
Chapter 3
Communication in the presence of noise

3.1 Discrete recording of a continuous signal —
concretization

3.1.1 Energy and mean power of a signal

Recall that the sampling theorem (the Kotel’nikov formula)

f (t) =
∞

∑
−∞

f
(

k
2W

)
sin2πW(t− k

2W )
2πW(t− k

2W )
(3.1)

recovers the signal, which is a function f ∈ L2(R) with compactly supported
spectrum of frequencies ν not exceeding W Hertz from the set of sample val-
ues f (tk) at the points tk = k∆, where ∆ = 1

2W is the sampling time interval

The wider the frequency band the more complex the function f can be
and the more frequently one needs to take samples in order to adequately
encode it discretely and recover it, but then the more information it (that is,
the signal) can carry.

The function sinc t = sin t
t is basic in the expansion (3.1); this function, as

we already know, has constant spectrum equal to 1, on the unit interval
of frequencies and is the instrumental function of an ideal low-frequency
filter with unit pass-band. Thus the sampling function sinc is realized as the
response of such a filter to a unit impulse realized at time t = 0.

The corresponding function ek(t) = sinc2πW(t− k
2W ) = sin2πW(t− k

2W )
2πW(t− k

2W )
has

spectrum ěk(ν) = 1
2πW exp(−i π

W kν) and frequency band 0≤ ν≤W (|ν| ≤W).
One can conclude from the orthogonality of the functions ěk on the in-

terval [−W,W] (or on any interval of length 2W) and Parseval’s equality
for the Fourier transform that the functions ek themselves are orthogonal
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(Nyquist interval), which depends on W.



3 Communication in the presence of noise

in the space L2(R) and ‖ek‖2 = 1
2W . Hence we can infer from the equality

f = ∑∞
−∞ xkek that ‖ f ‖2 = 1

2W ∑∞
−∞ x2

k .
In practice the signal f has a certain finite duration T, that is, f (t)≡ 0 out-

side the interval 0≤ t≤ T. This condition is incompatible with the condition
that the spectrum of f be compactly supported. However, one can assume
that the values f (t) of the function are small outside the interval [0, T] and
the sample values of the function outside this interval are set equal to zero.

Then the equality f = ∑∞
−∞ xkek is replaced by f (t) = ∑2WT

k=1 xkek(t), where
t ∈ [0, T], xk = f (k∆) and ∆ = 1

2W . This signal f is written by the vector
x = (x1, ..., xn) ∈Rn of its sample values, where n = 2WT

Under the same conditions Parseval’s equality∫ ∞

−∞
f 2(t)dt =

∞

∑
−∞

x2
k‖ek‖2 =

1
2W

∞

∑
−∞

x2
k

is replaced by the equality

∫ T

0
f 2(t)dt =

n

∑
1

x2
k‖ek‖2 =

1
2W

n

∑
1

x2
k =

1
2W
‖x‖2.

Here, to within a specific uniform factor, the integral gives the energy (work)
of the signal f (for example, when f is realized as the drop in voltage on
a unit resistance). Hence the mean power P of the signal f over the time
interval [0, T] is

P =
1
T

∫ T

0
f 2(t)dt =

1
2WT

‖x‖2 =
1
n
‖x‖2.

Thus, ‖x‖2 = nP = 2WTP and P can be interpreted as the mean power re-
quired at one coordinate of the vector x, that is, one sample value of the
signal f .

Thus, signals of duration T with compactly supported spectrum in a fre-
quency band W whose mean power is at most P in the vector representation
x = (x1, ..., xn) turn out to be located in a ball B(0,r) = B(r) ⊂ Rn of radius
r =
√

2WTP =
√

nP with centre at the origin of the Euclidean space Rn of
dimension n = 2WT.

3.1.2 Quantization by levels

The measurement of the sample value of a signal f is performed from a
certain threshold (limiting) precision ε. If the amplitude of any signal to be
transmitted is not greater than A (that is, | f |(t) ≤ A for t ∈ [0, T]), then, by
endowing the interval [−A, A] with a uniform network of points (levels)
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3.1 Discrete recording of a continuous signal — concretization

with mesh size ε, for f (t) we can take the point of this network nearest to
f (t). The values of f (t) turn out to be quantized by levels, the number of
which is α = 2A

ε (we take α to be an integer greater than 1). The word x =
(x1, ..., xn) corresponding to the signal f , which consists of n letters xk will
be written in an alphabet having α different characters. In all there are αn

such different words x. If n = 2WT and W and T are large numbers, then αn

is enormous.

3.1.3 Ideal multilevel communication channel

Under these conditions after time T one can distinguish M = α2WT (and not
more) different signals f ∼ x = (x1, ..., xn), that is, one can determine one
definite signal-word-message out of the M possible ones.

The binary notation x0 = (x0
1, . . . , x0

m), which distinguishes M objects, re-
quires m = log2 M symbols 0,1 (we take m to be an integer). The information
about the next coordinate of the binary vector (if the coordinates are on an
equal footing and their possible values 0, 1 are equally likely) is taken as the
elementary unit of information and is called the bit. If we could without any
error receive and transmit vectors (words) encoding our M messages, then
in time T we could distinguish M objects (signals, messages). The speed of
transmitting information (on the choice of one of the M possible objects)
along such an ideal communication channel (and with such an encoding)
measured in bits per second would be equal to 1

T log2 M = 2W log2 α.

3.1.4 Noise (white noise)

We now work with vectors x = (x1, ..., xn) ∈Rn. Here n = 2WT� 1 and we
know that ‖x‖2 = 2WTP = nP, where P is the mean power at one coordinate
of the vector x , that is, the mean power of the signal f corresponding to x.

Suppose (and this indeed usually happens) that there is noise in the com-
munication channel. It gives rise to a noise vector ξ = (ξ1, ...,ξn) ∈ Rn and
at the receiving end of the communication channel, instead of the vector x,
the displaced vector x + ξ is received. Thus around each point x ∈Rn there
occurs a region of uncertainty U(x) at points of which noise can displace x.

Noise can be of different kinds; accordingly it can have various charac-
teristics. We shall assume that our noise is random, is independent of x and
is white (thermal) noise, that is, the vector ξ ∈ Rn is random and its coor-
dinates are independent random quantities identically distributed in accor-
dance with the normal Gaussian law (with zero mathematical expectation
and variance σ2). Let N be the mean (at the sample value) power of the
noise. Then ‖ξ‖2 = nN = 2WTN (N comes from the word “noise” and P
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3 Communication in the presence of noise

from the word “power”) and
√

N = σ is the standard deviation of the ran-
dom value of each coordinate of the vector ξ. As before, we assume that
2WT = n� 1.

3.2 Transmission capacity of a communication channel with
noise

3.2.1 Rough estimate of the transmission capacity of a
communication channel with noise

The combined mean power of the signal and the noise is at most P + N,
therefore the coordinates of the vector x + ξ in modulus should on average
not exceed

√
P + N and it should lie inside a ball of radius

√
n(P + N).

Since the expected displacement of each of the coordinates of the vector
(of information) x under the influence of the noise (white noise) is of order
σ =
√

N, the number of well distinguishable values of each coordinate at the

receiving end is proportional to
√

P+N
N . The coefficient of proportionality k

depends on how one interprets the phrase “well distinguishable”. If one is
required to improve the resolution, then k needs to be made smaller.

In time T there are n = 2WT independent values (of the samples) of the
coordinates, therefore the total number K of distinguishable signals will be(

k
√

P+N
N

)2WT
. Hence, the number log2 K of bits that can be transmitted in

time T will be WT log2 k2 P+N
N . This means that the speed of transmission

will be W log2 k2 P+N
N bits per second.

3.2.2 Geometry of signal and noise

We now recall the following. On the vector x ∈ Rn an obstacle ξ ∈ Rn is
imposed in the form of white noise. This means that we are given a vector
x ∈Rn and a random vector ξ ∈Rn that is independent of x and has uniform
distribution along the directions of Rn. The dimension n of the space Rn is
enormous. Then it follows from the principle of concentration, which we
discussed in Chapter 2, that with negligibly small probability of error the
vector ξ will be almost orthogonal to the vector x (that is, the scalar product
and the correlation of the vectors x and ξ should be considered to be zero).

We add to this that, in view of the concentration of the main part of the
volume of a multidimensional ball in a small neighbourhood of its boundary
sphere, we can suppose that if a random point lies in such a ball, then it is
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3.2 Transmission capacity of a communication channel with noise

most likely to be situated almost on its boundary. Thus in our situation,
when n = 2WT� 1, we are justified in supposing that ‖x‖2 = nP, ‖ξ‖2 =
nN, ‖x + ξ‖2 = n(P + N).

The regions of uncertainty U(x) arising at the receiving end around each
point x ∈Rn as a result of the influence of noise can, in our case, be consid-
ered to be balls B(x,r) of radius r =

√
nσ =

√
nN.

Under these conditions how many distinguishable signals are there in
the ball B(0,

√
nP) ? Clearly, not more than the ratio of the volume of the ball

B(0,
√

n(P + N)) to the volume of a ball of radius
√

nN. Thus, we have the
following upper estimate for the number M of distinguishable signals:

M ≤
(√

P + N
N

)2WT

=
(

P + N
N

)WT
, (3.2)

which means that we have the following estimate for the speed C of trans-
mission of information:

C =
log2 M

T
≤W log2

P + N
N

= W log2

(
1 +

P
N

)
. (3.3)

Here it is worth pausing and making some observations. If one tries to
pack as many balls of radius

√
nN as possible in a ball of radius

√
n(P + N)

under the condition (as a presupposition) that the inserted balls are, as it

below), whose proof we are now ready for, states that, nevertheless, for suf-

an arbitrarily small probability of an error when transmitting the message.
Just the possibility of making some errors, although as rare as one pleases,

eliminates the condition that the inserted balls do not intersect. If the dimen-

same radius are at a distance equal to the length of the radius. As the centres
approach one another, the number of inserted balls increases, but then also
does the probability of an error when decoding the received signal.

The calculation of the interaction of the above circumstances forms the
geometric basis of Shannon’s theorem.
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3 Communication in the presence of noise

3.2.3 Shannon’s theorem

Theorem. Let P be the mean power of the transmitter and suppose that we have
white noise with power N in the frequency band W. Then by applying a sufficiently
complex system of coding it is possible to transmit binary digits with speed

C = W log2
P + N

N

with arbitrarily small frequency of errors. No method of coding can be transmitted
with greater average speed and with arbitrarily small frequency of errors.

We take M to be the number on the left-hand side of the estimate (3.2).
This is a large number and we assume that it is an integer (by ignoring its
fractional part). In the ball B(0,

√
nP) ⊂ Rn, where the vectors x (words,

signals) to be transmitted are, we choose M points at random. Here by “at
random” we mean that the points are chosen independently at random and
the probability that a point hits some region is proportional to the volume
of that region, that is, it is equal to the ratio of the volume of that region to
the volume of the whole ball B(0,

√
nP). (If the random choice of M balls

is repeated many times, then, as a rule, the points will be distributed in the

above fashion.) We have n = 2WT and M =
(

P+N
N

)WT
, therefore one point

will be arriving in a volume of size 1
M |B|, where |B| is the volume of the

whole ball B(0
√

nP). Hence the probability that one of our M points will hit

this same region is equal to 1
M =

(
N

P+N

)WT
. As T→ +∞ this probability of

course tends to zero independently of the ratio of the positive quantities P
and N.

If our M points are chosen randomly, then, assuming that n = 2WT� 1
and the volume of the ball B(0,

√
nP) is concentrated near its boundary

sphere, one can with negligible relative error (which is smaller the larger
T is) assume that all the chosen points will be in an arbitrarily small neigh-
bourhood of the boundary sphere.

We recall further that the noise vector ξ, as we showed earlier, when n� 1
is orthogonal to the signal vector x with probability arbitrarily close to 1.
Thus, for n = 2WT� 1 (that is, as T→+∞) we have ‖x‖2 = nP, ‖ξ‖2 = nN,
‖x + ξ‖2 = n(P + N).1

We now proceed with the concluding arguments and obtain a concrete es-
timate. Suppose that we have made a typical random selection of M points
in the ball B(,

√
nP). Suppose that they correspond to M different messages

that we intend to send along a communication channel. Such a choice of
points in the ball together with their corresponding messages means a cer-

1 If P and N are interpreted as the variances Dx , Dξ of the signal and noise, then here we
have the classical probability-theoretic relation for the variance of the sum of independent
random quantities: D2

x+ξ = Dx
2 + Dξ

2.
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3.2 Transmission capacity of a communication channel with noise

tain encoding of the messages intended for transmission. We coordinate in
advance the chosen code with the receiving device. If there were no noise,
then the receiver, having received a signal x without corruptions, would
uniquely decipher it into the message corresponding to it in accordance with
the agreed code.

In the presence of noise in the channel, instead of x one will get x + ξ at
the receiving device. The receiver looks for the point in the ball B(0,

√
nP)

among the points of the fixed code that is nearest to x + ξ and takes it to
be the transmitted signal. Here there is the possibility of error, that is, it is
possible not to read the message that was sent. However, this is possible only
if there is one of the M points of the code apart from x in the (‖ξ‖ =

√
nN)-

neighbourhood of x + ξ.
We find an upper estimate of the probability of such an event. For this

we estimate the volume of the intersection of a (
√

nN)-neighbourhood of
a point x + ξ with the ball B(0,

√
nP). Since ‖x + ξ‖2 = n(P + N), this is

through the origin 0 and the points a = x and b = x + ξ. The triangle 0ab
is right-angled with right angle at the vertex a and with side lengths of the
legs |0a| =

√
nP and |ab| =

√
nN and hypotenuse |0b| =

√
n(P + N). By

calculating its area by two methods we easily find the length h of the per-

pendicular drawn from the vertex a to the hypotenuse: h =
√

n PN
P+N . If we

now take a ball of radius h and centre at the base of this perpendicular, then
clearly it covers the entire region (of interest to us) of intersection of the ball
B(0,
√

nP) and the (
√

nN)- neighbourhood of the point b = x + ξ. Hence,

there will also be one of the M code points is less than the ratio of the vol-
ume of a sphere of radius h to the volume of a sphere of radius

√
nP. Thus,

this probability is less than
(

N
P+N

)n
=
(

N
P+N

)WT

T→ +∞.
Thus, for sufficiently large values of T, with arbitrarily small probability

of error in such a communication channel one can distinguish one of M =(
P+N

N

)WT
different objects; more precisely, one can identify one of the M

possible different messages in time T. In terms of binary units this is log2 M
bits of information in time T. Hence we can indeed achieve the speed of
transmission arbirtrarily close to the upper bound estimation indicated in
inequality (3.3).

This completes the proof of the theorem.
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3 Communication in the presence of noise

3.3 Discussion of Shannon’s theorem, examples and
supplementary remarks

3.3.1 Shannon’s commentary

The best brief commentary shedding light on certain aspects of the theorem
which at first reading are seldom noticed is the following commentary by
Shannon himself [2]:

“We shall call a system that transmits with speed C and without errors
an ideal system. Such a system cannot be realized by any finite encoding
process but can be approximated as closely as one pleases. The following
happens when the approximation approaches the ideal: 1. The speed 2 of

2 (1 + P/N). 2.
The frequency of errors approximates to zero. 3.The signal to be transmitted
approximates to white noise in its statistical properties. Roughly speaking
this is true because the coding points are randomly distributed inside a ball
of radius

√
2WTP. 4. The threshold effect becomes sharp. If the noise ex-

ceeds the value for which the system was constructed then the frequency of
errors increases very rapidly. 5. The required delays in the transmitter and
receiver increase unboundedly. Of course in a broad-band system a delay of
one millisecond can already be considered to be infinite.”

Here perhaps an explanation is required only for the first sentence in item
5, which at the same time also explains the real meaning of the quantity C
featuring in the theorem as the speed of transmission. To write down in bits
each of M different objects requires log2 M bits. An individual message of
the M possible ones is sent or arrives only after what is transmitted (respec-
tively, received) takes the whole of its binary code of length log2 M. For this
time 2T is required too, which also implies a delay of the same message,
while at the same time, as T→ +∞, the mean speed of transmission of the
bits (bits per second) in fact approximates to the upper limit indicated in the
theorem.

Later on we shall give some examples which possibly will explain certain
aspects of the range of questions touched upon here.

3.3.2 Weak signal in a large amount of noise

It is clear from the construction of an optimal code (and this is explicitly
pointed out by Shannon in item 3 of the above quotation) that in its statistical
properties such a code is similar to white noise. This means that establishing

2 Author’s remark. Like the Meshcherskiı̆–Tsiolkovskiı̆ formula for the speed of a rocket!
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3.3 Discussion of Shannon’s theorem, examples and supplementary remarks

sending us signals indistinguishable from noise is fairly difficult.
But let us consider the following situation. Arriving towards us is a weak

periodic signal in the background of a large amount of noise that is, how-
ever, random. For example, in the channel there is a large amount of white
noise. Is it possible to separate the useful signal f from the noise ? Suppose
that we know or could know the period T of the signal f . Let us listen to

these signals synchronously, that is, we put them together. Then the random
noise will itself be dampened, while the signal will be strengthened. This
means that sometimes one can combat the noise by actually making use of
it.

3.3.3 Redundancy of language

In a communication channel we very often cope with noise in a similar way,
which the science calls complicating the code or its redundancy.

In item 4 of his commentary Shannon noted the sharp threshold effect of
the optimal code. We shall return to this a little later, but meanwhile we give
some explanation with an example.

If in a telephone conversation you are dictating something to the person
at the other end and there is some word that he could not make out or does
not know, then you start to repeat or communicate letter by letter, while
the letters are communicated by pronouncing entire words such as Anna,
Maria, Booby, Aristotle, and so on.

You fight against the noise by encoding A, M, B, etc., with a code that
is certainly redundant. An optimally economical code is, of course, splen-
did, but also dangerous, as is every maximum of potential possibilities —
it is unstable. Any spoken language, as we can easily observe, is redundant
(roughly by 50%) but, on the other hand, good for everyday intercourse.

3.3.4 Precise measurements in a crude piece of apparatus

How does one measure the thickness of a sheet of paper on an apparatus
where you have measured your height only to within 0,5cm ? Recall the ex-
ample given above of a weak signal in a communication channel with a
large amount of noise. If there is the possibility of taking some packet of this
paper, and by adding them one can find, for example, that one thousand
sheets of paper have a thickness of 20cm with absolute error within the lim-
its of 0,5cm, then, assuming that the sheets are all roughly the same, we find
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3 Communication in the presence of noise

that the thickness of one sheet is 0,2mm with possible error in the limits of
0,005mm.

The idea of the above examples can be extended to create accurate con-
structs (devices, apparatuses) from inaccurate elements.

3.3.5 Shannon–Fano code

Hidden in the numerous details of the proofs the probabilistic structure of an
optimal code in Shannon’s theorem is clearly distinguishable in all its detail
in the following naked idea of an optimal code, called the Shannon–Fano
code. For economy of space and words we consider a simple demonstrative
example, the possible generalization of which is obvious.

We have an alphabet of four letters from which words are formed. Along
a communication channel the bits 0 and 1 can be transmitted with the same
speed and accuracy. One can encode the letters of our alphabet as follows:
(0,0), (0,1), (1,0), (1,1). After this one can transmit text in these letters. Mean-
while we forget about the noise and concern ourselves with the economy of
the code, which influences the speed of the transmission of information.

We suppose that a statistical analysis of the language establishes that the
four letters of the alphabet are encountered with different frequencies; for
example, suppose that their probabilities are 1

2 , 1
4 , 1

8 , 1
8 , respectively. Then it

is most reasonable to proceed as follows. First we divide the letters into two
equiprobable groups (here it is the first letter and all the remaining letters),
which we distinguish by the symbols 0 and 1, respectively. We then repeat
the same procedure with each of the groups and their subgroups as long
as the subgroups do not reduce to a single element. And this is the idea
of the Shannon–Fano code. In our case the code looks like this: (0), (1,0),
(1,1,0), (1,1,1). We compare the above two codes on a sufficiently long text
of T letters. In the first case we need to send 2T bits. In the second case it is
( 1

2 1 + 1
4 2 + 1

8 3 + 1
8 3)T = 7

4 T bits. Moreover, even without punctuation signs
in the optimal code one can recover the sequence of letters (10011000111110
— decipher that). But one only has to make an error in the transmitter or
receiver of just one bit and the text becomes unreadable.

3.3.6 Statistical characteristics of an optimal code

The above example demonstrating the idea behind the Shannon–Fano code
shows that an optimal code tends to distribute the information uniformly
in terms of the symbols transmitted. This can be achieved for the transmis-
sion of long messages provided that their statistical processing is dealt with
beforehand. The dangers of an optimal code are now also clear.
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3.3 Discussion of Shannon’s theorem, examples and supplementary remarks

We note further that Shannon’s theorem relates to noise assumed to be
white noise. Noise can be of various kinds, both random and deterministic.
Moreover, even random noise can have various statistical characteristics.
Obviously in a specific situation one needs to act in a specific manner. The
general theory gives indications on the reasonable order of such actions but
does not solve the whole problem in one go.

3.3.7 Encoding and decoding — ε-entropy and δ-capacity

Earlier we already mentioned the quantization of a continuous signal into a
discrete number of levels. The standard procedure enabling one to go over to
a discrete finite description of any compact subset of a metric space consists
in the construction of a finite ε-net, that is, a finite collection of points such
that any point of the compact set can to within an ε-shift be approximated
(replaced) by one of the points of this net. The quantity ε characterizes the
allowable accuracy of the approximation, or the allowable error. If the de-
vices being used are not capable of distinguishing objects in scales less than
ε, then, without special need, it makes no sense to bother with all the points
of the compact set; it suffices to replace the compact set by some ε-net of it.
The ε-net itself can be considered to be a discrete code describing the com-
pact set to within an accuracy of ε.

Of course it is desirable to have an ε-net with the greatest possible econ-
omy, that is, containing the fewest possible number of points. When ε tends
to zero the number Nε of points in such an ε-net of greatest economy in-
creases without bound in general. Its rate of increase is related to the specific
character of the compact set and the metric space.

Kolmogorov called the quantity log2Nε the ε-entropy of the compact set. If,
for example, one takes the unit cube In or any bounded region of Euclidean
space Rn, then, as is easily verified, the limit of the ratio of logNε to log 1

ε as
ε tends to 0 gives the dimension n of the space.

Incidentally one can exploit the above circumstance to redefine dimen-
sion and thus have the possibility of talking about dimensions that are not
necessarily integers.

Another more interesting example of the use of ε-entropy which is worth
recalling relates to Hilbert’s thirteenth problem [3]. Roughly speaking, the
question can be restated in the following eye-catching form: do functions of
several variables exist ? More precisely: can every function of several vari-
ables be assembled from functions of a smaller number of variables, that is,
can it be represented as a superposition (composite) of finitely many such
functions ?

A.N. Kolmogorov and V.I. Arnold proved that every continuous func-
tion of several variables can be represented as a superposition of continu-
ous functions of one and two variables; here, as Kolmogorov noted, for the
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3 Communication in the presence of noise

function of two variables it suffices to have only the function x + y (see [5],
[6a], [6b]).

But even before that A.G. Vitushkin had proved that not every smooth
function of several variables is the superposition of functions of a smaller
number of variables and enjoying the same amount of smoothness; see [4].
To state this precisely, after Vitushkin we consider a number v = n

p — the
ratio of the number of variables to the order of its highest-order continuous
derivatives. It serves as the index of complexity of the function in the sense
of Vitushkin. As always, we denote by C(p)

n the class of p-smooth functions
of n variables defined on the unit n-dimensional cube In ⊂ Rn. Let k < n.
The question is: when can any function of class C(p)

n be represented as a su-
perposition of functions of class C(q)

k ? Vitushkin showed that this is possible
only if ( n

p = v) ≤ (ṽ = k
q ).

Vitushkin’s proof used, in particular, Oleı̆nik’s estimates of the Betti num-
bers of the algebraic manifolds obtained in connection with investigations
by her and Petrovskiı̆ of Hilbert’s 16th problem on the number and position-
ing of ovals of a real algebraic curve.

Kolmogorov gave another direct and, seemingly the most natural, expla-
nation (proof) of Vitushkin’s result precisely in connection with information
and entropy [7a], [7b].

The spaces C(p)
n and C(q)

k are infinite-dimensional but, as Kolmogorov
showed, if in these spaces one takes the compact sets consisting of all
functions whose derivatives are bounded by some fixed constant, then as

ε→ 0 their ε-entropy will increase as ( 1
ε )

n
p and ( 1

ε )
k
q , respectively. If all the

functions in C(p)
n can be represented as a superposition of finitely many

functions of class C(q)
k , then

(
1
ε

)n/p
= O

((
1
ε

)k/q
)

. Thus, the inequality

( n
p = v) ≤ (ṽ = k

q ) must hold.
As regards Hilbert’s problem itself it is worth noting nevertheless that

within the framework of algebraic functions (which possibly Hilbert him-
self also had in mind when speaking about his thirteenth problem on the
representation of solutions of a seventh-degree algebraic equation) that the
problem is still open. In this connection see the sources [3], [7a] and [7b].

We do not intend here to delve too deeply into these questions and we
have only mentioned an example of another non-trivial use of the notion of
discrete code and ε-entropy.

Again we return briefly to discrete encoding and add a few words about
decoding. An economical ε-net can serve as an economical discrete code of
an object (compact metric space) describing it to within an accuracy of ε.
Suppose that a specimen of such a code is at both ends of a communica-
tion channel. If there is no error in the transmission of the message, then
at the receiving end a signal is obtained about that point of the ε-net that
was selected at the transmitting end. But if for some or other reason errors
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3.4 Mathematical model of a channel with noise

in the communication channel are possible, and the transmitted point can
be interpreted within the limits of its δ-neighbourhood, then clearly errors
are possible during the decoding process; and we already spoke about that
earlier. If we are going to exclude the possibility of errors completely, then
we have to refrain from using an economical code in the form of an ε-net.
By contrast we now have to seek a maximal collection nδ points of the com-
pact set separated from each other by a distance of at least 2δ. Only such a
code (it clearly will be a 2δ-net) can, under the above conditions, guarantee
error-free transmission.

While the quantity log2Nε is called the ε-entropy, as we already know, the
quantity log2nδ is called the δ-capacity.

Calculation of the ε-enropy and δ-capacity of various classes of functions
can be found in [8], [9]. Some further information relating to signal process-
ing can be found in [9]–[14].

3.4 Mathematical model of a channel with noise

3.4.1 Simplest model and formulating the problem

As usual, for economy of everything we consider to begin with the simplest
model, which however already contains almost everything of most value for
our needs for the moment and can easily be generalized if one wishes.

In a communication channel the transmitter sends to the receiver the sym-
bols 0 and 1. The noise results in the possibility that from time to time the
receiver deciphers the sent symbol 0 as 1, and 1 as 0. Let p be the probability
of a correct passage of the transmitted symbol.

Sent along the channel are messages (text, words) consisting of successive
letters (symbols 0, 1 of our two-letter alphabet). We suppose that the channel
acts on each letter of the word independently, that is, it is a channel without
memory. What is the transmission capacity of such a channel ?

So that is our problem. Intuitively it is clear that it is a reasonable problem.
At the same time it is clear that for its answer it needs to be made clear what
exactly one has in mind.3

Earlier, before the proof of Shannon’s theorem, (after Shannon) we had
to sort out the meaning and precise content of certain terms and concepts
which our intuition allowed us to use. We now implement this task (again
after Shannon). Of course our earlier attempts will considerably lighten this
task. Properly speaking it will largely be an abstract formulation of it.

3 It is recounted that one of the visitors of the celebrated Princeton Institute of Advanced
Study was housed in Gödel’s study, which was temporarily vacated. On leaving, the vis-
itor left a thank-you note on the table expressing his regret that he had not made a closer
acquaintance with Gödel. After a while he received a polite letter from Gödel, who had
read the note, which asked him to clarify what exactly he had in mind.
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3 Communication in the presence of noise

As regards a more general abstract model of a communication channel
with noise, it is clear that instead of an alphabet of two letters one can have
any finite (but not one-letter) alphabet and have the probability that the ith
sent letter is converted to the jth at the receiving end. The matrix (pij) of
conversion probabilities models a communication channel with noise.

If the letters are corrupted with different probabilities, then the speed of
transmission of information can depend (and does depend) on the clever-
ness of the code used for writing the messages to be transmitted. Clearly it
is best to use most often those symbols that are least subject to corruption.
Furthermore, as we already know by experience of the Shannon–Fano code,
it is helpful to take into account the statistical peculiarities of the text of the
very message subject to transmission.

Apparently, the transmission capacity of a channel of given matrix (pij)
must simply be the upper bound of the possible speed of transmission with
respect to everything that the channel (device) itself does not depend on,
for example, the upper bound of all possible encodings of the texts to be
transmitted. Clearly different users can use one and the same device with
different degrees of efficiency. The capabilities of the device itself must be
evaluated under the assumption that it is used with maximum efficiency.

After maximal speed under an optimal code has been achieved there can
clearly emerge new problems. For example, we saw what dangers are hid-
den behind codes of maximal economy. But let us lay all this to one side. Just
now we need to gradually investigate the question of the speed of transmis-
sion of information and what in general we mean by the terms information
and quantity of information.

3.4.2 Information and entropy (preliminary considerations)

As we have already remarked, the appearance of the telegraph and wireless
communication stimulated the development of the concept of information
and its quantitative description.

It would seem that the measure of information can reasonably be con-
sidered to be the measure of the change of uncertainty associated with the
information received.

In the simplest situation when there are two possibilities on an equal foot-
ing, for example, when the random quantity has exactly two equiprobable
values 0 and 1 (off, on), the information about its concrete value (state) liq-
uidates the uncertainty. Recall that the measure of such information deals
with what is called the bit (short for binary digit).

To identify one of the M objects by putting questions to which the an-
swers are only “yes” (1) or “no” (0) requires, as is well known, log2 M bi-
nary symbols (the repeated-bisection algorithm). Such a system (random
quantity) is capable of storing m = log2 M bits of information (correspond-
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3.4 Mathematical model of a channel with noise

ing to the measure of its uncertainty). More precisely, if all M possible values
(states) of the random quantity under consideration are equally likely, then
the identification (selection, information on realization) of one of them un-
der the indicated correspondence is equivalent to giving log2M bits, that is
a message of log2M bits of information.

We now state this more formally. Let X be an arbitrary discrete random
quantity that can take M different values xi i
tively. How does one take into account the probabilities ? What measure of
uncertainty (and information) is it reasonable to associate with such a ran-
dom quantity ?

We write down the result just obtained by us in the following form:

m = log M = M · 1
M

log M = ∑
1
M

log M = −∑
1
M

log
1
M

,

where we treat 1
M as the probability of the appearance (realization, selection)

of a specific one of these M objects. (Here and in what follows log = log2.)
Then, surely, in general we should arrive at the quantity −∑M

i=1 pi log pi.
We now substantiate this assertion. The quantity H(X) = −∑ pi log pi is
called the entropy of the discrete random quantity X. (By continuity we sup-
pose that 0log0 = 0.)

Let us experiment with this. If the probability pi of an event xi is small,
then the information that this very rare event has occurred can be taken to
be the very large number − log pi. On the other hand, if the event is rare,
then over a long period of observations it appears with its information in
its teeth extremely rarely (a fraction pi of the whole time of observations).
Therefore the information averaged over a large time interval of observa-
tions which this event yields (the value xi of the random quantity X) is equal
to −pi log pi.

Thus, if − log pi is the measure of uncertainty and information associated
with the event xi whose probability is pi, then −pi log pi is the average sta-
tistical quantity of information that the appearance of such an event yields,
and then H(X) = −∑M

i=1 pi log pi (mathematical expectation of − log pi) is
the average quantity of information that a single event (value) of the ran-
dom quantity X carries.

Be aware of the fact that we are not interested in what exactly the real
event xi consists in, although for other purposes it may be that this is the
most important thing.

We now settle on a precise notation for the statistical character of entropy:
for any positive numbers ε, δ there is a number nεδ such that for n ≥ nεδ we
have the inequality

P{| − 1
n

n

∑
i=1

log pxi − H(X)| < δ} > 1− ε, (3.4)
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3 Communication in the presence of noise

where, as usual, P is the probability of the event indicated in the curly brack-
ets, but now the xi, i = 1, ...,n, are n independent values of the random quan-
tity X and the pxi are the probabilities of these values.

How is the entropy related to the encoding ?
Consider the message-word-vector x̄ = (x1, ..., xn) formed by n successive

independent values of the random quantity X. The probability px̄ of the
appearance of the word x̄ is equal to px̄ = px1 · ... · pxn . In view of formula 3.4
for n ≥ nεδ, with probability 1− ε we have

2−n(H(X)+δ) ≤ px̄ ≤ 2−n(H(X)−δ). (3.5)

The word x̄ is called δ-typical if these estimates hold for it. Clearly there
exist at most 2n(H(X)+δ) such δ-typical words, while if n≥ nεδ, then there are
at least (1− ε)2n(H(X)−δ) of them and the entire set of non-δ-typical words
has probability at most ε.

In principle, now we can already use binary sequences of length n(H(X)+
δ) to encode all δ-typical words. Even if all the remaining words are en-
coded with one symbol, the probability of an error in transmitting words x̄
of length n invoking such a code will be less than ε.

On the other hand (and we have already mentioned this effect of the in-
stability of economical codes), any code using in the same situation binary
sequences of relatively slightly smaller length n(H(X) − δ) (for example,
2δn out of the n(H(X) + δ) sent symbols were lost in the noise) will have an
asymptotically non-vanishing probability of an error, which tends to one as
n→ +∞.

Thus the relation between entropy and encoding of information consists,
for instance, in the fact that as n→ +∞ an efficient encoding requires N ∼
2nH(X) words and the entropy H(X) can be interpreted as a measure of the
quantity of information in bits in the symbol being transmitted, that is, in
one value of the random quantity X.

Hence it follows, in particular, that the entropy of the source of the in-
formation should not exceed the capacity of the communication channel if
we wish adequately and without delays to transmit the information at hand
along this communication channel.

3.4.3 Conditional entropy and information

We turn step-by-step to the transmission of information along a communi-
cation channel. The transmitter sends the message x̄ = (x1, ..., xn) and the
receiver receives ȳ = (y1, ...,yn). How does one recover what was sent from
what was received ? If there are no corruptions, that is, yi = xi always, then
there is no problem. We therefore assume that the channel is characterized
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3.4 Mathematical model of a channel with noise

by some matrix (pij) of probabilities that the transmitted signal xi will be
converted to the received signal yj.

We put the question another way. What information about the message x̄
is contained in the message ȳ ? Or in other words: how is the uncertainty of
x̄ changed (decreased) when we know ȳ ?

We turn to conditional probabilities and introduce the concept of condi-
tional entropy H(X|Y) of a random quantity X at the input of a communi-
cation channel with respect to the random quantity Y at the output. Then,
after Shannon, we consider the quantity

I(X;Y) = H(X)− H(X|Y), (3.6)

mitted by one sent signal (value of the random quantity X) in this commu-
nication channel.

Hence, the capacity of the communication channel is defined as

C = sup
{px}

I(X;Y), (3.7)

where the supremum is taken over all possible codes, that is, over all pos-
sible probability distributions {px} of the input random quantity X, which
has a fixed finite set of values (alphabet).

Thus, we define the conditional entropy H(X|Y) of one random quantity
X with respect to another random quantity Y.

Let {px}, {py} and {px,y}, respectively, be the probability distributions
of random quantities X, Y and the joint random quantity Z = (X,Y). If the
probability of the appearance of the value xi at the input of the random
quantity X is equal to pxi , and the probability p(yj|xi) of conversion of xi
to yj is given and is equal to pij, then the probability pxi ,yj of the combined
event zij = (xi,yj) is equal to p(yj|xi)pxi , and the total probability pyj of the
appearance at the output of the value yj of the random quantity Y is equal
to ∑i p(yj|xi)pxi .

To ease the notation and without losing any clarity we shall no longer
write the extra lower indices. For example, we shall write the standard
formula for conditional probability as follows: px,y = p(y|x)px or px,y =
p(x|y)py, since px,y = py,x.

First we find the conditional entropy H(X|Y = y) of a random quantity
X under the condition that the random quantity Y has the value y. In other
words, we now find what the entropy (uncertainty) X becomes under the
condition that the random quantity Y has taken the value y.

H(X|Y = y) = −∑
x

p(x|y) log p(x|y) = −∑
x

px,y

py
log

px,y

py
.
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We can now find what we are interested in, namely, the conditional entropy
H(X|Y) of the random quantity X with respect to the random quantity Y:

H(X|Y) = −∑
y

py H(X|Y = y) = −∑
y

py ∑
x

px,y

py
log

px,y

py
=

= −∑
x,y

px,y log px,y + ∑
y

py log py = H(X,Y)− H(Y).

Here H(X,Y) is the combined entropy of the pair Z = (X,Y) of random
quantities X and Y; the probability distribution of the pair is {px,y}.

We have found that H(X|Y) = H(X,Y)− H(Y). But since px,y = py,x and
px,y = p(y|x)px = p(x|y)py = py,x, we also have the relations H(X,Y) =
H(Y, X) and H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X). Thus,

H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X) = H(Y, X). (3.8)

Taking into account formula (3.6) (Shannon’s definition) for the quantity of
information we find that

I(X;Y) = H(X)− H(X|Y) = H(X) + H(Y)− H(X,Y). (3.9)

Since H(X,Y) = H(Y, X), it follows that

I(X;Y) = I(X;Y). (3.10)

3.4.4 Interpretation of loss of information in a channel with
noise

We pause briefly to summarize informally the purport of the concepts intro-
duced above and the interactions that have been uncovered.

The entropy H(X) = −∑x px log px of a discrete random quantity X is a
certain statistical average of its character. If − log px is treated as the mea-
sure of uncertainty of the rareness of the event (of the value x of the random
quantity X), expressed in bits, and measuring the quantity of information
contained in the message about the occurrence of the event x is proportional
to this, then H(X) will be the mathematical expectation of this quantity
− log px.

The entropy is some average measure of the uncertainty of a random
quantity X taking on one of its values. Put another way, it is the average
measure of information that arrives at one value of the random quantity.
Here it is assumed that we obtain a linear series of independent values of
the random quantity X and we average the quantity of information obtained
from the number of received values of the random quantity. We also tac-
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3.4 Mathematical model of a channel with noise

itly assume that the values are transmitted and dealt with uniformly — one
value per unit of time. Therefore in the case when we are dealing with the
transmission of information along a communication channel one prefers to
treat the entropy of the source as the average quantity of information that
the source creates in a unit of time.

If the channel is capable of transmitting this flow of information without
corruptions, then everything is fine. If, on the other hand, errors can arise,
then we have new problems on our hands. In the example of Shannon’s

concrete physical parameters (frequency band, signal level, noise level, sta-
tistical characteristics of the noise, and so on). Properly taking into account
and handling these parameters is an important problem in its own right.

We considered some abstract model of the communication channel and
arrived at the useful concept of conditional entropy H(X|Y). Its meaning is

cess X remaining if one has the possibility of observing the state of the ran-
dom quantity Y. If X and Y are independent, then clearly an observation on
Y says nothing about X and H(X|Y) = H(X). On the other hand, if X = Y
(for example, when there is error-free transmission along the communica-
tion channel), then H(X|Y) = 0.

Thus, in the problem of transmission of information along a commu-
nication channel, the quantity H(X|Y) can be treated as the average loss
of information per transmitted value (per symbol or in unit time) in this
communication channel. This means that it is natural to take I(X;Y) =
H(X) − H(X|Y) as the average measure of information that passes along
the communication channel when the values of the random quantity X en-
coding the original messages are sent along it.The informative part of the
messages is of no interest. We measure the information in bits and we mea-
sure the speed of its creation or reception in bits per symbol or in bits per
unit time.

The values that a random quantity X can take can be considered to be
the alphabet in which the messages subject to transmission are written (en-
coded). The messages are assumed to be long enough so that statistical char-

alphabetically in different ways, as we have seen from the Shannon–Fano
code. The optimal code for transmission is chosen with the characteristics of
the communication channel to be used being taken into account.

The transmission capacity (3.7) of the communication channel is the max-
imal average speed of transmission along this communication channel that
can be attained or that can be arbitrarily closely approximated in transmit-

nel alphabet.
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ting long texts of messages using sensible encodings beforehand in the chan-

acterizations can be used in general for the problem. This can be arranged

to enable one to  estimate the average level of uncertainty of the random pro-
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3.4.5 Calculating the transmission capacity of an abstract
communication channel

We have defined the capacity of an abstract communication channel by for-
mula (3.7). We have just discussed the content of these ideas in broad out-
line. Now, in conclusion we nevertheless carry out a concrete calculation.
We shall find the capacity of our abstract communication channel in the sim-
plest example from which we began this abstract calculation. We recall the
conditions.

In the communication channel the transmitter sends to the receiver the
symbols 0 and 1. As a result of noise, the receiver occasionally deciphers the
transmitted signal 0 as 1, and 1 as 0. Let p be the probability that the symbol
is passed through correctly.

Along the channel messages (text, words) are sent consisting of sequences
of letters, which are the symbols 0,1 of our very simple two-letter alphabet.
We assume that the channel acts independently on each letter of the word,
that is, it is a channel without memory.

What is the transmission capacity of such a communication channel ?
In the present case the matrix of the probabilities of conversion is sim-

plified to the limit not merely because we have a two-letter alphabet, but
also because both transmitted symbols 0 and 1 have the same probability of
being passed through without corruption. Thus the random quantity X at
the input of the channel can take two values. Suppose that the encoding of
the message to be sent is such that the probabilities of the appearance of the
values 0, 1 are p0, p1, respectively.

At the output of the channel the random quantity Y can also take these
two values 0 or 1, but possibly with different probabilities q0, q1. Let us find
them.

The value 0 is obtained at the output with probability p when 0 is at the
input, and with probability 1− p when 1 is at the input. In turn, at the in-
put we have 0 with probability p0 and 1 with probability p1. Therefore the
probability of getting 0 at the output is pp0 + (1− p)p1. Correspondingly, 1
appears at the output with probability pp1 + (1− p)p0.

The probability distribution of the combined random variable Z = (X,Y)
is also easy to write down: (0,0)∼ pp0, (0,1)∼ (1− p)p1, (1,0)∼ (1− p)p0,
(1,1) ∼ pp1.

We can now calculate the entropies H(X), H(Y), H(X,Y) and via the sec-
ond of formulae (3.9) find the speed of transmission of information. In our
case we find that

I(X;Y) = H(Y)− h(p),

where h(p) = −p log p− (1− p) log(1− p) = H(X,Y)− H(X) = H(Y|X).
The maximal value of the quantity I(X;Y) is attained when H(Y) = 1,

that is, when the distribution at the output is uniform: q0 = q1 = 1
2 . But q0 =
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pp0 + (1− p)p1, and q1 = pp1 + (1− p)p0, therefore the condition q0 = q1 =
1
2 holds precisely when the input distribution is uniform: p0 = p1 = 1

2 .
(Here we have used the following fact, which is easily verified: using the

convexity of the logarithm function, if a discrete random quantity X has M
different values, then 0≤ H(X) ≤ log M, where the left-hand relation holds
with equality for the degenerate distributions when one value is taken with
probability 1 and the others with probability 0, while the right-hand relation
holds with equality for a uniform distribution.)

Thus, we have found that the channel transmission capacity of our sim-
plest model communication channel with noise is equal to C = 1 − h(p).
Here h(p) = H(Y|X) characterizes the loss of information on the symbol
being transmitted. (See also [16].)

The calculation of the speed is, of course, always carried out to within
a constant coefficient corresponding to the choice of the unit of time. For
example (see [15]), suppose that the channel is physically capable of trans-
mitting 100 bits 0, 1 in unit time, where each bit to be transmitted can
be replaced by the opposite bit with probability 0,01. In this case, h(p) =
h(1− p) = h(0,01) ≈ 0,0808 and C = 100(1− 0,0808) = 91,92 ≈ 92 bits per
unit of time. Take note the result is not equal to 99.

Armed with one’s accumulated experience one can now try to prove the
following intuitively clear Theorem of Shannon.

Theorem. Suppose that there are a source of information X whose entropy
per unit of time is equal to H(X) and a communication channel of capacity C. If
H(X) > C, then it is impossible to have an encoding delivering messages without
delay or corruption. If, on the other hand, H(X) < C, then it is always possible
to encode sufficiently long messages so that they are transmitted without delay;
furthermore the probability of errors could be made arbitrariily close to zero.
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