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Preface

The now well-established series of International Colloquia on Theoretical As-
pects of Computing (ICTAC) brings together practitioners and researchers from
academia, industry and government to present research results, and exchange
experience and ideas. Beyond these scholarly goals, another main purpose is to
promote cooperation in research and education between participants and their
institutions, from developing and industrial countries.

This volume contains the papers presented at ICTAC 2010. It was held during
September 1–3 in the city of Natal, Rio Grande do Norte, Brazil.

There were 68 submissions by authors from 24 countries all around the world.
Each submission was reviewed by at least three, and on average four, Program
Committee members and external reviewers. After extensive discussions, they
decided to accept the 23 (regular) papers presented here. Authors of a selection
of these papers were invited to submit an extended version of their work to a
special issue of the Theoretical Computer Science journal.

Seven of the papers were part of a special track including one paper on “For-
mal Aspects of Software Testing”, and six on the “Grand Challenge in Verified
Software.” The special track was jointly organized by Marie-Claude Gaudel, from
the Université de Paris-Sud, and Jim Woodcock, from the University of York.

The program also included invited talks. Ian Hayes, from the University of
Queensland, Australia, was the FME lecturer. This volume includes his invited
paper on a program algebra for sequential programs. We gratefully acknowledge
the support of Formal Methods Europe in making the participation of Ian Hayes
possible. A second invited paper is by Paulo Borba, from the Universidade Fed-
eral de Pernambuco, Brazil. His paper describes a refinement theory for software
product lines. Stephan Merz, from INRIA, gave an invited talk on a proof assis-
tant for TLA+; the abstract for his talk is also presented here. Wolfram Schulte,
from Microsoft Research, gave a talk on verification of C programs.

ICTAC 2010 was organized jointly by the Universidade Federal do Rio Grande
do Norte, Brazil, and the University of York, UK. EasyChair was used to manage
the submissions, their reviewing, and the proceedings production.

We are grateful to all members of the Program and Organizing Committees,
and to all referees for their hard work. The support and encouragement of the
Steering Committee were invaluable assets.

Finally, we would like to thank all the authors of the invited and submitted
papers, and all the participants of the conference. They are the main focus of
the whole event. We hope they enjoyed it.

September 2010 Ana Cavalcanti
David Déharbe
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Invariants and Well-Foundedness in Program Algebra

Ian J. Hayes

School of Information Technology and Electrical Engineering,
The University of Queensland,

Brisbane, 4072, Australia

Abstract. Program algebras abstract the essential properties of programming
languages in the form of algebraic laws. The proof of a refinement law may be
expressed in terms of the algebraic properties of programs required for the law
to hold, rather than directly in terms of the semantics of a language. This has the
advantage that the law is then valid for any programming language that satisfies
the required algebraic properties. By characterised the important properties of
programming languages algebraically we can devise simple proofs of common
refinement laws. In this paper we consider standard refinement laws for sequen-
tial programs. We give simple characterisations of program invariants and well
foundedness of statements.

In this paper we make use of program algebras based on Kleene algebra for regular
expressions [5], with extensions to incorporate tests [15] and infinite iteration [4, 17,
18]. The algebraic approach starts from a set of basic properties that are assumed—the
axioms—and further properties are dervied from these. Proving laws about programs in
terms of their algebraic properties has the advantage that the laws are then valid for any
programming language that satisfies the axioms. The language’s semantics can be used
to show whether or not the axioms are valid for the language. In Section 1 we provide
a brief introduce to program algebras, focussing on the commonalities between the
algebras for regular expressions, relations, and programs. Section 2 details the algebraic
properties of finite iteration, s∗, infinite iteration, s∞, and finite or infinite iteration, sω.

Section 3 introduces program specifications based on Hoare and He’s Unifying The-
ories of Programming (UTP) [13] and develops laws for reasoning about iterations and
while loops in this context. Invariants play an important part in reasoning about iter-
ations and a series of laws for invariants is developed leading to an elegant proof for
the refinement law for introducing a while loop. To show termination of a loop we gen-
eralise the concept of well foundedness from relations to programs: a program is well
founded if its infinite iteration has no behaviours. A simple algebraic characterisation
of well foundedness leads to a simpler proof of termination in the law for a while loop.
More general rules for reasoning about while loops make use of specifications that make
use of relations, rather than just invariants [14]. These rules make use of iteration of a
relation, r∗, as well as iteration of statements, and hence the algebraic rules for iteration
come into play both for relations and statements. This leads to an elegant proof of the
refinement law.

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 I.J. Hayes

1 Regular Expressions, Binary Relations, and Programs

Regular expressions. Kleene algebra provides an algebra for regular expressions used
for pattern matching strings. The left two columns of Figure 1 give the constructs of
regular expressions and their meaning in terms of the language (set of strings) that they
match. Concatenation of languages, L(f ) � L(g), is the set of strings formed by taking
a string from L(f ) and another from L(g) and concatenating them.

For regular expressions: ∅ is the empty (set) language, ε the empty string, A is the alphabet of
symbols, a is a symbol (i.e., a ∈ A), and f and g are regular expressions. For a regular expression
re, L(re) is the corresponding language (set of strings).

Regular expression (re) L(re) Binary Relation Program

∅ {} {} �
ε {ε} id 1
a {〈a〉} {v1 �→ v2} x := v

[x = v]
f | g L(f ) ∪ L(g) r ∪ w s 	 t

f g L(f ) � L(g) r o
9 w s ; t

f 0 {ε} id 1
f k+1 L(f f k) rk+1 sk+1

f ∗
⋃

k∈N
L(f k) r∗ s∗

A∗ All finite strings over A Σ × Σ ⊥

Fig. 1. Example Kleene Algebras

Notational conventions. We represent statements by the letters s, t, and u; relations by
the letters r and w; predicates by p and q; expressions by e and f ; variables by x, y, and
z; and values by v.

Binary relations. Column 3 of Figure 1 gives the relationship between the regular
expressions and binary relations. A binary relation is modelled as a set of pairs of states
both taken from the same state spaceΣ. Alternation in regular expressions corresponds
to union of relations and has the empty relation as its identity. Concatenation in regular
expressions corresponds to relational composition, where for σ and σ′ from some state
space Σ,

(σ, σ′) ∈ (r o
9 w) ⇔ (∃σ′′ • (σ, σ′′) ∈ r ∧ (σ′′, σ′) ∈ w) .

Relational composition has as its identity the identity relation, id, which maps every
element, x, in the state space Σ to itself. Iteration of a relation zero or more times, r∗,
is defined by

r∗ =̂
⋃

k∈N
rk ,

where r0 =̂ id and rk+1 =̂ r o
9 rk.
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Programs. Column 4 of Figure 1 gives the relationship between the regular expres-
sions and sequential programs. Alternation in regular expressions corresponds to non-
deterministic choice (s � t) between programs and has as its identity the everywhere
infeasible program magic, �. Concatenation in regular expressions corresponds to se-
quential composition of programs and has as its identity the null statement, 1. As a
shorthand we omit the “;” and write st for sequential composition. Iteration of a state-
ment zero or more times is denoted s∗.

2 Iteration

Kleene algebra provides an iteration operator s∗, which iterates s zero or more times but
only a finite number of times [5, 15]. A generalisation of this more appropriate for mod-
elling programs is an iteration operator, sω, that iterates s zero or more times, including
a (countably) infinite number of iterations [4]. For both these operators the number of
iterations they take is (demonically) nondeterministic. A third iteration operator, s∞,
iterates s a (countably) infinite number of times [10, 8]. For conjunctive statements we
have that sω = s∗ � s∞ (see Theorem 6 (isolation) below).

We first give fixed-point definitions of these operators, but then focus on their alge-
braic properties [3].

Definition 1 (iteration)

s∗ =̂ νx • 1 � sx (1)

sω =̂ μ x • 1 � sx (2)

s∞ =̂ μ x • sx (3)

The iteration operators have corresponding folding/unfolding and induction laws.

Theorem 1 (Fold/unfold)

s∗ = 1 � ss∗ (4)

sω = 1 � ssω (5)

s∞ = ss∞ (6)

Theorem 2 (induction)

x � t � sx ⇒ x � s∗t (7)

t � sx � x ⇒ sω t � x (8)

sx � x ⇒ s∞ � x (9)

There are special cases of (7) and (8) if t = 1.

Theorem 3 (induction simple)

x � 1 � sx ⇒ x � s∗ (10)

1 � sx � x ⇒ sω � x (11)



4 I.J. Hayes

Theorem 4 (monotonicity of iterations). If s � t then

s∗ � t∗ (12)

sω � tω (13)

s∞ � t∞ (14)

Proof. By ∗-induction (10), s∗ � t∗ provided s∗ � 1 � ts∗, which follows as:

s∗

= by unfolding (4)
1 � ss∗

� as s � t and monotonicity
1 � ts∗

By ω-induction (8), sω � tω provided 1 � stω � tω which follows as:

1 � stω

� as s � t and monotonicity
1 � ttω

= by folding (5)
tω

By ∞-induction (9), s∞ � t∞ provided st∞ � t∞, which follows as:

st∞

� as s � t and monotonicity
tt∞

= by folding (6)
t∞ �

Theorem 5 (Infinite skip). Infinite iteration of 1 gives the bottom element ⊥.

1∞ = ⊥

Proof. Because ⊥ is the least element, it is sufficient to show 1∞ � ⊥. Using ∞-
induction (9), to show 1∞ � ⊥ we need to show the obvious 1⊥ � ⊥. �

Definition 2 (conjunctive). A statement, s, is conjunctive provided for all statements,
t and u,

s(t � u) = st � su .

Theorem 6 (isolation). For conjunctive s

sω = s∗ � s∞ . (15)

Proof. We use the fusion lemma, i.e., h.(μ f ) = μ g provided h ◦ f = g ◦ h and h is
strict and continuous. We chose
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f = λ x • sx g = λ x • 1 � sx h = λ x • s∗ � x
which gives
μ f = s∞ μ g = sω h.(μ f ) = s∗ � s∞

giving sω = s∗ � s∞, provided h ◦ f = g ◦ h, that is,

(λ x • s∗ � x) ◦ (λ x • sx) = (λ x • 1 � sx) ◦ (λ x • s∗ � x)
≡ (λ x • s∗ � sx) = (λ x • 1 � s(s∗ � x))

Simplifying the right side we get

1 � s(s∗ � x)
= by Definition 2 (conjunctive)

1 � ss∗ � sx
= by folding (4)

s∗ � sx

We also require that h is strict and continuous, which hold by lattice properties. �

Theorem 7 (omega-infinite)

s∞ = sω�

Proof. To show refinement from left to right we use the induction law for s∞ (9), which
requires one to show

ssω� � sω�
≡ by unfolding (5)

ssω� � (1 � ssω)�
≡ ssω� � � � ssω�
≡ ssω� � ssω�

Refinement from right to left uses the induction law for sω (8) which requires one to
show

� � ss∞ � s∞

≡ ss∞ � s∞

which follows from (6). �

Definition 3 (finite iteration). A statement s iterated k times, written sk, where k is a
natural number, is defined by

s0 =̂ 1 (16)

sk+1 =̂ ssk (17)

Theorem 8 (finite iteration commutes)

sk+1 = sks (18)
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Proof. From (17) it is sufficient to show sks = ssk, which we prove by induction.
For k = 0, s0s = 1s = s = s1 = ss0. We assume for k and must show for k + 1:
sk+1s = ssks = sssk = ssk+1. �

Theorem 9 (multiple unfold infinite iteration)

∀ k ∈ N • sks∞ = s∞

Proof. We prove the property by induction. For k = 0, we show

s0s∞ = 1s∞ = s∞ .

We assume sks∞ = s∞ holds for k, and show that sk+1s∞ = s∞.

sk+1s∞

= by Theorem 8 (finite iteration commutes)
(sks)s∞

= by associativity
sk(ss∞)

= by folding (6)
sks∞

= by induction hypothesis
s∞ �

3 Specifications

In this section we make use of our algebraic theory for reasoning about sequential pro-
grams, with program specifications expressed as designs from Hoare and He’s Unifying
Theory of Programming (UTP) [13]. For programs over a state space Σ, a specification
or design, (p � r), is given by a precondition p, which is a predicate over Σ, and a
postcondition r, which is a binary relation of overΣ×Σ. We assume specifications are
defined as in Hoare and He’s UTP theory [13]. For our purposes it is sufficient to state
a number of properties of specifications in terms of assumed laws. These laws hold for
UTP designs.

We write [p] to state that predicate p holds for all possible values of its free variables.
When writing the postcondition of a specification, we allow relations to stand for their
characteristic predicates and hence allow relations to be combined using logical opera-
tors such as conjunction and disjunction, with the obvious meaning of intersection and
union of the relations. Furthermore, a predicate, p, within a postcondition is interpreted
as constraining the pre-state to satisfy p, and a primed predicate, p′, is interpreted as
constraining the post-state to satisfy p.

Law 10 (refine specification). Provided [p1 ⇒ p2 ∧ (r2 ⇒ r1)],

(p1 � r1) � (p2 � r2) . (19)
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Law 11 (specification sequential). Provided [p ⇒ p1 ∧ (r1 ⇒ p′
2) ∧ (r1 o

9 r2 ⇒ r)],

(p � r) � (p1 � r1)(p2 � r2) . (20)

A postcondition that is the composition of two relations can be achieved by sequentially
achieving each relation.

Theorem 12 (composition of relations). Provided [p ∧ r1 ⇒ q′],

(p � r1 o
9 r2) � (p � r1)(q � r2) . (21)

Proof. By Law 11 (specification sequential) we need to show

[p ⇒ p ∧ (r1 ⇒ q′) ∧ (r1 o
9 r2 ⇒ r1 o

9 r2)]

which follows from the assumption. �

Theorem 13 (specification disjunction)

(p � r ∨ w) � (p � r) � (p � w) (22)

Proof. The theorem holds provided both

(p � r ∨ w) � (p � r)
(p � r ∨ w) � (p � w)

which both hold by Law 10 (refine specification) because r ⇒ r ∨ w and w ⇒ r ∨ w. �

Kozen extended Kleene algebra with tests (guards) to allow conditionals and while
loops to be expressed [15]. For a predicate, b, a guard, [b], acts as a null statement if b
holds, and as magic (�) otherwise.1 It is a special case of a specification.

Definition 4 (guard). For a single state predicate b,

[b] =̂ (true � b ∧ id)

where id is the identity relation.

Law 14 (separate guard)

(p � r ∧ b′) = (p � r)[b] (23)

Theorem 15 (introduce guard)

(p � b ∧ r) � [b](b ∧ p � r) (24)

1 Note [b] here is a statement, but the notation [p] for a predicate p is also used to denote that p
holds for all values of its free variables; this ambiguity can easily be resolved from the context
it is used in.
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Proof

(p � b ∧ r)
� by Law 11 (specification sequential)

(true � id ∧ b)(b ∧ p � r)
= by Definition 4 (guard)

[b](b ∧ p � r) �

Definition 5 (if statement). For a predicate b and statements s1 and s2 an if-statement
is defined as follows.

if b then s1 else s2 =̂ ([b]s1) � ([¬ b]s2)

Theorem 16 (introduce if)

(p � r) � if b then(b ∧ p � r) else(¬ b ∧ p � r)

Proof

(p � r)
= by Law 10 (refine specification)

(p � (b ∧ r) ∨ (¬ b ∧ r))
� by Theorem 13 (specification disjunction)

(p � b ∧ r) � (p � ¬ b ∧ r)
� by Theorem 15 (introduce guard) twice

[b](b ∧ p � r) � [¬ b](¬ b ∧ p � r)
= by Definition 5 (if statement)

if b then(b ∧ p � r) else(¬ b ∧ p � r) �

The null or skip statement is equivalent to a specification with the identity (no change)
relation, id, as its postcondition.

Law 17 (specification skip)
(true � id) = 1 (25)

The null or skip statement maintains any invariant p.

Theorem 18 (skip invariant)

(p � id ∧ p′) � 1 (26)

Proof

(p � id ∧ p′)
� by Law 10 (refine specification)

(true � id)
= by Law 17 (specification skip)

1 �

Theorem 19 (relation with invariant)

(p � (r1 o
9 r2) ∧ p′) � (p � r1 ∧ p′)(p � r2 ∧ p′) (27)
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Proof

(p � (r1 o
9 r2) ∧ p′)

� by Law 10 (refine specification) as [(r1 ∧ p′) o
9 (r2 ∧ p′)⇒ (r1 o

9 r2) ∧ p′]
(p � (r1 ∧ p′) o

9 (r2 ∧ p′))
� by Theorem 12 (composition of relations)

(p � r1 ∧ p′)(p � r2 ∧ p′)

provided [p ∧ r1 ∧ p′ ⇒ p′], which trivially holds. �

Replacing both relations r1 and r2 in Theorem 19 (relation with invariant) with the
universal relation (true) which imposes no constraint, gives a rule for maintaining an
invariant over a sequential composition by maintaining it for each component of the
composition.

Corollary 20 (sequential invariant)

(p � p′) � (p � p′)(p � p′) (28)

For any finite number, k, of iterations, if each iteration maintains an invariant, p, then
the invariant is maintained overall.

Theorem 21 (finite iteration invariant). For any k ∈ N,

(p � p′) � (p � p′)k . (29)

Proof. The proof is by induction on k. For k = 0, we use Theorem 18 (skip invariant).

(p � p′) � (p � id ∧ p′) � 1 = (p � p′)0

For the inductive step we assume (29) for k, and show it holds for k + 1.

(p � p′)
� by Corollary 20 (sequential invariant)

(p � p′)(p � p′)
� by the inductive assumption

(p � p′)(p � p′)k

= by Definition 3 (finite iteration)
(p � p′)k+1 �

This theorem can be generalised to the case in which the postcondition contains an
iterated relation, rk.

Theorem 22 (finite iteration relation). For any k ∈ N,

(p � rk ∧ p′) � (p � r ∧ p′)k (30)

Proof. The proof is by induction on k. For k = 0, we use Theorem 18 (skip invariant).

(p � r0 ∧ p′) = (p � id ∧ p′) � 1 = (p � r ∧ p′)0
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For the inductive step we assume (30) for k, and show it holds for k + 1.

(p � rk+1 ∧ p′)
= by the definition of iteration of a relation rk+1 = r o

9 rk

(p � r o
9 rk ∧ p′)

� by Theorem 19 (relation with invariant)
(p � r ∧ p′)(p � rk ∧ p′)

� by the inductive assumption
(p � r ∧ p′)(p � r ∧ p′)k

= by Definition 3 (finite iteration)
(p � r ∧ p′)k+1 �

If an invariant is maintained by each iteration, then any finite number of iterations (zero
or more) will maintain the invariant.

Theorem 23 (kleene iteration invariant)

(p � p′) � (p � p′)∗

Proof. The theorem follows by ∗-induction (10) provided

(p � p′) � 1 � (p � p′)(p � p′)

To show this we expand the left side

(p � p′)
= as demonic choice is idempotent

(p � p′) � (p � p′)
� by Theorem 18 (skip invariant)

1 � (p � p′)
� by Corollary 20 (sequential invariant)

1 � (p � p′)(p � p′) �

This theorem can be generalised to the case in which the postcondition contains an
iterated relation, r∗, provided each iteration achieves r. Because each iteration maintains
the invariant, p, it establishes the precondition for the following iteration.

Theorem 24 (kleene iteration relation)

(p � r∗ ∧ p′) � (p � r ∧ p′)∗

Proof. The theorem follows by ∗-induction (10) provided

(p � r∗ ∧ p′) � 1 � (p � r ∧ p′)(p � r∗ ∧ p′)
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To show this we expand the left side

(p � r∗ ∧ p′)
= as unfolding r∗ gives r∗ = id ∨ (r o

9 r∗)
(p � (id ∨ (r o

9 r∗)) ∧ p′)
= distributing

(p � (id ∧ p′) ∨ ((r o
9 r∗) ∧ p′))

� by Theorem 13 (specification disjunction)
(p � id ∧ p′) � (p � (r o

9 r∗) ∧ p′)
� by Theorem 18 (skip invariant) and Theorem 19 (relation with invariant)

1 � (p � r ∧ p′)(p � r∗ ∧ p′) �

While loops. A while loop do b → s od can be viewed as a nondeterministic choice
between its possible unrollings, which include its finite unrolling zero or more times as
well as its infinite unrolling. For the zero unrolling case, the guard, b, must be initially
false and the while loop is equivalent to [¬ b]; for the single unrolling case, b must be
true initially, but after execution of s it must be false, and in this case the while loop is
equivalent to [b]s[¬ b]; and so on.

[¬ b]
� [b]s [¬ b]

� [b]s [b]s [¬ b]
� [b]s [b]s [b]s [¬ b]

...
� [b]s [b]s [b]s [b]s . . .

Any execution of the while loop will correspond to one of the above alternatives. Over-
all this corresponds to the ω-iteration of the guard and body, ([b]s), followed by the
negation of the guard, as captured in the following definition.

Definition 6 (while loop)

do b → s od =̂ ([b]s)ω[¬ b]

Well-founded relations and statements. A relation, r, is well founded provided there
does not exist an infinite sequence of states 〈σ0, σ1, σ2, . . .〉, such that pairs of succes-
sive states are related by r, (i.e, (σ0, σ1) ∈ r ∧ (σ1, σ2) ∈ r ∧ . . .). If no such infinite
sequence exists, the only solution for x in the fixed point equation, x = r o

9 x, for the
infinite iteration of r is the empty relation, i.e., r∞ = {}.

In order to reason about while loops, we define what it means for a statement to be
well founded in a similar manner. The infinite iteration, s∞, of a well-founded state-
ment, s, will have no possible behaviours, i.e., it will be equivalent to magic, �. More
generally it is useful to define what it means for a statement to be well founded when
started in a state satisfying some predicate p.

Definition 7 (well-founded statement). A statement s is well-founded on p if

(p � false) � s∞ .
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The standard loop rule, which makes use of well foundedness to show termination, can
be expressed in terms of the loop body (including the guard) being well founded on
states satisfying the precondition.

Theorem 25 (terminating loop invariant). Provided ([b]s) is well-founded on p, s is
conjunctive, and

(p � p′) � [b]s

then (p � p′ ∧ ¬ b′) � do b → s od .

Proof

(p � p′ ∧ ¬ b′) � do b → s od
≡ Law 14 (separate guard); Definition 6 (while loop)

(p � p′)[¬ b] � ([b]s)ω [¬ b]
� by monotonicity

(p � p′) � ([b]s)ω

� by Theorem 6 (isolation); s is conjunctive
(p � p′) � ([b]s)∗ � ([b]s)∞

� as ([b]s) is well-founded on p; Definition 7 (well-founded statement)
(p � p′) � ([b]s)∗ � (p � false)

� by Law 10 (refine specification), (p � p′) � (p � false)
(p � p′) � ([b]s)∗

� by Theorem 23 (kleene iteration invariant)
(p � p′)∗ � ([b]s)∗

� by monotonicity (12)
(p � p′) � [b]s �

Note that the proviso (p � p′) � [b]s can be rewritten as (p ∧ b � p′) � s, which is in
the form closer to that used in the refinement calculus [16, 2]

This theorem can be generalised to the case in which the postcondition contains a
relation [14].

Theorem 26 (terminating loop relation). Provided ([b]s) is well-founded on p, s is
conjunctive, and

(p � r ∧ p′) � [b]s

then (p � r∗ ∧ p′ ∧ ¬ b′) � do b → s od .

Proof

(p � r∗ ∧ p′ ∧ ¬ b′) �do b → s od
≡ by Law 14 (separate guard); Definition 6 (while loop)

(p � r∗ ∧ p′)[¬ b] � ([b]s)ω [¬ b]
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� by monotonicity
(p � r∗ ∧ p′) � ([b]s)ω

≡ by Theorem 6 (isolation); s is conjunctive
(p � r∗ ∧ p′) � ([b]s)∗ � ([b]s)∞

� as ([b]s) is well-founded on p; Definition 7 (well-founded statement)
(p � r∗ ∧ p′) � ([b]s)∗ � (p � false)

� by Law 10 (refine specification), (p � r∗ ∧ p′) � (p � false)
(p � r∗ ∧ p′) � ([b]s)∗

� Theorem 24 (kleene iteration relation)
(p � r ∧ p′)∗ � ([b]s)∗

� by monotonicity (12)
(p � r ∧ p′) � [b]s �

We note that if a relation r is well founded on p then (p � r ∧ p′)∞ = (p � false).
Hence if (p � r ∧ p′) � [b]s, by monotonicity of iterations (14), (p � r ∧ p′)∞ �
([b]s)∞ and hence (p � false) � ([b]s)∞, that is, ([b]s) is well founded.

4 Conclusions

By defining while loops in terms of iteration operators we are able to leverage the
simple algebraic properties of iteration operators to devise simple proofs of refinement
laws for loops. In addition, by giving an algebraic characterisation of well foundedness
for programs (rather than relations) the proof of termination for the while loop rule can
be handled in an elegant manner.

By phrasing the proofs of the laws in terms of the algebraic properties of the pro-
gramming constructs, the laws can be used with any language whose semantics satisfies
the axioms on which the theory is based. In this paper we focussed on Hoare and He’s
unifying theory of programming [13], but the proofs apply equally well to refinement
in VDM [14], B [1], and the refinement calculus [2, 16]. The semantics of these ap-
proaches are based on relations between before and after states (or a generalisation of
this to weakest precondition predicate transformers), but the axioms also apply to the
richer semantics of reactive programs whose semantics is based on a relation between
before and after traces of the behaviour of the program [12].

The approach taken in this paper has been applied to reasoning about programs us-
ing the general correctness theory [6] leading to simpler proofs of rules for reasoning
about loops in that theory. We believe the approach can be extended to simplify reason-
ing about loops in the real-time refinement calculus [11, 9]. The rules as given do not
apply directly to real-time programs because the definition of the while loop needs to be
revised to allow for the time taken for guards to be evaluated. To handle this we need to
introduce the concept of a guard being idle-stable and a predicate being idle-invariant
[7, 8, 10], and give algebraic characterisations of these properties.
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Abstract. To safely derive and evolve a software product line, it is im-
portant to have a notion of product line refactoring and its underlying
refinement notion, which assures behavior preservation. In this paper we
present a general theory of product line refinement by extending a pre-
vious formalization with explicit interfaces between our theory and the
different languages that can be used to create product line artifacts. More
important, we establish product line refinement properties that justify
stepwise and compositional product line development and evolution.

1 Introduction

A software product line is a set of related software products that are generated
from reusable assets. Products are related in the sense that they share common
functionality. Assets correspond to components, classes, property files, and other
artifacts that are composed in different ways to specify or build the different
products. This kind of reuse targeted at a specific set of products can bring
significant productivity and time to market improvements [PBvdL05, vdLSR07].

To obtain these benefits with reduced upfront investment, previous
work [Kru02, CN01, AJC+05] proposes to minimize the initial product line
(domain) analysis and development process by bootstraping existing related
products into a product line. In this context it is important to rely on a no-
tion of product line refactoring [Bor09], which provides guidance and safety for
deriving a product line from existing products, and also for evolving a prod-
uct line by simply improving its design or by adding new products while pre-
serving existing ones. Product line refactoring goes beyond program refactoring
notions [Opd92, Fow99, BSCC04, CB05] by considering both sets of reusable
assets that not necessarily correspond to valid programs, and extra artifacts,
such as feature models [KCH+90, CE00], which are necessary for automatically
generating products from assets.

Instead of focusing on the stronger notion of refactoring, in this paper we focus
on the underlying notion of product line refinement, which also captures behav-
ior preservation but abstracts quality improvement. This allows us to develop
a formal theory of product line refinement, extending the previous formaliza-
tion [Bor09] with explicit assumptions about the different languages that can
be used to create product line artifacts. More important, we establish product
line refinement properties that justify safe stepwise and compositional product
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line development and evolution. Our theory is encoded in the Prototype Veri-
fication System (PVS) [ORS92], which provides mechanized support for formal
specification and verification. All properties are proved using the PVS prover.

This text is organized as follows. Section 2 introduces basic concepts and
notation for feature models and other extra product line artifacts [CE00, BB09].
Several assumptions and axioms explicitly establish the interfaces between our
theory and particular languages used to describe a product line. Definitions and
lemmas are introduced to formalize auxiliary concepts and properties. Following
that, in Sec. 3, we discuss and formalize our notion of product line refinement.
We also derive basic properties that justify stepwise product line development
and evolution. Next, Sec. 4 presents the product line refinement compositionality
results and their proofs. We discuss related work in Sec. 5 and conclude with
Sec. 6. Finally, Appendix A contains proofs omitted in the main text.

2 Product Lines Concepts

In the product line approach formalized in this paper, automatic generation of
products from assets is enabled by Feature Models and Configuration Knowledge
(CK) [CE00]. A feature model specifies common and variant features among prod-
ucts, and is used for describing and selecting products based on the features they
support. A CK relates features and assets, specifying which assets implement pos-
sible feature combinations. Hence a CK can be used to actually build a product
given chosen features for that product. We now explain in more detail these two
kinds of artifacts and related concepts, using examples from the Mobile Media
product line [FCS+08], which contains applications – such as the one illustrated
in Fig. 1 – that manipulate photo, music, and video on mobile devices.

2.1 Feature Models

A feature model is essentially represented as a tree, containing features and
information about how they are related. Features basically abstract groups of

Fig. 1. Mobile Media screenshots
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Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Fig. 2. Mobile Media simplified feature model

associated requirements, both functional and non-functional. In the particular
feature model notation illustrated here, relationships between a parent feature
and its child features (subfeatures) indicate whether the subfeatures are optional
(present in some products but not in others, represented by an unfilled circle),
mandatory (present in all products, represented by a filled circle), or (every
product has at least one of them, represented by a filled triangular shape), or
alternative (every product has exactly one of them, represented by an unfilled
triangular shape). For example, Fig. 2 depicts a simplified Mobile Media feature
model, where Sorting is optional, Media is mandatory, Photo and Music are
or-features, and the two illustrated screen sizes are alternative.

Besides these relationships, feature models may contain propositional logic
formulas about features. Feature names are used as atoms to indicate that a
feature should be selected. So negation of a feature indicates that it should not
be selected. For instance, the formula just below the tree in Fig. 2 states that
feature Photo must be present in some product whenever feature Send Photo is
selected. So

{Photo, Send Photo, 240x320},

together with the mandatory features, which hereafter we omit for brevity, is a
valid feature selection (product configuration), but

{Music, Send Photo, 240x320}

is not. Likewise {Music, Photo, 240x320} is a valid configuration, but

{Music, Photo, 240x320, 128x149}

is not because it breaks the Screen Size alternative constraint. In summary, a
valid configuration is one that satisfies all feature model constraints, specified
both graphically and through formulas.

The set of all valid configurations often represents the semantics of a feature
model. However, as different feature model notations might express constraints
and configurations in different ways, our product line refinement theory abstracts
the details and just assumes a generic function [[ ]] for obtaining the semantics
of a feature model as a set of configurations.
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Assumption 1. 〈Feature model semantics〉
FeatureModel : TY PE
Configuration : TY PE
[[ ]] : FeatureModel→ set[Configuration]

We use simplified PVS notation for introducing the mentioned function and
related types. In PVS, TYPE declares an uninterpreted type that imposes no
assumptions on implementations of the specification.

As shall be clear latter, these concepts are all we require about feature mod-
els. With them, we can define our product line refinement notion and derive its
properties. So our theory applies for any feature model notation whose seman-
tics can be expressed as a set of configurations. This is the case of the feature
model notation illustrated in this section and others, which have been formalized
elsewhere [GMB08, AGM+06, CHE05, Bat05, SHTB07].

Given a notion of feature model semantics, it is useful to define a notion of
feature model equivalence to reason about feature models. Two feature models
are equivalent iff they have the same semantics.

Definition 1. 〈Feature model equivalence〉
Feature models F and F ′ are equivalent, denoted F ∼= F ′, whenever [[F ]] = [[F ′]].

Again, this is quite similar to the PVS specification, which defines the equivalence
as a function with the following type:

∼= : FeatureModel, FeatureModel→ bool

Hereafter we omit such typing details, and overload symbols, but the types can
be easily inferred from the context.

We now establish the equivalence properties for the just introduced function.

Theorem 1. 〈Feature model equivalence – reflexivity〉
∀F : FeatureModel · F ∼= F

Proof: Follows directly from Definition 1 and the reflexivity of the equality of
configuration sets. �
Theorem 2. 〈Feature model equivalence – symmetry〉

∀F, F ′ : FeatureModel · F ∼= F ′ ⇒ F ′ ∼= F

Proof: Follows directly from Definition 1 and the symmetry of the equality of
configuration sets. �
Theorem 3. 〈Feature model equivalence – transitivity〉

∀F, F ′, F ′′ : FeatureModel · F ∼= F ′ ∧ F ′ ∼= F ′′ ⇒ F ∼= F ′′

Proof: Follows directly from Definition 1 and the transitivity of the equality of
configuration sets. �
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These properties justify safe stepwise evolution of feature models, as illustrated
in previous work [AGM+06].

2.2 Assets and Products

Besides a precise notion of feature model semantics, for defining product line
refinement we assume means of comparing assets and products with respect
to behavior preservation. We distinguish arbitrary asset sets (set[Asset]) from
well-formed asset sets (Product), which correspond to valid products in the un-
derlying languages used to describe assets. We assume the wf function specifies
well-formedness, and � denotes both asset and product refinement.

Assumption 2. 〈Asset and product refinement〉
Asset : TY PE
�: Asset, Asset→ bool

wf : set[Asset]→ bool

Product : TY PE = (wf)
� : Product, Product→ bool

We use the PVS notation for defining the Product type as the set of all asset
sets that satisfy the wf predicate.

Our product line refinement theory applies for any asset language with these
notions as long as they satisfy the following properties. Both asset and product
refinement must be pre-orders.

Axiom 1. 〈Asset refinement reflexivity〉

∀a : Asset · a � a

Axiom 2. 〈Asset refinement transitivity〉

∀a, b, c : Asset · a � b ∧ b � c⇒ a � c

Axiom 3. 〈Product refinement reflexivity〉

∀p : Product · p � p

Axiom 4. 〈Product refinement transitivity〉

∀p, q, r : Product · p � q ∧ q � r⇒ p � r

These are usually properties of any refinement notion because they are essen-
tial to support stepwise refinement and development. This is, for example, the
case of existing refinement notions for object-oriented programming and model-
ing [BSCC04, GMB05, MGB08].

Finally, asset refinement must be compositional in the sense that refining an
asset that is part of a valid product yields a refined valid product.
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Axiom 5. 〈Asset refinement compositionality〉
∀a, a′ : Asset · ∀s : set[Asset]·

a � a′ ∧ wf(a ∪ s)
⇒ wf(a′ ∪ s) ∧ a ∪ s � a′ ∪ s

We use ∪ both to denote set union and insertion of an element to a set.
Such a compositionality property is essential to guarantee independent devel-

opment of assets in a product line, and is supported, for example, by existing
class refinement notions [SB04]. In that context, a product is a main command
with a set of class declarations that coherently resolves all references to class and
method names. In general, we do not have to limit ourselves to code assets, and
consider any kind of asset that supports the concepts and properties discussed
in this section.

2.3 Configuration Knowledge

As discussed in Sec. 2.1, features are groups of requirements, so they must be
related to the assets that realize them. This is specified by the configuration
knowledge (CK), which can be expressed in many ways, including as a relation
from feature expressions (propositional formulas having feature names as atoms)
to sets of asset names [BB09]. For example, showing the relation in tabular form,
the following CK

Music.java, ...

AppMenu.aj, ...

Common.aj, ...

Photo.java, ...

Photo  Music

Photo  Music

Photo

Music

MM.java, ...Mobile Media

establishes that if the Photo and Music features are both selected then the
AppMenu asset, among others omitted in the fifth row, should be part of the final
product. Essentially, this product line uses the AppMenu aspect as a variability
implementation mechanism [GA01, AJC+05] that has the effect of presenting the
left screenshot in Fig. 1. For usability issues, this screen should not be presented
by products that have only one of the Media features, so the need for the fifth
row in the simplified Mobile Media CK. Similarly, some assets are shared by the
Photo and Music implementations, so we write the fourth row to avoid repeating
the asset names on the second and third rows.

Given a valid product configuration, the evaluation of a CK yields the names
of the assets needed to build the corresponding product. In our example, the
configuration {Photo, 240x320}1 leads to

{MM.java, . . . , Photo.java, . . . , Commom.aj, . . . }.
1 Remember we omit mandatory features for brevity.
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This gives the basic intuition for the semantics of a CK. It is a function that
maps product configurations into finite sets (represented by fset) of asset names.
So our product line refinement theory relies on a CK semantic function [[ ]] as
follows.

Assumption 3. 〈CK semantics〉
CK : TY PE
AssetName : TY PE
[[ ]] : CK → Configuration→ fset[AssetName]

For the CK notation illustrated in this section, the semantics of a given CK K,
represented as [[K]], could be defined in the following way: for a configuration c,
an asset name n is in the set [[K]]c iff there is a row in K that contains n and its
expression evaluates to true according to c. But we do not give further details
because our aim is to establish a product line refinement theory that is indepen-
dent of CK notation, as long as this notation’s semantics can be expressed as a
function that maps configurations into finite sets of assets names.

Similarly to what we have done for feature models, we define a notion of CK
equivalence based on the notion of CK semantics. This is useful to reason about
CK. Two CK specifications are equivalent iff they have the same semantics.

Definition 2. 〈Configuration knowledge equivalence〉
Configuration knowledge K is equivalent to K ′, denoted K ∼= K ′, whenever
[[K]] = [[K ′]].

We now establish the equivalence properties for the just introduced relation.

Theorem 4. 〈Configuration knowledge equivalence – reflexivity〉

∀K : CK ·K ∼= K

Proof: Follows directly from Definition 2 and the reflexivity of the equality of
functions. �

Theorem 5. 〈Configuration knowledge equivalence – symmetry〉

∀K,K ′ : CK ·K ∼= K ′ ⇒ K ′ ∼= K

Proof: Follows directly from Definition 2 and the symmetry of the equality of
functions. �

Theorem 6. 〈Configuration knowledge equivalence – transitivity〉

∀K,K ′,K ′′ : CK ·K ∼= K ′ ∧K ′ ∼= K ′′ ⇒ K ∼= K ′′

Proof: Follows directly from Definition 2 and the transitivity of the equality of
functions. �
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2.4 Asset Mapping

Although the CK illustrated in the previous section refers only to code assets,
in general we could also refer to requirements documents, design models, test
cases, image files, XML files, and so on. For simplicity, we focus on code assets
as they are equivalent to other kinds of asset for our purposes. The important
issue here is not the nature of asset contents, but how the assets are compared
and referred to in the CK.

We cover asset comparison in Sec. 2.2. For dealing with asset references, each
product line keeps a mapping such as the following

{Main 1 �→
class Main {

...new StartUp(...);...
}

Main 2 �→
class Main {

...new OnDemand(...);...
}

Common.java �→
class Common {

...
}
...

}

from asset names used in a CK to actual assets. So, besides a feature model and
a CK, a product line contains an asset mapping, which basically corresponds to
an environment of asset declarations. This allows conflicting assets in a product
line, like assets that implement alternative features, such as both Main classes
in the illustrated asset mapping.

Formally, we specify asset mappings in PVS as follows.

Definition 3. 〈Asset mapping〉
Let r be a finite set of name-asset pairs (r : fset[AssetName,Asset]).

mapping(r) : bool =
∀n : AssetName · ∀a, b : Asset·

(n, a) ∈ r ∧ (n, b) ∈ r ⇒ a = b

AssetMapping : TY PE = (mapping)

Since there is not much to abstract from this notion of asset mapping, it is
actually defined as part of our theory. Differently from the concepts of feature
model, CK, and their semantics, the asset mapping concept is not a parameter
to our theory.

We also define auxiliary functions that are used to define product line re-
finement. The second one is mapping application over a set. In the following,
consider that m : AssetMapping and s : fset[AssetName].
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Definition 4. 〈Auxiliary asset mapping functions〉

dom(m) : set[AssetName] =
{n : AssetName | ∃a : Asset · (n, a) ∈ m}

m〈s〉 : set[Asset] =
{a : Asset | ∃n ∈ s · (n, a) ∈ m}

We use the notation ∃n ∈ s · p(n) as an abbreviation for the PVS notation
∃n : AssetName · n ∈ s ∧ p(n).

To derive product line refinement properties, we establish several properties
of the introduced auxiliary functions. The proofs appear in Appendix A.

Lemma 1. 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉

then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉 ��

Lemma 2. 〈Distributed mapping over singleton〉
For asset mapping A, asset name an and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪A〈S〉 ��

Remember we use ∪ both for set union and insertion of an element to a set.

Lemma 3. 〈Asset mapping domain membership〉
For asset mapping A, asset name an and asset a, if

(an, a) ∈ A

then

an ∈ dom(A) ��

Lemma 4. 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {} ��
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For reasoning about asset mappings, we define a notion of asset mapping refine-
ment. Asset mapping equivalence could also be defined, but we choose the weaker
refinement notion since it gives us more flexibility when evolving asset mappings
independently of other product line elements such as feature models and CK. As
shall be clear latter, we can rely on refinement for asset mappings but not for
the other elements; that is why, in previous sections, we define equivalences for
them. For asset mapping refinement, exactly the same names should be mapped,
not necessarily to the same assets, but to assets that refine the original ones.

Definition 5. 〈Asset mapping refinement〉
For asset mappings A and A′, the first is refined by the second, denoted

A � A′

whenever

dom(A) = dom(A′)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a � a′

We use ∀n ∈ dom(A) · p(n) to abbreviate the PVS notation

∀n : AssetName · n ∈ dom(A) ⇒ p(n)

Note also that a � a′ in the definition refers to asset refinement, not to program
refinement.

We now prove that asset mapping refinement is a pre-order.

Theorem 7. 〈Asset mapping refinement reflexivity〉

∀A : AssetMapping ·A � A

Proof: For an arbitrary asset mapping A, from Definition 5 we have to prove
that

dom(A) = dom(A)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a � a′

The first part of the conjunction follows from equality reflexivity. For an arbitrary
n ∈ dom(A), we are left to prove

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A ∧ a � a′ (1)

From Definition 4, as n ∈ dom(A), we have that

n ∈ {n : AssetName | ∃a : Asset · (n, a) ∈ A}

By set comprehension and membership, we have that

∃a : Asset · (n, a) ∈ A
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Let a1 be such a. Then we have (n, a1) ∈ A. From this and Axiom 1, we easily
obtain 1 taking a and a′ as a1. �

Theorem 8. 〈Asset mapping refinement transitivity〉

∀A,A′, A′′ : AssetMapping ·A � A′ ∧A′ � A′′ ⇒ A � A′′

Proof: For arbitrary asset mappings A, A′, and A′′, assume that A � A′ and
A′ � A′′. From Definition 5 we have to prove that

dom(A) = dom(A′′)
∧ ∀n ∈ dom(A)·

∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a � a′′

The first part of the conjunction follows from our assumptions, Definition 5, and
equality transitivity. For an arbitrary n ∈ dom(A), we are left to prove

∃a, a′′ : Asset · (n, a) ∈ A ∧ (n, a′′) ∈ A′′ ∧ a � a′′ (2)

But from our assumptions and Definition 5 we have that n ∈ dom(A′) and
therefore

(n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a � a′

(n, a′) ∈ A′ ∧ (n, a′′) ∈ A′′ ∧ a′ � a′′

for some a, a′, a′′ : Asset. We then have the a and a′′ necessary to obtain 2
directly from this and the transitivity of asset refinement (Axiom 2). �

To establish the compositionality results, we rely on an important property of
asset mapping refinement: if A � A′ then products formed by using A assets are
refined by products formed by corresponding A′ assets.

Lemma 5. 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A � A′

then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 � as ∪A′〈ans〉 ��
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2.5 Product Lines

We can now provide a precise definition for product lines. In particular, a product
line consists of a feature model, a CK, and an asset mapping that jointly generate
products, that is, valid asset sets in their target languages.

Definition 6. 〈Product line〉
For a feature model F , an asset mapping A, and a configuration knowledge K,
we say that tuple

(F,A,K)

is a product line when, for all c ∈ [[F ]],

wf(A〈[[K]]c〉)

We omit the PVS notation for introducing the ProductLine type, but it roughly
corresponds to the one we use in this definition.

The well-formedness constraint in the definition is necessary because missing
an entry on a CK might lead to asset sets that are missing some parts and
thus are not valid products. Similarly, a mistake when writing a CK or asset
mapping entry might yield an invalid asset set due to conflicting assets, like two
aspects that are used as variability mechanism [GA01, AJC+05] and introduce
methods with the same signature in the same class. Here we demand product
line elements to be coherent as explained.

Given the importance of the well-formedness property in this definition, we
establish compositionality properties related to the well-formedness function wf .
First we have that feature model equivalence is compositional with respect to wf .

Lemma 6. 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowledge
K, if

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉) �

Similarly, for CK we have the following.

Lemma 7. 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledgeK andK ′, if

K ∼= K ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A〈[[K ′]]c〉) �
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Finally, for asset mappings we have that refinement is compositional with respect
to wf .

Lemma 8. 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mapping A and A′ and configuration knowledge K, if

A � A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A′〈[[K]]c〉) �

3 Product Line Refinement

Now that we better understand what a product line is, we can introduce a notion
of product line refinement that provides guidance and safety for deriving a prod-
uct line from existing products, and also for evolving a product line by simply
improving its design or by adding new products while preserving existing ones.

Similar to program and model refinement [BSCC04, GMB05], product line
refinement preserves behavior. However, it goes beyond source code and other
kinds of reusable assets, and considers transformations to feature models and
CK as well. This is illustrated by Fig. 3, where we refine the simplified Mobile
Media product line by renaming the feature Music. As indicated by check marks,
this renaming requires changing the feature model, CK, and asset mapping; due
to a class name change, we must apply a global renaming, so the main method
and other classes beyond Music.java are changed too.

The notion of behavior preservation should be also lifted from assets to prod-
uct lines. In a product line refinement, the resulting product line should be able
to generate products that behaviorally match the original product line products.
So users of an original product cannot observe behavior differences when using
the corresponding product of the new product line. With the renaming refine-
ment, for example, we have only improved the product line design: the resulting

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

Music.java

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Audio.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Audio
Photo  Audio

Photo
Audio

MM.java, ...Mobile Media
Photo.java

Audio.java

Mobile Media

Media

Photo Audio

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Fig. 3. Product line renaming refinement
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Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Mobile Media

Media

Photo Music

Screen Size

128x149 240x320

Management

Send Photo Sorting

Send Photo  Photo

Copy

CopyPhoto.aj, ...Copy  Photo
Copy.java, ...Copy

Music.java, ...

AppMenu.aj, ...
Common.aj, ...

Photo.java, ...

Photo  Music
Photo  Music

Photo
Music

MM.java, ...Mobile Media
Photo.java

AppMenu.aj

CopyPhoto.aj

Fig. 4. Adding an optional feature refinement

product line generates a set of products exactly equivalent to the original set.
But it should not be always like that. We consider that the better product line
might generate more products than the original one. As long as it generates
enough products to match the original product line, users have no reason to
complain. For instance, by adding the optional Copy feature (see Fig. 4), we
refine our example product line. The new product line generates twice as many
products as the original one, but what matters is that half of them – the ones
that do not have feature Copy – behave exactly as the original products. This
ensures that the transformation is safe; we extended the product line without
impacting existing users.

3.1 Formalization

We formalize these ideas in terms of product refinement (see Assumption 2).
Basically, each program generated by the original product line must be refined
by some program of the new, improved, product line.

Definition 7. 〈Product line refinement〉
For product lines (F,A,K) and (F ′, A′,K ′), the first is refined by the second,
denoted

(F,A,K) � (F ′, A′,K ′)

whenever

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 � A′〈[[K ′]]c′〉

Remember that, for a configuration c, a configuration knowledgeK, and an asset
mapping A related to a given product line, A〈[[K]]c〉 is a well-formed set of assets.
So A〈[[K]]c〉 � A′〈[[K ′]]c′〉 refers to the product refinement notion discussed in
Sec. 2.2.
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3.2 Examples and Considerations

To explore the definition just introduced, let us analyze a few concrete product
line transformation scenarios.

Feature names do not matter. First let us see how the definitions applies
to the transformation depicted by Fig. 3. The feature models differ only by the
name of a single feature. So they generate the same set of configurations, modulo
renaming. For instance, for the source (left) product line configuration {Music,
240x320}we have the target (right) product line configuration {Audio, 240x320}.
As the CKs have the same structure, evaluating them with these configurations
yield

{Commmon.aj, Music.java, . . . }

and

{Commmon.aj, Audio.java, . . . }.

The resulting sets of asset names differ at most by a single element: Audio.java
replacing Music.java. Finally, when applying these sets of names to both asset
mappings, we obtain the same assets modulo global renaming, which is a well
known refinement for closed programs. This is precisely what, by Definition 7,
we need for assuring that the source product line is refined by the target product
line.

This example shows that our refinement definition focus on the product line
themselves, that is, the sets of products that can be generated. Contrasting with
our previous notion of feature model refactoring [AGM+06], feature names do
not matter. So users will not notice they are using products from the new product
line, although developers might have to change their feature nomenclature when
specifying product configurations. Not caring about feature names is essential
for supporting useful refinements such as the just illustrated feature renaming
and others that we discuss later.

Safety for existing users only. To further explore the definitions, let us
consider now the transformation shown in Fig. 4. The target feature model has
an extra optional feature. So it generates all configurations of the source feature
model plus extensions of these configurations with feature Copy. For example,
it generates both {Music, 240x320} and {Music, 240x320, Copy}. For checking
refinement, we focus only on the common configurations to both feature models
– configurations without Copy. As the target CK is an extension of the source
CK for dealing with cases when Copy is selected, evaluating the target CK with
any configuration without Copy yields the same asset names yielded by the
source CK with the same configuration. In this restricted name domain, both
asset mappings are equal, since the target mapping is an extension of the first
for names such as CopyPhoto.java, which appears only when Copy is selected.
Therefore, the resulting assets produced by each product line are the same,
trivially implying program refinement and then product line refinement.
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By focusing on the common configurations to both feature models, we check
nothing about the new products offered by the new product line. In fact, they
might even not operate at all. Our refinement notion assures only that users
of existing products will not be disappointed by the corresponding products
generated by the new product line. We give no guarantee to users of the new
products, like the ones with Copy functionalities in our example. So refinements
are safe transformations only in the sense that we can change a product line
without impacting existing users.

Non refinements. As discussed, the transformation depicted in Fig. 3 is a
refinement. Classes and aspects are transformed by a global renaming, which
preserves behavior for closed programs. But suppose that, besides renaming,
we change the AppMenu.aj2 aspect so that, instead of the menu on the left
screenshot in Fig. 1, we have a menu with “Photos” and “Audio” options. The
input-output behavior of new and original products would then not match, and
users would observe the difference. So we would not be able to prove program
refinement, nor product line refinement, consequently.

Despite not being a refinement, this menu change is an useful product line
improvement, and should be carried on. The intention, however, is to change
behavior, so developers will not be able to rely on the benefits of checking re-
finement. The benefits of checking for refinement only apply when the intention
of the transformation is to improve product line configurability or internal struc-
ture, without changing observable behavior.

3.3 Basic Properties

To support stepwise product line development and evolution, we now establish
that product line refinement is a pre-order.

Theorem 9. 〈Product line refinement reflexivity〉

∀l : ProductLine · l � l

Proof: Let l = (F,A,K) be an arbitrary product line. By Definition 7, we have
to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 � A〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], just let c′ be c and the proof follows from product
refinement reflexivity (Axiom 3). �

Theorem 10. 〈Product line refinement transitivity〉

∀l1, l2, l3 : ProductLine · l1 � l2 ∧ l2 � l3 ⇒ l1 � l3

2 See Sec. 2.3 for understanding the role this aspect plays.
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Proof: Let l1 = (F1, A1,K1), l2 = (F2, A2,K2), l3 = (F3, A3,K3) be arbitrary
product lines. Assume that l1 � l2 ∧ l2 � l3. By Definition 7, this amounts to

∀c1 ∈ [[F1]] ∧ ∃c2 ∈ [[F2]] · A1〈[[K1]]c1〉 � A2〈[[K2]]c2〉 (3)

and

∀c2 ∈ [[F2]] · ∃c3 ∈ [[F3]] · A2〈[[K2]]c2〉 � A3〈[[K3]]c3〉 (4)

We then have to prove that

∀c1 ∈ [[F1]] · ∃c3 ∈ [[F3]] · A1〈[[K1]]c1〉 � A3〈[[K3]]c3〉

For an arbitrary c1 ∈ [[F1]], we have to prove that

∃c3 ∈ [[F3]] · A1〈[[K1]]c1〉 � A3〈[[K3]]c3〉 (5)

Properly instantiating c1 in 3, we have

∃c2 ∈ [[F2]] · A1〈[[K1]]c1〉 � A2〈[[K2]]c2〉

Let c′2 be such c2. Properly instantiating c′2 in 4, we have

∃c3 ∈ [[F3]] · A2〈[[K2]]c′2〉 � A3〈[[K3]]c3〉

Let c′3 be such c3. Then we have

A1〈[[K1]]c1〉 � A2〈[[K2]]c′2〉 ∧A2〈[[K2]]c′2〉 � A3〈[[K3]]c′3〉

By product refinement transitivity (Axiom 4), we have

A1〈[[K1]]c1〉 � A3〈[[K3]]c′3〉

This gives us the c3 in 5 that completes our proof. �

4 Product Line Refinement Compositionality

The product line refinement notion allows one to reason about a product line
as a whole, considering its three elements (artifacts): feature model, CK, and
asset mapping. However, for independent development of product line artifacts,
we must support separate and compositional reasoning for each product line
artifact. This allows us to evolve product line artifacts independently. We first
consider feature models. Replacing a feature model by an equivalent one leads
to a refined product line.

Theorem 11. 〈Feature model equivalence compositionality〉
For product lines (F,A,K) and (F ′, A,K), if

F ∼= F ′
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then

(F,A,K) � (F ′, A,K)

Proof: For arbitrary F , F ′, A, K, assume that F ∼= F ′. By Definition 7, we
have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ′]] · A〈[[K]]c〉 � A〈[[K]]c′〉

From our assumption and Definition 1, this is equivalent to

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 � A〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], just let c′ be c and the proof follows from product
refinement reflexivity (Axiom 4). �
We require feature model equivalence because feature model refinement, which
requires [[F ]] ⊆ [[F ′]] instead of [[F ]] = [[F ′]], is not enough for ensuring that
separate modifications to a feature model imply refinement for the product line.
In fact, refinement allows the new feature model to have extra configurations
that might not generate valid products; the associated feature model refinement
transformation would not lead to a valid product line. For example, consider
that the extra configurations result from eliminating an alternative constraint
between two features, so that they become optional. The assets that implement
these features might well be incompatible, generating an invalid program when
both features are selected. Refinement of the whole product line, in this case,
would also demand changes to the assets and CK.

We can also independently evolve a CK. For similar reasons, we require CK
equivalence as well.

Theorem 12. 〈CK equivalence compositionality〉
For product lines (F,A,K) and (F,A,K ′), if

K ∼= K ′

then

(F,A,K) � (F,A,K ′)

Proof: The proof is similar to that of Theorem 11, using Definition 2 instead of
Definition 1. �
Note that the reverse does not hold because the asset names generated by K
and K ′ might differ for assets that have no impact on product behavior,3 or for
assets that have equivalent behavior but are named differently in the product
lines. For similar reasons, the reverse does not hold for Theorem 11.

For asset mappings, we can rely only on refinement. Separately refining an
asset mapping implies refinement for the product line as a whole.
3 Obviously an anomaly, but still possible.
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Theorem 13. 〈Asset mapping refinement compositionality〉
For product lines (F,A,K) and (F,A′,K), if

A � A′

then

(F,A,K) � (F,A′,K)

Proof: For arbitrary F , A, A′, and K, assume that A � A′. By Definition 7, we
have to prove that

∀c ∈ [[F ]] · ∃c′ ∈ [[F ]] ·A〈[[K]]c〉 � A′〈[[K]]c′〉

For an arbitrary c ∈ [[F ]], if we prove

A〈[[K]]c〉 � A′〈[[K]]c〉 (6)

then c is the necessary c′ we need to complete the proof. By Lemma 5 and our
assumption, we have that

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 � as ∪A′〈ans〉
(7)

By properly instantiating ans with [[K]]c and as with {} in 7, from set union
properties we obtain

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 � A′〈[[K]]c〉

(8)

From Definition 6, we have that wf(A〈[[K]]c〉) for all c ∈ [[F ]]. Therefore, from
this and 8 we obtain

wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 � A′〈[[K]]c〉

concluding the proof (see 6). �

Finally, we have the full compositionality theorem, which justifies completely
independent development of product line artifacts.

Theorem 14. 〈Full compositionality〉
For product lines (F,A,K) and (F ′, A′,K ′), if

F ∼= F ′ ∧A � A′ ∧K ∼= K ′

then

(F,A,K) � (F ′, A′,K ′)
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Proof: First assume that F ∼= F ′, A � A′, and K ∼= K ′. By Lemma 6, the fact
that (F,A,K) is a product line, and Definition 6, we have that (F ′, A,K) is a
product line. Then, using Theorem 11, we have

(F,A,K) � (F ′, A,K) (9)

Similarly, from our assumptions, deductions, and Lemma 7 we have that
(F ′, A,K ′) is a product line. Using Theorem 12, we have

(F ′, A,K) � (F ′, A,K ′) (10)

Again, from our assumptions, deductions, and Lemma 8, we have that
(F ′, A′,K ′) is a product line. Using Theorem 13, we have

(F ′, A,K ′) � (F ′, A′,K ′) (11)

The proof then follows from 9, 10, 11, and product line refinement transitivity
(Theorem 10). �

5 Related Work

The notion of product line refinement discussed here first appeared in a product
line refactoring tutorial [Bor09]. Besides talking about product line and pop-
ulation refactoring, this tutorial illustrates different kinds of refactoring trans-
formation templates that can be useful for deriving and evolving product lines.
In this paper we extend the initial formalization of the tutorial making clear
the interface between our theory and languages used to describe product line
artifacts. We also derive a number of properties that were not explored in the
tutorial. We encode the theory in the PVS specification language and prove all
properties with the PVS prover.

Our notion of product line refinement goes beyond refactoring of feature mod-
els [AGM+06, GMB08], considering also other artifacts like configuration knowl-
edge and assets, both in isolation and in an integrated way. In particular, the
refinement notion explored here is independent of the language used to describe
feature models. The cited formalization of feature models [AGM+06, GMB08],
and others [SHTB07], could, however, be used to instantiate our theory for deal-
ing with specific feature model notation and semantics. Similarly, our theory is
independent of product refinement notions. A program refinement notion, like
the one for a sequential subset of Java [SB04, BSCC04], could be used to instan-
tiate our general theory.

Early work [CDCvdH03] on product line refactoring focus on Product Line
Architectures (PLAs) described in terms of high-level components and connec-
tors. This work presents metrics for diagnosing structural problems in a PLA,
and introduces a set of architectural refactorings that can be used to resolve
these problems. Besides being specific to architectural assets, this work does not
deal with other product line artifacts such as feature models and configuration
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knowledge. There is also no notion of behavior preservation for product lines, as
captured here by our notion of product line refinement.

Several approaches [KMPY05, TBD06, LBL06, KAB07] focus on refactoring
a product into a product line, not exploring product line evolution in general,
as we do here. First, Kolb et al. [KMPY05] discuss a case study in refactor-
ing legacy code components into a product line implementation. They define
a systematic process for refactoring products with the aim of obtaining prod-
uct lines assets. There is no discussion about feature models and configuration
knowledge. Moreover, behavior preservation and configurability of the resulting
product lines are only checked by testing. Similarly, Kastner et al. [KAB07] fo-
cus only on transforming code assets, implicitly relying on refinement notions for
aspect-oriented programs [CB05]. As discussed here and elsewhere [Bor09] these
are not adequate for justifying product line refinement and refactoring. Trujillo
et al. [TBD06] go beyond code assets, but do not explicitly consider transforma-
tions to feature model and configuration knowledge. They also do not consider
behavior preservation; they indeed use the term “refinement”, but in the quite
different sense of overriding or adding extra behavior to assets.

Liu et al. [LBL06] also focus on the process of decomposing a legacy application
into features, but go further than the previously cited approaches by proposing a
refactoring theory that explains how a feature can be automatically associated
to a base asset (a code module, for instance) and related derivative assets, which
contain feature declarations appropriate for different product configurations.Con-
trasting with our theory, this theory does not consider feature model transforma-
tions and assumes an implicit notion of configuration knowledge based on the idea
of derivatives. So it does not consider explicit configuration knowledge transfor-
mations as we do here. Their work is, however, complementary to ours since we
abstract from specific asset transformation techniques such as the one supported
by their theory. By proving that their technique can be mapped to our notion of
asset refinement, both theories could be used together.

The theory we present in this paper aims to formalize concepts and pro-
cesses from tools [LBL06, CBS+07, ACN+08] and practical experience [ACV+05,
AJC+05, KMPY05, AGM+06, TBD06, KAB07] on product line refactoring. A
more rigorous evaluation of the proposed theory is, however, left as future work.

6 Conclusions

In this paper we present a general theory of product line refinement, formalizing
refinement and equivalence notions for product lines and its artifacts: feature
model, configuration knowledge, and asset mapping. More important, we estab-
lish a number of properties that justify stepwise and compositional product line
development and evolution. The presented theory is largely independent of the
languages used to describe feature model, configuration knowledge, and reusable
assets. We make this explicit through assumptions and axioms about basic con-
cepts related to these languages.

By instantiating this theory with proper notations and semantic formaliza-
tions for feature models and the other product line artifacts, we can directly
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use the refinement and equivalence notions, and the associated properties, to
guide and improve safety of the product line derivation and evolution processes.
Such an instantiation also allows one to formally prove soundness of product
line refactoring transformation templates [Bor09] expressed in those notations.
As the transformation templates precisely specify the transformation mechanics
and preconditions, their soundness is specially useful for correctly implementing
the transformations and avoiding typical problems with current program refac-
toring tools [ST09]. In fact, soundness could help to avoid even subtler problems
that can appear with product line refactoring tools.
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A Extra Proofs

In this appendix we present the proofs we omitted in the main text. The
PVS specification of the whole theory, and proof files for all lemmas and
theorems are available at http://twiki.cin.ufpe.br/twiki/bin/view/SPG/
TheorySPLRefinement.

Lemma 1. 〈Distributed mapping over union〉
For asset mapping A, asset a, and finite sets of asset names S and S′, if

a ∈ A〈S ∪ S′〉

then

a ∈ A〈S〉 ∨ a ∈ A〈S′〉

Proof: For arbitrary A, a, S , and S′, assume a ∈ A〈S ∪ S′〉. From this and
Definition 4 (A〈〉) we have

a ∈ {a : Asset | ∃n ∈ S ∪ S′ · (n, a) ∈ m}

From set union and membership properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m ∨ ∃n ∈ S′ · (n, a) ∈ m}

http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/TheorySPLRefinement
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From set comprehension properties, we have

a ∈ {a : Asset | ∃n ∈ S · (n, a) ∈ m} ∪ {a : Asset | ∃n ∈ S′ · (n, a) ∈ m}

By applying twice Definition 4 (A〈〉), we derive

a ∈ A〈S〉 ∪A〈S′〉 ��

The proof follows from the above and set membership properties.

Lemma 2. 〈Distributed mapping over singleton〉
For asset mapping A, asset name an, and finite set of asset names S, if

an ∈ dom(A)

then

∃a : Asset · (an, a) ∈ A ∧ A〈an ∪ S〉 = a ∪A〈S〉

Proof: For arbitrary A, an, and S, assume an ∈ dom(A). From this, Definition 4
(dom), and set comprehension and membership properties, we have

∃a : Asset · (an, a) ∈ A (12)

Let a1 be such a. By Definition 4 (A〈〉), we have

A〈an ∪ S〉 = {a : Asset | ∃n ∈ an ∪ S · (n, a) ∈ A}

Again, by set membership and comprehension properties, we have

A〈an ∪ S〉 =
{a : Asset | ∃n ∈ {an} · (n, a) ∈ A}

∪ {a : Asset | ∃n ∈ S · (n, a) ∈ A}

By Definition 4 (A〈〉), our assumption that A is an asset mapping, and set
membership and comprehension properties, we have

A〈{an} ∪ S〉 = a1 ∪A〈S〉

From this and remembering that 12 was instantiated with a1, a1 provides the a
we need to conclude the proof. ��

Lemma 3. 〈Asset mapping domain membership〉
For asset mapping A, asset name an, and asset a, if

(an, a) ∈ A

then

an ∈ dom(A)

Proof: For arbitrary A, an, and a, assume (an, a) ∈ A. By Definition 4 (dom),
we have to prove that

∃x : Asset | (an, x) ∈ A ��
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Let x be a, and this concludes the proof.

Lemma 4. 〈Distributed mapping over set of non domain elements〉
For asset mapping A and finite set of asset names S, if

¬∃n ∈ S · n ∈ dom(A)

then

A〈S〉 = {}

Proof: For arbitrary A and S, assume ¬∃n ∈ S · n ∈ dom(A). By Definition 4
(A〈〉), we have to prove that

{a : Asset | ∃n ∈ S · (n, a) ∈ A} = {}

By Lemma 3, we then have to prove that

{a : Asset | ∃n ∈ S · n ∈ dom(A) ∧ (n, a) ∈ A} = {}

The proof follows from the above, our assumption, and set comprehension prop-
erties. ��

Lemma 5. 〈Asset mapping compositionality〉
For asset mapping A and A′, if

A � A′

then

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 � as ∪A′〈ans〉

Proof: For arbitrary A and A′, assume A � A′. From Definition 5, we have

dom(A) = dom(A′)
∧ ∀n ∈ dom(A)·

∃a, a′ : Asset · (n, a) ∈ A ∧ (n, a′) ∈ A′ ∧ a � a′
(13)

By induction on the cardinality of ans, assume the induction hypothesis

∀ans′ : fset[AssetName]·
card(ans′) < card(ans)

⇒ ∀as : fset[Asset]·
wf(as ∪A〈ans′〉)

⇒ wf(as ∪A′〈ans′〉) ∧ as ∪A〈ans′〉 � as ∪A′〈ans〉

(14)
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and we have to prove

∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉) ∧ as ∪A〈ans〉 � as ∪A′〈ans〉
(15)

By case analysis, now consider that ¬(∃an ∈ ans · an ∈ dom(A)). By Lemma 4,
we have that A〈ans〉 = {}. Similarly, given that dom(A) = dom(A′) (see 13),
we also have that A′〈ans〉 = {}. So, by set union properties, we are left to prove
that

∀as : fset[Asset] · wf(as) ⇒ wf(as) ∧ as � as

The proof trivially follows from Axiom 3 and propositional calculus.
Let’s now consider the case ∃an ∈ ans ·an ∈ dom(A). By basic set properties,

we have that ans = an ∪ ans′ for some asset name an ∈ dom(A) and set ans′

such that an �∈ ans′. Then, from 15, we are left to prove that

∀as : fset[Asset]·
wf(as ∪A〈an ∪ ans′〉)

⇒ wf(as ∪A′〈an ∪ ans′〉)
∧ as ∪A〈an ∪ ans′〉 � as ∪A′〈an ∪ ans′〉

By Lemma 2, given that an ∈ dom(A) and consequently an ∈ dom(A′), we have
that A〈an ∪ ans′〉 = a ∪ A〈ans′〉 and A′〈an ∪ ans′〉 = a′ ∪ A′〈ans′〉 for some
assets a and a′. From 13, we also have that a � a′. By equational reasoning, we
then have to prove that

∀as : fset[Asset]·
wf(as ∪ a ∪A〈ans′〉)

⇒ wf(as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A〈ans′〉 � as ∪ a′ ∪A′〈ans′〉

For an arbitrary as, assume wf(as ∪ a ∪ A〈ans′〉) and then we have to prove
that

wf(as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A〈ans′〉 � as ∪ a′ ∪A′〈ans′〉

(16)

By the induction hypothesis (see 14), instantiating ans′ with the ans′ just in-
troduced, note that we will have card(ans′) < card(ans) and, therefore

∀as : fset[Asset]·
wf(as ∪A〈ans′〉)
⇒ wf(as ∪A′〈ans′〉) ∧ as ∪A〈ans′〉 � as ∪A′〈ans〉
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From this, instantiating as as as ∪ a, and remembering that we have already
assumed wf(as ∪ a ∪A〈ans′〉), we have

wf(as ∪A′〈ans′〉)
∧ as ∪A〈ans′〉 � as ∪A′〈ans〉

Now, given that a � a′, from the compositionality axiom (Axiom 5) and the
above we have that

wf(()as ∪ a′ ∪A′〈ans′〉)
∧ as ∪ a ∪A′〈ans′〉 � as ∪ a′ ∪A′〈ans′〉

The proof then follows from 16, the above, and Axiom 4. ��

Lemma 6. 〈Feature model equivalence compositionality over wf〉
For feature models F and F ′, asset mapping A, and configuration knowledge K,
if

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ′]] · wf(A〈[[K]]c〉)

Proof: For arbitrary F , F ′, A, and K, assume

F ∼= F ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

By Definition 1, what we have to prove is equivalent to

∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

which corresponds to our assumption. ��

Lemma 7. 〈CK equivalence compositionality over wf〉
For feature model F , asset mapping A, and configuration knowledge K and K ′,
if

K ∼= K ′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A〈[[K ′]]c〉)

Proof: Similar to proof of Lemma 6, using Definition 2 instead. ��
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Lemma 8. 〈Asset mapping refinement compositionality over wf〉
For feature model F , asset mappings A and A′, and configuration knowledge K,
if

A � A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉)

then

∀c ∈ [[F ]] · wf(A′〈[[K]]c〉)

Proof: For arbitrary F , A, A′, and K, assume

A � A′ ∧ ∀c ∈ [[F ]] · wf(A〈[[K]]c〉) (17)

For an arbitrary c ∈ [[F ]], we then have to prove that

wf(A′〈[[K]]c〉) (18)

By properly instantiating the assumption (17) with the just introduced c, we
have

wf(A〈[[K]]c〉) (19)

From Lemma 5 and the assumption (17), we have

∀ans : fset[AssetName] · ∀as : fset[Asset]·
wf(as ∪A〈ans〉)

⇒ wf(as ∪A′〈ans〉)∧
as ∪A〈ans〉 � as ∪A′〈ans〉

Instantiating ans with [[K]]c, as with {}, and by set union properties, we have

wf(A〈[[K]]c〉)
⇒ wf(A′〈[[K]]c〉) ∧A〈[[K]]c〉 � A′〈[[K]]c〉

The proof (see 18) then follows from the above and 19. ��
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Model checking has proved to be an eÆcient technique for finding subtle bugs in con-
current and distributed algorithms and systems. However, it is usually limited to the
analysis of small instances of such systems, due to the problem of state space explosion.
When model checking finds no more errors, one can attempt to verify the correctness
of a model using theorem proving, which also requires eÆcient tool support.

TLAPS, the TLA� proof system, is a platform for the development and mechanical
verification of TLA� proofs. Proofs are written in TLA�, which contains a hierarchi-
cal proof language based on elementary mathematics [1]. It has been designed inde-
pendently of any specific verification tool or strategy. TLAPS consists of a front-end,
called the proof manager, and of a collection of back-end verifiers that include theorem
provers, SMT solvers, and decision procedures. The proof manager interprets TLA�

proofs and generates the corresponding proof obligations that must be verified, The
current release [2] handles almost all the non-temporal part of TLA�, which suÆces for
proving standard safety properties, but not liveness properties. The proof manager sup-
ports hierarchical and non-linear proof construction and verification so that the skeleton
of an incomplete proof can be verified independently of the lower-level subproofs.

In this talk we discuss the design of the TLA� proof language and of the proof sys-
tem. The di�erent back-end verifiers used by TLAPS have complementary strengths
and weaknesses, and having a heterogeneous set of proof techniques makes for a
stronger overall verification system. However, it is important to ensure the overall cor-
rectness of the resulting proof. We approach this problem by making back-end verifiers
proof-producing and certifying these proofs within the kernel of the interactive proof
assistant Isabelle, for which we developed an encoding of the TLA� logic.
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Abstract. Most type systems of statically typed XML processing lan-
guages are implemented based on regular expression types, where sub-
typing reduces to checking inclusion between tree automata, which is not
efficient enough. The paper proposes the regular tree grammars with dis-
joint production rules and presents a subtyping method which is based
on checking inclusion between regular expressions. The commonly used
XML schema languages such as DTDs and XML Schemas can be de-
scribed by the restricted grammars. The method works in a bottom-up
way on the structures of type expressions. According to the regular ex-
pressions used in XML schema languages, different inclusion algorithms
can be applied to this method. Experiments show the effectiveness of our
method.

Keywords: XML, tree grammar, subtyping, algorithm.

1 Introduction

XML is a simple but flexible format for structured data that has been applied
in many areas such as web services, databases, and so on. One important is-
sue of XML processing is type checking, in which XML schema languages are
regarded as types and subtype relations are checked at compile-time to ensure
type correctness of programs. Many languages, such as XDuce [1,2], CDuce [3],
etc., adopt unranked regular tree languages as types, which cover the commonly
used schema languages. The typical way of checking subtype relation is based
on tree automata, where subtyping reduces to checking inclusion between tree
automata. While regular tree languages are quite powerful in expressiveness,
subtyping is however expensive; the complexity is EXPTIME for the inclusion
of regular tree languages or, equivalently, tree automata. There are also some
other ways to do type checking [4]. However, no report shows that these type
checkers are more efficient than the previous ones. Therefore, besides the work
on implementation techniques to improve efficiency in practice (e.g., [5,6]), re-
cently researches focus on finding subclasses of regular tree languages for which
subtyping is more efficient.

Suzuki [7] proposes a polynomial-time algorithm for solving a subproblem of
the inclusion problem for DTDs (Document Type Definitions) [8] defined by edit
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operations. Champavère et al. [9] present a polynomial-time algorithm for test-
ing inclusion between deterministic unranked tree automata and DTDs. Com-
plexities of decision problems for several subclasses of XML schema languages
involving subclasses of regular expressions are given in [10,11]. Colazzo, Ghelli
and Sartiani [12,13] give polynomial-time algorithms for a subclass of regular
expressions with interleaving and numerical occurrence indicators. These inves-
tigations, of course, are far from sufficient for practice purpose. In addition,
presently most of the researches focus on theoretical studies and do not use
them in subtyping and give experimental results.

As opposed to the way of restricting regular expressions to obtain subclasses of
regular tree languages, in this paper we define a different restriction on tree gram-
mars, i.e., disjointness among the languages specified by any two non-terminals.
As we will see in Section 2, DTDs and most actually used XML Schemas [14]
fall into the restricted grammars. This restriction is orthogonal to restrictions
on regular expressions with respect to subtyping. As a result, previous algo-
rithms on various subclasses of regular expressions as mentioned above can be
applied to the restricted tree grammars. We present a subtyping method for
the restricted grammars. Together with using the information of labels in the
restricted grammars, the method works in a bottom-up way on the structures
of type expressions. A type expression is gradually reduced after checking par-
tial subtype relations, which resembles the reduction of the production rules of
grammars. The time complexity of the subtyping algorithm is in PSPACE for the
restricted tree grammars with general regular expressions. It will be more effi-
cient if regular expressions in actual schemas are simple [10] or one-unambiguous
[15], the latter is recommended to use in DTDs and XML Schemas by W3C. Ex-
periments show the effectiveness of this method.

Section 2 introduces notations and notions required in the paper. Section 3
presents the subtyping method. Section 4 describes the experiments. Section 5
gives concluding remarks.

2 Notations and Notions

The paper deals with unranked tree languages, and the term unranked will be
omitted in the paper for simplicity when no confusion is caused.

2.1 Tree Grammars

Definition 1. A regular tree grammar is a 4-tuple G = (VN , VT , NS , P ), where
VN is a finite set of non-terminals, VT is a finite set of terminals (or labels),
NS ∈ VN is the start symbol, P is a finite set of the production rules of the form
N → lr, where N ∈ VN , l ∈ VT , and r is a regular expression over VN . N is
the left-hand side, lr is the right-hand side, and r is the content model of this
production rule.

Given a tree grammar G = (VN , VT , NS , P ), we write αNβ ⇒ αγβ if N → γ is
a production rule of G and α, β are strings over the alphabet VN ∪ VT . We say
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α1 derives αk if α1 ⇒ α2 ⇒ ... ⇒ αk, or shortly, α1 ⇒∗ αk. Given a regular
expression r over VN , let τ(r) denote the set of strings, which do not contain
any non-terminal, derived by r, and L(r) denote the regular language specified
by r.

Now we can define the regular tree grammars with disjoint production rules.

Definition 2. A regular tree grammar with disjoint production rules (RRTG)
G is a regular tree grammar in which any two production rules Ni → liri and
Nj → ljrj satisfy either (1) li �= lj, or (2) τ(ri) ∩ τ(rj) = ∅.
This means that in an RRTG, the sets of strings which do not contain any non-
terminal derived by any two non-terminals are disjoint. If RRTGs are applied to
describe XML schema languages, any two non-terminals (as elements in schemas)
define the disjoint sets of XML documents. Clearly, DTDs belong to RRTGs
since the elements and labels in DTDs are in one-to-one correspondence. For
XML Schemas, the type of each element is also unique in most cases since the
content models of elements can be specified in two ways: either directly via
complexType or simpleType, or indirectly using the type-attribute. Hence, two
elements with different types define disjoint sets of XML documents. So most
actually used XML Schemas can be defined by RRTGs.

Definition 2 defines the RRTGs in the normal form [16], that is, the right-
hand side of each production rule must contain a label. For practical reasons,
our method allows RRTGs to have some production rule of the form: N → r,
namely the right-hand side does not contain any label. Note that for any two
production rules of the form Ni → ri and Nj → rj , the intersection τ(ri)∩ τ(rj)
is not required to be empty, because the disjointness of the production rules
in the normal form grammar is not affected. Moreover, each non-terminal is
required to appear as the left-hand side of at most one production rule in our
method. For instance, two production rules of the form N → r1 and N → r2
should be replaced with one production rule:N → r1|r2. The resulting grammars
are equivalent in expressiveness to RRTGs in the normal form. In addition, the
recursive uses of non-terminals in production rules of the form N → r are allowed
only occurring in the tail position of r to ensure regularity.

Example 1. Given the following tree grammar G1 (not in the normal form),
which describes a simple database of DVD store, where the lowercase words are
labels and the words with an initial capital are non-terminals,

(1) Store → store (Regulars,Discounts)
(2) Regulars → Dvd1∗
(3) Discounts→ Dvd2, Dvd2∗
(4) Dvd1 → dvd (T itle, Price)
(5) Dvd2 → dvd (T itle, Price,Dis)
(5) T itle → title PCDATA
(7) Price → price PCDATA
(8) Dis → dis PCDATA

we can have, L(Dvd1) = {Dvd1}, τ(Dvd1) = {dvd (title, price)}. As data values
in XML documents, PCDATA are not considered in this paper.
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Both production rules (2) and (3) of G1 contain no label. As mentioned above,
the intersection τ(Dvd1∗) ∩ τ(Dvd2, Dvd2∗) is not required to be empty. Pro-
duction rules (4) and (5) have the same label dvd at their right-hand sides. And
τ(T itle, Price) ∩ τ(T itle, Price,Dis) = ∅. So G1 is an RRTG.

Note that not all schemas are specified by RRTGs. For instance, the following
grammarG2 is not an RRTG since the disjointness is not satisfied for the content
models of the production rules (4) and (5).

(1) S → s (A,B) (2) A→ a C1 (3) B → b C2
(4) C1 → c D∗ (5) C2 → c (D,D∗) (6) D → d

The immediate question is that whether a given regular tree grammar is an
RRTG. The case (1) in Definition 1 can be easily checked. The case (2) is a
semantic restriction. Theoretically, for two production rules with the same label
and content models r1, r2 respectively, we should check whether τ(r1) ∩ τ(r2) is
empty. In practice, most types in XML Schemas only depend on parent context
[17]. Namely for two non-terminals with the same label, the alphabet of r1 is
often a subset of the alphabet of r2. Hence, we only need to check whether
L(r1) ∩ L(r2) is empty in most cases, which is more efficient.

2.2 Terms and Subtype Relation

Checking the subtype relations between type expressions is the primary task of
type checking. Given the alphabet VN ∪ VT , terms T and their root nodes rt(T )
are defined as follows:

Definition rt(T )
T ::= N N ∈ VN {N}

ε empty term ∅
l(T1) l ∈ VT {l}
T1, T2 concatenation rt(T1) ∪ rt(T2)
T1|T2 union rt(T1) ∪ rt(T2)
T1∗ repetition rt(T1)

For the other regular expression operators “?” and “+”, T ? equals to T |ε; T+
equals to T, T ∗.

According to the definition, each term is actually in the tree structure, de-
scribing a sequence of tree nodes. The internal nodes of a term are labeled
with l, l ∈ VT and the other nodes, called the leaf nodes, are labeled with ε or
N,N ∈ VN . For l(T1), each root node of T1 is a child node of l and l is the
parent node.

If an RRTG G = (VN , VT , NS, P ) is applied to XML type checking, each term
over the alphabet VN ∪ VT can be regarded as a type expression in subtyping.
The subtype relation between two terms T1 and T2 is defined semantically [18]:
T1 is a subtype of T2, denoted by T1 <: T2, if each element of τ(T1) belongs to
τ(T2), that is, T1 <: T2 ⇔ τ(T1) ⊆ τ(T2).
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2.3 Other Notions

Given an RRTG G = (VN , VT , NS , P ) in the form mentioned above, let Rhs(N)
denote the right-hand side of the production rule with the left-hand side N .
Given three terms T,X and Y over the alphabet VN ∪ VT , let ΣT denote the
non-terminals occurring in T , T (X/Y ) denote the replacement of X in T with
Y , X ≺ Y denote that X is a subexpression of Y .

Definition 3. Given a term T , the depth of each root node of T is 1, and the
depth of a node s, denoted by dp(s), is k + 1 if dp(s′) = k and s is a child node
of s′. The depth of T , denoted by Dp(T ), is the maximal depth of all nodes in
T . Dp(ε) = 0.

Note that dp(s) may have different values if more than one nodes are labeled
with the same symbol s in a term. So we specify the node s before using dp(s)
to make sure that no confusion is caused.

Our method works in a bottom-up way on the structures of terms. Hence we
define the bottom expressions of a term.

Definition 4. The bottom expression set of a term T , denoted by bes(T ), is
defined as follows:

bes(T ) =

⎧⎨
⎩
∅, if Dp(T ) = 0
{T }, if Dp(T ) = 1
{li(Ti) | li(Ti) ≺ T, dp(li) = Dp(T )− 1}, if Dp(T ) > 1

We can see that li is one of the deepest label of T if li(Ti) ∈ bes(T ). For instance,
bes(store(dvd(T itle, Price), Dvd2)) = {dvd(T itle, Price)}

In our method, subtyping two terms is based on checking inclusion between
regular expressions. Hence we define the following notions to help explain how
to obtain the appropriate regular expressions from terms.

Definition 5. The unfolding tree of a non-terminal N , denoted by ut(N), is
defined as follows:

ut(N) =
{
N, if ΣRhs(N) = ∅
N(ut(N1), ..., ut(Nk)), if ΣRhs(N) = {N1, ..., Nk} ⊆ VN

Assume that N ′ is a non-terminal appearing in ut(N), denoted by N ′ ∈ ut(N).
The unfolding length of N ′ with respect to N , denoted by uflN (N ′), is defined as
follows, where min indicates choosing the minimal element of a set.

uflN (N ′) =
{

0, if N = N ′

1 +min{uflNi(N ′) | Ni ∈ ΣRhs(N), N
′ ∈ ut(Ni)}, if N �= N ′

Note that uflN (N ′) is meaningless if N ′ does not appear in ut(N). An unfolding
tree may be infinite for a recursive grammar. However, only the unfolding lengths
are concerned. The unfolding length of a non-terminal N ′ with respect to N is
unique if N is specified.

For instance, ut(Regulars) = Regulars(Dvd1(T itle, Price)), from which we
can obtain some unfolding lengths such as uflRegulars(Price) = 2.



50 L. Chen and H. Chen

Definition 6. A non-terminal N is called an ancestor of a term X, denoted by
N ↓ X, if there exists some term Y satisfying N ⇒∗ Y and X ≺ Y .

For instance, Regulars⇒∗ dvd(T itle, Price)∗, Discounts ↓ Dis, etc.

Definition 7. Given two regular expressions r1, r2 over VN , suppose r1 �= r2
and r1 ⇒∗ r2, a non-terminal A is called a local recursive type (LRT) of r1 ⇒∗

r2, if A ∈ Σr1 and there exists a regular expression r′2 satisfying r′2 ≺ r2, A ∈
Σr′

2
, A⇒∗ r′2, and r′2 �= A.

Note that LRTs are non-terminals recursively used in the scope of a label. For
instance, A is an LRT of A⇒∗ B,A|ε if A→ B,A|ε ∈ P , and A is not an LRT
of A⇒∗ l(B,A|ε) if A→ l(B,A|ε) ∈ P though A is recursively defined.

Definition 8. Given two regular expressions r1 and r2, we say that the pair
(r1, r2) is comparable if Σr1 ⊆ Σr2 .

For instance, (Dvd1, Dvd1∗) is comparable and (Dvd1, Regulars) is not.

3 Subtyping

3.1 Comparable Regular Expressions

According to the structures of terms, the inclusion relations between regular ex-
pressions may be checked at each level in a bottom-up process of our method.
Sometimes the inclusion relations can not be checked directly. For two reg-
ular expressions r1 and r2 over VN , L(r1) ⊆ L(r2) may not be satisfied if
r1 <: r2. For instance, using G1 from Example 1, Dvd1 <: Regulars. However,
this subtype relation can not be derived from checking inclusion between the
regular expressions Dvd1 and Regulars because they are not comparable
as regular expressions. To check this subtype relation by testing inclusion of
the regular expressions, first we should replace Regulars with an appropriate
regular expression derived from it. Here is Dvd1∗.

Given two regular expressions r and r′ over VN with r ⇒∗ r′, the regular
expression r′ is appropriate for a non-negative integer m if, given a non-terminal
N such that N ↓ r and N ↓ r′, r′ does not contain a non-terminal Ni which
satisfies both the following conditions: (1) uflN (Ni) < m, (2) Rhs(Ni) is a regular
expression over VN .

Note that r′ is a regular expression over VN and r′ may be different for
different m. How to choose m will be introduced below. Here the appropriate
regular expression derived from Regulars is Dvd1∗ for N = Store,m = 2. And
then (Dvd1, Dvd1∗) is comparable so inclusion can be checked.

The following algorithm comp(N, r1, r2) transforms (r1, r2) to (r′1, r
′
2) which

is comparable, where r′1 and r′2 are the appropriate regular expressions derived
from r1 and r2 respectively. In the algorithm, the non-terminal N is obtained by
using the information of label (see Section 3.3). And N is a common ancestor of
r1 and r2, which is a premise of this algorithm.
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Algorithm 1. comp(N, r1, r2)
1. U = {uflN (Ni) | Ni ∈ Σr1}
2. V = {uflN (Ni) | Ni ∈ Σr2}
3. m is the maximal element in U ∪ V
4. r′1 = unfd(N, r1,m)
5. r′2 = unfd(N, r2,m)
6. r′1 := r′1(N1/ε) for each term N1 if N1 ⇒∗ ε
7. r′2 := r′2(N2/ε) for each term N2 if N2 ⇒∗ ε
8. return (r′1, r′2)

In Algorithm 1, the function unfd(N, r,m) calculates an appropriate regular
expression r′ derived from r for the integer m and eliminates LRTs therein.
According to the integer m and the unfolding lengths of non-terminals in r with
respect to N , the order of deriving of r ⇒∗ r′ is controlled in this function.
Meanwhile, we design a strategy of eliminating LRTs. Assume that r ⇒∗ r1 ⇒∗

r2 ⇒∗ r′ and A is an LRT of r1 ⇒∗ r2, there must be a subexpression r′2 of r2
such that

A⇒∗ r′2 = (R1, A) | ... | (Rn, A) | Rn+1 ,

where each Ri is a regular expression over VN , and A /∈ ΣRi . We briefly explain
why r′2 is in the above form: First note that both r1 and r2 are regular expressions
over VN ; second, in each branch (Ri, A), non-terminal A must occur in the
tail position because the recursive uses of non-terminals must occur in the tail
positions of content models; and there must be a branch not containing A, here
Rn+1. Otherwise A can not derive a string which does not contain any non-
terminal, namely it is not well defined. So we can get

A equals to (R1 | ... | Rn)∗, Rn+1 .

And since A ⇒∗ r′2 is known, the LRT A can be eliminated in r2 by replacing
the whole subexpression r′2 with (R1 | ... | Rn)∗, Rn+1, that is,

r2 := r2(r′2 / ((R1 | ... | Rn)∗, Rn+1)) .

Though some LRTs are eliminated from r to r′, we still say that r′ is an expression
derived from r for succinctness, also denoted by r ⇒∗ r′.

Besides, the strategy of eliminating LRTs can make subtyping union types
easier. The main difficulty of subtyping arises from union types [19]. Considering
checking l(A,B) <: l(C,D)|l(E,F ). The following rule may be used.

l(A,B) <: l(C,D) or l(A,B) <: l(E,F )
l(A,B) <: l(C,D)|l(E,F )

However, this rule is too weak. For instance, neither premise holds for checking
l((C|E), D) <: l(C,D)|l(E,D). Another solution is one that transforms the left-
hand side to l(C,D)|l(E,D) by distributing all union types over labels. However,
this solution does not work for recursive types, where the distributivity may be
infinite. In our method, LRTs are the recursive types which essentially influence
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the distributivity. Other recursive types which are not LRTs do not affect the
distributivity because only the inclusion of regular expressions at the bottom
level is considered in bottom-up process. Since LRTs are eliminated in the func-
tion unfd(N, r,m), the distributivity of union types over labels can be applied
finitely in our method. And then the subtype relations can reduce to checking
the subtype relation of each branch of union types.

Algorithm 1 can be illustrated by Figure 1, where each triangle denotes the
unfolding tree ut(N), the solid lines inside of triangles denote regular expressions
over VN , the distances between the tops of triangles and the solid lines denote
the unfolding lengths of the non-terminals occurring in the regular expressions
with respect to N , the broken lines show the bound of non-terminals occurring in
regular expressions. Before executing Algorithm 1, the leftmost triangle shows
that the maximal unfolding length is m and N ↓ r1, N ↓ r2. The other two
triangles express the results of Algorithm 1. The unfolding lengths of all non-
terminals in r′1 and r′2 with respect to N are close to m as far as possible. As
shown in Figure 1, the solid lines of r′1 and r′2 are not straight, meaning that
r′1 and r′2 may contain some non-terminals whose unfolding lengths with respect
to N are less than m. Of course, the right-hand sides of the production rules of
these non-terminals are definitely contain some label.

1

2

1 2

Fig. 1. Illustration of comp(N, r1, r2)

Example 2. Assume that the production rule (2) in G1 is replaced with the
recursive one:

Regulars→ (Dvd1, Regulars)|ε

Let (r1, r2) = (Dvd1, Regulars), N = Store. We can have that Regulars is
the LRT of Regulars⇒ (Dvd1, Regulars)|ε. So Regulars equals to Dvd1∗ and
comp(Store,Dvd1, Regulars) = (Dvd1, Dvd1∗).

Lemma 1. Given two regular expressions r1, r2 over VN with r1 <: r2, if there
is a non-terminal N , such that N ↓ r1, N ↓ r2, and (r′1, r

′
2) = comp(N, r1, r2),

then (r′1, r′2) is comparable.
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Proof. Assume that (r′1, r
′
2) is not comparable. There must be at least one non-

terminal N ′ such that N ′ ∈ Σr′
1

and N ′ /∈ Σr′
2
. Since the restriction of RRTGs,

it will immediately lead to a contradiction to r1 <: r2 if N ′ does not occur in
any expression derived from r2. So N ′ must occur in some expression derived
from r2, denoted by r′′2 , satisfying one of the following two cases:

(1) r2 ⇒∗ r′′2 ⇒∗ r′2 (2) r2 ⇒∗ r′2 ⇒∗ r′′2

For case (1), uflN (N ′) is as close to m as possible since N ′ ∈ Σr′
1
. So N ′ must

occur in r′2. This leads to a contradiction. For case (2), there must be two non-
terminals N2 and N ′

2 satisfying N2 ∈ Σr2 , N
′
2 ∈ Σr′

2
and N ↓ N2 ↓ N ′

2 ↓ N ′ so
we can get uflN (N ′) = uflN (N2) + uflN2(N ′

2) + uflN ′
2(N ′). And uflN (N ′) ≤ m

since N ′ ∈ Σr′
1
. So uflN (N2) + uflN2(N ′

2) < m, that is uflN (N ′
2) < m. But now

N ′
2 can continue deriving a new expression because r′′2 exists. This leads to a

contradiction to the notion of appropriate regular expressions. Both cases can
not be satisfied. ��

Lemma 2. Given two regular expressions r1, r2 over VN , if there exists a non-
terminal N ∈ VN , such that N ↓ r1, N ↓ r2, and (r′1, r

′
2) = comp(N, r1, r2), then

L(r′1) ⊆ L(r′2) if and only if r1 <: r2.

Proof. We need to prove the following two cases:

(1) L(r′1) ⊆ L(r′2) ⇒ r1 <: r2 (2) r1 <: r2 ⇒ L(r′1) ⊆ L(r′2)

(1): L(r′1) ⊆ L(r′2) means τ(r′1) ⊆ τ(r′2). Immediately we can obtain τ(r′1) =
τ(r1) and τ(r′2) = τ(r2) since r1 ⇒∗ r′1 and r2 ⇒∗ r′2. So τ(r1) ⊆ τ(r2), namely
r1 <: r2. (2): First we can get r′1 <: r′2 since r1 ⇒∗ r′1 and r2 ⇒∗ r′2. And then
by Lemma 1, (r′1, r′2) is comparable. So L(r′1) ⊆ L(r′2). ��

Lemma 1 and Lemma 2 show the correctness of Algorithm 1. The subtype re-
lation between regular expressions r1 and r2 can reduce to checking inclusion
between r′1 and r′2, which are the appropriate regular expressions derived from
them.

3.2 Subtyping Algorithm

Given an RRTG G = (VN , VT , NS , P ) and two terms T1 and T2 over VN ∪VT , the
aim of subtyping is to check T1 <: T2. Assume that T2 is a regular expression over
VN for simplicity; this assumption does not lose generality because if T2 contains
some label, we can replace T2 in the subtyping algorithm with a new non-terminal
N and construct an auxiliary RRTG, where N is the start symbol and τ(T2) =
τ(N). In most cases, the auxiliary RRTG can be easily constructed. For instance,
there is only one rule of the form N → l(r) in the auxiliary RRTG if T2 = l(r).
The production rules in the auxiliary RRTG will have higher priority to be used
in checking T1 <: N so that the disjointness is not required between any two
non-terminals from the auxiliary RRTG and the original grammar respectively.
Accordingly, the auxiliary RRTG can be constructed easily.
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The subtyping algorithm subty(T1, T2) works in a bottom-up way on the struc-
tures of terms. T1 is reduced during the procedure, which resembles the reduction
of the production rules of grammars. For instance, as a bottom expression of T1,
li(Ti) will be reduced to a term T in T1 if the subtype relation li(Ti) <: T is
satisfied. Then the process goes to upper level. The subtyping algorithm is as
follows. For each li(Ti) ∈ bes(T1), first eliminate LRTs in it and distribute union
types over labels in Ti if necessary. Then calculate T1(li(Ti)/T ) if the subtype
relation li(Ti) <: T is satisfied, which reduces to checking inclusion between reg-
ular expressions. At last, T1 may be reduced to a regular expression over VN so
inclusion between this regular expression and T2 will be checked finally.

Algorithm 2. subty(T1, T2)
1. while Dp(T1) > 1
2. find a bottom expression li(Ti) ∈ bes(T1)
3. if li(Ti) <: T is satisfied
4. T1 := T1(li(Ti)/T )
5. end while
6. check T1 <: T2

More concretely, by using the judgement Γ � T1 <: T2 ⇒ Γ ′, similar with
XDuce [2], which is read “If all subtype relations in the input set Γ hold, then
T1 <: T2 is satisfied and added to the output set Γ ′, which includes all old
subtype relations in Γ and new subtype relations that have been checked in the
process”, the subtyping algorithm can be expressed by the following rules of the
form

x
Γ � y1 ⇒ Γ1 Γ1 � y2 ⇒ Γ2 ... Γk−1 � yk ⇒ Γk

Γ � z ⇒ Γk
,

which is read “given x, if y1, y2, ..., yk can be achieved, then z is satisfied”.
In the following rules, we write L(r1) ⊆ L(r2) instead of r1 <: r2 in order to

highlight the using of inclusion checking of regular expressions.

Dp(T1) ≤ 1, (r1, r2) = comp(NS , T1, T2)
Γ � L(r1) ⊆ L(r2)⇒ Γ ′

Γ � T1 <: T2 ⇒ Γ ′ (1)

Dp(T1) > 1, li(Ti) ∈ bes(T1)
Γ � li(Ti) <: T ⇒ Γ ′ Γ ′ � T1(li(Ti)/T ) <: T2 ⇒ Γ ′′

Γ � T1 <: T2 ⇒ Γ ′′ (2)

Rule (1): Dp(T1) ≤ 1, namely T1 is an empty term or a regular expression
over VN . The subtype relation reduces to checking inclusion between r1 and r2,
where (r1, r2) is comparable corresponding to (T1, T2).

Rule (2): Dp(T1) > 1. T1 <: T2 if li(Ti) <: T and T1(li(Ti)/T ) <: T2, where
li(Ti) <: T is checked by using the following rules (3)(4)(5), corresponding to
the line 3 of Algorithm 2. And T1(li(Ti)/T ) <: T2 makes the whole procedure
work in a bottom-up way. Note that the term T is unique because of RRTGs.
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In the following rules (3)(4)(5), each non-terminal N and regular expression r
in set S are obtained by using the information of label li. N ↓ Ti if li(Ti) <: N .
So N is the non-terminal used in comp(N,Ti, r) to calculate (r1, r2). In most
cases, as in the rules (3)(4), the term T at line 3 of Algorithm 2 is the non-
terminal N . Only in the rule (5) for dealing with union types, T is an union
of non-terminals. dist(li(r1)) distributes r1 over li to the corresponding union
types if r1 contains some top-level (not occurring in the range of any regular
expression operator “∗”) regular expression operator “ |”, the latter situation is
denoted by μ(r1).

S = {(N, r)|N → li(r) ∈ P}, |S| = 1, (r1, r2) = comp(N,Ti, r)
Γ � L(r1) ⊆ L(r2)⇒ Γ ′

Γ � li(Ti) <: N ⇒ Γ ′ (3)

S = {(N, r)|N → li(r) ∈ P}, |S| > 1, (r1, r2) = comp(N,Ti, r), ¬μ(r1)
Γ � L(r1) ⊆ L(r2)⇒ Γ ′

Γ � li(Ti) <: N ⇒ Γ ′ (4)

S = {(N, r)|N → li(r) ∈ P}, |S| > 1, (r1, r2) = comp(N,Ti, r), μ(r1)
Γ � dist(li(r1)) <: T ⇒ Γ ′

Γ � li(Ti) <: T ⇒ Γ ′ (5)

Rule (3): |S| = 1. It means that the non-terminals and labels are in one-to-
one correspondence. The non-terminal N and the content model r are unique.
li(Ti) <: N if Ti <: r, which reduces to checking inclusion between r1 and r2.

Rule (4): |S| > 1 and ¬μ(r1). The process finds if there is an element (N, r) in
S satisfying: (r1, r2) = comp(N,Ti, r) such that L(r1) ⊆ L(r2). In this rule, as
mentioned above, the production rules in the auxiliary RRTG will have higher
priority to be used to obtain the non-terminal N and the content model r. It
means that the elements of set S are actually divided into two classes with
different priorities. Note that r is unique because of RRTGs and the priorities.

Rule (5): |S| > 1 and μ(r1). li(Ti) <: T if dist(li(r1)) <: T , which reduces
to checking each branch of dist(li(r1)). Here we use the following rule (union),
where each Ti is a branch of dist(li(r1)).

T1 <: T ′
1 , ..., Tn <: T ′

n and T = T ′
1|...|T ′

n

T1|...|Tn <: T
(union)

The above rules can be simplified greatly if each production rule is of the
form N → lr, corresponding to the tree grammars in normal form [16], since
each pair (Ti, r) to be checked is already comparable. If the RRTG G is actually
a DTD, then the set S contains only one element so that rules (1)(2)(3) are
sufficient and subtyping will be more efficient. So the subtyping algorithm is not
time-consuming in practice since most actually used XML Schemas are actually
DTDs [17]. Because the algorithm is based on checking inclusion between regular
expressions, the complexity of this algorithm depends on the regular expressions
used in XML schema languages. It is PSPACE for general regular expressions.
And it will be more efficient if some special regular expressions which have lower
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complexity for inclusion testing are used, such as one-unambiguous regular ex-
pressions with the complexity PTIME, which are recommended to use in DTDs
and XML Schemas by W3C. Two inclusion algorithms of one-unambiguous reg-
ular expressions have been proposed in [20].

Example 3. Using the grammar G1 in Example 1, for the following two terms,

T1 = store(Dvd1, dvd(T itle, Price, (Dis|ε)))
T2 = Store

the procedure of checking T1 <: T2 is illustrated in Figure 2, where T itle, Price
and Dis are abbreviated to T, P and D.

Fig. 2. Example of subtyping

The inclusion checking of regular expressions are called three times and all
return true in this procedure. However, in the previous two times, the two regular
expressions are the same so that the inclusion algorithm will return true directly.
So the inclusion checking of regular expressions is actually executed only one time
in this procedure.

Theorem 1. The above subtyping rules for RRTGs are correct.

Theorem 1 can be proved easily by using the semantics of types, that is, T1 <: T2
if and only if τ(T1) ⊆ τ(T2), and the transitivity of subtype relations, which can
be proved by the set theory. The details are omitted here.

For instance, we briefly prove the subtyping rule (4): If L(r1) ⊆ L(r2) is
satisfied, we can get r1 <: r2. Since r1, r2 are the appropriate regular expressions
derived from Ti and r respectively, so Ti <: r. Then immediately li(Ti) <: li(r).
Since N → li(r) ∈ P is known, we get the result li(Ti) <: N .

4 Experiments

We have implemented the above subtyping method and accomplished some ex-
periments to compare with XDuce. Our concern is the times of type checking of
test cases by using XDuce and our method. The results are shown in Table 1.
Column t shows the time of type checking of XDuce. Column t′ shows the time
of our method, which includes the time of pretreatment, such as transforming
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Table 1. Results of experiments (time: seconds)

test cases t t′ ratio s1 s2

addrbook 0.003188 0.001775 56% 67 -
bookmarks 0.581173 0.170046 29% 216 1198
html2latex1 1.204572 0.319842 27% 300 1198
html2latex2 1.175982 0.365335 31% 236 1198

ns2xbel 0.002295 0.001465 64% 77 94
rng2xduce 0.613078 0.258772 42% 451 -
polysample 0.002003 0.001206 60% 83 -
dvdstore 0.532574 0.327925 62% 35 -

ratio (%)

size

Fig. 3. Ratios and sizes

the type definitions of test cases into the form of RRTGs. Column ratio is the
ratio of t′ to t. The last two columns show the sizes of test cases and external
DTDs (may not exist, denoted by “-”), measured by the number of lines of codes.

Most test cases are from the XDuce distribution [21]. The type definitions of
test cases except the last one are all DTDs. These test cases basically cover the
actually used scenarios of XML processing, including fragment extraction, type
conversion and so on. Some test cases are small in size and some are not.

1) addrbook defines a DTD of an address book file and extracts a phone book.
2) bookmarks converts a Netscape bookmark file (a subset of type HTML) into

a file of full HTML type with an external DTD (xhtml1-transitional.dtd).
3) html2latex1 converts a file (of type HTML) into a LATEX file (of type string)

with an external DTD (xhtml1-transitional.dtd).
4) html2latex2 is similar to html2latex1, from the CDuce benchmarks [22].
5) ns2xbel converts a Netscape bookmark file into XBEL format with an ex-

ternal DTD (xbel-1.0.dtd).
6) rng2xduce converts a file of type Relax NG into XDuce format.
7) polysample is a simple polymorphic program.
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8) dvdstore is a test case written by ourselves. Similar to addrbook, the main
function is to extract data from the input file. However, the type definition
of dvdstore equals to a RRTG, which has been given in Example 1.

The results show that our method is more efficient than XDuce. The time re-
quired for type checking is about halved on average. We also analyze the test
cases and results of our method. Currently, it seems that the effect of our method
is more evident when the test case is larger in size, as shown in Figure 3, where
each histogram is corresponding to a test case from Table 1 and s1, s2 express
the same meanings as in Table 1. Of course the experiments we did are still
preliminary. More test cases would be very useful and the implementation of our
method can still be improved.

The environment is as follows: Intel Pentium 4 CPU 3.0GHz, 256MB RAM,
Ubuntu 7.10, XDuce 0.5.0, OCaml 3.10.0.

5 Concluding Remarks

We have proposed regular tree grammars with disjoint production rules and
a new subtyping method for the restricted tree grammars. Differing from the
tree-automata based methods, our subtyping method reduces to checking inclu-
sion between regular expressions together with using information of labels in the
grammars. The method works in a bottom-up way on structures of type expres-
sions. In addition, the inclusion algorithms of regular expressions can be chosen
depending on the classes of regular expressions used in XML schema languages,
which may have different complexities. We believe that our method will be more
efficient if some special regular expressions are used in XML schema languages,
such as one-unambiguous regular expressions.

There are several future works. Though most actually schemas fall into RRTGs,
the cases in which non-RRTGs (e.g., the grammar G2 mentioned in Section 2.1)
can be easily transformed to RRTGs still deserve study. However, the transfor-
mation of grammars may be difficult when the grammars are complex. We will
consider a strategy which combines the top-down way with the bottom-up way in
subtyping. Optimizations and integration with other methods are also concerned.
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Abstract. In this paper, we propose algorithms that extend a given
regular tree grammar G0 to a new grammar G respecting the following
two properties: (i) G belongs to the sub-class of local or single-type tree
grammars and (ii) G is the least grammar (in the sense of language in-
clusion) that contains the language of G0. Our algorithms give rise to im-
portant tools in the context of web service composition or XML schema
evolution. We are particularly interested in applying them in order to
reconcile different XML type messages among services. The algorithms
are proven correct and some of their applications are discussed.

1 Introduction

When dealing with web service composition, one should consider the problem of
how to reconcile structural differences among types of XML messages supported
by different services. A web service designer may wish to implement a service
S that is able to accept XML messages coming from different services A, B or
C (i.e. services offering the same service, in slightly different formats). To allow
the composition of S with any of these services, it would be practical to infer
a general type from the message types of services A, B and C. Moreover, the
initial type accepted by S may evolve if one decides to consider also messages
coming from a new service D.

The learning of new types (or schema) can be very helpful for the harmonious
work of the applications that manipulate these data. Some algorithms for learn-
ing XML data have been proposed [GGR+00, Chi01, BNV07]. In general, these
algorithms consist of learning the schema using sets of (positive or negative)
examples. Our work considers another situation, since we aim at integrating
different schemas in order to implement a service or to adapt it to a new en-
vironment: our goal is to maintain the global behavior of a composition while
extending the type of the messages being processed.

We are thus interested in automatically generating a new type which is a con-
servative extension of some given types. Moreover, we are interested in obtaining
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the least schema (in the sense of type inclusion) that complies with this condi-
tion and that can be specified in current XML schema language standards such
as DTD or XMLSchema. The following example illustrates schema evolution as
proposed by our method.

Example 1. Consider a web service, built for a library consortium, capable of
giving information about publications existing in different libraries. This service
should be able to accept messages from different library services, each of them
specified over its own message format. Let GA and GB be the DTDs (Local
Tree Grammars) which define the type of messages coming from library services
A and B respectively. As usual we represent non terminals by starting with a
capital letter and terminals with a small letter. Besides the production rules
presented below (C and Z are the start symbols), we suppose that all the pro-
duction rules X → x[ε] such that (respectively) X ∈ {A, T,D, P,N, V,E,W}
and x ∈ {author, title, datePublication, price, number, volume, editor, status}
are included in the sets of rules of the schema (grammar):

Productions rules of GA Productions rules of GB

C → catalog[B∗] Z → catalog[(Y | L)∗]
B → book[A+.T .D.W ] Y → book[A+.T .D.P?.E]

L → article[A+.T .D.J.E]
J → journal[N.V ]

The simple union of these two grammars (G0 = GA ∪ GB) is not a solution to
the problem, since it is not a Local Tree Grammar (LTG). This means that it
cannot be described as a well-formed DTD. Our algorithm starts processing G0
and returns the following grammar G2 as output (by merging some production
rules of G0), where CZ is the start symbol.

Productions rules of G2

CZ → catalog[(BY | L)∗ | B∗
Y ] BY → book[A+.T .D.W | A+.T .D.P?.E]

L → article[A+.T .D.J.E] J → journal[N.V ]

Our algorithms are capable of finding a definition for the least (local or single-
type) tree language (set of XML documents) that contains the XML documents
described by both original types. For instance, in Example 1, grammar G2 is the
least LTG that contains the languages generated by GA and GB .

The algorithms proposed in this paper are able to transform a (general) regu-
lar tree grammar into a Local or Single-Type tree grammar (the user can choose
whether the resulting grammar will be a LTG or a STTG). Our algorithms are
proven correct for any regular tree grammar in reduced normal form.

The rest of this paper is organized as follows: in Section 2 we recall the
theoretical background needed to the introduction of our method; Section 3
presents our schema evolution algorithms for LTG and STTG and Section 4
discusses the implementation of these methods. The paper finishes by considering
some related work and by discussing our perspectives of work.
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2 Theoretical Background

It is a well known fact that type definitions for XML and regular tree grammars
are similar notions and that some schema definition languages can be repre-
sented by using specific classes of regular tree grammars. Thus, DTD and XML
Schema, correspond, respectively, to Local Tree Grammars and Single-type Tree
Grammars [MLMK05]. Given an XML type T and its corresponding tree gram-
mar G, the set of XML documents described by the type T corresponds to the
language (set of trees) generated by G.

In this paper we consider a tree language as a set of unranked trees. Tree
nodes have a label (from a set Σ) and a position (given as a string of integers).
Let U be the set of all finite strings of non-negative integers with the empty
string ε as the identity. In the following definition we assume that Pos(t) ⊆ U
is a nonempty set closed under prefixes (i.e. , if u  v , v ∈ Pos(t) implies
u ∈ Pos(t)).
Definition 1 (Unranked Σ-valued tree t). A nonempty unranked Σ-valued
tree t is a mapping t : Pos(t) → Σ where Pos(t) satisfies: j ≥ 0, uj ∈ Pos(t), 0 ≤
i ≤ j ⇒ ui ∈ Pos(t). The set Pos(t) is called the set of positions of t. We write
t(v) = a, for v ∈ Pos(t), to indicate that the Σ-symbol associated to v is a. �

The following figure represents a tree whose alphabet is the set of element names
appearing in an XML document.

Given a tree t we denote by t|p the subtree
whose root is at position p ∈ Pos(t),i.e.
Pos(t|p) = {s | p.s ∈ Pos(t)} and for each
s ∈ Pos(t|p) we have t|p(s) = t(p.s).

ε

1.11.00.10.0 1.2

10

name

student

namenumber address phone

professor

directory

For instance, in the figure t|0 = {(ε, student), (0, name), (1, number)}, or equiv-
alently, t|0 = student(name, number).

Given a tree t such that the position p ∈ Pos(t) and a tree t′, we note t[p← t′]
as the tree that results of substituting the subtree of t at position p by t′.

Definition 2 (Sub-tree, Forest). Let L be a set of trees. ST (L) is the set of
sub-trees of elements of L, i.e. ST (L) = {t | ∃u ∈ L, ∃p ∈ Pos(u), t = u|p}. A
forest is a (possibly empty) tuple of trees. For a ∈ Σ and a forest w = 〈t1, . . . , tn〉,
a(w) is the tree defined by a(w) = a(t1, . . . , tn). On the other hand, w(ε) is
defined by w(ε) = 〈t1(ε), . . . , tn(ε)〉, i.e. the tuple of the top symbols of w. �

Definition 3 (Regular Tree Grammar). A regular tree grammar (RTG) is
a 4-tuple G = (N,T, S, P ), where: N is a finite set of non-terminal symbols; T
is a finite set of terminal symbols ; S is a set of start symbols, where S ⊆ N and
P is a finite set of production rules of the form X → a [R], where X ∈ N , a ∈ T ,
and R is a regular expression over N (We say that, for a production rule, X is
the left-hand side, aR is the right-hand side, and R is the content model.) �

Definition 4 (Derivation). For a RTG G = (N,T, S, P ), we say that a tree
t built on N ∪ T derives (in one step) into t′ iff (i) there exists a position p
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of t such that t|p = A ∈ N and a production rule A → a [R] in P , and (ii)
t′ = t[p ← a(w)] where w ∈ L(R) (L(R) is the set of words of non-terminals
generated by R). We write t →[p,A→a [R]] t

′. More generally, a derivation (in
several steps) is a (possibly empty) sequence of one-step derivations. We write
t→∗

G t′.
The language L(G) generated by G is the set of trees containing only terminal

symbols, defined by : L(G) = {t | ∃A ∈ S, A→∗
G t}. �

Example 2. Let G = (N,T, {X}, P ), where P = {X → f [A∗.B], A → a,B →
b}. A derivation from the start symbol is X →[X→f [A∗.B]] f(A,A,B) →∗

G

f(a, a, b). Consequently f(a, a, b) ∈ L(G). �

To produce grammars that generate least languages, our algorithms need to start
from grammars in reduced form and (as in [ML02]) in normal form. A regular
tree grammar (RTG) is said to be in reduced form if (i) every non-terminal is
reachable from a start symbol, and (ii) every non-terminal generates at least one
tree containing only terminal symbols. A regular tree grammar (RTG) is said to
be in normal form if distinct production rules have distinct left-hand-sides.

Example 3. Given the tree grammar G0 = (N,T, S, P0), where N = {X,A,B},
T = {f, a, c}, S = {X}, and P0 = {X → f [A.B], A→ a, B → a, A→ c}. Note
thatG0 is in reduced form, but it is not in normal form. The conversion ofG0 into
the normal form gives the set P1 = {X → f [(A|C).B], A→ a, B → a, C → c}.
Thus G1 = (N ∪ {C}, T, S, P1) is in reduced normal form. �

The following three definitions come from [MLMK05].

Definition 5 (Competing Non-Terminals). Two different non-terminals A
and B (of the same grammar G) are said to be competing with each other if
(i) a production rule has A in the left-hand side, (ii) another production rule
has B in the left-hand side, and (iii) these two production rules share the same
terminal symbol in the right-hand side. �

Definition 6 (Local Tree Grammar). A local tree grammar (LTG) is a reg-
ular tree grammar that does not have competing non-terminals. A local tree
language (LTL) is a language that can be generated by at least one LTG. �

Note that converting a LTG into normal form produces a LTG as well.

Definition 7 (Single-Type Tree Grammar). A single-type tree grammar
(STTG) is a regular tree grammar in normal form, where (i) for each production
rule, non terminals in its regular expression do not compete with each other, and
(ii) starts symbols do not compete with each other. A single-type tree language
(STTL) is a language that can be generated by at least one STTG. �

In [MLMK05] the expressive power of these classes of languages is discussed.
We recall that LTL ⊂ STTL ⊂ RTL. Moreover, the LTL and STTL are closed
under intersection but not under union; while the RTL are closed under union,
intersection and difference.
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3 Type Evolution

This section describes our type evolution approach by presenting the main theo-
retical contributions of our work. The algorithms proposed here take as argument
a general regular tree grammar in reduced normal form. They produce a LTG
(respectively a STTG) whose language is the least LTL (resp. the least STTL)
that contains the language described by the original tree grammar.

The intuitive idea underlying both algorithms is to locate sets of competing
non-terminal symbols of the tree grammar, and fix the problem by identifying
these non-terminals as the same one.

3.1 Transforming a RTG into a LTG

We consider the problem of obtaining a local tree grammar whose language
contains a given tree language. Given a regular tree grammar G0, we are inter-
ested in the definition of the least local tree language that contains the language
generated by G0. The new language will be described by a local tree gram-
mar. The algorithm described below obtains a new grammar by transforming
G0. The transformation rules are intuitively simple: every pair of competing
non-terminals are transformed into one symbol. We show that this simple trans-
formation of the original grammar yields to a local tree grammar in a finite
number of steps.

Now, consider some useful properties of local tree languages. These properties
will be used to show the correctness of our grammar-transformation algorithm.
Proofs of the properties are omitted here due to the lack of space. They are
available in [CHMR09]. The following lemma states that the type of the subtrees
of a tree node is determined by the label of its node (i.e. the type of each node
is locally defined). Recall that ST (L) is the set of sub-trees of elements of L.

Lemma 1. (see also [PV00, Lemma 2.10]) Let L be a local tree language (LTL).
Then, for each t ∈ ST (L), each t′ ∈ L and each p′ ∈ Pos(t′), we have that
t(ε) = t′(p′) =⇒ t′[p′ ← t] ∈ L. �

In the following, we also need a weaker version of the previous lemma:

Corollary 1. Let L be a local tree language (LTL). Then, for each t, t′ ∈ ST (L),
and each p′ ∈ Pos(t′), we have that t(ε) = t′(p′) =⇒ t′[p′ ← t] ∈ ST (L). �

In practical terms, Corollary 1 gives us a rule of thumb on how to “complete”
a regular language in order to obtain a local tree language. For instance, let
L = {f(a(b), c), f(a(c), b)} be a regular language. According to Corollary 1, we
know that L is not LTL and that the least local tree language L′ containing L
contains all trees where a has c as a child together with all trees where a has b
as a child. In other words, L′ = {f(a(b), c), f(a(c), b), f(a(c), c), f(a(b), b)}.

Let us now define our first algorithm for schema (DTD, Local Tree Grammar)
evolution. The main intuition behind our algorithm is to merge rules having com-
peting non terminals in their left-hand side. New non terminals are introduced
in other to replace competing ones.
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Definition 8 (RTG into LTG Transformation). Let G0 = (N0, T0, S0, P0)
be a regular tree grammar in reduced normal form. We define a new regular tree
grammar G = (N,T, S, P ), obtained from G0, according to the following steps:

1. Let G2 := G0, where G2 is denoted by (N2, T2, S2, P2).
2. While there exists a pair of production rules of the form X1 → a [R1] and
X2 → a [R2] in P2 (X1 �= X2) do:
(a) Let Y be a new non-terminal symbol and define a substitution

σ = [X1/Y, X2/Y ].
(b) Let G3 := (N2 ∪ {Y }−{X1, X2}, T2, σ(S2), P3),

where P3 = σ(P2 ∪ {Y → a [R1|R2]} − {X1 → a [R1], X2 → a [R2]}).
(c) Let G2 := G3, where G2 is denoted by (N2, T2, S2, P2).

3. Return G2. �

Example 4. Consider Example 1 where grammar G0 is the input for the algo-
rithm of Definition 8. In a first step, rules Z → catalog[(Y | L)∗] and C →
catalog[B∗] are replaced by CZ → catalog[(Y | L)∗ | B∗]. Following the same
idea, rules B → book[A+.T .D.W ] and Y → book[A+.T .D.P?.E] are replaced
by BY → book[A+.T .D.W |A+.T .D.P?.E]. This change implies changes on the
right-hand side of other rules, consequently CZ → catalog[(Y | L)∗ | B∗] is
changed into CZ → catalog[(BY | L)∗ | B∗

Y ]. In this way we obtain the grammar
G2 as shown in Example 1. �

It can be shown that our algorithm stops, generating a local tree grammar in
normal form (see [CHMR09]). The main result of this section is stated below.

Theorem 1. The grammar returned by the algorithm of Definition 8 generates
the least local tree language that contains L(G0). �

Example 5. Let the RTG G0 be the input of the algorithm of Definition 8 and
G be the resulting LTG:

G0: G:
S → a[A.A] Y → a[Y.Y | B]
A→ a[B] B → b[ε]
B → b[ε]

Notice that L(G0) contains just the tree t = a(a(b), a(b)) and that t ∈ L(G). �

3.2 Transforming a RTG into a STTG

Given a regular tree grammar G0, we are interested in the definition of the least
single-type tree language that contains the language generated by G0. The new
language will be described by a single-type grammar. The algorithm described
below obtains a new grammar by transforming G0. Roughly speaking, for each
production rule A → a [R] in G0, an equivalence relation is defined on the
non-terminals of R, so that all competing non-terminals of R are in the same
equivalence class. These equivalence classes form the non-terminals of the new
grammar. Let G0 = (N0, T0, S0, P0) be a RTG in reduced normal form.
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Definition 9 (Grouping competing non-terminals). Let ‖ be the relation
on N0 defined by: for all A,B ∈ N0, A ‖ B iff A = B or A and B are competing
in P0. For any χ ∈ P(N0), let ‖χ be the restriction of ‖ to the set χ (‖χ is defined
only for elements of χ).

Lemma 2. Since G0 is in normal form, ‖χ is an equivalence relation for any
χ ∈ P(N0). �

Some notation used in this section:

– N(R) denotes the set of non-terminals occurring in a regular expression R.
– For any χ ∈ P(N0) and any A ∈ χ, Âχ denotes the equivalence class of A w.r.t.
relation ‖χ. In other words, Âχ contains A and the non-terminals of χ that are
competing with A in P0.
– σN(R) is the substitution defined over N(R) by ∀A ∈ N(R), σN(R)(A) =
ÂN(R). By extension, σN(R)(R) is the regular expression obtained from R by
replacing each non-terminal A in R by σN(R)(A).

Definition 10 (RTG into STTG Transformation). Let G0 = (N0, T0, S0,
P0) be a regular tree grammar in reduced normal form. We define a new regular
tree grammar G = (N,T, S, P ), obtained from G0, according to the steps:

1. Let G = (P(N0), T0, S, P ) where:

• S = {ÂS0 | A ∈ S0},
• P = { {A1, . . . , An} → a [σN(R)(R)] | A1 → a[R1], . . . , An → a[Rn] ∈ P0,

R = (R1| · · · |Rn)},
where {A1, . . . , An} denotes each possible set of competing non-terminals.

2. Remove all unreachable non-terminals and rules in G, then return it. �

Our generation of STTG from RTG is based on grouping competing non-terminals
into equivalence classes. In the new grammar, each non-terminal is formed by
a set of non-terminals of N0. When competing non-terminals which appear in
the same regular expression R in G0 are identified, the sets that contain them
form non-terminal symbols. The production rules having these new symbols as
left-hand side are obtained from those rules containing the competing symbols in
G0. Although this amounts to an exponential number of non-terminal, we have
notice that, in practice, this explosion is not common (notice that unreachable
rules are removed at step 2). The algorithm version presented in Definition 10
eases our proofs. An optimized version, where just the needed non-terminals are
generated, is given in Section 4.

Example 6. Consider a non-STTG grammar G0 having the following set P0 of
productions rules (Image is the start symbol):
Image→ image[Frame1 | Frame2 | Background.Foreground]
Frame1 → frame[Frame1.Frame1 | ε]
Frame2 → frame[Frame2.Frame2.Frame2 | ε]
Background→ back[Frame1] and Foreground→ fore[Frame2].
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Grammar G0 defines different ways of decomposing an image: recursively into
two or three frames or by describing the background and the foreground sepa-
rately. Moreover, the background (resp. the foreground) is described by binary
decompositions (resp. ternary decompositions). In other words, the language of
G0 contains the union of the trees: image(bin(frame)); image(ter(frame)) and
image (back (bin (frame)), fore (ter (frame))) where bin (resp. ter) denotes the
set of all binary (resp. ternary) trees that contains only the symbol frame.

The algorithm returns G, which contains the rules below (the start symbol is
{Image}) :

{Image} → image[{Frame1, F rame2} | {Frame1, F rame2}
| {Background}.{Foreground}]

{Background} → back[{Frame1}]
{Foreground} → fore[{Frame2}]
{Frame1, F rame2}→ frame[ε | {Frame1, F rame2}.{Frame1, F rame2} | ε

| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}]
{Frame1} → frame[{Frame1}.{Frame1} | ε]
{Frame2} → frame[{Frame2}.{Frame2}.{Frame2} | ε]

Note that some regular expressions could be simplified. G is a STTG that gen-
erates the union of image(tree(frame)) and image (back (bin (frame)), fore
(ter (frame))) where tree denotes the set of all trees that contain only the
symbol frame and such that each node has 0 or 2 or 3 children. Let LG(X)
denote the language obtained by deriving in G the non-terminal X . Actu-
ally, LG({Frame1, F rame2}) is the least STTL that contains LG0(Frame1) ∪
LG0(Frame2). �

Theorem 2. The grammar returned by the algorithm of Definition 10 generates
the least STTL that contains L(G0). �

The rest of this sub-section is a proof sketch of the previous theorem. The no-
tations are those of Definition 10. The proof somehow looks like the proof con-
cerning the transformation of a RTG into a LTG (see [CHMR09] for details).
However it is more complicated since in a STTL (and unlike what happens in a
LTL), the confusion between t|p = a(w) and t′|p′ = a(w′) should be done only
if position p in t has been generated by the same production rule as position p′

in t′, i.e. the symbols occurring in t and t′ along the paths going from root to p
(resp. p′ in t′) are the same. This is why, in Definition 11, we introduce notation
path(t, p) to denote these symbols. First, we enunciate some properties.

Lemma 3. Let χ ∈ P(N0) and A,B ∈ χ (A �= B). Then Âχ and B̂χ are not
competing in P . �

Example 7. Given the grammar of Example 6, let χ = {Frame1 ,Frame2 ,
Background}. The equivalence classes induced by ‖χ are F̂rame1

χ
= F̂rame2

χ
=

{Frame1 ,Frame2}; ̂Background
χ

= {Background}; which are non-competing
non-terminals in P .

Lemma 4. G is a STTG. �
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The next lemma establishes the basis for proving that the language generated
by G contains the language generated by G0. It considers the derivation process
over G0 at any step (supposing that this step is represented by a derivation
tree t) and proves that, in this case, at the same derivation step over G, we can
obtain a tree t′ having all the following properties: (i) the set of positions is the
same for both trees (Pos(t) = Pos(t′)); (ii) positions associated to terminal are
identical in both trees; (iii) if position p is associated to a non-terminal A in
t then position p ∈ Pos(t′) is associated to the equivalence class Âχ for some
χ ∈ P(N0) such that A ∈ χ.

Lemma 5. Let Y ∈ S0. If G0 derives:
t0 =Y → · · · → tn−1 →[pn, An→an[Rn]] tn then G can derive: t′0 = Ŷ S0 → · · · →
t′n−1 →[pn, Ân

χn→an[σN(Rn|···)(Rn|···)]] t
′
n s.t. ∀i ∈ {0, . . . , n}, Pos(t′i) = Pos(ti) ∧

∀p ∈ Pos(ti): (ti(p) ∈ T0 =⇒ t′i(p) = ti(p))∧
(ti(p) = A ∈ N0 =⇒ ∃χ ∈ P(N0), A ∈ χ ∧ t′i(p) = Âχ)

Proof. The proof is by induction in the length of the derivation process.
For n = 0, the property holds because t0(ε) = Y and t′0(ε) = Ŷ χ with χ = S0
and Y ∈ χ. Induction step: Assume the property for n − 1 ∈ IN. By hy-
pothesis tn−1 →[pn, An→an[Rn]] tn, then tn−1(pn) = An ∈ N0. By ind. hyp.,
t′n−1(pn) = Ân

χn for some χn ∈ P(N0), and An ∈ χn.
By construction of P , Ân

χn → an[σN(Rn|···) (Rn| · · ·)] ∈ P .
Thus t′n−1 →[pn, Ân

χn→an[σN(Rn|···)(Rn|···)]] t
′
n = t′n−1[pn ← an[σN(Rn|···)(w)]]

whereas tn = tn−1[pn ← an(w)] and w ∈ L(Rn). Consequently t′n(pn) = an =
tn(pn) and ∀i ∈ IN, tn(pn.i) = B ∈ N(Rn) ⊆ N(Rn| · · ·) ∧ t′n(pn.i) = B̂N(Rn|···).

Example 8. Given the grammar of Example 6, consider trees t, t′ and t′′ in
Figure 1 obtained after three steps in the derivation process: t is a derivation
tree for G0 while t′ and t′′ are for G. Tree t′ is the one that corresponds to t
according to Lemma 5. Notice that t′′ is a tree that can also be derived from G,
but it is not in L(G0) (indeed, since Pos(t) �= Pos(t′′), tree t′′ does not have the
properties required in Lemma 5). �
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Fig. 1. Derivation trees t, t′ and t′′
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The following corollary proves that the language of the new grammar G, pro-
posed by Definition 10, contains the original language of G0.

Corollary 2. L(G0) ⊆ L(G). �

In the rest of this section we work on proving that L(G) is the least STTL that
contains L(G0). To prove this property, we first need to prove some properties
over STTLs. We start by considering paths in a tree. We are interested by paths
starting on the root and achieving a given position p in a tree t. Paths are defined
as a sequence of labels. For example, path(a(b, c(d)), 1) = a.c.

Definition 11 (Path in a tree t to a position p). Let t be a tree and
p ∈ Pos(t). We define path(t, p) as being the word of symbols occurring in
t along the branch going from the root to position p. Formally, path(t, p) is
recursively defined by : path(t, ε) = t(ε) and path(t, p.i) = path(t, p).t(p.i) where
i ∈ IN. �

Given a STTG G, let us consider the derivation process of two trees t and t′

belonging to L(G). The following lemma proves that positions (p in t and p′ in
t′) having identical paths are derived by using the same rules. A consequence of
this lemma (when t′ = t and p′ = p) is the well known result about the unicity
in the way of deriving a given tree with a STTG [ML02].

Lemma 6. Let G′ be a STTG, let t, t′ ∈ L(G′).
Let X →∗

[pi,rulepi
] t be a derivation of t and X ′ →∗

[p′
i,rule′

p′
i
] t

′ be a derivation of

t′ by G′ (X,X ′ are start symbols). Then ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′),
(path(t, p) = path(t′, p′) =⇒ rulep = rule′p′)

In a STTL, it is possible to exchange sub-trees that have the same paths.

Lemma 7. (also in [MNSB06, Prop 6.3 and 6.5])
Let G′ be a STTG. ∀t, t′ ∈ L(G′), ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′), (path(t, p) =
path(t′, p′) =⇒ t′[p′ ← t|p] ∈ L(G′))

Example 9. Let G be the grammar of Example 6. Consider a tree t as shown in
Figure 2. Exchanging subtrees t|0.0 and t|0.1 gives us a new tree t′′. Both t and
t′′ are in L(G). �

The following lemma expresses what the algorithm of Definition 10 does. Given
a forest w = (t1, . . . , tn), recall that w(ε) = 〈t1(ε), . . . , tn(ε)〉, i.e. w(ε) is the
tuple of the top symbols of w.

Lemma 8. ∀t ∈ L(G), ∀p ∈ Pos(t), t|p = a(w) =⇒ ∃t′ ∈ L(G0), ∃p′ ∈
pos(t′), t′|p′ = a(w′) ∧ w′(ε) = w(ε) ∧ path(t′, p′) = path(t, p). �

Example 10. Let G be the grammar of Example 6 and t the tree of Figure 2.
Let p = 0. Using the notations of Lemma 8, t|0 = frame(w) where
w = 〈frame(frame, frame, frame), frame(frame, frame)〉. We have t �∈
L(G0). Let t′ = image(frame(frame(frame, frame), frame)) ∈ L(G0) and
(with p′ = p = 0) t′|p′ = frame(w′) where w′ = 〈frame(frame, frame),
frame〉. Thus w′(ε) = w(ε). Note that others t′ ∈ L(G0) suit as well. �
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Fig. 2. Trees t and t′′ with sub-tree exchange

We end this section by proving that the grammar obtained by our algorithm
generates the least STTL which contains L(G0).
Lemma 9. Let L′ be a STTL s.t. L(G0) ⊆ L′. Let t ∈ L(G). Then, ∀p ∈
Pos(t), ∃t′ ∈ L′, ∃p′ ∈ pos(t′), (t′|p′ = t|p ∧ path(t′, p′) = path(t, p)). �

Proof. We define the relation � over Pos(t) by p � q ⇐⇒ ∃i ∈ IN, p.i = q.
Since Pos(t) is finite, � is noetherian. The proof is by noetherian induction on
�. Let p ∈ pos(t). Let us write t|p = a(w). From Lemma 8, we know that:
∃t′ ∈ L(G0), ∃p′ ∈ pos(t′), t′|p′ = a(w′) ∧ w′(ε) = w(ε) ∧path(t′, p′) = path(t, p).
Thus, t|p = a(a1(w1), . . . , an(wn)) and t′|p′ = a(a1(w′

1), . . . , an(w′
n)). Now let

p � p.1. By induction hypothesis:
∃t′1 ∈ L′, ∃p′1 ∈ pos(t′1), t

′
1|p′

1
= t|p.1 = a1(w1) ∧path(t′1, p′1) = path(t, p.1).

Notice that t′1 ∈ L′, t′ ∈ L(G0) ⊆ L′, and L′ is a STTL. Moreover path(t′1, p′1) =
path(t, p.1) = path(t, p).a1 = path(t′, p′).a1 = path(t′, p′.1).
As path(t′1, p

′
1) = path(t′, p′.1), from Lemma 7 applied on t′1 and t′, we get

t′[p′.1 ← t′1|p′
1
] ∈ L′. However (t′[p′.1← t′1|p′

1
])|p′ =a(a1(w1), a2(w′

2), . . . , an(w′
n))

and
path(t′[p′.1 ← t′1|p′

1
], p′) = path(t′, p′) = path(t, p).

By applying the same reasoning for positions p.2, . . . , p.n, we get a tree t′′ ∈ L′

s.t. t′′|p′ = t|p and path(t′′, p′) = path(t, p).

Corollary 3. (when p = ε, and then p′ = ε) Let L′ be a STTL s.t. L′ ⊇ L(G0).
Then L(G) ⊆ L′. �

4 Implementation

A prototype tool implementing our algorithms can be downloaded from [CHMR10].
It is developed using the ASF+SDF Meta-Environment [vdBHdJ+01] and it is
about 1000 lines of code.

The algorithm of Definitions 8 is implemented in a straightforward way. How-
ever, Definition 12 below gives an improved version of the algorithm of Defi-
nition 10. This new version avoids to generate unreachable non-terminals, and
is suited for direct implementation. Indeed, it keeps a set of unprocessed non-
terminals (denoted by U) which are accessible from the start symbol. We just



Minimal Tree Language Extensions 71

compute those non-terminal symbols which are accessible from the start sym-
bols of the grammar. More precisely, in Definition 12, we start by computing
the equivalence classes of the start symbols of G0 and we insert them to the set
U , containing those non-terminals which are not yet processed. At each itera-
tion of the while loop, an element of U is chosen as the new non-terminal for
which a new production rule is going to be created. This non-terminal is added
to the set N . At each step, the set U is updated by adding to it those non-
terminals appearing on the right-hand side of the new production rule, filtering
the non-terminals already processed.

Definition 12 (RTG into STTG Transformation). Let G0 = (N0, T0, S0,
P0) be a (general) regular tree grammar. We define a new single-type tree gram-
mar G = (N,T, S, P ), obtained from G0, according to the following steps:

1. Let S := {ÂS0 | A ∈ S0}; G := (N := ∅, T := T0, S, P := ∅); U := S;
2. While U �= ∅ do:

(a) Choose {A1, . . . , An} ∈ U ;
(b) Let U := U − {{A1, . . . , An}}; N := N ∪ {{A1, . . . , An}};
(c) Let P := P ∪ { {A1, . . . , An} → a σN(R)(R)

| A1 → a[R1], . . . , An → a[Rn] ∈ P0, R = (R1| · · · |Rn)};
(d) Let U := (U ∪ {ÂN(R)|A ∈ N(R)})−N ;

End While
3. Return G. �

It is straightforward to see that the algorithm of Definition 12 generates the same
STTG as that of Definition 10. In the worst case, the number of non-terminals
of the STTG returned by both algorithms is exponential in the number of the
non-terminals of the initial grammar G0. However, in many examples, most non-
terminals generated by step 1 of Definition 10 are unreachable, and thus are not
generated by the implemented algorithm.

The example below represents a usual situation, in which the schemas of two
different digital libraries (Grammars G1 and G2) are joined into one schema.
Library and Lib are the start symbols. For lack of space, we do not depict
the production rules X → x[ε] such that X ∈ {Author, Title, ISBN, Publisher,
Date, ISSN, Editor, Year, Pages, Dimensions, Scale} and x ∈ {author, title, isbn,
publisher, date, issn, editor, year, pages, dim, scale} respectively. We apply the
algorithm on G0 = G1 ∪ G2. Note that Author, Title, ISBN, Publisher, Date
appear both in G1 and G2. It is not necessary to rename them before computing
the union, since each of them generates only one terminal. G0 contains 18 rules.

Productions rules of G1 Productions rules of G2
Library → lib [Book*] Lib → lib [(Mag | Record | Book2 | Map)*]
Book → book [Author.Title. Mag → mag [Title.ISSN.Editor.Publisher.Date]

ISBN.Publisher.Date] Record → rec [Title.Author.Date]
Book2 → book [ISBN.Title.Author.Publisher.Year.Pages]
Map → map [Editor.Dimensions.Scale.Year]
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The resulting grammar, after applying the algorithm, is1:

Resulting production rules
Library → lib [ (Mag | Record | Book | Map)* | Book* ]
Book → book [ ISBN.Title.Author.Publisher.Year.Pages | Author.Title.ISBN.Publisher.Date ]
Mag → mag [ Title.ISSN.Editor.Publisher.Date ]
Record → rec [ Title.Author.Date ]
Map → map [ Editor.Dimensions.Scale.Year ]

Notice that the new grammar has only 16 rules (included those with empty
regular expressions on their right-hand side). Only 16 new non-terminals were
created by our algorithm, that is two less than those from the original grammar.
This shows that in a typical situation, our algorithm runs in acceptable time,
even if the worst case is exponential.

5 Related Work

As discussed in [Flo05], traditional tools require the data schema to be developed
prior to the creation of the data. Unfortunately, in several modern applications
the schema often changes as the information grows and different people have in-
herently different ways of modeling the same information. Complete elimination
of the schema does not seem to be a solution since it assigns meaning to the data
and thus helps automatic data search, comparison and processing. To find a bal-
ance, [Flo05] considers that we need to find how to automatically map schemas
and vocabulary to each other and how to rewrite code written for a certain
schema into code written for another schema describing the same domain.

Most existing work in the area of XML schema evolution concerns the second
proposed solution. For instance, in [GMR05] the idea is to keep track of the
updates made to the schema and to identify the portions of the schema that
require validation. Our approach aims to be included in the first proposed solu-
tion of [Flo05] since it allows the conservative evolution of schemas. Indeed, our
method extends the work in [BDH+04, dHM07] which considers the conservative
evolution of LTG by proposing the evolution of regular expressions. Contrary to
this, the present paper proposes schema evolution in a global perspective, dealing
with the tree grammars as a whole. We also consider the evolution of STTG.

Our proposal is inspired in some grammar inference methods (such as those
in [BM03, BM06] which deal with ranked tree languages) that return a tree
grammar or a tree automaton from a set of positive examples (see [Ang92, Sak97]
for surveys). Our method deals with unranked trees, starts from a given RTG
G0 (representing a set of positive examples) and finds the least LTG or STTG
that contains L(G0). As we consider an initial tree grammar we are not exactly
inserted in the learning domain, but their methods inspire us and give us tools
to solve our problem, namely, the evolution of a original schema (and not the
extraction of a new schema).
1 For more readability, the non-terminals have been renamed. Library is the start

symbol. We have chosen not to simplify the regular expressions, showing them as
produced by our algorithm. Our implementation do not implement any simplifica-
tion yet.
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Several papers (such as in [GGR+00, Chi01, BNST06, BNV07]) deal with
XML schema inference. In [BNST06] DTD inference consists in an inference of
regular expressions from positive examples. As the seminal result from Gold
[Gol67] shows that the class of all regular expressions cannot be learnt from
positive examples, [BNST06] identifies classes of regular expressions that can be
efficiently learnt. Their basic method consists in inferring a single occurrence
automaton called SOA from a finite set of strings and to transform it to a SORE
(regular expressions in which every element name can occur at most once). Their
method is extended to deal with XMLSchema (XSD) in [BNV07].

In [AGM09], given a target global type of a distributed XML document, the
authors propose a method to provide a subtype for each marked subtree such
that (i) if each subtree verifies its subtype, the global type is verified and (ii) no
extra restrictions than those imposed by the global type are introduced. Their
approach consists in regarding the problem locally (each node and its children)
and to find the FSA which should be associated to the children generated by
external sources. Their approach can be seen as the inverse or ours. Let us
suppose our library consortium example, with a big distributed XML document
where nodes marked by functions are calls to different libraries. Their approach
focus on defining the subtypes corresponding to each library supposing that
a design is given. Our approach proposes to find the integration of different
library subtypes by finding the least library type capable of verifying all library
subtypes.

In [MNSB06, Th 10.3], it is shown that deciding whether a regular tree gram-
mar has an equivalent LTG, or an equivalent STTG, is EXPTIME-complete.
Using our algorithms, we can also solve these decision problems by computing
the LTG (in linear time), or the STTG (in exponential time), that generates the
least local (or single-type) language L containing the initial language L0, and
checking (in exponential time) that L = L0.

6 Conclusion

This paper proposes algorithms that compute a minimal tree language, by find-
ing the local or single-type grammar which generates it and which extends a
given original regular grammar. The paper proves the correctness and the mini-
mality of the generated grammars. A prototype has been implemented in order
to show the feasibility of our approach. Our goal is to allow a given type to
evolve encompassing the needs of the application using it. Indeed, we aim at
developing tools for adapting XML message type of a web service to the needs
of a composition.

It is encouraging to us to note that our work complements that of [MNSB06],
where the complexity of deciding whether a regular tree grammar has an equiv-
alent LTG or STTG is provided. In that work, the authors are interested in
analyzing the actual expressive power of XSD. With some non-trivial amount
of work, part of their theorem proofs can be used to produce an algorithm
similar to ours. This emphasizes the relevance of our method whose usability
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is twofold: as a theoretical tool, it can help answering the decision problem
announced in [MNSB06]; as an applied tool, it can easily be adapted to the
context of digital libraries, web services, etc. Our work complements the propos-
als in [BDHM09, dHM07], since we consider not only DTD but also XSD, and
adopts a global approach where all the tree grammar is taken into account as a
whole.

Some aspects of our tool can be improved, in particular the conciseness of the
regular expressions appearing in the generated grammars. We are working on
improving and extending our approach to solve other questions related to type
compatibility and evolution. Indeed, in this context, many other aspects may
be taken into account such as integrity constraints (how they evolve when the
schema evolves) and semantics of elements (how to deal with identical concepts
named differently in each type). We intend not only to extend our work in these
new directions but also to build an applied tool capable of comparing types or
extracting some relevant parts of a type. Interesting theoretical problems are
related to these applications.
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Abstract. Context-free grammars are widely used but still hindered by
ambiguity. This stresses the need for detailed detection methods that
point out the sources of ambiguity in a grammar. In this paper we show
how the approximative Noncanonical Unambiguity Test by Schmitz can
be extended to conservatively identify production rules that do not con-
tribute to the ambiguity of a grammar. We prove the correctness of our
approach and consider its practical applicability.

1 Introduction

Context-free grammars (CFGs) are widely used in various fields, like for instance
programming language development, natural language processing, or bioinfor-
matics. They are suitable for the definition of a wide range of languages, but
their possible ambiguity can hinder their use. Designed ambiguities are not un-
common, but accidentally introduced ambiguities are unwanted. Ambiguities are
very hard to detect by hand, so automated ambiguity checkers are welcome tools.

Despite the fact the CFG ambiguity problem is undecidable in general [5,7,6],
various detection schemes exist. They can roughly be divided into two categories:
exhaustive methods and approximative ones. Methods in the first category ex-
haustively search the usually infinite set of derivations of a grammar, while the
latter ones apply approximation to limit their search space. This enables them to
always terminate, but at the expense of potentially incorrect reports. Exhaustive
methods do produce precise reports, but only if they find ambiguity before they
are halted, because they obviously cannot be run forever.

Because of the undecidability it is impossible to always terminate with a cor-
rect and detailed report. The challenge is to develop a method that gives the
most precise answer in the time available. In this paper we propose to combine
exhaustive and approximative methods as a step towards this goal. We show
how to extend the Regular Unambiguity Test and Noncanonical Unambiguity
Test [11] to improve the precision of their approximation and that of their am-
biguity reports. The extension enables the detection of production rules that
do not contribute to the ambiguity of a grammar. These are already helpful
reports for the grammar developer, but can also be used to narrow the search
space of other detection methods. In an earlier study [3] we witnessed significant
reductions in the run-time of exhaustive methods due to our grammar filtering.
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1.1 Related Work

The original Noncanonical Unambiguity Test by Schmitz is an approximative
test for the unambiguity of a grammar. The approximation it applies is always
conservative, so it can only find a grammar to be unambiguous or potentially
ambiguous. Its answers always concern the grammar as a whole, but the reports
of a prototype implementation [12] by the author also contain clues about the
production rules involved in the potential ambiguity. However, these are very
abstract and hard to understand. The extensions that we present do result in
precise reports, while remaining conservative.

Another approximative ambiguity detection scheme is the “Ambiguity Check-
ing with Language Approximation” framework [4] by Brabrand, Giegerich and
Møller. The framework makes use of a characterization of ambiguity into hori-
zontal and vertical ambiguity to test whether a certain production rule can derive
ambiguous strings. The difference with our approach is that we test whether a
production rule is vital for the existence of parse trees of ambiguous strings.

1.2 Overview

We start with background information about grammars and languages in Sec-
tion 2. Then we repeat the definition of the Regular Unambiguity (RU) Test in
Section 3. In Section 4 we explain how the RU Test can be extended to iden-
tify sets of parse trees of unambiguous strings. From these parse trees we can
identify harmless production rules as explained in Section 5. Section 6 explains
the Noncanonical Unambiguity (NU) Test, an improvement over the RU Test,
and also shows how it improves the effect of our parse tree and production rule
filtering. In Section 7 we describe how our approach can be used iteratively to
increase its precision. Finally, Section 9 contains the conclusion.

We prove our results in an accompanying technical report [2].

2 Preliminaries

This section gives a quick overview of the theory of grammars and languages,
and introduces the notational convention used throughout this document. For
more background information we refer to [9,14].

2.1 Context-Free Grammars

A context-free grammar G is a 4-tuple (N,T, P, S) consisting of:

– N , a finite set of nonterminals,
– T , a finite set of terminals (the alphabet),
– P , a finite subset of N × (N ∪ T )∗, called the production rules,
– S, the start symbol, an element from N .

We use V to denote the set N ∪ T , and V ′ for V ∪ {ε}. The following characters
are used to represent different symbols and strings: a, b, c, . . . represent terminals,
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A,B,C, . . . represent nonterminals, X , Y , Z represent either nonterminals or
terminals, α, β, γ, . . . represent strings in V ∗, u, v, w, . . . represent strings in T ∗,
ε represents the empty string.

A production (A,α) in P is written as A→α. We use the function pid :P→N
to relate each production to a unique identifier. An item [10] indicates a position
in the right hand side of a production using a dot. Items are written like A→α•β.

The relation =⇒ denotes direct derivation, or derivation in one step. Given
the string αBγ and a production rule B → β, we can write αBγ =⇒ αβγ (read
αBγ directly derives αβγ). The symbol =⇒∗ means “derives in zero or more
steps”. A sequence of derivation steps is simply called a derivation. Strings in
V ∗ are called sentential forms. We call the set of sentential forms that can be
derived from S of a grammar G, the sentential language of G, denoted S(G). A
sentential form in T ∗ is called a sentence. The set of all sentences that can be
derived from S of a grammar G is called the language of G, denoted L(G).

We assume every nonterminal A is reachable from S, that is ∃αAβ ∈ S(G).
We also assume every nonterminal is productive, meaning ∃u : A =⇒∗ u.

The parse tree of a sentential form α describes how α is derived from S, but
disregards the order of the derivation steps. To represent parse trees we use
bracketed strings (See Section 2.3). A grammar G is ambiguous iff there is at
least one string in L(G) for which multiple parse trees exist.

2.2 Bracketed Grammars

From a grammar G = (N,T, P, S) a bracketed grammar Gb can be constructed,
by adding unique terminals to the beginning and end of every production rule [8].
The bracketed grammar Gb is defined as the 4-tuple (N,Tb, Pb, S), where:

– Tb = T ∪ T〈 ∪ T〉,
– T〈 = { 〈i | ∃p ∈ P : i = pid(p)},
– T〉 = { 〉i | ∃p ∈ P : i = pid(p)},
– Pb = {A→ 〈iα〉i |A→ α ∈ P, i = pid(A→ α)}.

Vb is defined as Tb ∪ N , and V ′
b as Vb ∪ {ε}. We use ab, bb, . . . and Xb, Yb, Zb to

represent symbols in respectively Tb and Vb. Similarly, ub, vb, . . . and αb, βb, . . .
represent strings in respectively T ∗

b and V ∗
b , The relation =⇒b denotes direct

derivation using productions in Pb. The homomorphism h from V ∗
b to V ∗ maps

each string in S(Gb) to S(G). It is defined by h(〈i) = ε, h(〉i) = ε, and h(X) = X .

2.3 Parse Trees

L(Gb) describes exactly all parse trees of all strings in L(G). S(Gb) describes
exactly all parse trees of all strings in S(G). We divide it into two disjoint sets:

Definition 1. The set of parse trees of ambiguous strings of G is Pa(G) =
{αb | αb ∈ S(Gb), ∃βb ∈ S(Gb) : αb �= βb, h(αb) = h(βb)}. The set of parse trees
of unambiguous strings of G is Pu(G) = S(Gb) \ Pa(G).
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Example 1. Below is an example grammar (1) together with its bracketed ver-
sion (2). The string aaa has two parse trees, 〈1〈2〈2〈3a〉3〈3a〉3〉2〈3a〉3〉2〉1 and
〈1〈2〈3a〉3〈2〈3a〉3〈3a〉3〉2〉2〉1, and is therefore ambiguous.

1 : S → A, 2 : A→ AA, 3 : A→ a (1)
1 : S → 〈1A〉1, 2 : A→ 〈2AA〉2, 3 : A→ 〈3a〉3 (2)

We call the set of the smallest possible ambiguous sentential forms of G the
ambiguous core of G. These are the ambiguous sentential forms that cannot be
derived from other sentential forms that are already ambiguous. Their parse
trees are the smallest indicators of the ambiguities in G.

Definition 2. The set of parse trees of the ambiguous core of a grammar G is
Ca(G) = {αb | αb ∈ Pa(G), ¬∃βb ∈ Pa(G) : βb =⇒b αb}
From Ca(G) we can obtain Pa(G) by adding all sentential forms reachable with
=⇒b. And since Ca(G) ⊆ Pa(G) we get the following Lemma:

Lemma 1. A grammar G is ambiguous iff Ca(G) is non-empty.

Similar to Pu(G), we define the complement of Ca(G) as Cu(G) = S(Gb)\Ca(G),
for which holds that Pu(G) ⊆ Cu(G).

Example 2. The two parse trees 〈1〈2〈2AA〉2A〉2〉1 and 〈1〈2A〈2AA〉2〉2〉1, of the
ambiguous sentential form AAA, are in the ambiguous core of Grammar (1).

2.4 Positions

A position in a sentential form is an element in V ∗
b ×V ∗

b . The position (αb, βb) is
written as αb•βb. pos(Gb) is the set of all positions in strings of S(Gb), defined
as {αb•βb | αbβb ∈ S(Gb)}.

Every position in pos(Gb) is a position in a parse tree, and corresponds to
an item of G. The item of a position can be identified by the closest enclosing
〈i and 〉i pair around the dot, considering balancing. For positions with the dot
at the beginning or the end we introduce two special items •S and S• .

We use the function item to map a position to its item. It is defined by
item(γb•δb) = A→ α′•β′ iff γb•δb = ηb 〈i αb•βb 〉i θb, A→ 〈iα′β′〉i ∈ Pb, α′ =⇒∗

b

αb and β′ =⇒∗
b βb, item(•αb) = •S, and item(αb•) = S• . Another function items

returns the set of items used at all positions in a parse tree. It is defined as
items(αb) = {A→ α•β | ∃γb•δb : γbδb = αb, A→ α•β = item(γb•δb)}.
Example 3. The following shows the parse tree representations of the positions
〈1〈2•〈3a〉3〈3a〉3〉2〉1 and 〈1〈2〈3a〉3•〈3a〉3〉2〉1. We see that the first position is at
item A→ •AA and the second is at A→ A•A.

S

A

A

a

• A

a

S

A

A

a

A •

a
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The function proditems maps a production rule to the set of all its items. It
is defined as proditems(A → α) = {A → β•γ | βγ = α}. If a production rule is
used to construct a parse tree, then all its items occur at one or more positions
in the tree.

Lemma 2. ∀αb〈iβb〉iγb ∈ S(Gb) : ∃A→δ ∈ P : pid(A→δ)= i, proditems(A→δ)
⊆ items(αb〈iβb〉iγb).

2.5 Automata

An automaton A is a 5-tuple (Q,Σ,R,Qs, Qf) where Q is the set of states,
Σ is the input alphabet, R in Q × Σ × Q is the set of rules or transitions,
Qs ⊆ Q is the set of start states, and Qf ⊆ Q is the set of final states. A
transition (q0, a, q1) is written as q0

a�−→ q1. The language of an automaton is
the set of strings read on all paths from a start state to an end state. Formally,
L(A) = {α | ∃qs ∈ Qs, qf ∈ Qf : qs

α�−→∗qf}.

3 Regular Unambiguity Test

This section introduces the Regular Unambiguity (RU) Test [11] by Schmitz.
The RU Test is an approximative test for the existence of two parse trees for the
same string, allowing only false positives.

3.1 Position Automaton

The basis of the Regular Unambiguity Test is a position automaton, which de-
scribes all strings in S(Gb). The states of this automaton are the positions in
pos(Gb). The transitions are labeled with elements from Vb.

Definition 3. The position automaton1 Γ (G) of a grammar G is the tuple
(Q, Vb, R,Qs, Qf ), where

– Q = pos(Gb),
– R = {αb•Xbβb

Xb�−→ αbXb•βb | αbXbβb ∈ S(Gb)},
– Qs = {•αb | αb ∈ S(Gb)},
– Qf = {αb• | αb ∈ S(Gb)}.

There are three types of transitions: derives with labels in T〈, reduces with labels
in T〉, and shifts of terminals and nonterminals in V . The symbols read on a path
through Γ (G) describe a parse tree of G. Thus, L(Γ (G)) = S(Gb).
Γ (G) contains a unique subgraph for each string in S(Gb). The string read

by a subgraph can be identified by the positions on the nodes of the subgraph.
Every position dictates the prefix read up until its node, and the postfix required
to reach the end state of its subgraph. Therefore, every path that corresponds
to a string in L(Γ (G)) must pass all positions of that string.
1 We modified the original definition of the position automaton to be able to explain

our extensions more clearly. This does not essentially change the RU Test and NU
Test however, since their only requirement on Γ (G) is that it defines S(Gb).
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Lemma 3. ∀αb, βb : αb•βb ∈ Q⇔ αbβb ∈ L(Γ (G)).

A grammar G is ambiguous iff two paths exist through Γ (G) that describe
different parse trees in Pa(G) — strings in S(Gb) — of the same string in S(G).
We call such two paths an ambiguous path pair.

Example 4. The following shows the first part of the position automaton of the
grammar from Example 1. It shows paths for parse trees S, 〈1A〉1 and 〈1〈3a〉3〉1.

•S S•
S

•〈1A〉1 〈1•A〉1 〈1A•〉1 〈1A〉1•
〈1 A 〉1

•〈1〈3a〉3〉1 〈1•〈3a〉3〉1 〈1〈3•a〉3〉1 〈1〈3a•〉3〉1 〈1〈3a〉3•〉1 〈1〈3a〉3〉1•
〈1 〈3 a 〉3 〉1

3.2 Approximated Position Automaton

If G has an infinite number of parse trees, the position automaton is also of
infinite size. Checking it for ambiguous path pairs would take forever. Therefore
the position automaton is approximated using equivalence relations on the posi-
tions. The approximated position automaton has equivalence classes of positions
for its states. For every transition between two positions in the original automa-
ton a new transition with the same label then exists between the equivalence
classes that the positions are in. If an equivalence relation is used that yields a
finite set of equivalence classes, the approximated automaton can be checked for
ambiguous path pairs in finite time.

Definition 4. Given an equivalence relation ≡ on positions, the approximated
position automaton Γ≡(G) of the automaton Γ (G) = (Q, Vb, R,Qs, Qf), is the
tuple (Q≡, V

′
b , R≡, {qs}, {qf}) where

– Q≡ = Q/≡ ∪{qs, qf}, where Q/≡ is the set of non-empty equivalence classes
over pos(Gb) modulo ≡, defined as {[αb•βb]≡ | αb•βb ∈ Q},

– R≡ = {[q0]≡
Xb�−→ [q1]≡ | q0

Xb�−→ q1 ∈ R} ∪ {qs ε�−→ [q]≡ | q ∈ Qs} ∪ {[q]≡ ε�−→
qf | q ∈ Qf},

– qs and qf are respectively the start and final state.

The paths through Γ≡(G) describe an overapproximation of the set of parse
trees of G, thus L(Γ (G)) ⊆ L(Γ≡(G)). So if no ambiguous path pair exists in
Γ≡(G), grammar G is unambiguous. But if there is an ambiguous path pair, it
is unknown if its paths describe real parse trees of G or approximated ones. In
this case we say G is potentially ambiguous.

The item0 Equivalence Relation. Checking for ambiguous paths in finite
time also requires an equivalence relation with which Γ≡(G) can be built in finite
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qs •S
ε

S•
S qf

ε

S → •A S → A•
A

〈1 〉1

A→ •AA A→ A•A A→ AA•
A A

〈2 〉2

〈2 〉2

〈2 〉2

A→ •a A→ a•
a

〈3 〉3〈3 〉3〈3 〉3

Fig. 1. The item0 position automaton of the grammar of Example 1

time. A relation like that should enable the construction of the equivalence classes
without enumerating all positions in pos(Gb). A simple but useful equivalence
relation with this property is the item0 relation [11]. Two positions are equal
modulo item0 if they are both at the same item.

Definition 5. αb•βb item0 γb•δb iff item(αb•βb) = item(γb•δb).

Intuitively the item0 position automaton Γitem0(G) of a grammar resembles that
grammar’s LR(0) parse automaton [10]. The nodes are the LR(0) items of the
grammar and the X and 〉 edges correspond to the shift and reduce actions in
the LR(0) automaton. The 〈 edges do not have LR(0) counterparts. Every item
with the dot at the beginning of a production of S is a start node, and every
item with the dot at the end of a production of S is an end node.

The difference between an LR(0) automaton and an item0 position automaton
is in the reductions. Γitem0(G) has reduction edges to every item that has the dot
after the reduced nonterminal, while an LR(0) automaton jumps to a different
state depending on the symbol that is at the top of the parse stack. As a result,
a certain path through Γitem0(G) with a 〈i transition from A → α•Bγ does not
necessarily need to have a matching 〉i transition to A→ αB•γ.

Example 5. Figure 1 shows the item0 position automaton of the grammar of
Example 1. Strings 〈1〈2〈3a〉3〉1 and 〈1〈3a〉3〉1 form an ambiguous path pair.

The item0 relation can be combined with the lookk relation to get position au-
tomata that resemble LR(k) automata. This results in the itemk relation, which
groups positions if they are equal modulo both item0 and lookk. Two positions
are equal modulo lookk if their first k terminal symbols after the dot are identical.

Definition 6. αb•βb lookk γb•δb iff (∃u, v, w : h(βb) = uv, h(δb) = uw, |u| = k)
∨ (h(βb) = h(δb) ∧ |h(βb)| < k).
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The RU Test becomes more precise with increasing k values, because then
Γitemk

(G) better approximates S(G).

3.3 Position Pair Automaton

The existence of ambiguous path pairs in a position automaton can be checked
with a position pair automaton, in which every state is a pair of states from the
position automaton. Transitions between pairs are described using the mutual
accessibility relation ma.

Definition 7. The regular position pair automaton ΠR
≡ (G) of Γ≡(G) is the

tuple (Q2
≡, V

′2
b ,ma, q2s , q

2
f ), where ma over Q2

≡×V ′2
b ×Q2

≡, denoted by −→−→ , is the
union of the following subrelations:

maDl = {(q0, q1)
(〈i,ε)−−−→−−−→ (q2, q1) | q0

〈i�−→ q2},
maDr = {(q0, q1)

(ε,〈i)−−−→−−−→ (q0, q3) | q1
〈i�−→ q3},

maS = {(q0, q1)
(X,X)−−−−→−−−−→ (q2, q3) | q0 X�−→ q2 ∧ q1 X�−→ q3, X ∈ V ′},

maRl = {(q0, q1)
(〉i,ε)−−−→−−−→ (q2, q1) | q0

〉i�−→ q2},
maRr = {(q0, q1)

(ε,〉i)−−−→−−−→ (q0, q3) | q1
〉i�−→ q3}.

Every path through this automaton from q2s to q2f describes two paths through
Γ≡(G) that shift the same symbols. The language of ΠR

≡(G) is thus a set of pairs
of strings. A path indicates an ambiguous path pair if its two bracketed strings
are different, but equal under the homomorphism h. Because L(Γ≡(G)) is an
over-approximation of S(Gb), L(ΠR

≡ (G)) contains at least all ambiguous path
pairs through Γ (G).

Lemma 4. ∀αb, βb ∈ Pa(G) : αb �= βb ∧ h(αb) = h(βb) ⇒ (αb, βb) ∈ L(ΠR
≡ (G)).

4 Finding Parse Trees of Unambiguous Strings

The Regular Unambiguity Test described in the previous section can conserva-
tively detect the unambiguity of a given grammar. If it finds no ambiguity we
are done, but if it finds potential ambiguity this report is not detailed enough to
be useful. In this section we show how the RU Test can be extended to identify
parse trees of unambiguous strings. These will form the basis of more detailed
ambiguity reports, as we will see in Section 5.

4.1 Unused Positions

From the states of Γ≡(G) that are not used on ambiguous path pairs, we can
identify parse trees of unambiguous strings. For this we use the fact that every
bracketed string that represents a parse tree of G must pass all its positions on
its path through Γ (G) (Lemma 3). Therefore, all positions in states of Γ≡(G)
that are not used by any ambiguous path pair through ΠR

≡(G) are positions in
parse trees of unambiguous strings.
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Pa(G)

S(Gb)

L(Γ≡(G))
Pu(G)

Pu
≡(G)

Fig. 2. Venn diagram showing the relationship between S(Gb) and L(Γ≡(G)). The
vertical lines divide both sets in two: their parse trees of ambiguous strings (left) and
parse trees of unambiguous strings (right).

Definition 8. The set of states of Γ≡(G) that are used on ambiguous path pairs
through ΠR

≡(G) is Qa
≡ =

{q0, q1 | ∃αb, βb, α
′
b, β

′
b : αbβb �= α′

bβ
′
b, q

2
s

(αb,α′
b)−−−−−→−−−−−→

∗ (q0, q1)
(βb,β′

b)−−−−→−−−−→
∗ q2f}.

The set of states not used on ambiguous path pairs is Qu
≡ = Q≡ \Qa

≡.

Definition 9. The set of parse trees of unambiguous strings of G that are iden-
tifiable with ≡, is Pu

≡(G) = {αbβb | ∃q ∈ Qu
≡ : αb•βb ∈ q}.

This set is always a subset of Pu(G), as illustrated by Fig. 2.

Theorem 1. For all equivalence relations ≡, Pu
≡(G) ⊆ Pu(G).

The positions in the states in Qa
≡ and Qu

≡ thus identify parse trees of respectively
potentially ambiguous strings and certainly unambiguous strings. However, it-
erating over all positions in pos(G) is infeasible if this set is infinite. The used
equivalence relation should therefore allow the direct identification of parse trees
from the states of Γ≡(G).

For instance, a state in Γitem0(G) represents all parse trees in which a particular
item appears. With this information we can identify production rules that only
appear in parse trees in Pu

≡(G), as we will show in the next section.

4.2 Join Points

Gathering Qa
≡ is also impossible in practice because it requires the inspection

of all paths through Γ≡(G), of which there can be infinitely many. We therefore
need a definition that can be calculated in finite time. For this we use the notion
of join points. These are the points in ΠR

≡ (G) where we see that two different
paths through Γ≡(G) potentially come together in the same state.

Definition 10. The set of join points J in ΠR
≡(G), over Q2

≡ × Q2
≡, is defined

as J = {((q0, q1), (q2, q2)) | (q0, q1)
(Xb,X′

b)−−−−−→−−−−−→ (q2, q2), q0 �= q1, Xb ∈ T〉 ∨X ′
b ∈ T〉}.

With J we then define the following alternative to Qa
≡:
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Definition 11. The set of states in Γ≡(G) that are used in pairs of ΠR
≡(G) that

can reach, or can be reached by, a join point, is Qa′
≡ =

{q0, q1 | ∃(p0, p1) ∈ J : q2s −→−→
∗ (q0, q1) −→−→

∗ p0 ∨ p1 −→−→
∗ (q0, q1) −→−→

∗ q2f}.

This is a safe over-approximation of Qa
≡, because all ambiguous path pairs

through Γ≡(G) will eventually join in a certain state. It can be calculated by
iterating over the edges of ΠR

≡(G) to collect J , and then computing the images
of the join points through ma∗ and (ma−1)∗. Both steps are linear in the number
of edges in ΠR

≡(G) (see [14] Chapter 2), which is worst case O(|Q≡|4).

5 Harmless Production Rules

In this section we show how we can use Qa
≡ to identify production rules that

do not contribute to the ambiguity of G. These are the production rules that
can never occur in parse trees of ambiguous strings. We call them harmless
production rules.

5.1 Finding Harmless Production Rules

A production rule is certainly harmless if it is only used in parse trees in Pu
≡(G).

We should therefore search for productions that are never used on ambiguous
path pairs of ΠR

≡(G) that describe valid parse trees in G. We can find them by
looking at the items of the positions in the states of Qa

≡. If not all items of a
production rule are used then the rule cannot be used in a valid string in Pa(G)
(Lemma 2), and we know it is harmless.

Definition 12. The set of items used on the ambiguous path pairs through
ΠR

≡(G) is Ia
≡ = {A→ α•β | ∃q ∈ Qa

≡ : ∃γb•δb ∈ q : A→ α•β = item(γb•δb)}.

With it we can identify production rules of which all items are used:

Definition 13. The set of potentially harmful production rules of G, identifiable
from ΠR

≡(G), is Phf = {A→ α | proditems(A→ α) ⊆ Ia
≡}.

Because of the approximation it is uncertain whether or not they can really be
used to form valid parse trees of ambiguous strings. Nevertheless, all the other
productions in P will certainly not appear in parse trees of ambiguous strings.

Definition 14. The set of harmless production rules of G, identifiable from
ΠR

≡(G), is Phl = P \ Phf .

Theorem 2. ∀p ∈ Phl : ¬∃αb〈iβb〉iγb ∈ Pa(G) : i = pid(p).

Example 6 in Section 7 shows finding Phl for a small grammar.



86 H.J.S. Basten

5.2 Complexity

Finding Phf comes down to building ΠR
≡(G), finding Qa′

≡ , and enumerating all
positions in all classes in Qa′

≡ to find Ia
≡. The number of these classes is finite,

but the number of positions might not be. It would therefore be convenient if the
definition of the chosen equivalence relation could be used to collect Ia

≡ in finitely
many steps. With the item0 relation this is possible, because all the positions in
a class are all in the same item.

Constructing ΠR
item0

(G) can be done in O(|G|2) (see [11]), where |G| is the
number of items of G. After that, Qa′

item0
can be gathered in O(|G|4), because

|Qitem0 | is linear with |G|. Since this is the most expensive step, the worst case
complexity of finding Phf with item0 is therefore also O(|G|4).

5.3 Grammar Reconstruction

Finding Phl can be very helpful information for the grammar developer. Also, Phf
represents a smaller grammar that can be checked again more easily to find the
true origins of ambiguity. However, the reachability and productivity properties
of this smaller grammar might be violated because of the removed productions
in Phl. To restore these properties we have to introduce new terminals and pro-
ductions, and a new start symbol. We must prevent introducing new ambiguities
in this process.

From Phf we can create a new grammar G′ by constructing:

1. The set of defined nonterminals of Phf : Ndef = {A | A→ α ∈ Phf}.
2. The used but undefined nonterminals of Phf :
Nundef = {B | A→ αBβ ∈ Phf}\Ndef.

3. The unproductive nonterminals:
Nunpr = {A |A ∈ Ndef ,¬∃u : A =⇒∗ u using only productions in Phf}.

4. The start symbols of Phf : Shf = {A | A ∈ Ndef ,¬∃B → βAγ ∈ Phf}.
5. New terminal symbols tA, bA, eA for each nonterminal A.
6. New productions to define a new start-symbol S′:
PS′ = {S′ → bAAeA | A ∈ Shf}.

7. Productions to complete the unproductive and undefined nonterminals:
P ′ = Phf ∪ PS′ ∪ {A→ tA |A ∈ Nundef ∪ Nunpr}.

8. The new set of terminal symbols: T ′ = {a |A→ βaγ ∈ P ′}.
9. Finally, the new grammar: G′ = (Ndef ∪ Nundef ∪ {S′}, T ′, P ′, S′).

Surrounding the nonterminals in Shf with unique terminals at step 6 prevents
the new rules of S′ from being ambiguous with each other. The unique terminals
at step 7 make sure we do not create new parse trees for existing strings in L(G).

6 Noncanonical Unambiguity Test

In this section we explain the Noncanonical Unambiguity (NU) Test [11], which
is more precise than the Regular Unambiguity Test. It enables the identification
of a larger set of irrelevant parse trees, namely the ones in Cu(G). From these
we can also identify a larger set of harmless production rules and tree patterns.
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6.1 Improving the Regular Unambiguity Test

The regular position pair automaton described in Section 3 checks all pairs of
paths through a position automaton for ambiguity. However, it also checks some
spurious paths that are unnecessary for identifying the ambiguity of a grammar.

These are the path pairs that derive the same unambiguous substring for a
certain nonterminal. We can ignore these paths because in this situation there
are also two paths in which the nonterminal was shifted instead of derived.
For instance, consider paths 〈1〈2〈3a〉3αb〉2〉1 and 〈1〈2〈3a〉3βb〉2〉1. If they form
a pair in L(ΠR

≡ (G)) then the shorter paths 〈1〈2Aαb〉2〉1 and 〈1〈2Aβb〉2〉1 will
too (considering A → 〈3a〉3 ∈ Pb). In addition, if the first two paths form an
ambiguous path pair, then these latter two will also, because 〈3a〉3 does not
contribute to the ambiguity. In this case we prefer the latter paths because they
describe smaller parse trees than the first paths.

6.2 Noncanonical Position Pair Automaton

To avoid common unambiguous substrings we should only allow path pairs to
take identical reduce transitions if they do not share the same substring since
their last derives. To keep track of this property we add two extra boolean flags
c0 and c1 to the position pairs. These flags tell for each position in a pair whether
or not its path has been in conflict with the other, meaning it has taken different
reduce steps as the other path since its last derive. A value of 0 means this has
not occurred yet, and we are thus allowed to ignore an identical reduce transition.

All start pairs have both flags set to 0, and every derive step resets the flag of
a path to 0. The flag is set to 1 if a path takes a conflicting reduce step, which
occurs if the other path does not follow this reduce at the same time (for instance
〉2 in the parse trees 〈1〈2〈3a〉3〉2〉1 and 〈1〈2〈3a〉3〉1). We use the predicate confl
(called eff by Schmitz) to identify a situation like that.

confl(q, i) = ∃u ∈ T ∗
〈 : q u�−→∗qf ∨ (∃q′ ∈ Q≡, X ∈ V ∪ T〉 : X �=〉i, q uX�−→+q′) (3)

It tells whether there is another shift or reduce transition other than 〉i possible
from q, ignoring 〈 steps, or if q is at the end of the automaton.

Definition 15. The noncanonical position pair automaton ΠN
≡ (G) of Γ≡(G) is

the tuple (Qp, V ′2
b , nma, (qs, 0)2, (qf , 1)2), where Qp = (Q≡ × B)2, and nma over

Qp × V ′2
b × Qp is the noncanonical mutual accessibility relation, defined as the

union of the following subrelations:

nmaDl = {(q0, q1)c0, c1
(〈i,ε)−−−→−−−→ (q2, q1)0, c1 | q0

〈i�−→ q2},
nmaDr = {(q0, q1)c0, c1

(ε,〈i)−−−→−−−→ (q0, q3)c0, 0 | q1
〈i�−→ q3},

nmaS = {(q0, q1)c0, c1
(X,X)−−−−→−−−−→ (q2, q3)c0, c1 | q0 X�−→ q2, q1

X�−→ q3, X ∈ V ′},
nmaCl = {(q0, q1)c0, c1

(〉i,ε)−−−→−−−→ (q2, q1)1, c1 | q0
〉i�−→ q2, confl(q1, i)},

nmaCr = {(q0, q1)c0, c1
(ε,〉i)−−−→−−−→ (q0, q3)c0, 1 | q1

〉i�−→ q3, confl(q0, i)},
nmaR = {(q0, q1)c0, c1

(〉i,〉i)−−−−→−−−−→ (q2, q3)1, 1 | q0
〉i�−→ q2, q1

〉i�−→ q3, c0 ∨ c1}.
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As with ΠR
≡(G), the language of ΠN

≡ (G) describes ambiguous path pairs
through Γ≡(G). The difference is that L(ΠN

≡ (G)) does not include path pairs
without conflicting reductions. Therefore L(ΠN

≡ (G)) ⊆ L(ΠR
≡(G)). Nevertheless,

ΠN
≡ (G) does at least describe all the core parse trees in Ca(G):

Theorem 3. ∀αb, βb∈ Ca(G) : αb �=βb ∧ h(αb)=h(βb)⇒ (αb, βb) ∈ L(ΠN
≡ (G)).

The Theorem shows that if G is ambiguous — that is Ca(G) is non-empty —
L(ΠN

≡ (G)) is also non-empty. This means that if L(ΠN
≡ (G)) is empty, G is

unambiguous.

6.3 Effects on Filtering Parse Trees and Production Rules

The new nma relation enables our parse tree identification algorithm of Section 4
to potentially identify a larger set of irrelevant parse trees, namely Cu(G). These
trees might be ambiguous, but this is not a problem because we are interested
in finding the trees of the smallest possible sentential forms of G, namely the
ones in Ca(G).

Definition 16. Given Qu
≡ from ΠN

≡ (G), the set of parse trees not in the am-
biguous core of G, identifiable with ≡, is Cu

≡(G) = {αbβb | ∃q ∈ Qu
≡, αb•βb ∈ q}.

Theorem 4. For all equivalence relations ≡, Cu
≡(G) ⊆ Cu(G).

The set of harmless production rules that can be identified with ΠN
≡ (G) is also

potentially larger. It might include rules that can be used in parse trees of
ambiguous strings, but not in parse trees in Ca(G). Therefore they are not vital
for the ambiguity of G.

Definition 17. Given Qa
≡ and Ia

≡ from ΠN
≡ (G), the set of harmless productions

of G, identifiable from ΠN
≡ (G), is P ′

hl = P \ {A→ α | proditems(A→ α) ⊆ Ia
≡}.

Theorem 5. ∀p ∈ P ′
hl : ¬∃αb〈iβb〉iγb ∈ Ca(G) : i = pid(p).

7 Excluding Parse Trees Iteratively

Our approach for the identification of parse trees of unambiguous strings is
most useful if applied in an iterative setting. By checking the remainder of the
potentially ambiguous parse trees again, there is possibly less interference of the
trees during approximation. This could result in less ambiguous path pairs in
the position pair automaton. We could then exclude a larger set of parse trees
and production rules.

Example 6. The grammar below (4) is unambiguous but needs two iterations
of the NU Test with item0 to detect this. At first, ΠN

item0
(G) contains only the

ambiguous path pair 〈1〈4c〉4〉1 and 〈2〈5〈6c〉6〉3〉1. The first path describes a valid
parse tree, but the second does not. From B → •Cb it derives to C → •c, but
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Table 1. Excerpt from Results of prototype implementation

Grammar Harmless rules Time Amber Time CfgAnalyzer
Name Rules LR(0) SLR(1) LR(1) Original Filtered Original Filtered
SQL.1 79 65 65 65 28m26s 0.1s 17.6s 1.8s
Pascal.3 176 21 30 144 31.8s 0.0s 9.6s 1.3s
C.2 212 41 44 44 4.5h1 4.12s1 3.0h 1.1h
Java.1 349 56 70 74 25.0h2 22m52s2 48.9s 32.4s
1for sentences of length 7 (first ambiguity at length 13)
2for sentences of length 12 (first ambiguity at length 13)

from C → c• it reduces to A→ aC• . Therefore productions 2, 5 and 3 are only
used partially, and they are thus harmless. After removing them and checking
the reconstructed grammar again there are no ambiguous path pairs anymore.

1 : S → A, 2 : S → B, 3 : A→ aC, 4 : A→ c, 5 : B → Cb, 6 : C → c (4)

We can gain even higher precision by choosing a new equivalence relation with
each iteration. If with each step Γ≡(G) better approximates S(Gb), we might end
up with only the parse trees in Pu(G). Unfortunately, the ambiguity problem
is undecidable, and this process does not necessarily have to terminate. There
might be an infinite number of equivalence relations that yield a finite number
of equivalence classes. Or at some point we might need to resort to equivalence
relations that do not yield a finite graph. Therefore, the iteration has to stop at a
certain moment, and we can continue with an exhaustive search of the remaining
parse trees.

In the end this exhaustive searching is the most practical, because it can point
out the exact parse trees of ambiguous strings. A drawback of this approach is its
exponential complexity. Nevertheless, excluding sets of parse trees beforehand
can reduce its search space significantly, as we see in the next section.

8 Prototype Results

In [3] we tested a prototype implementation of our approach on a collection of
programming language grammars. From unambiguous grammars of SQL, Pascal,
C and Java, we created 5 ambiguous versions for each language. For each gram-
mar we tested the number of harmless production rules we could find with the
NU Test, using different equivalence relations. Columns 3-5 of Table 1 show the
results of these tests for a selection of 4 ambiguous grammars. Similar numbers
of harmless rules could be found for the other grammars.

Columns 7-9 show the effect that the removal of the harmless productions had
on the run-time of the two exhaustive derivation generators Amber [13] and
CfgAnalyzer [1]. They mention the time needed to find the first ambiguous
derivation of a grammar before and after filtering with LR(1). We see significant
reductions in run-time, sometimes orders of magnitude. For the other grammars
we witnessed similar effects.
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9 Conclusions

We showed how the Regular Unambiguity Test and Noncanonical Unambigu-
ity Test can be extended to conservatively identify parse trees of unambiguous
strings. From these trees we can identify production rules that do not contribute
to the ambiguity of the grammar. This information is already very useful for a
grammar developer, but it can also be used to significantly reduce the search
space of other ambiguity detection methods.
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Abstract. This paper describes an extension adding priority to slotted-
Circus, a generic framework for reasoning about discretely timed and/or
synchronously clocked systems. The semantics of prioritised external
choice is given using the Unifying Theories of Programming framework
(UTP). The resulting language is similar to Prioritized Timed CSP, but
its semantics is not based on trace ordering, and neither does it use the
notion of acceptances (e.g. PCSP). Instead, the semantics is based on
the notion of refusal sets already widely used in theories of CSP, Circus
and slotted-Circus. We introduce priority as a lightweight extension of
slotted-Circus, which can be easily adapted to define a similar extension
of Timed CSP. We also discuss why priority can most easily be added
to specific history models, and the fact that requiring the clock to tick
after every communication event results in a more tractable theory.

1 Introduction

1.1 Prioritized slotted-Circus

The formal notation Circus is an unification of Z and CSP, to give a “state-rich”
process algebra with (restricted) global shared variables. Circus has been given
a semantics in UTP [OCW09]. Apart from event sequencing, there is no notion
of time in Circus. A timed version of Circus (Circus Time Action or CTA) has
been explored [SH02, She06] that introduces the notion of discrete time-slots
in which sequences of events occur. The semantics of CTA has been developed
using UTP, and there we find a two-level notion of history: the top-level views
history as a sequence of time-slots; whilst the bottom-level records a history of
events within a given slot.

Our interest in hardware compilation languages such as Handel-C [Cel02] led
to a development of a generic theory (called slotted-Circus), with time-slots whose
bottom-level contents could be parameterised, as simple traces, or multisets of
events, or as one of the three successively more complex “micro-slot” structures
[BSW07]. slotted-Circus has also been given a semantics in UTP [GB09].

One important aspect of hardware compilation languages, namely priority,
has not been addressed before in Circus based languages. Priority is a very basic
∗
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and intuitively simple concept, used to express that one thing is regarded as
more important than another. Even though in the original CSP, priority was not
defined, many languages that adopted the CSP model of communication added
priority constructs (occam , Ada, Handel-C), usually as they provide for efficient
implementations. Even though in this work we are primarily interested in priority
for slotted-Circus we will also discuss it in the context of CSP. Because this work
is focused on defining a theory for hardware description languages, we will only
be interested in defining prioritized versions of external choice (←−� ) and not in
prioritized parallel composition (

←−
‖ ). This is because hardware can utilise true

parallelism, and does not require interleaving of notionally parallel processes,
with the attendant need to be able to prioritize aspects of that interleaving (a.k.a.
scheduling). One of the interesting aspects of Prioritized slotted-Circus is that it
is very similar to Prioritized Timed CSP (PTCSP) [Low93]. The two notations
have different origins and semantic models, but the degree of convergence in
key notions and laws, gives us confidence that our priority concept is correct. In
PTCSP we can remove non-determinism from a mixture of parallel composition
and external choice by prioritising them both, as per the following law:

(a n→ P←−�a n→ Q)
←−
‖ (a n→ Q←−�a n→ P) = a n→ P

In Prioritised slotted-Circus(PSC), the lack of a prioritized parallel construct
means that we cannot so easily remove all non-determinism during implementa-
tion:

(a n→ P←−�a n→ Q) ‖ (a n→ Q←−�a n→ P) = a n→ P � a n→ Q

1.2 UTP: General Principles

Theories in UTP are expressed as second-order predicates1 over a pre-defined
collection of free observation variables, referred to as the alphabet of the theory.
The predicates are generally used to describe a relation between a before-state
and an after-state, the latter typically characterised by dashed versions of the
observation variables. A predicate whose free variables are all undashed, refer-
ring only to the before-state, is called a condition. We note that UTP follows
the key principle that “programs are predicates” [Hoa85b] and so does not dis-
tinguish between the syntax of some language and its semantics as alphabetised
predicates. For example, if ok denotes absence of divergence, tr is a sequence of
observed events and ref is a set of events currently being refused, then

ok ′ ∧ tr ′ = tr � {a} ∧ a /∈ ref ′

denotes an observation of a non-divergent process execution that has performed
an a-event and is still willing to perform more. A given theory is characterised
by its alphabet, and a series of healthiness conditions that constrain the valid
assertions that predicates may make. A healthiness condition is a property of a
1 Most definitions are in fact 1st-order, but we need 2nd-order in order to handle the

notion of “healthiness”, and recursion.
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predicate that distinguishes sensible predicates from nonsense. So, for example
the following predicate is clearly nonsense under our intended interpretation:

tr = tr ′ � 〈a〉

It asserts that the history of events that had occurred before this process started
(tr) is longer than the history at the end (tr ′). It can be ruled out by the following
healthiness condition:

P ⇒ tr ≤ tr ′

Note that healthiness conditions should not be confused with ordinary conditions
(predicates with only before-variables).

1.3 Structure and Focus

We first present an overview of slotted-Circus semantics §2, before giving an ex-
tensive exposition of the prioritised theory in §3. We then wrap up by discussing
related §4 and future §5 work, and concluding §6.

2 slotted-Circus

In this section we will focus only on aspects of slotted-Circus relevant to this
paper. More detailed definitions and explanations can be found in [BG09, GB09].

2.1 Syntax

The syntax of Slotted-Circus is similar to that of Circus, and a subset, relevant
to this paper, is shown in Figure 1. Apart from assignment, we shall ignore the
imperative state aspects of the theory as these are covered elsewhere and not
relevant to the topic of priority. The basic actions Skip, Stop, Chaos , as well as
event prefix (e→A) and hiding (A \H ) are similar to the corresponding CSP
behaviours [Hoa85a, Sch00], while we also introduce variable assignmement (:=).
Actions can be combined with internal (�) or external (�) choice, sequential
composition (; ), or parallel composition (‖). The key construct related to time-
slots, and hence not part of Circus, is Wait t , which denotes an action that
simply waits for t time-slots to elapse, and then terminates.

Action ::= Skip | Stop | Chaos |Wait t | Name := Expr
| Comm→ Action | Action � Action | Action � Action
| Action ; Action | Action ‖ Action | Action\CS

Comm ::= Name.Expr | Name!Expr | Name?Name
Expr ::= expression

t ::= positive integer valued expression
Name ::= channel or variable names

CS ::= channel name sets

Fig. 1. Slotted-Circus Syntax



94 P. Gancarski and A. Butterfield

2.2 History Models

In slotted-Circus a trace model is built on top of exchangeable history models. It
is recorded as a sequence of slots, where every slot is defined as a pair consisting of
an event history (hist) and a refusal set (ref ), meaning that in the relevant time-
slot that event-history hist occurred, with events in ref being refused afterwards.

S E =̂ HE × P E

There are currently two history models defined and working within the slotted-
Circus framework: MSA and CTA. In CTA, a history is just a sequence (“trace”)
of events in the order in which they occurred during a slot. So the following
example shows a run of CTA:

〈(〈〉, ref1), (〈a, b〉, ref2), (〈b, a, a〉, ref3), (〈b, a〉, ref4), . . .〉

In the multi-set action (MSA) variant, we ignore event ordering within slots,
viewing histories as a bag of events, so the above example appears as:

〈({}, ref1), ({a �→ 1, b �→ 1}, ref2), ({a �→ 2, b �→ 1}, ref3), ({a �→ 1, b �→ 1}, ref4), . . .〉

The MSA history model carries no information on event ordering within time-
slots.

2.3 UTP Observations

In our UTP theory, we model slotted-Circus using four observations:

ok : B — stability, absence of serious error.
wait : B — waiting, true if process is waiting on events, false if it has terminated.
slots : (S E )+ — full event history as a non-empty sequence of slots, with “clock-

ticks” occurring at the boundaries between slots.
state : Variable �→ Value — an environment giving program variable values.

The alphabet of our theory consists of the above four variables representing the
state before an action starts, and dashed versions of the variables giving the
(current/final) state when an action is running and either waiting for an event
or just terminated.

2.4 Healthiness Conditions

Healthiness conditions are characterised by idempotent predicate transformers,
with a healthy predicate being a fixed point of such a transformer. Here we shall
only consider R3, CSP1,2,3,4 as they are explicitly invoked. R1 and R2 deal
with the infeasibility of time travel and (direct) memory of past events, and are
well covered elsewhere, and satisfied in any case by all definitions we present.

The healthiness condition R3 is one associated with all “reactive” systems in
the UTP, covering process-algebras like ACP, CSP, and CCS.

R3(P) =̂ II �wait� P
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R3 deals with the situation when a process has not actually started to run,
because a prior process has yet to terminate, characterised by wait = True.
In this case the action of a yet-to-be started process should simply be to do
nothing, an action we call “reactive-skip” (II).

A process is CSP1 healthy if all it asserts, when started in an unstable state
(due to some serious earlier failure), is that the event history may be extended:

CSP1(P) =̂ P ∨ ¬ ok ∧ slots � slots ′

A process predicate is CSP2 healthy if it does not mandate instability, so
if true with ok ′ = False, it is also true with ok ′ = True, all other observation
variables being unchanged.

CSP2(P) =̂ P ; (ok ⇒ ok ′) ∧ wait ′ = wait ∧ slots ′ = slots ∧ state ′ = state

CSP3 and CSP4 state respectively that Skip is a left and right unit of
sequential composition.

CSP3(P) =̂ Skip; P CSP4(P) =̂ P ; Skip

A more technical aspect of CSP3,4 is that once Skip starts/terminates it un-
constrains the refusals set of the last slot. This causes CSP3 to make processes
insensitive to refusals of a previously terminated process, and CSP4 to uncon-
strain refusals of a processes once they terminate. These properties are changed
in our prioritized model, allowing information about refusals to be partially
propagated even when a process terminates.

2.5 Slotted Semantics

The language constructs of sequential composition and internal choice all have
the same semantics as in standard UTP:

P ; Q =̂ ∃ obsm • P [obsm/obs ′] ∧ Q [obsm/obs ]
P � Q =̂ P ∨ Q

Here obs is shorthand for all the observational variables.

Semantic Building Blocks. We define the semantics of slotted-Circus in terms
of a number of basic predicate building-blocks, largely to do with events and
communication, that we now describe informally. The building blocks are all R1-,
R2-healthy, but in general will not satisfy R3 or the CSP healthiness conditions
in themselves— they are intended to be used in constructions that do.

NOEVTS describes a situation that allows time to pass (#slots ′ > #slots) but
disallows the occurrence of any events (all slot histories are empty).

FSTEVTS (E ) asserts that a given set of events (E ) have occurred immediately
(in the first time slot).

IMMEVTS describes a situation when some events occur immediately (in the
first slot). It can be defined as ∃E • E �= ∅ ∧ FSTEVTS (E ).
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Chaos =̂ R(true)

Miracle =̂ CSP1(R3(FALSE ))

Stop =̂ CSP1(R3(ok ′ ∧ wait ′ ∧ NOEVTS))

Skip =̂ R3(CSP1(state = state ′ ∧ ¬wait ′ ∧ ok ′ ∧ slots ∼= slots ′))

Wait t =̂ Stop, if len(slots ′ − slots) < t

Skip, if len(slots ′ − slots) = t

c!e → Skip =̂ c.e → Skip

c → A =̂ (c → Skip); A

c?x → Skip =̂ �
k:T
• (c.k → Skip; x := k)

Fig. 2. Semantics of basic actions

Semantics of Basic Actions. The semantics of the basic actions are de-
scribed in Fig.2. The worst possible action in slotted-Circus is Chaos . It is the
most unpredictable healthy process, and bottom of the refinement lattice. Ac-
tion Miracle is the top of the refinement lattice, and is a program satisfying any
specification (clearly infeasible), but useful as a unit of nondeterministic choice
(Miracle�P = P). Action Stop has deadlocked: it is stable, never terminates and
never performs any event. Action Skip terminates immediately in a stable state,
without performing any events. In keeping with the CSP definition, Skip ignores
the refusals of any preceding process, hence the use of slot-equivalence (∼=) here,
which is slightly weaker than slot-equality, in that it ignores the refusals in the
last slot. The action that introduces explicit timed behavior is Wait t . It never
performs any events and has only two possible behaviors. The first one is to wait
for t clock ticks, the second to terminate when the right time is reached.

Event prefix (c → A) is defined using c → Skip composed with A. Output
prefixes are simply event prefixes, whilst input prefixes are modelled as an exter-
nal choice over all possible input values, with assignment being used to capture
the outcome. The process c → Skip is defined using two basic actions:

WTC (c) allows time to pass without any events occurring, while never refusing
to perform event c.

TRMC (c) performs event c in the first time-slot.

Basically while non-terminated, c → Skip acts like WTC , and once event c
occurs (if at all), it then has the behaviour WTC (c); TRMC (c) — waiting
followed by event c and termination:

c → Skip =̂ CSP1
(

ok ′ ∧ R3
(
WTC (c) �wait ′�

(
state ′ = state ∧
WTC (c); TRMC (c)

)))

Semantics of Composite Actions. External choice (A � B) allows external
events to determine which action runs, so for example if we have (a → A) �
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(b → B), then, if the environment performs a, we see that event occur, followed
by an execution of action A. Unfortunately, the very simple definition2 of external
choice proposed in [HH98] no longer suffices, as we may have to wait for several
clock-ticks before an external event arises that resolves the choice.

A � B =̂ CSP2(Stop ∧ A ∧ B ∨ Choice(A,B) ∨ Choice(B ,A) )

Choice(C ,R) =̂ C ∧
(

R ∧ NOEVTS ;
(

IMMEVTS ∨
slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

))

Predicate Choice(C ,R) describes the circumstances where action C has been
chosen, whilst R has been refused, which occurs in situations where R has per-
formed no events. We capture these cases as follows: conjoin R with NOEVTS ,
and follow it sequentially with some “end”-condition E . All of this is conjoined
with C to give

C ∧ (R ∧ NOEVTS ; E )

i.e an execution of C consistent with R having done no events, and then ending
in the situation described by E .

Now we can characterise three possible cases were C either: (i) performs an
event after a delay: E = IMMEVTS ; (ii) terminates without performing any
events: E = slots ∼= slots ′ ∧ ¬wait ′ or (iii) diverges but performs no event:
E = slots ∼= slots ′ ∧ ¬ok ′.

The parallel composition A ‖ B runs A and B in lock-step parallel (clock ticks
at same time for both). Both actions run on local copies of the variables. The
construct terminates when both actions have terminated — if one ends early
then its behaviour is padded out with empty slots.

A \ H =̂ R3

⎛
⎝∃ s ′ • A[s ′/slots ′] ∧

slots ′ �� slots = map(SHide(H ))(s ′ �� slots)
∧ H ⊆

⋂
Refs(s ′ �� slots)

⎞
⎠ ; Skip

The hiding operator A \ H denotes an execution of action A, but with any
events in event-set H hidden. Function SHide(H ) removes events in H from a
slots history component, and adds them into the refusal set. We enforce a key
property of hiding, namely that of maximal progress, i.e. hidden events occur as
soon as they are enabled. Without this semantic feature the following undesirable
law would hold:

(a → Skip) \ {a} = Wait 0 �Wait 1 � ... � Wait n � ...

This law is undesirable because it makes the performance of a single hidden event
followed by termination equal to a wait for an arbitrary number of clock cycles
— effectively a weak form of livelock. By forcing hidden events to be refused
during every slot, we prevent them from waiting for a clock-tick, because the
definition of prefix action requires events not to be refused when waiting. This
results in the desired law, namely (a → Skip) \ {a} = Skip. At the end we add
Skip to unconstrain the refusals of the last slot.
2 A � B =̂ A ∧ B �Stop� A ∨ B .
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3 Prioritized slotted-Circus

As mentioned in the introduction, prioritized choice has been added to CSP
inspired programming languages with concurrency, like occam and Ada. These
languages were designed on foot of formal semantics covering most language
constructs [Ros84], but with priority being an exception. The approach then
taken instead was to have a semantics for external choice, or its equivalent,
and then consider the prioritised forms to be refinements of the non-prioritised
versions, thus

(P � Q) � (P←−�Q)
justified their use in implementations. We note semantics for these languages that
covered priority did emerge afterwards — e.g. [Cam89]. In hardware description
languages, priority is very important as implementations need to be deterministic
and priority is an effective and efficient way of achieving this. Indeed, in Handel-
C, the only form of external choice is prioritised, appearing as the so-called
“prialt” language construct. Our aim is to extend the work slotted-Circus to
cover this important feature.

3.1 Prioritized CSP

The difficulty in formalizing priority is the need for a clear idea of when it gets
resolved, i.e. how long should we wait for possible options before we try to choose
the one we prefer most? The problems appear in CSP because it is impossible
to say how much time has passed, but it is possible to determine event ordering.
The problem can be best described using two laws:

Stop � P = P

Skip � P = Skip �
{

P , if P terminates or performs an event
Miracle, otherwise

Now, if we consider be the consequence of the laws above after prioritizing the
choice we get:

Stop←−�P = P
Prioritized choice is an implementation of external choice, so no other outcome
is possible. However, with Skip, because the termination event is immediately
available and beats any other external event, we expect to see:

Skip←−�P = Skip

Because in CSP we can not measure the passing time, the following law holds:

Q \ Events =
{

Skip, if Q terminates
Stop, otherwise

for that reason, when we combine our results, we get:

(Q \ Events)←−�P =
{

Skip, if Q terminates
P , otherwise

So, any implementation of prioritized choice would have to be able to solve the
Halting problem.
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3.2 Zero-Causality Problems

The problem in defining priority for CSP is that we have no finite deadline for
the choice to be resolved. In slotted-Circus, by contrast, this problem seems to
be solved —the deadline is a clock tick. In other words we expect prioritized
choice to deal with a situation when two processes are ready to perform an
event within the same time slot. Unfortunately a new problem has appeared.
However we also have a property from the semantics of slotted-Circus of “zero-
causality”, denoting the fact that communication/events take no time. Because
of the maximal urgency principle and zero-causality, if we use hiding on events
performed one after another ((a → b → Skip) \ {a, b}), from one perspective we
might say that they are performed at the same time (because within the same
time slot), but on the other hand we know that an event b occurred after event
a. This fact arises separate problems for both CTA and MSA.

In CTA the problem becomes visible once the prioritized choice operator has
been defined.

((a → b → H←−�b → a → L) ‖ (b → a → S )) \ {a, b} =CTA Miracle

In CTA we get a miracle, because of a conflict between CTA and priority. There
is an tension between the history model in CTA that asserts that order matters,
and the semantics we require for priority that waits to the end of the slot to
sort everything out. This results intenrally in a contradiction in CTA, leading to
the miracle. Creating a definition of priority that would avoid the contradiction
emerging here proved to be very difficult, requiring large changes in the semantics
and for that reason was abandoned.

The MSA history model behaves properly with prioritized choice:

((a → b → H←−�b → a → L) ‖ (b → a → S )) \ {a, b} =MSA (H ‖ S ) \ {a, b}

However, the example above and the idea of zero-causality, led us to the discov-
ery of strange properties unnoticed before in slotted-Circus. The first one is a
violation of prefix closure:

(a → b → Skip) ‖ (b → a → Skip)

The described action can perform a and b at the same time, but can never
perform either a or b alone. Another issue with the example above is that the
maximal urgency property of hiding no longer holds:

((a → b → Skip) ‖ (b → a → Skip)) \ {a, b} =MSA �
n∈N

Wait n � Stop

Things get more complicated if we try to “crossover” some information.(
(a?x → b!x → Skip)
‖ (b?x → a!x → Skip)

)
\ {a, b} =MSA �

n∈N
(Wait n; x :=?) � Stop

(
(a?x → b!x → Skip)
‖ (b?x → a!(x + 1)→ Skip)

)
\ {a, b} =MSA Stop
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3.3 Timed Prefix

In order to deal with the problems presented above, it was decided to remove
zero-causality from the language, by stipulating that communication always
takes time. This was by the introduction of a new action — timed prefix:

a n→ P =def a →Wait n; P

A similar assumption has been made in Prioritized Timed CSP and Handel-C.
So far no other problems of interaction between CTA and the prioritized model

have been found, but because the notion of time assumed by priority better suits
MSA our research is now focused on supporting this history model. It is still an
open question what is the difference (if any), between slotted-Circus with CTA or
MSA history model, when only timed communication is permitted. Another open
problem is the existence of healthiness conditions, implying that communication
takes time. So far our research leads us to suggest that it will be a special case
of prefix closure, but no prefix closure healthiness condition has yet been defined
in UTP theories.

3.4 Defining Priority

In the timed theory, prioritized external choice is very similar in behaviour to
external choice. In both cases the choice is resolved on a first-come first-served
basis.

(a n→ A � (Wait1; b n→ B)) \ {a, b} = Wait n; A \ {a, b}

(a n→ A←−� (Wait1; b n→ B)) \ {a, b} = Wait n; A \ {a, b}
The differences become visible when an event (or termination) is available for
both options at the same time. In that case the external choice becomes nonde-
terministic:

(a n→ A � (b n→ B)) \ {a, b} = Wait n; (A � B) \ {a, b}

while the prioritized choice chooses the higher priority option:

(a n→ A←−� (b n→ B)) \ {a, b} = Wait n; A \ {a, b}

There are two important facts to observe here. The first one is that prioritized
external choice is an implementation (refinement) of the normal one. Which
means that any behaviour accepted by it is also accepted by the external choice.
The second fact is that the behaviour of the high priority choice is accepted
iff it is accepted by the external choice. In other words we can describe priority
using an external choice definition and a condition strengthening the low priority
option.

A←−�B =̂ (A ∧ B ∧ Stop) ∨ Choice(A,B) ∨WeakChoice(B ,A)

Where
WeakChoice(B ,A) = Choice(B ,A) ∧ MagicCondition
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The only question left to be answered is: what is “MagicCondition”? To do that
we need to bear in mind the following important laws:

(1) (a n→ A←−�b n→ B) \ {a, b} = Wait n; A \ {a, b}
(2) a n→ A←−�a n→ B = a n→ A
(3) Skip←−�A = Skip

(4) a n→ A←−�b n→ B �= a n→ A, a �= b
(5) (P � Q) � (P←−�Q)

The first three laws describe the difference in behaviour in comparison with
external choice. Law (1) shows us a typical use case for priority, where two
racing processes want to perform an event at exactly the same time. In that
case hiding makes both of the events internal and they both are only willing to
perform an event at the first time slot. In law (2) we can see a situation when
we do not know when an event is going to be performed, but only that both
of the racing processes will perform an event at the same time (because it is
exactly the same event). For that reason the high priority option will always be
chosen. Law (3) states that a termination is treated as an event and can resolve
a prioritized choice. Finally law (4) is in contrast to both law (1) and (2) and it
makes sure that the ”MagicCondition” is not too strong.

WeakChoice can be best describe by contrast to the Choice definition.

Choice(P ,S ) =̂ CSP2(P ∧

⎛
⎝ (S ∧ NOEVTS );(

IMMEVTS
∨ slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

)⎞⎠)

The simplest law to address is (3). To make it hold we only need to add a wait ′

clause in the right place of the Choice definition.

CSP2(LP ∧

⎛
⎝ (HP ∧ NOEVTS ∧ wait′);(

IMMEVTS
∨ slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

)⎞⎠)

That way we make sure that the LP (low priority option) behaviour can only
be chosen when the HP (high priority option) at the time of resolution is in a
waiting state. The second law is addressed by changing IMMEVTS into:

∃E • FSTEVTS (E ) ∧ E �= ∅ ∧ E ⊆ sref (last(slots))

That way LP can only perform an event which is refused by HP. Finally we
can address the remaining laws - (1) and (4). According to those laws, LP can
only be refused when HP is willing to perform an event and the environment
is demanding the event to be performed in the first possible time slot. This
behaviour is very similar to the waiting option of the prefix operator:
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CSP1(ok ′ ∧ R3(WTC (c) ∧ wait ′)) \ {c} = Miracle

that gets refused when the environment decides that an event needs to be per-
formed in the first time slot. For that reason we want to copy the mechanism
of interaction between hiding and prefix, by not refusing events that are not
refused by HP at the time when the choice is being resolved:

CSP2(LP ∧

⎛
⎜⎜⎝

(HP ∧ NOEVTS ∧ wait ′);⎛
⎝sref(head(slots′ �� slots)) ⊆ sref(last(slots)) ∧(

(∃E •FSTEVTS (E ) ∧ E �=∅ ∧ E ⊆ sref (last(slots)))
∨ slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

)⎞⎠
⎞
⎟⎟⎠)

We then obtain the following law:

WeakChoice(LP , a n→ HP) \ {a} = Miracle

that allows us to prove (1).

3.5 Changes in slotted-Circus

One of the goals, when introducing priority to slotted-Circus, was to minimize
changes made by the expansion to the semantics of the language. Happily there
are only two aspects that need to be addressed: a new healthiness condition and
a fix to the semantic definition of hiding.

Because our prioritized choice operator uses refusals sets in a new way and
expands their functionality, we have to make sure that information stored in
it is properly propagated and whenever a process terminates CSP4 no longer
completely unconstrains its refusals sets. We can do that by introducing a new
healthiness condition:

PRI(P) =̂ P ∧ (ok ⇒ sref (head(slots ′ �� slots)) ⊆ sref (tail(slots)))

This ensures that whenever a process is not refusing an event then this infor-
mation will not be omitted by the following processes. Once we make sure that
Skip is PRI healthy, we ensure that CSP4 can only reduce refusals.

The problem with the semantics of hiding is that it doesn’t satisfy one of the
healthiness conditions —CSP3. While it was not a problem before, e have to be
very careful with refusals when we add priority. For that reason we make sure
that refusals of a previous process have no influence at the behaviour of hiding
by unconstraining them inside the definition (∃ s • slots ∼= s).

A \ hidn =̂ PRI ◦ R3

⎛
⎝∃ s, s ′ • A[s, s ′/slots , slots ′] ∧

slots ∼= s ∧ hidn ⊆
⋂

srefs(s ′ �� s)
slots ′ �� slots = map(shide(hidn))(s ′ �� s) ∧ )

⎞
⎠



Prioritized slotted-Circus 103

3.6 Prioritized Choice Definition

After introducing the new healthiness condition we can finally present a complete
definition of prioritized choice:

L−→�H =̂ H←−�L
H←−�L =̂ H ∧ L ∧ Stop ∨ Choice(H ,L) ∨WeakChoice(L,H )

WeakChoice(L,H ) =̂ CSP2(L ∧⎛
⎜⎜⎝
(
H ∧ NOEVTS ∧ wait ′

)
;

PRI

⎛
⎝∃E •

(
FSTEVTS (E )
∧ E �= ∅ ∧ E ⊆ sref (tail(slots))

)
∨ slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

⎞
⎠
⎞
⎟⎟⎠)

4 Related Work

Work on priority in process algebras can be grouped basically into two main
camps: those based on CSP and associated CSP-like languages [Bar89, Fid93,
Low93]; and those focussing on labelled transitions systems (the “CCS school)
[CH90, CW95, HL98, BG00, CLN07]

In the latter camp, priority has been investigated by adding it as a means for
selecting out from many labelled arcs leaving a state, with differences based on
how priorities are assigned (local vs. global) [CH90, CW95]. An emphasis has
been on characterising relevant bisimulations, congruences and corresponding
axiomatizations of priority in these settings [HL98, BG00, CLN07]. Despite the
extensive work done on priority in a CCS setting however, it is not the case that
priority in process algebras has “been done”. When presenting our operational
semantics of Handel-C [BW05] we pointed out that we had two notions of prior-
ity: one that of the prialt construct in the language, the other associated with
the LTS we constructed, neither of which corresponded to any of the priority
models described in the CCS literature.

Of interest is the BIP system developed by Sifakis and colleagues [BBS06]
that views systems as components built in three layers: an LTS with ports to
communicate with the outside world; a notion of interaction as a set of ports from
different LTSs; and using a priority scheme to select among enabled interactions.
This system at an abstract level, is quite similar to both the notion of prioritised
choice in Handel-C and the slots concepts that we have formalised in slotted-
Circus, and it may prove fruitful to investigate the relationship more closely.

In the CSP camp, more emphasis has been placed on the use of denotational
semantics. In terms of priority, early work on the use of priority in implemen-
tations said very little about its semantics except that prioritised choice was
a refinement of external choice. Interesting early exceptions were work giving
occam an operation semantics [Bar89, Cam89]. More substantial work on prior-
ity in a denotational setting was presented by Colin Fidge [Fid93] introducing
the notion of preferences. At the same time, Gavin Lowe characterised both
probabilistic and prioritised CSP as refinements of Timed CSP, and established
linkages between probability and priority [Low93].
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5 Future Work

Also worthy of exploration are the details of the behaviour of the Galois links
[HH98, Chp 4] between slotted-Circus, with and without priority, and between
those and standard Circus. These details will provide a framework for a compre-
hensive refinement calculus linking all these reactive theories together. The goal
is a scheme whereby Circus is a specification language and slotted-Circus is a
refinement stage, on the way to a hardware implementation, captured in priori-
tised slotted-Circus. We plan to perform some case studies, looking at hardware
interfaces for flash memory, as well as exploring wireless network protocols for
which our prioritised model seems surprisingly well-suited (we can use priority
to capture collision detection).

6 Conclusions

A denotational semantics for prioritised slotted-Circus has been presented, and
we have shown that prioritized choice in slotted-Circus and its laws fit the prialt
construct in Handel-C. Of particular interest has been the introduction of the
“clock-tick after communication” constraint in order to get a sensible theory.
We have also identified close linkages between our work and that on prioritised
CSP, and extensions to timed CSP.

It is still an open question what is the difference (if any), between the CTA
or MSA history models, when only timed communication is permitted. Another
open problem is the existence of healthiness conditions, implying that communi-
cation takes time. So far our research leads us to suggest that it will be a special
case of prefix closure, but no prefix closure healthiness condition has yet been
formalised in UTP.
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Abstract. Orc language is a concurrency calculus proposed to study the orches-
tration patterns in wide area computing. Its special properties such as high con-
currency and asynchronism makes it a brilliant subject to study the distributed
service oriented systems. This paper proposes a denotational semantical model
for Orc language. Every Orc program is formalized to a predicate. Healthiness
conditions are provided to make the program domain corresponding to a specific
subset of predicate domain. This model gives the same semantical interpreta-
tion to the implementations and specifications. With the refinement principle, we
are able to determine whether a program satisfies its specification, which can be
illustrated by theorem provers.

1 Introduction

With the development of the web technology, more and more resources can be accessed
through Internet. Web applications work not only relying on the local resources but also
require the usage of resources published on Internet. It is a trend to complete a compu-
tation through the cooperations of many independent entities. In order to achieve better
reusability, software is encapsulated as web services providing independent computa-
tion resources to their users [1]. Distributed computation and concurrent orchestration
are studied and widely used in modern computation models. In these models, the user’s
computation task is dispatched to distributed entities according to their capabilities.
Users can only invoke the remote computation services without knowing their imple-
mentation details. Furthermore, the distribution of services makes the communications
among them are always asynchronous. A popular architecture aiming to address the
problem is known as Service Oriented Architecture (SOA) [5]. The idea of invoking a
published service instead of developing an isolated function leads a revolution of web
application development. A business job can be arranged by orchestrating the services
which can provide computation resources or functional supports. Along with this trends,
researchers begin to focus on the issues on the service orchestration.

The Orc Language, abbreviation of Orchestration Language, is a concurrency calcu-
lus firstly designed by J. Misra et al. [9]. The language is proposed to study the orches-
tration patterns of service-oriented computing [4]. The original Orc calculus has only
three combinators. However, they can construct most of orchestration patterns which
are usually adopted in practice. In addition, Orc language has the capability to orches-
trate services according to their execution status. The Orc programming language has
been implemented by A. Quark et al. from the University of Texas, Austin [10]. The
programming language has a functional language named Cor as its basis. There is a
demo trail of Orc programming language available on the web site [12].

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 106–120, 2010.
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Many researchers have studied the semantics of Orc concurrency calculus. A stan-
dard operational semantics of Orc is proposed in [11] by J. Misra et al.. In the further
research, I. Wehrman et al. have proved the key algebra laws using the bisimulation
equivalence [14]. His work has also given a trace representation for Orc. But D. Var-
doulakis et al. identifies an ambiguity in its work and remedies it in [13]. A timed
semantics has been studied which supports the analysis of properties in time related
orchestration patterns [15]. The equivalence relation based on the timed semantics is
also studied. Based on these deep discussions on its operational semantics, the model
checking technology can be used to verify the correctness of Orc programs with re-
spect to formal specifications. The researches of M. AlTurki are good examples to this
direction [2,3]. In the denotational semantics aspect, C.A.R. Hoare et al. has proposed
a tree semantics for Orc language and also proved the key algebra laws in this model
[8]. However, the trace equivalence is not convenient in verifying Orc programs with
respect to specifications which subjects to a refinement relation.

This paper proposes a denotational semantics for Orc language using UTP methods
[7]. It shows that a orchestration language as Orc can be formalized to a state based
logical system using the UTP method. An Orc program is formalized by a predicate with
structured traces and program status. Simple predicate calculus is sufficient to prove
the laws of Orc combinators directly. A refinement relation is proposed to provide a
partial order over the domain of Orc programs according to the nondeterminism. Based
on the semantical model and the refinement relation, one can determine whether an
Orc program satisfies a given specification, which guarantees the correctness of Orc
programs. The conclusion can be checked by theorem provers such as Isabelle and
PVS. This is the direction we are willing to take and this paper can be our first step.

The reminder of the paper is organized as follows. Section 2 introduces the Orc
language briefly. One can learn how an Orc program looks like and which orchestration
patterns it can implement. Section 3 proposes the denotational semantics for Orc. Every
Orc program corresponds to a predicate satisfying the healthiness conditions. Section 4
discusses the equivalence relation and proves some properties of specific Orc programs.
Finally, section 5 concludes the whole paper and mentions some future works.

2 Orc Language

In this paper, we only consider the core Orc concurrency calculus which includes
primary site calls and four combinators. The Syntax of Orc language is proposed as
follows:

Formal ::= x | y | z | ...
Actual ::= a | b | c | ...

p ∈ Formal ∪Actual
P,Q ::= 0 |M(p) | P ||Q | P >x>Q | P <x<Q | P |> Q

where the notation p represents a parameter. The parameter in a definition can be
either formal parameter or actual parameter.

0 is a program which contains no event and terminates immediately.
M(p) invokes a site call with the site name M using the parameter list p. The pro-

gram publishes the response from the site M . A site call can only be invoked when
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every formal parameter has a value. If the result of the site is more than one, the pro-
gram publishes them in a tuple.

Site calls together with 0 are considered as primitives in Orc language.
The parallel combinator P ||Q lets two programs execute in parallel. The results of

the two programs will be published in arbitrary order. The invocations performed by P
and Q are independent. If P and Q invoke the same site, the program will perform two
invocations.

The sequential combinator P > x>Q first executes the program P . When P pub-
lishes a result, Q assigns it to the variable x and begin the execution in parallel with the
rest part of P . Note that every output of P will enable a new execution of Q with it.

The pruning combinator P <x<Q is firstly named as asymmetric parallel combi-
nator. P andQ are executed in parallel except that the parameter x in P should take the
value from the first result published by Q. Q will be forced to halt just after publishing
a result.

The otherwise combinator P | > Q was first introduced with the notation ; in Orc
programming language. It first executes P . If P halts without any output,Q will be ex-
ecuted. Otherwise, Q will never start. This combinator can support the failure handling
and is essential for dealing with web environment.

The Orc language can orchestrate the web services to complete user requirements.
The three combinators have the capability to construct sufficient patterns needed in the
web applications on high abstract level. For example, consider the following orchestra-
tion problems. Linda plans to have a weekend in Shanghai. She has to book an airplane
ticket and a local hotel in Shanghai. She’d like the airline of either the Air China(CA)
or American Air(AA). She also wants to book a room of Hilton Hotel in Shanghai. She
prefers a suite to a guest room. The trip will happen when both the flight and the hotel
are reserved. The following Orc program can make her plan work and send a email to
her when the reservation is done.

(resv(x, y)<x<(CA(l)||AA(l))<y<(H(s)|> H(g)) >z> email(Linda, z)
Where CA(l) and AA(l) is two independent site calls requiring the airline l to the
Air China site CA and the American Air site AA. The pruning combinator ensures
that either’s returning is acceptable and is passed to the reservation engine resv. H(s)
requires a suite and H(g) requires a guest room of Hilton Hotel. The otherwise combi-
nator makes H(s) has higher priority than H(g). The guest room is involved only if it
fails to obtain a suite. The reservation engine resv makes the reservations done as soon
as it gets both the flight info and hotel info and sends the final result to Linda through
email.

3 Denotational Semantical Model for Orc

3.1 Alphabet

The denotational semantics of a program in Orc language can be specified as a predicate
with the following alphabet.

α = {tr, st}
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tr is an interaction trace observed from the execution of the program. st reflects the
execution status of the program. We say a program can perform a trace tr with a status
st when the pair (tr, st) satisfies its semantics.

The elements of the trace belongs to the following event set
Σ = {k.x̂?u, k!v, k!θ | k ∈ N ∧ x ∈ F ∧ u, v ∈ C}

where N is a set of instance names. F is the set of formal variables which have no
actual values. C is the set of actual values. It is required that every instance of a site has
a distinct name. We use N(e) to get the name of an event e. The notation x̂ represents
a label corresponding to the variable x. We use the notation L(e) to retrieve the label
from a input event e. If e = k.x̂?u, then L(e) = {x}. The notation ? means this event
is an input event and the notation ! represents an output event. The part after ? or !
is an expression. In the semantical definition, an expression can contain free variables
which is waiting to be assigned with actual values. The occurrences of a variable in an
expression is called its free occurrences. We define the notation V (e) to denote the free
variables in the event e. For example, if e = k!3x, then V (e) = {x}. Note that in the
tr observed from the program’s behavior, every free variable has an actual value which
is in set C. There is a special value denoted as θ denoting a signal which passes the
control to the program receiving it. We use the notationΣ! and Σ? to denote the subset
of output events and input events respectively. Moreover, we extend the above functions
over traces. N(tr) =df ∪a∈trN(a), L(tr) =df ∪a∈trL(a), V (tr) =df ∪a∈trV (a).

The status variable st which can yield value in the set ST = {run, comp, halt, div}
reflects the execution status of the program. st = run represents the program is doing
its work with given inputs. st = compmeans the program finishes its work successfully
and returns a result. st = halt represent the program terminates without a result. And
finally st = div means the program enters the divergent status in which it only engages
internal communications and never performs an external communication.

Let st1, st2 ∈ ST be status variables. We define a binary composition | as follows:

st1|st2 =df

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
div, if st1 = div ∨ st2 = div

comp, if st1 = st2 = comp

run, if (st1 = run ∧ st2 �= div) ∨ (st1 �= div ∧ st2 = run)
halt, Otherwise

We can obtain the result status after the composition. Some properties of the com-
position can be observed from the definition. For example, if a component is divergent,
the composite program is divergent. The composite program is complete if both of the
components are complete. We can also find that the status composition is commutative
and associative. So we can define a unified operator.
|i∈[1,n]sti =df st1|st2|...|stn

We can use Table 1 to illustrate the function of the status composition |.

3.2 Predicate Semantics

In our denotational semantical model, every site call in Orc language can be specified as
a predicate. All the combinators can be formalized by predicate expressions. Therefore
every expression in Orc program can be formalized by a set of free variables and a
predicate over the alphabet {tr, st}.
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Table 1. Definition of operator |

st1|st2 div halt comp run

run div run run run
comp div halt comp
halt div halt
div div

Before discussing the combinators in Orc language, we first define several operators
in order to simplify the expression.

Definition 1 (Successor). Let P be an Orc program and D be a predicate over the
alphabet {tr, st, tr′, st′}. The successor operator P ;D does some modifications to the
result of the predicate P .
P (tr, st);D(tr, st, tr′, st′) =df (∃m,n • P (m,n) ∧D(m,n, tr′, st′))[tr/tr′, st/st′]

Note that the sequential composition we defined here is left-associative. When we write
P ;Q;R, we mean (P ;Q);R.

Definition 2 (Nondeterministic Choice). Let P , Q be Orc programs. The nondeter-
ministic choice P �Q can perform either like P or like Q.

P �Q =df P ∨Q

Definition 3 (Conditional Choice). Let P , Q be Orc programs and b be a boolean
expression. The conditional choice P � b � Q behaves like P if b holds and behaves
like Q otherwise.

P � b�Q =df (b ∧ P ) ∨ (¬b ∧Q)

Definition 4 (After). Let P be an Orc program and s be a trace. The behavior of the
program P/s is obtained by removing prefix s from the behaviors of program P which
contain this prefix.

P/s =df P [(s · tr)/tr]

Definition 5 (Hiding). Let P be an Orc program and X be a set of variable names.
The hiding operator hides the events which have the label within the set X from its
behavior.
P\X =df P ; (tr′ = tr\X ∧ st′ = div �Div(tr,X) � tr′ = tr\X ∧ st′ = st)
where Div(tr,X) =df ∀n • length(tr ↑ X) > n

tr\X =df

⎧⎪⎨
⎪⎩
ε, if tr = ε

tail(tr)\X, if L(head(tr)) ∩X �= ∅
〈head(tr)〉 · (tail(tr)\X), Otherwise

tr↑X =df

⎧⎪⎨
⎪⎩
ε, if tr = ε

〈head(tr)〉 · (tail(tr)↑X), if (V (head(tr)) ∪ L(head(tr))) ∩X �= ∅
tail(tr)↑X, Otherwise

Note that the hiding operator can generate divergence. If a program performs unbounded
communications through the hiding variables inX , we claim the program diverge since
the hiding.
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3.3 Healthiness Conditions

In our principle, every Orc program can be specified by a special predicate. However,
some predicates are not appropriate for specifying Orc programs. In this subsection, we
will propose some restriction which we called healthiness conditions to indicate which
kind of predicates can be used to describe the behaviors of Orc programs.

At first, we define an partial order applying on the predicate space.

Definition 6 (Refinement Relation). Let P,Q be predicates applying on the same al-
phabet. We say P is a refinement of Q, denoted as P ( Q, iff [P ⇒ Q]. The square
brackets apply universal quantifier on every free variable in the formula.

There are some healthiness conditions we should follow in the Orc Language. The
healthiness conditions can help us to address which kind of predicate is good enough to
become specifications of Orc programs. With the healthiness conditions, some essential
properties of the Orc programs can be guaranteed.

In Orc language, every primitive generates an instance of a site working with the
input parameters and returns at most one output. According to this requirement, we can
figure out that an Orc program which is composed by these primary expressions should
only performs particular traces which we call valid traces.

Definition 7 (Valid Trace). A trace tr is called valid, represented as valid(tr), if it
satisfies the following condition.

valid(tr) =df tr = ε ∨
(
tr �= ε ∧ ∀k ∈ N(tr)•
tr{k} ∈ {s · t | s ∈ Σ?∗ ∧ t ∈ Σ!ε}

)

where for any set of instance namesK ,

trK =df

⎧⎪⎨
⎪⎩
ε, if tr = ε

〈head(tr)〉 · (tail(tr)K), if N(head(tr)) ∩K �= ∅
tail(tr)K , Otherwise

The notation Σ!ε = Σ! ∪ {ε}. The valid property means one instance of site calls
has zero or more input and zero or one output; any input should take place before its
corresponding output.
H: Invalid traces can be only observed in a divergent program which is unexpected.

[P = valid(tr) ⇒ P ]
We can define a mapping which can convert a predicate to satisfy the corresponding

healthiness condition. We call this kind of mappings as healthiness mappings.
H(P ) =df valid(tr) ⇒ P

Any predicate allowing an invalid trace will be mapped to the predicate True. We
call it chaos which is most nondeterministic.

The Orc language is designed to specify the cooperation relations between programs
in web environment, the events observed in the behaviors indicate the asynchronous
interactions between web applications. The order of event in the sending side is often
observed to be different from the order in the receiving side. According to this fact, we
first define an equivalence relation over the valid traces.
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Definition 8 (Permutable Equivalence). Two valid traces tr1, tr2 are said to be per-
mutable equivalent, denoted as tr1 ≈ tr2, iff tr1 is a permutation of tr2 and vice versa.

We define a mapping PE(tr) to get all the traces satisfying the permutable equivalence
relation with trace tr. Formally,

PE(tr) =df

{
{s | tr ≈ s}, if valid(tr)
∅ if ¬valid(tr)

Orc1: If a trace can be performed by a program, all traces permutable equivalent to it
can also be performed by this program.

[∃s, t • s ≈ t⇒ (P [s/tr]⇔ P [t/tr])]
O1(P ) =df P ;Perm

where Perm =df (tr′ ∈ PE(tr) ∧ st′ = st)

Orc2: We consider the divergence as an unexpected and uncontrollable behavior of a
program. If a program diverges, its further behavior is considered as a chaos.

[P [div/st]⇒ ∀s • P [(tr · s)/tr]]
O2(P ) =df P ;Filter

where Filter =df tr  tr′ � st = div � II
II =df tr

′ = tr ∧ st′ = st

Orc3: The traces performed by every program yield the prefix-closure property. If a
trace can be observed from the behavior of a program, all its prefixes should also be
observed.

[∃s, t • P [s · t/tr]⇒ P [s/tr, run/st]]
O3(P ) =df P ;Pref

where Pref =df (tr′  tr ∧ st′ = run)

In summary, we obtain a mapping O =df (O3 ◦ O2 ◦ O1) ◦H which combines all
the healthiness mappings.

3.4 Semantics of Primitives

We can propose the denotational semantics of the primitives in Orc language.
0 is a program which terminates immediately without performing any event.

0 =df tr = ε ∧ (st = run ∨ st = comp)
Obviously it satisfies the healthiness conditions and is a healthy Orc program.
A site call M(p) invokes the site M with a parameter p. p can be either an actual

or formal parameter list. However, the signal θ can be never used as a parameter in the
syntax. Every execution of a site call engages an instance which has a distinct name k.

Therefore, we can propose a common pattern of the site call. Every site call has a
definition following this pattern.

M(p) =df O

(
tr = 〈k.x̂?p〉 ∧ st = halt

∨ tr = 〈k.x̂?p, k!fM (p)〉 ∧ st = comp

)
The function fM (p) represents the relation between the input parameter and the out-

put result. From the common definition of the site call we can find all the properties
we mentioned before. When the parameter is ready, the program will accept the invo-
cation and stay in the run status until the output result returns. This behavior is not
written explicitly because it is included by the healthiness mapping O. The behavior
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st = halt can be observed if there is a failure taking place and the result never comes.
The behavior where st = comp is performed when the result returns.
let(p) publishes the value of the parameter immediately. In that circumstance, let(p)

is a local computation not a site call. But if we neglect the differences between local
computation resource and the remote services, we can consider it as a special site call
which returns the value of the parameter without suffering any network failure. Let
fn(let) = {x}, then we define

let(p) =df O(tr = 〈k.x̂?p, k!p〉 ∧ st = comp)
For example, the behavior of the actual site call let(3) with fn(let) = {x} is as

follows. Note that V (let(x)) = {x} but V (let(3)) = ∅.
let(3) =df O(tr = 〈k.x̂?3, k!3〉 ∧ st = comp)

There is a special site call which always fails to obtain the result. We call it sink,
which can be defined as follows. It never reaches the comp status.

sink(p) =df O(tr = 〈k.x̂?p〉 ∧ st = halt)
A conditional choice if is a site call to valuate a boolean expression. When the

boolean expression is true, then a signal is sent out, otherwise, no response will be
provided.

if(p) =df O

(
p ∧ tr = 〈k.x̂?p, k!θ〉 ∧ st = comp

∨ ¬p ∧ tr = 〈k.x̂?p〉 ∧ st = halt

)
The parameter of if should only be a boolean expression.
There are two additional programs in Orc program language which are named as

signal and stop. They need no input parameter and have definite behaviors. signal
terminates with publishing a signal θ. stop terminates without any response. They are
not ordinary site calls but also yield to the healthiness conditions.

signal =df O(tr = 〈k!θ〉 ∧ st = comp)
stop =df O(tr = ε ∧ st = halt)

From the definition we can find that signal has similar behavior as the program
if(true)\{x} while stop is behavioral equivalent to if(false)\{x}.

3.5 Semantics of Combinators

Let P andQ be Orc programs withN(P )∩N(Q) = ∅. Then for any combinator in Orc
language, we have fn(P op Q) = fn(P ) ∪ fn(Q) and N(P op Q) = N(P ) *N(Q).

The definition of the parallel combinator is as follows.

Definition 9 (Parallel Combinator)
P ||Q =df P ||SMQ
P ||SMQ =df ∃1.tr, 1.st, 2.tr, 2.st • (1.P ∧ 2.Q);SM ;Filter
SM =df tr

′ ∈ (1.tr|||2.tr) ∧ st′ = 1.st|2.st
where the binary operator ||| represents the interleaving composition of two traces.

The parallel combinator can be specified as the interleaving of the behaviors of the
two participants. Note that the behaviors of the two participants never interfere each
other. So in the definition, we use the notations 1.tr, 2.tr to substitute the original tr in
the two participants respectively. Then the subsequent predicate SM applying on the
alphabet {1.tr, 2.tr, 1.st, 2.st, tr, st, tr′, st′} merges the behaviors performed by the
two participants and forms the behavior of the parallel program.
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The definition of the sequential combinator is as follows.

Definition 10 (Sequential Combinator)
P >x>Q =df (P ∧ tr↑! = ε) ∨(

∃tr0, st0 • tr0  tr ∧ tr0 ↑! = ε ∧ P (tr0 ·〈k!a〉, st0)
∧ ((P/tr0 ·〈k!a〉)>x>Q || Q[tr[a/x]/tr])[(tr − tr0)/tr]\{x}

)
where (s · t)− s = t. The notation tr↑! is short for tr↑Σ!.

In the definition we hide the intermediate communications which including the output
events of P and the input events of Q labeled by x, which consists the value passing
from P to every instance of Q. The value passing restricts the free variable x in the
subsequent program to the value published by the previous one. Every output of P
activates an independent instance of Q initialized by the output value. We consider θ
has no semantical effect in the substitution. In other terms, Q[tr[θ/x]/tr] is the same
as Q itself. It is only a signal to activate the subsequent program without passing any
value. If the variable x in combinator is not a free variable of Q, Q can be activated but
can never get any progress. We can abbreviate the combinator as + if we do not need
to restrict the value passing to particular labels.

The definition of the pruning combinator is as follows.

Definition 11 (Pruning Combinator)
P <x<Q =df P ||AMxQ
P ||AMxQ =df ∃1.tr, 1.st, 2.tr, 2.st • (1.P ∧ 2.Q);AMx;Filter

AMx =df

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.tr↑! = ε∧⎛
⎝ x /∈ V (1.tr) ∧ tr′ ∈ 1.tr|||2.tr ∧ st′ = 1.st|2.st
∨ ∃s, t • 1.tr = s · t ∧ x /∈ V (s) ∧ x ∈ V (head(t))∧
∃r • r ∈ (s|||2.tr) ∧ tr′ = (r · t)\{x} ∧ st′ = 1.st|2.st

⎞
⎠

∨ ∃s2, t2 • 2.tr = s2 · 〈k!a〉 · t2 ∧ s2 ↑! = ε∧⎛
⎝ x /∈ V (1.tr) ∧ tr′ ∈ (1.tr|||s2) ∧ st′ = 1.st
∨ ∃s1, t1 • 1.tr = s1 · t1 ∧ x /∈ V (s1) ∧ x ∈ V (head(t1))∧
∃q ∈ (s1|||s2) • tr′ = q · (t1[a/x]\{x}) ∧ st′ = 1.st

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The pruning combinator is formerly called asymmetric parallel composition. The defi-
nition of the combinator has the similar form as parallel combinator. But its merge part
is more complicated. The x in the combinator is also a label indicating where the value
passing takes place. If the program P in P <x<Q has a free variable x, its execution
will be blocked when it needs the value of x which is expected to be provided by the
first output from Q. Once Q publishes its first output, it will be forced to terminate.
Hence, the behavior of P < x < Q contains the behavior of Q only before its first
output. Note that even if Q diverges afterwards, it never causes the divergence of the
composed program. Similar to the sequential combinator, the pruning combinator can
be abbreviated as << if the restriction of the value passing is unnecessary.

The otherwise combinator can be defined as follows.

Definition 12 (Otherwise Combinator)
P |> Q =df (P ∧ ¬(st = halt ∧ tr↑! = ε))∨

(∃s • P [s/tr, halt/st] ∧ s↑! = ε ∧Q)

From the definition we can find that Q can only be executed when P end up with halt
status and has no output. In this case, P |> Q behaves like Q.
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Considering the combinators we defined, we can prove that they preserve the health-
iness conditions.

Theorem 1. If P andQ satisfy all the healthiness conditions, then so is P op Q where
op ∈ {||,+, <<, |>}. Concretely,
(1.1) O(P )||O(Q) = O(P ||Q)
(1.2) O(P )>x>O(Q) = O(P >x>Q)
(1.3) O(P )<x<O(Q) = O(P <x<Q)
(1.4) O(P )|> O(Q) = O(P |> Q)

Moreover, we can prove that the mappingO is monotonic with respect to the refinement
relation.

Theorem 2. Let P and Q be predicates. If P ( Q then O(P ) ( O(Q).

According to the Taski’s Fixpoint Theory, we can claim that the fixpoint of the mapping
O does exist, which leads us to the following proposition.

Theorem 3. A Orc program can be expressed by a predicate which is a fixpoint of the
mappingO. And the set of Orc programs forms a complete lattice (O,().

Additionally, we can find the top element and the bottom element of the complete
lattice.

�O = O(False) = ¬valid Since P � ¬valid = P

⊥O = O(True) = True Since P � True = True

The bottom element ⊥O is also the bottom of the predicate domain. It can perform any
trace with any arbitrary status, which is what we called chaos. We will omit the suffix
O in the following discussion.

4 Equivalences and Properties

The Orc language is based on the Kleene Algebra which contains several structural
axioms. Based on the denotational semantics proposed in this paper, we can prove all
these properties directly using the predicate calculus which can be verified by theorem
provers. Moreover, our denotational model can specify the divergent behaviors of an
Orc program and provide a refinement ordering according to the nondeterminism.

In our model, the denotational semantics uses predicate to specify the set of behav-
iors so that one program is mapped to a predicate over the alphabet {tr, st}. Most of
the properties we want to prove below are equations. In the semantical level, this corre-
sponds to predicate equivalence.

Definition 13 (Strong Equivalence). Let P andQ be two predicates. we say P andQ
are strong equivalent, denoted as P ≡ Q, if and only if P ( Q and Q ( P .

There is another refinement relation which we call weak refinement. This equivalence
does not consider the instance names in the trace. The relation is reasonable because it is
consistent with the view of users. When a user executes a program, he is not concerned
with the information which instance of the site performs the computation. It is sufficient
for him to know the result published by the whole computation.
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Definition 14 (Weak Refinement). Let P,Q be predicates and a set of instance name
N . We say P is a refinement ofQ applying on the alphabet {tr, st}, denoted as P ≥ Q,
if and only if fn(P ) = fn(Q) and ∀tr, st • (P ↓N)⇒ (Q↓N).

where P ↓N =df P ; (tr′ = tr↓N ∧ st′ = st)
and tr↓N hides all the instance names in the events of trace tr.

With the weak refinement relation, we can define weak equivalence.

Definition 15 (Weak Equivalence). Let P and Q be two predicates. we say P and Q
are weak equivalent, denoted as P = Q, if and only if P ≥ Q and Q ≥ P .

In the following, when we mention the term “equivalence”, we refer to the weak
equivalence.

Let P,Q,R be Orc programs. We can prove properties of Orc programs using pred-
icate calculus.

The parallel combinator has the following properties.

Properties (||):
(||-1) P ||Q ≡ Q||P
(||-2) (P ||Q)||R ≡ P ||(Q||R)
(||-3) P ||0 ≡ P

Proof: Note that the operator ||| and | are both commutative and associative. Hence (||-
1) and (||-2) can be obtained by predicate calculus. Moreover, since ε is the unit element
of the operator |||, comp are the units of the operator |, the properties of (||-3) can be
obtained directly. ��
The sequential combinator has the following properties.

Properties (+):
(+-1) 0 + P ≡ 0
(+-2) P + Q ≡ P if P ↑? ≡ P where P ↑? =df P ; (tr′ = tr↑? ∧ st′ = st)
(+-3) P + 0 ≡ P ↑?
(+-4) (P ||Q)+ R ≡ (P + R)||(Q+ R)
(+-5) (P >x>Q)>y>R ≡ P >x>(Q>y>R), if x /∈ fn(R)
(+-6) P >x>let(x) = P

Proof:
(+-1) 0 + P ≡ (0 ∧ tr↑! = ε) ∨ False {def 0; predicate calc}

≡ 0 {def 0}
(+-2) P + Q ≡ P ↑?+ Q {P ≡ P ↑?}

≡ (P ↑? ∧ tr↑! = ε) ∨ False {predicate calc}
≡ P {predicate calc;P ↑? ≡ P}

��
The properties of the pruning combinator is as follows.

Properties (<<):
(<<-1) P <x<0 ≡ P\{x}

where P\{x} =df P ; (tr′ = tr\{x} ∧ st′ = st)
(<<-2) (P ||Q)<x<R ≡ (P <x<R)||Q, if x /∈ fn(Q)
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(<<-3) (P >y>Q)<x<R ≡ (P <x<R)>y>Q, if x /∈ fn(Q)
(<<-4) (P <x<Q)<y<R ≡ (P <y<R)<x<Q, if y /∈ fn(Q) and x /∈ fn(R)
(<<-5) 0 << M(c) ≡M(c)+ 0 where c ∈ Actual
(<<-6) P << M(c) = P ||(M(c)+ 0) where c ∈ Actual
Proof:
(<<-1) P <x<0 ≡ P ||AMx0

≡ ∃1.tr, 1.st, 2.tr, 2.st • (1.P ∧ 2.tr = ε ∧ 2.st = comp);AMx;Filter
≡ ∃1.tr, 1.st • 1.P∧⎛
⎝ x /∈ V (1.tr) ∧ tr′ ∈ 1.tr ∧ st′ = 1.st
∨ ∃s, t • 1.tr = s · t ∧ x /∈ V (s) ∧ x ∈ V (head(t))∧
tr′ = (s · t)\{x} ∧ st′ = 1.st

⎞
⎠ ;Filter

≡ ∃1.tr, 1.st • 1.P ∧ (tr′ = 1.tr\{x} ∧ st′ = 1.st);Filter
≡ P ; (tr′ = tr\{x} ∧ st′ = st);Filter
≡ P\{x}

The properties of the otherwise combinator is as follows.

Properties (|>):
(|>-1) 0|> P ≡ 0
(|>-2) stop|> P ≡ P
(|>-3) (P |> Q)|> R ≡ P |> (Q|> R)

Proof:
(|>-1) 0|> P ≡ (0 ∧ ¬(st = halt ∧ tr↑! = ε))∨

(∃s • 0[s/tr, halt/st]∧ s↑! = ε ∧ P ) {def |>}
≡ 0 ∨ False {¬0[halt/st]}
≡ 0

(|>-2) stop|> P ≡ O(tr = ε ∧ st = halt)|> P {def stop}
≡ O(False ∨ P ) {def |>}
≡ P {O(P ) ≡ P}

��
The nondeterminism in Orc language is mainly introduced by the arbitrary ordering
of the events in parallel composition. In fact, the nondeterminism is concealed in the
semantics of primitives. For example, consider a remote site copy which returns the
value of the input parameter. There may be a network failure during its execution and
the result never returns. Hence its behavior is equivalent to the following one.

copy(p) =df let(p) � sink(p)
From this view, we can obtain that the behavior of copy may succeed just as the

local computation let and may also halt like the failure site sink. Actually, almost every
remote site call has the possibility to halt with a failure. This kind of nondeterminism is
inherent in web environment. And apparently we have let(p) ≥ copy(p) according to
our weak refinement relation.

The bottom element in Orc domain has the most nondeterminism, which makes us
call it chaos. It is the zero element of parallel combinator || and the left-zero of pruning
combinator<<.

Properties (⊥):
(⊥-1) ⊥||P ≡ ⊥
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(⊥-2) ⊥ << P ≡ ⊥
(⊥-3) ⊥|> P ≡ ⊥
(⊥-4) For any Orc program P , P ( ⊥

Note that ⊥ + P ≡ ⊥ does not hold when P has no output. For example, ⊥ +
0 �≡ ⊥.

The behavior of ⊥ can never be simulated by other Orc programs. But there exists
some programs which diverge after being invoked. For example, consider the following
recursive program.

Rec(x) =df let(x)>x>Rec(x)
In this definition, all the outputs generated by the invocations of let(x) are consumed

by their successor and the program never terminates. The observer cannot observe any
event after the invocation, but the program never stops. This kind of divergence is also
called as a livelock.

We can verify that the behavior of Rec(x) equals to the following program.
Rec(x) = O(tr = 〈k.x̂?x〉 ∧ st = div)

Note that not all programs which has a component asRec always lead to divergence.
See the property (+-3) above (0 + Rec ≡ 0), if the left component terminates with
no output, the program never diverges because its behavior is equivalent to the left
component.

In Orc language, a program halts if it ends up with halt status and has no output.
The otherwise combinator is introduced to handle the halt program. Note that the halt
behavior we defined above is a different issue. In common perspective, the halt program
is unexpected. The program has less probability to halt is considered better. We define
the following filter operation.

P ↓ halt =df P ; (⊥′ � st = halt ∧ tr↑! = ε� II)
The filter considers every halt execution of the program as a divergence. This view

wipes out the halt executions of programs and generate a specific ordering to reflect the
above perspective.

Definition 16 (Halt Ordering). Let P andQ be Orc programs. we say P is the refine-
ment of Q with respect to halt, denoted as P �Q, if and only if P ↓ halt ( Q↓ halt.

Definition 17 (Weak Halt Ordering). Let P and Q be Orc programs. we say P is
weak refinement of Q with respect to halt, denoted as P �Q, if and only if P ↓ halt ≥
Q↓ halt.

With this ordering, we can determine that let(p)�sink(p) while we cannot tell let(p) ≥
sink(p). Moreover, we can determine the ordering between the following two pro-
grams. There is a program called cord(p) which coordinates a site call copy(p) and the
unfail local publish let(p). We combine them with the otherwise combinator cord(p) =df

copy(p)|> let(p). According to definition of otherwise combinator, the program first
launches the site call. If it fails, a local publication is made. Then we can find out

cord(p) � copy(p)
This result supports the perspective that the otherwise combinator improves the

behavior of programs.
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5 Conclusion and Future Work

This paper proposes a denotational semantics for Orc language. We give precise def-
inition for the site calls and Orc combinators. Through these definitions, every Orc
program is formalized by a predicate yielding healthiness conditions. Based on the se-
mantical model, the algebra laws of the Orc concurrency calculus can be proved by
predicate calculus. The model can express both the specification and the implementa-
tion of a system. With the help of the refinement principle, we can figure out whether
a program satisfies a specification as well as compare the behaviors of two programs
according to their nondeterminism. Our semantical model transforms the verification
process to the predicate computation which can be assisted by theorem provers such as
Isabelle and PVS.

In our future work, we will extend our model by adding the refusals to the semantical
domain. A program may diverge after it publishes some result. This kind of programs
appears to be better than Rec. For example, consider the following program:

Pub(x) =df let(x)||Rec(x)
This program can publish an output before it reaches a livelock. However, in our

model we have Pub(x) ≡ Rec(x). We cannot tell the difference between this two
programs in our current model. This problem can be solved by considering the refusals
in each step of the program execution.

In addition, we will discuss the soundness and the completeness of the model with
respect to the standard operational semantics. The UTP method leads us an easier way
to establish a link between these two semantics. We can combine the service specifica-
tion model proposed in [6] to obtain a complete view of a service oriented system. It
makes the verification more reliable in dealing with practical applications.
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Abstract. Compensating CSP (cCSP) is an extension to CSP for mod-
eling long-running transactions. It can be used to specify programs of
service orchestration written in a programming language like WS-BPEL.
So far, only an operational semantics and a trace semantics are given to
cCSP. In this paper, we extend cCSP with more operators and define for
it a stable failures semantics in order to reason about non-determinism
and deadlock. We give some important algebraic laws for the new opera-
tors. These laws can be justified and understood from the stable failures
semantics. A case study is given to demonstrate the extended cCSP.

1 Introduction

Long-Running Transactions (LRT) are attracting increasing research attention
recently because of their importance in Service-Oriented Computing (SOC) [10].
A transaction in SOC usually lasts for a long period of time, and involves in-
teractions with different organizations. The notion of atomic transaction is too
strict for this scenario due to some requirements such as isolation [10]. LRT are
therefore introduced to cope with this problem by using compensation to recover
from a failure to ensure the required atomicity and consistency.

Industrial service composition languages, such as WS-BPEL [1] and XLANG
[14] are now designed and implemented for programming LRT in service orches-
tration. For specification and verification of LRT, formalisms have been being
proposed and they include StAC [4], Sagas [3], cCSP [6], etc. Formalisms can
provide formal semantics to an industrial language and serve as the foundation
for the understanding of LRT and the development of tool support to verification
and analysis.

Compensating CSP (cCSP) extends the process calculus of Communicating Se-
quential Process (CSP) [13] with mechanisms of interruption and recovery from
exceptions for describing LRT. The recovery mechanism in cCSP is the same as
the backward recovery proposed in Sagas [9]. There are two types of processes in
cCSP, and they are called respectively standard processes and compensable pro-
cesses. A standard process is a subset of a CSP process extended with exception
handling and transaction block. A compensable process specifies the behavior of
the recoverywhen an exception occurs. A trace semantics is presented in [4] and an
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operational semantics is in [7], and the consistency between them is studied in [12].
However, without non-deterministic (internal) choice and hiding, cCSP is not ex-
pressive enough for relating specifications at different levels of abstraction. It is im-
portant to note that abstraction (via hiding) is the main sourceofnon-determinism
and non-determinism can causes deadlocks when composing processes.

Internal choice and hiding are motivated in the definition of StAC [4,5], a for-
mal notation for LRT that supports synchronized parallel composition, internal
and external choices, hiding, and programmable compensation. A serious draw-
back of StAC compared to cCSP is that StAC does not support compositional
reasoning. A thorough comparative study between Sagas [3] and cCSP is pre-
sented in [2] and shows two equivalent subsets of them. The paper also compares
the policies of the interruption and compensation in Sagas and cCSP, and finds
that the revised Sagas [3] is more expressive than cCSP [6]. There is an attempt
to extend cCSP [11], but only with synchronized parallel composition.

In this paper, we extend cCSP by bringing back the CSP operators of hiding,
internal choice for non-determinism, and synchronized parallel composition for
general composition. Accordingly to characterize non-determinism and deadlock,
we define a stable failures semantics for the extended language. We show most
algebraic laws in the trace semantics of the original cCSP still hold in the stable
failures semantics. Also, we show that a few laws that were claimed to hold for
the original trace semantics do not hold there, but they hold for the semantics
we define in this paper. We study the laws for the newly introduced operators.
Due to the page limit, the proofs of the laws are omitted, but they can be found
in a technical report [8].

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to the syntax and semantics of the original cCSP. Section 3 presents the
extended cCSP including the syntax, semantics and laws. Section 4 gives a case
study to demonstrate the extended cCSP. Section 5 concludes the paper and
reviews the related work.

2 Compensating CSP

The syntax of cCSP [6] is as follows, where P and PP represent a standard
process and a compensable process, respectively.

P ::= A | P ; P | P�P | P ‖ P | SKIP | THROW | YIELD | P � P | [PP ]
PP ::= P ÷ P | PP ; PP | PP�PP | PP ‖ PP | SKIPP | THROWW | YIELDD

Process A denotes the process that terminates successfully after performing
event A. There are three operators on both the standard processes and the
compensable processes: sequential composition (;), deterministic choice (�) and
parallel composition (‖). SKIP is the process that immediately terminates suc-
cessfully. THROW indicates the occurrence of an exception, and the process will
be interrupted. YIELD can terminate successfully or yield to an interrupt from
environment to result in an interruption. P � Q executes process Q after an ex-
ception is thrown from P , otherwise it behaves like P . [PP ] is a transaction block
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specifying a long-running transaction, in which a compensable process is defined
to specify the transaction.

A compensable process is constructed from compensation pairs of the form
P ÷Q, where the execution of process Q can compensate the effects after ex-
ecuting P . SKIPP immediately terminates successfully without the need to be
compensated. THROWW throws an exception and YIELDD either terminates
successfully or yields to an interrupt. We use P and PP to denote the set of
standard processes and the set of compensable processes, respectively.

2.1 Basic Notations

Let Σ be the set of all the normal events that all processes can perform, called
alphabet of processes, and Σ∗ be the set of the finite traces over Σ. In cCSP,
three more events �, ! and ? not in Σ are used. Event �, called the success ter-
minal event, represents that the process terminates successfully. Event !, called
the exception terminal event, represents that the trace terminates with an occur-
rence of an exception. Event ?, called the yield terminal event, represents that
the execution terminates by yielding to an interrupt from environment. We use
Ω = {�, !, ?} to denote the set of the terminal events, and define ΣΩ = Σ ∪Ω. In
addition, we use s t̂ to represent the concatenation of traces s and t, and define

– Σ∗
O = {s 〈̂ω〉 | s ∈ Σ∗ ∧ ω ∈ O}: for an O ⊆ Ω.

Let Σ∗O = Σ∗ ∪Σ∗
O, and we call traces in Σ∗

Ω terminating traces and traces in
Σ∗

{�} successfully terminating traces.

2.2 Trace Semantics

In contract to the CSP convention [13], the trace set of a standard process in
cCSP is not prefix closed. The trace semantic function T : P → P(Σ∗

Ω) assigns

Atomic process For all A ∈ Σ, T (A) = {〈A, �〉}
Sequential composition

p ; q =
{

p1 q̂ p = p1 〈̂�〉
p p = p1 〈̂ω〉 ∧ ω �= � T (P ; Q) = {p ; q | p ∈ T (P ) ∧ q ∈ T (Q)}

Choice T (P�Q) = T (P ) ∪ T (Q)

Parallel composition
p1 〈̂ω1〉 ‖ q1 〈̂ω2〉 = {r 〈̂ω1&ω2〉 | r ∈ (p1 � q1)} where ω1 � � � ! ! ?
T (P ‖ Q) = {r | r ∈ (p ‖ q) ∧ p ∈ T (P ) ∧ q ∈ T (Q)} ω1 � ? ! ! ? ?

ω1&ω2 � ? ! ! ! ?
Exception handling

p � q =
{

p1 q̂ p = p1 〈̂!〉
p p = p1 〈̂ω〉 ∧ ω �=! T (P � Q) = {p � q | p ∈ T (P ) ∧ q ∈ T (Q)}

Basic processes T (SKIP) = {〈�〉}, T (THROW) = {〈!〉}, T (YIELD) = {〈?〉, 〈�〉}

Fig. 1. The semantics of standard process
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each process P a set T (P ) of terminating traces. Fig. 1 shows the definition
of T , where p and q are terminating traces, and p1 � q1 represents the set of
interleavings of traces p1 and q1, whose formal definition can be refereed to
Section 2.3 in [13]. The processes in a parallel composition only synchronize
on the terminal events, performing other events in an interleaving manner. An
exception occurs in the composition if any sub-process throws an exception, and
the composition terminates successfully only if both sub-processes do.

A compensable process is defined by a set of pairs of traces, called the for-
ward trace and compensation trace, respectively. It is necessary to note that
the semantics of the sequential composition conforms to the semantics of the
classical Sagas [9], and compensation actions are executed in the reverse order
of their corresponding forward actions. For example, the forward behavior of
A1 ÷B1 ; A2 ÷B2 will perform A1 followed by A2, but the compensation behav-
ior will perform B1 after B2 in case of an exception occurred later. Fig. 2 defines
the trace semantic function Tc : PP → P(Σ∗

Ω ×Σ∗
Ω) of the compensable processes.

To allow a compensable process PP to implicitly yield to an interrupt from
the environment at the beginning, in the definition of a compensation pair P ÷Q

in Fig. 2, the trace pair (〈?〉, 〈�〉) is included. On the other hand, YIELD can be
used in any place in a process if one would like to explicitly specify a yield to
an interrupt at that place. The semantics of a transaction block [PP ] is defined
below.

T ([PP ]) = {p p̂′ | (p 〈̂!〉, p′) ∈ Tc(PP )} ∪ {p 〈̂�〉 | (p 〈̂�〉, p′) ∈ Tc(PP )}

It says that after an exception occurs, the compensation trace will be executed
to recover from the failure. Otherwise, the compensation trace is not executed.

Discussion. In paper [6] some laws are given for the trace semantics. However,
our careful investigation finds that some of them do not actually hold there. The

Compensation pair

p÷ q =
{

(p, q) p = p1 〈̂�〉
(p,�) p = p1 〈̂ω〉 ∧ ω �= �

Tc(P ÷Q) = {p÷ q | p ∈ T (P ) ∧ q ∈ T (Q)} ∪ {(〈?〉, 〈�〉)}
Compensable sequential composition

(p, p′) ; (q, q′) =
{

(p1 q̂, q′ ; p′) p = p1 〈̂�〉
(p, p′) p = p1 〈̂ω〉 ∧ ω �= �

Tc(PP ; QQ) = {(p, p′) ; (q, q′) | (p, p′) ∈ Tc(PP ) ∧ (q, q′) ∈ Tc(QQ)}
Compensable choice Tc(PP�QQ) = Tc(PP ) ∪ Tc(QQ)

Compensable parallel composition
(p, p′) ‖ (q, q′) = {(r, r′) | r ∈ (p ‖ q) ∧ r′ ∈ (q ‖ q′)}
Tc(PP ‖ QQ) = {rr | rr ∈ (pp ‖ qq) ∧ pp ∈ Tc(PP ) ∧ qq ∈ Tc(QQ)}
Compensable basic processes
SKIP = SKIP÷ SKIP, THROWW = THROW÷ SKIP, YIELDD = YIELD÷ SKIP

Fig. 2. The semantics of compensable process
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first is PP ;SKIPP = PP . For example, according to the semantic definition in
Fig. 2, the semantics of the process A÷B is {(〈A,�〉, 〈B, �〉), (〈?〉, 〈�〉)}, but the
semantics of A÷B ; SKIPP is {(〈A, �〉, 〈B, �〉), (〈?〉, 〈�〉), (〈A, ?〉, 〈B, �〉)}. The
law is not valid because of the extra trace pair (〈?〉, 〈�〉) added to a compensation
pair in the semantic definition.The laws [P ÷Q]=P and [P ÷Q;THROWW]=P ;Q
do not hold either when P does not terminate with the yield terminal event ?.
It is because the transaction block will remove the exception terminal event ! of
the forward trace. Intuitively, we expect these laws to hold. Indeed, we will see
later they become valid in the stable failures semantics in this paper.

3 Extended cCSP and Its Stable Failures Semantics

We extend cCSP with operators of internal and external choices, hiding, renam-
ing and generalized parallel composition for both the standard and compensable
processes. The syntax of the extended cCSP is defined as follows, where A ∈ Σ,
X ⊆ Σ, and R ⊆ Σ ×Σ.

P ::= A | P ; P | P � P | P�P | P ‖
X

P | SKIP | THROW | YIELD |
STOP | P \X | P �R� | P � P | [PP ]

PP ::= P ÷ P | PP ; PP | PP � PP | PP�PP | PP ‖
X

PP | SKIPP |
THROWW | YIELDD | PP \X | PP �R�

P �Q and P�Q represent internal and external choices, respectively. In the gen-
eralized parallel composition P ‖

X

Q, processes P and Q synchronize on the events

in X, as well as on the terminal events in Ω. P \X is the process with the events
in X being restricted from happening during the execution of P , and P �R� the
process obtained from P by renaming its events according to the renaming rela-
tion R.

We extend the compensable processes similarly by introducing the same oper-
ators. The internal and external choices in the compensable processes are made
during the execution of the forward behaviors of the sub-processes. PP and QQ

in PP ‖
X

QQ synchronize on the events in X between both the forward behaviors

and the compensation behaviors of the two sub-processes.

3.1 Semantics of Standard Process

The semantics of a standard process is slightly different from the stable failures
semantics of a CSP process in [13], due to the two new terminal events ! and ?.
The stable failures model of a standard process P is a pair (T, F ), where T ⊆ Σ∗Ω

is the trace set and F ⊆ Σ∗Ω × P(ΣΩ) is the stable failure set. The domain of the
pairs of traces and failues should satisfy the following axioms.

T is non-empty and prefix closed (1)
(s,X) ∈ F ⇒ s ∈ T (2)
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(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y ) ∈ F (3)
(s,X) ∈ F ∧ ∀a ∈ Y • s 〈̂a〉 /∈ T ⇒ (s,X ∪ Y ) ∈ F (4)

s 〈̂ω〉 ∈ T ⇒ (s,ΣΩ \ {ω}) ∈ F, where ω ∈ Ω (5)

s 〈̂ω〉 ∈ T ⇒ (s 〈̂ω〉, X) ∈ F, where ω ∈ Ω ∧X ⊆ ΣΩ (6)

In what follows we define the trace set function TS : P → P(Σ∗Ω) and the stable
failure set function FS : P → P(Σ∗Ω × P(ΣΩ)) for the standard processes in the
extended cCSP.

Atomic and basic processes. Process A can perform event A and terminate
successfully. The semantic functions are as follows.

TS(A) = {〈〉, 〈A〉, 〈A,�〉}
FS(A) = {(〈〉, X) | X ⊆ ΣΩ ∧A /∈ X} ∪ {(〈A〉, X) | X ⊆ ΣΩ ∧� /∈ X}∪

{(〈A, �〉, X) | X ⊆ ΣΩ}
The trace and failure sets of processes SKIP, THROW, YIELD and STOP are
defined below.

TS(SKIP) = {〈〉, 〈�〉} TS(THROW) = {〈〉, 〈!〉}
TS(YIELD) = {〈〉, 〈�〉, 〈?〉} TS(STOP) = {〈〉}
FS(SKIP) = {(〈〉, X) | X ⊆ ΣΩ ∧� /∈ X} ∪ {(〈�〉, X) | X ⊆ ΣΩ}
FS(THROW) = {(〈〉, X) | X ⊆ ΣΩ∧ ! /∈ X} ∪ {(〈!〉, X) | X ⊆ ΣΩ}
FS(YIELD) = {(〈〉, X) | X ⊆ ΣΩ∧ ? /∈ X} ∪ {(〈?〉, X) | X ⊆ ΣΩ}∪

{(〈〉, X) | X ⊆ ΣΩ ∧� /∈ X} ∪ {(〈�〉, X) | X ⊆ ΣΩ}
FS(STOP) = {(〈〉, X) | X ⊆ ΣΩ}

Internal choice. P �Q can refuse an event set after performing a trace s if P

or Q can refuse the event set after s. The semantic of internal choice is same as
that in [13], i.e. the traces and failures of an internal choice are the unions of
the traces and failures of its sub-processes, respectively.

TS(P �Q) = TS(P ) ∪ TS(Q) FS(P �Q) = FS(P ) ∪ FS(Q)

It is straightforward to see that YIELD � SKIP = YIELD.

External choice. External choice is different from internal choice on the empty
trace (〈〉), at which P�Q can refuse an event set only if both P and Q refuse it.
The failure set of external choice needs to take the terminal events ? and ! into
account to make axiom (1) on page 5 hold.

TS(P�Q) = TS(P ) ∪ TS(Q)
FS(P�Q) = {(〈〉, X) | (〈〉,X) ∈ FS(P ) ∩ FS(Q)}∪

{(s, X) | (s,X) ∈ FS(P ) ∪ FS(Q) ∧ s �= 〈〉}∪
{(〈〉, X) | X ⊆ ΣΩ \ {ω} ∧ 〈ω〉 ∈ TS(P ) ∪ TS(Q) ∧ ω ∈ Ω}

The internal and external choices are indistinguishable on the basic processes.
SKIP�YIELD = YIELD SKIP�THROW = SKIP � THROW

YIELD�THROW = YIELD � THROW

Sequential composition. The definition of sequential composition is different
from the classic CSP [13] due to the terminal events ! and ?.
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TS(P ; Q) = {s | s ∈ TS(P ) ∩Σ∗{!,?}} ∪ {s t̂ | s 〈̂�〉 ∈ TS(P ) ∧ t ∈ TS(Q)}
FS(P ; Q) = {(s, X) | s ∈ Σ∗{!,?} ∧ (s, X ∪ {�}) ∈ FS(P )}∪

{(s t̂, X) | s 〈̂�〉 ∈ TS(P ) ∧ (t,X) ∈ FS(Q)}
However, the following two laws in [6] still hold here.

THROW ; P = THROW YIELD ; YIELD = YIELD

The first law ensures the exception-stop semantics that is adopted in many mod-
ern languages.

Parallel composition. The parallel composition has to take care of the syn-
chronization of the terminal events. We use s ‖

X

t to represent the trace set of

the synchronization between two traces s and t on X. As well as on the terminal
events, s and t need to synchronize on the events in X. The definition of s ‖

X

t

can be referred to that in classical CSP [13] except the synchronization between
terminal events, which uses the definition in cCSP (cf. ω1&ω2 in Fig. 1).

To define the semantics of P ‖
X

Q, we first define its trace set, and then its

failure set. The trace set of P ‖
X

Q is as follows based on the cases defined above.

TS(P ‖
X

Q) = {u | ∃s ∈ TS(P ), t ∈ TS(Q) • u ∈ s ‖
X

t} (7)

P ‖
X

Q can refuse an event in X ∪Ω if either P or Q can. However, because both

P and Q can perform the events outside X ∪Ω independently, P ‖
X

Q refuses an

event outside X ∪Ω only if both P and Q refuse it. For a failure (s, Y ) in P and
(t, Z) in Q, the following set is their synchronized failure set under the classical
CSP definition.

(s, Y )⊕ (t, Z) = {(u, Y ∪ Z) | Y \ (X ∪Ω) = Z \ (X ∪Ω) ∧ u ∈ s ‖
X

t} (8)

However, this definition has to be modified for the extended cCSP, to take into
account the different cases of synchronization on the terminal events in Ω.
– If P or Q cannot perform a terminal event after executing s or t, then P ‖

X

Q

cannot terminate because P and Q need to synchronize on the terminal
events. We can use the definition (8) for this case. For example, if Σ is {A, B},
consider processes A and B ; THROW. We have the failure (〈〉, {B, �, !, ?})
of A and the failure (〈B〉, {B, �, ?}) of B ; THROW, and thus the failure
(〈B〉, {B, �, !, ?}) of A ‖

{}
(B ; THROW).

– If both P and Q can terminate, the synchronized terminal event should
be removed from the refusal set of the synchronized failure. For exam-
ple, if Σ is {A}, consider processes A and A;THROW. A has the failure
(〈A〉, {A, !, ?}), and A ; THROW has the failure (〈A〉, {A, �, ?}). We can see
that � is the terminal event A can perform, and ! is the terminal event
A ; THROW can perform. The synchronization of these two terminal events
is !, which should not be contained in the refusal set of the synchronized
failure in A ‖

{A}
(A;THROW), i.e. (〈A〉, {A, �, ?}). If we use the definition (8),

the synchronized failure set will contain (〈A〉, {A, �, ?, !}), which indicates
A ‖

{A}
(A;THROW) will deadlock after executing 〈A〉.
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The synchronized failure set of two failures is defined as follows.

(s, Y )⊕ (t, Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(u, Y ∪ Z) | Y \ (X ∪Ω) = Z \ (X ∪Ω) ∧ u ∈ s ‖
X

t}
if (s, Y ∪Ω) ∈ FS(P ) ∨ (t, Z ∪ Ω) ∈ FS(Q)

{(u, (Y ∪ Z) \ Θ) | Y \ (X ∪Ω) = Z \ (X ∪ Ω) ∧ u ∈ s ‖
X

t∧
Θ = rf(ω1, ω2)}

otherwise

(9)

where ω1 is the terminal event that P can engage in after performing s, i.e.
∀(s, Y1) ∈ FS(P ) • Y ⊆ Y1 ⇒ (ω1 ∈ Ω ∧ ω1 /∈ Y1), ω2 is the terminal event that Q

can engage in after performing t, and the function rf synchronizing the terminal
events is defined as follows, in which ω1&ω2 is defined in Fig. 1.

rf(ω1, ω2) =

⎧⎪⎪⎨
⎪⎪⎩
{ω1&ω2} ω1 ∈ Ω ∧ ω2 ∈ Ω
{ω1} ω1 ∈ Ω ∧ ω2 = ε
{ω2} ω2 ∈ Ω ∧ ω1 = ε
{} ω1 = ε ∧ ω2 = ε

(10)

If P or Q can terminate with different terminal events after executing a trace,
ω1 or ω2 may not exist for some failures, e.g. (〈〉, {?}) in the failure set of the
process SKIP � THROW. If ω1 or ω2 does not exist, we use ε to represent it. Now
the failure set of P ‖

X

Q is defined below.

FS(P ‖
X

Q) = {(u, E) | (u, E) ∈ (s, Y )⊕ (t, Z)∧
∃s, t • (s, Y ) ∈ FS(P ) ∧ (t, Z) ∈ FS(Q)}

For example, the trace and failure sets of the process A ‖
{A}

(A; THROW ) in the

last example are {〈〉, 〈A〉, 〈A, !〉} and {(〈〉, X) | X ⊆ Ω} ∪ {(〈A〉, X) | X ⊆ {A, �, ?}}
∪{(〈A, !〉, X) | X ⊆ ΣΩ}, respectively.

The following laws for parallel composition reflect the termination policies in
a parallel composition.

YIELD ‖
X

SKIP = YIELD THROW ‖
X

SKIP = THROW

THROW ‖
X

YIELD = THROW THROW ‖
X

THROW = THROW

If P does not terminate with an yield terminal event, i.e. ∀s ∈ TS(P ) • s /∈ Σ∗
{?},

the parallel composition ‖ without synchronization agrees with the composition
‖
{}

and it enjoys the following laws.

THROW ‖ P = P ; THROW

THROW ‖ (YIELD ; P ) = THROW � (P ; THROW)

The last law says that a process can be interrupted by an interrupt from the
environment, but the interruption does not have priority over other events.

Exception handling. P � Q behaves similarly to P ;Q, but Q starts to execute
only after an exception is thrown in P .



An Extended cCSP with Stable Failures Semantics 129

TS(P � Q) = {s | s ∈ TS(P ) ∩Σ∗{�,?}} ∪ {s t̂ | s 〈̂!〉 ∈ TS(P ) ∧ t ∈ TS(Q)}
FS(P � Q) = {(s, X) | s ∈ Σ∗{�,?} ∧ (s, X ∪ {!}) ∈ FS(P )}∪

{(s t̂, X) | s 〈̂!〉 ∈ TS(P ) ∧ (t, X) ∈ FS(Q)}
Laws for exception handling:

P � THROW = P P � (Q �R) = (P � Q) � (P � R)
THROW � P = P (P �Q) � R = (P � R) � (Q � R)

SKIP � P = SKIP P � (Q�R) = (P � Q)�(P � R)
YIELD � P = YIELD P � (Q � R) = (P � Q) � R

STOP � P = STOP

The terminal events do not affect hiding and renaming operators. Thus, their
definitions remain the same as those given in the classical CSP.

3.2 Semantics of Compensable Process

The semantics of a compensable process PP is to be defined as a triple (T, F, C),
where T and F are the trace and failure sets of the forward behavior, and
C ⊆ Σ∗

Ω × P(Σ∗Ω)× P(Σ∗Ω × P(ΣΩ)) defines the compensation behavior. The rea-
son for the separation of forward and compensation behaviors is the compensa-
tion behavior needs to be recorded during the execution of the forward behavior.
An element in C is (s, T c, F c), which shows that the behavior defined by the trace
set T c and the failure set F c can compensate the effects caused by executing the
terminating trace s from the forward behavior. Therefore, both the forward be-
havior (T, F ), denoted by PP f , and the compensation behavior (T c, F c) of each
element in C, denoted by PP c, satisfy the axioms of the semantics of the stan-
dard processes given in Section 3.1. We can thus overload the semantic functions
TS and FS and the operators on standard processes and apply them to PP f and
PP c. For examples, FS(PP f ) = F and FS(PP c) = F c, and later when we de-
fine the semantics of PP ; QQ, we will use the notations TS(PP f ; QQf ) and
FS(PP f ; QQf ) as if PP f and QQf are standard processes. In addition, (T, F, C)
is required to satisfy the following axiom.

∀(s, T c, F c) ∈ C • s ∈ Σ∗
Ω ∩ {s | (s,X) ∈ F} (11)

It means the trace s of each element in C is a stable terminating trace in the
forward behavior.

We define the triple (T, F, C) for a PP by three semantic functions: the forward
trace set function T c : PP → P(Σ∗Ω), the forward failure set function Fc : PP →
P(Σ∗Ω × P(ΣΩ)), and the compensation behavior set function C : PP→
P(Σ∗

Ω × P(Σ∗Ω)× P(Σ∗Ω × P(ΣΩ))).

Compensation pair. If the forward behavior terminates successfully, the be-
havior of Q is recorded such that it can be executed to compensate the effect of
P when triggered by an exception later. Otherwise, Q will not be executed. The
semantics of a compensation pair P ÷Q attaches the successfully terminating
trace in the forward behavior, i.e. s ∈ T ∩Σ∗

{�}, with the trace and failure sets
of Q, and the others terminating traces (the traces in Σ∗

{!,?}) with those of SKIP.
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T c(P ÷Q) = TS(P ) Fc(P ÷Q) = FS(P )
C(P ÷Q) = {(s, T c, F c) | ∃s ∈ T ∩Σ∗

Ω•
(s = t 〈̂�〉 ∧ T c = TS(Q) ∧ F c = FS(Q))∨
(s ∈ Σ∗

{!,?} ∧ T c = TS(SKIP) ∧ F c = FS(SKIP))}
The compensation behavior set of the compensable processes STOP÷ P is empty.
In the following, we use STOPP to denote the compensable processes whose
forward behaviors are STOP. The following two laws hold for compensation
pairs.

Q1 = Q2 ⇒ P ÷Q1 = P ÷Q2 P1 = P2 ⇒ P1 ÷Q = P2 ÷Q

The definitions of the basic compensable processes are the same as those in
Section 2.2.

Transaction block. The semantics of a transaction block [PP ] can be defined
in terms of the semantics of the compensable process PP in the block.

TS([PP ]) = (T c(PP ) \Σ∗
{!})∪

{s1 | ∃(s, T c, Dc) ∈ C(PP ) • s = t 〈̂!〉 ∧ s2 ∈ T c ∧ s1 = t ŝ2}
FS([PP ]) = {(s, X) | s ∈ Σ∗ ∧ (s,X ∪ {!}) ∈ Fc(PP )}∪

{(s1, X1) | ∃(s, T c, F c) ∈ C(PP ) • (s ∈ Σ∗
{�,?} ∧ s1 = s ∧X1 ⊆ ΣΩ)∨

(s = t 〈̂!〉 ∧ (s2, X2) ∈ F c ∧ s1 = t ŝ2 ∧X1 = X2)}
The compensation behavior of PP will be executed to recover from a failure
occurred in the forward behavior. The trace set of [PP ] contains the traces
of the forward behavior of PP and the traces of compensation behavior. The
failure set FS([PP ]) contains the failures of the forward behavior that do not
terminate with an exception terminal event. It also includes the failures that
extend the exception terminating traces of the forward behavior with the failures
of the compensation behavior. Different from the original cCSP, we keep the yield
interruption behavior in the semantics of transaction block. The following laws
hold.

[SKIP÷ P ] = SKIP [STOPP] = STOP

[THROW÷ P ] = SKIP [P ÷Q] = P � SKIP

[YIELD÷ P ] = YIELD PP1 = PP2 ⇒ [PP1] = [PP2]

The law [P ÷Q] = P � SKIP fixes the problem of the original cCSP pointed out
in Section 2.2, i.e. [P ÷Q] = P under the assumption that P does not terminate
with the yield terminal event.

Sequential composition. In a sequential composition PP ;QQ, the forward
behavior PPf and the forward behavior QQf are composed first, and the com-
pensation behavior PPc and the compensation behavior QQc are composed in
the reverse direction, just like the model of Sagas [9].

T c(PP ; QQ) = TS(PP f ; QQf ) Fc(PP ; QQ) = FS(PP f ; QQf )
C(PP ; QQ) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ), (s2, QQc) ∈ C(QQ)•

(s1 = t 〈̂�〉 ∧ s = t ŝ2 ∧ T c = TS(QQc; PP c) ∧ F c = FS(QQc; PP c))∨
(s1 �= t 〈̂�〉 ∧ s = s1 ∧ T c = TS(PP c) ∧ F c = FS(PP c)) }
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For example, the compensation behavior of A1 ÷B1; A2 ÷B2 is {(〈A1, A2, �〉,
TS(B2; B1),FS(B2; B1))}, and that of A1 ÷B1;YIELDD contains two elements:
(〈A1, �〉, TS(B1),FS(B1)) and (〈A1, ?〉, TS(B1),FS(B1)).

Sequential composition satisfies the following laws. In the last two laws, we
assume the standard processes P , P1 and P2 do not terminate with an exception
terminal event.

SKIPP ; PP = PP YIELDD ; YIELDD = YIELDD

PP ; SKIPP = PP [P ÷Q;THROWW] = P ; Q
THROWW ; PP = THROWW [P1 ÷Q1; P2 ÷Q2;THROWW] = P1; P2; Q2; Q1

The second law fixes the right unit problem of the original trace model pointed
out in Section 2.2. The fifth law fixes another problem pointed out there and
ensures that [P ÷Q;THROWW] = P ;Q provided that P does not terminate with
?. The last two laws are also valid in the case that the standard processes ter-
minate with ?, and they relax the assumption in the original cCSP that requires
all the standard processes terminate successfully.

Internal choice. The semantics of internal choice PP �QQ is as follows.
T c(PP �QQ) = TS(PP f �QQf ) Fc(PP �QQ) = FS(PP f �QQf )
C(PP �QQ) = C(PP ) ∪ C(QQ)

For example, the compensation behavior set of A÷B1 �A÷B2 is {(〈A, �〉,TS(B1),
FS(B1)), (〈A,�〉, TS(B2),FS(B2))}. We have the following laws hold for internal
choice.

PP � PP = PP PP � (QQ �RR) = (PP �QQ) � RR

PP �QQ = QQ � PP PP ; (QQ �RR) = (PP ; QQ) � (PP ; RR)
[PP �QQ] = [PP ] � [QQ] (QQ � RR) ; PP = (QQ ; PP ) � (RR ; PP )

External choice. As in the case of the internal choice, the external choice is
made during the forward behavior, but it is the environment to make the choice.

T c(PP�QQ) = TS(PP f�QQf ) Fc(PP�QQ) = FS(PP f�QQf )
C(PP�QQ) = C(PP ) ∪ C(QQ)

For example, C(STOPP�A÷B) equals to C(STOPP �A÷B), and they are equal
to {(〈A, �〉, TS(B),FS(B))}. But their forward failures sets are different:
Fc(STOPP�A÷B) is FS(A), and Fc(STOPP �A÷B) is FS(A) ∪ FS(STOP). The
following laws hold for external choice.

PP�PP = PP [PP�QQ] = [PP ]�[QQ]
PP�QQ = QQ�PP PP�(QQ�RR) = (PP�QQ)�RR

STOPP�PP = PP PP�(QQ � RR) = (PP�QQ)� (PP�RR)

Notice that external choice distributes over internal choice. From the laws for
internal and external choices, we can see that a transaction block process of a
choice between compensable processes equals to a choice between the transaction
block processes of the compensable processes.

Parallel composition. In a generalized parallel composition PP ‖
X

QQ, the

forward behaviors of PP and QQ synchronize on X, so do their compensation
behaviors:
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T c(PP ‖
X

QQ) = TS(PP f ‖
X

QQf ) Fc(PP ‖
X

QQ) = FS(PP f ‖
X

QQf )

C(PP ‖
X

QQ) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ), (s2, QQc) ∈ C(QQ)•
s ∈ (s1 ‖

X

s2) ∧ T c = TS(PP c ‖
X

QQc) ∧ F c = FS(PP c ‖
X

QQc)}
Here are two examples. First, [(A÷B1 ‖ A÷B2

{A}
);THROWW] = A; B1 ‖ B2 shows

the synchronization between the forward behaviors, and then A1 ÷B1 ‖ A2 ÷B2
{A1,A2}

= STOPP demonstrates the case of a deadlock in the forward behavior. The fol-
lowing laws for parallel composition hold.

PP ‖
X

QQ = QQ ‖
X

PP

PP ‖
X

(QQ ‖
X

RR) = (PP ‖
X

QQ) ‖
X

RR

PP ‖
X

(QQ �RR) = (PP ‖
X

QQ) � (PP ‖
X

RR)

Furthermore, parallel composition and sequential composition are related by the
following laws, where all the standard processes are assumed to terminate suc-
cessfully.

[(P1 ÷Q1 ‖
X

P2 ÷Q2) ; THROWW] = (P1 ‖
X

P2); (Q1 ‖
X

Q2)

[(P1 ÷Q1 ; P2 ÷Q2) ‖ THROWW] = P1 ; P2 ; Q2 ; Q1

[(P1 ÷Q1 ; YIELDD ; P2 ÷Q2) ‖ THROWW] =
(P1 ; Q1) � (P1 ; P2 ; Q2 ; Q1)

[(YIELDD ; P1 ÷Q1 ; YIELDD ; P2 ÷Q2) ‖ THROWW] =
SKIP � (P1 ; Q1) � (P1 ; P2 ; Q2 ; Q1)

[P1 ÷Q1 ‖ P2 ÷Q2 ‖ THROWW] = (P1 ‖ P2) ; (Q1 ‖ Q2)
[(YIELDD ; P1 ÷Q1) ‖ (YIELDD ; P2 ÷Q2) ‖ THROWW] =

SKIP � (P1 ; Q1) � (P2 ; Q2) � ((P1 ‖ P2) ; (Q1 ‖ Q2))
The 3rd and 4th laws say that a compensable process in a parallel composition
can be interrupted by YIELDD, meaning that the process yields to an inter-
rupt from the environment. A compensable process will not be interrupted if no
YIELDD is used (the 2nd and 5th laws). This is one of the differences from the
original cCSP, where a compensable process can implicitly yield to an interrupt
from the environment (cf. Section 2.2). We believe that it is more reasonable to
let the designer to specify where a compensable process can yield to an inter-
ruption from the environment.

Hiding and renaming. Hiding and renaming are defined by the standard
hiding and renaming on the forward behavior and the compensation behavior.

T c(PP \X) = TS(PP f \X) Fc(PP \X) = FS(PP f \X)
C(PP \X) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ) • s = s1 \X ∧ T c = TS(PP c \X)∧

F c = FS(PP c \X)}
The renaming semantics is as follows.

T c(PP �R�) = TS(PP f �R�) Fc(PP �R�) = FS(PP f �R�)
C(PP �R�) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ) • s1 R s ∧ T c = TS(PP c�R�)∧

F c = FS(PP c�R�)}
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Hiding and renaming satisfy the following laws. In particular, both are distribu-
tive among internal choice, but the hiding operator is not distributive among
external choice, e.g. ((A; A1)÷B�(A;A2)÷B) \ {A} is equal to A1 ÷B �A2 ÷B.

(PP \X) \ Y = (PP \ Y ) \X (PP �QQ)�R� = PP �R� �QQ�R�

(PP \X) \ Y = PP \ (X ∪ Y ) (PP�QQ)�R� = PP �R��QQ�R�

(PP �QQ) \X = (PP \X) � (QQ \X) (PP �R�)�R′� = PP �R ◦ R′�
PP \ {} = PP

4 Case Study

This section will give a case study to demonstrate the extended cCSP. It is a
business process of an online shop. The system is composed by four parties: a
shop, a supplier, a shipper and a bank. The business behavior of each party is
compensable, and will be specified by a compensable process.

After receiving a client request (ReceiveRequest), the shop contacts its sup-
plier to ask (SupplierRequest) whether there exist enough goods. If the stor-
age is not enough (NotEnough), the whole process will result in an exception.
Otherwise, the shop will make an order (Order) of the goods. The shop then
contacts the bank for authorizing the credit card of client (CreditCheck). If
the credit card is valid, the shop processes payment for the client (Payment)
and informs the supplier (NotifySupplier) that the payment is made. For the
sake of efficiency, after receiving the notification, the supplier contacts the bank
for checking the payment (PaymentCheck) and requests the shipper to ship the
goods (ShipRequest) to client concurrently. If the credit card authorization or
payment checking fails (NotValid, NotPValid), the whole process will result in
an exception. After receiving the shipping request, the shipper schedules a ship-
ping plan (Schedule), delivers the goods (Deliver) to the client of the shop,
and notifies the supplier (ShipResult) about the shipping result. The alphabet
Σ of the system is given as follows.

Σ = {ReceiveRequest, ApologyMail, SupplierRequest, Enough, NotEnough,

Order, UndoOrder, CreditCheck, Valid, NotValid, Payment, Refund,

NotifySupplier, PaymentCheck, PValid, NotPValid, ShipRequest,

NotifyShopShip, ShipResult, Schedule, Deliver, ShipBack}
The processes Shop, Supplier, Shipper and Bank are specified as follows.

Shop = ReceiveRequest ÷ ApologyMail ;
(SupplierRequest ; (Enough � (NotEnough ; THROW)))÷ SKIP ;
Order÷ SKIP ; (CreditCheck ; (Valid � (NotValid ; THROW)))÷ SKIP ;
Payment ÷ Refund ; NotifySupplier ÷ SKIP ; NotifyShopShip ÷ SKIP

Supplier = (SupplierRequest ; (Enough � (NotEnough ; THROW)))÷ SKIP ;
Order÷ UndoOrder ; NotifySupplier ÷ SKIP ;
((PaymentCheck ; (PValid � (NotPValid ; THROW)))÷ SKIP ‖
(ShipRequest ÷ SKIP ; NotifyShopShip ÷ SKIP)) ; ShipResult ÷ SKIP
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Shipper = ShipRequst ÷ SKIP ; YIELDD ; Schedule ÷ SKIP ;
YIELDD ; Deliver ÷ ShipBack ; ShipResult ÷ SKIP

Bank = ((CreditCheck ; (Valid � (NotValid; THROW)))÷ SKIP ; Payment÷ Refund) ‖
(PaymentCheck ; (PValid � (NotPValid ; THROW)))÷ SKIP

The global process (DetailGlobalProcess) is a transaction block of the synchro-
nized parallel composition of the four compensable processes. If the compensable
parallel process in the global process results in an exception, a recovery should
be taken, e.g. the credit card will be refunded and the shipper will ship back the
delivered goods. We can get a more abstract process (AbstractGlobalProcess)
by hiding some synchronized events.

DetailGlobalProcess = [ Shop ‖
X

Supplier ‖
X

Shipper ‖
X

Bank ]

X = {SupplierRequest, Enough, NotEnough, Order, CreditCheck, Valid,

NotValid, Payment, Refund, NotifySupplier, PaymentCheck, PValid,

NotPValid, ShipRequest, NotifyShopShip, ShipResult}
AbstractGlobalProcess = DetailGloablProcess \X1

X1 = (X ∪ {Schedule}) \ {Payment, Refund, Order}
Based on the preceding semantic definitions and laws, the abstract process can
be reduced to the following process.

[ ReceiveRequest ÷ ApologyMail ; SKIPP � THROWW ; Order÷ UndoOrder ;
SKIPP � THROWW ; Payment ÷ Refund ;
(SKIPP � THROWW) ‖ (YIELDD ; Deliver ÷ ShipBack) ]

It provides an abstract choreography view of the system. According to the se-
mantics, we can get the following results. The proofs of results are omitted due
to the space limit and are reported in [8].
– The global process will not deadlock. If we add the event ReceiveRequest to

the synchronization set X, a deadlock will happen at the beginning. The rea-
son is: besides Shop, no other process can execute the event ReceiveRequest
at the beginning.

– If an exception occurs, ApologyMail is the last event performed in the re-
covery. From the abstract process, we can see that there are four different
cases of recovery: 1) if the storage is not enough, then only ApologyMail
will be preformed; 2) if the credit card authorization fails, then the trace
〈UndoOrder, ApologyMail〉 will be performed; 3) if the shipper yields to
the exception from the supplier, and the goods delivery will be canceled,
then 〈Refund, UndoOrder, ApologyMail〉 will be performed; 4) if the pay-
ment checking fails after the goods delivery, then the execution sequence of
the recovery is 〈ShipBack, Refund, UndoOrder, ApologyMail〉.

5 Conclusions and Future Work

LRT are important in SOC. It is important that LRT can be formally specified
and verified with tool support. The extension of CSP into cCSP is one of the
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useful attempts in this direction. However, cCSP does not provide the facilities
for defining internal choice, hiding and synchronization. This together with the
only available trace semantics (and the operational semantics) severely limits the
expressive power of the language that it does not specify and reason about non-
determinism and dead-lock. In this paper, we have extended cCSP with internal
choice, hiding and synchronization in order to be able to specify behavior of LRT
at different levels of abstractions. Accordingly, we have provided a stable failures
semantics for the extended notation for reasoning about non-determinism and
deadlock.

Along with the semantic definitions of the operators, we present the impor-
tant algebraic laws of the operators. As a by-product of the investigation of the
algebraic laws, we have discovered some laws which were claimed to hold but ac-
tually do not hold for the trace semantics of cCSP (cf. Section 2.2). In addition,
we have proved those laws do hold for our stable failures semantics.

The separation of the forward behavior and compensation behavior in the
semantic definition of the compensable processes allows us to understand and
analysis the two kinds of computations individually. We can refine and reason
about the two parts separately, but the price we are paying is it makes the fixed
point theory not clear when recursion is introduced.

From the perspective of theory, future work includes the study of recursion
and divergence of LRT, and thus to develop of a full theory of failure-divergence
of LRT and their refinements.
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Abstract. After reviewing a previously reported relational model of
reversible computing, in which non-deterministic choice may represent
provisional choice subject to revision by backtracking, we narrate our
attempts to express preference within choice. We begin our investiga-
tions by recalling Nelson’s extensions to Dijkstra’s calculus, and con-
sidering his biased-choice operator as a model of preference. However,
we find that this is too short-sighted for our purpose, and we outline
the necessity of incorporating a notion of continuation. After consid-
ering how this might be achieved in a predicate-transformer approach,
we adopt instead a prospective-value semantics that is easily extensible
to probabilistic choice; here, we find a clue that helps us to obtain a
first formulation of preference. Our formulation, however, takes us into
a world of non-monotonic computations, and we are motivated to move
on. We look for further inspiration within the execution structures of our
reversible virtual machine which provides a construct that records all re-
sults of a backtracking search. We add a modified version that records
results sequentially, and take its description as the basis for a “tempo-
ral order of continuations” semantics, to which we add implementor’s
choice, which is now quite distinct from provisional choice. We give a re-
finement relation and prove the monotonicity of the new semantics and
its consistency with respect to our previous prospective-values formalism.

Keywords: reversible computing, semantics, backtracking, continuations.

1 Introduction

The theory of reversible computation seeks to organise computations so as to
minimise their necessary energy requirements. The link between power consump-
tion and computation comes from the link between energy and information. This
tells us, via the theory of Landauer Erasure, that the destruction of information
during computation presents a need to consume energy: energy conserving sys-
tems are physically reversible, and do not permit a single present state to be
arrived at from multiple past states [6]. Reversible computation seeks to min-
imise information erasure by avoiding the compression of multiple past states
into a single state, such as normally happens on execution of an assignment
statement. Indeed, such erasure cannot be totally avoided, but, as the analysis
of Bennett has shown [1,3] it can be limited to an initialisation phase. For the ar-
chitecture we envisage, this initialisation would include the writing of a memory
area used as a history stack, h, with zero values. This area is subsequently used

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 137–152, 2010.
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to retain information that would normally be erased. Using this technique we
can perform any assignment x := e without erasure (i.e. using only operations
which have right inverses) as follows.

assignment h(i − 1) h(i) x
? 0 x0

h(i) := h(i) + e ? e x0

x , h(i) := h(i), x ? x0 e
i := i + 1 x0 0 e

The above, as well as demonstrating the possibility of an assignment statement
free from data erasure, also affords us the luxury of programming reversible com-
putations with a normal range of assignment statements rather than just those
that are intrinsically reversible (e.g. x := x + e where x is not free in e). Indeed
we can perform such transformations for all sequential language structures, and
retain all our familiar sequential programming constructs [14].

Nevertheless, in order to reuse the history stack locations thus consumed we
need to sometimes reverse our computations, and to this end we introduce a new
program structure S - E which runs program S , evaluates expression E , then
reverses execution. Thus, for deterministic S , S -E performs an evaluation of E
after S without incurring any of the state-changing effects of S . Details of how
this is arranged on an implementation platform have been reported in [11,12],
which are papers describing the Reversible Virtual Machine (RVM) we use as
an implementation platform for our experiments in reversible language design.
On our execution platform, we interpret non-deterministic choice as a provi-
sional choice, subject to revision if it leads to an infeasible continuation. We
interpret the stand-alone guarded command g → S as a command that will ex-
ecute S if g is true, but will reverse if g is false. We thus obtain a sequential
programming language with backtracking based on choice and guard. Where
S is non-deterministic, it may lead to a number of different prospective values
for E , and, using Hehner’s Bunch Theory, we interpret {S - E} as the set of
“prospective values” that E could take after S .

Our approach to reversible computation exploits reversibility to provide new
execution structures, and simpler memory management (e.g. garbage collection
on reverse execution). In this way we hope to offset the added complexity re-
quired by reversible computation, illustrated by the analysis of the reversible
assignment given above, and necessarily present at all levels — the logic gates of
a reversible computer, for example, must equally function without information
erasure, requiring designs such as the Toffoli gate [3].

We can also look to reversibility for some new approaches to program seman-
tics. For example, the rules for S - E give us the same relational semantics of
conjunctive computations as the wp calculus with the law of the excluded mir-
acle being revoked. This semantics is not rich enough, however, to express all
properties of the underlying computations it models, and these properties are
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crucially exploited by our execution platform, the RVM. One such property is
preference, and others will emerge in the course of our discussions.

The rest of the paper is organised as follows. Section 2 presents mathematical
preliminaries. Section 3 considers the biased choice introduced in Nelson’s gen-
eralisation of Dijkstra’s calculus. Section 4 constructs a definition of preferential
choice which borrows techniques from the definition of probabilistic choice. Sec-
tion 5 considers the lack of conjunctivity and monotonicity properties of the new
choice operator. Section 6 defines a semantics based on the temporal order of
continuations, which provides a distinction between implementor’s choice and
the provisional choice used in backtracking. We prove monotonicity for the new
semantics and establish its consistency with the prospective-value approach.

2 Preliminaries

We employ Hehner’s bunch theory to describe our prospective-value (pv) seman-
tics. Hehner points out [5] that set theory, which is foundational in mathematics,
gives us, simultaneously, collection and packaging. For modelling purposes it is
interesting to treat these independently. To this end we think of the content of
a set as having a mathematical rather than a syntactic existence, and we call it
a bunch. The content of the set {1, 2} is the bunch 1, 2. The comma in this ex-
pression is now an operator, known as bunch union, rather than merely syntax.
The content of a set A is written as ∼A where ∼ is the unpacking operator. The
content of the empty set is known as null. More exactly, we follow a multi-sorted
approach with a different empty set, and different null for each type, and we
give such types by subscripting where they cannot be deduced contextually.

The lifting of bunch comma to the status of an operator allows it an ubiquity
which, given the other uses of commas in our notations, requires some notational
adjustments. We no longer use (a, b) for an ordered pair, using a �→ b instead. We
retain f (a, b) as a notation for the application of a function to an argument pair,
using g((a, b)) when we want to apply a function of one argument to a bunch. In
this latter case the application is “bunch lifted”: g((a, b)) = g(a), g(b). Similarly,
we have bunch lifting of infix operators, as in (1, 2)+(3, 4) = 1+3, 1+4, 2+3, 2+4.
We write A : B to assert that the elements of A are all included in B .

We define the guarded bunch g � E as equal to E when its guard g holds
and null otherwise. We use an improper bunch ⊥ (more exactly an improper
bunch ⊥T for each type) to represent non-termination in a total-correctness
interpretation. We define the preconditioned bunch P E to be equal to E
when its precondition P holds, and equal to ⊥ otherwise. For any bunch A we
have null : A and A : ⊥. Bunches of a given type form a complete lattice under
reverse bunch-inclusion, with null as its top and ⊥ as its bottom element.

The expression
∮
x • E represents the bunch of all values E can take as x

ranges over its type, which is assumed to be inferred from E . For example,∮
x • (0 	 x ∧ x < 5) � 2x is the bunch of even natural numbers less than ten.

Bound variables in our theory range over elements, that is singleton bunches.
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A model for bunch theory has been formulated by Morris and Bunkenburg [7].
For constant terms, each value V in our universe of bunches has, as its deno-
tation, the set whose elements are the elements of V . Thus 1, 2 has denotation
{1, 2} and so on.

Using bunch theory, we can express the following rules for S - E as S ranges
over the basic syntactic constructs of our language.

skip - E = E skip
x := F - E = E [F/x ] assignment
P | S - E = P (S - E ) precondition
g → S - E = g � (S - E ) guard
S � T - E = (S - E ), (T - E ) choice
S ;T - E = S - T - E sequential composition
@x • S - E =

∮
x • S - E unbounded choice

Assuming S operates on a state variable, or variable list, s we can obtain the
predicate prd(S ) that relates initial and final values of s (with final values being
dashed) as prd(S ) = s ′ : S - s . The set of before states from which S is not
guaranteed to terminate is nonpre(S ) = {s | S - s = ⊥}, and the relation which
maps before states of S to after states is rel(S ) = {s , s ′ | prd(S )}.

We thus have the semantics of a relational model. For terminating computa-
tions, sequential composition of operations corresponds to composition of their
respective relations: rel(S1 ;S2) = rel(S1) o

9 rel(S2). The effect of a backtracking
search is modelled by relational composition discarding partial paths.

This model, however, does not capture all we can usefully know about choice.
The RVM provides a provisional choice structure in which the first choice is
always tried first. This enables us to order choices according to search heuristics,
but the idea of preference inherent in our implementation platform contains
more information than can be grafted onto the relational model. Thus the use of
search heuristics, and a deterministic description of cut, have been beyond the
scope of our formal analysis.

We finish this section with a remark on other notations and precedence. We
write [P ] to assert that a predicate P is universally true. Our precedence rules
give highest priority to expression connectives, followed by logical connectives
and then program connectives; in descending order precedence is

(∗ /) (+ −) p+ ∼ × � ∪ ∩ \ �→ � , (< 	 > 
) ( : = �= ∈ �∈)

¬ ∧ ∨ ⇒ ⇔ := � � � p⊕ � → ; . • - ∇ (=̂ = : ≡)

The large equals and bunch containment symbols have the same meaning as,
but lower precedence than, their smaller equivalents.

3 Nelson’s Biased Choice

Non-determinism was originally proposed by Floyd [4] to model backtracking
search, but has become even more important as an abstraction tool, allowing us
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to describe what a program should do without providing details of how it should
do it. As an example of a problem in which both uses are significant, consider the
Knight’s Tour [13]. The specification says the program will return a path that
forms a Knight’s tour, but does not say which path. This is non-determinism used
as an abstraction tool. Within the implementation, non-determinism represents
provisional choice, subject to revision if it leads to infeasibility.

A classic paper that pays some attention to the use of non-deterministic choice
to provide backtracking is An Extension of Dijkstra’s Calculus [8] which is a
general correctness treatment of the wp calculus in which Dijkstra’s “Law of
The Excluded Miracle” is dropped, allowing possibly infeasible programming
statements to appear.

Nelson defines a biased choice, which in our notation is expressed as

S � T =̂ S � ¬fis(S )→ T

This chooses its first operand unless that is infeasible, in which case it chooses
the second operand. The feasibility of an operation, which we require for this
definition, is defined as the inability of the operation to achieve the impossible:

fis(S ) =̂ ¬wp(S , false)

Nelson considers biased choice as a fundamental program connective, and uses
it to define a loop structure:

do S od =̂ μX • (S ;X ) � skip

and considerations of the monotonicity properties of biased choice reveal that it
is the Egli-Milner order, rather than refinement ordering that must be used in
the corresponding fixed-point treatment.

Looking for an application of this choice in the paper, we find the follow-
ing: “As an example of the power of clairvoyant non-determinism, we define a
command E that parses simple arithmetic expressions, assuming we are given
a procedure Id that parses identifiers, and procedures Oplus and Otimes which
parse the tokens for the operators + and × . By parsing a syntactic category
we mean to accept from the input the longest legal instance of the category, or
failing if no prefix of the input belongs to the category. E is defined recursively:”

E =̂ (E ;Oplus ;E ) � (E ;Otimes ;E ) � Id

Preference is used to make the precedence of addition lower than that of multi-
plication. However, our intuition is that this example is not a description of code,
since execution would choose the left recursion at every stage. Indeed, recalling
that general correctness allows the description of a definitively non-terminating
program loop, which has the properties loop ;S = loop and loop � S = loop,
we see that we can obtain loop as a solution to the defining equation for E . In-
deed, as loop is the bottom element of the Egli-Milner order, it is the solution.
For our total-correctness calculus, a similar argument would show the solution
of the equation to be abort. Nelson comments that “an implementation of clair-
voyant non-determinism is required to choose an execution that “succeeds” for
some notion of success”. Here, that notion must imply the avoidance of choices
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leading to non-termination. Clairvoyance in our formalism, however, as imple-
mented through reversible computation, is based only on the avoidance of in-
feasibility: “the demon abhors a miracle”. Using this paradigm, backtracking
parsers whose structure directly mirrors an underlying grammar in the spirit of
Nelson’s example can be written for grammars which are not left-recursive, and
they can express the necessary preferences using biased choice.

As far as the more general use of biased choice to express preference is con-
cerned, we see that it has no possibility of reacting to infeasibility that becomes
apparent (in operational terms) after the left component of the biased choice
has terminated. We illustrate this in the following example.

S =̂ x := 1 � x := 2 and T =̂ x = 2→ skip

We would like S , executed by itself, to be x := 1 but when placed in a context
where continued execution based on the choice of S will lead to infeasibility, we
require the choice to be revised; thus we require that S ;T is x := 2.

We certainly have S equivalent to x := 1 but a simple calculation in our pv
calculus reveals that S ;T - E = null, i.e. that S ;T has no after states and is
thus infeasible.

A final consideration for deciding whether to include biased choice in the
repertoire of our RVM is its ease of implementation. We have seen that biased
choice does not enable the continuation of the program to exercise any revising
control, and we therefore wonder how this particular effect could be implemented.
In executing a program of the form S � T ;U , any infeasibility in S causes back-
tracking which results in a revised choice of T . However, once S has terminated
and U is executing, this behaviour must change, and if execution reverses from
within U then a revision of our biased choice must not be made.

To achieve this effect we could probe the feasibility of S by evaluating {S -1
x}. This yields an empty set if S is infeasible, and otherwise yields a unit set
containing the value of x found after the first run through S . A candidate for
an executable definition of S � T is

S � T =̂ if {S -1 x} �= ∅ then S else T

Here S is executed in the condition clause to probe its feasibility, then the effect
of S is undone by reverse execution, before possibly executing S again. A more
efficient implementation might be possible, but at the expense of complicating
the internal structure of the RVM. So although biased choice keeps us within the
relational model, its implementation imposes some added complexity compared
to the provisional non-deterministic choice already implemented on the RVM,
and, in addition, its ability to express preference is limited to its use at the top
level of a sequential program. These considerations, among others, motivate us
to reject it as a candidate for preferential choice, and to continue our search.

4 Preference and Probabilistic Choice

Since the wp calculus has proved an effective tool for supporting program de-
velopment methodologies, we first look here to see what would be involved in
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expressing the concept of preference we require. Suppose that, whilst performing
an analysis of a term wp(S ,Q), we find that we need to analyse wp(T ,R), where
T is some component of S , and that after T has terminated some continuation
C will complete the execution of S . Thus R = wp(C ,Q). In deciding whether
to prefer T to some other choice, we need a formulation that will allow us to
choose T unless it leads to an infeasible computation. Note that it is not just the
feasibility of T itself that concerns us, but rather the feasibility of T together
with its continuation C . This combination is feasible if it cannot establish false,
i.e. if ¬ wp(T ; C , false). We need different wp analyses to establish whether
the required postcondition is met and whether it is met in a non-vacuous (non-
magical) way. We would also need to explicitly extract the continuation C . Since
this approach appears clumsy, we look at pv semantics as an alternative, as this
will provide us with the means to distinguish substantial and vacuous achieve-
ments of a postcondition. For example if we numerotize our predicates with the
notation |P | =̂ if P then 1 else 0 then we have S - |P | = null where S is
infeasible, and where S is feasible we have S - |P |= 1 where S will establish P ,
S - |P | = 0 where S will establish ¬P , S - |P |= (0, 1) where S will establish
either P or ¬P , and S - |P |= ⊥ where S is not certain to terminate.

Our pv semantics extends smoothly to a probabilistic calculus. Furthermore,
probabilistic choice on the RVM (and in our formalisms) is subject to revision by
backtracking, and thus presents itself as a candidate for expressing preference.
Our expectation calculus for probabilistic choice (including its combination with
non-deterministic choice) is given in [9]; here we resume the details required for
the current investigation.

We add to our language a probabilistic choice S p⊕ T which makes a provi-
sional choice of S with probability p and of T with probability 1−p. If the choice
leads to infeasibility, it is revised. This is is a rather operational description, but
serves to emphasise that not only the feasibility of S or T matters for revision of
a choice to occur, but the feasibility of S or T followed by their continuations.

With the addition of probabilism, S -E , considered as a term in an executable
language, may take different values on different runs. This is suggestive of the
intuitive idea of a random variable (though formally a random variable is a func-
tion). We use the non-compositional notation ε(S - E ) to express the expected
value of S - E . The expectation arising from a probabilistic choice where both
choices and their continuations are feasible is

ε(S p⊕ T ) = p ∗ ε(S - T ) + (1− p) ∗ ε(T - E )

but that will not give us the properties associated with revision of choice due to
backtracking. To formulate this we call on bunch notation, and first formulate
a weighted addition operator which adjusts to null arguments (we recall that
normally, null acts as an annihilator, with x + null = null). We define:

E p+ F =̂ p ∗ E + (1− p) ∗ F , E = null � F , F = null � E

The RHS of this definition is a bunch consisting of three syntactic items. If
neither of E , F is empty the first term gives the value of the bunch; otherwise
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the first term has a null value, and the value of the expression is determined by
the second or third term, at most one of which can be non-null.

We can then give the defining equation for the expectation of a probabilistic
choice under the assumption 0 < p < 1:

ε(S p⊕ T - E ) = ε(S - E ) p+ ε(T - E )

We will need two further properties of the expectation calculus, the first deals
with sequential composition:

ε(S ;T - E ) = ε(S - ε(T - E ))

and the second states that for any program S not involving probabilistic choice
we have ε(S - E ) = S - E .

Now let us see what happens to our little example when the choice is proba-
bilistic; we have to evaluate

ε(x := 1 p⊕ x := 2 ; x = 2→ skip - x ) = “seq comp rule”
ε(x := 1 p⊕ x := 2 - ε(x = 2→ skip - x )) = “by absence of probabilistic
choice in the second argument and application of pv guard and skip rules”
ε(x := 1 p⊕ x := 2 - x = 2 � x ) = “prob choice”
ε(x := 1 - x = 2 � x ) p+ ε(x := 2 - x = 2 � x ) = “by absence of prob
choice and application of pv assignment and guard rules”
null p+ 2 = “by weighted addition with null argument” 2

Now, by setting p close to 1 we can use the probabilistic choice S p⊕ T to
show a preference for S , and, as we require, this preference will be revised if the
preferred choice is infeasible. However, we cannot just set p to 1 and obtain a
preferential-choice operator, since in this case probabilistic choice collapses and
we are left with just S [9].

However, it seems we could use the same kind of guarded-bunch formalism in
expressing preference as in expressing probabilistic choice, namely by introducing
a preferential choice [>, which prefers its first operand, with the property

S [> T - E = S - E , (S - E = null) � T - E

We further see a possibility to simplify this definition by formulating the concept
of preference within bunch notation by first defining a bunch preference opera-
tor + by virtue of E + F =̂ E , (E = null) � F , so that the defining rule for
preferential choice becomes S [> T - E = (S - E )+ (T - E ).

5 Preference and Monotonicity

Standard calculi for sequential programs, such as Dijkstra’s GCL, Abrial’s GSL,
Hoare-He Designs, and Dunne’s Prescriptions, describe conjunctive computa-
tions. In wp terms this means that wp(S ,Q ∧ R)⇔ wp(S ,Q) ∧ wp(S ,R). This
property is a specialisation of a more general property, that of monotonicity,
which is defined as [Q ⇒ R] ⇒ (wp(S ,Q) ⇒ wp(S ,R)). Angelic computa-
tions are disjunctive rather than conjunctive, and disjunctivity, like conjunc-
tivity, implies monotonicity. Where both angelic and demonic computations are
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accommodated in a calculus, (requiring multi-relations for the associated model)
the resulting computations are still monotonic [2].

It may therefore be surprising, to some readers, to find that not all formal
descriptions of code are conjunctive or even monotonic, but such, indeed, is what
we claim to be the case for computations involving preference as formulated in
the previous section.

To present these ideas we formulate the pv equivalent of monotonicity as
[E : F ] ⇒ (S - E ) : (S - F ). We prove monotonicity for standard pv semantics,
(i.e. excluding preferential choice). We appeal to the following lemmas.

Lemma 1. x : S - E ≡ ¬wp(S ,¬x : E )

A proof is given in [10].

Lemma 2. [Q ⇒ R]⇒ (¬wp(S ,¬Q)⇒ ¬wp(S ,¬R))

Proof. We assume [Q ⇒ R] and thus by predicate logic [¬R ⇒ ¬Q ].
Then by wp monotonicity wp(S ,¬R)⇒ wp(S ,¬Q)
and again by predicate logic ¬wp(S ,¬Q) ⇒ ¬wp(S ,¬R).

Theorem 1. Monotonicity of pv semantics

[E : F ]⇒ (S - E ) : (S - F )

Proof. We assume [E : F ] and thus for arbitrary x ′ that x ′ : E ⇒ x ′ : F . We
then show x ′ : (S - E ) ⇒ x ′ : (S - F ) as below.

x ′ : (S - E ) = “by Lemma 1”
¬wp(S ,¬x ′ : E ) ⇒ “by Lemma 2”
¬wp(S ,¬x ′ : F ) = “by Lemma 1”
x ′ : (S - F ) ��

However, the counterexample below shows that pv monotonicity does not hold
when pv semantics is extended with the preferential choice operator [>.

null : x so by pv monotonicity we expect (S - null) : (S - x )
but for S =̂ skip [> abort we have
S - null = (skip - null)+ (abort - null) = “evaluating terms”
null+⊥ = “by definition of bunch preference” ⊥

whereas

S - x = (skip - x )+ (abort - x ) =
x +⊥ = “by definition of bunch preference” x

To see the scope of the problem posed by losing pv monotonicity, let us recall
how a fixed-point semantics for a language defined in terms of pv semantics
is established. We need to confirm that recursive programs are soundly based,
and we can do this by appealing to fixed-point theory. We need to establish a
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partial order between programs, and one that will serve our purpose is S �pv
T =̂ (T - E ) : (S - E ) for arbitrary E . Indeed, under this order our programs
(excluding the [> operator) form a complete lattice. Any recursive program P
then has an associated monotonic functional F such that P = F (P). We call
this fixed-point (fp) monotonicity since it is the property needed for us to appeal
to the appropriate Knaster-Tarski least fixed-point theorem. To demonstrate fp
monotonicity, we appeal to monotonicity of the program connectives; we have
to show, e.g. that if S �pv S ′ and T �pv T ′ then g → S �pv g → S ′, S � T �pv
S ′

� T ′, S ; T �pv S ′ ; T ′, and so on. By way of example, in establishing
S ;T �pv S ′ ;T ′ we appeal to pv monotonicity as follows.

By the pv rule for sequential composition we have S ′ ;T ′-E = S ′-T ′-E . Now
since (T ′ -E ) : (T -E ) from the assumption T �pv T ′ then by pv monotonicity
(S ′ - T ′ - E ) : (S ′ - T - E ). And again, from the assumption S �pv S ′ and pv
monotonicity (S ′ -T - E ) : (S -T - E ). Thus by transitivity of bunch inclusion
and the rule for pv sequential composition (S ′ ; T ′ - E ) : (S ; T - E ), which by
the definition of pv refinement gives S ;T �pv S ′ ;T ′.

The loss of pv monotonicity has serious consequences for the construction of a
fixed-point semantics. Also, having gone beyond the normal relational model of
total correctness, it is not immediately clear what model to now adopt, or what
a suitable ordering relationship would be for refinement or fixed-point semantics.
These considerations prompt us to consider an alternative approach. A further
motivation is the possibility of obtaining a more complete description of the
preference already present in the principal implementation of choice within the
Reversible Virtual Machine.

6 Temporal Order of Continuations

In seeking another approach to the semantics of preference, we can look to our
implementation of the RVM. We recall that the prospective-value term S - E is
both a semantic device and a programming structure within an extended lan-
guage of expressions, where it can occur, for example, in an assignment such as
x := S - E . The implementation of prospective-value terms requires the calcu-
lation of E after S for each of the possible routes through S that arises from
making different non-deterministic choices. Each result is added to the set of
results that will comprise the value for {S - E}. As this set is constructed, in-
formation concerning the order of results is being discarded, but we can retain
this information by recording the values as a sequence, and this we have now
implemented as the “nabla term” S ∇E where E is a sequence expression. The
rules defining S ∇ E are explicit about the order in which provisional choices
are taken, allowing the definition of a more concrete provisional-choice operator
S � T , which tentatively executes S but will backtrack to revise its choice in
favour of T if execution of S and its continuation proves infeasible.

We give two small programming examples. The first is a backtracking parser
for a simple language of expressions, similar to Nelson’s clairvoyant parser but
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avoiding left recursion (which we do by the simple expedient of using a right-
associative grammar). As in Nelson’s example, Id , Otimes and Oplus attempt
to parse an identifier, a multiply symbol and an addition symbol from the input
stream. If this is possible they update the input stream pointer, otherwise they
enter reverse execution. T parses expressions that contain no addition symbols,
and E is the complete expression parser.

T =̂ (Id ;Otimes ;T ) � Id and E =̂ (T ;Oplus ;E ) � T

As an example of a program that uses a nabla term, consider the calculation of
frequencies of possible scores obtained by summing the values of three dice. We
have an initialisation to record the scores associated with each of the 63 possible
outcomes as a sequence, and an operation to interrogate the sequence and tell
us the number of entries in the sequence that correspond to a given score. In
this code :∈ represents provisional choice from a set and � represents Z range
restriction. The initialisation code is:

@x1, x2, x3 • scores := (x1 :∈ die; x2 :∈ die; x3 :∈ die ∇ 〈x1 + x2 + x3〉)
The operation, giving the frequency of the score n, restricts the range of the
sequence of scores to n and takes the cardinality of the resulting set:

f ← freq(n) =̂ f := card(scores � {n})

We turn now to the description of nabla terms. With a view to using them within
both specification-level and implementation-level language we give two forms of
choice. S � T is a provisional preferential choice which tries S before T . S � T
is implementor’s choice, which may be resolved as a refinement step and is not
subject to revision by backtracking. In the following rules giving the semantics
of S ∇ E , E is a sequence expression. Implementor’s choice is represented by
a bunch of possible results, whilst provisional choice is sequenced to express
preference.

skip∇ E = E skip
x := F ∇ E = E [F/x ] assignment
P | S ∇ E = P (S ∇ E ) precondition
g → S ∇ E = g � (S ∇ E ),¬g � 〈〉 guard
S � T ∇ E = (S ∇ E ) � (T ∇ E ) preferential choice
S � T ∇ E = (S ∇ E ), (T ∇ E ) implementor’s choice
S ;T ∇ E = S ∇ T ∇ E sequential composition
@v • S ∇ E =

∮
v • S ∇ E unbounded implementor’s choice

We also have an associated refinement order S �toc T =̂ (T ∇ E ) : (S ∇ E ) for
all sequence expressions E .

We demonstrate the rules for assignment, preference, sequential composition
and guard with the following simple examples, which show how preferential
choice acts in the absence and in the presence of backtracking.



148 B. Stoddart, F. Zeyda, and S. Dunne

x := 1 � x := 2∇ 〈x 〉 = “pref choice“
(x := 1∇ 〈x 〉) � (x := 2∇ 〈x 〉) = “assignment”
〈1〉� 〈2〉 = 〈1, 2〉

x := 1 � x := 2 ; x = 2→ skip∇ 〈x 〉 = “sequential composition”
x := 1 � x := 2∇ x = 2→ skip∇ 〈x 〉 = “guard and skip”
x := 1 � x := 2∇ x = 2 � 〈x 〉,¬x = 2 � 〈〉 = “pref choice”
(x := 1∇ x = 2 � 〈x 〉,¬x = 2 � 〈〉)�
(x := 2∇ x = 2 � 〈x 〉,¬x = 2 � 〈〉) = “assignment”
(1 = 2 � 〈1〉,¬1 = 2 � 〈〉) � (2 = 2 � 〈2〉,¬2 = 2 � 〈〉)
= “properties of bunch guard”

(null, 〈〉) � (〈2〉,null) = “bunch union with null”
〈〉� 〈2〉 = 〈2〉

We do not give a rule for unbounded preferential choice. We do, however, imple-
ment preferential choice from a set in the RVM, but the set must be finite, and
this adds no additional expressive power over binary preferential choice. Another
form of choice from a set implemented on the RVM, but beyond the scope of the
current article, is to choose elements in a random order.

We no longer have the choice symbol � in our repertoire of fundamental
program connectives. Within pv semantics, choice plays the dual rôle of repre-
senting implementor’s choice, to be removed during refinement, and provisional
choice, to be resolved by backtracking. Since we have now teased these two con-
cepts apart, we need an element of both in the definition that re-introduces the
general notion of choice.

S � T =̂ (S � T ) � (T � S )

We can then directly demonstrate some familiar algebraic properties of non-
deterministic choice, e.g. commutativity, associativity, distribution of a guard
through choice, distribution of precondition through choice, and having magic
as a unit. However, we lose idempotence.

Let us now return to the issue of monotonicity. We recall that our first form
of preferential choice, S [> T , resulted in a non-monotonic pv semantics. We
might wonder whether the inclusion of a preferential choice must necessarily
have such an effect, but, in fact, we are able to show that toc semantics is
monotonic.

Theorem 2. Monotonicity of toc semantics
For any program S and sequence expressions A and B

[A : B ]⇒ (S ∇ A) : (S ∇ B)

Proof. We prove (S ∇ A) : (S ∇ B) under the assumption [A : B ]. The proof is
by structural induction. We have base cases for skip and assignment:
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skip∇ A = A “by toc semantics of skip”.
A : B “by assumption”.
B = skip∇ B “by toc semantics of skip”.

and for assignment:
x := E ∇ A = A[E/x ] “by toc semantics of assignment”.
A[E/x ] : B [E/x ] “by assumption [A : B ]”.
B [E/x ] = x := E ∇ B “by toc semantics of assignment”.

Now the inductive cases. For precondition we have:
P | S ∇A = P (S ∇ A) “by toc precondition rule”.
Now, noting the bunch property E : F ⇒ P E : P F
P (S ∇ A) : P (S ∇ B) “by inductive case and noted property”.
P (S ∇ B) = P | S ∇ B “toc precondition”.

For guard the proof is similar to precondition but appealing to the bunch prop-
erty E : F ⇒ g � E : g � F .

For preferential choice:
S � T ∇ A = (S ∇ A) � (T ∇ A) “by toc pref choice”.
Now noting that E : E ′ ∧ F : F ′ ⇒ E � F : E ′ � F ′

(S ∇ A) � (T ∇A) : (S ∇ B) � (T ∇ B) “ind. case and noted property”.
(S ∇ B) � (T ∇ B) = S � T ∇ B “by toc pref choice”.

For implementor’s choice:
S � T ∇A = (S ∇A), (T ∇ A) “by toc implementor’s choice”.
Now noting that E : E ′ ∧ F : F ′ ⇒ E ,F : E ′,F ′

(S ∇ A), (T ∇ A) : (S ∇ B), (T ∇ B) “ind. case and noted property”.
(S ∇ B), (T ∇ B) = S �T ∇ B “by toc implementor’s choice”.

For unbounded choice:
@v • S ∇ A =

∮
v • (S ∇ A) “by toc unbounded choice”.

Now noting that [E : F ]⇒
∮
v • E :

∮
v • F∮

v • (S ∇ A) :
∮
v • (S ∇ B) “by inductive case and noted property”.∮

v • (S ∇ B) = @v • S ∇ B “by toc unbounded choice”. ��

Corollary 1. Sub-conjunctivity of toc semantics

(S ∇ A), (S ∇ B) : (S ∇A,B)

Proof. Since [A : A,B ] we have by toc monotonicity (S ∇ A) : (S ∇ A,B) and
similarly (S ∇B) : (S ∇A,B). Furthermore, we conclude by the bunch property
E1 : F ∧ E2 : F ⇒ E1,E2 : F that (S ∇A), (S ∇ B) : (S ∇ A,B). ��

Observe that toc semantics is not, however, conjunctive, and counterexamples
are easy to construct, e.g. S =̂ skip � x := x + 2, A =̂ 〈x 〉, and B =̂ 〈x + 2〉.
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One further algebraic property of choice in wp and pv semantics is distribu-
tion of sequential composition through choice. Demonstration of this property
requires conjunctivity; we have only sub-conjunctivity and can demonstrate only
a weaker property: S ;T � U �toc (S ;T ) � (T ;U ).

To conclude, toc semantics is more discriminating than pv semantics, but
should be consistent with it over the pv program connectives. Since toc semantics
captures additional information about the order in which results are produced,
but describes the same results as pv semantics, we require that S ∇ 〈E 〉 should
produce a sequence whose range is equal to S - E . This is easily proved as a
corollary of the following more general theorem.

Theorem 3. Consistency of pv and toc semantics
For any program S defined over the connectives described by pv semantics, and
for any sequence expression E, we have S - ∼ran(E ) = ∼ran(S ∇ E ).

Proof. The proof is by structural induction, once again with base cases for skip
and assignment:

skip - ∼ran(E ) = “pv semantics of skip”
∼ran(E ) = “toc semantics of skip”
∼ran(skip∇ E )

and for assignment:
x := F - ∼ran(E ) = “pv semantics of assignment”
∼ran(E )[F/x ] = “property of substitution”
∼ran(E [F/x ]) = “toc semantics of assignment”
∼ran(x := F ∇ E )

For the inductive cases we provide proofs only for some example language struc-
tures. We choose guard, choice and sequential composition. For guard we have:

g → S - ∼ran(E ) = “pv semantics of guard”
g � (S - ∼ran(E )) = “by appeal to inductive case”
g � ∼ran(S ∇ E ) = “by case analysis on g”
∼ran(g � (S ∇ E )) = “by toc semantics of guard”
∼ran(g → S ∇ E )

For choice we have:
S � T - ∼ran(E ) = “pv semantics of choice”
(S - ∼ran(E )), (T - ∼ran(E )) = “by appeal to inductive case”
∼ran(S ∇ E ),∼ran(T ∇ E ) = “by property ∼A,∼B = ∼(A ∪ B)”
∼(ran(S ∇ E ) ∪ ran(T ∇ E )) = “by law ran(s) ∪ ran(t) = ran(s � t)”
∼ran((S ∇ E ) � (T ∇ E )) =
“by property ran(s � t) = ran(t � s) and idempotence of bunch union”
∼(ran((S ∇ E ) � (T ∇ E ), (T ∇ E ) � (S ∇ E ))) = “by toc pref choice”
∼ran((S � T ∇ E ), (T � S ∇ E )) = “by toc defn of S � T”
∼ran(S � T )
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For sequential composition:
S ;T - ∼ran(E ) = “pv semantics of sequential composition”
S - T - ∼ran(E ) = “inductive case”
S - ∼ran(T ∇ E ) = “inductive case”
∼ran(S ∇ T ∇ E ) = “toc semantics of sequential composition”
∼ran(S ;T ∇ E ) ��

7 Conclusions

We have described our search for a method to express preference in the context of
non-deterministic choice. We first considered Nelson’s biased choice, but found it
was too short-sighted to meet our needs. We then looked to probabilistic choice
for inspiration, and we constructed a form of preferential choice. However, on
inspection we found this made our calculus non-monotonic. Although this opens
interesting perspectives, the loss of monotonicity is not attractive. Finally, we
looked for inspiration to our Reversible Virtual Machine. This has a program-
ming structure that will collect all the possible results of a non-deterministic
computation. We added a similar structure which records the results of a search
as a sequence. The formal description of this structure forms the basis for a
calculus which captures preference by representing provisional choice in terms of
sequences of possible expression values to be passed to a continuation. By adding
separate formulations for implementor’s choice, we obtain descriptions for the
essential programming connectives of a reversible guarded command language
with preferential choice. Since provisional choice is now ordered and the rôle
of continuations is paramount, we call this a “temporal order of continuations”
semantics. We give a refinement ordering which allows implementor’s choice to
be reduced and preconditions to be widened. We showed that toc semantics is
monotonic, though only sub-conjunctive, and we established that it is consistent
with prospective-value semantics.

Future discussions will consider the partial-order properties of the toc refine-
ment relation and its use in fixed-point treatments. Additional items on the
agenda are the description of an associated relational model, the investigation
of a probabilistic unification, and elaboration of the proof obligations required
to employ toc as a refinement-based development method.
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Abstract. Manufacturing systems integrate electro-mechanical components with
software to fulfill certain production tasks. Due to this combination of computer
science and traditional engineering, formal models of embedded systems are often
inappropriate for the description and analysis of manufacturing systems. This is
especially prominent on an abstract level, where computation and communication
are not of primary concern, but rather the material the system is processing. In this
paper, we introduce an abstract formal model of manufacturing systems based on
the material flow, i.e., the relation between incoming and outgoing material over
time. The formalization supports compositional reasoning and the comparison
of specifications with more concrete models (implementations). This provides a
foundation for the formally founded conceptual modeling of manufacturing sys-
tems and the reasoning about the correctness of their realization. The former is
evaluated by a prototypical tool implementation and a case study.

1 Introduction

Manufacturing systems are defined as systems for producing certain goods by trans-
portation, assembly, and modification of input material. Usually, this is limited to dis-
crete products1, which we also assume in this paper. As the mode of operation
depends on both electro-mechanic effects and software, these systems belong to the
larger class of mechatronic or cyber-physical systems. The size of these systems ranges
from smaller ones (e.g., for mounting of circuit boards) to systems filling entire fac-
tory buildings (such as the assembly lines in car manufacturing). All of these systems
typically consist of a collection of machine tools, automation and transportation sys-
tems, and industrial robots, which interact with each other to solve a certain production
problem.

As in similar domains, competition and price erosion lead to increasingly complex
systems, which complicate the application of traditional engineering and development
processes. One reason for this is the lack of a common behavior model describing the
entire machine (actors/sensors and software). Especially, assuring functional correct-
ness in all circumstances, which also includes safe operation in the case of errors, is
nearly impossible without an underlying formal behavior model and suitable tool sup-
port. While first steps towards a model for manufacturing systems have been taken,
both from a theoretic [1] and a more practical perspective [2], these approaches do not

� This work was partially funded by the German Federal Ministry of Education and Research
(BMBF), grant “SPES2020, 01IS08045A”.

1 Dealing with liquids is usually summarized by the term process technology.

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 153–167, 2010.
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directly facilitate the conceptual modeling but rather provide a programming model for
such systems. The ability to formally express system properties and to reason about
their satisfaction is the second obligatory ingredient to ensure functional correctness.

For manufacturing systems a natural property or conceptual view is the reduction
of a subsystem to its material flow. For this, only the relation between incoming and
outgoing elements of material over time is considered. Thus, only the material, which is
at the core of the system’s task, is included in the model, while communication between
subsystems or positions of machine parts are neglected. This approach moves the focus
of the models more to the requirements phase, as the actual solution of a transportation
or modification problem in terms of mechanical parts and software is left unspecified.

Problem Statement. While there are many models for mechatronic and manufacturing
systems, most of them either do not capture the behavior (such as CAD models) or are
very detailed (often based on physics simulation) and only a small number of them is
built upon a formal mathematical framework, making analysis and automatic reasoning
hard, if not impossible (c.f., Sec. 7). Especially for highly abstract, still generally appli-
cable models of manufacturing systems there is no rigorous mathematical theory. We
consider this situation precarious, as it hampers the development of novel techniques
and tools for the development and verification of such systems.

Contribution. This paper provides a theory of material flow interfaces (MFIs), which
describe components of a manufacturing system in terms of material exchanged at their
boundaries (Sec. 3). The modeling theory is a first step towards a very abstract, but
formal description technique for these systems. We discuss important properties of our
model and describe an operator for constructing new MFIs by composition of others
(Sec. 4). Additionally, conformance of an implementation of an MFI (Sec. 2) to the
abstract specification is defined in Sec. 5. Finally, in Sec. 6 we provide prototypical tool
support for MFI based specifications and report on a first small case study.

2 Modeling of Manufacturing Systems

Here, we present an implementation model of manufacturing systems which consists of
communicating components, whose actions are interpreted in a physical environment:
dedicated outputs are made to movements of certain volumes (e.g., material or machine
parts), dedicated inputs represent collisions in space (e.g., between material and a light
barrier). This is a natural programming model for the system class considered (c.f., [1]).

We model material as objects which have a volume and a state. Volume describes
both shape and position of material, while state can be used to uniquely identify material
pieces or encode their status in the workflow. We assume a set of possible volumes V
and states S for material objects. The term volume here means a subset of R3 which
encodes both shape and position and which is closed under union, i.e., for all v1, v2 ∈ V
holds v1 ∪ v2 ∈ V . At any given time, a material object is uniquely determined by a
pair from V × S.

A material configuration is a finite set C ⊂ V × S. The set of all material con-
figurations is denoted by MC ⊂ P(V × S). A material transformation is a function
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MC →MC which changes both the position/shape and state for all material objects in
the (observed) world. The set of all possible material transformation functions is named
MT . This definition of a material transformation also captures the cases where mate-
rial objects are split or joined or are completely consumed (for example in a combustion
chamber).RT , a subset ofMT , contains all shape preserving and state invariant trans-
formations, i.e., (combinations of) rotations and translations.

For modeling time, we follow the stream-based approach described in [3]. LetM be
an arbitrary set and T the time domain (e.g., N or R≥0), then

⋃
i∈T

([0, i) → P(M))
models finite streams and T → P(M) infinite ones. By MT we denote the set of all
infinite streams over M. For σ ∈ MT and t ∈ T we write σ.t ⊆ M for elements
of stream σ at time t. For a function f : X → Y by f |D we denote the restriction
of the domain of f to D, i.e., f |D : (X ∩ D) → Y and for all d ∈ (X ∩ D) holds
f |D(d) = f(d). Then, the finite prefix σ until time t is written as σ↓t and defined as
σ|[0,t], i.e., the restriction of the function to the closed time interval until t.

A stream f ∈ (MT )T is called a material flow if it is not dense, i.e., for any t ∈ T
the set {s ∈ T | s < t ∧ f(s) �= id} is finite, where id is the identity function, – ev-
ery time there were finitely many valuation changes in f . For material of configuration
C ∈ P(V ×S) their positions and locations at time t ∈ T for a given material flow f are
determined by fn(fn−1(. . . f1(f0(C)) . . .)), where f0, . . . , fn is the ordered sequence
of material transformations determined by picking the (finitely many) non-id material
transformations from f until time t. Thus, motion of material over time is described by
a number of discrete changes to both the volume (position and shape) and state. There
are some properties which can be required for a material flow to be valid, such as to
never cause material volumes to overlap or to preserve a notion of continuity. As we do
not require these properties in this paper, we will not discuss them further.

With these ingredients we represent an abstract manufacturing system (AMS) by
two sets IC and O representing (typed) input and output variables, a set IS represent-
ing sensor input, a volume N describing its interior, a function S : MC → (IS →
type(IS)) describing variables corresponding to sensors, as well as a behavior function

F :
−−−−−−→
(IC ∪ IS) → P( �O ×MF), where

−−−−−−→
(IC ∪ IS) and �O denote the valuations of the

variables over time (i.e., �X
def= {X → (type(X))T}) and MF ⊆ (MT )T denotes

the set of all valid material flows. The sets IC and O allow communication between
different components (manufacturing systems), while IS represents inputs from sen-
sors measuring properties of material objects and is uniquely determined by the current
material configuration via the sensor function S. Thus, IC is affected directly by other
components or user input, while IS is determined by the environment (material config-
uration) which can only be influenced indirectly. We assume sensors to be state-less and
thus S is not a function on streams, but on values at a single time which is evaluated for
any point in time. The power set for the function’s results allows for non-deterministic
behavior. The volume N describes the interior of the system, which is the space in
which the system can affect material. The possible material flows describe the effect of
the manufacturing system and its actuators to the material being within or touching the
interior of the AMS.

In this definition of an AMS all possible outputs and material flows for a complete
input history are provided by the behavior function. For an AMS to be plausible we thus
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have to require the behavior function F to be strongly time guarded, i.e., there has to be
a δ > 0 such that for any two input histories i1, i2 ∈ �I and time t ∈ T

i1↓t = i2↓t =⇒ {(o, f)↓t+δ | (o, f) ∈ F (i1)} = {(o, f)↓t+δ | (o, f) ∈ F (i2)} ,
where the prefix operator is applied point wise. This equation captures the intuition that
any event may only depend on inputs observed in the past, and that there is a processing
delay between inputs and outputs (of at least δ).

We will not discuss composition of AMS in detail, as the focus of this paper are
material flow abstractions. The overall idea for composition is to connect the inputs
and outputs of AMS components, thus ensuring equality of their communication histo-
ries. This leads to a system of equations, which has a unique solution thanks to strong
time guardedness (c.f., [4]). The possible material flows of the composed system are
restricted by the possible material flows of both composed AMS components, thus they
are defined by their intersection.

3 Material Flow Interfaces

This section describes the abstracted model reducing an AMS to its material flow. On
a conceptual level a manufacturing system can be seen as a transformer function on
material streams. It expects certain pieces of material, e.g., rough parts of certain shape
and size, and outputs modified material, e.g., pieces welded together, over time. At that
point of view a transportation system is a buffer, which changes the spatial position
and orientation of incoming pieces and a milling machine reduces the volume of the
material and alters its production level state.2 All these processes must be considered
over time to take the throughput of the respective system into account. We call the
interface specification of incoming and outgoing material pieces over time material
flow interface (MFI).

With this model in mind, we can model more complex systems by combining their
MFIs. This ensures that the assumptions they put on the incoming material flow will
fit together with the outgoing flows they produce (guarantee). For example, the trans-
portation system must supply a machine tool with rough parts which it can process
and at a rate which corresponds to its processing rate. Analogous to the refinement
in compositional frameworks for software systems, provided the systems fit together
(are composable) on the level of MFI, the respective “implementations”, i.e., the actual
manufacturing components, are guaranteed to fit together as well.

An MFI consists of a number of entry and exit interface points. They describe places
in space and time where the material enters/leaves the system, resp. They also specify
the kind of material expected there. In other words, every point is specified by a spa-
tial body and material flows, which are expected to be observed within that body. For
example, consider a milling machine which expects aluminium cuboids with minimal
inter-arrival time of 75s at its forehold and issues a motor body for every cuboid af-
ter 64s at the same place. This can be modeled by an MFI consisting of one entry and
one exit both placed at the forehold with associated material flows as described above.

2 A modern machine tool manages information about its working pieces and reports, e.g., on
success of their processing, to the outer world.
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The placement of the interface points depends in the first place on the manufacturing
process to be modeled. There exist an unbounded number of places where material can
be put on/taken away from a conveyor. However, a certain technological process could
restrict this possibility to exactly one entry and exactly one exit point. We consider any
further material, which enters/exits a system not through its interface points as illegal
input to/output of the system, resp. The process of entering/exiting a system is modeled
as an intersection between material volumes and an interface point.

Analogous to the I/O ports in models of software, we can establish a material flow
between systems by connecting an exit/entry pair together. This can be done when vol-
umes of entry and exit intersect. However, there exist substantial differences between
data and material flow which have to be taken into account: (1) A message is transferred
at once (or with a certain delay); a piece of material can pertain to and be affected by
both issuing and receiving subsystem for a certain time. (2) A message can arrive to a
system through its input ports only; a piece of material can also appear in the system
in an unexpected position. (3) Channel hiding does directly work for interface points
– every material exchange can be interfered by external events. (4) Messages can be
broadcasted, material cannot be duplicated. But, material can be passed on to the same
system by several predecessors in the manufacturing chain and several systems can
obtain material from the same predecessor. These observations yield a number of prop-
erties a realistic MFI must exhibit (c.f., Sec. 3.2) and influence the definition of MFI
(Sec. 3.1) and MFI combination (Sec. 4). Next, we give a formal foundation of MFI.

3.1 Formal Definition

First, we need to clarify the intuition behind a material stream. In contrast to AMS, in
MFIs a stream does not incorporate the trajectories of material pieces through time and
space but resembles the notion of observation from the software world. This difference
is illustrated by Fig. 1: its upper part shows trajectories of three material pieces on a
conveyor. The conveyor moves the material at a constant speed, halts for a moment, and
proceeds subsequently with the same speed. This concrete behavior is irrelevant when
considering the conveyor as a material processing function – only the points in time and

Fig. 1. Relation between Material Trajectories (top) and MFI Streams (bottom)
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space of entering and exiting the conveyor are of importance. Thus, the streams of the
conveyor’s MFI specification, shown in the lower part of Fig. 1, are the projections of
material trajectories to observation on conveyor’s entry and exit.

An MFI stream σ ∈ (V × S)T documents times and positions of the initial observa-
tions of material pieces at some interface point. mo ∈ σ.t means that mo has initially
appeared in that interface point at time t. Since the appearance of mo is a physical
rather than logical process, it can also remain in the point’s volume for a certain time.
However, this fact is neglected by our semantic model. Thus, mo ∈ σ.t′ for some t′ �= t
is interpreted as the occurrence of another material instance.

Next, we give a formal definition of the MFI tuple. Its main difference to a model of
software is the description of syntactic interface. It consists not only of a type function
but also of two volume functions: vol and novol . These functions define the allowed and
forbidden areas of material observation, resp. In particular, setting vol to an empty set
means that no observation is allowed. At first view, novol may seem to be redundant if
we make a closed world assumption – everything that is not allowed is forbidden. How-
ever, in the settings of spatial environment the open world assumption (OWA) is more
feasible since such an environment can interfere any time at any place – the knowledge
of an MFI about its environment is incomplete. Under OWA we need to document areas
where environment may not interfere explicitly.

Definition 1. An MFI is defined as a material flow processing function. Formally, we
write MFI def= (EN ,EX , vol , val ,novol , ass , gar ), where EN = {en1, . . . , enn} and
EX = {ex1, . . . , exm} are disjoint sets of entries and exits. By IP def= EN ∪ EX we
denote the overall syntactical material flow interface.

Every interface point ip ∈ IP is mapped to a volume over time by vol(ip) ∈ T →
V . These are areas where material pieces incoming to/outgoing from ip are expected
to be observed. We demand that for all t ∈ T no pair of interface points intersects:
∀ip1, ip2 ∈ IP : ip1 �= ip2 =⇒ vol(ip1).t ∩ vol (ip2).t = ∅.

The type of material which may flow through an interface point is fixed by val(ip) ⊆
(V × S). We demand that val is closed under shape-preserving transformations, i.e.,
for all (v, s) ∈ val(ip) and r ∈ RT must hold r(v, s) ∈ val(ip).

The novol function with signature T → V describes forbidden volumes of the MFI.
Nothing may be observed there. By this, novol realizes “information hiding” in space.
There may be no intersection between novol and vol any time for any interface point.

Each interface point ip ∈ IP is associated with a set of material streams −→ıp ⊆
(V × S)T, such that for all σ ∈ −→ıp at any time t ∈ T a piece of material from val(ip)
intersects with the volume vol(ip).t and does not intersect with novol .t. Formally, σ ∈
−→ıp iff for all t ∈ T, (s, v) ∈ (V × S) holds

(s, v) ∈ σ.t ⇔ (s, v) ∈ val(ip) ∧ (v ∩ vol(ip).t) �= ∅ ∧ (v ∩ novol .t) = ∅ .

−→
IP denotes the valuation set of interface points from IP .

The predicate ass :
−−→
EN → B captures the assumption about incoming material

streams, while gar :
−−→
EN → (

−−→
EX → B) is the guarantee about the material streams

produced by MFI. For a stream σ ∈ −→
IP we abbreviate ass(σ) def= ass(σ|EN ) and

gar(σ) def= gar (σ|EN )(σ|EX ). ��
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The overall behavior of MFI contains streams over IP which satisfy gar under as-
sumption ass . The set of streams described by MFI is denoted by [[MFI ]] defined as

[[MFI ]] def= {σ ∈ −→IP | ass(σ) ∧ gar (σ)} . (1)

We expect MFIs to be strongly time guarded (c.f., Sec. 2), i.e., every process step must
require time. This ensures the existence of a unique fixed point of every computation
described by a (composite) MFI [3].

A special feature of our model is that the enabling behavior of interface points is
specified by the vol function separately from the actual MFI behavior described by
ass /gar . The time dependent and input independent function vol provides an over-
approximation about the observable spatial behavior on the system bounds. This makes
spatial dependencies between MFI models explicit, so we can reason about combinabil-
ity of MFIs (c.f., Sec. 4) on a behavior independent level.

Example 1. We define an MFI specification of the milling machine described above by
MFI mm

def= ({enmm}, {exmm}, vol , val ,T → ∅, ass , gar). It processes one piece at a
time at the rate of 75s and for every input rough part issues exactly one part, which may
be OK or waste, after 64s. Formally,

∀t ∈ T : vol(enmm).t def=

{
vforehold if ∃k ∈ N : t = 75 ∗ k,

∅, otherwise,

∀t ∈ T : vol(exmm).t def=

{
vforehold if ∃k ∈ N : t = 75 ∗ k + 64,

∅, otherwise,

val(enmm) def= {(vrough , rough)}, val(exmm) def= {vpart} × {OK , fail},
∀σ ∈ −→enmm : ass(σ) def= ∀t ∈ T : |σ.t| ≤ 1,

∀σ ∈ −→IP : gar (σ) def= ∀t ∈ T : |σ(enmm).t| = |σ(exmm).(t+ 64)| .

We observe that, although located at the same position, the interface points never inter-
sect and that the assumption states that the machine accepts at most one piece at a time.
Pieces can only enter the machine at the multiple of 75s because of the vol -predicate,
which maps the entry to an empty set any other time. Then, MFI mm guarantees that
if a rough part has entered, exactly one machined part will exit after 64s; nothing will
happen, otherwise. ��

3.2 Important Properties of MFI

The ability of our MFI models to abstract from the implementation details comes along
with the possibility to specify unrealistic behavior. Consider an MFI which produces
material pieces which intersect in space. In order to exclude such behavior we formulate
a number of well-formedness conditions which MFI specifications must fulfill to be
realizable.

Rigid objects occupy a certain non-zero volume and may not intersect. A stream
σ is called spatially plausible if it consists of non-intersecting material pieces only.
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Formally, it must hold ∀t ∈ T : ∀(v1, s1), (v2, s2) ∈ σ.t : (v1, s1) �= (v2, s2) ⇒
v1 ∩ v2 = ∅. An MFI is spatially plausible if for all spatially plausible entry streams it
produces spatially plausible exit streams.

Only a finite number of rigid objects can be observed within finite time windows,
thus, we say that a stream σ is sparse if for all t ∈ T the set {(t′,mo) | mo ∈ σ.t′∧t′ <
t} is finite. An MFI is sparse if for any sparse input stream it produces only sparse output
ones.

In order to be able to arrange subcomponents specified by MFIs in space, we expect
them to be movable, i.e., invariant resp. shape-preserving transformations, like transla-
tion and rotation. For MFI = (EN ,EX , vol , val ,novol , ass , gar ) and (τ, id) ∈ RT
we define τ(MFI ) def= (EN ,EX , τ◦vol , val , τ◦novol , ass , gar ). It must hold [[MFI ]] =
τ−1([[τ(MFI )]]), where τ−1(.) denotes the point-wise application of the inverse trans-
formation (τ−1, id) on every material piece from MFI ’s streams. This property natu-
rally holds for all MFIs, which do not refer to absolute positions of material in their
ass- and gar -predicates.

We can easily show that the milling machine MFI form Example 1 is physically
plausible, sparse, and movable.

Example 2. We specify a bidirectional transportation system for handling the material
exchange with the milling machine: MFI tr

def= ({en1, en2}, {ex1, ex 2}, vol , val ,T →
∅, ass, gar ). It describes both transport directions: en1, ex 1 deliver the rough material
from the environment to the machine and en2, ex 2 return machined parts back. The
transporting delay in both directions is expected to be 5s. Formally, let enmm , exmm

be interface points of the milling machine as introduced by Example 1, then

∀t ∈ T : vol(ex 1).t
def= volmm(enmm).t ∧ vol(en2).t

def= volmm(exmm).t,
∀t ∈ T : vol (en1) = vin ∧ vol (ex 2) = vout ,

val (en1) = val(ex 1)
def= valmm(enmm), val(en2) = val(ex 2)

def= valmm(exmm),

∀σ ∈
−−−−−−−→
{en1, en2} : ass(σ) def= true,

∀σ ∈ −→IP : gar (σ) def= ∀t ∈ T : σ(en1).t = rtr (σ(ex 1).(t+ 5))

∧ σ(en2).t = r−1
tr (σ(ex 2).(t+ 5)),

where rtr ∈ RT is a shape-preserving transformation and vin , vout , vforehold are pair-
wise disjoint. The first conjunct of the guarantee deals with the flow to and the second –
from the machine, resp. They both demand any incoming material object to exit after 5s
and permit only those outgoing objects which entered 5s earlier, i.e., no “spontaneous
outputs” are allowed. Due to our semantics definition (Eq. (1)) MFI tr obtains material
on en2 at 75 ∗ k + 64 only (k ∈ N), although it may get more than one piece at a time.
The outputs on ex1 are only made at multiples of 75s.

We observe that MFI tr is strongly time guarded (this is ensured by transporting
time > 0), sparse (for one input exactly one output is made), and movable, but it is
not spatially plausible. This can be fixed by adding ∀(v1, s1), (v2, s2) ∈ σ(ex i).t :
v1 ∩v2 = ∅ as a further conjunct to gar . We denote the modified guarantee by gar ′ and
MFI by MFI ′

tr . ��
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4 Composition of MFIs

We compose MFIs by intersecting their entries and exits. However, a connected pair
does not disappear from the combined interface, since an entry can be used by several
exits and vice versa. Think of two robots, which are located at opposite sides of a
conveyor, and interchangeably load and unload material. On the other side, we cannot
allow the same piece of material to be consumed by more than one receiver at a time,
since this is not physically plausible. Thus, non-intersecting volume parts of interface
points remain in the composite interface, while the intersecting ones disappear.

Let there be a pair of MFIs MFI i = (EN i,EX i, vol i, val i,novol i, assi, gar i) with
i ∈ {0, 1}. A pair of interface points ip0 ∈ IP0, ip1 ∈ IP1 is called intersecting iff
there exists a point in time t ∈ T such that vol0(ip0).t ∩ vol1(ip1).t �= ∅. We write
meet(ip0, ip1) to denote that ip0 and ip1 intersect as described above. By definition it
holds that meet is commutative and meet(ip0, ip1) only if ip0, ip1 do not belong to the
same MFI.

Definition 2. We call MFI 0, MFI 1 composable if they have no homonymous inter-
face points, i.e., IP0 ∩ IP1 = ∅, and for every pair of intersecting interface points
ip0 ∈ IP0, ip1 ∈ IP1 (i.e., meet(ip0, ip1)) following conditions hold: (1) they are not
unidirectional, i.e., ip0, ip1 cannot be both entries or both exits, (2) they are of the same
type, i.e., val0(ip0) = val1(ip1), and (3) they do not intersect with forbidden areas, i.e.,
for all i ∈ {0, 1}, t ∈ T, ip ∈ IP i holds vol i(ip).t ∩ novol1−i.t = ∅. ��

For purposes of reuse and simultaneous interface design optimistic composition [5]
seems to be more natural. It is defined even when there are streams which do not satisfy
the implications between assumptions and guarantees of components being composed.
Thus, the semantics of composition consists of all satisfying streams. In the composition
we quantify the observations at interface point intersections existentially and reduce the
composite interface by these common volumes.

We denote the composition by MFI 0 ⊗MFI 1
def= (EN 0 ∪ EN 1,EX 0 ∪ EX 1, vol ,

val0 ∪ val1,novol , ass , gar), where vol is defined for all i ∈ {0, 1} as

∀ip ∈ IP i, t ∈ T : vol (ip).t def= vol i(ip).t \
⋃

ip′∈IP1−i

vol1−i(ip ′).t . (2)

By this construction, we obtain an interface without common volumes and, since
−→
IP

defines the domain and the range of A/G predicates, no inputs are accepted or outputs
are made at these areas by the composite MFI.

To ensure that nothing in the environment, e.g., no further MFI, will take or release
material within the common volumes of MFI 0, MFI 1 these volumes are captured by
novol . This ensures the realizability of MFI specifications and also the associativity of
our composition. Formally, for all t ∈ T

novol .t def= novol0.t ∪ novol1.t ∪
⋃

ip∈IP0,ip′∈IP1

vol0(ip).t ∩ vol1(ip′).t . (3)

In order to define the composite semantics, we introduce the following auxiliary oper-
ations on streams. Set-theoretic operations on σ0, σ1 ∈ (V × S)T are defined as their
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application along the time line, i.e., (σ0 ∼ σ1).t
def= σ0.t ∼ σ1.t for all ∼ ∈ {∪,∩, \}

and t ∈ T. For a stream σ and a volume function vl : T → V we define a filtered stream
vl c©σ by ∀t ∈ T : (vl c©σ).t def= {(v, s) ∈ σ.t | v ∩ vl .t = ∅}, i.e., all material objects,
which intersect with vl , are filtered out. We extend the above operations for streams
from

−→
IP by applying them for every interface point.

For a given stream σ ∈ −→IP we describe its valid projections σ0 ∈
−→
IP0, σ1 ∈

−→
IP1 by

the proposition

σ = novol c©(σ0 ∪ σ1) ∧
⋃

ip∈IP

(σ0 \ novol c©σ0)(ip) =
⋃

ip∈IP

(σ1 \ novol c©σ1)(ip),

i.e., the composite behavior contains both sub-behaviors in non-forbidden areas and
the behavior in forbidden areas of both sub-services coincides. This corresponds to the
existential quantification for valuations of internal channels which is used to describe
parallel composition of software systems.

Definition 3. For composable MFIs MFI 0, MFI 1 as above the semantics of MFI 0 ⊗
MFI 1 is given by ass /gar -predicates defined as follows. We define

ass(σ) def⇔ ass0(σ0) ∧ ass1(σ1) and gar(σ) def⇔ gar 0(σ0) ∧ gar1(σ1) ,

for all σ ∈ −→IP , σ0 ∈
−→
IP0, σ1 ∈

−→
IP1 s.t. σ0, σ1 are valid projections of σ and the

following holds

gar 0(σ0)⇒ ass1(σ1) and gar1(σ1) ⇒ ass0(σ0) . ��

Proposition 1. The composition of composable MFIs is well-defined, i.e., it yields an
MFI again, strongly time guarded, commutative, and associative. ��

Example 3. We compose the milling machine and transportation system MFIs from Ex-
amples 1 and 2 to MFI mm ⊗MFI ′

tr given by ({en1, en2, enmm}, {ex1, ex2, exmm},
vol , valmm ∪ val tr ,novol , ass , gar). They are composable according to the above def-
inition. According to Eq. (2) the volume function maps ex 1, enmm , en2, and exmm

to an empty set. The volumes of en1 and ex2 do not change. Then, according to Eq. 3
novol = volmm(enmm)∪volmm(exmm). No assumptions are put on the environment:
ass = true. The guarantee is given by gar ′

tr and an additional constraint that en1 ac-
cepts and ex2 outputs at most one piece at a time every 75s: gar (σ) = gar ′

tr (σ)∧∀k ∈
N : |σ(en1).(75 ∗ k)| = |σ(ex 2).(75 ∗ k + 64)| ≤ 1. ��

Properties of Composition. An important feature of our framework is the preservation
of plausibility properties from Sec. 3.2 upon composition. By this, it becomes sufficient
to check for their satisfaction locally and only plausible systems can be built out of
plausible components.

Proposition 2. The following properties remain preserved in the composition MFI =
MFI 0⊗MFI 1, provided MFI 0 and MFI 1 are composable: MFI is (1) sparse, (2) spa-
tially plausible (produces streams of non-intersecting objects), and (3) movable (invari-
ant resp. shape-preserving transformations). ��
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5 Implementation Conformance

This section bridges between the abstract manufacturing systems (AMS) and the ma-
terial flow specifications (MFI) by formalizing the notion of implementation confor-
mance. More precisely, we define under which conditions an AMS is called a realiza-
tion of an MFI. Informally, we interpret the MFI’s entries as generators for material and
require the AMS to generate corresponding output pattern at the exits.

For the remainder of this section let there be an AMS defined by inputs IC and IS ,
outputsO, interiorN , sensor function S, and F : �I → P( �O×MF), as well as an MFI

given by the tuple (EN ,EX , vol , val ,novol , ass , gar). Let η ∈ −−→EN such that ass(η)
holds, i ∈ �I , and (o, f) ∈ F (i). Then the spatio-temporal configuration of the AMS is
given by a sparse stream stc(η, f) ∈ (MC ∪ {⊥})T defined as

stc(η, f).t def=
{
⊥ iff η.t = ∅ ∧ f.t = id
clearN (f.t(prev ) ∪ η.t) otherwise

,

where η.t is shorthand for the set of material objects entering any of the entries at time
t, prev is the set of material from the last time where stc(η, f) was not⊥ (defined as ∅
if no such time exists), and clearN defined for a material configurationm ∈ MC as

clearN (m) def= {(v, s) ∈ m | v ∩N �= ∅} .

As both η and f are sparse (i.e., the number of non-trivial values until any time t is
finite), the value of prev and thus the spatio-temporal configuration is well-defined. The
intuition is that the material is affected by the motion implied from the material flow
f while new material is added in response to entry events from η. The clear function
discards material as soon as it leaves the scope of the AMS.

For the configuration stc(η, f), the exit stream ξ(stc(η, f)) ∈ (MC ∪⊥)T captures
the position of material leaving the interior of the AMS and is defined as

ξ(stc(η, f)).t def=
{
⊥ iff stc(η, f) =⊥
(f.t(prev ) ∪ η.t) \ stc(η, f) otherwise

,

where prev is the same as before, i.e., refers to the last non-⊥ value of the stc func-
tion. Thus, ξ contains exactly those material objects discarded by clearN before and
describes for each object the position and state when leaving the scope of the AMS. We
call this exit stream valid for the MFI, if there is an exit event stream χ ∈ −−→EX such that
gar(η)(χ) holds and for each t ∈ T the sets ξ.t and

⋃
x∈EX χ(x).t are equal.

Definition 4 (Implementation). An AMS defined by IC , IS , O, N , S, and F : �I →
P( �O ×MF) is called an implementation of the MFI (EN ,EX , vol , val ,novol , ass ,
gar), iff for all η ∈ −−→EN with ass(η), i ∈ �I , and (o, f) ∈ F (i) with ∀t ∈ T : (i|IS ).t =
S(stc(η, f).t) the exit stream ξ(stc(η, f)) is valid for the MFI. ��

6 Application

We see the following application areas of our framework: (1) augmented simulation
and run-time verification, (2) verification and, in particular, compositional verification,
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(3) the correct-by-construction synthesis of AMS models conforming to a given MFI
specification. While the latter two points belong to the future research directions, the
prototypical implementation and evaluation of the simulation is presented here.

6.1 Augmented Simulation

Often, industrial-size systems with complex material flow cannot be simulated as a
whole, due to the fact that a realistic physics simulation is a computationally complex
task. A promising solution is to simulate selected fractions of the system, “subsystem
under test”, while abstracting the rest by corresponding MFI specifications. This would
decrease the complexity since that MFIs reduce the material trajectories to the points
of their expected observation. But still, the selected fractions would be simulated in a
realistic environment, provided every abstracted subsystem is conform with its resp.
MFI in sense of Sec. 5. This is because for our compositional semantics monotonicity
resp. refinement can be shown analogous to results from [6,7,8].

Fig. 2. Role of MFI Interface Points in Augmented Simulation

In the augmented simulation setup we obtain two types of components: abstract
ones, which are specified by an MFI only, and concrete ones, which also have an imple-
mentation (AMS). Moreover, for validation by simulation we assign two different roles
to interface points: generators and observers. A generator produces material flows in
accordance with the resp. specification (ass or gar ), while the observer checks the con-
formance to the specified flow. Fig. 2 depicts the possible configurations and the roles
of the ports. Scenario (1) consists of only abstract components and thus all ports have to
act as generators (there is no implementation which could affect the material flow). In
the second scenario, where a concrete component is used, the entry still is a generator
(the material has to be provided according to the precondition of the component), but the
exit now is an observer which checks whether the resulting material stream matches the
expectation. The interesting cases are (3) and (4) which explain the crossing between
abstract and concrete components. In both cases the outer ports’ roles are the same as
in (1) and (2). In (3) material is passed from a concrete component to an abstract one,
thus the inner ports are both observers, as material is provided by the concrete compo-
nent. The opposite case (abstract to concrete) is depicted in (4). Here, the exit of the
abstract component is used to generate a material stream and, thus, is a generator, while
the entry of the concrete component still acts as an observer.
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6.2 Tool Support and Case Study

We realized the concepts of MFIs and augmented simulation described here in the
CASE tool AF/STEM.3 AF/STEM is an extension of AutoFOCUS 3 which integrates
automaton and data-flow based system descriptions with spatial models. AutoFOCUS
allows the description of a system by data-flow diagrams consisting of components,
typed ports (describing a component’s interface), and channels, which connect ports.
Components are either described using an automaton or by another data-flow diagram
with further sub-components. By this, a component hierarchy is created.

AF/STEM extends this meta-model by parts, detectors, and movers (c.f., [1,2]),
which are used to model the spatial properties of components and the reactions to col-
lisions (e.g., between a transported object and the light-ray of a photo-electric barrier).
Parts are spatial bodies, which describe the geometry of a component. Hybrid automata
of AF/STEM components receive collision information between their detectors and any
parts as a further input (e.g., an input variable representing a light ray is set to true when
it collides with any other object). The position of parts can be changed by movers ac-
cording to defined kinematic axes. These changes are also triggered by the automaton,
which has dedicated mover variables as additional outputs. The changes of these vari-
ables are interpreted as direction and speed of movements in the spatial world (e.g.,
by a positive change of a mover variable every part colliding with the belt part of a
conveyor is moved forward). We refer the reader to [2] for an in-depth description of
AF/STEM. The meta-model of AF/STEM can be mapped to the formal AMS imple-
mentation model presented in Sec. 2.

To specify a piece of material, we use the same component-based description tech-
nique as for the system itself. By this, material incorporates both spatial configuration
and a state, as described here. For a material component there can be multiple instances
in the simulation, which have to be created and destroyed dynamically. This task is car-
ried out by MFI specifications as presented here. Component have an MFI specification,
which in turn consists of a number of interface points, an assumption, and a guarantee
component. These elements directly correspond to the members of the MFI tuple from
Sec. 3.1. Finally, an abstract component as described in Sec. 6.1 has no automaton, but
only an MFI specification.

We used MFI specifications in a variety of academic and real-life models including
separation and dislocating stations, quality gates, a tool changer of a milling machine,
and the (un-)loading system of a grinding machine.

The concept of augmented simulation was evaluated on a model of an automotive
assembly line. It consists of three conveyors, one for car bodies and two for wheels, and
a pair of robots, which mount the wheels on the car. The workflow steps are: transport
wheels, transport car body, mount wheels, transport car with mounted wheels. We mod-
eled a pure abstraction, a pure implementation, and an abstraction with implemented
robot and wheel conveyor. The behavior of the abstract model can be observed only
when simulating in a step-wise manner. During continuous simulation the augmented
model showed a lower resource usage in comparison with the pure implementation.

3 http://af3.in.tum.de/index.php/AF/STEM

http://af3.in.tum.de/index.php/AF/STEM
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7 Related Work

This section summarizes work that is related to the formal model presented here.

Formal Models for Timed and Hybrid Systems. Depending on the level of abstraction
chosen, manufacturing systems can be seen as special cases of timed or (if more control
over flow conditions is required) hybrid systems. Thus, it seems reasonable to apply
existing modeling techniques developed for these systems, such as timed [9] and hybrid
automata [10]. Iversen et al. demonstrate in [11] how timed automata can be used to
model a Brick Sorter, which consists of a conveyor belt, a color sensor and a kicking
arm. Albeit this is an artificial example, with the “hardware” consisting of LEGO bricks,
it demonstrates how timed automata can be applied to model manufacturing systems.
This example also demonstrated the drawbacks of both timed and hybrid automata, as
the bricks (material) have to be modeled as separate automata each, which encodes the
interaction with the parts of the system. Thus, any extension of the system has to be
reflected in the material automata, i.e., the model is not compositional with respect to
the material flow abstraction.

Manufacturing Process Specifications. SADT [12] (Structured Analysis and Design
Technique) is a modeling technique that allows the abstract specification of processes
using box and arrow diagrams. The models can also be used to describe the material
flow between several processing steps. Contrary to our approach, SADT has no formal
semantics and does not include a notion of space. A more formal model is presented by
Leuxner et al. in [13]. While the example chosen there is from the medical domain, the
application to manufacturing processes in straightforward. This model, however, only
supports a logical notion of material flow, while we support an explicit representation
including spatial position and extension.

Formal Models for Mechatronic Systems. Many existing models for mechatronic sys-
tems lack a formal semantic foundation. A notable exception is Modelica [14], which
describe systems in terms of (differential) equations combined with discrete state-based
descriptions. Hierarchic composition of subsystems is supported via pins and con-
nectors. The authors of this paper also describe a stream-based formalism for spatio-
temporal mechatronic systems from the automation domain [1] and an extension which
supports the modeling of hardware errors [15]. All of these models have in common
that their focus is on the system itself and not the material flow. Material can only be
expressed as another system part, leading to the same problems of composition as with
timed/hybrid automata.

Material-Flow Simulations. In [16], Struss et al. describe a compositional mathemati-
cal model which allows the description of the material flow based on inflow and outflow
rates of elements. The model only covers transportation (not modification) of material
and can be used for material flow simulations using Matlab/Simulink. Compared to our
approach, it does not describe the spatial positions of material, does not support as-
sumption/guarantee reasoning on the level of individual material pieces, and does not
support state changes in the material being processed.
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8 Conclusion and Outlook

This paper described a model for manufacturing systems based on a material flow ab-
straction. The model is compositional and allows assumption/guarantee reasoning about
the material flow. Furthermore, conformance between the material flow specification
and an implementation model can be checked. We described a tool implementation
which allows the simulation of material flow models in conjunction with more detailed
abstract manufacturing models and reported on a first small case study.

Possible directions for future work include extending the model to also allow the
modeling of fractional goods, such as liquids. Another goal is to improve tool support
especially with respect to automatic conformance checking between abstract system de-
scriptions and MFIs. A first step required for this is to detail an operationalized model
which can be actually used for AMS/MFI description and find suitable decision proce-
dures for them. First steps towards an operationalized model have already been taken in
the context of a tool prototype’s implementation.
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Abstract. System-on-Chip is a solution that integrates several com-
ponents of a computer into a single chip substrate. Those systems are
generally targeted for embedded applications and can increase their pro-
cessing power by using multiple processors and an on-chip intercon-
nection. STORM is a Multi-Processor System-on-Chip virtual platform
which uses a basic implementation of the MPI standard to provide com-
munication among their applications. STORM implements a small set of
MPI routines for essential point-to-point and collective communication
in order to provide more programmability and portability for the applica-
tions of the platform. In this work, we make use of CSP to build a formal
model of those MPI routines and eliminate imprecision and ambiguities
that may arise from their informal descriptions on the MPI standard.
Also, we use the FDR model checker to ensure that the implemented
routines have no errors introduced during the development process.

Keywords: CSP, concurrency, parallel computing, embedded systems.

1 Introduction

System-on-Chip (SoC) integrates several computer components into a single
chip substrate. A SoC puts general purpose processors, digital signal processors
(DSP), memory and I/O subsystems, and an internal communication subsystem
together on the same chip. Those systems are usually targeted for embedded ap-
plications and can increase their processing power by using multiple processors
and an on-chip interconnection to integrate them. So, a Multi-Core or Multi-
Processor System-on-Chip (MP-SoC) [1] is a SoC where several general purpose
processors execute in parallel on a same chip area [2].

STORM [3] is a MP-SoC virtual platform implemented in cycle accurate Sys-
temC [4]. Processors of the platform communicate by using a Network-on-Chip
(NoC) [5], a customizable interconnection option that presents good scalabil-
ity [6]. The STORM configuration considered in this work uses a distributed
memory with shared addressing space, implemented by means of several local
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memory blocks directly connected to processors. Processors on STORM commu-
nicate by using a MPI [7] implementation, intended as a mechanism to augment
programmability and promote standardization of applications on the platform.

This work is concerned with the specification and verification of the MPI rou-
tines implemented on STORM, intended to improve the reliability of its appli-
cations. Two CSP [8] specifications are provided: one for the standard behavior
of MPI routines and another for the routines implemented on STORM. The
failures-divergences semantics [9] is the CSP model considered. Verifications are
performed with the Failures-Divergences Refinement (FDR) [10] model checker.

Background is presented in Section 2, which provides information on CSP, on
STORM and on the implemented MPI routines. Next, Section 3 presents the
specifications produced and their verification with FDR. Section 4 compares our
approach with related works. Finally, Section 5 presents final remarks.

2 Background

This section provides essential information on the specification language CSP
and on the STORM platform, concerned with the inter-process communication.

2.1 The Specification Language CSP

A process algebra like CSP [8,9] can be used to describe systems composed
of interacting components, which are independent self-contained processes with
interfaces used to interact with the environment. Such formalisms provide a way
to explicitly specify and reason about interaction between different components.
Furthermore, phenomena that are exclusive to the concurrent world, that arise
from the combination of components and not from the components alone, like
deadlock and livelock, can be more easily understood and controlled using such
formalisms. Tool support is another reason for the success of CSP in industrial
applications, and consequently, for our choice to use it as the formal notation.
For instance, FDR [10] provides an automatic analysis of correctness and of
properties like deadlock and divergence.

The two basic CSP processes are STOP (deadlock) and SKIP (successful ter-
mination). The prefixing c -> P is initially able to perform only the event c;
afterwards it behaves like process P. A Boolean guard may be associated with a
process: given a predicate g, if the condition g is true, the process g & c?x ->
A inputs a value through channel c and assigns it to the variable x, and then
behaves like A, which has the variable x in scope; it deadlocks otherwise. It can
also be defined as if g then c?x -> A else STOP. Multiple inputs and out-
puts are also possible. For instance, c?x?y!z inputs two values that are assigned
to x and y and outputs the value z.

The sequence operator P1;P2 combines processes P1 and P2 in sequence. The
external choice P1 [] P2 initially offers events of both processes. The perfor-
mance of the first event resolves the choice in favor of the process that performsit.
The environment has no control over the internal choice P1 |˜| P2. The sharing
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parallel composition P1 [| cs |] P2 synchronizes P1 and P2 on the channels in
the set cs; events that are not listed occur independently. Processes composed
in interleaving P1 ||| P2 run independently. The event hiding operator P \ cs
encapsulates the events that are in the channel set cs, which become no longer
visible to the environment.

CSP provides finite iterated operators that can be used to generalize the bi-
nary operators of sequence, external and internal choice, parallel composition,
and interleaving. Furthermore, we may instantiate a parameterized process by
providing values for each of its parameters. For instance, we may have either
P(v), where P = x:T @ Proc, or, for reasoning purposes, we can write directly
(x:T @ Proc)(v). Apart from sequence, all the iterated operators are commu-
tative and associative. For this reason, there is no concern about the order of the
elements in the type of the indexing variable. However, for the sequence operator,
we require this type to be a finite sequence. By way of illustration, the process
x:T @ P(x) is the sequential composition of processes P(v), with v taken from
T in the order that they appear. Furthermore, |˜| x:T @ P(x) is the internal
choice of all process P(v) with v taken from T with no particular order. The
semantics of the iterated interleaving ||| x:T @ P(x) and parallel composition
[| cs |] x:T @ P(x) are similar. For the latter, however, we also declare the
synchronization channel set for all instances P(v): they all synchronize in cs.

FDR also supports a functional language that provides us with the possibility
of having some programming facilities within the specification. Among some
built-in facilities of FDR’s functional language we have set operations like set
membership (member), set difference (diff), set union, set cardinality (card),
sequence operators like sizeof that returns the sequence size, tuples, set and
sequence comprehension, and pattern matching.

2.2 The STORM Platform

The STORM configuration considered on the distributed memory model is pre-
sented in Figure 1 (adapted from [11]). Processors have distinct cache modules
for instructions (ICache) and data (DCache) in order to allow simultaneous ac-
cess to those streams. The Data Access Manager (DAMa) provides a common
interface between caches and other modules. All modules connected to DAMa
are perceived as memory modules by the processor, each one associated with
a specific address range. The memory module of a given processor cannot be
accessed by other processors. Communication among processors is provided ex-
clusively with the message exchange on the NoC through the Communication
Manager (CoMa). The CoMa module sends and receives data by using the net-
work. This module is able to provide the inter-processor communication with no
software support, but that makes the development of applications more difficult.
That is the reason why MPI routines have been implemented for STORM.

The CoMa has two buffers, one for sending (OutBuffer) and another for re-
ceiving (InBuffer) data through the NoC. The sizes of those buffers are config-
urable and can be different. The CoMa buffers are managed with the help of
four registers, associated with memory addresses. Registers Available SendBuffer
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Fig. 1. STORM distributed memory model

and Available RecBuffer are used to inform the available space on the OutBuffer
and InBuffer, respectively. Registers SendBuffer Data and RecBuffer Data are
used to write and read data transmitted to and from the NoC.

In an inter-processor communication, the source processor first writes a 32-bit
heading containing the NoC address of the destination processor and the length
of the message into the SendBuffer Data register. After that, the processor also
writes the data to be sent into the same register. Finally, the CoMa assembles the
message and transmits it through the NoC. During the reception of the message,
the CoMa discards the control information and stores the useful data into the
InBuffer of the destination processor. The bounds of the messages stored in
InBuffer must be controlled by software. The availability of the SendBuffer Data
and RecBuffer Data registers also must be verified by the application software.
Processors will get blocked if a writing operation is required on a full SendBuffer
Data or if a reading operation is required on an empty RecBuffer Data.

The implementation of MPI routines in STORM counts on the hardware mod-
ules discussed so far. STORM has not an operating system at the current time, so
that only static processes are permitted, one process per processor. Because the
implemented MPI routines have no support from process and memory manage-
ment software, such routines are loaded together with the end-user application
and works as a software layer between it and the platform. Due to the current
limitations of the STORM platform, only a subset of the MPI standard has
been implemented at this time. However, the essential communication routines
are available and make the development of parallel applications possible.

2.3 Implemented MPI Routines

The implementation of MPI routines in STORM assumes that each process
can access only its local memory and all inter-process communication is done
with message exchange. The implementation considers asynchronous versions of
the send and receive routines, meaning that messages transmitted on the NoC
are written and read to and from MPI buffers implemented in software. The
transference of data between hardware and software buffers is implemented in
software. The MPI buffers have fixed-sizes that are defined by the user of the
platform. The user must also define the maximum size of the MPI messages and
choose the root processor, which initiates and finalizes the MPI environment.
The implementation provides the basic data types and constants of the MPI
standard. Below, we present the MPI routines implemented on STORM:
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– MPI_Init(): initializes the MPI environment. In accordance with the MPI
standard, this routine must be called by each process before any other MPI
routine. In the STORM implementation, this routine is called by every pro-
cessor but only the root processor determines the ranks of processes.

– MPI_Finalize(): finalizes the MPI environment.
– MPI_Comm_size(): returns the number of processes in a given com-

municator. Only the default communicator MPI_COMM_WORLD, which
contains all the processes on the MPI environment, is implemented.

– MPI_Comm_rank(): returns the rank of a process in a communicator.
– MPI_Send(): sends messages across the NoC. This routine copies the data

from the MPI buffer to the hardware buffer (SendBuffer Data) of the proces-
sor that is the source of the communication. The message is sent through the
NoC using hardware communication mechanisms provided by the platform.

– MPI_Recv(): receives a message from a processor on the NoC. This routine
copies the data received by the hardware buffer (RecBuffer Data) of the
processor that is the destination of the communication to the MPI buffer.
The expected message must be selected from the messages in the MPI buffer.

STORM also implements routines for packing and unpacking structured data:

– MPI_Pack(): packs data into a contiguous memory storage.
– MPI_Unpack(): unpack data from a contiguous memory storage.
– MPI_Pack_size(): returns the number of bytes needed to pack a message.

More sophisticated routines are implemented for collective communications:

– MPI_Broadcast(): one-to-all communication routine.
– MPI_Reduce(): all-to-one communication routine.

The implementation of collective routines is based on the recursive doubling
technique [12] to avoid bottlenecks on the root process and optimize the usage of
the network. In MPI_Broadcast(), the rationale of this technique is to recursively
split the range of destination processes r = [1 . . .n] into ranges r1 = [1 . . . k− 1]
and r2 = [k . . .n] so that processes in r1 and r2 do not communicate with each
other. In our implementation, instead of sending the message to every MPI
process, the root process r sends the message only to processes with ranks (r∗2)
and (r ∗ 2 + 1). Those processes then execute the same procedure recursively,
acting as roots for next level of communication, until each process receives the
message. MPI_Reduce() is performed by reversing the direction and sequence of
communications so that data from source processes are combined at intermediate
processes before the final result is accumulated at the destination process.

3 Formalization of Routines

This section presents two specifications. The first one specifies the standard be-
havior of the MPI routines. The second specification describes the real behavior
of the routines implemented for STORM. Together, those specifications allow us
to check the implemented routines against the MPI standard with FDR.
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3.1 Standard Routines

In accordance with the MPI Standard, each parallel process must be initial-
ized with a call to MPI_Init(), prior calling any other MPI routine. The MPI
standard does not prevent a call to any other routine to occur before initial-
ization, but it establishes that such routines cannot be executed at that time
and that the user must be notified with an error message in face of those calls.
MPINotInitialized describes the behavior of the system before initialization:

MPI = MPINotInitialized
MPINotInitialized =

(mpi_init -> (|~| r : MPIRanks @ mpi_rank.r -> mpi_init_ok
-> MPIInitialized(r)))

[](mpi_finalize -> mpi_finalize_error -> MPINotInitialized)
[] ... [](mpi_reduce?sendbf?recvbf?ct?dt?op?root?comm ->

mpi_reduce_error -> MPINotInitialized)

MPINotInitialized corresponds to the MPI user, the external agent that
chooses the routine to be executed. The event mpi_init describes a call to
MPI_Init() and takes the system to the state described by MPIInitialized(r),
where r stand for the rank of the MPI process. During initialization, the system
randomly chooses a rank r from the set of valid MPI ranks (MPIRanks) and
communicates it by using the event mpi_rank. After that, the system uses the
event mpi_init_ok to inform that the environment is initialized and behaves
as MPIInitiated(r). Note that events that correspond to a call to any other
routine in MPINotInitialized produce error events and take the system back
to the pre-initialization state. MPIInitialized represents the MPI environment
after its proper initialization, when the MPI routines execute in interleaving:

MPIInitialized(r) =
(MPICommSize ||| MPICommRank(r) ||| MPISend(r) ||| MPIRecv(r) |||
MPIPack ||| MPIUnpack ||| MPIPackSize |||
MPIBcast(r) ||| MPIReduce(r)) [|MPIEvents|] (MPIControl)

Each routine is specified as a CSP process. Those processes are synchronized
on MPIEvents, a set of events for describing calls, successful and unsuccess-
ful terminations of routines. Obviously MPIInitialized could be merged into
MPIControl, but we use a separate process per routine for the sake of a modular
and clearer specification. MPIControl specifies the external selection of routines:

MPIControl =
(mpi_init -> mpi_init_error -> MPIControl)

[](mpi_finalize -> SKIP)
[] ... [](mpi_reduce?sendbf?recvbf?ct?dt?op?root?comm ->

( (mpi_reduce_ok?recvbf -> MPIControl)
[](mpi_reduce_error -> MPIControl)))

Except for mpi_init and mpi_finalize, MPIControl produces either an
event to confirm the successful termination of the routine or an event indicating
that it has failed. The event mpi_init always produces an error event because the
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system is already initialized in that process. On the other hand, mpi_finalize
produces a SKIP to represent the termination of the MPI environment.

MPI_Init() and MPI_Finalize(). The event mpi_init represents a call
to MPI_Init(). Different from other routines, MPI_Init() is not specified in a
separate CSP process, but in MPINotInitialized. The latter process assigns a
rank to the process and becomes MPIInitialized. Analogously, MPI_Finalize()
is specified in MPIControl, using the event mpi_finalize to produce a SKIP.

MPI_Comm_size() and MPI_Comm_rank(). Those routines have sim-
ilar specifications. MPICommSize specifies MPI_Comm_size(). After validating
its parameters, this process either informs the size s of the communicator on
mpi_comm_size_ok or produce the error event mpi_comm_size_error.

MPICommSize =
mpi_comm_size?comm?size ->

if member(comm, MPICommunicators) and member(size, MPIValidAdd)
then (|~| s : MPICommSizes @ mpi_comm_size_ok.s -> MPICommSize)
else (mpi_comm_size_error -> MPICommSize))

The specification of the communicator’s size is non-deterministic since it de-
pends on the parallel application. The types MPICommunicators, MPIValidAdd
and MPICommSizes are defined by the MPI implementation to represent commu-
nicators, non-null memory addresses and communicator sizes, respectively. The
specification of MPI_Comm_rank() is in MPICommRank(r), where r is the rank
of the process:

MPICommRank(r) =
mpi_comm_rank?comm?rank ->
(if member(comm, MPICommunicators) and member(rank, MPIValidAdd)
then (mpi_comm_rank_ok.r -> MPICommRank(r))
else (mpi_comm_rank_error -> MPICommRank(r)))

MPICommRank first verifies if its parameters are valid. Next, it uses either the
event mpi_comm_rank_ok to inform the rank r of the process or produces the
event mpi_comm_rank_error to indicate failure on the execution of the routine.

MPI_Send() and MPI_Recv(). MPISend specifies MPI_Send() and con-
siders both synchronous and asynchronous behaviors. MPISend verifies the pa-
rameters of the routine and chooses between the synchronous (MPISyncSend) and
the asynchronous (MPIAsyncSend) behaviors. That decision is non-deterministic
since it depends on the MPI implementation.

In MPISyncSend the communication depends on the agreement between source
and destination processes. Event sync notifies the destination dest that source
r is waiting for sending a message with tag tag, where dest and r are ranks.
After synchronization, event msg is used to represent the sending of the message
in fact. This event contains the tag, the communicator, the size of the message
(defined as ct * dtsize(dt)) and the message itself, stored in buffer bf. Finally,
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the process MPISyncSend is notified with a successful (msg_ok) or unsuccessful
(msg_error) termination.

MPISyncSend(r, bf, ct, dt, dest, tag, comm)=
sync.r.dest.tag -> msg!(tag, comm, (ct*dtsize(dt)), bf) ->

(msg_ok -> mpi_send_ok -> MPISend(r)
[] msg_error -> mpi_send_error -> MPISend(r))

In MPIAsyncSend the source assumes the communication to be accomplished
after storing the message into the MPI buffer. After that, the source is free to
continue executing and the message can be read by the destination later:

MPIAsyncSend(r, bf, ct, dt, dest, tag, comm) =
add.((dest, (ct*dtsize(dt))), r, (ct, dt, tag, comm, bf))->

mpi_send_ok -> MPISend(r)

The bufferization of the message is represented as event add. The source will
get blocked in the case the buffer is not available for writing. After storing the
message, MPIAsyncSend receives the event mpi_send_ok and executes MPISend.

MPIReceive specifies MPI_Recv(). It receives several parameters on event
mpi_receive, including the rank of the source and the message tag. These
parameters can be used to define a specific source and a specific tag for the
expected message, or can be set as ANY_SOURCE and ANY_TAG to indicate that
a message with any source and any tag matches the receive. MPIReceive first
verifies parameters and then executes either the synchronous (MPISyncRecv) or
the asynchronous (MPIAsyncRecv) receive operation.

In MPISyncRecv event sync contains the source src, the destination r and the
tag tag of the message. If src is ANY_SOURCE, the process chooses a source s by
using the external choice operator. A similar procedure is used to define the tag
t of a message with ANY_TAG. Finally, event msg is used to receive the selected
message. At this point, if the size of the message is correct the process produces
an event to inform the source that the message has been received (msg_ok),
extracts the buffer of the message (mpi_recv_ok) and turns to its initial state.
Error events are executed when something goes wrong during those verifications.
MPISyncRecv(r, bf, ct, dt, src, tag, comm) =
(if src == ANY_SOURCE then

([] s : diff(MPIRanks, {r}) @
if tag == ANY_TAG then ([] t : MPITags @ sync.s.r.t -> SKIP)
else (sync.s.r.tag -> SKIP))

else (if tag == ANY_TAG then ([] t : MPITags @ sync.src.r.t -> SKIP)
else (sync.src.r.tag -> SKIP)));

(msg?m -> (if message_size(m) > (ct*dtsize(dt)) then
msg_error -> mpi_recv_error -> MPIRecv(r)

else msg_ok -> mpi_recv_ok!extract_buffer(m) -> MPIRecv(r)))

MPIAsyncReceive specifies the buffer-based receive. Event rem removes the
expected message m from the MPI buffer. The message m is the one with destina-
tion r and tag tag, chosen deterministically by filter_msg. Event mpi_recv_ok
extracts the message and then MPIAsyncReceive becomes MPIRecv.
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MPIAsyncReceive(r, bf, ct, dt, src, tag, comm) =
[] m : filter_msg(PackBuffer, src, tag, r, comm) @ rem.m ->

(if (ct*dtsize(dt)) < message_size(m) then
add.m -> mpi_recv_error -> MPIRecv(r)

else mpi_recv_ok!extract_buffer(m) -> MPIRecv(r))
[] (card(filter_msg(PackBuffer, src, tag, r, comm)) == 0) &

(mpi_recv_error -> MPIRecv(r))

This process checks if the size of the message is correct, as done in MPISync-
Recv. In addition, if the size of the extracted message is erroneous the message
is taken back to the buffer. PackBuffer stands for all messages in the system.

MPI_Pack(), MPI_Unpack() and MPI_PackSize(). MPI_Pack() and
MPI_Unpack() are specified in MPIPack and MPIUnpack. Such processes first
check parameters. If parameters are correct, they call events that represent the
packing (pack.inbf.outbf) or unpacking (unpack.inbf.outbf) of messages,
followed by events mpi_pack_ok or mpi_unpack_ok, respectively. Otherwise they
inform failures: mpi_pack_error or mpi_unpack_error, respectively.

MPI_PackSize() is specified in MPIPackSize. After checking parameters, it
returns event pack_size!(ct * dtsize(dt)), where ct and dt stand for the
number and datatype of items in the buffer. Event mpi_pack_size_error occurs
if parameters are incorrect or the size of the package is invalid.

MPI_Bcast() and MPI_Reduce(). MPI_Bcast() and MPI_Reduce() are
specified in MPIBcast and MPIReduce. In the first routine the root process broad-
casts a message to all process in a communicator. The MPI standard does not
establish how the communication takes place, but that each destination process
must have a copy of the message at termination. In order to allow different im-
plementations, the standard specification of broadcast is based on the following
idea: processes with a copy of the broadcast message are in set S, initialized
as {r} where r stands for the rank of the broadcast root; processes without a
copy of the broadcast message are in set D, initialized as diff(MPIRanks, {r});
MPIBcast non-deterministically chooses processes s: S and d: D, uses MPISend
to send the message from s to d, and then update S and D to union (S, {d}) and
diff(D, {d}), respectively; MPIBcast applies that procedure until D is empty.

The specification of MPI_Reduce() is similar: processes with elements yet
not combined are in set S, initialized as diff(MPIRanks,{r}); MPIReduce non-
deterministically chooses processes s,d: S, uses MPISend to send the element
from s to d, combines the elements, stores the combined value into the input
buffer of d and then updates S to diff(S,{s}); MPIReduce applies that proce-
dure until card(S)==1, when MPIReduce sends the element from u:S to r, which
combines elements and stores the combined value in the output buffer of r.

3.2 Implemented Routines

The specifications shown in this section have been produced from the STORM
implementation and are going to be checked against the MPI standard. I_MPI
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gives the specification of each MPI process implemented for STORM. Every MPI
process is the interleaving of CSP process for the MPI routines:

I_MPI = ((I_MPIInit [|InitEvents|]
((I_MPICommSize ||| I_MPICommRank ||| I_MPISend |||
I_MPIRecv ||| I_MPIPack ||| I_MPIUnpack ||| I_MPIPackSize)
[|CollectiveOpEvents|] (I_MPIBcast ||| I_MPIReduce)))

\ HiddenEvents)[|FinalizeEvents|] I_MPIFinalize

I_MPIInit uses events InitEvents to inform about ranks and initialization.
I_MPIBcast and I_MPIReduce uses events CollectiveOpEvents to synchro-
nize themselves with I_MPISend and I_MPIRecv during collective communi-
cations. On the other hand, I_MPIFinalize uses events FinalizeEvents to
specify that the execution of all the other processes cannot be interleaved. Fi-
nally, HiddenEvents are events hidden from external agents because they rep-
resent internal communications, such as informing about ranks and the MPI
environment, and are also used to integrate individual and collective communi-
cations.

MPI_Init() and MPI_Finalize(). I_MPIInit initializes the MPI environ-
ment, sets the rank and notice the initialization. Other routines use rank and
initiated to know the rank and the state of the environment, respectively.

I_MPIInit = mpi_init -> mpi_rank?r -> mpi_init_ok -> On(r)
[] initiated!false -> I_MPIInit

On(r) = initiated!true -> On(r)
[] rank!r -> On(r) [] mpi_init -> mpi_init_error -> On(r)

In the opposite, I_MPIFinalize finalizes the MPI environment and controls
the non-interleaved execution of processes for the other MPI routines:

I_MPIFinalize =
mpi_init -> ( mpi_init_ok -> I_MPIFinalize

[] mpi_init_error -> I_MPIFinalize)
[] mpi_comm_size?comm?size -> (mpi_comm_size_ok?s -> I_MPIFinalize

[] mpi_comm_size_error ->
I_MPIFinalize)

[]...[] mpi_finalize -> SKIP

Each routine has a specification process that synchronises with I_MPIFinalize.

MPI_Comm_Size() and MPI_Comm_Rank(). Parameterized routines
use checking processes to consult the state of the MPI environment and to check
parameters (named as Check_Comm_Size, Check_Comm_Rank, Check_Send and
so on). Those checking processes either return true to indicate that execution
conditions are satisfied or false otherwise. Next, we present I_MPICommSize to
illustrate the general structure used in the specification:
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I_MPICommSize =
((Check_Comm_Size [|Comm_SizeEvents|] Comm_Size) \ {|check_comm_size|})

Comm_Size = mpi_comm_size?comm?size -> check_comm_size?x ->
(if x then mpi_comm_size!MPI_COMM_WORLD_SIZE -> Comm_Size
else mpi_comm_size_error -> Comm_Size)

Comm_Size synchronizes with Check_Comm_Size to make sure that the execu-
tion conditions are satisfied and then returns the size of the communicator. Re-
member that only the communicator MPI_COMM_WORLD is supported in STORM.
The specification of MPI_Comm_Rank() is similar.

MPI_Send() and MPI_Recv(). I_MPISend specifies the asynchronous send
routine implemented in STORM. It can be called by the user or by collective
communication routines. Event mpi_send and mpi_csend describes user calls
and calls from collective communication routines, respectively.

I_MPISend = (((Send [|SendEvents|] Check_Send)
[|PackEvents|] PackHeading) \HiddenSendEvents)

Send = mpi_send?bf?ct?dt?dest?tag?comm ->
SendOp(bf, ct, dt, dest, tag, comm, PP)

[] mpi_csend?bf?ct?dt?dest?tag?comm ->
SendOp(bf, ct, dt, dest, tag, comm, CL)

SendOp(bf, ct, dt, dest, tag, comm, k) = check_send?x ->
(if x then

pack_msg!bf.ct.dt.dest.tag.comm ->
pack_ok?m -> SendPks(m, ct, dt, dest, tag, comm);
(k == PP & mpi_send_ok -> Send [] k == CL & mpi_csend_ok -> Send)

else (k == PP & mpi_send_error -> Send
[] k == CL & mpi_csend_error -> Send))

SendOp sends the message in fact. It uses PackHeading to prepare the mes-
sage (pack_msg) and receive the message produced (pack_ok). Next, SendPks
splits the message into packages, transmits them across the NoC and inserts the
message into the buffer of the destination.

I_MPIRecv specifies MPI_Recv(). It executes Recv to distinguishes individual
(mpi_recv) and collective receives (mpi_crecv) and then executes RecvOp.

I_MPIRecv = ((Recv [|RecvEvents|] Check_Recv)\ HiddenRecvEvents)
Recv = mpi_recv?bf?ct?dt?src?tag?comm -> RecvOp (bf,ct,dt,src,tag,PP)

[] mpi_crecv?bf?ct?dt?src?tag?comm -> RecvOp (bf,ct,dt,src,tag,CL)
RecvOp (bf,ct,dt,src,tag,k) = check_recv?x ->

(if x then RecvPks(ct,dt); ReadBuf(src, tag,(ct* dtsize(dt)), k);Recv
else mpi_recv_error -> Recv)

RecvOp performs verifications, receives the packages transmitted on the NoC
(RecvPks) and reads the message from the MPI buffer (ReadBuf). ReadBuf uses
the rank to reads the appropriate message. The received data is made available
with mpi_recv_ok (individual receive) and mpi_crecv_ok (collective receive).
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MPI_Pack(), MPI_Unpack() and MPI_PackSize. Processes I_MPIPack,
I_MPIUnpack and I_MPIPackSize specify the implementation of MPI_Pack(),
MPI_Unpack() and MPI_PackSize(). Those processes are similar to the ones
for the standard behaviors of those routines and therefore are not presented here.

MPI_BCast() and MPI_Reduce(). I_MPIBCast and I_MPIReduce specify
the collective communication routines. Their implementations are inspired on
the recursive doubling technique and rely on I_MPISend and I_MPIRecv.

I_MPIBcast = (((BCast [|BCastEvents|] Check_BCast)
[|BCastBufEvents|] BCastBuf) \ HiddenBCastEvents)

BCast = mpi_bcast?bf?ct?dt?root?comm -> check_bcast?x ->
(if x then rank?r -> (BCastRecv (bf, ct, dt, root, comm, r);

(access_buf?nb -> (Dest1 (nb, ct, dt, root, comm, r);
Dest2 (nb, ct, dt, root, comm, r))

[] root_process -> (Dest1 (bf, ct, dt, root, comm, r);
Dest2 (bf, ct, dt, root, comm, r)));

(mpi_bcast_ok -> BCast))
else mpi_bcast_error -> BCast)

BCast verifies parameters and retrieves the rank r. Next, it assumes r is not
the root and tries to receive the message from root, in BCastRecv. BCast then
synchronizes with BCastBuf to choose either access_buf or root_process, in
order to determine the buffer with the contents to be broadcast (nb or bf).
Non-root process uses access_buf to access the buffer nb. The root process is
indicated by root_process and broadcasts the contents of bf. Finally, Dest1
and Dest2 uses I_MPISend to send the contents of the chosen buffer to pro-
cesses with ranks (r * 2) and (r*2+1), respectively. Successful and unsuccessful
terminations are indicated by events mpi_bcast_ok and mpi_bcast_error, re-
spectively.

I_MPIReduce = ((((Reduce [|ReduceOpEvents|] ReduceOp)
[|EvtsReduce|] Check_Reduce)

[|ReduceBufEvents|] ReduceBuf) \HiddenReduceEvents)
Reduce = mpi_reduce?sb?rb?ct?dt?op?root?comm -> check_reduce?x ->

(if x then rank?r -> operand!sb -> (RecvOp1(rb,ct,dt,root,comm,r);
(access_buf?nb1 -> operator!(nb1,op) ->

RecvOp2 (nb1, ct, dt, root, comm, r)
[] no_src -> RecvOp2 (rb, ct, dt, root, comm, r));
((access_buf?nb2 -> operator!(nb2, op) -> SKIP [] no_src -> SKIP);
(result?res -> ReduceSend (res, ct, dt, root, comm, r))))

else mpi_reduce_error -> Reduce)

Reduce first verifies parameters, access the rank r of the process and uses the
contents of buffer sb as the first operand of the reduction (event operand, syn-
chronized with ReduceOp). Next, it tries to receive the operand sent by the first
source in RecvOp1. Reduce then synchronizes with ReduceBuf on access_buf to
determine if the first source could be found. If so, Reduce applies the operator
(event operator, synchronized with ReduceOp). Otherwise, Reduce tries to read
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the operand sent by the second source (RecvOp2) and operate over it. If there
is no a second source, Reduce just skips. Finally, the reduction result is read on
result (synchronized with ReduceOP) and sent to the root by ReduceSend.

3.3 Verification

In this work, we used FDR to check the MPI implementation against the MPI
standard. Furthermore, we also checked if the implementation is deterministic,
deadlock free and livelock free. Verifications were performed with FDR version
2.82 on a 1.67 GHz Intel Core 2 Duo with 2GB of RAM.

The implementation I_MPI was proved to be deterministic. This is due to the
fact that the test was done with a single instance of the library. For this reason,
the value of rank is always the same. Otherwise, if we run the check with more
than one instance of the library we get a non-deterministic system because the
value of the rank for different execution are non-deterministically chosen. This,
however, is not an incorrect behavior because different rank values do not affect
the behavior of the other routines. The next verification showed us that the
implementation I_MPI is not deadlock free. This was due to the fact that the
standard specifies that when a process concludes the MPI environment, no other
event may be executed. So, if the event mpi_finalize happens, no other event
is accepted characterizing a deadlock. After that, the implementation I_MPI was
proved to be livelock free. Finally, we checked that the implementation I_MPI
behaves accordingly (refines) the specification of the standard. All these checks
were achieved in a relatively quick interval as shown in Table 1, where we present
the data of the analysis like time spent in each verification and the number of
states investigated by FDR to yield the answer.

Table 1. FDR Analysis Data

Assertion Time (s) Number of States
assert I_MPI :[ deterministic [FD] ] 110 6914
assert I_MPI :[ deadlock free [FD] ] 110 842

assert I_MPI :[ divergence free ] 108 6914
assert MPI [FD= I_MPI 150 6914

As expected, the time spent in the verification of properties like non-determin-
ism, deadlock freedom and livelock freedom were almost the same since the states
explored were those of the implementation only. Nevertheless, the refinement
check took longer because both the refinement and the implementation states
are explored and compared. The table also shows that the implementation state
space contains 6914 possibilities, which would have to be manually explored if
it were not for an automatic model checking as we did here.
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4 Related Work

The formalization of MPI is found in many works. In [13], the authors present
the formal specification of 42 MPI routines in TLA+ [14], clarifying the points
omitted in the informal MPI description. The specification of that set of routines
is augmented in [15]. The work presented in [16,17,18] is focused on modeling
and verifying MPI programs instead of MPI routines themselves. Such approach
is mainly interested in detecting deadlocks. In [19], Carter and Gardner present a
framework (CSP4MPI) for message-passing high-performance computing (HPC)
programming, which is designed to hide the complexity of parallel programming
for HPC. Their work focused on the development of HPC programs instead of
guaranteeing the correctness of a particular MPI implementation, as done in this
paper. Carter and Gardner provide a CSP abstraction layer on the top of the
MPI primitives. For that, they developed a C++ library, focused on LAM/MPI
[20], that provides a CSP-based process model and a set of candidate solutions
for HPC programmers not familiarized with CSP. They also proposed a selective
formalism approach in which the CSP-specified code plays the role of a control
backbone that invokes user defined functions that calculate the desired results.

In [21], authors model and verify correctness of parallel algorithms of the Multi
Purpose Daemon (MPD), a parallel process management system consisting of
processes connected by lower-level UNIX operations. MPD is not MPI-specific,
although it is part of some MPI implementations. The work concentrates on
algorithms such as those for daemon ring establishment and barrier mechanisms.
PROMELA is used as the modeling language and SPIN is used for simulation
and verification. On the other hand, our work is concerned with MPI routines
themselves and considers implementation on a MP-SoC platform.

5 Final Remarks

In our work the communication routines were implemented in SystemC and spec-
ified in CSP. Due to the difficulty in representing data in CSP, some routines
were not specified in detail. For example, the specification of routines for packing
and unpacking messages does not describe that the packed and unpacked data
must be the same. Two CSP specifications were presented in this work: one for
the standard behavior of MPI routines and another for the routines implemented
on STORM. Those specifications were produced in a non-automated manner, by
analyzing the informal description of the MPI routines and their implementation
on STORM. So, the proved properties are guaranteed for the implementation
specification, not for the real implementation. FDR was used to verify those
specifications. FDR compared the standard specification with the implementa-
tion specification, with the aim of revealing implementation-specific properties
and casually properties not in conformance with the MPI standard. FDR showed
that the implementation meets the properties of the standard and is a valid re-
finement of the standard specification. Also, it proved that the implementation
is deterministic and livelock free.
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Our work can be improved with the verification of a larger number of prop-
erties of the MPI implementation, the specification of more MPI routines and
also by representing the data handled in MPI routines. In addition, the usage of
tools to automatically translate the source-code of routines into a CSP specifi-
cation can also increase the accuracy of this work. The tool proposed in [13] for
extracting models from C programs endowed with MPI routines gives directions
to the creation of a similar tool for systems written in SystemC.
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Abstract. In this paper, we present a conformance testing theory for
Barbosa’s abstract components. We do so by defining a trace model for
components from causal transfer functions which operate on data flows at
discrete instants. This allows us to define a test selection strategy based
on test purposes which are defined as subtrees of the execution tree built
from the component traces. Moreover, we show in this paper that Bar-
bosa’s definition of components is abstract enough to subsume a large
family of state-based formalisms such as Mealy machines, Labeled Tran-
sition Systems and Input/Output Labeled Transition Systems. Hence,
the conformance theory presented here is a generalization of the stan-
dard theories defined for different state-based formalisms and is a key
step toward a theory of the test of heterogeneous systems.

Keywords: Component based system, Coalgebra, Monad, Trace seman-
tics, Transfert function, Conformance testing, Test purpose.

1 Introduction

The design of complex software systems relies on the hierarchical composition
of subsystems which may be modeled using different formalisms [12]. These sub-
systems can be considered as state-based components whose behavior can be
observed at their interface. In order to model such components in an abstract
way, we use a definition introduced by Barbosa in [1,19]. The interest of this def-
inition is twofold: first, it can be used to describe differents kinds of state-based
formalisms, and second, it extends Mealy machines, which, following Rutten’s
work [11], allows us to define a trace model over components using causal trans-
fer functions. Barbosa defines a component as a coalgebra over the endofunctor
H = T (Out × )In where T is a monad1, and In and Out are two sets of ele-
ments which denote respectively inputs and outputs of the component. Hence,
Barbosa’s definition of a component is an extension of Mealy automata [18],
which are efficient to specify the behavior of components deterministically. The
1 The definitions and notations used in this paper are recalled in Section 2.
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role of the T monad is to take into account in a generic way various computa-
tion structures such as non-determinism, partiality, etc [21]. Therefore, Barbosa’s
definition of a component allows us to model components independently of any
computation structure but also independently of the state-based formalisms clas-
sically used to specify software components. Indeed we show in this paper that
state-based formalisms such as Mealy automata, Labeled Transition Systems
and Input-Output Symbolic Transitions [8,9] can be embedded into Barbosa’s
definition by a suitable choice for the monad T . Moreover, this way of modeling
the behavior of components allows us, following Rutten’s works [11], to define
a trace model over components by causal transfer functions. Such functions are
dataflow transformations of the form: y = F(x, q, t) where x, y and q are respec-
tively the input, output and state of the component under consideration, and t
stands for the time which is considered here as discrete.

Indeed, defining a trace model from causal functions allows us, first to show
the existence of a final coalgebra in the category of coalgebras over a signature
T (Out× )In under some sufficient conditions on the monad T , and second, to
define a conformance testing theory for components, which is the main contri-
bution of this paper. Final coalgebras are important because their existence is
the key of co-induction, a powerful reasoning principle. Following some previous
works by some authors of this paper [9], we define test purposes as particular
subtrees of the execution tree built from our trace model for components. Then,
we define an algorithm for generating test cases from a test purpose. Like in [9],
this algorithm is given as a set of inference rules. Each rule is dedicated to the
handling of an observation of the system under test (SUT ) or of a stimulation
sent by the test case to the SUT .

The paper is structured as follows: Section 2 recalls the basic notions of the
categorical theory of coalgebras and monads that are used in this paper. Then,
Section 3 recalls Barbosa’s definition of components and introduces our trace
model from causal transfer functions. The formalization of components as coal-
gebras allows us to extend standard results connected to the definition of a
terminal component. Section 4 presents our conformance testing theory for com-
ponents, and Section 5 gives the inference rules for generating test cases.

2 Preliminaries

This paper relies on many terms and notations from the categorical theory of
coalgebras and monads. We briefly introduce them here, but interested readers
may refer to textbooks such as [2,7,17].

2.1 Categories, Functors and Natural Transformations

A category C is a mathematical structure consisting of a collection of objects
Obj(C) and a collection of maps or morphisms Hom(C). Each map f : X → Y
has a domain X ∈ Obj(C) and a codomain Y ∈ Obj(C).
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Maps may be composed using the ◦ operation, which is associative. For each
object X ∈ Obj(C), there is an identity map idX : X → X which is neutral for
the ◦ operation: for any map f : X → Y , one has f ◦ idX = f = idY ◦ f .

An object I ∈ Obj(C) is initial if for any object X ∈ Obj(C), there is a unique
morphism f : I → X in Hom(C). Conversely, an object F ∈ Obj(C) is final if for
any object X ∈ Obj(C), there is a unique morphism f : X → F in Hom(C).

Given two categories C and D, a functor F : C → D consists of two mappings
Obj(C) → Obj(D) and Hom(C)→ Hom(D), both written F , such that:

– F preserves domains and codomains:
if f : X → Y is in C, F (f) : F (X)→ F (Y ) is in D

– F preserves identities: ∀X ∈ C, F (idX) = idF (X)
– F preserves composition:
∀f : X → Y and g : Y → Z in C, F (g ◦ f) = F (g) ◦ F (f) in D.

Given two functors F,G : C → D from a category C to a category D, a natu-
ral transformation ε : F ⇒ G associates to any object X ∈ C a morphism
εX : F (X) → G(X) in D, called the component of ε at X , such that for every
morphism f : X → Y in C, we have εY ◦ F (f) = G(f) ◦ εX .

2.2 Algebras and Coalgebras

Given an endofunctor F : C → C on a category C, an F -algebra is defined
by a carrier object X ∈ C and a morphism α : F (X) → X . In this categorical
definition, F gives the signature of the algebra. For instance, with 1 denoting the
singleton set {�}, if we consider the functor F = 1 + which maps X �→ 1 +X ,
the F -algebra (N, [0, succ]) is Peano’s algebra of natural numbers, with the usual
constant 0 : 1→ N and constructor succ : N → N.

Similarly, an F -coalgebra is defined by a carrier object X ∈ C and a mor-
phism α : X → F (X). In the common case where C is Set, the category of sets,
the signature functor of an algebra describes operations for building elements
of the carrier object. On the contrary, in a coalgebra, the signature functor de-
scribes operations for observing elements of the carrier objet. For instance, a
Mealy machine can be described as a F -coalgebra (S, 〈out, next〉) of the functor
F = (Out× )In with S, In and Out the sets of states, inputs and outputs.

2.3 Induction and Coinduction

An homomorphism of (co)algebras is a morphism from the carrier object of
a (co)algebra to the carrier object of another (co)algebra which preserves the
structure of the (co)algebras. On the following commutative diagrams, f is an
homomorphism of algebras and g is an homomorphism of coalgebras:

F (X) F (Y )

X Y

F (f)

f

α β

Z U

F (Z) F (U)

g

F (g)

δ γ
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F -algebras and homomorphisms of algebras constitute a category Alg(F ).
Similarly, F -coalgebras and homomorphisms of coalgebras constitute a category
CoAlg(F ). If an initial algebra exists in Alg(F ), it is unique, and its structure
map is an isomorphism. The uniqueness of the homomorphism from an initial
object to the other objects of a category is the key for defining morphisms
by induction: giving the structure of an F -algebra (X, β) defines uniquely the
homomorphism f : I → X from the initial F -algebra (I, α) to this algebra.

Conversely, if a final coalgebra exists in CoAlg(F ), it is unique, and its struc-
ture map is an isomorphism. The uniqueness of the homomorphism from any
object to a final object of a category is the key for defining morphisms by coinduc-
tion: giving the structure of an F -coalgebra (Y, δ) defines uniquely the morphism
f : Y → F from this coalgebra to the final F -coalgebra (F, ω).

2.4 Monads

Monads [17] are a powerful abstraction for adding structure to objects. Given
a category C, a monad consists of an endofunctor T : C → C equipped with
two natural transformations η : idC ⇒ T and μ : T 2 ⇒ T which satisfy the
conditions μ ◦ Tη = μ ◦ ηT = idC and μ ◦ Tμ = μ ◦ μT :

T 2 T T 2

T

Tη ηT

idC
μ μ

T 3 T 2

T 2 T

Tμ

μT

μ

μ

η is called the unit of the monad. Its components map objects in C to their
naturally structured counterpart. μ is the product of the monad. Its components
map objects with two levels of structure to objects with only one level of struc-
ture. The first condition states that a doubly structured object ηT (X)(t) built by
η from a structured object t is flattened by μ to the same structured object as
a structured object T (ηX)(x) made of structured objects built by η. The second
condition states that flattening two levels of structure can be made either by
flattening the outer (with μT (X)) or the inner (with T (μX)) structure first.

Let us consider a monad built on the powerset functor P : Set → Set. We
use it to model non-deterministic state machines by replacing the target state
of a transition by a set of possible states. The component ηS : S → P(S) of
the unit of this monad has to build a set of states from a state. We can choose
ηS : σ �→ {σ}. The component μS : P(P(S)) → P(S) of the product of the
monad has to flatten a set of sets of states into a set of states. For a series of
sets of states (si), ∀i, si ∈ P(S), we can choose μS : {s1 . . . si . . .} �→ ∪si.

Moreover, monads have also been used to represent many computation situ-
ations such as partiality, side-effects, exceptions, etc [21].
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3 Transfer Functions and Components

In this section, we use the definition given by Barbosa in [1,19] to define com-
ponents, i.e. as coalgebras of the Set endofunctor T (Out × )In where In and
Out are the sets of respectively input and output data and T is a monad. As we
will see in Section 3.2, the interest of Barbosa’s definition of components is that
it is abstract enough to unify in a same framework a large family of formalisms
classically used to specify state-based systems, such as Mealy machines, Labelled
Transition Systems (LTS), Input-Output Labelled Transition Systems (IOLTS),
etc. Similarly to Rutten’s works in [11], we denote the behavior of a component
by a transfer function.

3.1 Transfer Function

In the following, we note ω the least infinite ordinal, identified with the corre-
sponding hereditarily transitive set.

Definition 1 (Dataflow). A dataflow over a set of values A is a mapping
x : ω → A. The set of all dataflows over A is noted Aω.

Transfer functions, which we use to describe the observable behavior of compo-
nents, can be seen as dataflow transformers satisfying the causality condition in
a standard framework [24], that is the output data at index n only depends on
input data at indexes 0, . . . , n.

Definition 2 (Transfer function). Let T be a monad. Let In and Out be
two sets denoting, respectively, the input and output domains. A function F :
Inω −→ Outω is a transfer function if, and only if it is causal, that is:

∀n ∈ ω, ∀x, y ∈ Inω, (∀m, 0 ≤ m ≤ n, x(m) = y(m)) =⇒ F(x)(n) = F(y)(n)

3.2 Components

Definition 3 (Components). Let In and Out be two sets denoting, respec-
tively, the input and output domains. Let T be a monad. A component C is
a coalgebra (S, α) for the signature H = T (Out × )In : Set → Set with a
distinguished element s0 denoting the initial state of the component C.

Example 1. We illustrate the notions and results previously mentioned with
the simple example of a coffee machine M modeled by the transition diagram
shown on Figure 1. The behavior of M is the following: from its initial state
STDBY, when it receives a coin from the user, it goes into the READY state.
Then, when the user presses the “coffee” button, it either serves a coffee to
the user and goes to the STDBY state, or it fails to do so, refunds the user
and goes to the FAILED state. The only escape from the FAILED state is
to have a repair. In our framework, this machine is considered as a compo-
nent M = (S, s0, α) over the signature2 Pf (Out × )In. The state space is
2 Pf (X) = {U ⊆ X|U is finite} is the finite powerset of X.
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S = {STDBY,READY,FAILED} and s0 = STDBY. The sets of inputs and
outputs are In = {coin, coffee, repair} and Out = {⊥, served, refund}. Finally,
the transition function α : S −→ Pf

(
{⊥, served, refund} × S

){coin,coffee,repair} is
defined as follows:⎧⎨

⎩
α(STDBY)(coin) =

{
(⊥,READY)

}
α(READY)(coffee) =

{
(served, STDBY), (refund,FAILED)

}
α(FAILED)(repair) =

{
(⊥, STDBY)

}

STDBY READY FAILED

coin | ⊥

coffee | served

coffee | refund

repair | ⊥

Fig. 1. Coffee machine

Definition 4 (Category of components). Let C and C′ be two components
over H = T (Out × )In. A component morphism h : C → C′ is a coalgebra
homomorphism h : (S, α) → (S′, α′) such that h(s0) = h(s′0).
We note Cat(H) the category of components over H.

Using Definition 3 for components, we can unify in a same framework a large
family of formalisms classically used to specify state-based systems such as Mealy
machines, LTS and IOLTS. Hence, when T is the identity functor Id, the result-
ing component is a Mealy machine. A Labelled Transition System is obtained by
choosing Out = {} and In = Act, a set of symbols standing for actions names,
and the powerset functor P for T . Finally, with the powerset monad P for T , and
with the additional property on the transition function α : S −→ P(Out×S)In:

∀i ∈ In, ∀s ∈ S, (o, s′) ∈ α(s)(i) =⇒ either i = ε or o = ε

we obtain an IOLTS (input and output are mutually exclusive).

3.3 Traces

To associate behaviors to components by their transfer function, we need to
impose the supplementary condition on the monad T that there exists a natural
transformation η−1 : T =⇒ P where P : S �→ P(S) is the powerset functor, such
that: ∀S ∈ Set, ∀s ∈ S, η−1

S (ηS(s)) = {s}.
Most monads used to represent computation situations satisfy the above con-

dition. For instance, for the monad T : S �→ P(S), η−1
S is the identity on sets,

while for the functor T : S �→ S ∪ {⊥}, η−1
S is the mapping that associates to

s ∈ S the singleton {s} and the emptyset for ⊥. The interest of η−1 is to allow
the association of a set of transfer functions to a component (S, α) as its possible
traces. Indeed, we need to “compute” for a sequence x ∈ Inω all the outputs o
after “performing” any sequence of states (s0, . . . , sk) such that sj is obtained
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from sj−1 by x(j − 1). However, we do not know how to characterize sj with
respect to α(sj−1)(x(j − 1)). The problem is that nothing ensures that elements
in α(sj−1)(x(j − 1)) are couples (output, state). Indeed, the monad T takes the
product of a set of output Out and a set of states S and yields another set which
may be different of the structure of Out × S. The mapping η−1

Out×S maps back
to this structure.

In the following, we note η−1
Out×S(α(s)(i))|1 (resp. η−1

Out×S(α(s)(i))|2) the set
composed of all first arguments (resp. second arguments) of couples in α(s)(i).

Definition 5 (Component traces)
Let C be a component over H = T (Out× )In. The Traces from a state s of C is
the whole set of transfer functions Fs : Inω → Outω defined for every x ∈ Inω

such that there exists an infinite sequence of states s0, s1, . . . , sk, . . . ∈ S with
s0 = s and satisfying: ∀j ≥ 1, sj ∈ η−1

Out×S(α(sj−1)(x(j − 1)))|2 and for every
k ∈ ω, Fs(x)(k) = ok such that (ok, sk+1) ∈ η−1

Out×S(α(sk)(x(k)))
Hence, C’s traces are the set of transfer functions Fs0 as defined above.

In the context of our work, we are mainly interested by finite traces. Finite traces
are finite sequences of couples (input|output) defined as follows :

Definition 6 (Component finite traces). Let Fs0 be a trace of a component
C, let n ∈ N. The finite trace of length n Fs0|n associated to Fs0 is the whole
set of the finite sequence 〈i0|o0, . . . , in|on〉 such that there exists x ∈ Inω where
for every j, 0 ≤ j ≤ n, x(j) = ij, and Fs0(x(j)) = oj .
Then, Trace(C) =

⋃
Fs0

⋃
n∈N

Fs0|n defines the whole set of finite traces over C.

4 Conformance Testing for Components

In this section, we examine how we can test the conformance of an implemen-
tation of a component to its specification. In order to compare the behavior of
the implementation to the specification, we need to consider both as compo-
nents over a same signature. However, the behavior of the implementation is
unknown and can only be observed through its interface. We therefore need a
conformance relation between what we can observe on the implementation and
what the specification allows.

4.1 Conformance Relation

The specification Spec of a component is the formal description of its behav-
ior given by a coalgebra over a signature H = T (Out × )In. On the contrary,
its implementation SUT (for System under Test) is an executable component,
which is considered as a black box [3,25]. We interact with the implementa-
tion through its interface, by providing inputs to stimulate it and observing its
behavior through its outputs.

The theory of conformance testing defines the conformance of an implementa-
tion to a specification thanks to conformance relations. Several kinds of relations
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have been proposed. For instance, the relations of testing equivalence and pre-
orders [22,23] require the inclusion of trace sets. The relation conf [4] requires
that the implementation behaves according to a specification, but allows be-
haviors on which the specification puts no constrain. The relation ioconf [26]
is similar to conf, but distinguishes inputs from outputs. There are many other
types of relations [15,20].

conf and ioconf have received most attention by the community of formal
testing because they have shown their suitability for conformance testing. Since
we are dealing with components with input and output, we choose ioconf and
extend it to fit our framework. There are several extentions to ioconf according
to both the underlying type of transition system and the aspect considered to
be tested [8,9,13,5]. Recently, a denotational version of ioconf [27] was redefined
in the Unifying Theories of Programming (UTP) [10].

Definition 7. Let C = (S, s0, α) be a component. Let tr = 〈i0|o0, . . . , in|on〉 be
a finite trace over C, i.e. an element of Trace(C), and let s be a state of S. We
have the two following definitions:

– (C after tr) =
{
s′ | ∃s1, . . . , sn ∈ S,

∀j, 1 ≤ j ≤ n, (oj−1, sj) ∈ η−1
Out×S

(
α(sj−1)(i(j−1))

)
,

and (on, s
′) ∈ η−1

Out×S

(
α(sn)(in)

)}
is the set of reachable states from the state s0 after executing tr

– OutC(s) =
⋃

i∈In

(
{o | ∃s′ ∈ S, (o, s′) ∈ η−1

Out×S

(
α(s)(i)

)
}
)

is the set of the possible outputs in s.

The set OutC(s) can be extended to any set of states S′ ⊆ S, we have :

OutC(S′) =
⋃

s′∈S′

(
OutC(s′)

)

These definitions allow us to define the ioconf relation in our framework:

Definition 8. (ioconf) Let Spec and SUT be two components over the signature
T (Out× )In. The ioconf relation is defined as follows :

SUT ioconf Spec⇐⇒
{
∀tr ∈ Trace(Spec),
OutSUT (SUT after tr) ⊆ OutSpec(Spec after tr)

We should note here that our ioconf definition covers all possible assumptions
that must classically be made in conformance testing practice. For instance, it is
always assumed that implementations are input enabled, that is, at any state, the
implementation must produce an answer for all outputs. This assumption can
naturally be expressed in our framework by considering the transition function
α as total function.
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4.2 Finite Computation Tree

In this section, we define the finite computation tree of a component, which
captures all its finite computation paths:

Definition 9. (Finite computation tree of component) Let (S, s0, α) be a com-
ponent over T (Out× )In. The finite computation tree of depth n of C, noted
FCT (C, n) is the coalgebra (SFCT , s

0
FCT , αFCT ) defined by :

– SFCT is the whole set of C−paths. A C−path is defined by two finite se-
quences of states and inputs (s0, . . . , sn) and (i0, . . . , in−1) such that for ev-
ery j, 1 ≤ j ≤ n, sj ∈ η−1

Out×S

(
α(sj−1)(ij−1)

)
|2

– s0FCT is the initial C−path 〈s0, ()〉
– αFCT is the mapping which for every C−path 〈(s0, . . . , sn), (i0, . . . , in−1)〉

and every input i ∈ In associates T (Γ ) where Γ is the set:

Γ =
{(
o, 〈(s0, . . . , sn, s

′), (i0, . . . , in−1, i)〉
)
| (o, s′) ∈ η−1

Out×S

(
α(sn)(i)

)}
In this definition, SFCT is the set of the nodes of the tree. s0FCT is the root of the
tree. Each node is represented by the unique C-path 〈(s0, . . . , sn), (i0, . . . , in−1)〉
which leads to it from the root:

s0
i0

s1
i1

. . .
in−2

sn−1
in−1

sn

αFCT gives, for each node p and for each input i, the set of nodes Γ that can be
reached from p when the input i is submitted to the component.

4.3 Test Purpose

In order to guide the test derivation process, test purposes can be used. A test
purpose is a description of the part of the specification that we want to test
and for which test cases are to be generated. In [6] test purposes are described
independently of the model of the specification. On the contrary, following [9],
we prefer to describe test purposes by selecting the part of the specification
that we want to explore. We therefore consider a test purpose as a tagged finite
computation tree of the specification. The leaves of the FCT which correspond
to paths that we want to test are tagged accept. All internal nodes on such paths
are tagged skip, and all other nodes are tagged 1.

Definition 10. (Test Purpose) Let FCT (C, n) be the finite computation tree of
depth n associated to a component C. A test purpose TP for C is a mapping
TP : SFCT −→ {accept, skip,1} such that:

– there exists a C−path p ∈ SFCT such that TP (p) = accept

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = accept, then:
for every j, 1 ≤ j ≤ n− 1, TP (〈(s0, . . . , sj), (i0, . . . , ij−1)〉) = skip
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– TP (〈s0, ()〉) = skip

– if TP (〈(s0, . . . , sn), (i0, . . . , in−1)〉) = 1, then:
TP (〈(s0, . . . , sn, s

′
n+1, . . . , s

′
m), (i0, . . . , in−1, i

′
n, . . . , i

′
m−1)〉) = 1

for all m > n and for all (s′j)n<j≤m and (i′k)n≤k<m

Example 2. Figure 2 gives a test purpose TP on the finite computation tree of
depth 4 of the coffee machine M whose specification is shown on Figure 1. This
test purpose allows us to ignore the behaviors of M related to failure and repair
and to concentrate on its interaction with a user. When the machine fails and the
user is refunded, we reach node p3 or p6 which are tagged with 1. This indicates
that we are not interested in further behavior from these nodes. p5 is tagged
with accept because it is a leaf which corresponds to an expected behavior. All
nodes leading from the root p0 to this node are tagged with skip because they
are valid prefixes of p5.

p0

p1

p2 p3

p4

p5 p6

coin|⊥

coffee|served coffee|refund

coin|⊥

coffee|served coffee|refund

skip

skip

skip �

skip

accept �

p0 = 〈STDBY, ()〉
p1 = 〈(STDBY, READY),

coin〉
p2 = 〈(STDBY, READY, STDBY),

(coin, coffee)〉
p3 = 〈(STDBY, READY, FAILED),

(coin, coffee)〉
p4 = 〈(STDBY, READY, STDBY, READY),

(coin, coffee, coin)〉
p5 = 〈(STDBY, READY, STDBY, READY, FAILED),

(coin, coffee, coin, coffee)〉
p6 = 〈(STDBY, READY, STDBY, READY, STDBY),

(coin, coffee, coin, coffee)〉

Fig. 2. Test purpose of the coffee machine

In order to build a test purpose on a finite computation tree, we therefore choose
the leaves of the tree which we accept as correct finite behaviors and we tag them
with accept. We then tag every node which represents a prefix of an accepted
behavior with skip. The other nodes, which lead to behaviors that we do not
want to test, are tagged with 1.

5 Test Generation Guided by Test Purposes

Similarly to [9], we propose an approach for test cases selection according to a
test purpose. In order to test the conformance of the SUT to the specification, we
start from the root of a test purpose, we choose a possible input i and submit it to
the SUT . We observe the outputs o and compare them with the possible outputs
in the finite computation tree. If the outputs do not match the specification, the
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verdict of the test is FAIL. Otherwise, if at least one of the nodes which can
be reached with i|o is tagged skip in the test purpose, the test goes on. If the
nodes are tagged 1, further behavior is not of interest, so the test is inconclusive
(INCONC verdict). If one of the nodes is tagged accept, the test succeeds (PASS
verdict). It may happen, due to the non-determinism of the specification, that
the implementation behaved correctly, but we cannot determine if we reached
an accept state or an 1 state. This leads to a WeakPASS verdict.

5.1 Preliminaries

In this section, we introduce some notations and definitions that will be used in
describing our algorithm for generating conformance tests for components.

As mentioned above, a test case is a sequence generated by a test purpose
TP interacting with SUT . This is denoted by [ev0, ev2, . . . , evn][V erdict], where
for all i ∈ [0, . . . , n], evi = i|o is an elementary input-output with i ∈ In ∪ {ε}
and o ∈ Out ∪ {ε}, and V erdict ∈ {FAIL, PASS, INCONC,WeakPASS}.
We added the special symbol ε to the input and output actions to denote a
stimulation of SUT without input and the absence of output for a stimulation.
We note stimobs(i|o) the output o from SUT when stimulating it with input i.

In order to compute the set of reachable states that lead to accept states after a
given input-output sequence, we define a current set of states denoted by CS that
contains a subset of the states of the test purpose. It is initialized to the initial
state of TP . We also introduce three functions to help exploring TP by selecting
paths that lead to accept states. Next(CS, ev) is the set of directly reachable
states from the current set of states CS after executing ev. NextSkip(CS, ev)
is the set of states in Next(CS, ev) from which it is possible to reach accepting
states, and NextPass(CS, ev) is the set of states in Next(CS, ev) which are
labelled by accept.

Definition 11. Let TP : SFCT → {accept, skip,1} be a test purpose for a
component C, ev = 〈i|o〉 an event, and S′ a subset of SFCT :

– Next(S′, ev) =
⋃

s′∈S′
({s | (o, s) ∈ η−1

Out×SF CT
(αFCT (s′)(i))}),

– NextSkip(S′, ev) = Next(S′, ev)
⋂
TP (S′)|skip

,

– NextPass(S′, ev) = Next(S′, ev)
⋂
TP (S′)|accept

.

with TP (S′)|tag = {s′ ∈ S′ | TP (s′) = tag}

5.2 Inferences Rules

We define our test case generation algorithm as a set of inferences rules. Each
rule states that under certain conditions on the next observation of output action
from SUT or the next stimulation of SUT by an input action, the algorithm
either performs an exploration of other states of TP , or stops by generating a
verdict.
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We structure these rules as CS
Results cond(ev), where CS is a set of current

states, Results is either a set of current states or a verdict, and cond(ev) is
a set of conditions including stimobs(ev). Each rule must be read as follows :
Given the current set of states CS, if cond(ev) is verified, then the algorithm
may achieve a step of execution, with ev as input-output elementary sequence.

Our algorithm can be seen as an exploration of the finite computation tree
starting from the initial state. It switches between sending stimuli to the im-
plementation and waiting for output of the implementation according to the
inference rules as long as a verdict is not reached. We distinguish two kinds of
inference rules : exploring rules and diagnosis rules. The first kind, is applied to
pursue the computation of the sequence as long as Result is a set of states. The
second kind leads to a verdict and stops the algorithm.

Rule 0 : Initialization rule3: {s0
F CT }

Rule 1 : Exploration of other states : the emission o after a stimulation by i on
the SUT is compatible with the test purpose but no accept is reached.

CS

Next(CS, ev)
stimobs(ev), NextSkip(CS, ev) �= ∅

Rule 2 : Generation of the verdict FAIL : the emission from the SUT is not
expected with regards to the specification.

CS

FAIL
stimobs(ev), Next(CS, ev) = ∅

Rule 3 : Generation of the verdict INCONC : the emission from the SUT is
specified but not compatible with the test purpose.

CS

INCONC
stimobs(ev),

{
Next(CS, ev) �= ∅,
NextSkip(CS, ev) = NextPass(CS,ev) = ∅

Rule 4 : Generation of the verdict PASS : all next states directly reachable
from the set of current set are accept ones.

CS

PASS
stimobs(ev), NextPass(CS,ev) = Next(CS, ev), Next(CS, ev) �= ∅

Rule 5 : Generation of the verdict WeakPASS : some of the next states are
labelled by accept, but not all of them.

CS

WeakPASS
stimobs(ev),

{
NextPass(CS,ev) ⊂ Next(CS, ev),
NextPass(CS,ev) �= ∅

We should now note that each of these rules except rule 0 can be used in several
ways according to the form of ev. When ev = ε|o, o is produced spontaneously
by SUT . When ev = i|ε, the stimulation of SUT with i does not produce any
output. Finally, when ev = i|o, o is produced by SUT when it is stimulated with
i. These possibilities for ev therefore give rise to a generic algorithm that can
be applied to a wide variety of state-based systems ([6,9,16]) by choosing the
appropriate monad T and input and output sets.
3 This rule is involved only once when starting the algorithm.



196 B. Kanso et al.

5.3 Properties

In order to state that, according to our algorithm, the non-existence of a FAIL
verdict leads to conformance (correctness) and that any non-conformance is de-
tected by a test case ending by a FAIL verdict (completeness), we denote by
CS and EV respectively the whole set of current state sets and the whole set
of input-output elementary sequences used during the application of the set of
inference rules on an implementation SUT according to a test purpose TP . We
then introduce a transition system whose states are the sets of current states
and four special states labelled by the verdicts. Two states are linked by a tran-
sition labelled by an input-output elementary sequence. This transition system
is formally defined as follows :

Definition 12. Let TP be a test purpose for a specification Spec, let SUT be
an implementation, let CS be the whole set of current state sets and let EV be the
whole set of input-output elementary sequences. Then, the execution of the
test generation algorithm on SUT according to TP denoted by TS(TP, SUT )
is the coalgebra (STS , αTS) over the signature ( )EVdefined by :

– STS = CS ∪ Verdict where Verdict is the set whose elements are FAIL,
PASS, INCONC and WeakPASS,

– αTS is the mapping which for every CS ∈ CS and for every ev ∈ EV is
defined as follows :

αTS(CS)(ev) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Next(CS, ev) if NextSkip(CS, ev) �= ∅, NextPass(CS,ev) = ∅
FAIL if Next(CS, ev) = ∅
INCONC if NextSkip(CS, ev) = NextPass(CS,ev) = ∅

and Next(CS, ev) �= ∅
PASS if Next(CS, ev) = NextPass(CS, ev)

and Next(CS, ev) �= ∅
WeakPASS if NextPass(CS,ev) � Next(CS, ev)

and NextPASS(CS, ev) �= ∅

With this definition, test cases are sets of possible traces which can be observed
during an execution of TS(TP, SUT ), and lead to a verdict state.

Definition 13. Let TS(TP, SUT ) = (STS , αTS) be the execution of the test
generation algorithm on SUT according to TP . A test case for TP is a sequence
[ev0, . . . , evn][V erdict] for which there is a sequence of states s0 , . . . , sn ∈ CS
with ∀j, 0 ≤ j < n, sj+1 = αTS(sj)(evj), and there is a verdict state V erdict ∈
Verdict such that V erdict = αTS(sn)(evn). We note st(TP, SUT ) the set of all
possible test cases for TP .

We can now introduce the notation:

vdt(TP, SUT ) = {V erdict | ∃ev0 . . . evn, [ev0 . . . evn|V erdict] ∈ st(TP, SUT )}

Theorem 1. (Correctness and completeness) For any specification Spec and
any SUT :
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– Correctness: If SUT conforms to Spec, for any test purpose TP , FAIL �∈
vdt(TP, SUT ).

– Completeness: If SUT does not conform to Spec, there exists a test pur-
pose TP such that FAIL ∈ vdt(TP, SUT ).

6 Conclusion

In this paper, we have presented a coalgebraic model, a conformance relation
between implementations and specifications, and a test generation algorithm for
component based systems. This work relies on previous works done in [1,19]
for defining software components as coalgebras, and in [9] for defining our test
generation algorithm.

The formalism used in this paper to specify both the specification and sys-
tem the under test is abstract enough to subsume most state-based formalisms.
Hence, the conformance theory defined here over this formalism is de facto a
generalization of standard theories found for different state-based formalisms.

The ability of this framework to model and generate tests for components is
a first step toward the testing of complex (software) systems, made from a huge
number of components that interact altogether. This will require the definition
of integration operators to combine the behavior of components. It should then
allow us to check whether an implementation made of conforming components
combined with integration operators is conform to its specification.

In order to fit the required format of the paper, we omitted some details
(detailed explanations, theorems of existence of final coalgebras, proofs of all
theorems) which are available in an extended version of this paper [14].
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Abstract. Flash memory has become a virtually indispensable component for
mobile devices in today’s information society. However, conventional testing
methods often fail to detect hidden bugs in flash file systems due to the difficul-
ties involved in creating effective test cases. In contrast, the approach of model
checking guarantees a complete analysis, but only on a limited scale. In the previ-
ous work, the authors applied concolic testing to the multi-sector read operation
of a Samsung flash storage platform as a trade-off between the aforementioned
two methods.

This paper describes our continuing efforts to develop an effective and efficient
verification framework for flash file systems. We developed a scalable distributed
concolic algorithm that utilizes a large number of computing nodes. This new
concolic algorithm can alleviate the limitations of the concolic approach caused
by heavy computational cost. We applied the distributed concolic technique to the
multi-sector read operation of a Samsung flash storage platform and compared the
empirical results with results obtained with the original concolic algorithm.

1 Introduction

On the strengths of characteristics such as low power consumption and strong resistance
to physical shock, flash memory has become a crucial component for mobile devices.
Accordingly, in order for mobile devices to operate successfully, it is imperative that the
flash storage platform software (e.g., file system, flash translation layer, and low-level
device driver) operates correctly. However, conventional testing methods often fail to
detect hidden bugs in flash storage platform software, since it is difficult to create ef-
fective test cases (i.e., test cases that provide a check of all possible execution scenarios
generated from complex flash storage platform software). Thus, the current industrial
practice of manual testing does not achieve high reliability or provide cost-effective
testing. As another testing approach, randomized testing can save human effort for test
case generation. However, it does not achieve high reliability, because random input
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data does not necessarily guarantee high coverage of a target program. These deficien-
cies of conventional testing incur significant overhead to manufacturers. In spite of the
importance of flash memory, however, little research work has been conducted to for-
mally analyze flash storage platforms. In addition, most of such work [10,7] has focused
on the specifications of file system design, not real implementation.

In the previous work [12], the authors applied concolic (CONCrete + symbOLIC)
testing [16,8,4] (also known as dynamic symbolic execution [18] or automated white-
box fuzzing [9]) to the multi-sector read operation (MSR) of the Samsung OneNAND
flash storage platform [15] and tested all possible execution paths in an automatic and
exhaustive manner. We used CREST [3] (an open source concolic testing tool for C)
in the experiments and confirmed that concolic testing was effective to detect bugs.
However, CREST consumed a large amount of time to analyze all possible execution
paths, which is not acceptable in an industrial setting. For example, it took more than
three hours to test a MSR with a small explicit environment consisting of 5 physical
units and 6 logical sectors, which generated 2.8 × 106 test cases in total. Although
concolic testing effectively detects bugs through the full path coverage, the required
heavy computational cost prohibits the use of concolic testing in real world applications.

This paper describes our continuing efforts to develop an effective and efficient veri-
fication framework for flash file systems by alleviating the limitations caused by heavy
computational cost. One solution is to develop a scalable distributed concolic algo-
rithm that can utilize a large number of computing nodes with high efficiency. Thus
far, most of automated formal verification techniques such as model checking have
suffered heavy computational costs. Consequently, this heavy overhead often prevents
practitioners from adopting these valuable techniques. The concolic approach is a suit-
able technique to exploit the benefits of parallel computing. We modified the original
concolic algorithm to utilize multiple computing nodes in a distributed manner so as to
reduce time cost significantly. In addition, this distributed concolic algorithm is scal-
able to utilize a large number of computing nodes, achieving linear speedup with an
increasing number of computing nodes. We applied this distributed concolic technique
on the multi-sector read operation (MSR) of a Samsung flash storage platform with 16
computing nodes. This paper reports experimental results obtained with the new con-
colic approach and compares them with the results derived with the original concolic
algorithm to demonstrate the former’s performance gain and scalability.

The organization of this paper is as follows. Section 2 explains the original con-
colic testing algorithm. Section 3 describes the distributed concolic algorithm. Section 4
overviews the multisector-read (MSR) function of the Samsung flash storage platform.
Section 5 presents the experimental results obtained by applying the distributed concolic
algorithm to MSR. Section 6 concludes the paper along with directions for future work.

2 Original Concolic Testing Algorithm

This section presents the original concolic testing algorithm [16,8,4]. Concolic testing
executes a target program both concretely and symbolically [14,19] at the same time.
Concolic testing proceeds via the following five steps:
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1. Instrumentation
A target C program is statically instrumented with probes, which record symbolic
path conditions (PCs) from a concrete execution path when the target program is
executed. Note that PCs correspond to conditional statements (i.e., if) in the target
program.

2. Concrete execution
The instrumented C program is executed with given input values and the concrete
execution part of the concolic execution constitutes the normal execution of the
program. For the first execution of the target program, the initial inputs are as-
signed with random values. For the second execution and onward, input values are
obtained from step 5.

3. Obtaining a symbolic path formula φi

The symbolic execution part of the concolic execution collects symbolic path con-
ditions over the symbolic input values at each branch point encountered along the
concrete execution path. Whenever each statement s of the target program is exe-
cuted, a corresponding probe inserted at s updates the symbolic map of symbolic
variables if s is an assignment statement, or collects a corresponding symbolic path
condition pc, if s is a branch statement. Thus, a complete symbolic path formula
φi of the ith execution is the conjunction of all PCs pc1, pc2, ...pcn where pcj is
executed earlier than pcj+1 for all 1 ≤ j < n.

4. Generating a symbolic path formula φ′i for the next input values
Given a symbolic path formulaφi obtained in Step 3, to obtain the next input values,
φ′i is generated by negating the path condition pcj (initially j = n) and removing

Input:
path: a sequence of PCs executed in the previous execution
neg limit: a position of a PC in path beyond which PCs should not be negated
Output:
a set of generated test cases (i.e., I’s of line 7)

1 Concolic(path, neg limit) {
2 j =| path | ;
3 while j >= neg limit do
4 // φ is a symbolic path formula of path
5 // pck is kth path condition of path and pc1 is executed first
6 φ = pc1 ∧ ... ∧ pcj−1 ∧ ¬pcj ;
7 I = SMT Solver(φ) // returns NULL if φ is unsatisfiable
8 if I is not NULL then
9 path′ = execute a target program on I ;

10 Concolic(path′, j + 1);
11 end
12 j = j − 1;
13 end
14 }

Algorithm 1. Original concolic algorithm
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the subsequent PC (i.e., pcj+1, ...pcn) of φi. If φ′i is unsatisfiable, another path
condition pcj−1 is negated and the subsequent PCs are removed, until a satisfiable
path formula is found. If there are no further available new paths, the algorithm
terminates.

5. Selecting the next input values
A constraint solver such as a Satisfiability Modulo Theory (SMT) solver [17] gen-
erates a model that satisfies φ′i. This model decides concrete next input values and
the entire concolic testing procedure iterates from Step 2 again with these input
values.

Algorithm 1 describes the original concolic algorithm in detail, which corresponds
to Step 2 to Step 5. Algorithm 1 negates all PCs of a given path one by one in
descending order (see line 3 to line 13) and new paths (path′ in line 9) are ana-
lyzed recursively (see line 10). To prevent redundant analysis of a given path, subse-
quent recursive Concolic() negates PCs of path′ up to neg limit th PC (i.e., only
pc|path′|, pc|path′|−1, ..., pc|neg limit| of path′ are negated one by one). Note that this
concolic algorithm operates in a similar manner to the depth first order (DFS) traversal
of the execution tree of a target program.

3 Distributed Concolic Algorithm

This section describes a distributed concolic algorithm that can utilize a large number
of computing nodes. The main concept underlying the new algorithm is based on the
feature that symbolic path formulas in the loop (line 3 to line 13 of Algorithm 1) of the
original concolic algorithm are analyzed independently. Therefore, in order to analyze
these symbolic path formulas in a distributed manner, Algorithm 2 generates and stores
symbolic path formulas in queuepf (line 15) without analyzing these symbolic path
formulas recursively (line 10 of Algorithm 1). If queuepf is empty (exiting the loop of
line 5 to line 25) and there are no more paths to analyze in all distributed nodes, the
algorithm terminates (line 31). Otherwise, the current node requests a symbolic path
formula from another node n′ (line 27) and receives a symbolic path formula from n′

(line 28). The received symbolic path formula is then added into queuepf (line 29)
and the algorithm continues from line 5 again. If the current node receives a request
for symbolic path formulas (line 17), it sends one from queuepf (lines 19 and 20)
immediately as long as queuepf is not empty.1

Note that communication between nodes occurs only when queuepf is empty. Since
queuepf is non-empty for most of the analysis time, the number of communications
is small compared to the number of analyzed symbolic path formulas. In addition, the
communicated message contains only one symbolic path formula, whose size is small
(proportional to the length of the corresponding execution path). Furthermore, this al-
gorithm is not affected by the complexity and/or characteristics of a target program.
Therefore, Algorithm 2 is scalable to utilize a large number of computing nodes with-
out performance degradation.

1 In a real implementation, there is a server to coordinate communications between computing
nodes; this is not described in this paper for the sake of providing a simple description.
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Input:
orig path: a sequence of PCs executed in the previous execution
Output:
a set of generated test cases (i.e., I’s of line 12)

1 DstrConcolic(orig path) {
2 queuepf = ∅; // queue containing symbolic path formulas
3 Add (orig path, 1) to queuepf ;
4 repeat
5 while queuepf is not empty do
6 Remove (path, neg limit) from queuepf ;
7 j =| path |;
8 while j >= neg limit do
9 // φ is a symbolic path formula of path

10 // pck is kth path condition of path and pc1 is executed first
11 φ = pc1 ∧ ... ∧ pcj−1 ∧ ¬pcj ;
12 I = SMT Solver(φ); // returns NULL if φ is unsatisfiable
13 if I is not NULL then
14 path′ = execute the target program on I ;
15 Add (path′, j + 1) to queuepf ;
16 end
17 if there is a request for a symbolic path formula from other node n then
18 if queuepf is not empty then
19 Remove (path′′, neg limit′′) from queuepf ;
20 Send (path′′, neg limit′′) to n;
21 end
22 end
23 j = j − 1;
24 end
25 end
26 if there are uncovered paths in any distributed node then
27 Send a request for a symbolic path formula to n′ whose queuepf is not empty;
28 Receive (path, neg limit) from n′;
29 Add (path, neg limit) to queuepf ;
30 end
31 until all execution paths are covered;
32 }

Algorithm 2. Distributed concolic algorithm

4 Overview of Multi-sector Read Operation

Unified storage platform (USP) is a software solution to operate a Samsung flash mem-
ory device [15]. USP allows applications to store and retrieve data on flash memory
through a file system. USP contains a flash translation layer (FTL) through which data
and programs in the flash memory device are accessed. The FTL consists of three layers
- a sector translation layer (STL), a block management layer (BML), and a low-level
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device driver layer (LLD). Generic I/O requests from applications are fulfilled through
the file system, STL, BML, and LLD, in order. MSR resides in STL. 2

4.1 Overview of Sector Translation Layer (STL)

A NAND flash device consists of a set of pages, which are grouped into blocks. A unit
can be equal to a block or multiple blocks. Each page contains a set of sectors.

When new data is written to flash memory, rather than overwriting old data directly,
the data is written on empty physical sectors and the physical sectors that contain the
old data are marked as invalid. Since the empty physical sectors may reside in sepa-
rate physical units, one logical unit (LU) containing data is mapped to a linked list of
physical units (PU). STL manages this mapping from logical sectors (LS) to physical
sectors (PS). This mapping information is stored in a sector allocation map (SAM),
which returns the corresponding PS offset from a given LS offset. Each PU has its own
SAM.

Logical
unit 7

SAM of physical unit 1
Logical offset Physical offset

Physical
unit 4

Physical
unit 1

unit 7

SAM of physical unit 4
Logical offset Physical offsetLogical offset Physical offset

03
12
2

unit 4
LS2

unit 1
LS0
LS1
LS1

Logical offset Physical offset
0
1
2 02

3
LS1
LS0

2 0
3

Fig. 1. Mapping from logical sectors to physical sectors

Figure 1 illustrates a mapping from logical sectors to physical sectors where 1 unit
consists of 1 block and 1 block contains 4 pages, each of which consists of 1 sector.
Suppose that a user writes LS0 of LU7. An empty physical unit PU1 is then assigned
to LU7, and LS0 is written into PS0 of PU1 (SAM1[0]=0). The user continues to write
LS1 of LU7, and LS1 is subsequently stored into PS1 of PU1 (SAM1[1]=1). The user
then updates LS1 and LS0 in order, which results in SAM1[1]=2 and SAM1[0]=3.
Finally, the user adds LS2 of LU7, which adds a new physical unit PU4 to LU7 and
yields SAM4[2]=0.

4.2 Multi-sector Read Operation

USP provides a mechanism to simultaneously read as many multiple sectors as possible
in order to improve the reading speed. The core logic of this mechanism is implemented
in a single function in STL. Due to the non-trivial traversal of data structures for logical-
to-physical sector mapping (see Section 4.1), the function for MSR is 157 lines long and

2 This section is taken from [11].
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highly complex, having 4-level nested loops. Figure 2 describes simplified pseudo code
of these 4-level nested loops. The outermost loop iterates over LUs of data (line 2-
18) until the numScts amount of the logical sectors are read completely. The second
outermost loop iterates until the LSes of the current LU are completely read (line 5-16).
The third loop iterates over PUs mapped to the current LU (line 7-15). The innermost
loop identifies consecutive PSes that contain consecutive LSes in the current PU (line
8-11). This loop calculates conScts and offset, which indicate the number of such
consecutive PSes and the starting offset of these PSes, respectively. Once conScts
and offset are obtained, BML READ rapidly reads these consecutive PSes as a whole
(line 12).

01:curLU = LU0;
02:while(numScts > 0) {
03: readScts = # of sectors to read in the current LU
04: numScts -= readScts;
05: while(readScts > 0 ) {
06: curPU = LU->firstPU;
07: while(curPU != NULL ) {
08: while(...) {
09: conScts=# of the consecutive PSes to read in curPU
10: offse =the starting offset of the consecutive PSes
11: }
12: BML_READ(curPU, offset, conScts);
13: readScts = readScts - conScts;
14: curPU = curPU->next;
15: }
16: }
17: curLU = curLU->next;
18:}

Fig. 2. Loop structures of MSR

For example, suppose that the data is “ABCDEF” and each unit consists of four
sectors and PU0, PU1, and PU2 are mapped to LU0 (“ABCD”) in order and PU3 and
PU4 are mapped to LU1 (“EF”) in order, as depicted in Figure 3(a). Initially, MSR
accesses SAM0 to find which PS of PU0 contains LS0(‘A’). It then finds SAM0[0]=1
and reads PS1 of PU0. Since SAM0[1] is empty (i.e., PU0 does not have LS1(‘B’)),
MSR moves to the next PU, which is PU1. For PU1, MSR accesses SAM1 and finds that
LS1(‘B’) and LS2(‘C’) are stored in PS1 and PS2 of PU1 consecutively. Thus, MSR
reads PS1 and PS2 of PU1 altogether through BML READ and continues its reading
operation.

The requirement property for MSR is that the content of the read buffer should be
equal to the original data in the flash memory when MSR finishes reading, as given by
assert( ∀i.LS[ i]==buf[i]) inserted at the end of MSR.3

3 [13] describes a systematic method to identify this test oracle for MSR.
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Fig. 3. Possible distributions of data “ABCDEF” and “FEDCBA” to physical sectors

In these analysis tasks, we assume that each sector is 1 byte long and each unit has
four sectors. Also, we assume that data is a fixed string of distinct characters (e.g.,
“ABCDE” if we assume that data is 5 sectors long, and “ABCDEF” if we assume that
data is 6 sectors long). We apply this data abstraction, since the values of logical sec-
tors should not affect the reading operations of MSR, but the distribution of logical
sectors into physical sectors does. For example, for the same data “ABCDEF”, the
reading operations of MSR are different for Figure 3(a) and Figure 3(b), since they
have different SAM configurations (i.e., different distributions of “ABCDEF”). How-
ever, for “FEDCBA” in Figure 3(c), which has the same SAM configuration as the data
shown in Figure 3(a), MSR operates in exactly same manner as for Figure 3(a). Thus, if
MSR reads “ABCDEF” in Figure 3(a) correctly, MSR reads “FEDCBA” in Figure 3(c)
correctly too.

In addition, we assume that data occupies 2 logical units. The number of possible
distribution cases for l LSes and n physical units, where 5 ≤ l ≤ 8 and n ≥ 2,
increases exponentially in terms of both n and l, and can be obtained by

n−1∑
i=1

((4×i)C4 × 4!)× ((4×(n−i))C(l−4) × (l − 4)!)

For example, if a flash has 1000 physical units with data occupying 6 LSes, there exist
a total of 3.9 × 1022 different distributions of the data. Table 1 shows the total num-
ber of possible cases for 5 to 8 logical sectors and various numbers of physical units,
respectively, according to the above formula.

Table 1. Total number of the distribution cases

PUs 4 5 6 7 8

l = 5 61248 290304 9.8× 105 2.7× 106 6.4 × 106

l = 6 239808 1416960 5.8× 106 1.9× 107 5.1 × 107

l = 7 8.8× 105 7.3× 106 3.9× 107 1.5× 108 5.0 × 108

l = 8 3.4× 106 4.2× 107 2.9× 108 1.4× 109 5.6 × 109
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MSR has the characteristics of a control-oriented program (4-level nested loops) and
a data-oriented program (large data structure consisting of SAMs and PUs) at the same
time, although the values of PSes are not explicitly manipulated. As seen from Figure 3,
the execution paths of MSR depend on the values of SAMs and the order of PUs linked
to LU. In other words, MSR operates deterministically, once the configuration of the
SAMs and PUs is fixed.

5 Case Study on Paralleized Concolic Testing of the Flash Storage
Platform

In this section, we describe a series of experiments for testing the multisector read
(MSR) operation of the unified storage platform (USP) for a Samsung OneNAND flash
memory [15]. Also, we compare the empirical results of applying distributed concolic
testing with the results of the original concolic testing [12].

Our goal is to investigate the distributed concolic algorithm, focusing on its perfor-
mance improvement and scalability when applied to MSR. We thus pose the following
research questions.

– RQ1: How does the distributed concolic algorithm improve the speed of concolic
testing the MSR code?

– RQ2: How does the distributed concolic algorithm achieve scalability when applied
to the MSR code?

5.1 Environment Model

MSR assumes that logical data are randomly written on PUs and the corresponding
SAMs record the actual location of each LS. The writing is, however, subject to several
constraint rules; the following are some of the representative rules. The last two rules
can be enforced by the constraints in Figure 4.

1. One PU is mapped to at most one LU.
2. If the ith LS is written in the kth sector of the jth PU, then the (i mod m)th offset

of the jth SAM is valid and indicates the PS number k, where m is the number of
sectors per unit (4 in our experiments).

3. The PS number of the ith LS must be written in only one of the (i mod m)th offsets
of the SAM tables for the PUs mapped to the 2 i

m3th LU.

To enforce such constraints on test cases, a test driver/environment model generates
valid (i.e., satisfying the environment constraints) test cases explicitly by selecting a PU
and its sector to contain the l th logical sector (PU[i].sect[j]=LS[l]) and setting
the corresponding SAM accordingly (SAM[i].offset[l]=j).

For example, Figure 3(a) represents the following distribution case:

– LS[0]=‘A’, LS[1]=‘B’, LS[2]=‘C’, LS[3]=‘D’, LS[4]=‘E’, and LS[5]=‘F’.
– PU[0].sect[1]=‘A’, PU[1].sect[1]=‘B’, PU[1].sect[2]=‘C’, PU[2].sect[3]=‘D’,

PU[3].sect[0]=‘E’, and PU[4].sect[1] = ‘F’.
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∀i, j, k (LS[i] = PU [j].sect[k] → (SAM [j].valid[i mod m] = true

& SAM [j].offset[i mod m] = k

& ∀p.(SAM [p].valid[i mod m] = false)

where p �= j and PU [p] is mapped to� i

m
�th LU))

Fig. 4. Environment constraints for MSR

– SAM[0].valid[0]=true, SAM[1].valid[1]=true, SAM[1].valid[2]=true,
SAM[2].valid[3]=true, SAM[3].valid[0]=true, and SAM[4].valid[1]=true (all other
validity flags of the SAMs are false).

– SAM[0].offset[0]=1, SAM[1].offset[1]=1, SAM[1].offset[2]=2, SAM[2].offset[3]
=3, SAM[3].offset[0]=0, and SAM[4].offset[1]=1.

Thus, the environment contraints for i = 2, j = 1, and k = 2 are satisfied as follows:

LS[2] = PU [1].sect[2]→ (SAM [1].valid[2mod 4] = true

& SAM [1].offset[2mod 4] = 2
& SAM [0].valid[2mod 4] = false

& SAM [2].valid[2mod 4] = false

& SAM [3].valid[2mod 4] = false)

5.2 Test Setup for the Experiment

All experiments were performed on 64 bit Fedora Linux 9 equipped with a 3.6 GHz Intel
Core2Duo processor and 16 gigabytes of memory. We utilized 16 computing nodes
connected with a gigabit ethernet switch. We implemented Algorithm 2 in the open
source concolic testing tool CREST [2]. However, since the CREST project is in its
early stage, CREST has several limitations such as lack of support for dereferencing
of pointers and array index variables in the symbolic analysis. Consequently, the target
MSR code was modified to use an array representation of the SAMs and PUs. We
used CREST 0.1.1 (with DFS search option), gcc 4.3.0, Yices 1.0.24 [5], which is an
SMT solver used as an internal constraint solver by CREST for solving symbolic path
formulas. Although CREST does not correctly test programs with non-linear arithmetic,
we could apply CREST to MSR successfully, because MSR contains only linear integer
arithmetic.

To evaluate the effectiveness of parallelized concolic testing (i.e., bug detecting ca-
pability), we applied mutation analysis [1] by injecting the following three types of
frequently occuring bugs (i.e. mutation operators), as we did in our previous study [12].
The injected bugs are as follows:
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1. Off-by-1 bugs

– b11: while(numScts>0) of the outermost loop (line 2 of Figure 2) to
while(numScts>1)

– b12: while(readScts>0) of the second outermost loop (line 5 of Figure 2)
to while(readScts>1)

– b13: for(i=0;i<conScts; i++) of BML READ() (line 12 of Figure 2)
to for(i=0;i<conScts-1;i++)

2. Invalid condition bugs

– b21: if(SAM[i].offset[j]!=0xFF) in the third outermost loop to
if(SAM[i].offset[j]==0xFF)

– b22: readScts=((4-j)>numScts)?numScts:4-j in the innermost
loop to readScts=((4-j)<numScts)?numScts:4-j

– b23: if((firstOffset+nScts)==SAM[i].offset[j]) in the inner-
most loop to if((firstOffset+nScts)!=SAM[i].offset[j])

3. Missing statement bugs

– b31: missing nScts=1 in the second outermost loop
– b32: missing nReadScts-- in the second outermost loop
– b33: missing nLun++ corresponding the line 17 of Figure 2

To evaluate the efficiency of parallelized concolic testing, we measured the total testing
time to cover all possible execution paths.

5.3 Experimental Results

Regarding RQ1: How does the distributed concolic algorithm improve the speed
of concolic testing the MSR code. We performed 4 series of experiments with 4 to 5
PUs with 5 to 6 LSes and with 1, 4, 8, 12, and 16 computing nodes. The total numbers of
test cases generated and corresponding time costs are reported in Table 2. For example,
1.1×105 test cases were generated for MSR with 4 PUs w/ 5 LSes (see the last column
of Table 2). 1 computing node took 643 seconds to generate 1.1 × 105 test cases for
the experiment with 4 PUs and 5 LSes. However, 4, 8, 12, and 16 nodes took only 186,
89, 60, and 45 seconds for the same experiment, respectively (see the second row of

Table 2. Total number of generated test cases and time costs (seconds)

1 4 8 12 16 # test cases

4 PUs w/ 5 LSes 643 186 89 60 45 1.1× 105

4 PUs w/ 6 LSes 3194 919 441 294 222 5.3× 105

5 PUs w/ 5 LSes 3242 927 451 301 225 4.9× 105

5 PUs w/ 6 LSes 19225 5369 2718 1777 1336 2.8× 106
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Table 2). Therefore, compared to the original concolic testing (the second column of
Table 2), the distributed concolic testing reduced time cost significantly.

In a similar manner, we can analyze speedup achieved by the distributed concolic
algorithm. Figure 5 illustrates speedup results with a different number of computing
nodes. For example, with an environment containing 5 PUs and 6 LSes (the last row of
the table in Figure 5), 4 computing nodes completed all testing 3.58 times faster than 1
computing node (3.58 = 19225

5369 ). Similarly, 8, 12, and 16 computing nodes with the same
environment completed concolic testing 7.07, 10.82, 14.39 times faster, respectively.

Node # 4 8 12 16

4 PUs w/
5 LSes

3.46 7.22 10.72 14.29
5 LSes

4 PUs w/
6 LSes

3.48 7.24 10.86 14.39

5 PUs w/
3 50 7 19 10 77 14 41

5 LSes
3.50 7.19 10.77 14.41

5 PUs w/
6 LSes

3.58 7.07 10.82 14.39

(a) Table of speed up ratios for
different numbers of nodes

(b) Graph of speed up ratios for
different numbers of nodes

Fig. 5. Speed-up ratios for different numbers of nodes

Regarding the effectiveness of bug detection, the results of the distributed concolic
algorithm are the same as the ones of the original concolic testing. The distributed
concolic testing detected violations of the requirement property (assert( ∀i.LS[
i]==buf[i])) due to the all 9 bugs in a few seconds. Thus, the distributed concolic
testing reduces time costs significantly without loss of effectiveness compared to the
original concolic testing.

Regarding RQ2:How does the distributed concolic algorithm achieve scalability
when applied to the MSR code. As shown in the table of Figure 5, the efficiency of
parallelism ( speedup

# of nodes ) is almost 90% regardless of the number of nodes. For example,
MSR with an environment consisting of 5 PUs and 6 LSes showed almost the same
parallelism efficiency for different numbers of nodes (see the last row of the table in
Figure 5 where 3.58

4 ≈ 7.07
8 ≈ 10.82

12 ≈ 14.39
16 ≈ 90%). Furthermore, as shown in the

graph of Figure 5, the distributed concolic algorithm achieved almost identical paral-
lelism efficiency regardless of the environment configurations. In other words, 4 PUs
with 5 LSes, 4 PUs with 6 LSes, 5 PUs with 5 LSes, and 5 PUs with 6 LSes achieve al-
most identical parallelism efficiency. This observation indicates that the performance of
the distributed concolic algorithm is not affected by the complexity of a target program
either, which is another advantage of our distributed concolic algorithm.
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Table 3. Overhead due to the distributed concolic testing

Waiting time (%) Communication (%) Waiting +
Communication (%)

4 8 12 16 4 8 12 16 4 8 12 16

4 PUs w/ 5 LSes 2.54 2.63 2.65 2.79 1.09 1.22 1.84 1.72 3.64 3.85 4.49 4.51
4 PUs w/ 6 LSes 2.46 2.56 2.58 2.61 1.31 1.42 1.45 1.78 3.77 3.98 4.03 4.39
5 PUs w/ 5 LSes 2.23 2.28 2.30 2.33 1.49 1.56 1.53 1.21 3.72 3.85 3.83 3.54
5 PUs w/ 6 LSes 2.19 2.11 2.16 2.17 1.15 3.55 1.50 1.46 3.35 5.67 3.66 3.64

Table 4. Numbers of iterations performed by nodes

# nodes (PUs, Node ID Avg Stdev
LSes) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 (4,5) 27.4 31.5 27.0 25.3 27.8 2.6
(×103) (4,6) 122.6 136.6 124.2 151.4 133.7 13.4

(5,5) 117.3 121.1 134.8 116.0 122.3 8.6
(5,6) 771.0 690.0 645.4 670.7 694.3 54.3

8 (4,5) 13.4 14.0 13.0 13.6 14.6 13.5 15.1 14.0 14.0 0.7
(×103) (4,6) 63.5 63.8 63.6 69.6 67.6 62.6 71.5 72.6 66.9 4.0

(5,5) 59.8 68.9 58.5 59.0 59.3 60.4 62.3 60.9 61.1 3.4
(5,6) 335.3 334.5 355.4 332.7 399.1 347.0 332.9 340.2 347.1 22.5

12 (4,5) 8.9 9.2 10.4 8.9 9.2 8.6 9.0 8.8 9.7 10.5 9.2 9.0 9.3 0.6
(×103) (4,6) 42.7 42.9 48.4 42.3 49.3 42.8 45.5 43.0 42.4 41.5 44.2 49.7 44.6 3.0

(5,5) 42.9 39.2 40.8 38.7 40.1 39.3 42.4 40.3 39.5 40.3 39.6 46.2 40.8 2.1
(5,6) 216.2 239.0 219.8 221.6 220.7 239.8 233.0 249.8 272.9 222.0 222.6 219.5 231.4 16.7

16 (4,5) 7.2 7.3 7.4 6.9 7.0 7.2 6.8 6.6 6.3 6.6 6.6 7.4 7.2 7.7 6.4 6.8 7.0 0.4
(×103) (4,6) 32.2 31.8 34.0 32.7 34.1 33.4 32.2 37.3 31.3 37.3 32.6 32.1 32.7 32.1 32.5 36.5 33.4 2.0

(5,5) 30.1 29.4 31.8 29.9 32.1 32.4 29.4 33.3 29.7 29.1 31.6 28.9 29.1 30.4 30.9 31.2 30.6 1.4
(5,6) 167.2 207.5 167.3 189.6 168.5 167.1 166.5 167.9 170.5 176.0 174.4 174.0 165.3 180.3 171.0 163.9 173.6 11.2

We expect that a high parallelism efficiency can be achieved even with a large num-
ber of computing nodes (saying hundreds of thousand computing nodes of cloud com-
puting), since there is little dependency among computing nodes. Communication be-
tween two nodes occurs only when one of the nodes has completely generated and
analyzed all possible subsequent symbolic paths from a given symbolic path (i.e., when
queuepf is empty). Thus, each node can concentrate on its own computational task with
little waiting/blocking for other nodes. For the similar reason, communication costs
caused by the distributed concolic algorithm are also insignificant.

Table 3 describes overhead caused by the distributed concolic algorithm. For exam-
ple, with 4 computing nodes, MSR with an environment model of 4 PUs and 5 LSes
spent 2.54% of the whole execution time (on average) by waiting/idling until it re-
ceived a symbolic path formula from another node (between line 27 and line 28 of
Algorithm 2). In addition, MSR with the same environment spent 1.09% of the whole
execution time for socket communication. Thus, these two overheads of the distributed
concolic algorithm constitute 3.64% of the whole execution time. The remaining 6%
(≈ 10%− 3.64%) of overhead is caused by the increased complexity of the distributed
concolic algorithm such as maintaining queuepf and handling communication at user
process level, etc. Considering that the current implementation of the distributed con-
colic algorithm is not optimized, this overhead can be reduced further.

Another evidence of the scalability of the algorithm can be found in Table 4, which
describes the numbers of iterations (test case generations) performed by the computing
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nodes. For example, with MSR with an environment model of 4 PUs and 5 LSes, nodes
1, 2, 3, and 4 performed 27.4× 103, 31.5× 103, 27.0× 103, and 25.3× 103 iterations,
respectively. The numbers of iterations for different nodes are roughly similar, which
means that an equal amount of work was assigned to each node, which improves global
utilization of computing nodes. Note that time cost for each iteration may vary depend-
ing on the length of a corresponding symbolic path formula. Measured time costs of
nodes (not shown in this paper) are even more identical.

6 Conclusion and Future Work

We have developed a distributed concolic algorithm which can reduce time cost by
utilizing a large number of computing nodes. Furthermore, we have demonstrated
the improved performance of the algorithm through an industrial case study on the
multisector-read operation of a Samsung flash storage platform. We applied the dis-
tributed concolic algorithm to the MSR code and analyzed the approach empirically.
In this case study, the distributed concolic algorithm achieved an order of magnitude
faster testing speed compared to the original concolic algorithm while maintaining the
effectiveness of bug detection capability. Although these experiments were performed
on only 16 computing nodes, we could observe that the algorithm has good charac-
teristics of scalable distributed algorithms such as linear speedup with an increasing
number of nodes, little blocking time, and nominal communication overheads. There-
fore, we expect that the distributed algorithm can alleviate problems caused by heavy
computational costs in a large degree.

We plan to apply the distributed concolic algorithm to target programs on 10,000
nodes of the Amazon EC2 platform [6] to demonstrate the scalability of the algorithm
in a concrete manner. Furthermore, this experiment can suggest a promising direction
of fighting the state space explosion problem of automated verification techniques. Fi-
nally, we will develop a new concolic algorithm for branch coverage for more practical
applications in an industrial setting.
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Abstract. Mondex, an electronic purse, is the first pilot project of the
software verification Grand Challenge to establish the correctness of soft-
ware. Several research groups around the world have applied different for-
mal methods in specifying and analyzing the Mondex since 2006. In this
paper, we present a method to analyze the Sam specification of Mondex
using model checking. Our specification uses Sam that integrates high
level Petri nets and temporal logic. Our analysis method translates the
Sam Mondex specification into a behavior preserving Promela program
and uses Spin to model check the resulting Promela program. Our re-
sults and experiences are discussed, which contributes to the world wide
effort in developing a verified software repository.

Keywords: Mondex, Grand Challenge, Model Checking, High Level
Petri Net, Sam.

1 Introduction

In recent years, both the Computing Research Association in the U.S. and the
UK Computing Research Committee proposed a set of grand challenges in com-
puting sciences. One common grand challenge proposed by the above organi-
zations is on developing dependable software systems [CRC08] [Woo06]. The
Mondex smart card, an electronic purse, was chosen as the 1st pilot project in
2006. The objectives were to demonstrate how research groups can collaborate
and compete in scientific experiments, and to generate artifacts to populate the
verified software repository [VSR07].

Mondex is a payment system, an electronic purse system, based on smart card
technology, which offers an alternative to paying cash for goods and services,
allowing person-to-person payment. In 1999, Mondex was awarded a security
rating of ITSEC Level E6 [WSC+07] - the highest possible rating achievable in
ITSEC (Information Technology Security Evaluation Criteria).

During the development of Mondex, Z was used to specify and to prove the
correctness of the Mondex design [SCW00]. Since no network access was required
for transaction, it demanded critically high security level on each Mondex purse
itself. Z Specifications were used to prove the following security properties of
Mondex:

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 214–229, 2010.
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1. no value may be created in the system: the sum of all the purses’ balances
does not increase; and

2. all value must be accounted for in the system: the sum of all purses’ balances
and lost components does not change.

The security properties were proved manually, which was evaluated by a third
party group, and a sanitised version of the proof was published in 2000. The
proof has critically helped Mondex be granted ITSEC security level 6 , the
highest level.

In [ZLH08], we presented a formal specification of Mondex in Sam [HD02], a
formal software architecture model integrating high-level Petri nets and tempo-
ral logic. In this paper, we present a way using model checking to analyze the
formal specification of Mondex in Sam. This formal specification and verification
contributes to the world wide effort on developing a verified software repository.

2 Specifying Mondex in Sam

A formal specification of Mondex in Sam was developed in [ZLH08]. This section
gives a brief Sam specification of the abstract model.

2.1 Sam

Sam [HD02], an architectural description model based on Petri nets and tempo-
ral logic, is well-suited for modeling distributed systems. A Sam specification is
hierarchical consisting of multiple compositions. Each composition may contain
multiple elements. Each element C = (B,S) has a behavior model B (modeled
in a high level Petri net [HM05]), and a property specification S (defined by a
temporal logic formula). An element is correctly designed if the behavior model
B satisfies the property specification S, denoted by B |= S. The correctness of
a Sam architecture description is defined recursively from the correctness of all
elements.

A high level Petri net B is a tuple (P, T, F, Spec, ϕ,R,L,M0) where (P, T, F )
is the net structure, Spec is the underlying algebraic specification that defines
the static semantics of net elements, and (ϕ,R,L,M0) is the net inscription that
maps net elements to terms in the algebraic specification. ϕ associates each place
in P with a type in Spec. R associates each transition in T with a boolean term
in Spec. M0 is the initial marking which associates each place in P with type
respecting ground terms in Spec. We assume that the reader has some knowledge
of Petri nets and temporal logic, and thus omit their formal definitions, which
can be found in [HD02]. In the sequel, we simply use Petri nets to refer to high
level Petri nets.

2.2 The Abstract Model

In the Z Specification of Mondex [SCW00], ether is used to model the commu-
nication channel. Messages between purses could be lost, and also could be read
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by third parties as there may be somebody eavesdropping, so ether is designed
as lossy and public, all request messages are initially in ether . Each purse inter-
acts with card reader via a connector, contact or contactless. Each purse accepts
input from card reader, which could be either an initial request in ether , or the
message sent out by another purse. Each purse produces an output to ether .

Accordingly in the Sam model of Mondex, two places, msg_in and msg_out ,
are used to model the communication channel, shown in Fig. 1, in which msg_in
contains tokens for input messages, and msg_out contains tokens for output mes-
sages. All request messages are initially in msg_in , and each purse accepts input
messages from msg_in . For output messages, each purse sends them to msg_out .
All messages in msg_in comes from ether , and all messages in msg_out goes
to ether .

msg2'msg1'

A1'

A1 A2'

A2

msg2msg1

AbPurseTransferAbIgnore

msg_out

AbWorld

msg_in

Fig. 1. The Abstract Model

The abstract model has only one atomic operation to transfer money from the
paying purse to the receiving one. It corresponds to transition AbPurseTransfer
in Fig. 1. Transition AbIgnore is introduced in Fig. 1 to handle invalid messages.

The whole world of abstract purses is modeled using the power set of purses,
AbWorld .

The net inscription for the abstract model is given below, which defines the
types of places, constraints of transitions, and the initial marking. The definition
of arc labels are omitted since they are self evident in Fig. 1.

The Types of Places. The type of msg_in contains information of operations
and parameters. An operation can be aNullIn or transfer , and parameters
provide transferring details including the name of from side (paying party), the
name of to side (receiving party), and the value to transfer. The type of msg_in
is thus defined as below.
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OP ={aNullIn, transfer} (1)
ϕ(msg_in) =OP × string × string × N (2)

The type of AbWorld is the power set of purses, in which each purse has 3 fields,
the first field defines the name of each purse, the second one defines balance and
the third one defines lost value.

ϕ(AbWorld) = P(string × N× N) (3)

The type of msg_out is modeled as aNullOut .

ϕ(msg_out) ={aNullOut} (4)

The Constraints of Transitions. The precondition of transition AbIgnore
tests that the message msg1 contains operation aNullIn , and its postcondition
keeps AbWorld unchanged.

R(AbIgnore) =(msg1[1] = aNullIn) ∧ (A1′ = A1) (5)

For transition AbPurseTransfer , its inputs are a message from msg_in denoted
by msg2 and all abstract purses from AbWorld denoted by A2 . R (AbPurseTrans-
fer) is the constraint for transition AbPurseTransfer , which assures the purse
m is the from side and purse n is the to side, and m is not the same purse as
n . It also updates the balance in abstract world.

R(AbPurseT ransfer) = (msg2 [1] = transfer)∧
∃ (m ∈ A2, n ∈ A2) � (
m[1] = msg2[2] ∧ n[1] = msg2[3]
∧msg2[2] �= msg2[3]
∧A2′ = A2 \ {m,n}∪

{(m[1], (m[2]−msg2[4]),m[3]),
(n[1], (n[2] +msg2[4]), n[3])
}

)

(6)

The Initial Marking. Any permissible initial marking can be provided. To
demonstrate the dynamic behavior of our specification, the following initial
marking is used.

M0(msg_in) = {(transfer, 1, 2, 50)}
M0(msg_out) = {}
M0(AbWorld) = {{(P1, 100, 0), (P2, 200, 0), (P3, 150, 0)}}

(7)
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3 Analyzing the Specification in Sam

Model checking is an automatic and efficient method for analyzing finite state
systems, which is well suited for this Sam specification. In Sam, model checking is
to ensure B |= S, that is the behavior model B satisfies the property specification
S. The behavior model B uses high level Petri net, which employs sets and power
sets as the type of places. The property specification S uses linear temporal logic.
Spin uses Promela as its input language to model the behavior, and uses linear
temporal logic to specify the properties. In order to use Spin for model checking
a Sam specification, the behavior model B is translated to Promela code,
and the property specification S remains the same. Translation between formal
models are often useful, various issues with regard to formal model translation
were discussed in [KG02].

3.1 Spin and Promela

Spin [Hol03] is a well known model checking tool used in the verification of finite
state systems. Promela, as the input language of Spin, consists of processes,
channels, and variables. For the channels, there are operations to fetch messages
from them randomly or first-in-first-out, and to fetch the messages with desired
field value. It is also possible to test the existence of desired messages in channels
while not changing anything.

Specifically, single question mark "?" is a Promela operator that returns the
first message in the channel, double question mark "??" is a Promela operator
that returns the first matched message in the channel, "[...]" is a Promela
testing operator returning true or false, while does not block the execution and
does not retrieve messages from the channel, and "<...>" is a Promela channel
poll operator which retrieves a message without removing it from the channel
if a desired message exists in the channel. There is a predefined unary function
in Promela called eval to turn an expression into a value. "!" is a Promela
operator that sends a message to the channel.

3.2 Rules to Translate High Level Petri Net to Promela

This section introduces the rules to translate a high level Petri net to Promela,
with the abstract model of Mondex (Fig. 1) as the example, however, the rules
are also applied to the concrete model of Mondex for model checking discussed
in Section 4. Before discussing the details of rules, we outline the translation by
explaining the mapping from a high level Petri net to Promela code, as shown
in Table 1.

Without the loss of generality, we assume all the types in a Petri net model
are directly definable in Promela in this paper, since we can always make a
type conversion before the translation.

Step 1. Define places as channels. Each place is translated into a Promela
channel; and tokens are translated into messages. Specifically, let p ∈ P be a
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Table 1. Outline of mapping relationships from Petri Nets to Promela

Petri Nets Description

Places Places contain tokens, while in Promela channel contains
messages, thus places are translated into channels.

Transitions Each transition is translated into a Promela inline
function.

Transition constraints The constraints for each transition have 2 parts:
precondition and postcondition.

Initial markings The initial marking is translated to initial messages in the
channel.

place in a Petri net with type ϕ(p) = s1, s2, ..., sn, we define a bounded channel
in Promela as follows.

#define Bound_p const
chan type_p = [Bound_p] of {s1, s2, ..., sn};

where const is a user defined positive integer value. Line 4 in Appendix 4 is a
translation example of place AbWorld in Fig. 1 with type defined in Formula 3.
Line 6 in Appendix 4 is a translation example of place msg_in in Fig. 1 with type
defined in Formula 2. The types of places AbWorld and msg_in are different,
yet both of them are translated into channels, the difference between types of
places is addressed in following Step 2 and Step 3 by using different Promela
operators.

Step 2. Define the inline functions for the precondition of a transition
The inline function works like a usual preprocessor macro. It is introduced here
to offer better translation structure and facilitate automated translation.

Formally, for each transition t ∈ T with constraint:

R(t) = PreCond(t) ∧ PostCond(t) (8)

where PreCond(t) is the precondition of transition t and PostCond(t) is the
postcondition of transition t. R(t) contains basic relational expressions connected
through logical conjunction ∧ or logical disjunction ∨, in which PreCond(t)
contains only variables on input arcs and PostCond(t) contains variables on
output arcs with or without variables on input arcs. Let v ∈ L(p, t) denote a
simple variable in case v does not have a power set type. Let v ∈ S, S ∈ L(p, t),
S has a power set type, v denotes a quantified variable. We assume the first field
of either simple variables or quantified variables be the key field, and for those
variables v containing only one field, each reference of v is viewed as v[1].

We use the constraint (Formula 6) of transition AbPurseTransfer as an ex-
ample in this section, in which the part above the line is the precondition and
the part below the line is the postcondition.
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We define an inline function to check the enabledness of the precondition of
each transition. First, we define a boolean variable t_is_enabled to store the
truth value of the checking for transition t , with initialized value false, refer
to Step 5 below. Second, for the fields of each simple variable or quantified
variable, we define corresponding variables. Let v be the name of simple variable
or quantified variable containing n fields, TY PE(i) be the type of ith field, we
define TY PE(i) v_fieldi; for i ∈ 2..n. For example, we define Line 27-28 in
Appendix 4 for Formula 6.

Table 2. General Mapping from basic relational expressions in the precondition of
each transition in a Petri Net to Promela Expressions

Basic Relational Expression Promela Expressions

v[1] = Exp
where v ∈ L(p, t) , p ∈ P, t ∈ T and v is a simple
variable containing n fields, Exp does not contain
any first field.

type_p ? <eval(Exp),
v_field2, v_field3, .., v_fieldn
>

∃(v ∈ S) � (v[1] = Exp)
where v ∈ S, S ∈ L(p, t) , p ∈ P, t ∈ T and v is a
quantified variable containing n fields, Exp does
not contain the first field of any quantified variable.

type_p ?? [eval(Exp),
v_field2, v_field3, .., v_fieldn
]

Table 2 gives the general mapping for basic relational expressions connected
through logical conjunction ∧ or logical disjunction ∨. We use single question
marks for simple variables such that messages in the channel are retrieved in
FIFO order, and we use double question marks for quantified variables since
existential quantification implies a search throughout the whole power set. We
use "[...]" to test the existence of messages in case a truth value is needed for
if statement and the matched message does not require a copy, and we use
"<...>" to make a guard statement for if statement in Promela, so that only
in case there is a desired message, the statements after the guard statement are
executed and the matched message is copied, for example, in Appendix 4, Line
29 is a guard statement for Line 60, where the matched message is copied to
msg2_field2 to msg2_field4 for each field..

Table 3 gives the mapping for the precondition in Formula 6.
Line 26-37 in Appendix 4 is the resulting Promela code.

Step 3. Define the inline function for the postcondition of a transition
For each transition, once its precondition is met, it can fire. This section introduces
the rules to define an inline function for the postcondition of a transition firing.

In the rules for the precondition, we test enabledness without moving any to-
kens, thus as part of the postcondition we move tokens through input arcs. For
a simple variable v on an input arc a message from the head of channel obtained
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Table 3. Mapping from the precondition in Formula 6 to Promela Expressions

Basic Relational Expression Promela Expressions

msg2[1] = transfer type_msg_in? < eval(transfer),msg2_field2,
msg2_field3, msg2_field4 >

m[1] = msg2[2] type_AbWorld??[eval(msg2_field2), m_field2,
m_field3]

n[1] = msg2[3] type_AbWorld??[eval(msg2_field3), n_field2,
n_field3]

msg2[2] �= msg2[3] msg2_field2 ! = msg2_field3

Table 4. General Mapping from basic relational expressions in the postcondition of
each transition in a Petri Net to Promela Expressions

Basic Relational Expression Promela Expressions

v[1] = Exp
where v ∈ L(p, t) , p ∈ P, t ∈ T , and v is a simple
variable containing n fields.

type_p ? eval(Exp),
v_field2, v_field3, ...,
v_fieldn

S′ = S\{v}
where v ∈ S, S ∈ L(p, t) , S′ ∈ L(t, p) p ∈ P, t ∈ T ,
v is a quantified variable containing n fields,
v[1] = Expression is a part of the precondition.

type_p ?? eval(Exp),
v_field2, v_field3, ...,
v_fieldn

v′ = Exp
where v′ ∈ L(t, p) , p ∈ P, t ∈ T .

type_p ! Exp

S′ = S ∪ {(Exp1, Exp2, ..., Expn)}
where S ∈ L(p, t), S′ ∈ L(t, p) , p ∈ P, t ∈ T .

type_p!Exp1, Exp2, .., Expn

from place p is retrieved, according to the constraint v[1] = Exp in the precondi-
tion. For a simple variable v′ on an output arc, a message is sent to the channel
obtained from place p. For a quantified variable v ∈ S, if S′ = S\{v} is a part of
the postcondition, a message is retrieved by searching throughout the channel
obtained from place p, according to the constraint v[1] = Exp in the precondi-
tion. Besides the cases above, we need to deal with ∪{(Exp1, Exp2, ..., Expn)}
in case S′ = S\{v} ∪ {(Exp1, Exp2, ..., Expn)}is a part of the postcondition,
by sending a message to the channel obtained from place p, using the values
of (Exp1, Exp2, ..., Expn). Table 4 gives the general mapping. After firing the
transition, t_is_enabled is set to false.

Table 5 gives the mapping for the postcondition in Formula 6, in which m[1]
is replaced with msg2_field2 and n[1] is replaced with msg2_field3 as the
precondition since we do not declare variables in Promela for the first field of
each simple variable or quantified variable.

Line 38-47 in Appendix 4 is the resulting Promela code.
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Table 5. Mapping from the postcondition in Formula 6 to Promela Expressions

Basic Relational Expression Promela Code

msg2[1] = transfer type_msg_in?eval(transfer), msg2_field2,
msg2_field3, msg2_field4

A2′ = A2\{m} type_AbWorld??eval(msg2_field2), m_field2,
m_field3;

\{n} type_AbWorld??eval(msg2_field3), n_field2,
n_field3;

∪{(m[1], (m[2]−
msg2[4]), m[3])}

type_AbWorld!msg2_field2,m_field2−
msg2_field4, m_field3;

∪{(n[1], (n[2] +
msg2[4]), n[3])}

type_AbWorld!msg2_field3,n_field2 +
msg2_field4, n_field3;

Step 4. Define an inline function for each transition. Each transition
has its precondition and postcondition, we define an inline function for each
transition t ∈ T using the inline functions for its precondition and postcondition.
Firing a transition is defined as atomic operations using the Promela keyword
atomic .

inline t()
{

is_enabled_t(); /*Set t_is_enabled to true/
false*/

if
:: t_is_enabled -> atomic{fire_t ()}
:: else -> skip
fi

}

For example, Line 48-54 in Appendix 4 is the inline function for transition
AbPurseTransfer in Fig. 1.

Step 5. Define a process for the whole net. The dynamic semantics of
a Petri net is to non-deterministically fire enabled transitions. We define the
following Promela process with a loop to capture the dynamic semantics of a
Petri net.

proctype ModelName(){
bool t1_is_enabled = false;
bool t2_is_enabled = false; ...
bool tn_is_enabled = false;
do

::t1()
::t2() ...
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::tn()
od

}

where T = {t1, t2, ...tn}. For example, we define a process as Line 55-62 in
Appendix 4, for the abstract model of Mondex in Fig. 1.

Step 6. Define the initial marking and run the processes. Let P =
{p1, ..., pn}, for each place p ∈ P , with initial markingM0(p) = {m1,m2, ...,mk}.
We define type_p ! mi for each i, i ∈ 1..k and run the process ModelName .

init {
type_p1!m1;... type_p1!mk1;
...
type_pn!m1;... type_pn!mkn ;
run ModelName()

}

For example, we define Line 63-67 in Appendix 4 for the abstract model of
Mondex in Fig. 1, according to Formula 7.

3.3 Translation Correctness

[KG02] proposed a framework for translating models and specifications, in which
atomicity of transitions and variables with unspecified next values were discussed
as issues in translation. In our work, we use the atomic keyword in Promela
to make the transition atomic, and we use temporal logic to specify the post-
condition for each variable.

We introduce the definitions of completeness and consistency before defining
translation correctness. Completeness ensures that each place, transition and
initial marking has its representation in Promela code.

Definition 1. Translation Completeness: Each entity in a Petri net is mapped
to a language construct in Promela.

Lemma 1. Given a Petri net N , there exists a Promela program PN repre-
senting N .

Proof. The rules in Section 3.2 cover the translation from N to PN .

Consistency ensures that the Promela code preserves the semantics of a Petri
net. While there are several well known semantic models of Petri nets, we adopt
the interleaving semantics, which is adequate for studying the system properties
defined in temporal logic.

Definition 2. Translation Consistency: The dynamic behaviour of a Petri net
is preserved in Promela code. The interleaved execution is a sequence σ =
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M0t0M1t1...tn−1Mn, where n 
 0, Mi(i ∈ N ∧ 0 	 i 	 n) is a marking
and ti(i ∈ N ∧ 0 	 i < n) is a transition firing. Promela code execution is
σ′ = S0Run(pt0)S1Run(pt1)...Run(ptn−1)Sn, where Si(i ∈ N ∧ 0 	 i 	 n) is
a snapshot of values in variables defined in Promela code, and Run(pti)(i ∈
N ∧ 0 	 i < n) denotes the execution of inline function pti translated from ti
following the rules in Section 3.2.

Lemma 2. (Initial Marking Consistency) The initial marking of a Petri net
N is consistent with the initial values of variables in the translated Promela
program PN .

Proof. According to Step 1 in Section 3.2, marked places are translated into
channels, and Step 6 in Section 3.2, the initial marking is used to initialize the
channel variables. The initial marking of a Petri net N is M0, and S0 is the
snapshot of initial values of variables in the translated Promela program PN .
According to Step 6 in Section 3.2, S0 is mapped from M0.

Lemma 3. (Semantic Consistency) PN bisimulates N .

Proof. Let σ be an execution of N , we proof PN simulates N by induction on
the length of sequence n.

Base case, n = 0. It is the initial marking consistency proved above.
Suppose it is true for n = k that the claim holds, i.e., σ = M0t0M1t1...tk−1Mk

is consistent with σ′ = S0Run(pt0)S1Run(pt1)...Run(ptk−1)Sk.
If n = k + 1, as the Step 2 in Section 3.2, the precondition of ptk

is the
mapping of precondition of tk; as the Step 3 in Section 3.2, the postcondition of
ptk

is the mapping of postcondition of tk, that is, Sk+1 is the mapping of Mk+1;
as the Step 4 in Section 3.2, Run(ptk

) generates Sk+1, which denotes marking
Mk+1 obtained from firing tk. So, σk+1 = M0t0M1t1...tkMk+1 is consistent with
σ′k+1 = S0Run(pt0)S1Run(pt1)...Run(ptk

)Sk+1.
The reverse direction is proved in the same way, hence, PN bisimulates N .

Definition 3. Translation Correctness consists of translation completeness and
translation consistency.

Theorem 1. Given a Petri net N , the Promela program PN obtained from
the translation rules in Section 3.2 preserves the semantics of N .

Proof. We prove the translation correctness by proving translation completeness
and consistency. It is straightforward from Lemma 1 to 3.

3.4 Analysis Result

There are two security properties to verify for Mondex [SCW00], the details of
these properties are listed in Table 6.

We use the model checker Spin to verify the properties in exhaustive mode.
Formula 9 and 10 are the LTL properties we used in Spin to do verification,
in which bal_sum =

∑
a∈A,A∈AbWorld a[2] is the sum of balances, lost_sum =
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Table 6. The Properties of Mondex to Verify

Property Name Property Description

All Value
Accounted

all value must be accounted for in the system: the sum of all
purses’ balances and lost components does not change.

No Value
Created

no value may be created in the system: the sum of all the purses’
balances does not increase.

∑
a∈A,A∈AbWorld a[3] is the sum of lost amounts, and 450 is exactly the sum of

bal_sum and lost_sum in the initial marking.

� bal_sum+ lost_sum = 450 (9)
� bal_sum 	 450 (10)

The verification result is that all these LTL properties are satisfied in the given
initial marking.

4 Related Works and Discussion

Several research groups around the world have tackled this 1st pilot project in
recent years. In [FW07], Z/Eves was used to mechanize the original specifica-
tion of Mondex in Z [SCW00], which took about eight weeks to complete the
mechanization of the entire specification, refinement and its proof. In [Ram07],
Alloy was used to specify Mondex and the Alloy Analyzer was used to check
the specification that resulted in the discovery of several bugs. The specification
and analysis took about 6 months for a research internship to finish. [HSGR07]
used the KIV to specify and verify Mondex using a single refinement, which took
about one person month. [BY07] presented an Event-B specification of Mondex
using B4free, which consists of 10 levels, an abstract model and 9 levels of re-
finement. The development took approximately 2 weeks of total effort spread
over several months. In [GH07], RAISE was used to specify Mondex. The speci-
fication consists of three levels: abstract, intermediate, and concrete. Half of the
proofs were done automatically.

Other works on Mondex mainly focus on the automation of the proof of Mon-
dex, while [GH07] not only made effort on proof of Mondex, but also did some
model checking with limits such that there are only 2 purses in the world, and
money is in the range 0 to 3, to reduce states as much as possible. Our approach
using model checking offers great scalability to verify the properties of Mondex.

Regarding the translation from Petri net to Promela, this paper offers a
unique way to translate high level Petri net to Promela. [AGCH+08] provides
an approach to translate Sam to Promela in which the embedded C code was
used as the main approach, while we do not use embedded C code. [GG01] had
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the similar idea to ours on translation rules from Petri net to Promela, but it
only dealt with low level Petri nets, while we propose an approach to translating
high level Petri nets to Promela code.

We provide a way of using model checking to verify the formal specification
of Mondex in Sam [ZLH08], including the abstract model and concrete model.
This paper presents the abstract model as an example.

Effort

It took us two person months to complete the specification[ZLH08], and 80
person-hours to translate the Sam model into Promela code for Mondex con-
crete model and to verify the model automatically using Spin.

Bugs Found

[Ram07] found three bugs in the Z specification, in which one bug is for missing
constraints about authenticity, also found by KIV method [HSGR07], two bugs
are related with reasoning errors during refinement. For the authenticity bug,
the Z specification gives no constraints for authenticity so that a purse could be
making a transaction with a non-authentic purse. For example, a purse is in epv
status, which is to purse, waiting for val message, there should be constraints
preventing this purse from receiving req message as from purse. Similarly there
should also be constraints preventing the purse in epa status as from purse from
receiving val message as to purse. Without these constraints for authenticity,
the actual role of a purse could be inconsistent in the transaction. The other two
bugs are both for reasoning errors during refinement which is not present in this
paper as we use model checking and do not do that refinement. Our specification
avoids the authenticity bug through adding proper constraints and does not have
refinement bugs.

Scalability

We conducted the model checking of Mondex concrete model with a Windows
based PC which has 1.8Ghz CPU and 2GB memory. Since the Mondex system is
not a network system and only contains atomic operations involving two purses;
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it is adequate to model and analyze the system with one randomly chosen initial
message. Therefore, we created a random message in the initial markings, the
range for value of money was 0 . . . 231 − 1. We conducted an experiment by
increasing the number of purses in the initial markings, to show the scalability
of memory usage, cpu timing and allocated state vector, as the Fig. 2 shown.
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Appendix: A Promela Program Translated from Abstract
Model of Mondex

1 #define BOUND_msg_in 10
2 #define BOUND_AbWorld 10
3 #define BOUND_msg_out 10
4 chan type_AbWorld =[ BOUND_AbWorld ] of {short , int , int };
5 mtype = {aNullIn , transfer };
6 chan type_msg_in = [ BOUND_msg_in ] of {mtype , short ,

short , int };
7 mtype = {aNullOut };
8 chan type_msg_out = [ BOUND_msg_out ] of {mtype};
9 int bal_sum = 450, lost_sum = 0,seed = 0,last_seed = 0;

10 inline is_enabled_AbIgnore () {
11 short msg1_field2 ;short msg1_field3 ;int msg1_field4 ;
12 type_msg_in ?<aNullIn ,msg1_field2 , msg1_field3 ,

msg1_field4 > ->
13 AbIgnore_is_enabled = true
14 }
15 inline fire_AbIgnore (){
16 type_msg_in ?aNullIn ,msg1_field2 , msg1_field3 ,

msg1_field4 ;
17 AbIgnore_is_enabled = false
18 }
19 inline AbIgnore (){
20 is_enabled_AbIgnore ();
21 if
22 :: AbIgnore_is_enabled -> atomic{ fire_AbIgnore ()}
23 :: else -> skip
24 fi
25 }
26 inline is_enabled_AbPurseTransfer(){
27 short msg2_field2 , msg2_field3 ;int msg2_field4 ;
28 int m_field2 , m_field3 , n_field2 , n_field3 ;

http://vsr.sourceforge.net
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29 type_msg_in ?<transfer ,msg2_field2 , msg2_field3 ,
msg2_field4 >;

30 if
31 :: msg2_field2 != msg2_field3 &&
32 type_AbWorld ??[ eval (msg2_field2 ), m_field2 ,

m_field3 ] &&
33 type_AbWorld ??[ eval (msg2_field3 ), n_field2 ,

n_field3 ] ->
34 AbPurseTransfer_is_enabled = true
35 :: else -> skip
36 fi
37 }
38 inline fire_AbPurseTransfer () {
39 type_msg_in ?transfer ,msg2_field2 , msg2_field3 ,

msg2_field4 ;
40 type_AbWorld ??eval ( msg2_field2 ), m_field2 , m_field3 ;
41 type_AbWorld ??eval ( msg2_field3 ), n_field2 , n_field3 ;
42 atomic{type_AbWorld !msg2_field2 , m_field2 -

msg2_field4 , m_field3 ;
43 bal_sum = bal_sum - msg2_field4 ;}
44 atomic{type_AbWorld !msg2_field3 , n_field2 +

msg2_field4 , n_field3 ;
45 bal_sum = bal_sum + msg2_field4 ;}
46 AbPurseTransfer_is_enabled = false
47 }
48 inline AbPurseTransfer () {
49 is_enabled_AbPurseTransfer();
50 if
51 :: AbPurseTransfer_is_enabled -> atomic{

fire_AbPurseTransfer ()}
52 :: else -> skip
53 fi
54 }
55 proctype AbstractMondex (){
56 bool AbIgnore_is_enabled = false;
57 bool AbPurseTransfer_is_enabled = false;
58 do
59 :: AbIgnore ()
60 :: AbPurseTransfer ()
61 od
62 }
63 init {
64 type_msg_in !transfer ,1,2,50; type_AbWorld !1,100 ,0;
65 type_AbWorld !2,200 ,0; type_AbWorld !3,150 ,0;
66 run AbstractMondex ()
67 }
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Abstract. Separation kernels are key components in embedded applica-
tions. Their small size and widespread use in high-integrity environments
make them good targets for formal modelling and verification. We sum-
marise results from the mechanisation of a separation kernel scheduler
using the Z/Eves theorem prover. We concentrate on key data structures
to model scheduler operations. The results are part of an experiment in
a Grand Challenge in software verification, as part of a pilot project in
verified OS kernels. The project aims at creating a mechanised formal
model of kernel components that gets refined to code. This provides a set
of reusable components, proof strategies, and general lemmas. Important
findings about properties and requirements are also discussed.

Keywords: Kernel, grand challenge, formal models, proof.

1 Introduction

Although software is ubiquitous, it is still perceived as an “Achilles’ heel” of
most systems, often being a serious threat. There is increasing evidence of the
successful use of formal methods for software development. In [22], 62 indus-
trial projects over 20 years are discussed. The survey explains the effect that
formal methods have on time, cost, and quality of systems and how their ap-
plication is becoming cost effective, hence easier to justify, not as an academic
pursuit or legal requirement, but as a business case. By the use of mathemat-
ical analysis, formal methods enable accurate definition of a problem domain
with capability of proving properties of interest. Formal methods application
usually produces reliable evidence for errors that are fiendishly difficult to catch.
Industrial and academic researchers have joined up in an international Grand
Challenge (GC) in Verified Software [21], with the creation of a Verified Software
Repository (VSR) with two principal aims: (i) construction of verified software
components; and (ii) industrial-scale verification experiments to drive future re-
search in the development of theory and tool support [2].

This paper is part of a pilot project within the GC in modelling OS kernels.
It summarises work done in [19]. The project follows work on modelling smart-
cards [12] and flash memory file stores [8]. Our objective is to provide proofs
of the correctness of a formal specification and design of kernels for real-time
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embedded systems. We start from Craig’s formal models of OS kernels [6], and
take into account separation kernel requirements set out by Rushby [15] and in
the US National Security Agency’s Separation Kernel Protection Profile [18].

We focus on formalisation of data structures needed by an abstract speci-
fication of a separation kernel scheduler, its main operations and algorithms.
Our long experience with the Z notation [20] and one of its theorem provers
(Z/Eves [16]) is well aligned with Craig’s original model [6] also developed in
Z, as well as existing resources in the VSR. Kernel development work is facil-
itated by reusing modelling concepts and proof tactics of mechanising simple
kernel components (e.g., basic types and the process table) from [10]. A com-
plex separation kernel process table adds process separation, external identifiers
and other structures to address architecture and security requirements. While
the process queue is shared with minor differences between both kernels, the
shedulers are architecturally different. The increased complexity and structural
differences affect associated proofs — although some lemmas can be reused, in
general the proofs are different in both kernels and thus both contribute dif-
ferent verified components to VSR. With mechanisation and formal modelling
we upgrade Craig’s original separation kernel model from [6] by: improving the
specification adding missing invariants and new security properties; verifying
API robustness and model correctness in general; etc. Note that all details of re-
sults presented in this paper, analysis, justification as well as formal specification
and proof scripts, are available in [19].

We briefly set the kernel verification scene in the next section. Section 3
presents a case study, which involves mechanisation of key data structures for
the kernel’s scheduler: a process table that keeps track of user and device process
information; a process queue used by scheduler operations and algorithms; the
scheduler invariant itself; and proved properties of interest. In Section 4, we
reflect on our results by giving some measures. Finally, Section 5 sums up our
findings and sets the agenda for future work.

2 Background

Craig’s book on kernels [6] includes Z specifications and refinement of simple
and separation kernels developed as an exercise that is beyond academic. It
serves as a starting point for our project. The objectives are to demonstrate
feasibility of top-down development using formal specification and verification
with refinement to code (i.e., correctness by construction) [11]. Craig’s original
models are typeset by hand and include several manual proofs. We augment
the specification that uses Z notation [20] by mechanising it with a theorem
prover [16] in order to more precisely record its correctness arguments from
hand-written proofs. Given Craig’s expertise as a kernel developer, we try to keep
as faithful as possible to his original designs, only changing it at places where
identified mistakes have been made. All results [19], including models, lemmas,
etc. are being curated in the VSR [2] at SourceForge (vsr.sourceforge.net).

vsr.sourceforge.net
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Verification of OS Kernels. An OS kernel is key in coordinating all access
to underlying hardware resources like processors, memory, and I/O devices. Ap-
plication processes can access these resources via system calls and inter-process
communication. Kernel development has a reputation for being a complex task
for two prime reasons: (i) every system requires the kernel to provide correct
functionality and good performance; and (ii) the kernel cannot make (direct)
use of the abstractions it provides (e.g., processes, semaphores, etc.).

Microkernels for embedded systems are a suitable target for formal verifica-
tion due to their small size and controlled environment. Such verification is an
industrial-scale exercise that is undertaken in a number of academic and commer-
cial projects. We identify two different approaches to verification. One starts with
an existing kernel (possibly code or concrete design) and verifies its properties
bottom-up, e.g., Microsoft’s hypervisor — a separation kernel aiming at virtu-
alisation of hardware [5]. The project has verified existing C and assembler code
for the functional correctness of kernel memory models. Within the GC, there
is a recently started pilot project on the verification of FreeRTOS open-source
kernel [3] that involves scientists in the UK and India. Alternatively, a top-down
approach starts with the formalisation of high-level requirements that then gets
refined (as formally as possible) to code. This approach allows reasoning about
kernel properties without being bound to an existing implementation. Its ap-
plication can be seen in parts of the commercial project L4.verified [13], which
formalises and verifies a high-performance general-purpose microkernel; and in
the work on Xenon [14], a security hypervisor based on the Xen OS. The former
uses Isabelle/HOL to specify, abstract and verify properties of a Haskell proto-
type of the kernel, whereas the latter is using Z and CSP to model the C code.
With properties proved about such formal model, one can then apply refinement
techniques to obtain concrete designs. Furthermore, abstract components facil-
itate development of new kernel structures, where their properties are proved
without an implementation. Our project aims to create fully generic abstract
kernel models and refine them to code with good levels of automation — this
paper contains results from the beginning of this large scale effort.

Simple kernel components based on [6] have already been mechanised in [10,9].
There we found interesting issues, including missing and hidden invariants. Al-
though Craig’s models have great insight from an OS engineer in necessary un-
derlying data types, a series of mistakes are introduced, both clerical and more
substantial in design decisions. Craig’s work also includes a C implementation for
Intel’s IA32 architecture that is carried out using data refinement and the Z re-
finement calculus [20]. This paper continues with separation kernel components,
in particular the scheduler, as reported in [19].

Separation Kernel. Separation kernel architecture was first introduced by
Rushby [15], where different kinds of processes are isolated to achieve desirable
security properties. The US National Security Agency has produced a Separa-
tion Kernel Protection Profile (SKPP) under the Common Criteria certification
framework to define requirements for separation kernels used in environments
that require high-robustness [18]. SKPP also includes the kernels’ interaction
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with both hardware and firmware platforms, hence these components also need
to be verified. In here, we assume them as trusted entities verified elsewhere. In
our work, we follow the formal models by Craig [6], which are relatively close to
the SKPP requirements, as extensively discussed in [19]. Craig assumes the kernel
to be running on an Intel’s IA32/64 platform, and verbally states that memory
partitioning and context switches are achieved by the underlying hardware. We
need to specify this mathematically in order to support statements spanning the
kernel and the hardware. The main concerns are to ensure separation of process
address spaces: they must execute in isolated memory partitions; inter-process
communication is only allowed via vetted communication channels; and so on.
To achieve this, one needs to have memory partitioning in the kernel, where each
process is allocated a dedicated area. Process communication is established via
message passing over a special shared memory area. Unauthorised communica-
tion between processes is prevented by having external process identifiers, which
are translated into internal representations within the kernel. The requirement
to have process execution separation is achieved by a non-preemptive scheduler.
It ensures only a single component is active at each given time. Craig models
device processes as trusted code running within the kernel. Our work here is
to mechanise, polish, and improve Craig’s original model. Also, we know from
collaboration that the modelling of the Xenon hypervisor [14], which is a much
more complex kernel, is benefiting from ideas presented here and in [19].

3 Case Study

Separation kernel formal model development is a significant undertaking due to
the high number of different components and requirements, as well as specific
domain knowledge involved. This case study presents some details on mechani-
sation, modelling and verification of a separation kernel specification, based on
hand-written models by Craig [6]. The mechanisation has four stages: (i) pars-
ing and typechecking Z for syntactic type consistency; (ii) domain and axiomatic
checking that shows well-formedness of expressions (e.g., functions are applied
within their domains), and soundness of axioms; (iii) feasibility lemmas provid-
ing an existence proof for the initial state, and operation preconditions showing
API robustness and correct state invariant; and finally (iv) proving conjectures
that represent properties of the model. We also summarise key data structures
in the scheduler like a process table and scheduling queue. This paper focuses
on formal modelling, hence details of the mechanical proof process are omitted
here. Instead, all theorems, proofs and complete analysis are available in [19]. A
very detailed report on proving Z specifications with Z/Eves is provided in [7].

3.1 Process Table

A core data structure in our separation kernel is a process table (PTab) that
stores all process information. Previous work on simple kernels [10] has been
reused, with additional variables and invariants to address process separation
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security requirements. All kernel processes are referenced by their identifiers, as
bounded non-empty range type of PIDs. Also, to distinguish between user pro-
cesses and “trusted” platform code (i.e., device processes), we use Z free types
(PTYPE ::= uproc | dproc), which in this case are enumerated type construc-
tors that form a partition. This means that uproc and dproc are distinct, and
the only elements of the set PTYPE . Outside the kernel, processes are refer-
enced by external identifiers to prevent unauthorised access to internal kernel
resources. Craig [6, Chap. 5] suggests having an unbounded number of external
user process identifiers UPID , and a limited number of device identifiers Dev ,
since in embedded environments device configuration is known from the start.

PTab
used , free : F PID ; nup : UPID ; dmap : Dev � PID ; pidext : PID �→ UPID
ptype : PID �→ PTYPE ; extpid : UPID �→ PID ; state : PID �→ PSTATE

free = PID \ used ∧ used = dom state = dom ptype ∧ pidext = extpid∼

∃ dprocs , uprocs : FPID • dprocs = ptype∼(| { dproc } |) = ran dmap
∧ uprocs = ptype∼(| { uproc } |) = ran extpid
∀ u : UPID | u ≥ nup • u /∈ dom extpid

A process table (PTab) is specified using a Z schema: a labelled record data struc-
ture with invariants. PTab is similar to the one for a simple kernel in [10]: it has
finite sets (F) used and free for process identifiers (PID) that are disjoint; and
it specifies partial function ( �→) mappings for each used PID to access var-
ious related process information. Functions ptype and state specify type and
process-state information for each process, respectively. Available process states
are defined by the free-type PSTATE like PTYPE above, and omitted here.
Process table invariants require these mappings to exist for all used processes
(i.e., functions recording process information are total on used).

External identifiers are different for each process type and stored in separate
structures. Device numbers are stored in dmap: a partial injective ( �) relation-
ship, which guarantees a one-to-one mapping between device numbers Dev and
kernel device process PIDs. For user process identifiers, we have functions extpid
and pidext as the inverse (∼) of each other to allow simple bi-directional identi-
fier queries. Some ambiguity while modelling a system in Z is common practice,
providing it aids clarity and simplify proof goals. Because dmap, extpid — and a
few other process information mappings not included above — are used for pro-
cesses of different types, just like with used PIDs for state and ptype domains,
we need to identify device and user-process sets. Since these sets are images of
ptype for each process type, we define sets dprocs and uprocs locally using an
existential quantifier for device and user processes, respectively. These sets are
linked with the range of their corresponding functions — as well as the domain of
the few mappings not shown here. Finally, nup defines next available UPID for
user processes. Proving precondition of PTab operations revealed the necessity
for ensuring a future unused UPID (u /∈ dom extpid) for all UPIDs beyond (and
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including) nup, hence the last invariant. More details on how this appeared are
given below, and a full account is given in [19, Chap. 6].

Properties. PTab specifies an injective relationship between device process
external (Dev) and internal (PID) identifiers. A corresponding property of user
process identifiers (UPID) can be formulated as

PTab � extpid ∈ UPID � PID ∧ pidext ∈ PID � UPID (1)

Given a PTab state (i.e., there exists an instance of the state where its invari-
ant holds: we have a feasible model), both extpid and pidext are injective ( �),
thus for each internal user process PID , there exists a unique external user pro-
cess UPID , and vice-versa. We proved it as a theorem in Z/Eves using current
PTab’s invariants. This way we achieve separation of concerns, as the theorem
can be used later in proofs. As a redundant invariant in PTab, it could unnec-
essarily complicate future proofs, e.g., extra proofs are needed per redundant
property. We formalised various operations for process identifier management,
such as process allocation and deletion.

Process Table Refinement. Mechanisation involves refinement of data struc-
tures to accommodate proofs and model changes. A detailed case study of PTab
refinement is given in [19, Chap. 6] and describes the evolution of the original
schema in [6, p. 220] to the final form as shown above. Refinement relationships
are proved in [19] for each step to ensure that the original specification is still
satisfied, e.g., PTab ⇒ PTabv4 ⇔ PTabv3 ⇔ . . .. Equivalence (⇔) changes rep-
resent specification refactoring without changing the original meaning, whereas
a refinement Spec � Design, here as reverse implication Design ⇒ Spec, guaran-
tees that the stronger schema satisfies all properties of the one it refines, and is
used to correct mistakes and add missing invariants. Some examples illustrating
different refinement steps are given below (details and all proofs are in [19]).

Complicated mathematical constructs can be replaced with more suitable Z
idioms for theorem proving without compromising corresponding PTab schema.
Originally the set of device processes was defined as set comprehension (middle)

dprocs = { p : PID | p ∈ used ∧ ptype(p) = dproc } = ptype∼(| { dproc } |) (2)

which is straightforward enough to understand: dprocs is a set of known (used)
PIDs with dproc type, as required. However, set comprehension expressions are
difficult to reason about in proofs, as they require pointwise extensionality proofs
(i.e., to show that every element in the set satisfies its invariants). Instead, if we
could characterise the same relationship with higher-level operators, we would
then be likely to have higher automation levels. So, (2, middle) can be refactored
as the relational image of the of inverse of ptype (2, right). Function ptype maps
PIDs to their process types (PTYPE ). Inverting it, we get a relation (set of
pairs) between PTYPE and their corresponding PIDs, which might no longer
be functional as more than one identifier might be of user or device type. Then,
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we apply relational image (R(| S |)) over this resulting set of pairs, which gives
a set of values in ptype for all its dproc-typed members. Thus, (2, right) gives
all PIDs of dproc type in ptype as set dprocs . The advantage of this equivalent
formulation is that it can take advantage of a series of lemmas about inverse and
relational image from the Z mathematical toolkit [17], which then leads to more
automatic proofs. The equality in (2) enables us to prove equivalence between
the schemas affected by this change (i.e., PTabv4 ⇔ PTabv3 in [19, p. 46]).

Failed precondition proofs during the mechanisation of a deterministic UPID
allocation algorithm by Craig [6, p. 222] revealed a missing invariant. The mono-
tonic increment of new UPIDs did not ensure that new identifiers are unused
by the process table. We refine the PTabv4 schema (i.e., PTab ⇒ PTabv4) by
adding an invariant (3) requiring the next and subsequent UPIDs to be available.

∀ u : UPID | u ≥ nup • u /∈ dom extpid (3)

Without it, one could not prove that UPID allocation operations kept the after
state of extpid values being injective. This is an expected, yet missing invariant
both in the Z models and in the English-written requirements, rather than a
cosmetic model change. We benefit from streamlined specification, corrected
invariants and clarity of requirements in the refined PTab schema, while the
proofs show schema conformity to the original specification. The full account on
PTab refinement is given in [19, Chap. 6].

3.2 Process Queue

The separation kernel scheduler stores waiting processes in process queues to
ensure correct execution order. We model them with operations to access and
manage queue elements, such as querying for elements, enqueue and dequeue
processes to be scheduled, and so on. The resources being queued are process
identifiers (PIDs) from the underlying process table (PTab). During these queue
operations PTab components are kept read-only.

The next (horizontal) schema PQ defines the queue as an injective sequence
of process identifiers: it is a function from ordered pairs of indexes started from
one to unique PID values (i.e., akin to N1 � PID). Only elements from the
given PTab’s used set are allowed in the queue, as indicated by the subset (⊆)
constraint over the sequence’s range of PIDs queued. In Z, schema inclusion like
PTab is used to factor complex data structures into its constituent components.

PQ =̂ [PTab; pr : iseq PID | ran pr ⊆ used ] PQInit =̂ [PQ ′ | pr ′ = 〈〉 ]

The queue is initialised as empty in PQInit . In Z, dashed variables like pr ′ rep-
resent operation’s after state, where PQ ′ represents dashed components from
PQ . Note that in PQInit the underlying PTab is not restricted during PQ ini-
tialisation, hence allowing PTab to be initialised before (e.g., with a suitable
PTabInit). Such need arises when PQInit is used in scheduler initialisation (see
Sect. 3.3). Because we require only an existence proof for the feasibility of such
initial state, this arrangement is just right (e.g., ∃PQ ′ • PQInit). We need two
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separate process queues for user processes and devices. To avoid name clash, a
DQ schema is defined by renaming the queue sequence variable pr to dv as

DQ =̂ PQ [dv/pr ] DQInit =̂ PQInit [dv ′/pr ′]

Notice that the underlying PTab for both PQ and DQ remains the same. This
neat alignment/reuse of components is a great feature of the Z schema calcu-
lus [20, Chap. 11]. Craig suggests an injective sequence [6, Sect. 3.4] in PQ to
ensure that no process can be queued multiple times. Injective sequence up-
dates are tricky because they require uniqueness of sequence range elements,
yet sequence operators (e.g., concatenation � ) are not aware of such restric-
tions. This requires additional effort during precondition proofs to guarantee
PID queueing uniqueness. For instance, to concatenate an element x to a se-
quence t one just needs to say t ′ = t � 〈x 〉, whereas for a injective sequence s ,
it is also necessary to show that x is unique in s (i.e., x /∈ ran s) like

∀ s : iseq X ; x : X • x /∈ ran s ⇒ s � 〈x 〉 ∈ iseq X (4)

which is proved in [10]. Given a non-empty generic type X and an injective
sequence s , if an element x ∈ X is not mapped in s , then appending x to s
keeps the result injective. Lemmas like this have been reused across various pilot
projects, and form the basis of a general library, which is one of the outcomes
of the Grand Challenge: reusable components and proofs. Furthermore, process
queue is a generic kernel data structure and is used within other components
(e.g., semaphores in simple kernel [6, Sect. 3.7]). Different kernel process tables
mandate redoing PQ proofs, however, proof structures and toolkit lemmas are
successfully reused, hence minimising implementation effort. Further reuse is
facilitated by collecting such verified components in the VSR.

3.3 Scheduler

Like in [15], our separation kernel employs a round-robin scheduler. It is non-
preemptive, hence a running process can only suspend voluntarily or terminate.
Such approach is chosen for its simplicity and current use in embedded sys-
tems. Scheduler includes operations for making a process ready, suspended, or
to terminate processes. Synchronous device I/O in the kernel is achieved by the
scheduler executing device processes at a higher priority than user processes, so
that when a device call is performed, a corresponding device process is executed
to handle the call, while the user process suspends and waits for a reply.

Schema Sched contains two ready-queues for each process type: PQ and DQ .
Two special (distinct) identifiers are used for the idle (ip) and current (cr)
processes. The former is used when no other processes are scheduled, whereas
the latter stores the process currently executing. We also define a component to
aggregate all queued process identifiers in a single set (queued). This auxiliary
term allows us to write simpler expressions, entailing easier proofs later.
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Sched
PQ ; DQ ; cr , ip : PID ; queued : P PID

queued = ran pr ∪ ran dv ∧ { cr , ip } ⊆ used ∧ cr /∈ queued ∧ ip /∈ queued
ran pr ⊆ ptype∼(| { uproc } |) ∧ ran dv ⊆ ptype∼(| { dproc } |)

The state invariant has that the current and idle processes are known to the
kernel process table (i.e., within used), and must not be queued for execution
— no process can be executing and waiting at the same time. We ensure that
processes of different types are queued accordingly: pr for (uproc) user processes,
and dv for (dproc) kernel device processes. We use subset containment over
the relational image of each function.This specification of the scheduler is a
substantial upgrade from Craig’s [6, Sect. 5.6]. The addition of a reference to
PTab via PQ enabled the specification of process properties. Thus, we were able
to convert informal requirements given in English in the book: that PQ is for
user processes and DQ is for devices, for instance. Also with the invariants on cr ,
ip being known (in used) PIDs only, we could specify and prove kernel security
properties, and define robust operations for the scheduler (i.e., operations that
are proved to account for all behaviours as successful and exceptional cases).

We initialise the scheduler with empty queues and an idle process running
that is passed as (p?) an input variable. In Z, inputs are tagged with a question
mark. We keep the modular approach for kernel components and reuse previously
defined operations: during scheduler initialisation, queues and process table are
initialised by corresponding operations like PQInit .

SchedInit =̂ [Sched ′; PQInit ; DQInit ; p? : PID | ip′ = p? ∧ cr ′ = ip′ ]

SchedPTabInit =̂ PTabInit o
9 (AddIdleProcess ∧ SchedInit [ip!/p?]) \ (ip!, u!)

Using PTab operations defined elsewhere [19, Chap. 6], we can construct full
initialisation of PTab and Sched as SchedPTabInit . We use schema composition
for the sequential execution of operations. In Z, the schema composition (S o

9 T )
operator uses the after state of S as the before state of T , with the after state
of T being the overall after state, and similarly for the before state of S . That
works well providing the after state components of S is the whole of the before
state of T (i.e., we have homogeneous composition). This models a process
table that is initialised first by PTabInit , then an idle process is allocated by
AddIdleProcess (i.e., a user process allocation operation in [19, p. 57]), and
passed into scheduler initialisation SchedInit . Finally, output variables ip! and
u! are hidden (i.e., existentially quantified) to avoid exposing them outside the
operation. It neatly reuses definitions plumbed with the schema calculus, which
are equivalent to the following expanded schema.

SchedPTabInitExpand =̂ [Sched ′ | used ′ = { ip′ } ∧ nup′ = 2 ∧ cr ′ = ip′ ∧
pr ′ = dv ′ = dmap′ = ∅ ∧ extpid ′ = { 1 �→ ip′ } ∧ ptype ′ = { ip′ �→ uproc } ∧ .. ]

It shows state initialisation after all updates take place. The idle process ip′ is
allocated with expected initial values and passed into the scheduler for execution.
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3.4 Scheduler Operations

Abstract data type operations in Z are specified as a relation between before and
after states. This includes both successful and exceptional cases. Typically this is
given as a disjunction of schemas. Usually we negate the successful case precon-
dition, where each error case accounts for some of the negated predicates, such
that the overall precondition equates to true, hence leading to a robust interface.
This is the so-called Oxford style of Z [20]. A common and simple solution for
error handling is to report the error whilst keeping the state constant. Our sepa-
ration kernel model uses an errors with memory [1, Sect. 18.3] approach to store
the error message in between operations. This way a subsequent operation can
check whether the kernel is in a valid state. Furthermore, Craig [6] defines error
cases to kill the kernel via an interrupt as a simplistic, albeit blunt an approach
for secure exit. Nevertheless, this interrupt handling is not modelled formally.
To aid this we need to extend it by defining and proving kernel error handling
security properties. Note that an interrupt-like error handling approach, with
state validation, recovery and logging, has been successfully modelled in Mon-
dex project [12]. Detailed description of kernel error handling is given in [19,
Chap. 5], while here we present a short summary of key operations only.

For example, a process queueing operation EnqPQOk performs the sequence
concatenation (queueing) in the successful case. The error cases, such as when
the process is already queued (ErrQueued), are defined separately and then
disjoined with the successful case. In Z, ΔPQ indicates both PQ and PQ ′ are
included, yet without any constrains over state variables. ΞPQ is just like ΔPQ
but requires everything in PQ to be kept constant.

EnqPQOk =̂ [ΔPQ ; ΞPTab; p? : PID | pr ′ = pr � 〈p?〉 ]
ErrQueued =̂ [ΞPQ ; ΔErrV ; p? : PID | p? ∈ ran pr ∧ serr ′ = errqueued ]
EnqPQ =̂ (EnqPQOk ∧ SysOk) ∨ ErrQueued ∨ . . .

A process is added for scheduling by “readying” it. This means it must be en-
queued and its state in PTab must be set to psready. Such queueing must keep
everything else constant (i.e., queueing happens before scheduling). We reuse
EnqPQ operation to perform the actual queueing in EnqSchedOk .

EnqSchedOk =̂ [ΔSched ; EnqPQ | cr ′ = cr ∧ ip′ = ip ∧ dv ′ = dv ]
EnqUserSched =̂ EnqSchedOk ∨ ErrNotUserPID ∨ . . .

Schema EnqUserSched models queueing a user process without updating the
current, idle or device processes. The operation performs a number of checks to
ensure that all invariants are satisfied. Included schema EnqPQ has a robust
specification for queue-level queueing with: successful cases; case when a process
is unknown to the kernel (e.g., PID not in used); or case when it is already
queued (e.g., PID in pr range). Since no queue operation alters PTab (ΞPTab),
EnqPQ ensures that the underlying process table does not change as a result of
EnqSchedOk . Scheduler invariants give rise to additional error cases: a process
can have the wrong type; it might already be running; the idle process cannot
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be queued; and so on. These error cases are defined to create a total enqueue
operation EnqUserSched . The complete “readying” operation MakeReady en-
queues and sets process state. We use schema composition (o

9) to update the
pstate function in PTab for a given process (p? ∈ PID) to psready in SetReady.

MakeReady =̂ EnqUserSched o
9 ((IsSysOk ∧ SetReady) ∨ ErrKeepFail)

The input variable comes from EnqPQ . Note that process state changes only if
the enqueue succeeds, hence we check for expected system state with IsSysOk . If
EnqUserSched does fail (i.e., either via EnqPQ errors, or by its own error cases),
the error is propagated by ErrKeepFail . An analogous operation has been defined
for device processes. In [4], these schemas are used as APIs for the definition of a
parallel/distributed scheduling algorithm that considers the behavioural aspects
of the specification, rather than what is happening in the data structures.

The main scheduler function is to determine and execute processes in an ap-
propriate sequence. As mentioned, device processes have priority over user pro-
cesses, while the idle process is run when nothing else is scheduled. We model
this via separate operations, later on conjoined to represent the overall schedul-
ing algorithm. All operations follow the same pattern: a process is selected for
execution and its state is set via a PTab operation (SetRunning).

RunIdleNext
ΔSched ; SetRunning[ip/p?]; SysOk

dv = pr = 〈〉 ∧ cr ′ = ip ∧ ip′ = ip ∧ pr ′ = pr ∧ dv ′ = dv

Since the idle process is never queued in the scheduler, running it does not re-
quire updating scheduler queues, hence we can specify everything with operation
RunIdleNext . Like SetReady, SetRunning updates pstate for a given p? input
to psrunning, which in this case is the idle process ip. This operation can only
be executed when both process queues dv and pr are empty. The operation sets
the idle process as current (cr ′ = ip), sets it to running, and does not change
anything else. Finally, SysOk signals that operation has been successful. User
and device scheduling operations are similar in that they both take the first
element in a respective queue and change its state to running. For dequeue,
corresponding operations for device and user processes queues are used.

SchedUserNext =̂ [ΔSched ; DequeuePQ | dv = 〈〉 ∧ pr �= 〈〉 ∧
cr ′ = p! ∧ ip′ = ip ∧ dv ′ = dv ]

RunUserNext =̂ (SchedUserNext [n/p!] o
9 SetRunning[n/p?]) \ (n)

Schema SchedUserNext sets process p!, which is output by DequeuePQ opera-
tion, as the current process. Note that DequeuePQ is responsible for updating
user process queue pr ′. The scheduling algorithm is specified in the operation
invariants: output user process p! is scheduled when device queue dv is empty,
and user process queue pr is not. RunUserNext appends the SetRunning oper-
ation to the scheduling algorithm. Here auxiliary variable n is used to link the
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output parameter from one operation to the input parameter of the next. We
can formulate and prove statements about scheduling operation properties to
improve assurance in them, e.g., we show that RunUserNext always executes
the first element in user process queue (i.e., RunUserNext � cr ′ = head pr). The
device scheduling operations SchedDeviceNext and RunDeviceNext are specified
in an similar manner with DequeueDQ and with the precondition that the de-
vice queue is not empty (dv �= 〈〉). The complete API for any scheduler state
implements the scheduling algorithm by disjoining all top-level operations.

SchedNext =̂ RunIdleNext ∨ RunUserNext ∨ RunDeviceNext

We proved that the precondition of this operation is true, meaning that it can be
executed for any scheduler state: it is a robust operation that will always succeed.
Even more, we proved a conjecture to show that the operation never fails: it will
always return the system call was okay (e.g., SchedNext � serr ′ = sysok). The
composing operation invariants ensure that the total operation SchedNext is
never in a state where queueing error case preconditions may apply. Obviously,
all that did not fall into place neatly. It was the result of a well-crafted model,
followed by the ruthless scrutiny of the theorem prover, alongside appropriate
guidance in the process via useful lemmas for acceptable levels of automation.

With the definitions of enqueue and scheduling available, we can create a
suspend operation. A process is never preempted, but can suspend voluntarily to
relinquish execution to other processes. One of the cases when this may happen
is during inter-process communication: a process sends a message to another
process and suspends itself to allow the other process to eventually execute
and handle / reply the message. The suspend operation runs the next available
process and places the caller back in the process queue. This is specified by
reusing SchedNext and MakeReady operations.

RequeueUserProcess =̂ (SchedNext o
9 MakeReady)

Both SchedNext and MakeReady are robust (i.e., precondition is true), and
SchedNext constrains all variables in Sched referenced in MakeReady (i.e., we
have a homogeneous operation), hence we can safely combine them using schema
composition. That is, since we have already shown SchedNext will always suc-
ceed, it is not necessary to check if the system is in a valid state before executing
MakeReady. Nevertheless, as MakeReady can fail due to a queueing error, the
full operation is not atomic: we could not recover the scheduler’s state in case
MakeReady fails. The need for atomicity of such operations is discussed in [4].

The scheduler reuses a large number of operations from PTab and PQ . The
nested schemas and multiple error cases create complex operations that can be
compactly presented using the schema calculus. Yet, expanding all definitions
could lead to rather tricky proof steps, and a good amount of lemmas need to
be in place if one is to complete the proofs with acceptable levels of automation.
Fortunately, as it often happens [10,9], such lemmas are not only repeated, but
also reusable from previous experiments, which minimises the overall effort.
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4 Discussion

General outcomes of the separation kernel component mechanisation confirm
the findings of the previous projects [10] — proper tool support and a verifica-
tion framework build confidence in the formal specification. Syntax errors are
eliminated, model feasibility and API robustness are verified, and missing in-
variants to guarantee correct operations are found. The formal model is fully
proved mechanically — the proofs help establishing the correctness of the Z
specification. The validity of the kernel model must be demonstrated by proving
architectural and security properties. Our work significantly improves Craig’s
scheduler model. By translating verbal requirements to mathematical invariants
and improving design of the specification, we are able to formulate and prove
certain properties about the components (e.g., the scheduler deadlock analysis
below). The main separation kernel properties of process separation (e.g., mem-
ory partitioning and communication via established channels only), however,
span a number of kernel components, some of which have not been mechanised
yet. Thus these properties must be analysed and proved as a future exercise.

Scheduler Deadlock Analysis. Using invariants in scheduler schema Sched ,
we prove that kernel starvation by queueing all known processes, hence none
would be available for execution, is impossible: i.e., ∀Sched • queued ⊂ used
(Sect. 3.3). Nevertheless, a deadlock can occur, when, for example, the initial
process (which creates other processes) suspends without “readying” other pro-
cesses. In this case, the idle process would be running with all processes queued.
Even so, this functionality is specific to the process, not the kernel, and we do
not formally model the running processes themselves.

Other Separation Kernel Components. The process table, queue and sched-
uler are core data structures within a separation kernel. The next step is to mech-
anise and model other components, such as messaging or memory management,
to achieve and verify full separation of processes. We have laid the foundations for
that: external process identifiers can be allocated and translated in the process
table to avoid exposure of kernel internal representation; process schedule and
suspend functionalities are the core of the inter-process messaging subsystem.
The formal model of underlying hardware platform would go beyond Craig’s
original model, but would allow proving memory access restrictions. Craig as-
sumes hardware exceptions [6, p. 204], yet does not formally specify them. A
formal model for interrupts would benefit from similar experience with Mondex
smartcards [12].

Proofs & Benchmarks. In [19] we have already mechanised close to five sep-
aration kernel specification sections (out of 12 [6, Chap. 5]). The remaining part
constitutes of memory management and messaging components, as well as kernel
interface spanning all components. Our mechanisation of three core components
have a total of 263 paragraphs comprising schemas, types, and axioms, with
∼40% of these being related to operation feasibility proofs (i.e., operation pre-
conditions). These generated 254 verification conditions: ∼50% are about model
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feasibility; 35% are about proof automation rules in Z/Eves; and ∼10% are
related to model refactoring. Also, we proved 12 properties of interest (∼5%),
several of which have been presented in the case study (Sect. 3). Furthermore,
the general theories created by other pilot projects contain well over 120 reusable
theorems about various mathematical data types [9]. Separation kernel proofs
were discharged with over 1300 proof commands, 23% of which require creative
steps involving quantifier’s witnesses, or knowledge on how the theorem prover
works. The remaining 77% involved proof exploration steps of moderate diffi-
culty and straightforward/blind tasks, given the right model. These numbers
enable comparison with previous GC pilot projects, which accumulated simi-
lar information. The Z mechanisation of Mondex [12, p. 117–139] has 25% less
paragraphs, yet has over 350% more proof: that is largely due to the underlying
refinement calculation involved. Various automation lemmas from Mondex were
reused. This improved our share of push-button proof steps to 40%, whereas
they were about 27% in Mondex. This suggests that Mondex proofs were more
difficult, yet the separation kernel proofs automation levels benefited from that
work. Such difference is expected as we did not do any refinement proofs yet: it
will be worthwhile comparing those later. The work presented here took ap-
proximately 900 man-hours, which also included the first author mastering the
Z/Eves prover without previous experience, and writing up the thesis in [19].

5 Conclusions

The Grand Challenge’s pilot projects inspire us to model and verify various
application domains. One aim beyond actual mechanisation is to make it easier
for the next team who want to work with kernels. For that, we provide data
types and useful lemmas that are central to modelling kernel scheduling. Basic
verified data structures were developed for a simple kernel [10], with a collection
of general lemmas from the Verified Software Repository (VSR) being reused [9].

In this paper we improve the specification and formal model of the separation
kernel in [6]. Separation kernel data structures address security requirements
and are more complex than their simple kernel counterparts. Most of the work
consisted of identifying properties about data types, calculating preconditions
for (i.e., feasibility of) each operation, and verifying everything via formal proof
along the way. This mechanisation revised and improved the specification of the
process scheduler and its associated components: it corrected modelling errors
on data types, as well as missing error cases of operations, and mistaken invari-
ants from [6], some of which were discussed here (and discussed in full in [19]).
Together with new extracted general lemmas and detailed verification process
report (all available in [19]), we believe this to be an important contribution in
building theories for mechanised formal modelling of OS kernels.

Future Work. We aim to complete the formal kernel model and prove the
process separation, as well as to perform formal refinement of kernel components
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to a concrete model and implementation code. We intend to explore how such
kernel model is used in other projects [14], and different scheduling algorithms [4].
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Mechanized Verification with Sharing

Gregory Malecha and Greg Morrisett

Harvard University SEAS

Abstract. We consider software verification of imperative programs by
theorem proving in higher-order separation logic. Separation logic is quite
effective for reasoning about tree-like data structures, but less so for
data structures with more complex sharing patterns. This problem is
compounded by some higher-order patterns, such as stateful iterators
and visitors, where multiple clients need to share references into a data
structure. We show how both styles of sharing can be achieved with-
out sacrificing abstraction using mechanized reasoning about fractional
permissions in Hoare Type Theory.

1 Motivation

Axiomatic semantics [7] is one way to formally reason about programs. Under
these semantics, programs are analyzed by considering the effect of primitive
operations as transformers of predicates over the state of the system. Unfortu-
nately, stating and reasoning about these predicates is complicated in the pres-
ence of shared, mutable pointers. It was not until Reynolds proposed separation
logic [16] that reasoning about pointer-based imperative programs in a modular
way became tractable. However, even with this logic some verification tasks are
far from simple, particularly when we cannot easily describe which abstractions
“own” pointers, due to sharing.

The difficulty comes from conflicting goals: We want to reason locally and
compositionally about programs, and, at the same time, we wish to share data
to make algorithm and data structure implementations more efficient. Vanilla
separation logic provides the first, but makes the second difficult because of
non-local effects as illustrated by the following Java program:

1 void error(List<T> lst) {
2 Iterator<T> itr = lst.iterator ();
3 lst .remove(0);
4 itr .next(); // throws ConcurrentModificationException
5 }

This method creates an iterator object referencing the beginning of a list. Succes-
sive calls to the next() method are intended to step through the list.
However, the call on line 3 removes the element that the iterator references,
destroying the iterator’s view on the list, even though line 3 does not mention
the iterator. If problems like this go undetected at run-time, they can result in
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NullPointerExceptions in Java, or memory corruption or segmentation faults
in lower level languages such as C.

Separation logic can be used to reason about such programs, because it incor-
porates a notion of ownership: a command is allowed to access memory only if
it appears in its “footprint” (i.e., pre- or post-condition). This gives us a frame
property that ensures properties on sub-heaps that are disjoint from the foot-
print of the command are preserved, giving us an effective way to reason about
abstracted, compound commands (i.e., method calls). However, in the example
above, there is no way to give the iterator ownership over the list and still make
the direct modification to the list at line 3. Rather, the iterator abstraction
and the client must share the list. Consequently, after the state modification on
line 3, we can no longer be ensured that the iterator’s internal invariants hold,
invalidating the call to next().

Unfortunately, as originally conceived, separation logic is too restrictive to
validate many patterns where an iterator or visitor safely shares state with the
client or other abstractions. For example, if we called lst.length() on line 3,
then the internal invariants of the iterator remain preserved, and we can safely
call the next() method. But traditional separation logic does not support this
kind of reasoning without exposing implementation details of the abstraction.

In this paper we show how type-directed formal verification can be used to ver-
ify data structures that share state, in particular collections and their iterators.
Our data structures are heap-allocated and make liberal use of pointer aliasing.
We have found that sharing makes formally reasoning about the correctness of
programs in an automated way difficult, and we believe general theorem proving
techniques are most suitable to address these problems.

We consider sharing of two sorts, external and internal. In external sharing,
we wish to support multiple, simultaneous views of the same underlying memory,
as in the iterator example above. In internal sharing, we wish to completely hide
the sharing from the client so he/she can reason with a simple interface while
the implementation is free to use aliasing for correctness or efficiency.

Contributions

We begin with a brief overview of the Ynot verification library [4] (Section 2),
which provides an effective tool for writing and reasoning about higher-order,
imperative programs with a type system that incorporates a form of separation-
style, Hoare logic. We then:

– Show how fractional permissions [8] can be applied to provide sharing of
high-level abstractions, focusing on collections. (Section 3)

– Show how external sharing can be leveraged to mechanically verify higher-
order, effectful computations in Ynot, focusing on iterators. (Section 4)

– Show how internal sharing can be expressed by describing the representa-
tion of B+ trees, and how our approach simplifies the implementation of an
iterator for traversing the leaves of the tree. (Section 5)

– While formalizing B+ trees, we also show a technique for formalizing data
structures with a non-functional connection to their specification. (Section 5)
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In our presentation, we focus on interfaces in stylized Coq, but our implemen-
tation and verification are available at http://ynot.cs.harvard.edu/. After
our contributions, we consider the burden of verification, the implications of our
techniques, and related work (Section 6).

We believe that our methodology extends previous work describing aliasing
in separation logic [3] by being amenable to machine-checkable proofs and em-
beddable in Hoare-type theory. Previous work has developed paper-and-pencil
proofs and, as has been seen in other contexts [1], the evolution from rigorous,
manual proofs to mechanically verified proofs is not always straightforward.

2 Background

Ynot [4] is a Coq library that implements Hoare type theory [14] to reason about
imperative programs using types. Hoare logic describes commands using Hoare
triples, commands along with pre- and post-conditions. Ynot encodes these in
the type of the Cmd monad.

{P} c {r⇒ Q} ≡ c : Cmd (P ) (r ⇒ Q)

where the command c has pre-condition P and post-condition Q that depends
on the return value of c (bound to r). This type means that c can be run in any
state that satisfies P and, if c terminates with value r, then the resulting state
will satisfy Q.

Ynot defines pre- and post-conditions in the logic of Coq as predicates over
heaps, which, themselves, are defined as functions from pointers to optional val-
ues. Previous work [4] showed how using a stylized fragment of separation logic
makes verification conditions more amenable to automation and therefore less
burdensome for the programmer to prove. As in previous work, we use a shal-
low embedding of separation logic which we extend with support for fractional
permissions (Figure 1).

The empty heap (emp) denotes a heap containing no allocated cells (i.e., all
pointers are mapped to None1). The permission to access the heap cell pointed
to by p is given by the fractional points-to relation, p

q�→ v [8,6,15]. We use
the simple model of fractional permissions originally developed by Boyland [8].
In this work, the value of q is a rational number such that 0 < q ≤ 1. In all
cases the points-to relation asserts that the heap contains a cell with the value v
addressed by the pointer p. When q = 1, the points-to assertion grants code the
ability to read, write, and deallocate the cell. When q < 1, the points-to relation
gives read-only access to the heap cell. Informally, the separating conjunction (∗)
states that the two conjuncts hold on two “disjoint” pieces of the heap (denoted
h0 ⊥ h1.) In the presence of fractional permissions, two heaps are disjoint if each
pointer is mapped by only one heap or the values are the same and the fractions
sum to a valid fraction. The * operator defines the merger of disjoint heaps. The
1 The symbols None and Some are the constructors of the option α type which repre-

sents an optional value of type α which is included in the Some constructor.

http://ynot.cs.harvard.edu/
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h |= P Heap Propositions (hprop)

Empty h |= emp
Δ⇐⇒ ∀p. h p = None

Points-to h |= p
q�→ v

Δ⇐⇒ h p = Some (q, v) ∧ ∀p′. p �= p′ → h p = None

Separate Conjunction h |= P ∗Q
Δ⇐⇒ ∃h1 h2. P h1 ∧Q h2 ∧ h = h1 � h2 ∧ h1 ⊥ h2

Existentials h |= ∃x.Px
Δ⇐⇒ ∃x. Px h

Pure Injection h |= [p] Δ⇐⇒ emp h ∧ p

h0 ⊥ h1 Heap Disjointness

h0 ⊥ h1 = ∀p.

⎧⎪⎨
⎪⎩

v0 = v1 ∧ q0 + q1 ≤ 1 ∀i ∈ {0, 1}. hi p = Some(qi, vi)
qi ≤ 1 i ∈ {0, 1} ∧ hi p = Some(qi, v) ∧ h1−i p = None

True ∀i ∈ {0, 1}. hi p = None

h0 � h1 Heap Union

(h0 � h1) p =

⎧⎪⎨
⎪⎩
Some(q0 + q1, v) ≤ 1 ∀i ∈ {0, 1}. hi p = Some(qi, v)
Some(qi, v) i ∈ {0, 1} ∧ hi p = Some(qi, v) ∧ h1−i p = None

None ∀i ∈ {0, 1}. hi p = None

Fig. 1. The shallow embedding of separation logic used in Ynot

new : Π(T : Type)(v : T ), Cmd(emp)(p : ptr⇒ p �→ v)
free : Π(p : ptr),Cmd(∃T,∃v : T, p �→ v)( : unit⇒ emp)
read : Π(T : Type)(p : ptr)(P : T → hprop),

Cmd(∃v : T, p
q�→ v ∗ P v)(v : T ⇒ p

q�→ v ∗ P v)
write : Π(T : Type)(p : ptr)(v : T ),Cmd(∃T,∃v′ : T, p �→ v′)( : unit⇒ p �→ v)
bind : Π(T U : Type)(PP ′ : hprop)(Q : T → hprop)(Q : U → hprop),

(∀v : T, Q v =⇒ P ′)→ Cmd(P )(Q)→ (T → Cmd(P ′)(Q′))→ Cmd(P )(Q′)
return : Π(T : Type)(v : T ), Cmd(emp)(r : T ⇒ [r = v])
cast : Π(T : Type)(P P ′ : hprop)(QQ′ : T → hprop), (P ′ =⇒ P )→

(∀v : T.Q v =⇒ Q′ v)→ Cmd(P )(v : T ⇒ Q v)→ Cmd(P ′)(v : T.Q′ v)
frame : Π(T : Type)(P Q R : hprop),Cmd(P )(r : T )(Q r)→

Cmd(P ∗ R)(r : T ⇒ Q r ∗R)

Fig. 2. Axiomatic basis for Hoare type theory using separation logic

separation logic of Ynot also supports existential quantification, and injection of
pure propositions (propositions that do not mention the heap such as n < 5).

Ynot axiomatizes the primitive heap operations using the commands given
in Figure 2. The new command allocates memory by producing the read-write
capability to access the memory cell pointed to by the return value. The pre-
condition specifies that the command needs no heap capabilities, and by the
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frame property, the resulting pointer must be fresh (disjoint from the rest of the
heap). The free command deallocates a memory cell by consuming the read-
write permission to access the cell. The read command reads the values from a
cell given a predicate, P , that describes the rest of the heap based on this value.
The dependence on P allows us to enforce that the v in the pre-condition is the
same as the v in the post-condition because P could include a precise equation on
v. For example, if p pointed to a pointer to v, we could pick P = fun r ⇒ r �→ v

thus making the post-condition reduce to p
q�→ r ∗ r �→ v which maintains the

connection between p and v. The write command updates the value in a heap
cell given a pointer and the new value.

These commands are combined using monadic bind and return in addition
to a cast command that takes a proof and applies Hoare’s consequence rule.
Theframe command extends the footprint of a command with extra capabilities
that are invariant under the command. This is essential to local reasoning and
enables Ynot to run a command with pre-condition P and post-condition Q in
an environment satisfying P ∗R and allows us to infer the post-condition Q ∗R.

3 Sharable Abstractions: Linked Lists

In this section, we develop the foundations of our contributions by defining a
simple interface for externally sharable list structures. Sharing will allow multiple
read-only views of the list or a single read-write view. We will achieve this using
fractional permissions in the same way that we do for heap cells.

In Ynot, abstract data types are defined by a representation predicate and
associated theorems and imperative commands. The interface for sharable lists
(ImpList) is given as a type-class [18] in Figure 3. The class is parametrized
by the type of the elements in the list (T) and the type of handles to the list
(tlst). The representation predicate ( llist ) relates a fractional permission (of
type perm), the list handle, and a functional model of the list (the list T)
to the imperative representation, i.e. the structure of the heap described as a
predicate over heaps (hprop). The heap proposition llist q t l states that t
is a handle to a q-fraction of an imperative representation of the functional list
l. Conceptually, we can think of this as t

q�→ l. Assuming this, new and free are
analogous to Ynot’s new and free commands. The specifications for sub and
insert are expressed by relating their return value and post-condition to the
result of pure functions (specNth and specInsert) that we take as specifications
(we give the specNth function as an example of our specifications). We use
the # in types to denote computationally irrelevant variables [4]. These can be
thought of as compile-time-only values that are used to specify the behavior of
computations without incurring run-time overhead.

One easy way to realize this interface is using singly-linked lists as shown in
Figure 4. The following recursive equations specify the representation invariant
for singly-linked list segments between pointers from and to.
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1 Fixpoint specNth {T} (ls : list T) (n : nat) : option T :=
2 match ls, n with
3 | nil , ⇒ None
4 | a :: , 0 ⇒ Some a
5 | :: b, S n ⇒ specNth b n
6 end
7 Class ImpList (T : Type) (tlst : Type) := {
8 (∗ tlst is a handle to perm capabilities to the list T ∗)
9 llist : perm → tlst → list T → hprop ;

10 (∗ Fractional merging and splitting of lists ∗)
11 llist split : ∀ q q’ t m, q |#| q’ →
12 llist (q + q’) t m ⇐⇒ llist q t m ∗ llist q’ t m ;
13 (∗ Allocate an empty list ∗)
14 new : Cmd (emp) (res : tlst ⇒ llist 1 res nil ) ;
15 (∗ Free the list ∗)
16 free : Π (t : tlst ),
17 Cmd (∃ ls : list T, llist 1 t ls ) ( : unit ⇒ emp) ;
18 (∗ Get the ith element from the list if it exists . ∗)
19 sub : Π (t : tlst T) (i : nat) (m : #list T#) (q : #perm#),
20 Cmd (llist q t m)
21 (res : option T ⇒ llist q t m ∗ [res = specNth m i]);
22 (∗ Insert an element at the ith position in the list . ∗)
23 insert : Π (t : tlst) (v : T) (i : nat) (m : #list T#),
24 Cmd (llist 1 t m)
25 ( : unit ⇒ llist 1 t (specInsert v i m))
26 }

Fig. 3. Externally-sharable list interface

h
’A’ ’B’ ’C’

Indirection cell
Null

List contents

Fig. 4. A heap representing the list [’A’, ’B’, ’C’]

llseg q from to nil
Δ⇐⇒ [from = to] (1)

llseg q (Ptr from) to (a :: b) Δ⇐⇒ ∃x. from q�→ mkNode a x ∗ llseg q x to b (2)
tlst T = ptr (3)

llist q t ls Δ⇐⇒ ∃hd. t q�→ hd ∗ llseg hd Null ls (4)

In equation (1), the model list is empty so the start and end pointers are the
same. When the model list is not empty, i.e. it is a cons (a :: b), from must not
be null, and there must exist a pointer x such that from points to a heap cell
containing a and x (from

q�→ mkNode a x) and x points to the rest of the list
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( llseg q x to b). Equations (3) and (4) make the list mutable by making tlst
an indirection pointer so the pointer to the head of the list can change.

Since the definition only claims a q-fraction of the list, all of the points-to
assertions have fraction q. This allows us to prove the llist split lemma that
states a q + q′ fraction of the list is equivalent to a q fraction of the list disjoint
from a q′ fraction of the list. We can use this proof to create two disjoint, read-
only views of the same list to share.

4 External Sharing: Iterators

The ability to share the list abstraction pays off when we need to develop another
view of the list. Here, we develop a simple and efficient iterator.

We define the iterator with a representation predicate ( liter ) and commands
for creating (open), advancing (next), and deallocating (close) it:

1 Parameter titr : Type → Type.
2 Parameter liter : ∀ T. perm → tlst T →
3 titr T → list T → nat → hprop.
4 Parameter open : Π (T : Type) (t : tlst T) (m : #list T#)
5 (q : #perm#),
6 Cmd (llist q t m) (res : titr T ⇒ liter q t res m 0).
7 Parameter next : Π (T : Type) (t : titr T) (m : #list T#)
8 (idx : #nat#) (own : #tlst T#) (q : #perm#),
9 Cmd (liter q own t m idx)

10 (res : option T ⇒ liter q own t m (idx + 1) ∗
11 [ res = specNth m idx]).
12 Parameter close : Π (T : Type) (t : titr T) (own : #tlst T#)
13 (m : #list T#) (q : #perm#),
14 Cmd (∃ idx, liter q own t m idx) ( : unit ⇒ llist q own m).

The heap proposition liter q l i m n describes the iterator i to the nth element
of the imperative list l which is a representation of the functional list m. Here,
the fractional permission q is the ownership of the underlying list, not of the
iterator, so even if it is not 1, we will be able to modify the iterator, just not the
underlying list. The open computation constructs an iterator to the beginning
of a tlst T by converting the heap predicate from llist q t m to liter q t
res m 0. The next command returns the current element in the list (or None if
the iterator is past the end of the list) and advances the position, reflected in
the index argument of liter . The close command reverses the effect of open by
converting the liter back into a llist .

The own parameter specifies the owner of the iterator in the style of ownership
types [5]. We make it a parameter so that we can specify the invariant precisely
enough to prove that the post-condition to close is exactly the same as the
pre-condition to open so that use of an iterator loses no information about the
underlying list.
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In this interface, an iterator requires full ownership of a heap cell containing
a pointer to the current node, and fractional ownership of the owner pointer
and underlying list. For simplicity, we break the specification of the list into two
parts: the part that has already been visited ( firstn i m) that goes from st to
cur, and the rest (skipn i m) that goes from cur to Null.

titrT = ptr
iter own q t m i

Δ⇐⇒ ∃cur.∃st. t �→ cur ∗ own
q�→ st ∗

llseg q st cur (firstn i m) ∗ llseg q cur Null (skipn i m)

5 Internal Sharing and Non-functional Heaps: B+ Trees

We now turn to the problem of internal sharing. Recall that in internal shar-
ing, we completely hide the sharing from the client. To demonstrate our tech-
nique, we discuss the representation of B+ trees that we presented in previous
work [12]. We choose B+ trees to implement this interface because they have a
structure that is tricky to reason about because of aliasing and previous work
only demonstrated an imperative fold rather than the more primitive iterator.
Our implementation for this interface does not include fractional permissions,
though we believe that it would be relatively straightforward to add them.

Figure 5 gives our target interface for finite maps and their iterators, which
we combine for brevity. The class is parametrized by the type of keys, values,
and finite map handles. The logical model is a sorted association list (fmap K
V) that we relate to the handle with the heap proposition repMap q t m. The
remaining computations are similar to those of the list; we support allocation,
deallocation, key lookup, and key-value insertion. The iterator interface is the
same as the list iterator interface except it does not have fractional permissions.

B+ trees are balanced, ordered, n-ary trees that store data only at the leaves
and maintain a pointer list in the fringe to make in-order iteration of the val-
ues efficient. Figure 6 shows a simple B+ tree with arity 4. As with most tree
structures, B+ trees are comprised of two types of nodes:

– Leaf nodes store data as a sequence of at most n key-value pairs in increasing
order by key. The trailing pointer position points to the next leaf node.

– Branch nodes contain a sequence of at most n key-subtree pairs and a final
subtree. The pairs are ordered such that the keys in a subtree are less than
or equal to the associated key (represented in the figure as treeSorted min
max). For example, the second subtree can only contain values greater than
2 and less than or equal to 6. The final subtree covers the span greater than
the last key; in the figure, this is the span greater than 6.

As with the iterator, the two main difficulties in formalizing B+ trees reveal
themselves in the representation predicate. The first is that the model does not
totally determine the heap structure. The second is the, potentially non-local,
pointer aliasing in the leaves.
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1 (∗ tfmap is the type of finite maps from key to value. ∗)
2 Class FiniteMap (K V : Type) (tfmap : Type) := {
3 (∗ The tfmap handle represents the fmap. ∗)
4 repMap : tfmap → fmap K V → hprop ;
5 new : Cmd emp (h : tfmap ⇒ repMap h nil) ;
6 insert : Π (h : tfmap) (k : K) (v : V) (m : #fmap K V#),
7 Cmd (repMap t m)
8 (res : option V ⇒ repMap h (specInsert v m) ∗
9 [ res = specLookup k m]) ;

10 (∗∗ ... free & lookup ... ∗∗)
11 (∗∗ The iterator ∗∗)
12 titr : Type ;
13 repIter : tfmap → titr → fmap K V → nat → hprop ;
14 open : Π (h : tfmap) (m : #fmap K V#),
15 Cmd (repMap h m) (res : titr ⇒ repIter h res m 0) ;
16 next : Π (h : titr) (own : #tfmap#) (m : #fmap K V#)
17 (idx : #nat#),
18 Cmd (repIter own h m idx)
19 (res : option (K ∗ V) ⇒
20 repIter own h m (idx + 1) ∗ [specNth m idx]) ;
21 close : Π (h : titr) (own : #tfmap#) (m : #fmap K V#),
22 Cmd (∃i. repIter own h m i) ( : unit ⇒ repMap own m)
23 }

Fig. 5. The imperative finite map interface

The standard way to address the first problem is to use a direct relational
specification of the heap, existentially quantifying the splitting of the list into
subtrees at each level [17]. While this works well for paper-and-pencil proofs, it
makes automation difficult because we must witness these existentials in every
place that we deconstruct the tree. To avoid this, we factor the relation between
the interface model and the heap description into a relation and a function, as
shown in Figure 7.

Our representation model is a functional tree that we index by the height to
enforce the balancedness constraint. In Coq, we could define this as follows:

1 Fixpoint ptree (h : nat) : Type :=
2 match h with
3 | 0 ⇒ list (key ∗ value)
4 | S h’ ⇒ list (key ∗ ptree h’) ∗ ptree h’
5 end

The second difficulty deals more directly with sharing. In the standard repre-
sentation for a tree, we existentially quantify the pointers at the parent pointer
for each node. However, when the rightmost leaf of one tree must alias the left-
most leaf of the next the pointers have disjoint scopes making it impossible to
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2 6

1 2

v1 v2

3 4 5 6

v3 v4 v5 v6

7 8 9

v7 v8 v9

treeSorted Min Max

treeSorted Min (Key 2) treeSorted (Key 2) (Key 6) treeSorted (Key 6) Max

Fig. 6. A B+ tree of arity 4 (n = 4) for the finite map from i �→ vi for 1 ≤ i ≤ 9

Interface Model Heap Description

Representation Model

∼ repMap

∼ rel
= rep

Abstraction
Barrier

Fig. 7. Decouple the relational mapping between the interface and the heap by factor-
ing out a representation model that is functionally related to the heap

relate them directly. Changing the representation to quantify the pointers at the
lowest ancestor of the two nodes complicates the recursion because we have to
handle the first subtree specially. This strategy also leads to difficulties when
describing iterators because we will want to ignore the “trunk” and consider
only the leaves. Instead, we embed the pointers directly in the representation
model using the following type:

1 Fixpoint ptree (h : nat) : Type :=
2 ptr ∗ match h with
3 | 0 ⇒ list (key ∗ value)
4 | S h’ ⇒ list (key ∗ ptree h’) ∗ ptree h’
5 end

Using this representation model, we can easily describe the aliasing without
worrying about scoping since all of the pointers are quantified at the root.

With this model, we can turn to defining the heap representation predicate.
We define repTree h o p to hold on a heap representing the ptree p of height h
when the rightmost leaf’s next pointer equals o:

repTree 0 optr (p′, ls) Δ⇐⇒ ∃ary. p′ �→ mkNode0 ary optr ∗ repLeaf ary ls

repTree (1 + h) optr (p′, (ls, nxt)) Δ⇐⇒
∃ary. p′ �→ mkNode (h+ 1) ary (ptrFor nxt) ∗
repBranch ary (firstPtr nxt) ls ∗ repTree h optr nxt
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The repTree predicate has two cases depending on the height. In the leaf case,
the array holds the list of key-value pairs from the ptree.

repLeaf ary [v1, . . . , vm] Δ⇐⇒
ary[0] �→ Some v1 ∗ · · · ∗ ary[m− 1] �→ Some vm∗
ary[m] �→ None ∗ · · · ∗ ary[n− 1] �→ None

In the branch case, the array holds key-pointer pairs such that each pointer points
to the corresponding subtree. This is captured by the repBranch predicate. Note
that we use ptrFor to compute the pointers from the model.

repBranch ary optr [(k1, t1), . . . , (km, tm)] Δ⇐⇒
ary[0] �→ Some (k1, ptrFor t1) ∗ repTree h (firstPtr t2) t1 ∗ · · · ∗
ary[m− 1] �→ Some (km, ptrFor tm) ∗ repTree h optr tm ∗
ary[m] �→ None ∗ · · · ∗ ary[n− 1] �→ None

At this point, we have defined the rep function from Figure 7; it remains to define
rel. A standard relation would be fine to implement this, but since each tree cor-
responds to exactly 1 finite map, we can simplify things by computing the finite
map associated with the tree (using as map) and stating that it equals the desired
model. We can then pick the handle type to be a pointer and define the full
representation predicate to be the conjunction of rep, rel and the pure facts
about the tree structure.

repMap hdl m
Δ⇐⇒ ∃h.∃p : ptreeh.hdl �→ (ptrForp,#p#) ∗

repTreeh Nonep ∗ [m = as mapp] ∗ [treeSortedh p MinMax]

By packing a copy of the ptree with the root pointer, we avoid the need to
search for a model during proofs. The alternative is to show that there is at
most one ptree that a given pointer and heap can satisfy (i.e., that repTree
is precise [15]). However, this is complicated by the fact that the ptree type is
indexed by the height. The pure treeSorted predicate combines all of the facts
about the key constraints, but is not necessary for the iterator and was explained
in previous work [12], so we do not explain it in detail.

With our representation for B+ trees, we can now turn to their iterators. Our
approach is similar to the technique we applied to the list iterator. First, we
state the heap predicate that divides the tree into the “trunk” and the branches
as disjoint entities. We can achieve this with only minor discomfort by parame-
terizing repTree by the leaf case and passing the empty heap when we only want
to describe the trunk. We also implement a function repLeaves to describe a list
of leaves in isolation. These two functions satisfy the following property which
is key to opening and closing our iterator:

∀h optr p. repTreeoptr p⇐⇒
repTrunkoptr p ∗ repLeaves (Some (firstPtrp)) (leavesp) optr
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Using these predicates, we can define the representation of the iterator:

repIter own h m idx
Δ⇐⇒ ∃h.∃tr : ptree h.∃i.∃prev.∃cur.∃rest.

own �→ (ptrFor tr,#tr#) ∗ repTrunk h None p ∗
[m = as map p] ∗ [treeSorted h p Min Max] ∗
h �→ (cur, i) ∗ repLeaves prev cur ∗ repLeaves rest None ∗
[leaves tr = prev ++ rest] ∗ [posInv i idx prev rest m]

The first two lines after the existentials correspond to the framed heap and pure
facts needed to re-establish the tree representation invariant. The third line
declares the iterator state (h �→ (cur, i)) and the combined repLeaves specify
the representation of the leaves. Because each leaf could have a different number
of key-value pairs, it is difficult to use the built-in firstn and skipn functions,
so we existentially quantify two lists of leaves (prev and rest) and assert that
their concatenation (++) must be equal to the leaves of the tree. The final pure
fact establishes the invariant on cur and the index into the current leaf: if there
are elements left to iterate, i+length (as map prev) = idx and i is a valid index
in the list. Otherwise, i = 0 and rest = nil.

6 Discussion

In this section we consider the overhead of verification (Section 6.1), summarize
our sharing insights (Section 6.2), and review related work (Section 6.3).

6.1 The Burden of Mechanized Proofs

Our methodology places the burden of proof on the developer. Proof search
scripts and lemmas are part of the final code and running them considerably
increases compilation time. However, our proofs confirm functional (partial)
correctness properties and our specifications document precise pre- and post-
conditions for clients to use.

Figure 8, presents a quantitative look at the size of our development in number
of lines. The Spec column counts command specifications; this is the interface
that the client needs to reason about. Excluding the data structure invariants,
this is the part of the code that a client of the library needs to reason about.
The Impl column counts imperative code. The next two columns count auxiliary
lemmas and automation. The first, Sep. Lemmas, counts lines that pertain to
separation logic, while Log. Lemmas counts lines that only reason about pure
structures, e.g. as lists. The Overhead column gives the ratio of proofs to speci-
fication and code. The Time column gives the time required to prove all of the
verification conditions not including auxiliary lemmas. Line counts include only
new lines needed for verifying the function, so, if a lemma is required for both
sub and insert it is only counted against sub.

As Figure 8 shows, the first commands contribute the most to the proof burden
because we are writing general lemmas about the model and representation
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Lines of Code Overhead
Command Spec Impl Sep. Lemmas Log. Lemmas Lines Time (m:s)
new 2 1 15 1 5.33x 0:00
free 3 13 33 0 2.06x 0:15
insert 9 25 15 11 0.76x 1:22
delete 9 26 1 7 0.23x 2:52
sub 3 14 1 0 0.06x 1:21
mfold_left 7 13 1 6 0.35x 1:47
iterator 3 3 29 0 4.83x 0:17
close 3 2 9 0 1.80x 0:11
next 3 8 30 13 3.91x 2:30
Total 82 123 155 73 1.11x 12:07

Fig. 8. Breakdown of lines of code for lists and iterators

predicate. Once these lemmas have been proven, the remainder of the commands
are almost immediate. We believe that the logical lemmas required for our code
are mostly within the capabilities of existing automated theorem provers [13] and
integrating such tools would likely eliminate all of the overhead from this column.
It is less likely that existing tools are directly applicable to our separation logic
though existing automation is fairly good at this. The time spent interactively
verifying our implementation was mostly spent abstracting lemmas which is
straightforward but time consuming because of Coq’s interaction model.

6.2 Sharing Lessons

While originally proposed for parallel code, fractional permissions for external
sharing are important for sequential code. This is a by-product of multiple views
of the same data structure, in our case lists and iterators. Our solution is simple
because the list and iterator are completely decoupled and so we do not need to
correlate mutation through multiple views2. Supporting mutation with a single
iterator is relatively straightforward. The ConcurrentModificationException
problem from Java is a general consequence of mutation of structures with mul-
tiple views and giving natural semantics to these operations is similar to the
difficulty of writing precise specifications for concurrent functions.

When describing internal sharing, our technique allows us to specify equations
directly on pointers. We find that quantifying all of the pointers at the beginning
is useful for addressing this problem and it integrates nicely with our solution
to heap structures being loosely related to interface models.This also allows
us separately to state pure facts about the shape rather than having to fold
them into the representation predicate. It is unclear how this technique could
be applied to concurrent code, however, since this irrelevant, global state would
need to be protected by a lock.
2 The code for maintaining multiple concurrently mutable views is not simple, so the

verification should not be expected to be trivial either.



258 G. Malecha and G. Morrisett

6.3 Related Work

Weide [20] uses model-oriented specification in Resolve to specify how iterators
behave. These specifications follow a requires/ensures template on top of a purely
logical model, similar to Ynot’s interface model.

Bierhoff [2] proposed using type-state specifications [10] for iterators. This sys-
tem uses finite state machines to define the state of an object and specify when
operations are permitted. This technique is particularly useful for specifying “non-
interference” properties [19] such as marking a collection read-only when an itera-
tor exists. We achieve this using fractional permissions, but can encode type states
by adding a state parameter to the representation predicate of our data structures.

Our approach is most similar to the work of Krishnaswami [11] where separa-
tion and Hoare logic are combined to reason about iterators. His technique relies
on the separating implication (−∗), the separation logic analog of implication.
We are interested in incorporating this into our separation logic, but we have
not yet developed effective automation for it, so the burden of using it can be
considerable. More recent work by Jensen [9] shows how a similar approach using
separating implication can be applied to mutable views of a container.

B+ trees have been formalized in two previous developments. Bornat et al. [3]
proposed using classical conjunction to capture the B+ tree as a tree and a list in
the same heap. This is convenient for representation,but it requires re-establishing
both the heap as a tree and as a list at every step of the code. By unifying the two
views, we only need to reason about one view at a time. We support the two views
by proving repTree is equivalent to a representation that exposes the leaves as a list.

Sexton and Thielecke [17] formulate B+ trees by defining a language of tree-
operations for a stack-machine. Their representation is similar to our own in not
using classical conjunction, but they quantify structure in the representation
predicate which forces them to state the pure properties there as well.

7 Conclusions

In this work we have demonstrated a technique for building verified imperative
software using theorem proving in the Ynot library for Coq.

We showed how external sharing can be achieved using abstract predicates
which quantify over fractional permissions and showed how this technique can
be applied to representing multiple views. Further, we showed how ownership
types can be applied to make the view’s representation predicate precise.

To address internal sharing we suggest simplifying recursive definitions by ex-
istentially quantifying all of the salient aspects of the data structure at the be-
ginning of the representation predicate. This makes stating facts, such as aliasing
equations, simple and allows the programmer to minimize the use of existential
quantification which can be difficult to reason about automatically.

Future Work

The use of the separating implication in so many developments [11,17] demon-
strates its usefulness. It would benefit our own development by allowing us to
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avoid duplicating parts of the representation predicate in the iterators. We are
interested in extending Ynot’s automation to reason about it and hope that
doing so will reduce the burden of specifying and verifying Ynot code.

References

1. Aydemir, B.E., Bohannon, A., Fairbairn, M., et al.: Mechanized Metatheory for
the Masses: The PoplMark Challenge. In: Hurd, J., Melham, T. (eds.) TPHOLs
2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg (2005)

2. Bierhoff, K.: Iterator specification with typestates.
In: SAVCBS 2006, pp. 79–82. ACM, New York (2006)

3. Bornat, R., Calcagno, C., OHearn, P.: Local reasoning, separation and aliasing. In:
Proceedings of SPACE, vol. 4 (2004)

4. Chlipala, A., et al.: Effective interactive proofs for higher-order imperative pro-
grams. In: ICFP 2009, pp. 79–90. ACM, New York (2009)

5. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA 1998, pp. 48–64. ACM, New York (1998)

6. Haack, C., Hurlin, C.: Separation Logic Contracts for a Java-Like Language with
Fork/Join. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 199–215. Springer, Heidelberg (2008)

7. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580 (1969)

8. Boyland, J.: Checking Interference with Fractional Permissions, vol. 2694 (2003)
9. Jonas, B.J.: Specification and validation of data structures using separation logic.

Master’s thesis, Technical University of Denmark (2010)
10. Kim, T., Bierhoff, K., Aldrich, J., Kang, S.: Typestate protocol specification in

JML. In: SAVCBS 2009. ACM, New York (2009)
11. Krishnaswami, N.R.: Reasoning about iterators with separation logic. In: SAVCBS

2006, pp. 83–86. ACM, New York (2006)
12. Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational

database management system. In: POPL 2010 (January 2010)
13. De Moura, L., Bjrner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Rehof,

J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
14. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare

type theory. In: ICFP 2006. ACM, New York (2006)
15. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer

Science 375(1-3), 271–307 (2007)
16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.

In: Symposium on Logic in Computer Science, LICS 2002 (2002)
17. Sexton, A., Thielecke, H.: Reasoning about B+ Trees with Operational Seman-

tics and Separation Logic. Electronic Notes in Theoretical Computer Science 218,
355–369 (2008)

18. Sozeau, M., Oury,N.: First-class type classes. In: Mohamed, O.A., Muñoz, C., Tahar,
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Abstract. Boolean Satisfiability (SAT) solvers are now routinely used in the ver-
ification of large industrial problems. However, their application in safety-critical
domains such as the railways, avionics, and automotive industries requires some
form of assurance for the results, as the solvers can (and sometimes do) have bugs.
Unfortunately, the complexity of modern and highly optimized SAT solvers ren-
ders impractical the development of direct formal proofs of their correctness. This
paper presents an alternative approach where an untrusted, industrial-strength,
SAT solver is plugged into a trusted, formally verified, SAT proof checker to
provide industrial-strength certified SAT solving. The key characteristics of our
approach are (i) that the checker is not tied to a specific SAT solver but certi-
fies any solver respecting the agreed format for satisfiability and unsatisfiability
claims, (ii) that the checker is automatically extracted from the formal develop-
ment, and (iii) that the combined system can be used as a standalone executable
program independent of any supporting theorem prover. The core of the system
is a checker for unsatisfiability claims that is formally designed and verified in
Coq. We present its formal design and outline the correctness criteria. The actual
standalone checker is automatically extracted from the the Coq development. An
evaluation of the checker on a representative set of industrial benchmarks from
the SAT Race Competition shows that, albeit it is slower than uncertified SAT
checkers, it is significantly faster than certified checkers implemented on top of
an interactive theorem prover.

1 Introduction

Advances in Boolean satisfiability (SAT) technology have made it possible for SAT
solvers to be routinely used in the verification of large industrial problems, including
problems from safety-critical domains such as the railways, avionics, and automotive
industries [11,16]. However, the use of SAT solvers in such domains requires some ex-
plicit form of assurance for the results since SAT solvers can and sometimes have bugs.
For example, in the SAT 2007 competition, the solver SATzilla CRAFTED reported
incorrect outcomes on several problems [20].
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Two alternative methods can be used to provide assurance. First, the solver could
be proven correct once and for all, but this approach had limited success. For example,
Lescuyer et al. [13] formally designed and verified a SAT solver using the Coq proof as-
sistant [3], but without any of the techniques and optimizations used in modern solvers.
Smith and Westfold [24] use a correct-by-construction approach to simultaneously de-
rive code and correctness proofs for a family of SAT solvers, but their performance falls
again short of the current state of the art. Reasoning about the optimizations makes the
formal correctness proofs exceedingly hard. This was shown in the work of Marić [14],
who verified at the pseudo-code level the algorithms used in the ARGO-SAT solver
but did not verify the actual solver itself. In addition, the formal verification has to be
repeated for every new SAT solver (or even a new version of a solver), or else users are
locked into using the specific verified solver.

Alternatively, a proof checker can be used to validate each individual outcome of the
solver independently; this requires the solver to produce a proof trace that is viewed as
a certificate justifying its outcome. This approach was popularized by the Certified Un-
satisfiable Track of the SAT 2007 competition [21] and was used in the design of several
SAT solvers such as tts, booleforce, picosat, and zChaff. However, the corresponding
proof checkers are typically implemented by the developers of the solvers whose output
they check, which can lead to problems in practice. In fact, the checkers booleforce-res,
picosat-res, and tts-rpt reported both “proof errors” and “program errors” on some of
the benchmarks, although it is unclear what these errors signify.

Confidence can be increased if the checker is proven correct, once and for all. This
is substantially simpler than proving the solver correct, because the checker is compar-
atively small and straightforward, and avoids system lock-in, because the checker can
work for all solvers that can produce proof traces in the agreed format. This approach
originates in the formal development of a proof checker for zChaff and Minisat proof
traces by Weber and Amjad [26], and we follow it here as well. However, we depart con-
siderably from Weber and Amjad in how we design and implement our solution. Their
checker replays the derivation encoded in the proof trace inside an LCF-style theorem
prover such as HOL 4 or Isabelle. Since the design and implementation of these provers
relies on using the primitive inference rules of the underlying theorem prover, assurance
is very high. However, their checker can run only inside the supporting prover, and not
as a standalone tool, and performance bottlenecks become prominent when the size of
the problems increases. Our checker, SHRUTI,1 is formally designed and verified using
the higher-order logic based proof assistant Coq [3], but we never use Coq for execu-
tion; instead we automatically extract an OCaml program from the formal development
that can be compiled and used independently of Coq. This prevents the user from be-
ing locked-in to a specific proof assistant, and allows us to wrap SHRUTI around an
industrial-strength but untrusted solver, to provide an industrial-strength certified solver
that can be used as a regular component in a SAT-based verification work flow.

Our aim is not a fully formal end-to-end certification, which would in an extreme
view need to include correctness proofs for file operations, the compiler, and even the

1 SHRUTI in Sanskrit symbolizes ‘knowledge’ from a spoken word. In our case the outcome
of our verified proof checker provides the knowledge about the correctness of a SAT solver
and is therefore called SHRUTI.
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hardware. Instead, we focus on the core of the checker, which is based on the resolu-
tion inference rule [18], and formally prove its design correct. We then rely on Coq’s
program extraction mechanism and some simple glue code as trusted components to
build the entire checker. This way we are able to combine a high degree of assurance
(much the same way as Amjad and Weber did) with high performance: as we will show
in Section 4, SHRUTI is significantly (up to 32 times) faster than Amjad’s checker
implemented in HOL 4.

2 Propositional Satisfiability

2.1 Satisfiability Solving

Given a propositional formula, the goal of satisfiability solving is to determine whether
there is an assignment of the Boolean truth values (i.e., true and false) to the variables
in the formula such that the formula evaluates to true. If such an assignment exists,
the given formula is said to be satisfiable or SAT, otherwise the formula is said to
be unsatisfiable or UNSAT. Many problems of practical interest in system verification
involve proving unsatisfiability, for example bounded model checking [5].

For efficiency purposes, SAT solvers represent the propositional formulas in con-
junctive normal form (CNF), where the entire formula is a conjunction of clauses. Each
clause itself denotes a disjunction of literals, which are simply (Boolean) variables or
negated variables. An efficient CNF representation uses non-zero integers to represent
literals. A positive literal is represented by a positive integer, whilst a negated one is
denoted by a negative integer. Zeroes serve as clause delimiters. As an example, the
(unsatisfiable) formula (a∨ b)∧ (¬a∨ b)∧ (a∨¬b)∧ (¬a∨¬b) over two propositional
variables a and b is thus represented in the widely used DIMACS notation as follows:

1 2 0 -1 2 0 1 -2 0 -1 -2 0

SAT solvers take a Boolean formula, and produce a SAT/UNSAT claim. A proof-
generating SAT solver produces additional evidence (also called certificates) to support
its claims. For a SAT claim, the certificate is simply an assignment, i.e., an enumeration
of Boolean variables that need to be set to true in the input problem. It is trivial to check
whether that assignment—and thus the original SAT claim—is correct: we simply sub-
stitute the Boolean values given by the assignment in the formula and then evaluate the
overall formula, checking that it indeed is true. For UNSAT claims, the solvers return a
resolution proof trace as certificate which is more complicated to check.

2.2 Proof Checking

When a solver claims a given problem is UNSAT and returns a proof trace as certificate,
we can independently re-play the trace to check that its claim is correct: if we can follow
the resolution inferences given in the trace to derive an empty clause, then we know that
the problem is indeed UNSAT, and can conclude that the claim is correct.

A proof trace consists of the subset of the original input clauses used during resolu-
tion and the intermediate resolvents obtained by resolving the input clauses. The part
of the proof trace that specifies how the input clauses have been resolved in sequence
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to derive a conflict (i.e., the empty clause) is organized as chains. These chains are also
called regular input resolution proofs, or trivial proofs [2,4]. We call the input clauses
in a chain its antecedents and its final resolvent simply its resolvent.

A key correctness constraint for the proof traces (and thus for the proof checker) is
that whenever a pair of clauses is used for resolution, at most one complementary pair of
literals is deleted, i.e., that the chains represent well-formed trivial resolution proofs [4].
Otherwise, we might erroneously “certify” an UNSAT claim for the satisfiable problem
(a ∨ ¬b) ∧ (¬a ∨ b) by “resolving” over both complementary pairs of literals at once,
to derive the empty clause. For efficiency reasons the chains are assumed to be ordered
in such a way that we need to resolve only adjacent clauses, and, in particular, that at
least one pair of complementary literals is deleted in each step. This allows us to avoid
searching for the right clauses during checking, and to design a linear-time (in the size
of the input clauses) algorithm.

2.3 PicoSAT Proof Representation

Most proof-generating SAT solvers [4,9,29] preserve the two criteria given above. We
decided to work with PicoSAT [4] for three reasons. First, PicoSAT is efficient: it ranked
as one of the best solvers in the industrial category of the SAT Competitions 2007 and
2009, and in the SAT Race 2008. Second, PicoSAT’s proof representation is simple and
records only the essential information. For example, it does not contain information
about the pivot literals over which it resolves. Third, the representation is in ASCII
format, which makes it easier to read and process than the more compact binary formats
used by other solvers such as Minisat. Together the last two points help us simplify the
design of SHRUTI and minimize the size of the trusted components outside the formal
development.

A PicoSAT proof trace consists of rows representing the input clauses, followed by
rows encoding the proof chains. Each row representing a chain consists of an asterisk
(*) as place-holder for the chain’s resolvent, followed by the identifiers of the clauses
involved in the chain. Each chain row thus contains at least two clause identifiers, and
denotes an application of one or more of the resolution inference rule, describing a triv-
ial resolution derivation. Each row also starts with a non-zero positive integer denoting
the identifier for that row’s (input or resolvent) clause, and ends with a zero as delimiter.
For the UNSAT formula shown in the previous section, the corresponding proof trace
generated from PicoSAT looks as follows:

1 1 2 0 5 * 3 1 0
2 -1 2 0 6 * 4 2 5 0
3 1 -2 0
4 -1 -2 0

Rows 1 to 4 denote the input clauses from the original problem that are used in the
resolution, with their identifiers referring to the original clause numbering, whereas
rows 5 and 6 represent the proof chains. For example, in row 6 first the original clauses
4 and 2 are resolved and then the resulting clause is resolved against the resolvent from
the previous chain, in total using two resolution steps.

By default, PicoSAT creates a compacted form of proof traces, where the antecedents
for the derived clauses are not ordered properly within the chain. This means that there
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are instances in the chain where we “resolve” a pair of adjacent clauses but no lit-
eral is deleted. In this case we cannot deduce an existence of an empty clause for this
trace unless we re-order the antecedents in the chain. However, PicoSAT comes with
an uncertified proof checker called Tracecheck that can not only check the outcome of
PicoSAT but also corrects this mis-ordering of traces. The outcome of Tracecheck is
an extended proof trace and this then becomes the input to SHRUTI, i.e., we consider
the combination of PicoSAT and Tracecheck as the solver to be checked. Hence, we
can detect errors both in PicoSAT and Tracecheck’s re-ordering algorithm, but do not
distinguish them.

Similarly, it is possible to integrate other SAT solvers into SHRUTI, even if their
proof traces use a different format, by developing a proof translator. This is usually
straightforward [25]. As a proof of concept, we developed a translator from zChaff’s
proof format to PicoSAT’s proof format. We again consider the combination of the core
solver (i.e., zChaff), post-processor (i.e., the proof translator) and Tracecheck (used for
extending the proof trace) as the system to be checked.

3 The SHRUTI System

3.1 High-Level Architecture

SHRUTI consists of a formally certified proof checker and a simple comparator that de-
cides whether the solver’s claim was correct. It takes as input a CNF file which contains
the original problem description and a certificate (i.e., an assignment for a SAT claim or
a resolution proof trace for an UNSAT claim). The checker evaluates the certificate and
checks whether the two together denote a matching pair of SAT/UNSAT problem and
solution. If this is the case, SHRUTI will accept the claim and output “yes”, otherwise
it will reject the claim and output “don’t know”. Note that the latter response does not
imply that the solver’s original claim is wrong—the problem may well be satisfiable or
unsatisfiable as claimed. It only indicates that the given evidence (i.e., the assignment
or the proof trace) is insufficient to corroborate the claim of the solver (i.e., the assign-
ment does not evaluate to true, or the proof trace is not correct). This can happen due to
mis-alignment of chains in the resolution proof as explained in Sect 2.3, or because the
proof trace is not well-formed.

SAT solver
- Industrial Strength
- Large & Complex
- Un-trusted (ad-hoc) 
- Proof Generating

Certified SAT Checker

- Standalone Executable
- Small & Clear
- Trusted (formal) 
- Proof Checking

cnf proof

cnf
Yes/
Don’t Know/
Error

Sat/Unsat

Comparator

SHRUTI

Sat/Unsat

Fig. 1. SHRUTI’s high-Level architecture
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The crucial cases are where the problem is satisfiable (resp. unsatisfiable) but the
solver claims the opposite, and produces a well-formed certificate for this wrong claim.
SHRUTI contains a legitimacy check to prevent it from accepting forged certificates: it
outputs “error” if it detects that the certificate is not legitimate, i.e., refers to variables
(for a SAT claim) or clauses (for an UNSAT claim) that do not exist in the input prob-
lem. Hence, the only possibility under which SHRUTI would certify a wrong claim is if
itself contained an error, but (accepting our characterization of the resolution function
as correct) this is ruled out by our formal development. A high-level architectural view
of our approach is shown in Figure 1.

We designed, formalized, and verified checkers for both satisfiability and unsatis-
fiability claims. In this paper, we focus on the more interesting aspect of checking
unsatisfiability claims; satisfiability claims are significantly easier to check. The core
component of the unsatisfiability checker is the development of the binary resolution
inference rule inside the Coq proof assistant [3]. We show that the resolvent of a given
pair of clauses is logically entailed by the two clauses (see Sect. 3.3), and that our im-
plementation has the properties of the resolution inference rule [18,19] (see Sect. 3.4).
In addition, we show that it maintains well-formedness of the clauses (see Sect. 3.5).

Once the formalization and proofs are complete, OCaml code is extracted from the
development through the extraction API included in Coq. The extracted OCaml code
expects its input in data structures such as tables and lists. These data structures are built
by some glue code that also handles file I/O and pre-processes the proof traces (e.g.,
removes the zeroes used as separators for the clauses). Together with the comparator,
the glue code is wrapped around the extracted checker and the result is then compiled
to a native machine code executable that can be run independently of Coq.

letcheckUnsat(cnf , trace) = let (clauses , chains) = split trace in
if checkLegal (clauses , cnf )
then let res = resolve(clauses , chains) in

if (res = [ ]) then print “yes”
else print “don ′t know”

else print “error”

The top-level function checkUnsat first splits the given trace into its constituent
input clauses and the proof chains. It then checks whether the clauses used in the reso-
lution proof are legitimate, i.e., whether all clauses used in the resolution proof trace are
contained in the original problem CNF, or are derived by applying the resolution infer-
ence rule on legitimate clauses. Note that this checks only which clauses are used, not
whether the result of an inference is correct. If the certificate is legitimate, then resolve ,
which is a wrapper around the formally verified binary resolution function, is used to
derive the empty clause by re-playing the proof steps in the chains.

3.2 Formalization of Resolution in Coq

Coq is based on the Calculus of Inductive Constructions [7,8] and encapsulates the con-
cepts of typed higher-order logic. It uses the notion of proofs as types, and allows con-
structive proofs and use of dependent types. It has been successfully used in the design
and implementation of large scale certification of software such as in the CompCert [12]
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project. Our formal development in Coq follows the LCF style [22]; in particular, we
only use definitional extensions, i.e., new theorems can only be derived by applying
previously derived inference rules. We never use axiomatic extensions, which would
allow us to assume the existence of a theorem without a proof, and thus invalidate the
correctness guarantees of the extracted code.

In this section we present the formalization of SHRUTI in Coq. Its core logic is
formalized as a shallow [1,17] embedding in Coq. In a shallow embedding we identify
the object data types (i.e., the types used for SHRUTI) with the types of the meta-
language (i.e., the Coq datatypes). Thus, inside Coq, we denote literals by integers, and
clauses by lists of integers. Antecedents (denoting the input clauses) in a proof chain
are represented by integers and a proof chain itself by a list of integers. We then define
our resolution function to work directly on this integer-based representation.

The choice of a shallow embedding and the use of the integer-based representation
were conscious design decisions, which make the internal data representation conceptu-
ally identical to the external problem representation. Consequently, our parsing functions
can remain simple (and efficient), which minimizes the size of the trusted computing
base. This is also a difference to Amjad’s approach where external C++ functions were
used for parsing and translating the integers into Booleans [27].

The main data structures that we used in the Coq formalization are lists and finite
maps. The maps are used to represent resolution proofs internally. Their keys are the row
identifiers obtained from the proof trace file. Their values are the actual clauses obtained
by resolving the clauses specified in the proof trace—note that these are not part of the
traces but must be reconstructed. When the trace is read, the identifier corresponding
to the first proof chain becomes the starting point for checking. Once the resolvent is
calculated for this, the process is repeated for all remaining chain rows, until we reach
the end of the trace. If the entry for the last row is the empty clause, we conclude that
the given problem and its trace represent an UNSAT instance.

We use the usual notation for quantifiers and logical connectives but distinguish im-
plication over propositions (⊃) and over types (→) for presentation clarity, though
they are the same inside Coq. The notation ⇒ is used during pattern matching (us-
ing match− with) as in other functional languages. For type annotation we use :, the
set of integers is denoted by Z, polymorphic lists by list and list of integers by list Z.
The empty list is denoted by nil , and for the cons operation we use ::. List member-
ship is represented by ∈ and its negation by /∈. The function abs computes the absolute
value of an integer. We use the keyword Definition to present our function definitions
implemented in Coq but use let to define a function implemented directly in OCaml.

We define our resolution function (��) with the help of two auxiliary functions union
and auxunion. Both functions expect the input clauses to respect three well-formedness
criteria: there should be no duplicates in the clauses (NoDup); there should be no com-
plementary pair of literals within any clause (NoCompPair ), and the clauses should
be sorted by absolute value (Sorted ). The first two assumptions are essentially the con-
straints imposed on input clauses when the resolution function is applied in practice.
Sorting is enforced by us to keep our algorithm efficient. The predicate Wf encapsu-
lates these properties.

Definition Wf c = NoCompPair c ∧ NoDup c ∧ Sorted c
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Both union and auxunion use an accumulator to merge two clauses represented as
sorted (by absolute value) integer lists, but differ in their behavior for complementary
literals. union computes the resolvent by pointwise comparison of the literals. When it
encounters a complementary pair of literals it removes both the complementary literals
and calls auxunion to process the remainder of the lists. When auxunion encounters a
complementary pair of literals it simply copies both the literals into the accumulator and
recurses. Ideally, the proof traces contain only one pair of complementary literals for
any pair of clauses that are resolved. However in reality, a solver or its proof trace can
have bugs and it can create instances of clauses in the trace with multiple complemen-
tary pair of literals in a pair of clauses. Hence, we employ the two auxiliary functions to
ensure that the resolution function deals with this in a sound way. Both functions also
implement factoring, i.e., if they find the same literal in both clauses, only one copy is
kept in the accumulator. Both functions also keep the accumulator sorted, which can be
done by simply reversing, since all elements are in descending order.

Definition c1 �� c2 = union c1 c2 nil

Definition union (c1 c2 : list Z)(acc : list Z) = match c1 , c2 with
| nil , c2 ⇒ app (rev acc) c2
| c1 ,nil ⇒ app (rev acc) c1
| x :: xs , y :: ys ⇒ if (x + y = 0) then auxunion xs ys acc

else if (abs x < abs y) then union xs (y :: ys)(x :: acc)
else if (abs y < abs x ) then union (x :: xs) ys (y :: acc)
else union xs ys (x :: acc)

end

Definition auxunion (c1 c2 : list Z)(acc : list Z) = match c1 , c2 with
| nil , c2 ⇒ app (rev acc) c2
| c1 ,nil ⇒ app (rev acc) c1
| x :: xs , y :: ys ⇒ if (abs x < abs y) then auxunion xs (y :: ys) (x :: acc)

else if (abs y < abs x ) then auxunion (x :: xs) ys (y :: acc)
else if x=y then auxunion xs ys (x :: acc)
else auxunion xs ys (x :: y :: acc)

end

3.3 Logical Characterization of the Resolution Function

The implementation of the checker is based on the operational characterization of the
resolution inference rule, and in the next section, we will prove it correct with respect to
this. However, we can also use the logical characterization of resolution, and prove the
checker sound with respect to this. We need to prove that the resolvent of a given pair
of clauses is logically entailed by the two clauses. Thus at an appropriate meta-level
(since clauses are lists of non-zero integers, not Booleans), we need to prove a theorem
of the following form ∀c1 c2 c3 · ({c1, c2} �� c3) =⇒ {c1, c2} |= c3.

Here, {c1, c2} �� c3 denotes that c3 is derivable from c1 and c2 using the resolution
function ��, and |= denotes logical entailment. We can use the deduction theorem ∀a b c·
{a, b} |= c ≡ (a ∧ b =⇒ c) and the fact that {c1, c2} �� c3 is equivalent to
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c1 �� c2 = c3 to re-state this as ∀c1 c2 · (c1 ∧ c2) =⇒ (c1 �� c2) which we prove its
contrapositive form, ∀c1c2 · ¬(c1 �� c2) =⇒ ¬(c1 ∧ c2)

In order to actually do this proof, we need to lift the interpretation of clauses and
CNF from the level of the integer-based representation to the logical level. We thus
define two evaluation functions EvalClause and EvalCNF that map an interpretation
function I of type Z → Bool over the underlying lists.

Definition EvalClause nil I = False
EvalClause (x :: xs) I = I x ∨ (EvalClause xs I)

Definition EvalCNF nil I = True
EvalCNF (x :: xs) I = (EvalClause x I) ∧ (EvalCNF xs I)

Definition Logical I = ∀(x : Z) · I(−x) = ¬(I x)

The interpretation function must be logical in the sense that it maps the negation on
the representation level to the negation on the logical level. With this, we can now state
the soundness theorem that we proved.

Theorem 1. (Soundness theorem)
∀c1c2 · ∀ I · Logical I ⊃ ¬(EvalClause (c1 �� c2) I) ⊃ ¬(EvalCNF [c1, c2] I)

Proof. The proof proceeds by structural induction on c1 and c2. The first three sub-goals
are easily proven by term rewriting and simplification by unfolding the definitions of
��, EvalClause and EvalCNF . The last sub-goal is proven by doing a case split on if-
then-else and then using a combination of induction hypothesis and generating conflict
among some of the assumptions. A detailed transcription of the Coq proof is available
from http://www.darbari.org/ashish/research/shruti/. ��

The soundness proof provides an explicit argument that the resolution function “does
the right thing.” This is different from Amjad and Weber’s approach, who implemented
their checker to work on the Bool representation of literals inside HOL and therefore
relied on the implicit assurance obtained from using the inference rules of the HOL
logic. They provide no explicit proof that their encoding is correct and soundness was
never explicitly proven.

3.4 Correctness of the Resolution Function

In this section we prove that our implementation of the resolution function is oper-
ationally correct i.e., has the properties expected of the resolution function [18,19].
These properties can also be seen as steps towards a completeness proof, however, this
is outside the scope of this paper. These are:
1. A pair of complementary literals is deleted in the resolvent obtained from resolving

a given pair of clauses (Theorem 2).
2. All non-complementary pair of literals that are unequal are retained in the resolvent

(Theorem 3).
3. For a given pair of clauses, if there are no duplicate literals within each clause, then

for a literal that exists in both the clauses of the pair, only one copy of the literal is
retained in the resolvent (Theorem 4).
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For Theorem 2 to ensure that only a single pair of complementary literals is deleted
we need to assume that there is a unique complementary pair (UniqueCompPair ). The
theorem will not hold in this form for the case with multiple complementary pairs.

Theorem 2. A pair of complementary literals is deleted.
∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃ UniqueCompPair c1 c2 ⊃

∀�1 �2 · (�1 ∈ c1 ) ⊃ (�2 ∈ c2 ) ⊃ (�1 + �2 = 0) ⊃
(�1 /∈ (c1 �� c2 )) ∧ (�2 /∈ (c1 �� c2 ))

In the following theorem, NoCompLit � c asserts that the clause c contains no literal
that is complementary to the given literal �.

Theorem 3. All non-complementary, unequal literals are retained.
∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃

∀�1 �2 · (�1 ∈ c1 ) ⊃ (�2 ∈ c2 ) ⊃
(NoCompLit �1 c2) ⊃ (NoCompLit �2 c1) ⊃
(�1 �= �2) ⊃ (�1 ∈ (c1 �� c2 )) ∧ (�2 ∈ (c1 �� c2 ))

Our last correctness theorem is about factoring. We show that for equal literals in a
given pair of clauses only one is copied in the resolvent.

Theorem 4. Only one copy of equal literals is retained (factoring).

∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃
∀�1 �2 · (�1 ∈ c1 ) ⊃ (�2 ∈ c2 ) ⊃ (�1 = �2) ⊃

((�1 ∈ (c1 �� c2 )) ∧ (count �1 (c1 �� c2 ) = 1))

3.5 Preservation of Well-Formedness

Our implementation of the resolution function works correctly if the input clauses are
well-formed. This implies that we prove that when we use the resolution function on a
pair of well-formed clauses where there is only a single pair of literals to be resolved,
we guarantee that the resolvent will be well-formed. This is shown in theorem below.

Theorem 5. The resolvent of a pair of well-formed clauses is well-formed as well.

∀c1 c2 · Wf c1 ⊃ Wf c2 ⊃ UniqueCompPair c1 c2 ⊃Wf (c1 �� c2)

Note that we assume the existence of a unique complementary pair of literals between
the clauses c1 and c2 because the well-formedness only matters when the resolution
function is applied on well-formed proof traces (i.e., one complementary pair of literals
between any pair of clauses resolved).

3.6 Glue Code and Program Extraction

For the complete checker, we need to wrap a couple of auxiliary functions in Coq around
the resolution function. These include findAndResolve which starts the checking pro-
cess by first obtaining the clause identifiers from the proof trace file, and then invoking
findClause to collect all the clauses for each row in the proof part of the proof trace
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file. A function called checkResolution recursively calls the function findAndResolve
to apply the resolution function �� on each proof chain.

The top-level function in OCaml checkUnsat shown in Sect. 3.1 relies on the func-
tion resolve . This function (implemented in OCaml) first computes the number of proof
steps from the chains (by counting the number of lines with an ‘*’), and then obtains
the chains themselves and stores them in a table. This table is passed as an argument
together with the number of proof steps and an empty table (to store resolvents) to the
function checkResolution which calculates the resolvents for each step. Once the resol-
vent is obtained for the last row, its value is queried from the updated resolvent table and
the value is returned as the final resolvent. These functions are implemented in OCaml
directly because they handle file I/O, a feature not possible to implement inside Coq.
An important observation is that the design of these OCaml functions though trivial is
still necessary for using the core of the checker which is proven correct inside Coq.

We extract the OCaml code using the built-in extraction API in Coq. By default
the extracted code would be implemented in terms of Coq datatypes. But this causes
the implementation to be very inefficient at run time. A well-known technique [3] is
to replace the Coq datatypes with equivalent OCaml datatypes. This is easily done by
providing a mapping (between types) as an option when we do extraction. An important
consequence of extraction is that only some datatypes, and data structures get mapped to
OCaml’s; the key logical functionality is unmodified. The decision for making changes
in data types and data structures is a standard procedure used in any large-scale Coq
related work such as the CompCert project [12]. For optimization purposes we thus
made the following replacements:
1. Coq Booleans by OCaml Booleans.
2. Coq integers (Z) by OCaml int.
3. Coq lists by OCaml lists.
4. Coq finite map by OCaml’s finite map.
5. The combination of app and rev on lists in the function union , and auxunion was

replaced by the tail-recursive List.rev append in OCaml.
Replacing Coq’s Z with OCaml integers gave a performance boost by a factor of 7-10.
The largest integer (literal) we can denote depends on the choice of a 32-bit or a 64-
bit OCaml int. The current mapping is done on a 32-bit signed integer; if SHRUTI
encounters an integer greater than ±2 billion (approx) it aborts with an error message.
Making minor adjustments by replacing the Coq finite maps by OCaml ones and using
tail recursive functions gave a further 20% improvement.

The Coq formalization consists of eight main function definitions amounting to 114
lines (not counting blank lines and comments), and the proofs of five main theorems
shown in the paper and four more that are about maps (not shown here due to space
limitations). The entire proof development is organized in several modules and is built
interactively using the primitive inference rules of higher-order logic. The extracted
code in OCaml is approximately 320 lines and the glue code implemented in OCaml
is nearly 200 lines, including comments and print statements. The size of the extracted
code is slightly larger than the original development in Coq because the Coq extractor
produces code related to the libraries (integer, lists, and finite maps) used in our defini-
tions. However, the actual size of the extracted code is not significant since it has been
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produced automatically using the extraction utility in Coq, which we believe to be cor-
rect much in the same way as we believe that the OCaml compiler and the underlying
hardware are both correct.

4 Experimental Results

We evaluated SHRUTI on a set of industrial benchmarks from the SAT Races of 2006
and 2008 and the SAT Competition of 2007, and compared it to the Amjad and Weber’s
checkers that run inside the provers [28], and to the uncertified checker Tracecheck. We
present our results on a sample of the SAT Race Benchmarks in Table 1. The results for
SHRUTI shown in the table are for validating proof traces obtained from the PicoSAT
solver. Our experiments were carried out on a server running Red Hat on a dual-core 3
GHz, Intel Xeon CPU with 28GB memory. Times shown for all the three checkers in
the table are the total times including time spent on actual resolution checking, file I/O
and garbage collection.

The HOL 4 and Isabelle checkers [28] were also evaluated on the SAT Race Bench-
marks. The Isabelle-based version reported segmentation faults on most of the problems

Table 1. Comparison of our results with HOL 4 and Tracecheck

No. Benchmark HOL 4 SHRUTI Tracecheck
Resolutions Time inf/sec Resolutions Time inf/s Time inf/s

1. een-tip-uns-numsv-t5.B 89136 4.61 19335 122816 0.86 142809 0.36 341155
2. een-pico-prop01-75 205807 5.70 36106 246430 1.67 147562 0.48 513395
3. een-pico-prop05-50 1804983 58.41 30901 2804173 20.76 135075 8.11 345767
4. hoons-vbmc-lucky7 3460518 59.65 58013 4359478 35.18 123919 12.95 336639
5. ibm-2002-26r-k45 1448 24.76 58 1105 0.004 276250 0.04 27625
6. ibm-2004-26-k25 1020 11.78 86 1132 0.004 283000 0.04 28300
7. ibm-2004-3 02 1-k95 69454 5.03 13807 114794 0.71 161681 0.35 327982
8. ibm-2004-6 02 3-k100 111415 7.04 15825 126873 0.90 140970 0.40 317182
9. ibm-2002-07r-k100 141501 2.82 50177 255159 1.62 157505 0.54 472516

10. ibm-2004-1 11-k25 534002 13.88 38472 255544 1.77 144375 0.75 340725
11. ibm-2004-2 14-k45 988995 31.16 31739 701430 5.42 129415 1.85 379151
12. ibm-2004-2 02 1-k100 1589429 24.17 65760 1009393 7.42 136036 3.02 334236
13. ibm-2004-3 11-k60 z? z? - 13982558 133.05 105092 59.27 235912
14. manol-pipe-g6bi 82890 2.12 39099 245222 1.59 154227 0.50 490444
15. manol-pipe-c9nidw s 700084 26.79 26132 265931 1.81 146923 0.54 492464
16. manol-pipe-c10id s 36682 11.23 3266 395897 2.60 152268 0.82 482801
17. manol-pipe-c10nidw s z? z? - 458042 3.06 149686 1.21 381701
18. manol-pipe-g7nidw 325509 8.82 36905 788790 5.40 146072 1.98 398378
19. manol-pipe-c9 198446 3.15 62998 863749 6.29 137320 2.50 345499
20. manol-pipe-f6bi 104401 5.07 20591 1058871 7.89 134204 2.97 356522
21. manol-pipe-c7b i 806583 13.76 58617 4666001 38.03 122692 15.54 300257
22. manol-pipe-c7b 824716 14.31 57632 4901713 42.31 115852 18.00 272317
23. manol-pipe-g10id 775605 23.21 33416 6092862 50.82 119891 21.08 289035
24. manol-pipe-g10b 2719959 52.90 51416 7827637 64.69 121002 26.85 291532
25. manol-pipe-f7idw 956072 35.17 27184 7665865 68.14 112501 30.74 249377
26. manol-pipe-g10bidw 4107275 125.82 32644 14776611 134.92 109521 68.13 216888
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[27], but results for the HOL 4 implementation are summarized along with ours in Ta-
ble 1. The symbol z? denotes that the underlying zChaff solver timed out after an hour.
Since we were unable to get the HOL 4 implementation working on our system, it was
run on a (comparable) AMD dual-core 3.2 GHz processor running Ubuntu with 4GB of
memory. Amjad reported that the version of the checker he has used on these benchmarks
is much faster than the one published in [28]. Since Amjad’s work is based on proof traces
obtained from ZVerify, the uncertified checker for zChaff, the actual proof traces checked
by the HOL 4 implementation differ substantially from those checked by SHRUTI. We
thus compare the speed in terms of resolution steps (i.e., inferences) checked per sec-
ond, and observe that SHRUTI is 1.5 to 32 times faster than HOL 4. In addition, as a
proof of concept we also validated the proof traces from zChaff by translating them to
PicoSAT’s trace format. The performance of SHRUTI in terms of inferences per second
on the translated proof traces (from zChaff to PicoSAT) was similar to the performance of
SHRUTI when it checked PicoSAT’s traces obtained directly from the PicoSAT solver—
something that is to be expected. We also compare our timings with that obtained from
the uncertified checker Tracecheck; here, SHRUTI is about 2.5 times slower, on exactly
the same proof traces.

We noticed that OCaml’s native code compilation produces efficient binaries but the
default settings for automatic garbage collection were not useful, and for large proof
traces it ended up consuming (and thereby delaying the overall computation) as much
as 60% of the total time. By increasing the initial size of major heap and making the
garbage collection less eager, we reduced the computation times of our checker by
almost an order of magnitude on proof traces with over one million inferences.

5 Related Work

Recent work on checking the result of SAT solvers can be traced to the work of Zhang
and Malik [29] and Goldberg and Novikov [10], with additional insights provided in
recent work [2,25]. The work closest to ours is that by Amjad and Weber, which we
have already discussed throughout the paper. Bulwahn et al. [6] also have advocated
the use of a checker, and experimented with the idea of reflective theorem proving
in Isabelle, suggesting that it can be used for designing a SAT checker. However, no
performance results were given. Shankar [23] proposed an approach generally based on
a verified SAT solver, for checking a variety of checkers.

Marić [14], presented a formalization in Isabelle of SAT solving algorithms that
are used in modern day SAT solvers. An important difference is that while we have
formalized a SAT checker and extracted an executable code from the formalization
itself, Marić formalizes a SAT solver (at the abstract level of state machines) and then
implements the verified algorithm in the SAT solver off-line.

An alternative line of work involves the formal development of SAT solvers. Les-
cuyer and Conchon [13] have formalized a simplified SAT solver in Coq and extracted
an executable. However, they have not formalized several of the key techniques used
in modern SAT solvers, and have not reported performance results on any industrial
benchmarks. The work of of Smith and Westfold [24] involves the formal synthesis of a
SAT solver from a high level description. Albeit ambitious, this work does not include
the most effective techniques used in modern SAT solvers.
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There has also been interest in the area of certifying SMT solvers. M. Moskal
recently provided an efficient certification technique for SMT solvers [15] using term-
rewriting systems. The soundness of the proof checker is guaranteed through a formal-
ization using inference rules provided in a term-rewriting formalism.

6 Conclusion
In this paper we presented a methodology for performing efficient yet formally certified
SAT solving. The key feature of our approach is that we can combine a formally de-
signed and verified proof checker with industrial-strength SAT solvers such as PicoSAT
and zChaff to achieve industrial-strength certified SAT solving. We used the Coq proof-
assistant for the formal development, but relied on its program extraction mechanism
to obtain an OCaml program which was used as a standalone executable to check the
outcome of the solvers. Any proof generating SAT solver that supports the PicoSAT’s
proof format can be plugged directly into our checker; different formats require only a
simple proof translation step.

On the one hand, our checker provides much higher assurance compared to uncerti-
fied checkers such as Tracecheck and on the other it enhances usability and performance
over certified checkers implemented inside provers such as HOL 4 and Isabelle. In this
regard our approach provides an arguably optimal middle ground between the two ex-
tremes. We believe that such verified result checkers can be developed for other problem
classes as well, and that this is a viable approach to verified software development. We
are investigating on optimizing the overall performance of our checker even further so
that the slight difference to uncertified checkers can be further minimized. We are also
investigating checking SMT proofs.
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Abstract. According to the Verified Software Initiative manifesto,
“Lightweight techniques and tools have been remarkably success-
ful in finding bugs and problems in software. However, their suc-
cess must not stop the pursuit of this projects long-term scientific
ideals”.

The Dynamite Proving System (DPS) blends the good qualities of the
lightweight formal method Alloy with the certainty provided by the the-
orem prover PVS. Using the Alloy Analyzer during the proving process
improves the PVS theorem proving experience by reducing the number
of errors introduced along creative proof steps. Therefore, rather than
becoming an obstacle to the goals of the Initiative, inside DPS Alloy
becomes an aid. In this article we introduce new features of DPS based
on the novel use of unsat cores to guide the proving process by prun-
ing unnecessary information. We illustrate these new features using a
non-trivial case-study coming from the networking domain.

1 Introduction

The Dynamite Proving System (DPS) was presented in [7]. The rationale behind
DPS is that automated analysis, albeit incomplete, should support formal verifi-
cation processes based on theorem proving. DPS has Alloy [9] as its specification
language. Alloy’s syntax includes constructs ubiquitous in modern object-oriented
languages. The Alloy Analyzer [10], an analysis tool that provides automated (par-
tial) analysis of Alloy specifications, makes Alloy a lightweight formal method with
increasing adoption in academy and industry. The Alloy language (an extension of
first-order logic with reflexive-transitive closure) is quite appropriate for modeling
critical systems. According to the VSI manifesto [8],

“Even though software requirements cannot be verified against a cus-
tomers informal needs and desires, a great deal of clarity, insight, and
precision can be gained by formalizing these requirements as a more pre-
cise specification. Once this is done, verification technology can be applied

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 275–289, 2010.
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to the resulting formal specification, to investigate its consistency and to
see if it captures important system properties such as safety or security.”

The partial analysis offered by the Alloy Analyzer assumes data domains have
a user-bounded size, called scope. Moreover, the analysis technique employed by
the Alloy Analyzer (based on SAT-solving), does not scale well enough when do-
main sizes are increased past a (specification dependent) threshold. This should
not be considered a shortcoming. Alloy’s use is targeted at model debugging,
and therefore small domain sizes are many times sufficient to uncover errors in
specifications. Unfortunately, this kind of analysis only allows us to conclude
that a system model is consistent, safe or secure up to a given size for data
domains.

The Dynamite Proving System was developed with the intention of providing
a tool for the verification (in the sense of the VSI Manifesto) of Alloy models.
In order to accomplish this task, DPS extends the PVS [12] semi-automated
theorem prover with a complete calculus for Alloy. We also integrated the Al-
loy Analyzer into DPS in order to automatically detect bugs introduced during
creative proof steps (introduction of lemmas, new hypotheses, etc.) Including
a pretty printer that exhibits sequents using Alloy notation, DPS provides the
clerical Alloy user a more amenable and less error-prone theorem proving expe-
rience.

In order to better convey the contributions of this article, we will briefly
discuss the proving process within PVS and DPS. DPS provides a complete
calculus for Alloy, implemented on top of the higher-order calculus provided by
PVS. In order to prove that a set of formulas Δ = { δ1, . . . , δm } follows from
a set of hypotheses Γ = { γ1, . . . , γk }, one begins with the sequent Γ � Δ.
Applying inference rules, from Γ � Δ one must reach other sequents that can
be recognized as valid (for example, sequents of the form α � α). The informal
understanding of the sequent Γ � Δ is that from the conjunction of the formulas
in Γ , the disjunction of the formulas in Δ must follow. The formulas in Γ (Δ)
are called the antecedent (consequent) of the sequent.

The application of an inference rule results in one or more new sequents whose
proofs provide a proof of the original sequent. Therefore, proofs in this kind of
calculi are usually seen as trees in which the root is the sequent Γ � Δ. When
all the leaves of the proof tree are valid sequents (in the sense mentioned before)
the tree is considered closed and the proof is finished. In Fig. 1 we present, as
examples, proof rules in order to deal with conjunctions in the antecedent and
the consequent, respectively.

On start of a proof of an Alloy assertion α, DPS presents sequent � α. A
proof must then be derived using the inference rules. Whenever the application

α, β, Γ � Δ

α ∧ β, Γ � Δ
∧ � Γ � Δ, α Γ � Δ, β

Γ � α ∧ β, Δ
� ∧

Fig. 1. Proof rules for conjunction
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of an inference rule introduces new goals (sequents) to be proved, some of the
antecedents and consequents inherited by the new sequents may be unnecessary
to close the branch that initiates in that sequent. Our experience using DPS
in our case-study is that along a proof of a given assertion the number of an-
tecedents and consequents in intermediate sequents tends to grow. This leads
many times to formulas that are not necessary in order to prove the sequents.
These formulas make the identification of new proof steps more complex. PVS
provides a command (hide) for hiding hypotheses and conclusions in sequents,
yet its use is error-prone: removing necessary antecedents or consequents makes
the proof infeasible.

In this article we will use an Alloy UnSAT-core [16] in order to remove formulas
from sequents and from the underlying theories. An Alloy UnSAT-core is a subset
of formulas (and even parts of formulas) from an inconsistent (up-to the selected
scopes) Alloy theory that is itself inconsistent. How is an inconsistent theory
obtained at a given point in the proving process? Notice that proving a sequent
Γ � Δ in a theory Ω (where Γ = { γ1, . . . , γk } and Δ = { δ1, . . . , δm }), is
equivalent to proving in theory Ω the sequent

�

⎛
⎝ ∧

1≤i≤k

γi

⎞
⎠⇒

⎛
⎝ ∨

1≤j≤n

δj

⎞
⎠ .

Elemental logic reasoning allows us to conclude that the former sequent is deriv-
able if and only if the theory

Ω ∪

⎧⎨
⎩¬
⎛
⎝
⎛
⎝ ∧

1≤i≤k

γi

⎞
⎠⇒

⎛
⎝ ∨

1≤j≤n

δj

⎞
⎠
⎞
⎠
⎫⎬
⎭

is inconsistent.
Notice that since we are not requesting a minimal UnSAT-core, the UnSAT-

core might be the whole theory. Fortunately, this is most times not the case.
The contributions of this article are summarized as follows:

1. We release DPS 2.0, downloadable from http://www.dc.uba.ar/dynamite.
2. We present a novel heuristic to reduce the proof search space based on the use

of UnSAT cores to remove possibly unnecessary antecedents and consequents
in a sequent. The technique also allows us to remove formulas from the
underlying theories.

3. We discuss the presented heuristic focusing on its (un)soundness and/or
(in)completeness.

4. We discuss the applicability of the heuristic using as a reference a nontrivial
case-study.

5. We present some experimental results obtained from extensively using this
heuristic along the proving process in our case-study.

The article is organized as follows. In Section 2 we present our running example.
In Section 3 we describe the proving process within Dynamite, including a discus-
sion on how lightweight and heavyweight formal methods can be combined in a
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synergic way. In Section 4, after a short introduction to UnSat-cores, we present
our heuristic for proof space reduction and discuss some experiences learnt us-
ing the technique. In Section 5 we discuss related work. Finally, in Section 6 we
present our conclusions and proposals for further work.

2 Compositional Binding in Network Domains

In order to test the usefulness of the techniques we will present in this article, we
worked on an Alloy model presented by Zave in [21]. There are good reasons for
choosing this model. The first one is that although the model is not extremely
complex, its analysis using the Alloy Analyzer does not scale for some properties
even for small scopes. Notice that “small scope” is a subjective notion that
strongly depends on the user knowledge about the model. It is seldom the case
that Alloy models include information on the willingness of the user to analyze
the model for scopes that surpass the possibilities of the Alloy Analyzer. This
model is particular in that it thoroughly documents the intentions of the user:

check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 9 Identifier -- this one is too big also

check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 11 Identifier

-- attempted but not completed at MIT; formula is not that large; results

-- suggest that the problem is very hard, and that the formula is almost

-- certain unsatisfiable [which means that the assertion holds]

Notice that the modeler was concerned enough about the validity of the model
assertions that she requested assistance from the developers of the Alloy Ana-
lyzer. The limitations of the automated techniques open the possibility to use
verification in order to determine the validity (or not) of the model assertions.
Of course there are other Alloy models that are also good candidates to be
verified using DPS. Among these, we want to mention the Mondex electronic
purse presented in [14], or the Flash filesystem presented in [11]. Since these
problems have become sort of benchmarks for different analysis and verification
techniques, it was our intention to leave them as interesting case-studies that
might attract new users of DPS.

Zave formalizes a mechanism for binding of identifiers in the delivery of mes-
sages in computer networks. Thus, the model is not a specification of an isolated
software or hardware artifact but rather the specification of network services
whose implementation may involve several software and hardware artifacts. This
model is mainly about communication in computer networks, and, more specifi-
cally, about how communicating agent identifiers are bound so that the messages
reach their correct destination. Properties about the possibility of reaching an
agent, determinism in the delivery of messages, existence of cycles in the rout-
ing of messages and the possibility of constructing a return path for a message
are formally specified in the model. In particular, the model studies how these
properties are affected by the addition of new bindings of identifiers.
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Communicating artifacts in these kinds of networks may be software systems
or hardware devices. As this distinction is not important for the specification,
all the communicating artifacts are called agents. Thus, the communications are
established between agents and take place over network domains.

An agent g is considered reachable in a domain d from an identifier i if:

– i is connected to an address a in the reflexive and transitive closure of the
binary relation formed by all the bindings corresponding to d,

– a cannot be bound to another identifier in d, and
– a can route messages to g in d.

Figure 2 shows an Alloy assertion BindingPreservesReachability. This asser-
tion states that if an agent is reachable in a domain d, it is also reachable in the
domain resulting from adding a new binding to d, provided that the newly bound
identifiers are not used in d. This latter condition is formalized by a predicate
IdentifiersUnused.

assert BindingPreservesReachability {
all d, d’: Domain, newBinding: Identifier -> Identifier |

IdentifiersUnused(d,newBinding.Identifier) &&

AddBinding(d,d’,newBinding)

=> (all i: Identifier, g: Agent |

ReachableInDomain(d,i,g) => ReachableInDomain(d’,i,g) ) }

Fig. 2. One proved property: BindingPreservesReachability

A domain is called deterministic if each identifier is associated to at most one
agent. One of the properties to be analyzed for this model states that

whenever a new binding for an unused identifier is added to a determin-
istic domain, it remains deterministic.

A domain is considered non-looping if the transitive closure of the bindings for
that domain has no cycles. A second assertion then states that

the addition of a new binding to a non-looping domain does not change
this condition whenever the transitive closure of the new binding does
not have cycles.

Also a notion of structured domain is introduced.
In [21], Zave used the Alloy Analyzer to analyze this model and concluded

that these five properties hold for Alloy domains containing at most two network
domains and four elements in each set (such as identifiers, agents, etc).

Using DPS we have proved that the following assertions hold despite their
domain bounds:
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– BindingPreservesReachability,
– BindingPreservesDeterminism,
– BindingPreservesNonLooping,
– ABindingPreservesStructure, and
– BBindingPreserverStructure.

Notice that these assertions suffer the similar limitations, regarding their ana-
lyzability, with assertion StructureSufficientForPairReturnability.

3 An Introduction to the Dynamite Proving System

The Dynamite Proving System is an extension of the PVS theorem prover [12]
that interacts with the Alloy Analyzer. Alloy is a formal modeling language well
suited for modeling of critical systems. Its simple semantics based on relations
and the automated analysis provided by the Alloy Analyzer make Alloy an in-
creasingly accepted lightweight formal method. The analysis provided by the
Alloy Analyzer assumes domains sizes are user-bounded, and is therefore par-
tial. This makes the Alloy Analyzer unsuitable for verification of critical models.
An alternative would be the use of a theorem prover in order to verify Alloy
assertions. Unfortunately, no complete calculus for Alloy was known. In [7] we
presented such complete calculus, and extended PVS in order to include the cal-
culus. An appropriate pretty-printer allowed us to present formulas using Alloy
notation.

While PVS automatically detects syntactic errors and uses proof techniques in
order to (try to) automatize parts of the proofs, some errors many times cannot
be detected. We refer to the errors that occur when:

1. An invalid sequent has to be proved.
2. An invalid lemma is introduced.
3. A new hypothesis (which does not follow from the axioms in the current

model or the antecedents of the sequent being proved) is added.
4. A necessary formula is incorrectly hidden from a sequent.

In [7] we deal with the first three situations. In order to reduce the chances of
introducing erroneous lemmas or hypotheses, DPS resorts to the Alloy Analyzer.
Let us assume we are proving a sequent γ1, . . . , γk � δ1, . . . , δn, and a new
hypothesis ϕ is introduced using the PVS command (case varphi). According
to PVS, we are now left with two sequents to prove, namely,

γ1, . . . , γk, ϕ � δ1, . . . , δn and γ1, . . . , γk � δ1, . . . , δn, ϕ.

It might be the case that ϕ is overly strong, i.e., it simplifies proving sequent
γ1, . . . , γk, ϕ � δ1, . . . , δn, but sequent γ1, . . . , γk � ϕ (which allows us to dis-
charge the newly added hypothesis) is not valid. In order to detect such sit-
uations, an Alloy model is automatically created. The model contains, as an
assertion to be checked using the Alloy Analyzer, the formula⎛

⎝ ∧
1≤i≤k

γi

⎞
⎠⇒ ϕ.
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If a counterexample is returned by the Alloy Analyzer, then it is automatically
reported by DPS. The existence of a counterexample means that the sequent is
not valid and therefore formula ϕ is too restrictive. In Fig. 3 we show a proof
fragment from our case-study where this happens. We have a sequent S of the
form γ1, γ2 � δ1. We then introduce a new hypothesis h, and obtain new goals
γ1, γ2, h � δ1 and γ1, γ2 � δ1, h. The proof structure for S is:

Notice the following:

– Goals ABindingPreservesStructure.2.1 and 2.2 are validated in Fig. 3
using the Alloy Analyzer. Notice that no counterexamples are found (as
reported inside the dashed boxes), and therefore the goals may be correct.

– When goal ABindingPreservesStructure.2.2 is validated after formula 2
is hidden, inside the solid square a counterexample is reported. Notice that
hiding formula 2 is a reasonable decision, since we are trying to verify that
the introduced hypothesis indeed follows from the sequent antecedents.

– Although not related to the technique, we want to stress the fact that for-
mulas in sequents are actual Alloy formulas.

The counterexample can be used in order to gain a better understanding of the
model.
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ABindingPreservesStructure.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
{1}   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-case "no (d1_1 . AdstBinding)")
Translating the formula.Formula translated.
Introducing case...,
this yields  2 subgoals: 
ABindingPreservesStructure.2.1 :  

{-1}  (no (d1_1 . AdstBinding))
[-2]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-3]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
[1]   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
No counter-example found in that scope. The goal may be valid. 
(There are available suggestions. Use M-x show-suggestions to see them.)

Rule? (postpone)
Postponing ABindingPreservesStructure.2.1.

ABindingPreservesStructure.2.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
{1}   (no (d1_1 . AdstBinding))
[2]   (no ((((d1_1 . AdstBinding) + newBinding_1) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
No counter-example found in that scope. The goal may be valid. 
(There are available suggestions. Use M-x show-suggestions to see them.)
No change on: (dps-validate-goal :for 5)
ABindingPreservesStructure.2.2 :  

Rule? (hide 2)
Hiding formulas:  2,
this simplifies to: 
ABindingPreservesStructure.2.2 :  

[-1]  (no (((d1_1 . AdstBinding) . Identifier) & ((d1_1 . BdstBinding) . Identifier)))
[-2]  (no (((d1_1 . dstBinding) . Identifier) & (newBinding_1 . Identifier)))
  |-------
[1]   (no (d1_1 . AdstBinding))

Rule? (dps-validate-goal :for 5)
Trying to validate the goal with models of size 5.
Counterexample found. The goal is invalid.

Fig. 3. A proof fragment where an overly restrictive hypothesis is introduced

4 Reducing the Proof Search Space Using UnSAT-Cores

In this section we will discuss two techniques to reduce the proof search space
during the theorem proving process. The first technique uses an iterative proce-
dure in order to remove formulas from sequents. The second technique uses an
UnSAT-core in order to determine which formulas can be removed. In Section
4.1 we discuss the iterative technique. In Section 4.2 we present the technique
based on UnSAT-core extraction and compare it with the iterative technique.
Finally, in Section 4.3 we present some experimental results about the usefulness
of the proposed techniques.

Along this section we will assume we are willing to prove a sequent Γ � Δ
(where Γ = { γ1, . . . , γk } and Δ = { δ1, . . . , δm }) from a theory Ω containing
axioms ω1, . . . , ωn. In order to reduce the proof search space we will try to
remove formulas from Γ , Δ and Ω. Notice that having fewer formulas actually
reduces the proof search space. Many proof steps that could depend on the
removed formulas (rules for instantiation, rewriting, or applying strategies) are
now avoided. This reduces the number of instantiations of inference rules that
the theorem prover has to consider, as well as helps the user stay focused on the
relevant parts of the sequent.



Dynamite 2.0: New Features Based on UnSAT-Core Extraction 283

4.1 An Iterative Technique to Reduce the Proof Search Space

The algorithm in Fig. 4 allows us to determine a set of formulas candidate to
be removed. The algorithm attempts to remove each formula ϕ, and analyzes
(using the Alloy Analyzer) whether the sequent obtained after formula ϕ has
been removed is valid or not. If the sequent is valid, then ϕ can be (safely?)
removed.

algorithm iterative_remove(Gamma, Delta, Omega)

// let Gamma = {g1,...,gk},

// let Delta = {d1,...,dm},

// let Omega = {o1,...,on}.

for i=1 to k do

if proves(Gamma - gi, Delta, Omega) then

Gamma = Gamma - gi

fi

od

for i=1 to m do

if proves(Gamma, Delta - di, Omega) then

Delta = Delta - di

fi

od

for i=1 to n do

if proves(Gamma, Delta, Omega - oi) then

Omega = Omega - oi

fi

od

Fig. 4. The iterative algorithm

Procedure “proves(A, B, C)” (for A = { a1, . . . , ak1 }, B = { b1, . . . , bm1 } and
C = { c1, . . . , cn1 }) checks, using the Alloy Analyzer, whether sequent A � B holds
in theory C. In Alloy terms, this amounts to checking, having as facts formulas
c1, . . . , cn1 , the assertion⎛

⎝ ∧
1≤i≤k1

ai

⎞
⎠⇒

⎛
⎝ ∨

1≤j≤m1

bj

⎞
⎠ . (1)

Procedure proves returns true whenever the Alloy analysis does not produce a
counterexample.

The previous Alloy analysis requires providing a scope for data domains.
Therefore, it might be the case that the analysis of formula (1) does not re-
turn a counterexample, yet the formula indeed has counterexamples in larger
scopes. This shows that this technique is not complete, since a necessary for-
mula might be removed (this explains the question mark on “safely” above) and
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a valid sequent may no longer be derivable. This is not a problem in itself. Hid-
ing formulas based on the user’s intuition is not complete either. Since removing
formulas does not allow us to prove previously underivable sequents, refining
sequents and theories as explained is a sound rule. In Section 4.3 we will discuss
experimental results in order to determine the utility of the technique.

4.2 Using the UnSAT-Core Extraction Feature to Remove Formulas

Some SAT-solvers, such as MiniSat [6] among the ones provided by the Alloy
Analyzer, allow one to obtain upon completion of the analysis of an inconsistent
propositional theory, an UnSAT-core. An UnSAT-core is a subset of clauses from
the original inconsistent theory that is also inconsistent. The UnSAT-core ex-
traction algorithm implemented in MiniSat produces many times small UnSAT-
cores. The Alloy Analyzer converts the propositional UnSAT-core into an Alloy
UnSAT-core [16] (i.e., a subset of the Alloy model that is also inconsistent if
the source model was inconsistent). Notice that the algorithm in Fig. 4 actu-
ally computes an Alloy UnSAT-core. Moreover, it computes a minimal Alloy
UnSAT-core.

Our proposal in order to remove unnecessary formulas when proving a sequent
Γ � Δ in a theory Ω (where Γ = { γ1, . . . , γk }, Δ = { δ1, . . . , δm } and Ω =
{ω1, . . . , ωn }) consists on requesting the Alloy Analyzer an UnSAT-core of the
Alloy model whose set of facts is Ω, and the assertion to be checked is⎛

⎝ ∧
1≤i≤k

γi

⎞
⎠⇒

⎛
⎝ ∨

1≤j≤n

δj

⎞
⎠ .

Upon extraction of the UnSAT-core, the Alloy Analyzer highlights those for-
mulas from Γ ∪ Δ ∪ Ω that are part of the UnSAT-core. We propose (as a
strategy to use in the proving process) to remove those formulas that are not
highlighted. Figure 5 shows a sequent from the running case-study where some
of the formulas are highlighted (those that are part of the UnSAT-core). Notice
that upon application of rule dps-hide (our new proof rule that allows to hide
non-highlighted formulas) the formulas that were not highlighted are hidden. In
this example (an actual sequent from the case-study) only 5 out of 23 formulas
are kept in the sequent upon application of rule dps-hide. As with the iterative
technique, addition of rule dps-hide makes the logic incomplete, but still sound.

Since the technique presented in Section 4.1 ends up computing an Alloy
UnSat-core, a comparison to the technique presented in this section is mandatory.
Notice first that the iterative technique guarantees a minimal Alloy UnSAT-core,
while the UnSAT-core extraction presented in this section does not guarantee
minimality. This implies that use of the UnSAT-core extraction feature provided
by the Alloy Analyzer may include formulas that could be removed. An essential
aspect that moved us towards adopting the technique based on UnSAT-cores is
the overhead imposed on the theorem proving process. Given a sequent Γ � Δ
to be proved in a theory Ω such that |Γ | = k, |Δ| = m and |Ω| = n, the iterative
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Fig. 5. A sequent with a highlighted UnSAT-core

algorithm requires k+m+n calls to the SAT-solver. On the other hand, obtaining
the UnSAT-core requires a single call to the SAT-solver. Ideally, the (sequent
and theory) refinement process must be applied at each proof step where the
sequent under analysis has new or fewer formulas. In Section 4.3 we will show
experimental data supporting the election of this technique.

4.3 Experimental Results

In this section we present some experimental results we have obtained while
applying the techniques presented in Sections 4.1 and 4.2. We begin by presenting
some statistics about the model being verified. We have verified the model in
three different ways, namely:

– Without using any technique for refining the sequents and theories. This
corresponds to verification using Dynamite 1.0, as described in [7] (noted as
NoRec – for no recommendation – in Table 1).

– Using the iterative algorithm in order to refine sequents (see Section 4.1). In
Table 1 we note this technique as IterRec (for iterative recommendation).

– Using the UnSAT-core extraction technique presented in Section 4.2. This
technique will be noted in Table 1 as UnsatRec.

In Table 1 we measure for each technique:

– Length of proofs (measured as the number or rule applications).
– Average number of formulas per sequent.
– Sum of occurrences of formulas in proof sequents.
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– At each proof step PVS must consider sentences from the current sequent
as well as the sentences from the underlying theory. We then measure the
average number of such formulas over the different proof steps.

– Sum (over the proof steps) of occurrences of formulas in proof sequents or
from the underlying theories.

– Number of SAT-solver calls for the iterative and the UnSAT-core-based tech-
niques.

– Number of times the UnSAT-core obtained missed a formula necessary for
closing a proof branch.

– Number of times the UnSAT-core allowed us to remove formulas that were
used in the original proof because of an unnecessary detour.

In order to focus on the most relevant data we are ignoring proof steps where
we prove Type Check Constraints (TCCs), which in general can be proved in
a direct way. Also, we only applied the techniques (either the iterative or the
UnSAT-core-based) on 69 proof steps where it was considered relevant to apply
the rules. Systematic application of the iterative technique (for instance each
time a new proof goal was presented by PVS) would have required in the order
of 25000 calls to the SAT-solver. As a general heuristic, we set the scope for all
domains (in the calls to the Alloy Analyzer) to 3.

Table 1. Measures of attributes for the employed techniques (N/A = not applicable)

NoRec IterRec UnsatRec

Proofs’ length 969 597 573
Average # of formulas per sequent 5.89 6.01 6.20
Occurrences of formulas in proofs (no theories) 5706 3590 3215
Average # of formulas in sequents or theories 34.89 35.01 7.02
Occurrences of formulas in proofs (with theories) 33807 20903 4023
# SAT-solver calls N/A 770 69
# times UnSAT-core missed formulas N/A N/A 1
# times UnSAT-core avoided detour N/A N/A 2

Notice that proofs carried out using any of the techniques for sequent and/or
theory refinement are about 40% shorter than the original proof.

In the original proof, as a means to cope with sequents’ complexity, formulas
that were presumed unnecessary were systematically hidden. While the average
number of formulas per sequent is smaller for the original proof, having half the
proof steps shows that the automated techniques are better focused on the more
complex parts of proofs. This is supported by the analysis of the total num-
ber of formulas that occur in sequents. The UnSAT-core-based technique uses
56% of the formulas used in the original proof, while the iterative technique uses
63% of the formulas.

Since the underlying theory in the case-study has 29 formulas, the overhead in
applying the iterative technique to formulas in the theory was too high. Therefore,
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the iterative technique was only applied to formulas occurring in the sequents be-
ing verified along a proof (we believe this will be the case most times). On the other
hand, the UnSAT-core extraction receives the current sequent plus the underlying
theory, and automatically refines also the theory. This explains the big difference
between the average number of formulas involved in proofs (both in sequents and
in the supporting theory) using the iterative technique and the UnSAT-core-based
technique. Notice that this implies that in each proof step PVS had to consider
significantly fewer formulas in order to suggest further proof steps.

Since proofs are shorter and each sequent contains possibly fewer formulas, the
total number of formulas occurring in proofs using UnSAT-cores reduces from
the original proofs in about 88% (recall that hiding was also used in the original
proofs but not in an automated way, and that formulas from the underlying
theory were not hidden). For the iterative technique, the number of formulas
reduces in about 40%.

While using UnSAT-cores required only 69 calls to the SAT-solver, the cor-
responding proof steps using the iterative algorithm required 770 calls to the
SAT-solver (without making calls for formulas occurring in the underlying the-
ory). Thus, the UnSAT-core-based technique requires under 10% of the calls
required by the iterative technique.

Often during the original proof necessary formulas were incorrectly hidden.
We do not have precise records of the number of times this happened because
those erroneous proof steps (which at the time were not considered important)
were most times undone. We only kept track of 9 cases where the reveal com-
mand was used in order to exhibit a previously hidden formula, but these were
just a few of the cases. It is worth comparing with the single case where the
UnSAT-core-based technique missed a formula. This missed formula is recov-
ered if instead of using a scope of 3 in calls to the Alloy Analyzer, scope 5 is
used.

Recalling that we have proved 5 Alloy assertions, the ones corresponding to
assertions BindingPreservesDeterminism and BindingPreservesNonLooping
required fewer formulas during the proof based on UnSAT-cores. This shows
that the original proof used unnecessary formulas that were removed using rule
dps-hide.

A more qualitative analysis of the techniques allows us to conclude that re-
fining sequents and theories using UnSAT-cores leads to a shift in the way the
user faces the proving process. Looking at the (usually few) remaining formulas
after dps-hide is applied helped the user gain a better understanding on the
property to be proved.

5 Related Work

In this section we discuss work related to Dynamite on the combination of SAT-
solving with theorem proving, and more specific work on the applications of
UnSAT-cores. Using SAT-solving in the context of first-order theorem proving
is not new. The closest works to Dynamite 1.0 are the thesis [20] and the article
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[5]. They follow the idea of our 2007 article [7] of using a model generator to
look for counterexamples of formulas being proved by a theorem prover. Previous
articles such as [19] only focus on using the SAT-solver to prove propositional
tautologies and use the resolution proofs provided by the SAT-solver to guide
the theorem prover proofs. This is more restricted than Dynamite 1.0 in that
Dynamite is not constrained to propositional formulas. The 2009 article [4] in-
troduces Nitpick, which is based (as Dynamite 1.0) on Kodkod [17]. Nitpick,
as Dynamite 1.0, helps during the theorem proving process by detecting that a
non-theorem is being proved. It is worth emphasizing that none of these articles
make use of UnSAT-cores during the proving process. Reducing the number of
sentences in sequents has been acknowledged as an important problem by the
Automated Theorem Proving community. The tool MaLARea [18] reduces sets
of hypotheses using machine learning techniques. Sledgehammer [3], uses au-
tomated theorem provers to select axioms during interactive theorem proving.
The iterative technique presented in Section 4.1 shows resemblance with [13],
but [13] uses the Darwin model finder tool to convert first-order sentences into
function-free clause sets. No notion of UnSAT-cores is provided or used. The
SRASS system [15] uses the ideas presented in [13] and complements them with
a notion of syntactic relevance, but does not make use of UnSAT-cores. Last,
theorem proving of Alloy assertions was first considered in [2]. The theorem
prover Prioni translated Alloy sentences to first-order logic sentences, and the
theorem prover Athena [1] was used on the resulting formula. Notice that the
translation removes the relational flavor of Alloy, and therefore Alloy users are
confronted with an unfamiliar formalism. While Prioni is a theorem prover for
the Alloy language, it does not make use of the Alloy Analyzer to contribute to
the proving process.

6 Conclusions and Further Work

In this article we have presented two techniques for the elimination of super-
fluous formulas in sequents and theories. The iterative technique allows us to
remove formulas but is not appropriate in the context of sequents or theories
containing many formulas because it requires many calls to the SAT-solver. It is
appropriate if we restrict the application of the technique to formulas occurring
in sequents and forget about formulas in the supporting theories. To the best of
our knowledge, the idea of refining sequents and theories using UnSAT-cores is
novel and shows (on the experiments reported) to contribute to produce shorter
and more focused proofs.

This article is part of a more ambitious project on using the unsatisfiability
proofs produced by the SAT-solver in order to suggest proof steps, but making
special emphasis on proof steps that use quantifier-related proof rules. We plan
to continue working in this direction. The current DPS 2.0 interface is based on
EMACS. We are developing a new interface that shows closer resemblance to
the Alloy Analyzer’s interface (including exhibiting counterexamples using the
graphic capabilities provided by the Alloy Analyzer).
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Abstract. In previous articles we presented Argentum, a tool for rea-
soning across heterogeneous specifications based on the language of fork
algebras. Argentum’s foundations were formalized in the framework of
institutions. The formalization made simple to describe a methodology
capable of producing a complete system desription from partial views,
eventually written in different logical languages.

Structured specifications were introduced by Sannella and Tarlecki
and extensively studied by Borzyszkowski. The latter also presented con-
ditions under which the calculus for structured specifications is complete.
Using fork algebras as a “universal” institution capable of representing
expressive logics (such as dynamic and temporal logics), requires us-
ing a fork language that includes a reflexive-transitive closure operator.
The calculus thus obtained does not meet the conditions required by
Borzyszkowski.

In this article we present structure building operators (SBOs) over
fork algebras, and provide a complete calculus for these operators.

1 Introduction and Motivation

Modeling languages such as the Unified Modeling Language (UML) [1] allow us
to model a system through various diagrams. Each diagram provides a view of the
system under development. This view-centric approach to software modeling has
its advantages and disadvantages. Two advantages are clear: a) decentralization
of the modeling process. Several engineers may be modeling different views of
the same system simultaneously, and b) separation of concerns is enforced.

At the same time this modeling process evolved, several results were produced
on the interpretability of logics to extensions of the theory of fork algebras [2]. An
interpretation of a logic L to fork algebras consists on a mapping TL : SenL →
SenFA satisfying the following interpretability condition:

Γ |=L α ⇐⇒ { TL(γ) | γ ∈ Γ } �FA TL(α) .

So far, interpretability results have been produced for classical first-order logic
with equality [2, Cap. 5], monomodal logics and propositional dynamic logic
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[2, Cap. 6], first-order dynamic logic [3], propositional linear temporal logic [4]
and first-order linear temporal logic [5]. Other attractive features of this class
of algebras are that they are isomorphic to algebras whose domain is a set of
binary relations, and that they posses a finite equational calculus [2, Cap. 4].

The idea of having heterogeneous specifications and reasoning across them is
not new. A vast amount of work on the subject has been done based on Goguen
and Burstall’s notion of institution [6]. Institutions capture in an abstract way
the model theory of a logic. They can be related by means of different kinds of
mappings such as institution morphisms [6] and institution representations [7].
These mappings between institutions are extensively discussed by Tarlecki in
[8]. Representations allow us to encode poorer institutions into a richer one. In
[8], Tarlecki goes even further in presenting the way heterogeneous specifications
must be manipulated when he writes:

“... this suggests that we should strive at a development of a con-
venient to use proof theory (with support tools!) for a sufficiently rich
“universal” institution, and then reuse it for other institutions linked to
it by institution representations.”

These results constitute the foundations of the Argentum project, presented in
[9]. Argentum is a CASE tool aimed at the analysis of heterogeneous models
of software. A system description is a collection of theory presentations coming
from different logics, and analysis of the heterogeneous model is achieved by
interpreting the presentations to fork algebras and analyzing the resulting fork-
algebraic specification by available tool support.

An additional concern is how to deal with structured specifications. In prac-
tice, specifications are built modularly. In [10], Borzyszkowski gave a set of
structure building operations (SBOs) and proved that under certain conditions
structured specifications over a given logic can be translated, by means of the
application of a representation map, to structured specifications over another
logic. Thus, an approach that pretends to act as a foundation of a heteroge-
neous framework following Tarleckis approach (for example, the fork algebras)
should support structured specifications. Also in [10], Borzyszkowski presented
a logical system for SBOs, as well as an extensive discussion on the conditions
under which that calculus is complete. One of these conditions is that the un-
derlying institution must have a complete calculus. This is indeed the case for
fork algebras. The other conditions establish requirements which unfortunately
the calculus for fork algebras does not meet.

When working with heterogeneous specifications within a “universal” institu-
tion, Borzyszkowski’s conditions are hard to satisfy. A logic powerful enough to
interpret other logics useful in software specification must be expressive enough.
Thus, it is unlikely that such a logical system could satisfy conditions such as
compactness, interpolation, infinite conjunction and implications, or interesting
combinations of them. In [9] we showed why fork algebras are appropriate as a
“universal” institution. For example, surveying interpretability results like those
for first-order dynamic logic [3], it is easy to see that any candidate to “uni-
versal” institution must have an expressive power capable of characterizing, for
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instance, reflexive-transitive closure, thus forcing the introduction of some kind
of infinitary rule.

In this paper we present a complete calculus for SBOs over fork algebras, and
discuss its scope and limitations under several conditions.

The article is organized as follows: In Sec. 2 we present fork algebras as the
logical system we will use as universal institution. In Sec. 3 we provide the basic
definitions such as institution, entailment system, and structure building oper-
ations. In Sec. 4 we develop the contribution of the article by analyzing the
calculus proposed by Borzyszkowski and discussing its possibilities and limita-
tions. Finally, in Sec. 5 we draw some conclusions.

2 Fork Algebras

Full proper closure fork algebras with urelements (denoted by fPCFAU) are ex-
tensions of relation algebras [11]. In order to introduce this class, we introduce
first the class of star proper closure fork algebras with urelements (denoted by
�PCFAU).

Definition 1. Let U be a nonempty set. A �PCFAU is a two sorted structure〈
U, 2U×U ,∪,∩, –, ∅, U × U, ◦, Id, ,̆ ∇, �, ∗, �

〉
such that

– � : U × U → U is one to one, but not surjective,
– Id is the identity relation on the set U ,
– ∪, ∩ and – stand for set union, intersection and complement relative to
U × U , respectively,

– x� is the set choice operator defined by the condition:

x� ⊆ x and |x�| = 1 ⇐⇒ x �= ∅,

– ◦ is relational composition, ˘ is transposition, and ∗ is reflexive-transitive
closure,

– ∇, the fork operator, is defined by the condition:

S∇T = { 〈x, y � z〉 | 〈x, y〉 ∈ S ∧ 〈x, z〉 ∈ T } .

Notice that x� denotes an arbitrary pair in x. This is why x� is called a choice
operator. Function � is used to encode pairs. For example, in the case of the
interpretability of forst-order logic in fork algebras, � is used to group elements
of the domain to represent a valuation of the variables (a1 �a2 � ...�an represents
valuations ν satisfying ν(vi) = ai). The fact it is not surjective implies the
existence of elements that do not encode pairs. These elements, called urelements,
will be used to represent the elements from the carriers of the translated logics.

Definition 2. We define fPCFAU = Rd �PCFAU, where Rd takes reducts to
structures of the form

〈
2U×U ,∪,∩, –, ∅, U × U, ◦, Id, ,̆ ∇, �, ∗

〉
(the sort U and

the function � are forgotten).
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We will refer to the carrier of an algebra A ∈ fPCFAU as |A|.
The variety generated by fPCFAU (the class of full proper closure fork algebras

with urelements) has a complete ([3, Theorem 1]) equational calculus (the ω-
calculus for closure fork algebras with urelements – ω-CCFAU) to be introduced
next. In order to present the calculus, we provide the grammar for formulas,
the axioms of the calculus, and the proof rules. For the sake of simplifying the
notation, we will denote the relation U×U by 1, and the relation 1∇1∩Id by IdU.
Relation IdU is the subset of the identity relation that relates the urelements.

Definition 3. Let V be a set of relation variables, then the set of ω-CCFAU
terms is the smallest set Term(V) satisfying:

– { ∅, 1, Id } ⊆ Term(V),
– If x, y ∈ Term(V), then { x̆, x∗, x�, x ∪ y, x ∩ y, x◦y, x∇y } ⊆ Term(V).

Definition 4. Let V be a set of relation variables, then the set of ω-CCFAU
formulas is the set of identities t1 = t2, with t1, t2 ∈ Term(V).

Definition 5. The identities described in Forms. (1) – (5) are axioms1 of
ω-CCFAU.

1. A set of identities axiomatizing the relational calculus [11].
2. The following axioms for the fork operator:

x∇y = (x◦ (Id∇1)) ∩ (y◦ (1∇Id)) ,
(x∇y) ◦(z∇w)̆ = (x◦ z̆) ∩ (y◦w̆) ,

(Id∇1)̆ ∇(1∇Id)̆ ≤ Id.

3. The following axioms for the choice operator [12, p. 324]:

x�◦1◦x̆� ≤ Id, x̆�◦1◦x� ≤ Id, 1◦ (x ∩ x�) ◦1 = 1◦x◦1 .

4. The following axioms for the Kleene star:

x∗ = Id ∪ x◦x∗, x∗◦y ≤ y ∪ x∗◦ (y ∩ x◦y) .

5. An axiom forcing a nonempty set of urelements.

1◦IdU◦1 = 1 .

Definition 6. The inference rules for the calculus ω-CCFAU are those of equa-
tional logic (see for instance [13, p. 94]), extended by adding the following infer-
ence rule2:
1 Since the calculus of relations extends the Boolean calculus, we will denote by ≤

the ordering induced by the Boolean calculus in ω-CCFAU. As it is usual, x ≤ y is a
shorthand for x ∪ y = y.

2 Given i > 0, by xi we denote the relation inductively defined as follows: x1 = x, and
xi+1 = x◦xi.
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� Id ≤ y xi ≤ y � xi+1 ≤ y (∀i ∈ N)
� x∗ ≤ y

Notice that only extralogical symbols belong to an equational or first-order sig-
nature. Symbols such as = in equational logic, or ∨ in first-order logic, have a
meaning that is univoquely determined by the carriers and the interpretation of
the extralogical symbols. Similarly, once the field of a fPCFAU has been fixed,
all the operators can be assigned a standard meaning. This gives rise to the
following definition of fPCFAU-signature . Given A a proper closure fork algebra,
then ≤ is set inclusion.

Definition 7. A fPCFAU signature is a set of function symbols {fj}j∈J . Each
function symbol comes equipped with its arity. Notice that since fPCFAUs have
only one sort, the arity is a natural number.

The set of fPCFAU signatures will be denoted as SignfPCFAU. Actually, in order to
interpret the logics mentioned in Sec. 1, constant relational symbols (rather than
functions in general) suffice. Since new operators may be necessary in order to
interpret new logics in the future, signatures will be allowed to contain functions
of arbitrary rank.

In order to extend the definitions of terms (Def. 3) and formulas (Def. 4) to
fPCFAU signatures, we need to add the following rule:

– If t1, . . . , tari(fj) ∈ Term(V), then fj(t1, . . . , tarity(fj)) ∈ Term(V) (for all
j ∈ J ).

If Σ ∈ Sign fPCFAU, the set of Σ-terms will be denoted as TermΣ. In the same
way, SenΣ will denote the set of equalities between Σ-terms (i.e. the set of
Σ-formulas).

Definition 8. Let Σ = {fj}j∈J ∈ Sign fPCFAU, then M =
〈
P , {fj}j∈J

〉
∈

ModΣ iff P ∈ fPCFAU, and fj : |P|arity(fj) → |P|, for all j ∈ J . Then, we
denote by mM : TermΣ → |P| the function that interprets terms in model M.

Definition 9. Let Σ ∈ SignfPCFAU, then |=Σ
fPCFAU⊆ModΣ × SenΣ is defined as

follows: M |=Σ
fPCFAU t1 = t2 iff mM(t1) = mM(t2).

3 Institutions and Structured Specifications

The theory of institutions was presented by Goguen and Burstall in [6]. In-
stitutions provide a formal and generic definition of what a logical system is,
and of how specifications in a logical system can be structured [14]. Institutions
have evolved in a number of directions, from an abstract theory of software
specification and development [15] to a very general version of abstract model
theory [16], and offered a suitable formal framework for addressing heterogeneity
[17,18], including applications to the UML [19]. The following definitions were
taken from [7].
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Definition 10. [Institution]
An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 satis-
fying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences),
– Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ) returns the

category of Σ-models),
– {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| × Sen(Σ), is a family of binary rela-

tions,

and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)| the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then we define the functor Mod(Σ,Γ ) as the
full subcategory of Mod(Σ) determined by those models M ∈ |Mod(Σ)| such
that for all γ ∈ Γ , M |=Σ γ. In addition, it is possible to define a relation |=Σ

between sets of formulas and formulas in the following way: let α ∈ Sen(Σ),
then:

Γ |=Σ α if and only if M |=Σ α for all M ∈ |Mod(Σ,Γ )|.

Definition 11. [Entailment system]
An entailment system is a structure of the form 〈Sign,Sen, {�Σ}Σ∈|Sign|〉 sat-

isfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|, then Sen(Σ) returns the set

of Σ-sentences),
– {�Σ}Σ∈|Sign|, where �Σ⊆ 2Sen(Σ) × Sen(Σ), is a family of binary relations

such that for any Σ,Σ′ ∈ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ), Γ, Γ ′ ⊆ Sen(Σ)
the following conditions are satisfied:
1. reflexivity: {φ} �Σ φ,
2. monotonicity: if Γ �Σ φ and Γ ⊆ Γ ′, then Γ ′ �Σ φ,
3. transitivity: if Γ �Σ φi for all i ∈ I and {φi}i∈I �Σ φ, then Γ �Σ φ,

and
4. �-translation: if Γ �Σ φ, then for any morphism σ : Σ → Σ′ in Sign,

Sen(σ)(Γ ) �Σ′
Sen(σ)(φ).

Definition 12. Let 〈Sign,Sen, {�Σ}Σ∈|Sign|〉 be an entailment system, then Th,
its category of theories, is a pair 〈O,A〉 such that:

– O = { 〈Σ,Γ 〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

– A =

{
σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉

∣∣∣∣∣
〈Σ, Γ 〉, 〈Σ′, Γ ′〉 ∈ O,
σ : Σ → Σ′ is a morphism in Sign and

for all γ ∈ Γ, Γ ′ �Σ′
Sen(σ)(γ)

}
.
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In addition, if a morphism σ : 〈Σ,Γ 〉 → 〈Σ′, Γ ′〉 satisfies Sen(σ)(Γ ) ⊆ Γ ′ it
is called axiom preserving. This defines the category Th0 by keeping only those
morphisms of Th that are axiom preserving. It is easy to notice that Th0 is a
complete subcategory of Th. Now, if we consider the definition of Mod, extended
to signatures and set of sentences, we get a functor Mod : Thop → Cat defined
as follows: let T = 〈Σ,Γ 〉 ∈ |Th|, then Mod(T ) = Mod(Σ,Γ ).

Definition 13. [Logic]
A logic is a structure of the form 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉
satisfying the following conditions:

– 〈Sign,Sen, {�Σ}Σ∈|Sign|〉 is an entailment system,
– 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, and
– the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈

Sen(Σ), Γ ⊆ Sen(Σ), Γ �Σ φ =⇒ Γ |=Σ φ.

A logic is complete if in addition the following condition is also satisfied: for
any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ), Γ �Σ φ⇐= Γ |=Σ φ.

Next we provide some definitions that will be useful in further sections.

Definition 14. [Interpolation and weak interpolation]
An institution 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 has the interpolation property
if and only if for any t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′ pushout in Sign for t1 :
Σ → Σ1, t2 : Σ → Σ2, and ϕi ∈ Sen(Σi) for i = 1, 2, if Sen(t′1)(ϕ1) |=Σ′

Sen(t′2)(ϕ2), then there exists ϕ ∈ Sen(Σ) (called the interpolant of ϕ1 and ϕ2)
such that ϕ1 |=Σ1 Sen(t1)(ϕ) and Sen(t2)(ϕ) |=Σ2 ϕ2.

In a similar way, it is said to have the weak interpolation property if and
only if for any t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′ pushout in Sign for t1 : Σ → Σ1, t2 :
Σ → Σ2, and ϕi ∈ Sen(Σi) for i = 1, 2, if Sen(t′1)(ϕ1) |=Σ′

Sen(t′2)(ϕ2),
then there exists Γ ⊆ Sen(Σ) (called the interpolant of ϕ1 and ϕ2) such that
ϕ1 |=Σ1 Sen(t1)(Γ ) and Sen(t2)(Γ ) |=Σ2 ϕ2.

Definition 15. [Weak amalgamation]
An institution 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 has the weak amalgamation prop-
erty if and only if for any t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′ pushout in Sign
for t1 : Σ → Σ1, t2 : Σ → Σ2, and for any models M1 ∈ |Mod(Σ1)| and
M2 ∈ |Mod(Σ2)| such that Mod(t1)(M1) = Mod(t2)(M2), then there exists
M′ ∈ |Mod(Σ′)| such that Mod(t′1)(M′) =M1 and Mod(t′2)(M′) =M2.

From now on we will work with specifications as they were defined in [10]. Given
an institution I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉, for any specification SP over
I we will denote its signature as Sig[SP ] ∈ |Sign|, and its class of models as
Mod[SP ] ⊆ Mod(Sig[SP ])3. If Sig[SP ] = Σ, then we will call SP a Σ-
specification, and we will denote the class of Σ-specifications as SpecΣ.
3 Notice that there are two operators Mod, the first one applying to structured spec-

ifications and the second one being the model functor of the institution.
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Definition 16 [Structure building operations]. The class of specifications
over an institution 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 are defined as follows

– Any pair 〈Σ,Γ 〉, where Σ ∈ |Sign| and Γ ⊆ Sen(Σ), is a specification, also
called flat specification or presentation, such that:
Sig[〈Σ,Γ 〉] = Σ, Mod[〈Σ,Γ 〉] = |Mod(〈Σ,Γ 〉)|

– Let Σ ∈ |Sign|, then given SP1, SP2 ∈ SpecΣ, SP1∪SP2 is a Σ-specification
such that:
Sig[SP1 ∪ SP2] = Σ, Mod[SP1 ∪ SP2] = Mod[SP1] ∩Mod[SP2]

– Let Σ,Σ′ ∈ |Sign|, then given SP ∈ SpecΣ and a morphism σ : Σ → Σ′,
then translate SP by σ is a Σ′-specification such that:
Sig[translate SP by σ] = Σ′,
Mod[translate SP by σ] = {M′ |Mod(σ)(M′) ∈Mod[SP ] }

– Let Σ,Σ′ ∈ |Sign|, then given SP ′ ∈ SpecΣ′ and a morphism σ : Σ → Σ′,
then derive from SP ′ by σ is a Σ-specification such that:
Sig[derive from SP ′ by σ] = Σ,
Mod[derive from SP ′ by σ] = {Mod(σ)(M′) |M′ ∈Mod[SP ′] }

The operations introduced in the previous definition are referred as structure
building operations or SBOs, and express a mechanism to put specifications
together in a structured way. The operators Sig and Mod help us retrieve
both the signature and the corresponding class of models for a given structured
specification.

Definition 17. Given SP1 and SP2 specifications, we say that SP1 is equiv-
alent to SP2 (denoted SP1 ≡ SP2) if and only if Sig[SP1] = Sig[SP2] and
Mod[SP1] = Mod[SP2].

Definition 18. Given SP a Σ-specification, and α ∈ |Sen(Σ)|. α is a semantic
consequence of SP (denoted SP |=Σ α) if and only if Mod[SP ] |=Σ α.4

As it was presented in [10] structured specifications have a normal form of the
shape derive from SP ′ by t, where SP ′ is a flat specification. This normal
form is obtained by the application of the operator nf [10, Def. 3.7]5. Also in
[10] the following theorem is proved.

Theorem 1. Let SP be a Σ-specification over the institution I, if I has the weak
amalgamation property, then nf (SP ) ≡ SP .

4 As Mod[SP ] is a class of models, we define Mod[SP ] |=Σ α if and only if for all
M∈Mod[SP ],M |=Σ α. Also notice the difference between |=Σ and |=Σ , the first
one being the satisfaction relation between structured specifications and formulas,
and the second one being the satisfaction relation of the underlying institution.

5 The intuition behind the operator nf is that it flattens the specification by translat-
ing the axioms to the “richest” signature using the pushouts in Sign followed by the
derivation of the resulting flat specification to a signature having the symbols that
must remain visible.
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4 Complete Calculi for Structured Specifications in Fork
Algebras

In [10] Borzyszkowski presented a calculus for structured specifications and gave
sufficient conditions under which it is complete. In this section we will explore
conditions under which this calculus is complete when specifications are struc-
tured over Fork Algebras.

4.1 Scope and Limitations of Borzyszkowski’s Calculus for
Structured Specifications

We start by reviewing the scope and limitations of Borzyszkowski’s calculus for
structured specifications, by analyzing the conditions presented in [10] when they
are instantiated for the logic of full proper closure fork algebras with urelements.

Definition 19. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic
of full proper closure fork algebras with urelements. Then, the following rules, de-
fine a Sign-indexed family of entailment relations.

{SP �Σ ψ}ψ∈Δ Δ �Σ ϕ
[CR]

SP �Σ ϕ

Γ �Σ ϕ
[basic]

〈Σ,Γ 〉 �Σ ϕ

SP ′ �Σ′ Sen(σ)(ϕ)
[derive]

derive from SP ′ by σ �Σ ϕ

SP1 �Σ ϕ
[sum1]

SP1 ∪ SP2 �Σ ϕ

SP2 �Σ ϕ
[sum2]

SP1 ∪ SP2 �Σ ϕ

SP �Σ ϕ
[translate]

translate SP by σ �Σ′ Sen(σ)(ϕ)

Definition 20. A specification is said to be finite if and only if any flat speci-
fication 〈Σ,Γ 〉 occurring as part of a structured specification satisfies that Γ is
finite.

Proposition 1. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the
logic of full proper closure fork algebras with urelements. Then,

1. if we restrict the morphisms in |Sign| to be injections, I has the weak inter-
polation property,

2. if we restrict |Th0| to finite presentations, then for any t′1 : Σ1 → Σ′, t′2 :
Σ2 → Σ′ pushout in Sign for t1 : Σ → Σ1, t2 : Σ → Σ2, ϕi ∈ Sen(Σi) for
i = 1, 2 such that Sen(t′1)(ϕ1) |=Σ′

Sen(t′2)(ϕ2), there exists Γ ⊆ Sen(Σ)
such that ϕ1 |=Σ1 Sen(t1)(Γ ), Sen(t2)(Γ ) |=Σ2 ϕ2, and Γ is finite,

3. I has the weak amalgamation property, and
4. I has conjunction and implication.
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Proof. 1. By [20, Coro. 4].
2. By [20, Coro. 4] and considering that theory presentations in |Th0| are formed

by unconditional equations, and by equational completeness.
3. Let t′1 : Σ1 → Σ′, t′2 : Σ2 → Σ′ be a pushout in Sign for t1 : Σ → Σ1, t2 :
Σ → Σ2, and M1 and M2 the models 〈M1, {fM1

i }i∈I1〉 ∈ |Mod(Σ1)|
and 〈M2, {fM2

i }i∈I2〉 ∈ |Mod(Σ2)| respectively such that Mod(t1)(M1) =
Mod(t2)(M2). Let M = 〈M, {fMi }i∈I〉 ∈ |Mod(Σ)| such that M =
Mod(t1)(M1) = Mod(t2)(M2), then define M′ = 〈M, {f ′M

′
i }i∈I′〉 such

that:
– I ′ = t′1(I1) ∪ t′2(I2),
– f ′M

′
t1◦t′1(i) = fMi , for alli ∈ I (notice that t1 ◦ t′1 = t2 ◦ t′2,

– f ′
M′
t′1(i)

= fM1
i , for all i ∈ I1/t1(I),

– f ′
M′
t′2(i)

= fM2
i , for all i ∈ I2/t2(I) (as t′1, t

′
2 is a pushout in Sign for t1, t2,

then t′1(I1/t1(I)) ∩ t′2(I2/t2(I)) = ∅).
Then, by construction Mod(t′1)(M′) = M1 and Mod(t′2)(M′) =M2.

4. By [21, p. 26], and considering that fPCFAU are full, thus simple, any boolean
combination of equations α is equivalent to an equation T (α) = 1.

Theorem 2. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic
of full proper closure fork algebras with urelements such that Sign is restricted to
have only injective morphisms, Σ ∈ |Sign|, and SP be a finite specification such
that Sig[SP ] = Σ, then for all α ∈ |Sen(Σ)| SP �Σ α if and only if SP |=Σ α.

Proof. The proof follows the lines of [10, Thm. 3.9]. Rather than using the satisfac-
tion of the interpolation property, we use the satisfaction of the weak interpolation
property (which holds by Prop. 1.1), the fact that I has de weak amalgamation
property (Prop. 1.3), that I has conjunction and implication (Prop. 1.4) and that
whenever specifications are finite, the interpolants are also finite (Prop. 1.2).

In Thm. 2 we proved that Borzyszkowski’s calculus is complete for the logic of
fork algebras. Yet the result is limited to finite presentations. This fact establishes
a limitation for fork algebras. Having a complete calculus required us having an
inference rule with infinitary many hypothesis in order to characterize reflexive-
transitive closure. Thus, working with finite specifications limits the properties
that can be proved to those that are consequences of a finite number of axioms.
This does not mean that we will not be able to prove any property involving
reflexive-transitive closure. There are many properties involving this operator
for which a finite set of axioms is sufficient. In Sec. 4.2 we will overcome this
limitation.

4.2 A Complete Calculus for Infinite Structured Specifications in
Fork Algebras

In this section we will present a complete calculus for structured (not necessarily
finite) specifications in fork algebras. The completeness of the calculus will de-
pend on the fact full proper closure fork algebras with urelements (the semantic
models we are using) have a complete calculus [22].
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As we mentioned above, the use of fork algebras extended with reflexive-
transitive closure requires a proof theory that does not meet the conditions
imposed by Borzyszkowski in [10]. The calculus we will present will provide the
methodological insight in order to carry out proofs in the infinitary setting.

The following definition presents the calculus for infinite structured specifica-
tions. It differs from the calculus presented in Def. 19 in two ways: a) we added
a rule ([equiv]) allowing to replace a specification by another, provided that they
are equivalent, and b) rules [CR], [sum1] and [sum2] were replaced by a single,
and slightly more complex, rule for ∪ ([sum]).

Definition 21. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic
of full proper closure fork algebras with urelements. Then, the following rules, de-
fine a Sign-indexed family of entailment relations.

Γ �Σ ϕ
[basic]

〈Σ,Γ 〉 �Σ ϕ

SP2 �Σ ϕ SP1 ≡ SP2 [equiv]
SP1 �Σ ϕ

SP ′ �Σ′ Sen(σ)(ϕ)
[derive]

derive from SP ′ by σ �Σ ϕ

{SP1 �Σ ψ}ψ∈Δ 〈Σ,Δ〉 ∪ SP2 �Σ ϕ
[sum]

SP1 ∪ SP2 �Σ ϕ

SP �Σ ϕ
[translate]

translate SP by σ �Σ′ Sen(σ)(ϕ)

Theorem 3. Let 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic of
full proper closure fork algebras with urelements. Let Σ,Σ′ ∈ |Sign|, Γ ′ ∈
Sen(Σ′), σ : Σ → Σ′ a morphism in |Sign|, SP ∈ SpecΣ and 〈Σ,Γ 〉 ∈ |Th0|.
Then, SP �Σ ϕ if and only if SP |=Σ ϕ.

Proof. The proof of soundness (i.e. that if 〈Σ,Γ 〉 ∪ SP �Σ ϕ, then 〈Σ,Γ 〉 ∪
SP |=Σ ϕ) follows by observing that by Def. 16 all the rules are sound. Com-
pleteness trivially follows using the rules [derive], [equiv] (considering the fact
that nf(SP ) ≡ SP ), and [basic].

Observing the proof a question arises. Is a calculus like this of any utility?
This question has two possible answers. From a theoretical point of view the
completeness of this calculus reduces directly to the completeness of the calculus
of the underlying logic, thus proofs using the structure building operators reduce
to proofs using the calculus for flat specifications. From a practical perspective,
theorem proving is an essential tool for formally verifying the behavior of software
systems. From this methodological point of view the calculus can be very useful
in guiding an engineer in proving properties of structured specifications. We stick
to the second argument to explain the changes we introduced in Def. 21 with
respect to Def. 19.

Borzyszkowski’s completeness proof [10] suggests that the proofs of properties
of a union of specifications should be organized by resorting to rules [CR], [sum1]
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and [sum2]. This is possible because there is an implicit use of the interpolation
property in the elimination of the union of two specifications. In this sense,
interpolation is a strong requirement in Borzyszkowski’s calculus, even when
it is disguised as a combination of weaker properties. In the case of a logic
that does not meet this condition, that construction is not possible because the
interpolant is not a formula, but a (possibly infinite) set of formulas. To solve this
we added rule [sum], which explicits the construction used by Borzyszkowski.
On the negative side, the use of the rule [sum] eliminates a union between
two structured specifications, but introduces another one between a structured
specification and a flat one. This responds to the need of using the (possibly
infinite) interpolant to complete the proof. This newly added union prevents us
from using the structure of the specification as a guide to develop the proof. The
inclusion of the rule [equiv] gives us a solution (besides the fact that it is needed
in the proof of completeness), by enabling the replacement of a given specification
by an equivalent one in which the structure can be useful in developing the proof.
The next proposition shows some examples of the possibilities that the use of
this rule provides.

Proposition 2. [Properties of SBOs]
Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic of full proper

closure fork algebras with urelements.

1. 〈Σ′,Sen(σ)(Γ )〉 ∪ translate SP by σ ≡ translate 〈Σ,Γ 〉 ∪ SP by σ,
2. derive from 〈Σ′,Sen(σ)(Γ )〉∪SP ′ by σ ≡ 〈Σ,Γ 〉∪derive from SP ′ by σ,
3. 〈Σ,Γ 〉 ∪ (SP1 ∪ SP2) ≡ (〈Σ,Γ 〉 ∪ SP1) ∪ SP2,
4. SP1 ∪ SP2 ≡ SP2 ∪ SP1,
5. (SP1 ∪ SP2) ∪ SP3 ≡ SP1 ∪ (SP2 ∪ SP3),
6. 〈Σ,Γ1〉 ∪ 〈Σ,Γ2〉 ≡ 〈Σ,Γ1 ∪ Γ2〉.

Proof. The proofs of 4, 5 and 6 are trivial by Def. 16, and the proof of 3 is an
instance of 5. 1 and 2 follows by Def. 16 and set-theoretical reasoning on the
classes of models.

We call the reader’s attention to the fact that even when we developed this ideas
for the particular case of fork algebras, they apply to any language with similar
characteristics. Fork algebras served just as a motivation in the formalization of
a complete proof calculus for languages that can be considered as “universal”
institutions. On the other hand, the reader should notice that the properties
presented in Prop. 2 hold, at least, for any institution for which the definition
of the operators Sig[] and Mod[] remain as it was presented in Def. 16.

4.3 A Categorical Characterization of the Structure Building
Operations

In this paper we have discussed some problems related to the possibility of hav-
ing a complete calculus for structured specifications. We now identify another
drawback, but this time related to the way structured specifications are defined.
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Structured specifications are defined on top of an institution (an appropriate
way of formalizing the fact that a specific methodology for software description
is defined over an underlying logic). Recalling the definition of structured spec-
ifications (as a consequence of the definition of SBOs) and their semantics, it is
easy to see that SBOs cannot be characterized by universal constructions in the
category Th0. This is because the operations derive from and translate alter
the relation between the set of axioms in the specification, and its class of mod-
els. A problem of this separation is that even when the underlying logic serves as
a tool in defining the semantics associated to a structured specification, it is not
possible to find a theory (in the underlying logic) which acts as a counterpart of
a given structured specification.

The solution we propose is the study of the properties that a logic must
have in order to internalize the SBOs as constructions in the category Th0.
In this sense, a possible approach is the search for a logical system in which
the effect of applying the operations derive from and translate on a theory
can be characterized by some transformation of the axioms of the specification.
Because of the space limitation we will not fully develop this approach in the
present work, but we will state some preliminary ideas.

We already mentioned that the motivation behind choosing fork algebras is
their expressive power, revealed by the existence of several representation maps
from different logics. Fork algebras have a rich model theory in which the logical
structure of models is capable of representing the logical structure of models of
several logics ubiquitous in software design. For example, [3, Def. 15] shows how
first-order dynamic logic is interpreted in fork algebras. In all the extralogical
symbols (those that appear in the signature) are interpreted by extending the
fork algebraic signature with new constants. As was shown in Def. 8 , fork
algebraic constants are interpreted as elements in the domain of models.

Consider the extension of the language of fork algebras presented in Defs. 3
and 4 but replacing the latter definition by the following:

Definition 22. Let V be a set of relation variables, then the set Form(V) of
first-order ω-CCFAU formulas is the smallest set F such that:

– if t1, t2 ∈ Term(V), then t1 = t2 ∈ F ,
– if α, β ∈ F and C ∈ V, then ¬α, α ∨ β, (∃C)α ∈ F .

This language is just a first order extension of the original equational one pre-
sented in Sec. 2. The main properties presented for the equational version also
hold for this new version (for example, the fact that there exists a complete
calculus for a concrete class of models in which the domain is formed by binary
relations). If we restrict the category of signatures to those that only include
relational constants and injective morphisms, mapping T establishes a relation
between structured specifications and flat theories in Th0. We will use the fol-
lowing definition:

Definition 23. Let Σ = 〈{Ci}i∈I〉, Σ′ = 〈{C′
i}i∈I′〉 and σ : Σ → Σ′. We

denote by Sen(σ)� the backward translation from Σ′-formulas to Σ-formulas
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such that for all C′
i ∈ Σ′, if there exists j ∈ I such that σ(j) = i, then C′

i is
replaced by Cj in the translation, and left as C′

i otherwise.

Definition 24. Ax : Th0 → Set is the forgetful functor that for any theory in
Th0 returns its corresponding set of axioms.

Definition 25. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic
of full proper closure fork algebras with urelements, Σ = 〈{Ci}i∈I〉 and Σ′ =
〈{C′

i}i∈I′〉 signatures in |Sign|, and σ : Σ → Σ′ a morphism in Sign.

– T (〈Σ,Γ 〉) = 〈Σ,Γ 〉,
– T (〈Σ,Γ1〉 ∪ 〈Σ,Γ2〉) = 〈Σ,Γ1 ∪ Γ2〉6,
– T (derive from SP ′ by σ) = 〈Σ, Γ̂ 〉, where

Γ̂ = Ax ∪

⎧⎨
⎩
(
∃ {C′

i}i∈I′/σ(I)

) ∧
α∈Sen(σ)�(Ax(T (SP ))/Ax)

α

⎫⎬
⎭ (1)

Ax = Sen(σ)�(Ax(T (SP )) ∩ Sen(〈{C′
σ(i)}i∈I〉)) (2)

Equation 2 characterizes those axioms in the structured specification that are
expressible over Σ symbols (i.e. those symbols that were not hidden by the
operation). Equation 1 states that the set of axioms of the resulting theory
is formed by the formulas in Ax and an existential formula replacing those
axioms that were not expressible over Σ.

– T (translate SP by σ) = 〈Σ′,Sen(σ)(Ax(T (SP )))〉.

Using the previous definition it is easy to prove the following theorem.

Theorem 4. Let I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 be the logic
of full proper closure fork algebras with urelements. Let Σ ∈ |Sign|, and SP a
Σ-specification. Then, Mod[SP ] = Mod(T (SP )).

A more general result can be obtained if we observe that this result is a direct
consequence of the fact that the calculus associated with the underlying institu-
tion supports an extension satisfying that: a) the semantics of the extralogical
symbols are elements of a sort of the models (in our case extralogical symbols are
constants and their interpretation are binary relations), and b) has some kind of
existential quantifier and conjunction.

5 Conclusions

Motivated by the use of extensions of fork algebras we analyzed the work of
Borzyszkowski on structured specifications and showed that the conditions im-
posed to logical systems in order to have a complete calculus are too restrictive.

6 Notice that 〈Σ, Γ1 ∪ Γ2〉 is the apex of the colimit of the diagram formed by the
theories 〈Σ, Γ1〉, 〈Σ, Γ2〉, 〈Σ, ∅〉, and the morphisms idΣ1 : 〈Σ, ∅〉 → 〈Σ, Γ1〉 and
idΣ2 : 〈Σ, ∅〉 → 〈Σ, Γ2〉 in Th0.
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We also presented a complete calculus for structured specifications over the
logic of fork algebras. Finally, we described some ideas on how to completely
characterize structured specifications in the underlying logic. This last topic was
treated in a superficial way due to space limitations but we believe that work in
this direction will contribute to characterize in an appropriate way the relation
between structured specifications and their underlying logic.

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide.
Addison–Wesley Longman Publishing Co., Inc., Boston (1998)

2. Frias, M.F.: Fork algebras in algebra, logic and computer science. Advances in
logic, vol. 2. World Scientific Publishing Co., Singapore (2002)

3. Frias, M.F., Baum, G.A., Maibaum, T.S.E.: Interpretability of first-order dynamic
logic in a relational calculus. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561,
pp. 66–80. Springer, Heidelberg (2002)

4. Frias, M.F., Lopez Pombo, C.G.: Time is on my side. In: Procs. of RelMiCS 7,
pp. 105–111 (2003)

5. Frias, M.F., Lopez Pombo, C.G.: Interpretability of first-order linear temporal
logics in fork algebras. JLAP 66(2), 161–184 (2006)

6. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Hutchison, D., Shep-
herd, W.D., Mariani, J.A. (eds.) Local Area Networks: An Advanced Course.
LNCS, vol. 184, pp. 221–256. Springer, Heidelberg (1985)

7. Meseguer, J.: General logics. In: Procs. of the Logic Colloquium 1987, vol. 129,
pp. 275–329. North Holland, Amsterdam (1989)

8. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Dahl, O.-J.,
Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130,
pp. 478–502. Springer, Heidelberg (1996)

9. Lopez Pombo, C.G., Frias, M.F.: Fork algebras as a sufficiently rich universal
institution. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 235–247. Springer, Heidelberg (2006)

10. Borzyszkowski, T.: Logical systems for structured specifications. TCS 286, 197–245
(2002)

11. Tarski, A.: On the calculus of relations. JSL 6(3), 73–89 (1941)
12. Maddux, R.D.: Finitary algebraic logic. Zeitschrift fur Mathematisch Logik und

Grundlagen der Mathematik 35, 321–332 (1989)
13. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in

Mathematics. Springer, Berlin (1981)
14. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information

and computation 76(2-3), 165–210 (1988)
15. Tarlecki, A.: Abstract specification theory: an overview. In: Procs. of the NATO

Advanced Study Institute on Models, Algebras and Logic of Engineering Software.
NATO Science Series, pp. 43–79. IOS Press, Marktoberdorf (2003)

16. Diaconescu, R. (ed.): Institution-independent Model Theory, Studies in Universal
Logic, vol. 2. Birkhäuser, Basel
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Abstract. Dynamic reconfiguration, understood as the ability to man-
age at run time the live components and how these interact in a system,
is a feature that is crucial in various languages and computing paradigms,
in particular in object orientation. In this paper, we study a categorical
approach for characterising dynamic reconfiguration in a logical speci-
fication language. The approach is based on the notion of institution,
which enables us to work in an abstract, logic independent, setting. Fur-
thermore, our formalisation makes use of representation maps in order to
relate the generic specification of components (e.g., as specified through
classes) to the behaviour of actual instances in a dynamic environment.
We present the essential characteristics for dealing with dynamic recon-
figuration in a logical specification language, indicating their technical
and practical motivations. As a motivational example, we use a temporal
logic, component based formalism, but the analysis is general enough to
be applied to other logics. Moreover, the use of representation maps in
the formalisation allows for the combination of different logics for differ-
ent purposes in the specification. We illustrate the ideas with a simple
specification of a Producer-Consumer component based system.

1 Introduction

Modularisation is a key mechanism for dealing with the complexity and size of
software systems. It is generally understood as the process of dividing a sys-
tem specification or implementation into modules or components, which leads
to a structural view of systems, and systems’ structure, or architecture [10].
Besides its crucial relevance for managing the complexity of systems, the sys-
tems’ architectural structure also plays an important role in the functional and
non functional characteristics of systems. The system architecture has tradition-
ally been static, in the sense that it does not change at run time. However,
many component based specifications or implementations require dealing with
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dynamic creation and deletion of components. This is the case, for instance, in
object oriented programming, where the ability of creating and deleting objects
dynamically, i.e., at run time, is an intrinsic characteristic. Also in other more
abstract contexts, such as software architecture, it is often required to be able to
dynamically reconfigure systems, involving in many cases the dynamic creation
or deletion of components and connectors [17]. Also in some fields related to fault
tolerance, such as self healing and self adaptive systems, it is often necessary to
perform dynamic reconfigurations in order to take a system from an inconsistent
state back to an acceptable configuration.

Category theory has been regarded as an adequate foundation for formally
characterising different notions of components, and component compositions. For
instance, in the context of algebraic specification, category theory has enabled
the formal characterisation of different kinds of specification extensions [6] . Also,
in the context of parallel program design, category theory has been employed
for formalising the notion of superposition, and the synchronisation of compo-
nents [7]. In this paper, we present a categorical characterisation of the elements
of component composition necessary when dealing with dynamic creation and
deletion of components. The characterisation is developed around the notion of
an institution, which enables us to work in an abstract, logic independent, set-
ting. Furthermore, our formalisation makes use of representation maps [22] in
order to relate the generic specification of components (e.g., as specified through
classes) to the behaviour of actual instances in a dynamic environment. The use
of representation maps provides an additional advantage, namely that it allows
for the combination of different logics for different purposes in the specification.
For instance, one might use a logic for characterising datatypes (e.g., equational
logic), another for specifying components (e.g., propositional LTL), and another
(e.g., first order LTL) for the description of dynamically reconfigurable systems,
involving these components and datatypes.

We present the essential characteristics for dealing with dynamic reconfigura-
tion in a logical specification language, indicating their technical and practical
motivations. The approach presented is motivated by the view of system compo-
sition as a colimit of a categorical diagram representing the system’s structure
[3]. Moreover, our approach, as presented in this paper (and in particular due
to the logic employed for illustrating the ideas), can be seen as an adaptation of
the ideas presented in Fiadeiro and Maibaum’s approach to concurrent system
specification [7], where the system’s structure is inherently rigid, to support dy-
namic creation/deletion of components, and changes in their interactions. As a
motivating example, we use a temporal logic, component based formalism, but
the analysis is general enough to be applied to other logics. We will use a single
logic for the different parts of a specification, although, as we mentioned, the ap-
proach enables one to use different logics for different purposes in specification,
as it will be made clearer later on. One might benefit from this fact, in particular
for analysis purposes, as it will be argued in the paper. We also discuss some
related work. The main ideas presented in the paper are illustrated with a simple
specification of a (dynamic) Producer-Consumer component based system.
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2 A Motivating Example

In this section, we introduce an example that will be used as a motivation for
the work presented in the paper. This example is a simple specification of a
Producer-Consumer component based system. The specification is written in
linear temporal logic. We assume the reader is familiar with first order logic and
linear temporal logic, as well as some basic concepts from category theory [20].

Let us consider a simple Producer-Consumer system, in which two components
interact. One of these is a producer, which produces messages (items) that are
sent to the other component, the consumer. For simplicity, we assume that the
messages communicated are simply bits. The producer’s state might then be
defined by a bit-typed field p-current to hold a produced element, a boolean
variable p-waiting to indicate whether an item is already produced and ready
to be sent (so that null values for items are not necessary), and a boolean read
variable ready-in , so that a producer is informed if the environment is ready to
receive a product. We can specify a producer axiomatically, as shown in Figure 1.
This specification consists of a set of sorts (Bit and Bool, in this case), a set of
fields, some of which are supposed to be controlled by the environment, and a
set of action symbols. The axioms of the specification are linear temporal logic
formulae characterising the behaviour of the component, in a rather obvious way.
Notice Axiom 8, which differentiates local fields from read variables. This is a
locality axiom, as in [7], a frame condition indicating that local fields can only
be altered by local actions. The axioms of the specification can be thought of as
originating in an action language, such as the SMV language, for instance. Notice
that the logic used in this specification is propositional, which would enable one
to algorithmically check properties of producers, by means of model checking
tools. A consumer component can be specified in a similar way, as shown in
Figure 2.

Component: Producer
Read Variables: ready-in : Bool
Attributes: p-current : Bit, p-waiting : Bool
Actions: produce-0 , produce-1 , send-0 , send-1 , p-init
Axioms:
1. �(p-init →©(p-current = 0 ∧ ¬p-waiting))
2. �(produce-0 ∨ produce-1 → ¬p-waiting ∧©p-waiting)
3. �(produce-0 →©(p-current = 0))
4. �(produce-1 →©(p-current = 1))
5. �((send-0 → p-current = 0 ) ∧ (send-1 → p-current = 1 ))
6. �(send-0 ∨ send-1 → p-waiting ∧©¬p-waiting)
7. �(send-0 ∨ send-1 → p-current =©p-current)
8. �(send-0 ∨ send-1 ∨ produce-0 ∨ produce-1 ∨ p-init∨
(p-current =©p-current ∧ p-waiting =©p-waiting))

Fig. 1. A linear temporal logic specification of a simple producer
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Component: Consumer
Read Variables: ready-ext : Bool
Attributes: c-current : Bit, c-waiting : Bool
Actions: consume, extract-0 , extract-1 , c-init
Axioms:
1. �(c-init →©(c-current = 0 ∧ c-waiting))
2. �(extract-0 ∨ extract-1 → ¬c-waiting ∧ c-waiting ∧ ready-ext )
3. �(extract-0 →©(c-current = 0))
4. �(extract-1 →©(c-current = 1))
5. �(consume → ¬c-waiting ∧©c-waiting)
6. �(consume → c-current =©c-current )
7. �(consume ∨ extract-0 ∨ extract-1 ∨ c-init∨
(c-current =©c-current ∧ c-waiting =©c-waiting))

Fig. 2. A linear temporal logic specification of a simple consumer

A mechanism for putting these specifications together is by coordinating them,
for instance, by indicating how read variables are “connected” or identified with
fields of other components, and by synchronising actions. Basic action synchro-
nisation can be employed for defining more sophisticated forms of interaction,
e.g., procedure calls. In [7,8], the described form of coordination between com-
ponents is achieved by the use of “channels”; a channel is a specification with no
axioms, but only symbol declarations, together with two mappings, identifying
the symbols in the channel specification with the actions to be synchronised and
the fields/variables to be identified, in the corresponding components. For our
example, we would want to make the components interact by synchronising the
send-i and extract-i actions, of the producer and consumer, respectively, and
by identifying ready-in and p-waiting, in the producer, with c-waiting and
ready-ext in the consumer, respectively.

It is known that specifications and symbol mappings in this logic form a
category which admits finite colimits [12]. This is important due to the fact that
the above described coordination between producers and consumers, materialised
as a “channel”, forms the following diagram (in the categorical sense):

Producer Consumer

[vars : x,y : Bool; acts : a,b]

x �→ ready-in
y �→ p-waiting
a �→ send-0
b �→ send-1

������

��������� x→ c-waiting
y → ready-ext
a→ extract-0
b→ extract-1�������

���������

The colimit object for this diagram is a specification that corresponds to the
combined behaviour of the producer and consumer, interacting as the diagram
indicates.

The architecture of the system, represented by the diagram, clearly does not
directly admit reconfiguration. More precisely, how components are put together
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is prescribed in an external way with respect to component definition (by the
construction of a diagram), and although the represented specification can be
constructed as a colimit, the possibility of having a component managing the
population of instances of other components (as an example of dynamic reconfig-
uration, motivated by what is common in object orientation) is not compatible
with the way configurations are handled in this categorical approach.

Our aim in this paper is to provide a categorical characterisation of a general-
isation of the above situation, when both the population of live components and
their connections are manipulated, within a system, dynamically. The actual way
in which these elements (components and connections) are dynamically manipu-
lated depends on the particular problem or system being specified. For instance,
we might have a system where the number of components is maintained over
time, but the way in which these components interact is changed dynamically.
Alternatively, we might have a system in which a certain kind of component,
e.g., clients, are created dynamically, but there is a fixed number of servers.

3 Dynamic Reconfiguration in an Institutional Setting

In this section, we present our proposal for formally characterising dynamic re-
configuration in a logical specification language. In order to make the approach
generic (i.e., to make it applicable to a wide range of logics and related for-
malisms), we develop the formalisation using the notion of institution. This en-
ables us to present the formalisation in a high level, logic independent, setting.
The theory of institutions was presented by Goguen and Burstall in [11]. Insti-
tutions provide a formal and generic definition of what a logical system is, and
of how specifications in a logical system can be structured [21]. Institutions have
evolved in a number of directions, from an abstract theory of software specifi-
cation and development [25] to a very general version of abstract model theory
[5], and offered a suitable formal framework for addressing heterogeneity [19,24],
including applications related to widely used (informal) languages, such as the
UML [4]. The following definitions were taken from [18].

Definition 1. [Institution]
An institution is a structure of the form 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 sat-
isfying the following conditions:

– Sign is a category of signatures,
– Sen : Sign → Set is a functor (let Σ ∈ |Sign|1, then Sen(Σ) returns the

set of Σ-sentences),
– Mod : Signop → Cat is a functor (let Σ ∈ |Sign|, then Mod(Σ) returns

the category of Σ-models),
– {|=Σ}Σ∈|Sign|, where |=Σ⊆ |Mod(Σ)| ×Sen(Σ), is a family of binary rela-

tions,

1 |Sign| denotes the class of objects of category Sign.
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and for any signature morphism σ : Σ → Σ′, Σ-sentence φ ∈ Sen(Σ) and
Σ′-model M′ ∈ |Mod(Σ)| the following |=-invariance condition holds:

M′ |=Σ′
Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Institutions are an abstract formulation of the notion of logical system where the
concepts of languages, models and truth are characterised using category theory.
Roughly speaking, an institution is made up of a category Sign which defines
the syntax of the logic in terms of the possible vocabularies and translations
between them, a functor Sen : Sign → Set that captures the way in which
formulae are built from vocabularies (this functor maps translations between
vocabularies to translations between sets of formulae in the obvious way). More-
over, the semantical part of a given logic is captured using a covariant functor
Mod : Signop → Cat which maps each vocabulary to the category of its possi-
ble models. This functor is covariant since any translation of symbols uniquely
determines a model reduct. Finally, an indexed relation �Σ: Mod(Σ)×Sen(Σ)
is used to capture the notion of truth. A restriction is imposed on this rela-
tionship to ensure that truth is not affected by change of notation. Examples of
institutions are: propositional logic, equational logic, first-order logic, first-order
logic with equality, dynamic logics and temporal logics (a detailed list is given
in [12]). Note that any of these logics has the four components of institutions.
Furthermore, in these logics the notion of truth does not depend on the particu-
lar choice of the symbols in a formula, i.e., the truth of a formula depends only
on its structure and not on the contingent names of its parts.

The logic we used for specifying components, linear temporal logic, consti-
tutes an institution. Its category of signatures is composed of alphabets (sets of
propositional variables, since bit-typed fields are straightforwardly encoded as
boolean variables, and action occurrence can directly be represented as boolean
variables) as objects, and mappings between alphabets as morphisms. The gram-
mar functor Sen : Sign → Set for this logic is simply the recursive definition
of formulae for a given vocabulary. The functor Mod : Signop → Cat maps
signatures (alphabets) to their corresponding classes of models, and alphabet
contractions (i.e., reversed alphabet translations) to “reducts”. The relationship
|=Σ is the usual satisfaction relation in LTL. By means of a simple inductive
argument, it is rather straightforward to prove that this relationship satisfies
the invariance condition, and thus LTL is an institution.

The logic we used so far is propositional. A first-order version of this logic is
presented in [16], where variables, function symbols and predicate symbols are
incorporated, as usual. This first order linear temporal logic admits a single type
of “flexible” (i.e., whose interpretation is state dependent) symbol, namely flex-
ible variables. All other symbols (function and predicate symbols, in particular)
are rigid, in the sense that their interpretations are state independent. We will
consider a generalisation of this logic, in which function and relation symbols
are “split” into flexible and rigid (notice that flexible variables become a special
case of flexible function symbols). This will simplify our specifications, and the
presentation of the ideas in this paper. The propositional specifications given
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Component: ProducerManager
Read Variables: ready-in : NAME→ Bool
Attributes: p-current : NAME→ Bit,
p-waiting : NAME→ Bool
Actions: produce-0 (n: NAME), produce-1 (n: NAME), send-0 (n: NAME),
send-1 (n: NAME), p-init(n: NAME)
Axioms:
1. �(∀n ∈ NAME : p-init(n)→©(p-current(n) = 0 ∧ ¬p-waiting(n)))
2. �((∀n ∈ NAME : produce-0 (n) ∨ produce-1 (n)→ ¬p-waiting(n) ∧©p-waiting(n))
3. �(∀n ∈ NAME : produce-0 (n)→©(p-current (n) = 0))
4. �(∀n ∈ NAME : produce-1 (n)→©(p-current (n) = 1))
5. �(∀n ∈ NAME : (send-0 (n)→ p-current(n) = 0 ) ∧ (send-1 (n)→
p-current(n) = 1 ))
6. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n)→ p-waiting(n) ∧©¬p-waiting(n))
7. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n)→ p-current (n) =©p-current(n))
8. �(∀n ∈ NAME : send-0 (n) ∨ send-1 (n) ∨ produce-0 (n) ∨ produce-1 (n) ∨ p-init(n)∨
(p-current(n) =©p-current(n) ∧ p-waiting(n) =©p-waiting(n)))

Fig. 3. A first-order linear temporal logic specification of a producer manager

before can be thought of as first-order specifications, where the “first-order” el-
ements of the language are not used. By employing the ideas presented in [21],
we can prove in a straightforward way that this first-order linear temporal logic
is also an institution.

A specification is essentially a theory presentation, as usually defined [12,18].
Any category of alphabets and translations can be lifted to categories Th and
Pres, of theories and theory presentations, where morphisms are theorem and
axiom preserving translations, respectively [9]. The relationships between these
categories and Sign are materialised as forgetful functors (which reflect colimits).

A traditional way of dealing with dynamic reconfiguration is by specifying
managers of components. A manager of a component C is a specification which
intuitively provides the behaviour of various instances of C, and usually enables
the manipulation of instances of C. For example, for our Producer specification,
a manager might look as in Figure 3. Notice that we are using the “first-order”
expressive power of the language in this specification.

Notice the clear relationship between our producer specification and the spec-
ification of a manager of producers. With respect to the syntax (i.e., the sym-
bols used in the specification), the manager is a relativisation of the producer,
in which all variables and actions incorporate a new parameter, namely, the
“instance” to which the variable belongs, or the action to which it is applied,
correspondingly. A first intuition would be to try to characterise the relationship
between the signature of a component and the signature of its manager as a sig-
nature morphism. However, such a relationship is not possible, since signature
morphisms must preserve the arities of symbols, and arities are not preserved in
managers. A similar situation is observed with formulae in the theory presen-
tation. It is clear that all axioms of Producer are somehow “preserved” in the
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producer manager, since what we want to capture is the fact that all (live) pro-
ducer instances behave as the producer specification indicates. A way to solve
this problem, the mismatch between the notion of signature morphism and what
is needed for capturing the component-manager relationship, would be to rede-
fine the notion of signature morphism, so that new parameters are allowed when
a symbol is translated. We have attempted this approach, which led to a compli-
cated, badly structured, characterisation [2]. In particular, redefining the notion
of signature morphism forced us to redo many parts of the traditional definition
of institutions. In this paper, we present a different characterisation, which is
much simpler and better structured. In this approach, we do not characterise the
relationship between components as managers within an institution, but outside
institutions, employing the notion of representation map [22].

As we explained before, the static description of components is given in Pres,
the category of theory presentations (in first-order linear temporal logic), where
the objects of the category define the syntax (signature) and axioms character-
ising component behaviour. Diagrams in this category correspond to component
based designs, indicating the way components interact in a system, and colimits
of these diagrams correspond to the behaviour of the structured design, “linked”
as a monolithic component (the colimit object). These diagrams, and their col-
imits, characterise static composition, in a suitable way. In order to provide a
dynamic behaviour associated with components, we start by constructing man-
agers of components, as we illustrated for producers. First, let us consider an
endofunctor (−)M : Sign → Sign, which maps each signature Σ to the signa-
ture ΣM , obtained simply by incorporating a new sort •Σ , and a new parameter
of this sort in each of the (flexible) symbols of Σ. Notice that the logic needs
to support arguments in symbols (i.e., it needs to provide a notion of parame-
terisation), since otherwise adding a new parameter to a symbol would not be
possible. For the case of first-order linear temporal logic, the functor (−)M maps
a signature Σ = 〈S, V, Fr , Ff , Rr, Rf 〉 (where S is the set of sorts, V the set of
variables, and F and R the sets of function and predicate symbols, separated
into flexible (“f” subscript) and rigid (“r” subscript) symbols) to the signature
ΣM = 〈SM , V, Fr, F

M
f , Rr, R

M
f 〉, where: (i) SM = S ∪ {•Σ}, where •Σ is a sort

name such that •Σ /∈ S, (ii) FM
f = {f : •Σ, w → s | f : w → s ∈ Ff}, and (iii)

RM
f = {r : •Σ , w | r : w ∈ Rf}.
Notice that we incorporate the extra parameter only into the symbols that

constitute the state of the component. For statically interpreted symbols, the
extra parameter is unnecessary. The way in which (−)M chooses the new sort
name •Σ for each Σ is not important for our current purposes. In our example,
we chose a new sort NAME, for the identifiers of instances of components. With
respect to morphisms, (−)M maps each signature morphism σ : Σ → Σ′ to mor-
phism σM : ΣM → Σ′M , defined exactly as σ but mapping •Σ �→ •Σ′ . Functor
(−)M captures the relationship between components and their managers, via
a construction which is external to the category of signatures (i.e., via a func-
tor, not a morphism). In order to capture the relationship that exists between the
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specification of a component and the specification of the manager of this compo-
nent, we now define a natural transformation ηM : Sen �→ Sen◦(−)M . This nat-
ural transformation corresponds to a mapping ηM

Σ : Sen(Σ)→ Sen(ΣM ), which
maps any formula ϕ of Sign(Σ) to a formula ϕM of Sign(ΣM ). The definition
of ϕM is simple: for each element of the signature which represents part of the
“state” appearing in ϕ (in our case, a flexible symbol), add an extra parameter of
type •Σ, and universally quantify it. Notice that this requires the logic to be first-
order, so that universal quantification is possible. In the case of our specifications,
given any formula ϕ we choose a •Σ-labelled variable x•Σ . Each occurrence of
any flexible function symbol f : w → s of the form f(t1, . . . , tn) (where t1, . . . , tn
are terms) is replaced by the term f(x•Σ , t1, . . . , tn) (note that f : •Σ , w → s is
a flexible function symbol of ΣM ), and similarly for flexible relations. After this
step, we obtain a formula ϕ′. Finally, we define ϕM = (∀x•Σ ∈ •Σ : ϕ′). Again,
we have captured the relationship between a component specification and the
specification of its corresponding manager externally, via a natural transforma-
tion, instead of internally, within the category of specifications.

Finally, let us deal with models. We define a natural transformation γ :
Mod ◦ ((−)M )op �→ Mod. That is, we have a natural family of functors γΣ :
Mod(ΣM ) → Mod(Σ), which maps each model M ′ of Mod(ΣM ) to a model
M of Mod(Σ), the model obtained by taking away the parameters of type •Σ in
every function and relation in M ′. In a similar way, any morphism m : M ′ →M
of Mod(ΣM ) can be translated to a morphism in Mod(Σ) γΣ : γΣ(M ′) →
γΣ(M), corresponding to the restriction of m to the set of sorts different from
•Σ. For the sake of brevity, we skip the detailed definition of these natural
transformations.

For our first-order linear temporal logic, we have the following property:

Property 1. For every signature Σ, ϕ ∈ Sen(Σ) and M ′ ∈ Mod(ΣM ) the fol-
lowing holds: M ′ �ΣM ηΣ(ϕ) ⇔ γΣ(M ′) �Σ ϕ.

Intuitively, this property states that γ and η preserve the satisfaction relation.
This kind of relation between institutions is called a representation map [22].
Since the logic for components and for managers is the same, we have an endo-
representation map, which relates components with their managers. Let us recall
the definition of representation map, as given in [22].

Definition 2. (Representation map between institutions)
Let 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′,Mod′, {|=′

Σ}Σ∈|Sign′|〉
be the institutions I and I ′ respectively, then 〈γSign, γSen, γMod〉 : I → I ′ is a
representation map of institutions if and only if:

– γSign : Sign→ Sign′ is a functor,

– γSen : Sen �→ Sen′ ◦γSign, is a natural transformation (i.e. a natural family
of functions γSen

Σ : Sen(Σ)→ Sen′(γSign(Σ))), such that for each Σ1, Σ2 ∈
|Sign| and σ : Σ1 → Σ2 morphism is Sign,
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Sen(Σ2)

�
Sen(σ)

Sen(Σ1)

�
γSen

Σ2
Sen′(γSign(Σ2))

�
Sen′(γSign(σ))

Sen′(γSign(Σ1))�
γSen

Σ1

Σ2

�
σ

Σ1

– γMod : Mod′◦(γSign)op �→Mod, is a natural transformation (i.e. the family
of functors γMod

Σ : Mod′((γSign)op(Σ)) → Mod(Σ) is natural), such that
for each Σ1, Σ2 ∈ |Sign| and σ : Σ1 → Σ2 morphism in Sign,

Mod′((γSign)op(Σ2))

�

Mod′((γSign)op(σop))

Mod′((γSign)op(Σ1))

�
γMod

Σ2
Mod(Σ2)

�

Mod(σop)

Mod(Σ1)�
γMod

Σ1

Σ2

�
σ

Σ1

such that for any Σ ∈ |Sign|, the function γSen
Σ : Sen(Σ) → Sen′(γSign(Σ))

and the functor γMod
Σ : Mod′(γSign(Σ)) → Mod(Σ) preserves the following

satisfaction condition: for any α ∈ Sen(Σ) and M′ ∈ |Mod(γSign(Σ))|,

M′ |=γSign(Σ) γ
Sen
Σ (α) iff γMod

Σ (M′) |=Σ α .

Representation maps have been studied in detail in [22,13]. The intuition that
leads us to think that “all instances of a certain component type behave as the
component (type) specification indicates” is justified by the following property
of representation maps (see [22]):

Property 2. Semantic deduction is preserved by representation maps: for any
institution representation ρ : I → I′, signature Σ ∈ |Sign|, set Φ ⊆ Sen(Σ) of
Σ-sentences, and Σ-sentence ϕ ∈ Sen(Σ), if Φ �Σ ϕ, then ρSen

Σ (Φ) �′
ρSign(Σ)

ρSen
Σ (ϕ).

Intuitively, this property says that managers of components preserve the prop-
erties that the specification of the corresponding components imply. Notice that
this is the usual intuition: when one is reasoning about a class in object oriented
design, one does so thinking of a generic template of instances of the class, so
that the programmed behaviour will be that of all instances of the class2. This
construction is also associated with some specification related mechanisms; for
instance, the notion of schema promotion in Z [27] is captured by this very same
notion of representation map. The promoted schemas are obtained via natural
transformations from the original set of schemas.
2 Obviously, classes also define additional behaviour, associated with the manipulation

of instances (constructors, destructors, etc.).
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4 Managing Dynamic Population and Interaction

In our initial example, a basic structure of a system is given in terms of compo-
nent specifications, as well as specifications of the interactions between compo-
nents. We also mentioned that these interactions are materialised as channels,
which enable one to define (categorical) diagrams, corresponding to static archi-
tectural designs of systems. We have already dealt with part of the generalisation
of this situation to allow for dynamic creation/deletion of components, via com-
ponent managers. We still need to describe the way in which the component
population is actually managed, and how instances of components interact. For
example, we would need ways of dynamically managing the population of com-
ponents, and dynamically allocating live producers to live consumers, in the
context of our example. In order to achieve the first of these goals, one needs
to provide extensions of the manager components, introducing some specific be-
haviours into the managers (for example, some actions and properties related to
the creation or deletion of components at run time). This, of course, needs to
be manually specified, whereas the relativisation of component behaviour to in-
stance behaviour is directly handled by the above presented representation map.
For the case of our producer manager, such an extension could be the one pre-
sented in Figure 4. Notice how a set of live instances is introduced (via a flexible
predicate), and how actions for population management can be specified. In this
example, we have new , which allows us to create new producers. Axiom 10, for
instance, indicates that in order to make an instance live, it must be originally
“dead”, and that p-init is executed at creation, on the newly created instance.

Now, let us deal with the connections. In order to dynamically allocate pro-
ducers to consumers, we define a kind of connection template (we then exploit the
previously introduced representation map to build a connection manager). We
start by identifying the parts of the components that possibly need to be coordi-
nated. In our case, we identify the fields of producers and consumers that need
to be “exported” to other components, and the actions that need to be synchro-
nised. These communicating elements are combined via a coproduct, yielding
a vocabulary with parts from producers and parts from consumers, that will
be used in order to describe the possible interactions between these types of
components. This situation can be generically illustrated as follows:

C1 Con1
1 + Con1

2 C2

Con1

m

����������� i

�������������
Con2

n

�����������j
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0!

��

!

��

!

		

This diagram involves two components, C1 and C2. The first component has a
communicating language Con1 and the second component has a communication
language Con2. As stated above, we want to connect these types of components
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Component: ExtendedProducerManager
Read Variables: ready-in : NAME→ Bool
Attributes: producers : NAME→ Bool, p-current : NAME→ Bit,
p-waiting : NAME→ Bool
Actions: produce-0 (n: NAME), produce-1 (n: NAME), send-0 (n: NAME),
send-1 (n: NAME), p-init(n: NAME), new (n: NAME)
Axioms:
... /* axioms of ProducerManager */
9. ∀n ∈ NAME : ¬producers(n)
10. �(∀n ∈ NAME : new(n)→ ¬producers(n) ∧©(producers(n) ∧ p-init(n)))
11. �(∀n ∈ NAME : produce-0 (n)→ producers(n))
...
Fig. 4. An extension of the producer manager, which handles instance creation

using these communication languages. In contrast to our initial (static) example,
we do not identify common parts in the components, but use the coproduct of
the communicating languages to obtain a language in which to describe the
interactions. This also provides more flexibility in the communication definition.
In addition, the diagram involves the initial object of category Sign, together
with the (unique) morphisms ! from this object to the other components. This
is necessary since, after applying (−)M , we obtain a component 0M which has
only one sort, and the arrows !M (obtained applying the functor (−)M to the
arrows !) identify all the new sorts added in the other components by (−)M . The
explicit inclusion of the initial object has as a consequence that only one new
sort (of component names) is included in the final design.

A suitable connection template for our example could be the one in Figure 5.
A manager of this specification is built in the same way that managers of com-
ponents are constructed. In the same way that we extended the managers of
components, we will need to extend the manager of connections, to indicate
how connections work. A sample extension of the manager of connections is also
shown in Fig. 5. The generic situation depicted in the previous diagram can be
expanded, by means of the introduced representation map, to the following:
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Component: ConnectionTemplate
Attributes: ready-in : Bool, ready-ext : Bool, p-waiting : Bool, c-waiting : Bool
Actions: send-0 , send-1 , extract-0 , extract-1

Component: ExtendedConnectionManager
Attributes: ready-in : NAME→ Bool, ready-ext : NAME→ Bool,
p-waiting : NAME→ Bool, c-waiting : NAME→ Bool,
connected : NAME, NAME→ Bool
Actions: send-0 (n: NAME), send-1 (n: NAME),
extract-0 (n: NAME), extract-1 (n: NAME), connect(n, m: NAME)
Axioms:
1. �(∀n, m ∈ NAME : connect(n, m)→ ¬connected (n, m) ∧©(connected (n, m))
2. �(∀n, m ∈ NAME : connected (n, m)→ (send-0 (n)↔ extract-0 (m)))
...

Fig. 5. A connection template, indicating the vocabulary relevant for communication,
and an extension of its manager

The specifications CM
1 , (Con1

1+Con1
2)M and C2

M are obtained via the func-
tor (−)M . The components MC1, MI and MC2 are the (ad-hoc) extensions of
the manager components. As for the case of static configurations, the colimit
of this diagram gives us the final design. It is interesting to note that, since
we have used abstract concepts such as institutions and representation maps,
the concepts introduced in this section can be instantiated with other logics.
In particular, there is no need to use the same logic for component specifica-
tion and manager specification. Notice that to the extent that these logics can
be connected by a representation map, all of the presented characterisation is
applicable. For example, we can use a propositional temporal logic to describe
the components, taking advantage of decision procedures for such a logic, and
use a first-order temporal logic to describe the managers. The representation
map between these two logics still enables us to “promote” the properties veri-
fied for components (algorithmically, if the logic for component specification is
decidable) to properties of all instances of components. Furthermore, we could
take this idea even further, and use yet another logic for datatype specification
(e.g., a suitable equational logic), and promote the properties of datatypes to
components and managers, again by exploiting representation maps.

5 Conclusions

Many specification languages need to deal with dynamic reconfiguration and
dynamic population management. In Z, for instance, this is done via schema
promotion [27], which is understood simply as a syntactical transformation. In
the context of B [1], there is a similar need, in particular when using B as a tar-
get language for analysis of object oriented models (e.g., the UML-B approach).
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Object oriented extensions of model oriented languages, such as VDM++, Ob-
ject Z or Z++, have built in mechanisms for dealing with dynamic reconfigura-
tion, as is inherent in object orientation. Other logical languages, for instance
some logical languages used for software architectures (e.g., ACME), also re-
quire dynamism in specifications. Generally, the mechanisms for dynamism in
the mentioned languages are syntactical.

Besides the work mentioned above, there exist some other related approaches,
closer to what is presented in this paper. A useful mechanism for formally char-
acterising dynamic reconfiguration is that based on graph transformation, as
in [14], which has been successfully applied in the context of dynamic software
architectures [26]. As opposed to our work, in this approach the notion of man-
ager is not present, and thus it is less applicable to contexts where this notion
is intrinsic (e.g., object orientation, schema promotion, etc.). Another related
approach is that of Knapp et al. [15], who present an approach for specifying
service-oriented systems, with categorical elements. Knapp et al. employ map-
pings (from local theories to a global one) for specifying component synchroni-
sation, but composition is not characterised via universal constructions, as in
our approach. Another feature of our approach, not present in Knapp et al.’s,
is the preservation of the original design’s modularisation, via representation
maps (notice that each component is mapped to a similar component in a more
expressive setting, where its dynamic behaviour is expressed).

We presented the requirements for dealing with dynamic reconfiguration in a
logical specification language, in a categorical way. Our categorical characterisa-
tion is general enough so that it applies to a wide variety of formalisms, which we
have illustrated using a temporal logic. An essential characteristic of the logical
system is that quantification is required, so that collections of instances of com-
ponents can be handled. Our work might help in understanding the relationship
between basic “building block” specifications and the combined, whole system,
in the presence of dynamic reconfiguration.

We also believe that this work has interesting practical applications. The cat-
egorical setting we are working with admits working with different (but related)
logics for component specification, and the description of dynamic systems. This
might enable one, for instance, to use a less expressive (perhaps decidable) logic
for the specification of components, whose specifications could be mapped to
more expressive (generally undecidable) logics, where the dynamism of systems
is characterised. Understanding the relationships between the different parts of
the specification can be exploited for practical reasons, for example for promot-
ing properties verified in components (using for example a decision procedure) to
the specification of the system. Also, some recently emerged fields, such as ser-
vice oriented architectures, require dealing with highly dynamic environments,
where formalisations as the one proposed in this paper might be useful. As ex-
pressed in [23], there is a clear need for work in the direction of our proposal, so
we plan to investigate the applicability of our approach in some of the contexts
mentioned in [23].
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Abstract. In this paper we investigate formal mechanisms to allow de-
signers to decompose specifications (stated in a given logic) into several
components. The basic ideas come from [1] where some notions from
category theory are used to put together logical specifications. In this
setting the concept of locality allows designers to write separate specifi-
cations and then compose them. However, as the work of Fiadeiro and
Maibaum [1] is stated in a linear temporal logic, we investigate how to
extend these notions to a branching time logic, which can be used to
specify systems where non-determinism is a relevant mechanism. Since
we are interested in specifying and verifying fault-tolerant systems, we
also introduce deontic operators in our logic, we have shown in [2] that
deontic logic allows us to express notions such as ideal and abnormal
behavior which are closely related to fault-tolerance.

Keywords: Fault-Tolerance, Software Specification, Software Verifica-
tion, Deontic Logic, Component Based Design, Category Theory.

1 Introduction

In [2] we introduced a deontic logic which is designed for reasoning about fault-
tolerant systems. The basic idea in this logic is to use deontic predicates (per-
mission, obligation, prohibition, etc) to introduce in specifications the idea of
normal (and abnormal) behavior. Deontic logics are those logics that originated
with the use of deontic predicates for reasoning about legal or moral arguments
[3]. However, in the past few decades, computer scientists have used deontic log-
ics to reason about computing systems. Examples of applications can be found in
artificial intelligence, agent systems, policy languages, databases, etc. (See [4] for
a detailed list of applications of deontic logic in computer science.) In particular,
we take the ideas presented in [5], where deontic predicates are used to distin-
guish between the description and the prescription of systems. The description
of a system is given in a pre/post-condition style, while the prescriptions are
given by means of deontic predicates establishing what the desirable behaviors
of the system are. We think that this idea can be useful for fault-tolerance, where
violations arise naturally when an abnormal behavior of the system occurs, and,
therefore, some actions must be executed to recover the system from error states.

A. Cavalcanti et al. (Eds.): ICTAC 2010, LNCS 6255, pp. 322–336, 2010.
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In this paper we introduce some modifications to the deontic logic presented
in [2] with the aim of obtaining a more general framework where system spec-
ifications can be written in a modular way. For this purpose, we mainly follow
the philosophy of [6], in the sense that a system is specified by putting together
smaller specifications (by means of some categorical constructions [7]). The ideas
presented below are also inspired by the logical frameworks presented in [8,1],
where Goguen’s ideas are applied to a temporal logic and, therefore, to spec-
ifications of concurrent systems and object oriented systems, respectively. We
think that the prescriptions in specifications must respect the structure of the
system, and therefore they must be local to components. For example, in [8] de-
ontic operators are also used in specifications, but the deontic constructs there
are used in a “global” way, in the sense that the prescriptions of one component
may implicitly affect other parts of the system. This is undesirable when we
want to perform modular reasoning about specifications. The logic introduced
below maintains the locality of prescriptions, which we think is more useful for
modular reasoning. Moreover, we introduce a modified notion of encapsulation
in specifications, which allows us to define the notion of module or component.
The novel part of these ideas is that we use a variation of bisimulation to intro-
duce the idea that a component forms part of a system, and that its behavior
is respected by the latter. Further, it should be noted that the non-determinism
in a component is also respected by the system.

The paper is structured as follows. In the next section we introduce the basic
definitions of the logic. In sections 3 and 4 we present the notion of compo-
nent and the ideas used to put components together. We present an example of
application in section 5. Basic notions of category theory are used throughout
the following sections. The reader can consult the standard bibliography, for
example [7].

2 Syntax and Semantics

In this section we present the syntax and semantics of the logic. The basic defi-
nitions are based on those given in [2]. We introduce some modifications to the
definitions given in that paper to be able to capture the notions of component and
violation. We use vocabulary (or language) to refer to a tuple L = 〈Δ0, Φ0, V0, I0〉,
where Δ0 is a finite set of primitive actions : a1, ..., an, which represent the pos-
sible actions of a part of the system and, perhaps, of its environment. Φ0 is an
enumerable set of propositional symbols denoted by p1, p2, . . .. V0 is a finite sub-
set of V , where V = {v1, v2, v3, . . .} is an infinite, enumerable set of “violation”
propositions. The indices in I0 correspond to a stratification of the concept of
norm, where the stratification corresponds to degrees of fault in the system be-
ing modeled. All these sets are mutually disjoint. Using the primitive actions
we define the set Δ of actions as follows: if a ∈ Δ0, then a is an action. ∅ (the
impossible action) and U (the non-deterministic choice of any primitive action)
are actions. If α and β are actions, then α � β (the non-deterministic choice
between α and β) is an action, and α � β (the parallel execution of α and β) is
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an action. If α is an action, then α (the execution of an alternative action to α)
is an action. No other expression is an action.

The formulae of this logic (denoted by Φ) are defined as follows. If ϕ ∈ Φ0∪V0,
then ϕ is a formula. If ϕ and ψ are formulae, then ψ → ψ,¬ψ are formulae (these
are the standard propositional connectives). If ϕ is a formula and α an action,
then [α]ϕ (after executing α, ϕ is true) is a formula. If α is an action and i ∈ I0,
then Pi(α) (α is allowed to be executed in any scenario at level i, this deontic
operator is called strong permission) and Pi

w(α) (the action α is weakly allowed
to be executed at level i) are formulae. If ϕ and ψ are formulae, then ENϕ (in
some path of execution in the next instant ϕ is true) is a formula. A(ϕ U ψ)
(in every path of execution ϕ is true until ψ becomes true) and E(ϕ U ψ) (in
some path of execution ϕ is true until ψ becomes true) are formulae. If α and β
are actions and S ⊆ Δ0, then DoneS(α) (the last action in S executed was α )
and α =act β (α and β when executed produce the same events) are formulae.
B is a formula, it is true at beginning of time. Note that the temporal operators
have the standard meaning in a branching temporal logic. Actions and action
operators form a boolean algebra, we consider the laws of boolean algebra in our
logical calculus. For any language L = 〈Φ0, Δ0, V0〉, we have a boolean algebra
of action terms modulo the axioms of boolean algebra, we denote the members
of this algebra by Δ0/ =act. Since the number of primitive action symbols in L
is finite, the boolean algebra of terms is atomic. The atoms are (members of the
equivalence class of) monomials of the style ∗a1 � . . . � ∗an where ∗ai is ai or
ai and a1, . . . , an are the primitive actions of L. Intuitively, a monomial of this
kind indicates which actions are executed and which are not.

Some remarks are required about the deontic operators. The strong permis-
sion allows us to assert that a given action is allowed to be executed in any
scenario. Contrast this to weak permission, which has to be used when we need
to assert that an action is allowed to happen only in some scenarios. For in-
stance, P(wdraw) (where wdraw is the action of withdrawing money from a cash
machine) says that it is allowed to withdraw money from the machine. How-
ever, it may convenient to say that, the action wdraw can only be executed if
the machine has enough money, and therefore we have to use a weak permission,
i.e.: Pw(wdraw). Using permissions we can define other deontic operators. We say
that an action is forbidden if it it is not allowed to be executed in any scenario,
hence: Fi(α) def= ¬Pi

w(α). We say that an action is obliged to occur if it is allowed
and any other action is forbidden to be executed, i.e.: Oi(α) def= Pi(α) ∧¬Pi

w(α).
The index in the deontic predicates allows us to introduce different levels of nor-
mative restrictions. The levels are not necessarily related to each other, but a
relation can be added by means of axiomatizations. These levels in the deontic
operators allow us to distinguish between the norms of different components,
e.g., avoiding that the obligation in a component to execute a given action af-
fects the other components in the system (i.e., these components are not obliged
to execute this action).

Now, we introduce the technical details. We follow the ideas of [8], where transi-
tions can be produced by actions in the language or by external components
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(i.e., this is an open system approach in the sense that is given in [9]). Intuitively,
each action produces a (finite) set of events during the execution of the system (the
events that this action “observes” or “participates in”), and also there are other
events produced by actions from other components or from the environment. We
define the notion of semantic structure.

Definition 1 (models). Given a language L = 〈Φ0, Δ0, V0, I0〉, a L-Structure
is a tuple: M = 〈W ,R, E , I, {P i | i ∈ I0}, w0〉 where:

– W is a set of worlds.
– R is an E-labeled relation between worlds. We require that, if (w,w′, e) ∈ R

and (w,w′′, e) ∈ R, then w′ = w′′, i.e., R is functional.
– E is an infinite, enumerable non-empty set, of (names of) events.
– I is a function:

• For every p ∈ Φ0 : I(p) ⊆ W
• For every α ∈ Δ0 : I(α) ⊆ E, and I(α) is finite.

In addition, the interpretation I has to satisfy the following properties:
I.1 For every αi ∈ Δ0: |I(αi)−

⋃
{I(αj) | αj ∈ (Δ0 − {αi})}| ≤ 1.

I.2 For every e ∈ I(a1� . . .�an): if e ∈ I(αi)∩I(αj), where αi �= αj ∈ Δ0,
then: ∩{I(αk) | αk ∈ Δ0 ∧ e ∈ I(αk)} = {e}.

– w0 is the initial state.

Roughly speaking, the structure gives us a labeled transition system, whose
labels are events, which are produced by some local action(s) or could also cor-
respond to external events. Note that we have a set of events, but actions are
only interpreted over finite subsets; condition I.1 states that the isolated execu-
tion of an action produces at most a unique event. Condition I.2 says that if we
execute all the actions which produce a given event, then the execution of this
maximal set of actions produce a unique event. These conditions ensure that
every one-point set can be generated from the actions of the component; i.e., the
labels in the transitions are uniquely determined by some parallel execution of
actions in the component and environmental actions (see [2] for more details).
We call standard models those structures where E =

⋃
α∈Δ0

I(α), i.e., when we
do not have “outside” events in the structure. Note that the semantics of the
logic described in [2] is given only in terms of standard models.

We use maximal traces to give the semantics of the temporal operators. Given
a L-structure M = 〈W ,R, E , I, {P i | i ∈ I0}, w0〉, an infinite trace (or path) is
a sequence π = w0

e0→ w1
e1→ w2

e2→ . . . (where each wi
ei→ wi+1 is a labeled

transition in M); we denote by πi = wi
ei→ wi+1

ei+1→ . . . the subpath of π
starting at position i. The notation πi = wi is used to denote the i-th state in
the path, and we write π[i, j] (where i ≤ j) for the subpath wi

ei→ ...
ej→ wj+1.

π(i) denotes the event ei. Finally, given a finite path π′ = w′
0

e′
0→ . . .

e′
n→ wn+1,

we say π′  π if π′ is an initial subpath of π, that is: wi = w′
i and ei = e′i for

0 ≤ i ≤ n, and we denote by ≺ the strict version of  . We denote by #π the
length of the trace π; if it is infinite we abuse notation and say #π = ∞. The set
of sequences in M starting in w0 is denoted by Σ(w0), and the set of maximal
sequences starting at w0 is denoted by Σ∗(w0).
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Since, in a trace, we have events that do not belong to the actual component,
we need to distinguish between those events generated by the component being
specified and those which are from the environment. Given language L, a L-
structure M and a maximal path π in M , we define the set:

LocL(π) = {i | π(i− 1) ∈ I(a1 � . . . � an)} ∪ {0}

(where a1, . . . , an are all the primitive actions of L), i.e., this set contains all the
positions of π where events occur that are observed by some action in L. Obvi-
ously, this set is totally ordered by the usual relationship ≤. Also, we consider a
restricted version of this set; given a set {a1, . . . , am} ⊆ Δ0, we define:

Loc{a1,...,am}(π) = {i | π(i− 1) ∈ I(a1 � . . . � am)}.

That is, in this case we restrict ourselves to the actions belonging to {a1, . . . , am};
this restricted set of positions is useful when we need to reason about a part of
a system. In the following, given a set S of naturals, we denote by minp(S)
the minimum element in S which satisfies the predicate p, and similarly for
maxp(S). Using these concepts, we define the relationship �L between structures
and formulae of a given language L. Note that we introduce the definition the
semantics in a similar way to that in [2], but taking into account the separation
between local and external events.

Definition 2. Given a trace π = w0
e0→ w1

e1→ w2
e2→ ... ∈ Σ∗(w0), we define the

relation �L as follows:

– π, i,M �L B
def⇐⇒ i = 0.

– If pj ∈ Φ0 ∪ V0, then π, i,M �L pj
def⇐⇒ πi ∈ I(pj).

– π, i,M �L α =act β
def⇐⇒ I(α) = I(β).

– π, i,M �L Pi(α) def⇐⇒ ∀e ∈ I(α) : P i(w, e).
– π, i,M �L Pi

w(α) def⇐⇒ ∃e ∈ I(α) : P i(w, e).
– π, i,M �L ¬ϕ def⇐⇒ not π, i,M �L ϕ.
– π, i,M �L ϕ1 → ϕ2

def⇐⇒ either not π, i,M �L ϕ1 or π, i,M �L ϕ2.
– π, i,M �L DoneS(α) def⇐⇒ ∃j : j = max<i(LocS(π)) ∧ ej ∈ I(α).

– π, i,M �L [α]ϕ def⇐⇒ ∀π′ = s′0
e′
0→ s′1

e′
1→ ... ∈ Σ∗(w) such that π[0, i] ≺ π′, if

j = min>i(Loc(π′)), and if e′j ∈ I(α), then π′, j,M �L ϕ.

– π, i,M �L ANϕ
def⇐⇒ if i = #π, then π, i,M � ϕ. If i �= #π, then ∀π′ ∈

Σ∗(w) : π[0..i] ≺ π′ :, if j = min>i(Loc(π′)), then π′, j,M � ϕ.
– π, i,M �L A(ϕ1 U ϕ2)

def⇐⇒ if i = #π, then π, i,M � ϕ2. If i �= #π, then
∀π′ ∈ Σ∗(w) : π[0..i] ≺ π′ we have that ∃j ∈ Loc((π′)i) : π′, j,M � ϕ2 and
∀i ≤ k ≤ j : k ∈ Loc((π′)i), then π′, k,M � ϕ1.

– π, i,M �L E(ϕ1 U ϕ2)
def⇐⇒ if i = #π, then π, i,M � ϕ2. If i �= #π, then

∃π′ ∈ Σ∗(w) : π[0..i] ≺ π′ such that ∃j ∈ Loc((π′)i) : π′, j,M � ϕ2 and
∀i ≤ k ≤ j : k ∈ Loc((π′)i), then π′, k,M � ϕ1.
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We say that M �L ϕ when π, i,M � ϕ for every path π and instant i. And we
say that �L ϕ when M � ϕ for every model M . Note that we use the set Loc(. . .)
to observe the events that are only produced by local actions. We can think of
the propositional variables in L as local variables, which cannot be changed by
other components, i.e., we must require (as is done in [8,1]) that external events
do not produce changes in local variables. In [1] the notion of a locus trace is
introduced to reflect this property in the logic; a locus (trace) is one in which the
external events do not affect the state of local variables. However, the logic used
in that work is a linear temporal logic, and this implies that here we cannot
restrict only to traces to express this requirement, since we have a branching
temporal logic. In the following we take further the ideas introduced in [1] and
we define locus models which have the property of generating locus traces.

3 Locus Models

Given a structure M over a language L, we say that an event e is non-local if it
does not belong to the interpretation of any action of the language; otherwise,
we say that it is a local event. We say w ε⇒ w′, if there exists a path w e0→ w1

e1→
w2

e2→ . . .
en→ wn in M , such that ei is non-local for every 0 ≤ i ≤ n. We say

that w ∞⇒ when there is an infinite path from w: w e0→ w1
e1→ . . ., such that

every ei is non-local. Furthermore, we say w e⇒ w′ (where e is local) if w ε⇒ w′′

and w′′ e→ w′. Given two L-structures M = 〈W ,R, E , I, {P i | i ∈ I0}, w0〉 and
M ′ = 〈W ′,R′, E ′, I ′, {P ′i | i ∈ I0}, w′

0〉, such that I(α) = I ′(α) for any α, we
say that a relationship Z ⊆ W ×W ′ is a local bisimulation between M and M ′

iff:

– If wZv, then L(w) = L(v).
– If wZv, and w ∞⇒, then either v ∞⇒ or there is a v′ such that v ε⇒ v′ and v′

has no successors by → in M .
– if wZv and w e→ w′. then w′Zv if e is non-local. Otherwise we have some v′

such that v e→ v′ and w′Zv′.
– Z� also satisfies the above conditions (where Z� is the converse of Z).

Here L(v) denotes the set of all the state formulae (primitive propositions, de-
ontic predicates and equations) true at state v. In branching bisimulation (as
defined in [10]), we can “jump” through non-local events; however, here we re-
quire a stronger condition: we can move through non-local events, but, if we
have the possibility of executing a local event, we must have the same possibility
in the related state. We see later on that this notion of bisimulation induces
useful properties on the models and that we can characterize this notion in an
axiomatic way.

We say that two models M and M ′ are (locally) bisimilar iff w0Zw
′
0 (where

w0 and w′
0 are the corresponding initial states) for some local bisimulation Z; we

denote this situation by M ∼Z M ′. We prove later on that two bisimilar models
are indistinguishable by our logic. In [10], it is shown that CTL∗-X (CTL∗

without the next operator) cannot distinguish between Kripke structures which
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are DBSB (divergent blind stuttering) bisimilar; however, in the semantics of
the temporal logic considered in that work, there are no labels on the transitions
and, therefore, the next operator is problematic since it is interpreted as a global
next operator. Here we can take advantage of the fact that we have the events
as labels of transitions, and, therefore, we can distinguish between local and
non-local transitions. Furthermore, note that our next operator is a local one
(although this implies some subtle technical points when it comes to defining
the composition of components, see below).

Using bisimilarity, we define the notion of a locus model (following the ter-
minology of [1] where locus models are introduced in a linear temporal logic).

Definition 3. We say that a structure M is a locus iff there is a local bisimu-
lation between M and a standard model M ′.

We use this notion of bisimulation to formalize the notion of locus structure
that, as shown later on, will be essential in defining composition of modules (or
components). Roughly speaking, locus models are those which have a behavior
which is, essentially, the same as that of a standard model. Hence, the usual
notion of encapsulation, as informally understood in software engineering, applies
to our concept of component: only local actions can modify the values of local
variables.

Below we present the main results about bisimulations; because of space re-
strictions, we do not show the technical proofs in this paper; the proofs can be
consulted in [11]. The following theorem says that bisimilar models satisfy the
same predicates.

Theorem 1. If M ∼Z M ′, then M � ϕ iff M ′ � ϕ.

In section 2 we introduced non-standard models (i.e., those models which have
“external” events). However, not all non-standard models are useful; we want
that the external events preserve local variables, that is, the events not generated
by any of the actions in the component have to be silent, in some sense. In [1],
with the same purpose in mind, the notion of locus trace is introduced. A locus
trace is one in which, after executing a non-local event, the local variables retain
their value. However, since we have a branching time logic and a modal logic,
here it is not enough to just put restrictions on traces. We need to take into
account the branching occurring in the semantic structures, i.e., we need a more
general notion of locus model.

Roughly speaking, locus models are those which are locally bisimilar to a
standard model. In some sense, this definition characterizes those models which
behave as standard models, where the external actions are silent with respect to
local attributes.

Definition 4. Given a language L, we say that a L-structure M ′ is a locus iff
there is a standard model M such that M ∼Z M ′ for some local bisimulation Z.

Using the result presented above about local bisimulation, we get that locus
structures do not add anything new to the logic (w.r.t. formula validity).
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Theorem 2. If M is a locus structure, then M � ϕ iff there is some standard
structure M ′ such that M ′ � ϕ.

Summarizing, nothing is gained or lost in using the locus models of a given
language. However, we want to use these kinds of models over a wider notion
of logical system; we shall consider several languages and translations between
them, and therefore we need to have a notion of model which agrees with the
locality properties of a language when we embed this language in another. First,
let us define what a translation between two languages is.

Definition 5. A translation τ between two languages L = 〈Δ0, Φ0, V0, I0〉 and
L′ = 〈Δ′

0, Φ
′
0, V

′
0 , I

′
0〉 is given by: (i) A mapping f : Δ0 → Δ′

0 between the actions
of L and the actions of L′; (ii) A mapping g : Φ0 → Φ′

0 between the propositions
of L and the predicates of L′; (iii) A mapping h : V0 → V ′

0 , between the violations
of L and the violations of L′; (iv) A mapping i : I0 → I ′0.

For the sake of simplicity, we denote the application of any of these functions
using the name of the mapping, e.g., instead of writing f(ai) we write τ(ai). In
[11] we presented a sound axiomatic system for this semantics. Because we want
to keep this presentation brief we do not introduce all the axioms and technical
details here, but we say that �L ϕ if the formula ϕ can be proven from this
axiomatic system in the language L.

The collection of all the languages and all the translations between them
forms the category Sign. It is straightforward to see that it is really a category:
identity functions define identity arrows, and composition of functions gives us
the composition of translations (which straightforwardly satisfy associativity).
Now, given a translation, we can extend this translation to formulae (actually we
can describe a grammar functor which reflects these facts, as done in Institutions
[12] or π-Institutions [13]). Given a translation τ : L → L′ as explained above,
we extend τ to a mapping between the formulae of L and those of L′, as follows.
First, we need to define how the translation behaves with respect to action terms:
τ(α�β) = τ(α)�τ(β), τ(∅) = ∅, τ(α�β) = τ(α)�τ(β), τ(α) = τ(U)�τ(α) and
τ(U) = τ(a1)�. . .�τ(an) (where Δ0 = {a1, . . . , an}). Note that the complement
is translated as a relative complement, and the universal action is translated as
the non-deterministic choice of all the actions of the original component (which
is different from the universal action in the target language). It is important
to stress that some extra axioms must be added to the axiomatic system to
deal with the fact that the actions are interpreted as being relative to a certain
universe. Now, the extension to formulae is as follows:

– τ([α]ϕ) = [τ(α)]τ(ϕ), τ(¬ϕ) = ¬(τ(ϕ)), τ(ϕ→ ψ) = τ(ϕ) → τ(ψ)
– τ(ANϕ) = (〈τ(U)〉� → AN(Done(τ(U))) → τ(ϕ))) ∨ ([τ(U)]⊥ → τ(ϕ))
– τ(A(ϕ U ψ)) = A(τ(ϕ) U τ(ψ))
– τ(E(ϕ U ψ)) = E(τ(ϕ) U τ(ψ))
– τ(DoneS(α)) = Doneτ(S)(τ(α)), where τ(S) = {τ(ai) | ai ∈ S}

τ is a function which preserves logical symbols. In other words, using translations
between signatures, we can define morphisms between formulae, and therefore
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we can define interpretations between theories (in the standard sense). We deal
with this issue in the next section.

Given a translation τ : L → L′ and given a L′-structure M , it is straightfor-
ward to define the restriction of M = 〈W ,R, E , I, {P i | i ∈ I0}〉 with respect to
τ (or its reduct as it is called in model theory), as follows:

Definition 6. Given a translation τ : L → L′ and a L′-structure M we can
define a L-structure M |τ as follows:

– W|τ = W.
– E|τ = E −{e | e ∈ I(τ(U))∩I′(Δ′

0− τ(Δ0))}, where for any set of primitive
actions S we define: I(S) =

⋃
{I(s) | s ∈ S} and τ(S) =

⋃
{τ(s) | s ∈ S}.

– I|τ (ai) = {e ∈ I(a) | e ∈ E|τ}, for every ai ∈ Δ′
0.

– I|τ (pi) = I(τ(pi)), for every pi ∈ Φ′
0.

– R|τ = {w e→ w′ ∈ R | e ∈ E|τ}.
– P i|τ (w, e) ⇔ P τ(i)(w, e).
– w0|τ = w0.

It is worth noting that the restriction of a standard structure of L′ can be a
non-standard structure of L. Note also that we take out of the model those
events which belong to translated actions and actions outside of the translation
(see item 2 of definition 6), i.e., we only keep those events which are obtained
by executing only actions of L or those which are obtained by executing actions
outside of L. Some restrictions added below ensure that no important property
of the original model is lost when we take its reduct.

Translations between languages and restrictions between models define a func-
tor which is used in Institutions [12] to define logical systems. An important
problem with restrictions is that a restriction of a given structure could be a
structure which is not a locus, i.e., the obtained semantic entity violates the no-
tion of locality as explained above. Furthermore, perhaps the reduct of a model
loses some important properties. For this reason, we introduce the concept of
τ -locus structures. We define some requirements on translations; given a trans-
lation τ : L→ L′, consider the following set of formulae of the form:

– 〈τ(γ)〉� → 〈τ(γ) � a1 � . . . � an〉�, where γ is an atom of the boolean term
algebra Δ0/ΦBA, and a1, . . . , an ∈ Δ′

0 − τ(Δ0).

These formulae say that the execution of the actions of L when translated to L′

are not dependent on any action of L′; we can think of this as an independence
requirement, i.e., the actions of L when translated to L′ keep their indepen-
dence. This is an important modularity notion. In practice, this can be ensured
by implementing the two components (which these languages describe) in dif-
ferent processes. We denote this set of formulae by ind(τ). Another requirement
(which is related to independence) is that the new actions in Δ′

0 (those which
are not translations of any action in L) do not add new non-determinism to
the translated actions. This fact can be expressed by the set of formulae of the
following form:
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– 〈τ(γ)〉τ(ϕ) → [τ(γ)]τ(ϕ), for every atom γ of the boolean algebra of terms
obtained from L, and formula ϕ of L.

For a given translation τ : L → L′, we denote this set of formulae by atom(τ),
since they reflect the fact that the atomicity of the actions in L is preserved by
translation.

Definition 7. Given a translation τ : L → L′ and a L′-structure M , we say
that M is a τ-locus iff M � ind(τ), M � atom(τ) and M |τ is a locus structure
for L.

That is, a locus structure with respect to a translation τ is a structure which
respects the locality and independence of L. We have obtained a semantical
characterization of structures which respect the local behavior of a language
with respect to a given translation. Because we wish to use deductive systems to
prove properties over a specification, it is important to obtain some axiomatic
way of characterizing this class of structures. For a given translation τ : L→ L′,
consider the following (recursive) set of formulae: {τ(ϕ) → [τ(U)]τ(ϕ) | ϕ ∈ Φ′}.
Roughly speaking, this set of axiom schemes says that if an action of an external
component is executed, then the local state of the current module is preserved.
Note that, in [1], a similar set of axioms is proposed, although in that case it is a
finite set, since that work uses a linear temporal logic, and therefore preserving
only the propositions is enough for obtaining a satisfactory notion of locality.
However, we need other axioms to express the property that when we embed a
module inside another part of the system, we want to ensure that the behavior of
the smaller module is preserved, in the following sense: we can introduce external
events in some way in a given trace but we do not want that these external events
add divergences that were not in the original trace. The following axiom does
this: 〈τ(U)〉� → AFDone(τ(U)). This axiom expresses one of the conditions
of local bisimulation, namely a trace cannot diverge by non-local events unless
the component cannot execute any local action. It is worth noting that, if a
local action is enabled in some state, then after executing a non-local action it
will continue being enabled (as a consequence of the axiomatic schema described
above), i.e., we require a fair scheduling of components, one which will not always
neglect a component wishing to execute some of its actions.

Given a translation τ : L → L′, we denote this set of axioms, together with
the axiomatic schema described above and the formulae ind(τ) and atom(τ), by
Loc(τ). A nice property is that this set of formulae characterizes the L′-structures
which are τ -loci.

Theorem 3. Given a translation τ : L → L′, then a L′-structure is a τ-locus
iff M � Loc(τ).
In the following, by Γ �L ϕ and �L

S ϕ we denote two different situations. The
first can be thought of as a “local” deduction relationship. This relationship
holds when we have a proof, in the standard sense, of ϕ where some members
of Γ may appear, but the only rule that we can apply to them is modus po-
nens. Alternatively, �L

S ϕ says that, if we extend our axiomatic system with the
formulae of S, then we can prove ϕ.
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An important property is that the deductive machinery obtained by adding
the locality axioms preserves translations of properties.

Theorem 4. Given a translation τ : L→ L′, if �L ϕ, then �L
Loc(τ) τ(ϕ).

4 Defining Components

A component is a piece of specification which is made up of a language, a finite
set of axioms, and a set of additional axioms which formalize implicit assump-
tions on the components (e.g., locality axioms). These implicit axioms are not
intended to be defined by a designer; instead, they are automatically obtained
from the structure of our system (using the relationships between the different
components).

Definition 8. A component is a tuple 〈L,A, S〉 where: L is a language, as de-
scribed in earlier sections, A is a finite set of axioms (the properties specified by
the designers) and S is a set of axioms (the system axioms expressing implicit
restrictions like locality).

Given a component C = 〈L,A, S〉, we denote by �C ϕ the assertion �L
A,S ϕ.

A mapping between two components is basically an interpretation between the
theory presentations that define them.

Definition 9. A mapping τ : C → C′ between two components C = 〈L,A, S〉
and C′ = 〈L′, A′, S′〉 is a translation τ : L → L′ such that: (i) �C′ τ(ϕ), for
every ϕ ∈ A ∪ S. (ii) �C′ Loc(τ).

It is worth noting that we require that the locality axioms must be theorems in
the target component to ensure that the properties of the smaller component
are preserved. This is expressed by the following corollary.

Theorem 5. If τ : C → C′ is a mapping between components C and C′, then:
�C ϕ⇒�C′ τ(ϕ).

Now that we have a notion of component, we need to have some way to put
components together. We follow Goguen’s ideas [6], where concepts coming from
category theory are used to put together components of a specification. The same
ideas are used in [8,1], where temporal theories are used for specifying pieces of
concurrent programs, and translations between them are used for specifying the
relationships between these components. The idea then is to define a category
where the objects are components (specifications) and the arrows are translations
between them; therefore, putting together components is achieved by using the
construction of colimits. Of course, some prerequisites are required. Firstly, the
category of components has to be finitely cocomplete and, secondly, the notion of
deduction has to be preserved by translations (which is exactly what we proved
above).

First, recall that the collection of all the languages and all the translations
between them form the category Sign. Components and mappings between them
also constitute a category.
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Theorem 6. The collection of all components and all the arrows between them
form the category Comp.

The initial element of this category is the component with an empty language.
Note that since the category of signatures is finitely cocomplete (its elements are
just tuples of finite sets), the category of components is also finitely cocomplete;
the forgetful functor from components to signatures reflects finite colimits (as
shown for different logics in [12,13]).

Theorem 7. The category Comp is finitely cocomplete.

5 An Example

We present a simple example to illustrate these notions. We revisit the example
that we presented in [2]. This example is a variation of Dijkstra’s dining philoso-
phers. We add the possibility that philosophers get sick and therefore they may
have to go to the bathroom. The new scenario occurs when a philosopher takes
some forks with him. (Obviously the worst scenario is when a philosopher takes
with him two forks.) Here we follow the main ideas introduced in [1] to modu-
larize the design of the standard version of Dijkstra’s philosophers; note that no
deontic operators are used in the referenced work. We introduce some notation
to reduce the number of axioms in the specification shown below. The expression
α � ϕ (where α is an action and ϕ a formula) denotes the following formula:
(¬ϕ → [α]¬ϕ) ∧ ([α]ϕ). Intuitively, this formula says that the action α is the
only one which sets ϕ to true. Further notation can be introduced to obtain a
higher level specification language, we leave this for further work.

First, let us consider the specification of a fork. The language of a fork has the
following actions:Δ0 = {l.up, l.down, r.up, r.down} and the following predicates:
{l.up?, r.up?}. Intuitively, we have two ports by means of which we can use the
forks; one is for the left philosopher and the other one is for the right philosopher.
Note that this implies that the philosophers do not coordinate directly via any
action (also note that these actions are mutually disjoint). The axioms of the
fork are shown in figure 1. As explained above, a fork can be held onto by the

f1.B→ ¬l.up? ∧ ¬r.up? f4.¬(l.up? ∧ r.up?) f7.l.up?→ 〈l.down〉!
f2.(l.up � l.up?) ∧ (l.down � ¬l.up?) f5.¬l.up?→ [l.down]⊥ f8.r.up?→ 〈r.down〉!
f3.(r.up � r.up?) ∧ (r.down � ¬r.up?) f6.¬r.up?→ [r.down]⊥

Fig. 1. XFork specification

philosopher on the left or by the philosopher on the right. Therefore, we have
two actions that reflect this action: l.up and r.up. Obviously they are disjoint (as
stated by axiom f4), meaning that only one of the philosophers can be holding
onto the fork.
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The specification for a philosopher is shown in figure 2. The actions of the spec-
ification are the following: {getthk, getbad, gethungry, upL, upR, downL, downR}.
Theactiongetthk indicateswhen thephilosopher goes to the thinking state,getbad
takes the philosopher to the sick state. The action gethungry takes a philosopher
from the thinking state to the hungry state. The actions upL and upR are used for
the philosopher to take the left or right fork, respectively. The predicates of the
component are the following: {hasL, hasR, thk, eating, hungry, bad, hasL, hasR}.
In addition, we have two violations {v1, v2}. The set of axioms of this specification
is shown in figure 2. We consider the following predicate on the system axioms:

p1 : B→ p9 : v1 → [downL]v1 ∧ v2 → [downR]v2
¬v1 ∧ ¬v2 ∧ thk ∧ ¬hungry ∧ ¬bath p10 : v1 → [downL]¬v1 ∧ v2 → [downR]¬v2

p2 : thk � hungry � eating � bad p11 : (getthk � thk) ∧ (getbad � bath)
p3 : eating↔ hasL ∧ hasR ∧ ¬bad ∧(gethungry � hungry)
p4 : ¬hungry→ AFhungry p12 : thk→ downL ∧ downR
p5 : ¬eating→ P1(U) p13 : hungry→ downL ∧ downR
p6 : eating→ O1(downL � downR) p14 : hungry ∧ 〈upL " upR〉! →
p7 : F1(downL)→ [downL]v1 ANeating ∨ ANhungry
p8 : F1(downR)→ [downR]v2 p15 : bad→ [getthk]bad

p16 : eating→ AN(thk ∨ bad)

Fig. 2. Phil specification

¬vi ∧ P1(α) → [α]¬vi, for every i. This predicate basically states that allowed ac-
tions do not introduce new violations. Most of the axioms a self-explanatory, we
discuss the remaining axioms. Axiom P4 says that a philosopher who is thinking
will become hungry in the future; axiom P5 states that, when the philosopher is
not eating, then everything is allowed. Axioms p7-p10 specify how the violations
occur in a given execution of this specification and which are the recovery actions.
Note that, in axiomP6, we say that, if a philosopher is eating, then itwill be obliged
to return both forks. We simplify the problem by requiring that philosophers can
only eat for a unit of time (axiom p16).

Suppose that we want to obtain the specification of two philosophers sharing
two forks. We need to define some way of connecting the different components.
With this goal in mind, we define a component Chan which only has actions
{port1, port2} with no predicates and no violations. Using channels, we can
connect the forks with the philosopher taking the colimit of the diagram shown
in figure 3. The components XFork1 and XFork2 are “instances” of the spec-
ification XFork (i.e., they are obtained from XFork by renaming the symbols
with the subindex i), and Chan1,Chan2,Chan3,Chan4 are “instances” of
Chan. Here l1 : Chan1 → XFork1 maps port11 �→ lup and port12 �→ ldown,
whereas o1 : Chan1 → Phil1 maps port11 �→ upL and port12 �→ downL and
similarly for the other mappings. In other words, these morphisms connect the
right and the left fork with the philosopher. The colimit of this diagram gives us
the final design (say 2Phils). Note that this colimit produces the corresponding
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specification with all the needed renaming of clashing symbols. Also, the colimit
“produces” a new level of permission, obligation or prohibition for each compo-
nent, avoiding in this way the introduction of global norms which may result in
inconsistencies in the final design.

Channel1

o1

��

l1 �� XFork1 Channel3

o2

��

r2��

Phil1 Phil2

Channel2

o3

��

r1
�� XFork2 Channel4

o4

��

l2

��

Fig. 3. Two philosophers eating

It is interesting to remark that the two instances of Phil do not coordinate via
any action (both coordinate with XFork, but using different channels); this im-
plies that the actions of Phil1 do not introduce violations in the states of Phil2,
and viceversa. This is an important property because we can guarantee that the
recovery actions of one component do not introduce violations in other compo-
nents. Note also that, because of the formula introduced in the system axioms,
if we coordinate the components via allowed actions, we also obtain that the
locality of violations is preserved (i.e., the actions of one component do not add
more violations to the states of other components). These kinds of independence
properties seem very important when reasoning about composition of modules
which contain violations. Roughly speaking, this enables a compositional rea-
soning about fault-tolerance. We have not shown in detail these properties, but
the interested reader can find them in [11].

6 Further Remarks

In this paper we delineate a basic framework to modularize deontic specifications.
The main idea is to use a notion of bisimulation to capture the concept of en-
capsulation or locality, which is, obviously, related to the concept of module or
component. In contrast to the work of Fiadeiro and Maibaum [1], where a linear
time logic is used, the main formalism used in this paper is a branching time logic,
in which non-determinism is naturally reflected. In addition, we provide deontic
predicates which can be used to specify ideal behavior of systems, and therefore to
model some concepts related to fault-tolerance; we provided some examples and
motivations in [11]. The novel part of the deontic logic presented here is that we in-
troduce stratified levels of permissions, prohibition and obligation, which enables
us to avoid having global normative constraints (i.e., the normative restrictions
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imposed in a component do not affect the other components in the system). These
stratified levels of permission can also be used to express different levels of ideal
behaviors; for the sake of simplicity we have not dealt with this in this paper.

We presented a simple example to illustrate the use of these ideas in practice.
In this example, a variation of Dijkstra’s philosophers, we use deontic predicates
to state what the ideal behavior of philosophers are, the specification is built
from in several components and they are then used (together with morphisms) to
obtain the final design. Finally, it is worth mentioning that the logic is decidable
and we have proposed a tableaux system for this logic in [14]; this will enable us
to perform automatic analysis of specifications. We leave this as further work.
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Abstract. Justification Logic (JL) is a refinement of modal logic that
has recently been proposed for explaining well-known paradoxes arising
in the formalization of Epistemic Logic. Assertions of knowledge and be-
lief are accompanied by justifications: the formula [[t]]A states that t is
“reason” for knowing/believing A. We study the computational inter-
pretation of JL via the Curry-de Bruijn-Howard isomorphism in which
the modality [[t]]A is interpreted as: t is a type derivation justifying the
validity of A. The resulting lambda calculus is such that its terms are
aware of the reduction sequence that gave rise to them. This serves as a
basis for understanding systems, many of which belong to the security
domain, in which computation is history-aware.

1 Introduction

This paper is concerned with the computational interpretation of Justification
Logic [Art95, Art01, Art08] (JL). JL is a refinement of modal logic that has re-
cently been proposed for explaining well-known paradoxes arising in the formal-
ization of Epistemic Logic. Assertions of knowledge and belief are accompanied by
justifications : the modality [[t]]A states that t is “reason” for knowing/believingA.
The starting point of this work is the observation that if t is understood as a typ-
ing derivation of a term of type A, then a term of type [[t]]A should incorporate
some encoding of t. Suppose this typing derivation is seen as a logical derivation
in natural deduction. Then any normalisation steps applied to it would produce a
new typing derivation forA and, moreover, its relation to t would have to be made
explicit in order for derivations to be closed under normalisation (in type systems
parlance: for Subject Reduction (SR) to hold). This suggests that the computa-
tional interpretation of JL is a lambda calculus, which we dub λh, that records its
computation history. This work is an attempt at making these ideas precise.

We begin with some examples supplying informal explanations whenever ap-
propriate (rigorous definitions must wait until the necessary background has
been introduced). The expression !α1,...,αn

e M is called an audited (computation)
unit, M being the body, e the history or trail of computation producing M and
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αi, i ∈ 1..n, the trail variables that are used for consulting the history. Each
reduction step that takes place in M updates e accordingly (except if this step
is inside a nested audited unit). Consider the unit !αRfl(s)(λa : N.a) b. Its body
consists of the identity function over the type N of the natural numbers applied
to a variable b; Rfl(s) is the empty trail with s being the encoding of a type
derivation of (λa : N.a) b; the trail variable α plays no role in this example. This
term reduces to !αTrn(β(aN.a,b),Rfl(s))b. The new trail Trn(β(aN.a, b),Rfl(s)) indi-
cates that a β step took place at the root; the Trn trail constructor indicates
composition of trails.

Inspection of trails is achieved by means of trail variables. These variables
are affine (i.e. at most one permitted use) since each trail lookup may produce
a different result. Evaluation of trail variables inside an audited unit consists
in first looking up the trail and then immediately traversing it replacing each
constructor of the trail with a term of the appropriate type1. This mapping from
trail constructors to terms is called a trail replacement. All occurrences of trail
variables are thus written αθ where α is a trail variable and θ a trail replacement.
For example, suppose after a number of computation steps we attain the term
!αe if αθ > 5 then 1 else 2, where e denotes the current history and n a numeral.
Given the following definition of θ, αθ counts the number of β steps that have
taken place (expressions such as Tlk below are other trail constructors and may
be ignored for the moment):

θ(Rfl) = θ(Tlk) def= 0 θ(Rpl) def= λa : N.a1 + . . . + a10

θ(Sym) = θ(Abs) def= λa : N.a θ(β�) def= 0
θ(Trn) = θ(App) = θ(Let) def= λa : N.λb : N.a + b θ(β) def= 1

Thus, the term decides either to compute 1 or 2 depending on whether the
number of β steps that have taken place is greater than 5 or not. An interesting
feature of λh is how it manages persistence of trails. It is achieved by means
of the letu = M in N construct (M is the argument and N the body of the
let) which eliminates audited units and operates as exemplified below. Let P
be λa : N.if αθ > 5 then a else 2 and consider the following term where the
expression 〈u; {α/γ}〉 consists of an audited unit variable u and a trail variable
renaming {α/γ}:

letu =!αe1
P in !γRfl(t)〈u; {α/γ}〉 1

In a β� reduction step, first u is replaced by the body P of the audited unit !αe1
P

together with its history e1, then all occurrences of trail variables α are replaced
by γ, and finally e1 is merged with the trail of the new host unit:

!γTrn(e2,Rfl(t′)) (λa : N.if γθ > 5 then a else 2) 1

Trail e2 is Trn(β�(u.r1, α.r2),App(e′1,Rfl(s))). Here u.r1 and α.r2 are encodings
of typing derivations for the body and argument of the let resp., e′1 is e1 updated
with {α/γ}, s encodes a type derivation for 1 and t′ is t where all occurrences of

1 In the same way as one recurs over lists using fold in functional programming,
replacing nil and cons by appropriate terms.
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u have been replaced by the α.r2. The β� trail construct reflects a reduction of a
let redex at the root. Note how, (1) the history of the unit !αe1

P has propagated
to the new host unit (as the trail App(e′1,Rfl(s)) which reflects that activity
described by e′1 has taken place in the left argument of the application (λa :
N.if γθ > 5 then a else 2) 1), and (2) how the trail variable α has been replaced
by γ so that all subsequent trail lookups now correctly refer to the trail of the
new host unit. All these operations arise from an analysis of the normalisation
of JL derivations.

The contributions of this paper are a proof theoretical analysis of a λ-calculus
which produces a trail of its execution. This builds on ideas stemming from work
on JL, judgemental analysis of modal logic [ML96, DP96, DP01b, DP01a] and
Contextual Modal Type Theory [NPP08]. More precisely, we argue how a frag-
ment of JL whose notion of validity is relative to a context of affine variables of
justification equivalence may be seen, via the Curry-de Bruijn-Howard interpre-
tation, as a type system for a calculus that records its computation history.

Related work. S. Artemov introduced JL in [Art95, Art01, Art08]. For nat-
ural deduction and sequent calculus presentations consult [Art01, Bre01, AB07].
Computational interpretation of proofs in JL are studied in [AA01, AB07, BF09],
however none of these address audit trails. From a type theoretic perspective we
should mention the theory of dependent types [Bar92] where types may depend
on terms, in much the same way that a type [[s]]A depends on the proof term s.
However, dependent type theory lacks a notion of internalisation of derivations
as is available in JL.

Structure of the paper. Sec. 2 introduces JL•, an affine fragment of JL.
Sec. 3 studies normalisation in this system. We then introduce a term assignment
for this logic in order to obtain a lambda calculus with computation history trails.
This calculus is endowed with a call-by-value operational semantics and type
safety of this semantics w.r.t. the type system is proved. Sec. 5 addresses strong
normalisation. Finally, we conclude and suggest further avenues for research.

2 The Logic

JL (formerly, the Logic of Proofs) is a modal logic of provability which has a
sound and complete arithmetical semantics. This section introduces a natural
deduction presentation for a fragment2 of JL. The inference schemes we shall
define give meaning to hypothetical judgements with explicit evidence Δ;Γ ;Σ �
A | s whose intended reading is: “s is evidence that A is true under validity
hypothesis Δ, truth hypothesis Γ and equivalence hypothesis Σ. Hypothesis in Γ
are the standard term variables a, b, . . ., those in Δ are audited unit variables
u, v, . . ., and those in Σ are trail variables α, β, . . .. These last hypothesis are
often referred to as equivalence hypothesis since the type of a trail variable is a
proposition that states the equivalence of two typing derivations. The syntax of
each component of the judgement is as follows:

2 Intuitionistic propositional JL without the “plus” polynomial proof constructor.
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a : A ∈ Γ
oVar

Δ; Γ ; Σ � A | a
Δ; Γ, a : A; Σ � B | s

⊃ I
Δ; Γ ;Σ � A ⊃ B | λa : A.s

Δ; Γ1; Σ1 � A ⊃ B | s
Δ; Γ2; Σ2 � A | t ⊃ E

Δ; Γ1,2; Σ1,2 � B | s · t

u : A[Σ] ∈ Δ Σσ ⊆ Σ′
mVar

Δ; Γ ;Σ′ � A | 〈u; σ〉

Δ; ·; Σ � A | s
Δ; ·; Σ � Eq(A, s, t) | e

�I
Δ; Γ ; Σ′ � [[Σ.t]]A | Σ.t

Δ; Γ1; Σ1 � [[Σ.r]]A | s
Δ, u : A[Σ]; Γ2; Σ2 � C | t

�E
Δ; Γ1,2; Σ1,2 � Cu

Σ.r | letu : A[Σ] = s in t

α : Eq(A) ∈ Σ Δ; ·; · � T B | θw

Tlk
Δ; Γ ;Σ � B | αθw

Δ; Γ ; Σ � A | s Δ; Γ ; Σ � Eq(A, s, t) | e
Eq

Δ; Γ ;Σ � A | t

Fig. 1. Explanation for Hypothetical Judgements with Explicit Evidence

Propositions A ::= P |A ⊃ A | [[Σ.s]]A
Validity ctxt Δ ::= · |Δ, u : A[Σ]

Truth ctxt Γ ::= · |Γ, a : A
Equiv. ctxt Σ ::= · |Σ, α : Eq(A)

Renaming σ ::= {α1/β1, . . . , αn/βn}
Evidence s ::= a |λa : A.s | s · s

| 〈u; σ〉 |Σ.s
| letu : A[Σ] = s in s |αθw

Both Γ and Σ are affine hypothesis whereas those in Δ are intuitionistic.
Contexts are considered multisets; “·” denotes the empty context. In Δ;Γ ;Σ
we assume all variables to be fresh. Variables in Σ are assigned a type of the
form Eq(A)3. A proposition is either a propositional variable P , an implication
A ⊃ B or a modality [[Σ.s]]A. In [[Σ.s]]A, “Σ.” binds all occurrences of trail
variables in s and hence may be renamed at will. We refer to an encoding of a
type derivation as evidence. Evidence bear witness to proofs of propositions, they
encode each possible scheme that may be applied: truth hypothesis, abstraction,
audited computation unit variable, audited computation unit introduction and
elimination, and trail look-up. The expression θw (‘w’ is for ‘witness’) will be
explained shortly. We write σ for trail variable (bijective) renamings. Free truth
variables of s (fvT(s)), free validity variables of s (fvV(s)) and free trail variables
of s (fvTrl(s)) are defined as expected. We write sa

t for the substitution of all free
occurrences of a in s by t. Substitution of validity variables is denoted su

Σ.t. Its
definition is standard except perhaps for the case 〈u;σ〉uΣ.s: here all occurrences
of Σ in s are renamed via σ.

The meaning of hypothetical judgements with explicit evidence is given in
Fig. 1 and determine the JL• system. The axiom scheme oVar states that judge-
ment “Δ;Γ ;Σ � A | a” is evident in itself: if we assume a is evidence that

3 The type Eq(A) in an assignment α : Eq(A) may informally be understood as
∃x, y.Eq(A,x, y) (where x, y stand for arbitrary type derivations of propositions of
type A) since α stands for a proof of equivalence of two type derivations of proposi-
tions of type A about which nothing more may be assumed. These type derivations
are hidden since trail lookup may take place at any time.
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π1

Δ; a : A � B | s
⊃ I

Δ; · � A ⊃ B | λa : A.s

π2

Δ; · � A | t
⊃ E

Δ; · � B | (λa : A.s) · t
�I

Δ; Γ � [[(λa : A.s) · t]]B |!(λa : A.s) · t

π3

Δ; · � B | sa
t

�I

Δ; Γ � [[(λa : A.s) · t]]B
!(λa : A.s) · t |

Fig. 2. Failure of subject reduction for naive modal introduction scheme

proposition A is true, then we may immediately conclude that A is true with
evidence a. The introduction scheme for the modality internalises meta-level ev-
idence into the object logic. It arises from addressing the shortcomings of the
more naive scheme (in which Σ is ignored) for introducing this modality:

Δ; · � A | s
�I

Δ; Γ � [[s]]A |!s
The resulting system is not closed under substitution of derivations. Eg. con-

traction of the derivation in Fig. 2 (left) would produce the invalid (since evidence
sa

t and (λa : A.s) · t do not coincide) derivation of Fig. 2 (right) where π3 is ob-
tained from π1,2 and an appropriate substitution principle. Subject Reduction
may be regained, however, by introducing a judgement stating equivalence of
evidence Δ;Γ ;Σ � Eq(A, s, t) | e, e is dubbed equivalence witness, together with
the scheme Eq (Fig. 1). A consequence of this is that normalisation gives rise to
instances of Eq appearing in any part of the derivation complicating metathe-
oretic reasoning. However, since this scheme can be permuted past all other
schemes except for the introduction of the modality (as may easily be verified),
this suggests postulating a hypothesis of evidence equivalence in the introduction
scheme for the modality and results in the current scheme �I (Fig. 1). Normal-
isation steps performed in the derivation ending in the leftmost hypothesis are
encoded by equivalence witness e. Finally, �E allows the discharging of validity
hypothesis: to discharge the validity hypothesis v : A[Σ], a proof of the validity
of A under derivation equivalence assumptions Σ is required. In our system, this
requires proving that [[Σ.r]]A is true with some evidence s.

A sample of the schemes defining evidence equivalence are given in Fig. 3.
There are four evidence equivalence axioms (EqRefl, Eqβ, Eqβ� and EqTlk; the
third is not exhibited) and six inference schemes (the rest). The axioms are
used for recording principle contractions (Sec. 3) at the root of a term and
schemes EqAbs, EqApp, EqLet and EqRpl (only second exhibited) enable the
same recording but under each of the term constructors. In accordance with the
abovementioned discussion on permutation of Eq past other schemes, there is
no congruence scheme for the modality. Equivalence witness may be one of the
following where Rpl(e1, . . . , e10) is usually abbreviated Rpl(e):

e ::= Rfl(s) |Sym(e) |Trn(e, e) |β(aA.s, s) | β�(uA[Σ].s, Σ.s)
| Trl(θw, α) |Abs(aA.e) | App(e, e) | Let(uA[Σ].e, e) |Rpl(e1, . . . , e10)
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Δ; Γ ; Σ � A | s
EqRefl

Δ; Γ ; Σ � Eq(A, s, s) | Rfl(s)

Δ; Γ ;Σ � Eq(A, s1, s2) | e1

Δ; Γ ;Σ � Eq(A, s2, s3) | e2
EqTrans

Δ; Γ ; Σ � Eq(A, s1, s3) | Trn(e1, e2)

Δ; Γ1, a : A; Σ1 � B | s
Δ; Γ2; Σ2 � A | t

Eqβ
Δ; Γ1,2; Σ1,2 � Eq(B, sa

t , (λa : A.s) · t) | β(aA.s, t)

Δ; ·; Σ1 � Eq(A, s, t) | e Δ; ·; · � T B | θw α : Eq(A) ∈ Σ2

EqTlk
Δ; Γ ; Σ2 � Eq(B, eθw, αθw) | Trl(θw, α)

Δ; Γ1; Σ1 � Eq(A ⊃ B, s1, s2) | e1

Δ; Γ2; Σ2 � Eq(A, t1, t2) | e2
EqApp

Δ; Γ1,2; Σ1,2 � Eq(B, s1 · t1, s2 · t2) | App(e1, e2)

Fig. 3. Sample schemes defining evidence equivalence judgement

Regarding trail look-up (Tlk in Fig. 1) recall from the introduction that we
append each reference to a trail variable with a trail replacement. Therefore,
the evidence for look-ups has to be accompanied by proofs of propositions cor-
responding to each term that is to replace equivalence witness constructors.
The evidence for each of these proofs is then encoded as θw. This require-
ment is reflected by the hypothesis Δ; ·; · � T B | θw which is a shorthand for
Δ; ·; · � T B(c) | θw(c), for each c in the set of equivalence witness constructors
{Rfl ,Sym,Trn, β, β�,Tlk ,Abs,App,Let ,Rpl}, where T B(c) is the type of term
that replaces the trail constructor c. These types are defined as one might expect
(for example, T B(Trn) def= B ⊃ B ⊃ B and T B(β) def= B).

Some basic meta-theoretic results about JL• are presented next. The judge-
ments in the statement of these results are decorated with terms (eg. M) which
may safely be ignored for the time being (they are introduced in Sec. 4).

Lemma 1 (Weakening)

1. If Δ;Γ ;Σ � M : A | s is derivable, then so is Δ′;Γ ′;Σ′ � M : A | s, where
Δ ⊆ Δ′, Γ ⊆ Γ ′ and Σ ⊆ Σ′.

2. If Δ;Γ ;Σ � Eq(A, s, t) | e is derivable, then so is Δ′;Γ ′;Σ′ � Eq(A, s, t) | e,
where Δ ⊆ Δ′, Γ ⊆ Γ ′ and Σ ⊆ Σ′.

We abbreviate Γ1, Γ2 with Γ1,2. If Γ = Γ1, a : A,Γ3, we write Γ a
Γ2

for Γ1,2,3.

Lemma 2 (Subst. Principle for Truth Hypothesis). Suppose Δ;Γ2;Σ2 �
N : A | t is derivable and a : A ∈ Γ1.

1. If Δ;Γ1;Σ1 �M : B | s, then Δ;Γ1
a
Γ2

;Σ1,2 �Ma
N,t : B | sa

t .
2. If Δ;Γ1;Σ1 � Eq(B, s1, s2) | e, then Δ;Γ1

a
Γ2

;Σ1,2 � Eq(B, (s1)
a
t , (s2)

a
t ) | ea

t .
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In the substitution principle for validity variables, note that substitution of u :
A[Σ1] requires not only a derivation of Δ1,2; ·;Σ1 � M : A | s, but also its
normalisation history Δ1,2; ·;Σ1 � Eq(A, s, t) | e1 (cf. substitution of validity
variables, in particular the clause for 〈u;σ〉, in Sec. 4).

Lemma 3 (Subst. Principle for Validity Hypothesis). Suppose judge-
ments Δ1,2; ·;Σ1 � M : A | s and Δ1,2; ·;Σ1 � Eq(A, s, t) | e1 are derivable.

Let Δ def= Δ1, u : A[Σ1], Δ2. Then:

1. If Δ;Γ ;Σ2 � N : C | r, then Δ1,2;Γ ;Σ2 � Nu
Σ1.(M,t,e1) : Cu

Σ1.t | ru
Σ1.t.

2. If Δ;Γ ;Σ2 � Eq(C, s1, s2) | e2, then Δ1,2;Γ ;Σ2 � Eq(Cu
Σ1.t, s1

u
Σ1.t, s2

u
Σ1.t) |

e2
u
Σ1.t.

The last ingredient we require before discussing normalisation is the following
lemma which is used for computing the results of trail look-up. The expression eθ
produces a term by replacing each equivalence witness constructor c in e by its
correesponding term θ(c). For example, β(aA.r, t)θ def= θ(β) and Trn(e1, e2)θ

def=
θ(Trn) e1θ e2θ. In contrast, eθw produces evidence by replacing each equivalence
witness constructor c in e with θw(c).

Lemma 4. Δ; ·; · � T B | θw and Δ; ·;Σ2 � Eq(A, s, t) | e implies Δ; ·; · � eθ :
B | eθw.

3 Normalisation

Normalisation equates derivations and since JL• internalises its own proofs,
normalisation steps must explicitly relate evidence in order for SR to hold. Nor-
malisation is modeled as a two step process. First a principle contraction is
applied, then a series of permutation conversions follow. Principle contractions
introduce explicit witnesses of derivation equivalence. Permutation conversions
standardize derivations by moving these witnesses to the innermost � introduc-
tion scheme. There are three principal contractions (β, β� and Tlk-contraction),
the first two of which rely on the substitution principles discussed earlier. The
first replaces a derivation of the form:

π1

Δ; Γ1, a : A; Σ1 � B | s
⊃ I

Δ; Γ1; Σ1 � A ⊃ B | λa : A.s

π2

Δ; Γ2; Σ2 � A | t
⊃ E

Δ; Γ1,2; Σ1,2 � B | (λa : A.s) · t
by the following, where π3 is a derivation of Δ;Γ1,2;Σ1,2 � B | sa

t resulting from
π1 and π2 and the Substitution Principle for Truth Hypothesis:

π3

π1

Δ; Γ1, a : A; Σ1 � B | s
π2

Δ; Γ2; Σ2 � A | t
Δ; Γ1,2; Σ1,2 � Eq(B, sa

t , (λa : A.s) · t) | β(aA.s, t)
Eq

Δ; Γ1,2; Σ1,2 � B | (λa : A.s) · t
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The second contraction replaces:

Δ; ·; Σ � A | s
Δ; ·; Σ � Eq(A, s, t) | e1

�I
Δ; Γ1; Σ1 � [[Σ.t]]A | Σ.t Δ, u : A[Σ]; Γ2; Σ2 � C | r

�E
Δ; Γ1,2; Σ1,2 � Cu

Σ.t | letu : A[Σ] = Σ.t in r

with the following derivation where π is a derivation of Δ;Γ1,2;Σ1,2 � Cu
Σ.t | tuΣ.t

resulting from the Substitution Principle for Validity Hypothesis followed by
weakening (of Γ1 and Σ1) and e2 is β�(uA[Σ1].r,Σ.t):

π

Δ; ·; Σ � A | s
Δ; ·; Σ � Eq(A, s, t) | e1

Δ, u : A[Σ]; Γ2; Σ2 � C | r
Eqβ�

Δ; Γ1,2; Σ1,2 � Eq(Cu
Σ.t, r

u
Σ.t, letu : A[Σ] = Σ.t in r) | e2

Eq
Δ; Γ1,2; Σ1,2 � Cu

Σ.t | letu : A[Σ] = Σ.t in r

Tlk-contraction models audit trail look-up. Consider the following derivation,
where Σ1 ⊆ Σ2, Δ′ ⊆ Δ and the branch from the depicted instance of Tlk in π1
to its conclusion has no instances of �I:

α : Eq(A) ∈ Σ1

Δ; ·; · � T B | θw

Tlk
Δ; Γ ; Σ1 � B | αθw

···· π1

Δ′; ·; Σ2 � A | s
π2

Δ′; ·; Σ2 � Eq(A, s, t) | e
�I

Δ′; Γ ′; Σ′ � [[Σ2.t]]A | Σ2.t

The instance of Tlk in π1 is replaced by the following derivation where π′2 is
obtained from π2 by resorting to Lem. 4 and Lem. 1. Also, Δ; ·;Σ2 � Eq(A, s, t) |
e is obtained from Δ′; ·;Σ2 � Eq(A, s, t) | e by Lem. 1.

π′
2

Δ; Γ ; Σ1 � B | eθw

Δ; ·; Σ2 � Eq(A, s, t) | e
Δ; ·; · � T B | θw

EqTlk
Δ; Γ ; Σ1 � Eq(B, eθw, αθw) | Trl(θw, α)

Eq
Δ; Γ ; Σ1 � B | αθw

As for the permutation conversions, they indicate how Eq is permuted past
any of the inference schemes in {⊃ I,⊃ E,�E,Eq,Tlk}. Also, there is a conversion
that fuses Eq just above the left hypothesis in an instance of �I with the trail of
the corresponding unit is also coined. As an example Eq permutes past ⊃ I by
replacing:

π1

Δ; Γ, a : A;Σ � B | s
π2

Δ; Γ, a : A; Σ � Eq(B, s, t) | e
Eq

Δ; Γ, a : A; Σ � B | t
⊃ I

Δ; Γ ; Σ � A ⊃ B | λa : A.t
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with the following derivation where π3 is a derivation of Δ;Γ ;Σ � A ⊃ B | λa :
A.s obtained from π1 and ⊃ I:

π3

Δ; Γ, a : A; Σ � Eq(B, s, t) | e
EqAbs

Δ; Γ ; Σ � Eq(A ⊃ B, λa : A.s, λa : A.t) | Abs(aA.e)
Eq

Δ; Γ ;Σ � A ⊃ B | λa : A.t

4 Term Assignment

Computation by normalisation is non-confluent, as one might expect (audit trail
look-up affects computation), hence a strategy is required. This section intro-
duces the call-by-value λh-calculus. It is obtained via a term assignment for JL•.
The syntax of λh terms is:

M ::= a | λa : A.M | M M | 〈u; σ〉 | !Σe M | let u : A[Σ] = M in M |αθ | e � M

In addition to term variables, abstraction and application we also have audited
computation unit variables, audited computation units, audited computation
unit substitution, trail look-up and terms decorated with equivalence witnesses.
We occasionally drop the type decoration in let construct for readability. Since
terms may be decorated with equivalence witnesses, substitution (both for truth
and validity hypothesis) substitutes free occurrences of variables with both terms
and evidence. We write Ma

N,t for substitution of truth variables and Mu
Σ.(N,t,e)

for substitution of validity variables (similar notions apply to substitution in
propositions, evidence and equivalence witnesses). Note that “Σ.” in Σ.(N, t, e)
binds all free occurrences of trail variables from Σ which occur in N , t and
e. For illustration we give the definition of Mu

Σ.(N,t,e), where su
Σ.t traverses the

structure of s replacing 〈u;σ〉uΣ.s with sσ and eu
Σ.t traverses the structure of e

until it reaches one of Rfl(r1), β(aA.r1, r2) or β�(vA[Σ′].r1, Σ
′.r2) in which case it

resorts to substitution over the ris. Note how the fourth clause of the definition
ofMu

Σ.(N,t,e) below substitutes 〈u;σ〉 with eσ�Nσ, thus propagating the history.

bu
Σ.(N,t,e)

def= b

(λb : A.M)u
Σ.(N,t,e)

def= λb : A.Mu
Σ.(N,t,e)

(P Q)u
Σ.(N,t,e)

def= P u
Σ.(N,t,e) Qu

Σ.(N,t,e)

〈u; σ〉uΣ.(N,t,e)

def= eσ � Nσ

〈v; σ〉uΣ.(N,t,e)

def= 〈v; σ〉

(!Σ
′

e′ M)
u

Σ.(N,t,e)

def= !Σ
′

e′u
Σ.t

Mu
Σ.(N,t,e)

(let v = P
def= let v = P u

Σ.(N,t,e)

inQ)u
Σ.(N,t,e) inQu

Σ.(N,t,e)

(αθ)u
Σ.(N,t,e)

def= α(θu
Σ.(N,t,e))

(e′ � M)u
Σ.(N,t,e)

def= e′uΣ.t � Mu
Σ.(N,t,e)

The typing judgement Δ;Γ ;Σ � M : A | s is defined by means of the typing
schemes obtained from decorating the inference schemes of Fig. 1 with terms.
Sample schemes are given in Fig. 4. A term M is said to be typable if there exists
Δ,Γ,Σ,A, s s.t. Δ;Γ ;Σ � M : A | s is derivable. The operational semantics of
λh is specified by a binary relation over typed terms called reduction (M → N).
In order to define reduction we first introduce two intermediate notions, namely
principle reduction (M �→ N) and permutation reduction (M � N) . The former
corresponds to principle contraction and the latter to permutation conversions
of the normalisation procedure. The set of evaluation contexts and values are:
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Δ; ·; Σ �M : A | s
Δ; ·; Σ � Eq(A, s, t) | e

TBox
Δ; Γ ; Σ′ �!Σe M : [[Σ.t]]A | Σ.t

α : Eq(A) ∈ Σ
Δ; ·; · � θ : T B | θw

TTlk
Δ; Γ ;Σ � αθ : B | αθw

Δ; Γ1; Σ1 �M : [[Σ.r]]A | s
Δ, u : A[Σ]; Γ2; Σ2 � N : C | t

TLetB

Δ; Γ1,2; Σ1,2 � let u : A[Σ] = M in N : Cu
Σ.r

letu : A[Σ] = s in t
|

Δ; Γ ; Σ �M : A | s
Δ; Γ ; Σ � Eq(A, s, t) | e

TEq
Δ; Γ ;Σ � e � M : A | t

Fig. 4. Sample typing schemes for λh

E ::= � | E M |V E | let u : A[Σ] = E in M
| !Σe E |α{c1/V1, . . . , cj/Vj , cj+1/E , . . .}

F ::= � | F M |V F | let u : A[Σ] = F in M

V ::= a | 〈u; σ〉 |λa : A.M
| !Σe V

θV ::= {c1/V1, . . . , c10/V10}

Evaluation contexts are represented with letters E , E ′, etc. Note that reduc-
tion under the audited unit constructor is allowed. Contexts F are required for
defining L, the principle reduction axiom for trail look-up (defined below). It
differs from E by not allowing holes under the audited unit constructor. The set
of values are standard except for !Σe V : audited units with fully evaluated bodies
are also values. θV is a trail replacement consisting entirely of values. Principle
reduction is presented by means of the following principle reduction axiom and
congruence schemes :

(λa : A.M) V ⇀β β(aA.s, t) � Ma
V,t

let u : A[Σ] =!Σe V in N ⇀β� β�(uA[Σ].t, Σ.s) � Nu
Σ.(V,s,e)

!Σe F [αθV ] ⇀L !Σe F [Trl(θw
V , α) � eθV ]

M ⇀ N implies E [M ] �→ E [N ]7

These schemes have been abridged by removing typing information. For ex-
ample, the fully decorated presentation of β is:

Δ; Γ1, a : A; Σ1 �M : B | s Δ; Γ2; Σ2 � V : A | t
Δ; Γ1,2; Σ1,2 � (λa : A.M) V ⇀β β(aA.s, t) � Ma

V,t : B | (λa : A.s) · t

The fully decorated presentation of β� is as follows where O def= letu : A[Σ] =
!Σe V in N and P def= β�(uA[Σ].t, Σ.s) �Nu

Σ.(V,s,e):

Δ; ·; Σ � V : A | r Δ; ·; Σ � Eq(A, r, s) | e1 Δ, u : A[Σ]; Γ2; Σ2 � N : C | t
Δ; Γ1,2; Σ1,2 � O ⇀β� P : Cu

Σ.s | letu : A[Σ] = Σ.s in t

Each principle reduction scheme produces a trail of its execution. Note that
β� replaces all occurrences of 〈u;σ〉 with eσ�V σ, correctly: (1) preserving trails
and (2) rewiring trail variables so that they now refer to their host audited com-
putation unit. Regarding permutation reduction, the original schemes obtained
from the normalisation procedure are the contextual closure of the first group
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(e � M) N � App(e,Rfl(t)) � (M N)
M (e � N) � App(Rfl(t), e) � (M N)

λa : A.(e � M) � Abs(a.e) � (λa : A.M)
let u = (e � M) in N � Let(u.e,Rfl(t)) � (let u = M in N)
let u = M in (e � N) � Let(u.Rfl(s), e) � (let u = M in N)

!Σe2 (e1 � M) � !ΣTrn(e1,e2)M

e1 � (e2 � M) � Trn(e1, e2) � M

Trn(App(e1, e2),App(e3, e4)) � App(Trn(e1, e3),Trn(e2, e4))
Trn(Abs(a.e1),Abs(a.e2)) � Abs(a.Trn(e1, e2))

Trn(Let(u.e1, e2),Let(u.e3, e4)) � Let(u.Trn(e1, e3),Trn(e2, e4))
Trn(Rfl(s), e) � e
Trn(e,Rfl(t)) � e

Trn(Trn(e1, e2), e3) � Trn(e1,Trn(e2, e3))
Trn(App(e1, e2),Trn(App(e3, e4), e5)) � Trn(App(Trn(e1, e3),Trn(e2, e4)), e5)

Trn(Abs(a.e1),Trn(Abs(a.e2), e3)) � Trn(Abs(a.Trn(e1, e2)), e3)
Trn(Let(u.e1, e2),Trn(Let(u.e3, e4), e5)) � Trn(Let(u.Trn(e1, e3),Trn(e2, e4)), e5)

Fig. 5. Permutation reduction schemes

of rules depicted in Fig. 54. As in principle reduction, these schemes operate on
typed terms and have been abridged. Eg. the full presentation of the first is:

Δ; Γ1; Σ1 �M : A ⊃ B | r Δ; Γ1; Σ1 � Eq(A ⊃ B, r, s) | e Δ; Γ2; Σ2 � N : A | t
Δ; Γ1,2; Σ1,2 � (e � M) N � App(e,Rfl(t)) � (M N) : B | s · t

These schemes are easily proven to be terminating. However, they are not
confluent (take, for instance, the critical pair between the first two reduction
schemes and note that it is not joinable). As a consequence we complete these
schemes with those in the second group depicted in Fig. 5. The full set of schemes
is both confluent and terminating.

Proposition 1. � is confluent and terminating.

Termination may be proved automatically by using AProVE [GTSKF04]. Con-
fluence follows by checking local confluence and resorting to Newman’s Lemma.
We stress that the fact that these reduction schemes are defined over typed terms
is crucial for confluence. For example, Trn(Rfl(s),Rfl(t)) is typable only in the
case that s = t.

Definition 1 (Reduction). Let =⇒ stand for permutation reduction to (the
unique) normal form. Reduction (→) is defined over terms in permutation-
reduction normal form as �→ ◦ =⇒.

We now address safety of reduction w.r.t. the type system. This involves proving
SR and Progress. SR follows from the fact that the reduction schemes originate
from proof normalisation. The exception are the second group of schemes of
Fig. 5 for which type preservation may also be proved seperately.
4 Type decorations in equivalence witnesses omitted for the sake of readability.
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D ::= � | λa : A.D |D M |M D
| let u : A[Σ] = D in M
| let u : A[Σ] = M in D | !Σe D | e �D
| α{c1/M1, . . . , cj/Mj , cj+1/D, . . .}

C ::= � |λa : A.C | C M |M C
| let u : A[Σ] = C in M
| let u : A[Σ] = M in C
| e � C

(λa : A.M) N
f
⇀β β(aA.s, t) � Ma

N,t

let u : A[Σ] =!Σe M in N
f
⇀β� β�(uA[Σ].t, Σ.s) � Nu

Σ.(M,s,e)

!Σe C[αθ] f
⇀L !Σe C[Trl(θw, α) � eθ]

M
f
⇀ N implies D[M ] f�→ D[N ]

Fig. 6. Full principle reduction

Proposition 2 (Subject Reduction). Δ;Γ ;Σ � M : A | s and M → N
implies Δ;Γ ;Σ �M : A | s.
Before addressing Progress we introduce some auxiliary notions. A term is look-
up-blocked if it is of the form F [αθV ]. A term M is tv-closed if fvT(M) =
fvV(M) = ∅. It is closed if it is tv-closed and fvTrl(M) = ∅.

Lemma 5 (Canonical forms). Assume ·; ·;Σ � V : A | s. Then (1) if A =
A1 ⊃ A2, then V = λa : A1.M for some a,M ; and (2) if A = [[Σ′.t]]A1, then
V =!Σ

′
e V ′ for some e, V ′.

Proposition 3. Suppose M is in permutation reduction-normal form, is typable
and tv-closed. Then (1) M is a value or; (2) there exists N s.t. M �→ N or; (3)
M is look-up-blocked.

Since a closed term cannot be look-up-blocked:

Corollary 1 (Progress). Suppose M is in permutation reduction normal form,
is typable and closed. Then either M is a value or there exists N s.t. M → N .

5 Strong Normalisation

Full reduction is defined as the union of full principle reduction (
f�→, Fig. 6)

and permutation reduction (�). We address strong normalisation (SN) of a
restriction of full reduction, a result which entails SN of a similar restriction of
λh. The restriction consists in requiring that M in the principle reduction axiom
β� not have occurrences of the audited computation unit constructor “!”. In the
sequel, we write

rf�→ for this restricted notion of reduction.
We first note that

f�→β,β�
is SN. This can be proved by defining a translation

S(•) on λh types that “forget” the modal connective and a similar translation
from terms in λh to terms of the simply typed lambda calculus (with constants)
such that: (1) it preserves typability; and (2) it maps full reduction to reduction
in the simply typed lambda calculus. Since we already know that � is SN and
that reduction in the simply typed lambda calculus is SN, our first result reads:
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Proposition 4.
f�→β,β�

∪ � is SN.

Therefore, an infinite
f�→ ∪ � reduction sequence must include an infinite number

of
f�→L steps. Next we show that for

rf�→ this is not possible. More precisely, we
show that in an infinite

rf�→ ∪ � reduction sequence, there can only be a finite
number of

f�→L steps. This entails:

Proposition 5.
rf�→ ∪ � is SN. Hence λh, with the same restriction, is SN.

We now address the proof of the main lemma on which Prop. 5 relies (Lem. 7).
We introduce weight functions which strictly decrease by each application of a
f�→L-step and which decreases with each application of a

rf�→β,β�
-step or �-step.

A word on notation: 〈〈 〉〉 is the empty multiset; * is multiset union; and n*M is
the union of the multiset 〈〈n〉〉 and M, for n ∈ N. We use the standard multiset
extension ≺ of the well-founded ordering < on natural numbers which is also
well-founded. For each n ∈ N we define Wn(M) as the multiset given by the
following inductive definition on M :

Wn(a) def= 〈〈 〉〉
Wn(λa : A.M) def= Wn(M)
Wn(M N) def= Wn(M) �Wn(N)
Wn(〈u; σ〉) def= 〈〈 〉〉

Wn(!Σe M) def= n ∗Wt(M)�
�Wn∗Wt(M)(M)

Wn(letu = M in N) def= Wn(M) �Wn(N)
Wn(αθ) def=

⊎
i∈1..10Wn(θ(ci))

Wn(e � M) def= Wn(M)
where Wt(M) is the number of free trail variables in M plus 1. Note that
Wt(e � M) def= Wt(M). The weight functions informally count the number of
trail variables that are available for look-up in audited computation units. The
principle reduction axiom β either erases the argument N or substitutes exactly
one copy, given the affine nature of truth hypothesis. However, multiple copies
of M can arise from β� reduction (cf. Fig. 6), possibly under “!” constructors
(hence our restriction in item 2 below). Finally, we must take into account that
although an trail variable is consumed by L it also copies the terms in θ (which
may contain occurrences of the “!” constructor). In contrast to β� however, the
consumed trail variable can be used to make the copies of “!” made by eθ weigh
less than the outermost occurrence of “!” on the left-hand side of L.

Lemma 6. 1. Wn((λa : A.M)N) 5 Wn(Ma
N,t).

2. If M has no occurrences of the modal term constructor, then Wn(letu :
A[Σ] =!Σe M in N) 6 Wn(β�(uA[Σ].t, Σ.s) �Nu

Σ.(M,s,e)).

3. Wn(!Σe C[αθ]) 6 Wn(!Σe C[Trl(θw, α) � eθ]).

From these results follow:

Lemma 7. (1) M
rf�→β,β�

N implies Wn(M) 5 Wn(N); (2) M
f�→L N implies

Wn(M) 6 Wn(N); and (3) M � N implies Wn(M) =Wn(N).
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6 Example of History Based Access Control

We can also model other phenomena such as Abadi and Fournet’s [AF03] mech-
anism for access control based on execution history. A top-level function decla-
ration is an expression of the form f .= M where Δ;Γ ;Σ � M : A | s together
with a typing scheme (left) and evidence equivalence scheme (right):

TFunc
Δ; Γ ;Σ � f : A | f

Δ; Γ ; Σ � A | s
EqFunc

Δ; Γ ;Σ � Eq(A, s, f) | δf (s)
(1)

Also, we have the principle contraction in which the derivation on the left of
(1) contracts to:

Δ; Γ ; Σ �M : A | s
Δ; Γ ;Σ � A | s

EqFunc
Δ; Γ ; Σ � Eq(A, s, f) | δf (s)

Eq
Δ; Γ ;Σ �M : A | f

If f .=!αe λa : A.M , then we abbreviate letu = f in 〈u; α/β〉N with f β N .
Consider the following top-level declarations:

delete
.= !αd

Rfl(q)λa.if FileIOPerm ∈ θαd

thenWin32Deletea
else securityException;

cleanup
.= !αc

Rfl(r)
λa.delete αc a;

bad
.= !αb

Rfl(s)cleanup αb

“..\passwd′′;

where the definition of θ requires we first define perms , a function assigning a set
of (static) permissions to top-level functions: perms(bad) def= ∅, perms(cleanup)
def= {FileIOPerm} and perms(delete) def= {FileIOPerm}:

θ(Rfl) = θ(Trl) def= ∅
θ(Sym) = θ(Abs) def= λa : N.a

θ(Trn) = θ(App) = θ(Let) def= λa : N.λb : N.a ∩ b

θ(Rpl) def= λa : N.a1 ∩ .. ∩ a10

θ(β) = θ(β�) def= ∅
θ(δf )

def= {perms(f)}
Then evaluation of the term !αRfl(s)bad α will produce a security exception
since δbad(s′) occurs in the trail consulted by delete, for some s′. This term
is based on the first example of Sec.4.1 in [AF03]. The second example of
that same section (illustrating a case where stack inspection falls short and
history based access control has advantages) consists in adding the top-level
declaration badTempFile .= “..\passwd′′ and extending perms by declaring
perms(badTempFile) def= ∅. Then evaluation of !αRfl(s)delete α badTempFile
will also produce a security exception.

7 Conclusions

We have presented a proof theoretical analysis of a functional computation model
that keeps track of its computation history. A Curry-de Bruijn-Howard isomor-
phism of an affine fragment of Artemov’s Justification Logic yields a lambda
calculus λh which models audited units of computation. Reduction in these units



Justification Logic and History Based Computation 351

generates audit trails that are confined within them. Moreover, these units may
look-up these trails and make decisions based on them. We prove type safety for
λh and strong normalisation for a restriction of it. It would be nice to lift the
restriction in the proof of strong normalisation that M in the principle reduction
axiom β� not have occurrences of the audited computation unit constructor “!”.
Also, it would make sense to study audited computation in a classical setting
where, based on audit trail look-up, the current continuation could be disposed
of in favour of a more judicious computation. Finally, although examples from
the security domain seem promising more are needed in order to better evaluate
the applicability of these ideas.

Acknowledgements. To Peter Thiemann for fruitful discussions.
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Abstract. A long-standing problem in algorithm design has been to
characterize the class of problems for which greedy algorithms exist.
Many greedy problems can be described using algebraic structures called
matroids, which were later generalized to greedoids. Once in this form,
the original problem can be solved using Edmonds’ Greedy Algorithm.
However there are several practical problems with greedy solutions that
either do not have a greedoid representation (e.g. Activity Selection) or
for which none is known (e.g. Huffman Coding). This paper presents a
new characterization of greedy problems that is strictly more general
than greedoids, in that it includes all greedoids, as well as problems
such as Activity Selection and Huffman Coding. Unlike matroids, our
characterization is an axiomatization of a form of Branch and Bound
Search, where greediness is associated with the existence of an appropri-
ate dominance relation. Starting from a definition of optimality of the
required solution we derive a recurrence relation. This recurrence can
then be transformed into a correct-by-construction program that solves
problems in our greedy class, analogous to the Greedy Algorithm.

1 Introduction

A greedy algorithm repeatedly makes a locally optimal choice. For some prob-
lems this can lead to a globally optimal solution. In addition to developing
individual greedy algorithms, there has been long-term interest in finding a gen-
eral characterization of greedy algorithms that highlights their common struc-
ture. Edmonds [Edm71] characterized greedy algorithms in terms of matroids. In
1981, Korte and Lovasz generalized matroids to define greedoids, [KLS91]. The
question of whether a greedy algorithm exists for a particular problem reduces
to whether there exists a translation of the problem into a matroid/greedoid.
However, there are several problems for which a matroid/greedoid formulation
either does not exist or is very difficult to construct. For example, no known
greedoid formulations exist for problems such as Huffman Prefix-free encoding
or Activity Selection, [CLRS01].

An alternative approach to constructing algorithms is to take a very general
program schema and specialize it with problem-specific information. The result
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can be a very efficient algorithm for the given problem, [SPW95, SW08, NC09].
One such class of algorithms, Global Search [Smi88], operates by controlled
search, where at each level in the search tree there are a number of choices to be
explored. Under certain conditions, this collection of choices reduces to a single
locally optimal choice, which is the essence of a greedy algorithm. In this pa-
per we axiomatically characterize those conditions. We call our specialization of
Global Search Greedy Global Search (GGS). We also show that this characteriza-
tion of greedy algorithms generalizes greedoids, and therefore also matroids. Our
proof does not rely on any particular algorithm, such as the greedy algorithm,
but is based solely on the properties of greedoid theory and GGS theory. Finally,
we derive a recurrence equation from the statement of correctness of GGS which
can be transformed into an executable program through correctness-preserving
program transformations. Such a program plays the same role for GGS theory
as the Greedy Algorithm does for greedoids. In a companion paper [NSC10] we
show how to use our greedy class to systematically derive greedy algorithms.

2 Background

2.1 Specifications and Morphisms

We briefly review some of the standard terminology and definitions from alge-
bra. A signature Σ = (S,F) consists of a set of sort symbols S and a family
F = {Fv ,s} of finite disjoint sets indexed by S∗ × S, where Fv ,s is the set of
operation symbols of rank (v, s). We write f : v → s to denote f ∈ Fv,s for
v ∈ S∗, s ∈ S when the signature is clear from context. For any signature Σ the
Σ-terms are inductively defined in the usual way as the well-sorted composition
of operator symbols and variables. A Σ-formula is a boolean valued term built
from Σ-terms and the quantifiers ∀ and ∃. A Σ-sentence is a closed Σ-formula.
A specification T = 〈S,F , A〉 comprises a signature Σ = (S,F) and a set of Σ-
sentences A called axioms. The generic term expression is used to refer to a term,
formula, or sentence. A specification T ′ = 〈S′,F ′, A′〉 extends T = 〈S,F , A〉 if
S ⊆ S′, Fv ,s ⊆ F ′

v ,s for every v ∈ S∗, s ∈ S, and A ⊆ A′. Alternatively, we say
that T ′ is an extension of T . A model for T is a structure for (S,F) that satisfies
the axioms.We shall use modus ponens, substitution of equals/equivalents, and
other natural rules of inference in T . The theory of T is the set of sentences
closed under the rules of inference from the axioms of T . We shall sometimes
loosely refer to T as a theory. A sentence s is a theorem of T , written T � s if s
is in the theory of T .

A signature morphism f : (S,F) → (S′,F ′) maps S to S′ and F to F ’
such that the ranks of operations are preserved. A signature morphism extends
in a unique way to a translation of expressions (as a homomorphism between
term algebras) or sets of expressions. A specification morphism is a signature
morphism that preserves theorems. Let T = 〈S,F , A〉 and T ′ = 〈S′,F ,′A′〉 be
specifications and let f : (S,F) → (S′,F ′) be a signature morphism between
them. f is a specification morphism if for every axiom a ∈ A, f(a) is a theorem
of T ′, ie. T ′ � f(a). It follows that a specification morphism translates theorems
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of the source specification to theorems of the target specification. The semantics
of a specification morphism is given by a model construction: If f : T → T ′ is
a specification morphism then every model M′ of T ′ can be made into a model
of T by simply “forgetting” some structure of M′. We say that T ′ specializes
T . Practically, this means that any problem that can be expressed in T ′ can be
expressed in T .

It is convenient to generalize the definition of signature morphism slightly to
allow the translations of operator symbols to be expressions in the target speci-
fication and the translations of sort symbols to be constructions (e.g. products)
over the target sorts. A symbol-to-expression morphism is called an interpreta-
tion, notated i : T ⇒ T ′ where T and T ′ are the source and target resp. of the
morphism.

2.2 Matroids and Greedoids

Matroids date back to the work of Whitney in the 1930’s. Greedoids are a gen-
eralization of matroids proposed by Korte and Lovasz, [KLS91]. Both have been
extensively studied as important algebraic structures with applications in a va-
riety of areas, [BZ92]. Underlying both structures is the notion of a set system:

Definition 1. A set system is a pair 〈S, I〉 where S is a finite nonempty set
and I is a nonempty collection of subsets of S

A matroid introduces constraints on I:

Definition 2. A matroid is a set system 〈S, I〉, where the elements of I are
called the independent subsets, satisfying the following axioms:

Hereditary. ∀Y ∈ I, ∀X ⊆ Y. X ∈ I
Exchange. ∀X,Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y −X. X ∪ {a} ∈ I

The Hereditary axiom requires that every subset of an independent set is also
independent. The Exchange axiom implies that all maximal (ordered by ⊆)
independent sets are the same size. Such sets are called bases. The classic example
of a matroid (and indeed the inspiration for matroids) is the set of independent
vectors (I) in a vector space (S). Another example is the collection of acyclic
subgraphs (I) of a an undirected graph (S). By associating a weight function
w:S → Nat assigning a weight to each item in S, there is a Greedy Algorithm
[Edm71] that will compute a (necessarily maximal) weighted independent set
z∗ ∈ I , i.e. z∗ such that z∗ ∈ I ∧ (∀z′ ∈ I. c(x, z∗) ≥ c(x, z′)) where c(z) =∑

i∈z w(i).
Greedoids [KLS91] are a generalization of matroids in which the Hereditary

axiom ∀Y ∈ I, ∀X ⊆ Y. X ∈ I is replaced with a weaker requirement called
Accessibility.

Definition 3. A greedoid is a set system 〈S, I〉, where the elements of I are
called the feasible subsets, satisfying the following axioms:

Accessibility. X ∈ I. X �= ∅ ⇒ ∃a ∈ X. X − {a} ∈ I
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Exchange. ∀X,Y ∈ I. ‖X‖ < ‖Y ‖⇒ ∃a ∈ Y −X. X ∪ {a} ∈ I

Remark. The Hereditary and Accessibility axioms are easier to compare if the
Hereditary Axiom is written as ∀X ∈ I, ∀a ∈ X. X − {a} ∈ I which can be
shown to be equivalent to the original formulation by induction.

a

c

b

d

Fig. 1. When the Heredi-
tary axiom does not hold

Why are greedoids important? Consider the prob-
lem of finding spanning trees. It is true that given a
matroid 〈S, I〉 where S is a set of edges forming a
connected graph and I is the set of acyclic subgraphs
on that graph, the Greedy Algorithm (see Section
2.4) instantiated on this matroid with an appropri-
ate cost function, is equivalent to Kruskal’s algorithm
[CLRS01] and returns a minimum spanning tree. How-
ever, the collection of trees (that is, connected acyclic
subgraphs) over a graph does not form a matroid, be-
cause the Hereditary Axiom does not hold for a tree.
To see this, consider a set system where S is the set of
edges {(a, b), (a, c), (b, d)} (see Fig. 1) and I is the set

of trees on this graph. Clearly S is feasible but the subset of edges {(a, c), (b, d)}
is not. However, the weaker Accessibility Axiom does hold, so 〈S, I〉 where S is
as above, and I is the set of trees on S forms a greedoid. Instantiated with this
greedoid representation of the problem, the Greedy Algorithm is equivalent to
Prim’s algorithm for MSTs,[CLRS01].

2.3 Greedoid Languages

The implication of the weaker Accessibility axiom for greedoids is that feasible
sets should be constructed in an ordered manner, since it is no longer guaranteed
that a particular feasible set is reachable from any subset. There is an alternative
formulation of greedoids that makes this order explicit [BZ92] which we will
utilize. In what follows, a simple word over an alphabet S is any word in which
no letter occurs more than once and S∗

s is the (finite) set of simple words in
S∗. Concatenation of words is denoted in the usual way by concatenation of the
corresponding variable names.

Definition 4. A greedoid language is a pair 〈S,L) where S is a finite ground
set and L is a simple language L ⊆ S∗

s satisfying the following conditions:

Hereditary. ∀XY ∈ L. X ∈ L
Exchange. ∀X,Y ∈ L. ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L

The hereditary and exchange axioms are analogous to the corresponding axioms
for matroids, subject to their application to words. That is, the hereditary axiom
requires that any prefix of a feasible word is also a feasible. The exchange axiom
requires that a shorter feasible word can be extended to a longer feasible one
by appending a letter contained in the longer word to the shorter one. As a
consequence, all maximal words in L have the same length.
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Bjorner and Ziegler [BZ92] show that the set and language formulations of
greedoids are equivalent, that is for every greedoid there is a unique isomorphic
greedoid language and v.v. Intuitively, this is because the language version of
the greedoid is just enforcing the construction order implied by the feasible set
of the greedoid.

2.4 The Greedy Algorithm and Admissible Cost Functions

The greedy algorithm, due to Edmonds [Edm71], is a program schema that is
parametrized on a suitable structure such as a matroid or greedoid. Fig. 2 shows
the structure of a pseudo-Haskell program for the greedy algorithm that has been
parametrized on a greedoid language. First we define the concept of a feasible
extension

Definition 5. Given a greedoid language 〈S,L〉, the set of feasible extensions
of a word A ∈ L, written ext(A) is the set {a | Aa ∈ L}.

ga(x,y,w) =
in if exts(ya) = ∅

then y
else let m = arbPick(opt(w, exts(ya))) in ga(x,ym,w)

opt(w, s) = {a: ∀a’∈ s. w(a) >= w(a’)}

Fig. 2. The Greedy Algorithm parametrized on a Greedoid Language

arbPick is a function that picks some element from its argument set. For the the
greedy algorithm to be optimal, the cost function must be compatible with the
particular structure, or admissible. Linear functions are admissible for matroids,
but unfortunately not for all greedoids. Admissibility for all greedoids is defined
as follows:

Definition 6. Given a greedoid language 〈S,L〉, a cost function c : L → R is
admissible if, for any A ∈ L, a ∈ ext(A), whenever ∀b ∈ ext(A). c(Aa) ≥ c(Ab),
the following two conditions hold:

∀b ∈ S, ∀B,C ∈ S∗. ABaC ∈ L ∧ABbC ∈ L ⇒ c(ABaC) ≥ c(ABbC) (2.1)

and

∀b ∈ S, ∀B,C ∈ S∗. AaBbC ∈ L ∧AbBaC ∈ L ⇒ c(AaBbC) ≥ c(AbBaC)
(2.2)

The first condition states that if a is the best choice immediately after A then
it continues to be the best choice. The second condition states that a first and
b later is better than b first and a later. A cost function that does not depend
on the order of elements in a word immediately satisfies the second condition.
Bottleneck functions (functions of the form min{w(X) | X ∈ S}) are an example
of admissible functions. Any admissible cost function with a greedoid structure
is optimized by the greedy algorithm scheme.
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Definition 4 of a greedoid language along with Definition 6of an admissible
cost function is what we call Greedoid Language Theory (GL).

2.5 Global Search and Problem Specifications

Global Search with Optimality (GSO) is a class of algorithms that operate by
controlled search. GSO has an axiomatic characterization as a specification,
[Smi88]. In the same way that the greedy algorithm is parametrized on a matroid
or greedoid specification, the GSO class has an associated program schema that
is parametrized on the GSO specification. We will formalize a specification of
GGS that specializes GSO. Before doing so, we will describe a base specification
that GSO itself specializes, called an optimization problem specification (P).
P is a 6-tuple 〈D,R,C, i, o, c〉 specifying the problem to be solved. D is

the type of the problem input data, R is the result or solution type, (C,≤)
is a well-order that provides some way of measuring the cost of a solution,
i : D → Boolean is an input condition characterizing valid problem inputs
over the domain D, o : D×R→ Boolean is the output condition characterizing
valid or feasible solutions, and c : D × R → C is a cost function that returns
the cost of a solution. The intent is that a function that solves this problem will
take any input x : D that satisfies i and return a z : R that satisfies o for the
given x.

A given problem can be classified as an optimization problem by giving an
interpretation from the symbols of P to the terms and definitions of the given
problem. Here for example is a morphism from P to the Minimum Spanning
Tree (MST) problem. The input is a set of edges, where each edge is a pair of
nodes with a weight, and nodes are represented by numbers (“!” denotes field
access). The result must be a connected acyclic set of edges:

D �→ {Edge}
Edge = {a : Node, b : Node, w : Nat}
Node = Nat

R �→ {Edge}
C �→ Nat
i �→ λx. true
o �→ λx, z. connected(z ) ∧ acyclic(z)
c �→ λ(x, z).

∑
e∈x e!w

(2.3)

Appropriate definitions of connected and acyclic are assumed. Note that an
optimal solution to this problem (one that satisfies o and maximizes c) is auto-
matically a spanning tree.

3 Greedy Global Search Theory

Operationally, given a space of candidate solutions to a given problem (some of
which may not be optimal or even feasible solutions), a GGS algorithm partitions
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(splits) the space into subspaces (also called partial solutions), each of which is
recursively searched in turn for optimal solutions. (Such an approach is also the
basis of branch-and-bound algorithms, common in AI). At any point, a solution
can possibly be extracted from a space, and if correct, compared with the best
solution found so far. The process terminates when no space can be further
partitioned. The starting point is an initial space known to contain all possible
solutions to the given problem. The result, if any, is an optimal solution to the
problem. Below, we give an axiomatic specification of GGS. The interested reader
may refer to Section 3.4 for the associated program schema that is parametrized
on this theory.

Sorts. The sorts of a GGS theory are D,R, R̂ and C, where D, R, and C
are inherited from P , the optimization problem theory, and R̂ is the sort of
space descriptors. A space descriptor is a compact representation of a space and
represents all the possible solutions in that space. It is common to make R̂ = R.

Operations. In addition to i, o, c which are inherited from P , GGS theory adds
additional operators, as befits being a richer theory. As with P , a given problem
can be classified as a GGS problem by providing a morphism from the symbols
of GGS to the given problem. The operator 	 corresponds to the split operation
mentioned above and χ to the extract operation. Note that χ and γ are defined
as predicates for uniformity of reasoning in proofs. They are more intuitively
thought of as partial functions, one possibly extracting a solution from a space
and the other possibly greedily choosing a subspace of a space.

ẑ0 : D → R̂ initial space
∈: R× R̂→ bool is the solution contained in the space?

	 : D × R̂× R̂→ bool is the 1st space a subspace of the 2nd space?
χ : R× R̂→ bool is the solution extractable from the space?

γ : D × R̂× {R̂} → bool suff. cond. for the space to greedily dominate the set

For ease of reading, ternary operators that take the input x as one of their
arguments will from here on be often written in a subscripted infix form. For
example,γ(x, ẑ, Z) will be written ẑ γx Z.

Axioms. Finally, the following axioms serve to define the semantics of the op-
erations. 	∗ denotes a finite number of applications of the 	 operator and is
defined as

ŝ	∗
x r̂ = ∃i ≥ 0. ŝ	i

x r̂

where ŝ 	0
x r̂ = (r̂ = ŝ) and s 	i+1

x r̂ = ∃t̂ · t̂ 	x r̂ ∧ ŝ 	i
x t̂. All free variables

are universally quantified, and all variables are assumed to have their appropri-
ate type.
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A1. i(x) ∧ o(x, z) ⇒ z ∈ ẑ0(x)
A2. i(x) ⇒ (z ∈ ŷ ⇔ ∃ẑ. ẑ 	∗

x ŷ ∧ χ(z, ẑ))
A3. ẑ γx ss(x, ŷ)⇒

(∃z ∈ ẑ, ∀ẑ′ ∈ ss(x, ŷ), ∀z′ ∈ ẑ′. o(x, z′)⇒ o(x, z) ∧ c(x, z) ≥ c(x, z′))
A4. i(x) ∧ (∃z ∈ ŷ. o(x, z))⇒

(∃z∗. χ(z∗, ŷ) ∧ o(x, z∗) ∧ c(x, z∗) = c∗(ŷ)) ∨ ∃ẑ∗ 	x ŷ. ẑ
∗ γx ss(ŷ)

A1 provides the semantics for the initial space - it states that all feasible
solutions are contained in the initial space.

A2 provides the semantics for the subspace operator 	 - namely an output
object z is in the space denoted by ŷ iff z can be extracted after finitely many
applications of 	 to ŷ . For convenience it is useful to define a function ss(x, ŷ) =
{ẑ : ẑ 	x ŷ}.

A3 constrains γ to be a greedy dominance relation. (Dominance relations have
a long history in algorithm development and provide a way of quickly eliminating
subspaces that cannot possibly lead to optimal solutions, [Iba77, NC09]). That
is, ẑ γx Z is sufficient to ensure that ẑ will always lead to at least one feasible
solution better than any feasible solution in any space ẑ′ in Z. As we will shortly
demonstrate, A3 also provides a way of calculating the desired γ by a process
called derived antecedents.

A4 places an additional constraint on γ when applied to the subspaces of
ŷ: An optimal feasible solution in a space ŷ that contains feasible solutions
must be immediately extractable or a subspace of ŷ must greedily dominate the
subspaces of ŷ. Note that extract is not confined to leaves of the search tree: it
is possible that a solution can be extracted from a space that can also be split
into subspaces.
Remark. A4 is a little stronger than necessary. In fact, in the case that an optimal
feasible solution cannot be immediately extracted from a space, some subspace
of that space need only greedily dominate other subspaces in the case that the
(parent) space was itself the result of a series of greedy choices. In our experience,
weakening A4 in this way would complicate its statement without much of a
benefit in practice.
We will show that the class of problems solvable by GGS-theory generalizes
the class of problems for which a greedoid representation exists. The way in
which this is done is by defining a signature morphism from GGS theory to
GL theory, showing the signature morphism is a specification morphism, and
then composing that with the isomorphism between GL and G allowing us to
conclude that GGS generalizes Greedoids.

3.1 A Signature Morphism from GGS Theory to Greedoid
Languages

The signature morphism from GGS to GL is shown in two parts - first the
translation of symbols in GGS inherited from P and then the translation of
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symbols introduced by GGS. Assume the target is a greedoid language 〈S,L〉
with associated weight function w and objective function c. The translation of
P symbols is1: (the [] notation denotes the type of words over an alphabet)

D �→ {S : {Id},L : {[Id]}, w : Id→ C}
R �→ [Id]
C �→ Nat
i �→ λx. finite(x!S) ∧ x!S �= ∅ ∧ x.L ⊆ (x!S)∗s ∧ x!L �= ∅ ∧ hrd(x!L) ∧ xch(x!L)

hrd(L) = ∀XY ∈ L. X ∈ L
xch(L) = ∀X,Y ∈ L. ‖X‖ < ‖Y ‖ ⇒ ∃a ∈ Y. Xa ∈ L

o �→ λx, z. z ∈ x!L
c �→ c

The domain D along with the restriction i captures the type of greedoids, and
the range R the type of a result, namely some set of objects from the greedoid.
The weight of a solution is calculated by c as the sum of the weights of the
elements in the solution.

The translation for the additional symbols introduced by GGS is as follows:

R̂ �→ [Id]
ẑ0 �→ []
∈ �→ λz, ẑ. ∃u ∈ (x.S − ẑ)∗. z = ẑu
	 �→ λx, ẑ, ŷ. ∃a ∈ x.S − ŷ. ẑ = ŷa
χ �→ λz, ẑ. z = ẑ
γ �→ ?

To complete the morphism, a translation for γ has to be found, which we will
do as part of the process of verifying this morphism is indeed a specification
morphism.

3.2 Verifying the Morphism Is a Specification Morphism

To complete the signature morphism and show it is a specification morphism,
the translation of the GGS axioms must be provable in GL theory. Axiom A1
holds trivially because the empty list prefixes any list, and A2 can be proved by
induction.

A3. To demonstrate A3, we will reason backwards from the consequent. The
required assumption will form the greedy dominance relation. We must show the
existence of some z ∈ ẑ for which ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′. o(x, z′) ⇒ o(x, z) ∧
c(x, z) ≥ c(x, z′). We will first show ∀ẑ′ ∈ ssx(ŷ), ∀z′ ∈ ẑ′, ∃z ∈ ẑ. o(x, z′) ⇒
o(x, z) ∧ c(x, z) ≥ c(x, z′) and then show the existence of a z that does not
depend on ẑ′ and z′. Let ẑ =ŷa for some a ∈ x!S− ŷ, similarly ẑ′ =ŷu′1 for some
u′1 ∈ x!S − ŷ. Now let z′ = ẑ′U ′ for some U ′ ∈ S∗ be any solution contained in
ẑ′ (See Fig 3).Reasoning forwards:
1 This is greedoid theory from an optimization perspective. Of course, other uses of

greedoid theory exist.
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o(x, z′)
= {unfold defn}
z′ ∈ x!L
= {abbreviation above}
ŷu′1U

′ ∈ x!.L
⇒ {let U ′ = U ′

1u
′
2U

′
2 · · ·u′nU ′

n, apply Lemma 1 for j = 0, if a ∈ ext(ŷ)}
ŷaU ′

1u
′
1U

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n ∈ x!L

⇒ {let z = ŷaU ′
1u

′
1U

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n}

∃z ∈ ẑ. o(x, z)

Next we show that z is better than z′
Under the assumption a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ). c(x, ŷa) ≥ c(x, ŷa′), the

following statements can all be shown: By Lemma 1, and property 2.2,

c(x, ŷaU ′
1u

′
1U

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n) ≥ c(x, ŷu′1U

′
1aU

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n)

and by By Lemma 1, and property 2.2 repeatedly,

c(x, ŷu′1U
′
1aU

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n) ≥ c(x, ŷu′1U

′
1u

′
2U

′
2 · · · aU ′

n)

and finally by property 2.1

c(x, ŷu′1U
′
1u

′
2U

′
2 · · · aU ′

n) ≥ c(x, ŷu′1U
′
1u

′
2U

′
2 · · ·u′nU ′

n)

and so, by transitivity,

c(x, ŷaU ′
1u

′
1U

′
2u

′
2 · · ·U ′

n−1u
′
n−1U

′
n) ≥ c(x, ŷu′1U

′
1u

′
2U

′
2 · · ·u′nU ′

n)

ie. c(x, z) ≥ c(x, z′)⇐ a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(x, ŷa) ≥ c(x, ŷa′).
We can assert the existence of a single feasible z∗ that is better than any

feasible z′ in ẑ′ by taking such a z∗ to be the best of every z derived above.
Finally, collecting together the assumptions, we get a greedy dominance relation
satisfying A3: ŷa γx {ŷa′} = a ∈ ext(ŷ) ∧ ∀a′ ∈ ext(ŷ) · c(ŷa) ≥ c(ŷa).

Notation: In what follows, A −B, where A and B are words over L, denotes
the asymmetric set difference of the two sets As and Bs where Ws is the set
of symbols contained in the word W , and

∏k
i=j Xi, for any Xj , · · · , Xk ∈ S∗,

denotes the concatenation Xj · · ·Xk. The proof of the lemma is by induction.

Lemma 1. Given a greedoid 〈S,L〉, and Aa ∈ L,AB ∈ L for some A,B ∈
S∗, a ∈ S: B can be written

∏n
i=1 biBi for some B1, B2, · · · , Bn ∈ S∗, such that

∀j ∈ [0..n) · A(
∏j

i=0 biBi)a(
∏n−1

i=j+1 Bibi)Bn ∈ L.

A4. To demonstrate A4 holds, note that if a given word ŷ can be feasibly
extended, then, from the greedy dominance relation derived above, there will
be a subspace that greedily dominates all subspaces, satisfying the second term
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of the disjunction. If no such extension exists, a feasible solution can be extracted
at any time by taking χ(z, ẑ) = (z = ẑ) and at least one of those will be optimal
in ẑ, satisfying the first term of the disjunction.

U

z^

y^

z'z

U
’

z^’

Fig. 3. A solution z in ẑ
compared with a solution
z in ẑ′

This completes the specialization of GGS by GL.
To show a strict generalization, it is sufficient to

demonstrate a problem which can be solved in GGS
theory but not using greedoids. One such problem is
the Activity Selection Problem [CLRS01],[NSC10]:

Suppose we have a set S = {a1, a2, . . . , an} of
n proposed activities that wish to use a re-
source, such as a lecture hall, which can be
used by only one activity at a time. Each ac-
tivity ai has a start time si and finish time fi

where 0 ≤ si < fi < ∞. If selected, activity
ai takes place in the half-open time interval
[si, fi). Activities ai and aj are compatible if
the intervals [si, fi) and [sj , fj) do not over-
lap. The activity selection problem is to select
a maximum-size subset of mutually compati-
ble activities.

The input is a set of activities and a solution is subset of that set. Every activity
is uniquely identified by an id and a start time (s) and finish time (f). The
output condition requires that activities must be chosen from the input set, and
that no two activities overlap. The problem specification is:

D �→ {Activity}
Activity = {id : Nat, s : Nat, f : Nat}

R �→ {Activity}
o �→ λ(x, z) · noOvp(x, z) ∧ z ⊆ x

noOvp(x, z) = ∀i, j ∈ z. i �= j ⇒ i  j ∨ j  i
i  j = i!f ≤ j!s

c �→ λ(x, z). ‖z‖

We will now show how the problem can be solved in GGS theory. Most of
the types and operators of GGS theory are straightforward to instantiate. We
will just set R̂ to be the same as R. The initial space is just the empty set.
The subspace relation 	 splits a space by selecting an unchosen activity if one
exists and adding it to the existing partial solution. The extract predicate χ can
extract a solution at any time:

R̂ �→ R
ẑ0 �→ λx. ∅
	 �→ λ(x, ẑ, ẑ′). ∃a ∈ x− ẑ · ẑ′ = ẑ ∪ {a}
χ �→ λ(z, ẑ). z = ẑ
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γ �→ λ(x, ẑ, Z). ∃ŷ, a ∈ x. Z = ss(ŷ) ∧ ẑ ∈ Z ∧ ẑ = ŷ ∪ {a} ∧ ŷ  {a}
∧∀(ŷ ∪ a′) ∈ Z. ŷ  {a′} ⇒ a!f ≤ a′!f

It can be shown that this instantiation satisfies the axioms of GGS theory
[NSC10]. To see that the problem cannot be solved with a greedoid representa-
tion, consider a set of three activities {a1, a2, a3} in which a1 overlaps with both
a2 and a3, neither of which overlap each other. Then two feasible solutions are
{a1} and {a2, a3}, but neither a2 nor a3 can be used to feasibly extend {a1},
thus failing to satisfy the Exchange axiom.

Finally, note that another way in which GGS generalizes greedoids is that
while the Greedy Algorithm requires an admissible cost function over greedoids,
GGS theory places no such restrictions a priori on the cost function.

3.3 A Program Theory for GGS

Starting from a statement of what is desired, namely to compute an optimal
feasible solution, we will first formally derive a recurrence, which is then correct
by construction. The recurrence can then be transformed into an executable
program.Define

Fgdy(z, x, ŷ) = z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}

This is a specification of a function Fgdy to be derived. optc is a subset of its
argument that is the optimal (w.r.t. the cost function c and the well-order ≥),
defined as: ∀z. z ∈ optcS = z ∈ S ∧ (∀z′ ∈ S. c(x, z) ≥ c(x, z′)). In the sequel we
will drop the subscript c when it is clear from context.

Theorem 1. Let 〈D,R, R̂, C, i, o, c, ẑ0,∈,	, χ, γ〉 be a GGS-Theory as defined
above. Then the following characteristic recurrence holds for all x and z:

Fgdy(z, x, ŷ)⇐ z ∈ optc{z |
z ∈ optc{z | e(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}

Proof. (input argument x to o and ss dropped for brevity)

Fgdy(z, x, ŷ)
= {unfold defn of Fgdy}

z ∈ opt{z | z ∈ ŷ ∧ o(z))}
= {provable from A2}

z ∈ opt{z | [χ(z, ŷ) ∨ (∃ẑ. s(x, ŷ, ẑ) ∧ z ∈ ẑ)] ∧ o(z)}
= {distributivity of set comprehension and opt}

z ∈ opt{z | z ∈ opt{z | χ(zŷ) ∧ o(z)} ∨ z ∈ opt{z | ∃ẑ ∈ ss(ŷ).z ∈ ẑ ∧ o(z)}}
⇐ {Lemma 2}
z ∈ opt{z | z ∈ opt{z | χ(z, ŷ) ∧ o(z)} ∨ (∃ẑ 	 ŷ. ẑ γx ss(ŷ) ∧ Fgdy(z, x, ẑ))}
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Lemma 2

opt{z | z ∈ opt{z | χ(z, ŷ) ∧ o(z)} ∨ z ∈ opt{z | ∃ẑ ∈ ss(ŷ).z ∈ ẑ ∧ o(z)}}
⊇
opt{z | z ∈ opt{z | χ(z, ŷ) ∧ o(z)} ∨ (∃ẑ 	 ŷ. ẑ γx ss(ŷ) ∧ Fgdy(z, x, ẑ))}

Non Triviality. Finally, to demonstrate non-triviality2 of the recurrence we
need to show that if there exists an optimal solution, then one will be found.
The following theorem ensures this.

Theorem 2

(i(x) ∧ ∃z. Fgdy(z, x, ŷ)) ⇒ ∃z ∈ optc{z |
z ∈ optc{z | (z, c, χ(z, ŷ) ∧ o(x, z))} ∨ (∃ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}

Proof.

i(x) ∧ ∃z. Fgdy(z, x, ŷ)
= {defn of Fgdy}

i(x) ∧ ∃z ∈ optc{z | z ∈ ŷ ∧ o(x, z)}
= {property of optc}

∃z. i(x) ∧ z ∈ ŷ ∧ o(x, z)
⇒ {Axioms A4, A2}

∃z. (χ(z, ŷ) ∨ (∃ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ z ∈ ẑ)) ∧ o(x, z)
= {distributivity of ∧}

(∃z. χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ 	 ŷ. z γx ss(x, ŷ) ∧ z ∈ ẑ ∧ o(x, z))
= {property of optc}

(∃z.χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ 	 ŷ.ẑ γx ss(x, ŷ) ∧ z ∈ optc{z | z ∈ ẑ ∧ o(xz)})
= {defn of Fgdy}

(∃z. χ(z, ŷ) ∧ o(x, z)) ∨ (∃z, ẑ 	 ŷ. z γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))
= {property of optc}

∃z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃z, ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))
= {distributivity of ∃}

∃z. z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)} ∨ (∃ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))
= {property of optc}

∃z ∈ optc{z | z ∈ optc{z | χ(z, ŷ) ∧ o(x, z)}
∨(∃ẑ 	 ŷ. ẑ γx ss(x, ŷ) ∧ Fgdy(z, x, ẑ))}

3.4 Abstract Program

By the application of correctness preserving transforms, the recurrence proved
above can be transformed into the abstract program shown in Alg. 1, written in
a pseudo-Haskell style. Further details are in Smith’s papers, [Smi88, Smi90].

2 This is similar but not identical to completeness. Completeness requires that every
optimal solution is found by the recurrence, which we do not guarantee.
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Algorithm 1. Program Schema for GGS Theory
--given x:D satisfying i returns optimal (wrt. cost fn c) z:R satisfying o(x,z)
function solve :: D -> {R}
solve x =

if Φ(r̂0(x)) then (gsolve x r̂0(x) {}) else {}

function gsolve :: D -> R̂ -> {R} -> {R}
gsolve x space soln =

let gsubs = {s | s∈subspaces x space ∧ ∀ss ∈ subspaces x space,s γx ss}
soln’ = opt c (soln ∪ {z | χ(z,space) ∧ o(x,z)})

in if gsubs = {} then soln’
else let greedy = arbPick gsubs in gsolve x greedy soln’

function opt :: ((D,R) -> C) -> {R̂}-> {R̂}
opt c {s} = {s}
opt c {s,t} = if c(x,s)>c(x,t) then {s} else {t}
function subspaces :: D -> R̂-> {R̂}

subspaces x r̂ = {ŝ: ŝ �x r̂∧Φ(x,ŝ)}

4 Related Work

Greedoids arose when Korte and Lovasz noticed that the hereditary property
required by matroids was stronger than necessary for the Greedy Algorithm of
Edmonds to be optimal. However, the exact characterization of the accessible set
systems for which the greedy algorithm optimized all linear functions remained
an open one until Helman et al. [HMS93] showed that a structure known as
a matroid embedding was both necessary and sufficient. Matroid embeddings
relax the Exchange axiom of greedoids but add two more axioms, so they are
simultaneously a generalization and a specialization of greedoids. We have shown
that GGS strictly generalizes greedoids.

Curtis [Cur03] has a classification scheme intended to cover all greedy algo-
rithms. Unlike Curtis, we are not attempting a complete classification . Curtis
also does not relate any of the greedy categories to matroids or greedoids. Fi-
nally, Curtis’s work is targeted specifically at greedy algorithms but for us greedy
algorithms are just a special case of a more general problem of deriving effective
global search algorithms. The same work applies to both. In the case that the
dominance relation really does not lead to a singleton choice at each split, it can
still prove to be highly effective. This was recently demonstrated on some Seg-
ment Sum problems we looked at. Although the dominance relation we derived
for those problem did not reduce to a strictly greedy choice, it was nonetheless
key to reducing the complexity of the search (the width of the search tree was
kept constant) and led to a very efficient breadth-first solution that was much
faster than comparable solutions derived by program transformation, [NC09].

Another approach has been taken by Bird and de Moor [BM93] who show
that under certain conditions a dynamic programming algorithm simplifies into
a greedy algorithm. Our characterization can be considered an analogous special-
ization of branch-and-bound. The difference is that we do not require calculation
of the entire program, but specific operators, which is a less onerous task. Also,
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as pointed out by Curtis [Cur03], the conditions required by Bird and de Moor
are not easy to meet.

Charlier [Cha95], also building on Smith’s work, proposed a new algorithm
class for greedy algorithms that directly embodied the matroid axioms. Using this
class, he was able to synthesize Kruskal’s MST algorithm and a solution to the
1/1/
∑
Ti scheduling problem. However he reported difficulty with the equivalent

of the Augmentation (comparable to the Exchange) axiom. The difficulty with
a new algorithm class is often the lack of a repeatable process for synthesizing
algorithms in that class, and this would appear to be what Charlier ran up
against. In contrast, by specializing an existing theory (GSO), we can apply all
the techniques that are available such as bounds tests, filters, propagators, etc.
We are also able to handle a wider class of problems than belong in greedoids.
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Abstract. Starting from an executable “shared axiomatization” of a
number of bi-interpretable theories (Peano arithmetic, hereditarily fi-
nite sets and functions) we introduce generic algorithms that can be
instantiated to implement the usual arithmetic operations in terms of
(purely symbolic) hereditarily finite constructs, as well as the type lan-
guage of Gödel’s System T. The Haskell code in the paper is available at
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1 Introduction

Natural numbers and finite sets have been used as sometimes competing founda-
tions for mathematics, logic and consequently computer science. The standard
axiomatization for natural numbers is provided by Peano arithmetic. Finite set
theory is axiomatized with the usual Zermelo-Fraenkel system in which the Ax-
iom of Infinity is replaced by its negation. When the axiom of ε-induction, (saying
that if properties proven on elements also hold on sets containing them, then they
hold for all finite sets) is added, the resulting finite set theory is bi-interpretable
with Peano arithmetic i.e. they emulate each other accurately through a bijective
mapping that allows transporting operations between the two sides ([1]).

This foundational convergence suggests a “shared axiomatization” of Peano
arithmetic, hereditarily finite sets and functions, to be used as a unified frame-
work for formally deriving from first principles basic programming language
concepts like numbers, sequences and sets.

We develop our “shared axiomatization” described in an executable form as
a chain of Haskell type classes connected by inheritance. Interpretations of the
“axiomatized” theories are described as instances of the type classes.

The resulting hierarchy of type classes describes incrementally common com-
putational capabilities shared by Peano natural numbers, hereditarily finite sets,
hereditarily finite functions (sections 2-6) and Gödel’s System T types (section
7) as well as a total ordering relation (section 5).
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While the existence of such a common axiomatization for theories of finite
sets and natural numbers can be seen as a consequence of the bi-interpretability
results described in [1], our executable specification with Haskell type classes
provides unique insights into the shared inductive constructions and ensures that
the computational complexity of various operations is asymptotically comparable
with that of their usual integer counterparts (as shown in section 8).

2 Sharing Axiomatizations with Type Classes

Haskell’s type classes [2,3] are a good approximation of axiom systems as they
allow one to describe properties and operations generically i.e. in terms of their
action on objects of a parametric type. Haskell’s type instances approximate in-
terpretations [1] of such axiomatizations by providing implementations of prim-
itive operations and by refining and possibly overriding derived operations with
more efficient equivalents.

We will start by defining a type class that abstracts away commonalities
between natural numbers, hereditarily finite sets and hereditarily finite functions.

2.1 The Primitive Operations

The class SharedAxioms assumes only a theory of structural equality (as imple-
mented by the class Eq in Haskell) and the Read/Show superclasses needed for
input/output.

An instance of this class is required to implement the following 5 primitive
operations:

class (Eq n,Read n,Show n)⇒SharedAxioms n where

e :: n

o_ :: n→Bool

o,i,r :: n→n

Intuitions for these operations will be provided in the form of several different
instances in the next sections, but for now let us just mention that constant
function e will be interpreted as 0, as empty set and empty sequence. This type
class also endows its instances with generic implementations of the following
derived operations:

e_,i_ :: n→Bool

e_ x = x==e
i_ x = not (o_ x | | e_ x)

While not strictly needed at this point, it is convenient also to include in the
type classSharedAxioms some additional derived operations. We first define an
object and a recognizer for what will be interpreted as 1 (and also the sequence
[[]]), the constant function u and the predicate u :

u :: n

u = o e
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u_ :: n→Bool

u_ x = o_ x && e_ (r x)

Next we implement the successor s and predecessor p functions:

s,p :: n→n

s x | e_ x = u

s x | o_ x = i (r x)

s x | i_ x = o (s (r x))

p x | u_ x = e

p x | o_ x = i (p (r x))

p x | i_ x = o (r x)

It is convenient at this point, as we target a diversity of interpretations mate-
rialized as Haskell instances, to provide a polymorphic converter between two
different instances of the type class SharedAxioms as well as their associated
lists, implemented by structural recursion over the representation to convert.
The function view allows importing a wrapped object of a different SharedAx-
ioms instance, generically.

view :: (SharedAxioms a,SharedAxioms b)⇒a→b

view x | e_ x = e

view x | o_ x = o (view (r x))

view x | i_ x = i (view (r x))

A generator for the infinite stream starting with k is obtained using s as follows:

allFrom k = k : allFrom (s k)

2.2 A Performance Witness Instance: Arithmetic as Usual

And for the reader curious by now about how this maps to “arithmetic as usual”,
here is an instance built around the (arbitrary length) Integer type, also usable
as witness on the time/space complexity of our operations.

newtype N = N Integer deriving (Eq,Show,Read)

instance SharedAxioms N where

e = N 0

o_ (N x) = odd x

o (N x) = N (2∗x+1)
i (N x) = N (2∗x+2)
r (N x) | x/=0 = N ((x-1) ‘div‘ 2)

on which one can try out

∗Shared> (o . i . o) (N 0)

N 9

∗Shared> (r . r . r) (N 9)

N 0
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2.3 The “Reference” Instance: Peano Arithmetic

It is important to observe at this point that Peano arithmetic is also an instance
of the class SharedAxioms i.e. that the class can be used to derive an “axiom-
atization” for Peano arithmetic through a straightforward mapping of Haskell’s
function definitions to axioms expressed in predicate logic. Showing equivalence
of behavior with this “reference instance” on various arithmetic operations can
be seen as a proof of correctness of their respective algorithms.

data Peano = Zero |Succ Peano deriving (Eq,Show,Read)

instance SharedAxioms Peano where

e = Zero

o_ Zero = False

o_ (Succ x) = not (o_ x)

o x = Succ (twice x) where

twice Zero = Zero

twice (Succ x) = Succ (Succ (twice x))

i x = Succ (o x)

r (Succ Zero) = Zero

r (Succ (Succ Zero)) = Zero

r (Succ (Succ x)) = Succ (r x)

And one can also try out, at this point, the polymorphic instance converter view:

∗Shared> view (Succ (Succ Zero)) :: N

N 2

∗Shared> view (N 2) :: Peano

Succ (Succ Zero)

∗Shared> Succ (view (N 5))

Succ (Succ (Succ (Succ (Succ (Succ Zero)))))

3 Computing with Hereditarily Finite Sets

We will now provide an instance showing that our “axiomatization” covers the
theory of hereditarily finite sets (assuming, of course, that extensionality, com-
prehension, regularity, ε-induction etc. are implicitly provided by type classes like
Eq and implementation of recursion in the underlying programming language).

Hereditarily finite sets are built inductively from the empty set by adding
finite unions of existing sets at each stage. We first define a tree datatype S:

data S=S [S] deriving (Eq,Read,Show)

where the empty set is denoted S []. To accurately represent sets, the type S
would require a type system enforcing constraints on type parameters, saying
that all elements covered by the definition are distinct and no repetitions occur in
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any list of type [S]. We will assume this and similar properties of our datatypes,
when needed, from now on.

Proposition 1. Hereditarily finite sets can do arithmetic as instances of the class
SharedAxioms by implementing successor and predecessor functions s and p.

instance SharedAxioms S where

e = S []

o_ (S (S []:_)) = True

o_ _ = False

o (S xs) = s (S (map s xs))

i = s . o

Note that the o operation is implemented by applying s to each branch of the
tree. We will now implement s and p as well as an operation r that, as we will
see later, reverses the action of both o and i.

s (S xs) = S (hLift (S []) xs) where

hLift k [] = [k]

hLift k (x:xs) | k==x = hLift (s x) xs

hLift k xs = k:xs

p (S xs) = S (hUnLift xs) where

hUnLift ((S []):xs) = xs

hUnLift (k:xs) = hUnLift (k’:k’:xs) where k’= p k

r (S xs) | o_ (S xs) = S (map p ys) where (S ys)=p (S xs)

r x = r (p x)

First note that successor and predecessor operations s,p are overridden and that
the r operation is expressed in terms of p, as o and i were expressed in terms of
s. Next, note that the map combinators and the auxiliary functions hLift and
hUnlift are used to delegate work between successive levels of the tree defining
a hereditarily finite set.

To summarize, let us observe that the successor and predecessor operations
s,p at a given level are implemented through iteration of the same at a lower
level and that the “left shift” operation implemented by o,i results in initiating
s operations at a lower level. Thus the total number of operations is within a
constant factor of the size of the trees.

Finally, let us verify that these operations mimic indeed their more common
counterparts on type N.

∗Shared> view (N 42) :: S

S [S [S []],S [S [],S [S []]],S [S [],S [S [S []]]]]

∗Shared> p it

S [S [],S [S [],S [S []]],S [S [],S [S [S []]]]]

∗Shared> view it :: N

N 41
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∗Shared> view (N 5) :: S

S [S [],S [S [S []]]]

∗Shared> o it

S [S [],S [S []],S [S [],S [S []]]]

∗Shared> view it :: N

N 11

A proof by induction that types N and S implement indeed the same successor
and predecessor operation as the instance Peano can be carried out with a proof
assistant like Coq or ACL2.

Let us note that this implementation of the class SharedAxioms implicitly uses
the Ackermann interpretation [4] of Peano arithmetic in terms of the theory of
hereditarily finite sets, i.e. the natural number associated to a hereditarily finite
set is given by the function

f(x) = if x = ∅ then 0 else
∑

a∈x 2f(a)

Let us summarize what’s unusual with instance S of the class SharedAxioms:
it shows that successor and predecessor operations can be performed with hered-
itarily finite sets playing the role of natural numbers. As natural numbers and
finite ordinals are in a one-to-one mapping, this instance shows that hereditarily
finite sets can be seen as finite ordinals directly, without using the “computa-
tionally explosive” von Neumann construction (which defines ordinal n as the
set {0, 1, . . . , n− 1}).

We will now provide an instance defined in terms of a more efficient heredi-
tarily finite construct.

4 Computing with Hereditarily Finite Functions

Hereditarily finite functions, described in detail in [5,6], extend the inductive
mechanism used to build hereditarily finite sets to finite functions on natural
numbers (conveniently represented as finite sequences i.e. lists of natural numbers
in Haskell). They are expressed using a similar datatype, denoted F here. The key
difference is that, in this case, order is important, and that identical elements can
occur at each level. Hereditarily finite functions can also be seen as compressed
encodings of hereditarily finite sets, where, at each level, only increments between
elements are represented. The first set of operations are similar to the ones on
the type S:

data F = F [F] deriving (Eq,Read,Show)

instance SharedAxioms F where

e= F []

o_ (F (F []:_))=True
o_ _ = False

o (F xs) = F (e:xs)
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i = s . o

r (F (x:xs)) | e_ x = F xs

r x = r (p x)

The code for s and p is also similar to the one given for hereditarily finite sets,
except that this time s and p are co-recursive.

s (F xs) = F (hinc xs) where

hinc ([]) = [e]

hinc (x:xs) | e_ x= (s k):ys where (k:ys)=hinc xs

hinc (k:xs) = e:(p k):xs

p (F xs) = F (hdec xs) where

hdec [x] | e_ x= []

hdec (x:k:xs) | e_ x= (s k):xs

hdec (k:xs) = e:(hdec ((p k):xs))

Proposition 2. Hereditarily finite functions can do arithmetic as instances of the
class SharedAxioms by implementing successor/predecessor functions s and p.

As with the type S, the total number of operations is proportional to the size of
the trees. Given that F-trees are significantly smaller than S-trees, various opera-
tions will perform significantly faster, as in this representation only “increments”
or “decrements” from one subtree to the next are computed (functions hinc and
hdec). One can also observe that parallelization of the algorithm can be achieved
by adapting parallel prefix sum computations as in [7]. A few examples follow:

∗Shared> view (N 42) :: S

S [S [S []],S [S [],S [S []]],S [S [],S [S [S []]]]]

∗Shared> view (N 42) :: F

F [F [F []],F [F []],F [F []]]

∗Shared> s it

F [F [],F [],F [F []],F [F []]]

∗Shared> view it :: N

N 43

∗Shared> view (N 5) :: F

F [F [],F [F []]]

∗Shared> view (o it) :: N

N 11

As a side note, let’s observe that a parenthesis language representation1 of hered-
itarily finite functions provides a self delimiting prefix code and the Kraft inequal-
ity holds for any given encoding, as well as, recursively, for each of its “parts”.
This could make this encoding interesting for both code and data representations
in algorithmic information theory [8,9,10].

1 Obtained, for instance, by deleting all F symbols, spaces and commas in the printed
form of a hereditarily finite function.
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5 Defining a Total Order

We will define next a well-founded total order relation, matching the natural
order induced by repeated application of the successor function.

class (SharedAxioms n) ⇒ SharedOrdering n where

Let the length of an object be the number of i and o operations used to build
it starting from e (or, equivalently, the number of applications of r needed to
reduce it to e). Efficient comparison uses the fact that:

Proposition 3. With our representation only sequences of equal lengths can be
equal.

We start by comparing lengths:

lcmp :: n→n→Ordering

lcmp x y | e_ x && e_ y = EQ

lcmp x y | e_ x && not(e_ y) = LT

lcmp x y | not(e_ x) && e_ y = GT

lcmp x y = lcmp (r x) (r y)

Comparison can now proceed by case analysis, the interesting case being when
lengths are equal (function samelen cmp):

cmp :: n→n→Ordering

cmp x y = ecmp (lcmp x y) x y where

ecmp EQ x y = samelen_cmp x y

ecmp b _ _ = b

samelen_cmp :: n→n→Ordering

samelen_cmp x y | e_ x && e_ y = EQ

samelen_cmp x y | e_ x && not(e_ y) = LT

samelen_cmp x y | not(e_ x) && e_ y = GT

samelen_cmp x y | o_ x && o_ y = samelen_cmp (r x) (r y)

samelen_cmp x y | i_ x && i_ y = samelen_cmp (r x) (r y)

samelen_cmp x y | o_ x && i_ y =
downeq (samelen_cmp (r x) (r y)) where

downeq EQ = LT

downeq b = b

samelen_cmp x y | i_ x && o_ y =
upeq (samelen_cmp (r x) (r y)) where

upeq EQ = GT

upeq b = b

Finally, boolean comparison operators are defined as follows:

lt,gt,eq :: n→n→Bool

lt x y = LT==cmp x y



On Arithmetic Computations with Hereditarily Finite Sets 375

gt x y = GT==cmp x y

eq x y = EQ==cmp x y

After adding the instances

instance SharedOrdering N

instance SharedOrdering Peano

instance SharedOrdering S

instance SharedOrdering F

one can see that all operations extend naturally:

∗Shared> lt (N 2009) (N 2010)

True

∗Shared> lt (S []) (S [S [],S []])

True

The last operation also shows that:

Proposition 4. We have a well-founded total order on hereditarily finite sets
without needing the von Neumann ordinal construction used in [1] to complete
the bi-interpretation from hereditarily finite sets to natural numbers.

This replicates a recent result described in [11] where a lexicographic ordering
is used to simplify the proof of bi-interpretability of [1].

6 Arithmetic Operations

Our next refinement adds key arithmetic operations in the form of a type class
extending SharedAxioms. We start with addition (a) and difference (d):

class (SharedOrdering n) ⇒ SharedArithmetic n where

a,d :: n→n→n

a x y | e_ x = y

a x y | e_ y = x

a x y | o_ x && o_ y = i (a (r x) (r y))

a x y | o_ x && i_ y = o (s (a (r x) (r y)))

a x y | i_ x && o_ y = o (s (a (r x) (r y)))

a x y | i_ x && i_ y = i (s (a (r x) (r y)))

d x y | e_ x && e_ y = e

d x y | not(e_ x) && e_ y = x

d x y | not (e_ x) && x==y = e

d z x | i_ z && o_ x = o (d (r z) (r x))

d z x | o_ z && o_ x = i (d (r z) (s (r x)))

d z x | o_ z && i_ x = o (d (r z) (s (r x)))

d z x | i_ z && i_ x = i (d (r z) (s (r x)))

Proposition 5. Addition a and subtraction d can be implemented generically,
with asymptotic complexity proportional to the size of the operands, for natural
numbers, hereditarily finite sets and hereditarily finite functions.
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Next, we define multiplication.

m :: n→n→n -- multiplication

m x _ | e_ x = e

m _ y | e_ y = e

m x y = s (m0 (p x) (p y)) where

m0 x y | e_ x = y

m0 x y | o_ x = o (m0 (r x) y)

m0 x y | i_ x = s (a y (o (m0 (r x) y)))

db,hf :: n→n -- double and half

db = p . o

hf = r . s

Exponentiation by squaring follows - easier for powers of two (exp2), then the
general case (pow):

exp2 :: n→n -- power of 2

exp2 x | e_ x = u

exp2 x = db (exp2 (p x))

pow :: n→n→n -- power y of x

pow _ y | e_ y = u

pow x y | o_ y = m x (pow (m x x) (r y))

pow x y | i_ y = m (m x x) (pow (m x x) (r y))

After defining instances

instance SharedArithmetic N

instance SharedArithmetic Peano

instance SharedArithmetic S

instance SharedArithmetic F

operations can be tested under various representations

∗Shared> a (Succ Zero) (Succ Zero)

Succ (Succ Zero)

∗Shared> a (N 32) (N 10)

N 42

∗Shared> view (N 6) :: F

F [F [F []],F []]

∗Shared> m it it

F [F [F [F []]],F [F [F []]]]

∗Shared> view it :: N

N 36

∗Shared> pow (N 6) (N 10)

N 60466176

∗Shared> pow (view (N 6)::F) (view (N 10) ::F)

F [F [F [F []],F [F []]],F [F [F []]],F [F []],F [F []],
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F [F []],F [],F [F [F []]],F [],F []]

∗Shared> view it::N

N 60466176

7 Computing with Gödel’s System T Types

We will show here how our shared axiomatization framework can be extended
with a new, somewhat unusual instance, that brings the ability to do arith-
metic computations with an important ancestor of modern type systems: Gödel’s
System T.

Definition 1. In Gödel’s System T [12] a type is either the basic type t0 or
t1 → t2 where t1 and t2 are types.

The basic type t0 is usually interpreted as the type of natural numbers. We will
show now that natural numbers can be emulated directly with types, by using a
single constant T as basic type, (seen as representing 0) and that all the benefits
of our shared axiomatization framework (including views as sets or sequences)
can be extended to System T types.

First, note that, guided by the Catalan family isomorphism between rooted
ordered trees and rooted ordered binary trees2 we can bring with a functor
defined from hereditarily finite sequences to binary trees the definitions of s, p
and r into corresponding definitions in the language of System T types.

First, we define the data type for System T objects:

infixr 5 :→

data T = T | T :→ T deriving (Eq, Read, Show)

As in the case of hereditarily finite sets and functions we will start by defining
the first 5 primitive operations:

instance SharedAxioms T where

e = T

o_ (T:→_) = True

o_ x = False

o x = T :→ x

i = s . o

r (T:→y) = y

r (x:→y) = p (p x:→y)

Note that the successor and predecessor functions s and p are used in the defi-
nition of i and r. We implement them as overrides for s and p

2 That manifests itself in languages like Prolog or LISP as the dual view of lists as a
representation of sequences or binary CONS-cell trees.
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s T = T:→T

s (T:→y) = s x:→y’ where x:→y’ = s y

s (x:→y) = T:→(p x:→y)

p (T:→T) = T

p (T:→(x:→y)) = s x:→y

p (x:→y) = T:→p (p x:→y)

Note that, as in the case of similar operations in sections 3 and 4, one could have
simply defined two auxiliary functions s’ and p’ to be used in implementing i,
r and then reuse the generic definition of s and p given in section 2, to ensure
that the instance T matches formally the concept of interpretation of our axioms
expressed in terms of the 5 primitive operations e, o, o , i, r.

After observing that z = x :→ y if and only if (under a natural number
interpretation) z = 2x(2y + 1), it can be proven by structural induction that:

Proposition 6. The Gödel System T types, as represented by the data type T,
implement the same successor and predecessor operation as the instance Peano.

We are ready now to turn System T types into everything else (natural numbers,
finite sets, finite functions)

instance SharedOrdering T

instance SharedArithmetic T

We can now try out the stream generator allOf providing a recursive enumer-
ation of all types:

∗Shared> take 7 (allFrom T)

[ T,

T :→ T,

(T :→ T) :→ T,

T :→ (T :→ T),

((T :→ T) :→ T) :→ T,

T :→ ((T :→ T) :→ T),

(T :→ T) :→ (T :→ T) ]

Arithmetic and set computations, operating directly on types, are now derived
automatically:

∗Shared> | o_ x

∗Shared> let three=s two

∗Shared> two

(T :→ T) :→ T

∗Shared> three

T :→ (T :→ T)

∗Shared> m two three

(T :→ T) :→ (T :→ T)

∗Shared> view it :: N

N 6

∗Shared> pow two (pow three two)

(T :→ (((T :→ T) :→ T) :→ T)) :→ T
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∗Shared> view it :: N

N 512

∗Shared> pow (N 2) (pow (N 3) (N 2))

N 512

8 A Performance Test: The Collatz Conjecture

We now use a variant of the 3x+1 problem / Collatz conjecture / Syracuse func-
tion3 [14] (see also http://en.wikipedia.org/wiki/Collatz_conjecture) to
compare the relative performance of various instances and to test that our com-
putations perform within their expected complexity bounds. It is easy to show
that the Collatz conjecture is true if and only if the function nsyr, implementing
the n-th iterate of the Syracuse function, always terminates:

syracuse n = trim (a (m six n) four) where

four = s (s (s (s e)))

six = s (s four)

trim xs | i_ xs = trim (hf xs)

trim xs = hf xs

nsyr n | e_ n = [e]

nsyr n = n : nsyr (syracuse n)

The first 8 sequences are computed as follows:

∗Shared> map (nsyr.N) [0..7]

[[N 0],[N 1,N 2,N 0],[N 2,N 0],[N 3,N 5,N 8,N 6,N 2,N 0],

[N 4,N 3,N 5,N 8,N 6,N 2,N 0],[N 5,N 8,N 6,N 2,N 0],

[N 6,N 2,N 0],[N 7,N 11,N 17,N 26,N 2,N 0]]

The function sumsyr forces the evaluation of the function nsyr for k successive
numbers starting from n and returns the sum of the length of the outputs i.e.
respectively 7995, 18406, 25243.

sumsyr :: (SharedArithmetic a) ⇒ Int → a → Int

sumsyr k n = sum (map (length.nsyr) (take k (allFrom n)))

bitsize T N F S
31 4173 4607 8685 18547
64 15414 17011 31857 113103
97 30854 33761 64060 331107

Fig. 1. Timings for T, N, F, S in ms

Fig. 1 shows timings for sumsyr 100 on views of 123456780 as types N,T,F,S,
and then the same digits repeated twice and three times, for data provided
3 Sequence A173732 in [13].

http://en.wikipedia.org/wiki/Collatz_conjecture
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by various instances of SharedAxioms. They show low polynomial growth in the
bitsize of the inputs for the respective instances. Timings also indicate significant
gains for hereditarily finite functions (col. F) vs. hereditarily finite sets (col. S).
Surprisingly, computations on binary trees representing System T types (col. T)
turn out to be slightly faster than those on integers of type N.

9 Related Work

The techniques described in this paper originate in the data transformation
framework described in [15,5,6,16]. The main new contribution is that while our
previous work can be seen as “an existence proof” that, for instance, arithmetic
computations can be performed with symbolic objects like hereditarily finite sets,
here we show it constructively. Moreover, we lift our conceptual framework to a
polymorphic axiomatization which turns out to have as interpretations (instances
in Haskell parlance) natural numbers, hereditarily finite sets and functions, Sys-
tem T types.

Natural number encodings of hereditarily finite sets (that have been the main
inspiration for our concept of hereditarily finite functions) have triggered the in-
terest of researchers in fields ranging from Axiomatic Set Theory to Foundations
of Logic [17,1,18].

An emulation of Peano and conventional binary arithmetic operations in Pro-
log, is described in [19]. Their approach is similar as far as a symbolic represen-
tation is used. The key difference with this paper is that our operations work on
tree structures, and as such, they are not based on previously known algorithms.
Our tree-based algorithms are also genuinely parallelizable as shown in [7].

Binary number-based axiomatizations of natural number arithmetic are likely
to be folklore, but having access to the the underlying theory of the calculus
of constructions [20] and the inductive proofs of their equivalence with Peano
arithmetic in the libraries of the Coq [21] proof assistant has been particularly
enlightening to the author. On the other hand we have not found in the literature
any such axiomatizations in terms of hereditarily finite sets or hereditarily finite
functions, as described in this paper.

10 Conclusion

We have described, in the form of a literate Haskell program, a few unusual
algorithms expressing arithmetic computations in terms of “symbolic structures”
like hereditarily finite sets, hereditarily finite functions and System T types.

Besides possible practical applications of our algorithms to symbolic and/or
arbitrary length integer arithmetic packages, our type classes based “shared ax-
iomatization” technique can be seen as a framework that unifies formal specifi-
cation of fundamental mathematical concepts in a directly executable form.
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Abstract. The potential of linear logic in facilitating reasoning on re-
source usage has long been recognized. However, convincing uses of
linear types in practical programming are still rather rare. In this paper,
we present a general design to effectively support practical program-
ming with linear types. In particular, we introduce and then formalize a
modality, which we refer to as the sharing modality, in support of shar-
ing of linear resources (with no use of locks). We develop the underlying
type theory for the sharing modality and establish its soundness based
on a notion of types with effects. We also point out an intimate relation
between this modality and the issue of code reentrancy. In addition, we
present realistic examples to illustrate the use of sharing modality, which
are verified in the programming language ATS and thus provide a solid
proof of concept.

1 Introduction

Although linear logic arose historically from domain theory [6], its potential
in facilitating reasoning on resource usage has been recognized since the very
beginning of its invention. For instance, Asperti showed an interesting way to
describe Petri nets [1] in terms of linear logic formulas. In type theory, we have
so far seen a large body of research on using linear types to facilitate memory
management (e.g. [16,4,15,10,8,7,17]).

When programming with linear resources, we often need to thread these re-
sources through functions . Suppose that we have a linear array A of type
larray(T ), where T is the type for the elements stored in A. In order to use
linear arrays, we need the following access functions:

lsub : larray(T )⊗ int → larray(T )⊗ T
lupdate : larray(T )⊗ int ⊗ T → larray(T )⊗ 1

where we use ⊗ for linear conjunction and 1 for the unit type. Intuitively, the
subscripting function on a linear arrayA needs to take A and an index i and then
return both A and the content stored in the cell indexed by i (so that A is still
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available for subsequent uses). The same holds for the update function lupdate
as well. With linearity, it can be guaranteed that there is exactly one access path
for each linear resource so that the state of the resource can be soundly reasoned
about (e.g. linear arrays can be safely freed). However, the need for threading
linear resources can often be burdensome or even impractical (in cases where a
large number of resources are involved).

The subscripting function on a sharable array1 as is supported in languages
such as ML takes the array and an index and then returns only the content
stored in the cell indexed by i. Intuitively, a sharable array is just a linear array
that can be shared (in some restricted manner if necessary). However, we find
it highly challenging to properly explain in a type theory how a sharable array
can be implemented on top of a linear array. In most safe languages, arrays are
treated as an abstract data structure. For instance, there is an abstract type
constructor array in ML that takes a type T to form the type array(T ) for
sharable arrays in which the stored elements are of type T , and the following
functions are provided for creating (and initializing as well), subscripting and
updating arrays, respectively:

array : int ∗ T → array(T )
sub : array(T ) ∗ int → T

update : array(T ) ∗ int ∗ T → 1

However, the type constructor array cannot be defined in ML and the functions
array, sub and update have to be implemented in other (unsafe) languages
such as C or assembly and then assumed to possess the types assigned to them.
Though simple and workable, this approach to supporting arrays in safe lan-
guages is evidently uninspiring and unsatisfactory when type theory is of the
concern. Also, this approach makes it difficult, if not entirely impossible, to di-
rectly manipulate memory at low level, which is often indispensable in systems
programming.

We can also see the need for sharable data structures from a different angle.
As a simple but crude approximation, let us assume that the memory alloca-
tion/deallocation functions malloc and free are assigned the following types:

malloc : int → larray(top) free : larray(top) → 1

where we use top for the top type, that is, every type is a subtype of top.
Clearly, this type assignment for malloc and free relies on the assumption that
the free list2 used in implementing these functions is shared. Otherwise, malloc
and free need to be assigned the following types:

malloc : freelist ⊗ int → freelist ⊗ larray(top)
free : freelist ⊗ larray(top) → freelist ⊗ 1

where we use freelist as a type for the (linear) free list. This simply means
that the free list must be threaded through every client program that makes use
1 Note that a sharable array is a mutable data structure and it should not be confused

with a functional array (e.g. based on a Braun tree).
2 A free list is a data structure commonly used in implementing malloc and free for

the purpose of maintaining a list of available memory blocks.
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of either malloc or free, which makes it rather impractical to construct critical
system libraries such as memory allocator in this manner.

Ideally, resources should be manipulated at low-level where linear types are
used to reason about resource usage. While, in order to be practical, it is desirable
to make linear resources sharable at some point as shown by the above motivating
examples. Apparently, a naive treatment which simply turns linear resources to
nonlinear ones without any restrictions does not work. If unrestricted access
to shared resources were allowed, the presence of alias could easily break type
soundness.

In this paper, we develop a type system where linear types are available for
safe programming with resources. In order to support safe resource sharing, we
introduce a modality that intuitively means a shared resource of some linear type
can be borrowed only if it is guaranteed that another resource of the same linear
type is to be returned. The primary contribution of the paper lies in the iden-
tification and then the formalization of this modality through a notion of types
with effects [9], where some interesting as well as challenging technical issues
are addressed. As an application, we demonstrate that various features for safe
memory manipulation at low level (including memory allocation/initialization
and pointer arithmetic) can be effectively supported in the type system we de-
velop. We show, for example, safe implementations of sharable arrays based on
primitive memory operations, and we believe that such implementations are done
(as far as we know) for the first time in a programming language. In addition, we
also point out an intimate relation between this modality and the issue of code
reentrancy, providing a formal account for code reentrancy as well as a means
that can prevent non-reentrant functions like malloc and free from being called
reentrantly (e.g., in threads).

The type system we ultimately develop involves a long line of research on de-
pendent types [21,18], linear types [22], programming with theorem proving [3],
and type theory for resource sharing. To facilitate understanding, we give a de-
tailed presentation of a simple but rather abstract type system that supports
resource sharing, and then outline extensions of this simple type system with
advanced types and programming features. The interesting and realistic exam-
ples we show all involve dependent types and possibly polymorphic types. In
addition, they all rely on the feature of programming with theorem proving.

We organize the rest of the paper as follows. In Section 2, we present a lan-
guage L0 with a simple linear type system, setting up some machinery for further
development. We extend L0 to L� with a modality in Section 3 to address the
issue of resource sharing in programming. Furthermore, we extend L� to L∀,∃

� in
Section 4 by incorporating universally as well as existentially quantified types,
preparing to support direct memory manipulation at low level. In Section 5, we
demonstrate through several interesting and realistic examples that the devel-
oped type theory can be effectively put into practice. In Section 6, we discuss how
the code reentrancy problem is addressed in the presence of concurrency. Lastly,
we mention some related work and conclude. In addition, we list the complete
typing rules and more code examples in the appendix to facilitate assessment.
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types T ::= δi | T1 ∗ T2 | VT1 →i VT2 |
viewtypes VT ::= δl | T | VT1 ⊗ VT2 | VT1 →l VT2

expressions e ::= c(e1, . . . , en) | r | xf | if(e1, e2, e3) | fst(e) |
snd(e) | 〈e1, e2〉 | lam x. e | e1(e2) | fix f. v |
let 〈x1, x2〉 = e1 in e2 end

values v ::= cc(v) | r | x | 〈v1, v2〉 | lam x. e
intuitionistic. exp. ctx. Γ ::= ∅ | Γ, xf : T
linear. exp. ctx. Δ ::= ∅ | Δ, x : VT

Fig. 1. The syntax of L0

2 The Starting Point: L0

We first present a language L0 with a simple linear type system, using it as
a starting point to set up some machinery for further development. We do not
address the issue of resource sharing in L0, which is to be done at the next stage.
The syntax of the language L0 is given in Figure 1.

We use c for constants, which include both constant functions cf and constant
constructors cc, and r for resources. Note that we treat the resources in L0
abstractly. For instance, when dealing with memory manipulation at low level,
we introduce resources of the form v@L, where v and L range over values and
memory addresses (represented as natural numbers), respectively. Intuitively,
v@L means that the value v is stored at the address L. For a simple and clean
presentation, we assume in this paper that values are properly boxed and can
thus be stored in one memory unit. In practice, we can and do handle unboxed
values without much complication.

We use T and VT for types and viewtypes, respectively, and δi and δl for base
types and base viewtypes respectively, where the superscript i means intuition-
istic while l means linear. For instance, bool and int are base types for booleans
and integers while int@L is a base viewtype for the resource v@L given v is of
type int.

Note that a type is always considered a viewtype. At this point, we emphasize
that →l should not be confused with the linear implication � in linear logic.
Given VT1 →l VT2, the viewtype constructor →l simply indicates that VT1 →l

VT2 itself is a viewtype. The meaning of various forms of types and viewtypes is
to be made clear and precise when the rules are presented for assigning viewtypes
to expressions in L0.

We assume the existence of a signature SIG that assigns each resource r a
base viewtype δl and each constant c a constant type (c-type, for short) of the
form (VT1, . . . ,VTn) ⇒ VT (VT must be either δi or δl if c is a constructor),
where n is the arity of c. For instance, the truth values true and false are assigned
the c-type () ⇒ bool.

The expressions e and values v in L0 are mostly standard. We use x for lam-
variables and f for fix-variables, where the former is a value but the latter is not,
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and write xf for either x or f . We may write v for a (possibly empty) sequence
of values.

We use R for finite multisets of resources. Given R1 and R2, we write R1*R2
for the multiset union of R1 and R2. Given an expression e, we use ρ(e) for the
multiset of resources contained in e, which is defined as follows:

ρ(c(e1, . . . , en)) = ρ(e1) 	 . . . 	 ρ(en) ρ(r) = {r}
ρ(x) = ∅ ρ(if(e1, e2, e3)) = ρ(e1) 	 ρ(e2)

ρ(let 〈x1, x2〉 = e1 in e2 end) = ρ(e1) 	 ρ(e2) ρ(lam x. e) = ρ(e)
ρ(e1(e2)) = ρ(e1) 	 ρ(e2) . . . = . . .

In the case where e = if(e1, e2, e3), the type system of L0 is to enforce that
ρ(e2) = ρ(e3) if e can be assigned a viewtype, and this is the reason for defining
ρ(if(e1, e2, e3)) as ρ(e1) * ρ(e2).

We emphasize that resources are not necessarily preserved under evaluation.
It is possible for an expression containing resources to be assigned a type or
an expression containing no resources to be assigned a viewtype. For instance,
suppose that alloc is a constant function that takes a natural number as its
argument and returns some resources. Then the expression alloc(1) contains no
resources but it cannot be assigned a type (as the evaluation of alloc(1) returns
a value containing a resource v@L for some value v and address L).

It is clear that we cannot combine resources arbitrarily. For instance, it is
impossible to have resources v1@L and v2@L, simultaneously. We define ST as
a collection of finite multisets of resources and assume that ∅ ∈ ST and ST is
closed under subset relation, that is, for any R1 and R2, R2 ∈ ST if R1 ∈ ST
and R2 ⊆ R1, where ⊆ is the subset relation on multisets. We say that R is
a valid multiset of resources if R ∈ ST holds. Note that the definition of ST
is considered abstract, which is not specific to the language. For instance, if
the type system is used for reasoning about memory manipulation, ST can be
defined as the collection of all valid memory states.

Dynamic Semantics. The definition of evaluation contexts E in L0 is given
as follows:

E ::= [] | cc(v1, . . . , vi−1, E, ei+1, . . . , en) | if(E, e1, e2) | 〈E, e〉 | 〈v, E〉 |
fst(E) | snd(E) | let 〈x1, x2〉 = E in e end | E(e) | v(E)

We are to use evaluation contexts to define the (call-by-value) dynamic semantics
of L0. There are two forms of redexes in L0: pure redexes and ad hoc redexes.
The pure redexes and their reducts are defined as follows:

– if(true, e1, e2) is a pure redex, and its reduct is e1.
– if(false, e1, e2) is a pure redex, and its reduct is e2.
– let 〈x1, x2〉 = 〈v1, v2〉 in e end is a pure redex, and its reduct is e[x1, x2 
→ v1, v2].
– fst(〈v1, v2〉) is a pure redex, and its reduct is v1.
– snd(〈v1, v2〉) is a pure redex, and its reduct is v2.
– (lam x. e)(v) is a pure redex, and its reduct is e[x 
→ v].
– fix f. v is a pure redex, and its reduct is v[f 
→ fix f. v].

Evaluating calls to constant functions is of particular importance in L0 as it
may involve resource generation and consumption. Assume that cf is a con-
stant function of arity n. The expression cf (v1, . . . , vn) is an ad hoc redex if
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cf is defined at v1, . . . , vn, and any value v of cf (v1, . . . , vn) is a reduct of
cf (v1, . . . , vn). For instance, alloc is a function that takes a natural number
n to return a pointer to some address L associated with a tuple of resources
〈v0@L, v1@L+ 1, . . . , vn−1@L+ n− 1〉 for some values v0, v1, . . . , vn−1, that is,
alloc(n) reduces to a pointer that points to n consecutive memory units contain-
ing some unspecified values.

Definition 1. Given expressions e1 and e2, we write e1 ↪→ e2 if ρ(e1) ∈ ST
holds, e1 = E[e] and e2 = E[e′] for some evaluation context E and expressions
e, e′ such that e is a redex, e′ is a reduct of e and ρ(E[e′]) ∈ ST holds.

As usual, we use ↪→∗ for the reflexive and transitive closure of ↪→. We say that
e reduces to e′ purely if the redex being reduced is pure. A type system is to
be developed to guarantee that resources are preserved under pure reduction,
that is, ρ(e) = ρ(e′) whenever e reduces to e′ purely. However, resources may
be generated as well as consumed when ad hoc reduction occurs. Suppose that
e1 = E[alloc(1)] and v@L occurs in E. Though 〈v@L,L〉 is a reduct of alloc,
we cannot allow e1 ↪→ E[〈v@L,L〉] as the resource v@L occurs repeatedly in
E[〈v@L,L〉]. This is precisely the reason that we require ρ(e2) ∈ ST whenever
e1 ↪→ e2 holds.

Static Semantics. An intuitionistic expression context Γ can be treated as
a finite mapping that maps xf to T for each declaration xf : T in Γ , and
we use dom(Γ ) for the domain of Γ . A linear expression context Δ can be
treated in the same manner. Given an intuitionistic expression context Γ and
a linear expression context Δ such that dom(Γ ) ∩ dom(Δ) = ∅, we can form
an expression context (Γ ;Δ). Clearly, we can also treat expression contexts as
finite mappings. Given Γ and Δ, we use (Γ ;Δ), x : VT for either (Γ ;Δ,x : VT)
or (Γ, x : VT;Δ) (if VT is actually a type).

We use Γ ;Δ � e : VT for a judgment stating that the viewtype VT can
be assigned to e under (Γ ;Δ). The rules for assigning viewtypes to expressions
in L0 are largely standard thus omitted. We provide some explanation for the
following two:

Γ ; Δ, x : VT1 � e : VT2

Γ ; Δ � lam x. e : VT1 →l VT2
(ty-→l-intr)

Γ ; ∅, x : VT1 � e : VT2 ρ(e) = ∅
Γ ; ∅ � lam x. e : VT1 →i VT2

(ty-→i-intr)

Given two viewtypes VT1 and VT2, VT1 →l VT2 is a viewtype and VT1 →i VT2
is a type. The rules (ty-→l-intr) and (ty-→i-intr) assign a viewtype and type
to a function, respectively; the function can use its argument many times if
VT1 is a type or exactly once if VT1 is viewtype. Intuitively, when the rule
(ty-→i-intr) is applied, the body of the involved function must contain no
resources as the function is a value to which a type (not just a viewtype) is
assigned.

Soundness. As usual, the soundness of the type system of L0 rests on the
following two theorems. The detailed proof can be found in [13].

Theorem 1 (Subject Reduction). Assume that ∅; ∅ � e : VT is derivable,
ρ(e) ∈ ST and e ↪→ e′. Then ∅; ∅ � e′ : VT is also derivable and ρ(e′) ∈ ST.
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Theorem 2 (Progress). Assume that ∅; ∅ � e : VT is derivable and ρ(e) ∈ ST.
Then either e is a value or e ↪→ e′ holds for some expression e′.

3 Supporting Resource Sharing: L�

The need for resource sharing occurs immediately in practice. As mentioned in
Section 1, we must employ some form of resource sharing when implementing
sharable data structures. We introduce a form of modality �, which we refer
to as sharing modality, to support resource sharing. We first give some intuitive
but rather informal explanation about the expected use of �. Given a value v
of viewtype VT, we can imagine that a box is created to store the value v. We
use h for the handle of the box, which is assigned the type �VT and can thus
be duplicated. The unary type constructor �, which takes a viewtype to form a
type, imposes the following requirement on a program that attempts to access
the value stored in the box through the handle h of a box: the program can take
out the value in the box and manipulate it freely as long as it guarantees to
return to the box a (possibly different) value of the same viewtype at the end of
its evaluation.

With the sharing modality, there is an interesting but troubling problem of
double borrow that must be properly addressed. Suppose that we are at a point
where the value stored in a box has already been borrowed out but no value
has been returned to the box yet. At this point, if there is another request to
borrow from the box, then a scenario of double borrow occurs, which makes the
following misbehaved program possible:

let �r1 = x in (∗ let � is the syntax to borrow resource from a boxed value ∗)
let �r2 = x in

. . . free(r1) . . . in . . . access(r2) end end end

where the resource boxed in x is double borrowed and bound to r1 and r2, thus,
both referring exactly the same resource. Furthermore, the program subsequently
frees r1 before accessing r2, which is clearly a safety violation.

In order to establish the soundness of a type system accommodating the shar-
ing modality, we must prevent double borrow from ever happening. We achieve
this by employing a notion of types with effects [9]. Specifically, we decorate the
viewtype constructor →l with a bit b ranging over 0 and 1. Given a function
of viewtype VT1

b→l VT2, the evaluation of a call to this function is guaranteed
to borrow no values from any boxes if b = 0. Otherwise, it may borrow values
from some boxes. We decorate the type constructor →i with a bit in precisely
the same manner.

The language L0 is extended to L� with some additional syntax in Figure 2.
We use h for handles (of boxes) and assume that there exist infinitely many of
them that can be generated freshly. Given an expression let �x = e1 in e2 end,
we expect that e1 evaluates to a handle h, and then x is bound to the value stored
in the box with the handle h and e2 evaluates to a pair 〈v1, v2〉, and then v1 is
inserted into the box and v2 is the value of the expression let �x = e1 in e2 end.
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types T ::= . . . | �VT | VT1
b→l VT2 | VT1

b→i VT2
expressions e ::= . . . | h | �e | let �x = e1 in e2 end
values v ::= . . . | h
eval. ctx. E ::= . . . | �E | let �x = E in e end

Fig. 2. The additional syntax for L�

We are to use the type system of L� to guarantee that the evaluation of e2 does
not borrow values from any boxes.

We use M for stores, which are finite mappings from handles to values or a
special symbol •. Given a store M and a handle h in the domain dom(M) of
M, we say that M is available at h if and only if M(h) = v for some value v.
We say that M is full if M is available at each h ∈ dom(M). In the following
presentation, we only deal with stores that are either full or not available at
only one handle. We use M[h �→ v] for the mapping that extends M with an
extra link from h to v, where h �∈ dom(M) is assumed. In addition, we use
M[h := v∗] for the mapping M′ such that M′(h) = v∗ and M′(h′) = M(h′) for
each h′ ∈ dom(M) = dom(M′) that is not h, where v∗ ranges over values and
the special symbol •. We say that M′ extends M if M′(h) = M(h) for each
h ∈ dom(M) ⊆ dom(M′).

We extend the definition of ρ to deal with the new syntax: ρ(h) = ∅, ρ(�e) =
ρ(e), ρ(let �x = e1 in e2 end) = ρ(e1) * ρ(e2), ρ(•) = ∅ and ρ(M) =
*h∈dom(M)ρ(M(h)).

We use ê for intermediate expressions, which are either closed expressions e or
triples of the form 〈E, h, e〉, where E, h, e range over evaluation contexts, handles
and closed expressions, respectively. We define ρ(ê) to be ρ(e) if ê = e or ρ(E[e])
if ê = (E, h, e). In L�, the evaluation relation ↪→ is defined on pairs of the form
〈M, ê〉.

We say that M matches ê if either ê = e for some e and M is full or ê =
〈E, h, e〉 for some E, h, e and M is not available only at h.

Definition 2. (Reduction in L�) We say that (M, ê) reduces to (M′, ê′) if
(M, ê) ↪→ (M, ê′), which is defined as follows:

– If e reduces to e′ and ρ(M) 	 ρ(e′) ∈ ST, then (M, e) ↪→ (M, e′).
– If e reduces to e′ and ρ(M) 	 ρ(E[e′]) ∈ ST, then (M, 〈E, h, e〉) ↪→ (M, 〈E, h, e′〉).
– If h �∈ dom(M), then (M, E[�v]) ↪→ (M[h 
→ v], E[h]).
– If M(h) = v, then (M, E[let �x = h in e end]) ↪→ (M[h := •], 〈E, h, e[x 
→ v]〉).
– If M(h) = •, then (M, 〈E, h, 〈v1, v2〉〉) ↪→ (M[h := v1], E[v2]).

It is clear that an intermediate expression of the form 〈E, h, e[x �→ v]〉 is gener-
ated when we evaluate (M,E[let �x = h in e end]), where v is the value stored
in the box with the handle h; we are disallowed to borrow values from any boxes
when evaluating e[x �→ v]; the expression e[x �→ v] is expected to evaluate to a
pair 〈v1, v2〉, allowing v1 to be inserted into the box with the handle h and the
evaluation of (M [h := v1], E[v2]) to start.
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It may be argued that the restriction is too severe that disallows borrowing
values from any boxes during the evaluation of 〈E, h, e[x �→ v]〉 as it clearly suf-
fices to only disallow borrowing values from the box with the handle h. However,
it is highly nontrivial to use the type of an expression to indicate from which
boxes values can or cannot be borrowed during the evaluation of the expression.
Also, it is unclear whether there are strong practical reasons to do so. For in-
stance, we can always extract values from two shared resources in sequence (and
manipulate the values thereafter) instead of accessing them at the same time.
In essence, the shared resources constructed through the modality can be used
exactly the same way as ones available in ML such as references and arrays.

Static Semantics. We use μ for store types, which are finite mappings from
handles to viewtypes. Also, we write μ[h �→ VT] for the mapping that extends
μ with an extra link from h to VT, where h �∈ dom(μ) is assumed. We say that
μ′ extends μ if μ′(h) = μ(h) for each h ∈ dom(μ) ⊆ dom(μ′).

We use Γ ;Δ �b
μ e : VT for judgments assigning viewtypes to expressions,

where the bit b ranges over 0 and 1. Given two bits b1 and b2, the bit b1 ⊕ b2 is
0 if and only if b1 = b2 = 0. In other words, ⊕ is the OR function on bits. The
rule of most interest is

Γ ; Δ1 �b
μ e1 : �VT1 Γ ; Δ2, x : VT1 �0

μ e2 : VT1 ⊗ VT2

Γ ; Δ1 � Δ2 �1
μ let �x = e1 in e2 end : VT2

(ty-�-elim)

where the second premise states that e2 must be borrow-free (with the bit 0)
while the final judgement is with bit 1, indicating some resource is borrowed.
The complete rules for assigning viewtypes to expressions in L� are omitted for
brevity. We write � M : μ to mean that for each h ∈ dom(M) = dom(μ),
either M(h) = • or ∅; ∅ �0

μ M(h) : μ(h) is derivable.

Soundness. As usual, the soundness of L� rests on the following theorems.
The detailed proof can be found in [13].

Theorem 3 (Subject Reduction). Assume that � M : μ holds and �b
μ ê : VT

is derivable. If (M, ê) ↪→ (M′, ê′), then there exists μ′ extending μ such that
� M′ : μ′, ρ(M′) * ρ(ê′) ∈ ST and �b′

μ′ ê′ : VT is derivable for some b′ ≤ b.

Theorem 4 (Progress). Assume that � M : μ holds, M matches ê, ρ(M) *
ρ(ê) ∈ ST and �b

μ ê : VT is derivable. Then (M, ê) ↪→ (M′, ê′) for some M′

and ê′.

4 Extensions

While the basic design for supporting safe resource sharing in programming is
already demonstrated in L�, it is nonetheless difficult to truly reap the benefits
of this design given that the type system of L� is simply too limited. We need two
extensions when presenting some interesting and realistic examples in Section 5.

We first extend L� to L∀,∃
� by incorporating universally as well as existentially

quantified viewtypes, which include both polymorphic viewtypes and dependent
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sorts σ ::= bool | int | addr | type | viewtype
types T ::= . . . | a | B ⊃ T | ∀a : σ. T | B ∧ T | ∃a : σ. T
viewtypes VT ::= . . . | a | B ⊃ VT | ∀a : σ. VT | B ∧ VT | ∃a : σ. VT
expressions e ::= . . . | ⊃+(v) | ⊃−(e) | ∀+(v) | ∀−(e) |

∧(e) | let ∧ (x) = e1 in e2 end | ∃(e) | let ∃(x) = e1 in e2 end
values v ::= . . . | ⊃+(v) | ∀+v | ∧(v) | ∃(v)

Fig. 3. The additional syntax of L∀,∃
�

viewtypes. The extra syntax of L∀,∃
� (over that of L�) is given in Figure 3.

Following the work on the framework Applied Type System (ATS) [19,20], this
extension is largely standard.

In order to effectively deal with memory manipulation at low level, we also
need to support a paradigm that combines programming with theorem proving.
We introduce a language L∀,∃

�, pf (detailed syntax are omitted for brevity) by ex-

tending L∀,∃
� with a component in which only pure and total programs can be

constructed, and this component is referred to as the theorem-proving compo-
nent of L∀,∃

�, pf . Proofs (pure and total dynamic terms) can be constructed in the
theorem-proving component to attest various properties of programs (effectful
and nonterminating dynamic terms). Due to the space constraint, we cannot give
a detailed account of this paradigm in this paper. Instead, we refer the interested
reader to [3] for theoretical details and practical examples. Note that the proofs
in L∀,∃

�, pf are only needed for type-checking purpose and they are completely
erased before run-time execution.

5 Examples

In this section, we present several examples taken from the programming lan-
guage ATS [20] to give the reader some concrete feel as to how the developed type
theory for resource sharing can be put into practice. All examples are presented
in the concrete syntacx of ATS, which is inspired by the syntax of Standard
ML [11]. A (partial) type inference process [2] is used to elaborate programs
written in the concrete syntax into the formal syntax of L∀,∃

�, pf .
We assume the existence of primitive memory access functions ptr get and

ptr set of the following types:

ptr get : ∀τ.∀λ. (τ@λ, ptr(λ)) ⇒ (τ@λ) ⊗ τ
ptr set : ∀τ.∀λ. (top@λ,ptr(λ), τ) ⇒ (τ@λ) ⊗ 1

where we use τ and λ for bounded static variables of sorts type and addr, respec-
tively, and top for the type such that every type is a subtype of top. Basically,
ptr get reads through a pointer and ptr set writes through a pointer. Given
T and L, ptr get takes a proof of T@L and a pointer to L and it returns a
proof of T@L and a value of type T . So a linear proof of T@L threads through
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fun ref_make {a:type} (x: a): ref a = let
val (pf | p) = alloc (1) // pf: array_v (top, 1, l) and p: ptr l
// The pattern matching is verified to be exhaustive
prval ArraySome (pf1, ArrayNone ()) = pf // pf1: top @ l
val (pf1 | ()) = ptr_set (pf1 | p, x) // pf1: a @ l

in (vbox pf1 | p) end

fun ref_get {a:type} (r: ref a): a = let
val (h | p) = r // h: vbox(a @ l) for some l
prval vbox pf = h // (pf : a @l) is borrowed

in ptr_get (pf | p) end

fun ref_set {a:type} (r: ref a, x: a): void = let
val (h | p) = r // h: vbox(a @ l) for some l
prval vbox pf = h // (pf: a @ l) is borrowed

in ptr_set {a} (pf | p, x) end

Fig. 4. An implementation of references

ptr get. On the other hand, given T and L, ptr set takes a proof of top@L,
a value of type T and a pointer to L and it returns a proof of T@L and the
unit. So a proof of top@L is consumed and then a proof of T@L is generated
by ptr set.

In order to model more sophisticated memory layouts, we need to form re-
cursive views. For instance, we may declare a (dependent) view constructor
array v: Given a type T , an integer I and an address L, array v(T, I, L) forms
a view stating that there are I values of type T stored at consecutive ad-
dresses L,L + 1, . . . , L + I − 1. There are two proof constructors ArrayNone
and ArraySome associated with array v, which are formally assigned the follow-
ing c-types:

ArrayNone : ∀λ.∀τ.() ⇒ array v(τ, 0, λ)
ArraySome : ∀λ.∀τ.∀ι.ι ≥ 0 ⊃ (τ@λ, array v(τ, ι, λ + 1)) ⇒ array v(τ, ι + 1, λ)

Intuitively, ArrayNone is a proof of array v(T, 0, L) for any type T and address
L, and ArraySome(v1, v2) is a proof of array v(T, I+1, L) for any type T , integer
I and address L if v1 and v2 are proofs of views T@L and array v(T, I, L + 1),
respectively.

References. In Figure 4, we give an implementation of references (as commonly
supported in ML) in ATS. The symbol | in the code is a separator (just like a
comma), which separates proofs from values (so as to make the code easier to
read).

Given a type T , we use ref(T ) for the type of references to values of type T ,
which is formally defined as ∃λ.�(T@λ) ∗ ptr(λ). Therefore, a reference is just
a pointer to some address L paired with the handle of a box containing a proof
stating that a value of type T is stored at L. The three implemented functions
in Figure 4 are given the following types, respectively:

ref make : ∀τ. τ 0→i ref(τ) ref get : ∀τ. ref(τ) 1→i τ ref set : ∀τ. ref(τ) ∗ τ 1→i 1
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We use the keyword prval to introduce bindings on proof variables. As such
bindings are to be erased before run-time, ATS automatically verifies that the
pattern matching involved is exhaustive.

Clearly, ref get and ref set are operationally equivalent (after types and proofs
are erased) to ptr get and ptr set, respectively, which is expected. What we
find a bit surprising is that a feature as simple and common as references can
involve so much type theory (on universal and existential types, linear types,
sharing modality, programming with theorem proving, etc.).

Sharable Arrays. We give an implementation of sharable arrays in ATS. The
following two functions:

array init : ∀τ.∀ι.∀λ. ι ≥ 0 ⊃ (array v(top, ι, λ) ∗ ptr(λ) ∗ τ 0→i array v(τ, ι, λ) ∗ 1)

array get : ∀τ.∀ι1.∀ι2.∀λ. 0 ≤ ι2 ∧ ι2 < ι1 ⊃
(array v(τ, ι1, λ) ∗ ptr(λ) ∗ int(ι2) 0→i array v(τ, ι1, λ) ∗ τ)

are needed in the implementation. However, the code for implementing them is
omitted here for brevity.

The sharable array can be implemented similarly. Given a type T , we define
SArray(T ) as

∃λ.∃ι. ι ≥ 0 ∧ (�(int(ι)@(λ − 1)⊗ array v(T, ι, λ)) ∗ ptr(λ))

That is, we represent a sharable array as a pointer to some address L associated
with a box of two proofs showing that a natural number I is stored at L−1 and
an array of size I starts at L, where v1, . . . , vI are values stored in the array.
The following functions are implemented for array creation and subscription:

SArray make : ∀τ. Nat ∗ τ 0→i SArray(τ) SArray get : ∀τ. SArray(τ) ∗ Int 1→i τ

where Nat and Int are defined as ∃ι. ι ≥ 0 ∧ int(ι) and ∃ι. int(ι), respectively.
For brevity, the actual implementation is omitted.

Similarly, back to our motivating examples in Section 1, the malloc and free
functions can now be given the ideal types (no free list threaded through) with
the help of the sharing modality. The free list, as a linear resource, will be internal
to malloc and free in which complex memory manipulations can be reasoned and
ensured to be safe by linear types. While, the free list is completely hidden from
the client point of view so that both malloc and free can be readily used in
practical programming.

6 Code Reentrancy

While we have so far only studied the sharing modality � in sequential pro-
gramming, a major intended use of the modality is actually in multi-threaded
programming. We attempt to give an intuitive but rather informal explanation
on this issue as a formalized account for multi-threaded programming is sim-
ply beyond the scope of the paper. We refer the interested readers to [14] for a
theoretical development and practical examples of multi-threaded programming
in ATS.
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As mentioned earlier, the sharing modality � is unable to support safe re-
source sharing in concurrent programming. The main reason is that a thread
evaluating an expression of the form let �x = h in e end may be suspended at
a time when the box with the handle h is empty, and meanwhile another thread
may attempt to borrow from the box and thus result in a case of double borrow.
In other words, code of the form let �x = h in e end is in general unsafe to be
executed in a thread. However, if e can be evaluated atomically, that is, without
the possibility of suspension during the evaluation of e, then it is safe to execute
code of the form let �x = h in e end as the problem of double borrow can no
longer occur. We give some common cases where this can happen.

– If e can be compiled into a single atomic instruction, then the evaluation of
e is guaranteed to be atomic. For instance, in the example on implementing
references, the body of ref get (ref set) may be compiled into a single atomic
read (write) instruction on memory. If this is true, then ref get (ref set) can
be safely used in threads.

– Some hardware support (e.g., disabling interrupts) can be employed to ensure
that the evaluation of e is atomic. For instance, the function kmalloc in Linux
(for allocating memory in kernel space) is often implemented to be reentrant
by disabling interrupts (on a single core machine) during its execution.

– A thread may use signals to put all other threads into sleep before executing
non-reentrant code and then wakes them up after the execution. For instance,
a thread that does garbage collection often makes use of this strategy.

Let us now introduce a half bit .5 for decorating typing judgments. Note that
b1 ⊕ b2 is defined as max(b1, b2). In addition to the previously presented typing
rules, we also add the following one

Σ; B; (Γ ; Δ1) �b
μ e1 : �VT1

Σ; B; (Γ2; Δ2, x : VT1) �0
μ e2 : VT1 ⊗ VT2

Σ; B; (Γ ; Δ1 � Δ2) �.5⊕b
μ let �x = e1 in atm(e2) end : VT2

(ty-�-elim-atom)

where atm(e) indicates that e is an expression that must be evaluated atomically
(possibly with some unspecified hardware/software support). We name this rule
(ty-�-elim-atom). Suppose that ∅; ∅; (∅; ∅) �b

μ e is derivable. Then we expect
e to be reentrant if b < 1 and non-reentrant if b = 1. So for a function of
type VT1

b→l VT2 or VT1
b→i VT2, the function is reentrant if b < 1 and non-

reentrant if b = 1. If thread creation only accepts functions of the viewtype
1 b→l 1 for some b < 1, then non-reentrant functions are prevented from being
called within threads.

7 Related Work and Conclusion

A fundamental issue in programming is on program verification, that is, verifying
(in an effective manner) whether a program meets its specification. In general,
existing approaches to program verification can be classified into two categories.
In one category, the underlying theme is to develop a proof theory based on
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Hoare logic (or its invariants) for reasoning about imperative stateful programs.
In the other category, the focus is on developing a type theory that allows the
use of types in capturing program properties.

In [22], we outlined a type system ATS/SV, which is rather similar to L∀,∃
�, pf

minus the sharing modality. ATS/SV is effective in supporting memory manip-
ulation through pointers, and a variety of mutable data structures (e.g., linked
lists, splay trees, etc.) are implemented in ATS/SV. However, resource sharing
cannot be properly dealt with in ATS/SV, causing serious difficulties in practice.
The sharing modality � is introduced precisely for the purpose of addressing this
limitation in ATS/SV.

The sharing modality in our approach bears certain resemblance to the no-
tions of focus/adoption [5] and freeze/thaw [12] respectively in the literature.
However, there is some fundamental difference lying in between. In Vault [5],
the sharing (of an adoptee) enabled by an adoption is temporary (within the
scope of the adopter). As a consequence, this design choice makes it difficult to
support general sharing such as ML references, which can be arbitrarily aliased
and passed around without any constraints. We can readily give some intuitive
account of adoption/focus in our framework. Given two linear resources r1 and
r2, adopting r1 by r2 corresponds to forming a combined resource r′2 = r1 ⊗ r2
and focussing can be encoded as applying the prop r′2 →i (r1 ⊗ (r1 →l r

′
2))

to obtain/restore r1 back and forth from/to r′2. In L3 [12], to prevent forming
re-thawing a sharable object (similar to double borrow in our context), a no-
tion named thaw token (which is linear) is adopted to keep track all the thawed
objects. Although more flexible in theory, each thaw token must be threaded
through every function that uses shared objects and the practicality of such an
approach is yet to be shown.

In summary, we give a design in this paper to effectively promote the use
of linear types in reasoning about resource usage in practical programming.
We formalize this design in a type system where a modality is introduced to
support safe resource sharing. In particular, we make use of a notion of types
with effects [9] in overcoming the problem of double borrow. We also show some
interesting and realistic programming examples including implementations of
references and sharable arrays, which are all verified in ATS [20].
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