scheduling problem with a focus on oblivious
power assignments, i.e., the power for a signal is defined as a function of the path
loss. Examples of such power assignments are the uniform, the linear, and the square
root power assignment. The major advantage of these power assignments is their
simplicity. In particular, they can be computed for every request without taking into
account other requests. In our study we investigated the approximation factors with
respect to the schedule length that can be achieved with oblivious power assign-
ments.

The linear power assignment is of special interest as it is energy efficient in the
sense that signals are sent at a power level that is only a constant factor larger
than the power level needed to drown out ambient noise. In Sect. 2.3, we pre-
sented lower and upper bounds for the linear power assignment from [5]. The key
to both the lower and upper bounds is the measure of interference /. On the one
hand, we have shown that £2(7) is a lower bound on the schedule length when
using linear power assignments. On the other hand, we have presented distributed
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scheduling algorithms for the linear power assignment computing schedules of
length O (1 logn) and O(I + log® n), respectively. For dense instances this gives a
constant factor approximation of the optimal schedule for linear power assignment.

Similar results have been achieved recently for the uniform power assignment.
In [6] it is presented an algorithm that achieves a constant factor approximation
guarantee with respect to the number of requests that can be scheduled simul-
taneously. A straight forward extension of this approach yields an approxima-
tion factor of O (logn) with respect to the schedule length for the uniform power
assignment.

How do these results compare to the schedule length for general power assign-
ments? — In Sect. 2.3, we show a lower bound of £2(//log Alogn) for schedules
with general power assignments, where A denotes the aspect ratio of the metric.
When restricting to the two-dimensional Euclidean space the bound improves to
§£2(I/log A). Thus, the best known scheduling algorithms for the linear and the
uniform power assignments achieve approximation ratios of order log Apolylogn
in comparison to the optimal power assignment.

In Sect. 2.4, we present an analysis showing that the square root power assign-
ment can achieve significantly better approximation ratio in terms of the aspect ratio
than the linear and the uniform power assignment: For directed communication
requests the approximation ratio of the square root power assignment is of order
O (log Apolylog n) and for bidirectional requests even of order only O (polylogn).
Both of these ratios compare the schedule length of the square root power assign-
ment with the schedule length for general power assignments. The result for directed
communication requests is from [9] and the result for bidirectional requests was first
shown in [5] and then improved in [9].

Finally, in Sect. 2.5 we study lower bounds for oblivious power assignments.
We show that the dependence on the aspect ratio cannot be avoided for directed
communication requests and present a lower bound of order £2 (/Ioglog A) on the
approximation ratio holding for every oblivious power assignment. In particular,
one cannot achieve approximation factors better than §2(n) for directed commu-
nication requests with unbounded aspect ratio when restricting to oblivious power
assignments.

We want to conclude with the major open problems about interference schedul-
ing in the physical model: Devise a polynomial time constant factor approximation
algorithm or approximation scheme for the interference scheduling problem with
general power assignments or show that such an approximation is not possible.
Present improved distributed algorithms beating the currently best known approxi-
mation ratios for oblivious power assignments.
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Chapter 3
Maintaining Connectivity in Sensor Networks
Using Directional Antennae

Evangelos Kranakis, Danny Krizanc, and Oscar Morales

Abstract Connectivity in wireless sensor networks may be established using either
omnidirectional or directional antennae. The former radiate power uniformly in all
directions while the latter emit greater power in a specified direction thus achieving
increased transmission range and encountering reduced interference from unwanted
sources. Regardless of the type of antenna being used the transmission cost of each
antenna is proportional to the coverage area of the antenna. It is of interest to design
efficient algorithms that minimize the overall transmission cost while at the same
time maintaining network connectivity. Consider a set S of n points in the plane
modeling sensors of an ad hoc network. Each sensor is equipped with a fixed num-
ber of directional antennae modeled as a circular sector with a given spread (or
angle) and range (or radius). Construct a network with the sensors as the nodes and
with directed edges (u, v) connecting sensors u and v if v lies within u’s sector.
We survey recent algorithms and study trade-offs on the maximum angle, sum of
angles, maximum range, and the number of antennae per sensor for the problem of
establishing strongly connected networks of sensors.

3.1 Introduction

Connectivity in wireless sensor networks is established using either omnidirectional
or directional antennae. The former transmit signals in all directions while the latter
within a limited predefined angle. Directional antennae can be more efficient and
transmit further in a given direction for the same amount of energy than omnidi-
rectional ones. This is due to the fact that to a first approximation the energy trans-
mission cost of an antenna is proportional to its coverage area. To be more specific,
the coverage area of an omnidirectional antenna with range r is generally modeled
by a circle of radius r and consumes energy proportional to 7 - 2. Bycontrast, a
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directional antennae with angular spread ¢ and range R is modeled as a circular
sector of angle ¢ and radius R and consumes energy proportional to ¢ - RZ/2. Thus
for a given energy cost E, an omnidirectional antenna can reach distance +/E /7,
while a directional antenna with angular spread ¢ can reach distance /2E/¢. We
think of the directional antennae as being on a “swivel” that can be oriented toward
a small target area whereas the omnidirectional antennae spread their signal in all
directions. Signals arriving at a sensor within the target area of multiple antennae
will interfere and degrade reception. Thus for reasons of both energy efficiency and
potentially reduced interference (as well as others, e.g., security), it is tempting to
replace omnidirectional with directional antennae.

Replacing omnidirectional with directional antennae: Given a set of sensors posi-
tioned in the plane with omnidirectional and/or directional antennae, a directed net-
work is formed as follows: a directed edge is placed from sensor u to sensor v if v
lies within the coverage area of u (as modeled by circles or circular sectors). Note
that if the radius of all omnidirectional antennae is the same then u is in the range
of v if and only if v is in the range of u, i.e., the edge is bidirectional and is usually
modeled be an undirected edge.

The main issue of concern when replacing omnidirectional with directional
antennae is that this may alter important characteristics such as the degree, diame-
ter, average path length of the resulting network. For example, the first network in
Figure 3.2 is strongly connected with diameter two, and more than one node can
potentially transmit at the same time without interference while in the omnidirec-
tional case (Fig. 3.1) the diameter is one but only one antennae can transmit at a
time without interference. In addition, and depending on the breadth and range of
the directional antennae, the original topology depicted in Fig. 3.1 can be obtained
only by using more than one directional antenna per sensor (see Fig. 3.3).

Replacing omnidirectional with directional antennae enables the sensors to reach
farther using the same energy consumption. As an example consider the graphs
depicted in Figs. 3.4 and 3.5. The line graph network in Fig. 3.4 with undirected
edges {1, 2}, {2, 3}, {3, 4} is replaced by a network of directional antennae depicted
in Fig. 3.5 and having (1, 2), (1, 3), (2, 3), (2,4), (3,4), 4,3),(4,2),(3,2),(3, 1)
as directed edges. By setting the angular spread of the directional antennae to be
small a significant savings in energy are possible.

Fig. 3.1 Four sensors using
directional antennae. For the
same set of points, the

resulting directed graphs
depend on the antennae
P ~_

orientations
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Fig. 3.2 Four sensors using
omnidirectional antennae.
They form an underlying
complete network on four
nodes

Fig. 3.3 Four sensors using
directional antennae. Using
three directional antennae per
sensor in order to form an
underlying complete network
on four nodes

Fig. 3.4 Line graph network
with undirected edges

{1, 2}, {2, 3}, {3, 4} resulting
when four sensors 1, 2, 3,4
use omnidirectional antennae

eﬁq
AR D

TSR
L]

LN/

Fig. 3.5 Directed network resulting from Fig. 3.4 when the four sensors replace omnidirectional
with directional antennae. Sensor number 3 is using two directional antennae while the rest only

one
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3.1.1 Antenna Orientation Problem

The above considerations lead to numerous questions concerning trade-offs between
various factors, such as connectivity, diameter, interference, when using directional
versus omnidirectional antennae in constructing sensor networks. Here we study
how to maintain network connectivity when antennae angles are being reduced
while at the same time the transmission range of the sensors is being kept as low
as possible. More formally this raises the following optimization problem.

Consider a set S of n points in the plane that can be identified with sensors having a range
r > 0. For a given angle 0 < ¢ < 27 and integer k, each sensor is allowed to use at most k
directional antennae each of angle at most ¢. Determine the minimum range r required so
that by appropriately rotating the antennae, a directed, strongly connected network on S is
formed.

Note that the range of a sensor must be at least the length of the longest edge of a
minimum spanning tree on the set S, since this is the smallest range required just to
attain connectivity.

3.1.2 Preliminaries and Notation

Consider a set S of n points in the plane and an integer k > 1. We give the following
definitions.

Definition 1 (S, ¢) is the minimum range of directed antennae of angular spread
at most ¢ so that if every sensor in S uses at most k such antennae (under an appro-
priate rotation) a strongly connected network on § results.

A special case is when ¢ = 0, for which we use the simpler notation r¢ (S) instead of
71 (S, 0). Clearly, different directed graphs can be produced depending on the range
and direction of the directional antennae. This gives rise to the following definition.

Definition 2 Let Dy (S) be the set of all strongly connected graphs on S with out-
degree at most k.

For any graph G € D (S), let r(G) be the maximum length of an edge in G. It is
easy to see that r¢(S) := mingep, (s) 7k (G). It is useful to relate r(S) to another
quantity which arises from a minimum spanning tree (MST) on S.

Definition 3 Let MST (S) denote the set of all MSTs on S.

Definition 4 For T € MST(S) let r(T) denote the length of longest edge of T and
let rysT(S) = min{r(T) : T € MST(S)}.

For a set S of size n, it is easily seen that rysT(S) can be computed in 0 (n?) time.
Further, for any angle ¢ > 0, it is clear that rvsT(S) < £ (S, @) since every strongly
connected, directed graph on S has an underlying spanning tree.
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3.1.3 Related Work

When each sensor has one antenna and the angle ¢ = 0 then our problem is easily
seen to be equivalent to finding a Hamiltonian cycle that minimizes the maximum
length of an edge. This is the well-known bottleneck traveling salesman problem.

3.1.3.1 Bottleneck Traveling Salesman Problem

Let 1,2, ...,n be aset of n labeled vertices with associated edge weights w(i, j),
for all i, j. The bottleneck traveling salesman problem (BTSP) asks to find a Hamil-
tonian cycle in the complete (weighted) graph on the n points which minimizes the
maximum weight of an edge, i.e.,

min{ max w(i, j) : H is a Hamiltonian cycle}
@.j))eHd

Parker and Rardin [31] study the case where the weights satisfy the triangle inequal-
ity and they give a two-approximation algorithm for this problem. (They also show
that no polynomial time (2 — &)-approximation algorithm is possible for metric
BTSP unless P = N P.) Clearly, their approximation result applies to our problem
for the special case of one antennae and ¢ = 0. The proof uses a result in [12]
that the square of every two-connected graph is Hamiltonian. (The square G®
of a graph G = (V, E) has the same node set V and edge set E® defined by
{u,v} € E® & 3w € V{u,w} € E & {w,v} € E).) In fact the latter paper
also gives an algorithm for constructing such a Hamiltonian cycle. A generalization
of this problem to finding strongly connected subgraphs with minimum maximum
edge weight is studied by Punnen [32].

3.1.3.2 MST and Out-Degrees of Nodes

It is easy to see that the degree structure of an MST on a point set is constrained
by proximity. If a vertex has many neighbors then some of them have to be too
close together and can thus be connected directly. This can be used to show that for
a given point set there is always a Euclidean minimum spanning tree of maximum
degree six. In turn, this can be improved further to provide an MST with max degree
five [28]. Since for large enough r every set of sensors in the plane has a Euclidean
spanning tree of degree at most five and maximum range r, it is easy to see that
given such minimum r and k > 5, r;(S) = r. A useful parameter is the maximum
degree of a spanning tree. This gives rise to the following definition.

Definition 5 For k > 2, a maximum degree k spanning tree (abbreviated Dk — ST')
is a spanning tree all of whose vertices have degree at most k.

Related literature concerns trade-offs between maximum degree and minimum
weight of the spanning tree. For example, [2] gives a quasi-polynomial time approx-
imation scheme for the minimum weight Euclidean D3 — ST'. Similarly, [21] and
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[6] obtain approximations for minimum weight D3 — ST and D4 — ST . In addition,
[13] shows that it is an NP-hard problem to decide for a given set S of n points in
the Euclidean plane and a given real parameter w, whether S admits a spanning tree
of maximum node degree four (i.e., D4 — ST) whose sum of edge lengths does not
exceed w. Related is also [22] which gives a simple algorithm to find a spanning
tree that simultaneously approximates a shortest path tree and a minimum spanning
tree. In particular, given the two trees and a y > 0, the algorithm returns a spanning
tree in which the distance between any node and the root is at most 1 + y+/2 times
the shortest path distance, and the total weight of the tree is at most 1 ++/2/y times
the weight of a minimum spanning tree.

Of interest here is the connection between strongly connected geometric spanners
with given out-degree on a point set and the maximum length edge of an MST.
Beyond the connection of BTSP mentioned above we know of no other related
literature on this specific question.

3.1.3.3 Enhancing Network Performance Using Directional Antennae

Directional antennae are known to enhance ad hoc network capacity and per-
formance and when replacing omnidirectional with directional antennae one can
reduce the total energy consumption of the network. A theoretical model to this
effect is presented in [16] showing that when n omnidirectional antennae are opti-
mally placed and assigned optimally chosen traffic patterns the transport capacity is
® (JW_M) where each antenna can transmit W bits per second over the common
channel(s). When both transmission and reception are directional, [39] proves an
/27 /JaB capacity gain as well as corresponding throughput improvement factors,
where « is the transmission angle and g is a parameter indicating that /2w is the
average proportion of the number of receivers inside the transmission zone that will
get interfered with.

Additional experimental studies confirm the importance of using directional
antennae in ad hoc networking for enhancing channel capacity and improving mul-
tiaccess control. For example, research in [33] considers several enhancements,
including “aggressive” and “conservative” channel access models for directional
antennae, link power control, and neighbor discovery and analyzes them via simu-
lation. [38] and [37] consider how independent communications between directional
antennae can occur in parallel and calculate interference-based capacity bounds for
a generic antenna model as well as a real-world antenna model and analyze how
these bounds are affected by important antenna parameters like gain and angle. The
authors of [3] propose a distributed receiver-oriented multiple access (ROMA) chan-
nel access scheduling protocol for ad hoc networks with directional antennae, each
of which can form multiple beams and commence several simultaneous communi-
cation sessions. Finally, [24] considers energy consumption thresholds in conjunc-
tion to k-connectivity in networks of sensors with omnidirectional and directional
antennae, while [23] studies how directional antennae affect overall coverage and
connectivity.
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A related problem that has been addressed in the literature is one that studies
connectivity requirements on undirected graphs that will guarantee highest edge
connectivity of its orientation, c.f. [29] and [14].

3.1.3.4 Other Applications

It is interesting to note that beyond reducing the energy consumption, directional
antennae can enhance security. Unlike omnidirectional antennae that spread their
signal in all directions over an angle 2, directional antennae can attain better secu-
rity because they direct their beam toward the target thus avoiding potential risks
along the transmission path. In particular, in a hostile environment a directional
antenna can decrease the radiation region within which nodes could receive the elec-
tromagnetic signals with high quality. For example, this has led [17] to the design of
several authentication protocols based on directional antennae. In [27] they employ
the average probability of detection to estimate the overall security benefit level
of directional transmission over the omnidirectional one. In [18] they examine the
possibility of key agreement using variable directional antennae. In [30] the use of
directional antennae and beam steering techniques in order to improve performance
of 802.11 links is investigated in the context of communication between a moving
vehicle and roadside access points.

3.1.4 Outline of the Presentation

The following is an outline of the main issues that will be addressed in this survey.
In Sect. 3.2 we discuss approximation algorithms to the main problem introduced
above. The constructions are mainly based on an appropriately defined MST of the
set of points. Section 3.2.1 focuses on the case of a single antenna per sensor while
Sect. 3.2.2 on k antennae per sensor, for a given 2 < k < 4. (Note that the case k > 5
is handled by using a degree five MST.) In Sect. 3.3 we discuss NP-completeness
results for the cases of one and two antennae. In Sect. 3.4 we investigate a variant
of the main problem whereby we want to minimize the sum of the angles of the
antennae given a bound on their radius. Unlike Sect. 3.2 where we have the flexi-
bility to select and adapt an MST on the given point set S, Sect. 3.5 considers the
case whereby the underlying network is given in advance as a planar spanner on the
set S and we study number of antennae and stretch factor trade-offs between the
original graph and the resulting planar spanner. In addition throughout the chapter
we propose several open problems and discuss related questions of interest.

3.2 Orienting the Sensors of a Point Set

In this section we consider several algorithms for orienting antennae so that the
resulting spanner is strongly connected. Moreover we look at trade-offs between
antenna range and breadth.
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3.2.1 Sensors with One Antenna

The first paper to address the problem of converting a connected (undirected) graph
resulting from omnidirectional sensors to a strongly connected graph of directional
sensors having only one directional antenna each was [5].

3.2.1.1 Sensors on the Line

The first scenario to be considered is for sensors on a line. Assume that each sen-
sor’s directional antenna has angle ¢. Further assume that ¢ > 7. The problem of
minimizing the range in this case can be seen to be equivalent to the same problem
for the omnidirectional case, simply by pointing the antennae so as to cover the
same nodes as those covered by the omnidirectional antenna as depicted in Fig. 3.6.
Clearly a range equal to the maximum distance between any pair of adjacent sensors
is necessary and sufficient.

When the angle ¢ of the antennae is less than r then a slightly more complicated
orientation of the antennae is required so as to achieve strong connectivity with
minimum range.

Theorem 1 ([5]) Consider a set of n > 2 points x;,i = 1,2, ...,n, sorted accord-
ing to their location on the line. For any w1 > ¢ > 0 and r > 0, there exists an
orientation of sectors of angle ¢ and radius r at the points so that the transmission
graph is strongly connected if and only if the distance between points i and i + 2 is
atmostr, foranyi =1,2,...,n—2.

Proof Assume d(x;, xj+2) > r, for some i < n — 2. Consider the antenna at x; .
There are two cases to consider. First, if the antenna at x;4 is directed to the left
then the portion of the graph to its left cannot be connected to the portion of the
graph to the right; second, if the antenna at x;, is directed to the right then the
portion of the graph to its right cannot be connected to the portion of the graph to
the left. In either case the graph becomes disconnected.

Conversely, assume d(x;, x;42) < r, for all i < n — 2. Consider the following
antenna orientation for an even number of sensors (see Fig. 3.7). (The odd case is
handled similarly.)

1. antennas x1, x3, x5, ... labeled with odd integers are oriented right and
2. antennas X3, X4, X¢, - . . labeled with even integers are oriented left.
¢ ] ¢ o ¢

X; X, X3 Xy X5 X4

Fig. 3.7 Antenna orientation for a set of sensors on a line when the angle ¢ <
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It is easy to see that the resulting orientation leads to a strongly connected graph.
This completes the proof of Theorem 1.

3.2.1.2 Sensors on the Plane

The case of sensors on the plane is more challenging. As was noted above the case
of ¢ = 0 is equivalent to the Euclidean BTSP and thus the minimum range can
be approximated to within a factor of 2. In [5] the authors present a polynomial
time algorithm for the case when the sector angle of the antennae is at least 87/5.
For smaller sector angles, they present algorithms that approximate the minimum
radius. We present the proof of this last result below.

Theorem 2 (Caragiannis et al. [S]) Given an angle ¢ withw < ¢ < 87 /5 and a
set S of points in the plane, there exists a polynomial time algorithm that computes
an orientation of sectors of angle ¢ and radius 2 sin (n - %) -11(S, @) so that the
transmission graph is strongly connected.

Proof Consider a set S of nodes on the Euclidean plane and let 7 be a minimum
spanning tree of S. Let r = rysT(S) be the longest edge of 7. We will use sectors
of angle ¢ and radius d(¢) = 2r sin (7 — %) and we will show how to orient them
so that the transmission graph induced is a strongly connected subgraph over S. The
theorem will then follow since r is a lower bound on r{ (S, ¢).

We first construct a matching M consisting of (mutually non-adjacent) edges of
T with the following additional property: any non-leaf node of T is adjacent to an
edge of M. This can be done as follows. Initially, M is empty. We root T at an
arbitrary node s. We pick an edge between s and one of its children and insert it in
M. Then, we visit the remaining nodes of 7 in a BFS (breadth first search) manner.
When visiting a node u, if u is either a leaf node or a non-leaf node such that the
edge between it and its parent is in M, we do nothing. Otherwise, we pick an edge
between u and one of its children and insert it to M.

We denote by A the leaves of T which are not adjacent to edges of M. We also
say that the endpoints of an edge in M form a couple. We use sectors of angle ¢
and radius d(¢) at each point and orient them as follows. At each node u € A, the
sector is oriented so that it induces the directed edge from u to its parent in 7 in the
corresponding transmission graph G. For each two points # and v forming a couple,
we orient the sector at u so that it contains all points p at distance d(¢) from u for
which the counterclockwise angle vip is in [0, ¢], see Fig. 3.8.

We first show that the transmission graph G defined in this way has the following
property, denoted by (P), and stated in the Claim below.

Claim (P) . For any two points # and v forming a couple, G contains the two oppo-
site directed edges between u and v, and, for each neighbor w of either u or vin T,
it contains a directed edge from either u or v to w.

Consider a point w corresponding to a neighbor of « in T (the argument for the
case where w is a neighbor of v is symmetric). Clearly, w is at distance |[uw| < r
from u. Also, note that since ¢ < 8w /5, we have that the radius of the sectors is
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Fig. 3.8 The orientation of
sectors at two nodes u, v
forming a couple, and a
neighbor w of u that is not
contained in the sector of u.
The dashed circles have
radius r and denote the range
in which the neighbors of u
and v lie

d(@) = 2rsin(m — %) = 2rsinZ > 2rsinZ = r. Hence, w is contained in the

sector of u if the counterclockwise angle vitw is at most ¢; in this case, the graph
G contains a directed edge from u to w. Now, assume that the angle vitw is x > ¢
(see Fig. 3.8). By the law of cosines in the triangle defined by points u, v, and w,
we have that

lvw| = \/|uw|2 + |uv|? = 2Juw||uv| cos x
<r«/2—2cosx

LoX
= 2rsin —

< 2rsin (7‘[ — f)
2

=d(p)

Since the counterclockwise angle viiw is at least 77, the counterclockwise angle uvw
is at most ¥ < @ and, hence, w is contained in the sector of v; in this case, the graph
G contains a directed edge from v to w. In order to complete the proof of property
(P), observe that since |uv| < r < d(¢) the point v is contained in the sector of u
(and vice versa).

Now, in order to complete the proof of the theorem, we will show that for any
two neighbors u and v in 7', there exist a directed path from u to v and a directed
path from v to u in G. Without loss of generality, assume that u is closer to the root s
of T than v. If the edge between u and v belongs to M (i.e., u and v form a couple),
property (P) guarantees that there exist two opposite directed edges between u and
v in the transmission graph G. Otherwise, let w; be the node with which u forms a
couple. Since v is a neighbor of u in T, there is either a directed edge from u to v
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in G or a directed edge from w; to v in G. Then, there is also a directed edge from
u to wy in G which means that there exists a directed path from u to v. If v is a leaf
(i.e., it belongs to A), then its sector is oriented so that it induces a directed edge to
its parent u. Otherwise, let w» be the node with which v forms a couple. Since u is
a neighbor of v in T, there is either a directed edge from v to u in G or a directed
edge from wy to u in G. Then, there is also a directed edge from v to w, in G which
means that there exists a directed path from v to u.

3.2.1.3 Further Questions and Open Problems

In Sect. 3.3 we present a lower bound from [5] that shows this problem is NP-hard
for angles smaller than 277 /3. This leaves the complexity of the problem open for
angles between 2 /3 and 87 /5. Related problems that deserve investigation include
the complexity of gossiping and broadcasting as well as other related communica-
tion tasks in this geometric setting.

3.2.2 Sensors with Multiple Antennae

We are interested in the problem of providing an algorithm for orienting the anten-
nae and ultimately for estimating the value of (S, ¢). Without loss of generality
antennae ranges will be normalized to the length of the longest edge in any MST,
i.e., rMsT(S) = 1. The main result concerns the case ¢ = 0 and was proven in [10]:

Theorem 3 (Dobrev et al. [10]) Consider a set S of n sensors in the plane, and
suppose each sensor has k, 1 < k <5, directional antennae. Then the antennae can
be oriented at each sensor so that the resulting spanning graph is strongly connected

and the range of each antenna is at most 2 - sin kﬂ? times the optimal. Moreover,

given an MST on the set of points the spanner can be constructed with additional
O(n) overhead.

The proof in [10] considers five cases depending on the number of antennae that can
be used by each sensor. As noted in the introduction, the case k = 1 was derived
in [31]. The case k = 5 follows easily from the fact that there is an MST with
maximum vertex degree five. This leaves the remaining three cases for k = 2, 3, 4.
Due to space limitations we will not give the complete proof here. Instead we will
discuss only the simplest case k = 4.

3.2.2.1 Preliminary Definitions

Before proceeding with presentation of the main results we introduce some notation
which is specific to the following proofs. D (u; r) is the open disk with radius 7. d
(+, -) denotes the usual Euclidean distance between two points. In addition, we define
the concept of Antenna-Tree (A-Tree, for short) which isolates the particular prop-
erties of an MST that we need in the course of the proof.
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Definition 6 An A-Tree is a tree T embedded in the plane satisfying the following
three rules:

1. Its maximum degree is five.

2. The minimum angle among nodes with a common parent is at least /3.

3. For any point u and any edge {u, v} of T, the open disk D(v; d(u, v)) does not
have a point w # v which is also a neighbor of # in T'.

It is well known and easy to prove that for any set of points there is an MST on
the set of points which satisfies Definition 6. Recall that we consider normalized
ranges (i.e., we assume 7 (7)) = 1).

Definition 7 For each real r > 0, we define the geometric rth power of a A-Tree T,
denoted by 7", as the graph obtained from T by adding all edges between vertices
of (Euclidean) distance at most r.

For simplicity, in the sequel we slightly abuse terminology and refer to the geometric
rth power as the rth power.

Definition 8 Let G be a graph. An orientation 6 of G is a digraph obtained from
G by orienting every edge of G in at least one direction.

As usual, we denote with (u, v) a directed edge from u to v, whereas {u, v} denotes
= —
an undirected edge between u and v. Let d 7 ( G , u) be the out-degree of # in G and
— —
AT (G) the maximum out-degree of a vertex in G .

3.2.2.2 Maximum Qut-Degree four

In this section we prove that there always exists a subgraph of 7"7/5) that can
be oriented in such a way that it is strongly connected and its maximum out-degree
is four. A precise statement of the theorem is as follows.

Theorem 4 (Dobrev et al. [10]) Let T be an A-Tree. Then there exists a spanning
: — —
subgraph G C T®S7/5 sych that G is strongly connected and AT (G) < 4.

Moreover, d*(é, u) < 1 foreachleafu of T and every edge of T incident to a leaf
is contained in G.

Proof We first introduce a definition that we will use in the course of the proof. We
say that two consecutive neighbors of a vertex are close if the smaller angle they
form with their common vertex is at most 257 /5. Observe that if v and w are close,
then |v, w| < 2sinm/5. In all the figures in this section an angular sign with a dot
depicts close neighbors. The proof is by induction on the diameter of the tree. First,
we do the base case. Let k be the diameter of 7. If k < 1, let G = T and the result
follows trivially. If & = 2, then T is an A-Tree which is a star with 2 < d < 5
leaves. Two cases can occur:

e d < 5.Let G = T and orient every edge in both directions. This results in a
strongly connected digraph which trivially satisfies the hypothesis of the theorem.
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Fig. 3.9 T is a tree with five )
leaves and diameter k = 2

e d =5.Letu be the center of 7. Since T 1is a star, two consecutive neighbors of u,
say, v and w, are close. Let G = T U {{v, w}} and orient edges of G as depicted
in Fig. 3.9.' It is easy to check that G satisfies the hypothesis of the theorem.

Next we continue with the inductive step. Let T’ be the tree obtained from T
by removing all leaves. Since removal of leaves does not violate the property of
being an A-Tree, T’ is also an A-Tree and has diameter less than the diameter of 7.

. —
Thus, by inductive hypothesis there exists G’ € T'?5"7/3) guch that G’ is strongly

connected, AT(G’) < 4. Moreover, d+(6, u) < 1 for each leaf u of T’ and every
edge of T’ incident to a leaf is contained in G’.

Let u be a leaf of T, ug be the neighbor of u in 7', and uy, .., u. be the ¢
neighbors of u in T\ T’ in clockwise order around u starting from ug. Two cases
can occur:

e c <3 Let G =G U{{u,uy},..,{u, uc}} and orient these ¢ edges in both
— . —

directions. G satisfies the hypothesis since G C T @sinn/S) AT(G) < 4,
d+(8, u) < 1 for each leaf u of T and every edge of T incident to a leaf is
contained in G.

e ¢ = 4. We consider two cases. In the first case suppose that two consecutive
neighbors of u in T \ T’ are close. Consider uy and uy| are close, where 1 <
k < 4.Define G = G'U{{u, u1}, {u, uz}, {u, us}, {u, ua}, {ug, ugs+1}} and orient
edges of G as depicted in Fig. 3.10. In the second case, either ug and u are close
or ug and u4 are close. Without loss of generality, let assume that ug and u| are
close. Thus, let G = {G’ \ {u, uo}} U {{u, u1}, {u, uz}, {u, us}, {u, us}, {ug, u}},
but now the orientation of G will depend on the orientation of {u, ug} in G’. Thus,

Fig. 3.10 Depicting the
inductive step when u has
four neighbors in 7'\ T and
uy and uy4 1 are close, where
k = 2. (The dotted curve is
used to separate the tree T’
from T')

ulT

!'In all figures boldface arrows represent the newly added edges.
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Fig. 3.11 Depicting the inductive step when u has four neighbors in 7"\ T, u¢ and u; are close
and (ug, u) is in the orientation of G’ (The dashed edge {ug, u} indicates that it does not exist in G
but exists in G” and the dotted curve is used to separate the tree 7/ from T')

T

Fig. 3.12 Depicting the inductive step when u has four neighbors in 7"\ T, ug and u are close
and (u, ug) is in the orientation of G’ (The dashed edge {ug, u} indicates that it does not exist in G
but exists in G” and the dotted curve is used to separate the tree 7/ from T')

N
if (uo, u) is in G’, then orient edges of G as depicted in Fig. 3.11. Otherwise if
—

(u, ug) is in G’, then orient edges of G as depicted in Fig. 3.12. 6) satisfies the
. — —

hypothesis since G € 7?07/ A+t(G) < 4,d (G, u) < 1 for each leaf u of

T and every edge of T incident to a leaf is contained in G.

This completes the proof of the theorem.

The above implies immediately the case k = 4 of Theorem 3. The remaining
cases of k = 3 and k = 2 are similar but more complex. The interested reader can
find details in [10].

3.2.2.3 Further Questions and Open Problems

There are several interesting open problems all related to the optimality of the range
2 sin (k”?) which was derived in Theorem 3. This value is obviously optimal for

k = 5 but the cases 1 < k < 4 remain open. Additional questions concern study-
ing the problem in d-dimensional Euclidean space, d > 3, and more generally
in normed spaces. The case d = 3 would also be of particular interest to sensor
networks.

3.3 Lower Bounds

In this section we discuss the only known lower bounds for the problem.
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3.3.1 One Antenna Per Sensor

When the sector angle is smaller than 277 /3, the authors of [5] show that the problem
of determining the minimum radius in order to achieve strong connectivity is NP-
hard.

Theorem 5 (Caragiannis et al. [S]) For any constant ¢ > 0, given ¢ such that
0<¢ <2n/3 —¢ r >0, and a set of points on the plane, determining whether
there exists an orientation of sectors of angle ¢ and radius r so that the transmission
graph is strongly connected is NP-complete.

A simple proof is by reduction from the well-known NP-hard problem for finding
Hamiltonian cycles in degree three planar graphs [15]. In particular, a weaker state-
ment for sector angles smaller than 7 /2 follows by the same reduction used in [19]
in order to prove that the Hamiltonian circuit problem in grid graphs is NP-complete.
Consider an instance of the problem consisting of points with integer coordinates on
the Euclidean plane (these can be thought of as the nodes of the grid proximity graph
between them). Then, if there exists an orientation of sector angles of radius 1 and
angle ¢ < m/2 at the nodes so that the corresponding transmission graph is strongly
connected, then this must also be a Hamiltonian circuit of the proximity graph. The
construction of [19] can be thought of as reducing the Hamiltonian circuit problem
on bipartite planar graphs of maximum degree three (which is proved in [19] to be
NP-complete) to an instance of the problem with a grid graph as a proximity graph
such that there exists a Hamiltonian circuit in the grid graph if and only if the origi-
nal graph has a Hamiltonian circuit. The proof of [5] uses a slightly more involved
reduction with different gadgets in order to show that the problem is NP-complete
for sector angles smaller than 277 /3.

3.3.2 Two Antennae Per Sensor

For two antennae the best known lower bound is from [10] and can be stated as
follows.

Theorem 6 (Dobrev et al. [10]) For k = 2 antennae, if the angular sum of the
antennae is less than o then it is NP-hard to approximate the optimal radius to
within a factor of x, where x and a are the solutions of equations x = 2sin(x) =
1+ 2cosRa).

Observe that by using the identity cos(2a) = 1 — 2sin?a above and by solving
the resulting quadratic equation with unknown sin @ we obtain numerical solutions
x ~ 1.30, 0 ~ 0.457x.

As before, the proof is by reduction from the well-known NP-hard problem for
finding Hamiltonian cycles in degree three planar graphs [15]. In particular, the
construction in [10] takes a degree three planar graph G = (V, E) and replaces each
vertex v € V by a vertex graph (meta-vertex) G, and each edge e € E of G by an
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. . -
/T =2sin a2
/ -

/2

—@

Fig. 3.13 Connecting meta-edges with meta-vertices. The dashed ovals show the places where
embedding is constrained

edge graph (meta-edge) G.. Figure 3.13 shows that how meta-edges are connected
with meta-vertices. Further details of the construction can be found in [10].

3.3.2.1 Further Questions and Open Problems

It is interesting to note that in addition to the question of improving the lower bounds
in Theorems 5 and 6 no lower bound or NP-completeness result is known for the
cases of three or four antennae.

3.4 Sum of Angles of Antennae

A variant of the main problem is considered in a subsequent paper [4]. As before
each sensor has fixed number of directional antennae and we are interested in
achieving strong connectivity while minimizing the sum (taken over all sensors)
of angles of the antennae under the assumption that the range is set at the length
of the longest edge in any MST (normalized to 1). The authors present trade-offs
between the antennae range and specified sums of antennae, given that we have k
directional antennae per sensor for 1 < k < 5. The following result is proven in [4].

Lemma 1 (Caragiannis et al. [4]) Assume that a node u has degree d and the
sensor at u is equipped with k antennae, where 1 < k < d, of range at least the
maximum edge length of an edge from u to its neighbors. Then 2(d — k) /d is
always sufficient and sometimes necessary bound on the sum of the angles of the
antennae at u so that there is an edge from u to all its neighbors in an MST.

Proof The result is trivially true for £ = d since we can satisfy the claim by direct-
ing a separate antenna of angle O to each node adjacent to u. So we can assume that
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k < d — 1. To prove the necessity of the claim take a point at the center of a circle
and with d adjacent neighbors forming a regular d-gon on the perimeter of the circle
of radius equal to the maximum edge length of the given spanning tree on S. Thus
each angle formed between two consecutive neighbors on the circle is exactly 27 /d.
It is easy to see that for this configuration a sum of 2(d — k)7 /d is always necessary.

To prove that sum 2(d — k)x/d is always sufficient we argue as follows. Con-
sider the point # which has d neighbors and consider the sum o of the largest &
angles formed by k + 1 consecutive points of the regular polygon on the perimeter
of the circle. We claim that o > 2km/d. Indeed, let the d consecutive angles be
o, @, ..., ¢qg—1. (see Fig. 3.14). Consider the d sums «; + i1 + ... + ¥jyr—1, for
i =0, ...,d — 1, where addition on the indices is modulo d. Observe, that

d—1
2km = Z((xi + it + .o+ Aigp—1) < do
i=0

It follows that the remaining angles sum to at most 27 — o < 27w — 2kn/d =
27 (d — k) /d. Now consider the k 4 1 consecutive points, say pi, p2, ..., Pk+1, such
that the sum o of the k consecutive angles formed is at least 2km/d. Use k — 1
antennae each of size 0 rad to cover each of the points p», ..., pk, respectively, and
an angle of size 27 (d — k)/d to cover the remaining n — k + 1 points. This proves
the lemma.

The next simple result is an immediate consequence of Lemma 1 and indicates
how antennae spreads affect the range in order to accomplish strong connectivity.

Definition 9 Let ¢, be a given non-negative value in [0, 27) such that the sum of
angles of k antennae at each sensor location is bounded by . Further, let ¢ o,
denote the minimum radius (or range) of directional antennae for a given k and ¢y
that achieves strong connectivity under some rotation of the antennae.

We can prove the following result.

2(5—k)m
5

Theorem 7 (Caragiannis et al. [4]) For any 1 < k < 5, if ¢ > then

Tk = 1.

Proof We prove the theorem by showing that if ¢ > 2(5—k)m /5 then the antennae
can be oriented in such a way that for every vertex u there is a directed edge from u
to all its neighbors.

Fig. 3.14 Example of a
vertex of degree d = 5 and
corresponding angles

ai, o, a3, a4, o5 listed in a
clockwise order
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Consider the case k = 2 of two antennae per sensor and take a vertex u of
degree d. We know from Lemma 1 that for k = 2 < d antennae, 2(d — 2)r/d is
always sufficient and sometimes necessary on the sum of the angles of the anten-
nae at u so that there is a directional antenna from u pointing to all its neighbors.
Observe that 2(d — 2)m/d < 6m/5 is always true. Now take an MST with max
degree five. Do a preorder traversal that comes back to the starting vertex (any
starting vertex will do). For any vertex u arrange the two antennae at u so that
there is always a directed edge from u to all its neighbors (if the degree of vertex
is 2 you need only one antenna at that vertex). It is now easy to show by following
the “underlying” preorder traversal on this tree that the resulting graph is strongly
connected.

Consider the case k = 3 of three antennae per sensor. First, assume the sum of
the three angles is at least 47/5. Consider an arbitrary vertex u of the MST. We
are interested in showing that for this angle there is always a link from u to all its
neighbors. If the degree of u is at most three the proof is easy. If the degree is four
then by Lemma 1, 2(4 — 3)7 /4 = 7 /2 is sufficient. Finally, if the degree of u is five
then again by Lemma 1 then 2(5 — 3)7r/5 = 4x/5 is sufficient. Thus, in all cases a
sum of 457 /5 is sufficient.

Consider the case k = 4 of four antennae per sensor. First, assume that the sum
of the four angles is at least 27 /5. Consider an arbitrary vertex, say u, of the MST.
If it has degree at most four then clearly four antennae each of angle O is sufficient.
If it has degree five then an angle between two adjacent neighbors of u, say ug, u1,
must be < 27 /5 (see left picture in Fig. 3.15). Therefore use the angle 25 /5 to cover
both of these sensors and the remaining three antennae (each of spread 0) to reach
from u the remaining three neighbors.

Finally, for the case k = 5 of five antennae per sensor the result follows immedi-
ately from the fact that the underlying MST has maximum degree five. This proves
the theorem.

In fact, the result of Theorem 3 can be used to provide better trade-offs on the
maximum antennae range and sum of angles. We mention without proof that as
consequence of Lemma 1 and Theorem 3 we can construct Table 3.1, which shows
trade-offs on the number, max range, max angle, and sum of angles of k antennae,

Fig. 3.15 Orienting antennae around u
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Table 3.1 Trade-offs on the number, max range, max angle, and sum of angles of k antennae being
used by a sensor

Number|Max range‘Max angle‘Sum of angles‘

1 2 0=>0 0
1 \/5 o> T
1 V2 |e=4n/3|  4n/3
1 2sin(w/5) | > 3m/2 3r/2
1 1 ¢ >8n/5 8m/5
2 NE) =0 0
2 V2 o le=27/3|  2x)3
2 2sin(w/5) | > 2m/3 b4
2 1 @ >4r/5 61/5
3 V2 =0 0
3 2sin(r/5)| ¢ > /2 /2
3 1 @ >2m/5 4 /5
4 V2 ®>0 0
4 1 @ >21/5 21 /5
5 1 ©0=>0 0

being used per sensor for the problem of converting networks of omnidirectional
sensors into strongly connected networks of sensors.

3.4.1 Further Questions and Open Problems

There are two versions of the antennae orientation problem that have been studied.
In the first, we are concerned with minimizing the max sensor angle. In the second,
discussed in this section, we looked at minimizing the sum of the angles. Aside from
the results outlined in Table 3.1, nothing better is known concerning the optimality
of the sum of the sensor angles for a given sensor range. Interesting open questions
for these problems arise when one has to “respect” a given underlying network of
sensors. One such problem is investigated in the next section.

3.5 Orienting Planar Spanners

All the constructions previously considered relied on orienting antennae of a set S
of sensors in the plane. Regardless of the construction, the underlying structure con-
necting the sensors was always an MST on S. However, there are instances where
an MST on the point set may not be available because of locality restrictions on the
sensors. This is, for example, the case when the spanner results from application
of a local planarizing algorithm on a unit disk graph (e.g., see [7, 26]). Thus, in
this section we consider the case whereby the underlying network is a given planar
spanner on the set S. In particular we have the following problem.

Let G(V, E, F) be a planar geometric graph with V as set of vertices, E as set of edges
and F as set of faces. We would like to orient edges in E so that the resulting digraph is
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strongly connected as well as study trade-offs between the number of directed edges and
stretch factor of the resulting graphs.

A trivial algorithm is to orient each edge in E in both directions. In this case, the
number of directed edges is 2| E| and the stretch factor is 1. Is it possible to orient
some edges in only one direction so that the resulting digraph is strongly connected
with bounded stretch factor? The answer is yes and an intuitive idea of our approach
is based on a c-coloring of faces in F, for some integer c¢. The idea of using face
coloring was used in [40] to construct directed cycles. Intuitively we give directions
to edges depending on the color of their incident faces.

3.5.1 Basic Construction

Theorem 8 (Kranakis et al. [25]) Let G(V, E, F) be a planar geometric graph
having no cut edges. Suppose G has a face c-coloring for some integer c. There
exists a strongly connected orientation G with at most

b =6 g 3.1
< C(C_1)>'| | (3.1)

directed edges, so that its stretch factor is ®(G) — 1, where ®@(G) is the largest
degree of a face of G.

Before giving the proof, we introduce some useful ideas and results that will be
required. Consider a planar geometric graph G(V, E, F) and a face c-coloring C of
G with colors {1, 2, ..., c}.

Definition 10 Let G be the orientation resulting from giving two opposite directions
to each edge in E.

Definition 11 For each directed edge (u, v), we define L,, as the face which is
incident to {u, v} on the left of (u, v), and similarly Ry, as the face which is incident
to {u, v} on the right of (u, v).

Observe that for given embedding of G, L,,, and R,,, are well defined. Since G has
no cut edges, L,, # R,,. This will be always assumed in the proofs below without
specifically recalling it again. We classify directed edges according to the colors of
their incident faces.

Definition 12 Let E; ;) be the set of directed edges (u, v) in G such that C(L,y) =
iand C(R,y) = J.

It is easy to see that each directed edge is exactly in one such set. Hence, the follow-
ing lemma is evident and can be given without proof.

Lemma 2 For any face c-coloring of a planar geometric graph G,
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C C
> D IEapl=2IE]

i=1j=1,j#i

Definition 13 For any of c(c — 1) ordered pairs of two different colors @ and b of
the coloring C, we define the digraph D(G; a, b) as follows: The vertex set of the
digraph D is V and the edge set of D is

U Eq. j

i€[1,c]\{b},jell,c]\{a}

Along with this definition, for i # b, j # a, and i # j, we say that E; ;) is in
D(G; a, b). Next consider the following characteristic function

1 if E¢ jyisin D(G;a,b), and
Xab(E.j) = {O otherlvffise.
We claim that every set E(; j) is in exactly ¢ — 3¢+ 3 different digraphs D(G; a, b)
for some a # b.

Lemma 3 For any face c-coloring of a planar geometric graph G,

c c
Z Z Xab(EG.j)) = ¢* = 3c+3.

a=1b=1,b#a

Proof Leti, j € [1,cl,i # j be fixed. For any two distinct colors a and b of the
c-coloring of G, x4»(E(,j)) = 1 only if eitheri = a or j = b, or i and j are
different from a and b. There are (¢ — 1) + (¢ — 2) + (¢ — 2)(c¢ — 3) such colorings.
The lemma follows by simple counting.

The following lemma gives a key property of the digraph D(G; a, b).

Lemma 4 Given a face c-coloring of a planar geometric graph G with no cut edges,
and the corresponding digraph D(G; a, b). Every face of D(G; a, b), which has
color a, constitutes a counterclockwise-directed cycle, and every face which has
color b constitutes a clockwise-directed cycle. All edges on such cycles are unidirec-
tional. Moreover, each edge of D(G; a, b) incident to faces having colors different
from either a or b is bidirectional.

Proof Let G be a planar geometric graph with a face c-coloring C with colors a, b,
and ¢ — 2 other colors. Consider D(G; a, b). The sets E(, ) are in D(G; a, b) for
each color x # a. Let f be a face and let {u, v} be an edge of f sothat L,, = f.Let
f’ be the other face incident to {u, v}; hence R,, = f’. Since G has no cut edges,
f # ', and, since C(f") # a, the directed edge (u, v) € |J,, E(,x) and hence
the edge (u, v) is in D(G; a, b). Since {u, v} was an arbitrary edge of f, f will
induce a counterclockwise cycle in D(G; a, b) (see Fig. 3.16). The fact that every
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Fig. 3.16 (u,v) isin

D(G;a,b)if C(Ly) =a

and therefore the edges in the

face L,, form a v
counterclockwise-directed

cyclein D(: G, a, b)

Fig. 3.17 A bidirectional

edge is in D(G; a, b) if its

incident faces have color v
different than a and b

face which has color b induces a clockwise cycle in D(G; a, b) is similar. Finally
consider an edge {u, v} such that C(L,,) # a, b and C(R,,) # a, b (see Fig. 3.17).
Hence (u, v) € E(4) whichis in D(G; a, b) and similarly (v, u) € E(4 ) whichis
also in D(Gj; a, b). This proves the lemma.
We are ready to prove Theorem 8.

Proof (Theorem 8) Let G be a planar geometric graph having no cut edges. Let C
be a face c-coloring of G with colors a, b and other ¢ — 2 colors. Suppose colors a
and b are such that the corresponding digraph D(G; a, b) has the minimum number
of directed edges. Consider D the average number of directed edges in all digraphs
arising from C. Thus,

= c(c — 1) Z ||D(G; a, b)||, where

||D(G;a,b)||=z Z Xab(E i) EG.j)]

i=1 j=1,j#i

By Lemma 2 and Lemma 3,
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c c c ¢
B:c(c—l—l)z Z Z Z Xa.b(Ei ) EG.jl

a=1b=1,b#a i=1 j=1,j#i

1 C C
=D YD (=3¢ +3)Eu)l
i=1 j=1,j#i
22 —3c+3)
B clc—1)

— (z_ﬂ).“m
clc—1)

Hence D(G; a, b) has at most the desired number of directed edges.

To prove the strong connectivity of D(G;a, b), consider any path, say
u = ug,ui,...,u, = v, in the graph G from u to v. We prove that there exists
a directed path from u to v in D(G; a, b). It is enough to prove that for all i there
is always a directed path from u; to u;4 for any edge {u;, u;+1} of the above path.
We distinguish several cases.

|E]

o Case 1. C(Lyu;,,) = a. Then (u;,u;r1) € Ew) where o = C(Ruiu,-ﬂ)-
Since E(q,4) is in D(G; a, b), the edge (u;, u;+1) is in D(G; a, b). Moreover,
the stretch factor of {u;, u;41} is one.

o Case 2. C(Ly;u;y,) = b. Hence, (u;, u;11) is not in D(G; a, b). However, by
Lemma 4, the face Ly;y;,, = Ru;,,u; constitutes a clockwise-directed cycle and
therefore, a directed path from u; to u;41. It is easy to see that the stretch factor
of {u;y,;,,} is not more than the size of the face Ly;,,;,, minus one, which is at
most @ (G) — 1.

o Case 3. C(Ly;u;,,) # a, b. Suppose C(Ly,;u;,,) = c. Three cases can occur.

i+

— C(Ry;u;,,) = a. Hence, (u;, u;11) is not in D(G; a, b). However, by Lemma
4, there exists a counterclockwise-directed cycle around face Ry, =
Ly, u;> and consequently a directed path from u; to u;11. The stretch factor
is at most the size of face Ry, , minus one, which is at most @ (G) — 1.

— C(Ry;u;,,) = b. By Lemma 4, there exists a clockwise-directed cycle around
face Ry;u;,,. This cycle contains (u;u;1), and in addition the stretch factor of
{uj, ujs+1}is one.

- C(Ryu;,,) = d # a,b,c. By construction, D(G; a, b) has both edges
(ui, ui+1) and (u;41, u;). Again, the stretch factor of {u;, u;11} is one.

This proves the theorem.
As indicated in Theorem 8 the number of directed edges in the strongly oriented

graph depends on the number ¢ of colors according to the formula (2 - %) | E|.

Thus, for specific values of ¢ we have the following table of values:

c 3[4] 5 [6] 7
2 — (4c — 6)/c(c — D|1]7/6]13/10]7/5[31/21
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Regarding the complexity of the algorithm, this depends on the number ¢ of
colors being used. For example, computing a four coloring can be done in O (n?)
[35]. Finding the digraph with minimum number of directed edges among the 12
possible digraphs can be done in linear time. Therefore, for ¢ = 4 it can be computed
in O(n?). For ¢ = 5 a five coloring can be found in linear time O (n). For the case
of geometric planar subgraphs of unit disk graphs and location aware nodes there
is a local seven coloring (see [9]). For more information on colorings the reader is
advised to look at [20].

3.5.1.1 Further Questions and Open Problems

Observe that it is required that the underlying geometric graph in Theorem 8 does
not have any cut edges. Although it is well known how to construct planar graphs
with no cut edges starting from a set of points (e.g., Delaunay triangulation) there
are no known constructions in the literature of “local” spanners from UDGs which
also guarantee planarity, network connectivity, and no cut edges at the same time.
Constructions of spanners obtained by deleting edges from the original graph can
be found in Cheriyan et al. [8] and Dong et al. [11] but the algorithms are not local
and the spanners not planar. Similarly, existing constructions for augmenting (i.e.,
adding edges) graphs into spanners with no cut edges (see Rappaport [34], Abel-
lanas et al. [1], Rutter et al. [36]) are not local algorithms and the resulting spanners
not planar.

3.6 Conclusion

We considered the problem of converting a planar (undirected) graph constructed
using omnidirectional antennae into a planar-directed graph constructed using direc-
tional antennae. In our approach we considered trade-offs on the number of anten-
nae, antennae angle, sum of angles of antennae, stretch factor, lower and upper
bounds on the feasibility of achieving connectivity. In addition to closing several
existing gaps between upper and lower bounds for the algorithms we proposed
there remain several open problems concerning topology control whose solution
can help to illuminate the relation between networks of omnidirectional and direc-
tional antennae. Also of interest is the question of minimizing the amount of energy
required to maintain connectivity given one or more directional antennae of a given
angular spread in replace of a single omnidirectional antennae.
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Chapter 4
Optimal Placement of Ad Hoc Devices Under
a VCG-Style Routing Protocol

Peter Widmayer, Luzi Anderegg, Stephan Eidenbenz, and Leon Peeters

Abstract Motivated by a routing protocol with VCG-style payments, we investigate
the combinatorial problem of placing new devices in an ad hoc network such that
the resulting shortest path transmission costs, defined as sums of squared Euclidean
distances, are minimum. For the cases of only one new device and of one communi-
cation request with multiple devices with identical transmission ranges, we provide
polynomial-time algorithms. On the negative side, we show that even for a single
communication request, placing multiple new devices with different transmission
ranges is NP-hard. For identical transmission ranges, the placement of multiple new
devices is NP-hard under multiple communication requests.

4.1 Introduction

Wireless ad hoc networks promise the functionality of classical networks, without
the burden of having to construct and install a fixed network infrastructure. Each
wireless device in an ad hoc network has a restricted transmission range, and com-
munication between two devices typically takes place in a multi-hop fashion along
intermediate devices. It is far from clear, however, if and why an intermediate device
would be willing to sacrifice its own battery power and bandwidth to forward data
packets destined for other devices.

Recently, several papers have addressed the issues caused by selfish devices in
wireless ad hoc networks. In particular, various routing protocols have been pro-
posed [3, 10] that issue payments to the intermediate wireless devices, so as to
compensate them for their energy costs. This compensation follows the marginal
contribution principle by Vickrey, Clarke, and Groves (VCG), the key idea of the
issued VCG payments being to reward a device for the gain in overall benefit that its
participation causes (a good overview of VCG mechanisms is provided in [19]).

The VCG nature of the payments guarantees that devices will truthfully report
their distances to other devices. In particular, the profit a device makes from the
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VCG payments depends on its position in the network. This motivates the main
question studied in this chapter: Where should a device position itself in the net-
work so as to maximize its profit from the VCG payments? Although inspired by a
game-theoretic setting, this is a purely combinatorial question that we study in the
more general setting of several devices to be positioned for several communication
requests, under a transmission cost model that is quadratic in Euclidean distance.

4.1.1 Model and Notation

More formally, we model the above setting as a directed graph G = (V, E), with the
vertex set V = {1, ..., n} representing the set of incumbent wireless devices. Each
vertex is embedded in the plane, and its coordinates are specified by a placement
function p : V — R?. We base our cost function on the Euclidean distance measure,
with |uv| denoting the distance between two devices u and v, and also writing |xx’|
for the Euclidean distance between two points x, x” in the plane. We assume that the
distance between any two device positions can be computed in constant time. The
transmission ranges of the devices are modeled by a transmission range function
r:V — R,, specifying the maximal distance r(#) from device u at which another
device can still receive a signal from u via direct communication.

The edge set E of size m contains a directed edge (u, v) whenever device v lies
within the transmission range of device u, that is, if and only if |[uv| < r(u). The cost
c(u, v) of a directed edge (u, v) reflects the energy requirement for transmitting a
unit size data packet along the edge. Following the most common theoretical models
of power attenuation, the cost is taken proportional to the squared Euclidean distance
as c(u,v) = y|uv|2, with y some constant; powers other than 2 of the Euclidean
distance are easily handled along the same lines. For convenience, we set the cost
of all non-edges (u, v) € E to c(u, v) = oo.

The network needs to accommodate a number of communication requests
between devices, which we model by a commodity set K = {(s1, #1), ..., (Sk, %)},
with s; and #; being the ith source device and destination device, respectively.
Each communication request is for a single unit size packet, and no two com-
modities share both the source and destination device. Hence, k can be as large as
n x (n — 1). If there is only one commodity, then we denote the source by s and the
destination by z. We refer to a tuple of the form (V, E, K, p, r, ¢) as a transmission
graph T, where E is a function of p and r and c is a function of p and y.

The cost of a path P = (v, ...,v;) is c(P) = l.];ll c(vi, vi41), as usual. By
S Pr(s, t) we denote a shortest directed path in the transmission graph 7' from s to ¢
with respect to the edge costs c, i.e., a path P from s to t for which ¢(P) is smallest.
Further, SP; " (s, t) denotes the length of a shortest s — 7-path not using the vertex
u,and S P Y(s, 1) the length of a shortest s — 7-path not using any vertex in the set
of vertices U C V.By ¢(T) = ZieK c(SPr(s;, t;)) we refer to the total path costs
over all commodities. We will assume that every commodity in K is connected by
a path of finite cost.

For finding a shortest path from a source vertex s to a destination vertex ¢ in a
transmission graph 7T, the following incentive-compatible ad hoc VCG protocol has
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been proposed [3]. First, the protocol basically asks the vertices for their positions
and mutual distances during a flooding broadcast phase. Using this information, the
protocol computes the edge costs c(u, v) and a shortest path S Pr (s, t). Finally, it
pays each vertex u € SPr(s, ) an amount ¢ (SP;”(S, t)) —c(SPr(s,t))+c(u,v),
where (u, v) is the outgoing edge of u in SPr (s, t). Because of the VCG nature
of the payments, vertices have no incentive to lie, and hence the computed c(u, v)
can be assumed to equal the true transmission costs. Thus, a vertex u gains a profit
of ¢ (SP;"(s, 1)) — c(SPr(s, 1)). This principle extends to the case where a selfish
agent controls a set of devices U and the mechanism knows about this fact and gains

aprofitof ¢ (P (s,1)) = e(SPr(s, 1).

4.1.2 The Device Placement Problem

Inspired by the ad hoc VCG protocol, this chapter takes the perspective of a profit
maximizing selfish agent that enters an existing transmission graph 7 with a set
AV ={n+1,...,n+ An} of An new devices, each with a maximal transmission
range r(v), v € AV. Assuming that the communication requests for the near future
are known, the agent’s goal is to determine positions for its An devices such that
the profit from the resulting VCG payments is maximum. Denoting by 7" the new
transmission graph including the new devices AV at their chosen positions, the
objective function is defined as

k
maximize Z (c(SPr(si, ;) —c(SPri(si, ;) = c(T) — c(T") 4.1)

i=1

Since the first term in (4.1) is independent of the positions of the devices in AV, the
problem is equivalent to

minimize ¢(T”) 4.2)
More formally, the device placement problem is stated as follows:

Problem: Device Placement.

Instance: An instance I = (T, An, r’) consists of a transmission graph T =
(V,E,K, p,r,c), apositive integer An, and a maximal transmission range
r’(v) for each additional device v € AV.

Question: Find a placement for the An additional devices such that the differ-
ence ¢(T) — ¢(T") is maximum, where T’ is the transmission graph after the
placement of the additional devices.

Thus, besides the game-theoretic motivation, the resulting device placement
problem can also be defined as an optimization problem without any game-theoretic
flavor: place An additional devices such that the shortest paths in the resulting
transmission graph 7’ are of minimum length.
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We investigate the algorithmic complexity of the device placement problem for
An = 1 as well as for general An and for k = 1 communication request as well
as for general k. Depending on the form of the maximal transmission ranges of the
additional devices, we study two problem variants: with identical new devices that
each have the same transmission range r(n + 1) = r(n+2) = --- = r(n+ An) and
with individual new devices, each having their own transmission range r(v), v €
AV. Clearly, the two problem variants do not differ for a single additional device.
Hence, we simply refer to this case as the single device placement problem.

We provide a polynomial-time algorithm for the problem of placing An new
devices with identical transmission ranges under a single communication request.
To arrive at this result, we first study the case with a single communication request
and a single new device, analyze its geometric structure, and propose geometric
objects that capture this structure. We further present a polynomial-time algorithm
for optimally placing a single new device under £ communication requests.

Furthermore, we show that if the wireless devices have individual, potentially
different transmission ranges, the placement problem is NP-hard already for a sin-
gle communication request. The problem of placing An new wireless devices with
identical transmission ranges for a number k of communication requests is NP-hard,
where An and k are part of the input.

4.1.3 Related Work

Network upgrade problems where an existing network has to be extended such that
the resulting network exhibits certain properties are classical optimization problems.
Several variants of these problems have been considered, and the work closest to
ours, although still quite different, is the thesis by Krumke [18]. Given a graph and a
function specifying the cost of shortening an edge, he investigated how to determine
an optimal strategy to minimize the total weight of a minimum spanning tree within
a budget restriction.

Our approach introduces concepts and methods from computational geometry
into the multi-hop wireless networking domain. A similar combination of tech-
niques has been applied to show hardness results for scheduling on the medium
access control layer in an ad hoc network setting [13, 14].

The idea of our approach in this chapter is in a similar vein to the work on
network creation games in [11]. The main goal there is to explain the structure
of networks constructed by independent selfish agents from a game-theoretic point
of view. Different authors [2, 5-7, 15, 20] continued this line of study in related
network creation models, including a geometric model [16] similar in spirit to ours.

4.2 Placing Multiple Identical Devices for a Single Commodity

This section studies the basic geometric structure of the identical device placement
problem for a single commodity. We first characterize the optimal position of one
additional device. Next, we use that characterization to construct an algorithm for
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optimally placing an additional device and extend that algorithm to compute the
optimal positions of multiple identical devices.

4.2.1 The Optimal Position of a Single Additional Device

Suppose the transmission graph consists of only two devices u and v that wish to
communicate, and we are interested in the best position for an additional device v'.
Let the impact F,, (v") of the additional device v’ be the difference between the cost
of the direct communication from u to v and the cost of the communication from u to
v via the additional device v. Thatis, F,, (v') = c(u, v) — (c(u, V') +c(V’, v)). Note
that the impact may be negative. Figure 4.1 illustrates the following observation
relating the impact F,, (v') to the position of v'.

Observation 1 The impact of an additional device v' between devices u and v is
equal 1o Fyy (V') = c(u,v)/2 — 2y - [V, Myy|?, where My, is the middle point of
the line segment from u to v.

Observation 1 implies that device positions with the same impact lie on a circle
with center M,,,,, with the maximum impact achieved at M,,,,. From there the impact
decreases quadratically in each direction, and it is equal to zero for positions on a
circle with center M,,,, and radius |uv|/2.

Next, we include a single source—destination pair (s, ¢) into the impact function.
To that end, we define the impact F,! (v') of an additional device v’ on a device
pair (u, v) with respect to the single source—destination pair (s, ¢) as the difference
between the shortest s — r-path length without v’ and with v” and (u, v'), (v, v) as
a mandatory partial path.

Observation 2 The impact of an additional device V' for a device pair (u, v) and a
source—destination pair (s, t) is

Fu(v) =0

/\

=29 M(u,v)?

Fig. 4.1 Points with same impact F,,,(v") are on circles around M (u, v) (left), and the correspond-
ing graph of F,, (v') in R?
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F3b (') = c(SPr(s, 1) —c(SPr(s, u) =2y - [V, Myy|* = c(u, v) /2= c(SPr (v, 1))

Proof Fu,(v") = c(SPr(s, 1)) —[c(SPr (s, u))+cu, v')+c@', v)+c(SPr(v, 1)],
so the observation follows by using Observation 1. O

Note that the impact is defined for every pair of devices u, v € V, and that it
can be negative. An additional device induces a shortest path along (u, v’, v) if its
impact is positive. The impact is again equal for all positions with the same distance
to M,,, and the maximum impact is achieved at position M,,. Observe that the
circle with positions of zero impact does not necessarily go through the positions of
devices u and v. Indeed, if # and v are not on a shortest path before inserting the
additional device, then the circle with positions of zero impact has a smaller radius
than |M,,,, u|.

Some positions with positive impact may be unreachable and hence useless due
to small maximal transmission ranges of both the additional device and the exist-
ing devices. Thus, we define the profit region PRS! as the set of positions for an

uv

additional device v where F3I(v’) is positive, u can reach v’, and v’ can reach v,
given the maximal transmission ranges. Geometrically, a profit region PR¥! is the
intersection of three disks: the disk around M,,, where F,f,ﬁ(v’ ) > 0, the disk with
center u and radius r (1), and the disk with center v and radius r (v’) (see Fig. 4.2 for
three possible shapes of such an intersection). The boundary of a shape consists of
at most four circle segments. We define G/ () to be the function F! (-) restricted to
the corresponding profit region. That is, G5/ (v') is equal to F})! (v') for all positions
of v" inside PR, and —oo otherwise.

Assuming that the profit region PR’ is not empty and that v’ is placed between
u and v, the position inside P R} with minimal distance to the point M,,, is the best
position for v" because it maximizes G¥ (v"). If the maximal transmission ranges
of u and v’ are large enough, then this is the same as M, itself. If the maximal
transmission range of v’ or u is too small, then the best position conceptually moves
on the line segment between u and v from M, toward device u respectively v until
it enters the profit region. Such a best position is denoted by p*(u, v, (s, 1)), and
it can be computed in constant time given the distance between u and v and the

maximal transmission ranges (1) and r (v').

p Fi() >0 \u‘ =r(u)
| =) T Fi()>0

1 N ()=

J/; (’R // 2 :
/ \ \ / \
ul | v u R4
1 B O 4
\ %7 / R /

\ j R 7

X 7 P s

S & PR

Il =r0) Jl=r() . Ll =r()

Fig. 4.2 Profit region PR (u, v, (s, t)) building an asymmetric lens, a circle, and a shape bounded
by four arcs
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4.2.2 Multiple Identical Devices

The fact that one additional device reduces the cost between exactly one device
pair enables us to state the following geometric formulation for placing a single
additional device for a single commodity:

max max GJ (V') 4.3)
p()eR2 u,veV

Below, we use this formulation to derive an algorithm for placing multiple identical
devices for a single commodity. As a first step, however, we note that Observation 2
and problem formulation (4.2) together induce an algorithm for the simpler problem
of optimally placing a single device for a single commodity.

To that end, we define the following expanded 2-layer graph to encode the
restriction that only one additional device is available. The graph has two layers,
labeled O and 1, each containing a copy of the transmission graph. We add an edge
from each vertex (u, 0) on layer O to each vertex (v, 1) on layer 1, for u # v. The
cost of such an edge is equal to c(u, p*) +c(p*, v), the transmission cost between u
and v via an additional device at position p*(u, v, (s, t)). For simplicity, we exclude
edges with infinite cost. In this graph, we then search a shortest path from vertex
(s, 0) to vertex (¢, 0) and another one from (s, 0) to vertex (¢, 1). By construction,
the minimum of these two paths corresponds to optimally placing the additional
device.

The above approach can be extended as follows to optimally place An iden-
tical additional devices, instead of only one. In principle, the best positions for
h < An additional devices between a fixed pair (u, v) of devices are to distribute the
additional devices in equal distances on the segment connecting u and v. However,
limited maximal transmission ranges of device u or of the additional devices may
make such equal distances impossible. In such a case, the additional devices are
distributed as evenly as possible on the feasible part of the segment connecting u
and v. Based on this insight, we construct a (An + 1)-layer graph H = (Vy, Ep)
with a copy of the transmission graph on each layer. For each layer 7 < An and
each “higher” layer 4’ > h, we add an edge from each vertex (u, 1) to each vertex
(v, 1), for u # v, the cost of which is equal to the transmission cost from u to v via
(k' — h) optimally placed additional devices between u and v, as discussed before.
Edges with infinite cost are again excluded for simplicity.

Theorem 1 The multiple identical device placement problem for a single commodity
can be solved in time O((An)*n?).

Proof We use the (An + 1)-layer graph H described above, compute a shortest path
between (s, 0) and (¢, h) for each h,0 < h < An, and output a path with length
ming<p<an ¢(SP((s,0), (¢, h))). Since the cost of each edge ((u, h), (v, ")) € Eg
correctly reflects the cost of a subpath from u to v containing exactly (k" — h) opti-
mally placed additional devices between u and v, the correctness of the algorithm
follows. The construction of H needs time 0((An)2n2), as there are that many
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potential edges in the graph. All shortest paths can be found in time O ((An)*n?)
using Dijkstra’s algorithm to find a shortest path tree rooted at (s, 0). |

4.3 Single Device Placement for Multiple Commodities

With multiple commodities (k > 1), the optimal position for a single additional
device may be different from the optimal point p*(u, v, (s;, t;)) between some exist-
ing devices # and v and a specific commodity i. Rather, the best position could be
a position where connections between several source—destination pairs use the new
device. Unfortunately, the ideas from the previous section do not easily extend to
a polynomial-time algorithm for the single device and multiple commodities case.
Therefore, we first present a different algorithm for the single device and single
commodity case, which has worse running time than the algorithm above, but is
extendable to the single device and multiple commodities case.

4.3.1 Single Maximization Diagram Approach

An alternative approach to solve the single device and single commodity case is to
directly use the geometric formulation in (4.3). There, the term maxy yev G;’v(-)
defines exactly the upper envelope of the impact functions G3/ (-),u, v € V, that
is, the point-wise maximum of the curves G3/, (-). The maximization diagram M of
the impact functions G3/ () divides the plane into maximal connected cells, such
that within one cell the same function G3/,(-) attains the upper envelope defining
maximum (see [1] for a detailed description of maximization diagrams). Figure 4.3
shows the upper envelope of two impact functions and the corresponding maxi-
mization diagram. Thus, a cell in M has a characterizing device pair, and for each
point in the cell, that device pair yields the maximum impact. Inside a given cell,
the optimal position for a new device is defined by the maximum of the concave
function G3/,(-) for the characterizing device pair (u, v) and is hence easy to com-

Fig. 4.3 Upper envelope of the impact functions for two device pairs and the corresponding max-
imization diagram
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pute. For a polynomially bounded number of cells, this approach gives rise to a
polynomial-time algorithm.

Figure 4.3 illustrates that an edge in M arises either from the intersection of two
impact functions G3/,(-) or from a domain boundary of an impact function. These
domain boundaries are circle segments, and the following observation states that an
intersection yields a line segment. Thus, the edges of any maximization diagram cell
are either line or circle segments.

Jand G

Observation 3 The intersection of two impact functions G yisa

line.

ulvl( MZUZ(

Proof Consider the impact functions for device pairs (u1, vi) and (u3, v2) and
an additional device v'. Both impact functions G/, (v") are of the form H; — 2 -

vV, My, |2, where the constant H; depends on the positions of the devices, for
i=1,21Ifweset Gy, () = G/, (), then the set of points fulfilling the equation
constitutes a line. a

Lemma 1 Given a two-dimensional maximization diagram cell c, represented by a
list of its n. incident edges with a characterizing pair (u, v), the optimal position
inside ¢ with respect to G () can be found in time O (n.).

Proof Inside c, the profit of any position is equal to the concave impact function
G?',(-). Hence, the maximum inside c is either attained at the single point where the
gradient is equal to zero, if this point lies inside ¢, or attained somewhere on the
boundary of c. For the function G5/, (+), the gradient is zero at position M,,,, and if
this position is inside ¢, we are done. Otherwise, we go along the boundary edges
of ¢, where, for a single edge, the maximum is attained at the position with smallest

distance to M.

Algorithm 1 MaxDiagram(s, t)

Output: Optimal position for one additional device for one commodity (s, ).
1: for all device pairs (u, v) do
2:  compute G/ (-)

3: end for

4

5

: compute maximization diagram M of Uy , G¥, (-)
: compute the global optimum over all 2-dimensional max. diagram cells ¢ € M

Testing whether M, is inside ¢ can be done in time linear in n, by comparing the
position to each edge. The maximum computation for all n. edges needs linear time
as well, since the position on a line segment or circle segment edge with smallest
distance to M,,,, can be determined in constant time. O

Lemma 2 The single device placement problem for a single commodity can be
solved in time O (n**%).

Proof We use Algorithm MaxDiagram that extends the above approach by consid-
ering all maximization diagram cells. First, we compute the single source shortest
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path tree from s and the single destination shortest path tree to ¢. This can be done
in time O(nlogn + m). The for-loop over all device pairs needs time 0(n?), and
within one iteration we evaluate G%, for a device pair (u, v). As a single evaluation
can be executed in constant time using the shortest path trees, this step runs in time
0(n?).

It was shown in [1] that the maximization diagram of £ partially defined functions
in R3 can be computed in time 0(62“/), for any ¢’ > 0. Thus, the maximization
diagram M of the O (n?) functions G*!,(-) can be computed in time O (n**%), and
the combinatorial complexity of M is O(n**¢) as well. Using Lemma 1 and the
fact that each edge is incident to at most two cells, computing the maximum over
all two-dimensional cells in M takes time O (n**¢). Altogether, the running time is
0 (n*te). O

4.3.2 Multiple Maximization Diagrams Approach

Next, we extend the above approach to the single device placement problem for
multiple commodities, by means of the following formulation:

k

max max G35 (v') 4.4)
p(U/)ERZ ; u,veV uv

We first compute the maximization diagram M, for each commodity i € K. Now,
each point in the plane is part of one cell in each M;, and that cell determines the
characterizing pair for the corresponding commodity i (if it exists). We use this fact
to determine the regions in which each point has the same characterizing pair for
each single commodity. That is, we intersect the cell partitions of all maximization
diagrams, giving rise to new (smaller) cells. The result can be visualized as the new,
fine-grained partition that arises from superimposing transparent slides containing
the more coarse-grained maximization diagram cells. More precisely, all the points
in a new cell come, for each maximization diagram, from a single cell, and the new
cell is a maximal connected region for which this holds. This construct is known as
the overlay O of the cell sets My, ..., My (see chapter 2 in [8] for details on its

Algorithm 2 MaxDiagramOverlay(K)

Output: Optimal position for one additional device for the commodity set K.
1: for all commodities i € K do
2 for all device pairs (u, v) do
3 compute Gy (+)
4 end for
5: compute maximization diagram M; of UM,L,G‘,Y,"L’,i ()
6
7
8

: end for
: compute O = overlay(/\/ll, cey Mk)
: compute the global optimum over all 2-dimensional overlay cells ¢ € O
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computation). Then, for every single commodity, the characterizing pair is the same
for every point in an overlay cell. Lemma 3 states the complexity of computing the
optimal position inside a single overlay cell and Theorem 2 the resulting complexity
of the above approach.

Lemma 3 Given a two-dimensional overlay cell ¢ with a (possibly empty) charac-
terizing pair (u;, v;) for each commodity i € K, and represented by a list of its n.
incident edges, the optimal position inside c¢ with respect to the profit ) _; Gl
can be found in time O (n.).

Proof The position for which ) ; G3ili () attains the maximum is the optimal posi-
tion inside c. As the functions G/ (-) are concave inside ¢ for all characterizing
pairs, and for all commodities i € K, the sum over these functions is concave
as well. As in Lemma 1, the maximum of the resulting concave function is either
attained at the single point where the gradient is zero or on the boundary of c.
Here, the single point where the gradient is zero evaluates to the center of mass
of the positions M, ,,. The remainder of the proof is the same as in the proof of

Lemma 1. O

Theorem 2 The single device placement problem for k commodities can be solved
in time O (k*n32¢ log (kn**¢)).

Proof We use Algorithm MaxDiagramOverlay that summarizes the above
described approach. The nested for-loop needs time O (kn**¢) as we compute a
maximization diagram for each of k commodities. The overlay of two sets of pla-
nar geometric objects with combinatorial complexities £ and £” can be computed
in time O(£log (¢’ + £”)) where £ is the combinatorial complexity of the result-
ing overlay (see chapter 2 in [8]). As the combinatorial complexity of the over-
lay is O ((kn*T#)?), it can be constructed in time O (k*n3t2¢ log (kn**¢)). Using
Lemma 3 and the fact that each edge is incident to at most two cells, the running
time for computing the global optimum over all overlay cells is in O (k’n3+9).
Thus, the computation of the overlay dominates the overall running time of the
algorithm. a

4.4 Placing Multiple Individual Devices for a Single Commodity

For individual devices that each have a specific maximal transmission range, we
have to specify exactly which additional device is placed at which position. The
decision version of the corresponding problem is defined as follows.

Problem: Individual Device Placement.

Instance: An instance I=(T, An, r, Z') consists of a transmission graph T =
(V,E, K, p,r, c),apositive integer An, an individual maximal transmission
range r(v) for each additional device v € AV, and a positive number Z'.
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Question: Is there a placement for the An additional devices such that ¢(T") <
Z', where T' is the transmission graph after the placement of the additional
devices?

We now prove that this problem is NP-hard already for a single commodity.
Theorem 3 Individual Device Placement is NP-hard for a single commodity.

Proof The proof is by a reduction from Partition (SP12 in [12]). In Partition, we
are given aset A = {ay, ..., aa|} of positive integer numbers. The goal is to decide
whether there is a subset A’ € Asuchthat ), 4 a; = B/2, where B =3, , a;.
We construct a device placement instance consisting of three devices {1, ..., 3},
placed equidistant on a line, with device 1 at position (0), device 2 at position
(B/2 4+ 1), and device 3 at position (B + 2). The maximal transmission ranges
of these devices are set to 1. Further, the device pair (1, 3) constitutes the single
commodity. The number An of additional devices is set to |A[, and the maximal
transmission range r(u) is set to ay_y,, forv = n 4+ 1,...,n + An. Finally, we
set Z' to 2 + Zaie A aiz. A solution of the partition problem immediately gives
a solution for the device placement problem: we place the devices with index in
A’ one after another on the line segment between devices 1 and 2, starting at
distance 1 from device 1, such that their maximal transmission ranges are just
exactly large enough to reach the next device. The remaining devices in A \ A" are
placed between devices 2 and 3 accordingly. The total cost of the path now equals
14+Y cnaf +1+ DajeAn as, which is B + 2. If the partition problem has no
solution, then no placement of the devices connects devices 1 and 2 and devices 2
and 3, and hence the total shortest path cost of infinity cannot be avoided. a

4.5 Placing Multiple Devices for Multiple Commodities

We show that the problem of placing multiple new devices for multiple commodities
is NP-hard, even if all new devices have the same transmission range. The decision
version of this problem is stated as follows:

Problem: Identical Device Placement.

Instance: An instance I =(T, An, r, Z) consists of a transmission graph T =
(V,E,K, p,r,c), apositive integer An, an identical maximal transmission
range r(v) for each additional device v € AV, and a positive number Z.

Question: Is there a placement for the An additional devices such that the dif-
ference ¢(T) — ¢(T') > Z, where T’ is the transmission graph after the
placement of the additional devices?

Theorem 4 Identical Device Placement is NP-hard.

Proof Since the proof is quite lengthy and technical, let us first sketch its main
idea. We reduce a special version of planar Exact Cover By 3-Sets (X3C) to Iden-
tical Device Placement. In an X3C instance I (U, S, b) we are given a set U of 3b
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elements, a collection of 3-element subsets S = {51, ..., S5} of U, and a budget
b. We are looking for a subcollection of size b from S whose union is U. We use the
restricted version of X3C where the corresponding bipartite graph with elements
on one side and subsets on the other is planar and each element appears in either
two or three sets [9], and denote it by X3C-3.

The idea of the reduction is to introduce a device for every element and every
set from the X3C-3 instance. For embedding these devices in the plane, we limit
ourselves to instances of X3C-3 whose graph can be augmented (by adding edges)
to become triconnected while staying 3-planar. We call this restricted problem aug-
mentable X3C-3 or simply ++X3C-3. We then use a result by Kant [17] for drawing
a triconnected 3-planar graph with horizontal and vertical edge segments on a grid.
Every element device forms one source—destination pair with an additional global
destination device.

Further, we show that one can construct a chain consisting of a polynomial num-
ber of devices at and between any two points x, x’, such that the cost of the shortest
path between the devices at x and x” is bounded by their distance. Using such chains,
we ensure that the only possible paths between an element device and the global
destination device go through the set devices the element is a member of. The cost
of these paths is the same for all source—destination pairs. Moreover, the placement
of an additional device within a chain yields only a small profit. Indeed, only one
position induces a large improvement between each set device and the global desti-
nation device. Hence, the number of reasonable positions for the additional devices
is limited to the number of subsets in S, and there is a one-to-one correspondence
between such a position and a subset. This completes the overview of the proof.

Let us now go into the technical details of the proof, by first mentioning the
details of the graph drawing result that we use. Recall that a graph is triconnected
if no removal of two vertices disconnects the graph. In a 3-planar graph, any vertex
has degree at most 3. Any triconnected 3-planar graph is, hence, 3-regular. a

Lemma 4 (Kant [17]) A triconnected 3-planar graph with n vertices has a planar
drawing with horizontal and vertical segments on an [5] x [5] grid such that every
edge has at most one bend.

NP-hardness of X3C-3 is proved in [9] by a reduction that creates special X3C-3
instances. Each such instance has the property that it can be augmented to a tricon-
nected 3-planar graph by adding extra edges, and these extra edges can of course be
deleted again after drawing the augmented graph.

There are four directions to attach an additional line horizontally or vertically at
a vertex v, namely left, right, up, and down. A direction is called free for a vertex if
no incident line segment goes in this direction, and an additional orthogonal straight
line can be drawn in this direction to the outside of the bounding box of the drawing
without hitting any other vertex.

Observation 4 The algorithm from [17] to draw a 3-planar triconnected graph
guarantees that every vertex v has a free direction for drawing an additional straight



98 P. Widmayer et al.

line segment. Moreover, no two such straight line segments that belong to two dif-
ferent vertices and are orthogonal intersect each other.

As a last ingredient we show how to place devices along line segments in the
plane such that certain properties hold. As our proof does not make use of the
constant y in the definition of the transmission cost, it works for any value of y,
and we will therefore simply choose y = 1 and not mention y any further.

Lemma 5 Given two points p1, p> in Euclidean distance €, and z < €%, we can
place two devices u, v at p1, py and further devices on the line segment between pi
and p> such that ¢(SP(u, v)) = z.

Proof Let s(py, p2) be the line segment between p; and p;. We distinguish three
cases. If z = ¢2, then we place device u with r(u) = £ at position p; and v at
position p, and no other device on s(pi, p»). If £ is a multiple of z, then we place
device u at p; and v at p», plus devices on s(p1, p2) at distance & - z/¢ from pp, for
h=1,...,0%/z — 1. The maximal transmission range of all devices is set to z/¢.
Otherwise (see Fig. 4.4), we place device u at p; and v at p;, plus devices on
s(p1, p2) at distance h - z/€ from py, for h = 1,...,[£?/z] — 2. Letry = £ —
1€2/z] - z/€. A further device is placed on s(pi, p2) at distance £ — r¢ + a from

p1, wherea = <1 [(z/0)% — rg —z/L+ Vg) /2. The maximal transmission range of

the devices is set such that each device reaches the next device on the segment. The
shortest path between u and v goes over each device on s(pi, p2). The sum of the
squared distances is ([¢2/z] —2)(z/£)*> + (z/€+ a)? + (r¢ — a)?, which equals z.O

For ease of description, ch(py, p», z) denotes a chain of devices between posi-
tions p; and p,, with positions as in the proof above, and a path of cost z. Similarly,
ch™ (p1, p2, 7) is the same set of devices without the device at position pj.

Let us now continue the proof of Theorem 4 by describing in detail the reduction
from the instances of planar X3C-3 that appear in the corresponding NP-hardness
proof in [9]. We make use of the property of these instances that they can be aug-
mented by adding edges to become triconnected 3-planar. Let us call the planar
X3C-3 problem for these instances planar ++X3C-3 and note that the reduction in
[9] proves planar ++X3C-3 to be NP-hard. Let I (U, S, b) be an instance of planar
++X3C-3. By Lemma 4, we can assume that an orthogonal grid embedding is given,
for which we scale all coordinates by a factor ¢ to ensure that vertices are sufficiently

I | | T | | |
o | | | | | -
i | | L | | 1
pP1 “;H P2
f-— ry bl

Fig. 4.4 Chain construction
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Fig. 4.5 Overview illustration of the reduction where each v{ corresponds to an element device and
each v$ to a set device. v is the global destination device, and each V?/ respectively each V /-7
refers to an element-set chain respectively a set-destination chain. The gaps on the set-destination
chains indicate the potential positions for the additional devices

far away from each other. The factor ¢ is chosen to be 4 x n? for reasons that will
become clear later. For now, it is sufficient to note that ¢ is polynomially bounded
in n. After the scaling, a vertex i has coordinates (i, 7y). Also by Lemma 4, each
edge (i, j) between vertex i and j in the embedding consists of at most two line
segments. For element vertex i and set vertex j, we denote the line segment of edge
(i, j) connected to i by s;(i, j) and the line segment connected to j by s;(i, j). If
only one line segment builds the edge, then we split the line segment into two line
segments of equal length and assign those to s; (i, j) respectively s;(i, j). By I(:)
we refer to the Euclidean length of an edge respectively a line segment. Moreover,
we let fi (i, j) = 1/1(s; (i, j)) and f;(i, j) = 1/1(s;(i, j)). The reason behind this
definition is to define for any line segment, say of length [/, a sequence of devices
that make its cost a fixed constant, say 1. This can be achieved, roughly speaking,
by placing /> evenly along the line segment, with each device bridging a gap of
length [/12 = 1/1, at a total cost of (1/{)> x [> = 1. In addition, we will modify
the equidistant placement a little on one end of the device path, in order to make the
connection work only in one direction.

We construct the instance (T, An, r, Z) of Identical Device Placement from [
as follows. We start with the description of the positions and transmission ranges
of the devices in the transmission graph 7. The device set V contains five different
kinds of devices, called the element, the set, the global destination, the element-set
chain, and the set-destination chain devices. We describe each kind separately (see
Fig. 4.5 for an overview illustration).
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4.5.1 Set Devices

For each set j € § = {1...,]|S]|}, we place a set device vj'. at position {jy, jy).
These devices have a maximal transmission range equal to 2. We denote the union
of all set devices by V®.

4.5.2 Element Devices

For each elementi € U = {1, ..., |U[}, we place an element device v at position
(ix,1y). The maximal transmission range of such a device is set to max.;, j)eg 3/2-
fi(i, j). We denote the union of all element devices by V°.

4.5.3 Global Destination Device

We place one single global destination device v’ at position (0, —M), where M is
a large number to be defined later. The maximal transmission range of this device is
set arbitrarily (since it will not be used for transmission).

4.5.4 Element-Set Chain Devices

These devices model the connections between an element and each set to which the
element belongs. For each element i and set S; for which i € §;, we introduce
an element-set chain V//. The element-set chain V’/ looks as follows: we place
devices Vil = {ofd, .. vl |, with i j = 165166, )% + 105G, )2, along the
edges of the embedding (dotted line segments in the overview figure). The place-
ment is done such that the distance between two consecutive devices on a line
segment is at most 1/¢, and the cost of a path from an element device to any of

the at most three set devices is the same. To achieve this (see Fig. 4.6), we place a

7

Fig. 4.6 Element-set chain V/ between element device v{ and set device vj.‘ The dotted lines
respectively circle segments indicate the maximal transmission range of a device
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first device vi’j at distance 3/2 - fi(i, j) from the element device v;. The maximal
transmission range of this device is set to 1/2- f; (i, j). Next, we place three devices

vpl for b = 2,...,4 at distance 3/2 - fi(i, j) + (h — 1)/2 - fi(i, j) from the

. . i, ij . ..
element device vf. Devices vzj v3’ have a maximal transmission range equal to

1/2- fi(i, j), and v}’ one of f;(i, j). Devices v’ forh =5, ..., 1(s:(i, j))* witha
maximal transmission range f; (i, j) are positioned at distances (h—1)- f; (i, j) from
the element device v;. At the common endpoint of the two line segments s; (i, j) and
ij

1(si (i, j))2+1
placed. We continue with devices on line segment s, (7, j). We uniformly distribute
ij

U(si (0, )2 +1+h
from the common endpoint of s; (i, j) and s; (i, j), forh = 1,...,1(s;(, j))2 — 1.
All devices on s (i, j) have a maximal transmission range of f; (i, j). By the above
construction, there is a path from any element device to a set device through the

sj(i, j), a further device v with a maximal transmission range f; (i, j) is

devices on this line segment by placing devices v atdistances h- f; (i, j)

. ij ij
devices (v1 I, Un,-{j

possible due to the chosen maximal transmission ranges.

) with cost 2. Moreover, a path in the reverse direction is not

4.5.5 Set-Destination Chain Devices

These devices connect each set device to the global destination device. The
(unavoidable) crossings with the element-set chains have to be constructed care-
fully for the reduction to work. In particular, by defining the transmission ranges
of devices on the element-set chain to be small enough, we will make sure that at
such a crossing, an element-set chain can never “switch” and continue on the set-
destination chain. Moreover, we will make sure that no two set-destination chains
cross. There is a set-destination chain V/:7 from each set device v; to the global

destination device v”, for Jj € {1,...,|S]|} (dashed lines in the overview figure).
In detail, the following devices are set. Let W = [57. We distinguish three cases
depending on the free direction of the set vertex j. Note that we can choose the
graph drawing from [17] such that for no set vertex the free direction is upward.
Free direction of set vertex j is downward. We place chains of devices inter-
rupted by longer distances without devices in the free direction (see Fig. 4.7 for a
schematic illustration). More precisely, we place (W — 1) chains ch({jx, j, — h -
¢ —2), (jx, jy — (h+ D¢ +2),1), where h = 0,..., W — 2. The devices have
a maximal transmission range of 1/(¢ — 4) except the last device on each chain,
which has a maximal transmission range of 4. Finally, we place one more chain
ch™((jx, jy = (W = D¢ +2), (jx, —(W = 1)¢), 4). We denote the “last” device, at
position {j,, —(W —1)¢), by v}.jG. The maximal transmission range of these devices

except v}JG is set such that any device can reach the next device on the chain, and

v}JG’s maximal transmission range equals dg,p, which will be defined later.

Free direction of set vertex j is to the left. Again, we place chains of devices
interrupted by longer distances without devices in the free direction. More precisely,
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Fig. 4.8 Second part of set-destination chains V-7 to V> 7 from devices UILG to the global desti-

nation device v’

we place (W — 1) chains ch((jx —h -¢ =2, jy), (jx — (h + D¢+ 2, jy), 1) for
h=0,..., W—2.The devices in the chains have a maximal transmission range of
1/(¢—4), except the last device on each chain, having a maximal transmission range
of 4. We make sure that no two such chains intersect by moving further outward
from the bounding box. To this end, we add a left going chain ch™ ({j, — (W —
DE+2, jy), (—=(W —=1)¢— jy, jy), 2), followed by a downward chain ch™ ((—(W —
DE — jy, jy), (=(W = D)é — jy,, =(W — 1)¢), 2). We denote the device at position
(=(W — D)é — jy, —(W — 1)¢) by v}JG. The maximal transmission range of the
devices in the latter two chains except U}JG is set such that any device can reach the

next device on the chain, and vY6’s maximal transmission range equals dgap.

Free direction of set vertex j is to the right. This case is similar to the previous
case except that the chain first moves in the other direction. More precisely, we
place (W — 1) chains ch({(jx +h - ¢+ 2, j,), (jx + (h+ 1)¢ =2, jy), 1) for h =
0,..., W —2. The devices have a maximal transmission range of 1/(¢ — 4), except
the last device on each chain, having a maximal transmission range of 4. Further, we
add a chain ch™ ({j, + (W — )¢ +2, jy), (¢W + (W — )¢+ jy, jy), 2), and a chain
ch™((¢W + (W = DE + jy, jy), (€W + (W = Dé+ jy, —(W = 1)¢), 2). We denote
the device at position (¢W + (W — 1)é + j,, —(W — 1)¢) by v}JG. The maximal
transmission range of the devices in the latter two chains except v}JG is set such that

any device can reach the next device on the chain, and UJUG’S maximal transmission
range equals dgp.
The construction of the set-destination chains yields a device U}IG for every set

device v; on the horizontal line y = —(W — 1)¢. Moreover, there exists a path
between any set device vj. and the corresponding device v}JG with cost 22 4+ (W —
D-14+(W=2)-424+4=17TW — 25.

As a next step in the construction of the set-destination chains, we build a set of
devices resembling a tree (see Fig. 4.8 for a schematic illustration). We place devices
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on the & = [log |S|] consecutive integer y-coordinates yp = —(W — 1)¢ — dgap — ¥,
for¢ =0, ..., h. We refer to these y-coordinates as levels, where level O is the level
with the largest y-coordinate. The number of devices placed on level £ equals ny =
[151/2%7. On level 0, the ng devices have the same x-coordinate as the devices U}JG.
We call these devices v;“G and refer to the gap between v}JG and v;“G as the large gap.
On level 1, we compute the x-coordinates from two devices of level 0. We start at the
left side. We place a device on level 1, with its x-coordinate halfway between the two
devices with smallest x-coordinates from level 0. We repeat this procedure with the
two devices with next largest x-coordinate from level O until no two devices are left.
If there is one device left, then we place a device with same x-coordinate on level 1.
We iteratively continue this procedure on the other levels until £ = k. The maximal
transmission range for all these devices is set to 1/2, except for the rightmost device
on a level with an odd number of devices, which has maximal transmission range 1.
Between the levels, we add further devices to connect devices u, v that have been
paired up: we add a chain ch({uy, uy — 1/2), ((uy +vy)/2,uy — 1/2),1/2) and a
chain ch™ ((vy, vy — 1/2), {(ux +vx)/2, vy —1/2), 1/2) with maximal transmission
ranges set such that any device can reach the next device on its chain. The device
at position ((uy + vy)/2,uy — 1/2) has a maximal transmission range of 1/2. To
complete the set-destination chains, two chains of devices are placed between the
single device on level 4 and the global destination device v’ with a path of cost
2, one chain on the vertical line segment down to y-coordinate equal to —M and
one chain on the horizontal line toward v7, with maximal transmission ranges suf-
ficiently large to reach the next device toward the global destination device.

The construction of the set-destination chains leads to a path between any ele-
ment device and the global destination device v’ with total cost of 17W — 21 +
(a’gap)2 + [log §7. Depending on whether the element is a member of two or three
sets there are two or three paths with this cost per element device. Since ¢ is poly-
nomial in n, the total number of devices in the instance / is polynomial in the input
parameters.

As a next step in the reduction, we describe the commodity set K of the trans-
mission graph. We construct k = |U| commodities with each element device
vie, i=1,...,|U]|,being a source and device oT being the global destination device
for each such source. Without additional devices, a shortest path for any commodity
goes from the source over an element-set chain to a set device to which the source
belongs and from there along a set-destination chain to the global destination device.
Note that we constructed the crossings of element-set chains with set-destination
chains in such a way that the transmission ranges of element-set chain devices are
not large enough to switch to the set-destination chain. Furthermore, even though
switching from a set-destination chain to an element-set chain is possible at such a
crossing, it will only make the path longer, by more than 1 cost unit.

The maximal transmission range r for the additional devices is set to a positive
value ¢ that is small enough to make sure that unless each device is placed in a gap
that a set-destination chain uses, it will not contribute sufficiently to cost savings,

say f < m. Finally, we set An = b and Z = |U| - 2t (dgap — 1).
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This justifies to set the scaling factor ¢ to 4n°. Furthermore, we set the distance
of the gap dgyp to n?, and the y-coordinate —M of the global destination device to
—n*. This completes the construction, which is computable in polynomial time.

To complete the reduction we show that I is a YES-instance of ++X3C-3 if
and only if [ is a YES-instance of Identical Device Placement. We first show the
forward direction, that is, given a cover of size b we can construct a device place-
ment with an improvement Z. Let the indices of the b sets in the ++X3C-3 solution
be (soly, ..., solp). Then, consider the placement of An additional devices at posi-

tions (vg)?) , (quo?) +t)fori =1,..., An,i.e., as far above as possible from
B 1 X B 1 y

the lower ends of the large gaps on the set-destination chains so that the transmis-
sion range ¢ still suffices to reach the next device. For each commodity j, the cost
between v}JC‘ and v1C goes from déap down to dgap — 12 +1%, a savings of 2t (dgap—1)
per commodity, resulting in a total improvement Z = |U]| - 2t (dgap — 1).

Now we show that a placement of An additional devices that saves a cost of at
least Z = |U]| - 2t (dgap — t) implies a solution to the ++X3C-3 instance.

Observe that even after an arbitrary placement of all additional devices, it still
does not pay for a set-destination path to switch to an element-set path. The reason
is that the highest possible savings that arise from placing all additional devices
are still less than the extra cost from switching. To see this, recall that the extra
switching cost is more than 1, and note that the highest savings can be achieved
when additional devices bridge gaps that are as large as possible. The largest useful
gaps in the entire construction are our large gaps, of size dg,p; all larger ones are
useless, because bridging them with additional devices still leaves them too large to
be part of any communication path. The cost savings for a large gap, however, are
smaller than 1 even if all additional devices are placed optimally in a single large
gap. To see this, note that an optimal placement of b additional devices into a large

gap puts them in series at distances ¢ from each other and from the low vertex vi‘o(l}

of the gap, with a cost of (dgap — bt)? + br? instead of déap, a savings of less than
m}m. Since the remaining part of the large gap after
placing all b devices has size dgq, — bt, this is still the largest useful gap in the
construction, and therefore any (other) combination of placing the b devices into
gaps also leads to savings smaller than 1. Hence, no set-destination path switches at
a crossing.

Furthermore, observe that the transmission ranges of the new devices are too
small to let any element-set path switch at a crossing. To see this, recall that any
set-destination path has a gap of size 4 at a crossing, and therefore from a device
on an element-set chain a gap of size almost 2 must be bridged, but all new devices
together can only bridge a gap of size bz, which is less than ﬁ and therefore less

than 2r+2’ not enough by a large margin.

That is, all element-set paths and set-destination paths must use the chains pre-
scribed in our construction and must go over a large gap (possibly shortened by
extra devices) to the destination. It therefore remains to show that the only way to
achieve a savings of |U| - 2t(dgap — t) is to place one device each into the gaps

1 for our chosen value of t <
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that describe the solution (i.e., the chosen subsets) of the instance of ++X3C-3.
Because the highest possible savings per new device are 2¢(dgap — 1), and this can
only be achieved by placing only single devices in large gaps, the required savings
of |U| - 2t (dgap — t) can only be achieved by letting each element-destination path
go over a large gap with a single new device at distance ¢ from its bottom vertex.
But if this is possible, then the gaps that contain the new devices describe a solution
to the ++X3C-3 instance.
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Chapter S
Population Protocols and Related Models

Paul G. Spirakis

Abstract This is a joint work with loannis Chatzigiannakis and Othon Michail. We
discuss here the population protocol model and most of its well-known extensions.
The population protocol model aims to represent sensor networks consisting of tiny
computational devices with sensing capabilities that follow some unpredictable and
uncontrollable mobility pattern. It adopts a minimalistic approach and, thus, nat-
urally computes a quite restricted class of predicates and exhibits almost no fault
tolerance. Most recent approaches make extra realistic and implementable assump-
tions, in order to gain more computational power and/or speedup the time to conver-
gence and/or improve fault tolerance. In particular, the mediated population proto-
col model, the community protocol model, and the PALOMA model, which are all
extensions of the population protocol model, are thoroughly discussed. Finally, the
inherent difficulty of verifying the correctness of population protocols that run on
complete communication graphs is revealed, but a promising algorithmic solution
is presented.

5.1 Introduction

Wireless Sensor Networks (WSNs) will play an increasingly important role in criti-
cal systems’ infrastructure and should be correct, reliable, and robust. Formal spec-
ification helps to obtain not only a better (more modular) description, but also a
clear understanding and an abstract view of a system [8]. Given the increasing
sophistication of WSN algorithms and the difficulty of modifying an algorithm once
the network is deployed, there is a clear need to use formal methods to validate
system performance and functionality prior to implementing such algorithms [34].
Formalanalysis requires the use of models, trusted to behave like a real system. It
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is therefore critical to find the correct abstraction layer for the models and to verify
the models.

Toward providing a concrete and realistic model for future sensor networks,
Angluin et al. [2] introduced the notion of a computation by a population protocol.
Due to the minimalistic nature of their model, individual agents are extremely lim-
ited and can be represented as finite-state machines. The computation is carried out
by a collection of agents, each of which receives a piece of the input. Information
can be exchanged between two agents whenever they come into contact with (or
sufficiently close to) each other. The goal is to ensure that every agent can eventually
output the value that is to be computed. The critical assumptions that diversify the
population protocol model from traditional distributed systems are that the inter-
action pattern is inherently nondeterministic and that the protocols’ description is
independent of the population size (that is, need O(1) total memory capacity in
each agent). The latter is known as the uniformity property of population protocols.
Moreover, population protocols are anonymous since there is no room in the state
of an agent to store a unique identifier.

The population protocol model was designed to represent sensor networks con-
sisting of very limited mobile agents with no control over their own movement. It
also bears a strong resemblance to models of interacting molecules in theoretical
chemistry [26, 27]. The defining features of the population protocol model are as
follows:

1. Anonymous, finite-state agents. The system consists of a large population of
indistinguishable finite-state agents.

2. Computation by direct interaction. In the original model, agents do not send
messages or share memory; instead, an interaction between two agents updates
both of their states according to a global transition table. The actual mechanism
of such interactions is abstracted away.

3. Unpredictable interaction patterns. The choice of which agents interact is made
by an adversary. Agents have little control over which other agents they inter-
act with, although the adversary may be limited to pairing only agents that are
adjacent in an interaction graph, typically representing distance constraints or
obstacle presence. A strong global fairness condition is imposed on the adversary
to ensure that the protocol makes progress (e.g., the adversary cannot keep the
agents forever disconnected).

4. Distributed inputs and outputs. The input to a population protocol is distributed
across the agents of the entire population. In what concerns predicates, all agents
are expected to give the correct output value (which is known as the predicate
output convention [2]); thus, the output is collected from any agent in the popu-
lation (after, of course, the computation has stabilized).

5. Convergence rather than termination. Population protocols generally cannot
detect when they have finished; instead, the agents’ outputs are required to con-
verge after some finite time to a common correct value.

The population protocol model was inspired in part by work by Diamadi and
Fischer [23] on trust propagation in a social network. The urn automata of [3] can
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be seen as a first draft of the model that retained in vestigial form several features of
classical automata: instead of interacting with each other, agents could only interact
with a finite-state controller, complete with input tape. The motivation given for the
current model in [2] was the study of sensor networks in which passive agents were
carried along by other entities; the canonical example was sensors attached to a flock
of birds. The name of the model was chosen by analogy to population processes [33]
in probability theory.

The initial goal of the model was to study the computational limitations of
cooperative systems consisting of many limited devices (agents), imposed to pas-
sive (but fair) communication by some scheduler. Much work showed that there
exists an exact characterization of the computable predicates: they are precisely the
semilinear predicates or equivalently the predicates definable by first-order logi-
cal formulas in Presburger arithmetic [2, 5—7]. More recent work has concentrated
on performance, supported by a random scheduling assumption. Chatzigiannakis
et al. [16] proposed a collection of fair schedulers and examined the performance
of various protocols. Chatzigiannakis et al. [12] went one step further by proposing
a generic definition of probabilistic schedulers and proving that the schedulers of
[16] are all fair with probability 1 and revealed the need for the protocols to adapt
when natural modifications of the mobility pattern occur. Bournez et al. [11] and
Chatzigiannakis and Spirakis [19] considered a huge population hypothesis (popula-
tion going to infinity) and studied the dynamics, stability, and computational power
of probabilistic population protocols by exploiting the tools of continuous nonlinear
dynamics. In [11] it was also proven that there is a strong relation between classical
finite population protocols and models given by ordinary differential equations.

There exist a few extensions of the population protocol model in the relevant
literature to more accurately reflect the requirements of practical systems. In [1] they
studied what properties of restricted communication graphs are stably computable,
gave protocols for some of them, and proposed the model extension with stabilizing
inputs. The results of [5] show that again the semilinear predicates are all that can
be computed by this model. Finally, some works incorporated agent failures [22]
and gave to some agents slightly increased computational power [9] (heterogeneous
systems). For an excellent introduction to most of the preceding subjects see [7].

In this chapter we start by presenting in detail the basic population protocol
model. Unfortunately, the class of solvable problems by this theoretical model is
fairly small. For instance, it does not include multiplication. Moreover, even for this
restricted class, algorithms tolerate no failures or, at worst, a fixed number of benign
failures [22]. Therefore, we present four interesting extensions of the population
protocol model that investigate the computational benefits of cooperative systems
when adding new features (e.g., to the hardware of the devices). The extended mod-
els are summarized as follows:

e First, based on [17] (see also [18]), the population protocol model is extended to
include a Mediator, i.e., a global storage capable of storing very limited infor-
mation for each communication arc (the state of the arc). When pairs of agents
interact, they can read and update the state of the link (arc). The extended model



112 P.G. Spirakis

is called the Mediated Population Protocol (MPP) model. Interestingly, although
anonymity and uniformity are preserved in this model, the presence of a medi-
ator provides us with significantly more computational power and gives birth
to a new collection of interesting problems in the area of tiny networked and
possibly moving artifacts; based on this model we can build systems with the
ability of computing subgraphs and solve optimization problems concerning the
communication graph. Moreover, as we shall see, MPPs are capable of computing
nonsemilinear predicates and here any stably computable predicate belongs to
NSPACE(m), where m denotes the number of edges of the communication graph.

e One of the most interesting and applicable capabilities of the mediated popu-
lation protocol model is its ability to decide graph properties. To understand
the properties of the communication graph is an important step in almost any
distributed system. In particular, if we temporarily disregard the input notion of
the population and assume that all agents simply start from a unique initial state
(and the same holds for the edges), then we obtain another interesting model that
is called the GDM (standing for Graph Decision Mediated) model [15]. When
GDM protocols are executed fairly on any communication graph G, after a finite
number of steps stabilize to a configuration where all agents give 1 as output if G
belongs to a graph language L, and O otherwise. This is motivated by the idea of
having protocols that eventually accept all communication graphs (on which they
run) that satisfy a specific property, and eventually reject all remaining commu-
nication graphs. The motivation for studying a simplified version of the mediated
population protocol model is that it enables us to study what graph properties are
stably computable by the mediated model without the need to keep in mind its
remaining parameters (which, as a matter of fact, are a lot).

e Another direction for extending the population protocol model is to assume the
existence of a unique identifier for each agent. This is a natural extension since,
although a tiny device’s memory is often very constrained, it is usually sufficient
to store a unique identity. In fact, in most modern tiny devices, the communica-
tion module is often equipped with a unique identifier. For example, they might
contain Maxim’s DS2411 chip, which stores just 64 bits of ROM and is set by
the factory to store a unique serial number. This idea gave birth to the Com-
munity Protocol model [29]. In this model, all n agents have unique identifiers
(ids) and can store O(1) other agents’ ids. The ids are stored in ROM (as in the
DS2411 chip), so that Byzantine agents cannot alter their ids. The usage of ids
is restricted to their fundamental purpose, identification, by assuming that algo-
rithms can only compare ids (an algorithm cannot, for example, perform arith-
metic on ids). In addition to having ids, the ability of agents to remember other
ids is crucial as, otherwise, the model would be as weak as population protocols.
The computational power of this extension is greatly increased; a community pro-
tocol of n agents can simulate a nondeterministic Turing Machine of O(n logn)
space. In particular, it can compute any symmetric predicate in NSPACE (n logn).
Moreover, as in the population protocol model, a single algorithm must work
for all values of n. Furthermore, the simulation is resilient to a constant number
of Byzantine failures. So, although community protocols only make a rational
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additional assumption (that is, the ids equipment), they are much more powerful
than population protocols: they solve a much wider class of problems and tolerate
Byzantine failures.

e Finally, we present another extension called the PALOMA model [14]. In this
model, the system consists of PAssively mobile LOgarithmic space MAchines.
The idea is to provide each agent with a memory whose size is logarithmic in
the population size, which seems a very natural assumption: only 266 bits are
required for 226 agents (which is an astronomical population size)! Moreover,
we can think of an agent as a small Turing Machine, which also seems natural:
mobile phones, PDAs and many other common mobile devices are in fact sophis-
ticated Turing Machines. The PALOMA model is also extremely strong, since it
can stably compute any symmetric predicate in NSPACE (nlogn).

A very important aspect of WSNss is to provide solutions that are verifiably cor-
rect, in the sense of giving a “proof™ that the solution will work, given the appli-
cation goals and network set-up. Population protocol models can detect errors in
the design that are not so easily found using emulation or testing. Formal analysis
techniques are also supported by (semi-)automated tools. Such tools can also detect
errors in the design and they can be used to establish correctness. Model checking is
an exhaustive state space exploration technique that is used to validate formally
specified system requirements with respect to a formal system description [21].
Such a system is verified for a fixed configuration; so in most cases, no general
system correctness can be obtained. Using some high-level formal modeling lan-
guage, automatically an underlying state space can be derived, be it implicitly or
symbolically. The system requirements are specified using some logical language,
like LTL, CTL or extensions thereof [32]. Well-known and widely applied model
checking tools are SPIN [31], Uppaal [10] (for timed systems), and PRISM [30]
(for probabilistic systems). The system specification language can, e.g., be based on
process algebra, automata or Petri nets. However, model checking suffers from the
so-called state explosion problem, meaning that the state space of a specified system
grows exponentially with respect to its number of components. The main challenge
for model checking lies in modeling large-scale dynamic systems.

The important feature that diversifies the population protocol model from tradi-
tional distributed systems is that the protocol specifications are independent of the
population size which makes them suitable for the verification of protocols that tar-
get systems spanning thousands of objects. Evaluating if a property is valid or not in
the system can be done with a number of components that is independent to the size
of the population. The most important factor to decide the reachability of a certain
configuration is the size of the protocol. Toward further minimizing the configu-
ration space of the protocols we can apply the protocol composition methodology.
This approach states that one may reduce a protocol into two (or more) protocols of
reduced state space that maintain the same correctness and efficiency properties. The
combination of the above helps overcome the state explosion problem and speed up
the verification process. We expect that population protocol models will be used to
model such networks and the interactions, as dictated by the MAC protocol or the
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overall protocol stack, providing the ability, in a formal and modern way, to define
the system in a minimalist way (in contrast to other approaches).

Section 5.2 discusses the population protocol model of Angluin et al. [2]. Sec-
tion 5.3 deals with a first extension of the population protocol model, the mediated
population protocol model [17]. Section 5.4 goes one step further in the investiga-
tion of the mediated population protocol model by focusing on its ability to decide
interesting graph properties. The simplified version of the mediated population pro-
tocol model discussed there is the GDM model [15]. In Sect. 5.5, the community
protocol model of Guerraoui and Ruppert [29] is discussed and in Sect. 5.6 the
PALOMA model [14]. Both models have the same computational power and are
particularly powerful. Section 5.7 deals with correctness of population protocols
that run on complete communication graphs. In particular, it focuses on the problem
of algorithmically verifying whether a given population protocol is correct w.r.t. its
specifications and is based on [13]. The problem is shown to be hard, but a promising
algorithmic solution is presented. Finally, Sect. 18.6 discusses some interesting open
problems in the area of small passively mobile communicating devices.

For a good introduction and definitions on Computational Complexity (see e.g.,
[35D).

5.2 Population Protocols

We begin with a formal definition of the population protocol model proposed in a
seminal work of Angluin et al. [2]. The model represents sensor networks consisting
of extremely limited agents that may move and interact in pairs.

5.2.1 The Model

Definition 1 A population protocol (PP) is a 6-tuple (X, Y, O, I, O, §), where X,
Y, and Q are all finite sets and

1. X is the input alphabet,

2. Y is the output alphabet,

3. Q is the set of states,

4. I : X — Q is the input function,

5. O : Q — Y is the output function, and

6. 6: 0 x Q — Q x Q is the transition function.

If§(a, b) = (a’, b)), we call (a, b) — (a’, b’) a transition and we define 8;(a, b) =
a’ and 8,(a, b) = b'. We call 8, the initiator’s acquisition and 8, the responder’s
acquisition.

A population protocol A = (X, Y, Q, I, O, §) runs on a communication graph
G = (V, E) with no self-loops and no multiple edges. From now on, we will denote
by n the number of nodes of the communication graph and by m the number of its
edges. Initially, all agents (i.e. the elements of V') receive a global start signal, sense
their environment and each one receives an input symbol from X. All agents are
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initially in a special empty state LI ¢ Q. When an agent receives an input symbol o,
applies the input function to it and goes to its initial state /(0) € Q. An adversary
scheduler selects in each step a directed pair of distinct agents (1, v) € E (that is,
u,v € V and u # v) to interact. The interaction is established only if both agents
are not in the empty state (they must both have been initialized). Assume that the
scheduler selects the pair (u, v), that the current states of # and v are a,b € Q,
respectively, and that §(a, b) = (a’, b’). Agent u plays the role of the initiator in
the interaction (u, v) and v that of the responder. During their interaction u and v
apply the transition function to their directed pair of states (to be more precise, the
initiator applies §; while the responder 8,) and, as a result, # goes to a’ and v to b’
(both update their states according to §).

A configuration is a snapshot of the population states. Formally, a configuration
is a mapping C : V — Q specifying the state of each agent in the population. Cy
is the initial configuration (for simplicity, we assume that all agents apply the input
function at the same time, which is one step before Co, so in Cy all empty states have
been already replaced, and that is the reason why we have chosen not to include LI in
the model definition) and, for all u € V, Co(u) = I(x(u)), where x(u) is the input
symbol sensed by agent u. Let C and C’ be configurations, and let u, v be distinct

agents. We say that C goes to C’ via encounter ¢ = (u, v), denoted C S oL if

C'(u) = 81(C(u), C(v)),
C'(v) = 8,(C(u), C(v)), and
C'(w) =C(w) forallw € V — {u, v},

that is, C’ is the result of the interaction of the pair (u, v) under configuration C
and is the same as C except for the fact that the states of u, v have been updated
according to 81 and &;, respectively. We say that C can go to C’ in one step, denoted

C — C,if C 5 (' for some encounter ¢ € E. We write C —> C’ if there is a
sequence of configurations C = Cy, C1, ..., C; = C’, such that C; — C;4 for all
i,0 <i < t, in which case we say that C’ is reachable from C.

An execution is a finite or infinite sequence of configurations Cy, C1, Ca, ...,
where Cy is an initial configuration and C; — Cj1, for all i > 0. We have both
finite and infinite kinds of executions since the scheduler may stop in a finite number
of steps or continue selecting pairs for ever. Moreover, note that, according to the
preceding definitions, a scheduler may partition the agents into noncommunicating
clusters. If that is the case, then it is easy to see that no meaningful computation
is possible. To avoid this unpleasant scenario, a strong global fairness condition
is imposed on the scheduler to ensure that the protocol makes progress. Formally,
an infinite execution is fair if for every pair of configurations C and C’ such that
C — C',if C occurs infinitely often in the execution, then C’ also occurs infinitely
often in the execution. A scheduler is fair if it always leads to fair executions. A
computation is an infinite fair execution.

The above fairness condition, although at first sight may seem too strong, is in
fact absolutely natural. The reason is that in most natural systems, between those
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under consideration, the passive mobility pattern that the agents follow will be the

result of some natural phenomenon, like, for example, birds flying, river flow, and

so on, that usually follows some probability distribution or, possibly, a collection of

such probability distributions. Most of these schedulers, as indicated by [12], satisfy

the above fairness condition; they only have to also satisfy some natural properties.
The following are two critical properties of population protocols:

1. Uniformity: Population protocols are uniform. This means that any protocol’s
description is independent of the population size. Since we assume that the
agents have finite storage capacity, and independent of the population size, uni-
formity enables us to store the protocol code in each agent of the population.

2. Anonymity: Population protocols are anonymous. The set of states is finite and
does not depend on the size of the population. This implies that there is no room
in the state of an agent to store a unique identifier, and, thus, all agents are treated
in the same way by the transition function.

Example 1 A very celebrated population protocol is the “flock of birds” (or “count
to five”) protocol. Every bird in a particular flock is equipped with a sensor node
that can determine whether the bird’s temperature is elevated or not, and we wish to
know whether at least five birds in the flock have elevated temperatures. Moreover,
we assume that all ordered pairs of sensor nodes are permitted interaction. This was
the motivating scenario of population protocols [2].

We think as follows. The sensor senses the temperature of its corresponding bird
(its carrier) and if it is found elevated it outputs 1, otherwise 0. As soon as the agent
receives a global start signal (e.g. from a base station) it reads its sensor’s output
o € {0, 1} and applies to it the input function /. We can assume here that / maps
0 to initial state gp and 1 to g;. This means that the number of agents that are in
state g1 under the initial configuration is equal to the number of sick birds, while all
remaining agents are in state go. Now, when two agents interact, the initiator sets its
state index to the sum of the state indices and the responder goes to gg, except for
the case in which the sum of the indices is at least 5. In the latter case both agents
set their indices to 5. The idea is to try aggregating the initial number of 1 index
to one agent’s state index. Note that the sum of nonzero indices is always equal to
the number of sick birds; obviously, this holds until index 5 first appears. But what
about the output of the protocol? If an agent gets g5 then it knows that initially at
least five birds were sick, and it outputs the value 1 in order to indicate this fact, and
eventually gs is propagated to all agents. Otherwise, it outputs 0 because it may still
have partial information.

Let us now formalize the above description. The “flock of birds” protocol is F =
(X,Y, 0,1, 0,6). The input and output alphabets are X = Y = {0, 1}, the set of
states is @ = {qo, 41, .- -, g5}, the input function 7 maps O to gp and 1 to g, the
output function O maps g5 to 1 and all states in {qy, . .., g4} to 0, and the transition
function §(g;, ;) is defined as follows:
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1. ifi + j < 5, then the result is (g;+, go), and
2. if i + j > 5, then the result is (gs, g5). O

Exercise 1 Assume that all agents may err in two different ways. One possibility is
that they do not apply the input function correctly and another is that they do not
apply the transition function correctly. Fortunately, all are equipped with a special
mechanism that automatically overwrites the faulty state with state r € {ry, r2},
where | and r are the error reports/identifiers for the input function and the transi-
tion function, respectively. Try to adapt the “flock of birds” protocol to this scenario
by keeping in mind that we require the protocol to give the correct output or report
all the errors that have occurred.

Exercise 2 All birds in the flock are now additionally equipped with a sensor that
determines their color, which is either black or white. Try to modify the “flock of
birds” protocol in order to determine whether at least three black birds in the flock
have elevated temperatures. Also exploit the white birds in order to (possibly')
improve the performance.

Hint: assume that the input symbols are of the form (i, j) where i corresponds to
the temperature and j to the color.

5.2.2 Stable Computation

Assume a fair scheduler that keeps working forever and a protocol A that runs on
a communication graph G = (V, E). As already said, initially, each agent receives
an input symbol from X. An input assignment x : V — X is a mapping specifying
the input symbol of each agent in the population. Let X = XV be the set of all
possible input assignments, given the population V and the input alphabet X of
A. Population protocols, when controlled by infinitely working schedulers, do not
halt. Instead of halting we require any computation of a protocol to stabilize. An
output assignment y : V — Y is a mapping specifying the output symbol of each
agent in the population. Any configuration C C= QV is associated with an output
assignment yc = O o C. A configuration C is said to be output-stable if for any

configuration C’ such that C el (any configuration reachable from C) yc = yc.
In words, a configuration C is output-stable if all agents maintain the output symbol
that have under C in all subsequent steps, no matter how the scheduler proceeds
thereafter. A computation Co, C1, C2, ... is stable if it contains an output-stable
configuration C;, where i is finite.

Definition 2 A population protocol .4 running on a communication graph G =
(V, E) stably computes a predicate p : X — {0, 1}, if, for any x € X, every
computation of 4 on G beginning from Cy = I ox reaches in a finite number of steps

' We say possibly, because performance mainly depends on the scheduler. But if the scheduler is
assumed to be probabilistic, then exploiting all agents should improve expected performance.
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an output-stable configuration Cgple such that yc .. (1) = p(x) forallu € V. A
predicate is stably computable if some population protocol stably computes it.

Assume, for example, that a computation of A on G begins from the initial con-
figuration corresponding to an input assignment x. Assume, also, that p(x) = 1. If
A stably computes p, then we know that after a finite number of steps (if, of course,
the scheduler is fair) all agents will give 1 as output, and will continue doing so for
ever. This means that if we wait for a sufficient, but finite, number of steps we can
obtain the correct answer of p with input x by querying any agent in the population.

Definition 3 The basic population protocol model (or standard) assumes that the
communication graph G is always directed and complete.

In the case of the basic model, a configuration simplifies to a vector of nonnega-
tive integers that sum up to n indexed by states, and similarly for input assignments.
Intuitively, we are allowed to do so because agents are anonymous and fairness
guarantees that it does not matter in which agent each symbol or state lies. More-
over, here, stably computable predicates have to be symmetric. A predicate on input
assignments p is called symmetric if for every x = (o1, 02, ...,0,) € & and any
x" which is a permutation of x’s components, it holds that p(x) = p(x’) (in words,
permuting the input symbols does not affect the predicate’s outcome).

Thus, in the basic model, we can ignore the agents’ underlying names to obtain
a, seemingly, less descriptive, but sufficient for the basic model, definition of
a configuration ¢ as a |Q|-vector of nonnegative integers (c;)i—o,...,|0|—1, Where
¢ = |c’](q,-)| and |c’1(q,')| is equal to the number of agents to which state
q; is assigned by configuration ¢ (the cardinality of the preimage of g;), for all
i € {0,...,]Q| — 1}. It is not hard to see that the above definition implies that

lg{)‘l ¢; = n for any configuration c.

Exercise 3 Do the same for the input assignments, that is, define formally their vec-
tor description.

Example 2 Now, that the most important notions have been defined, we are ready to
prove that the “flock of birds” protocol stably computes the predicate

= | 1 ifa =5
PX)I=10,ifx; <5

where xj denotes the number of agents that get input symbol 1. Another way to
write the predicate is (x; > 5), which specifies that the value “true” is expected as
output by all agents for every input assignment that provides at least five agents with
the input symbol 1.

Proof There is no transition in § that decreases the sum of the indices. In particular,
if i + j < 5 then transitions are of the form (¢;, g;) — (gi+j, o) and leave the sum
unaffected, while if i + j > 5 then transitions are of the form (¢;, g;) — (g5, g5)
and all strictly increase it except for (g5, g5) — (g5, g5) that leaves it unaffected.
So the initial sum is always preserved except for the case where state g5 appears. If
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x1 <5 then it suffices to prove that state g5 does not appear, because then all agents
will forever remain in states {qo, . . ., g4} that give output 0. Assume that it appears.
When this happened for the first time it was because the sum of the states of two
interacting agents was at least 5. But this is a contradiction, because the initial sum
should have been preserved until g5 appeared. We now prove that if g5 ever appears
then all agents will eventually get it and remain to it forever. Obviously, if all get g5
then they cannot escape from it, because no transition does this; thus, they forever
remain to it. Now assume that g5 has appeared in agent u and that agent v # u
never gets it. From the time that u got g5 it could not change its state; thus any
interaction of u and v would make v’s state be gs. This implies that ¥ and v did
not interact for infinitely many steps, but this clearly violates the fairness condition
(a configuration in which v is in g5 was always reachable in one step but was never
reached). Now, if x; > 5 then it suffices to prove that g5 appears. To see this,
notice that all reachable configurations ¢ for which ¢;; = 0 can reach in one step
themselves and some configurations that preserve the sum but decrease the number
of agents not in state go. Due to fairness, this will lead to a decrease by 1 in the
number of non-go agents in a finite number of steps, implying an increase in one
agent’s state index. This process ends either when all indices have been aggregated
to one agent or when two agents, having a sum of indices at least 5, interact, and it
must end, otherwise the number of gg agents would increase an unbounded number
of times, being impossible for a fixed n. O

Note that such proofs are simplified a lot when we use arguments of the form
“if g5 appears then due to fairness all agents will eventually obtain it” and “due to
fairness the sum will eventually be aggregated to one agent unless g5 appears first”
without getting into the details of the fairness assumption. Of course, we have to be
very careful when using abstractions of this kind. O

Exercise 4 Consider the following protocol, known as “parity protocol’:

The input and output alphabets are X = Y = {0, 1}. The state of each agent consists of
a data bit and a live bit. Initially, the data bit is equal to the input bit and the live bit is 1.
For each state, the output bit is equal to the data bit. When two agents meet whose live bits
are both 1, one sets its live bit to 0, and the other sets its data bit to the mod 2 sum of their
data bits. When an agent with live bit O (a sleeping agent) meets an agent with live bit 1 (an
awake agent), the former copies the data bit of the latter.

Prove that the “parity protocol” stably computes the predicate (x; mod 2 = 1),
which is true iff there is an odd number of 1’s in the input.

Exercise 5 Given a population protocol A, if Q is the set of .A’s states and if .4 runs
on the complete communication graph of n nodes (basic model), show that there are
Q-1 .
(1 + ﬁ) different configurations.
Semilinear predicates are predicates whose support is a semilinear set. A semi-

linear set is the finite union of linear sets. A set of vectors in INF is linear if it is of
the form
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{b + llal + 1232 +---+ lmam | li € IN}a

where b is a base vector, a; are basis vectors, and /; are nonnegative integer coef-
ficients. Moreover, semilinear predicates are precisely those predicates that can be
defined by first-order logical formulas in Presburger arithmetic, as was proven by
Ginsburg and Spanier [28].

Angluin et al. proved in [2] that any semilinear predicate is stably computable by
the basic population protocol model and in [5] that any stably computable predicate,
by the same model, is semilinear, thus together providing an exact characterization
of the class of stably computable predicates:

Theorem 1 ([2, 5]) A predicate is stably computable by the basic population proto-
col model iff it is semilinear.

An immediate observation is that predicates like “the number of ¢’s is the product
of the number of a’s and the number of b’s (in the input assignment)” and “the
number of 1’s is a power of 2” are not stably computable by the basic model.

A graph family, or graph universe, is any set of communication graphs. Let G be a
graph family. Forany G € G, and given that X is the input alphabet of some protocol
A, there exists a set X of all input assignments appropriate for G, defined as Xg =
XV(©) Let now Xg = Ugeg(Xo x {G}) or, equivalently, Xg = {(x,G) | G €
G and x is an input assignment appropriate for G}. Then we have the following
definition:

Definition 4 A population protocol A stably computes a predicate p : Xg — {0, 1}
in a family of communication graphs G, if, for any G € G and any x € Aj, every
computation of A on G beginning from Cy = I o x reaches in a finite number of
steps an output-stable configuration Csple such that yc ... (1) = p(x, G) for all
u e V(G).

Moreover, if p is a mapping from G to {0, 1}, that is, a graph property (obvi-
ously, independent of the input assignment), then we say that .4 stably computes
property p.

Note that we can also consider undirected communication graphs. In the case of
an undirected graph we only require that E is symmetric, but we keep the initiator—
responder assumption. The latter is important to ensure deterministic transitions,
since otherwise we would not be able to know which agent applies §; and which &;.

5.3 Mediated Population Protocols

Consider now the following question: “Is there a way to extend the population
protocol model and obtain a stronger model, without violating the uniformity and
anonymity properties”? As we shall, in this section, see, the answer is in the affirma-
tive. Although the idea is simple, it provides us with a model with significantly more
computational power and extra capabilities in comparison to the population protocol
model. The main modification is to allow the edges of the communication graph to
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store states from a finite set, whose cardinality is independent of the population size.
Two interacting agents read the corresponding edge’s state and update it, according
to a global transition function, by also taking into account their own states.

5.3.1 Formal Definition

Definition 5 A mediated population protocol (MPP)isa 12-tuple (X, Y, O, I, O, S, ¢,
w,r, K,c,8),where X, Y, Q, S and K are all finite sets and

X is the input alphabet,

Y is the output alphabet,

Q is the set of agent states,

1 : X — Q is the agent input function,

O : Q — Y is the agent output function,

S is the set of edge states,

t: X — Sisthe edge input function,

w : S — Y is the edge output function,

r is the output instruction (informing the output-viewer how to interpret the
output of the protocol),

10. K is the totally ordered cost set,

11. ¢: E — K is the cost function, and

12. §: 0 x O x K xS§— Qx Q0 x K x §is the transition function.

VXN B LD =

We assume that the cost remains the same after applying § and so we omit specifying

an output cost. If 8(¢;, ¢j, x,s) = (ql’ , q}, s’ ) (which, according to our assump-
tion, is equivalent to 8(g;, g, x,s) = (qi’,q},x,s’)), we call (gi,q;j,x,s) —

(q;, q}, s’) a transition, and we define 81(q;, qj, x,s) = q/, 82(qi, qj. x,5) = q}

and 83(gi, qj, x,s) = s'. Here, we, additionally, call 83 the edge acquisition (after
the corresponding interaction).

In most cases we assume that K C Z™ and that cpax = maxyeg {w} = O(1).
Generally, if cpax = maxyeg {|w|} = O(1) then any agent is capable of storing at
most k cumulative costs (at most the value kcpax), for some k = O(1), and we say
that the cost function is useful (note that a cost range that depends on the population
size could make the agents incapable for even a single cost storage and any kind of
optimization would be impossible).

A network configuration is a mapping C : VU E — Q U § specifying the
agent state of each agent in the population and the edge state of each edge in the
communication graph. Let C and C’ be network configurations, and let u, v be

distinct agents. We say that C goes to C’ via encounter ¢ = (u, v), denoted C 5
C,if
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C'(u) = 81(C(u), C(v), x, C(e))
C'(v) = 8(C(u), C(v), x, C(e))
C'(e) = 83(C(u), C(v), x, C(e))
C'(z) =C(z), forallz € (V — {u, v}) U(E —e).

The definitions of execution and computation are the same as in the population pro-
tocol model but concern network configurations. Note that the mediated population
protocol model preserves both uniformity and anonymity properties. As a result, any
MPP’s code is of constant size and, thus, can be stored in each agent (device) of the
population.

A configuration C is called r-stable if one of the following conditions holds:

e If the problem concerns a subgraph to be found, then C should fix a subgraph
that will not change in any C’ reachable from C.

e If the problem concerns a function to be computed by the agents, then an r-stable
configuration drops down to an output-stable configuration.

We say that a protocol A stably solves a problem [T, if for every instance I of
IT and every computation of .4 on I, the network reaches an r-stable configuration
C that gives the correct solution for / if interpreted according to the output instruc-
tion r. If instead of a problem I7 we have a function f to be computed, we say that
A stably computes f.

In the special case where IT is an optimization problem, a protocol that stably
solves [I7 is called an optimizing population protocol for problem I1.

Example 3 We will present now a MPP with a leader that stably solves the following
problem:

Problem 1 (Transitive Closure) We are given a complete directed communication
graph G = (V, E). Let E’ be a subset of E. For all ¢ € E’ it holds that initially
the state of e is 1. We are asked to find the transitive closure of G’, that is, find a
new edge set E* that will contain a directed edge (u, v) joining any nodes u, v for
which there is a non null path from « to v in G’ (note that always E’ C E*).

We assume a controlled input assignment W : E — X that allows us to give
input 1 to any edge belonging to E’ and input O to any other edge. Moreover, we
assume that initially all agents are in state go, except for a unique leader that is in
state /. O

The MPP TranClos (Protocol 3) stably solves the transitive closure problem
(Problem 1). You are asked to prove this in Exercise 6. Let us, first, explain one
after the other the protocol’s components before explaining its functionality (that is,
what is done by the transition function §). Both the input alphabet X and the output
alphabet Y are binary, that is, both consist of the symbols 0 and 1. The set of agent
states Q consists of the states /, qo, q1, qi, q2, qé, and g3, which are the states that
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Protocol 3 TranClos

X=v=1{01)
0={l.q90.91.4.92. 95 43}
S=1{0,1}

. controlled input assignment: “W (e') = 1, forall ¢’ € E', and W(e) =0, foralle € E — E"”

t(x) =x,forallx € X

w(s) =s,foralls € §

: r: “Collect the subgraph induced by all e € E for which w(s.) = 1 (where s, is the state of
o)

8: &:

A A S o

(., 90.0) = (q0.1,0) (@2.90. 1) = (g}, g3.1)
(,q0. 1) = (q1.92, 1) (q1.93.x) = (4,490, 1), forx € {0, 1}
(q1.92.1) = (q0.1, 1) (q].45. 1) > (q0.1, 1)

agents may obtain during the protocol’s computations. The set of edge states S is
binary, which means that the edges joining the agents will at any time be in one of
the states 0 and 1. The controlled input assignment simply specifies that all edges
belonging to E’ are initially in state 1 (by taking into account that ¢(x) = x, for all
x € X) and all remaining edges of the communication graph are initially in state 0.
This is done in order to help the protocol distinguish E’. w(s) = s, forall s € S,
simply says that the output of any edge is its current state, thus, either O or 1. Finally,
the output instruction r informs the user that the protocol’s output will consist of all
edges that will eventually output the value 1. In this case, these edges will form the
transitive closure of the communication graph G. We next discuss the protocol’s
functionality, which is described by the transition function §.

The protocol TranClos (Protocol 3) repeats the following procedure. Initially, by
assumption, there is a unique leader u in state / and all the other agents are in gg.
When the leader u interacts with an agent v in gg through (u, v) in state O, the agents
swap states, that is, now v is the unique leader. If, instead, (u, v) is in state 1, then
the leader gets g1 and v gets g. After the latter has happened, all agents are in gg
except for u and v which are in g; and g3, respectively, while (u, v) is in state 1,
and only the rules (g1, g2, 1) — (qo,/, 1) and (g2, g0, 1) — (qé q3, 1) can apply
(all the other rules have no effect). If the former applies first, then the population
goes to a configuration similar to the initial one, with a unique leader and all the
other agents in go. This rule is important (although maybe not obvious why) since
it guarantees that, if v, which is in g7, has no outgoing neighbor w, where q,, = qo
and s(,,w) = 1, then the protocol will not get stuck. If, instead, the latter applies
first, then v has interacted with an agent w in g9 where (v, w) is in state 1. Now
v gets g5 and w gets g3. After this step, the protocol has formed the directed path
uvw, with agent states ¢, qé, q3, respectively, and (u, v), (v, w) (i.e., the edges of
the path) in state 1. From now on, only (¢1, g3, x) — (qi, q0, 1) can apply, which
simply assigns state 1 to the edge (1, w). Finally, the population remains again with
a unique leader, v, and all the other agents in gq, simply proceeding with the same
general operation that we have just described.
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Exercise 6 Give a formal proof that the MPP TranClos (Protocol 3) stably solves
the transitive closure problem (Problem 1).

Exercise 7 Assume that the input symbols are only 0 and 1 and that the communica-
tion graph G = (V, E) is any directed graph. Let G’ be the subgraph of G induced
by V/ = {u € V | u gets the input symbol 1}. Devise a MPP that will construct
a (not necessarily connected) subgraph G” = (V”, E”) of G’, in which all nodes
have in degree at most 1 and out degree at most 1.

5.3.2 Computational Power

The population protocol model is a special case of the mediated population protocol
model (try to prove it). Moreover, as we shall see, there exists a MPP protocol that
stably computes the non semilinear predicate (N, = N,-Nj). In words, it eventually
decides whether the number of ¢’s in the input assignment is equal to the product of
the number of a’s and the number of 5’s. The following definitions will prove useful
for our purpose.

Definition 6 A MPP A has stabilizing states if in any computation of A, after a
finite number of interactions, the states of all agents stop changing.

Definition 7 We say that a predicate is strongly stably computable by the MPP
model if it is stably computable with the predicate output convention, that is, all
agents eventually agree on the correct output value.

Protocol 4 kkkVarProduct

I: X ={a,b,c,0}

2: Y ={0, 1}

3: Q={a,a,b,c,c 0}
4: §={0,1}

5: I(x) =x,forallx € X
6: O(a)=0Mb)=0()=00)=1land O(c)=0()=0

7: 1(x) =0, forallx € X

8: r: “If there is at least one agent with output 0, reject; otherwise, accept.”
9: §:(a,b,0) - (a, b, 1), (c,a,0) — (¢,a,0),(a,c,0) — (a,c,0)

Theorem 2 The MPP VarProduct (Protocol 4) stably computes (according to the
output instruction r) the predicate (N, = N - Np) in the family of complete directed
communication graphs.

Proof Notice that the number of links leading from agents in state a to agents in
state b equals N, - Np. For each a the protocol tries to erase b ¢’s. Each a is able to
remember the b’s that it has already counted (for every such b a ¢ has been erased)
by marking the corresponding links. If the ¢’s are less than the product then at least
one a remains and if the ¢’s are more at least one ¢ remains. In both cases at least one
agent that outputs 0 remains. If N. = N, - N, then every agent eventually outputs 1.
O
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Theorem 3 Let p be any predicate on input assignments. Let A be a MPP that
stably computes p with stabilizing states in some family of directed and connected
communication graphs G and also assume that A contains an instruction r that
defines a semilinear predicate t on multisets of A’s agent states. Since t is semilin-
ear, it is stably computable with stabilizing inputs by the PP model [1, 5], and, thus,
by the MPP model. Let I3 be a MPP that strongly stably computes t with stabilizing
inputs in G.

If all the above hold then A can be composed with B to give a new MPP C
satisfying the following properties:

C is formed by the composition of A and B,

its input is A’s input,

its output is B’s output, and

C strongly stably computes p (i.e., all agents agree on the correct output) in G.

Exercise 8 Prove Theorem 3.
Hint: B will make use of the stabilizing inputs idea from [1]; its inputs that eventu-
ally stabilize are A’s states.

Theorems 2 and 3 together imply that the MPP model strongly stably computes
VarProduct which is non semilinear. Since the MPP model strongly stably computes
a non semilinear predicate and the PP model is a special case of MPP, it follows
that the class of computable predicates by MPP is a proper superset of the class of
computable predicates by PP. In other words, the MPP model is computationally
stronger than the PP model.

In what concerns the class of stably computable predicates by MPP, recent
(unpublished) research shows that it is a superset of SSPACE(n) (symmetric predi-
cates in LINSPACE). We also know the following upper bound: “Any predicate that
is stably computable by the MPP model in any family of communication graphs
belongs to the space complexity class NSPACE(m)” (recall that m = |E|). The
idea is simple: By using the MPP that stably computes the predicate we construct
a nondeterministic Turing Machine that guesses in each step the next selection of
the scheduler (thus the next configuration). The machine always replaces the current
configuration with a new legal one, and, since any configuration can be represented
explicitly with O(m) space, any branch uses O(m) space. The machine accepts if
some branch reaches a configuration C that satisfies instruction r of the protocol,
and if, moreover, no configuration reachable from C violates r (i.e., C must also be
r-stable).

5.4 The GDM Model

Here we deal with MPP’s ability to decide graph languages. To do so, we consider a
special case of the mediated population protocol model, the Graph Decision Medi-
ated population protocol model, or simply GDM model.
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5.4.1 Formal Definition

Definition 8 A GDM protocol is an 8-tuple (Y, Q, O, S, r, §, qo, So), where Y, Q,
and S are all finite sets and

Y = {0, 1} is the binary output alphabet,

Q is the set of agent states,

O : Q — Y is the agent output function,

S is the set of edge states,

r is the output instruction,

8:0x 0 xS — Qx Q xS isthe transition function,
qo € Q is the initial agent state, and

so € S is the initial edge state.

PN B LD =

If8(a, b,s) = (a’,b',s"), wecall (a,b,s) — (a’,b,s’) atransition and we define
Si(a,b,s) =a’,8(a,b,s) =b',and 83(a, b, s) =s'.

Let U be a graph universe. A graph language L is a subset of U/ containing
communication graphs that possibly share some common property. For example,
a common graph universe is the set of all possible directed and weakly connected
communication graphs, denoted by G, and L = {G € G | G has an even number of
edges} is a possible graph language w.r.t. G.

A GDM protocol may run on any graph from a specified graph universe. The
graph on which the protocol runs is considered as the input graph of the protocol.
Note that GDM protocols have no sensed input. Instead, we require each agent in
the population to be initially in the initial agent state go and each edge of the com-
munication graph to be initially in the initial edge state so. In other words, the initial
network configuration, Cy, of any GDM protocol is defined as Co(1) = go, for all
u € V,and Co(e) = sp, for all e € E, and any input graph G = (V, E).

We say that a GDM protocol A accepts an input graph G if in any computation
of A on G after finitely many interactions all agents output the value 1 and continue
doing so in all subsequent (infinite) computational steps. By replacing 1 with 0 we
get the definition of the reject case.

Definition 9 We say that a GDM protocol A decides a graph language L C U if it
accepts any G € L and rejects any G ¢ L.

Definition 10 A graph language is said to be GDM-decidable, or simply decidable,
if some GDM protocol decides it.

5.4.2 Weakly Connected Graphs

5.4.2.1 Decidability

The most meaningful graph universe is G containing all possible directed and
weakly connected communication graphs, without self-loops or multiple edges, of
any finite number of nodes greater than or equal to 2 (we do not allow the empty
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graph, the graph with a unique node and we neither allow infinite graphs). Here the
graph universe is G and, thus, a graph language can only be a subset of G (moreover,
its elements must share some common property).

We begin with some easy to prove, but often useful, closure results.

Theorem 4 The class of decidable graph languages is closed under complement,
union, and intersection operations.

Proof First we show that for any decidable graph language L its complement L is
also decidable. From the definition of decidability there exists a GDM protocol Ay
that decides L. Thus, for any G € G and any computation of A;, on G all agents
eventually output 1 if G € L and 0 otherwise. By complementing the output map
O 4 of A we obtain a new protocol A, with output map defined as O4(q) = 1iff
0.4(q) =0, forallg € Q 4 = O, whose agents eventually output 1 if G ¢ L and
0 otherwise, thus deciding L.

Now we show that for any decidable graph languages L and Ly, L3 = L1 U Ly
is also decidable. Let .A; and A be GDM protocols that decide L1 and L, respec-
tively (we know their existence). We let the two protocols operate in parallel, i.e., we
devise a new protocol A3 whose agent and edge states consist of two components,
one for protocol A; and one for A;. Let O; and O, be the output maps of the two
protocols. We define the output map O3 of Az as O3(q, g’) = 1 iff at least one of
01(q) and O2(q") equals to 1, forallg € Q 4, and ¢’ € Q 4,. If G € L3 then at
least one of the two protocols has eventually all its agent components giving output
1, thus A3 correctly answers “accept”, while if G ¢ L3 then both protocols have
eventually all their agent components giving output 0, thus A3 correctly answers
“reject”. We conclude that A3 decides L3 which proves that L3 is decidable.

By defining the output map O3 of A3 as O3(q, ¢') = 1iff O1(q) = 02(¢") =1,
forallg € Q4, and ¢’ € Q 4,, and making the same composition as before, it is
easy to see that in this case .43 decides the intersection of L and L.

Note, however, that in each union and intersection operation the resulting proto-
col’s size is the product of the sizes of the composed protocols. It follows that the
closure under these two operations can only hold for a constant number of subse-
quent applications. O

Example 4 Let us now illustrate what we have seen so far by presenting a parametric
GDM protocol that decides the graph language N'' = {G € G | G has some node
with at least k outgoing neighbors} for any k = O(1).

We provide a high-level description of the protocol. Initially all agents are in
qo and all edges in 0. The set of agent states is Q = {qo, . . ., gk}, the set of edge
states is binary and the output function is defined as O(qx) = 1 and O(g;) = 0 for
alli € {0, ...,k — 1}. We now describe the transition function. In any interaction
through an edge in state 0, the initiator visits an unvisited outgoing edge, so it marks
it by updating the edge’s state to 1 and increases its own state index by one, e.g.,
initially (qo, go, 0) yields (g1, qo, 1), and, generally (¢;, g;,0) — (giy1,q;, D), if
i+1 <kandj <k,and (g;,q;,0) = (g, g, 1), otherwise. Whenever two agents
meet through a marked edge they do nothing, except for the case where only one
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of them is in the special alert state g. If the latter holds, then both go to the alert
state, since in this case the protocol has located an agent with at least k& outgoing
neighbors. To conclude, all agents count their outgoing edges and initially output 0.
Iff one of them marks its kth outgoing edge, both end points of that edge go to an
alert state gy that is eventually propagated to the whole population and whose output
is 1, indicating that G belongs to NY"'. Clearly, the described protocol decides NY™,
which means that N?" is a decidable graph language. Moreover, the same must hold

for Nzut because, according to Theorem 4, the class of decidable graph languages

is closed under complement. Note that N,‘j“‘ contains all graphs that have no node
with at least k = O(1) outgoing neighbors. In other words, the GDM model can
decide if all nodes have less than k outgoing edges, which is simply the well-known
bounded by k out degree predicate. O

Example 5 We show now that the graph language Py = {G € G | G has at least one
directed path of at least k edges} is decidable for any k = O(1) (the same holds for
Pp).

If k = 1 the protocol that decides P is trivial, since it accepts iff at least one
interaction happens (in fact it can always accept since all graphs have at least two
nodes and they are weakly connected, and thus P; = G). The protocol DirPath
(Protocol 5) that we have constructed decides Py for any constant k > 1.

Protocol 5 DirPath

:0=A{q0,q1,1,....k}

: §S={0,1}

O(k)=1,0(q)=0,forallqg € Q — {k}
2 r:“Getany u € V and read its output”
8:

AW -

4

(90, g0, 0) = (g1, 1, 1)
(q1.x,1) > (x = 1,¢0,0), ifx >2
— (40,90, 0), ifx =1
(x,90,0) > (g1, x+ 1, 1), ifx +1 <k
— (k,k,0), ifx+1=k
(k- ) = (k,k,-)
Gk, ) = (k, k)

Initially all nodes are in g¢ and all edges in 0. The protocol tries to expand disjoint
paths. When rule (g, g0, 0) — (q1, 1, 1) applies, the initiator goes to ¢ indicating
that it is a node of an active path, the responder goes to 1 indicating that it is the
head of an active path of length 1, and the edge goes to 1 indicating that it is part
of an active path. By inspecting the transition function it is easy to see that the
nodes of two disjoint active paths have no way of interacting with each other (in
fact, the interactions happening between them leave their interacting components
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unaffected). This holds because all nodes in g; do nothing when communicating
through an edge in state 0 and disjoint active paths can only communicate through
edges in state 0. Moreover, the heads of the paths only expand by communicating
with nodes in gp which, of course, cannot be nodes of active paths (all nodes of
active paths are in g; except for the heads which are in states from {1, ...,k —
1}). There are two main possibilities for an active path: either the protocol expands
it, thus obtaining a node and an edge and increasing the head counter by one, or
shrinks it, thus releasing a node and an edge and decreasing the head counter by
one. Eventually, a path will either be totally released (all its nodes and edges will
return to the initial states) or it will become of length k. In the first case the protocol
simply keeps working but in the second, a path of length at least k was found and
state k that outputs 1 is correctly propagated. The crucial point is that state & is the
only state that outputs 1 and can only be reached and propagated by the agents iff
there exists some path of length at least k. Moreover, if such a path exists, due to
fairness assumption, the protocol will eventually manage to find it. O

The following graph languages are also decidable by the GDM model:

I. Neven =1{G € G| |V(G)] is even}.

2. Eeven = {G € G | |[E(G)] is even}.

3. K ,?u‘ = {G € G | Any node in G has at least k outgoing neighbors} for any
k=0(@).

4. Moww = {G € G | G has some node with more outgoing than incoming
neighbors}.

Of course, by closure under complement, the same holds for their complements.

Exercise 9 Do you think it is possible to construct a GDM protocol that decides
the graph language consisting of all directed and weakly connected communication
graphs in which all nodes have at most k = O(1) incoming edges and in which the
number of nodes is at least 5% of the number of edges? If yes, construct the protocol
and prove its correctness; if no, explain why.

5.4.2.2 Undecidability

If we allow only GDM protocols with stabilizing states, i.e., GDM protocols that
in any computation after finitely many interactions stop changing their states, then
we can prove that a specific graph language w.r.t. G is undecidable. In particular,
we can prove that there exists no GDM protocol with stabilizing states to decide the
graph language

2C = {G € G | G has at least two nodes u, v s.t. both (u, v), (v, u)
€ E(G) (in other words, G has at least one 2-cycle)}.

The proof is based on the following lemma.



130 P.G. Spirakis
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(a) Graph G (b) Graph G’

Fig.5.1 G € 2C and G’ ¢ 2C

Lemma 1 For any GDM protocol A and any computation Cy, C1, Ca, ...of Aon G
(Fig. 5.1a) there exists a computation Cy, C{, C5, ..., C/,...of Aon G’ (Fig. 5.1b)
S.L.

Ci(v1) = Cy;(uy) = Cy;(u3)
Ci(v2) = Cy;(u2) = Cy;(ug)
Ci(er) = Cy (1) = Cy;(13)
Ci(e2) = Cy;(12) = Ch; (1)

for any finite i > 0.
Exercise 10 Prove Lemma 1 by using induction on i.

Lemma 1 shows that if a GDM protocol A with stabilizing states could decide
2C then there would exist a computation of A on G’ forcing all agents to output
incorrectly the value 1 in finitely many steps. But G’ does not belong to 2C, and,
since A decides 2C, all agents must correct their states to eventually output 0. By
taking into account the fact that A has stabilizing states it is easy to reach a con-
tradiction and prove that no GDM protocol with stabilizing states can decide 2C.
Whether the graph language 2C is undecidable by the GDM model in the general
case (not only by GDM protocols with stabilizing states) remains an interesting open
problem.

5.4.3 All Possible Directed Graphs

It is not hard to show that if the graph universe, 7, is allowed to contain also dis-
connected communication graphs, then in this case the GDM model is incapable
of deciding even a single nontrivial graph language (we call a graph language L
nontrivial if L # () and L # 'H). Here we assume the graph universe H consisting
of all possible directed communication graphs, without self-loops or multiple edges
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of any finite number of nodes greater or equal to 2 (we now also allow graphs that
are not even weakly connected). So, now, a graph language can only be a subset
of H.

The crucial part is to show that for any nontrivial graph language L, there exists
some disconnected graph G in L where at least one component of G does not belong
to L or there exists some disconnected graph G’ in L where at least one component
of G’ does not belong to L (or both). If the statement does not hold then any discon-
nected graph in L has all its components in L and any disconnected graph in L has
all its components in L.

1. All connected graphs belong to L. Then L contains at least one disconnected
graph (since it is nontrivial) that has all its components in L, which contradicts
the fact that the components of any disconnected graph in L also belong to L.

2. All connected graphs belong to L. The contradiction is symmetric to the previous
case.

3. L and L contain connected graphs G and G’, respectively. Their disjoint union
U = (VUV', EUE’) is disconnected, belongs to L or L but one of its com-
ponents belongs to L and the other to L. The latter contradicts the fact that both
components should belong to the same language.

Now it will not be hard to prove the impossibility result as an exercise.

Exercise 11 Prove that any nontrivial graph language L C H is undecidable by the
GDM model.

Hint: notice that agents of different components cannot communicate with each
other.

Exercise 12 Do you think that Connectivity property is GDM-decidable?

5.5 Community Protocols

In this section, we present the Community Protocol model, which was proposed
by Guerraoui and Ruppert [29] and is another extension of the population protocol
model. In fact, this, recently proposed, model makes the assumption that the agents
are equipped with unique ids and are also allowed to store a fixed number of other
agents’ ids. The term “community” in the model’s name is used to emphasize the
fact that the agents here form a collection of unique individuals similar to the notion
of a human community, in contrast to a population which is merely an agglomeration
of nameless multitude.

5.5.1 The Model

As usual, we start with a formal definition of the model, and then a somewhat infor-
mal description of its functionality follows.
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Definition 11 Let U be an infinite ordered set containing all possible ids. A Com-
munity Protocol Algorithm is an 8-tuple (X, Y, B,d, I, O, Q, §), where X, Y, and
B are all finite sets and

X is the input alphabet,

Y is the output alphabet,

B is the set of basic states,

d is a nonnegative integer representing the number of ids that can be remembered
by an agent,

I : X — B is the input function mapping input symbols to basic states,

O : B — Y is the output function mapping basic states to outputs,

Q = B x (U U{L})? is the set of agent states, and

. §:0 x Q — Q x Q isthe transition function.

il

© N oW

If 8(a,b) = (d’, b"), we call (a, b) — (d’, b') a transition and we define §; (a, b) =
a’ and 8(a,b) =b'.

The first obvious difference between this and the population protocol model is
that the agent states are allowed to contain up to d ids. Additionally, each agent is
assumed to have its own unique id from the industry (which is an element of U).
As in the population protocol model, initially each agenti € {1, ..., n} receives an
input symbol from X. Note that the ith agent is the agent whose id is in position i
in the ascending ordering of agent ids. An input assignment x € X = X" is again
any n-vector of input symbols, where x; is the input to agent i. Moreover, let id;
denote the actual id of agent i and b; = I (x;) (that is, the initial basic state of agent
i). Then the initial state of each agent i is of the form (b;, id;, L, L, ..., L). Thus,
initially, each agent i is in basic state b;, contains its own unique id id; in the first
position of its list of ids, and the remaining list is filled with d — 1 repetitions of the

symbol L.

A configuration C is a vector in Q" of the form C = (q1, q2, . .., qn), Where g;
is simply the state of agent i for all i € {1, ..., n}. Thus, the initial configuration
corresponding to input assignment x is ((b;,id;, L, L, ..., J-))1'X=|1’ where again

b; = I(x;) and id; is the actual id of agent i. The notions of execution, computa-
tion, and fairness are defined in the same way as in the population protocol model.
Moreover, we will call the community protocol model, in which the communication
graph is directed and complete, basic community protocol model (like we did with
the population protocol model). The scheduler choosing the interactions is again
assumed to be fair.

The output of an agent at any step of the computation is the output of its basic
state. For example, the output of an agent in state (b;, id;, 1,5,..., 1) is O(b;) €
Y. A community protocol algorithm for the basic model stably computes a function
f : XZ2 — Y, where X=2 denotes the set of all finite strings over X of length at
least 2, if for any x € X=? and any assignment of the symbols in x to the nodes
of the complete communication graph of |x| nodes, all agents, independently of
the fair computation followed, eventually stabilize to the output f(x), that is, a
configuration is reached under which all agents output f(x) and continue doing so
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forever, no matter how the computation proceeds thereafter (such a configuration is,
as usual, called an output-stable configuration).

As in population protocols, algorithms are uniform (but, clearly, not anonymous).
The reason is that their description makes no assumption of the community size n;
thus their functionality remains identical for all complete communication graphs.
That is why the set of ids U is infinite. The suspicious reader would notice that if
we do not impose further restrictions on the model then the agents can use their
d slots to store arbitrary amounts of information (by exploiting the fact that U is
defined to be infinite), which is artificial. To avoid this, we impose a local knowledge
constraint, according to which agents can only store ids that they have learned from
other agents via interactions with them. To formalize this, let /(g) denote the set
of different ids appearing in the list of ids of state g. If §(gq1, q2) = (q{ , qé) and
id € 1(q]) Ul(g}) then id € I(q1) Ul(g2) (in words, no new ids appear in the
outcome of an interaction).

Additionally, an operational constraint is imposed that allows no other operations
except for comparisons to be performed on ids by the agents. This constraint is only
imposed to keep the model minimal, because it turns out that, even in the presence
of this constraint, the model is surprisingly strong (computationally). Intuitively, if
((b1,...), (b2, ..)) = ((b]....). (b5, ...)) is a transition in 8, then any transition
with precisely the same basic states in which the ids of the lhs are replaced by ids
that preserve the order (which, according to the local knowledge constraint, implies
that also the ids in the rhs will preserve the order) also belongs to 8. Since this may
be a little subtle, another way to think of it is the following. All interactions that do
not differ w.r.t. the basic states of the agents and whose lists of ids contain ids that
preserve the order, provide the agents with the same new pair of basic states and
with new lists of ids that do not different w.r.t. the order of ids.

To make this precise, let §(q1, g2) = (qi, qé) Moreover, let id| < idy < --- <
id be allids in I(q1) Ul(g2) Ul (q1) Ul (g}) and letid| < id) < --- < id} be ids.
If p(g) is the state obtained from g by replacing all occurrences of each id id; by
id!, then we require that §(p(q1), p(q2)) = (p (q1) . p (¢5)) also holds.

Example 6 Assume that§((by, 1,2, 1),(bp,7, L, 1)) = ((b/1 1,7, J_),(b’z, 2,2, 1))
Then it holds that §((b1,2,5, 1), (b2,8, L, 1)) = ((b’1 2,8, J_) , (l/2 5,5, 2))
The reason is that 1 < 2 < 7 and 2 < 5 < 8 and we have replaced 1 by 2,
2 by 5, and 7 by 8, thus preserving the order of ids. Generally, §((b1, idy, ida, L),
(by.ids, L, 1)) = ((b).id1,ids, L), (b, ids,id>, id1)) musthold forallid;, ida,
idy € U, where id| < idy < idj3, for the same reason. O

Exercise 13 Consider a transition function § and let §(q1, ¢2) = (¢, g5) be any
transition. Let b, denote the basic state of state ¢, and id,, ; the jth id in the id list
of g. § is defined as follows. If b, = by, then nothing happens. If b;, # by, then

o Ifidy j > idy, jandidy, j,idy, j # L forsome j € {2,...,d} thenidy ;=1
andzd/- idy, ;foralli € {2,...,d}, andb/_b/_bq1
° Elsezd/ i =landidy ; =idg foralll € {2 d},and by = byr = bg,.
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Does § satisfy the local knowledge and operational constraints? Support your
answer with a formal proof.

5.5.2 Computational Power

The community protocol model turns out to be extremely strong in terms of its
computational power. In fact it turns out that any symmetric predicate p : X=2 —
{0, 1} is (stably) computable by the basic community protocol model if and only
if it belongs to NSPACE(nlogn), where, as usual, n denotes the community size.
The reason that we consider symmetric predicates is that the identifiers of the model
cannot be used to order the input symbols; thus an algorithm’s functionality in the
basic model has to be identical for any permutation of the inputs w.r.t. to the agents’
ordering.

Definition 12 Let CP denote the class of all symmetric predicates p that are stably
computable by the basic community protocol model.

First of all, we prove that any stably computable symmetric predicate p is in
NSPACE (nlogn).

Theorem 5 ([29]) CP is a subset of NSPACE(n logn).

Proof We will construct a nondeterministic TM N that decides the language L, =
{x € X2 | p(x) = 1} (the support of p) using at most NPSACE(nlogn) =
NPSACE(] < x > |log| < x > |) cells on any branch of its computation. The
reason that the latter equality holds is that the input of p consists of n input symbols,
picked from the set X whose cardinality is independent of n. This means that for
any input x to the machine N (any element of L) it holds that | < x > | = O(n),
where 7 is the community size.

First of all, we make the following natural assumption: n agents have w.l.0.g. the
unique ids 1, 2, ..., n. This implies that each id occupies O(logn) cells in a TM.
Moreover, there are d id slots in an agent’s state, and since d is independent of n
again O(log n) cells suffice to store the list of ids of any state. The cardinality of B is
also independent of n; thus we conclude that O(log n) cells suffice to store any state
of Q. A configuration is simply a vector consisting of # states; thus a configuration
will occupy O(n log n) cells of memory storage.

To accept input x, N must verify two conditions: That there exists a configuration
C reachable from 7 (x) (that here denotes the initial configuration corresponding
to x), in which all basic states output p(x), and that there is no configuration C’
reachable from C, in which some basic state does not output p(x).

The first condition is verified by guessing and checking a sequence of config-
urations, starting from /(x) and reaching such a C. N guesses a C;y| each time,
verifies that C; — Cjy (begins from Cy = I(x), i.e., i = 0) and, if so, replaces
C; by Ci41, otherwise drops this C;41. The second condition is the complement
of a similar reachability problem. But NSPACE is closed under complement for
all space functions > logn (see Immerman—Szelepcsényi theorem [35]). Thus, by
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taking into account that only one configuration is kept at any step of any branch and
that the size of any configuration is O(nlogn), we conclude that N decides L, in
O(nlogn) space. O

A Schonhage’s Storage Modification Machine (SMM) is a kind of pointer
machine (not a distributed system). Its memory stores a finite directed graph of con-
stant out degree with a distinguished node called the center. The edges of the graph
are called pointers. The edges out of each node are labeled by distinct directions
drawn from a finite set A. For example, a reasonable implementation of A could
use all nonnegative integers up to the maximum out degree in the graph minus one.
Any string x € A* can be used as a reference to the node that is reached if we begin
from the center and follow the pointers whose labels are indicated by the sequence
of symbols in x. We denote the node indicated by x € A* by p*(x). The basic
operations of an SM M allow the machine to create nodes, modify pointers, and
follow paths of pointers. We now formalize the above description.

Definition 13 A Nondeterministic Storage Modification Machine (NSMM) is a 3-
tuple (X', A, P), where X' and A are both finite sets and

1. X is the input alphabet,
2. A is the set of distinct directions, and
3. P is the program, which is a finite list of instructions.

Inputs to the SMM are finite strings from X*. Programs may use instructions of the
following types:

e new: creates a node, makes it the center, and sets all its outgoing pointers to the
old center.

e recenter x, where x € A™: changes the center of the graph to p*(x).

e set x§toy, where x,y € A* and § € A: changes the pointer of node p*(x) that
is labeled by § to point to node p*(y).

e if x = y then goto |, where x,y € A*: jumps to (program) line [ if p*(x) =
P*(y).

e inputly,..., I, wherel, ..., [ are (program) line numbers: consumes the next
input symbol (if there is one) and jumps to line /; if that symbol is o;.

e output o, where o € {0, 1}: causes the machine to halt and output o.

e choose ly, 11, where [y and [ are line numbers: causes the machine to transfer
control either to line /o or to line /; nondeterministically.

When a node becomes unreachable from the center, it can be dropped from the
graph, since it plays no further role in the computation. Space complexity is mea-
sured by the maximum number of (reachable) nodes present at any step of any
branch of the machine’s nondeterministic computation.

It can be proved that any language decided by a nondeterministic Turing Machine
using O(S log S) space can be decided by an NSMM using S nodes. Thus, to prove
that all symmetric predicates in NSPACE (nlogn) also belong to CP it suffices to
show that there exists a community protocol that simulates an NSMM that uses
O(n) nodes. The latter can be shown but, unfortunately, the construction is quite
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involved, so we skip it. Now by taking into account Theorem 5 we get the following
exact characterization.

Theorem 6 ([29]) CP is equal to the class of all symmetric predicates in
NSPACE(nlogn).

5.6 Logarithmic Space Machines

In this section, we study another recently proposed model, called the PALOMA
model [14]. In fact, it is a model of PAssively mobile MAchines (that we keep
calling agents) equipped with two-way communication and each having a memory
whose size is LOgarithmic in the population size .

The reason for studying such an extension is that having logarithmic communi-
cating machines seems to be more natural than communicating automata of constant
memory. First of all, the communicating machines assumption is perfectly consistent
with current technology (cellphones, iPods, PDAs, and so on). Moreover, logarith-
mic is, in fact, extremely small. For a convincing example, it suffices to mention
that for a population consisting of 226 agents, which is a number greater than the
number of atoms in the observable universe, we only require each agent to have 266
cells of memory (while small-sized flash memory cards nowadays exceed 16GB
of storage capacity)! Interestingly, it turns out that the agents, by assigning unique
ids to themselves, are able to get organized into a distributed nondeterministic TM
that makes full use of the agents’ memories! The TM draws its nondeterminism by
the nondeterminism inherent in the interaction pattern. It is here like the nameless
multitude can turn itself into a well-organized community.

Definition 14 A PALOMA protocol A is a 7-tuple (X, X, I'", Q, 68, v, qo), where X,
X, I', and Q are all finite sets and

. X is the input alphabet, where #, Ll ¢ X,

X C X* is the set of input strings,

. I is the tape alphabet, where #, 1 € " and ¥ C I,

Q is the set of states,

6:0xTI — QxTI x{L,R} x{0,1}1is the internal transition function,

y 1 Ox 0 — O x Q isthe external transition function (or interaction transition
function), and

7. qo € Q is the initial state.

R

Each agent is equipped with the following:

e A sensor in order to sense its environment and receive a piece of the input (which
is an input string from X).

e A tape (memory) consisting of O(logn) cells. The tape is partitioned into three
parts each consisting of O(logn) cells: the leftmost part is the working tape, the
middle part is the output tape, and the rightmost part is the message tape (we
call the parts “tapes” because such a partition is equivalent to a 3-tape machine).
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The last cell of each part contains permanently the symbol # (we assume that the
machine never alters it); it is the symbol used to separate the three tapes and to
mark the end of the overall tape.

e A control unit that contains the state of the agent and applies the transition func-
tions.

e A head that reads from and writes to the cells and can move one step at a time,
either to the left or to the right.

e A binary working flag either set to 1 meaning that the agent is working internally
or to 0 meaning that the agent is ready for interaction.

Initially, all agents are in state go and all their cells contain the blank symbol
LI except for the last cell of the working, output, and message tapes that contain
the separator #. We assume that all agents concurrently receive their sensed input
(different agents may sense different data) as a response to a global start signal. The
input is a string from X and after reception (or, alternatively, during reception, in
an online fashion) it is written symbol by symbol on their working tape beginning
from the leftmost cell. During this process the working flag is set to 1 and remains
to 1 when this process ends (the agent may set it to 0 in future steps).

When its working flag is set to 1 we can think of the agent working as a usual
Turing Machine (but it additionally writes the working flag). In particular, whenever
the working flag is set to 1 the internal transition function § is applied, the control
unit reads the symbol under the head and its own state and updates its state and the
symbol under the head, moves the head one step to the left or to the right and sets
the working flag to O or 1, according to the internal transition function.

We assume that the set of states O and the tape alphabet I”, are both sets whose
size is fixed and independent of the population size (i.e., |Q| = |I"'| = O(1)); thus,
there is, clearly, enough room in the memory of an agent to store both the internal
and the external transition functions.

Again here, a fair adversary scheduler selects ordered pairs of agents to interact.
Assume now that two agents u and v are about to interact with u being the initiator
of the interaction and v being the responder. Let f : V. — {0, 1} be a function
returning the current value of each agent’s working flag. If at least one of f(u)
and f(v) is equal to 1, then nothing happens, because at least one agent is still
working internally. Otherwise (f(u) = f(v) = 0), both agents are ready and an
interaction is established. In the latter case, the external transition function y is
applied, the states of the agents are updated accordingly, the message of the initiator
is copied to the message tape of the responder (replacing its contents) and vice versa
(the real mechanism would require that each one receives the other’s message and
then copies it to its memory, because instant replacement would make them lose
their own message, but this can be easily implemented with O(logn) extra cells of
memory, so it is not an issue), and finally the working flags of both agents are again
setto 1.

Since each agent is a TM (of logarithmic memory), we use the notion of a con-
figuration to capture its “state”. An agent configuration is a quadruple (¢, [, r, f),
where ¢ € Q,1,r € rOUen — (s e * | |s] = O(logn)}, and f € {0, 1}.
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q is the state of the control unit, / is the string to the left of the head (including
the symbol scanned), r is the string to the right of the head, and f is the working
flag indicating whether the agent is ready to interact (f = 0) or carrying out some
internal computation (f = 1). Let B be the set of all agent configurations. Given
two agent configurations A, A’ € B, we say that A yields A’ if A’ follows A by a
single application of §.

A population configuration is a mapping C : V — B, specifying the agent
configuration of each agent in the population. Let C, C’ be population configurations
and let u € V. We say that C yields C’ via agent transition u, denoted C A it
C(u) yields C'(u) and C'(w) = C(w), Yw € V — {u}.

Let g(A) denote the state of an agent configuration A, /(A) its string to the left
of the head including the symbol under the head, r(A) its string to the right of the
head, and f (A) its working flag. Given two population configurations C and C’, we
say that C yields C' via encounter e = (u, v) € E, denoted C Sc ’.if one of the
following two cases holds:

Case 1:

e f(C(u)) = f(C(v)) = 0 which guarantees that both agents u and v are ready
for interaction under the population configuration C.

e 7(C(u)) and r(C(v)) are precisely the message strings of u and v, respectively
(this is a simplifying assumption stating that when an agent is ready to interact
its head is over the last # symbol, just before the message tape),

o C'(w) = (11(g(CW)), g(C(v))), L(CW)), r(C()), 1),

o C'(v) = (12(q(C(w)), g(C(V))), I(C(v)), r(Cu)), 1), and

e C'(w)=C(w),Yw € V — {u, v}.

Case 2:

e f(C(u)) =1or f(C(v)) = 1, which means that at least one agent between u
and v is working internally under the population configuration C, and

e C'(w) = C(w), Yw € V. In this case no effective interaction takes place, thus
the population configuration remains the same.

Generally, we say that C yields (or can go in one step to) C', and write C — C’,
if C 5 C forsome e € E (via encounter) or C % C’ for some u € V (via
agent transition), or both. We say that C’ is reachable from C, and write C el
if there is a sequence of population configurations C = Cy, Cy, ..., C; = C’ such
that C; — Cj4q holds foralli € {0, 1, ..., t—1}. An execution is a finite or infinite
sequence of population configurations Co, Ci ..., so that C; — C;11. An infinite
execution is fair if for all population configurations C, C’ such that C — C’,if C
appears infinitely often then so does C’. A computation is an infinite fair execution.

Note that the PALOMA model preserves uniformity, because X, I, and Q are
all finite sets whose cardinality is independent of the population size. Thus, protocol
descriptions have also no dependence on the population size. Moreover, PALOMA
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protocols are anonymous, since initially all agents are identical and have no unique
identifiers.

Example 7 We present now a PALOMA protocol that stably computes the predicate
(Ne = Ng-Np) (on the complete communication graph of n nodes) that is, all agents
eventually decide whether the number of c¢s in the input assignment is the product
of the number of as and the number of bs. We give a high-level description of the
protocol.

Initially, all agents have one of a, b, and ¢ written on the first cell of their working
memory (according to their sensed value). That is, the set of input strings is X =
Y = {a, b, c}. Each agent that receives input a goes to state a and becomes ready
for interaction (sets its working flag to 0). Agents both in state a and b do nothing
when interacting with agents in state a and agents in state b. An agent in c initially
creates in its working memory three binary counters, the a-counter that counts the
number of as, the b-counter, and the c-counter, initializes the a and b counters to 0O,
the c-counter to 1, and becomes ready. When an agent in state a interacts with an
agent in state ¢, a becomes a to indicate that the agent is now sleeping, and ¢ does the
following (in fact, we assume that ¢ goes to a special state ¢, in which it knows that
it has seen an a, and that all the following are done internally, after the interaction;
finally the agent restores its state to ¢ and becomes again ready for interaction): it
increases its a-counter by one (in binary), multiplies its a- and b-counters, which
can be done in binary in logarithmic space (binary multiplication is in LOGSPACE),
compares the result with the c-counter, copies the result of the comparison to its
output tape, that is, 1 if they are equal and O otherwise, and finally it copies the
comparison result and its three counters to the message tape and becomes ready
for interaction. Similar things happen when a b meets a ¢ (interchange the roles of
a and b in the above discussion). When a ¢ meets a ¢, the responder becomes ¢
and copies to its output tape the output bit contained in the initiator’s message. The
initiator remains to ¢, adds the a-counter contained in the responder’s message to its
a-counter, the b- and c-counters of the message to its b- and c-counters, respectively,
multiplies again the updated a- and b-counters, compares the result to its updated
c-counter, stores the comparison result to its output and message tapes, copies its
counters to its message tape, and becomes ready again. When a a, b, or ¢ meets a
c they only copy to their output tape the output bit contained in ¢’s message and
become ready again (e.g., a remains a), while ¢ does nothing.

Note that the number of cs is at most n which means that the c-counter will
become at most [logn] bits long, and the same holds for the a- and b-counters, so
there is enough room in the tape of an agent to store them.

Given a fair execution, eventually only one agent in state ¢ will remain, its a-
counter will contain the total number of as, its b-counter the total number of bs,
and its c-counter the total number of c¢s. By executing the multiplication of the a-
and b-counters and comparing the result to its c-counter it will correctly determine
whether (N, = N, - Np) holds and it will store the correct result (0 or 1) to its output
and message tapes. At that point all other agents will be in one of the states @, b,
and c. All these, again due to fairness, will eventually meet the unique agent in state
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¢ and copy its correct output bit (which they will find in the message they get from
¢) to their output tapes. Thus, eventually all agents will output the correct value of
the predicate. O

Exercise 14 Prove that the basic PALOMA model is strictly stronger than the basic
population protocol model, without exploiting the predicate (N, = N, - Np).

Hint: Find another non semilinear predicate that is (stably) computable by the basic
PALOMA model. Do not forget to show first that the basic PALOMA model is at
least as strong as the basic population protocol model.

Definition 15 Let PLM denote the class of all symmetric predicates p that are stably
computable by the basic PALOMA model.

Then, one can prove the following exact characterization for PLM [14]. Unfortu-
nately, this proof is also quite involved and due to space restrictions we skip it.

Theorem 7 PLM is equal to the class of all symmetric predicates in
NSPACE (nlogn).

5.7 Algorithmic Verification of Population Protocols

In order to apply our protocols to real-critical application scenarios, some form of
computer-aided verification is necessary. Even if a protocol is followed by a formal
proof of correctness it would be safer to verify its code before loading it to the real
sensor nodes.

It seems that the easiest (but not easy) place to start the investigation of veri-
fication is the basic population protocol model. In this model we can exploit the
fact that symmetry allows a configuration to be safely represented as a | Q|-vector
of non-negative integers. This section, based on [13], will reveal the inherent hard-
ness of algorithmic verification of basic population protocols but will also present a
promising algorithmic solution.

Section 5.7.1 provides all necessary definitions. Section 5.7.2 deals with the hard-
ness of algorithmic verification of basic population protocols; the general problem
and many of its special cases are proved to be hard. Section 5.7.3 studies an effi-
ciently solvable, but though almost trivial, special case. Finally, Sect. 5.7.4 presents
some non complete and one complete algorithmic solution.

5.7.1 Necessary Definitions

5.7.1.1 Population Protocols

We begin by revising all relevant definitions concerning the basic population pro-
tocol model, most of which are now presented in an alternative manner, because
throughout this section we will exploit the fact that symmetry allows a configuration
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to be represented as a | Q|-vector of nonnegative integers, and there is no need now
to use a function for this purpose.

In this section, the transition function § is also treated as a relation A C Q4,
defined as (g;, qj,qi, q:) € Aiff §(qi, q;) = (q1, ;). We assume that the commu-
nication graph is a complete digraph, without self-loops and multiple edges (that
is, we deal with the basic model). We denote by G* the complete communication
graph of k nodes.

Let now k = |V| denote the population size. An input assignment x is a mapping
from V = [k] to X (where [/], for | € Z~, denotes the set {1, ..., [}), assigning an
input symbol to each agent of the population. As already mentioned in Sect. 5.2.2,
since the communication graph is complete, due to symmetry, we can, equivalently,
think of an input assignment as a |X|-vector of integers x = (x;);e[ x|}, Where, for
all 7, x; is nonnegative and equal to the number of agents that receive the symbol
o; € X, assuming an ordering on the input symbols. We denote by X the set of all
possible input assignments. Note that for all x € & it holds that Zl.ill xi =k.

A state ¢ € Q is called initial if 1(0) = q for some 0 € X. A configuration
¢ is a mapping from [k] to Q, so, again, it is a | Q|-vector of non-negative integers
¢ = (¢i)ieqio) such that Z,‘gll ¢i = k holds. Each input assignment corresponds
to an initial configuration which is indicated by the input function /. In particular,
input assignment x corresponds to the initial configuration c(x) = (¢;(x))ie[0]>
where ¢;(x) is equal to the number of agents that get some input symbols o; for
which I (o) = g; (g; is the ith state in Q if we assume the existence of an ordering
on the set of states Q). More formally, c;(x) = Zj:l(aj):q,- xj foralli € [|Q]].
By extending / to a mapping from input assignments to configurations we can
write /(x) = c to denote that c is the initial configuration corresponding to input

assignment x. Let C = {(Ci)ie[\Q\] | ci € Z" and Zlgll ci = k} denote the set of

all possible configurations given the population protocol A and GX. Moreover, let
Cr = {c € C| I(x) = cforsomex € X} denote the set of all possible initial
configurations. Any r € A has four components which are elements from Q and we
denote by r;, where i € [4], the ith component (i.e., state) of r. r € Q4 belongs to
A iff §(ry, r2) = (r3, r4). We say that a configuration ¢ can go in one step to ¢’ via

.. . r .
transition r € A, and write ¢ — ¢/, if

e ¢; >ry2(i), foralli € [|Q]] for which g; € {r1, 2},
=c¢; —r1,2(0) +r3.4(i), forall i € [|Q[] for which g; € {r1, r2, r3, r4}, and
=cj,forall j € [|Q|] for whichg; € Q — {r1,r2, 73,74},

/

° cl/.
[ ] .
€
where r;;(i) denotes the number of times state g; appears in (77, r;). Moreover,
we say that a configuration ¢ can go in one step to a configuration ¢’, and write

. r . .
¢ — ¢ if ¢ - ¢ for some r € A. We say that a configuration ¢’ is reachable

from a configuration ¢, denoted ¢ 5 ¢ if there is a sequence of configurations
c=d ¢ ..., = ¢, such that ¢/ — ¢! foralli, 0 < i < ¢, where ¢
denotes here the (i + 1)th configuration of an execution (and not the ith component

of configuration ¢ which is denoted c;). An execution is a finite or infinite sequence
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of configurations ¢!, ... sothat ¢/ — ¢'t!. An execution is fair if for all con-
figurations ¢, ¢’ such that ¢ — ¢/, if ¢ appears infinitely often then so does ¢’. A
computation is an infinite fair execution. A predicate p is said to be stably com-
putable by a PP A if, for any input assignment x, any computation of .4 contains
an output-stable configuration in which all agents output p(x). A configuration ¢
is called output-stable if O(c) = O(c"), for all ¢’ reachable from ¢ (where O,
here, is an extended version of the output function from configurations to output
assignments in Y*). We denote by Cr = {c € C | ¢ = ¢/ = ¢’ = c} the set of
all final configurations. We can further extend the output function O to a mapping
from configurations to {—1, 0, 1}, defined as

0, ifO(m))=0, forallu e V
O(c) = 1, ifO(cm) =1, forallu eV
—1, if3Ju,v e Vst O(cm) # O(c(v)).

It is known [2, 6] that a predicate is stably computable by the PP model iff it can
be defined as a first-order logical formula in Presburger arithmetic. Let ¢ be such a
formula. There exists some PP that stably computes ¢, thus ¢ constitutes, in fact, the
specifications of that protocol. For example, consider the formula ¢ = (N, > 2Np).
¢ partitions the set of all input assignments, &', to those input assignments that
satisfy the predicate (that is, the number of as assigned is at least two times the
number of bs assigned) and to those that do not. Moreover, ¢ can be further extended
to a mapping from Cy to {—1, 0, 1}. In this case, ¢ is defined as

0, if¢p(x)=0, forallx € I"!(c)
d(c) = 1, ifepx)=1, forallx € I (c)
—1, ifdx,x e I"Y(c) st p(x) # P(x)),

where 1~!(c) denotes the set of all x € X for which I (x) = c holds (the preimage
of ¢).

We now define the transition graph, which is similar to that defined in [2],
except for the fact that it here contains only those configurations that are reach-
able from some initial configuration in C;. Specifically, given a population protocol
A and an integer k > 2 we can define the transition graph of the pair (A, k) as
G Ak = (Cy, Er), where the node set C, = C;U{c e C | ¢ X ¢ for some ¢’ € Cr}
of G, (we use G, as a shorthand of G 4 ) is the subset of C containing all initial
configurations and all configurations that are reachable from some initial one, and
the edge (or arc) set E, = {(c,c') | ¢,c’ € Crandc — ¢’} of G, contains a
directed edge (c, ¢’) for any two (not necessarily distinct) configurations ¢ and ¢’
of C, for which it holds that ¢ can go in one step to ¢’. Note that G, is a directed
(weakly) connected graph with possible self-loops. It was shown in [2] that given
a computation E, the configurations that appear infinitely often in E form a final
strongly connected component of G,. We denote by S the collection of all strongly
connected components of G,. Note that each B € § is simply a set of configurations.
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Moreover, given B, B’ € S we say that the B can go in one step to B, and write

B — B',ifc — ¢ forc € Band ¢ € B'. B > B’ is defined as in the case of
configurations. We denote by Is = {B € S | such that B N C; # {J} those compo-
nents that contain at least one initial configuration, and by Fs = {B € S | such that
B — B’ = B’ = B} the final ones. We can now extend ¢ to a mapping from g to
{—1,0, 1} defined as

0, ifp(c)=0, forallc € BNC;
¢(B) = 1, if¢(c)=1, forallc €e BNCy
—1, ifdc,c € BNCys.t. ¢p(c) # ¢(c),

and O to a mapping from Fg to {—1, 0, 1} defined as

0, ifO()=0, forallc € B
O(B) = 1, ifO()=1, forallc € B
-1, otherwise.

5.7.1.2 Problems’ Definitions

We begin by defining the most interesting and natural version of the problem of algo-
rithmically verifying basic population protocols. We call it GBPVER (“G” stand-
ing for “General’, “B” for “Basic”, and “P” for “Predicate”) and its complement
GBPVER is defined as follows:

Problem 2 (GBPVER) Given a population protocol A for the basic model whose
output alphabet Y 4 is binary (i.e., Y4 = {0, 1}) and a first-order logical formula
¢ in Presburger arithmetic representing the specifications of A, determine whether
there exists some integer k > 2 and some legal input assignment x for the complete
communication graph of k nodes, G¥, for which not all computations of .4 on G*
beginning from the initial configuration corresponding to x stabilize to the correct
output w.r.t. ¢.

A special case of GBPVER is BPVER (its nongeneral version as revealed by the
missing “G”), and is defined as follows.

Problem 3 (BPVER) Given a population protocol A for the basic model whose out-
put alphabet Y 4 is binary (i.e., Y4 = {0, 1}), a first-order logical formula ¢ in
Presburger arithmetic representing the specifications of .4, and an integer k > 2 (in
binary) determine whether A conforms to its specifications on G*.

“Conforms to ¢” here means that for any legal input assignment x, which is a
| X_4|-vector with nonnegative integer entries that sum up to k, and any computation
beginning from the initial configuration corresponding to x on G*, the population
stabilizes to a configuration in which all agents output the value ¢ (x) € {0, 1} (that
is, it is equivalent to “stably computes”, but we now view it from the verification
perspective). On the other hand, “does not conform” means that there is at least one
computation of A on G¥ which is unstable or the stable output does not agree with
¢ (x)—i.e., not all agents output the value ¢ (x).
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Problem 4 (BBPVER) BBPVER (the additional “B” is from “Binary input alpha-
bet”) is BPVER with A’s input alphabet restricted to {0, 1}.

5.7.2 NP-Hardness Results

5.7.2.1 BP Verification
We first show that BPVER is a hard computational problem.
Theorem 8 BPVER is coNP-hard.

Proof We shall present a polynomial-time reduction from HAMPATH = {< D,
s,t > | D is a directed graph with a Hamiltonian path from s to ¢ } to BPVER.
In other words, we will present a procedure that given an instance < D, s,t > of
HAMPATH returns in polynomial time an instance < A, ¢, k > of BPVER, such
that < D,s,t >€ HAMPATH iff < A, ¢,k >€ BPVER. If there is a hamiltonian
path from s to 7 in D we will return a population protocol A that for some compu-
tation on the complete graph of k nodes fails to conform to its specification ¢, and
if there is no such path all computations will conform to ¢.

We assume that all nodes in V(D) — {s, t} are named ¢, ..., gn—2, Where n
denotes the number of nodes of D (be careful: n does not denote the size of the
population, but the number of nodes of the graph D in HAMPATH’s instance). We
now construct the protocol A = (X, Y, Q. I, O, §). The output alphabet Y is {0, 1}
by definition. The input alphabet X is E(D) — ({(-, s)} U {z, -}), that is, consists of
all edges of D except for those leading into s and those going out of 7. The set of
states Q is equal to X UT U {r}, where T = {(s,q;,q;,/) | 1 <i,j <n—2and
1 </ < n—1} and its usefulness will be explained later. r can be thought of as being
the “reject” state, since we will define it to be the only state giving the output value
0. Notice that |Q| = O(1n?). The input function / : X — Q is defined as I (x) = x,
for all x € X, and for the output function O : Q — {0, 1} we have O(r) = 0 and
O(q) = 1 forall g € Q — {r}. That s, all input symbols are mapped to themselves,
while all states are mapped to the output value 1, except for » which is the only state
giving 0 as output. Thinking of the transition function § as a transition matrix A it
is easy to see that A is a |Q] x | Q] matrix whose entries are elements from Q x Q.
Each entry A, ./ corresponds to the rhs of a rule (g, q") — (z,7)) in . Clearly, A
consists of O(n®) entries, which is again polynomial in .

We shall postpone for a while the definition of A to first define the remaining
parameters ¢ and k of BPVER’s instance. We define formula ¢ to be a trivial first-
order Presburger arithmetic logical formula that is always false. For example, in the
natural nontrivial case where X # ¢ (that is, D has at least one edge that is not
leading into s and not going out of ) we can pick any x € X and set ¢ = (N, < 0)
which, for N, denoting the number of x’s appearing in the input assignment, is
obviously always false. It is useful to notice that the only configuration that gives
the correct output w.r.t. ¢ is the one in which all agents are in state r. ¢ being always
false means that in a correct protocol all computations must stabilize to the all-zero
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output, and r is the only state giving output 0. On the other hand for .4 not to be
correct w.r.t. ¢ it suffices to show that there exists some computation in which r
cannot appear. Moreover, we set k equal to n — 1, that is, the communication graph
on which A’s correctness has to be checked by the verifier is the complete digraph
of n — 1 nodes (or, equivalently, agents).

To complete the reduction, it remains to construct the transition function §:

e (r,-) = (r,r)and (-,r) — (r,r) (sor is a propagating state, meaning that once
it appears it eventually becomes the state of every agent in the population)

o ((gi,qj), (gi,qj)) — (r,r) (if two agents get the same edge of D then the pro-
tocol rejects)

e ((gi.q)), (qi,q)) — (r,r) (if two agents get edges of D with adjacent tails then
the protocol rejects)

e ((gj.4qi),(qi,qi)) — (r,r) (if two agents get edges of D with adjacent heads
then the protocol rejects—it also holds if one of g; and ¢; is s)

e ((gi,1),(gj,t) — (r,r) (the latter also holds for the sink #)

e ((s,...),(s,...)) = (r,r) (if two agents have both s as the first component of
their states then the protocol rejects)

o ((5,9i),(qi,q/)) — ((s,9i,q9},2), (gi,qj)) (When s meets an agent v that con-
tains a successor edge it keeps ¢; to remember the head of v’s successor edge
and releases a-counter set to 2 - it counts the number of edges encountered so far
on the path trying to reach ¢ from s)

o ((s,9i.q9j,1),(qj,q) = ((s,qi,q1,i +1),(qj,q1),fori <n—2

o ((5,qi,qj,1),(gj,1)) — (r,r), fori < n — 2 (the protocol rejects if s is con-
nected to ¢ through a directed path with less than n — 1 edges)

e All the transitions not appearing above are identity rules (i.e., they do nothing)

Now we prove that the above, obviously polynomial-time, construction is in fact
the desired reduction. If D contains some hamiltonian path from s to ¢, then the
n — 1 edges of that path form a possible input assignment to protocol A (since its
input symbols are the edges and the population consists of n — 1 agents). When A
gets that input it cannot reject (r cannot appear) for the following reasons:

no two agents get the same edge of D

no two agents get edges of D with adjacent tails

no two agents get edges of D with adjacent heads
only one (s, ...) exists

s cannot count less than n — 1 edges from itself to ¢

So, when A gets the input alluded to above, it cannot reach state r; thus, it cannot
reject, which implies that A for that input always stabilizes to the wrong output
w.r.t. ¢ (which always requires the “reject” output) when runs on the G"~!. So,
in this case < A, ¢,k > consists of a protocol A that, when runs on G*, where
k = n — 1, for a specific input it does not conform to its specifications as described
by ¢, so clearly it belongs to BPVER.

For the other direction, if < A, ¢, k >€ BPVER then obviously there exists some
computation of .4 on the complete graph of k = n — 1 nodes in which r does not
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appear at all (if it had appeared once then, due to fairness, the population would have
stabilized to the all-r configuration, resulting to a computation conforming to ¢). It
is helpful to keep in mind that most arguments here hold because of the fairness
condition. Since r cannot appear, every agent (of the n — 1 in total) must have
been assigned a different edge of D. Moreover, no two of them contain edges with
common tails or common heads in D. Note that there is only one agent with state
(s, ...) because if there were two of them they would have rejected when interacted
with each other, and if no (s, .. .) appeared then two agents would have edges with
common tails because there are n — 1 edges for n — 2 candidate initiating points (we
have not allowed ¢ to be an initiating point) and the pigeonhole principle applies
(and by symmetric arguments only one with state (..., 7)). So, in the induced graph
formed by the edges that have been assigned to the agents, s has outdegree 1 and
indegree 0, # has indegree 1 and outdegree 0, and all remaining nodes have indegree
at most 1 and outdegree at most 1. This implies that all nodes except for s and ¢
must have indegree equal to 1 and outdegree equal to 1. If, for example, some node
had indegree 0, then the total indegree could not have been n — 1 because n — 3
other nodes have indegree at most 1, t has indegree 1, and s has 0 (the same holds
for outdegrees). Additionally, there is some path initiating from s and ending to ¢.
This holds because the path initiating from s (s has outdegree 1) cannot fold upon
itself (this would result in a node with indegree greater than 1) and cannot end to any
other node different from ¢ because this would result to some node other than ¢ with
outdegree equal to 0. Finally, that path has at least n — 1 edges (in fact, precisely
n — 1 edges), since if it had less the protocol would have rejected. Thus, it must be
clear after the above discussion that in this case there must have been a hamiltonian
path from s to ¢ in D, implying that < D, s,t > HAMPATH. O

Note that in the above reduction the communication graph has only O(n) nodes
while the protocol has size O(n®). Although this is not the usual case, it is not
forbidden because this concerns only the correctness of the protocol on this specific
complete graph. The protocol remains independent of the population size; it will still
count up to n — 1 while the population can have arbitrarily large size (another way to
think of this is that in the protocol description the population size is not a parameter).
The protocol may be wrong or correct for other combinations of specifications and
communication graphs but we do not care here. However, it is worth considering
the following question: “Can we also prove that the special case of BPVER in which
the protocol has always size less than the size of the communication graph (which
is the natural scenario) is coNP-hard?” Unfortunately, the answer to this question is
that we do not know yet.

5.7.2.2 BBP Verification

We now deal with the hardness of BBPVER (here, additionally, we have a binary
input alphabet).

Theorem 9 BBPVER is coNP-hard.
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Proof The reduction is again from HAMPATH to BBPVER. Let again < D, s, t >
be the instance of HAMPATH. X is equal to {0, 1} as is required by definition and
so is Y. Q is again equal to (E(D) — ({(-, s)} U {t,-})) UT U {qo, t', r}, where
T =1{(s,qi,9;,) |1 <i,j <n-2and 1 <[ < n — 1}. The input function /
is defined as 1(0) = (s, f7(s)), where f(s) is the first (smallest) out-neighbor of
s according to the lexicographic order of V(D) (if some node u has no neighbors
we assume that f+(u) = u), and I (1) = go (recall that the names that we use for
nodes are s, t, g1, - . . , gn—2 SO qo is just a special initial state). The output function
O again maps all states in Q — {r} to 1 and r to 0. ¢ is an always false predicate and
kissetton — 1, where n = |V (G)|.
We now define the transition function.

e (r,-) = (r,r)and (-,r) — (r,r) (so r is a propagating state, meaning that once
it appears it eventually becomes the state of every agent in the population)

e ((gi,qj), (gi,q})) — (r,r) (if two agents have obtained the same edge of D then
the protocol rejects)

e ((gi-q)), (qi,q1)) — (r,r) (if two agents have obtained edges of D with adjacent
tails then the protocol rejects)

e ((gj.qi), (qi,q:)) — (r,r) (if two agents have obtained edges of D with adjacent

heads then the protocol rejects - it also holds if one of g; and ¢; is s)

(90, q0) — (r,1)

(s,..,(s,...)) > (r,r)

G0, ¢ — (rr)

(s, gi),q0) = ((s,gi), (f~(t), 1)) (Where f~(¢) denotes the first (smallest) in-

neighbor of ¢ according to the lexicographic order; we can w.l.o.g. assume that ¢

has at least one incoming edge)

o ((s,4i),(qj, 1) — ((s, hj’ (gi)). (qj, 1)) (Where h;“(q,-) denotes the lexicograph-
ically smallest out-neighbor of s that is lexicographically greater than ¢g; (that is,
the next one); note that the lexicographically greatest is matched to the lexico-
graphically smallest in a cyclic fashion)

o ((gj.1),(s,qi)) — ((hy (gj).1),(s,q;)) (where h,; (q;) denotes the lexico-
graphically smallest in-neighbor of # that is lexicographically greater than ¢ )

o (g1 g (@r.10) = (0. 0)

o (q0, (5.g1)) = ((gi, (g (5,9, if f¥(qi) # gi, and (r, 1), otherwise (if
f1(gi) = g; then g; has no outgoing neighbors and the protocol rejects; £ does
not take into account the edges leading into s and t)

o ((9isq)), (@, 1) = ((gi, hf (q;), (a1, 1))

o (g0, (i, q/) — (a1, (qj, (g, if fT(q;) # q;, and (r, 1), other-
wise

o ((5,49i),(qi.q;)) = ((s,49i,q9;.2),(gi,q;)) (When s meets an agent v that con-
tains a successor edge it keeps ¢; to remember the head of v’s successor edge
and releases a counter set to 2—it counts the number of edges encountered so far
on the path trying to reach ¢ from s)

o ((5,qi,95.0),(qj,q1) = ((s,qi,qi, i +1),(q;,q)), fori <n—2
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e ((s,qi.qj,1),(qgj,t)) — (r,r), fori < n — 2 (the protocol rejects if s is con-
nected to ¢ through a directed path with less than n — 1 edges)
((s,gi,qj.,n—2),(q;, 1) = ((s,qi,qj,n—1),1)

e 1’ and g reject any " and (-, ¢) that they encounter

e All the transitions not appearing above are identity rules (i.e., they do nothing)

Given a hamiltonian path s, uy, ..., u,—3,t of D we present an erroneous com-
putation of 4 on the complete digraph of k¥ = n — 1 nodes w.r.t. ¢ (that is, a
computation in which state r does not appear). A possible input assignment is
the 2-vector (1,n — 2) in which one agent gets input 0 and (n — 2) agents get
input 1. So, the initial configuration corresponding to this input has one agent in
(s, f1(s)) and all the other agents in gg. The agent in (s, fT(s)) now interacts as
the initiator with some agent and (f ™ (¢), t) appears. Now we have one agent in
(s, fT(s)), one in (f~(¢), 1), and all the remaining in go. If £+ (s) is not equal
to u; (the second node in the hamiltonian path) we assume that (s, f7(s)) is the
initiator of as many interactions with (f~(¢), t) as needed to make (s, f(s)) go to
(s, u1). Similarly, with (f~(¢), ¢) being the initiator we make it interact a sufficient
number of times with (s, u1) so that it becomes (u,—2, t). Now one agent contains
(s, u1), which is the first edge of the hamiltonian path, one agent contains (i, _3, t)
which is the last edge of the hamiltonian path, and all remaining agents are in go.
Now interaction (gq, (s, u1)) takes place and the result is ((u1, £ (u1)), (s, u1)),
where f¥(uy) is the lexicographically first out-neighbor of u;, which is possibly
not uy. If it is not, then we let the agent which is in (u1, f T (u;)) repeatedly inter-
act as the initiator with (u,_», t), until its state becomes (u1, u) (e.g., during the
first interaction (u1, f* (u1)) becomes (u1, h;f, (f*(uy1))), where k) () denotes the
out-neighbor of u lexicographically following u). As soon as this happens, (s, #1)
interacts with another agent in gy which again updates its state to (u1, £ (u1)).
Again (11, fT(u1)) interacts as the initiator with (u,,_», t) as many times as needed
to make its state (u#1, u2) and then it interacts once as the responder with (u,_2, t)
to change its state to (uz, f(u2)). Evenif f¥(uz) does not happen to be u3 we can
force it to be by subsequent interactions with (u,_», t) (with the latter now being
the responder). In this manner we can easily make each agent in the population
contain a different edge of the hamiltonian path. Moreover, notice that we have
not allowed any interaction that leads to failure (i.e., that makes state r appear)
happen. Now (s, 1) meets (u1, up) and the former becomes (s, u1, uz, 2). Then
it meets (u2, u3) and becomes (s, u, u3, 3), and so on, and, finally, when it has
become (s, uy, u,_»,n — 2) it meets (u,_», t) and after that interaction the former
becomes (s, u1, u,—2,n — 1) and the latter ¢'. It is easy now to observe that from
this point on there is no possible interaction that could make r appear and thus we
have just presented an erroneous computation (all agents forever output the value 1,
but ¢ requires that any computation stabilizes to the all-zero output). The convincing
argument that it is a computation (i.e., a fair execution) is that we keep the execution
unfair only for a finite number of steps, which does not violate the fairness condition.

For the inverse, let us assume that there exists some computation of A on the
complete digraph of k = n — 1 nodes in which r never appears. Clearly, only
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one (s,...) ever appears (if there were two of them they would eventually meet
and reject, because once s appears as the first component of some state it cannot
be eliminated, and if there was none the population would solely consist of g,
which would eventually meet and reject). Similarly, only one ¢ ever appears (since,
once they appear, even if they ever become ¢, they cannot be eliminated and will
eventually meet each other and reject). Note also that after a finite number of steps
all agents must have obtained some edge (if some agent remains forever in gg then
it eventually meets (-, r) or ¢’ and rejects). Moreover, " must have appeared for
the following reason: if not, then (-, ) would forever change the agents’ edges,
so due to fairness two agents would, in a finite number of steps, obtain the same
edge, interact with each other, and reject. But since the protocol cannot reject (in
the computation under consideration), s must have counted to n — 2 before meeting
t, and by repeating some of the arguments used in the proof of Theorem 8§ one can
again show that any node in the induced graph (constructed by the edges contained
in the agents) has indegree equal to 1 and outdegree equal to 1, which implies that
there must exist some hamiltonian path from s to ¢ in D. Clearly, this completes the
proof. O

Notice now that Theorem 9 constitutes an immediate alternative proof for Theo-
rem 8. To see this, observe that any protocol with binary input is also a protocol with
general input. Thus, in the case where A has a binary input alphabet, < A, ¢, k >¢€
BBPVER is a sufficient and necessary condition for < A, ¢, k >€ BPVER, which
establishes BBPVER <, BPVER.

5.7.2.3 BPVER' and BBPVER’

Let us denote by BPVER' the special case of BPVER in which the protocol size is
at least the size k of the communication graph, and similarly for BBPVER'. Clearly,
the proofs of Theorems 8 and 9 establish that both problems are coNP-hard.

5.7.2.4 GBP Verification
We now study the hardness of GBPVER.

Theorem 10 GBPVER is coNP-hard.

Proof We will prove the statement by presenting a polynomial-time reduction from
BPVER’' to GBPVER. Every time that we get an instance < A, ¢, k > of BPVER'
(where A is a population protocol for which | < A > | > k holds), if A has a
computation on G¥ that does not stabilize to the correct output w.r.t. ¢ then we will
return a population protocol A" and a formula ¢’ such that there exists some k' for
which A’ has a computation on G¥ that does not stabilize to the correct output w.r.t.
¢’. On the other hand, if A has no such erroneous computation on Gk, A’ will also
have no erroneous computation (w.r.t. ¢’) for any complete communication graph
(of any size greater than or equal to 2). Moreover, we will achieve that in polynomial
time.
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Keep in mind that the input to the machine computing the reduction is <
A, ¢,k >. Let X 4 be the input alphabet of A. Clearly, ¢” = —~(3_,cx , Nx = k) is
a semilinear predicate if k is treated as a constant (N, denotes the number of agents
with input x). Thus, there exists a population protocol A” for the basic model that
stably computes ¢”. The population protocol .4” can be constructed efficiently. Its
input alphabet X 4~ is equal to X 4. The construction of the protocol can be found in
[2] (in fact they present there a more general protocol for any linear combination of
variables corresponding to a semilinear predicate). When the number of nodes of the
communication graph is equal to k, A” always stabilizes to the all-zero output (all
agents output the value 0) and when it is not equal to &, then A" always stabilizes to
the all-one output.

We want to construct an instance < A’, ¢’ > of GBPVER. We set ¢' = ¢ v ¢".
Moreover, A’ is constructed to be the composition of A and A”. Obviously, Q 4 =
0.4 x Q 47. We define its output to be the union of its components’ outputs, that is,
0(qa,qar) = 1iff at least one of O(g4) and O(q.4~) is equal to 1. It is easy to
see that the above reduction can be computed in polynomial time.

We first prove that if < A, ¢,k >€ BPVER' then < A',¢’ >€ GBPVER.
When A’ runs on the complete graph of k nodes, the components of its states cor-
responding to A" stabilize to the all-zero output, independently of the initial con-
figuration. Clearly, A’ in this case outputs whatever A outputs. Moreover, for this
communication graph, ¢’ is true iff ¢ is true (because ¢” = —(3_ .y AN =5
is false, and ¢ = ¢ Vv ¢”). But there exists some input for which A does not
give the correct output with respect to ¢ (e.g., ¢ is true for some input but A
for some computation does not stabilize to the all-one output). Since ¢’ expects
the same output as ¢ and A" gives the same output as A we conclude that there
exists some erroneous computation of A" w.r.t. ¢’, and the first direction has been
proven.

Now, for the other direction, assume that < A’, ' >€ GBPVER. For any com-
munication graph having a number of nodes not equal to k, ¢’ is true and A’ always
stabilizes to the all-one output because of the .A” component. This means that the
erroneous computation of A’ happens on the G¥. But for that graph, ¢” is always
false and A" always stabilizes its corresponding component to the all-zero output.
Now ¢’ is true iff ¢ is true and A" outputs whatever .4 outputs. But there exists
some input and a computation for which A" does not stabilize to a configuration in
which all agents give the output value that ¢’ requires which implies that .4 does not
stabilize to a configuration in which all agents give the output value required by ¢.
Since the latter holds for G, the theorem follows. 0O

5.7.2.5 BBPI Verification

To show the inherent difficulty of the population protocol verification problem we
consider an even simpler special case, namely, the BBPIV E R problem (“I” stand-
ing for “Input”, because an input assignment is additionally provided as part of the
algorithm’s input) that is defined as follows:
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Problem 5 (BBPIVER) Given a population protocol 4 for the basic model whose
input and output alphabets are binary (i.e., X 4 = Y4 = {0, 1}), a two-variable
first-order logical formula ¢ in Presburger arithmetic representing the specifications
of A, and an input (assignment) x = (xg, x1), where xo and x| are nonnegative
integers, determine whether A conforms to its specifications for the complete
digraph of k = x¢ + x| nodes whenever its computation begins from the initial
configuration corresponding to x.

Let BBPIVER' denote the special case of BBPIVER in which | < A > | > k.
Theorem 11 BBPIVER' and BBPIVER are coNP-hard.

Proof The reduction is from HAMPATH to BBPIVER', which proves that both
BBPIVER and BBPIVER' are coNP-hard. In fact, the reduction is the same as in
Theorem 9, but here, together with the protocol (as described in the proof of The-
orem 9) and the always false specifications, we also return the input assignment
x = (1,n — 2) and do not return the integer k = n — 1. By looking carefully at
the reduction of Theorem 9 it will not be difficult to see that if G has the desired
hamiltonian path, then the protocol returned has an erroneous computation when
beginning from input x, and if G does not have the desired hamiltonian path, then,
for any input (x inclusive), the protocol is correct w.r.t. its specifications. O

5.7.2.6 Alternative Proof of Theorem 9

‘We have now arrived to an alternative proof that BBPVER is NP-hard. The reduction
is from BBPIVER' to BBPV ER. Given an instance < A, ¢, x = (xq, x1) > of the
former we do as follows (keep in mind that we return an instance of the latter of the
form < A, ¢', k >). We setk = xo+x1, ¢’ = ¢ v —=((Ng = x0) A (N1 = x1)), and
A’ is the union (w.r.t. the output functions) composition of .4 and .A” (as in Theorem
10), where A" is a population protocol for the basic model that stably computes the
predicate —((Ng = x9) A (N1 = x1)). It is now easy to see (similarly to Theorem
10) that the reduction is correct and can be performed in polynomial time.

5.7.3 An Efficiently Solvable Special Case

We are now seeking for efficiently solvable special cases of the general GBPVER
problem. A population protocol A is called binary if its input alphabet, its output
alphabet, and its set of states are all equal to {0, 1}. We consider now one of the most
trivial cases, which is the ALLBVER problem: We are given a binary population
protocol A for the basic model and a formula ¢ representing its specifications. We
want again to determine whether A is always correct w.r.t. ¢.

The first question that arises is what can ¢ be in this case. So we have to find
out first what is stably computable in this simplified model. If the output function of
A is defined as O(0) = O(1) = y, where y € {0, 1}, then any configuration of A
on any communication graph gives the all-y output. For example, if y = O then all
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configurations correspond to the all-zero output, and if y = 1 then all configurations
correspond to the all-one output. So we have just shown that the trivial predicates
(those that are always true or always false) are stably computable. To seek for non-
trivial stably computable predicates we have to agree that O(0) = 0 and O(1) = 1
(this is w.l.o.g. since the case O(0) = 1 and O(1) = 0 is symmetric). Moreover, we
agree that (0,0) — (0,0) and (1, 1) — (1, 1) in the transition function §. To see
this, notice that a nontrivial predicate is true for some inputs and false for others.
This means that a protocol for the predicate must be able to stabilize to both the
all-zero and the all-one output, and this cannot hold in the absence of the above
rules.

Now what about the input function /? Clearly, if 7 (0) = I (1) = ¢ then the initial
configuration is always the all-g configuration (all agents are in state ¢). For exam-
ple, if ¢ = O then the initial configuration is for any input the all-zero configuration.
But because of the rules (0,0) — (0,0) and (1,1) — (1, 1) the population can
never escape from its initial configuration, and this case again corresponds to trivial
predicates. So, we again agree w.l.o.g. that /(0) = 0Oand I(1) = 1.

It suffices to check the predicates that are stably computable by different combi-
nations of right hand sides for the left hand sides (0, 1) and (1, 0) in §. There are
only 4% such combinations so our job is easy. We have the following cases:

e Both §(0, 1) and §(1, 0) do not belong to {(0, 0), (1, 1)}. Assume that an input
assignment contains one 1 and all other agents get 0. In this case no interaction
can increase or decrease the number of Is so the population forever remains to
an unstable configuration (not all agents agree on their output value). So there is
no additional stably computable predicate from this case.

e Only one of §(0, 1) and §(1, 0) belongs to {(0, 0), (1, 1)}. If one of them is (0, 0)
then (since the other offers nothing) if there is at least one 0 in the initial con-
figuration (which is identical to the input assignment, because 7(0) = 0 and
I(1) = 1) the protocol rejects, whereas if all inputs are 1 the protocol accepts. We
can call this the AND protocol corresponding to the stably computable predicate
—(No > 1). Similarly, if one of them is (0, 0) then we have one form of the OR
protocol (see e.g., [16]) and the stably computable predicate corresponding to it
is (N; > 1).

e Both §(0, 1) and 6(1, 0) belong to {(0, 0), (1, 1)} and §(0, 1) # &(1, 0). In this
case the protocol is unstable. Imagine an initial configuration with exactly one
1 (all other agents get 0) and say that (0, 1) = (0,0) and §(1,0) = (1, 1). If
the unique 1 interacts as the initiator with all other agents in state O (one after
the other), the protocol in each step replaces a 0 with a 1 and in Ny steps the
population stabilizes to the all-one output. One the other hand if 1 had interacted
as the responder with all other agents in the same way as before, then the popu-
lation would have stabilized to that all-zero output and the protocol is obviously
unstable.

e Both §(0, 1) and §(1, 0) belong to {(0, 0), (1, 1)} and §(0, 1) = §(1, 0). Itis easy
to see that again we get alternative versions of the OR protocol and the AND
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protocol, thus the stably computable predicates resulting from this (last) case are
again —=(Ng > 1) and (N1 > 1).

So we have arrived to a complete characterization of the class of stably com-
putable predicates for the binary basic population protocol model. They are the
predicates: always-true, always-false, =(Nog > 1), and (N1 > 1).

So we require the specifications ¢, in the ALLBVER problem, to be a stably
computable predicate of the binary basic population protocol model, i.e. one of
always-true, always-false, —=(No > 1), and (N7 > 1). Obviously, if a binary protocol
A errs on G (the complete graph of 2 nodes) w.r.t. ¢ then it errs in general. But
we can also prove that if it errs on some Gy where k > 2 then it must err also on
G (an easy way to get convinced is to check the statement for all possible classes
of protocols as outlined above). This indicates an obvious constant-time algorithm:
The transition graph consists of three configurations. For every possible initial con-
figuration find all the final strongly connected components that are reachable from
it. If all configurations of those components give the correct output w.r.t. ¢ and this
holds for all possible initial configurations, then < A, ¢ > belongs to ALLBVER;
otherwise < A, ¢ >¢ ALLBVER.

5.7.4 Algorithmic Solutions for BPVER

Since Theorem 8 established the coNP-hardness of BPVER (Problem 3), our only
hope is to devise always-correct algorithms whose worst-case running-time will not
be bounded by a polynomial in the size of the input, or algorithms that are not always
correct, but are, in fact, correct most of the time (the notion of “approximation”
seems to be irrelevant here). Before proceeding, we strongly suggest that the reader
carefully revises the definitions from Sect. 5.7.1.

Our algorithms are search algorithms on the transition graph G,. The general
idea is that a protocol .A does not conform to its specifications ¢ on k agents if one
of the following criteria is satisfied:

¢(c) = —1forsomec € Cy.

3¢, ¢ € C; such that ¢ > ¢’ and ¢ (c) # ¢ (C)).

Jc e Cyand ¢’ € Cp such that ¢ = ¢’ and O(¢') = —1.

3c € C;and ¢’ € Cp such that ¢ = ¢’ and ¢ (c) # O(c)).

3B’ € Fy such that O(B’) = —1.

3B € I and B’ € Fy such that B - B’ and ¢(B) # O(B') (possibly B = B’).

AN e

Note that any algorithm that correctly checks some of the above criteria is a
possibly noncomplete verifier. Such a verifier guarantees that it can discover an
error of a specific kind; thus, we can always trust its “reject” answer (the protocol
has some error of this kind). On the other hand, an “accept” answer is a weaker
guarantee, in the sense that it only informs that the protocol does not have some
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error of this specific kind. Of course, it is possible that the protocol has other errors,
violating criteria that are undetectable by this verifier. However, this is a first sign of
BPVER’s parallelizability.

Theorem 12 Any algorithm that checks criteria 1, 5, and 6 decides BPVER.

Exercise 15 Prove Theorem 12.

5.7.4.1 Constructing the Transition Graph

Let FindC(A, k) be a function that, given a PP A and an integer k > 2, returns the
set C; of all initial configurations. This is not so hard to be implemented. FindCy
simply iterates over the set of all input assignments X and for each x € X com-
putes  (x) and puts it in C;. Alternatively, computing C; is equivalent to finding all
distributions of indistinguishable objects (agents) into distinguishable slots (initial
states), and, thus, Fenichel’s algorithm [24] can be used for this purpose.

Algorithm 1 ConG,

Input: PP A and integer k > 2.
Output: The transition graph G,.

1: C; «<FindCi(A, k)

2: Cr <0

3. E. <0

4: while C; # ¢ do

5: Pickace C;,C; < C; — {c}

6: Cr < CrU/{c}

7. for all r € A for which ¢; > ry2(i) and all i € [|Q]] for which ¢; € {ry, 2} do
8: Compute the unique configuration ¢’ for which ¢ - ¢’.
9: if ¢’ ¢ C, then

10: C; < CrU{c}

11: end if

12: E, < E,U(c )

13: end for

14: end while
15: return (C,, E,)

The transition graph G, can be constructed by the procedure ConG, (Algo-
rithm 1), that takes as input a population protocol A and the population size k,
and returns the transition graph G,. The order in which configurations are put in
and picked out of C; determines whether BFS or DFS is used.

5.7.4.2 Noncomplete Verifiers

Now, that we know how to construct the transition graph, we can begin constructing
some noncomplete verifiers (which are the easiest). In particular, we present two
verifiers, SinkBF'S and SinkDFS, that check all criteria but the last two. Both are
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presented via procedure SinkVER (Algorithm 2) and the order in which configura-
tions of G, are visited determines again whether BFS or DFS is used.

5.7.4.3 SolveBPVER: A Complete Verifier

We now construct the procedure SolveBPVER (Algorithm 3) that checks criteria 1,
5, and 6 (and also 2 for some speedup) presented in the beginning of Sect. 5.7.4,
and, thus, according to Theorem 12, it correctly solves BPVER (i.e., it is a complete
verifier for basic population protocols, when the population size is provided as part
of the input). In particular, SolveBPVER takes as input a PP A, its specifications ¢
and an integer k > 2, as outlined in the BPVER problem description, and returns
“accept” if the protocol is correct w.r.t. its specifications on G¥ and “reject” other-
wise.

Algorithm 2 SinkVER

Require: A population protocol A, a Presburger arithmetic formula ¢, and an integer k > 2.
Output: ACCEPT if A is correct w.r.t. its specifications and the criteria 1,2,3, and 4 on Gk and
REJECT otherwise.

. C; <FindCy(A, k)
. if there exists ¢ € C; such that ¢(c) = —1 then
return REJECT // Criterion 1 satisfied
end if
G, < ConG,(A, k)
: forallc € C; do
Collect all ¢’ reachable from c in G, by BFS or DFS.
while searching do
if one ¢’ is found such that ¢’ € Cr and (O(c’) = —1 or ¢(c) # O(c')) then
10: return REJECT // Criterion 3 or 4 satisfied
11: end if
12: if one ¢’ is found such that ¢’ € C; and ¢ (c) # ¢(c’) then
13: return REJECT // Criterion 2 satisfied
14: end if
15: end while
16: end for
17: return ACCEPT // Tests for criteria 1,2,3, and 4 passed

A o

hd

The algorithmic idea is based on the use of Tarjan’s [36] or Cheriyan—-Mehlhorn’s
and Gabow’s [20, 25] (or any other) algorithm for finding the strongly connected
components of G,. In this manner, we obtain a collection S, where each B € §
is a strongly connected component of G,, thatis, B C C,. Given S we can easily
compress G, w.r.t. its strongly connected components as follows. The compression
of G, isadag D = (S, A), where (B, B") € A if and only if there exist ¢ € B and
¢’ € B’ such that ¢ — ¢’ (that is, iff B — B’). In words, the node set of D consists
of the strongly connected components of G, and there is a directed edge between
two components of D if a configuration of the second component is reachable in
one step from a configuration in the first one.
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Algorithm 3 SolveBPVER

Require: A population protocol .A, a Presburger arithmetic formula ¢, and an integer k > 2.
Output: ACCEPT if the protocol is correct w.r.t. its specifications on G¥ and REJECT otherwise.

1: C; «<FindCi(A, k)

2: if there exists ¢ € Cy such that ¢(c) = —1 then

3: return REJECT

4: end if

5: G, < ConG,(A, k)

6: Run one of Tarjan’s or Gabow’s algorithms to compute the collection S of all strongly con-
nected components of the transition graph G,.

7: Compute the dag D = (S, A), where (B, B’) € A (where B # B’) if and only if B — B’.

8: Compute the collection /g C § of all connected components B € S that contain some initial
configuration ¢ € C and the collection Fg C S of all connected components B € S that have
no outgoing edges in A, that is, all final strongly connected components of G,.

9: for all B € Fg do

10: if O(B) = —1 then

11: return REJECT

12: end if

13: /I Otherwise, all configurations ¢ € B output the same value O(B) € {0, 1}.

14: end for

15: for all B € Is do

16: if there exist initial configurations ¢, ¢’ € B such that ¢ (c) # ¢(c’) then

17: return REJECT

18: else

19: // all initial configurations ¢ € B expect the same output ¢ (B) € {0, 1}.

20: Run BFS or DFS from B in D and collect all B’ € Fg s.t. B = B’ (possibly
including B itself).

21: if there exists some reachable B’ € Fs for which O(B’) # ¢(B) then

22: return REJECT

23: end if

24: end if

25: end for

26: return ACCEPT

5.8 Open Problems

The following are some open problems for the interested reader:

e What is the computational power of the variation of the population protocol
model in which the agents interact in groups of k > 2 agents and not in pairs?

e Recent (unpublished for the time being) research shows that SPACE(n) (that is,
LINSPACE) is a lower bound for the class of symmetric predicates that are sta-
bly computable by the basic MPP model, which may be possibly improved to
NSPACE(n) by exploiting the nondeterminism inherent in the interaction pattern.
On the other hand, as mentioned in Sect. 5.3, the best known upper bound is
NSPACE(m), and, since we are dealing with complete communication graphs,
it holds that m = O(n?), which, clearly, leaves a huge gap between the two
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bounds. It is possible that NSPACE(n logn) is a better upper bound. But we do
not expect this to be easy, because it would require to prove that we can encode
the O(n?) sized configurations of MPP by new configurations of O(n log n) size
whose transition graph is, in some sense, isomorphic to the old one (e.g., the new
configurations reach the same stable outputs). Thus, an exact characterization of
this class is still open.

e Is the mediated population protocol model fault tolerant? What are the necessary
preconditions to obtain satisfactory fault tolerance?

e Is there an exact characterization of the class of decidable graph languages by
MPP in the weakly connected case?

e Is the PALOMA model fault tolerant? What are the necessary preconditions to
obtain satisfactory fault tolerance?

e Are there hierarchy theorems concerning all possible models of passively mobile
communicating devices? For example, what is the relationship between MPP’s
class of computable predicates and PLM?

e [12] revealed the need for population protocols to have adaptation capabilities
in order to keep working correctly and/or fast when natural modifications of the
mobility pattern occur. However, we do not know yet how to achieve adaptivity.

e Are there more efficient, possibly logic-based, verification solutions for pop-
ulation protocols? Verifying methods for MPPs, Community Protocols, and
PALOMA protocols are still totally unknown, although the ideas of Sect. 5.7
may also be applicable to these models.
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Chapter 6
Theoretical Aspects of Graph Models
for MANETS

Josep Diaz, Dieter Mitsche, and Paolo Santi

Abstract We survey the main theoretical aspects of models for mobile ad hoc
networks (MANETSs). We present theoretical characterizations of mobile network
structural properties, different dynamic graph models of MANETS, and finally we
give detailed summaries of a few selected articles. In particular, we focus on arti-
cles dealing with connectivity of mobile networks and on articles which show that
mobility can be used to propagate information between nodes of the network while
at the same time maintaining small transmission distances and thus saving energy.

6.1 Introduction

In 1961 Edward Gilbert [21] defined random plane networks as a model to study
the communication in networks of short-range stations spread over a large area.
In his model, vertices represent the stations, and edges represent a two-way com-
munication channel between stations. All stations have the same range power, so
there is a direct communication between two stations iff the corresponding vertices
are connected by an edge. Gilbert distributed the vertices in an infinite plane, by
using a Poisson point process in the plane and then connecting two vertices if they
are separated by at most a distance r. He went to study the asymptotic value of
the probability that a vertex belongs to a connected component with all the other
vertices.

Nowadays, Gilbert’s model is better known as random geometric graphs (RGG).
A random geometric graph can be equivalently defined by distributing n points uni-
formly on a given surface; thus, a RGG is a graph resulting from placing a set of n
vertices independently and uniformly at random on the unit square [0, 1]?, and by
connecting two vertices if and only if their distance is at most the given radius r, the
distance depending on the type of metric being used. For convenience, when using
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a Poisson point process to distribute the vertices, sometimes it is better to scatter
the vertices on [/n, /n]?, where n is the expected number of points distributed by
the Poisson process. It is well known that the results in this model are just rescaled
versions of the results on [0, 1]2. Some authors consider the torus [0, 1)2 to avoid
the effects of boundaries, which we will mention in Sect. 6.3 in more detail. For
many properties the boundary effects change the results, see, for example, [62]. We
refer to an instance of a RGG with n vertices and radius r as G(n, r).

The deterministic counterparts of random geometric graphs are called unit disk
graphs (UDG). A graph G is a unit disk graph for a radius distance r, if its vertices
can be put in one-to-one correspondence with the centers of circles of radius r in the
plane, in such a way that two vertices in G are connected by an edge if and only if
their corresponding circles intersect [12, 24]. The recognition problem is to decide
whether a given graph G is a U DG. The problem is known to be NP-hard [8]. Since
the vertices of a U DG are points in the real plane, the problem is not known to be
in NP.

Random geometric graphs and unit disk graphs have received quite a bit of atten-
tion in the last years both as a particular mathematical structure different from other
types of known graphs [47, 59] and also because of their applications as models for
wireless networks, in particular as simplified topological models for wireless sensor
networks (see, for example, [55], where UDG was also denoted as point graph model
and [1, 4, 17, 56, 57, 67]). Further applications of unit discs and random geometric
graphs as models for more general ad hoc networks are discussed in the references
[14, 29, 31, 42, 66] and in Chapter 1 of [59].

Wireless networks consist of a set of simple nodes, each one with a wireless
transceiver to communicate with their near neighbors, where near is understood as
the closest in terms of Euclidean distance, and the ability of communication depends
on the transmitting power of the transceivers. The goal of a network is to spread
information through the network, which is done in a multi-hop fashion. In many ad
hoc networks, like sensor networks, due to the simplicity of the nodes, energy con-
sumption is an issue. Therefore, one of the most important questions when modeling
a network is to minimize power consumption. That is, the transmission range should
be made as small as possible but at the same time large enough to make sure that a
packet of information transmitted from a node will arrive to the other nodes in the
network. As we mention in the next section, when modeling wireless networks by
graph topology, one of the main problems is the trade-off between range of transmis-
sion and network connectivity. In Sect. 6.5.3 we will give examples where mobility
boosts message distribution in a network while at the same time maintaining a small
range of transmission.

The choice of whether to use a deterministic model, such as UDG, or a random-
ized model, such as RGG, depends on the application. For example, when using
sensors networks, it is usual that the sensors are scattered from some type of vehicle
and hence in this case the random model is the appropriate one. For other kinds
of wireless networks, the randomized model also could be interesting to obtain the
average behavior of the network. In the next section, we also briefly mention the
case where the transmitting power of each node is different, introducing the range
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assignment problem: the problem of assigning different transmission powers to each
node in such a way that the power used is minimized, while maintaining the network
connected.

The aim of the present work is to survey the recent theoretical results for mobile
ad hoc networks (MANETS), with an emphasis of topological models. It is orga-
nized as follows: in Sect. 6.2 we review a few known results about static RGG,
mainly those related to connectivity; in Sect. 6.3 we discuss issues that play a role
in dynamic models and present different random mobility models; in Sect. 6.4 we
survey theoretical results concerning a very popular mobility model (the random
waypoint model), showing in particular how mathematical tools have been used
to identify problems in wireless mobile network simulation and to solve them; in
Sect. 6.5, we present a few selected recent papers on dynamic MANETS, focusing
on papers which present a formal analysis of mobility model properties and use the
analysis to characterize fundamental network properties such as connectivity and
information propagation speed. Throughout this chapter, “a.a.s.” denotes asymptot-
ically almost surely, that is, with probability tending to 1, as n goes to co. For other
concepts in probability, the reader is advised to look into any of the basic references,
for example, [26, 48].

6.2 Static Properties

In this section, we point out some of the known results about static RGG, which will
be helpful for the mobility survey. In this line, we skip many of the very interesting
recent results on RGG that are of combinatorial nature, such as results about the
chromatic number, for example. The main reference on RGG is the book by Mathew
Penrose [47]. Moreover, the reader should be aware that since 2002 a lot of work
has been done on the topic of static RGG. When considering a RGG as topological
model for a wireless network, one of the important issues is to keep the network
connected using the minimal amount of energy consumption, i.e., using the small-
est transmitting distance. This is called the critical power among the networking
community [42] and the connectivity threshold among the mathematical commu-
nity [47]. In the book of Penrose, the results are exposed in full generality, for any
distance norm and any dimension. To make the basic ideas as clear as possible, in
the present survey we stick to the case of dimension 2 and Euclidean distance norm.

Let G(n, r) be the graph representing a wireless ad hoc network with n nodes,
where r denotes the transmitting distance. We assume the ideal case where the area
covered by a node is exactly a circle. Topology control is a technique that uses
the tuning of certain parameters, usually the transmitting range r or the maximum
degree of the graph, to change/form the topology of the graph representing the net-
work in order to maintain the connectivity while optimizing the energy (or minimiz-
ing the interference). There are very good recent surveys on the topic of topology
control, see, for instance, [42, 52]. One of the important problems in topology con-
trol is the critical transmitting range for connectivity: what is the smallest radius,
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denoted by r., that keeps G connected? If G is a deterministic instance, i.e., a UDG,
it is well known that the value of 7, is the length of the longest edge in the minimum
spanning tree (MST) of G. The case where G is a RGG is more interesting. In this
case, Penrose [45] computed the expected length of the longest edge of a MST in

aRGG on [0, 112, yielding the well-known connectivity threshold r, = %

a.a.s., where as usual the abbreviation a.a.s. stands for asymptotically almost surely,
i.e., with probability 1 —o(1) as n — oo. Independently, [22] gave the same bounds
for r¢, also for the £>-norm but considering the unit circle as underlying surface.
Both proofs are quite different.

Notice that real wireless networks cannot be too dense, because a transmitting
node interferes with all the nodes within its interference range. In [53, 54] the
authors have characterized the critical transmission range in the more general model
in which the side ¢ of the deployment region is a further parameter, and n and r can
be arbitrary functions of £. Note that under this model, the asymptotic behavior of
node density (number of nodes per unit area) depends on how n changes with £. In
particular, n can be chosen in such a way that node density asymptotically converges
to 0, or to an arbitrary constant greater than 0, or diverge. Under this respect, Santi
et al.’s model is more general than the standard RGG model, in which node density
grows to infinity with n. The main finding of [53, 54] is a proof that, as £ — oo, if

r~4 c% for some constant ¢ > 0, then the graph is connected a.a.s.

Going back to the classical model of RGG on [0, 1]2, we now try to convey the
flavor and intuition behind the value r. for which a RGG becomes connected a.a.s.
Given a set V of n nodes and a positive real r = r(n), each node is placed at some
random position in [0, l]2 selected uniformly at random. We define G(n, r) as the
random graph having V as the vertex set, and with an edge connecting each pair
of vertices u and v at distance d(u, v) < r, where d(-,-) denotes the Euclidean
distance. We assume that r = o(1), else G(n, r) is trivially connected a.a.s. Let X
be the random variable counting the number of isolated vertices in G(n, r). Then,
by multiplying the probability that one vertex is isolated by the number of vertices
we obtain

E (X) — n(l _ 7_”_2)n—1 — ne—nrzn—O(r4n)

Define u = ne™™" *n_ Observe that this parameter p is closely related to E (X). In
fact, u = o(1) iff E (X) = 0o(1), and if © = £2(1) then E (X) ~ pu.

Moreover, the asymptotic behavior of x characterizes the connectivity of G(n, r).
In fact, if © — 0, then a.a.s. G(n, ) is connected; if © = @ (1), then a.a.s. G(n, r)
consists of one giant component of size > n/2 and a number of isolated vertices
which follows a Poisson distribution with parameter u; and if 4 — oo, then a.a.s.
G(n, r) is disconnected. Therefore, from the definition of . we have that u = @ (1)

iff ro = /22EOW (see [47]).

Extensions to k-connectivity appear in [46], where the author proves that when
the minimum degree of a RGG is k the graph becomes k-connected. Notice that



6 Theoretical Aspects of Graph Models for MANETSs 165

k-connectivity is important in networking as a measure of fault tolerance of the net-
work. Chapter 13 of [47] presents an extensive treatment of connectivity for RGG,
taking into account different norms, higher dimensions, and different underlying
probability distributions.

Recall that a graph property is monotone if it is preserved when edges are added
to the graph. A graph property is said to have a sharp threshold if the window
between having and not having the property can be made arbitrarily small. In [25]
the authors prove that every monotone property on a RGG has a sharp threshold. As
connectivity is a monotone property, we conclude that the property of connectivity

Inn
n '’

As mentioned before, for a radius r slightly below the connectivity threshold 7,
G(n, r) consists a.a.s. of a giant component and some isolated vertices. It is also
known that in this situation the probability of having a component of size i at r¢
is O(1/ logi n), and, if there exists one, it forms a clique [16]. A straightforward
computation yields that when we consider the connectivity regime with r = r,
the expected degree of a vertex is asymptotically ® (logn) (plug r. in the expected
number of neighbors of a vertex, which is nrcz (n—1)). Forvalues of r > r¢, G(n, r)
is said to be in the superconnectivity regime and the graph is dense,' while for values
of r < re, G(n, r) is said to be in the subconnectivity regime and the graph is sparse.
As we mention in Sect. 6.5.3, in the subconnectivity regime mobility can help to
spread information.

The behavior of RGG for values of r in the subconnectivity regime has been
quite thoroughly studied, see Chapter 10 in [47]. It is known that there exists a
value r; = ﬁ where a giant component of size ® (n) appears in G(n, r) a.a.s., with

in G(n, r) exhibits a sharp threshold at r. =

¢ being a constant that experimentally is conjectured to have a value around 2.35
(recall that we focus on the £>-norm in two dimensions). In the regime where r < r,
each vertex has expected degree O(1). The r; is denoted as the thermodynamical
threshold.

The cover time C of G(n, r) is the expected time taken by a simple random walk
of G(n, r) to visit all the nodes in the graph. In [2] the authors prove that a.a.s.

logn
n

C=0O@mlogn)ifr > /92" withe > 8.1f r <
positive probability, bounded away from zero.
When dealing specifically with wireless sensor networks, an important issue is to
assure that sensors properly cover the entire region being monitored, which is known
as the coverage of the network. Similar to connectivity, coverage can be modeled
using the RGG model, where each vertex represents a sensor and r is the sensing
range of the sensors. Given an integer k, a point is said to be k-covered if it falls into
the sensing range of at least k sensors. If all the points of a region are k-covered,
then the region is k-covered. If C,’j,r denotes the event that every point of [0, 1]?
is (k + 1)-covered by a network with n sensors of range r, the k-covering problem
consists in giving asymptotic bounds to Pr [Cfl’r], asn — 00.In[30], thecase k = 1

, the cover time is oo with

! Note that a usual graph with n vertices is said to be dense if it has @ (%) edges.
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is studied; however, the author uses a toroidal metric to avoid problems with nodes
very near the boundary of the region where the nodes are scattered. Several authors
have been working on this problem [40, 44, 61, 68]. In [62] the authors give bounds
on Pr [Cﬁ’r] for the unit square, taking into consideration the boundary effect of the
unit square, which complicates quite a bit the analytical proof. Sometimes, coverage
and connectivity of a wireless sensor network are jointly studied, with the objective
of forming a network which not only k-covers the entire monitored region but also
is connected. It is easy to see that k-coverage implies k-connectivity of the network
whenever r; > 2rg, where r¢ is the transmission range and r; is the sensing range of
nodes [63].

Up to now we have considered that all nodes broadcast at the same transmitting
range r, but the efficiency of energy management in a network could be achieved by
tuning every node to a different transmitting range. The range assignment problem is
the following: given a graph with n nodes, each one knowing their position, the goal
is to assign a transmitting range r; to each node i in such a way that the network
is connected with minimum energy cost, where the energy e; used by node i is
proportional to riz, i.e., the goal is to minimize ) ; ¢;. The problem was first studied
in [39]. Since then, several authors have proposed and studied different variants of
the basic model, see Section 5.5.2 in [52].

Another important issue is the design of efficient protocols for disseminating and
broadcasting information in wireless ad hoc networks. We refer the reader to one of
the multiple surveys treating the topic [34, 42, 49, 50, 52, 66].

6.3 Mobility Models for MANETSs

After giving a very concise introduction to the results on static random geometric
graphs, let us focus our attention on mobility issues. When talking about mobility
in MANETSs, we mean mobility of the nodes, i.e., the nodes physically move in a
region. There is an alternative version of dynamical wireless networks, where the
dynamicity is caused by the addition and removal of edges between nodes, due to
the temporal evolution of the transmitting range r;, for each node i. This kind of
mobility has been thoroughly studied by the computational geometry community,
see, for example, [3, 20]. The main focus of their research is the design and anal-
ysis of sophisticated algorithms and data structures that easily allow deletion or
addition of very few edges or nodes at each time. In the case of highly dynamic
MANETS, due to the large number of changes in each step, the direct evaluation of
the performance of the network is very time consuming (see, for example, Section
2 in [5]). One way to get an idea of the performance is to use simplified models of
the network. Moreover, due to the fact that real MANETS are mostly deployed in
environments where it is difficult to control the quality of transmission, simulation
could furnish better scenarios to control the experiments. In particular, when design-
ing new protocols for communication, sometimes it is better to start simulating on
a simplified topology than a direct implementation on the real network. However,
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some researchers reason that low-scale simulations are not conclusive and that the
final validation of the viability and efficiency of the new proposed protocol must be
experimented directly on the network (see, for example, [41]).

In the remainder of this survey, we are going to look at the recent preliminary
research done on analytical studies of different mobility models proposed. The goals
of the simplified models are to extract the topological properties of mobile net-
works, which might help both in improving simulation accuracy (see Sect. 6.4), and
in designing new protocols where mobility is used to reduce energy consumption
and/or information propagation speed (see Sect. 6.5). Clearly, this survey does not
cover every property where mobility helps. For example, for the k-covering problem,
in [60] the authors recently proved both analytically and experimentally that, if a
fraction of the nodes is mobile with very limited range of mobility, k-coverage can
be achieved with less sensors than in the static case.

In the last decade, quite a few models for MANETSs have been proposed, see the
surveys [3, 6, 10, 69]. Section 2.1.5 of [5] gives a detailed taxonomy of the mobility
models used in the literature. According to the degree of mobility, there are three
types of mobility:

e The deterministic model where nodes move through predetermined paths in a
deterministic manner. The model needs to trace the mobility of nodes, which can
be cumbersome [58].

e The hybrid random model where the model guides the nodes through a predeter-
mined graph, which represents streets, roads, etc. On this graph, however, nodes
move randomly. For example, in [36] the authors consider a region with obstacles
and force the mobility to take place along the Voronoi tessellation of the obsta-
cles. The city selection mobility and the graph-based mobility models described
in [5] are the examples of hybrid random models.

e The pure random model where the nodes move in a random way in the region.
Most of the models, described in the literature, belong to this class. The two
most representative models in this class are the random direction model and the
random waypoint model.

The most frequently used mobility models are the following two and their varia-
tions:

e the random waypoint model (RWP) was first described in [37]. In this model,
as usual, nodes are initially distributed uniformly at random on the region; then,
each node chooses independently and uniformly at random a destination within
the region as well as a travel speed. The node then starts traveling toward the
destination with the selected speed along a linear trajectory. When it reaches
the destination (waypoint), it might optionally pause for a certain time, then
chooses another waypoint in the region and continues according to the same
pattern. Structural properties of RWP model have been deeply investigated in
the literature and are discussed in detail in Sect. 6.4.

e the random direction model (RD): the seed of the RD model is the paper [28], in
which each node i in the region under consideration selects uniformly at random
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adirection ; € [0, 27) and chooses a speed that is kept constant during a certain
amount of time. After a randomly chosen period of time, each node selects a new
direction and speed and continues moving. As the process evolves over time,
some of the nodes might arrive at the boundary of the region, and a border rule
has to be defined to determine how nodes behave when they hit the border. An
easy way to deal with the boundary effect is to consider the toroidal version
[¢1, £2)? instead of the unit square [£1, £,1%. In fact, when modeling applications
like sensor networks on large terrain, the toroidal model is a fair approximation
to reality. For smaller areas, when the boundary effect is significant, an alter-
native option is to consider the so-called bouncing boundary rule, where the
nodes arriving at a boundary bounce back to the region. When a node hits the
boundary, this bouncing could be done either by choosing a random new angle
0’ or by following the mirror reflection rule, i.e. the node returns to the region at
an angle ' = 7 — 0, where 0 is the incidence angle at which the node hits
the boundary. There have been several modifications of the basic RD model,
some of them specifically designed to deal with the border effect [35] (see below
for a definition of border effect). The RD model has been criticized because of
the unrealistic behavior caused by uncorrelated changes in direction and speed
(see, for example, [32]). In [7], the author proposed a variation of the RD model,
with two correlated processes, one to define the speed and another one to define
the changes in direction (no correlation between different nodes). The authors
denoted this variation the smooth random mobility model.

Note that the fact that moves in a bounded region gives rise to the so-called
border effect, which in general can be understood as a modification of the probability
density function (pdf) describing mobile node positions with respect to the initial
pdf (typically, uniform) due to the presence of a border. The border effect arises not
only in models (such as RD) in which nodes can hit the border and border rules are
used to define node behavior in such situation but also in models (such as RWP) in
which nodes can never reach the border of the movement region. Further detailed
explanation of the border effect in RWP mobile networks is reported in the next
section.

Two further models different to the previous ones are the following:

e The Brownian motion model: each of the x- and the y-coordinates describing
the current position of each node undergoes a continuous-time stochastic pro-
cess (these processes are independent for both coordinates and independent for
all nodes), which is almost surely continuous and the changes in the positions
between any two times t1, f with 0 < #; < 1, follow a normal distribution
N (0, 1o — t1). Moreover, the changes between #; < f; are independent from the
changes in t3 < 14, if £, < t3. Brownian motion can be considered as the limit
case of the random direction model, where the period of time after which a new
angle is chosen tends to O (see, for example, [11]).

e An approach orthogonal to the previous ones was undertaken in [19] in order to
accomplish group communication tasks between a set of processors. The model
is the following: given n processors executing programs, the communication
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between the processors is established with the help of an agent who visits the
processors. If there are more than one agent and two agents collide at one pro-
cessor, they merge into one, and if there is no agent, after some time an agent is
automatically generated by a processor. The agent performs a random walk on
the processors (the next processor could be chosen from some suitably defined
neighborhood of the current processor or it could be chosen from the whole set of
processors), and whenever it arrives at a processor, the processor stops its current
program and replaces it by a new program using the information the agent is
carrying. The agent’s goal is to broadcast the information in such a way that
each processor is visited by the agent at least every M steps, where M depends
on n, and that each processor executes a step infinitely often. The authors design
agents satisfying these conditions for different group communication tasks and
they prove that starting from any arbitrarily chosen node, these agents have an
expected cover time of at most om3).

6.4 Structural Properties of Random Waypoint Mobile Networks

In this section, we present theoretical characterizations of structural properties of
networks whose nodes move according to a very popular mobility model: the ran-
dom waypoint mobility model (RWP). We show that how these characterizations
have been used to considerably improve accuracy of wireless network simulation.
Some of these characterizations (e.g., node spatial distribution) have been used
also to study fundamental mobile network properties, such as connectivity (see
Sect. 6.5).

RWP is by far the most commonly used mobility model used in wireless mobile
network simulation. Given its popularity, the structural properties of RWP mobile
networks have been deeply investigated in the literature as well as their effects on
simulation accuracy.

In the remainder of this section, we focus our attention on two such structural
properties, namely node spatial distribution and instantaneous average nodal speed,
and discuss their impact on accuracy of RWP mobile network simulation. We then
show how theoretical characterizations of the above properties have been used to
define a “perfect” simulation methodology, which completely removes the accuracy
issues previously identified.

6.4.1 RWP Node Spatial Distribution

The first structural property of RWP mobile networks that has been formally studied
is the asymptotic node spatial distribution, which can be formally defined as follows.
Let f; be the pdf describing node position within the movement region at time ¢
of the mobility process. The asymptotic node spatial distribution is a pdf formally
defined as
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whenever the limit on the right hand side exists, i.e., that the mobility model has
a stationary node spatial distribution. In the literature, it has been proven that most
mobility models described in the previous section (e.g., RWP, RD, Brownian) indeed
have a stationary node spatial distribution.

In the following, we present a formal characterization of f, in the presence of
RWP node mobility, which we denote by frwp. In particular, we will survey results
that show that frwp # fu (fu is the uniform pdf on the movement region), unless
the expected pause time at the waypoints tends to infinity.> Thus, we are in presence
of the border effect, which can cause considerable inaccuracies in wireless network
simulation. In fact, if simulation results are gathered after a relatively short time after
network setup, the node spatial distribution of RWP mobile nodes might not have
reached the stationary condition, implying that, from a topological point of view,
network conditions are different from those reached at stationary state. To make
this point clearer, assume that results of a network simulation are averaged over a
time interval starting after 100 s since the beginning of simulation and ending after
900 s (these are quite standard simulation intervals in the networking literature). Fur-
thermore, assume that RWP node spatial distribution takes 1000 s to stabilize (this
is also a reasonable stabilization time, see [9]). Then the outcome of the simulation
experiment might be highly inaccurate, since results are gathered before the network
has reached its stationary state.

Another pitfall of the border effect is on networking protocol performance opti-
mization: typically, networking protocols (e.g., routing protocols) are optimized
under the assumption that nodes are uniformly distributed in a certain region. How-
ever, if nodes move according to RWP mobility, this assumption is no longer true at
stationary state, implying that protocol performance can indeed be highly subopti-
mal in presence of mobility.

The first analytical study of node spatial distribution under RWP mobility is
reported in [9], for the case of nodes moving in the unit square. In that paper, RWP
mobility is described as a stochastic process {D;, Tp i, V;}, where D; is a random
variable denoting the two-dimensional coordinates of trip i destination, 7} ; is a ran-
dom variable denoting the pause time at D;, and V; is a random variable denoting
the node velocity during trip i. The actual value of D; will be represented by d;.
First, the authors prove a result concerning ergodicity of the sequence of random
variables {L;}, where L; = ||d; — d;_1]||, that is, L; denotes the length of the ith
trip. In particular, the authors show that repeatedly sampling from a single random
variable in the sequence is statistically equivalent to successively sampling from
the sequence {L;}. This first result allows reducing the problem of characterizing
Jrwp,0 when the pause time at waypoint is 0 to one of computing the intersection
between a random trajectory and an arbitrarily small square of side § > 0 centered

2 Note that the fact that the expected pause time at waypoints tends to infinity implies that nodes
are asymptotically static, i.e., RWP model under this condition degenerates to a static network.
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random trajectory

Fig. 6.1 The pdf of a RWP mobile node can be characterized by computing the expected length
of the segment L4 representing the intersection between a random trajectory and a square Qs of
side & centered at (x, y) (shaded area)

at a certain coordinate (x, y) (see Fig. 6.1). This stems from the fact that frwp can
be considered as constant within Qs as § — 0, implying that

. P(x,y,9)
Srwp,0(x, ) = 51&11 P&x.y.0) 6.1)

0o &2
where P(x,y,d) is the probability that an RWP mobile node is located within a
square of side § centered at (x, y). Thus, frwp o can be characterized by evaluating
P(x,y, §). Since ergodicity of {L;} implies for a successively large sample size that

P(x,y,8) = M
E[L]

and E[L] (the expected distance between two random uniform points in a square)
is well known from geometric probability, characterizing frwp,o boils down to
computing E[L,ys], i.e., the expected length of the intersection between a random
trajectory and a square of side § centered at (x, y). The value of E[L,ys] is closely
approximated in [9] through computing a set of two-dimensional integrals, yielding
the following expression for frwp in the region (0 <x <05 U0 <y < x)3:

3 y y?
=6 —(1-=2 2x2 R e
Jrwp,0(x, y) y+4( x + x)(y—1+x(x—l))+

1—x

e |:(2x ~D(y+ D <—) +(1-2x+2x2+y)n (Qﬂ
2 X y

The density function frwp o is drawn in Fig. 6.2. As seen from the figure, frwp
is bell shaped with a higher concentration in the center of the movement region,

3 Values of Jrwp,0 in the other regions of the unit square are obtained by symmetry.
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Fig. 6.2 Density function of a RWP mobile network with pause time set to 0: 3D plot (left), and
contour lines (right)

reflecting the fact that a random trajectory is relatively more likely to cross the
center than the boundary of the region.

After deriving the pdf under the assumption of zero pause time, the authors of
[9] consider the more general case of pause times chosen according to an arbitrary
probability distribution and show that the resulting node spatial distribution has the
following shape:

frwp = ppfu + (1 — pp) frRwp,0

where pp = lim; ., o pp(?), and p;,(2) is the probability that an RWP mobile node is
pausing at time . Thus, frwp is the sum of two components: a uniform component,
accounting for the fact that when nodes are resting at a waypoint they are uniformly
distributed, and a non-uniform component, reflecting the fact that when nodes are
moving they are more likely located near the center of the movement region. The
derivation of py, is quite straightforward and yields

E[Ty]

Pp=———"E&1
E[T,] + £
under the hypothesis that the node velocity is fixed to v > 0.
In a more recent paper [33], Hyytid et al. provide the exact characterization of
Jrwp,0 and generalize the previously described results to arbitrary convex shapes of
the movement region and arbitrary waypoint distribution.

6.4.2 RWP Average Nodal Speed

A second property of RWP mobile networks that has been extensively studied is the
average nodal speed, which is formally defined as follows. Assume n nodes move
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independently within a region according to the RWP mobility model and denote by
v; (t) the instantaneous speed of the ith node at time ¢. The asymptotical average
nodal speed vrwp is defined as

. Z?:] v; (1)
vRwe = lim, T

The first paper that formally investigates the average nodal speed in RWP mobile
networks is [64], where the authors prove that vrwp # vg as long as the trip velocity
is randomly chosen in a non-degenerate interval and vy is the average nodal speed
at time 0. Before giving some details of the derivation, we observe that the fact that
VRWP # Vg gives rise to the so-called speed decay phenomenon, which displays
many similarities with the border effect described in the previous section. In fact,
similar to border effect, speed decay affects both simulation accuracy and optimiza-
tion of network protocols, for the very same reasons the border effect did, i.e., (i)
stationary conditions for what concerns node velocity are different from initial ones
and (ii) they are reached only after a relatively long stabilization period.

The authors of [64] derive vrwp under the following three assumptions:

1. nodes move in an unlimited, arbitrarily large area; given the current node location
(x, ¥), the next waypoint is chosen uniformly at random in a circle of radius Rpax
centered at (x, y).

2. the pause time is 0.

3. the node velocity is chosen uniformly at random from [Vpin, Vmax]-

While the second and third assumptions are standard, the first assumption, which
is done to simplify analysis, apparently perturbs quite a bit the properties of the
mobility model. In the paper it is shown that this assumption has no effect on the
value of vgrwp, which remain the same as in the case of standard, bounded RWP
mobility.

Similar to [9], the authors of [64] describe the RWP mobility model as a stochas-
tic process {V;, R;, S;}, where V; is the random variable denoting the velocity during
trip i, R; is the random variable denoting travel distance during trip i, and S; is the
random variable denoting travel time during trip i. Setting >/, v; (t)/n = V (1),
then vrwp can be expressed as follows:

orwp = lim V(1) = lim / V(dt = lim Lict.kn)k _ ELRi]
t—00 T—ooo T [0,7] T—00 Zk:l _____ K(T) Sk E[S;]
where K (T) is the total number of trips undertaken within time 7', including the
last one (possibly incomplete), and where 7y (respectively, si) is the travel distance
(respectively, time) of trip k.
Thus, the computation of vrwp is reduced to the problem of computing the expec-
tation of the random variables, R; and S;. In [64], the authors show that
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2 2R
E[Ri] = 7 Rmax and E[S;] = max In (vmax)

- 3(Umax — Ymin) . Umin
yielding

Umax — Umin

UVRWP = ——
In ( Vmax )

Umin

Furthermore, several interesting implications of the discussed characterization
for vrwp are presented in [64]. First, it is observed that vwp < vo and that
vrwp = Vg if and only if vpin = vmax. This implies that the only way of avoiding
speed decay is to avoid randomness in speed selection, imposing the same speed
to a node during the entire simulation time. While having constant node velocity
may be acceptable in some situations, the range of possible reference application
scenarios for simulation is considerably reduced with this assumption. For instance,
think about a scenario in which mobile nodes represent vehicles moving in a city:
clearly, allowing vehicles to change speed during the travel (e.g., to reflect different
speed limits) considerably increase simulation representativeness with respect to a
situation in which the vehicle speed is fixed throughout the entire simulation time.

The authors of [64] observe that vrwp becomes relatively closer to vy (thus reduc-
ing speed decay intensity and the time needed to reach stationary node velocity)
as the speed range interval becomes smaller. A general recommendation to lessen
speed decay is to shrink the allowed node speed interval, which comes at the price,
however, of reducing the range of possible application scenarios for simulation.

A final and very interesting implication of the vrwp characterization is that the
pdf of the random variable S; becomes heavy tailed when v, — 0, implying
that E[S;] becomes infinite, and vrwp — 0. Thus, if vy, is set to 0, the station-
ary regime of an RW P mobile network actually coincides with a static network
(vrwp = 0) and is reached only after infinite time. It is clear then that setting
vmin = 0, as it is actually very common in wireless network simulation, severely
impacts simulation accuracy, since simulation results cannot be gathered before the
node velocities have reached the stationary state.

6.4.3 The “Perfect” Simulation

In the previous sections, we have shown that how theoretical characterization of
RWP mobile network properties can disclose sources of inaccuracy in wireless net-
work simulation. Possible countermeasures have also been discussed, which essen-
tially amounts to

(a) simulation “warm-up”: run the simulation for a relatively long time interval
before starting collecting simulation results;
(b) reducing speed range: choose velocity from a smaller speed interval.
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Unfortunately, both approaches for improving wireless network simulation
approaches have considerable drawbacks, which discourage their usage in sim-
ulation practice. In particular, (a) causes considerable wastage of computational
resources. Furthermore, estimating the time needed for the network to reach station-
ary conditions is difficult, and in some situations the time needed to reach stationar-
ity can actually be infinite, for instance, when vy, =0. Moreover, the approach (b)
also has considerable drawbacks, as it considerably reduces the range of possible
reference application scenarios for simulation. Furthermore, (b) has effect only on
the speed decay phenomenon, but cannot be used to mitigate the border effect.

Motivated by the above observations, researchers have made efforts to design a
“perfect” simulation methodology, in which issues with simulation accuracy can be
solved without incurring the drawbacks of approaches (a) and (b). A first notewor-
thy contribution in this direction is [65], where the authors present a methodology
to remove the speed decay effect without reducing the speed range interval, with the
only constraint that v, > 0. The authors’ goal is to initialize the system directly
in the stationary state, without the need of a “warm-up” period. The authors start
deriving the pdf of the stationary average node velocity Vrwp and show that Vrwp
cannot be directly used to initialize the system: if Vrwp is used instead of a uni-
form distribution in [vmin > 0, vmax] to select initial node velocities, the pdf of the
resulting stationary average node velocity changes, and it is no longer Vrwp. Then,
the authors show that a possible way of avoiding this problem is using a composite
mobility model, where the pdf used to select initial node speed is different from that
used to select the speed of next trips. In particular, the authors of [65] formally prove
that the following methodology completely removes speed decay:

1. use Vrwp to select speed of the first trip;
2. use default speed distribution (uniform in [vpyin > 0, vmax]) to select speed of
next trips.

In [43], the authors generalize the results of [65] to a wide class of mobility
models (including RWP model, RD model) and show that the “perfect” simulation
methodology defined in [65] can be used not only for average node speed but also for
any structural network property admitting a stationary distribution. With respect to
this, the authors of [43] show that a necessary and sufficient condition for a mobility
model to admit stationary structural distributions is that the expected trip duration is
finite. Thus, for models such as RWP, the “perfect” simulation methodology of [65]
can be used to remove not only the speed decay but also the border effect.

6.5 Formal Studies of Connectivity on MANETSs’ Models

6.5.1 Connectivity Threshold for Mobility Models

As described in the previous section, the border effect may considerably impact sim-
ulation accuracy. In this section, we analyze the consequence of the border effect on
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the formal analysis of properties for MANETS, in particular referring to the critical
transmission range for connectivity.

e Connectivity threshold for mobile models. Using the previous result, Santi [51]
studies the connectivity threshold for mobile networks. His model is the follow-
ing: There are n vertices deployed uniformly at random in the unit square [0, 1]%.
The nodes move randomly, but the mobility model is not fixed, it only must meet
two conditions: it must be bounded and obstacle free. A mobility model M is
said to be bounded if the support of the probability density function pdf of the
long-term distribution of the nodes is contained in [0, 1]2. Similarly, M is said
to be obstacle free if the support of the pdf contains [0, 1]> \ 3[0, 1]?, where
d[0, 1] denotes the boundary. In other words, every subregion with non-zero
measure has to have positive probability to contain at least one node at a given
time. Notice that the random direction model, the random waypoint model, and
Brownian motion are all bounded and obstacle free. Moreover, not necessarily
all nodes have to move at the same speed, each one can choose its speed from an
interval [VUmin, Umax]- Also, the nodes can pause for a predefined amount of time
tp after having reached their destination.

In particular, due to border effects and due to different node velocities, the long-
term spatial distribution of the nodes might be different from the starting distribu-
tion, even if they start with the uniform distribution. Define the mobile threshold
for connectivity r p4 as the minimum value of the radius r, such that when taking a
snapshot of the graph chosen from the long-term spatial distribution of the nodes,
the graph is connected. Notice x4 might be different from the threshold of the

static case r, = log" . In fact, the first result of the paper states that if the pdf

of the mobility model fa is continuous on d[0, 1]* and min fy( > 0, then a.a.s.
logn

M = ¢ with ¢ > 1. The proof uses the fact that in the static case, a.a.s.
the threshold of connectivity equals the longest edge of the Euclidean minimum
spanning tree built on the n points (see [45]).

The second result the paper states that in the random waypoint model with pause
time 7, and v = Upin = Umax, a.a.s. the connectivity threshold of the long-term

ot 0.521405 logn
spatial distribution r, = *——+— for f, > 0, and ro >

m ) ,fort, = 0.
Intuitively the results says that when nodes stop at the Waypomt for a positive
amount of time before choosing the next waypoint, the connectivity threshold of
the long-term distribution differs from the static case by only a constant factor. In
the case when #, — oo, r;lf — ¢, and the long-term spatial distribution becomes
the uniform distribution. On the other hand, if the nodes start traveling toward the
next waypoint immediately after touching the current waypoint, the connectivity
threshold is asymptotically larger than in the static case. The intuition behind this
result is as follows: the formula for the pdf contains two components; one for the
time a node is resting at a waypoint, which is uniform since the waypoint is chosen
uniformly at random, and a mobility component responsible for border effects. If
the uniform component of the pdf is not 0, it asymptotically dominates over the

logn
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mobility component, and the connectivity threshold is asymptotically the same as in
the static case. On the contrary, if the uniform component is 0, the pdf coincides with
the mobility component, which has a different asymptotic behavior than uniform,
implying a larger connectivity threshold.

6.5.2 Connectivity Periods on Mobile Models

e The walkers’ model on the grid. The authors in [18] present a model of estab-
lishment and maintenance of communication between mobile nodes, denoted
walkers in the paper, where the nodes move in a fixed environment modeled
by a toroidal grid T. Therefore, the authors present a hybrid random model. The
model is defined as follows: given a toroidal square grid in the plane 7 = (V, E)
with |V| = N = n?, a set W of walkers with |W| = w, and a “transmitting
distance” d (the same for all the walkers), the w walkers are sprinkled randomly
and independently on the N vertices of T (a vertex may contain more than one
walker). Two walkers wi and w» can communicate in one hop if the Euclidean
distance between the position of the walkers is at most d. Two walkers can com-
municate if they can reach each other by a sequence of such hops.

Then, in a synchronized way, each walker performs an independent standard ran-
dom walk on the nodes of 7. That is, each walker moves at each time step to one of
the four neighboring vertices, all chosen with equal probability 1/4. Hence, for any
time ¢ € N, one can define the random graph of walkers W, (T, w, d): the vertices
of this graph are the w walkers together with their position they are occupying on
T at time ¢, and there is an edge between two walkers if their Euclidean distance
is at most d (if more than one walker occupies a vertex of the grid, the authors do
not consider the corresponding multigraph and consider that position of the grid as if
there was only one walker). The authors then study the behavior (as N — 00) of the
connectivity and disconnectivity of W, (T, w, d) for any ¢t € N, where Wy(T', w, d)
is formed by the initial distribution of the walkers on 7 (see Fig. 6.3 for a toy
example of one step).

The paper first examines the initial static case Wy (T, w, d), which is a snapshot
of the process at one point in time: in particular, the paper studies the distribution of
the number of isolated vertices of Wy (T, w, d) as well as some other information
which helps to answer the dynamic questions. Define 4 to be the number of grid
points within distance d of any fixed point in 7. Clearly, h = OW?).Ifd = (),
then Wy(T, w, d) is connected a.a.s., so the interesting case is d = o(n), i.e., h =
o(N). Furthermore denote by p = w/N be the expected number of walkers at a
vertex and define the parameter © = N (l - e“’) e~ The authors first prove that
in the static initial case at time t = 0, Pr [Wy(T, w, d) is connected] = e * +o(1).

Using the information from the static case, in the dynamic setting, the crux of
the paper is the study, as 7 evolves, of the birth and death of isolated vertices, and
the sudden connection and disconnection of W, (T, w, d). Let LD, be the random
variable counting the length of the disconnected period (similarly, a random variable
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t=1,d=3

e

’
./ ’
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Fig. 6.3 A step of the walkers’ problem on the grid. The solid line represents direct communica-
tions of the ad hoc network, the dashed line represents communication between nodes that are at
distance more than d

LC, counting the length of the connected period is considered) starting at time step
t provided that it really starts to be disconnected at 7. Define the average length of
a disconnected period starting at time ¢ to be LD,, := E (LD; | LD; > 0), which
is independent of 7, and is a function of N, d, and w. The authors show that the
following hold about LDyy:

L=l ifdp —> 0

uubp
LDy ~ | =% ifdp — ¢
et ifdp — o0

where b = ©(d) is a function related to the boundary of the ball of radius r in T
and A = (1 — e_bp> w with 0 < A < u for dp — c. Furthermore, LD, converges

in probability for r — oo (N fixed) to a random variable LD, where LD ~ LD,y
a.a.s. Similar results can be given for the average length of connected periods. For
the proof, the authors calculate joint factorial moments of variables accounting for
births, deaths, and survivals of isolated vertices, and they show that the connectivity
(disconnectivity, respectively) of the graph is asymptotically equivalent to the non-
existence (existence, respectively) of isolated vertices.

The results in the paper are proved in full generality, under any norm and for
T =10, 1) for m = ©(1). Also, the paper proves results on the connectivity and
disconnectivity periods for the case when the underlying graph of fixed paths is a
cycle.

e The DRGG model with radii r.. The paper [15] studies the connectivity of a ran-
dom direction type model for MANETSs. The model is a RGG at the connectivity
threshold r., where all vertices move at the same speed. This dynamic model is
denoted by the authors as the dynamic random geometric graph. More formally,
the model is the following: at the starting of the process (+ = 0), n nodes are
scattered independently and uniformly at random in the unit torus [0, 1)2. At any
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time r € {0, 1,2,3,...}, two nodes are connected if their Euclidean distance
is at most r. The authors fix the value of r to be the value at the connectivity

threshold for static RGG, i.e., r = r. = / lmg":#. The dynamic model is the
following: given two positive reals s = s(n) and m = m(n), at any time step
t, each node i jumps a distance s in some direction «;; € [0, 27). The initial
angle «; o is chosen independently and uniformly at random for each node i and
then at each time step each node changes its angle independently with probability
1/m. Thus, the number of steps a node has to wait before changing its direction
follows a geometric distribution with expectation m. New angles are also selected
independently and uniformly at random in [0, 277) (see Fig. 6.4 for a toy example
of the changes of the graph in a single step).

The goal of the paper is to analyze the expected length of (dis)connectivity peri-
ods of the underlying graph. To state the main result more formally, denote by C;
the event that the random graph is connected at time ¢ and similarly denote by D; the
event that the graph is disconnected at time ¢. Furthermore, define L,(C) to be the
random variable counting the number of consecutive steps that C holds starting from
time ¢ (possibly co and also O if C; does not hold). L;(D) is defined analogously by
interchanging C with D. It can be shown that the distribution of L,(C) and L;(D) is
independent of 7. Define also

e =E(L(C)| D1 AC;) and Ap =E(L;(D)|Ci—1 ADy)

that is, Ac (Ap, respectively) count the expected number of steps that the graph stays
connected (disconnected, respectively) starting at time ¢ conditional upon the fact
that it becomes connected (disconnected) precisely at time 7. The main result of the
paper is the following: if srn = @ (1), then

1 i a et —1
an ~
1 _ e_ﬂ(l_e—étxm/n) D 1 _ e—ﬂ(l—e*‘”’”/”)

rC ~

: '\ s

L] (
Fig. 6.4 A step in the DRGG. Starting at a given ad hoc graph (left picture), every node chooses a
new direction chosen at random (center picture), creating a new ad hoc graph (right picture)
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Otherwise, it is

kg : _ w(et—1) . _
ho ~ | T if srn = o(1) and dp ~ | A if srn = o(1)
1_(13—;1 if srn = (1) et ifsrn = w(1)

One can observe that for srn = o(1) and srn = w(1) the results of Ac and Ap
correspond to the respective limits in the case when srn = ©(1). These results have
various consequences; on the one hand the expected number of steps in a period
of connectivity (disconnectivity) does not depend on m, that is, it does not depend
on how often the nodes change their direction. On the other hand, Az and Ap are
non-decreasing in s. The intuition behind this is as follows: if the distances between
two time steps are big, the correlations between two consecutive steps are smaller,
and connectivity/disconnectivity changes more frequently. For a very large s (case
srn = w(1)), A¢c and Ap do not depend on s anymore, since for such a value of s
two consecutive steps are roughly independent. Finally, one can observe that in the
case srn = o(1) models the underlying continuous-time model very well: denote
by ¢ = si¢ (vp = sAp, respectively) the distance covered by each vertex during
a connectivity (disconnectivity) period. Then,

i /T alet —1) wmle* —1)
T ~ ~ s TD ~ ~
¢ dpurn 4us/nlnn durn dus/ninn

which asymptotically do not depend on s. Since these results also hold if s tends to
0 arbitrarily fast, the related continuous-time model has a similar behavior: in that
model the traveled distance during periods of connectivity (disconnectivity) also
does not depend on the average distance sm between changes of angle.

The main ingredient of the proof is the fact that the probabilities needed to com-
pute Ac and Ap can be expressed in terms of the probabilities of events involv-
ing only two consecutive steps. This is surprising, since in this case (in contrast to
the article [18]) the sequence of connected/disconnected states is not Markovian—
staying connected for a long period of time makes it more likely to remain connected
for one more step. As in the article [18], it turns out that the existence/non-existence
of isolated vertices is asymptotically equivalent to the disconnectivity/connectivity
of the graph, both in the static case and for two consecutive steps. Although the
proof is technically very different from the one in [18], it is similar in spirit: the
characterization of the changes of the number of isolated vertices between two con-
secutive steps is based on the computation of the joint factorial moments of the
variables accounting for these changes (births/deaths/survivals of isolated vertices).
As in [18], it is not obvious that the probability of existence of components of larger
sizes in the dynamic model is negligible compared to the probability of sudden
appearance of isolated vertices, but in the paper it is shown to be the case.
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6.5.3 The Effect of Mobility to Speed up Message Dissemination
in Sparse Networks

In this section we survey in chronological order three results which show that high
mobility of nodes helps in disseminating information.

e The Source—destination pairs model. The work [27] can be considered as the first
attempt to formally analyze a model of mobility. The model is the following:
there are n nodes (n — oo) all lying in the disk of unit area. The location
of the ith node at time ¢ is given by the random variable X;(¢). Each of the n
nodes is a source node for one session and a destination node for another session,
and each node i has an infinite stream of packets to send to its destination d (i).
The source—destination (S—D) association is established initially and does not
change over time. The nodes are mobile, but the mobility model described by
the authors is non-constructive: the process {X;(-)} is stationary and ergodic with
stationary distribution uniform on the disk, and trajectories of different nodes are
independent and identically distributed. It is a drawback of the paper, that the
exact movement of the nodes is not explained: in particular, it is not clear what
happens when a node touches the boundary of the disk. Recall that as mentioned
before, boundary effects can change the distribution. The information exchange
is not restricted to nodes within a certain distance, but it is the following: at
slotted time ¢, node i has transmission power P; (). Denote by y;;(¢) the channel
gain from node i to node j, such that the received power at node j is P; (¢)y;; (f).

Formally, y;;(¢) is defined as m, where « is a parameter greater than 2.

Node i can transmit to node j if

Pi()yij (@)

: (6.2)
No + i Zk#i Pk(t)ykj(t)

where B is the signal-to-interference ratio requirement for successful communi-
cation, Ny is the background noise power, and L is the processing gain of the
system, it can be taken to be 1. Intuitively speaking, on the one hand, the closer j
to i at time ¢, the bigger y;;(¢), and the more likely it is that node i can transmit a
packet to node j. On the other hand, relative distances between nodes also play a
role: if a node i is close to neighbor j, but j has many other neighbors very close,
and at the same time i is further away from another node j’, whose neighbors are
all further away than i, it might happen that i is able to transmit to j’ and not
to j. In the following it is assumed that all nodes transmit at the same power
P. Whether or not a node transmits to another one is decided by an external
scheduler. Every node is assumed to have an infinite buffer to store packets, and
when packets are transmitted from source to destination, they can go through one
or more other nodes serving as relays. The goal is to find a scheduling policy
with high long-term throughput. To make this concept more precise, define by
M (t) the number of source node i packets that d (i) receives at time ¢ under the
scheduling policy 7. A throughput A (n) is feasible, if there exists a policy 7 such
that for every S—D pair i we have
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T
Jim oo Z M7 (1) > A(n)

=1

and the goal is to maximize A(n).

The authors first prove a lower bound in a dynamic model where relay nodes
are forbidden. More precisely, they show that there exists a constant ¢ > 0 such
that the probability of having a throughput of at least cn~(1/(1+%/2) tends to 0 for
n sufficiently large. The theorem is stronger if « is closer to 2: if « — 2, the prob-
ability of a throughput of ¢//n tends to 0. This is the same lower bound as in the
static model [23]. The intuition behind this result is the following: if long distances
are allowed, then interference limits the number of concurrent transmissions. If a
scheduling policy allows only short transmissions, then only a small fraction of
S—D pairs is sufficiently close to transmit a packet.

Next, as a main result of their paper, the authors show that mobility helps if inter-
mediate relay nodes are permitted. If for every S—D pair every other node can serve
as intermediate relay (that is, at different time slots different nodes may contain part
of the packet stream between i and d(i)), an asymptotically optimal throughput of
A(n) = c for some ¢ > 0 can be attained. To prove this the authors consider the
following scheduling policy: every packet is relayed at most once. For every time
slot ¢, the set of nodes is randomly partitioned into a set of potential senders (of
size sn for some constant s > 0) and potential receivers. Each sender node may
transmit packets to its nearest neighbor among all receiver nodes, and the sender
indeed transmits if the interference generated by other senders is sufficiently small
(according to the formula given in (6.2)). The algorithm runs in two interleaved
phases: in phase 1 (in odd time slots, say) packets are sent only from source nodes
to relays (or directly to the destination node), in phase 2 (in even time slots, say)
packets are sent only from relays to destination nodes. The proof of the result uses
the fact that at any particular moment in time the distribution of the points is uniform
on the disk, together with some results on the asymptotic distribution of extrema of
i.i.d. random variables. We recall once again, that is not clear how the nodes move
and what happens when touching the boundary.

e The DRGG model below r;. In the work [38] the authors study a very general
random direction-type model with a radius below the threshold of the existence
of a giant component. More precisely, the authors consider the following model:
at the beginning n nodes (n — o0) are distributed uniformly at random in a
square A = £ x L, where L = c+/n for some large constant ¢ > 0. Two nodes
can exchange information if they are within Euclidean distance 1. It is assumed
that information exchange takes zero time, once two nodes are at distance < 1.
By the choice of L, n/A tends to a small constant (n/.A < 1/m), which in the
static case corresponds to a random geometric graph below the thermodynamical
limit ry = ¢/+/n. Recall in Sect. 6.2 we already pointed that for a radius  below
the thermodynamical limit r;, the RGG is disconnected and it does not have
yet a giant component. The mobility model is the following: the nodes follow
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random trajectories with Poisson rate 7, keeping uniform speed between direction
changes. When a node hits the boundary at an incidence angle 6, it follows the
mirror reflection policy, i.e., the node bounces back at angle m — 6. Therefore,
the probability density for a node to travel a time ¢ in a certain direction before
changing the direction is

1
— —tt
2ﬂtexp( Tt)

where t is a parameter controlling the speed of change. Notice that if T — oo
then the mobility represents Brownian motion, while if t — 0 the mobility repre-
sents a random waypoint model with the mirror reflection policy, where the nodes
only change direction when touching the boundary of the square. The factor %
comes from the fact that every angle has the same probability to be chosen.

The authors give an upper bound on the speed at which information can be prop-
agated between any pair of nodes. Recall that in the static case information between
most pairs of nodes cannot be propagated since the largest connected component for
the value of v := n/.A to be considered has size O(logn). The authors show that
mobility helps to propagate information. In order to state the result more precisely,
consider a node that starts at coordinate zg = (xg, yo) at time ¢ = O that wants to
propagate information to a destination node starting at coordinate z; = (x, y1). The
authors show that the destination node can be assumed to be fixed without changing
the asymptotic results of the analysis. Denote by g, (zo, z1, t) the probability that the
destination receives the information before time ¢ (n is assumed to be large, but the
density v is a constant). A scalar 5o > 0 is called an upper bound for the propagation

k"s;zll) = 0 whenever |z; —zo| — 00. Using

speed, if for all s > 59, lim g, (Zo, 21,
this definition, the authors show that an upper bound on the information propagation

speed is

2
n 4
M) . 63

®
min { —with® = |p2v2 + [+ 5
0,050 | p 1= Zm51i(p)

where v is the maximum node speed, Io() and () are modified Bessel functions

2k 2k+1 1
defined by Io(x) = Y ;-9 (%) T and 11 (x) = ) ;9 (%) wrom - To get
some intuition about this bound and its involved parameters, note that the quantities

Ip(x) and %I 1(x) are both larger than 1, and therefore the expression has meaning if

:’:{ < %, as above the thermodynamical limit there is a giant component, and there-

fore the information propagation speed is infinity. Observe also that the obtained
value is larger if 7 is larger. Such a behavior is expected, since changing directions
more frequently may result in faster information propagation and therefore the prop-
agation speed might be higher. Finally, p and ® are parameters that correspond to
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the Laplace transform of the sequence of nodes such that a piece of information is
visiting on its way from source to destination (see below for a rough explanation).

To prove the result (6.3), the authors decompose the journey (which is the
sequence of nodes a piece of information undergoes from the source to the destina-
tion) into different segments. These segments either correspond to node movements
through which the information is propagated or to direct propagations between two
nodes, when a node immediately, without movement, propagates the information
to another one due to the fact that the two nodes are at distance < 1. The authors
consider the segments as independent, which is not true, since, for example, two
consecutive nodes in the sequence are more likely to move in opposite directions
or node speeds are different, and a faster moving node meets more nodes, but they
show that in this way they prove an upper bound on the propagation speed for the
real model, and hence the assumption is justified.

On the technical side, the authors compute the Laplace transform of the prob-
ability density of a fixed journey of length k, defined as a journey where k + 1
nodes participate in the process of information propagation from the source node
to the destination node. Since the segments are considered to be independent, the
Laplace transform of the journey is the product of the Laplace transform of the
segments. In particular, the Laplace transform of such a journey does not depend
on the particular nodes participating, but only on the length of the journey. As the
journey, however, is not known in advance, the authors consider the Poisson gen-
erating function G(Z, (p, ®@)) whose nth coefficient is the Laplace transform of all
journeys in a network with n nodes in a square of size 4. They show that this gener-
ating function is equivalent to an ordinary generating function whose kth coefficient
is the Laplace transform of the probability density of a fixed journey of length k.
Hence, for n — oo an upper bound for the asymptotic behavior of ¢, (zo, z1,t)
can be calculated from simpler expressions for journeys composed of independent
segments. The asymptotic growth of the Laplace transform of ¢, (zg, z1, t) is then
obtained by those values of (p, &) for which the denominator corresponding to the
nth coefficient of the Poisson generating function G (v, (p, ®)) vanishes. The final
expression for ¢, (zp, 21, ¢) is then obtained using the inverse Laplace transform.

One has to point out that the conference version of the article, although sounding
very plausible, is not easy to read. In particular, the probability spaces are not clearly
defined.

e The hybrid grid model approximating DRGG, for r > r. In the Chapter, Informa-
tion Spreading in Dynamic Networks: An Analytical Approach, Andrea Clementi
and Francesco Pasquale give an extensive presentation of this model and other
previous related models in the specific framework of information spreading in
dynamic networks. However, for completeness of our survey, we also briefly
sketch the model. We refer the reader to the mentioned chapter in the present
book. In the model used by [13] a RGG is approximated by a very fine grid on
which the nodes are restricted to move. Hence, it is a discretized version (with
respect to both time and space) of the models used in [38]: there are n nodes
(n — o0) moving on the corner points of a grid inside a square of size +/n. In



6 Theoretical Aspects of Graph Models for MANETSs 185

more detail, for some given ¢ > 0, at any time ¢ the nodes occupy one position
of L(n, €), where

B

L(n,s):{(is,js)li,jeN/\i,j§—
&

The position at time ¢+ = 0 is chosen uniformly at random, independently for
all nodes, and at any fixed time slot ¢ two nodes are connected by an edge if
their Euclidean distance is less than r. Here r > rp, where rq is a sufficiently
large constant. Therefore, the graph contains a giant component, but is not nec-
essarily connected a.a.s., which would happen only for r > clogn. The mobil-
ity model is the following: for a given move radius p, define the move graph
Mn,p,s = (Lp.e, En,p,s), where

Enpe=1{p.q) | p.g €Lne, (p,q) =< p}

and d (-, -) is the Euclidean distance. Furthermore, for any position p in the square,
define by I'(p) = {q | (p,q) € E, .} A node at position p at time ¢ chooses
uniformly at random its position at time ¢ 4+ 1 among all elements of I"(p). In other
words, it chooses a random node in a p-vicinity of the original position (see Fig. 6.5
for toy example of one step in the present model). Initially, at time ¢t = 0, one node,
the source node, contains a message that should be broadcast to every other node of
the network. Whenever at a certain time slot # one node u contains the message and
there is another node v within distance r that does not yet contain it, the message is
broadcast from u to v. It is assumed that transmission takes zero time. Recall that

Fig. 6.5 Two consecutive time steps in the model of [13]. On the left the graphs at some fixed
time 7, where a node connected with all the other nodes at distance < r. Right picture: the resulting
graph after a movement of each vertex of a distance < p. The trajectory of movement is indicated
by the light dotted arrows
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the flooding time is the number of time steps required to broadcast the message to
all nodes in the network.

The authors prove the following: if p > clogn for some constant ¢ > 0, then the
flooding is a.a.s. completed after

0 (% + logn)

time steps, which is asymptotically almost tight since the expected flooding time is
2 (ﬁ / p). That is, if the move radius is sufficiently large (i.e., the node velocity
is sufficiently high), the flooding time is independent of r (as long as r > rg).
This is especially interesting for r below the connectivity threshold: flooding can be
completed although at every time step the graph is disconnected.

The proof of the result uses a tessellation argument; the square is subdivided into
supercells of side length ® (p). The proof proceeds in the following three steps: first,
it is shown that after O (logn) time steps there is a.a.s. at least one supercell which
contains @(pz) informed nodes (the supercell is called quasi-informed). Next, in a
second phase, it is shown that, with high-probability, any quasi-informed supercell
at time ¢ makes all its adjacent supercells quasi-informed at time ¢ + 1. Since any
supercell set D has a boundary of size at least @ (y/[D]), after O (v/n/p) time
steps all supercells are quasi-informed a.a.s. Finally, in a last phase, it is shown that
in O (log n) time steps a.a.s., any quasi-informed cell becomes completely informed.
That is, all nodes of that cell contain the message that should be broadcast.

6.6 Conclusions

We surveyed the main theoretical issues when studying models for MANETs. We
described some of the models, where properties have been investigated with a cer-
tain degree of formal rigor.

In particular, in Sect. 6.4 we have presented theoretical characterizations of fun-
damental properties such as node spatial distribution and average velocity, under
the assumption that nodes move according to the RWP mobility model. In the
same section, we have shown how such characterizations have been used to disclose
accuracy issues with wireless network simulation practice and to design a “perfect”
simulation methodology solving these issues.

In Sect. 6.5 we presented recent papers dealing with connectivity issues of
dynamical models, where nodes move synchronously on [0, 1)2. The goal in [51]
is to study how mobility affects the threshold of connectivity. The author gives the
threshold under certain conditions affecting mobility parameters. The papers [18]
and [15] compute the expected lengths of connectivity and disconnectivity periods
of vertices that are moving on a predetermined grid (in the case of [18]) and of
vertices of a dynamic geometric graph whose radius is at the threshold of con-
nectivity (in the case of [15]). The remaining three papers deal with the issue of
how mobility can be used to maintain the transmission range small while at the
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same time allowing for connectivity properties. The papers of [38] and [13] are
complementary: whereas the authors in [38] study random geometric graphs with a
radius below the thermodynamical threshold, the paper [13] considers the case of
radii between the thermodynamical threshold and the threshold of connectivity. The
third paper studied here, the work of [27], is orthogonal to these two since there is
no absolute bound on the radius of transmission, but it also supports the hypothesis
that mobility can help in propagating information.
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Chapter 7
Networked Distributed Source Coding

Shizheng Li and Aditya Ramamoorthy

Abstract The data sensed by different sensors in a sensor network is typically
correlated. A natural question is whether the data correlation can be exploited in
innovative ways along with network information transfer techniques to design effi-
cient and distributed schemes for the operation of such networks. This necessarily
involves a coupling between the issues of compression and networked data trans-
mission that have usually been considered separately. In this work we review the
basics of classical distributed source coding and discuss some practical code design
techniques for it. We argue that the network introduces several new dimensions to
the problem of distributed source coding. The compression rates and the network
information flow constrain each other in intricate ways. In particular, we show that
network coding is often required for optimally combining distributed source coding
and network information transfer and discuss the associated issues in detail. We
also examine the problem of resource allocation in the context of distributed source
coding over networks.

7.1 Introduction

There are various instances of problems where correlated sources need to be trans-
mitted over networks, e.g., a large-scale sensor network deployed for temperature
or humidity monitoring over a large field or for habitat monitoring in a jungle. This
is an example of a network information transfer problem with correlated sources.
A natural question is whether the data correlation can be exploited in innovative
ways along with network information transfer techniques to design efficient and
distributed schemes for the operation of such networks. This necessarily involves a
coupling between the issues of compression and networked data transmission that
have usually been considered separately (see Fig. 7.1 for an illustration).
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Terminal

(a) (b)

Fig. 7.1 (a) Classical Slepian—Wolf problem with sources X and Y with direct links to a terminal.
(b) Practical scenario with multiple sources and terminals communicating over a network with
link capacity and cost constraints. The joint problem of distributed source coding and network
information transfer introduces various issues that are overviewed in this work

The correlation in a sensor network can be exploited in multiple ways. One can
consider protocols where sensor nodes exchange information among themselves,
compress the information, and then transmit the compressed bits to the terminal.
At the other extreme, the sensors may operate independently. Intuitively, one would
expect that the first scenario would be significantly better from a compression per-
spective. A surprising and groundbreaking result of Slepian and Wolf [1] shows that
in fact under certain situations, the case in which the sensors act independently can
be as efficient as the case in which the sensors do communicate with each other.
The work of [1] introduced the idea of distributed source coding and demonstrated
the existence of encoders and decoders that could leverage the correlation without
needing explicit cooperation between the sources.

In this chapter we review various ideas in distributed source coding that are
interesting within the context of sensor networks. We begin by an overview of the
basic concepts and an outline of certain practical code constructions that have been
the focus of much work recently. Next, we examine distributed source coding in
a network context. The network introduces several dimensions to the problem of
distributed source coding that do not exist in the classical case. It may be tempting
to argue that one could simply find paths in the network that act as the direct links in
the classical problem, assuming that the paths have enough capacity. However, such
an approach is not optimal. The compression rates and the network information
flow constrain each other in intricate ways. In particular, it turns out that network
coding [2] is essential in certain cases for optimality. Interestingly enough, the flavor
of results in this area depends upon the number of sources and terminals in the
network. We survey these in a fair amount of detail in this chapter and examine the
relationship between network coding and distributed source coding.

The issue of resource allocation is very important in the field of networking.
For example, optimal routing of packets that maximizes some utility function of
the network is a well-investigated issue in the field of networking [3]. Several tech-
niques for solving these problems in a distributed manner have been studied in the
literature [4]. In this chapter we discuss resource allocation problems in the context
of transmitting correlated sources over a network. The main difference here is that
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one needs to jointly allocate the rates and the flows in the network. In particular, the
network capacity region and the feasible rate regions interact in non-trivial ways.
This chapter is organized as follows. We discuss the basics of distributed source
coding in Sect. 7.2 and introduce the problem of networked distributed coding in
Sect. 7.3. Sect. 7.4 presents the discussion for the case of networks with a single
terminal and Sect. 7.5 considers the case of networks with multiple terminals.

7.2 Basics of Distributed Source Coding

A sensor network consists of various sensors that monitor some physical phe-
nomenon, e.g., an agricultural sensor network may be deployed in a field for tem-
perature or humidity monitoring. In this chapter we will use the terms sensor and
source interchangeably. Furthermore, a sensor output at a given time is assumed to
be a random variable. Hence, over time, the observations of a sensor can be treated as
a vector of random variables. We assume that the source outputs a sequence of inde-
pendent and identically distributed (i.i.d.) random variables. While this assumption
may not hold in a strict sense, we will see that it serves to simplify our exposition.
Many of the results discussed in this chapter also hold for the case of sources with
memory. However, we will not discuss them here.

Formally, we denote n successive realizations of a source X by X1, X2, ..., X,
such that their joint distribution p(Xi,...,X,) = H;‘le(X,-). If there is
another correlated source Y, the joint distribution p(X1, Y1, X2, Y2, ..., Xy, V) =

1'[;’:1 p(X;,Y;), i.e., at a given time instant, the sources are correlated but across
time they are independent.

In a sensor network, the main problem is to convey either the sensor readings or
their functions (e.g., mean, variance) to a terminal. The transmission protocol needs
to be efficient in terms of the number of bits transmitted. If the correlation between
the sources is ignored and if the terminal needs to recover the source without any
distortion, the compression rate should be at least the entropy [5, 6] of the source.
For example, if there are two sources X and Y, this implies that the terminal needs
to receive H(X) + H (Y) bits per unit time for recovering both X and Y.

Clearly, if there is correlation across sensors, the overall bit rate required for
transmission to the terminal can be reduced. This is certainly feasible if the sources
communicate with each other. The famous result of Slepian and Wolf [1] shows that
distributed source coding, where the sources do not communicate with each other,
can be as efficient as the case in which the sources communicate with each other.

7.2.1 Slepian—Wolf Theorem

Consider two sources X and Y. Let Ry and Ry denote the rates at which the sources
operate. This means that the sources X and Y transmit Ry and Ry bits per unit time
to the terminal.
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Theorem 1 (Slepian—Wolf Theorem [1]) Consider memoryless correlated sources
X and Y from finite-sized alphabets X, ) respectively, with joint distribution
p(X, Y). Suppose that

Ry > H(XI|Y)
Ry = H(Y|X)
Rx+Ry > H(X,Y)

There exist encoding functions f; : X" — {1,2,..., Z”RX} at source X
and fr : YY" — {1,2, ...,Z"RY} at the source Y and a decoding function
g {1,2, ...,2"RX} x {1,2,..., 2”RY} — X x Y at the terminal, such that the
terminal is able to recover the source sequences with vanishing error probability
as n goes to infinity. Conversely, if Rx, Ry do not satisfy those conditions, it is
impossible to recover the sources with vanishing error probability.

The implication of the Slepian—Wolf theorem is rather surprising and profound.
Intuitively, it is clear that there is no hope of compressing the sources to a rate of less
than H (X, Y) even if they communicate with each other. The Slepian—Wolf theorem
shows that in fact one can do this even when the sources do not communicate with
each other.

The achievability proof goes as follows. A length n X-sequence is compressed
to a binary vector of length n Ry by encoding function f; that is chosen at random.
This process is referred to as random binning [6] in the literature, as each sequence
is assigned a bin whose index is determined by f7. Similarly, f> returns the bin index
of a Y-sequence. At the terminal, suppose bin indices (7, j) are received. The decod-
ing function finds all the length n sequences X, y such that f1(x) =i, f2(y) = j and
find the pair of sequences that are most likely to have been transmitted. When 7 is
large, with high probability, such sequence pair is the actual transmitted sequence
pair. In other words, the error probability is vanishing as n goes to infinity.

The rates satisfying conditions are called achievable rates and they form a region
in the 2-D plane shown in Fig. 7.2.

The two corner points on the boundary are interesting. They correspond to a
rate allocation (Rx, Ry) = (H(X), H(Y|X)) or (Rx, Ry) = (H(X|Y), H(Y)).

Rl A
SW region
HX) |---4 R +R,=H(X,.X,)
Slope
H(Xllxz) “"*i """"" "
0 : : >
HX,IX,) H(X,) R,

Fig. 7.2 Slepian—Wolf Region in the case of two sources X and Y
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In order to achieve one of these points, say the first one, since Ry = H(X), any
lossless compression scheme can be used to compress x. Then, x is used as side
information to help decode y at the decoder. The rate of Y is H(Y|X), i.e., the
amount of uncertainty given X.

Code design in the case when side information is available at the decoder is called
the asymmetric Slepian—Wolf coding problem [7]. Code design for achieving any
general (non-corner) point is called the symmetric Slepian—Wolf coding problem.
There are many practical code designs for both asymmetric coding and symmetric
coding when we have only two sources. In general, asymmetric Slepian—Wolf cod-
ing is easier than the symmetric case, because of a certain equivalence with channel
coding, that we will discuss shortly. We refer the reader to [7] and the references
therein for detailed descriptions.

The theorem above is stated for two sources. In general, when there are N
sources, we have a generalized Slepian—Wolf theorem [8]. Suppose the sources
X1, Xa, ..., Xy are generating i.i.d. symbols according to the joint probability dis-
tribution p(X1, Xo,..., Xn). Let R; denote the rate for source X; and S denote
a nonempty subset of node indices: S € {1,2,..., N}. Let X5 denote the set of
random variables {X; : i € S}. If the rate vector (R, Ra, ..., Ry) satisfies

ZR,- > H(Xs|Xse) forall S # ¢
ieS

the decoder is able to recover all sources error free (asymptotically). Conversely, if
the rates do not satisfy the condition, lossless recovery is impossible. When there
are multiple sources, practical code design is a challenging problem. Some coding
schemes exist, e.g., [9—11], but they either suffer suboptimal rate or have strong
assumptions on the correlation model.

7.2.2 Equivalence Between Slepian—Wolf Coding and Channel
Coding

The proof of the Slepian—Wolf theorem is information theoretic in nature and the
corresponding achievability scheme requires exponential (in n) complexity decod-
ing in general. For the case of two sources, and asymmetric Slepian—Wolf coding,
Wyner [12] discovered the relation between channel coding and Slepian—Wolf cod-
ing. Most existing work on Slepian—Wolf coding for two sources relies on Wyner’s
idea and exploits powerful channel codes such as Turbo codes and LDPC codes
[13-19]. Here, we introduce the basic ideas for asymmetric Slepian—Wolf coding.
First we review the concepts of channel coding [20], especially on linear block
codes. A (n, k) linear block code over a finite field G F'(¢) maps each message of
length k (i.e., a k-length vector € GF(q)) to a codeword ¢ of length n (i.e., an
n-length vector € GF(q)). The codeword is transmitted through a channel, which
introduces an error e. The receive vector is r = ¢ + e (addition over G F(q)), where
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e denotes the error vector. The decoder takes r as input and attempts to find the
correct c. In classical coding theory, the errors are modeled according to their Ham-
ming weight, i.e., the number of nonzero elements in e. An important design param-
eter of a code is the minimum Hamming distance d (the number of positions where
two codewords take different values). A code with minimum distance d is able to
correct up to | (d — 1)/2] errors, i.e., as long as the Hamming weight of e, wz (e) <
L(d —1)/2], the decoder can find the error pattern e and the transmitted codeword c.

The parity check matrix of a linear block code is a (n — k) x n matrix H such
that cHT = 0 (matrix multiplication over G F (q)) for every codeword c¢. A practical
decoding algorithm for a linear block is called syndrome decoding. The decoder
computes the syndrome of length (n — k) s = rH'. Since rH? = cHT + eHT,
s = eH”, implying that the syndrome only depends on the error pattern. It then
attempts to find the e with the least weight. This can be done efficiently for specific
classes of codes. For example, Berlekamp—Massey algorithm for BCH codes and
Reed—Solomon codes [20] can be used to find the error pattern e from s as long as
wt(e) < (d — 1)/2. Likewise, binary LDPC codes admit efficient decoding.

We now demonstrate that syndrome decoding can be applied to the asymmetric
Slepian—Wolf coding problem. Assume that the source sequences X, y have length
n and the correlation model is that the Hamming distance between them is no more
than ¢, i.e., they differ at most ¢ positions. Suppose y is available at the decoder. At
source X, we transmit XH  to the terminal. The terminal computes yH' +xHT =
(x +y)HT = eH”, where e = x +y is the difference between x and y.! We know
that x and y differ in at most 7 positions, so wt(e) < . The decoder is able to find e
as long as the minimum distance of the channel code is at least 2¢ 4- 1 based on the
discussions above. Once e is obtained, X = y + e can be easily computed. Thus, a
length n vector x is compressed to a length (n — k) vector xH . Since the minimum
distance of a code should satisfy Singleton bound d < n — k + 1 [20], the length
n — k should be at least 2.

In order to establish a concrete relationship with Slepian—Wolf theorem, next we
consider a probabilistic correlation model. Consider binary sources X and Y that
are uniformly distributed. The correlation between them is that the probability that
they are different is p < 0.5. In other words, each bit in the vector e = x 4y is
1 with probability p and O with probability 1 — p. Then, H(X|Y) = H) (p),% and
H(X,Y) =1+ Hy(p).

Now, consider the channel coding problem for the binary symmetric channel
(BSC) with crossover probability p. The codeword c is transmitted and r = ¢+ e is
received and e is i.i.d. taking value 1 with probability p. The capacity of this channel
is 1 — Hp(p) [6]. The receiver computes the syndrome s = rH T — eHT. It can be
shown that there exists an H and the decoding function fyec(-) such that the code

!'In this chapter, assume that the size of the finite field is a power of 2 so addition and subtraction
are the same.

2 Hy(p) is the binary entropy function defined as Hy(p) = —plog, p — (1 — p)log, (1 — p).
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rate k/n — 1 — Hp(p) as n — oo and the decoding error can be made arbitrarily
small [21]. Such a code is called a capacity-achieving code.

In an asymmetric Slepian—Wolf coding setting, suppose that the decoder knows
y.Let Ry = H(Y) = 1 and apply any lossless entropy coding scheme [6], y can be
recovered at the terminal. Take the parity check matrix of a capacity-achieving code
H and the source X transmits xH T . The terminal finds the estimate of x,

X=y+ faeexHT +yHT)

The probability that X # x is arbitrary small. Note that the length of vector trans-
mitted by source X is n — k, so the rate

Rx = (n—k)/n=1—k/n= Hp(p) = H(X|Y)

Thus, using a capacity-achieving channel code, we can achieve the corner point
(H(X|Y), H(Y)) of the Slepian—Wolf region.

In practice, LDPC codes [22] come very close to the BSC capacity. The belief
propagation algorithm (BPA) [22] acts as the decoding function fgec(-). Note that in
the channel coding setting, the belief propagation algorithm is designed to output a
codeword ¢ with 0 syndrome, whereas in the distributed source coding setting, the
BPA needs to be modified so that it outputs a vector satisfying a given syndrome.
More generally, even if the correlation model cannot be viewed as a binary sym-
metric channel, we can provide proper initialization to the BP algorithm according
to the correlation model. Turbo codes can also be used to achieve compression via
puncturing at the encoder; the extrinsic information exchange at the decoder exploits
the correlation between the sources [23-25].

The equivalence in the asymmetric case does not carry over in a straightforward
manner to the symmetric case. However, an approach called source splitting [26, 27]
allows us to transform the symmetric Slepian—Wolf coding problem for N sources
to an asymmetric (corner point) problem where there are 2N — 1 sources.

7.2.3 Distributed Source Coding with a Fidelity Criterion

In the previous sections we considered the problem of lossless reconstruction. In
many practical applications, we may allow a certain amount of distortion in the
recovery process. In lossy multiterminal source coding, each source encodes its own
data at a certain rate and transmits it to the terminal. The terminal tries to recover
all the sources under a fidelity criterion. The fidelity is measured with respect to a
distortion metric.

More specifically, the encoders observe source sequences X1, X2, ..., Xy emit-
ted by the sources X1, X», ..., Xy and encode them at rate Ry, R2, ..., Ry sep-
arately (with no communication between the encoders). Given distortion metrics,
D = (Dy, D3, ..., Dy) for each source, we hope to find the region R (D) of all rates
R = (Ri, Ry, ..., Ry) that allow the decoder to reconstruct X1, Xo, ..., Xy such
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that the expected distortion between x; and X; is less than D; foralli = 1,2, ..., N.
However, the general region even in the case of very specific distortion metrics
remains unknown.

The inner bound for a given problem refers to a set of rates that can be shown
to be achievable. The outer bound refers to a set of rates that are not achievable
under any strategy. Some inner/outer bounds for the general problem can be found in
[28-30]. In most cases the inner and outer bounds do not meet, i.e., the exact region
is unknown. A tighter outer bound was obtained recently [31] and some insights on
the optimal encoders and decoders are given in [32]. The quadratic Gaussian case
was considered in [33, 34], where the rate-distortion regions for several special cases
are determined. Practical code design for multiterminal rate-distortion problems is
discussed in [35, 36].

Next we discuss two special cases of multiterminal source coding problems, for
which the rate-distortion regions are relatively well studied.

7.2.3.1 Wyner-Ziv Coding

Consider two correlated sources X and Y that follow joint distribution p(X, Y).
The source sequence x needs to be encoded without knowing y and transmitted to
the decoder, at which side information y is available. Let the distortion between
two n length sequences x and X be measured as %ZLl d(x;, x;), where d is a
non-negative function. The rate-distortion function Ry z(D) gives the minimum
required rate such that the expected distortion between the actual source sequence x

and the decoder output X is upper bounded by D, i.e., E (% Yo d(xi, 25)) < D.
Clearly, if D = 0, it is the special instance of Slepian—Wolf problem at corner point

(H(X|Y), H(Y)). In general, the rate-distortion function was shown by Wyner and
Ziv [37] to be

sz(D) = min
Pyix (), f():EEX, f(U,Y))=<D

I(X;U)—-1(Y;U)

where U is an auxiliary random variable and is such that U — X — Y, ie,,
U, X, Y form a Markov chain and the expectation is taken over the joint distribution
of X, Y, U. The function f is the decoding function.

In the Slepian—Wolf setting (i.e., D = 0), we know that minimum required rate
is H(X|Y), whether or not Y is available at the X encoder. When D > 0, let us
denote the rate required when Y is available at the source encoder as Ry (D).
It can be shown that in some cases Ry|y (D) < Rwz(D). In other words, we may
lose efficiency when encoding correlated sources separately rather than jointly when
D > 0. In the special case when the sources are correlated by X = Y + Z where Y
and Z are both Gaussian and Z is independent of Y, Rx|y (D) = Rwz(D) [37]. In
many other correlation models, the equality does not hold.

Practical coding schemes for the Wyner—Ziv problem based on nested codes [38,
39] are known. Nested lattice codes can be used in the quadratic Gaussian case and
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can be shown to achieve the Wyner—Ziv bound. Other practical Wyner—Ziv code
designs include trellis-based codes [13], nested coding followed by Slepian—Wolf
coding [40], quantization followed by Slepian—Wolf coding [41, 42]. The discussion
of these techniques is beyond the scope of this survey.

7.2.3.2 The CEO Problem

In the CEO problem [43], there is one source X and N encoders that do not observe
the source directly. Instead, each encoder observes a corrupted version of X, denoted
as ¥, i = 1,2,...,N. The Y;’s are assumed to be conditionally independent
given X. The encoder encodes y; at rate R; and such that the total encoding rate
is vazl R; < R. The decoder finds the X (the estimate of x,), based on the encoded
codewords. The aim is to find the rate-distortion function R(D), i.e., the minimum
total encoding rate needed such that the expected distortion between x and X is
at most D. This is analogous to a situation when a Chief Executive (or Estima-
tion) Officer obtains information from N agents and wants to estimate the source
sequence X that he or she is interested in. In a sensor network application, we can
think of the data fusion center acting as the CEO and the sensors act as the agents.
The problem formulation takes into account the noise in the sensing procedure. The
original paper [43] determined the asymptotic behavior of the error frequency when
R — oo for discrete memoryless source. The quadratic Gaussian case of the CEO
problem, where X is Gaussian and the observation noises ¥; — X are independently
Gaussian distributed, is studied in [44—46] and the rate-distortion function is deter-
mined in [45, 46].

7.3 Networked Distributed Source Coding: An Introduction

In the previous sections we have discussed the classical Slepian—Wolf result and its
lossy variants. Note that so far we have assumed that there is a direct noiseless link
between the sources and the terminal. This is a useful simple case to analyze and
captures the core of the problem as far as the basic concept of distributed source
coding is concerned. However, in a practical sensor network we expect that the
sensors will be communicating with the terminal over a network, possibly with the
help of various relay nodes. Therefore, it is natural to investigate whether the process
of information transmission over the network influences the compression and vice
versa. Our network model represents a wireline network or a wireless network with
medium access control (MAC) protocols that make the channels look independent
(we discuss the network model in more detail later). In this part of the chapter, we
overview relatively recent work that has contributed toward our understanding of
this field.

The problem of networked distributed source coding differs from the classical
problem in the following ways.
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e Suboptimality of separation between distributed source coding and network
information transfer.
Note that the problem of distributed source coding over networks would be a
straightforward extension of the classical Slepian—Wolf problem if one could
essentially “simulate” the presence of direct links between the sources and the
terminal. Indeed, one could encode the sources using a classical Slepian—Wolf
code and simply “flow” the encoded bits over the appropriate paths. This would
amount to separating the tasks of distributed source code design and the problem
of network information transfer. It turns out that such a strategy is suboptimal in
general.

e Issues of optimal resource allocation over the network.
The network introduces several issues with respect to the allocation of rates and
flows such that they are in some sense “optimal” for the operation of a network.
For example, in sensor networks, the problem of deciding the appropriate paths
over which the data needs to flow for minimum energy or maximum lifetime
[47] 1s of interest. In the context of correlated sources, these issues become more
complicated since one needs to jointly optimize the rates and the flows.

Our model of a network is a directed graph G = (V, E), where V is the set
of nodes and E is the set of edges. There is a set of source nodes S C V that
observes the sources and a set of terminals 7 C V that needs to reconstruct the
sources. An edge (vi, v2) is a communication channel which allows information
transmission from vy to vy. The channel can be noisy or deterministic (but typi-
cally capacity constrained). The different channels in the network are in general
dependent, e.g., in a wireless network, broadcast, and interference induces depen-
dence between different channels. However, characterizing the capacity region in
such scenarios, even with independent messages, has proved to be a difficult task
[6]. In fact, in many practical situations, protocols such as time division multiple
access-TDMA, frequency division multiple access-FDMA are used to provide the
semblance of independent channels. In a wireline network, the channels are typi-
cally independent. In the discussion in the sequel, we will mostly work under the
assumption that the channels are independent. It turns out that the results in this area
depend critically on the number of terminals in network. Accordingly, we divide
the discussion into two different sections. In Sect. 7.4 we review the results for the
single terminal case and in Sect. 7.5 we review the corresponding results for multiple
terminals.

7.4 Networked Distributed Source Coding: Single Terminal

In networks with a single terminal, under the assumption that the channels are inde-
pendent, Han [48] gave necessary and sufficient conditions for a network to be able
to transmit the correlated sources to the sink. A simple achievable transmission
scheme was proposed and its optimality was proved. Barros et al.[49] obtained
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the same result under a more general encoding model, where the form of joint
source/channel coding can be arbitrary and the coding can be across multiple blocks.
The achievability proof is almost the same as [48] and the converse is proved in a
different manner and is stronger because of the more general coding model.

Suppose that there are N + 1 nodes vy, vi, ..., vy in the network observing
sources Xo, X1, ..., Xn. The graph G(V, E) is complete and each edge (v;, v;) is
a discrete memoryless channel with capacity C;;. Note that the source entropy could
be zero and the capacity could also be zero, so realistic networks can easily fit into
this general framework. Node vy is the sink that wants to reconstruct the sources
X1,..., XN,

The proposed transmission scheme is very simple and intuitive. Apply good
channel codes to each channel so that we can model every edge (v;, v;) as a noise-
less link with capacity C;;. Each node performs Slepian—-Wolf coding at rate R;.
Next, the Slepian—Wolf coded bits need to be routed to the sink vg. Knowing the
rates at each source node, we can find a feasible flow that supports rate R; at source
node v; and terminates at sink node vg as follows.

Add a virtual supersource s* and introduce an edge (s*, v;) with capacity Cg+; =
R; fori = 1,..., N. Then compute the max-flow between s* and vy [50]. This
returns a flow assignment on each edge. The Slepian—Wolf coded bits are routed
according to the flow assignment to vg.

The node vy receives all Slepian—Wolf coded bits and jointly decodes all

the sources X1, X»,..., Xy. In order to reconstruct the sources, the rate vector
(Rq, ..., Ry) needs to be in the Slepian—Wolf region, i.e., for any nonempty subset
of {0, ..., N}, S, such that 0 € S¢ (since Xy is available at vg as side information

and is not encoded)

D Ri = H(Xs|Xs0) (7.1)

ieS

In order to successfully find the flow of value Z,N= | Ri from s* to vy, we need

the capacity of any cut separating s* and vg to be greater than ZZN: 1 Ri. Note that
a cut separates the source nodes into S and S¢, where S € {0,...,N},0 € S¢
but s* does not connect to vy, its capacity is Zjes(,\{o} Cexj + Zies’jes(, Cij =
> jesevoy Rj + Xics. jese Cij- Thus, as long as

YR Y Gy (7.2)

ieS ieS, jese

for all nonempty subset S of {0, ..., N} such that 0 € S¢, the flow exists. This is
illustrated in Fig. 7.3. Moreover, if

H(Xs|Xs) < Y. Gy (7.3)
ieS, jese
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S S¢
> IES. JEST Cij

Vy

Fig. 7.3 Tllustration of the sufficient condition for routing Slepian—Wolf coded bits to the terminal.
s* is the supersource. The cut of interest contains vy, vy in S and vz, v4 in S¢. The cut capacity
is Zjesg\(o} R; + Ziesi,jesf Cij, and it should be no less than ZIN:] R;. Thus, Zies,jesf Cij >

ies Ri

there exists a rate allocation satisfying (7.1) and (7.2) [48]. Therefore, (7.3) is a
sufficient condition for the single sink data collection with Slepian—Wolf coding.

Conversely, it is proved that the above condition is the necessary condition for
successful transmission under any joint coding scheme, i.e., if the capacity does not
satisfy this condition, the sink cannot recover the sources losslessly, under any kind
of coding scheme. Note that the proposed achievability scheme separates source
coding, channel coding, and routing. The converse part implies that it is optimal to
separately perform channel coding, distributed source coding, and treat the Slepian—
Wolf coded bits as commodities and route to the terminal. The main theorem in [49]
can also be viewed as a general source—channel separation theorem for networks
with one terminal, with independent channels. It implies that the source coding,
routing, and channel coding can be put into different layers of the protocol stack
separately.

We emphasize, however, that such a separation does not hold in general, i.e.,
when there are more terminals. As we shall see in Sect. 7.5, even when the channels
are independent, if we have more terminals, the compression rates and the network
flows are closely coupled.

7.4.1 Optimal Rate and Flow Allocation

From the discussion in previous sections, it is clear that distributed source coding
can compress the data effectively. In this section, we discuss resource allocation
problems for networked distributed source coding.

A natural resource allocation problem is to determine the rate at which each
source should be encoded, and the corresponding flows such that some network
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metric is optimized. For simplicity, we first consider the case when there are direct
channels between the sources and the sink.

7.4.1.1 Direct Source-Sink Channels

Suppose the sources communicate to the sink directly. We consider two metrics as
follows.

1. Sum rate minimization: In this case we consider noiseless source—sink channels
and seek to find a feasible rate vector that minimizes ZlN: 1 Ri.

2. Sum power minimization: Here we assume orthogonal additive white Gaussian
noise (AWGN) channels between the sources and the sink and seek to minimize
the total power min Z,N=1 P; (where P; is the power of the ith source), expended
in ensuring that the sources can be reconstructed at the terminal.

For the noisy channel case, the source nodes first use Slepian—Wolf codes to
encode the sources. As long as each rate is less than the channel capacity the sources
can be recovered losslessly at the terminal (assuming capacity-achieving codes are
used). The capacity of the channel between node i and the sink with transmission
power P; and channel gain y; is C; (P;) = log(1 + y; P;), where the noise power is
normalized to one and channel gains are constants that are known to the terminal.
Thus, the rate R; should satisfy R; < C;(P;). It is easy to see at the optimum, the
sensor node should transmit at the capacity, i.e., R;‘ = C; (Pl.*). Thus, the power
assignment is given by the inverse function of C; which we denote by Q;(R;), i.e.,

PF = Q; (R,*) = <2Rf* - 1) /vi. Once we know the optimal rate assignment R}
we know the power assignment P and vice versa. Therefore, the objective function
of the sum power minimization problem can also be written as

N
min'y (25 - 1) Jyi
i=1

For both problems, if N-dimensional Slepian—Wolf codes are used, the rates
should be in the N-dimensional Slepian—Wolf region, which is denoted by SWy.
Then, the sum rate minimization problem can be written as

N

subject to (R, ..., Ry) € SWy

The solution to this problem is trivial, i.e., any point at the boundary of the N-
dimensional Slepian—Wolf region is the optimal solution. In the sum power mini-
mization problem, besides Slepian—Wolf region constraint, we also add peak power
constraints for the transmission power of each sensor node, taking into account the
fact that every sensor has limited transmission power in a wireless sensor network.
Then, the problem is a convex optimization problem:
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N N
min P=Y % —1)/y
Wl 2
subject to (2% — 1)/y; < Prax. Vi

(R1,...,RNy) € SWy

This problem can be efficiently solved by, for example, interior-point methods [51].

In practice we do need to impose additional restrictions on the set of feasible
rate vectors. This is primarily because the problem of practical code design for the
N-dimensional Slepian—Wolf region remains open. It is fair to say that at present,
we only know how to design Slepian—Wolf codes for two sources. Thus, it makes
sense to impose “pairwise’” constraints on the rate vectors, so that two sources can
be decoded together. Given the state-of-the-art code designs for two sources case,
we could perform encoding and decoding in a pairwise fashion. Before the trans-
mission starts, we determine the source pairs that are jointly decoded together each
time and determine the rates of the sources and the corresponding codes. During the
transmission, the sources encode the message separately (without communication
with other sources) using the preassigned code and the sink performs joint decod-
ing for two nodes each time according to the preassigned combinations. We call
this pairwise distributed source coding, which is simple and practical. The resource
allocation problem is to determine the optimal pairing combinations and the rates for
the sensors such that the sum rate or the sum power is minimized. This problem was
first considered and solved using the notion of matching in undirected graph in [52].
Later, an improved solution using the notion of minimum weight arborescences and
matching forests was proposed in [53] that we shall discuss below.

First, we consider the sum rate minimization problem. Note that any point on
the slope of the Slepian—Wolf boundary achieves the minimum sum rate of two
sources. Thus, for a pair of sources that will be decoded together, simply choosing
the corner point as a rate allocation achieves minimum sum rate. Also note that a
decoded source can be used as side information to help decode other sources at the
terminal so that the rate of other sources being helped can be as low as the con-
ditional entropy given the decoded source. Since we consider pairwise distributed
source coding here and each time only two sources are involved in the decoding,
we do not use more than one decoded sources as helper. We say a rate assignment
has the pairwise property if it allows the terminal decode the sources in a pairwise
fashion. Specifically, the rate assignment is said to satisfy the pairwise property if

for each source X;,i = 1,2,..., N, there exists an ordered sequence of sources
(Xi,, Xiy, ..., X;;) such that
R, > H(Xi) (7.4)
Ri; > H(X;;|Xi;_,), for2 < j <k, and (7.5)
R; = H(Xi|Xi,) (7.6)

Such a rate assignment allows the possibility that each source can be reconstructed
at the decoder by solving a sequence of decoding operations at the SW corner points,
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e.g., for decoding source X; one can use X;, (since R;, > H(X;,)), then decode X;,
using the knowledge of X;,. Continuing in this manner finally X; can be decoded.
We hope to find rate assignment with pairwise property and with minimum sum rate.
Clearly, the optimal rate assignment satisfies conditions (7.4), (7.5), and (7.6) with
equality. It is easy to see the sequential decoding procedure of a rate assignment
with pairwise property that can be expressed on a tree. The nodes at the higher layer
are decoded first and used as side information to help decode the nodes at the lower
layer. If we assign edge weights to be entropies and conditional entropies, the weight
of the tree is the sum rate. Therefore, this inspires us to find a tree with minimum
weight on a proper defined graph.

Now we formally describe our approach. Construct a directed graph G = (V, E)
as follows. The node set V consists of N regular nodes: 1,2, ..., N and N starred
nodes 1*,2*, ..., N*. The edge set E consists of edges (i* — i) with weight
H(X;)foralli =1,2,..., N, and edges (i — j) with weight H(X;|X;) for all
i,j=1,2,..., N. Anexample of G is shown in the left figure of Fig. 7.4. Define a
subgraph G;+ of G as a graph obtained from G by deleting all starred nodes except
i* and all edges of the form (j* — j) for j # i. For each i, find a minimum weight
directed spanning tree> on G;+. This tree gives a rate allocation: R; = H(X;),
R; = H(X;|Xinc(j))» where inc(j) is the node such that edge (inc(j) — Jj)
belongs to the tree. Each subgraph G;= gives a rate allocation by a minimum weight

oul
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Fig. 7.4 An example of the rate allocation algorithm. The left figure shows the graph G. The edge
weights on the edges from node i* to node i are individual entropies and the edge weights on the
edges between regular nodes are conditional entropies. In this example, the individual entropies
are the same. Thus, H (X;|X;) = H(X|X;) and we only label one number between regular nodes
i and j. The right figure shows the minimum weight directed spanning tree found on G+ (a) The
graph G; (b) The minimum weight directed spanning tree found on G+

3 A directed spanning tree (also called arborescence) of a directed graph G = (V, A) rooted at
vertex r € V is a subgraph T of G such that it is a spanning tree if the orientation of the edges is
ignored and there is a path from r to all v € V when the direction of edges is taken into account.
The minimum weight directed spanning tree can be found by a greedy algorithm in polynomial
time [54].
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directed spanning tree and the one with minimum weight gives the final optimal
rate allocation of the network. Note that if each source has the same entropy, the
weights of minimum weight directed spanning trees of G;= are the same for each i,
so we only need to pick up an arbitrary subgraph G;+ and find the assignment on
it. Clearly, the resulting rate assignment has the pairwise property and is optimal.
In the example in Fig. 7.4, each source has the same entropy and the minimum
weight directed spanning tree rooted at node 1* is shown in the right figure. The
optimal rate allocation is Ry = H(X1), R4« = H(X4|X1), R, = H(X3|X4), and
R3 = H(X3|X4). The corresponding decoding procedure is that first decode source
X1, and use X as side information to help decode X4. Then, X4 is used as side
information to help decode X and X3.

Next, we show some simulation results. Consider a wireless sensor network
example in a square area where the coordinates of the sensors are randomly chosen
and uniformly distributed in [0, 1]. The sources are assumed to be jointly Gaussian
distributed such that each source has zero mean and unit variance (this model was
also used in [55]). The parameter ¢ indicates the spatial correlation in the data. A
lower value of ¢ indicates higher correlation. The individual entropy of each source
is H) = %10g(2nea2) = 2.05. In Fig. 7.5, we plot the normalized sum rate found
by minimum weight spanning tree (MST) Ry = ZlNz | Ri/H;i vs. the number of
sensors n. If no distributed source coding is used, i.e., the nodes transmit data indi-
vidually to the sink, R; = Hj and R0 = N. Clearly, by pairwise distributed source
coding, the sum rate is reduced. We also plotted the optimal normalized sum rate
when N-dimensional Slepian—Wolf code is used H (X1, ..., Hy)/H) in the figure.
It is interesting to note that even though we are doing pairwise distributed source
coding, our sum rate is quite close to the theoretical limit which is achieved by
N-dimensional distributed source coding.
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Fig. 7.5 Normalized sum rate vs. number of sensors
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Now we consider the sum power minimization problem. Note that for a pair of
sources that will be decoded together, the optimal rate allocation that minimizes the
sum power of the pair is no longer a corner point but rather a particular point on the
slope (which can be found by solving a simple optimization problem). For a node
pair i and j, denote the optimal power allocation as Plf‘]f (i), P} (j). We cannot simply
choose the corner points and perform asymmetric Slepian—Wolf coding. We want
some source pairs working at corner points while some others working at the optimal
point on the slope of the 2-D SW region. Taking this into account, we generalize the
concept of pairwise property. Recall that previously, under a rate assignment with
pairwise property, the first source in a sequence is encoded at the rate of its entropy.
Now we allow the first source in a decoding sequence to be paired with another
node and encoded at the rate on the slope of the 2-D Slepian—Wolf region. The
appropriate structure for finding the optimal resource allocation turns out to be one
that combines the directed spanning tree and the matching. Such a structure is the
matching forest first introduced in the work of Giles [56]. In fact, we are interested
in a specific form of matching forest called strict matching forest (SMF). For the
formal definitions, we refer the reader to [53]. Roughly speaking, a strict matching
forest is a subgraph of a mixed graph* that connects every node only once. The
SMF plays a role similar to the spanning tree in the sum rate minimization problem.
The sequential decoding procedure of a rate assignment with generalized pairwise
property can be expressed on a SMF. The node pairs connecting with undirected
edges work at the slope of the Slepian—Wolf region and a symmetric coding scheme
is used for them. The nodes that are connected with directed edge work at the corner
point of the Slepian—Wolf region and the tail (origin) of a directed edge is used as
side information to help decode the head (destination) of the edge. If we assign edge
weights to be transmission powers, the weight of the SMF is the total transmission
power.

Now we formally describe our approach. Construct a mixed graph G =
(V,E, A) as follows. The node set V consists of N regular nodes: 1,2,..., N
and N starred nodes 1*,2*, ..., N*. Recall that Q;(R) is the power consumed in
transmission at rate R. Foreachi = 1,2,..., N, if Q;(H(X;)) < Pmax, add edge
(i* — i) with weight Q; (H (X;)). Foreachi, j =1,2,..., N,if Q;(H(X;|X;)) <
Prax, add edge (j — i) with weight Q; (H (X;|X;)). For each pair i and j, if the
optimal power allocation P;;‘ @), P;} (j) that minimizes the sum power of the pair
of nodes exists, add undirected edge (i, j) with weight Pi’; @) + Pl.*} (j). Then, find
the minimum weight SMF on G, which gives the rate/power assignment with the
generalized pairwise property and minimum sum power. It is shown in [53] that the
problem of finding minimum weight SMF can be transformed and solved in poly-
nomial time [57]. From the simulations we observe that in most cases, the optimal
allocation is such that only one pair works on the slope and all other sources work
at the corner points.

4 “Mixed” graph refers to a graph with directed edges and undirected edges.
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7.4.1.2 General Multihop Communication Between Sources and Sink

The resource allocation problem in a network with general topology and relay nodes
was first considered by Han [48] and a similar formulation is given in [49]. We
reformulate the problem as follows.

The network is given by a directed graph G = (V, E, C), where C = {Cj; :
(i, j) € E} is the capacity of each edge. Edge (7, j) is also associated with a
weight w;;. The cost of a flow of value z;; going through the edge can be written as
F(z;j)w;j, where F(-) is a non-negative, increasing function. Then, the optimization
problem can be written as

min Z F(zij)w,-j
(i,j)€E
s.t. 0=<zj <C,V(@,j) € E (capacity constraint)

Z Zij — Z zji = 0;,Vi € V (flow balance constraint)
Jjl,j))eE J1G.HeE
(R1, Ry, ..., Ry) € SWy (Slepian—Wolf constraint)

where o; = Ry if i is the [th source node, 0; = — Z;N=1 R; if i is the sink and
otherwise, o; = 0.

For simplicity, we can consider linear cost F'(z;;) = z;;. Then, the above opti-
mization is a linear program. If F'(-) is a convex function, it is a convex optimization
problem.

If there is no capacity constraint, the solution of the problem has a simple form
and interpretation [58]. The basic idea is that in the absence of capacity constraints,
there is no need to split the flow across different edges. Once a route (path) from a
given source to the sink with minimum cost is found, the source simply routes all
the data through that path. For example, suppose that the minimum cost path for
source X; is P!. Then for all edges (i, j) belonging to P, we set zij = Ry. In this
case, the cost of transmitting the data from X; to the sink is ) _,.pi F (R;)w,. Thus,
the overall cost function becomes

N
min F(R))d
{Rl,dl}.,l=1,2,--.,NlZl: (Ri)d;

where d; is the total weight of path P/, i.e., d; = Y ecp! We. Solving this problem
involves finding the optimal paths P I=1,2,...,N and finding the optimal rate
allocation Ry, = 1,2, ..., N.Itis shown in [58] that these two steps are separable,
i.e., one can first find the optimal paths P/* and then find the optimal rate allocation
based on the optimal paths 7'*. This separation holds even if the function F(-) is
nonlinear. It is easy to see the optimal path P* is the path with minimum total
weight. Then, the optimal routing structure is the shortest path tree rooted at the
sink, which can be found effectively and in a distributed manner. Now, suppose that
the cost function F is such that F(R;) = R;. In this case, the problem becomes
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N
min Z Ridspr(l, 1)

=1
sit.(Ri,Ry,...,Ry) € SWy

where dspr(/, t) (known as a constant) is the weight of the path from source / to ter-
minal ¢ on the shortest path tree. This is a linear programming problem with number
of constraints exponentially with N. However, because of the contra-polymatroidal
structure of the Slepian—Wolf region [59], the solution can be found in a easy greedy
manner as follows [58].

1. Find a permutation 7 such that dspr((1),7) > dspr(w(2),t) > --- >

dspr(m(N), 1).
2. The optimal rate allocations is given by

Ry = HX ()1 Xz 2),7(3),....n(N)})
R0y = H Xz X(z3),7@),....n(N)})

Ryvy = H(X(z V) (7.7)

If the function F(-) is not linear but convex, the problem can still be solved by
convex optimization [51] but the simple greedy algorithm may not work here.

From the previous discussion, we know that Slepian—Wolf coding along with
routing is the optimal solution for the single sink data collection problem. In fact, it
is shown in [60] that in terms of the cost under convex and increasing cost func-
tions, Slepian—Wolf coding plus routing is still the optimal solution even if the
wireless network broadcast advantage is considered. Interestingly, because the N-
dimensional (N > 2) Slepian—Wolf code design problem remains open, [58, 60]
also consider several schemes that do not use distributed source coding but allow
some cooperation among the sources. Clearly, the communication between the
sources will increase the cost. The cost of the Hierarchical Difference Broadcasting
in [60] has been shown to have the same order compared to Slepian—Wolf coding.
However, the explicit communication scheme in [58] will have significant loss com-
pared to Slepian—Wolf under some conditions.

7.5 Networked Distributed Source Coding: Multiple Terminals

We now consider the variant of the problem when there are multiple terminals that
want to reconstruct all the sources. This is called multicast. As before, one could
attempt to treat this scenario as a generalization of the single terminal case. For
example, one could divide the capacity of each edge into various parts, with each
part responsible for conveying the bits to a specific terminal. However, on closer
inspection it is possible to realize that such a strategy will in general be suboptimal.
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T1 T2

Fig. 7.6 A network with unit capacity edges and sources S| and S, and terminals 77 and 75. Each
terminal wants to simultaneously recover the pair of bits (a, b). Under routing this is impossible.
However, by computing and sending a @ b along the bottleneck edge, we can achieve simultaneous
recovery

To see this consider Fig. 7.6 that depicts the celebrated butterfly network of network
coding [2]. In this example, each edge has unit capacity. Each terminal seeks to
obtain the bits from both the sources. It is easy to see that if we only allow routing
in the network, it is impossible to support this since the edge in the middle is a
bottleneck. However, if we allow coding at the intermediate nodes and transmit the
XOR of the two bits, then both terminals can obtain the two bits by simple XOR
decoding. This example shows the potential gain of coding when there are multiple
terminals. Of course, in this case the sources are independent. However, since inde-
pendence is a degenerate case of correlation, one expects that similar conclusions
will hold in the correlated case. As we shall see this is indeed the case. Furthermore,
several interesting conclusions about the relationship of the coding rates and flow
structures can be found.

7.5.1 A network Coding Primer

Traditionally, the intermediate nodes (routers) in the network only copy and forward
packets. In a single source single sink unicast connection, routing achieves maxi-
mum flow, which equals to the minimum cut between the source and the terminal
[61]. However, in a multicast scenario, pure routing may not achieve maximum
flow as shown above. But it has been shown in [2] that network coding achieves
max-flow min-cut upper bound in multicast. Next, we shall mathematically describe
this result.

As usual, we model a network as a graph G = (V, E, C), where C = {c, : e €
E} is the capacity of the edges, where c, is the capacity on edge e. The seminal work
on network coding [2] finds a tight capacity characterization for the single source,
multiple terminals multicast problem.

Theorem 2 Consider a network G = (V, E, C) with source s and L terminals:
1, ..., tL. Suppose that the source node observes a source X, such that its entropy
H(X) = R. Each terminal can recover X if and only if
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min — cut(s,t;) > R,V e {l1,..., L} (7.8)

The work of [62, 63] shows that the multicast can be supported even with linear
codes. Basically, each intermediate node transmits linear combinations of the pack-
ets, where a packet is treated as a vector over a finite field. It is possible to show that
in this case at each terminal, the received packets are the source messages multiplied
by a transfer matrix. By inverting the transfer matrix, the terminal is able to recover
the source packets. Moreover, as long as the coefficients of the linear combinations
are chosen randomly from a large field and the min-cut between the source and each
destination is greater than the source rate, the probability that the transfer matrix
is invertible is very high [64]. This fact provides a simple distributed scheme for
network coding-based multicast. A practical multicast protocol based on these ideas
was developed in [65].

7.5.2 Multicasting Correlated Sources over a Network

In the discussion in the previous section, we only considered multicast with single
source. The multiple independent sources case can be reduced to single source case
[63], by introducing a virtual supersource that is connected to each source node.

In this section we consider the problem of multicasting correlated sources over a
network. We begin by stating the main result. Consider a network G = (V, E, C),
with terminals #;,i = 1,..., L and a set of source node S C V. Without loss
of generality, we assume a numbering so that these are the first |S| sources in V.
Furthermore, source node i observes a source X;. The communication requirement
for multicasting correlated sources is that each terminal ;,i = 1, ..., L needs to
recover all sources (X1, ..., X|g) losslessly. The admissible rate region is given by
[66, 67].

Theorem 3 The correlated sources (X1, ..., X|s|) can be multicast to the terminals
t,...,t if and only if

H(Xg|Xsc) < min—cut(S,t;) VSCS (7.9)

An achievability scheme based on random linear network coding for this result was
proposed in [64]. Alternative proofs are provided in [66, 67]. We briefly overview
the achievability scheme in [64] now.

Consider two correlated sources generating binary vectors X1, X, of length 1 and
rp according to joint probability distribution Q (X1, X2) each time. After n time slots,
the source messages are x| and x; of length nry and nr,, respectively. We assume
that c, is rational for all e. Furthermore assume that » is large enough so that n x c,
is an integer for all e. This implies that when considered over a block of n time slots
we communicate nc, bits over edge e.

Simply perform random linear coding at each node over a blocklength of n
including the source nodes and intermediate nodes, i.e., the bits on an outgoing edge
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of node v are a linear combination of bits on incoming edges to node v, where the
coefficients are chosen uniformly randomly from GF'(2). Each terminal ¢ receives a
vector z; of length n|T"; (¢)|, where |I'; (¢)| is the number of incoming edges to termi-
nal ¢ (before the edges are copied). Using the algebraic network coding framework
[63], we can conclude that

z} = [x] x;| M, (7.10)

where M, is a (nr; + nrp) x n|[;(¢)| transfer matrix from the sources to terminal
t. When sources are independent, M, needs to have full rank so that by inversion
we can recover the sources. In the case of correlated sources , M; need not have full
rank because we can take advantage of the correlation between the sources to find
x| and x7.

The decoding is done as follows. Find all possible [x’l‘ xg] satisfying (7.10).
Note that X, X; can be viewed as a length n vector of elements from GF (2"") and
GF(2"?), respectively.5 Let xy;, Xp; denote the ith element and i = 1,2,...,n
The number of appearances of (a,b),a € GF(2"'),b € GF(2™) is defined to be
N(a,b) = |{i : X]; = a,Xp; = b}|. The empirical joint distribution (histogram)
PXl X! is P, n(a b) = N(a,b)/n fora € GF(2"!) and b € GF(2"?). The empiri-
cal ]omt dlstrlbutlon is an approximation of the true joint distribution based on the
observation of two sequences x| and x7. Note that the empirical joint distribution
defined for each sequence [X1 , x2] has a similar form to a probability mass function.
Then, the functions applied on probability mass function, such as entropy function,
relative entropy function, can be applied to Pyn .

In the decision procedure, given all sequences [X’{,Xg] that satisfying z} =
[x’{xg] M,, find

X!, Xyt =arg min a(Pn n)
{ 1 2} x| My =2 XX

where «(-) is a function that needs to be chosen, depending on the metric to be
optimized. The two functions discussed below both achieve the capacity region in
Theorem 3.

1. Maximum-Q probability decoder. o (PX'{,XZ) =D (PX'{,XZ [ Q) +H (Px';,xg>,
where D(-||-) is the relative entropy [6],

X! x b
D(Pgxlle)= 3 Y Pyu@blog IQ(Z(TD))

acFyr| beF,r

and H () is the joint entropy function [6]

SA length r vector with elements from GF (2) can be viewed as an element from GF (2").
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H(Pgy)== Y > Pgy@blogPyy@b)

aclyr; beF,r

From [6, theorem 12.1.2], since (xq’, xg) are drawn i.i.d. according to Q (X1, X2),
the probability of X}, X7 is given by

0" (x1, Xp) = 2 PPy x [IQ)+H (P x,))

Therefore, finding x7, x; that minimizing o (PXY»X'z') is equivalent to finding
x|, X that maximizing the sequence probability.
2. Minimum entropy decoder. a(Px, x,) = H(Px, x,)-

Note that here the decoder does not need to know the prior source joint distribu-
tion Q. Thus, it is an universal decoder. For a long sequence, the empirical distri-
bution Py, x, is very close to the true distribution Q, which causes D(Px, x,||Q)
to approach zero. Therefore, the minimum entropy decoder is an approximation
of maximum- Q probability decoder.

It is shown in [64] that as long as

min — cut(s1, t;) > H(X1]|X?) (7.11)

min — cut(sa, t;) > H(X>2|X1) and (7.12)

min — cut(sy and 5o, ;) > H(X1, X3) (7.13)

foreveryi = 1,2, ..., L, each terminal #; can recover X and X, with vanishing

error probability when the one of the two decoders shown above is used. Therefore,
the admissible rate region achieves bound (7.9). However, the decoding algorithms
above are based on exhaustive search and have a complexity that is unacceptably
high.

7.5.3 Separating Distributed Source Coding and Network Coding

The achievability scheme described in the previous section performs distributed
source coding and network coding jointly and has high decoding complexity. Per-
haps the simplest way to multicast correlated sources is to perform distributed
source coding and network coding separately, i.e., the source nodes perform dis-
tributed source coding (Slepian—Wolf coding) and the coded bits are multicasted
to the terminals through network coding. The terminals first decode the network
code to obtain the Slepian—Wolf coded bits, then jointly decode the Slepian—Wolf
code (usually is a channel code) to recover the sources. The decoding algorithms for
network code and Slepian—Wolf code have been well studied and have polynomial
time complexity. However, the separation of distributed source coding and network
coding is suboptimal in general [68].
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At an intuitive level, this result can be understood as follows. Suppose that the
network is such that each terminal can operate at the same point in the Slepian—Wolf
region. In such a situation, one could use a Slepian—Wolf code and encode each
source. Next, one could treat the encoded sources as independent and multicast
the encoded bits to each terminal. The terminal then decodes to obtain the origi-
nal sources. Roughly speaking, in this case we can reduce the correlated sources
multicast to an independent sources multicast.

However, if different terminals in the network are forced to operate at different
rate points in the Slepian—Wolf region, because of the nature of their connectivity,
then a reduction to the independent sources multicast is not possible in general.
In this case, clearly one cannot work with a single distributed source code. It can
be shown that there exist instances of networks and source distributions such that
performing separate distributed source coding and network coding can be strictly
suboptimal with respect to the approach in [64]. A surprising conclusion of [68] is
that if there are two sources and two terminals in a network, then it can be shown
that there is no loss in using a separation-based approach. This result forms the basis
of practical approaches to combining distributed source coding and network coding
as explained in the next section.

7.5.4 Practical Joint Distributed Source Coding and Network
Coding

In this section, we describe practical algorithms to perform joint distributed source
coding and network coding. Suppose there are two source nodes s1,s2 € V and
observe two binary sources X and Y, respectively. The sources generate bits i.i.d.
according to the joint distribution p(X, Y) where the joint distribution satisfies the
following symmetry property, i.e., p(X +Y = 1) = p < 0.5. Then, as discussed
before, the sequences x, y are related by y = x + e, where ¢; equals to 1 with
probability p < 0.5. Notethat H(X,Y) = 1+ Hp(p) and I (X; Y) = 1—Hp(p). Let
H be the parity check matrix for a channel code approaching the capacity of a binary
symmetric channel with crossover probability p with code rate k/n = I[(X;Y) =
1 — Hp(p), i.e., there is a decoding function f(-) such that Pr(e # f(eHT)) is
arbitrarily close to zero.

The basic idea is to transmit xH” + yHT = eHT to each terminal such that
e can be recovered. Then, we transmit some additional information so that each
terminal can recover either x or y. We shall see the exact form of this additional
information later. The simplest but not necessarily optimal way to convey the sum
eH” = xH” + yHT to the terminal is to multicast both xH” and yH” to each
terminal and compute the sum at the terminal. Based on this, a practical joint dis-
tributed source coding and network coding is proposed in [69]. We first describe this
scheme and then discuss the optimal schemes to multicast the sum to the terminals.
The scheme in [69] is not optimal in the sense that in general, it requires more
network capacity than the result of [64] requires.
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The design scheme can be summarized as follows. The network capacity resource
C is partitioned into two shares: Cy and C,, where C; 4+ Cy < C. Each share is used
to support two multicast sessions. Let H be a matrix such that [HT H”] has full
rank. And let x; = xH, y1 = yI:I . The two multicast sessions are described as
follows.

1. In the first session, multicast xH” and yH” to each terminal. This implies e

can be computed, and e can be recovered at each terminal since H is the parity
check matrix of a capacity achieving code. Using this, e = yj + X1 = eHT can
be computed.
The length of xH” is (n — k) = nH(X|Y) (likewise for yHT). We need to
multicast n H(X|Y) bits from node s; to the terminal and nH (Y |X) bits from
node s, to the terminal. This requires G(V, E, C1) to support a multicast with
rate H(X|Y) + H(Y|X) from a virtual supersource connected to s, s2 to each
terminal.

2. In the second session, the sources transmit linear combinations of x; and y; to
the network and x1 A; + y B; is received by terminal 7. A; and B, are transfer
matrices from sj to terminal 7 and s, to terminal ¢, respectively, and they are
assumed known to the terminal ¢. A; and B; are such that given e; and x; A; +
y1B:, X1, y1 can be recovered. Since we can compute (X; + y1)B; = e B; =
eHT B, and then x;(A; + B;) = x14; + y1B; + e B;, as long as A; + By is
invertible, x; and y; can be recovered. The invertibility of A; + B, is guaranteed
with high probability (for details see [69]). After x| is obtained, we compute
y1 = e; + Xx1. Once x1, y; are known, X, y can be recovered by the inversion of
[HTHT] since xH'xHT] = x[H" H"] and y=x+e.

The two multicast sessions are illustrated in Fig. 7.7. The admissible rate region
for this design scheme is

C'={Ci+C,:CeCG, T,HX|Y)+ HY|X))and C, € C(u, T, [ (X; Y))}

.

HXIY) /(4; Y)\_H(Y1X)

54 Sz

G(V.E,C) = G,(V,E,C,) + G,(V,E,C,)

t ty i

Fig. 7.7 Multicast model for the practical scheme [69]
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In general, C* requires more capacity than the optimal capacity region [64] because
separate multicast sessions are usually suboptimal. But if there are only two termi-
nals (and we are only dealing with two sources), C* is optimal, i.e., the practical
design scheme is optimal [68, 69].

Computing the sum at the terminals (see [70-72] for related work) may not be
optimal in terms of the capacity region. It may in fact be better in terms of resource
utilization if the sum is computed at some intermediate nodes and then sent to each
terminal. In a network with two sources multiple terminals or two terminals multiple
sources, it is shown in [70, 72] that the optimal scheme to convey the symbol sum
of the sources to the terminals is to compute the sum in some intermediate nodes
and multicast to the terminals. In general, finding the right set of nodes at which the
sum should be computed is an open problem. But, the idea of computing the sum
at the intermediate nodes leads us to a heuristic approach to the joint distributed
source coding and network coding. We can find a set of nodes U and multicast xH”
and yH T to each node in U (multicast session 1). Then, compute the sum eH T at
u € U and multicast to the terminals so that each terminal can recover e (multicast
session 2). Transmit linear combinations XA; + yB; to the terminals (multicast ses-
sion 3) and if (A; + B;) is invertible then both x and y can be recovered in a similar
manner to the previous scheme. Note that the coded packets in multicast session 1
can be used in multicast session 3 since xH” and yH are also linear combinations
of x and y. Next we demonstrate an example of this scheme in which we achieve the
optimal capacity region.

Consider the network in Fig. 7.8. The capacity on each edge is 0.5. The source
nodes si, s observe the sources X and Y, and they are correlated such that
H(X)=H(Y)=1and H(Y|X) = H(X|Y) = 0.5. The terminals are 1, t, and 3

xM 1 \’, yﬁfg

2

Fig. 7.8 An example where the strategy in [69] is suboptimal. However, our proposed heuristic for
selecting the right set of nodes for computing the sum works better
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and min —cut(s;, t;) = 0.5fori = 1,2, j = 1, 2, 3, min —cut({sy, 52}, ;) = 1.5 for
i = 1,2,3. According to Theorem 3, the capacity of this network supports the
recovery of the sources at the terminals. Consider the following scheme: sy, s; trans-
mitxH” and YH T to node vy (multicast session 1). Node v, computes the sum e H T
and routes it to the terminals (multicast session 2). For multicast session 3, transmit
xHT, yH T onv —11, v3 — 13, respectively.6 In addition, s1, s2 transmit random
linear combinations on edges s1 —v4, $2 — Vg, i.e., M1, M3 are matrices of dimension
n x 0.5n consisting of entries randomly from G F(2). Then, matrices M|, M>, and
[M1M;] have full rank with high probability. Terminal #; receives e H T xM; and
xHT . From the first one #; can decode e and from the last two #; can recover X, then
y = X + e can also be obtained. Terminal #; acts in a similar fashion as 71, while #3
can decode e from eH T and it also knows xM; and yM,. Therefore, it can compute
xM> = eM, + yM, then x can be recovered by the inversion of [M|M>].

As shown in [69], the scheme that multicasts both xH” and yH to the terminals
cannot achieve the capacity region in the example above. But from some simulations
on random graphs, where the optimal set U is found by integer programming, we
observe that in many cases, multicasting both xH” and yH to the terminals and
computing the sum there is as good as computing the sum at some intermediate
nodes. Clearly, the best choice of nodes for computing the sum depends on the
network topology. The problem of choosing these nodes in an efficient manner is
still an open problem.

7.5.5 Resource Allocation for Multicasting Correlated Sources
over a Network

Given the admissible region in Sect. 7.5.2, it is natural question to determine the
rate at each source and the flow on each edge such that the total cost is minimized.
The problem is solved in an efficient manner in [73, 74].

The network is modeled as a directed acyclic graph G = (V, E, C) and each
edge is associated with a weight w;;. For simplicity we assume that the cost of the
use of an edge (i, j) when the actual data rate on edge (i, j) is z;; is w;;z;j. To
facilitate the problem formulation we append a virtual super source node s* to G,
so that

V* =V Ul{s*)}

E* ={(s*,v)|ve S}UE and
cF — Cij (G, j)ekE

i =\ HX)) ifi=s*andj €S

We let G* = (V*, E*, C*). Denote the source node set as S and the terminal
set as 7. The admissible region in Theorem 3 requires the min-cut between any

6 We could also simply perform random linear network coding on these edges.
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subset S of nodes and every terminal greater than H (S|S¢). From max-flow min-cut
theorem, we know the min-cut can be characterized as max-flow. As long as there
is a flow of value R from a source s to a terminal ¢, the min-cut between s and
t is R. Thus, to model the conditions on the min-cut, we introduce virtual flows

£ = { fl.yk) for each terminal #;. Note that we only require the existence of the

flow for every terminal; the flows corresponding to different terminals can coexist
on an edge. So the actual flow rate z;; on edge (i, j) is the maximum (not the sum)

of f(”‘) Vi € T,ie., zij > f(t") Vi, € T. Based on the discussions above, the
problem can be formulated as follows

minimize Z WijZij
(i.))€E
st 0<fi¥ <z <Cl (L)) €eE el
Yoo ;= Y fiP=0" fori e Vinel, (7.14)

U16./)eE?) U1G-)eE")
S > R™ forieS neT (7.15)
(R{’“, RM, .., R}@k)) € SWy, fory €T (7.16)

where

H(X{,X2,...,XnN) ifi = s*
o™ =L —HX, X2, ..., Xn) ifi=1
0 otherwise

The constraint (7.14) is the flow balance constraint for each virtual flow. The
constraints (7.15) and (7.16) make sure for each terminal #; there is a flow of value
H(Xg|Xgsc) from each subset S of sources to #;. The detailed proof of the correct-
ness of the formulation can be found in [73, 74]. The formulation of MIN-COST-SW-
NETWORK as presented above is a linear program and can potentially be solved by
a regular LP solver. However, the number of constraints due to the requirement that
R € SWyis |T|(2" — 1) that grows exponentially with the number of sources. For
regular LP solvers the time complexity scales with the number of constraints and
variables. Thus, using a regular LP solver is certainly not time efficient. Moreover
even storing the constraints consumes exponential space and thus using a regular
LP solver would also be space inefficient. We now present efficient techniques for
solving this problem.

Let w, z, f%) denote the column vectors of Wij, Zijs f ) for (i, j) € E and

R® £ denote the column vectors of R(tk) £ fori = 1,2,...,|S]. Let L be

KET]
the number of terminals. We form the Lagranglan of the optlmlzatlon problem with

respect to the constraints R < fgtf) for #y € T. This is given by
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Lh,z, £, ) RW RO

L
e 3L (R )
k=1

where A = [AlT AZT ... AZ]T and Ay = [Ak1, Ak2,s .- )»k,|3|]T are the dual vari-
ables such that 1 > 0 (where > denotes component-wise inequality).
For a given A, let g(1) denote the dual function obtained by

g(%) = minimize, ;1) o) gy gen L (k, z, £, RO RW)

Since strong duality holds in our problem we are guaranteed that the optimal value
of MIN-COST-SW-NETWORK can be equivalently found by maximizing g(A) sub-
jectto A > 0 [51]. Thus, if g(A) can be determined in an efficient manner for a given
A then we can hope to solve MIN-COST-SW-NETWORK efficiently.

Consider the optimization problem for a given A > 0.

L
minimize w!z+ Z )\,{ (R([") — fEi“)
k=1

st 0 filW <z <Cy. G )eE el
S - Y P =eieviner

{jl1G, j))eE*} {j1(j.i)eE*}
R™ ¢ SWy, tr €T (7.17)

We realize on inspection that this minimization decomposes into a set of inde-
pendent subproblems shown below.

L
minimize w!f— Z A,{ngff)
k=1
st 0 <z <Gy (Lj)eE el

3 fé’“- > fj(fk)zol.(f“, eVt eT (1.18)

{J1G. ))eE*} {j1(j.i)eE*}
and foreacht;, € T,

minimize A,{R(lk)

subjectto  R™ e SWy (7.19)

The optimization problem in (7.18) is a linear program with variables z and x(7©)
fork = 1,..., Ng and a total of (2|T| + 1)|E*| + |T||V*| constraints that can be
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solved efficiently by using a regular LP solver. It can also be solved by treating it
as a minimum cost network flow problem with fixed rates for which many efficient
techniques have been developed [50].

However, each of the subproblems in (7.19) still has 2N _1 constraints and there-
fore the complexity of using an LP solver is still exponential in N. However, recall
the contra-polymatroid property of Slepian—Wolf region mentioned in Sect. 7.4.1.2.
Using the contra-polymatroid property, the solution to this LP can be found by a
greedy allocation of the rates as shown in (7.7), where the permutation 7 is such
that Axx(1) = Aer2) = -+ = M-

The previous algorithm presents us a technique for finding the value of g(A)
efficiently. It remains to solve the maximization

max g(A
max g)

For this purpose we use the fact that the dual function is concave (possibly non-
differentiable) and can therefore be maximized by using the projected subgradient
algorithm [75]. Roughly speaking, the subgradient algorithm is a iterative method to
minimize non-differentiable convex (or maximize concave) functions. It is similar to
the gradient descent method, though there are notable differences. The subgradient
for Ax can be found as R — fgf‘) [75].

Let A’ represent the value of the dual variable A at the ith iteration and 6; be
the step size at the ith iteration. A step-by-step algorithm to solve MIN-COST-SW-
NETWORK is presented below.

1. Initialize .7 > 0.
2. For given A' solve the problem (7.18) using an LP solver and for each t; € T,
solve the problem (7.19) using the greedy algorithm presented in (7.7).

. . +
3. Seaft = [+ 6, (R® —£2) | forall 4 € T, where [x]* = x if x = 0
and zero otherwise. Goto step 2 and repeat until convergence.

While subgradient optimization provides a good approximation on the optimal
value of the primal problem, a primal-optimal solution or even a feasible, near-
optimal solution is usually not available because the objective function is linear. In
our problem, we seek to jointly find the flows and the rate allocations that support
the recovery of the sources at the terminals at minimum cost. Thus, finding the
appropriate flows and rates specified by the primal-optimal or near primal-optimal
z, £ ) RO RO isimportant. Toward this end we use the method of
Sherali and Choi [76]. We skip the details and refer the interested reader to [73, 74].

7.6 Conclusion
In this survey we have examined the problem of distributed source coding over

networks. Distributed source coding has been traditionally studied under a model
where there exist direct source destination links. In a general network, the sources
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communicate with the destinations over a network whose topology may be quite
complicated. It turns out that in this case the problem of distributed source coding
and network information transfer needs to be addressed jointly. In particular, treating
these problems separately can be shown to be suboptimal in general. Moreover,
in certain cases the usage of the network coding [2] becomes essential. We also
discussed various resource allocation problems that occur in this space and provided
an overview of the solution approaches.

There are several problems that need to be addressed in this area. In the area
of sensor networks, it would be interesti