
Chapter 2
Examples of applications

We now consider some examples in which various aspects of the Π-Theorem
are explained.

2.1 Period of rotation of a body in a circular orbit (laws of
similarity)

A body of mass m is kept in a circular orbit of radius r by a central force F.
It is required to find the period of rotation

P = f (r,m, F).

Here and in what follows we fix the basis of fundamental physical units
that is standard in mechanics, namely, length, mass and time, which, follow-
ing Maxwell, we denote by {L, M, T}. (In thermodynamics the symbol T is
used to denote absolute temperature, but unless otherwise stated, we shall
meanwhile use this notation for the unit of time.)

Let us find the dimension vector of the quantities P, r, m, F in the basis
{L, M, T}. We write them as the columns of the following table:

P r m F
L 0 1 0 1
M 0 0 1 1
T 1 0 0 −2

Since, as we have shown, the dimension function always has degree form,
multiplication of such functions corresponds to addition of the degree expo-
nents, in other words, they correspond to linear operations on the dimension
vectors of the corresponding physical quantities.
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2 Examples of applications

Hence, using standard linear algebra, one can find a system of indepen-
dent quantities from the matrix formed by their dimension vectors; also,
by decomposing the dimension vector of some quantity into the dimension
vectors of the selected independent quantities, one can find a formula for
the dimension of this quantity in the system of independent quantities of
the concrete problem.

Thus, in our case the quantities r, m, F, are independent because the ma-
trix formed by the vectors [r], [m], [F] is non-singular. Finding the expansion
[P] = 1

2 [r] + 1
2 [m, ]− 1

2 [F] on the basis of formula (1.6) of Chapter I we imme-
diately see that

P =
(mr

F

)1/2
· f (1,1,1).

Thus, to within the positive factor c = f (1,1,1) (which can be found by a
single laboratory experiment) we have found the dependence of P on r,m, F.
Of course, knowing Newton’s law F = m · a, in the present instance we could
easily have found the final formula, where c = 2π. However, everything that
we have used is just a general indication of the existence of the dependence
P = f (r,m, F).

2.2 The gravitional constant. Kepler’s third law and the
degree exponent in Newton’s law of universal
gravitation.

After Newton we find the degree exponent α in the law of universal gravi-
tation

F = G
m1m2

rα
.

We use the previous problem and Kepler’s third law (which was known
to Newton) which, for circular orbits, implies that the square of the periods
of rotation of the planets (with respect to a central body of mass M) are pro-
portional to the cubes of the radii of their orbits. In view of the result of the
previous problem and the law of universal gravitation (with the exponent α
not yet found) we have

(
P1

P2

)2
=
(

m1r1

F1

)1/2
/
(

m2r2

F2

)1/2
=

(
m1r1
m1 M

rα

)1/2

/

(
m2r2
m2 M

rα

)1/2

=
(

r1

r2

)α+1
.

But by Kepler’s law
(

P1
P2

)2
=
(

r1
r2

)3
. Hence α = 2.
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2.3 Period of oscillation of a heavy pendulum (inclusion of g).

2.3 Period of oscillation of a heavy pendulum (inclusion
of g).

After the detailed explanations involved in the solution of the first prob-
lem we can now allow ourselves a more compact account, pausing only at
certain new circumstances.

We shall find the period of oscillation of a pendulum. More precisely, a
load of mass m is fixed at the end of a weightless suspension of length l in-
clined from the equilibrium position at some initial angle ϕ0, is let go and
under the action of the force of gravity starts to perform a periodic oscilla-
tion. We shall find the period P of these oscillations.

To write P = f (l,m, ϕ0) would be wrong because a pendulum has differ-
ent periods of oscillation on the Earth and the Moon in view of the differ-
ence in the forces of gravity at the surfaces of these two bodies. The force
of gravity at the surface of a body, for example, the Earth, is characterized
by the quantity g which is the acceleration of free fall at the surface of this
body. Therefore, instead of the impossible relation P = f (l,m, ϕ0), one must
assume that P = f (l,m, g, ϕ0).

We write the dimension vectors of all these quantities in the basis {L, M, T}:

P l m g ϕ0
L 0 1 0 1 0
M 0 0 1 0 0
T 1 0 0 −2 0

Clearly the vectors [l], [m], [g] are independent and [P] = 1
2 [l]− 1

2 [g].
In view of the Π-Theorem in the form of relation 1.6 of Chapter I, it fol-

lows that

P =
(

l
g

) 1
2
· f (1,1,1, ϕ0).

We have found that P = c(ϕ0) ·
√

l
g , where the dimensionless factor c(ϕ0)

depends only on the dimensionless angle ϕ0 of the initial inclination (mea-
sured in radians).

The precise value of c(ϕ0) can also be found, although this time this is no
longer all that easy. It can be done by solving the equation of motion of an
oscillating heavy pendulum and invoking the elliptic integral

F(k, ϕ) :=
∫ ϕ

0

dθ√
1− k2 sin2 θ

.

Namely, c(ϕ0) = 4K(sin( 1
2 ϕ0)), where K(k) := F(k, 1

2 π).
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2.4 Outflow of volume and mass in a waterfall

On a broad shelf having the form of a step on the upper platform, water
falling under the action of gravity forms a waterfall. The depth of the water
on the upper platform is known and is equal to h. It is required to find the
specific volumetric outflow V (per unit of time on a unit of width of the
step) of the water. If we look at the mechanism of the phenomenon in the
right way, then we see that V = f (g, h).

Since this phenomenon is determined by gravitation, along with the di-
mensional constant g (free-fall acceleration), we could, as a precaution, in-
troduce the density $ of the fluid, that is, we suppose that

V = f ($, g, h).

We now carry out the standard procedure of finding the dimension vectors:

V $ g h
L 2 −3 1 1
M 0 1 0 0
T −1 0 −2 0

Clearly the vectors [$], [g], [h] are independent and [V] = 1
2 [g] + 3

2 [h].
In view of the Π-Theorem we now obtain that

V = g
1
2 h

3
2 · f (1,1,1).

Thus, V = c · g 1
2 h

3
2 , where c is a constant to be determined, for example, in

a laboratory experiment. Here the specific outflow Q of the mass is clearly
equal to $V. One could also have arrived at the same formula by applying
the method of dimensions to the relation Q = f ($, g, h).

2.5 Drag force for the motion of a ball in a non-viscous
medium

A ball of radius r moves with velocity v in a non-viscous medium of den-
sity $. It is required to find the drag force acting on the ball. (One could, of
course, assume that there is a flow moving with velocity v past a ball at rest,
which is a typical situation in wind-tunnel tests.)

We write down the general formula F = f ($,v,r) and analyse it in terms
of dimensions:
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2.6 Drag force for the motion of a ball in a viscous medium

F $ v r
L 1 −3 1 1
M 1 1 0 0
T −2 0 −1 0

Clearly the vectors [$], [v], [r] are independent and [F] = [$] + 2[v] + 2[r]. In
view of the Π-Theorem we now obtain

F = $v2r2 · f (1,1,1). (2.1)

Thus, F = c · $v2r2, where c is a dimensionless constant coefficient.

2.6 Drag force for the motion of a ball in a viscous medium

Before we turn to the formulation of this problem we recall the notion of
viscosity of a medium and find the dimension of viscosity.

If one places a sheet of paper on the surface of thick honey, then in order
to move the sheet along the surface one needs to apply certain forces. In
first approximation the force F applied to the sheet stuck on the surface of
the honey will be proportional to the area S of the sheet, the speed v of its
motion and inversely proportional to the distance h from the surface to the
bottom where the honey is also stuck and stays motionless in spite of the
motion at the top (like a river).

Thus, F = η · Sv/h. The coefficient η in this formula depends on the
medium (honey, water, air, and so on) and is called the coefficient of viscos-
ity of the medium or simply the viscosity.

The ratio ν = η/$, where, as always, $ is the density of the medium, is fre-
quently encountered in problems of hydrodynamics and is called the kine-
matic viscosity of the medium.

We now find the dimensions of these quantities in the standard {L, M, T}
basis. Since [η] = [FhS−1v−1], the dimension function corresponding to the
viscosity in this basis has the form ϕη = L−1M1T−1, and the dimension
vector is [η] = (−1,1,−1). For the kinematic viscosity [ν] = [η/$], therefore
ϕν = L2M0T−1 and [ν] = (2,0,−1).

We now try to solve the previous problem on the drag force arising in the
motion of the same ball, but now in a viscous medium. The initial depen-
dence now looks like this: F = f (η,$,v,r). We analyse it in terms of dimen-
sions:

F η $ v r
L 1 −1 −3 1 1
M 1 1 1 0 0
T −2 −1 0 −1 0

Clearly the vectors [$], [v], [r] are independent; [F] = [$] + 2[v] + 2[r] and
[η] = [$] + [v] + [r]. In view of the Π-Theorem we have

15
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F = $v2r2 · f (Re−1,1,1,1), (2.2)

where the function f (Re−1,1,1,1) remains unknown. This last function de-
pends on the dimensionless parameter

Re = $vr/η = vr/ν, (2.3)

which plays a key role in questions of hydrodynamics.
This dimensionless quantity Re (the indication of the ratio of the force

of inertia and the viscosity) is called the Reynolds number after the English
physicist and engineer Osborn Reynolds, who first drew attention to it in
his papers on turbulence in 1883. It turns out that as the Reynolds number
increases, for example, as the speed of the flow increases or as the viscos-
ity of the medium decreases, the character of the flow undergoes structural
transformations (called bifurcations) evolving from a calm stable laminar
flow to turbulence and chaos.

It is very instructive to pause at this juncture and wonder why the results
(2.1) and (2.2) of the last two problems appear to be essentially the same.
The wonder disappears if one considers more closely the variable quan-
tity f (Re−1,1,1,1). Under the assumptions that, in modern terminology, are
equivalent to the relative smallness of the Reynolds number, Stokes as long
ago as 1851 found that F = 6πηvr. This does not contradict formula (2.2) but
merely states that for small Reynolds numbers the function f (Re−1,1,1,1)
behaves asymptotically like 6πRe−1. In fact, substituting this value in for-
mula (2.2) and recalling the definition (2.3) we obtain Stokes’s formula.

2.7 Exercises

1. Since orchestras exist, it is natural to suggest that the speed of sound is
weakly dependent (or not dependent) on the wave length ?

(Recall the nature of a sound wave, introduce the modulus of elasticity E
of the medium and, starting from the dependence v = f ($, E,λ), prove that
v = c · (E/$)1/2.)

2. What is the law of the change of speed of propagation of a shock wave
resulting from a very strong explosion in the atmosphere ?

(Introduce the energy E0 of the explosion. The pressure in front of the
shock wave can be ignored; the elasticity of the air no longer plays a role.
Start by finding the law r = f ($, E0, t) of propagation of the shock wave.)

3. Obtain the formula v = c · (λg)1/2 for the speed of propagation of a
wave in a deep reservoir under the action of the force of gravity. (Here c is
a numerical coefficient, g is the acceleration of free fall and λ is the wave
length.)
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2.7 Exercises

4. The speed of propagation of a wave in shallow water does not depend
on the wave length. Accepting this observation as a fact show that it is pro-
portional to the square root of the depth of the reservoir.

5. The formula used for determining the quantity of liquid flowing along
a cylindrical tube (for example, along an artery) has the form

v =
π$Pr4

8ηl
,

where v is the speed of the flow, $ is the density of the liquid, P is the dif-
ference in pressure at the ends of the tube, r is the radius of cross-section of
the tube, η is the viscosity of the liquid and l is the length of the tube. Derive
this formula (to within a numerical factor) by verifying the agreement of the
dimensions on both sides of the formula.

6. a) In a desert inhabited by animals it is required to overcome the large
distances between the sources of water. How does the maximal time that the
animal can run depend on the size L of the animal ? (Assume that evapora-
tion only occurs from the surface, the size of which is proportional to L2.)

b) How does the speed of running (on the level and uphill) depend on
the size of the animal ? (Assume that the power developed and the corre-
sponding intensity of heat loss (say, through evaporation) are proportional
to each other, and the resistive force against horizontal motion (for example,
air resistance) is proportional to the square of the speed and the area of the
frontal surface.)

c) How does the distance that an animal can run depend on its size ?
(Compare with the answers to the previous two questions.)

d) How does the height of the jump of an animal depend on its size ? (The
critical load that can be borne by a column that is not too high is proportional
to the area of cross-section of the column. Assume that the answer to the
question depends only on the strength of the bones and the “capability” of
the muscles (corresponding to the strengths of the bones).

Here we are dealing throughout with animals of size on the human scale,
such as camels, horses, dogs, hares, kangaroos, jerboas, in their customary
habitats. In this connection see the books by Arnold and Schmidt cited be-
low.

7. After Lord Rayleigh, find the period of small oscillations of drops of
liquid under the action of their surface tension, assuming that everything
happens outside a gravitational field (in the cosmos).

(Answer: c · ($r3/s)1/2, where $ is the density of the liquid, r is the radius
of the drop and s is the surface tension, [s] = (0,1,−2).)

8. Find the period of rotation of a double star. We have in mind that two
bodies with masses m1 and m2 rotate in circular orbits about their common
centre of mass. The system occurs in empty space and is maintained by the
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forces of mutual attraction between these bodies. (If you are puzzled, recall
the gravitational constant and its dimension.)

9. “Discover” Wien’s displacement law ε(ν, T) = ν3F(ν/T) and also the
Rayleigh-Jeans law ε(ν, T) = ν2T G(ν/T) for the distribution of the inten-
sity of black-body radiation as a function of the frequency and the absolute
temperature.

[Wien’s fundamental law (not the displacement law given above) has the
form ε(ν, T) = ν3 exp(−aν/T) and is valid for ν/T� 1 , while the Rayleigh-
Jeans law ε(ν, T) = 8πν2kT/c3 is valid for relatively small values of ν/T.

Both these laws (the specific intensity of radiation in the frequency inter-
val from ν to ν + dν) are united by Planck’s formula (1900) launching the
ground-breaking epoch of quantum theory:

ε(ν, T) =
8π

c3 ν2 hν

ehν/kT − 1
.

Here c is the velocity of light, h is Planck’s constant, k is the Boltzmann con-
stant (k = R/N, where R is the universal gas constant and N is Avogadro’s
number). Wien’s law and the Rayleigh-Jeans law are obtained from Planck’s
formula for hν� kT and kT� hν, respectively.]

Let νT be the frequency at which the function ε(ν, T) = ν3F(ν/T) attains
its maximum for a fixed value of the temperature T. Verify (after Wien) that
we have the remarkable displacement law νT/T = const. Find this constant
using Planck’s formula.

10. Taking the gravitational constant G, the speed of light c and Planck’s
constant h as the basic units, find the universal Planck units of length L∗ =
(hG/c3)1/2, time T∗ = (hG/c5)1/2 and mass M∗ = (hc/G)1/2.

(The values G = 6.67 · 10−11H · m2/kg2, c = 2.997925 · 108m/s and
h = 6.625 · 10−34J·s, other physical constants, as well as other information
on units of measurement can be found in the books [4a], [4b], [4c].)

Many problems, analysed examples, instructive discussions and warn-
ings relating to the analysis of dimensionality and principles of similarity
can be found in the books [1], [2], [3], [4].

2.8 Concluding remarks

The little that has been said about the analysis of dimension and its applica-
tions already enables us to make the following observations.

The effectiveness of the use of the method mainly depends on a proper
understanding of the nature of the phenomenon to which it is being applied.
(By the way, in an early stage of analysis only people at the level of Newton,
the brothers Bernoulli and Euler knew how to apply the analysis of infinites-
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2.8 Concluding remarks

imals without getting embroiled in paradoxes, which was required for extra
intuition).1

Dimension analysis is particularly useful when the laws of the phe-
nomenon have not yet been described. Namely, in this situation it some-
times reveals connections (albeit very general), which are useful for an un-
derstanding of the mechanism of the phenomenon and the choice of the
direction of further investigations and refinements. We shall then demon-
strate this by the example of Kolmogorov’s approach to the description of
the (still mysterious) fundamental phenomenon of turbulence.

The main postulate of dimension theory relates to the linear theory of
similarity transformations, the theory of measurements, the notion of a rigid
body and the homogeneity of a space, among other things. In Lobachevskii’s
hyperbolic geometry there are no similar figures at all, as is well known.
Even so, locally this geometry admits a Euclidean approximation. Hence,
as in all laws, the postulate of dimension theory is itself applicable in cer-
tain scales, depending on the problem. These scales were rarely known in
advance and were most often discovered when incongruities arose.

The method shows that the larger the number of dimensionally indepen-
dent quantities are, the simpler and more concrete the functional depen-
dence of the quantities under study becomes. On the other hand, the more
physical relations are discovered the less remains of the dimensionally in-
dependent quantities. (For example, distance can now be measured in light
years.) So we see that the more we know, the less general dimension analysis
gives us. Counterbalancing this, the penetration into essentially new areas is
usually accompanied by the appearance of new dimensionally independent
quantities (the algebraic aspect of dimensions and many other matters can
be found, for example, in the book [14].)

Disregarding Problems 9 and 10 we restrict ourselves here to the discus-
sion of phenomena described within the framework of the quantities of clas-
sical mechanics. This will suffice to begin with. But true enjoyment can only
be obtained by reading the discussions of scholars, thinkers and, in general,
professionals capable of a large-scale multischeme and unique view of the

1 I quote the justified misgivings of V.I. Arnol’d concerning the possible overestimation
of the Π-theorem: “Such an approach is extremely dangerous because it opens up the
possibility of irresponsible speculation (under the name of dimension theory) in those
places where the corresponding laws of similarity should be verified experimentally, since
they do not at all follow from the dimensions of the quantities describing the phenomenon
under study, and they are deep subtle facts”. Rather the same relates to a clumsy use of
multiplication tables, statistics or catastrophe theory.

Using these new publications of the present book I add that in his recent book “Math-
ematical understanding of nature” (MCCME, Moscow, 2009) discussing such a theory
of adiabatic invariants V.I. (on p.117) observes that “ The theory of adiabatic invariants
is a strange example of a physical theory seemingly contradicting the purport of easily
verifiable mathematical facts. In spite of such an undesirable property of this “theory” it
provided remarkable physical discoveries to those who were not afraid to use its conclu-
sions (even though they were mathematically unjustified)”. In a word: “Think it out for
yourself, solve it yourself, take it or leave it”.
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world or the subject matter. And this is in connection with various areas. It
is like a symphony and it captivates!

[If you resign yourself to the “obscurantism” of dimension analysis but
what has been set out still does not seem rather crazy, then it amuses me
to quote the following excerpt from a well-known physicist (whom I shall
not name so as not to accidentally subject his good name to attacks by less
free-thinking people).

“Physicists begin the study of a phenomenon by introducing suitable
units of measurement. It is unreasonable to measure the radius of an atom
in metres or the speed of an electron in kilometres per hour; one needs
to find appropriate units. There are already important immediate conse-
quences of one such choice of units. Thus, from the charge e of an electron
and its mass m one cannot form a quantity having the dimensions of length.
This means that in classical mechanics the atom is impossible — an elec-
tron cannot move in a stationary orbit. The situation changed with the ap-
pearance of Planck’s constant h̄ (h̄ = h/2π). As is clear from the definition,
h̄ = 1,054 · 10−34 J·s has dimensions of energy times time.2 We can now form
the quantity of the dimension of length: a0 = h̄/me2.

If in this relation we substitute the values of the constants occurring
therein, then we should get a quantity of the order of the dimensions of the
atom; one obtains 0,5 · 10−10m. Thus from a simple dimensional estimate
one has found the size of the atom.

It is easy to see that e2/h̄ has the dimension of velocity, it is roughly 100
times smaller than the speed of light. If one divides this quantity by the
speed of light c, then one obtains the dimensionless quantity α = e2/h̄c =
1/137, characterizing the interaction of the electron with an electric field.
This quantity is called the fine structure constant.

We have given estimates for the hydrogen atom. It is easy to obtain them
for an atom with nuclear charge Ze. The motion of an electron in an atom
is determined by its interaction with the nucleus, which is proportional to
the product of the charge on the nucleus and the charge on the electron.
Therefore for a nucleus with charge Ze, in the formulae for α and a0 we
must replace e2 by Ze2. In heavy elements with Z ∼ 100 the velocity of the
electrons is close to the speed of light.”]

Finally we make some practical observations.
Dimension analysis is a good means of double checking:
a) if the dimensions of the left- and right-hand sides of an equation are

not equal, then one must look for the error;
b) if under a sign that is not a degree function (for example, under a loga-

rithm or exponential sign) there is a quantity that is not dimensionless, then
one must look for the error (or one must look for a transformation getting
rid of this situation);

2 Author’s comment: The dimension of h can be worked out from Planck’s formula in Prob-
lem 9.
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2.8 Concluding remarks

c) only quantities of the same dimension can be added.
(If v = at is the velocity and s = 1

2 at2 is the distance passed under uniform
acceleration, then formally it is, of course, true that v + s = at + 1

2 at2. How-
ever, from a physical point of view this equality reduces to two: v = at and
s = 1

2 at2. Bridgeman, in whose cited book we gave this example, indicates a
complete analogy with the equality of vectors , which gives rise to equalities
of coordinates with the same name.)
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