
A Theory of Software Product Line Refinement

Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi

Informatics Center – Federal University of Pernambuco
Department of Computing Systems – Federal University of Campina Grande

{phmb,lmt}@cin.ufpe.br, rohit@dsc.ufcg.edu.br

Abstract. To safely derive and evolve a software product line, it is im-
portant to have a notion of product line refactoring and its underlying
refinement notion, which assures behavior preservation. In this paper we
present a general theory of product line refinement by extending a pre-
vious formalization with explicit interfaces between our theory and the
different languages that can be used to create product line artifacts. More
important, we establish product line refinement properties that justify
stepwise and compositional product line development and evolution.

1 Introduction

A software product line is a set of related software products that are generated
from reusable assets. Products are related in the sense that they share common
functionality. Assets correspond to components, classes, property files, and other
artifacts that are composed in different ways to specify or build the different
products. This kind of reuse targeted at a specific set of products can bring
significant productivity and time to market improvements [PBvdL05, vdLSR07].

To obtain these benefits with reduced upfront investment, previous
work [Kru02, CN01, AJC+05] proposes to minimize the initial product line
(domain) analysis and development process by bootstraping existing related
products into a product line. In this context it is important to rely on a no-
tion of product line refactoring [Bor09], which provides guidance and safety for
deriving a product line from existing products, and also for evolving a prod-
uct line by simply improving its design or by adding new products while pre-
serving existing ones. Product line refactoring goes beyond program refactoring
notions [Opd92, Fow99, BSCC04, CB05] by considering both sets of reusable
assets that not necessarily correspond to valid programs, and extra artifacts,
such as feature models [KCH+90, CE00], which are necessary for automatically
generating products from assets.

Instead of focusing on the stronger notion of refactoring, in this paper we focus
on the underlying notion of product line refinement, which also captures behav-
ior preservation but abstracts quality improvement. This allows us to develop
a formal theory of product line refinement, extending the previous formaliza-
tion [Bor09] with explicit assumptions about the different languages that can
be used to create product line artifacts. More important, we establish product
line refinement properties that justify safe stepwise and compositional product

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 15–43, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

16 P. Borba, L. Teixeira, and R. Gheyi

line development and evolution. Our theory is encoded in the Prototype Veri-
fication System (PVS) [ORS92], which provides mechanized support for formal
specification and verification. All properties are proved using the PVS prover.

This text is organized as follows. Section 2 introduces basic concepts and
notation for feature models and other extra product line artifacts [CE00, BB09].
Several assumptions and axioms explicitly establish the interfaces between our
theory and particular languages used to describe a product line. Definitions and
lemmas are introduced to formalize auxiliary concepts and properties. Following
that, in Sec. 3, we discuss and formalize our notion of product line refinement.
We also derive basic properties that justify stepwise product line development
and evolution. Next, Sec. 4 presents the product line refinement compositionality
results and their proofs. We discuss related work in Sec. 5 and conclude with
Sec. 6. Finally, Appendix A contains proofs omitted in the main text.

2 Product Lines Concepts

In the product line approach formalized in this paper, automatic generation of
products from assets is enabled by Feature Models and Configuration Knowledge
(CK) [CE00]. A feature model specifies common and variant features among prod-
ucts, and is used for describing and selecting products based on the features they
support. A CK relates features and assets, specifying which assets implement pos-
sible feature combinations. Hence a CK can be used to actually build a product
given chosen features for that product. We now explain in more detail these two
kinds of artifacts and related concepts, using examples from the Mobile Media
product line [FCS+08], which contains applications – such as the one illustrated
in Fig. 1 – that manipulate photo, music, and video on mobile devices.

2.1 Feature Models

A feature model is essentially represented as a tree, containing features and
information about how they are related. Features basically abstract groups of

Fig. 1. Mobile Media screenshots

A Theory of Software Product Line Refinement 17

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Fig. 2. Mobile Media simplified feature model

associated requirements, both functional and non-functional. In the particular
feature model notation illustrated here, relationships between a parent feature
and its child features (subfeatures) indicate whether the subfeatures are optional
(present in some products but not in others, represented by an unfilled circle),
mandatory (present in all products, represented by a filled circle), or (every
product has at least one of them, represented by a filled triangular shape), or
alternative (every product has exactly one of them, represented by an unfilled
triangular shape). For example, Fig. 2 depicts a simplified Mobile Media feature
model, where Sorting is optional, Media is mandatory, Photo and Music are
or-features, and the two illustrated screen sizes are alternative.

Besides these relationships, feature models may contain propositional logic
formulas about features. Feature names are used as atoms to indicate that a
feature should be selected. So negation of a feature indicates that it should not
be selected. For instance, the formula just below the tree in Fig. 2 states that
feature Photo must be present in some product whenever feature Send Photo is
selected. So

{Photo, Send Photo, 240x320},
together with the mandatory features, which hereafter we omit for brevity, is a
valid feature selection (product configuration), but

{Music, Send Photo, 240x320}
is not. Likewise {Music, Photo, 240x320} is a valid configuration, but

{Music, Photo, 240x320, 128x149}
is not because it breaks the Screen Size alternative constraint. In summary, a
valid configuration is one that satisfies all feature model constraints, specified
both graphically and through formulas.

The set of all valid configurations often represents the semantics of a feature
model. However, as different feature model notations might express constraints
and configurations in different ways, our product line refinement theory abstracts
the details and just assumes a generic function [[]] for obtaining the semantics
of a feature model as a set of configurations.

18 P. Borba, L. Teixeira, and R. Gheyi

Assumption 1. 〈Feature model semantics〉
FeatureModel : TY PE

Configuration : TY PE

[[]] : FeatureModel → set[Configuration]

We use simplified PVS notation for introducing the mentioned function and
related types. In PVS, TYPE declares an uninterpreted type that imposes no
assumptions on implementations of the specification.

As shall be clear latter, these concepts are all we require about feature mod-
els. With them, we can define our product line refinement notion and derive its
properties. So our theory applies for any feature model notation whose seman-
tics can be expressed as a set of configurations. This is the case of the feature
model notation illustrated in this section and others, which have been formalized
elsewhere [GMB08, AGM+06, CHE05, Bat05, SHTB07].

Given a notion of feature model semantics, it is useful to define a notion of
feature model equivalence to reason about feature models. Two feature models
are equivalent iff they have the same semantics.

Definition 1. 〈Feature model equivalence〉
Feature models F and F ′ are equivalent, denoted F ∼= F ′, whenever [[F]] = [[F ′]].

Again, this is quite similar to the PVS specification, which defines the equivalence
as a function with the following type:

∼= : FeatureModel, FeatureModel → bool

Hereafter we omit such typing details, and overload symbols, but the types can
be easily inferred from the context.

We now establish the equivalence properties for the just introduced function.

Theorem 1. 〈Feature model equivalence – reflexivity〉
∀F : FeatureModel · F ∼= F

Proof: Follows directly from Definition 1 and the reflexivity of the equality of
configuration sets. �
Theorem 2. 〈Feature model equivalence – symmetry〉

∀F, F ′ : FeatureModel · F ∼= F ′ ⇒ F ′ ∼= F

Proof: Follows directly from Definition 1 and the symmetry of the equality of
configuration sets. �
Theorem 3. 〈Feature model equivalence – transitivity〉

∀F, F ′, F ′′ : FeatureModel · F ∼= F ′ ∧ F ′ ∼= F ′′ ⇒ F ∼= F ′′

Proof: Follows directly from Definition 1 and the transitivity of the equality of
configuration sets. �

A Theory of Software Product Line Refinement 19

These properties justify safe stepwise evolution of feature models, as illustrated
in previous work [AGM+06].

2.2 Assets and Products

Besides a precise notion of feature model semantics, for defining product line
refinement we assume means of comparing assets and products with respect
to behavior preservation. We distinguish arbitrary asset sets (set[Asset]) from
well-formed asset sets (Product), which correspond to valid products in the un-
derlying languages used to describe assets. We assume the wf function specifies
well-formedness, and 	 denotes both asset and product refinement.

Assumption 2. 〈Asset and product refinement〉
Asset : TY PE

	: Asset, Asset → bool

wf : set[Asset] → bool

Product : TY PE = (wf)
	 : Product, Product → bool

We use the PVS notation for defining the Product type as the set of all asset
sets that satisfy the wf predicate.

Our product line refinement theory applies for any asset language with these
notions as long as they satisfy the following properties. Both asset and product
refinement must be pre-orders.

Axiom 1. 〈Asset refinement reflexivity〉
∀a : Asset · a 	 a

Axiom 2. 〈Asset refinement transitivity〉
∀a, b, c : Asset · a 	 b ∧ b 	 c ⇒ a 	 c

Axiom 3. 〈Product refinement reflexivity〉
∀p : Product · p 	 p

Axiom 4. 〈Product refinement transitivity〉
∀p, q, r : Product · p 	 q ∧ q 	 r ⇒ p 	 r

These are usually properties of any refinement notion because they are essen-
tial to support stepwise refinement and development. This is, for example, the
case of existing refinement notions for object-oriented programming and model-
ing [BSCC04, GMB05, MGB08].

Finally, asset refinement must be compositional in the sense that refining an
asset that is part of a valid product yields a refined valid product.

20 P. Borba, L. Teixeira, and R. Gheyi

Axiom 5. 〈Asset refinement compositionality〉
∀a, a′ : Asset · ∀s : set[Asset]·

a 	 a′ ∧ wf(a ∪ s)
⇒ wf(a′ ∪ s) ∧ a ∪ s 	 a′ ∪ s

We use ∪ both to denote set union and insertion of an element to a set.
Such a compositionality property is essential to guarantee independent devel-

opment of assets in a product line, and is supported, for example, by existing
class refinement notions [SB04]. In that context, a product is a main command
with a set of class declarations that coherently resolves all references to class and
method names. In general, we do not have to limit ourselves to code assets, and
consider any kind of asset that supports the concepts and properties discussed
in this section.

2.3 Configuration Knowledge

As discussed in Sec. 2.1, features are groups of requirements, so they must be
related to the assets that realize them. This is specified by the configuration
knowledge (CK), which can be expressed in many ways, including as a relation
from feature expressions (propositional formulas having feature names as atoms)
to sets of asset names [BB09]. For example, showing the relation in tabular form,
the following CK

Music.java, ...

AppMenu.aj, ...

Common.aj, ...

Photo.java, ...

Photo Music

Photo Music

Photo

Music

MM.java, ...Mobile Media

establishes that if the Photo and Music features are both selected then the
AppMenu asset, among others omitted in the fifth row, should be part of the final
product. Essentially, this product line uses the AppMenu aspect as a variability
implementation mechanism [GA01, AJC+05] that has the effect of presenting the
left screenshot in Fig. 1. For usability issues, this screen should not be presented
by products that have only one of the Media features, so the need for the fifth
row in the simplified Mobile Media CK. Similarly, some assets are shared by the
Photo and Music implementations, so we write the fourth row to avoid repeating
the asset names on the second and third rows.

Given a valid product configuration, the evaluation of a CK yields the names
of the assets needed to build the corresponding product. In our example, the
configuration {Photo, 240x320}1 leads to

{MM.java, . . . , Photo.java, . . . , Commom.aj, . . . }.
1 Remember we omit mandatory features for brevity.

A Theory of Software Product Line Refinement 21

This gives the basic intuition for the semantics of a CK. It is a function that
maps product configurations into finite sets (represented by fset) of asset names.
So our product line refinement theory relies on a CK semantic function [[]] as
follows.

Assumption 3. 〈CK semantics〉
CK : TY PE

AssetName : TY PE

[[]] : CK → Configuration → fset[AssetName]

For the CK notation illustrated in this section, the semantics of a given CK K,
represented as [[K]], could be defined in the following way: for a configuration c,
an asset name n is in the set [[K]]c iff there is a row in K that contains n and its
expression evaluates to true according to c. But we do not give further details
because our aim is to establish a product line refinement theory that is indepen-
dent of CK notation, as long as this notation’s semantics can be expressed as a
function that maps configurations into finite sets of assets names.

Similarly to what we have done for feature models, we define a notion of CK
equivalence based on the notion of CK semantics. This is useful to reason about
CK. Two CK specifications are equivalent iff they have the same semantics.

Definition 2. 〈Configuration knowledge equivalence〉
Configuration knowledge K is equivalent to K ′, denoted K ∼= K ′, whenever
[[K]] = [[K ′]].

We now establish the equivalence properties for the just introduced relation.

Theorem 4. 〈Configuration knowledge equivalence – reflexivity〉
∀K : CK · K ∼= K

Proof: Follows directly from Definition 2 and the reflexivity of the equality of
functions. �

Theorem 5. 〈Configuration knowledge equivalence – symmetry〉
∀K, K ′ : CK · K ∼= K ′ ⇒ K ′ ∼= K

Proof: Follows directly from Definition 2 and the symmetry of the equality of
functions. �

Theorem 6. 〈Configuration knowledge equivalence – transitivity〉
∀K, K ′, K ′′ : CK · K ∼= K ′ ∧ K ′ ∼= K ′′ ⇒ K ∼= K ′′

Proof: Follows directly from Definition 2 and the transitivity of the equality of
functions. �

22 P. Borba, L. Teixeira, and R. Gheyi

2.4 Asset Mapping

Although the CK illustrated in the previous section refers only to code assets,
in general we could also refer to requirements documents, design models, test
cases, image files, XML files, and so on. For simplicity, we focus on code assets
as they are equivalent to other kinds of asset for our purposes. The important
issue here is not the nature of asset contents, but how the assets are compared
and referred to in the CK.

We cover asset comparison in Sec. 2.2. For dealing with asset references, each
product line keeps a mapping such as the following

{Main 1 �→
class Main {

...new StartUp(...);...
}

Main 2 �→
class Main {

...new OnDemand(...);...
}

Common.java �→
class Common {

...
}
...

}
from asset names used in a CK to actual assets. So, besides a feature model and
a CK, a product line contains an asset mapping, which basically corresponds to
an environment of asset declarations. This allows conflicting assets in a product
line, like assets that implement alternative features, such as both Main classes
in the illustrated asset mapping.

Formally, we specify asset mappings in PVS as follows.

Definition 3. 〈Asset mapping〉
Let r be a finite set of name-asset pairs (r : fset[AssetName, Asset]).

mapping(r) : bool =
∀n : AssetName · ∀a, b : Asset·

(n, a) ∈ r ∧ (n, b) ∈ r ⇒ a = b

AssetMapping : TY PE = (mapping)

Since there is not much to abstract from this notion of asset mapping, it is
actually defined as part of our theory. Differently from the concepts of feature
model, CK, and their semantics, the asset mapping concept is not a parameter
to our theory.

We also define auxiliary functions that are used to define product line re-
finement. The second one is mapping application over a set. In the following,
consider that m : AssetMapping and s : fset[AssetName].

A Theory of Software Product Line Refinement 23

Definition 4. 〈Auxiliary asset mapping functions〉
dom(m) : set[AssetName] =
{n : AssetName | ∃a : Asset · (n, a) ∈ m}

m〈s〉 : set[Asset] =
{a : Asset | ∃n ∈ s · (n, a) ∈ m}

We use the notation ∃n ∈ s · p(n) as an abbreviation for the PVS notation
∃n : AssetName · n ∈ s ∧ p(n).

To derive product line refinement properties, we establish several properties
of the introduced auxiliary functions. The proofs appear in Appendix A.

Lemma 1. 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉
then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉 ��

Lemma 2. 〈Distributed mapping over singleton〉
For asset mapping A, asset name an and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪ A〈S〉 ��

Remember we use ∪ both for set union and insertion of an element to a set.

Lemma 3. 〈Asset mapping domain membership〉
For asset mapping A, asset name an and asset a, if

(an, a) ∈ A

then

an ∈ dom(A) ��

Lemma 4. 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {} ��

24 P. Borba, L. Teixeira, and R. Gheyi

For reasoning about asset mappings, we define a notion of asset mapping refine-
ment. Asset mapping equivalence could also be defined, but we choose the weaker
refinement notion since it gives us more flexibility when evolving asset mappings
independently of other product line elements such as feature models and CK. As
shall be clear latter, we can rely on refinement for asset mappings but not for
the other elements; that is why, in previous sections, we define equivalences for
them. For asset mapping refinement, exactly the same names should be mapped,
not necessarily to the same assets, but to assets that refine the original ones.

Definition 5. 〈Asset mapping refinement〉
For asset mappings A and A′, the first is refined by the second, denoted

A 	 A′

whenever

dom(A) = dom(A′)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a 	 a′

We use ∀n ∈ dom(A) · p(n) to abbreviate the PVS notation

∀n : AssetName · n ∈ dom(A) ⇒ p(n)

Note also that a 	 a′ in the definition refers to asset refinement, not to program
refinement.

We now prove that asset mapping refinement is a pre-order.

Theorem 7. 〈Asset mapping refinement reflexivity〉

∀A : AssetMapping · A 	 A

Proof: For an arbitrary asset mapping A, from Definition 5 we have to prove
that

dom(A) = dom(A)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a 	 a′

The first part of the conjunction follows from equality reflexivity. For an arbitrary
n ∈ dom(A), we are left to prove

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a 	 a′ (1)

From Definition 4, as n ∈ dom(A), we have that

n ∈ {n : AssetName | ∃a : Asset · (n, a) ∈ A}
By set comprehension and membership, we have that

∃a : Asset · (n, a) ∈ A

A Theory of Software Product Line Refinement 25

Let a1 be such a. Then we have (n, a1) ∈ A. From this and Axiom 1, we easily
obtain 1 taking a and a′ as a1. �

Theorem 8. 〈Asset mapping refinement transitivity〉

∀A, A′, A′′ : AssetMapping · A 	 A′ ∧ A′ 	 A′′ ⇒ A 	 A′′

Proof: For arbitrary asset mappings A, A′, and A′′, assume that A 	 A′ and
A′ 	 A′′. From Definition 5 we have to prove that

dom(A) = dom(A′′)
∧ ∀n ∈ dom(A)·

∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a 	 a′′

The first part of the conjunction follows from our assumptions, Definition 5, and
equality transitivity. For an arbitrary n ∈ dom(A), we are left to prove

∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a 	 a′′ (2)

But from our assumptions and Definition 5 we have that n ∈ dom(A′) and
therefore

(n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a 	 a′

(n, a′) ∈ A′ ∧ (n, a′′) ∈ A′′ ∧ a′ 	 a′′

for some a, a′, a′′ : Asset. We then have the a and a′′ necessary to obtain 2
directly from this and the transitivity of asset refinement (Axiom 2). �

To establish the compositionality results, we rely on an important property of
asset mapping refinement: if A 	 A′ then products formed by using A assets are
refined by products formed by corresponding A′ assets.

Lemma 5. 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A 	 A′

then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪ A〈ans〉)

⇒ wf(as ∪ A′〈ans〉) ∧ as ∪ A〈ans〉 	 as ∪ A′〈ans〉 ��

26 P. Borba, L. Teixeira, and R. Gheyi

2.5 Product Lines

We can now provide a precise definition for product lines. In particular, a product
line consists of a feature model, a CK, and an asset mapping that jointly generate
products, that is, valid asset sets in their target languages.

Definition 6. 〈Product line〉
For a feature model F , an asset mapping A, and a configuration knowledge K,
we say that tuple

(F, A, K)

is a product line when, for all c ∈ [[F]],

wf(A〈[[K]]c〉)

We omit the PVS notation for introducing the ProductLine type, but it roughly
corresponds to the one we use in this definition.

The well-formedness constraint in the definition is necessary because missing
an entry on a CK might lead to asset sets that are missing some parts and
thus are not valid products. Similarly, a mistake when writing a CK or asset
mapping entry might yield an invalid asset set due to conflicting assets, like two
aspects that are used as variability mechanism [GA01, AJC+05] and introduce
methods with the same signature in the same class. Here we demand product
line elements to be coherent as explained.

Given the importance of the well-formedness property in this definition, we
establish compositionality properties related to the well-formedness function wf .
First we have that feature model equivalence is compositional with respect to wf .

Lemma 6. 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowledge
K, if

F ∼= F ′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)
then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉) �

Similarly, for CK we have the following.

Lemma 7. 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledge K and K ′, if

K ∼= K ′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)
then

∀c ∈ [[F]] · wf(A〈[[K ′]]c〉) �

A Theory of Software Product Line Refinement 27

Finally, for asset mappings we have that refinement is compositional with respect
to wf .

Lemma 8. 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mapping A and A′ and configuration knowledge K, if

A 	 A′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)
then

∀c ∈ [[F]] · wf(A′〈[[K]]c〉) �

3 Product Line Refinement

Now that we better understand what a product line is, we can introduce a notion
of product line refinement that provides guidance and safety for deriving a prod-
uct line from existing products, and also for evolving a product line by simply
improving its design or by adding new products while preserving existing ones.

Similar to program and model refinement [BSCC04, GMB05], product line
refinement preserves behavior. However, it goes beyond source code and other
kinds of reusable assets, and considers transformations to feature models and
CK as well. This is illustrated by Fig. 3, where we refine the simplified Mobile
Media product line by renaming the feature Music. As indicated by check marks,
this renaming requires changing the feature model, CK, and asset mapping; due
to a class name change, we must apply a global renaming, so the main method
and other classes beyond Music.java are changed too.

The notion of behavior preservation should be also lifted from assets to prod-
uct lines. In a product line refinement, the resulting product line should be able
to generate products that behaviorally match the original product line products.
So users of an original product cannot observe behavior differences when using
the corresponding product of the new product line. With the renaming refine-
ment, for example, we have only improved the product line design: the resulting

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo Music
Photo Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

Music.java

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Audio.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo Audio
Photo Audio

Photo
Audio

MM.java, ...Mobile Media
Photo.java

Audio.java

Mobile Media

Media

Photo Audio

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Fig. 3. Product line renaming refinement

28 P. Borba, L. Teixeira, and R. Gheyi

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo Music
Photo Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo Photo

Copy

CopyPhoto.aj, ...Copy Photo
Copy.java, ...Copy

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo Music
Photo Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

CopyPhoto.aj

Fig. 4. Adding an optional feature refinement

product line generates a set of products exactly equivalent to the original set.
But it should not be always like that. We consider that the better product line
might generate more products than the original one. As long as it generates
enough products to match the original product line, users have no reason to
complain. For instance, by adding the optional Copy feature (see Fig. 4), we
refine our example product line. The new product line generates twice as many
products as the original one, but what matters is that half of them – the ones
that do not have feature Copy – behave exactly as the original products. This
ensures that the transformation is safe; we extended the product line without
impacting existing users.

3.1 Formalization

We formalize these ideas in terms of product refinement (see Assumption 2).
Basically, each program generated by the original product line must be refined
by some program of the new, improved, product line.

Definition 7. 〈Product line refinement〉
For product lines (F, A, K) and (F ′, A′, K ′), the first is refined by the second,
denoted

(F, A, K) 	 (F ′, A′, K ′)

whenever

∀c ∈ [[F]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 	 A′〈[[K ′]]c′〉

Remember that, for a configuration c, a configuration knowledge K, and an asset
mapping A related to a given product line, A〈[[K]]c〉 is a well-formed set of assets.
So A〈[[K]]c〉 	 A′〈[[K ′]]c′〉 refers to the product refinement notion discussed in
Sec. 2.2.

A Theory of Software Product Line Refinement 29

3.2 Examples and Considerations

To explore the definition just introduced, let us analyze a few concrete product
line transformation scenarios.

Feature names do not matter. First let us see how the definitions applies
to the transformation depicted by Fig. 3. The feature models differ only by the
name of a single feature. So they generate the same set of configurations, modulo
renaming. For instance, for the source (left) product line configuration {Music,
240x320}we have the target (right) product line configuration {Audio, 240x320}.
As the CKs have the same structure, evaluating them with these configurations
yield

{Commmon.aj, Music.java, . . . }
and

{Commmon.aj, Audio.java, . . . }.
The resulting sets of asset names differ at most by a single element: Audio.java
replacing Music.java. Finally, when applying these sets of names to both asset
mappings, we obtain the same assets modulo global renaming, which is a well
known refinement for closed programs. This is precisely what, by Definition 7,
we need for assuring that the source product line is refined by the target product
line.

This example shows that our refinement definition focus on the product line
themselves, that is, the sets of products that can be generated. Contrasting with
our previous notion of feature model refactoring [AGM+06], feature names do
not matter. So users will not notice they are using products from the new product
line, although developers might have to change their feature nomenclature when
specifying product configurations. Not caring about feature names is essential
for supporting useful refinements such as the just illustrated feature renaming
and others that we discuss later.

Safety for existing users only. To further explore the definitions, let us
consider now the transformation shown in Fig. 4. The target feature model has
an extra optional feature. So it generates all configurations of the source feature
model plus extensions of these configurations with feature Copy. For example,
it generates both {Music, 240x320} and {Music, 240x320, Copy}. For checking
refinement, we focus only on the common configurations to both feature models
– configurations without Copy. As the target CK is an extension of the source
CK for dealing with cases when Copy is selected, evaluating the target CK with
any configuration without Copy yields the same asset names yielded by the
source CK with the same configuration. In this restricted name domain, both
asset mappings are equal, since the target mapping is an extension of the first
for names such as CopyPhoto.java, which appears only when Copy is selected.
Therefore, the resulting assets produced by each product line are the same,
trivially implying program refinement and then product line refinement.

30 P. Borba, L. Teixeira, and R. Gheyi

By focusing on the common configurations to both feature models, we check
nothing about the new products offered by the new product line. In fact, they
might even not operate at all. Our refinement notion assures only that users
of existing products will not be disappointed by the corresponding products
generated by the new product line. We give no guarantee to users of the new
products, like the ones with Copy functionalities in our example. So refinements
are safe transformations only in the sense that we can change a product line
without impacting existing users.

Non refinements. As discussed, the transformation depicted in Fig. 3 is a
refinement. Classes and aspects are transformed by a global renaming, which
preserves behavior for closed programs. But suppose that, besides renaming,
we change the AppMenu.aj2 aspect so that, instead of the menu on the left
screenshot in Fig. 1, we have a menu with “Photos” and “Audio” options. The
input-output behavior of new and original products would then not match, and
users would observe the difference. So we would not be able to prove program
refinement, nor product line refinement, consequently.

Despite not being a refinement, this menu change is an useful product line
improvement, and should be carried on. The intention, however, is to change
behavior, so developers will not be able to rely on the benefits of checking re-
finement. The benefits of checking for refinement only apply when the intention
of the transformation is to improve product line configurability or internal struc-
ture, without changing observable behavior.

3.3 Basic Properties

To support stepwise product line development and evolution, we now establish
that product line refinement is a pre-order.

Theorem 9. 〈Product line refinement reflexivity〉

∀l : ProductLine · l 	 l

Proof: Let l = (F, A, K) be an arbitrary product line. By Definition 7, we have
to prove that

∀c ∈ [[F]] · ∃c′ ∈ [[F]] · A〈[[K]]c〉 	 A〈[[K]]c′〉

For an arbitrary c ∈ [[F]], just let c′ be c and the proof follows from product
refinement reflexivity (Axiom 3). �

Theorem 10. 〈Product line refinement transitivity〉

∀l1, l2, l3 : ProductLine · l1 	 l2 ∧ l2 	 l3 ⇒ l1 	 l3

2 See Sec. 2.3 for understanding the role this aspect plays.

A Theory of Software Product Line Refinement 31

Proof: Let l1 = (F1, A1, K1), l2 = (F2, A2, K2), l3 = (F3, A3, K3) be arbitrary
product lines. Assume that l1 	 l2 ∧ l2 	 l3. By Definition 7, this amounts to

∀c1 ∈ [[F1]] ∧ ∃c2 ∈ [[F2]] · A1〈[[K1]]c1〉 	 A2〈[[K2]]c2〉 (3)

and

∀c2 ∈ [[F2]] · ∃c3 ∈ [[F3]] · A2〈[[K2]]c2〉 	 A3〈[[K3]]c3〉 (4)

We then have to prove that

∀c1 ∈ [[F1]] · ∃c3 ∈ [[F3]] · A1〈[[K1]]c1〉 	 A3〈[[K3]]c3〉
For an arbitrary c1 ∈ [[F1]], we have to prove that

∃c3 ∈ [[F3]] · A1〈[[K1]]c1〉 	 A3〈[[K3]]c3〉 (5)

Properly instantiating c1 in 3, we have

∃c2 ∈ [[F2]] · A1〈[[K1]]c1〉 	 A2〈[[K2]]c2〉
Let c′2 be such c2. Properly instantiating c′2 in 4, we have

∃c3 ∈ [[F3]] · A2〈[[K2]]c′2〉 	 A3〈[[K3]]c3〉
Let c′3 be such c3. Then we have

A1〈[[K1]]c1〉 	 A2〈[[K2]]c′2〉 ∧ A2〈[[K2]]c′2〉 	 A3〈[[K3]]c′3〉
By product refinement transitivity (Axiom 4), we have

A1〈[[K1]]c1〉 	 A3〈[[K3]]c′3〉
This gives us the c3 in 5 that completes our proof. �

4 Product Line Refinement Compositionality

The product line refinement notion allows one to reason about a product line
as a whole, considering its three elements (artifacts): feature model, CK, and
asset mapping. However, for independent development of product line artifacts,
we must support separate and compositional reasoning for each product line
artifact. This allows us to evolve product line artifacts independently. We first
consider feature models. Replacing a feature model by an equivalent one leads
to a refined product line.

Theorem 11. 〈Feature model equivalence compositionality〉
For product lines (F, A, K) and (F ′, A, K), if

F ∼= F ′

32 P. Borba, L. Teixeira, and R. Gheyi

then

(F, A, K) 	 (F ′, A, K)

Proof: For arbitrary F , F ′, A, K, assume that F ∼= F ′. By Definition 7, we
have to prove that

∀c ∈ [[F]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 	 A〈[[K]]c′〉
From our assumption and Definition 1, this is equivalent to

∀c ∈ [[F]] · ∃c′ ∈ [[F]] · A〈[[K]]c〉 	 A〈[[K]]c′〉
For an arbitrary c ∈ [[F]], just let c′ be c and the proof follows from product
refinement reflexivity (Axiom 4). �
We require feature model equivalence because feature model refinement, which
requires [[F]] ⊆ [[F ′]] instead of [[F]] = [[F ′]], is not enough for ensuring that
separate modifications to a feature model imply refinement for the product line.
In fact, refinement allows the new feature model to have extra configurations
that might not generate valid products; the associated feature model refinement
transformation would not lead to a valid product line. For example, consider
that the extra configurations result from eliminating an alternative constraint
between two features, so that they become optional. The assets that implement
these features might well be incompatible, generating an invalid program when
both features are selected. Refinement of the whole product line, in this case,
would also demand changes to the assets and CK.

We can also independently evolve a CK. For similar reasons, we require CK
equivalence as well.

Theorem 12. 〈CK equivalence compositionality〉
For product lines (F, A, K) and (F, A, K ′), if

K ∼= K ′

then

(F, A, K) 	 (F, A, K ′)

Proof: The proof is similar to that of Theorem 11, using Definition 2 instead of
Definition 1. �
Note that the reverse does not hold because the asset names generated by K
and K ′ might differ for assets that have no impact on product behavior,3 or for
assets that have equivalent behavior but are named differently in the product
lines. For similar reasons, the reverse does not hold for Theorem 11.

For asset mappings, we can rely only on refinement. Separately refining an
asset mapping implies refinement for the product line as a whole.
3 Obviously an anomaly, but still possible.

A Theory of Software Product Line Refinement 33

Theorem 13. 〈Asset mapping refinement compositionality〉
For product lines (F, A, K) and (F, A′, K), if

A 	 A′

then

(F, A, K) 	 (F, A′, K)

Proof: For arbitrary F , A, A′, and K, assume that A 	 A′. By Definition 7, we
have to prove that

∀c ∈ [[F]] · ∃c′ ∈ [[F]] · A〈[[K]]c〉 	 A′〈[[K]]c′〉

For an arbitrary c ∈ [[F]], if we prove

A〈[[K]]c〉 	 A′〈[[K]]c〉 (6)

then c is the necessary c′ we need to complete the proof. By Lemma 5 and our
assumption, we have that

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪ A〈ans〉)

⇒ wf(as ∪ A′〈ans〉) ∧ as ∪ A〈ans〉 	 as ∪ A′〈ans〉
(7)

By properly instantiating ans with [[K]]c and as with {} in 7, from set union
properties we obtain

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧ A〈[[K]]c〉 	 A′〈[[K]]c〉 (8)

From Definition 6, we have that wf(A〈[[K]]c〉) for all c ∈ [[F]]. Therefore, from
this and 8 we obtain

wf(A′〈[[K]]c〉) ∧ A〈[[K]]c〉 	 A′〈[[K]]c〉

concluding the proof (see 6). �

Finally, we have the full compositionality theorem, which justifies completely
independent development of product line artifacts.

Theorem 14. 〈Full compositionality〉
For product lines (F, A, K) and (F ′, A′, K ′), if

F ∼= F ′ ∧ A 	 A′ ∧ K ∼= K ′

then

(F, A, K) 	 (F ′, A′, K ′)

34 P. Borba, L. Teixeira, and R. Gheyi

Proof: First assume that F ∼= F ′, A 	 A′, and K ∼= K ′. By Lemma 6, the fact
that (F, A, K) is a product line, and Definition 6, we have that (F ′, A, K) is a
product line. Then, using Theorem 11, we have

(F, A, K) 	 (F ′, A, K) (9)

Similarly, from our assumptions, deductions, and Lemma 7 we have that
(F ′, A, K ′) is a product line. Using Theorem 12, we have

(F ′, A, K) 	 (F ′, A, K ′) (10)

Again, from our assumptions, deductions, and Lemma 8, we have that
(F ′, A′, K ′) is a product line. Using Theorem 13, we have

(F ′, A, K ′) 	 (F ′, A′, K ′) (11)

The proof then follows from 9, 10, 11, and product line refinement transitivity
(Theorem 10). �

5 Related Work

The notion of product line refinement discussed here first appeared in a product
line refactoring tutorial [Bor09]. Besides talking about product line and pop-
ulation refactoring, this tutorial illustrates different kinds of refactoring trans-
formation templates that can be useful for deriving and evolving product lines.
In this paper we extend the initial formalization of the tutorial making clear
the interface between our theory and languages used to describe product line
artifacts. We also derive a number of properties that were not explored in the
tutorial. We encode the theory in the PVS specification language and prove all
properties with the PVS prover.

Our notion of product line refinement goes beyond refactoring of feature mod-
els [AGM+06, GMB08], considering also other artifacts like configuration knowl-
edge and assets, both in isolation and in an integrated way. In particular, the
refinement notion explored here is independent of the language used to describe
feature models. The cited formalization of feature models [AGM+06, GMB08],
and others [SHTB07], could, however, be used to instantiate our theory for deal-
ing with specific feature model notation and semantics. Similarly, our theory is
independent of product refinement notions. A program refinement notion, like
the one for a sequential subset of Java [SB04, BSCC04], could be used to instan-
tiate our general theory.

Early work [CDCvdH03] on product line refactoring focus on Product Line
Architectures (PLAs) described in terms of high-level components and connec-
tors. This work presents metrics for diagnosing structural problems in a PLA,
and introduces a set of architectural refactorings that can be used to resolve
these problems. Besides being specific to architectural assets, this work does not
deal with other product line artifacts such as feature models and configuration

A Theory of Software Product Line Refinement 35

knowledge. There is also no notion of behavior preservation for product lines, as
captured here by our notion of product line refinement.

Several approaches [KMPY05, TBD06, LBL06, KAB07] focus on refactoring
a product into a product line, not exploring product line evolution in general,
as we do here. First, Kolb et al. [KMPY05] discuss a case study in refactor-
ing legacy code components into a product line implementation. They define
a systematic process for refactoring products with the aim of obtaining prod-
uct lines assets. There is no discussion about feature models and configuration
knowledge. Moreover, behavior preservation and configurability of the resulting
product lines are only checked by testing. Similarly, Kastner et al. [KAB07] fo-
cus only on transforming code assets, implicitly relying on refinement notions for
aspect-oriented programs [CB05]. As discussed here and elsewhere [Bor09] these
are not adequate for justifying product line refinement and refactoring. Trujillo
et al. [TBD06] go beyond code assets, but do not explicitly consider transforma-
tions to feature model and configuration knowledge. They also do not consider
behavior preservation; they indeed use the term “refinement”, but in the quite
different sense of overriding or adding extra behavior to assets.

Liu et al. [LBL06] also focus on the process of decomposing a legacy application
into features, but go further than the previously cited approaches by proposing a
refactoring theory that explains how a feature can be automatically associated
to a base asset (a code module, for instance) and related derivative assets, which
contain feature declarations appropriate for different product configurations.Con-
trasting with our theory, this theory does not consider feature model transforma-
tions and assumes an implicit notion of configuration knowledge based on the idea
of derivatives. So it does not consider explicit configuration knowledge transfor-
mations as we do here. Their work is, however, complementary to ours since we
abstract from specific asset transformation techniques such as the one supported
by their theory. By proving that their technique can be mapped to our notion of
asset refinement, both theories could be used together.

The theory we present in this paper aims to formalize concepts and pro-
cesses from tools [LBL06, CBS+07, ACN+08] and practical experience [ACV+05,
AJC+05, KMPY05, AGM+06, TBD06, KAB07] on product line refactoring. A
more rigorous evaluation of the proposed theory is, however, left as future work.

6 Conclusions

In this paper we present a general theory of product line refinement, formalizing
refinement and equivalence notions for product lines and its artifacts: feature
model, configuration knowledge, and asset mapping. More important, we estab-
lish a number of properties that justify stepwise and compositional product line
development and evolution. The presented theory is largely independent of the
languages used to describe feature model, configuration knowledge, and reusable
assets. We make this explicit through assumptions and axioms about basic con-
cepts related to these languages.

By instantiating this theory with proper notations and semantic formaliza-
tions for feature models and the other product line artifacts, we can directly

36 P. Borba, L. Teixeira, and R. Gheyi

use the refinement and equivalence notions, and the associated properties, to
guide and improve safety of the product line derivation and evolution processes.
Such an instantiation also allows one to formally prove soundness of product
line refactoring transformation templates [Bor09] expressed in those notations.
As the transformation templates precisely specify the transformation mechanics
and preconditions, their soundness is specially useful for correctly implementing
the transformations and avoiding typical problems with current program refac-
toring tools [ST09]. In fact, soundness could help to avoid even subtler problems
that can appear with product line refactoring tools.

Acknowledgements

We would like to thank colleagues of the Software Productivity Group for help-
ing to significantly improve this work. Márcio Ribeiro provided support with the
Mobile Media example. Rodrigo Bonifácio played a fundamental role develop-
ing the configuration knowledge approach used here. Vander Alves and Tiago
Massoni carried on the initial ideas about feature model and product line refac-
toring. Fernando Castor, Carlos Pontual, Sérgio Soares, Rodrigo, and Márcio
provided excellent feedback on early versions of part of the material presented
here. We would also like to acknowledge current financial support from CNPq,
FACEPE, and CAPES projects, and early support from FINEP and Meantime
mobile creations.

A Extra Proofs

In this appendix we present the proofs we omitted in the main text. The
PVS specification of the whole theory, and proof files for all lemmas and
theorems are available at http://twiki.cin.ufpe.br/twiki/bin/view/SPG/
TheorySPLRefinement.

Lemma 1. 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉
then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉
Proof: For arbitrary A, a, S , and S′, assume a ∈ A〈S ∪ S′〉. From this and
Definition 4 (A〈〉) we have

a ∈ {a : Asset | ∃n ∈ S ∪ S′ · (n, a) ∈ m}
From set union and membership properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m ∨ ∃n ∈ S′ · (n, a) ∈ m}

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement

A Theory of Software Product Line Refinement 37

From set comprehension properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m} ∪ {a : Asset | ∃n ∈ S′ · (n, a) ∈ m}
By applying twice Definition 4 (A〈〉), we derive

a ∈ A〈S〉 ∪ A〈S′〉 ��
The proof follows from the above and set membership properties.

Lemma 2. 〈Distributed mapping over singleton〉
For asset mapping A, asset name an, and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪ A〈S〉
Proof: For arbitrary A, an, and S, assume an ∈ dom(A). From this, Definition 4
(dom), and set comprehension and membership properties, we have

∃a : Asset · (an, a) ∈ A (12)

Let a1 be such a. By Definition 4 (A〈〉), we have

A〈an ∪ S〉 = {a : Asset | ∃n ∈ an ∪ S · (n, a) ∈ A}
Again, by set membership and comprehension properties, we have

A〈an ∪ S〉 =
{a : Asset | ∃n ∈ {an} · (n, a) ∈ A}

∪ {a : Asset | ∃n ∈ S · (n, a) ∈ A}
By Definition 4 (A〈〉), our assumption that A is an asset mapping, and set
membership and comprehension properties, we have

A〈{an} ∪ S〉 = a1 ∪ A〈S〉
From this and remembering that 12 was instantiated with a1, a1 provides the a
we need to conclude the proof. ��
Lemma 3. 〈Asset mapping domain membership〉
For asset mapping A, asset name an, and asset a, if

(an, a) ∈ A

then

an ∈ dom(A)

Proof: For arbitrary A, an, and a, assume (an, a) ∈ A. By Definition 4 (dom),
we have to prove that

∃x : Asset | (an, x) ∈ A ��

38 P. Borba, L. Teixeira, and R. Gheyi

Let x be a, and this concludes the proof.

Lemma 4. 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {}

Proof: For arbitrary A and S, assume ¬∃n ∈ S · n ∈ dom(A). By Definition 4
(A〈〉), we have to prove that

{a : Asset | ∃n ∈ S · (n, a) ∈ A} = {}
By Lemma 3, we then have to prove that

{a : Asset | ∃n ∈ S · n ∈ dom(A) ∧ (n, a) ∈ A} = {}
The proof follows from the above, our assumption, and set comprehension prop-
erties. ��

Lemma 5. 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A 	 A′

then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪ A〈ans〉)

⇒ wf(as ∪ A′〈ans〉) ∧ as ∪ A〈ans〉 	 as ∪ A′〈ans〉

Proof: For arbitrary A and A′, assume A 	 A′. From Definition 5, we have

dom(A) = dom(A′)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a 	 a′
(13)

By induction on the cardinality of ans, assume the induction hypothesis

∀ans′ : fset[AssetName]·
card(ans′) < card(ans)

⇒ ∀as : fset[Asset]·
wf(as ∪ A〈ans′〉)

⇒ wf(as ∪ A′〈ans′〉) ∧ as ∪ A〈ans′〉 	 as ∪ A′〈ans〉

(14)

A Theory of Software Product Line Refinement 39

and we have to prove

∀as : fset[Asset]·
wf(as ∪ A〈ans〉)

⇒ wf(as ∪ A′〈ans〉) ∧ as ∪ A〈ans〉 	 as ∪ A′〈ans〉
(15)

By case analysis, now consider that ¬(∃an ∈ ans · an ∈ dom(A)). By Lemma 4,
we have that A〈ans〉 = {}. Similarly, given that dom(A) = dom(A′) (see 13),
we also have that A′〈ans〉 = {}. So, by set union properties, we are left to prove
that

∀as : fset[Asset] · wf(as) ⇒ wf(as) ∧ as 	 as

The proof trivially follows from Axiom 3 and propositional calculus.
Let’s now consider the case ∃an ∈ ans ·an ∈ dom(A). By basic set properties,

we have that ans = an ∪ ans′ for some asset name an ∈ dom(A) and set ans′

such that an �∈ ans′. Then, from 15, we are left to prove that

∀as : fset[Asset]·
wf(as ∪ A〈an ∪ ans′〉)

⇒ wf(as ∪ A′〈an ∪ ans′〉)
∧ as ∪ A〈an ∪ ans′〉 	 as ∪ A′〈an ∪ ans′〉

By Lemma 2, given that an ∈ dom(A) and consequently an ∈ dom(A′), we have
that A〈an ∪ ans′〉 = a ∪ A〈ans′〉 and A′〈an ∪ ans′〉 = a′ ∪ A′〈ans′〉 for some
assets a and a′. From 13, we also have that a 	 a′. By equational reasoning, we
then have to prove that

∀as : fset[Asset]·
wf(as ∪ a ∪ A〈ans′〉)

⇒ wf(as ∪ a′ ∪ A′〈ans′〉)
∧ as ∪ a ∪ A〈ans′〉 	 as ∪ a′ ∪ A′〈ans′〉

For an arbitrary as, assume wf(as ∪ a ∪ A〈ans′〉) and then we have to prove
that

wf(as ∪ a′ ∪ A′〈ans′〉)
∧ as ∪ a ∪ A〈ans′〉 	 as ∪ a′ ∪ A′〈ans′〉 (16)

By the induction hypothesis (see 14), instantiating ans′ with the ans′ just in-
troduced, note that we will have card(ans′) < card(ans) and, therefore

∀as : fset[Asset]·
wf(as ∪ A〈ans′〉)
⇒ wf(as ∪ A′〈ans′〉) ∧ as ∪ A〈ans′〉 	 as ∪ A′〈ans〉

40 P. Borba, L. Teixeira, and R. Gheyi

From this, instantiating as as as ∪ a, and remembering that we have already
assumed wf(as ∪ a ∪ A〈ans′〉), we have

wf(as ∪ A′〈ans′〉)
∧ as ∪ A〈ans′〉 	 as ∪ A′〈ans〉

Now, given that a 	 a′, from the compositionality axiom (Axiom 5) and the
above we have that

wf(()as ∪ a′ ∪ A′〈ans′〉)
∧ as ∪ a ∪ A′〈ans′〉 	 as ∪ a′ ∪ A′〈ans′〉

The proof then follows from 16, the above, and Axiom 4. ��

Lemma 6. 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowledge K,
if

F ∼= F ′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉)

Proof: For arbitrary F , F ′, A, and K, assume

F ∼= F ′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)

By Definition 1, what we have to prove is equivalent to

∀c ∈ [[F]] · wf(A〈[[K]]c〉)

which corresponds to our assumption. ��

Lemma 7. 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledge K and K ′,
if

K ∼= K ′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F]] · wf(A〈[[K ′]]c〉)

Proof: Similar to proof of Lemma 6, using Definition 2 instead. ��

A Theory of Software Product Line Refinement 41

Lemma 8. 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mappings A and A′, and configuration knowledge K,
if

A 	 A′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F]] · wf(A′〈[[K]]c〉)

Proof: For arbitrary F , A, A′, and K, assume

A 	 A′ ∧ ∀c ∈ [[F]] · wf(A〈[[K]]c〉) (17)

For an arbitrary c ∈ [[F]], we then have to prove that

wf(A′〈[[K]]c〉) (18)

By properly instantiating the assumption (17) with the just introduced c, we
have

wf(A〈[[K]]c〉) (19)

From Lemma 5 and the assumption (17), we have

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪ A〈ans〉)

⇒ wf(as ∪ A′〈ans〉)∧
as ∪ A〈ans〉 	 as ∪ A′〈ans〉

Instantiating ans with [[K]]c, as with {}, and by set union properties, we have

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧ A〈[[K]]c〉 	 A′〈[[K]]c〉

The proof (see 18) then follows from the above and 19. ��

References

[ACN+08] Alves, V., Calheiros, F., Nepomuceno, V., Menezes, A., Soares, S.,
Borba, P.: FLiP: Managing software product line extraction and re-
action with aspects. In: 12th International Software Product Line Con-
ference, p. 354. IEEE Computer Society, Los Alamitos (2008)

[ACV+05] Alves, V., Cardim, I., Vital, H., Sampaio, P., Damasceno, A., Borba,
P., Ramalho, G.: Comparative analysis of porting strategies in J2ME
games. In: 21st IEEE International Conference on Software Mainte-
nance, pp. 123–132. IEEE Computer Society, Los Alamitos (2005)

42 P. Borba, L. Teixeira, and R. Gheyi

[AGM+06] Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.:
Refactoring product lines. In: 5th International Conference on Gener-
ative Programming and Component Engineering, pp. 201–210. ACM,
New York (2006)

[AJC+05] Alves, V., Matos Jr., P., Cole, L., Borba, P., Ramalho, G.: Extracting
and evolving mobile games product lines. In: Obbink, H., Pohl, K. (eds.)
SPLC 2005. LNCS, vol. 3714, pp. 70–81. Springer, Heidelberg (2005)

[Bat05] Batory, D.: Feature models, grammars, and propositional formulas. In:
Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20.
Springer, Heidelberg (2005)

[BB09] Bonifácio, R., Borba, P.: Modeling scenario variability as crosscutting
mechanisms. In: 8th International Conference on Aspect-Oriented Soft-
ware Development, pp. 125–136. ACM, New York (2009)

[Bor09] Borba, P.: An introduction to software product line refactoring. In: 3rd
Summer School on Generative and Transformational Techniques in Soft-
ware Engineering (2009) (to appear)

[BSCC04] Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic reason-
ing for object-oriented programming. Science of Computer Program-
ming 52, 53–100 (2004)

[CB05] Cole, L., Borba, P.: Deriving refactorings for AspectJ. In: 4th Interna-
tional Conference on Aspect-Oriented Software Development, pp. 123–
134. ACM, New York (2005)

[CBS+07] Calheiros, F., Borba, P., Soares, S., Nepomuceno, V., Alves, V.: Product
line variability refactoring tool. In: 1st Workshop on Refactoring Tools,
pp. 33–34 (July 2007)

[CDCvdH03] Critchlow, M., Dodd, K., Chou, J., van der Hoek, A.: Refactoring prod-
uct line architectures. In: 1st International Workshop on Refactoring:
Achievements, Challenges, and Effects, pp. 23–26 (2003)

[CE00] Czarnecki, K., Eisenecker, U.: Generative programming: methods, tools,
and applications. Addison-Wesley, Reading (2000)

[CHE05] Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based
feature models and their specialization. Software Process: Improvement
and Practice 10(1), 7–29 (2005)

[CN01] Clements, P., Northrop, L.: Software Product Lines: Practices and Pat-
terns. Addison-Wesley, Reading (2001)

[FCS+08] Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U.,
Garcia, A., Soares, S., Ferrari, F., Khan, S., Filho, F., Dantas, F.: Evolv-
ing software product lines with aspects: an empirical study on design
stability. In: 30th International Conference on Software Engineering, pp.
261–270. ACM, New York (2008)

[Fow99] Fowler, M.: Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Reading (1999)

[GA01] Gacek, C., Anastasopoulos, M.: Implementing product line variabilities.
SIGSOFT Software Engineering Notes 26(3), 109–117 (2001)

[GMB05] Gheyi, R., Massoni, T., Borba, P.: An abstract equivalence notion for
object models. Electronic Notes in Theoretical Computer Science 130,
3–21 (2005)

[GMB08] Gheyi, R., Massoni, T., Borba, P.: Algebraic laws for feature models.
Journal of Universal Computer Science 14(21), 3573–3591 (2008)

A Theory of Software Product Line Refinement 43

[KAB07] Kastner, C., Apel, S., Batory, D.: A case study implementing features
using AspectJ. In: 11th International Software Product Line Conference,
pp. 223–232. IEEE Computer Society, Los Alamitos (2007)

[KCH+90] Kang, K., Cohen, S., Hess, J., Novak, W., Spencer Peterson, A.: Feature-
oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University (1990)

[KMPY05] Kolb, R., Muthig, D., Patzke, T., Yamauchi, K.: A case study in refac-
toring a legacy component for reuse in a product line. In: 21st Interna-
tional Conference on Software Maintenance, pp. 369–378. IEEE Com-
puter Society, Los Alamitos (2005)

[Kru02] Krueger, C.: Easing the transition to software mass customization. In:
van der Linden, F.J. (ed.) PFE 2002. LNCS, vol. 2290, pp. 282–293.
Springer, Heidelberg (2002)

[LBL06] Liu, J., Batory, D., Lengauer, C.: Feature oriented refactoring of legacy
applications. In: 28th International Conference on Software Engineering,
pp. 112–121. ACM, New York (2006)

[MGB08] Massoni, T., Gheyi, R., Borba, P.: Formal model-driven program refac-
toring. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 362–376. Springer, Heidelberg (2008)

[Opd92] Opdyke, W.: Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois, Urbana-Champaign (1992)

[ORS92] Owre, S., Rushby, J., Shankar, N.: Pvs: A prototype verification system.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer,
Heidelberg (1992)

[PBvdL05] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Heidelberg
(2005)

[SB04] Sampaio, A., Borba, P.: Transformation laws for sequential object-
oriented programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J.
(eds.) PSSE 2004. LNCS, vol. 3167, pp. 18–63. Springer, Heidelberg
(2006)

[SHTB07] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic
semantics of feature diagrams. Computer Networks 51(2), 456–479
(2007)

[ST09] Steimann, F., Thies, A.: From public to private to absent: Refactoring
Java programs under constrained accessibility. In: Drossopoulou, S. (ed.)
ECOOP 2009 – Object-Oriented Programming. LNCS, vol. 5653, pp.
419–443. Springer, Heidelberg (2009)

[TBD06] Trujillo, S., Batory, D., Diaz, O.: Feature refactoring a multi-
representation program into a product line. In: 5th International Con-
ference on Generative Programming and Component Engineering, pp.
191–200. ACM, New York (2006)

[vdLSR07] van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines
in Action: the Best Industrial Practice in Product Line Engineering.
Springer, Heidelberg (2007)

	A Theory of Software Product Line Refinement
	Introduction
	Product Lines Concepts
	Feature Models
	Assets and Products
	Configuration Knowledge
	Asset Mapping
	Product Lines

	Product Line Refinement
	Formalization
	Examples and Considerations
	Basic Properties

	Product Line Refinement Compositionality
	Related Work
	Conclusions
	Extra Proofs
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

