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Preface

“The statistician cannot excuse himself from the duty of getting his
head clear on the principles of scientific inference, but equally no other
thinking man can avoid a like obligation.”

Ronald A. Fisher

Over the last forty years there has been a growing interest to extend proba-
bility theory and statistics and to allow for more flexible modelling of impre-
cision, uncertainty, vagueness and ignorance. The fact that in many real-life
situations data uncertainty is not only present in the form of randomness
(stochastic uncertainty) but also in the form of imprecision/fuzziness is but
one point underlining the need for a widening of statistical tools. Most such
extensions originate in a“softening”of classical methods, allowing, in particu-
lar, to work with imprecise or vague data, considering imprecise or generalized
probabilities and fuzzy events, etc. The developed techniques frequently lead
to more robust and interpretable models that better capture all the informa-
tion contained in the given data.

About ten years ago the idea of establishing a recurrent forum for dis-
cussing new trends in the before-mentioned context was born and resulted in
the first International Conference on Soft Methods in Probability and Statis-
tics (SMPS) that was held in Warsaw in 2002. In the following years the con-
ference took place in Oviedo (2004), in Bristol (2006) and in Toulouse (2008).
In the current edition the conference returns to Oviedo. Apart from the rich
number of topics already covered by the previous editions, the SMPS 2010
succeeded in incorporating statistics with censored data and robust statistics,
both perfectly fitting the scope of the conference.

The wide variety of sessions taking place at the SMPS conference is re-
flected by the SMPS 2010’ plenary talks: Peter Filzmoser from the
Vienna University of Technology on “Soft Methods in Robust Statistics”,
Manfred Gilli from the University of Geneva on“An Introduction to Heuristic
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Optimization Methods”, Mario Guarracino from the High Performance Com-
puting and Networking Institute in Naples on “Supervised Classification of
Biological Data”, and Enrique Ruspini from the European Centre for Soft
Computing on “Ideas and Issues in Conceptual Fuzzy Clustering”.

No conference can be organised without a lot of support from various
people: We would like to thank all organizers of Invited Sessions, all members
of the Program Committee and all additional reviewers - without their help
a book like this would have been impossible. Moreover we would like to
express our gratitude to “Obra social y cultural” of the main Savings Bank in
Asturias, CajAstur, who kindly paid the production cost of these proceedings.
The SMPS 2010 also benefited from the COST Action IC0702, this support
is gratefully acknowledged. Last but not least we would like to express our
gratitude to the European Centre for Soft Computing and the University of
Oviedo.

Oviedo, June 2010 Christian Borgelt
Gil González-Rodŕıguez

Wolfgang Trutschnig
M. Asunción Lubiano

Maŕıa Ángeles Gil
Przemys�law Grzegorzewski

Olgierd Hryniewicz
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Lluis Godó (Barcelona, Spain)



VIII Members of Committees

Michel Grabisch (Paris, France)
Mario Guarracino (Naples, Italy)
Eyke Hüllermeier (Marburg, Germany)
Janusz Kacprzyk (Warsaw, Poland)
Etienne Kerre (Gent, Belgium)
Rudolf Kruse (Magdeburg, Germany)
Jonathan Lawry (Bristol, United Kingdom)
Shoumei Li (Beijing, China)
Uwe Ligges (Dortmund, Germany)
Miguel López (Oviedo, Spain)
Marloes Maathuis (Zurich, Switzerland)
Seraf́ın Moral (Granada, Spain)
Domingo Morales (Elche, Spain)
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Etienne Côme (Paris, France)
Pierpaolo D’Urso (Rome, Italy)
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Comparison of Time Series via Classic and Temporal
Protoforms of Linguistic Summaries: An Application to
Mutual Funds and Their Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 369
Janusz Kacprzyk, Anna Wilbik



Contents XV

Mining Gradual Dependencies Based on Fuzzy Rank
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Hyung-Won Koh, Eyke Hüllermeier
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Prior Knowledge in the Classification of
Biomedical Data

Danilo Abbate, Roberta De Asmundis, and Mario Rosario Guarracino

Abstract. Standard data analysis techniques for biomedical problems can-
not take into account existing prior knowledge, and available literature re-
sults cannot be incorporated in further studies. In this work we review some
techniques that incorporate prior knowledge in supervised classification al-
gorithms as constraints to the underlying optimization and linear algebra
problems. We analyze a case study, to show the advantage of such techniques
in terms of prediction accuracy.

Keywords: Supervised classification, Neural Networks, Support Vector Ma-
chines, Generalized Eigenvalue Classifier.

1 Introduction

The widespread availability of biomedical data is posing new and challenging
problems to standard analysis algorithms. These problems are related to the
quality of data, that are often affected by errors and uncertainty. This is
the case of high throughput genomic and proteomic technologies, where the
signal to noise ratio is very low. Other questions raise when data produced
by comparable experimental protocols are available, because there is no clear
strategy to systematically take advantage of previous results and knowledge.
In the case of supervised classification, where models are built from data for
which the class membership is known, available labeled data is added to the
training sets. This has two major drawbacks. First, enlarging the training
set increases the computational time needed to elaborate the model. Then, if
data are affected by errors or uncertainties, these are introduced in the new
classification model, reducing its generalization capabilities.

Danilo Abbate, Roberta De Asmundis, and Mario Rosario Guarracino
High Performance Computing and Networking Institute,
National Research Council (ICAR-CNR), 80131 Naples, Italy
e-mail: mario.guarracino@cnr.it

C. Borgelt et al. (Eds.): Combining Soft Computing & Stats. Methods, AISC 77, pp. 1–8.
springerlink.com � Springer-Verlag Berlin Heidelberg 2010

mario.guarracino@cnr.it


2 D. Abbate, R. De Asmundis, and M.R. Guarracino

In this paper we show how to introduce prior knowledge in Support Vec-
tor Machines (SVM) [12], Generalized Eigenvalue Proximal SVM (GPSVM)
[8], and Radial Basis Functions (RBF) Neural Networks [1]. The idea is if
knowledge can be expressed in terms of regions of the data space, in which
all points belong to a given class, then the geometrical expression of such
regions can be used to constrain the underlying mathematical programming
problem. The advantage of such strategy is that, although no points are added
to the training set, the model is constrained to take into account available
knowledge. We provide a case study that highlights the advantages of such
strategy, in terms of classification accuracy.

2 Classification Algorithms

Support Vector Machines

SVM are the state of the art supervised classification methods, widely ac-
cepted in many application areas. SVM find a plane wT x+ b = 0 with the
objective to separate the elements belonging to two different classes. To this
extend, we determine two parallel planes wT x+ b = ±1, of maximum dis-
tance, leaving all points of the two classes on different sides. Elements with
the minimum distance from both classes are called support vectors and are
the only elements needed to train the classifier.

Let us consider a data set composed of n pairs (xi,yi) where xi ∈ Rm is
the feature vector of a point, and yi ∈ {−1,1} is the class label. The optimal
separating plane is the solution to a quadratic linearly constrained problem.

The advantage of this method is that a very small number of support
vectors are sufficient to define the optimal separating plane. In some cases,
the relationship between points and class labels can be nonlinear and it is
impossible to find a separating plane. In such a case, data can be nonlinearly
embedded to a higher dimensional space in which the linear separation can
be found. This nonlinear mapping can be implicitly done by kernel functions,
which represent the inner product of the elements in the nonlinear space.

The nonlinear classification model cannot describe the discriminating func-
tion in terms of inequalities involving linear relations among features. This
can be perceived as a problem in case of medical diagnosis, in which doctors
prefer to find simple correlations between the results of a clinic exams and
the diagnosis or prognosis of an illness. On the other hand, it is generally
accepted that results achieved by nonlinear models provide higher classifica-
tion accuracy. Furthermore, the number of exams to consider for a diagnosis
can be very high and cannot be correlated only with the experience. Finally,
methods that provide explicit classification rules are not guaranteed to find
a set of rules small enough to be easy readable.
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Generalized Eigenvalue Classifier

GEPSVM is an efficient algorithm in which the binary classification problem
can be formulated as a generalized eigenvalue problem.

Let us consider two matrices A ∈ Rn×m and B ∈ Rk×m, with m � n + k,
representing the two classes, each row being a point in the feature space.
Mangasarian et al. [8] propose to classify these sets of points A and B using
two planes in the feature space, each closest to one set of points, and furthest
from the other.

Suppose that points in classes A and B are not linearly separable, then
a nonlinear embedding of each point x can be obtained using a Radial
Basis Function kernel. Each component of the transformed point is given
by K(x,Ci) = exp(‖x−Ci‖2 /σ), where Ci is the i-th row of C =

[
AT ,BT

]T ∈
R(n+k)×m, and σ is a parameter.

The two planes K(x,C)u1 − γ1 = 0 and K(x,C)u2 − γ2 = 0 in the feature
space, can be obtained solving the generalized eigenvalue problem [6]:

min
u,γ �=0

‖K(A,C)u−eγ‖2 + δ‖K̃Bu−eγ‖2

‖K(B,C)u−eγ‖2 + δ‖K̃Au−eγ‖2
. (1)

Here K̃A and K̃B are diagonal matrices with the diagonal entries from the
matrices K(A,C) and K(B,C); e is a vector of 1s of proper dimension, u is the
coefficient vector of the plane, γ is the plane intercept and δ is the regulariza-
tion parameter. The eigenvectors related to the minimum and the maximum
eigenvalues of (1), provide the coefficients of the proximal planes Pi, i = 1,2.
The class of a new point x is determined as

class(x) = argmini=−1,1{dist(x,Pi)}, (2)

where dist(x,Pi) is the distance of a point x from plane Pi.

RBF Neural Networks

A RBF neural network is divided into two operative blocks: an inner hidden
layer, and the output layer. The hidden layer creates a response localized on
the input vector x; the binary output will then be calculated as a weighted
sum of these localized responses. Training a RBF network is a procedure
divided into two phases: in the first one the parameters of the radial bases
function are calculated using an unsupervised learning algorithm. In this
phase the data set is divided in n̄+ k̄ clusters. We define as x̄ the n̄+ k̄ points
closest to each centroid. In the second part of the training, we search for
values of the weights wi which determine the binary output:

h(x) =
n̄+k̄

∑
i=1

wiK (x, x̄i), n̄ � n, k̄ � k. (3)
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Such weights are calculated by minimizing the following error function, with
respect to wi:

E =
1
2

n+k

∑
i=1

(h(xi)− yi)2 (4)

where yi is the label of the point xi.

3 Prior Knowledge

SVM

We are now showing how it is possible to obtain, with a linear program [9], a
nonlinear separating surface using a kernel function K(x,C) : Rm×R(n+k)×m →
Rn+k, to embed the points in a higher dimensional space. We recall that the
resulting plane, projected in the feature space [11], has equation:

K(x,C)u− γ = 0. (5)

In standard SVM, parameters u ∈ Rn+k and γ ∈ R are determined solving
the following quadratic optimization problem [7], for some ν > 0:

min
u,γ,y∈R(n+k)+1+(n+k)

νeT y +
1
2

uT u

s.t. D(K(C,C)u− eγ)+ y ≥ e, y ≥ 0.

(6)

where D is a diagonal matrix, with the diagonal elements equal to the labels
of the corresponding element of the training set C, y is a vector of slack
variables. Such condition places the points belonging to the two classes +1
and −1 on two different sides of the nonlinear separation surface (5). Problem
(6) corresponds to the following linear programming problem [9]:

min
u,γ,y,s

νeT y + eT s

s.t. (K(C,C)u− eγ)+ y≥ e,
−s ≤ u ≤ s,

y ≥ 0,

(7)

where s ∈ Rn+k is a vector of non negative slack variables.
In order to improve the results obtained by a classifier solely from the

training set, it is possible to impose the knowledge of an expert into the
learning phase of the function (5) [10]. Such expertise is represented by the
following implication, which represents a knowledge region Δ ⊂ Rm in the
input space in which all points x are known to belong to class +1:

g(x)≤ 0 ⇒ K(x,C)u− γ ≥ α,∀x ∈ Δ ,α ∈ R+, (8)

where g(x) : Δ ⊂ Rm → R.
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To add positive nonlinear knowledge (8) to problem (7) we solve:

min
u,γ,y,s

νeT y + eT s

s.t. D(K(C,C)u− eγ)+y ≥ e,

−s ≤ u ≤ s, y ≥ 0,

K(xi,C)u− γ−α+ vg(xi)+zi ≥ 0,

v ≥ 0, zi ≥ 0, i = 1, . . . , l.

(9)

Here z1, . . . ,zl are non negative slack variables used to allow small deviation
in prior knowledge and v is a parameter.

To add negative nonlinear knowledge just consider the following implica-
tion:

f (x) ≤ 0 ⇒ K(x,C)u− γ ≤−α,∀x ∈Λ ,α ∈ R+, (10)

where f (x) : Λ ⊂ Rm → R represents the region in the input space where
implication (10) forces the classification function to be less than or equal to
−α, in order to classify the points x ∈ {x|h(x)≤ 0} as −1.

Now we can finally formulate the linear program (7) with nonlinear knowl-
edge included in the cost function:

min
u,γ,y,s,v,p,zi,qi

νeT y + eT s+ μ(
l

∑
i=1

zi +
t

∑
j=1

q j)

s.t. D(K(C,C)u− eγ)+ y≥ e,

−s ≤ u ≤ s, y ≥ 0,

K(xi,C)u− γ−α+ vg(xi)+ zi ≥ 0,

v ≥ 0, zi ≥ 0, i = 1, . . . , l

−K(x j,C)u+ γ−α+ p f (x j)+ q j ≥ 0,

p ≥ 0, q j ≥ 0, j = 1, . . . ,t

(11)

where μ is a positive weight, and p is a parameter.
The LP problem (11) minimizes the margin between the two classes con-

straining the classification model to leave the two prior knowledge regions Δ
and Λ in the corresponding half spaces.

GEPSVM

It is possible to add nonlinear prior knowledge to GEPSVM formulating
the model in terms of a constrained generalized eigenvalue problem. The
latter has been extensively studied and a procedure for its solution has been
proposed by Golub in [4].



6 D. Abbate, R. De Asmundis, and M.R. Guarracino

If G, H and z are defined as:

G = [K(A,C),−e]T [K(A,C),−e]+ δ
[
K̃B,−e

]T [
K̃B,−e

]
,

H = [K(B,C),−e]T [K(B,C),−e]+ δ
[
K̃A,−e

]T [
K̃A,−e

]
, (12)

z =
[
uT ,γ
]T ∈ Rn+k+1,

constraints can be expressed by the equation:

V T z = 0, (13)

where V ∈ R(n+k+1)×p is a matrix of rank r, with r < p < n + k + 1. The con-
strained formulation of the eigenvalue problem (1) with positive knowledge
becomes:

min
z∈Rn+k+1

zT Gz
zT Hz

s.t. V T z = 0.

(14)

Let Δ be the set of class +1 points describing nonlinear positive knowl-
edge, then the constraint matrix V represents knowledge imposed on class
+1 points, hence it will be:

V =
[

K(Δ ,C), −e
]T (15)

Matrix V needs to be rank deficient in order to have a non-trivial solution.
The set of constraints (13) requires all points in Δ to have null distance from
the plane, and thus to belong to class +1. Similarly, we can add a negative
knowledge.

RBF Neural Networks

As for GEPSVM, [5], a classification model calculated by the RBF network
must pass through the prior knowledge points.

Prior knowledge is then added as a set of constraints to problem (4) to
obtain the following minimization problem:

min
wi

1
2

n+k

∑
i=1

(h(xi)− yi)2 (16)

s.t. V T x ≥ 0.

The constraints of this problem force the solution of equation (4) to pass
through the points represented by the matrix V . Algebraically, this means
the solution of the least squares problem has to be searched in the subspace
generated by prior knowledge points. As pointed out by Golub [3], the orig-
inal problem is reduced with a QR decomposition, or with a singular value
decomposition as shown by Bjorck [2].



Prior Knowledge in the Classification of Biomedical Data 7

4 A Case Study

The prior knowledge introduced in the classification methods discussed above,
has been tested on the UCI data set Thyroid composed of data coming from
215 patients. For each patient 5 cytological and clinical features are provided,
which are useful to divide patients in two classes: sick and not sick. The first
class is composed of 65 patients, while the second of 150 healthy patients.
The features are: the percentage of T3-resin, total serum thyroxin measured
by the isotopic displacement method, total serum triiodothyronine measured
by radioimmuno assay, TSH measured by radioimmuno assay, and the max-
imal absolute difference of TSH value after injection of 200 micro grams of
thyrotropin-releasing hormone as compared to the basal value.

The results reported in Table 1 are comparison among GEPSVM, SVM
and RBF Neural Network methods with and without prior knowledge. The
values of accuracy, sensitivity and specificity have been obtained with the
leave one out cross validation.To simulate the prior knowledge, points were
chosen as the misclassified support vectors, obtained training the SVM on
the complete data set during the leave one out cross validation.

Table 1 Values of accuracy, sensitivity and specificity obtained using GEPSVM,
SVM and RBF methods The second line of each block in the table shows the results
obtained introducing prior knowledge.

Method Accuracy Sensitivity Specificity

GEPSVM 93.02% 87.69% 95.33%
GEPSVM with knowledge 99.07% 96.62% 100.00%

SVM 93.95% 92.23% 96.00%
SVM with knowledge 98.90% 96.92% 99.33%

RBF 85.12% 55.38% 98.00%
RBF with knowledge 90.23% 72.31% 98.00%

We note that all methods have a better prediction accuracy and higher
values of sensitivity and specificity.

5 Conclusion

In this work, we described some classification methods that can take advan-
tage of prior knowledge. We provided a case study to show the gain in terms
of accuracy, sensitivity and specificity. Results confirm that prior knowledge
substantially increase the classification accuracy of the considered methods.
Further work need to be devoted to the automatic knowledge discovery in
databases, when data are affected by noise and uncertainty.
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Estimation of a Simple Genetic Algorithm
Applied to a Laboratory Experiment

Simone Alfarano, Eva Camacho, and Josep Domenech

Abstract. The aim of our contribution relies on studying the possibility of
implementing a genetic algorithm in order to reproduce some characteristics
of a simple laboratory experiment with human subjects. The novelty of our
paper regards the estimation of the key-parameters of the algorithm, and the
analysis of the characteristics of the estimator.

Keywords: Experiments, Genetic algorithm, Bounded rationality,
Estimation.

1 Introduction

Nowadays, a large part of economists expresses dissatisfaction (or sometimes
rejection) to the wide-spread paradigm of full or strict rationality in theoriz-
ing the behavior of economic agents. Laboratory experiments showed that,
even in simple settings, human subjects are not consistent with the assump-
tions implied by their supposed perfect rationality. An existing alternative
paradigm in economic theory considers that economic agents have limited
capabilities in processing the information and in taking their decisions. Con-
trary to the fully rational paradigm, it does not exists a unified theory of
bounded rationality. Therefore, many different models of human behavior
which account for bounded rationality have been proposed in the literature
(See for example [3]).
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The adaptation of genetic algorithms (GA) from the realm of optimization
literature to the description of human learning is an example of the creative
ability of researchers to introduce bounded rational models.1 A number of
papers are now available in the literature which apply different versions of
GAs in order to reproduce the behavior of economic agents in different con-
texts (See, for example, [1], [2], [7], [9]). GAs have also been applied in the
context of laboratory experiments in order to reproduce the human subjects’
behavior in different experimental settings (See [4], [10]).

However, up to now the different contributions are almost entirely based on
a rough calibration of the underlying crucial parameters. To the best of our
knowledge, our paper constitutes the first attempt to estimate the underlying
parameters of a genetic algorithm. In this paper we provide a method to esti-
mate the key parameters of the GA by means of an extensive simulation-based
approach, using an extremely simple experimental setting of a common-pool
resources problem.The experiment exhibits, in fact, a single dominant and
symmetric Nash equilibrium as illustrated in the next section. The paper
is organized as follows: in Section 2 we illustrate briefly the theoretical and
empirical results of the experimental setting. In Section 3 we detail the char-
acteristics of the implementation of our GA agents. In Section 4 we present
the estimation procedure. Finally, in Section 5 we conclude.

2 Experiment: Setting and Results

In this section we will summarize the experimental setting and main results
used as benchmark in order to build the GA and the corresponding parame-
ters estimation (See [5] for the details on the experiment).

Consider an industry consisting of n symmetric firms where each firm
i = {1, ...,n} is characterized by both its default profit Π 0, incurred with-
out engaging in any abatement activity, and by its abatement technol-
ogy represented by an abatement cost function C(ai), where we use ai to
denote the firm’s abatement level.2 Zero abatement leads to a maximal
emission level emax. Accordingly, the profit function of each firm can be
written as Πi = Π 0 −C(ai). Total emissions by industry are then given by
E = ∑n

i=1(e
max − ai) and are evaluated by using a social damage function

D(E) = d [∑n
i=1(e

max −ai)], where d > 0 denotes the marginal social damage.
In this industry the regulator decides to implement the tax-subsidy mech-

anism, proposed by [12]. This mechanism works as follows: Whenever the
aggregate abatement level falls short of (exceeds) the socially optimal aggre-
gate abatement level A∗, the regulator charges all the firms with a tax (or
pays a subsidy to all the firms) proportional to the difference between optimal
and actual abatement. Note that the total tax bill (subsidy payment) is the

1 For more details on GA and their application to Economics see [6].
2 The abatement cost function satisfies the following properties: C(0) = 0, C′ > 0,

and C′′ > 0.
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Table 1 Abatement cost schedule

Abated units Marginal cost Total cost

0 0 0
1 20 20
2 40 60
3 60 120
4 80 200
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Fig. 1 Histogram of experimental subjects decisions.

same for each firm. Thus with this mechanism a typical firm’s profit can be
written as:

Πi(ai,a−i) =Π 0−C(ai)− s

[

A∗ −
n

∑
i=1

ai

]

, (1)

where s denotes the tax or subsidy rate and a−i the vector of the decisions
by the other firms except from i. When implemented as a one-shot or finitely
repeated game, the unique Nash equilibrium is characterized by the the fol-
lowing condition: C′(ai) = s, i.e. the firms choose an abatement level with a
marginal cost equaling the tax or subsidy rate. The Nash strategy is also
a dominant strategy that leads to the first-best allocation, i.e. ai = a∗, if s
equals the marginal social damage d.3

In [5] they consider an industry consisting of 5 firms (n = 5) with a default
profit Π 0 = 200 ECU (Experimental Currency Unit, which is then converted
into Euros at a given exchange rate, known to the subjects at the beginning

3 Note that the mechanism is not collusion-proof in a repeated setting as stressed
by [8]. Therefore, if firms succeed in coordinating on a higher abatement level
than is socially optimal, they can earn a higher profit than in the one–shot Nash
equilibrium.
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of the experiment), an optimal subsidy of s = 50 and a discrete abatement
cost schedule presented in table 1. Abatement schedule and marginal damage
imply a socially optimal abatement level of a∗ = 2 for any i = 1, ...,5, leading
to an optimal aggregate abatement level of A∗ = 10.

The mechanism was administered as a non-cooperative game and was re-
peated over 20 periods. In total 8 sessions with 5 subjects each were con-
ducted. Figure 1 illustrates the aggregate results obtained in the experiments
regarding the frequency of each possible abatement decision.

3 Genetic Algorithm

The basic philosophy in implementing our version of the GA is to be “as
close as possible” to the laboratory setting described in the previous section.
Therefore, the parameters of the algorithms and the implementations of its
internal procedures are chosen, when possible, directly from the experimental
design. Additionally, we do not intend to describe a general implementation of
GA, neither mention all possible alternative implementations of its operators
that can be found in the literature (See [6]). Instead, we directly illustrate
what we have used to implement the experimental setting.

Our genetic algorithm is characterized by the following elements:

• Strategy: Each chromosome in the genetic algorithm represents a possible
strategy that a subject can follow, that is, the abatement level decided
by the subject. It is encoded as a single gene which takes integer values
between 0 and 4. This is the basic element of the GA in the evolution of
the algorithm. This choice follows directly the experimental setting.

• Fitness Function: It is associated to each strategy and accounts for the
actual or potential payoff that derives from the use of a given strategy. In
our setting, the GA player uses as measure of fitness the profit function that
the experimental subjects face in the laboratory (as shown in Equation 1).

• Time window: In order to associate a fitness measure to each strategy,
we compute the cumulative potential profit that a given strategy would
have had if played in the past w time periods. This time window represents
the time memory that the GA subjects use to evaluate each single strategy
from its population.

• Population: Each subject is endowed with a set of P strategies. The
limited size of this set bounds the sophistication of the GA subject when
deciding which strategy to apply.

• Mutation: It implies that with a probability m one of the strategies in-
cluded in the population will be randomly changed into any other strategy
included in the entire set of potential strategies.

• Choice rule: Given the fitness measure and the population, for each single
period, the GA subject chooses to play the fittest strategy available in its
population.
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• Learning: Typically there exists two different learning mechanisms: single
population vs. multi population. Under the first one, each GA agent has
a set of strategies that evolve independently of the strategies of the other
agents. In a multi population approach, part of the genetic material is
exchanged among the GA agents. This creates some sort of interaction
or imitation among agents. Given that in the laboratory setting, total
abatement was the only information provided to the subjects and that no
communication among subjects was allowed, we decided to implement the
leaning mechanism based on a single population approach.

The number of GA agents is N = 5, following the experimental setting. More-
over, given our limited number of possible strategies, and in order to simplify
the estimation procedure, we decide not to implement the crossover operator,
which is typically present in the GA (See [4]). The GA parameters we aim at
estimating are population (P), time window (w) and mutation rate (m).

4 Estimation: Procedure and Results

In order to estimate the key parameters of the GA described in the previous
section, we fit the distribution of strategies observed in the 8 experimental
sessions (See Figure 1).

Let us define as θθθ = (P,w,m) the vector of the parameters to be estimated.
The optimal value of θθθ is calculated by minimizing the distance between the
empirical histogram of the strategies from the experimental data (See Figure
1) and the histogram of the GA strategies computed using 5000 Monte Carlo
simulations. The optimal value is then given by the following expression:

θθθ ∗ = argmin
θθθ

4

∑
i=0

[ fexp(i)− fsim(i|θθθ )]2 , (2)

where fexp(i) is the empirical frequency of the strategy i computed from the
histogram of experimental data, and fsim(i|θθθ ) is the frequency of strategy i
computed from 5000 Monte Carlo simulations of the GA with parameters θθθ .
More precisely, given a vector of parameters θθθ , the GA runs 5000 times for
a 20 periods4 for each realization; then the distance between the resulting
simulated histogram of strategies and the empirical one is evaluated and
minimized using a Nelder-Mead optimization algorithm. The Nelder-Mead
method was proposed by [11] as an unconstrained optimization algorithm.
It is commonly used when the derivatives of the objective function are not
available. The number of Monte Carlo repetitions has been decided taking
into account the computational effort and the precision of evaluation of the
simulated histogram. The optimization procedure takes around one hour,
which is a reasonable time. The optimal value is θθθ ∗ = (11,10,0.36).
4 The number of periods is equal to the periods conducted in the experimental

sessions.
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(j) P with 400 repetitions
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Fig. 2 Distribution of parameter values: P, w and m for different number of
repetitions.
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In order to evaluate the performance of the entire estimation procedure, we
run a series of Monte Carlo simulations using the previously described mini-
mizing procedure with artificially generated histograms as benchmark instead
of the experimental data. The vector of parameters of the GA is θθθ ∗. Essen-
tially, we re-estimate the known parameters of the GA, valuating then the
ex-post resulting distribution of the estimated θ̂θθ . The benchmark histogram
is computed averaging over an increasing number of single simulations of 20
periods (See details in Figure 2). We have computed 500 Monte Carlo repli-
cations of the re-estimation procedure for each benchmark histogram. The
entire process required about 60 days of computing time, although it was
parallelized in a 20-node cluster to cut the simulation time to three days.

5 Conclusions

The first important result of our computational exercise is to demonstrate
that it is possible to estimate the parameters of a GA using experimental
data. As it turns out, the estimation of the key-parameters of GA applied to
this set of experiments gives satisfactory results, considering the small data
sample available and the highly complex nature of the GA algorithm. The
different parameters can be, in fact, estimated with reasonable errors, as the
Monte Carlo numerical re-estimation exercise shows. We have performed the
re-estimation procedure with a benchmark histogram averaged over 8, 16, 32
and 400 replications of the genetic algorithm. The case using 400 repetitions
was conducted as a computational exercise to see the asymptotic properties of
the estimator. From an experimental point of view, our Monte Carlo exercise
shows that are enough few experimental sessions to generate a sufficiently
large data set in order to reliably estimate the parameters.

As final remarks, we would like to stress that our computational exercise,
although promising, it is just a first step in developing a general compu-
tational approach to complement the laboratory experiments in analyzing
economic phenomena. The robustness of the GAs with respect to changes
in the experimental setting, the flexibility of GA under changes in its inter-
nal operators, the importance to obtain reasonable and consistent values of
the parameters in describing human behavior are just few examples of open
problems that we have in our research agenda.

Acknowledgements. Financial support from the Spanish Ministry of Science and
Innovation under research project ECO2008-00510 and from Universitat Jaume I-
Bancaixa under the research project P11A2009-09 is gratefully acknowledged.
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A Comparison of Robust Methods for
Pareto Tail Modeling in the Case of
Laeken Indicators

Andreas Alfons, Matthias Templ, Peter Filzmoser, and Josef Holzer

Abstract. The Laeken indicators are a set of indicators for measuring
poverty and social cohesion in Europe. However, some of these indicators
are highly influenced by outliers in the upper tail of the income distribution.
This paper investigates the use of robust Pareto tail modeling to reduce the
influence of outlying observations. In a simulation study, different methods
are evaluated with respect to their effect on the quintile share ratio and the
Gini coefficient.

1 Introduction

As a monitoring system for policy analysis purposes, the European Union
introduced a set of indicators, called the Laeken indicators, to measure risk-of-
poverty and social cohesion in Europe. The basis for most of these indicators is
the EU-SILC (European Union Statistics on Income and Living Conditions)
survey, which is an annual panel survey conducted in EU member states
and other European countries. Most notably for this paper, EU-SILC data
contain information on the income of the sampled households. Each person
of a household is thereby assigned the same equivalized disposable income [9].
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The subset of Laeken indicators based on EU-SILC is computed from this
equivalized income, taking into account the sample weights.

In general the upper tail of an income distribution behaves differently than
the rest of the data and may be modeled with a Pareto distribution. Moreover,
EU-SILC data typically contain some extreme outliers that not only have a
strong influence on some of the Laeken indicators, but also on fitting the
Pareto distribution to the tail. Modeling the tail in a robust manner should
therefore improve the estimates of the affected indicators.

The rest of the paper is organized as follows. Section 2 gives a brief
description of selected Laeken indicators, while Section 3 discusses Pareto
tail modeling. A simulation study is performed in Section 4 and Section 5
concludes.

2 Selected Laeken Indicators

This paper investigates the influence of promising robust methods for Pareto
tail modeling on the quintile share ratio and the Gini coefficient. Both indi-
cators are measures of inequality and are highly influenced by outliers in the
upper tail. Strictly following the Eurostat definitions [9], the indicators are
implemented in the R package laeken [2].

For the following definitions, let xxx := (x1, . . . ,xn)′ be the equivalized dispos-
able income with x1 ≤ . . . ≤ xn and let www := (wi, . . . ,wn)′ be the corresponding
personal sample weights, where n denotes the number of observations.

2.1 Quintile Share Ratio

The income quintile share ratio is defined as the ratio of the sum of equiv-
alized disposable income received by the 20% of the population with the
highest equivalized disposable income to that received by the 20% of the pop-
ulation with the lowest equivalized disposable income [9]. Let q0.2 and q0.8

denote the weighted 20% and 80% quantiles of xxx with weights www, respectively.
With I≤q0.2 := {i ⊂ {1, . . . ,n} : xi ≤ q0.2} and I>q0.8 := {i ⊂ {1, . . . ,n} : xi > q0.8},
the quintile share ratio is estimated by

QSR :=
∑i∈I>q0.8

wixi

∑i∈I≤q0.2
wixi

. (1)

2.2 Gini Coefficient

The Gini coefficient is defined as the relationship of cumulative shares of the
population arranged according to the level of equivalized disposable income,
to the cumulative share of the equivalized total disposable income received
by them [9]. In mathematical terms, the Gini coefficient is estimated by
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Gini := 100

⎡

⎣
2∑n

i=1

(
wixi∑i

j=1 wj

)
−∑n

i=1 w 2
i xi

(∑n
i=1 wi)∑n

i=1 (wixi)
−1

⎤

⎦ . (2)

3 Pareto Tail Modeling

The Pareto distribution is defined in terms of its cumulative distribution
function

Fθ (x) = 1−
(

x
x0

)−θ
, x ≥ x0, (3)

where x0 > 0 is the scale parameter and θ > 0 is the shape parameter [12].
Furthermore, the density is given by

fθ (x) =
θxθ0
xθ+1 , x ≥ x0. (4)

In Pareto tail modeling, the cumulative distribution function on the whole
range of x is modeled as

F(x) =
{

G(x), if x ≤ x0,
G(x0)+ (1−G(x0))Fθ (x), if x > x0,

(5)

where G is an unknown distribution function [8].
Let n be the number of observations and let xxx = (x1, . . . ,xn)′ denote the

observed values with x1 ≤ . . . ≤ xn. In addition, let k be the number of ob-
servations to be used for tail modeling. In this scenario, the threshold x0 is
estimated by

x̂0 := xn−k. (6)

On the other hand, if an estimate x̂0 for the scale parameter of the Pareto
distribution has been obtained, k is given by the number of observations
larger than x̂0. Thus estimating x0 and k directly corresponds with each other.
Various methods for the estimation of x0 or k have been proposed [5, 6, 8, 17].
However, this paper is focused on evaluating robust methods for estimating
the shape parameter θ (with respect to their influence on the selected Laeken
indicators) once the threshold is fixed.

3.1 Hill Estimator

The maximum likelihood estimator for the shape parameter of the Pareto
distribution was introduced by [10] and is referred to as the Hill estimator.
It is given by

θ̂ =
k

∑k
i=1 logxn−i+1− k logxn−k

. (7)
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Note that the Hill estimator is non-robust, therefore it is included for bench-
marking purposes.

3.2 Weighted Maximum Likelihood (WML) Estimator

The weighted maximum likelihood (WML) estimator [7, 8] falls into the class
of M-estimators and is given by the solution θ̂ of

k

∑
i=1

Ψ(xn−i+1,θ ) = 0 (8)

with

Ψ(x,θ ) := w(x,θ )
∂
∂θ

log f (x,θ ) = w(x,θ )
(

1
θ
− log

x
x0

)
, (9)

where w(x,θ ) is a weight function with values in [0,1]. In this paper, a Huber
type weight function is used, as proposed in [8]. Let the logarithms of the
relative excesses be denoted by

yi := log

(
xn−i+1

xn−k

)
, i = 1, . . . ,k. (10)

In the Pareto model, these can be predicted by

ŷi :=− 1
θ

log

(
k + 1− i

k + 1

)
, i = 1, . . . ,k. (11)

The variance of yi is given by

σ 2
i :=

i

∑
j=1

1
θ 2(k− i+ j)2 , i = 1, . . . ,k. (12)

Using the standardized residuals

ri :=
yi− ŷi

σi
, (13)

the Huber type weight function with tuning constant c is defined as

w(xn−i+1,θ ) :=
{

1, if |ri| ≤ c,
c
|ri| , if |ri| > c. (14)

For this choice of weight function, the bias of θ̂ is approximated by

B(θ̂ ) =−
∑k

i=1

(
wi

∂
∂θ fi

)
|θ̂
(
Fθ̂ (xn−i+1)−Fθ̂(xn−i)

)

∑k
i=1

(
∂
∂θ wi

∂
∂θ fi + wi

∂ 2

∂θ2 fi

)
|θ̂
(
Fθ̂ (xn−i+1)−Fθ̂(xn−i)

) , (15)
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where wi := w(xn−i+1,θ ) and fi := f (xn−i+1,θ ). This term is used to obtain a
bias-corrected estimator

θ̃ := θ̂ −B(θ̂). (16)

For details and proofs of the above statements, the reader is referred to [7, 8].

3.3 Partial Density Component (PDC) Estimator

For the partial density component (PDC) estimator [16], the Pareto distri-
bution is modeled in terms of the relative excesses

yi :=
xn−i+1

xn−k
, i = 1, . . . ,k. (17)

The density function of the Pareto distribution for the relative excesses is
approximated by

fθ (y) = θy−(1+θ). (18)

The PDC estimator is then given by

θ̂ = argmin
θ

[

w2
∫

f 2
θ (y)dy− 2w

k

k

∑
i=1

fθ (yi)

]

, (19)

i.e., by minimizing the integrated squared error criterion [15] using an incom-
plete density mixture model w fθ . The parameter w can be interpreted as a
measure of the uncontaminated part of the sample and is estimated by

ŵ =
1
k ∑

k
i=1 fθ̂ (yi)
∫

f 2
θ̂
(y)dy

. (20)

See [16] and references therein for more information on the PDC estimator.

4 Simulation Study

Various robust methods for the estimation of poverty and inequality indica-
tors, mostly non-parametric, have been investigated in [17], but neither the
WML nor the PDC estimator for Pareto tail modeling are considered there.
Preliminary results with income generated from theoretical distributions [11]
are an indication that both estimators are promising in the context of Laeken
indicators. This is further investigated in this section. However, variance es-
timation is not yet considered in this paper.

The simulations are carried out in R [14] using the package simFrame [1, 4],
which is a general framework for statistical simulation studies. A synthetic
data set consisting of 35041 households and 81814 individuals is used as
population data in the simulation study. This data set has been generated
with the R package simPopulation [3, 13] based on Austrian EU-SILC survey
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data from 2006 and is about 1% of the size of the real Austrian population. A
thorough investigation in a close-to-reality environment using real-life sized
synthetic Austrian population data is future work.

From the synthetic data, 500 samples are drawn using simple random
sampling. Each sample consists of 6000 households, which is roughly the
sample size used in the real-life survey. With these samples, two scenarios are
investigated. In the first scenario, no contamination is added. In the second,
the equivalized disposable income of 0.25% of the households is contaminated.
The contamination is thereby drawn from a normal distribution with mean
μ = 1000000 and standard deviation σ = 10000. Note that the cluster effect
is considered, i.e., all persons in a contaminated household receive the same
income. The threshold for Pareto tail modeling is in both cases set to k = 275
based on graphical exploration of the original EU-SILC sample with a Pareto
quantile plot [5]. Furthermore, the tuning constant c = 2.5 is used for the
bias-corrected WML estimator due to favorable robustness properties [11].

Figure 1 shows the results of the simulations without contamination for the
quintile share ratio (left) and the Gini coefficient (right). The three methods
for tail modeling as well as the standard estimation method without tail
modeling behave very similarly and are very close to the true values, which
are represented by the grey lines. This is also an indication that the choice
of k is suitable.

Figure 2 shows the results of the simulations with 0.25% contamination
for the quintile share ratio (left) and the Gini coefficient (right). Even such
a small amount of contamination completely corrupts the standard estima-
tion of these inequality indicators. Fitting the Pareto distribution with the
Hill estimator is still highly influenced by the outliers. The best results are
obtained with the PDC estimator, while the WML estimator shows a small
negative bias.

Quintile share ratio

standard

Hill

WML

PDC

3.8 3.9 4.0 4.1 4.2 4.3 4.4

Gini coefficient

standard

Hill

WML

PDC

26 27 28

Fig. 1 Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) without contamination.



A Comparison of Robust Methods for Pareto Tail Modeling 23

Quintile share ratio

standard

Hill

WML

PDC

4.0 4.5 5.0 5.5

Gini coefficient

standard

Hill

WML

PDC

26 28 30 32 34 36

Fig. 2 Simulation results for the quintile share ratio (left) and the Gini coefficient
(right) with 0.25% contamination.

5 Conclusions and Outlook

The quintile share ratio and the Gini coefficient, which are inequality indica-
tors belonging to the set of Laeken indicators, are highly influenced by out-
liers. A simulation study for the case of simple random sampling showed that
robust Pareto tail modeling can be used to reduce the influence of the out-
lying observations. The partial density component (PDC) estimator thereby
performed best.

The simulation study in this paper is limited to simple random sampling
because the estimators for Pareto tail modeling do not account for sample
weights. Future work is to modify the estimators such that sample weights
are taken into account, to investigate variance estimation, and to perform
simulations using real-life sized synthetic population data.
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R Code for Hausdorff and Simplex
Dispersion Orderings in the 2D Case

Guillermo Ayala

Abstract. This paper proposes a software implementation using R of the
Hausdorff and simplex dispersion orderings. A copy can be downloaded
from http://www.uv.es/~ayala/software/fun-disp.R. The paper pro-
vides some examples using the functions exactHausdorff for the Hausdorff
dispersion ordering and the function simplex for the simplex dispersion or-
derings. Some auxiliary functions are commented too.

1 The Introduction

The Hausdorff and simplex dispersion orderings have proposed in [6] and
[1] respectively. Although the definitions are considered for d-dimensional
random vectors we will assume in this paper 2-dimensional random vectors.

First, let us give basic notation used later. If x ∈ R
d and r ∈ [0,∞) then

B(x,r) is the ball centered at x with radius r. If A ⊂R
d then co(A) will denote

the convex hull of the set A. For A,B⊂R
d then the Hausdorff distance between

them will be denoted as dH(A,B) and A+B the Minkowski addition. The usual
stochastic ordering will be denoted as �st .

Let us begin by remembering those definitions. If X and Y are two ran-
dom vectors and r ∈ [0,∞) then X is less dispersive than Y in the Hausdorff
dispersion ordering for the index r, denoted as X �r

H Y , if

dH
(
co({X}∪Br(EX )),co({X ′ }∪Br(EX ))

)
(1)

�st dH
(
co({Y }∪Br(EY )),co({Y ′ }∪Br(EY ))

)
,

with X and X ′ i.i.d. (respectively Y and Y ′ i.i.d.).
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Let X and Y be random vectors then X is less dispersive than Y in the
simplex dispersion ordering, denoted as X �sx Y , if

dH
(
SXXX ,SXXX ′

)
�st dH

(
SYYY ,SYYY ′

)
(2)

where XXX = (X1,X2,X3) and YYY = (Y1,Y2,Y3) are two random samples of X and
Y and SXXX is the convex hull of XXX .

I have developed a collection of R functions in order to evaluate both
dispersion orderings. This collection of R functions can be download from
http://www.uv.es/~ayala/software/fun-disp.R. In this paper, we ex-
plain how they can be used. Note that the analyses included in this paper
can be reproduced by a simple copy-paste of the code.

2 Data

First, we declare our functions and load the packages needed later. In partic-
ular, we will need the R packages geometry, mvtnorm and Hmics [4],[3], [5].
We will give later details about their use.

> source("fun-disp.R"); library(geometry); library(mvtnorm)

We will use multivariate normal distribution data generated using the
package mvtnorm [3]. Let us consider the R

d-valued random vectors X and
Y with normal distributions, X ∼st N(μX ,ΣX) and Y ∼st N(μY ,ΣY ), where
ΣX = AAt , A ∈ Md×d being a matrix whose values are randomly chosen with
uniform distribution in the interval (0,1), the super index t denoting the
transpose matrix, and ΣY = ΣX +λ Id, with λ ≥ 0. It is well-known that the
eigenvalues of ΣY are those of ΣX plus the value λ . It holds that X �sx Y [1].
Roughly speaking, larger values of λ will produce larger dispersion for the
random vector Y .

Let us generate two point sets from the model just considered.

> n = 100; mu1 = rep(0,2); mu2 = mu1; lambda = 0.5; n1 = n2 = n = 100

> sigma1 = matrix(runif(4), nrow = 2, ncol = 2)

> sigma1 = t(sigma1) %*% sigma1

> sigma2 = sigma1 + lambda * diag(1, 2)

> A = rmvnorm(n1, mean = mu1, sigma = sigma1)

> B = rmvnorm(n2, mean = mu2, sigma = sigma2)

Figure 1 shows the original point set A and the corresponding convex hull
obtained by using the package geometry [4] that contains an interface to qhull
(http://www.qhull.org/).

> plot(A); chA = convhulln(A); lines(A[chA[1, ], ])

> for (i in 2:nrow(chA)) lines(A[chA[i, ], ])

http://www.uv.es/~ayala/software/fun-disp.R
http://www.qhull.org/
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Fig. 1 A data set and the corresponding convex hull

3 Hausdorff Dispersion Ordering

The basic reference is [6]. We need to calculate the Hausdorff distance between
x1 +B(y,r) and x2 +B(y,r) where x1,x2,y ∈R

2 and B(m,r) is the disc centered
at m with radius r. Our first approach will be to discretize co(x+∂B(y,r)). The
number of points used in the discretization is NOP. Then the continuous set
x + B(y,r) is replaced by the corresponding discrete set. Finally we calculate
the Hausdorff distance between the corresponding convex hulls of the discrete
sets composed by 100 points. The function cone2 calculates this distance. Let
us see how to calculate this Hausdorff distance.

> x1 = c(3, 5); x2 = c(7, 9); center = c(4, 4); radius = 1;

> NOP = 100

> cone2(x1, x2, center, radius, NOP)

[1] 5.656854

Given a random vector X and a random sample {x1, . . . ,xn}, The function boot-
cone provides us a bootstrap sample of dH(co(X∗

1 + B(y,r)),co(X∗
2 + B(y,r)))

where X∗
1 ,X∗

2 is a random sample without replacement from {x1, . . . ,xn}. Let
us generate a sample and see the empirical distribution function in Figure 2.

> A.bc = bootcone(A, radius = 0.2, NOP = 100, nresamples = 10)

> Ecdf(A.bc)

If we have two samples x and y from X and Y then it can be tested if X is
less dispersive than Y in the Hausdorff dispersion ordering using the following
code. Note that the function uso.test tests the usual stochastic ordering using
the Wilcoxon and Kolmogorov-Smirnov tests.

> AB.bc = bootcone2(A, B, radius, NOP = 100, nresamples = 10)

> uso.test(AB.bc$dhx, AB.bc$dhy)
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Fig. 3 Empirical distribution functions of the Hausdorff distances dH (co(X∗
1 +

B(y,r)),co(X∗
2 +B(y,r))).

In the 2-dimensional case, an exact algorithm to calculate the distance
dH(co(X∗

1 +B(y,r)),co(X∗
2 +B(y,r))) has been proposed [2]. It has been imple-

mented in the function exactHausdorff. The following code calculates these
distance from the two data sets and displays the empirical distribution func-
tions. See Figure 3.
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> r = 0.1; n= 100; prob = rep(1/n, n)

> HA = exactHausdorff(A, prob, r); HB = exactHausdorff(B, prob, r)

> plot(HA$distance, cumsum(HA$probability), type = "l", xlab = "",

+ ylab = "DF", xlim = range(c(HA,HB)))

> lines(HB$distance, cumsum(HB$probability), lty = 2)

Finally, the test if performed using the following code. The Kolmogorov-
Smirnov test is used to test the usual stochastic ordering.

> y = rbind(A, B); x = c(rep(1, nrow(A)), rep(2, nrow(B)))

> z = testHDO(y, x, r = 0.2)

4 Simplex Dispersion Ordering

A detailed explanation of this algorithm can be found in [2].
If A = {xxx1, . . . ,xxxn1} and B = {yyy1, . . . ,yyyn2

}, let {i1, . . . , id+1, id+2, . . . , i2(d+1)} be
a sample without replacement from {1, . . . ,n1}, and U = dH(co(xxxi1 , . . . ,xxxid+1),
co(xxxid+2 , . . . ,xxxi2(d+1))). Therefore, s1 independent extractions from the set {1, . . . ,

n1} will produce a random sample of the corresponding bootstrap distribution
u1, . . . ,us1 . Replacing xxx by yyy, we obtain v1, . . . ,vs2 , a random sample of the boot-
strap distribution associated to the vector yyy. Now, these values can be used for
the proposed tests.

First, we describe some auxiliary functions. The function rotatePHA pro-
vides the angle to rotate a point w to the positive x-axis.

> w = c(-1, 5)

The angle is given by

> (tau = rotatePHA(w))

[1] 1.768192

and the rotated point can be found using

> AA = rbind(c(cos(tau), sin(tau)), c(-sin(tau), cos(tau)))

> w.rotated = t(AA %*% t(t(w)))

Given three points (corresponding with the rows of pp), we need to know
if the convex hull of these points is a triangle, a segment or just they are the
same point. This is given by the function whichShape.

> pp = matrix(data = c(0, -1, 0, -3, -3, 0), ncol = 2, byrow = T)

> whichShape(pp)

[1] "triangle"

In order to calculate the Hausdorff distance between the point z and the
convex hull of the points corresponding to the rows of pp, we have to move
all points.
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> z = c(-9, 1)

> pp = matrix(data = c(0, -1, 0, -3, -3, 0), ncol = 2, byrow = T)

> zpp = moveShapeAndPoint(z, pp, dib = T)

The different steps are illustrated in figure 4.
The function distShape calculates the Hausdorff distance by taking into

account if the convex hull is a triangle, a segment or just a point. A detailed
explanation of the calculations can be found in [2].

> z = c(-9, 1)

> pp = matrix(data = c(0, -1, 0, -3, -3, 0), ncol = 2, byrow = T)

> distShape(z, pp)

1

2 6.082763

The function simplex provides us a sample of u’s.

> d1 = simplex(A, withBootstrap = TRUE, nresamples = 100)

If we consider two different samples we can test the simplex dispersion
ordering using

> d1 = simplex2(A, B, withBootstrap = TRUE, nresamples = 10)

> uso.test(d1$dhx, d1$dhy)
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Fig. 4 Moving a triangle.
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6. López-Dı́az, M.: An indexed multivariate dispersion ordering based on the Haus-

dorff distance. J. Multivariate Anal. 97(7), 1623–1637 (2006)



On Some Confidence Regions to Estimate
a Linear Regression Model for Interval
Data

Angela Blanco-Fernández, Norberto Corral,
Gil González-Rodŕıguez, and Antonio Palacio

Abstract. Least-squares estimation of various linear models for interval data
has already been considered in the literature. One of these models allows dif-
ferent slopes for mid-points and spreads (or radii) integrated in a unique
equation based on interval arithmetic. A preliminary study about the con-
struction of confidence regions for the parameters of that model on the basis
of the least-squares estimators is presented. Due to the lack of realistic para-
metric models for random intervals, bootstrap approaches are proposed. The
empirical suitability of the bootstrap confidence sets will be shown by means
of some simulation studies.

Keywords: Confidence region, Simple linear regression model, Interval ran-
dom set, Bootstrap approach.

1 Introduction

The study of the linear relationship between two random intervals has been
addressed in the literature on the basis of several set arithmetic-based regres-
sion models (see, for instance, [2, 3, 4, 5, 6, 7, 8]). In order to analyze those
models the mid-spread representation of the involved intervals is employed.
The utility of this representation is twofold. On one hand, it captures the lo-
cation and imprecision of the intervals, and on the other hand, it is technically
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easier to handle than the minimum-maximum representation. The linear
model presented in [3], denoted by Model M, generalizes those in [4] and [6].

Least squares estimation problems of Model M has been also considered
in [3]. On the basis of least-squares estimators different approaches to deter-
mine confidence regions can be proposed. Contrary to what happens when the
linear regression problem between real random variables is addressed, in the
interval scenario no realistic parametric models to describe the distribution
of the random sets have been defined up to now. Thus, exact methods are
not feasible. Inferential studies about Model M can be developed by means
of asymptotic techniques, based on the study of the limit distributions of the
regression estimators. To improve the results for finite sample sizes, bootstrap
methods are widely considered. In this work several bootstrap approaches are
considered in order to build confidence sets for the parameters of the model.

2 Preliminaries

Let (Kc(R),+, ·) be the space of nonempty compact intervals of R endowed
with the semilinear structure induced by the Minkowski addition and the
product by a scalar, that is, A+B = {a+b |a∈ A ,b∈ B} and λA = {λa |a∈ A}
for all A,B ∈ Kc(R) and λ ∈ R. Moreover, given A,B ∈ Kc(R), if there ex-
ists C ∈ Kc(R) so that A = B +C, then C is defined as the Hukuhara dif-
ference between A and B, denoted by A−H B. The interval A can be char-
acterized by means of the real vector (infA,supA) ∈ R

2 such that infA ≤
supA, or equivalently, by its mid-point (or centre) and its spread (or ra-
dius), that is, (midA,sprA) with sprA ≥ 0, where midA = (supA + infA)/2 and
sprA = (supA− infA)/2. The notation A = [infA,supA] or A = [midA± sprA],
respectively, will be considered in each case.

Several metrics can be defined on the space Kc(R). For least squares prob-
lems associated with regression studies, an L2-type metric is suitable. Taking
inspiration on the family of metrics for compact convex sets introduced in
[10], a generalized L2-type distance between two intervals A and B can be
defined as

dθ (A,B) =
√

(midA−midB)2 +θ (sprA− sprB)2 (1)

with θ > 0.
Given a probability space (Ω ,A ,P), a mapping X : Ω → Kc(R) is said

to be an interval-valued random set (or random interval), if it is A |Bdθ -
measurable, Bdθ denoting the σ -field generated by the topology induced by
the metric dθ on Kc(R).

Let X : Ω → Kc(R) be a random interval such that E(|X |) < ∞ (with
|X |(ω) = sup

{
|x|
∣
∣x ∈ X(ω)

}
for all ω ∈ Ω), then, the expected value of X in

Kudō-Aumann’s sense (see, e.g., [1]) is the interval E(X)= [E(infX),E(supX)].
The variance of X is defined in the classical statistical way, in terms of the
dθ metric, as σ2

X = E
(
dθ (X ,E(X))2

)
, whenever E(|X |2) <∞. However, it is not

possible to define the covariance analogously to the usual concept, due to
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the lack of linearity on Kc(R). Through the (mid-spr) parametrization it is
possible to define the covariance between X and Y by means of the natural
concept of covariance in Hilbert spaces as σX ,Y = E

(
〈tX −EtX , tY −EtY 〉θ

)
, where

tX = (midX ,sprX) ∈ R
2 (analogously for tY ), and 〈·, ·〉θ is an inner product on

R
2 defined in terms of the constant θ > 0 (see (1)) as 〈a,b〉θ = a′

(
1 0
0 θ

)
b for

all a,b ∈ R
2. The covariance can be expressed in terms of mids and spreads

as σX ,Y = Cov(midX ,midY )+θCov(sprX ,sprY ). The variance of the interval X
can be also expressed as σ2

X = Var(midX)+θVar(sprX).
The estimators for the moments of random intervals presented above are

the usual ones. Given a simple random sample {(Xi,Yi)}n
i=1 from (X ,Y ), let us

define by X = (X1 + X2 + . . .+ Xn)/n, σ̂2
X = dθ (X ,X)2 (analogously Y and σ̂2

Y )
and σ̂X ,Y = 〈tX − tX ,tY − tY 〉θ the sample mean, the sample variance and the
sample covariance for random intervals, respectively.

3 Linear Regression Model M

A natural way to model the relationship between two random intervals has
been previously proposed by the expression Y = αX + ε, with α ∈ R and ε
a random interval such that E(ε|X) = B ∈ Kc(R) (see [6]). Nevertheless, this
model is not flexible enough for many real-life applications. As an exam-
ple, it can be easily checked that this interval linear model tranfers relation-
ships between the mid and spr real variables by means of the expressions
midY = αmidY +midε and sprY = |α|sprY +sprε. Since both equations involve
the same regression coefficient (in absolute value), the model is somehow
restrictive.

With the aim of considering the mid and spr components of the intervals
separately, but keeping the good properties of the interval arithmetic, a new
representation has been introduced in [3]. Each interval A ∈ Kc(R) can be
expressed as A = midA[1±0]+ sprA[0±1]. This notation gives the inspiration
to formalize the called Model M between X and Y in [3] as

Y = αmidX [1±0]+β sprX [0±1]+ ε (2)

with α,β ∈R and E(ε|X) = B∈Kc(R). For simpler notation, the linear model
(2) will be denoted by Y = αXM +βXS + ε. Moreover, it is easy to check that
XS =−XS (since XS(ω) = [−sprX(ω),sprX(ω)], for all ω ∈Ω), so it is possible
to consider β ≥ 0 without loss of generality.

From (2) the linear relationships for mid and spr variables of X and Y are
midY = αmidY + midε and sprY = |β |sprY + sprε, which clearly entails more
flexibility. The flexibility is associated with the extra parameter of Model M,
which depends on two scalars and one interval value.
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3.1 Least Squares Estimation of Model M

The least-squares (LS) estimation of the regression parameters of the model
(2) has been developed in [3]. The LS approach leads to a contrained mini-
minization problem, namely,

(α̂ , β̂ , B̂) = argmin{
a∈R,b≥0,C∈Kc(R)

} 1
n

n

∑
i=1

d2
θ (Yi,aXM

i + bXS
i +C)

subject to b ∈ S

⎫
⎪⎪⎬

⎪⎪⎭
(3)

where S = {b ∈ [0,∞) : Yi−H bXS
i exists, for all i = 1, . . . ,n}. It is easy to check

that b ∈ S implies that Yi−H (aXM
i + bXS

i ) exists for all i = 1, . . . ,n and for all
a ∈ R. The existence of these Hukuhara differences assures the existence of
the residuals of the sample model, and thus, the coherence of the solutions
as suitable estimators of the regression parameters.

It should be underlined that, as it was shown in [6] for the simpler model,
if the restriction is overseen, the obtained estimates of the parameters could
not work as estimates for the model (because the residuals could not exist).

The resolution of problem (3) provides the following expressions:

α̂ =
σ̂XM ,Y

σ̂2
XM

, β̂ = min

{

ŝ0,max
{

0,
σ̂XS,Y

σ̂2
XS

}}

and (4)

B̂ = Y −H
(
α̂XM + β̂XS

)
,

where ŝ0 = min{sprYi/sprXi : sprXi �= 0} (ŝ0 = ∞ if sprXi = 0 for all i = 1, . . . ,n).

4 Bootstrap Confidence Regions for the Regression
Parameters

Since it is not feasible to look for the exact distribution of the LS estimators
and since the asymptotic results usually provide good results only for very
large sample sizes, in this section some alternatives based on bootstrapping
are explored.

Different schemes to generate bootstrap samples from Model (2) can be
followed. When a fixed design is considered (that is, the independent variable
is not random but deterministic), the most usual procedure is the residual
bootstrap. On other hand, when both variables in the linear model are con-
sidered as random elements, the natural resampling is made from a simple
random sample of the pair of variables by means of the paired bootstrap (see
[9] for a complete description of both procedures). The linear model (2) is
formalized for two random intervals, so the paired bootstrap approach will
be used for the development of inferential studies about Model M.

Several bootstrap confidence sets can be constructed for the regression
parameters of linear models involving real-valued random variables (see [9]).
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The best known ones are the percentile, hybrid and t- bootstrap confidence
set. Each of them is based on the sample distribution of a different bootstrap
expression obtained from the bootstrap estimator of the parameter.

Let X and Y be random intervals verifying Model (2). The separate expres-
sions for the least-squares estimators of the parameters α and β presented
in (4) allow us to build confidence sets for each parameter separately. Let α̂
be the least-squares estimator of α obtained from a simple random sample
{Xi,Yi}n

i=1 from (X ,Y ). We denote by {X∗
i ,Y ∗

i }n
i=1 a bootstrap sample, gener-

ated by means of the election of n elements uniformly and with replacement
from {Xi,Yi}n

i=1. Let α̂∗ be the least-squares estimator of α with respect to the
bootstrap sample. From the bootstrap estimator α̂∗ the procedure to build
the three confidence intervals (CI) for parameter α follows.

• Bootstrap percentile CI: If we denote by KBOOT the distribution function
of the bootstrap estimator α̂∗, the bootstrap percentile CI for α at a
confidence level 1−ρ is defined by means of the corresponding percentiles
of KBOOT , that is,

ICP(α)1−ρ =

[

K−1
BOOT

(
ρ/2
)

, K−1
BOOT

(
1−ρ/2

)
]

, (5)

where K−1
BOOT denotes the pseudoinverse of KBOOT .

• Bootstrap hybrid CI: Let HBOOT be the distribution function of the term
nl(α̂∗ − α̂), where l is an arbitrary constant. HBOOT (x) = P[nl(α̂∗ − α̂)≤ x],
for x ∈R. The most usual election for l is 1/2. Thus, the bootstrap hybrid
CI for α at significance level ρ has got the expression

ICH(α)1−ρ =

[

α̂− 1√
n

H−1
BOOT

(
1−ρ/2

)
, α̂− 1√

n
H−1

BOOT

(
ρ/2
)
]

(6)

• t-bootstrap CI: We consider the standarized pivot R =
α̂−α
σ̂α̂

, where σ̂2
α̂

is an estimator of the variance of α̂, and the bootstrap replica of R, R∗ =
α̂∗ − α̂
σ̂∗
α̂∗

, with σ̂∗
α̂∗ the analogous estimator for the variance of α̂∗. If we

denote by GBOOT the distribution function of R∗, the t-bootstrap CI for α
at confidence level 1−ρ is given by

ICT (α)1−ρ =

[

α̂− σ̂α̂G−1
BOOT

(
1−ρ/2

)
, α̂− σ̂α̂G−1

BOOT

(
ρ/2
)
]

(7)

Remark 1. The percentiles of the functions KBOOT , HBOOT and GBOOT (in each
case) can be approximated from the empirical distribution of α̂∗ by means of
MonteCarlo Method.
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Remark 2. It can be shown that the estimator of the variance of α̂ can be

expressed as σ̂2
α̂ =

σ̂2
midε̂

nσ̂2
midX

. However, it is difficult to obtain an analytic ex-

pression for σ̂β̂ . In this case, a bootstrap estimator of the variance of β̂ can
be approximated by means of MonteCarlo Method based on B2 bootstrap
replications (see [9]).

Taking into account the definitions and remarks presented above, an algo-
rithm for the construction of the percentile, hybrid and t- bootstrap confidence
set for parameter α of Model M has the following form.

Algorithm: bootstrap confidence sets for α

Let {Xi,Yi}n
i=1 be a random sample obtained from (X ,Y ). Let ρ be a fixed

significance level and B ∈N large enough.

P1. Compute the estimates α̂ and σ̂2
α̂ .

P2. Generate B bootstrap samples {X∗
i ,Y ∗

i }n
i=1 of size n, resampling with

replacement from the original sample {Xi,Yi}n
i=1.

P3. For each iteration b = 1, . . . ,B, compute the estimate for α from the corre-

sponding bootstrap sample, α̂∗(b) =
σ̂XM∗,Y ∗

σ̂2
XM∗

, and the bootstrap estimator

of its variance, σ̂∗2
α̂∗ =

σ̂2
midε∗

nσ̂2
midX∗

.

P4. Aproximate the lower and upper limits of the intervals (5), (6) and
(7) substituting the quantiles of the distributions with the correspond-
ing quantiles from the empirical distribution of α̂∗. That is, the values
{α̂∗(b)}B

b=1 are increasing ordered, and the ones in position [(ρ/2)B] + 1
and [(1−ρ/2)B] are selected (where [·] denotes the integer function). Let
α̂∗

C1 and α̂∗
C2 be that values. Thus, the percentile, hybrid and t- confidence

sets for α at a confidence level 1−ρ are given by

ICP(α)1−ρ =
[
α̂∗

C1 , α̂∗
C2

]
,

ICH(α)1−ρ =
[

2α̂− α̂∗
C2 , 2α̂− α̂∗

C1

]
, and

ICT (α)1−ρ =

[

α̂− σ̂α̂
α̂∗

C2 − α̂
σ̂∗
α̂∗C2

, α̂− σ̂α̂
α̂∗

C1 − α̂
σ̂∗
α̂∗C1

]

respectively.

An analogous algorithm can be developed for the construction of the boot-
strap confidence sets for the regression parameter β in Model M, taking into
account the details explained in Remark 2.



On Some Confidence Regions to Estimate a Linear Regression Model 39

4.1 Simulation Studies

The empirical behaviour of the bootstrap procedure can be shown by means of
some simulation studies. Let us define a theoretical situation for two random
intervals X and Y associated by means of the expression

Y = XM + XS + ε (8)

where the independent interval X is characterized through the real random
vector (midX ,sprX) such that midX ∼ N(0,1) and sprX ∼ χ2

1 , and the error
interval term is also defined by midε ∼ N(0,1) and sprε ∼ χ2

1 +1 independent
from X .

For different samples sizes n, a random sample from (X ,Y ) is simulated.
Let {Xi,Yi}n

i=1 be one of them. For k = 10000 iterations of the suggested boot-
strap algorithms, the 0.95 − bootstrap confidence sets for α (and analogously
for β ) based on B = 1000 bootstrap replications are computed, checking for
each of them if the theoretical parameter α = 1 (and β = 1) belongs to the
corresponding confidence interval. Finally, the coverage rates are gathered in
Table 1.

Table 1 Empirical confidence level of the bootstrap CIs for α and β

α β
n ICP(α) ICH(α) ICt(α) ICP(β ) ICH(β ) ICt(β )
30 0.9301 0.9318 0.9374 0.8852 0.8911 0.8969
50 0.9360 0.9458 0.9466 0.8985 0.9061 0.9067
100 0.9460 0.9465 0.9476 0.9012 0.9082 0.9124
200 0.9475 0.9487 0.9494 0.9111 0.9123 0.9152

Since the success rates are close to the nominal confidence level 0.95 (the
larger sample size, the closer they are), the empirical correctness of the boot-
strap procedure is justified. Indeed, for parameter α, the rate of convergence
of the empirical significance level can be found in [9]. ICt(α) is the most ac-
curate, ICH(α) the second one, and ICP(α) is the less accurate of the three
approaches. In the case of parameter β , the approximation to the nominal
level is slower. A preliminary analysis of this result has shown that the ex-
pression of the estimator β̂ depending on the sample term ŝ0 entails that the
bootstrap estimator β̂ ∗ does not always perform well. Let us recall that ŝ0 is
an order statistic (it is defined as the minimum of several real random vari-
ables), for which classic bootstrap methods are inconsistent in some situations
(see [9]).
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5 Concluding Remarks

Different procedures to construct bootstrap confidence sets for the parame-
ters α and β of Model M have been proposed. Their empirical correctness
has been shown by means of some simulation studies. With respect to the
parameter β , a wider study and a possible improvement of the bootstrap
procedure for the construction of confidence sets will be addressed in future
research. The statistical study of Model M will be extended by means of the
development of other inferential studies, like hypothesis testing, the study of
linear independence, among others.
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Possibilistic Coding:
Error Detection vs. Error Correction

Luca Bortolussi and Andrea Sgarro

Abstract. Possibilistic information theory is a flexible approach to old and
new forms of coding; it is based on possibilities and patterns, rather than
pointwise probabilities and traditional statistics. Here we fill up a gap of the
possibilistic approach, and extend it to the case of error detection, while so
far only error correction had been considered.

1 Introduction

The possibilistic approach to source and channel coding (to compression codes
and error-correcting codes) arose as a formal game in which pointwise proba-
bilities, as currently used in Shannon’s information theory, were replaced by
possibilities, so as to find a possibilistic equivalent for probabilistic notions
as are error probability, source entropy and channel capacity, cf. [14, 15]. The
formal game has proved to be more stimulating than was expected: the pos-
sibilistic approach could be applied to the design of error-correcting phone
keyboards [11], to more theoretic questions like defining the nature of channel
noise in biological computation [1, 2], or introducing adequate “operational”
information measures [8, 13, 15], and also, more recently, to the construction
of codes which correct twiddles, i.e. transpositions between consecutive let-
ters, inadvertently made [3]. It turns out that possibilistic information theory
includes as sub-cases both Shannon’s zero-error information theory [9] and
the standard approach to error correcting codes [10] based on checking Ham-
ming distances between codewords. As for the first inclusion, suffice it to say
that the possibilistic approach may be seen as a multi-step generalisation of
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Shannon’s approach, which is two-step only, without intermediate degrees of
possibility between possible and impossible. As for the second inclusion, the
probabilistic layer (or at least the traditional pointwise probabilistic layer)
has always been felt to be rather thin, so that resorting to probabilistic sym-
metric channels, as done in introductory textbooks, e.g. [10], might appear
to be a homage1 paid to Shannon, rather than an intrinsic need of coding
theory (as opposed to information theory proper, or Shannon theory).

The possibilistic approach to coding is rigorously Shannon-theoretic: based
as it is on patterns rather than traditional statistics, it responds to a general
need of new approaches to information theory felt in the computer science
community [4]. A basic Shannon-theoretic notion like channel noise can be
safely exported to the new setting, as we did in [1, 2] in the case of DNA word
design (codewords are DNA strings, cf. [5]). One might want to mimic also
in the DNA case what one successfully does for standard codes (the noise of
symmetric channels is probabilistic), but we have proven in [2] that nothing
like this holds in the DNA case, where no probabilistic description of chan-
nel noise is feasible. By this we have been able to give a remarkable example
where channel noise is intrinsically possibilistic and non-probabilistic. Clearly,
the probability which is ruled out here is pointwise probability: the interpre-
tation of possibilities as upper probabilities suggests instead the feasibility of
a probabilistic approach to information theory and coding which might prove
to be quite comprehensive, even if its impact on coding practice remains to
be assessed.

In this paper we emend a fault of the possibilistic approach, which appears
to be able to deal only with error correction and not with error detection: so,
at least seemingly, it has a weak point with respect not only to standard codes
but also to DNA word design as covered in the literature. Below we give a
solution to the problem of possibilistic error detection which is fully general,
and which is based on the notion of even codeword couples, to be defined in
Section 4; Sections 2 and 3 introduce our problem and ensure self-readability,
while the problem itself is tackled in the final Section 4.

2 Distinguishability and Confusability

Let X be a finite metric space and let d(x,y) be the corresponding metric
distance. The idea is that an element x ∈X is fed to a transmission channel
and at the other end of the channel an element z ∈ X is observed, which
might be different from x due to channel noise. The aim is to recover the
correct input x from the observed output z. A codebook C , or for short a

1 Shannon’s original approach is probabilistic even in the zero-error case: for him
possible means that the probability is positive, however small it may be. Note
that the notions of codeword distinguishability and codeword confusability are
already present in the zero-error theory, even if not in the general form as below,
Section 2, and so are due to Shannon.
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code, is simply a non-void subset of elements called codewords, to be used as
possible inputs to the channel.

Once we have a distance on X with maximal value N, a corresponding
transition possibility from x to z can be obtained in a “canonical” way:

Poss(z|x) = 1− N−1d(x,z) (1)

These transition possibilities can be arranged into an |X |×|X | possibility
matrix: the entries in each row of a possibility matrix, rather than summing
up to 1 as in a stochastic matrix, have a 1 as their maximum, as typical
of possibility theory, which is maxitive rather than additive (for possibility
theory cf. e.g. [7]). In channel coding, a transition possibility as (1) can be
interpreted as follows: the possibility of receiving z when x is sent over the
noisy channel is high or low according whether the “pattern similarity” be-
tween input x and output z is high or low. We stress that a possibilistic noisy
channel is completely described by a possibility matrix. The distance-based
(geometric) approach will be more palatable to coding theorists, but an ex-
plicit use of possibilities2 has the advantage of better emphasising the links
with information theory, on the base of the opposition probability vs. possi-
bility. Even if overlooked in the literature on standard coding and DNA word
design, and this for reasons explained below, basic coding-theoretic notions
are codeword distinguishability or, equivalently, codeword confusability.

Definition 1. The distinguishability of a couple (x,y) is defined to be

δ (x,y) = min
z∈X

max{d(x,z),d(y,z)}

From now on, unless otherwise specified, distances are assumed to be consec-
utive integers, d(x,y) ∈ {0,1, . . . ,N}. One soon proves the following3 bounds:

⌈d(x,y)
2

⌉
≤ δ (x,y) ≤ d(x,y) (2)

In a possibilistic setting one might prefer to deal with confusabilities

γ(x,y) = max
z∈X

min{Poss(z|x),Poss(z|y)} = 1− N−1 δ (x,y) (3)

The rightmost equality assumes (1). Nothing much changes, and so in the
following we shall stick to distinguishabilities. A situation when the lower
bound in (2) is achieved is the following:

2 The possibilistic framework can be readily and naturally enlarged to more general
situations, e.g. when the input alphabet and the output alphabet are distinct,
cf. [12, 14]: then dissimilarities (which take up the role of distances) are between
input and output, while distinguishabilities involve two inputs.

3 The lower bound follows from the triangle inequality; if the distances are not
constrained to be integers the integer ceiling must be understood as the smallest
available distance which is ≥ d(x,y)/2, c.f. [12].
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Definition 2. An integer metric space is dense when, whatever the couple
(x,y), for any integer m ∈ [0,d(x,y)] one can find an element z at distance m
from x and at distance d(x,y)−m from y.

An obvious example is given by Hamming distances for strings of the same
length, a less obvious example is DNA word design, cf. [1, 2]. Instead, the
upper bound in (2) is always achieved if and only if the (not necessarily
integer) metric is an ultrametric, i.e. if and only if the fuzzy triangle inequality
max{d(x,z),d(z,y)} ≥ d(x,y) is always verified, cf. [12]. Cf. [3] for the case of
significant string distances, e.g. variants of the edit distance or Spearman
footrule [6], which might be used to correct twiddles, as hinted at in Section 1;
the distinguishabilities corresponding to these distances are sometimes equal
to the lower bound, sometimes to the upper bound, and sometimes have
intermediate values, depending on (x,y), cf. [3].

3 Two Equivalent Approaches to Coding

For the moment being we deal only with error-correcting codes and so ignore
error detection; the definition below might be equivalently given in term of
confusabilities (3).

Definition 3. Optimal codes: once the integer threshold Δ is chosen, con-
struct maximum-size codes with guaranteed minimum distinguishability Δ ,
i.e. with δ (x,y) ≥ Δ for all couples of distinct codewords in C (0 < Δ ≤
maxx,y δ (x,y) ≤ N).

Whatever the code size, when threshold Δ is guaranteed one proves the fol-
lowing reliability criterion, given in two equivalent phrasings, cf. [12, 14]. To
enhance self-readability, a quick proof is given; for more details cf. [12, 14].

Reliability criterion 1. Decode to a codeword x which maximises the tran-
sition possibility Poss(z|x) to the output z: the error possibility4 is at most
equal to 1−Δ/N.

Reliability criterion 2. Once the output string z is received, decode to a
codeword x which minimises the distance d(x,z) between input and output: if
the input string x was such that d(x,z) < Δ , decoding is successful.

Proof. If x is sent, z is received, and y �= x is decoded to, then d(y,z) ≤ d(x,z)
and so, by definition 1, δ (x,y) ≤ d(x,z): by comparison, d(x,z) ≥ Δ . ��

If two codewords x and y have distinguishability δ (x,y) = Δ , one can provide
an output z at distance d(x,z) = Δ from x and at distance d(y,z) ≤ Δ from y,

4 For each codeword y sent over the channel, its error possibility is the possibility
of the set of the outputs z which lead to a decoding error, and so, according to
the maxitive rules of possibility theory, it is the maximum possibility Poss(z|y) of
such z’s.
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or the other way round, which will bring about a decoding error of “weight”
Δ and of possibility 1−Δ/N: in this sense, the Reliability criterion cannot be
improved.

Actually, optimal codes of both standard coding and DNA word design
are constructed by choosing a threshold T and checking directly distances
rather than distinguishabilities. In general, ignoring distinguishabilities can
lead to inconsistent results, in the sense that the resulting codebooks are
nice combinatorial constructions devoid of error-correcting capabilities, cf.
[1]. This is not so in the standard case or in the DNA case, because standard
and DNA distinguishabilities are a monotone5 function of the corresponding
distances (recall that the lower bound (2) is always achieved in the case
of dense spaces, Definition 2). When monotonicity is strict, everything is
fine: here, however, monotonicity is only weak, and so the reader will object
that one ends up “losing” all optimal codebooks which had been obtained by
constraining the minimum distance d(x,y) against an even integer threshold
T . As a matter of fact, the Reliability criteria soon imply that even bounds on
distances are completely useless if one insists on hard decoding (the decoder
decides to a single codeword, however fishy the situation might be). Instead,
even bounds on distances are quite relevant in error detection, when a soft
decoder is used; in the next section we show how the possibilistic approach
can deal with error detection quite in general.

4 Even Couples in Error Detection

Definition 4. The couple (x,y) is an even couple when any z achieving δ (x,y)
as in Definition 1 is at the same distance from both x and y, it is an odd couple
if for any such z the two distances from x and y are distinct, else it is a mixed
couple.

Snags with error detection occur with mixed couples, i.e. when one can
provide a skew quadruple (x,y,u,w) where u and w both achieve δ (x,y),
but δ (x,y) = d(x,w) = d(w,y) while δ (x,y) = d(u,y) > d(u,x). Set d(x,y) = d,
δ (x,y) = ρ , d(x,u) = μ , d(u,w) = ξ .

Lemma 1. Four positive real numbers d,ρ ,μ ,ξ as above are the lengths of
a skew quadruple in a metric space of size 4 if and only if they verify the
constraints �d/2� ≤ ρ ≤ d, ρ �= d/2, d−ρ ≤ μ < ρ, ρ− μ ≤ ξ ≤ ρ+ μ.

Proof. Choose d; as for ρ the bounds (2) must hold. Forget ξ for the moment
being: one is left with two triangles, and a check of the corresponding triangle
inequalities gives d − ρ ≤ μ ≤ d + ρ , but since μ should be strictly smaller

5 The reader will have appreciated that, thinking of optimal codes and reliability,
the possibilistic approach is basically invariant with respect to strictly mono-
tone transformations of the transition possibilities involved, or of the distances
involved.
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than ρ one ends up imposing d−ρ ≤ μ < ρ . To avoid that this interval be void
one must rule out the value d/2 for ρ . Adding ξ gives two more triangles, and
a check of the corresponding triangle inequalities completes the proof. ��
The proof does not assume that the distances should be integers; if it is so,
the constraints on ρ can be subsumed to �(d + 1)/2� < ρ ≤ d. The lemma
allows one, after choosing d, to find ρ ,μ ,ξ in this order; it can be used in
spaces of any size to spot mixed couples. E.g. take d = 2 to find the three
integer solutions ρ = 2, μ = 1, ξ ∈ {1,2,3}. Of these, the third gives the
distance matrix below; transition possibilities are soon obtained from (1)
setting N = 3; distinguishabilities are equal to distances, as soon checked,
save δ (u,w) = 3 = �d(u,w)/2�:

x y u w
x 0 2 1 2
y 2 0 2 2
u 1 2 0 3
w 2 2 3 0

Theorem 1. If x and y achieve the lower bound (2) and d(x,y) is an integer,
the couple (x,y) is even or odd according whether their distance d(x,y) is even
or odd, respectively. If x and y achieve the upper bound (2), the couple (x,y)
cannot be even.

Proof. The first claim in the theorem below is a straightforward by-product
of the lemma, which rules out mixed couples for d = δ/2; the rest soon follows
from the triangle inequality. As for the second claim just think that x and y
are both minimizing z’s as in definition 1. ��
So, the set of even couples (x,y) is made up of all the couples at an even
distance in the dense case, but in general it is not so. E.g., in spite of even
distances, there are no even couples with x �= y for the distance matrix above,
as soon checked (out of the six couples two are odd, four are mixed).
We modify optimality and reliability as follows; we assume Δ < N to no loss
of generality (use theorem 1: if δ (x,y) = N then the upper bound in (2) is
achieved and so (x,y) cannot be even).

Definition 5. Optimal codes for error detection: once the integer threshold
Δ is chosen, construct maximum-size codes as in definition 3, but adding the
constraint: if d(x,y) = Δ then (x,y) is an even couple.

Reliability criterion 3 for error detection. Decode to the single codeword
x which maximises the transition possibility Poss(z|x) to the output z, and in
case of ties declare a detected error: the undetected error possibility is strictly
less than 1−Δ/N.

Reliability criterion 4 for error detection. Once the output string z is
received, decode to the single codeword x which minimises the distance d(x,z)
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between input and output; in case of ties declare instead a detected error. No
undetected error occurs if the input string x was such that d(x,z) ≤ Δ .

Proof. Re-take the proof of the criterion for error correction. The equality
d(y,z) ≤ d(x,z) must be modified to a strict inequality d(y,z) < d(x,z), else a
detected error would have been declared. Once more one gets Δ ≤ δ (x,y) ≤
d(x,z); however, if Δ = d(x,z) and so Δ = δ (x,y) = d(x,z), z would achieve
δ (x,y) and (x,y) would be an odd or mixed couple. ��

Criteria 3 and 4 do not require that the codes are maximum-size (optimal).
In practice, whenever the lower bound (2) holds, the Reliability criterion 4
can be re-stated in a way which is quite familiar to coding-theorists, just use
Theorem 1 (requiring that a couple (x,y) is even amounts to requiring that
its distance should be an even integer). At the other end of the spectrum, we
have ultrametric spaces, where error detection does not offer any advantage,
and so can be safely ignored, use again Theorem 1. As for the intermediate
and stimulating case of the string distances for twiddles mentioned in Section
2, to construct error-detecting codes one will have to carefully understand the
structure of even couples in the corresponding string “geometry”.

The gap of error detection having been filled, possibilistic information the-
ory stands out as a full-fledged approach to information theory and coding,
able to deal with situations, as is channel noise in DNA word design or the
correction of twiddles, where the traditional probabilistic and distance-based
approach falls short of the mark.
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Coherent Correction for Conditional
Probability Assessments with R

A. Brozzi, A. Morelli, and F. Vattari

Abstract. We present an R implementation for a procedure proposed to
correct incoherent conditional probability assessments. We obtain a coherent
correction q for the initial assessment p given on a family E of conditional
events by minimizing a discrepancy measure between p and the set of all
probability distributions over the sample space spanned by E .

Keywords: Coherent correction, Conditional probability assessments, Non-
linear optimization, R.

1 Introduction

In this paper we describe an R implementation for a procedure proposed
in [1] and analysed in [3] to correct incoherent probability assessments. We
start with an initial assessment p = (p1, . . . , pn) given by an expert on a finite
domain of conditional events E = {E1|H1, . . . ,En|Hn} with logical contraints
representing their particular configurations. We consider the sample space
Ω = {ω1, . . . ,ωk} spanned by E . By minimizing a discrepancy measure be-
tween p and the set of all probability distributions over Ω , we generate a
coherent correction for the initial opinion p. In cases where the initial assess-
ment is coherent the correction coincides with p, so the procedure might also
be used to verify the coherence of the initial assessment.

In the following subsection we give basic notions about the coherence for
conditional probabilities and we analyse the discrepancy measure used to
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correct incoherent assessments. In Section 2 we detail the R code used and
in Section 3 we provide some explanatory examples.

1.1 Conditional Probabilities and Discrepancy
Measure

A conditional assessment p on a finite family of conditional events E is said to
be coherent if there exists a conditional probability defined on E ′ = G ×Bo

(Bo = B \ /0) which extends p, where G is a boolean algebra and B is an
additive set contained in G . We will use the following characterization given
by Coletti and Scozzafava in [5]:

Theorem 1. Let E = {E1|H1, . . . ,En|Hn} be an arbitrary family of conditional
events, Ω be the set of atoms ω j generated by the events E1,H1, . . . ,En,Hn and
G be the algebra spanned by them. For an assessment on E given by a real
function p, the following statements are equivalent:
(i) p = (p1, . . . , pn) is a coherent conditional probability on E ;
(ii) there exists a sequence of compatible systems, indexed with l (layer), with
unknowns α l

j ≥ 0

⎧
⎪⎪⎨

⎪⎪⎩

∑
ω j⊆EiHi

α l
j = pi ∑

ω j⊆Hi

α l
j, f or i = 1, . . . ,n s.t. ∑

ω j⊆Hi

α l−1
j = 0, l ≥ 1

∑
ω j⊆Hl

0

α l
j = 1

with l = 0,1, . . . ,t ≤ n where EiHi = Ei ∧Hi, H0
0 = H0 = H1 ∨ . . .∨Hn and Hl

0

denotes, for l ≥ 1, the union of the Hi’s such that ∑ω j⊆Hi
α l−1

j = 0.

Therefore an assessment p is incoherent if this sequence of systems has no
solution; in [1] the authors present a procedure to correct incoherent assess-
ment using a discrepancy measure between the conditional assessment p and
the set of all probability distributions over the sample space Ω generated by
E . By minimizing this discrepancy measure they generate a coherent assess-
ment q which is the closest to the initial opinion with respect to this measure.
In the next steps we describe this discrepancy and its theoretical properties
which will be used to correct the incoherence with a procedure written in R.

Let us consider the following sets of probability distributions over Ω :

A :=
{
α = [α1, . . . ,αk],∑α j = 1,α j ≥ 0, j = 1, . . . ,k

}
;

A0 := {α ∈ A |α(H0) = 1};
A1 := {α ∈ A0|α(Hi) > 0, i = 1, . . . ,n};
A2 := {α ∈ A1|0 < α(EiHi) < α(Hi), i = 1, . . . ,n}.

For each α ∈ A1 we define a coherent assessment qα that, for sake of
simplicity, we call q:
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qi =

∑
ω j⊆EiHi

α j

∑
ω j⊆Hi

α j
, ∀i = 1, . . . ,n. (1)

Let us now consider the following scoring rule defined for each p ∈ (0,1)n:

S(p) :=
n

∑
i=1

|EiHi| ln pi +
n

∑
i=1

|Ec
i Hi| ln(1− pi) (2)

where | · | is the indicator function of unconditional events. S(p) is an adapta-
tion to partial conditional probability assessments of the proper scoring rule
for probability distributions proposed by Lad in [7]. Using this scoring rule,
in the aforementioned work [1] the authors introduce a discrepancy between
a partial conditional assessment p over E and a distribution α ∈ A2 as

Δ(p,α) := Eα (S(qα )−S(p)) =
k

∑
j=1
α j[S j(qα )−S j(p)]. (3)

This definition can be extended by continuity in A0 as

Δ(p,α) = ∑
i|α(Hi)>0

α(Hi)
(

qi ln
qi

pi
+(1−qi) ln

(1−qi)
(1− pi)

)

with the usual convention 0ln0 = 0. In [3] it is formally proved that Δ(p,α)
is a non negative function on A0 and that Δ(p,α) = 0 if and only if p = q;
moreover Δ(p, ·) is a convex function on A2 and it admits a minimum on A0.
This measure has been introduced in [1] to correct incoherent assessments
and it has been also developed for the imprecise probabilities [2] and to
aggregate expert opinions [4]. We generate a coherent correction for p solving
the following nonlinear optimization problem

min
α∈A0

Δ(p,α). (4)

Since we seek a solution in A0 we restrict our attention only to the atoms
contained in H0 considering Ω ≡ H0. Every qi is properly defined as in (1)
only if α(Hi) > 0 so we minimize Δ(p,α) in A0 getting α solution of (4) and
we generate

qi =

∑
ω j⊆EiHi

α j

∑
ω j⊆Hi

α j
, ∀ i | α(Hi) > 0 (5)

for every i such that α(Hi) > 0. Hence we start a new layer: we restrict our
attention to indexes i such that α(Hi) = 0 and we solve a new optimization
problem of the same kind. The procedure is iterated at most n times1.

1 Notice that S(p) is defined only for p ∈ (0,1)n but to correct every p ∈ [0,1]n is
reasonable just taking qi = 0 for all i s.t. pi = 0 and qi = 1 for all i s.t. pi = 1.
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2 Coherent Correction with R

We wrote in R a main user-level function called coherentCorrection to
correct conditional probability assessments. The function takes in input the
following arguments:

> args(coherentCorrection)

function (Events = Events, condEvents = condEvents, relations =
relations, p = p)

where

Events is the vector of all (unconditional) events
condEvents is the list of conditional events
relations is a vector of logical relations between the events
p is the vector of initial probability assessment.

coherentCorrection is an interface to a function written in C++2 which
takes the logical constraints (stored in relations) and conditional events
(stored in condEvents) to generate a matrix M = (mi j) ∈ M2n×k such that

mi j =
{

1, ω j ⊆ Ai

0, ω j ⊆ Ac
i

where Ai is the i-th (unconditional) event.

In the procedure we use <1> and <0> to indicate Ω and /0 respec-
tively and the relations between the events coded as in Table 1.

Table 1 Table of operators

operators logical connectives
=> implication
<=> equivalence
* conjunction
+ disjunction
- negation

When the coherentCorrection function is called the matrix M is auto-
matically generated and imported into R. The matrix is passed together with
the vector p inside the objective function DeltaPalpha. This function has to
be minimized in order to find out the closest coherent probability assessment
with respect to the discrepancy measure Δ above introduced. To issue the
minimization task we took advantage of the functions contained in the pack-
age Rdonlp2. This package is an R implementation of a software written by
2 The function generates the atoms solving a SAT (Boolean satisfiability) problem.
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Peter Spellucci for solving nonlinear programming problems. The output of
the coherentCorrection function is a vector q which represents the coherent
correction of the initial assessment p.

A sketch of the procedure behind the R function is described below. The
index l has been intentionally highlighted in the algorithm to give a straight-
forward view of the coherence layers. We start with the initializations: l = 0,
nl = number of initial conditional events, pl = initial assessment and Ml =
initial matrix of atoms.

while nl > 0 do
α l = min(Δ(pl ,α l))
for i = 1 to nl do

if α l(Hi) > 0 then
qi = α l(EiHi)/α l(Hi)
delete the i-th row of Ml

delete the (nl + i)-th row of Ml

for j = 1 to kl do
if Ml [i, j] = 0 ∀i = nrow(Ml)/2 + 1,. . .,nrow(Ml) then

delete j-th column of Ml

nl+1 = nrow(Ml)/2
pl+1 = (pl

i)i|α l(Hi)=0

Ml+1 = Ml

l = l + 1

3 Examples

We illustrate the functionality of coherentCorrection using several inputs.

Example 1. We start with the Example 3 reported in [1]. Five basic events
A,B,C,D,E are given with the following interpretations: A = “cardiac in-
sufficiency”, B =“asthma attack”, C =“asthma attack and cardiac lesion”,
D =“taking drug for asthma does not reduce choking symptoms”, E =“taking
the drug M for asthma increases tachycardia”. Events are characterized by
the following logical constraints: C ⊆ AB, DAcB ≡ /0, EAcB ≡ /0.

The set E of conditional events and corresponding initial assessment p are
reported in Table 2.

Table 2 Initial assessment of Example 1

E A B C A∨B D|A D|Ac D|B D|Bc D|C D|Cc E|DA E|DB
p 0.57 0.333 0.2 0.6 0.9 0.7 0.45 0.75 0.75 0.6 0.875 0.6

The output of our R function is a vector q which represents the coherent
correction of the initial assessment p; in this example the procedure gives the
correction after one layer:
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> condEvents1 = list("A", "B", "C", "A + B", "D | A", "D | - A",

"D | B", "D | - B", "D | C", "D | - C", "E | D * A", "E | D * B")

> relations1 = c("C => A * B", "D * - A * B <=> <0>",

"E * - A * B <=> <0>")

> Events1 = c("A", "B", "C", "D", "E")

> p1 = c(0.5, 0.333, 0.2, 0.6, 0.9, 0.7, 0.45, 0.75, 0.75, 0.6,

0.875, 0.6)

> coherentCorrection(Events = Events1, condEvents = condEvents1,

relations = relations1, p = p1)

Processing layer... 0 Correction q =

A B C A+B D|A D|-A D|B D|-B D|C D|-C E|D*A E|D*B

0.477 0.319 0.200 0.595 0.840 0.571 0.502 0.792 0.800 0.674 0.856 0.639

Example 2. In the following example two layers have been processed. The
data are taken from Example 14, pag. 94 [5]. We start with six events
F1,F2,F3,G1,G2,G3 under the following constraints G1 ≡ G2 ∨G3, G2G3 ≡ /0,
G1 ≡Ω , F1 ⊆ G2, F2 ⊆ G2, F3 ⊆ G3, F1F2 ≡ /0, F1∨F2 ≡ G2. The initial proba-
bility assessment p is given on E as in Table 3:

Table 3 Initial assessment of Example 2

E F1|G1 F2|G2 F3|G3

p 0.75 0.25 0.5

Being the initial assessement coherent, our R function returns a correction
vector q coincident with the initial vector p. Such result shows how the pro-
cedure can also be used to check the coherence for conditional probability
assessment.

> p2 = c(3/4, 1/4, 1/2)

> Events2 = c("F1", "G1", "F2", "G2", "F3", "G3")

> condEvents2 = list("F1 | G1", "F2 | G2", "F3 | G3")

> relations2 = c("G1 <=> G2 + G3", "G2 * G3 <=> <0>", "G1 <=> <1>",

"F1 => G2","F2 => G2","F3 => G3","F1 * F2 <=> <0>","F1 + F2 <=>

G2")

> coherentCorrection(Events = Events2, condEvents = condEvents2,

+ relations = relations2, p = p2)

Processing layer... 0 Processing layer... 1 Correction q =

F1|G1 F2|G2 F3|G3

0.75 0.25 0.50

Example 3. In the same framework of the previous example, adding another
conditional event F4|G4 with the constraints F4 ⊆ G3,F4F3 ≡ /0,G4 ≡ G3,F3 ∨
F4 ≡ G3 and taking p4 = 1/3, we get an incoherent initial assessment. Our
procedure corrects it in two layers.
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> p3 = c(3/4, 1/4, 1/2, 1/3)

> Events3 = c("F1", "G1", "F2", "G2", "F3", "G3", "F4", "G4")

> condEvents3 = list("F1 | G1", "F2 | G2", "F3 | G3", "F4 | G4")

> relations3 =c("G1 <=> G2 + G3","G2 * G3 <=> <0>","G1 <=> <1>",

"F1 => G2", "F2 => G2", "F3 => G3", "F1 * F2 <=> <0>", "F4 => G4",

"F4 * F3 <=> <0>", "G4 <=> G3", "F1 + F2 <=> G2", "F3 + F4 <=>

G3")

> coherentCorrection(Events = Events3, condEvents = condEvents3,

+ relations = relations3, p = p3)

Processing layer... 0 Processing layer... 1 Correction q =

F1|G1 F2|G2 F3|G3 F4|G4

0.750 0.250 0.586 0.414

4 Conclusions

In several research fields it might happen that probability assessments are
given only on events of particular interest and not generally over all the possi-
ble states of the world. Moreover in many cases information gathered on phe-
nomenons being evaluated might be partial, conditional or even incoherent. In
this scenario becomes important to draw the best representative coherent as-
sessement from this partial information. We have presented a new procedure
using R to issue this task; we have chosen R because it has become the most
widely used enviroment in many fields of research (e.g. economics, sociology,
life sciences) where such kind of problems usually rise. By means of the flex-
ibility of R, we provided an integrative framework of different computational
solutions usually accomplished by different approches (satisfiability problem,
nonlinear optimization under constraints). The usage of the proposed proce-
dure might also be extended to check the coherence of the initial assessment.

Availability: The function is implemented in an R package. It is currently
available for download at
http://sites.google.com/site/alessandrobrozzi/
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Inferential Rules for Weak Graphoid

Giuseppe Busanello and Barbara Vantaggi

Abstract. We deal with the problem of computing efficiently the closure of
a set of independencies, compatible with a coherent conditional probability,
under cs–independence. For this aim we provide two inferential rules, which
allow to build a basis for the closure.

Keywords: Conditional independence, Closure, Graphoid, Inference rules.

1 Introduction

In probability and multivariate statistics graphical models have a fundamen-
tal role, in particular for representing independence models, whose properties
depend on the independence notion taken into account. Actually, indepen-
dence models, arising from the classic independence, are closed in general
under semi–graphoid properties and if the probability is strictly positive un-
der graphoid properties [6].

However, it is well known that the classical definition of independence
leads to some counter-intuitive situations when some events with probability
0 or 1 are involved and when logical constraints among the variables are
present. Then, different definitions of independence have been introduced to
encompass such situations as, for example, cs-independence [2], given within
the framework of coherent conditional probability [3], which allows also to
deal with partial assessments with conditioning events of zero probability.
This represents a very crucial feature not only from a merely theoretical
point of view, in fact they can be met in many problems as, e.g., in medical
diagnosis, statistical mechanics, physics.

The graphoid properties under cs-independence have been tested in [9], in
particular, symmetry can fail. Actually, the relevant independence models are
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closed under weak graphoid properties (decomposition and its reverse, weak
union, contraction and its reverse, intersection).

The aim of this paper is to consider a set J of conditional independence
statements, compatible with a coherent conditional probability assessment,
and to build efficiently the closure under weak graphoid properties.

This topic has already been faced successfully for semi-graphoids by Stu-
dený [7, 8] and for graphoids in [1], now the aim is to extend these results to
the more general structure of weak graphoid.

Since the computation of the closure is infeasible due to its size, which is
exponentially larger than the size of J, our aim is to find a suitable subset
of the closure, which represents the same independence structure. This set
should be as small as possible and from it all the relations in the closure
should be easily deducible, so it can be considered a basis for the closure.

In order to introduce such a set we define a suitable notion of inclusion
between independence statements and we provide two inferential rules, which
generalize classic weak graphoid properties. The obtained reduced set is rele-
vant for the model selection complexity on the basis of data for building, for
example, the relevant directed acyclic graph. This is one of the reasons of our
effort.

In this paper we follow a strategy similar to that introduced in [1, 7, 8]
and this shows that it can be carried out also for other independence models
(see e.g. [4, 5, 10]) satisfying some other properties among that of graphoids.

2 Weak Graphoid

Let S̃ = {Y1, ...,Yn} be a finite non-empty set of variables and S = {1, ...,n}
the related set of indices. Given a subset I ⊆ S, YI is the vector (Yi : i ∈ I)
and YA⊥⊥YB|YC is an independence statement, which is simply denoted as
an ordered triple (A,B,C). A conditional independence model, related to a
coherent (conditional) probability P, is a subset of the set S(3) formed by all
triples (A,B,C) of disjoint subsets of S, with A and B non-empty.

In this paper, as already claimed in the Introduction, we deal with models
arising under cs–independence [2]. These models have a weak graphoid struc-
ture [9], that can be seen as a couple (S,I ), where I is a ternary relation
on the set S, which satisfies the following properties:

De (Decomposition) (A,B∪C,D) ∈ I ⇒ (A,B,C) ∈I ;
DeR (Reverse Decomposition) (A∪B,C,D) ∈ I ⇒ (A,C,D) ∈ I ;
WU (Weak Union) (A,B∪C,D) ∈ I ⇒ (A,B,C∪D) ∈ I ;
Co (Contraction) (A,B,C∪D),(A,C,D) ∈ I ⇒ (A,B∪C,D) ∈ I ;

CoR (Reverse Contraction) (A,B,C∪D),(C,B,D) ∈ I ⇒ (A∪C,B,D) ∈ I ;
In (Intersection) (A,B,C∪D),(A,C,B∪D) ∈I ⇒ (A,B∪C,D) ∈ I ;

where A, B, C and D are pairwise disjoint and nonempty subsets of S.
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The symbol θ �R θ ′ denotes that θ ′ is obtained from θ by applying once
the property R, which can be De, DeR, WU. Similarly, θ1,θ2 �R θ means that
θ is obtained from θ1,θ2 by applying once R, where R can be Co, CoR or In.

Now, given a set J ⊆ S(3) of triples, compatible with P, we are interested
to establish whether a triple θ can be derived from J (in symbol J �∗ θ ), that
is θ can be obtained by applying a finite number of times the weak graphoid
properties by starting from J. A strictly related problem is to compute the
closure of a set J, defined as

J̄ = {θ ∈ S(3) : J �∗ θ}.

The computation of the closure is infeasible since its size is exponentially
larger than the size of J. Then, in the following we introduce a suitable subset
of J̄ having the same information as J̄.

3 Generalized Inference Rules

In order to compute efficiently the closure of a set of conditional independence
statements under weak graphoid properties, we need to introduce a notion
of weak inclusion (briefly w–inclusion): a triple θ1 is said to be w-included in
θ2 (in symbol θ1 �w θ2), if θ1 can be obtained from θ2 by applying a finite
number of times De, DeR and WU.

We provide a characterization of w–inclusion.
Proposition 1. Let θ1 = (A1,B1,C1) and θ2 = (A2,B2,C2), then θ1 �w θ2 if
and only if the following conditions hold

1. C2 ⊆C1 ⊆ (B2∪C2);
2. A1 ⊆ A2 and B1 ⊆ B2.

Proof. If 1. and 2. hold, the triple θ1 is obtained from θ2 by the fol-
lowing steps: take B′

2 = B2 \ C1 and C1 = C2 ∪ (C1 ∩ B2), so B1 ⊆ B′
2

and (A2,B2,C2) �WU (A2,B′
2,C1) �De (A2,B1,C1) and by A1 ⊆ A2, one has

(A2,B1,C1) �DeR (A1,B1,C1).
Now, we prove the reverse implication. If θ1 �w θ2, then there exist θ ′i and

Ri ∈ {De, WU, DeR}, i = 1, . . . ,n, such that θ ′1 = θ2, θ ′n+1 = θ1, θ ′i �Ri θ ′i+1. By
induction on i we show that θ ′i �w θ2. For i = 1, it is trivial, if it is true for i
(i.e. θ ′i �w θ2) we have the following three cases
1. θ ′i �De θ ′i+1 with A′

i+1 = A′
i ⊆ A2, B′

i+1 ⊆ B′
i ⊆ B2, C′

i+1 = C′
i ;

2. θ ′i �WU θ ′i+1 with A′
i+1 = A′

i ⊆ A2, B′
i+1 ⊆ B′

i ⊆ B2,
C′

i+1 = C′
i ∪ (B′

i \ B′
i+1), C2 ⊆ C′

i ⊆ C′
i+1. Furthermore , B′

i \ B′
i+1 ⊆ B2

and C′
i ⊆ (B2∪C2) imply C′

i+1 ⊆ (B2∪C2);
3. θ ′i �DeR θ ′i+1 with A′

i+1 ⊆ A′
i ⊆ A2, B′

i+1 = B′
i ⊆ B2, C′

i+1 = C′
i .

��
This definition of w–inclusion can be extended to sets of triples: J is a covering
of H with respect to w–inclusion (in symbol H �w J) if and only if for any
triple θ ∈ H there exists a triple θ ′ ∈ J such that θ �w θ ′.
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Let
J/�w

= {τ ∈ J : �τ̄ ∈ J with τ̄ �= τ such that τ �w τ̄} (1)

a set J is said “maximal” if J = J/�w
.

We show that the w–inclusion on maximal sets is a partial order:

Proposition 2. The w–inclusion on maximal sets is reflexive, transitive and
anti–symmetric.

Proof. Reflexivity is trivial. To prove transitivity firstly refer to triples: let
θ1 �w θ2 and θ2 �w θ3, then, by Proposition 1, A1 ⊆ A2 ⊆ A3, B1 ⊆ B2 ⊆ B3 and
C3 ⊆C2 ⊆C1, moreover, C2 ⊆ (B3∪C3) and C1 ⊆ (B2 ∪C2), so C1 ⊆ (B3∪C3).

Suppose H �w K and K �w J, with H,K,J maximal sets of S(3), then, for
any θ ∈ H there exists θ ′ ∈ K with θ �w θ ′. For θ ′ ∈ K, since K �w J, there
exists θ ′′ ∈ J with θ ′ �w θ ′′. From transitivity on triples θ �w θ ′′.

To prove anti–symmetry, we refer again firstly to triples. If θ1 �w θ2 and
θ2 �w θ1, one has again, by Proposition 1, A1 ⊆ A2 ⊆ A1, B1 ⊆ B2 ⊆ B1, C2 ⊆
C1 ⊆ (B2∪C2) and C1 ⊆C2 ⊆ (B1∪C1). Therefore A1 = A2, B1 = B2 and C1 =C2.

Let H �w J and J �w H. From H �w J, for any θ ∈H, there exists τ ∈ J with
θ �w τ. Analogously, for any τ since J �w H there exists σ ∈ H with τ �w σ .
By transitivity θ �w σ , but, since H is a maximal set, θ = σ , so τ �w θ and
θ �w τ imply that θ = τ, by anti–symmetry between triples. ��

On the other hand it is easy to show that anti–symmetry on general sets (not
maximal) can fail.

3.1 Closure through a Generalization of Co, CoR and
In

In order to provide general inferential rules, we prove a sort of monotonicity
property for the binary operations Co, CoR and In.

Proposition 3. Let θ1, θ2, θ3, θ4 be triples such that θ1 �w θ3, θ2 �w θ4.

1. If θ1,θ2 �Co θ and θ3,θ4 �Co θ ′, then θ �w θ ′.
2. If θ1,θ2 �CoR θ and θ3,θ4 �CoR θ ′, then θ �w θ ′.
3. If θ1,θ2 �In θ and θ3,θ4 �In θ ′, then θ �w θ ′.

Proof. From θ1 �w θ3 and θ2 �w θ4, then A1 ⊆A3, B1 ⊆B3, C3 ⊆C1 ⊆ (B3∪C3),
A2 ⊆ A4, B2 ⊆ B4, C4 ⊆C2 ⊆ (B4 ∪C4).

If there exists (as in 1.) a triple θ = (A,B,C) such that θ1,θ2 �Co θ , A =
A1 = A2, C1 = (B2∪C2), (B1∩B2) = /0, B = (B1 ∪B2) and C = C2.

Analogously, if there is θ ′ = (A′,B′,C′) such that θ3,θ4 �Co θ ′, then A′ =
A3 = A4, C3 = (B4∪C4), (B3∩B4) = /0, B′ = (B3 ∪B4) and C′ = C4.

Then, θ �w θ ′ being A = A1 ⊆ A3 = A′, B = B1∪B2 ⊆ B3∪B4 = B′, C′ = C4 ⊆
C2 = C = C2 ⊆ (B4 ∪C4) ⊆ (B4∪C4)∪B3 = (B′ ∪C′).



Inferential Rules for Weak Graphoid 61

Since θ1 �w θ3 and θ2 �w θ4, then A1 ⊆ A3, B1 ⊆ B3, C3 ⊆C1 ⊆ (B3 ∪C3),
A2 ⊆ A4, B2 ⊆ B4, C4 ⊆C2 ⊆ (B4 ∪C4).

The proof of points 2. and 3. goes along the same lines. ��
Now, our target is to find an efficient method to compute a reduced (with
respect to w–inclusion) set J∗ included in J̄ and having the same information
of J̄; this means that, for any θ ∈ J̄, there is θ ′ ∈ J∗ with θ �w θ ′.

Firstly, we characterize the binary weak graphoid properties.

Proposition 4. Let θ1 = (A1,B1,C1), θ2 = (A2,B2,C2) be in S(3), then

1. WC(θ1,θ2) = {τ : θ ′1,θ ′2 �Co τ, with θ ′1 �w θ1,θ ′2 �w θ2} is non-empty if and
only if all the following conditions hold:

a. (A1 ∩A2) �= /0;
b. C1 ⊆ (B2∪C2) and C2 ⊆ (B1 ∪C1);
c. (B1 \C2) �= /0, B2∩ (B1∪C1) �= /0 and |(B1 \C2)∪ (B2∩ (B1∪C1))| ≥ 2.

Moreover, if WC(θ1,θ2) is non-empty, then

gc(θ1,θ2) = (A1∩A2,(B1 \C2)∪ (B2∩ (B1∪C1)),C2)

is in WC(θ1,θ2) and θ �w gc(θ1,θ2) for any θ ∈WC(θ1,θ2).
2. WCr(θ1,θ2) = {τ : θ ′1,θ

′
2 �CoR τ, with θ ′1 �w θ1,θ ′2 �w θ2} is non-empty if

and only if all the following conditions hold:

a. (B1 ∩B2) �= /0;
b. C1 ⊆ (A2∪B2∪C2) and C2 ⊆ (B1 ∪C1);
c. (A1 \C2) �= /0, A2∩ (B1∪C1) �= /0 and |(A1 \C2)∪ (A2∩ (B1∪C1))| ≥ 2.

Moreover, if WCr(θ1,θ2) is non-empty, then

gcr(θ1,θ2) = ((A1 \C2)∪ (A2∩ (B1∪C1)),B1 ∩B2,C2 ∪ (B2∩C1))

is in WCr(θ1,θ2) and θ �w gcr(θ1,θ2) for any θ ∈WCr(θ1,θ2).
3. WI(θ1,θ2) = {τ : θ ′1,θ

′
2 �In τ, with θ ′1 �w θ1,θ ′2 �w θ2} is non-empty if and

only if all the following conditions hold:

a. A1∩A2 �= /0;
b. C1 ⊆ (B2∪C2) and C2 ⊆ (B1 ∪C1);
c. B1∩ (B2∪C2) �= /0, B2∩ (B1∪C1) �= /0 and |(B1∩ (B2∪C2))∪ (B2∩ (B1∪

C1))| ≥ 2.

Moreover, if WI(θ1,θ2) is non-empty, then

gi(θ1,θ2) = (A1∩A2,(B1 ∩B2)∪ (B1∩C2)∪ (B2∩C1),(C1 ∩C2))

is in WI(θ1,θ2) and θ �w gi(θ1,θ2) for any θ ∈WI(θ1,θ2).

Proof. Concerning point 1., if WC(θ1,θ2) is non-empty, then for any τ =
(A,B,C) in WC(θ1,θ2) there are θ ′1 = (A′

1,B
′
1,C

′
1)�w θ1 and θ ′2 = (A′

2,B
′
2,C

′
2)�w

θ2 such that θ ′1,θ
′
2 �Co τ. Then, these conditions hold:
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• A′
1 ⊆ A1, A′

2 ⊆ A2, A′
1 = A′

2, then A1∩A2 �= /0.
• C′

1 = B′
2∪C′

2, C1 ⊆C′
1 ⊆ (B1∪C1), C2 ⊆C′

2 ⊆ (B2∪C2) and /0 �= B′
2 ⊆ B2. This

implies C1 ⊆C′
1 = B′

2∪C′
2 ⊆ (B2 ∪C2), so C1 ⊆ (B2∪C2).

From C′
2 ⊆C′

1 it follows C2 ⊆ (B1 ∪C1).
• B′

2 ⊆C′
1 ⊆ (B1∪C1), B′

2 ⊆ B2, so B′
2 ⊆ B2∩(B1∪C1) and then B2∩(B1∪C1) �=

/0.
• B′

1 ∩C′
1 = /0, C′

1 = B′
2 ∪C′

2, B′
1 ∩C′

2 = /0, /0 �= B′
1 ⊆ B1 and C2 ⊆ C′

2, then it
follows B′

1 ⊆ B1 \C2 and hence B1 \C2 �= /0.
• Moreover, from B′

1∩B′
2 = /0, B′

1 ⊆ B1 \C2 and B′
2 ⊆ (B1∪C1) it follows

|(B1 \C2)∪ (B2 ∩ (B1 ∪C1))| ≥ 2. In fact, B′
1 �= /0 and B′

2 �= /0 so (B1 \C2)∪
(B2∩ (B1∪C1)) contains at least two elements (otherwise there are no two
disjoint subsets).

Suppose that the conditions a.–c. hold, it is possible to find two disjoint
nonempty sets B1 and B2 such that B1 ⊆ B1 \C2, B2 ⊆ B2 ∩ (B1 ∪C1) and
B1 ∪ B2 = (B1 \C2) ∪ (B2 ∩ (B1 ∪C1)). Let C2 = C2, the triples θa = (A1 ∩
A2,B1,B2 ∪C2) and θb = (A1 ∩ A2,B2,C2) are such θa �w θ1, θb �w θ2 and
θa,θb �Co gc(θ1,θ2) = (Agc,Bgc,Cgc). This implies that WC(θ1,θ2) is non-empty
and gc(θ1,θ2) ∈WC(θ1,θ2).

Now, it is simple to show τ �w gc(θ1,θ2): in fact it is straightforward to
show that A ⊆ Agc and B ⊆ Bgc. Since C2 ⊆C′

2 = C, then Cgc = C2 ⊆C. On the
other hand, since C′

2 ⊆C′
1 ⊆ (B1∪C1) and C′

2 ⊆ (B2∪C2) then C ⊆ ((B1∪C1)∩
(B2∪C2)) which is a subset of Bgc∪Cgc.

The proofs of points 2. and 3. go along the same lines. ��
Let GC(θ1,θ2) be the set of the possible (i.e. belonging to S(3)) triples among
gc(θ1,θ2) and gcr(θ1,θ2). Note that generally GC(θ1,θ2) is different from
GC(θ2,θ1).

We introduce two new inference rules:

Co∗ (Generalized Contraction) from θ1,θ2 deduce any triple τ ∈ GC(θ1,θ2);
In∗ (Generalized Intersection) from θ1,θ2 deduce the triple τ = gi(θ1,θ2);

which, as explained above, generalize the three classical inference rules.
Given a subset J of S(3), let

J∗ = {τ : J �∗G τ}

be the set closed with respect to generalized contraction Co∗ and generalized
intersection In∗, where J �∗G τ means that τ is obtained by applying a finite
number of times the rules Co∗ and In∗.

In order to show the relationship between the two sets J∗ and J̄, we show
that a triple can be deduced through Co∗ or In∗ if and only if it can be
deduced by means of weak graphoid properties.

Proposition 4 implies the following result:

Proposition 5. Let J be a subset of S(3), denote by J∗ and J̄ the closure,
respectively, with respect to Co∗–In∗ and the weak graphoid properties. Then
J∗ ⊆ J̄.
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Now, we show that any triple obtained through weak graphoid is w–included
in a triple deduced from Co∗ and In∗.

Proposition 6. Let J be a subset of S(3), denote by J∗ and J̄ the closure,
respectively, with respect to Co∗–In∗ and the weak graphoid properties. Then
J̄ �w J∗.

Proof. The proof is done by induction: starting from J0 = J, let Ji be the
union of Ji−1 and the triples obtained by applying some graphoid properties

to Ji−1, and put J̄ =
∞⋃

i=0
Ji.

Since J is finite this iterative process ends when Jk = Jk+1, k ∈N and Jk = J̄.
We need to show Ji �w J∗. For i = 0 it is trivial, suppose Ji �w J∗ and let
τ ∈ Ji+1 \ Ji.
If τ is obtained by means of De, DeR, WU from θ ∈ Ji, then τ �w θ and, since
θ ∈ Ji, by hypothesis ∃θ̄ ∈ J∗ such that θ �w θ̄ , so by transitivity τ �w θ̄ . If
θ1,θ2 �Co τ with θ1,θ2 ∈ Ji, then there exist θ̄1, θ̄2 ∈ J∗ such that θ1 �w θ̄1 and
θ2 �w θ̄2, τ ∈WC(θ̄1, θ̄2) and, from Proposition 4, τ �w gc(θ̄1, θ̄2) ∈ J∗.

The proof of the cases θ1,θ2 �In τ and θ1,θ2 �CoR τ goes along the same
lines of the previous one by Proposition 4. ��

Then, J∗ is a subset of J̄, and it has the same information of J̄. Actually, J∗

contains some “redundant” triples, which are w–included in other ones.
In order to eliminate redundant triples, for any J consider the set J/�w

defined in equation (1). The set J̄/�w
has the same information of J̄ as the

following result shows:

Lemma 1. Let J ⊆ S(3). Then, J �w J/�w
.

Proof. Let θ ∈ J, if �θ̄ ∈ J such that θ �w θ̄ , θ �= θ̄ , then θ ∈ J/�w
. Otherwise,

i.e. θ ∈ J \ J/�w
, since J is finite, any chain θ1 �w θ2 �w · · · �w θn �w . . . , with

θi ∈ J and i ≥ 1, must have a maximal element θn, which necessarily belongs
to J/�w

. ��

Then, given a set J, we compute J∗ and then we cut redundant triples by
taking its “maximal” triples, i.e. J∗/

�w
. We call the set J∗/

�w
“fast closure”,

with respect to w–inclusion, and we denote it, for simplicity, with J∗.
The proof of the following relationships is trivial.

Proposition 7. Given a subset J of S(3), then J∗ ⊆ J̄ and J̄ �w J∗.

Now, it is interesting to show that J̄/�w
and J∗ coincide.

Proposition 8. Given a subset J of S(3), then J∗ = J̄/�w
.
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Proof. By Proposition 7 it follows that J̄/�w
⊆ J̄ �w J∗; J∗ = J∗/

�w
⊆ J∗ ⊆ J̄ �w

J̄/�w
. Now, being both J∗ and J̄/�w

maximal sets, by Proposition 2, it follows

that J∗ = J̄/�w
. ��

The set J∗ is computed by eliminating redundant triples at the end; while to
improve the computational performance by saving space and time we could
eliminate redundant triples at any step (by Proposition 3).

The set J∗ allows to test whether a given triple is implied by J. Actually
a linear search has to be performed by looking for whether this triple is
w–include in some triples of J∗.
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Fast Factorization of Probability Trees
and Its Application to Recursive Trees
Learning

Andrés Cano, Manuel Gómez-Olmedo,
Cora B. Pérez-Ariza, and Antonio Salmerón

Abstract. We present a fast potential decomposition algorithm that seeks for
proportionality in a probability tree. We give a measure that determines the
accuracy of a decomposition in case that exact factorization is not possible.
This measure can be used to decide the variable with respect to which a tree
should be factorized in order to obtain the most accurate decomposed model.

Keywords: Fast factorization, Probability trees, Recursive probability trees.

1 Introduction

The outperformance of trees over other structures in the field of Bayesian
networks inference has been analyzed [1, 3]. Trees can be decomposed in
order to improve the overall inference process efficiency, by locating the parts
of the tree where a concrete operation must be performed. Many algorithms
take this into account, being able to work with lists of potentials, as Lazy
propagation [6] or Lazy-penniless [4]. Recursive Probability Trees (RPTs) [2]
are a generalization of probability trees, and are able to store any possible
decomposition of a potential.

There have been previous works on tree-based potential decomposition
[7, 8], but the limitations of probability trees make those attempts quite time
demanding during the inference process. In this work we present a potential
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decomposition algorithm that quickly divides a probability tree into (approx-
imately) proportional factors that can be stored in a RPT.

2 Recursive Probability Trees

A Recursive Probability Tree [2] is a directed tree with two different kinds
of inner nodes: Split and List nodes, and two types of leaf nodes: Value and
Potential nodes. A Split node represents a discrete variable. A List node
represents a multiplicative factorization by listing all the factors in which a
potential is decomposed. It has as many outgoing arcs as factors in the de-
composition. A Value node represents a non-negative real number, and finally
a Potential node stores a full potential internally represented in whatever rep-
resentation.

With this structure it is possible to represent context-specific independen-
cies within a probability distribution as well as factorizations (involving the
whole potential or parts of it). Sometimes potentials present proportionality
relations between several parts of the tree. In the simplest case, a part of the
tree can be derived from another just by multiplying by a certain factor. This
is the case of a probability tree encoding a joint distribution for X1 and X2

(see left part in Fig. 1): the potential for X1 = 0 is proportional to the one
corresponding to X1 = 1. The second one can be obtained from the first one
multiplying by 4. The right part of the figure shows the recursive probabil-
ity tree for this potential. This recursive tree needs to store only 6 numbers

Fig. 1 Potential with proportional values

Fig. 2 Decomposition of tree using b) classical decomposition and c) RPTs
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instead of 8. For example, an operation involving X1 need not to work with
the left part of the tree.

A RPT can handle this situation and can represent the factorization in
a single structure (see Fig. 1). Probability Trees have been used for this
kind of decomposition, but usually the factorization must be stored in two
independent structures, as in the following example. In the left part of Fig. 2
it can be seen a probability tree encoding a joint distribution for X ,Y ,Z and
W . The result of the factorization taking into account proportional values is
shown in the middle part, represented as a multiplication of two probability
trees. Finally, this decomposition can be held in just one RPT, as shown in
the right part of the figure.

3 Algorithm for Quick Probability Trees
Decomposition

When probability distributions are represented with probability trees the
efficiency of inference algorithms can be improved by applying tree decom-
position, reducing its size and locating the parts that will be affected by a
concrete operation. We propose an approximate method for probability trees
decomposition, looking for proportional values within itself. The result of the
algorithm is a list of factors representing the factorized potential. All these
factors can be compactly stored in a RPT.

3.1 Exact Decomposition

The use of probability trees allows to decompose a given tree encoding pro-
portionality into a set of subtrees representing such factorization. However,
previous factorization methods search for proportional subtrees located below
the variable to delete. Therefore, the performance is highly dependent of the
order of the variables in the tree. Let’s see an example of this. Consider the
probability distribution for variables X , Y and Z represented as the probabil-
ity tree shown in the left part of Fig. 3. Imagine that X is the next variable
to delete during the inference process. Then using classical factorization the
most compact decomposition would be the one shown in Fig. 3.

Fig. 3 a) Probability Tree b) Decomposition using classical factorization
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Fig. 4 Probability Tree that can not be factorized by variable X with classical
factorization

If the variable to delete is not positioned in the root of the tree, the algo-
rithms that look for factorizations may not be able to find proportionality at
all. This happens in the example presented in Fig.4.

We propose an algorithm that finds the most compact factorization of
a probability tree for a given variable, independently of the order of the
variables in the tree. It returns two probability trees, and we aim to store
them as children of a list node within a RPT to benefit from this structure.

Input: Probability Tree T and variable to factorize X
Output: two probability trees {T1,T2}
begin

Let x0,...,xr−1 be the possible values for variable X
Let (W = w) be any configuration for all variables of tree T , but X
Let T R(W=w) denote the tree obtained from T by keeping only the
branches compatible with configuration (W = w)
Let α0, ..., αr−1 be the leaves of tree T R(W=w)

for i ← 0 to r−1 do

Let βi =
αi

α0
end
Let T1 be a tree with X as only inner node and β0, ..., βr−1 as leaves
Set T2 = T R(X=x0)

end

Algorithm 1. Factorize(T,X), quick tree factorization algorithm

3.2 Approximate Decomposition

Given a tree, Algorithm 1 finds its most compact decomposition for any
variable. However, the exact decomposition for a variable may be impossible
just because the tree is not proportional with respect to it. In such case it
would be helpful to have a measure about the degree of exact decomposability
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of a tree for a given variable. Such measure of degree of decomposability
could be used, for instance, to establish a threshold to control the accuracy
of the decompositions, so that a tree would be allowed to be factorized with
respect to a given variable whenever the degree of decomposability surpasses
a previously established limit. In this way, it would be possible to obtain
an approximate factorization of a tree with a fixed accuracy. It would be
achieved by decomposing the tree with respect to any variable that surpass
the established limit, and then repeating the same process recursively with
the resulting factors, while the limit is surpassed.

If a tree is not exactly decomposable with respect to a given variable,
we propose to use the Kullback-Leibler (KL) divergence [5] as a basis to
determine how far from exact factorization a given decomposition is. The
key result is given in the next theorem, where we give an upper bound of the
KL divergence for a given decomposition.

Theorem 1. Let T be a probability tree to be decomposed with respect to
variable X . Let Y be the set of variables for which T is defined. Let Z = Y\{X}.
Let T1 and T2 be the output of Algorithm 1 applied to T and X . Then if D(·, ·)
denotes the KL divergence, it holds that

D(T,T1×T2) ≤−H(T )−
(

∑
y

t(y)

)(

∑
x

log t1(x)+∑
z

log t2(z)
)

, (1)

where H denotes Shannon’s entropy, and t,t1 and t2 are the real functions
represented by trees T,T1 and T2 respectively.

Proof

D(T,T1×T2) =∑
y

t(y) log
t(y)

t1(x)t2(z)
=∑

x,z
t(x,z) log

t(x,z)
t1(x)t2(z)

=∑
x,z

t(x,z)(log t(x,z)− logt1(x)− logt2(z))

=∑
x,z

t(x,z) logt(x,z)−∑
x,z

t(x,z) log t1(x)−∑
x,z

t(x,z) log t2(z)

= −H(T )−∑
x

(
logt1(x)∑

z
t(x,z)

)
−∑

z

(
logt2(z)∑

x
t(x,z)

)
.

Now, since all the values in T are non-negative real numbers, we find that

D(T,T1×T2) =−H(T )−∑
x

(
logt1(x)∑

z
t(x,z)

)
−∑

z

(
logt2(z)∑

x
t(x,z)

)

≤ −H(T )−
(

∑
x,z

t(x,z)

)(

∑
x

logt1(x)+∑
z

logt2(z)
)

= −H(T )−
(

∑
y

t(y)

)(

∑
x

log t1(x)+∑
z

logt2(z)
)

. ��
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Note that, if a decomposition is exact, then D(T,T1 ×T2) is equal to 0, and
the further a decomposition is to the exact one, the higher the value of
the divergence reaches. Observe also that the upper bound given in Equa-
tion (1), actually depends on the specific decomposition through the term
S = ∑x log t1(x)+∑z logt2(z), which suggests that S could be used as a mea-
sure of the degree of decomposability of a tree T with respect to variable X .
The computation of S is rather fast, as it requires a time linear on the size of
T1 and T2. But if computing time is a critical issue, S can be again bounded
using Jensen’s inequality as follows:

S =∑
x

log t1(x)+∑
z

logt2(z) ≤ log∑
x

t1(x)+ log∑
z

t2(z). (2)

Note that the right side of the inequality is faster to compute because the
logarithm is applied to the result of the sum, instead of being calculated
for all the terms. Hence, we use the reasoning above to formally define the
degree of decomposability of a tree with respect to a given variable, called
the factorization degree, as follows.

Definition 1 (Factorization degree). Let T be a probability tree. Let Y be
the set of variables for which T is defined, and X ⊂ Y. Let Z = Y\ {X}. Let
T1 and T2 be the output of Algorithm 1 applied to T and X . We define the
factorization degree of T with respect to X as

fd(T,X) = log∑
x

t1(x)+ log∑
z

t2(z), (3)

where t1 and t2 are the real functions represented by T1 and T2 respectively.

We have restricted this study to the simplest case, in which the first term
of the decomposition contains only one variable. However, the bound given
by Theorem 1 can be extended to the case in which T1 has more than one
variable. The complexity of computing the factorization would be higher, but
the size of the resulting decomposition would be smaller as well. We leave for
a future work the analysis of this case.

4 Experimental Evaluation

In order to illustrate the behavior of the approximate decomposition method
introduced in Section 3.2, we have carried out two experiments. The first one
is aimed at checking the capability of the factorization degree in Def. 1 for
ranking the variables in a probability tree according to the accuracy of the
decompositions produced when factorizing with respect to them. The goal of
the second experiment is to show that the factorization degree is also able to
guide the decomposition of a single probability tree into several factors.

Experiment 1 consists of generating a random tree with 10 binary variables
and then computing the factorization degree for each one of the variables
and decomposing the tree for the given variable. Then, we measure, using
the obtained factorization, the log-likelihood of a test data set sampled from
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Fig. 5 Results of the experiments carried out.

the original tree. This process is repeated 10 times for different random trees.
The obtained results can be seen in Fig. 5.(a).

In experiment 2, we decompose a random tree with 10 binary variables into
as many factors as variables it has. Initially, we get the variable with highest
factorization degree for the original tree, and decompose it with respect to
that variable using Algorithm 1. Then we repeat the same process with the
resulting factors, as long as they contain more than one variable, until no
more factors can be decomposed. We annotate the log-likelihood of a test
data set sampled from the original tree together with the number of variables
in the largest remaining factor. Again, the process is repeated 10 times for
different random trees. The results are displayed in the box plot in Fig. 5.(b).

The results of experiment 1 support the idea that the factorization degree
of the variable with respect to which the decomposition is carried out actually
influences the quality of the decomposed model, in the sense that higher
factorization degrees result in models with higher likelihood (see Fig. 5.(a)).
This fact suggests that the factorization degree could be used as a means for
deciding which is the best variable with respect to which a potential should
be split. This can be taken into account when designing specific approximate
inference algorithms that deal with factorized representations of potentials
as, for instance, RPTs. Experiment 2 shows how the factorization degree
can also be used to decompose a potential into several factors, by dividing
the potential with respect to the variable with higher factorization degree in
each step. The decomposition process could be continued until a significant
variation in the likelihood of the resulting model happens.

5 Conclusions

In this paper we have introduced a new and fast procedure for factorizing
probability trees. An important feature of the proposed algorithm is related
to its capability for obtaining optimal decompositions for trees hiding pro-
portionality. Therefore, the resulting decompositions are the most compact
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ones. We have also shown that the decomposition can be carried out even
if the tree does not really contain proportional subtrees, in which case the
obtained factorization will be approximate. In order to deal with the degree
of approximation of the possible factorizations of a potential, we have intro-
duced a measure called the factorization degree, that ranks the variables in
the domain of a potential according to the accuracy of the decompositions
that they induce. The computation of such measure is fast enough as to be
included in any inference algorithm, where computing time is a crucial issue.

The experimental evaluation shows that the methodology developed in this
paper can be useful in the design of new inference algorithms that can handle
decomposed representations of potentials. Also, it can be used as a tool for
learning RPTs or, more precisely, learning parts of a RPT that corresponds to
list nodes, and therefore could be a part of a more general learning algorithm
for RPTs able to capture all the regularities that a RPT can represent, as for
instance, context specific independencies.
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trees for Bayesian networks. In: Proceedings of the XIII Conference of the Span-
ish Association for Artificial Intelligence, CAEPIA 2009, Sevilla, Spain (2009)

3. Cano, A., Moral, S.: Propagación exacta y aproximada con árboles de prob-
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Option Pricing in Incomplete Markets
Based on Partial Information

Andrea Capotorti, Giuliana Regoli, and Francesca Vattari

Abstract. In this paper we describe a new approach for the valuation prob-
lem in incomplete markets with m ≥ 1 stocks which can be used when the
available information about the uncertainty model is only a partial condi-
tional probability assessment p. We select a risk neutral probability minimiz-
ing a discrepancy measure between p and the convex set of all possible risk
neutral probabilities.

Keywords: Risk neutral valuation, Partial conditional probability assess-
ments, Incomplete markets.

1 Introduction

In a viable single-period model with m ≥ 1 stocks and k ≥ 2 scenarios the
completeness of the market is equivalent to the uniqueness of the risk neutral
probability; this equivalence allows to price every derivative security with a
unique fair price. In literature, different methods have been proposed in order
to select a risk neutral probability when the market is incomplete (see for
example [8], [9] and [10]). Contrary to the complete case, where the so called
“real world probability” p expressing the agent behaviors is not involved in
the valuation problem, in the methods for incomplete markets p is really used
and its elicitation is a crucial point for the option pricing. In particular, p is
supposed to be given over all the possible scenarios while usually the available
information about the possible states of the world is partial, conditional or
even incoherent. In this paper our purpose is to present a method for the
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risk neutral valuation in incomplete markets which can be used when p is
a partial conditional probability assessment as well as when there are more
partial conditional probability assessments given by different expert opinions.
In the next Subsections 1.1 and 1.2 we introduce the valuation problem and a
discrepancy measure which will be minimized in order to select a risk neutral
probability among those characterizing the incomplete market. In Section 2
we describe such selection procedure and we give some illustrative examples.

1.1 Single-Period Models with m Stocks

In this section we describe the risk neutral valuation problem for a single-
period financial model with m risky assets and a risk-free interest rate r (see
[1], [7] and [12] for more details).

Let St = (S1
t , . . . ,S

m
t ) be the vector of the stock prices at time t with t = 0,1

and let us suppose that the initial prices S1
0, . . . ,S

m
0 are known at time 0 while

the prices of each stock Sl
1, l = 1, . . . ,m, are finite random variables

Sl
1 :Ω → R,

where Ω = {ω1, . . . ,ωk} is the set of possible scenarios (states of the world).
If we denote with St := St/(1 + r)t, t = 0,1 the discounted stock price process,
we can define a risk neutral probability as a probability distribution α over
Ω under which the discounted stock price process is a martingale, that is

S0 = Eα (S1). (1)

Notice that this means that S0 = Eα (S1)/(1+ r) and this expression explains
why a probability measure α which verifies (1) is called risk neutral: α is a
probability distribution such that the price Sl

0 of each stock can be computed
as the expected value with respect to α of Sl

1 discounted with the risk free
interest rate r. A market model is said to be viable if there are no arbitrage
opportunities and it is said to be complete if every derivative security 1 admits
a replicating portfolio (i.e. a portfolio with the same payoff). A single period
model with a finite number of scenarios and an arbitrary number of stocks
admits a risk neutral probability if and only if it is viable.

Let us consider the problem of completeness for a viable single-period
model with m stocks and k scenarios. Since a market model is complete if and
only if every derivative security D is attainable, the completeness is equivalent
to have, for every derivative D, a portfolio (x,y) such that

⎧
⎨

⎩

xB1 + yS1(ω1) = D(ω1)
. . .
xB1 + yS1(ωk) = D(ωk)

where B1 = (1 + r)B0 is the price at t = 1 of the risk-free asset.

1 We recall that a derivative security is a security whose value at time 1 depends
on the values of risky assets S1

1, . . . ,S
m
1 .
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Thus a single-period model with k scenarios is complete if and only if

A :=

⎛

⎜
⎝

B1 S1
1(ω1) . . .Sm

1 (ω1)
...

...
B1 S1

1(ωk) . . .Sm
1 (ωk)

⎞

⎟
⎠ (2)

has rank k, that is it contains at least k independent assets. Notice that if a
model is complete then we must have m+ 1 ≥ k. It is easy to see that α is a
risk neutral probability if and only if

ATα = (1 + r)
(

B0

S0

)

and α j ≥ 0, j = 1, . . . ,k. Therefore it follows that in a viable single period
model, with k ≥ 2 scenarios, a unique risk free asset and m risky assets, the
completeness is equivalent to the uniqueness of the risk neutral probability.

When the market is viable and complete, the fair price π of any derivative
security D is given by

π = Eα (D) (3)

where D is the discounted price of D and α is the risk neutral probability.
When the market is incomplete the set F of all possible fair prices for a

derivative D is
F = [l,u]

where
l := inf{Eα (D) | α is a risk neutral probability},

u := sup{Eα (D) | α is a risk neutral probability}.

Obviously a derivative security is attainable if and only if l = u; otherwise
l < u and we have to consider the interval [l,u]. If we denote by Q the convex
set of possible risk neutral probabilities, taken α∗ ∈ Q, for every derivative
security there will be a corresponding fair price π given by

π = Eα∗(D) ∈ F.

In Section 2 we will describe how to select such a α∗ that should be as close
as possible to the agent behaviors expressed by partial conditional probabil-
ity assessment p. To express the closeness between α∗ and p we will profit
from a recently introduced ([2, 4]) discrepancy measure that, for the sake of
completeness, we briefly describe in the following subsection.

1.2 Discrepancy Measure

Let p = (p1, . . . , pn) ∈ (0,1)n be a conditional probability assessment given by
an agent over a set of conditional events E = [E1|H1, . . . ,En|Hn]. E expresses
events, the Ei’s, considered under specific situations or hypothesis, the Hi’s,
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over which the agent possess, or is able to express, probabilistic behaviors.
In the following EiHi will denote the logical conjunction “Ei ∧Hi”, while Ec

i
will denote the negation “¬Ei”. To be meaningful, the Ei’s and the Hi’s must
be expressible through possible values of the assets present in the market,
hence without loss of generality we consider the Ei’s and the Hi’s as subsets
of the set of all possible states of the world Ω = {ω1, . . . ,ωk}, with each ω j

representing a specific assets evaluation situation.
To properly define a pseudo-distance between a probabilistic evaluation

over E and an other over Ω , we need to introduce the following hierarchy of
probability mass function on Ω :
A :=

{
α = [α1, . . . ,αk],∑α j = 1,α j ≥ 0, j = 1, . . . ,k

}
;

A0 := {α ∈ A |α(
⋃n

i=1 Hi) = 1};
A1 := {α ∈ A0|α(Hi) > 0, i = 1, . . . ,n};
A2 := {α ∈ A1|0 < α(EiHi) < α(Hi), i = 1, . . . ,n}.
Any α ∈ A1 induces a coherent conditional assessment on E given by

qα := [qi =

∑
j:ω j⊂EiHi

α j

∑
j:ω j⊂Hi

α j
, i = 1, . . . ,n]. (4)

Associated to any assessment p ∈ (0,1)n over E we can define a scoring rule

S(p) :=
n

∑
i=1

|EiHi| ln pi +
n

∑
i=1

|Ec
i Hi| ln(1− pi) (5)

with | · | indicator function of unconditional events. This score S(p) is an
“adaptation”to partial and conditional probability assessments of the“proper
scoring rule” for probability distributions proposed by Lad in [11]. By adopt-
ing the difference between the expected penalties suffered by the two evalua-
tions p and qα as distance criterion, it is possible to define the “discrepancy”
between a partial conditional assessment p over E and a distribution α ∈A2

through the expression

Δ(p,α) := Eα (S(qα )−S(p)) =
k

∑
j=1

α j[S j(qα )−S j(p)]. (6)

It is possible to extend by continuity the definition of Δ(p,α) in A0 as

Δ(p,α) = ∑
i|α(Hi)>0

α(Hi)
(

qi ln
qi

pi
+(1−qi) ln

(1−qi)
(1− pi)

)

adopting the usual convention 0ln0 = 0.
In [4] is formally proved that Δ(p,α) is a non negative function on A0 and

that Δ(p,α) = 0 if and only if p = qα ; moreover Δ(p, ·) is a convex function on
A2 and it admits a minimum on A0. Finally if α,α0 ∈A0 are distributions that
minimize Δ(p, ·), then for all i ∈ {1, . . . ,n} such that α(Hi) > 0 and α0(Hi) > 0
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we have (qα)i = (qα0)i; in particular if Δ(p, ·) attains its minimum value on
A1 then there is a unique coherent assessment qα such that Δ(p,α) is mini-
mum. The discrepancy measure Δ(p,α) can be used to correct incoherent as-
sessments [2], to aggregate expert opinions [5] and it can be even applied with
imprecise probabilities [3]. Here we propose a particular optimization problem
involving Δ(p,α) which will be used to select the risk neutral probability in
the set of all possible martingale measures which better represents the agent’s
behaviors.

2 Selection of a Risk-Neutral Probability

In order to keep the market tractable, we start with a viable single period
model like in Subsection 1.1, without transaction costs and with the following
stock prices structure:

ω1 ω2 . . . ωk

Sl
1 al

1 Sl
0 al

2 Sl
0 . . . al

k Sl
0

l=1,. . . ,m.

In this model a probability distribution α on Ω is risk neutral if and only if

S0 =
1

1 + r
[α1a1S0 + . . .+αkakS0]⇔ 1 =

1
1 + r

[α1a1 + . . .+αkak]

where a j = (a1
j , . . . ,a

m
j ) for j = 1, . . . ,k. Thus we can define the set of all possible

martingale measures as:

Q := {α ∈ R
k : α ·1 = 1, α ≥ 0,

k

∑
j=1

α ja
l
j = 1 + r, l = 1, . . . ,m}.

Finally we assume that p = (p1, . . . , pn) is a partial conditional probability
assessment given over the set of conditional events E = [E1|H1, . . . ,En|Hn].
Notice that it is not required that the assessment p is coherent2; we can have
an assessment which is inconsistent with all the distributions in A or we
can have a coherent assessment that is anyhow inconsistent with the set of
all martingale measures. Our purpose is to find the risk neutral probability
which is the closest to the initial opinion with respect to the discrepancy
measure Δ . Let Q0 be the convex set Q0 := Q∩A0; we propose to select a
martingale measure in Q0 starting from the assessment p. In fact, we suggest
a selection procedure which is based on the following result:

Theorem 1. Let M := argmin{Δ(p,α),α ∈ Q0} be the set of all martingale
measures minimizing Δ(p,α); then M is a non-empty convex set.

Proof. Δ(p,α) is a convex function on Q0 and then there is at least one α in
Q0 such that
2 For coherence notion of partial conditional assessments refer e.g. to [6]
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Δ(p,α) = min
α∈Q0

Δ(p,α) (7)

and then M is non empty. Notice that the convexity of Δ(p,α) guarantees the
existence of this minimum but it is possible that more than one distribution
minimize Δ(p,α) in Q0 and in this case M is not a singleton. However, since
Δ(p,α) is a convex function and M is the set of minimal points of Δ(p,α)
in Q0, M is a convex set. ��

Thanks to this result we can select exactly one of such minimizer distributions
α. Let us see how it works with first example.

Example 1. Let us consider a model with two risky assets S1, S2 with initial
prices S1

0 = 200, S2
0 = 150 and final values

ω1 ω2 ω3 ω4

Sl
1 220 210 200 180

S2
1 180 150 150 120

Since we have m = 2 assets and k = 4 states of the world, the rank of matrix
A in (2) is surely less than k, so that the market is incomplete. For r = 0 the
set of all possible martingale measures is Qλ = {(λ ,0,1−2λ ,λ ),λ ∈ [0,1/2]}.
Let us suppose that the agent assesses the probabilities p1 = P(ω4) = 1/3 and
p2 = P(ω1|ω1∨ω2) = 1/4. Then

Δ(p,α) = α4 ln3α4 +(1−α4) ln
3
2
(1−α4)+α1 ln

4α1

(α1 +α2)
+α2 ln

4α2

3(α1 +α2)

that is Δ(p,λ ) = λ ln3λ +(1−λ ) ln 3
2 (1−λ )+λ ln4.

Since Δ ′(p,λ ) = lnλ − ln(1−λ )+ ln8 = 0 ⇔ λ
1−λ = 1

8 ⇔ λ = 1
9 we get α =

( 1
9 ,0, 7

9 , 1
9

)
.

Theorem 1 guarantees the existence of a solution α for the optimization
problem (7) but it does not assure its uniqueness; when the information that
we have is not sufficient to give us a unique solution for (7) we need another
criterion to choose, between the martingale measure minimizing Δ(p,α), a
unique α∗ as risk-neutral probability. The idea is to select one distribution
in M which in some sense minimizes the exogenous information. In fact, we
will define α∗ as

α∗ := arg min
α∈M

k

∑
j=1
α j lnα j (8)

that is the distribution which minimizes the relative entropy with respect to
the uniform distribution (i.e. the distribution with maximum entropy).

Let us see how it can be operationally done with an exemplifying situation
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Example 2. Let us consider again a model with two risky assets S1, S2 but
now with initial prices S1

0 = 19, S2
0 = 21 and final values

ω1 ω2 ω3 ω4 ω5

Sl
1 22 21 20 19 18

S2
1 25 24 21 21 20

so that the set of martingale measures is

Qλ ,μ =
{

(λ ,μ−λ ,μ ,1−λ −5μ ,λ + 3μ),λ ≤ 1
6
,μ ∈ [λ ,

1−λ
5

]
}

.

Let us suppose that the agent assesses the probabilities p1 = P(ω3) = 1/3 and
p2 = P(ω1∨ω2|ω1∨ω2∨ω3) = 9/10. Then

Δ(p,α) = α3 ln3α3 +(1−α3) ln
3
2
(1−α3)+

+(α1 +α2) ln
10(α1 +α2)

9(α1 +α2 +α3)
+α3 ln

10α3

(α1 +α2 +α3)

that is Δ(p,μ) = μ ln3μ+(1− μ) ln 3
2 (1− μ)+ μ ln 5

9 + μ ln5.

Since

Δ ′(p,μ) = lnμ− ln(1− μ)− ln4− ln(1/3)+ ln(2/3)− ln(9/100)

we have
Δ ′(p,μ) = 0 ⇔ μ

1− μ =
18
100

⇔ μ =
9

59

so that the set of martingale measures which minimize Δ(p, ·) is

M = {(λ ,9/59−λ ,9/59,14/59−λ ,λ+ 27/29) : λ ≤ 9/59}.

Among all such distributions we can select α∗ ∈ M maximizing the entropy

H(λ ) = −λ lnλ − (
9
59

−λ ) ln(
9

59
−λ )− 9

59
ln

9
59

+

−(
14
59

−λ ) ln(
14
59

−λ )− (λ +
27
59

) ln(λ +
27
59

)

obtaining α∗ = (.043, .110, .153, .195, .5).

3 Conclusion

Thanks to the minimization of a pseudo-distance among a partial conditional
probability assessments p and probability distributions α we have shown that
it is possible to aggregate disparate fonts of information like those induced
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by market prices structures, which are usually extremely rich even in the
context of incomplete markets, and those induced by human agents, which
are typically non structured and partial.
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Lorenz Curves of extrema

Ignacio Cascos and Miguel Mendes

Abstract. We study the Generalized Lorenz curves of the minima of sam-
ples from a random variable. These Lorenz curves can be used to compare
distributions in terms of their variability and define coherent risk measures.
The dual Lorenz curves of the maxima of samples from the random variable
are also considered.

1 Introduction

Risk measures are quite a fashionable tool in financial mathematics. They
quantify the risk of an investment and are widely used in the financial mar-
kets. Banks are obliged to maintain their risks below the level fixed by the
regulatory agency (capital requirement) given in terms of risk measures and
further employ risk measures in order to optimize their capital allocation.

An investor would benefit from having investments ordered after their
risks. We will define stochastic orders in terms of Lorenz curves and coherent
risk measures (see Artzner et al. [3]) that are consistent with them.

Sections 2 and 3 are devoted to Lorenz curves and stochastic orders, Sec-
tions 4 and 5 to risks and deviations. Conclusions are presented in Section 6.

2 Lorenz Curves

Throughout the present manuscript, we assume that all random variables
have finite first moment.
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Definition 1. The Generalized (nonnormalized) Lorenz curve (GL) of X is
defined for any 0 ≤ t ≤ 1 as

GL(X ; t) :=
∫ t

0
F−1

X (s)ds

and its dual (dual GL) as

GL(X ;t) :=
∫ 1

1−t
F−1

X (s)ds = EX −GL(X ;1− t) ,

where F−1
X (t) := inf{x : FX(x) > t} is the quantile function of X , whose cdf we

denote by FX .

The duality between GL and GL can be expressed by means of the symmetry
of their respective graphs with respect to the point (1/2,EX/2). Alternatively,
it is also true that GL(−X ;t) =−GL(X ;t).

The Lorenz curve is defined for positive random variables as LX (t)
= GL(X ;t)/EX , where EX is the expectation of X . It has an interesting inter-
pretation if X determines the wealth distribution in a population. In such a
case LX(t) is the fraction of total wealth possed by the fraction t of poorest in-
dividuals in the population. The interpretation of the dual curve is analogous
to this one but with a viewpoint on the richest individuals.

In the name Generalized (nonnormalized) Lorenz curve, GL, the general-
ization reflects that it is defined for random variables that might take negative
values and the nonnormalization that it is not divided by EX .

Lorenz Curves of extrema

We will consider the GL of the minima of sequences of independent random
variables and the dual GL of the maxima of the same sequences. We refer to
this minima and maxima generically as extrema.

Given X1, . . . ,Xn a sample of n independent copies of X , we denote its min-
imum by X1:n and its maximum by Xn:n.

Definition 2. For any n ≥ 1 and 0 ≤ t ≤ 1, the n-GL curve of X is given by

GLn(X ;t) := GL(X1:n;t) =
∫ t

0
F−1

X (1− (1− s)1/n)ds ,

and its dual n-GL curve by

GLn(X ;t) := GL(Xn:n;t) =
∫ 1

1−t
F−1

X (s1/n)ds .

Since the endpoint (t = 1) of the GL curve (and its dual) is the expectation,
we obtain GLn(X ;1) = EX1:n and GLn(X ;1) = EXn:n.

Remark 1. Since (−X)n:n =−X1:n, we have GLn(−X ; t) =−GLn(X ;t).
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Fig. 1 GLn(X) -convex curves- and GLn(X) -concave curves- for X uniform (−1,2)
and n = 1,2,3,4,5.

Proposition 1. For any n≥ 1, each of the two curves GLn(X ; ·) and GLn(X ; ·)
characterizes the distribution of X .

Proposition 2. The n-GL curve and its dual satisfy the following properties
for x ∈ R and 0 ≤ t ≤ 1:
0. If X = x a.s., then GLn(X ;t) = tx and GLn(X ; t) = tx;
1. GLn(X ;t) ≤ tEX1:n ≤ tEX ≤ tEXn:n ≤ GLn(X ; t);
2. If X ≤ Y a.s., then GLn(X ; ·)≤ GLn(Y ; ·) and GLn(X ; ·) ≤ GLn(Y ; ·);
3. GLn(X + x; t) = GLn(X ;t)+ tx and GLn(X + x; t) = GLn(X ; t)+ tx;
4. GLn(λX ;t) = λGLn(X ;t) and GLn(λX ;t) = λGLn(X ;t) for λ > 0 ;
5. GLn(X + Y ; ·) ≥ GLn(X ; ·) + GLn(Y ; ·) and GLn(X + Y ; ·) ≤ GLn(X ; ·)

+GLn(Y ; ·).

3 Stochastic Orderings

Stochastic orders are partial order relations between probability distributions,
see Müller and Stoyan [7]. Here we will make use of the increasing convex,
increasing concave and convex stochastic orders, defined as follows:
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• Increasing convex : X ≤icx Y if GL(X ; ·)≤ GL(Y ; ·) ;
• Increasing concave: X ≤icv Y if GL(X ; ·)≤ GL(Y ; ·) (equiv. −Y ≤icx −X) ;
•Convex : X ≤cx Y if GL(X ; ·)≤GL(Y ; ·) and GL(X ; ·)≥GL(Y ; ·) (equiv. X ≤icx

Y and Y ≤icv X) .

The former three relations are integral stochastic orders. This means that
they can be characterized by E f (X) ≤ E f (Y ) for all functions f from a given
family, whenever both expectations exist. The respective families of functions
is clear by the name of the orderings.

Definition 3. We define the following stochastic orderings:
• X ≤icxn Y if GLn(X ; ·)≤ GLn(Y ; ·) (equiv. Xn:n ≤icx Yn:n);
• X ≤icvn Y if GLn(X ; ·)≤ GLn(Y ; ·) (equiv. X1:n ≤icv Y1:n);
• X ≤cxn Y if GLn(X ; ·) ≤ GLn(Y ; ·) and GLn(X ; ·) ≥ GLn(Y ; ·) (equiv. Xn:n ≤icx

Yn:n and Y1:n ≤icv X1:n).

Since the 1-GL curve is the classical GL curve, for n = 1 we obtain the classical
increasing convex, increasing concave and convex stochastic orders.

Lemma 1. For any n ≥ 1, X ≤icvn Y is equivalent to −Y ≤icxn −X .

The relations given in Definition 3 are partial order relations for probability
distributions of random variables.

Proposition 3. If � stands for ≤icxn , ≤icvn or ≤cxn , then for r.v. X ,Y,Z:
1. Reflexivity: X � X
2. Transitivity: if X � Y and Y � Z, then X � Z;
3. Antisymmetry: if X � Y and Y � X , then X and Y are identically dis-

tributed.

Proposition 4. If X ≤icxn Y , then X ≤icxm Y for all m ≥ n.

Proof. Let X ≤icxn Y , m > n and 0 < t < 1. Applying several changes of vari-
ables and Fubini’s Theorem, we have

GLm(X ,t) =
∫ 1

1−t
F−1

X (s1/m)ds =
∫ 1

(1−t)n/m
F−1

X (r1/n)
m
n

rm/n−1dr

=
∫ 1

(1−t)n/m
F−1

X (r1/n)
∫ r

0

m(m−n)
n2 um/n−2dudr

=
m(m−n)

n2

∫ 1

0

∫ 1

max{(1−t)n/m,u}
F−1

X (r1/n)um/n−2drdu

=
m(m−n)

n2

∫ 1

0
GLn(X ,1−max{(1− t)n/m,u})um/n−2du .

As a consequence, if GLn(X , ·)≤ GLn(Y, ·), the same holds for m, and we have
X ≤icxm Y . ��
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Corollary 1. 1. If X ≤icvn Y , then X ≤icvm Y for all m ≥ n;
2. if X ≤cxn Y , then X ≤cxm Y for all m ≥ n.

Proof. We will only prove statement 1. If X ≤icvn Y , then by Lemma 1 −Y ≤icxn

−X and after Proposition 4 −Y ≤icxm −X for all m ≥ n, which is equivalent to
X ≤icvm Y for all m ≥ n. ��

After Proposition 4 and Corollary 1, we have three chains of stochastic orders,
the strongest (more restrictive) in each of them being the increasing convex,
increasing concave and convex stochastic orders.

Example 1. Let X take values −1 and 1/4 each with probability 1/2. Let Y
be equal to −1 with probability 2/5 and to 0 with probability 3/5. It holds
that X ≤icvn Y for all n ≥ 2, but it is not true that X ≤icv Y .

4 Risk Measures

Let us assume that a portfolio is modeled as a random variable X represent-
ing its net worth after discounting. A coherent risk measure in the sense of
Artzner et al. [3] is a functional on the set of random variables X :Ω →R, Ω
being the set of possible scenarios, satisfying the following four axioms,
R1 If X ≥ 0 a.s. then ρ (X)≤ 0 ;
R2 (Cash-invariance) For all c ∈ R, ρ (X + c) = ρ (X)− c ;
R3 (Positive homogeneity) For all λ ≥ 0 we have ρ (λX) = λρ (X) ;
R4 (Subadditivity) For all X and Y, ρ (X +Y ) ≤ ρ (X)+ρ (Y ) ;

One example of such a measure is given by the α−expected shortfall (denoted
by ESα) which is defined for 0 < α < 1 by

ESα (X) :=− 1
α

∫ α

0
F−1

X (s)ds =− 1
α

GL(X ;α) .

For the properties of ESα , see Acerbi and Tasche [2] or Proposition 2 .
Here we define a family of risk measures which verifies all axioms of coher-

ence and generalizes the expected shortfall. For any n ≥ 1 and 0 ≤ t ≤ 1, let
us write

Rn;t(X) :=−1
t

GLn(X ; t) =−1
t

∫ t

0
F−1

X (1− (1− s)1/n)ds . (1)

By Proposition 2 this is a coherent risk measure and as we shall see in the
following paragraphs it admits a very special representation.

Spectral Risk Measures

Acerbi [1] showed that given a function φ ∈ L 1 ([0,1]) which is positive, de-
creasing and with unit norm, i.e., ‖φ‖ =

∫ 1
0 |φ (p)|dp = 1, then the functional

Mφ (X) =−
∫ 1

0
F−1

X (p)φ (p)dp
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is a coherent risk measure. These coherent risk measures are termed spec-
tral risk measures and the function φ is called their risk aversion function.
Spectral risk measures are law-invariant, that is, they only depend on the
distribution of X , not on its particular realization.

Note that the α−expected shortfall can be retrieved in the context of
spectral measures by noting that ESα ≡Mφα for φα (p) = 1

α 1{0≤p≤α} where 1A

is the indicator function of a set A.
Let us consider the risk measure Rn;t defined in (1). Clearly, writing t∗n =

1− (1− t)1/n , we have that

Rn;t(X) =−1
t

∫ t∗n

0
F−1

X (p)n(1− p)n−1 dp =−
∫ 1

0
F−1

X (p)φn;t (p)dp

by defining φn;t (p) = t−1n(1− p)n−1 1{0≤p≤t∗n} which can be easily seen to be
positive, decreasing and satisfying the normalization condition ‖φ‖= 1. Hence
Rn;t is a spectral risk measure for every n ≥ 1 and 0≤ t ≤ 1 with risk aversion
function φn;t . Note that ESα ≡ R1;α .

Remark 2. We cannot obtain a coherent risk measure by applying a similar
construction to the dual GL. Nevertheless, we can make use of its subaddi-
tivity (5. in Proposition 2) in order to define a general deviation in terms of
it, see Section 5.

Stochastic Orderings

Bäurle and Müller [4] proved that given two random portfolios X and Y that
are ordered in terms of the increasing concave stochastic order as X ≤icv Y ,
then for any law-invariant coherent risk measure ρ it holds that ρ(Y )≤ ρ(X).

Here we have a family of stochastic orderings, all of them weaker than
the increasing concave one and for each of them, a family of coherent risk
measures such that if X ≤icvn Y , then Rm;t(Y )≤ Rm;t(X) for all m ≥ n.

5 General Deviation Measures

A generalization of the standard deviation was introduced in Rockafellar et
al. [8] by means of the following definition. Consider the space L 2 (Ω) of
all functions which have finite L 2-norm. A general deviation is a functional
D : L 2 (Ω)→ [0,∞] satisfying:

D1 D(X)≥ 0 for all X , with D(X) > 0 for nonconstant X ;
D2 D(X + c) = D(X) for all X and c ∈ R ;
D3 D(0) = 0, and D(λX) = λD(X) for all X and all λ > 0 ;
D4 D(X +Y) ≤ D(X)+ D(Y ) for all X and Y .

The class of general deviations contains the standard deviation σ(X) and
standard upper and lower semideviations.
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Rockafellar et al. [8] proved that one can build general deviations from
coherent risk measures as long as they are strictly expectation bounded, that
is, ρ (X) > E(−X) for all nonconstant X by taking D(X) = ρ (X)+EX . In this
setting, for 0 < t < 1, we define

Dn;t(X) := Rn;t(X)+EX =−1
t

GLn(X ; t)+EX . (2)

Essentially, we have added a coherent risk measure on X , Rn;t (X), and a
coherent risk measure on −X , minus its expectation. As long as the positivity
(D1) is guaranteed, given ρ1 and ρ2 coherent risk measures, then ρ1(X)+
ρ2(−X) is a general deviation. In our current setting, we will add a coherent
risk measure on X1:n1 plus a coherent risk measure on −(X1:n2) = −Xn2:n2 in
order to obtain the following general deviation

Dn1,n2;t1,t2(X) :=
1
t2

GLn2(X ; t2)−
1
t1

GLn1
(X ; t1) . (3)

Finally, we define a general deviation inspired by the Gini mean difference of
X which amounts to the area between the GL curve of X and its dual

Dn1,n2(X) : = vol
({

(t,x) : 0 ≤ t ≤ 1, GLn1
(X ; t) ≤ x ≤ GLn2(X ;t)

})
(4)

=
∫ 1

0

(
GLn2(X ; t)−GLn1

(X ;t)
)

dt .

The functionals defined in (2), (3) and (4) are deviation measures as can
easily be seen from Proposition 2.

Stochastic Orderings

If a general deviation can be decomposed as D(X) = ρ1(X)+ρ2(−X) for ρ1,ρ2

law-invariant coherent risk measures, then whenever X + c ≤cx Y for some
c ∈ R (classically referred to as dilation order), we have D(X)≤ D(Y ).

If X ≤cxn Y and m,n1,n2 ≥ n, then:

• Dm;t(X)≤ Dm;t(Y ) for any 0 ≤ t ≤ 1 ;
• Dn1,n2;t1,t2(X)≤ Dn1,n2;t1,t2(Y ) for any 0 ≤ t1,t2 ≤ 1 ;
• Dn1,n2(X) ≤ Dn1,n2(Y ) .

6 Conclusions and Future Research

The new stochastic order relations that have been defined here are weaker
than the classical variability ones. This means that they allow us to compare
more distributions than the classical orderings. As the index n grows larger in
the relation ≤icvn , a stronger focus is put on the lower tail of the distribution,
which is the crucial one when measuring risks. We are studying under what
conditions a risk measure is consistent with ≤icvn .
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We plan to work in a multivariate generalization of the current construc-
tions and results. The n-GL curve studied here (as well as its dual) can be
obtained as part of the boundary of the (set-valued) expectation of a certain
random set built using a similar construction to the one that leads to the
lift zonoid, see Mosler [6]. The multivariate structures that we obtain this
way can be applied to measure risks of vector portfolios in the framework
described by Cascos and Molchanov [5].
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Likelihood in a Possibilistic and
Probabilistic Context: A Comparison

Giulianella Coletti, Davide Petturiti, and Barbara Vantaggi

Abstract. We provide a comparison between a probabilistic and a possi-
bilistic likelihood both as point and set functions.

1 Introduction

We consider conditional probabilities and T -conditional possibilities (where
T stands either for min or any strict t-norm). We focus on likelihood func-
tions, regarded as coherent probability or possibility assessment on a class
of conditional events {E|Hi}, with {Hi} a finite partition of the sure event
Ω . Then, we characterize their coherent extensions on the conditional events
{E|H}, with H belonging to the algebra H spanned by the Hi’s.

Our aim is to give, from a syntactic point of view, a thorough comparison of
probabilistic and possibilistic likelihoods both as point and set functions. The
interest arises from “bayesian-like” inferential situations where the available
information is expressed by different uncertainty measures; for instance, when
the prior is a possibility assessment (possibly obtained as supremum of a
class of probabilities, see e.g. [1, 5, 8, 9]) and the likelihood comes from a
probabilistc data base.

As the point function likelihood is concerned, we find that, from a syntac-
tic point of view, any possibilistic likelihood is also a probabilistic likelihood,
and vice versa. Moreover, both conditional possibility and conditional prob-
ability, regarded as set functions, are capacities if and only if they are not
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necessarily normalized possibilities (they are normalized if and only if at least
in a point the likelihood is equal to one). An interesting difference is instead
the following: in probabilistic setting no kind of monotonicity is required,
while in the possibilistic one there is a local form of monotonicity (i.e. it is
monotone on the elements of a suitable partition of the algebra).

2 Coherent Conditional Possibility Assessments

The concept of coherence, introduced by de Finetti in probability theory (see
[7]), has a fundamental role in managing partial assessments of an uncertainty
measure. In fact, coherence is a tool to check consistency, with respect to a
specific measure, of a function defined on an arbitrary set of events, and to
extend it to new (conditional) events, maintaining consistency.

In this paper we refer to coherent conditional probabilities (see, for in-
stance, [3]) and coherent T -conditional possibility (with T triangular norm)
starting from the following definition of T -conditional possibility (see [2]):

Definition 1. Let F = B ×H be a set of conditional events with B a
Boolean algebra and H an additive set (i.e. closed with respect to finite logical
sums), such that H ⊆B \ { /0}. Let T be a t-norm, a function Π : F → [0,1]
is a T -conditional possibility if it satisfies the following properties:

1. Π(E|H) =Π(E ∧H|H), for every E ∈B and H ∈ H ;
2. Π(·|H) is a possibility, for any H ∈ H ;
3. Π(E∧F |H)= T (Π(E|H),Π(F |E∧H)), for any H,E∧H ∈H and E,F ∈B.

An assessment Π on an arbitrary set E of conditional events is a coherent
T -conditional possibility if (and only if) Π is a restriction of a T -conditional
possibility (in the sense of Definition 1) defined on F = B×H ⊇ E .

We recall a characterization of a coherent T -conditional possibility assess-
ment given in [6]:

Theorem 1. Let E = {E1|H1, ...,En|Hn} be an arbitrary set of conditional
events, and C0 denotes the set of atoms spanned by {E1,H1, ...,En,Hn}.
For a real function Π : E → [0,1], the following statements are equivalent:

a) Π is a coherent T -conditional possibility assessment on E ;
b) there exists a sequence of compatible systems Sα (α = 0, ...,k), with un-

knowns xαr =Πα(Cr) ≥ 0 for Cr ∈ Cα ,

Sα

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
Cr⊆Ei∧Hi

xαr = T (Π(Ei|Hi), max
Cr⊆Hi

xαr ) if max
Cr⊆Hi

xα−1
r < 1

xαr ≥ xα−1
r if Cr ∈ Cα

xα−1
r = T (xαr , max

Cj∈Cα
xα−1

j ) if Cr ∈ Cα

max
Cr∈Cα

xr = 1

(1)
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with α = 0, ...,k, where xα (with r-th component xαr ) is the solution of the
system Sα and Cα = {Cr ∈ Cα−1 : xα−1

r < 1}, moreover x−1
r = 0 for any Cr

in Co.

We recall that, in possibility theory as well as in probability theory, coher-
ence assures the extension of any (coherent) assessment to new events, by
preserving coherence (see [6]). In particular, the coherent extension on any
conditional event lays on a closed interval.

3 Likelihood as Point and Set Function

This session is devoted to a comparative analysis of likelihood in probabilistic
and possibilistic framework. By Theorem 1 and by an analogous characteriza-
tion (see e.g. [3]) of coherent conditional probability assessments the following
result easily follows:

Theorem 2. Let C = {E|Hi}i=1,...,n, be a set of conditional events, with I =
{Hi}i=1,...,n a partition of Ω . For any function f : C → [0,1] such that

f (E|Hi) = 0 if E ∧Hi = /0 and f (E|Hi) = 1 if Hi ⊆ E (2)

the following statements hold:
i) f is a coherent conditional probability,
ii) f is a coherent T-conditional possibility.

Proof. Condition i) has been proved in [3]. To prove ii) let us consider the
characterization of coherent T -conditional possibility given in Theorem 1. By
the incompatibility of the events Hi, the equations of the system S0 have
different unknowns (each of them is linked only with the last equation), and
so the system S0 admits a solution assigning possibility 1 to each conditioning
event Hi. Then, the assessment f is a coherent T -conditional possibility. ��

The above theorem shows a syntactical coincidence between probabilistic and
possibilistic (point) likelihood, so this allows to regard a probabilistic likeli-
hood as a possibilistic one and vice versa without introducing inconsistency.
Moreover, the above result puts in evidence that (in both contexts) no sig-
nificant property characterizes likelihood as point function.

We are now interested on studying properties of aggregated likelihoods,
that is all the coherent extensions of the assessment f (E|Hi) , (Hi ∈I ) to the
events E|K, with K any logical sum of the events Hi.

Theorem 3. Let C , I and f be as in Theorem 2 and let A be the algebra
spanned by by I and H = A \ /0. For any extension g of f on {E}×H ,
which is either a coherent conditional probability or a coherent T-conditional
possibility assessment, the following condition holds for every H ∈ H :

min
Hi⊆H

f (E|Hi) ≤ g(E|H)≤ max
Hi⊆H

f (E|Hi). (3)
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Proof. For coherent conditional probability the condition (3) is proved in [3].
Let f be a coherent T -conditional possibility assessment, then there is an
extension g = Π on B ×H , where B is the algebra generated by E and
H , and Π(E|H) = max

Hi⊆H
T (Π(E|Hi),Π(Hi|H)) ≤ max

Hi⊆H
Π(E|Hi). Moreover, by

distributivity of maximum with respect to any t-norm T we have:

Π(E|H) = max
Hi⊆H

T (Π(E|Hi),Π(Hi|H)) ≥ max
Hi⊆H

T (β ,Π(Hi|H)) =

T
(
β , max

Hi⊆H
Π(Hi|H)

)
= T
(
β ,1
)

= β

where β = minHi⊆HΠ(E|Hi). ��

Remark 1. By condition (3) it follows immediately that both probability and
possibility aggregated likelihood can be monotone, with respect to ⊆, only if
the extension can be obtained, for every H, as maxHi⊆H f (E|Hi).

The following Theorem 4 assures that this (particular) extension is coherent.
So we can conclude that both probability and possibility conditional prob-
abilities, when they are regarded as function of the conditioning events, are
capacities if and only if they are obtained through the maximum.

Theorem 4. Let C , I , f and H be as in Theorem 3. For any extension g
of f on {E}×H , and such that

g(E|H∨K) = max{g(E|H),g(E|K)} (4)

for every H,K ∈ H the following conditions hold:
i) g is a coherent conditional probability,
ii) g is a coherent T-conditional possibility.

Proof. The proof of i) is in [3]. To prove ii) consider as solution of system S0

in Theorem 1 the possibility Π0(Hi) = 1, for any Hi ∈ C . ��

Remark 2. Note that in Theorem 4 we state that g is a coherent T -conditional
possibility, but g(E|.) is not necessarily a possibility even if condition (4) holds
for every H,K ∈ H . In fact g(E|Ω) can be strictly less than 1.

Actually, g(E|Ω) is 1 if and only if there is Hi with f (E|Hi) = 1: this
requirement could seem natural since it claims the existence of an event Hi

supporting the evidence E.

In order to deepen the comparison of possibilistic and probabilistic aggregated
likelihoods we need to introduce the notion of scale and then a relevant local
form of monotonicity.

Definition 2. Let I = {H1, ...,Hn} be a partition of the sure event and H =
A \ /0 with A the algebra spanned by by I . A scale of H is any partition
{H 0, ...,H k} of H , such that every H i (with i = 0, ...,k) is an additive
set and it contains at least one element Hj ∈ I and any K ⊇ Hj, with K ∈
H \⋃k<i H

k.
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Definition 3. Let H as in Definition 2, a function ϕ : H → [0,1] is scale
monotone, with respect to a scale H 0, ...,H k of H , if ϕ, restricted to any
H i with i = 0, ...,k, is monotone, with respect to the inclusion ⊆.

We give an example of a scale and a scale monotone function:

Example 1. Let I = {H1,H2,H3} be a partition of the sure event and denote
by H the algebra spanned by I less the impossible event. Consider the set
K = {H 0,H 1} with H 0 = {H2,H1∨H2,H2∨H3,Ω} and H 1 = {H1,H3,H1∨
H3}. It is easy to check that K is a scale.

Consider now the assessment ϕ(H1) = 0.3, ϕ(H2) = 0.5, ϕ(H3) = 0.8, ϕ(H1∨
H2) = 0.5, ϕ(H1∨H3) = 0.8, ϕ(H2 ∨H3) = 0.7 and ϕ(Ω) = 0.75.

For every K ∈ H , condition (3) holds, so ϕ(·) is scale monotone with
respect to K.

Theorem 5. Let A be a finite algebra, H = A \ /0 and ϕ(·) = Π(E|·) be
a coherent T -conditional possibility on {E}×H . Then, there exists a scale
{H 0, ...,H k} of H such that ϕ is scale monotone with respect to it.

Proof. If Π(E|·) is a coherent T -conditional possibility, then there is an ex-
tension (that we continue to denote by Π) on B×H , where B is the alge-
bra generated by E and H . Put H 0 = {H ∈ H : Π(H|Ω) = 1} and define,
for any j = 1, ...,k, the set H j = {H ∈ H : Π(H|H j−1

0 ) = 1} where C j+1 =
H \⋃ j

i=0(H
i) and H j

0 =
∨

H∈C j H. The class {H 0, ...,H k} is a partition of
H and each element is an additive set. Let I = {H1, ...,Hn} be the set of
atoms of H , since Π(·|H j−1

0 ) is a possibility, there is at least an atom Hi of I

such that Π(Hi|H j−1
0 ) = 1 = Π(K|H j−1

0 ) for any K ⊇ Hi. Then, {H 0, ...,H k}
is a scale and, by construction, Π is monotone with respect to it: in fact, for
any H,H∨K ∈H i it follows Π(E|H) = T (Π(E|H),Π(H|H∨K)) =Π(E|H∨K)
since Π(H|H ∨K) = 1. ��
We notice that for coherent conditional probabilities a similar result does not
hold as the following example shows:

Example 2. Let I = {H1,H2,H3} be a partition of the sure event, and consider
the likelihood assessment: P(E|H1) = 1

2 ,P(E|H2) = 1
4 ,P(E|H3) = 1

8 .
It is easy to prove that the following assessment

P(E|H1∨H2) = 3
8 ,P(E|H1∨H3) = 5

16 ,P(E|H2∨H3) = 3
16 ,P(E|Ω) = 7

24
is a coherent conditional probability extending the above likelihood (the ex-
tension is obtained by giving P(Hi) = 1/3, for i=1,...,3).

Nevertheless, this probabilistic aggregated likelihood is not scale monotone.
In fact, by definition, the first element H0 of any scale must contain an
atom and all its supersets, so the thesis follows immediately by the following
inequalities: P(E|H1) > P(E|H1∨H2), P(E|H2) > P(E|H2∨H3) and
P(E|H2∨H3) > P(E|H1∨H2∨H3).

We notice that the necessary conditions given in Theorem 3 and Theorem 5
are not sufficient to characterize possibilistic aggregated likelihood as coherent
extensions of a point likelihood, as shown in the following example:
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Example 3. Let us consider again the scale K and the function ϕ of Example
1. We show that ϕ(·) =Π(E|·) cannot be seen as a coherent conditional possi-
bility. Let Ci = E∧Hi and Ci+3 = Ec∧Hi (i = 1, . . . ,3) be the atoms spanned by
{E,H1,H2,3 } and consider the following system with unknowns x0

r =Π(Cr)≥ 0
for r = 1, . . . ,6

Sm
0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
1 = min{0.3,max{x0

1,x
0
2}}

x0
3 = min{0.5,max{x0

3,x
0
4}}

x0
5 = min{0.8,max{x0

5,x
0
6}}

max{x0
1,x

0
3} = min{0.5,max{x0

1,x
0
2,x

0
3,x

0
4}}

max{x0
1,x

0
5} = min{0.8,max{x0

1,x
0
2,x

0
5,x

0
6}}

max{x0
3,x

0
5} = min{0.7,max{x0

3,x
0
4,x

0
5,x

0
6}}

max{x0
1,x

0
3,x

0
5} = min{0.75,max{x0

1,x
0
2,x

0
3,x

0
4,x

0
5,x

0
6}}

max{x0
1,x

0
2,x

0
3,x

0
4,x

0
5,x

0
6} = 1

The systems Sm
0 admits no solution: in fact, only x0

2, x0
4 and x0

6 can assume
value 1, but the seventh equation forces to be x0

2 < 1 and x0
6 < 1 in the fifth

one, while the sixth equation implies x0
4 < 1 in the seventh one.

Similarly, it is possible to prove that ϕ is not a coherent T -conditional
possibility, for any strict t-norm T .

The following result characterizes all the coherent extensions of a likelihood
f (E|·) as coherent T -conditional possibility (with T either strict t-norm or
min). This allows an easy comparison.

Theorem 6. Let C , I , f and H be as in Theorem 3. For any extension Π
of f on {E}×H , and for every strict t-norm T the following two statements
are equivalent:

i) Π is a coherent T -conditional possibility extending f to K = {E}×H ;
ii) there exist a class of subfamilies Hα (α = 0, ...,k ≤ n− 1), with Hα ⊃

Hα+1, and sets of coefficients λαi ≥ 0 with maxi λαi = 1, λ−1
i = 0 for any i,

and Hi ∈ Hα if and only if λα−1
i = 0, such that for every H ∈ H the value

x =Π(E|H) is a solution of

T (x, max
Hi⊆H

λαi ) = max
Hi⊆H

T (λαi ,Π(E|Hi)) (5)

for every α such that Hi ∈ Hα when Hi ⊆ H.

Proof. Since f is a coherent T -conditional possibility then there is at least a
T -conditional possibility Π on B×H extending it. So, by Theorem 1 there
exists a sequence of compatible systems and for any H ∈H there is a j such
that maxCr⊆H x j

r = 1 and Π(E|H) is solution of the following equation for any
i = 0, ..., j

T (Π(E|H), max
Cr⊆H

xi
r) = max

Cr⊆E∧H
xi

r.

That implies the existence of λ i
r with Hr ∈ Hi such that

T (Π(E|H), max
Hr⊆H

λ i
r(H)) = max

Hr⊆H
T (π(E|Hr),λ i

r). ��
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Note that in the case of product t-norm the aggregate likelihood is the max-
imum of a weighted combination of the Π(E|Hi)’s (with weights λ j

i ) over
the maximum of the weights.

A similar characterization can be given for the t-norm minimum:

Theorem 7. Let C , I , f and H be as in Theorem 3. For any extension Π
of f on {E}×H , the following two statements are equivalent:

i) Π is a coherent conditional possibility extending f to K = {E}×H ;
ii) there exist a class of subfamilies Hα (α = 0, ...,k ≤ n− 1), with Hα ⊃

Hα+1, and sets of coefficients λαi ≥ 0 with maxi λαi = 1, λ−1
i = 0 for any i,

and Hi ∈ Hα if and only if λα−1
i ≤ f (E|Hi), such that for every H ∈ H the

value x =Π(E|H) is a solution of

min{x, max
Hi⊆H

λαi } = max
Hi⊆H

min{λαi ,Π(E|Hi)} (6)

for every α such that Hi ∈ Hα when Hi ⊆ H.

We recall the quoted characterization for the probabilistic aggregated likeli-
hood.

Theorem 8. Let C , I , f and H be as in Theorem 3. For any extension P
of f on {E}×H , the following two statements are equivalent:

i) P is a coherent conditional probability extending f to K = {E}×H ;
ii) there exist a class of subfamilies Hα (α = 0, ...,k ≤ n− 1), with Hα ⊃

Hα+1, and sets of coefficients λαi ≥ 0 with maxi λαi = 1, λ−1
i = 0 for any i,

and Hi ∈ Hα if and only if λα−1
i = 0, such that for every H ∈ H the value

x = P(E|H) is a solution of

x ∑
Hi⊆H

λαi = ∑
Hi⊆H

λαi P(E|Hi) (7)

for every α such that Hi ∈ Hα when Hi ⊆ H.

Note that while in the probabilistic context the aggregated likelihood is ob-
tained as weighted mean of the P(E|Hi)’s, in the possibilistic one the aggre-
gated likelihood is obtained as solution of equation (5) for strict t-norms and
(6) for the minimum. However in the case of product t-norm the aggregate
likelihood, as recalled above, is the maximum of a weighted combination of
the Π(E|Hi)’s. In both probabilistic and possibilistic cases weights equal to
zero or one are allowed and in the case where the likelihood is scale monotone
with respect to a scale with the maximum number n of elements (n equal to
the number of elementary events), then the extensions coincides.

Remark 3. Notice that if we can assign λ 0
i = 1 for every i, then we obtain

only one class of λαi , and we get a coherent T -conditional possibility taking
only the values assumed by the likelihood. Moreover, the above aggregated
likelihood is obtained (for every α) by giving value 1 to only one λαi∗ , and value
0 to all others. So in this case the aggregated likelihood is also a coherent
conditional probability.
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A particular case of this situation is when at any step α the value 1 cor-
responds, for E|Hi ∈Hα , to the maximum (or minimum) value of Π(E|Hi).

4 Conclusions

We compare the likelihood function in probabilistic and possibilistic contexts
both as point and set functions. For this aim we provide also a characteri-
zation of coherent extensions of a possibilistic likelihood. The results can be
extended to any conditional decomposable measure (for the definition see e.g.
[3]): this extension is immediate for Theorems 2, 3, 4.
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Nonparametric Predictive Inference for
Order Statistics of Future Observations

Frank P.A. Coolen and Tahani A. Maturi

Abstract. Nonparametric predictive inference (NPI) is a powerful frequentist
statistical framework which uses only few assumptions. Based on a post-data
exchangeability assumption, precise probabilities for some events involving
one or more future observations are defined, based on which lower and upper
probabilities can be derived for all other events of interest. We present NPI
for the r-th order statistic of m future real-valued observations and its use for
comparison of two groups of data.

1 Introduction

Nonparametric predictive inference (NPI) [3, 5] is a statistical framework
which uses few modelling assumptions, with inferences explicitly in terms
of future observations. For real-valued random quantities attention has thus
far been mostly restricted to a single future observation, although multiple
future observations have been considered for some NPI methods for statistical
process control [1, 2]. For Bernoulli quantities, NPI has also been presented
for m ≥ 1 future observations [4], with explicit study of the influence of the
choice of m for comparison of groups of proportions data [6].

In this paper, we consider m future real-valued observations, given n obser-
vations, and as main contribution we focus on the r-th ordered observation of
these m future observations, including comparison of two groups of data via
comparison of their corresponding r-th ordered future observations. Without
making further assumptions, these inferences require the use of lower and
upper probabilities for several events of interest, as such this work fits in the
theory of imprecise probability [12] and interval probability [13].
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Assume that we have real-valued ordered data x1 < x2 < .. . < xn, with n≥ 1.
We assume that ties do not occur, in Example 2 in Section 3 we explain how
to deal with ties. For ease of notation, define x0 = −∞ and xn+1 = ∞. The
n observations partition the real-line into n + 1 intervals I j = (x j−1,x j) for
j = 1, . . . ,n+1. If we wish to allow ties between past and future observations
explicitly, we could use closed intervals [x j−1,x j] instead of these open inter-
vals I j, the difference is rather minimal and to keep presentation easy we have
opted not to do this here. We are interested in m≥ 1 future observations, Xn+i

for i = 1, . . . ,m. We link the data and future observations via Hill’s assump-
tion A(n) [10], or, more precisely, via A(n+m−1) (which implies A(n+k) for all
k = 0,1, . . . ,m−2; we will refer to this generically as ’the A(n) assumptions’),
which can be considered as a post-data version of a finite exchangeability
assumption for n+m random quantities. A(n+m−1) implies that all possible or-
derings of the n data observations and the m future observations are equally
likely, where the n data observations are not distinguished among each other,
and neither are the m future observations. Let S j = #{Xn+i ∈ I j, i = 1, . . . ,m},
then assuming A(n+m−1) we have

P

(
n+1⋂

j=1

{S j = s j}
)

=
(

n + m
n

)−1

(1)

where s j are non-negative integers with ∑n+1
j=1 s j = m. Another convenient way

to interpret the A(n+m−1) assumption with n data observations and m fu-
ture observations is to think that n randomly chosen observations out of
all n + m real-valued observations are revealed, following which you wish to
make inferences about the m unrevealed observations. The A(n+m−1) assump-
tion then implies that one has no information about whether specific values
of neighbouring revealed observations make it less or more likely that a fu-
ture observation falls in between them. For any event involving the m future
observations, (1) implies that we can count the number of such orderings for
which this event holds. Generally in NPI a lower probability for the event of
interest is derived by counting all orderings for which this event has to hold,
while the corresponding upper probability is derived by counting all orderings
for which this event can hold [3, 5].

NPI is close in nature to predictive inference for the low structure stochas-
tic case as briefly outlined by Geisser [9], which is in line with many earlier
nonparametric test methods where the interpretation of the inferences is in
terms of confidence intervals. In NPI the A(n) assumptions justify the use
of these inferences directly as probabilities. Using only precise probabilities
or confidence statements, such inferences cannot be used for many events of
interest, but in NPI we use the fact, in line with De Finetti’s Fundamental
Theorem of Probability [7], that corresponding optimal bounds can be de-
rived for all events of interest [3]. NPI provides exactly calibrated frequentist
inferences [11], and it has strong consistency properties in theory of interval
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probability [3]. In NPI the n observations are explicitly used through the A(n)
assumptions, yet as there is no use of conditioning as in the Bayesian frame-
work, we do not use an explicit notation to indicate this use of the data. It
is important to emphasize that there is no assumed population from which
the n observations were randomly drawn, and hence also no assumptions on
the sampling process. NPI is totally based on the A(n) assumptions, which
however should be considered with care as they imply e.g. that the specific
ordering in which the data appeared is irrelevant, so accepting A(n) implies
an exchangeability judgement for the n observations. It is attractive that
the appropriateness of this approach can be decided upon after the n obser-
vations have become available. NPI is always in line with inferences based
on empirical distributions, which is an attractive property when aiming at
objectivity [5].

2 NPI for Order Statistics

Let X(r), for r = 1, . . . ,m, be the r-th ordered future observation, so X(r) = Xn+i

for one i = 1, . . . ,m and X(1) < X(2) < .. . < X(m). The following probabilities are
derived by counting the relevant orderings, and hold for j = 1, . . . ,n + 1, and
r = 1, . . . ,m,

P(X(r) ∈ I j) =
(

j + r−2
j−1

)(
n− j + 1 + m− r

n− j + 1

)(
n + m

n

)−1

(2)

For this event NPI provides a precise probability, as each of the
(n+m

n

)
equally

likely orderings of n past and m future observations has the r-th ordered future
observation in precisely one interval I j.

As an example, suppose that one is interested in the minimum X(1) of

the m future observations. Formula (2) gives P(X(1) ∈ I j) =
(n− j+m

n− j+1

)(n+m
n

)−1,
with for example P(X(1) ∈ I1) = m

n+m . Clearly, the event X(1) ∈ I1 occurs if the
smallest of all n + m observations, so the n data observations and m future
observations, is not in the data set, which would occur with probability n

n+m .

A further special case of interest is P(X(1) ∈ In+1) =
(n+m

n

)−1, following from
the fact that there is only one ordering for which all n data observations occur
before all m future observations.

In theory of mathematical statistics and probability, much attention is
paid to limit results. Many popular statistical methods are justified through
limit properties, with limits taken with regard to the number n of data ob-
servations, leading to ’large-sample’ methods that are often applied in cases
with relatively small samples without due consideration of the quality of the
approximations involved and lacking clear foundational justification. Consid-
ering limits for n going to infinity is not very exciting in NPI as one just
ends up with the empirical distribution function and corresponding infer-
ences. However, in NPI it might be of some interest to consider the limiting
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behaviour of the predictive probabilities (2) if m goes to infinity, hence if we
consider an ever increasing future. Defining θ ∈ [0,1] through the relation-
ship r = θm (of course, this only makes sense when θm, and therefore also
(1− θ )m, is integer, we only sketch the argument here without giving the
detailed mathematical presentation), the following limiting result is easily
proven, for j = 1, . . . ,n + 1,

lim
m→∞

P(X(θm) ∈ I j) =
(

n
j−1

)
θ j−1(1−θ )n− j+1 (3)

It is important to emphasize the difference with established statistical meth-
ods. The θ in (3) is not a characteristic of an assumed population from which
the data are sampled, indeed no population assumption is made. Furthermore,
(3) is not a probability distribution nor a likelihood function for θ . Instead, θ
only serves for notation of this event of interest, and indicates the specific rel-
ative (with regard to m) future order statistic of interest. Of course, the actual
A(n) assumptions required for this limit imply infinite exchangeability of the
future observations, hence De Finetti’s Representation Theorem [7] indicates
that a parametric representation can be assumed, yet this is different from
the explicitly predictive use in NPI, most noticeably through the absence of
a probability distribution for θ . The limiting probability (3) can be under-
stood from the consideration that for the event X(θm) ∈ I j to hold, precisely
j−1 of the n data observations must be smaller than X(θm), but it must be
emphasized again that (3) specifies probabilities for X(θm), not for any aspect
of the observed data for which no concept of randomness, e.g. as following
from assumed sampling from a population, is used in NPI. In NPI, the data
are given, all randomness is explicitly with regard to the future observations,
which nicely reflects where the uncertainty really is in applications.

Analysis of the probability (2) leads to some interesting results, including
the obvious symmetry P(X(r) ∈ I j) = P(X(m+1−r) ∈ In+2− j). For all r, the prob-
ability for X(r) ∈ I j is unimodal in j, with the maximum probability assigned
to interval I j∗ with

(
r−1
m−1

)
(n+1)≤ j∗ ≤

(
r−1
m−1

)
(n+1)+1. This carries through

to the limiting situation (3), where for given θ the maximum probability is
assigned to interval I j∗ with (n + 1)θ ≤ j∗ ≤ (n + 1)θ + 1. It is worth com-
menting on extreme values, in particular inference involving X(1) or X(m) for
m large compared to the value of n. In these cases, NPI assigns large prob-
abilities to the intervals I1 or In+1, respectively, which are outside the range
of the observed data and unbounded unless the random quantities of interest
are logically bounded (e.g. zero as lower bound for lifetime data). This indi-
cates that, for such inferences, very little can be concluded without further
assumptions on the probability masses within these end intervals beyond the
observed data. This will be illustrated in the examples in Section 3. There
are several inferential problems where one is explicitly interested in such a
future order statistic X(r). It may be of explicit interest to compare different
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groups or treatments by comparing particular future order statistics, this is
presented in Section 3.

3 Comparing Two Groups

Suppose we have two independent groups of real-valued observations, X and
Y , their ordered observed values are x1 < x2 < .. . < xnx and y1 < y2 < .. . < yny .
For ease of notation, let x0 = y0 = −∞ and xnx+1 = yny+1 = ∞. And let
Ix

jx = (x jx−1,x jx) and Iy
jy = (y jy−1,y jy). We are interested in m ≥ 1 future obser-

vations from each group (i.e. mx = my = m), so in Xnx+i and Yny+i for i = 1, . . . ,m.
We wish to compare the r-th future order statistics from these two groups by
considering the event X(r) < Y(r), for which the NPI lower and upper proba-
bilities, based on the A(nx) and A(ny) assumptions per group, are derived by

P(X(r) < Y(r)) =
nx+1

∑
jx=1

ny+1

∑
jy=1

1{x jx < y jy−1}P(X(r) ∈ Ix
jx)P(Y(r) ∈ Iy

jy) (4)

P(X(r) < Y(r)) =
nx+1

∑
jx=1

ny+1

∑
jy=1

1{x jx−1 < y jy}P(X(r) ∈ Ix
jx)P(Y(r) ∈ Iy

jy
) (5)

where 1{E} is an indicator function which is equal to 1 if event E occurs and
0 else. This NPI lower (upper) probability follows by putting all probability
masses for Y(r) corresponding to the intervals Iy

jy
= (y jy−1,y jy), jy = 1, . . . ,ny +1,

to the left (right) end points of these intervals, and by putting all probability
masses for X(r) corresponding to the intervals Ix

jx = (x jx−1,x jx), jx = 1, . . . ,nx+1,
to the right (left) end points of these intervals. We illustrate this NPI method
for comparison of two groups based on the r-th future order statistic in two
examples, first a small artificial example followed by one considering a real
data set.

Example 1. To get a basic feeling for these inferences, we consider three small
artificial data sets (cases A,B,C) as given in Table 1. For m = 5,25,200, the
NPI lower and upper probabilities for the events X(r) < Y(r) for all r = 1, . . . ,m
are displayed in Fig. 1, with row 1,2,3 corresponding to cases A,B,C. Actu-
ally, the plotted lines per value of r represent the intervals bounded by the
corresponding lower and upper probabilities, so the length of each line is the
imprecision for that event.

Table 1 Data sets, Example 1

A X : 1 4 Y : 2 3
B X : 1 2 7 8 Y : 3 4 5 6
C X : 1 2 3 4 13 14 15 16 Y : 5 6 7 8 9 10 11 12
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Fig. 1 NPI lower and upper probabilities, Example 1

These results illustrate clearly the effect of increased sample sizes, lead-
ing to decreasing imprecision for future order statistics that are most likely
to fall within the observed data range. For extreme future order statistics,
imprecision remains high as no assumptions are made about the spread of
probability mass within any interval Ix

jx or Iy
jy
, so also not in the end intervals.

This makes clear that, without additional assumptions, no strong inferences
can be achieved for events involving extreme future order statistics if m is
substantially larger than n.

Example 2. We consider the data set of a study of the effect of ozone en-
vironment on rats growth [8, p.170]. One group of 22 rats were kept in an
ozone environment and the second group of 23 similar rats were kept in an
ozone-free environment. Both groups were kept for 7 days and their weight
gains are given in Table 2.

The NPI lower and upper probabilities (4) and (5) for the events X(r) < Y(r),
r = 1, . . . ,m, are displayed in Fig. 2, where the first row gives figures correspond-
ing to the full data for the cases with m = 5,25,200, while the second row gives
the corresponding figures but with the observation−16.9 removed from group
Y . This is done as this value could perhaps be considered to be an outlier, hence
it might be interesting to see its influence on these inferences. Note that the
data for group X and for group Y both contain two tied observations, at −9.0
and 26.0, respectively. As tied observations are within the same group, we just
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Table 2 Rats’ weight gains data, Example 2

Ozone group (X) Ozone-free group (Y )

-15.9 -14.7 -12.9 -9.9 -9.0 -9.0 -16.9 13.1 15.4 17.4 17.7 18.3
6.1 6.6 6.8 7.3 10.1 12.1 19.2 21.4 21.8 21.9 22.4 22.7
14.0 14.3 15.5 15.7 17.9 20.4 24.4 25.9 26.0 26.0 26.6 27.3
28.2 39.9 44.1 54.6 27.4 28.5 29.4 38.4 41.0
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Fig. 2 NPI lower and upper probabilities, Example 2

add a very small amount to one of them, not affecting their rankings within the
group nor with the data for both groups combined and therefore not affecting
the inferences. This can be interpreted as assuming that these values actually
differ in a further decimal, not reported due to rounding. If observations where
tied among the two groups, the same breaking of ties could be performed, with
the NPI method presented in this paper applied to all possible ways to do so,
and the smallest (largest) of the corresponding lower (upper) probabilities for
the event of interest would be used as the NPI lower (upper) probability. The
possibility to break ties in this manner is an attractive feature of statistical
methods using lower and upper probabilities, as it does not require further as-
sumptions for such tied values.
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This example shows that these data strongly support the event X(r) < Y(r)
for future order statistics that are likely to be in the middle area of the data
ranges, with the values of the NPI lower and upper probabilities reflecting
the amount of overlap in the observed data for groups X and Y . For extreme
future order statistics the imprecision is again very large, and the effect of
deleting the smallest Y value from the data has caused quite a difference
between the inferences for small values of r, as the lower ends of the plots in
rows 1 and 2 in Fig. 2 clearly illustrate.
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Expected Pair-Wise Comparison of the
Outcomes of a Fuzzy Random Variable

Inés Couso, Laura Garrido, Susana Montes, and Luciano Sánchez

Abstract. We introduce the notion of expected pair-wise comparison of a
fuzzy random variable. It includes some well-known parameters such as the
quadratic entropy of a random variable, the upper probability induced by a
random set or the scalar variance of a fuzzy random variable as particular
cases. The special case of expected dissimilitude is highlighted and shown
as a useful alternative to the scalar variance when the images of the fuzzy
random variable are not necessarily convex, nor in a numerical scale.

Keywords: Comparison measure, Divergence measure, Similarity measure,
Semantics of fuzzy sets, Fuzzy random variable.

1 Introduction

Fuzzy random variables (frv for short) were first introduced by Féron in 1976,
as functions that assign a fuzzy subset to each possible output of a random
experiment, extending the notions of random variable and random set. Later
on, several variants were proposed. The different definitions in the literature
vary on the measurability conditions imposed to this mapping, and in the
properties of the output space, but all of them intend to model situations
that combine fuzziness and randomness. Apart from the differences among
the formal definitions, fuzzy random variables have been also given different
interpretations. Thus, a frv can be viewed ([3]) as a random object, an ill-
known random variable or as a conditional upper probability. Each of those
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interpretations leads to a different way of extending parameters as the expec-
tation, the variance, etc. The case of the variance is discussed in detail in [3].
In this paper, we will treat fuzzy random variables as random objects. We
will introduce the notion of expected pair-wise comparison and we will dis-
cuss in some detail the specific notion of expected dissimilitude measure. The
expected dissimilitude will average the “degrees of difference” or “divergence”
between pairs of outcomes of the frv. In order to find a suitable quantifica-
tion the differences between two outcomes of the frv, we will provide a brief
discussion about some previous notions in the literature such as divergence
measures ([8]) or distance measures ([6]), and we will introduce the notion
of dissimilitude. Once being able to quantify such differences, the expected
divergence will average them into a single quantity. We will show how the
expected dissimilitude encompasses some different kinds of existing measures:
on the one side, it extend the notion of scalar variance of a frv ([3, 7]). On
the other hand, it also extends the quadratic entropy of a random variable.
So, depending on the specific dissimilitude measure we use, we can extend
the notion of variance, entropy, or a mixture of them. Furthermore, it allows
us to quantify the expected difference between the different outcomes of the
frv when the universe is not a numerical scale. The existing definitions of
scalar variance are not easily adaptable to this kind of universes, because
they involve the notion of expectation. In this paper, we do not average the
dissimilitude degree between each possible outcome and the expectation, but
between pairs of outcomes, by taking into account a pair of independent
copies of the frv.

The rest of the paper is organized as follows: in Section 2, we briefly discuss
the state of art about comparison measures, we provide some new results
relating the notions of dissimilarity [2], divergence [8], distance [6] and metric,
and we introduce the new notion of dissimilitude measure. In Section 3, we
propose the concepts of expected pair-wise comparison and expected pair-wise
dissimilitude of a frv, studying some interesting properties, and illustrating
them with examples. We end the paper with some concluding remarks.

2 Dissimilitude Measures for Pairs of Fuzzy Sets

As we pointed out in the last section, an initial step in the construction of
an expected dissimilitude measure will be the study of different options to
compare pairs of outcomes of a fuzzy random variable. Let us denote by F (U)
the family of fuzzy subsets of a universe U . A comparison measure [2] is a
mapping S : F (U)×F (U)→ [0,1] expressed as:

S(A,B) = GS(A∩B,A−B,B−A), ∀A,B ∈ F (U),

for some GS : F (U)×F (U)×F (U) → [0,1]. This notion includes the idea
of similarity and dissimilarity, and other kinds of comparison of pairs of
fuzzy sets in a common framework. In this paper, we will slightly relax the
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assumptions for a comparison measure, and we will not force them to take
values in the unit interval. We will pay attention to the quantification of the
the degree of “difference” between two fuzzy outcomes. To this purpose, we
will survey some previous proposals in the literature and we will check some
properties and relations between them.

Montes el al. introduced in [8] an axiomatic definition for the divergence
between pairs of fuzzy subsets based on the following natural properties:
• It is nonnegative and symmetric.
• It becomes zero when the two fuzzy sets coincide.
• It decreases when two fuzzy sets become “more similar”.

Different formalizations of the third idea lead to different axiomatic defini-
tions. Two of them are:

Definition 1. (Bouchon-Meunier et al. [2]) Consider a universe U and let
F (U) the family of fuzzy subsets of U . A comparison measure S : F (U)×
F (U) → R is a dissimilarity measure when, for any pair A,B ∈ F (U) the
following conditions hold:
Diss1.- GS does not depend on its first argument (intersection) and it is

increasing in the other two (differences) w.r.t. the fuzzy inclusion.
Diss2.- S(A,A) = 0

Definition 2. (Montes et al. [8]) Consider a universe U and let F (U) the
family of fuzzy subsets of U . A mapping D : F (U)×F (U)→R is a divergence
measure when, for any pair A,B ∈F (U) the following conditions hold:
Div1.- D(B,A) = D(A,B).
Diss2.- D(A,A) = 0.
Div3.- D(A∪C,B∪C)≤ D(A,B).
Div4.- D(A∩C,B∩C)≤ D(A,B).

There is a strong relationship between dissimilarities and divergences: ac-
cording to the following result, the divergence between two crisp sets A and B
does not depend on their intersection, and it increases with their difference.
(We omit the proof.)

Proposition 1. Consider the function D : F (U)×F (U)→ R

• If D satisfies axiom Div3, then D(A,B) ≤ D(A−B,B−A), ∀A,B ∈℘(U)
(the class of crisp subsets of U).

• If D satisfies axiom Div4, then D(A,B)≥ D(A−B,B−A), ∀A,B ∈ F (U).
• If D satisfies axiom Div4, then D(A,B) ≤ D(C,B), for all A,B,C ∈℘(U)

such that C∩B = /0 and A ⊆C.

Thus, the above measures (divergence and dissimilarity measures) focus on
the differences between two fuzzy sets, but they do not care about their
similarities. Sometimes, we need to take into account the similarities between
sets, other times, we do not. Let us illustrate this with an easy example.
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Example 1. Consider the set of languages:

U= {English (e), Spanish (s), French (f), Italian (i), Dutch (d), Russian (r)}

and let the crisp subsets E = {e,s, f , i,d}, G = {e,s, f ,d,r}, A = {i} and V = {r}
denote the respective communication skills of four persons called Enrique,
Gert, Angelo and Vladimir. Enrique and Gert share much more language
skills than Angelo and Vladimir, but those commonalities cannot be detected
by means of the above measures (divergences and dissimilarities). If we just
wanted to focus on the differences, those measures would be useful. But, if
also take into account their common skills, we should use different comparison
measures.

We can find in the literature some other measures that detect the differences
between two fuzzy subsets, but they are not necessarily independent on the
commonalities. Let us show some of them:

Definition 3. (Fan, J. and Xie, W. [6]) Consider a universe U and let F (U)
the family of fuzzy subsets of U . A mapping d : F (U)×F (U) → R is a dis-
tance measure when:
Div1.- d(B,A) = d(A,B), ∀A,B ∈ F (U).
Diss2.- d(A,A) = 0, ∀A ∈ F (U).
DM3.- d(D,Dc) = maxA,B∈F (U) d(A,B), for any crisp set D ∈℘(U).
DM4.- If A ⊆ B ⊆C, then max{d(A,B),d(B,C)} ≤ d(A,C).

There are some relationships between divergence and distance measures. In
fact, it is checked in [8] that any function satisfying Div3 and Div4 fulfills
DM4. Furthermore, any local 1 divergence satisfies DM3. Thus, any local di-
vergence measure satisfies Definition 3. Let us mention that the term distance
measure is used in [6] without referring to the mathematical notion of metric.
Nevertheless, both notions are somehow related, as they quantify the degree
of difference between fuzzy subsets. We can find in the recent literature some
metrics and pseudo-metrics defined on classes of fuzzy sets, such as the well
known Hamming distance, the Puri-Ralescu [9] pseudo-metric2 and other
families of metrics proposed in [1, 7, 10] on some specific classes of convex
fuzzy sets, for instance.

We can find some relationships between the above metrics and the no-
tions of divergence, distance and comparison measure. In this short paper,
we will only list them, without referring to formal details about the domain
of definition of each measure, and without detailing the proofs:

1 A divergence measure is called local ([8]) when there exists a function h : [0,1]×
[0,1] → R such that: D(A,B)−D(A∪{x},B∪{x}) = h(A(x),B(x)), ∀x ∈U.

2 Puri and Ralescu introduce a metric in the class of fuzzy subsets of R
n with

compact and non-empty level cuts. It can be easily extended to more general
families of fuzzy subsets as a pseudo-metric.
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Proposition 2
• All the metrics and pseudo-metrics cited above can be expressed as com-

parison measures on their respective domains of definition and they satisfy
axioms Div1, Diss2, Div3 and DM4.

• Only the Hamming distance satisfies axioms Diss1, Div4 and DM3.

According to the above proposition, axioms Diss1, Div4 and DM3 exclude
most of the mentioned (pseudo)-metrics. In the rest of the paper, we will
use the term dissimilitude measure for those comparison measures safisfying
Div1, Diss2, Div3 and DM4.

3 Expected Pair-Wise Comparison of a Fuzzy Random
Variable

Consider a probability space (Ω ,A ,P) and a frv defined on it, i.e., an A −σ
measurable mapping X̃ : Ω → F , where σ is a σ -field defined on a certain
class of fuzzy subsets F ⊆F (U). (This general definition encompasses several
specific proposals in the literature). Any fuzzy random variable induces a
probability measure on σ by means of the formula:

PX̃(C ) = P({ω ∈Ω : X̃(ω) ∈ C }), ∀C ∈ σ .

Now consider the product probability P⊗P : A ⊗A → [0,1] as the only prob-
ability measure satisfying the restriction

(P⊗P)(A×B) = P(A) · P(B) ∀A,B ∈A .

Let X̃1 and X̃2 two (identically distributed) copies of X̃ , and consider a com-
parison measure on F , S : F ×F → [0,1].

Definition 4. We define the expected pair-wise comparison of X̃ as the
quantity

ES(X̃) =
∫

Ω×Ω
S(X̃1(ω), X̃2(ω ′))d(P⊗P)(ω ,ω ′),

provided that the mapping g(ω ,ω ′) = S(X̃1(ω), X̃2(ω ′)), ∀(ω ,ω ′) ∈ Ω ×Ω is
A ⊗A −βR measurable.

The above definition generalizes some well-known quantities, as we show in
the following examples.

Example 2. Consider a finite population Ω and the set of languages
U = {e,s, f , i,d, r} of Example 1. Consider the multi-valued mapping Γ :Ω →
℘(U) that assigns to each person ω ∈ Ω the subset of languages in U (s)he
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can speak3. The following expected pair-wise comparison measures provide
interesting information about such attribute:

• Let us fix an arbitrary subset D ⊆U . Consider the comparison measure S1

such that GS1 is defined as GS1(A,B,C) = max{M(A∩B),M(A∩Bc)}, where

M(E) =

{
1 if E ∩D �= /0,

0 otherwise.

The expected pair-wise comparison of Γ , ES1(Γ ) coincides with the upper
probability ([4]) of D and it represents the proportion of persons in the
population that speak some of the languages included in D. If, for instance,
D is equal to {d}, then ES1(Γ ) represents the proportion of persons that
can speak Dutch, at least.

• Let us fix again an arbitrary subset D ⊆U . Consider the comparison mea-
sure S2 such that GS2 is defined as GS2(A,B,C) = min{M(A∩B),M(A∩Bc)},
where

M(E) =

{
1 if E ⊆ D,

0 otherwise.

The expected pair-wise comparison of Γ , ES2(Γ ), coincides with the lower
probability ([4]) of D and it represents the proportion of persons in the
population that do not speak any language outside D.

• Consider the comparison measure S3(A,B) = #(A∩B). The expected pair-
wise comparison ES3(Γ ) averages the capacity of communication between
pairs of people in the population.

• Consider the Hamming distance S4(A,B) = dH(A,B) = #(A&B). The ex-
pected pair-wise comparison ES4(Γ ) represents a degree of divergence
about the language skills of the people in the population.

Example 3. The above example can be modified if we have more refined in-
formation about the communication skills of the people. We can use a frv
X̃ : Ω → F (U) to represent those abilities. The membership value X̃(ω)(u)
will represent a degree of preference ([5]) in a [0,1] scale for the language u∈U .
Thus X̃(ω)(u) > X̃(ω)(u′) will mean that the person ω prefers to speak u than
u′, because (s)he is more familiar with it. Those degrees of preference can be
determined as a function of the CEFR levels, for instance. For a specific
dissimilitude measure, the expected dissimilitude of X̃ reflects an expected
degree of difference in the language skills between pairs of persons in the
population.

Example 4. Consider a set of days, Ω , and consider the multi-valued mapping
Γ :Ω→℘(R), where Γ (ω) = [L(ω),U(ω)] represents the interval of minimum

3 Let us assume that Γ (ω) �= /0, ∀ω ∈ Ω , so everybody is assumed to be able to
speak some language in the set U . Multi-valued mappings represent special cases
of fuzzy-valued mappings. Furthermore, if we consider the power set as the initial
σ -field, they are measurable with respect to any σ -field on the final space.
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and maximum temperatures attained in Mieres on a date ω . Several expected
pair-wise comparison measures return different informative quantities such as:
the variance of the min temperatures, the variance of the max temperatures,
a mixture (linear combination) of both variances, the variance of the ampli-
tudes of the min-max intervals, the proportion of days where the min tem-
perature exceeds a certain threshold, the variance of the middle points of the
intervals, etc.

The particular case where the comparison measure S is a dissimilitude is
remarkable. It extends some key notions in the literature, as we show in the
following remarks.

Remark 1. On the one hand, it extends the notion of quadratic entropy
of a random variable: If X̃ represents a random variable X on a finite
universe U = {u1, . . . ,un} in the sense that X̃(ω) = {X(ω)}, ∀ω ∈ Ω , and
S(A,B) = dH(A,B) = #A&B is the Hamming distance, then the expected pair-
wise comparison of X̃ is the quadratic entropy of X :

ES(X̃) =
n

∑
i=1

n

∑
j=1

dH({xi},{x j})pi · p j =
n

∑
i=1

n

∑
j=1

(1− δi j)pi · p j = 1−
n

∑
i=1

p2
i ,

where pi denotes the probability P(X = ui), i = 1, . . .n.

Remark 2. On the other hand, it extends some notions of scalar variance of a
fuzzy random variable [3] in the literature: all the (pseudo-)metrics considered
at the end of Section 2 satisfy the properties of dissimilitude measures. Fur-
thermore, any non-decreasing function of a similitude satisfying the boundary
condition g(0) = 0 is also a dissimilitude. If we construct the similitude mea-
sure S = d2

2 on the basis of any of those distances d, and we take into account
the specific arithmetic used in each context, in order to avoid the explicit use
of the expectation, we can extend the existing notions of scalar variances [3]
in the literature. Furthermore, expected dissimilitude measures even apply
when the images of the frv are not necessarily convex, and/or they do not
lay in a numerical scale, as we have illustrated in Example 2.

Some general properties of expected dissimilitude measures are given in the
following proposition.

Proposition 3. Let S : F ×F → R be a dissimilitude measure. Then:
• ES(A) = 0, ∀A ∈ F .
• ES(X̃ ∪A)≤ ES(X̃), for all frv X̃ and all A ∈ F .
• If S(A,B) =∑x∈U g(A(x),B(x)) then E(X̃ ∪Ỹ )≤ ES(X̃)+ES(Ỹ ), for all frv X̃

and Ỹ .

Example 5. We can illustrate the above properties by referring to the lan-
guage skills of Example 2. The first property would mean that the expected
dissimilitude is null when everybody in the population owns the same com-
munication skills. For the second property, let us assume that all the people
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in that population that do not speak Spanish take a course on this language.
Then, the expected dissimilitude measure should decrease. Finally, suppose
that we consider two separate groups of languages, and we consider the com-
munication skills of the people within each group (X̃ denotes the abilities
within the first group of languages, and Ỹ denotes the abilities within the
second group.) Then, the expected dissimilitude in the whole set of languages
cannot be strictly greater than the sum of the expected dissimilitude values
within each group.

4 Concluding Remarks

The notion of expected comparison of a fuzzy random variable encompasses
several well known parameters associated to random variables, random sets
and fuzzy random variables. In particular, the expected dissimilitude quanti-
fies the dispersion of the outcomes of a fuzzy random variable. It generalizes
some entropies for random variables and also some scalar variances of fuzzy
random variables. The existing definitions of scalar variances that we can find
in the literature [3, 7] are restricted to those situations where the outcomes
of the frv are convex fuzzy subsets of R

n. The new definition applies in a
variety of situations, even for the cases where there is not a numerical scale.
We have illustrated the utility of the new notion with several examples. In
future works we plan to study some additional properties of the expected
dissimilitude, for some specific dissimilitude measures, trying to lay bare the
connection with the general notions of entropy and dispersion.
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The Behavioral Meaning of the Median

Inés Couso and Luciano Sánchez

Abstract. We generalize the notion of statistical preference to the theory of
imprecise probabilities, by proposing an alternative notion of desirability of a
gamble. As a natural consequence, we derive a general definition of median,
providing it with a behavioral meaning. Furthermore, we show that, when we
restrict to absolutely continuous probability distributions, a random variable
is statistically preferred to another one if and only if the the median of their
difference is positive.

Keywords: Stochastic orderings, Statistical preference, Imprecise Probabil-
ities, Desirable Gambles, Median.

1 Introduction

Several preference relations between random variables have been proposed
in the literature. One of them, called statistical preference [2, 3] is based on
the probabilistic relation Q(X ,Y ) = P(X > Y )+ 1

2 P(X = Y ) and it states that
X is preferred to Y when Q(X ,Y ) ≥ 0.5. Independently, a similar criterion
has been proposed in [4, 5] in the framework of possibility theory. In this
paper, we aim to extend the notion of statistical preference to the general
theory of imprecise probabilities, relating it to the notions of desirability and
preference between gambles. The problem of reconciling two different ways of
treating preference relations will arise. In fact, a preference relation for pairs
of variables (or gambles) can be understood in two different ways:
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• The expert initial information is assessed by means of a preference cri-
terion and, afterwards, a set of joint feasible linear previsions1 is derived
from it. This is the approach followed in the general theory of imprecise
probabilities (see [1, 6]).

• A joint probability is assumed for any pair of gambles on the universe, and
a preference relation is derived from it. This is the approach considered in
[4, 5, 2, 3], for instance.

Taking into account the above duality, we will first start from an initial set
of desirable gambles and we will say that a gamble X is signed-preferred to
another gamble Y when the sign of their difference is a desirable gamble. Af-
terwards, we will show that signed-almost-preference becomes into statistical
preference, when the initial set of desirable gambles induces a singleton as a
credal set. In a second approach, we will state signed-preference and signed-
desirability as primary concepts, appealing to a new idea of desirability: X
will be said to be desirable when we have stronger beliefs about X > 0 than
about X < 0. In words, we accept the gamble X , because we have stronger
beliefs on making money than on loosing it –no matter how much money–.
Based on this desirability definition, we can define a lower prevision as the
supremum of the constants c satisfying that X−c is desirable, according to the
new definition. Such supremum makes sense as a threshold for buying prices:
for any strictly lower price, you have stronger beliefs on earning money that
on loosing it. Analogously, we will define an upper prevision as an infimum
threshold for selling prices. Once introduced both approaches (the interpre-
tation of sign-desirability as a secondary an as a primary concept), we will
relate them, and we will derive an interesting conclusion: the pair of lower and
upper previsions defined for the set of signed-desirable gambles generalizes
the notion of median, providing it with a meaningful behavioral interpreta-
tion. As a consequence of that, we will be able to show that there exists a
very strong connection between the relation of statistical preference of two
random variables and the sign of the median of their difference. This result
adds another piece to the puzzle about the relationships between different
stochastic orderings proposed in the literature.

2 Sets of Desirable Gambles and Partial Preference
Orderings

Let Ω denote the set of outcomes of an experiment. A gamble, X , on Ω is a
bounded mapping from Ω to R (the real line). If you were to accept gamble
X and ω turned to be true, then you would gain X(ω). (This reward can be
negative, and then it will represent a loss.) Let L denote the set of all gambles
(bounded mappings from Ω to R). A subset D of L is said to be a coherent
set of desirable gambles [6] when it satisfies the following four axioms:

1 The notion of linear prevision generalizes the notion of probability.
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D1. If X ≤ 0 then X �∈ D , (Avoiding partial loss)
D2. If X ∈ L , X ≥ 0 and X �= 0, then X ∈ D . (Accepting partial gain)
D3. If X ∈ D and c ∈ R

+, then cX ∈ D . (Positive homogeneity)
D4. If X ∈ D and Y ∈ D then X +Y ∈ D . (Addition)

For a detailed justification of each of the above axioms concerning coherence
in assessments of a subject, we refer the reader to (cf.[6], Section 2.2.4).

The lower prevision induced by a set of desirable gambles D is the set
function P : L → R defined as follows:

P(X) = sup{c : X − c ∈ D}.

It is interpreted as your supremum acceptable buying price for X , so you are
disposed to pay P(X)− ε, for the reward determined by the gamble X , for
any ε > 0. The upper prevision induced by D is the set function P : L → R

defined as follows:
P(X) = inf{c : c−X ∈D}.

It can be regarded as an infimum selling price for the gamble X .
The set of linear previsions2 induced by a coherent set of gambles D is

defined as:
PD = {P : P(X)≥ 0 for all X ∈ D}.

PD is always a credal set (a closed and convex set of finitely additive
probability measures). P and P are dual and they respectively coincide with
the infimum and the supremum of PD . There is not a one-to correspondence
between sets of desirable gambles and credal sets, as there can be two different
sets of desirable gambles D �= D ′ inducing the same class of linear previsions
PD = PD ′ . On the other hand, a subset D− ⊂L satisfying axioms D2–D4
and

D1’. If supX < 0 then X �∈ D−. (Avoiding sure loss)
D5. If X + δ ∈D−, for all δ > 0 then X ∈D−. (Closure)

is called a coherent set of almost desirable gambles. (Let the reader notice
that axiom D1’ is weaker than D1.) A set of almost desirable gambles D−

determines a pair of lower and upper previsions, and a credal set, by means of
expressions analogous to the case of desirable gambles. Conversely, a credal
set univocally determines a coherent set of almost desirable gambles via the
formula:

D−
P = {X ∈ L : P(X)≥ 0, ∀P ∈ P}.

Finally, a set D+ ⊂L is said to be a coherent set of strict desirable gambles
if it is a coherent set of desirable gambles, and it satisfies, in addition, the
following axiom:

D6. If X ∈ D+, then either X ≥ 0 or X − δ ∈ D+, for some δ > 0. (openness)

2 A linear prevision is a linear functional P : L →R satisfying the constraint P(1) =
1. So it generalizes the notions of expectation and (finitely additive) probability
measure at the same time.
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A coherent set of strict desirable gambles can be derived from a credal set
as follows:

D+
P = {X : X ≥ 0 and X �= 0 or P(X) > 0 ∀P ∈ P}.

The notion of desirability of gambles is closely related to partial preference
ordering between gambles. A gamble X is said to be preferred to another
gamble Y (X �Y ), Coherent preference orderings can be characterized through
a set of axioms closely related to D1–D5.

3 Generalized Statistical Preference

Probabilistic relations are usual representation of several relational preference
models. A probabilistic relation (see [3]) Q on a set of alternatives A is a
mapping from A×A to [0,1] satisfying the equality Q(a,b)+ Q(b,a) = 1 for
any pair of alternatives (a,b) ∈ A2. On the other hand, De Schuymer et al.
[2, 3] introduced the notions of strict preference, P(X ,Y ) = P(X > Y ), and
indifference, I(X ,Y ) = P(X = Y ), for comparing pairs of random variables. A
probabilistic relation can be naturally derived from P and I as follows:

Q(X ,Y ) = P(X ,Y )+
1
2

I(X ,Y ).

Based on it, a total preorder can be defined on the class of random variables
defined on a probability space:

Definition 1. [3] A random variable X is statistically preferred to another
random variable Y if Q(X ,Y ) ≥ 0.5. We will denote it by X ≥SP Y . Further-
more, we will use the notation X >SD Y when X ≥SP Y, but not Y ≥SP X .

The following result follows from the fact that the probabilistic relation
D(X ,Y ) is greater than 0.5 if and only if it is greater than D(Y,X).

Proposition 1. Consider two random variables defined on the same proba-
bility space. Then, X ≥SP Y if and only if P(X > Y )≥ P(X < Y ). Consequently
X >SP Y iff P(X > Y ) > P(X < Y ).

According to the last straightforward result, a random variable (from now
on, a gamble) is statistically preferred to another gamble Y if and only if they
satisfy the inequality P(X−Y > 0)≥P(Y −X > 0). According to the behavioral
interpretation of previsions in the general theory of imprecise probabilities,
the above inequality is related to the following preference assessment: you
are disposed to give up 1Y−X>0 in return for 1X−Y>0, where 1A denotes the
indicator of A. So, statistical preference of X over Y is connected to your
acceptance of a reward of one unit of probability currency [6] if X takes an
strictly higher value than Y in exchange to the reward or one unit if Y takes
a strictly higher valued than X . (Because you have stronger belief on the
occurrence of X > Y than on the occurrence of Y > X .)
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As we pointed out in the last section, there is a strong connection between
the notions of desirability and preference of gambles, as a gamble X is preferred
to another one Y when X−Y is desirable, and, conversely, X is desirable when
it is preferred to the null gamble. According to this connection, we will start
by introducing the notion of signed-desirable gamble as a primary notion,
and we will derive from it the concept of signed-preference relation. This last
concept will be the generalization of the notion of statistical preference to
the theory of imprecise probabilities.

Definition 2. Consider a coherent set of desirable gambles D in L . We will
say that a gamble X ∈ L is signed-desirable if the gamble

sgn(X) = 1X>0−1X<0

belongs to D . (In the above expression, sgn denotes the well know “sign func-
tion” and 1B denotes the indicator of the subset B.)

In words, a gamble X is signed-desirable when you are disposed to give up
the gamble 1X<0 (it means, paying one probability currency unit if X takes
a negative value) in return for the gamble 1X>0 (receiving 1 unit if X takes a
-strictly- positive value.)

Remark 1. Analogously to Definition 2, we can introduce the notions of
signed-almost desirable gamble, as a gamble X satisfying the restriction
sgn(X) ∈ D− and signed- strictly desirable as a gamble satisfying the condi-
tion sgn(X) ∈D+, where D− and D+ respectively denote coherent families of
almost/strict desirable gambles. We will use the respective notations X ∈D−

S
and X ∈ D+

S .

Proposition 2. Consider a coherent set of desirable gambles D , and the as-
sociated sets of almost/strict desirable gambles, respectively denoted D− and
D+. Then:
• The family of signed-desirable gambles DS satisfies axioms D1 to D3.
• The family of signed-almost desirable gambles D−

S satisfies D1’, D2, D3
and D5.

• The family of signed-strict desirable gambles D−
S satisfies D1 to D3, and

D6.

None of the above sets of gambles satisfies axiom D4 of additivity. It is a key
axiom to identify coherent sets of (almost desirable) gambles with coherent
lower previsions in the theory of imprecise probabilities. The notion of lower
prevision extends the concept of expectation in (classical) probability theory.
In the next section, we will associate sets of signed-desirable gambles with
lower medians.

Based on the above definition of signed-desirability, we can derive the
following three partial preference orderings.
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Definition 3. Consider a coherent set of desirable gambles D in L . A gam-
ble X is said to be signed -preferred to another gamble Y if X −Y is signed-
desirable, i.e., if X −Y ∈ DS.

The notions of signed-almost preference and signed-strict preference can be
introduced analogously, referring to the membership of the gamble X −Y
to the respective sets D−

S and D+
S . In the next proposition, we will show

that the above preference partial orderings generalize the notion of statistical
preference.

Proposition 3. Let P be a linear prevision and let us respectively denote by
D− and D+ the sets of gambles D− = {X : P(X)≥ 0} and D+ = {X : P(X) >
0, or [X ≥ 0 and X �= 0]}. Then, for a pair of gambles X and Y :
• X ≥SP Y if and only if X −Y ∈ D−

S .
• X >SP Y if and only if X −Y ∈ D+

S .

The above result states that almost signed-preference generalizes statistical
preference and signed-strict preference generalizes strict statistical preference.
The notion of signed-preference is in between the two, and it has no coun-
terpart within the classical theory of probability. The distinction between
almost desirability and desirability becomes important within the theory of
imprecise probabilities. For instance, different coherent sets of gambles induc-
ing the same credal set propagate different information about conditioning,
as it is illustrated in [1, 6], for instance. It will be a matter of future study
whether the distinction between signed-almost desirability and signed-(plain)
desirability is also of importance or not.

4 Behavioral Interpretation of the Median

According to the definitions introduced in the last section, a coherent set
of desirable gambles determines a set of signed-desirable gambles. Now, let
us start from signed-desirability as a primary notion and consider the lower
prevision of X :

PDS
(X) = sup{c : X − c ∈ DS}

It is interpreted as a threshold for the desirability in the following sense: for
any strictly lower quantity c < PS(X), you are disposed to pay some fixed
quantity (say 1 probability currency unit) if X < c holds, in return for the
same quantity if X > c occurs, because you have stronger beliefs on the event
X > c than on X > c. For any strictly higher quantity, you are not. We can
give a dual interpretation, as a threshold for the desirability of c−X to the
infimum:

PDS
(X) = inf{c : c−X ∈ DS}.

The next result connects the above definitions with the classical notion of
median. It is parallel to the connection existing between pairs of lower and
upper previsions of a gamble and the bounds of its expectations, when we
range the probability measures in the credal set.



The Behavioral Meaning of the Median 121

Theorem 1. Let P be a credal set and let be D+ the coherent set of strict
desirable gambles:

D+ = {X ∈L : P(X) > 0 ∀P ∈P or [X ≥ 0 and X �= 0]}.

Given a linear prevision, and an arbitrary gamble X , let MeP(X) denote the
interval of the medians of X ,

MeP(X) = {x : P(1X≥x) ≥ 0.5 and P(1X≤x) ≥ 0.5}.

Then the following equalities hold:

sup{c : sgn(X − c) ∈ D+} = inf∪P∈PMeP(X) and

inf{c : sgn(c−X) ∈ D+} = sup∪P∈PMeP(X).

According to the last theorem, we can introduce the notions of lower and
upper median as follows:

Definition 4. Let D+ ⊂L be a coherent set of strict desirable gambles. The
lower median of an arbitrary gamble X ∈ L is defined as the quantity

Me(X) = sup{c : sgn(X − c) ∈ D+}.

Analogously, the upper median of X is defined as the quantity

Me(X) = inf{c : sgn(c−X)∈ D+}.

In the general theory of imprecise probabilities, there is a well know connec-
tion between the value of the lower prevision of a gamble and its desirability:
a gamble is almost-desirable if and only if its lower prevision is non nega-
tive. Furthermore, if the lower prevision is strictly positive, then it is strictly
desirable. In the next result we will show a parallel connection between the
value of the lower median and the sign-desirability of a gamble:

Proposition 4. Consider a coherent set of desirable gambles D and let PD

the associated credal set. Let D− (resp. D+) denote the coherent sets of
almost-(resp. strict-)desirable gambles derived from it. The following impli-
cations hold:

Me(X) > 0 ⇒ sgn(X) ∈D+ ⇒ sgn(X) ∈ D ⇒ sgn(X) ∈ D− ⇒ Me(X) ≥ 0.

As a consequence of the above result, when we restrict to a single probability,
the statistical preference of a random variable X over another one Y is very
closely related to the sign of the median of their difference:

Corollary 1. Let (Ω ,A ,P) be an arbitrary probability space and let (X ,Y ) be
a random vector defined on it. Let MeP(X −Y ) denote the set of medians of
X −Y , i.e.,

MeP(X −Y) = {x : P(X −Y ≥ x) ≥ 0.5 and P(X −Y ≤ x) ≥ 0.5}.
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Then, the following implications hold:

infMeP(X −Y) > 0 ⇒ X >SP Y ⇒ X ≥SP Y ⇒ infMeP(X −Y) ≥ 0

Corollary 2. Let (X ,Y ) be random vector with absolutely continuous distri-
bution. Then:
• X ≥SP Y if and only if infMeP(X −Y) ≥ 0
• X >SP Y if and only if infMeP(X −Y) > 0

We easily derive from the above result that X is statistically preferred to Y if
and only if the expectation of X is greater than the expectation of Y, when the
difference X −Y is absolutely continuous and it has a symmetric distribution.

5 Concluding Remarks

We have extended the concept of median to Imprecise Probabilities, and
provided it with a behavioral meaning. We have also introduced the notion
of (almost)-signed preference as a generalization of the so-called statistical
preference. X is said to be signed-preferred to Y when the gamble sgn(X −
Y ) is desirable, and therefore P(1X−Y>0 − 1Y−X>0) ≥ 0. The last condition
is weaker than the condition P(1X−Y>0) ≥ P(1Y−X>0), which simultaneously
extends statistical preference, and the preference relation considered in [4, 5].
In the future, we will investigate further connections between both extensions.
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Functional Classification and the Random
Tukey Depth. Practical Issues

Juan A. Cuesta-Albertos and Alicia Nieto-Reyes

Abstract. Depths are used to attempt to order the points of a multidimen-
sional or infinite dimensional set from the “center of the set” to the “outer of
it”. There are few definitions of depth which are valid in the functional case.
One of them is the so-called random Tukey depth, which is based on some ran-
domly chosen one-dimensional projections and thus varies (randomly) from
computation to computation. Some theoretical properties of this depth are
well-known, but it has not yet been studied from a practical point of view.
The aim of this paper is to analyze its behavior in classification problems, the
interest of this study being increased by the random character of the depth.
To do this, we compare the performance of the random Tukey depth in a real
data set with the results obtained with the López-Pintado and Romo depths.

Keywords: Random Tukey depth, Functional depth, Random projections,
Functional classification.

1 Introduction

Given a probability P defined in a multidimensional or infinite-dimensional
space X , a depth attempts to order the points in X from the “center (of P)”
to the “outer (of P)”. Obviously, this problem includes data sets if we consider
P as the empirical distribution associated to the data set at hand.

In the multidimensional setting, the first definition of depth was estab-
lished by Mahalanobis (in [12]). This definition is based on the well-known
Mahalanobis distance. If μ and Σ are, respectively, the mean and covariance
matrix of P, then, the Mahalanobis depth of x with respect to P is
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DH(x,P) :=
1

1 +(x− μ)tΣ−1(x− μ)
, x ∈ R

p.

From this starting point, subsequent definitions of depth (see [9]) clarified
that depths as well as having some robustness properties, are a highly flexi-
ble tool for handling nonparametrically statistical problems involving testing,
classification, descriptive statistics,... This, in turn, has led to the study of the
possibility of introducing depths in the functional setting. However, most of
the known multidimensional depths cannot be generalized to the functional
case because the dimension of the space under consideration plays a key role
in them, or alternatively, because of the associated computational difficulties.
For instance, the computation of the Tukey depth (a precise definition appears
in (1)) is unfeasible for dimensions as low as eight if the sample size is only 100.

As far as we know, some definitions of depth valid for functional spaces
have been proposed in [5], [6], [7] and [11]. In this paper, we are particularly
interested in the so-called random Tukey depth which was studied in [3, 4]
because these papers leave some practical issues open. Our goal here is to
make a first attempt to show how these gaps can be filled when handling
classification problems.

Let us begin with some definitions. Apart from its lack of robustness,
the Mahalanobis depth has some flaws: it is not defined if the mean or the
covariance matrix does not exist and it treats P as symmetric (because points
at the same Mahalanobis distance from the mean have the same depth). A
reasonable way to overcome these problems in the one-dimensional case could
be to define the depth of the point x with respect to P by

D1(x,P) := min{P(−∞,x],P[x,∞)}

which is a monotone transformation of the Mahalanobis depth if μ and Σ
exist and P is symmetric, thus providing the same order of the points.

The Tukey depth was introduced in [16] and can be defined as follows. Let
P be a probability on R

p and v ∈R
p. If Πv denotes the projection on the one-

dimensional subspace generated by v and Pv the one-dimensional marginal of
P on the same subspace, then, the Tukey depth of x with respect to P is

DT (x,P) := inf{D1(Πv(x),Pv) : v ∈ R
p}. (1)

The computational problems we mentioned above, led the authors of [3]
to introduce the random Tukey depth, which is a random approximation of
the Tukey depth. In [3], the following generalization to Hilbert spaces was
proposed:

Definition 1. Let X be a separable Hilbert space, P be a probability distri-
bution on X , ν be a Gaussian distribution with non-degenerated marginals
on X and v1, ...,vk be i.i.d. random vectors with distribution ν. The random
Tukey depth of x ∈ X with respect to P based on k random vectors chosen
with ν is
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DT,k,ν (x,P) := min{D1(Πvi(x),Pvi) : i = 1, ...,k}.

The random Tukey depth was used in [3], in the finite dimensional case,
to handle several testing problems and, in addition, it was shown there that
this depth has some useful properties in the infinite and finite cases. In par-
ticular, it was shown that in the infinite dimensional case, it satisfies most
of the requirements of the definition stated in [8] and formalized in [17] for a
statistical depth.

However, in [3] nothing is said about the influence that the selection of ν
and k might have in practice. The aim of this paper is to make a preliminary
analysis of these issues from the point of view of a classification problem, and,
at the same time, to compare the results obtained with the random Tukey
depth with those provided in [10] with the depths proposed in [11].

The situation we have chosen to carry out this comparison is the supervised
classification problem which was carried out in [10]. In this paper, the authors
analyze a data set consisting of the growth curves of a sample of 39 boys and
54 girls, the aim being to classify them, by sex, using just this information.
We represent the data in Figure 1.
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Fig. 1 Growth curves of 54 girls (left-hand side) and 39 boys (right-hand side)
measured 31 times each between 1 and 18 years of age.

Heights were measured in centimeters 31 times in the period from one to
eighteen years. In the period from one to two years, the measures were taken
every three months, in the period from three to seven years one time a year
and, finally, in the period from eight to eighteen years two times a year. The
data are in the file growth.zip, downloaded from ftp://ego.psych.mcgill.
ca/pub/ramsay/FDAfuns/Matlab. On this web-page, some notes that make
use of the data can also be found. These notes were designed to accompany
the books [13, 14]. In addition, these data are used in the recent book [15].

It is well-known that when handling this kind of data, it is useful to consider
not only the growth curve but also accelerations of height (see, for instance,
[13]). However, we only consider here the growth curves, as did [10], because
our interest lies in comparing our results with those obtained by them.

ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab
ftp://ego.psych.mcgill.ca/pub/ramsay/FDAfuns/Matlab
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It should be noted that the distribution ν which appears in Definition
1 does not need to be Gaussian. In fact, as shown in [1], any dissipative
distribution works here. Thus, in the finite dimensional case, the uniform
distribution on the unit sphere may be enough. Regrettably, in the functional
setting, there is no distribution like this which can be taken as a reference.
Although some papers have already appeared using random projections (in
the finite and in the infinite dimensional cases), as far as we know, except for
a small comment in [2] in the finite dimensional case, none of them has paid
attention to the problem of the precise selection of ν.

A preliminary step in addressing this question is given in Section 2, where
we also comment on the selection of the number of vectors used in the defini-
tion of the random Tukey depth. Then, in Section 3 we compare the results
obtained with the random Tukey depth with those obtained in [10].

2 Distribution and Number of Vectors for the Random
Tukey Depth in Practice

In order to analyze the effect of the selection of ν in the random Tukey depth
in classification problems, the idea is to analyze the same data using two
strategies: firstly, one that does not admit variations in ν, i.e. ν is a fixed
distribution. Secondly, one that selects ν from a parametric family of distri-
butions, thus making it possible to chose the parameters which determine ν
in a data-dependent way.

The parametric family we handle has two real parameters a≥ 0 and c ≥ 0,
and is defined forthwith. Let us assume that we are in a two-class classification
problem and that we have two training samples X = {X1(t), ...,Xn(t)} and
Y = {Y1(t), ...,Ym(t)}, where t ∈ [0,T ]. First, compute the point-wise median
in both samples: mX(t), and mY(t), t ∈ [0,T ]. Then, given a,c let ν = Sa,c be
the solution of the of the following stochastic differential equation

Sa,c(0) = c and dSa,c(t) = |mX (t)−mY (t)|adB(t),

where B is a standard Brownian motion.
The fixed distribution that we compare with is the standard Brownian mo-

tion, which is the member of the family corresponding to the case a = c = 0.
In the following section, we choose a ∈ {0,1}. Note that when a = 0 the

difference between the functions mX and mY has no influence on ν. The con-
stant c specifies the initial value for the solution. We have tried the values
c = 0,1,5. The reason for introducing c is that the Brownian motion always
starts at 0 and is continuous, thus erasing the differences in the early states
of the process.

In practice, we will assume that the trajectories have been measured in
the same finite set of values t1 < .. . < th. Then, given a and c, to simulate the
random trajectories we have taken
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Sa,c(t1) = c

Sa,c(ti) = Sa,c(ti−1)+ |mX(ti)−mY (ti)|aZi, i = 2, ...,31,

where Zi, i = 2, ...,h, are independent random variables with distribution
N(0,ti − ti−1) .

Concerning k, in [3] the authors carry out some simulations to select k
in the finite dimensional case for dimensions ranging from p = 2,8,50 and
several sample sizes. Those results suggest that high values for k are not
required. The results that follow in Section 3 have been obtained by selecting
k ∈ {1, ...,100}. Although the upper bound for k might be considered too low,
we have repeated the process replacing 100 by 1,000 and the results obtained
have been similar.

We propose the use of leave-one-out cross validation to choose the right
value of k, as well as those of a and c when required.

3 The Procedure in Practice

As stated, in this section, we compare the results of classifying the heights
data set when employing the random Tukey depth with those obtained with
the depths proposed in [11]. To do this, we have repeated the study made in
[10] with three differences:

1. Most importantly, we have replaced the functional depths handled there
with the random Tukey depth.

2. In [10], the authors consider the curves as elements in L1[0,1], which is
not possible here, because we need a separable Hilbert space. Thus, we
have taken H = L2[0,1].

3. In [10], the authors smoothed the original data using a spline basis. We
have omitted this step because it is not necessary for our method.

Regarding item 2., remember that the heights were measured 31 times on
times ti ∈ [1,18], i = 1, ...,31 where

ti = 3/4 + i/4 for i = 1, ...,5,

ti = i−3 for i = 6, ...,10

ti = 2.5 + i/2 for i = 11, ...,31.

If i = 2, . . . ,30, then the observation X(ti) represents the height of the indi-
vidual in the interval ((ti + ti−1)/2,(ti+1 + ti)/2). Taking into account that, in
the last part of the study, the measurements were taken every half a year, we
can assume that X(t31) is valid for the period (17.5,18.5). Finally, it seems
safe to assume that the X(t1) is not valid for representing previous heights.
Therefore, we can assume that the interval in which the measurements have
been taken is [1,18.5]. In consequence, first, we need to modify the time in
order to transform the interval [1,18.5] into [0,1] and, then, we can employ
properties of the Rieman integral to make the approximation
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< X ,sa,c > =
∫ 1

0
X (17.5u + 1)sa,c(17.5u + 1)du≈

31

∑
i=1

X(ti)sa,c(ti)Δi,

where sa,c is drawn with distribution Sa,c and Δi denotes the length of the
interval associated to the point ti. Then, if we define t0 = 1 and t32 = 18.5, we
have

Δi = (ti+1 − ti−1)/35, i = 1, ...,31.

In [10], the authors consider three possibilities for splitting the sample into
training and validation sets. For the sake of brevity, we split the sample using
only leave-one-out cross-validation.

Let us briefly explain how the whole process works. Note that we have a
sample of size 93. Therefore, we have repeated 100 times the following: for
each observation in the sample, we consider the training sample composed
of the remaining 92 observations. Then, we have generated at random 100
vectors with each of the distributions of the random variables Sa,c for a = 0,1
and c = 0,1,5, which gives 6 different samples of random directions with size
100 each.

Firstly, we have focused our attention on the S0,0 distribution. Here we
only have to select the value of k. As stated previously, this value is chosen
by leave-one-out cross-validation applied to the remaining sample with 92
observations. Henceforth, this procedure is called S0,0.

Moreover, we have applied the procedure allowing variations in a and c.
Here, also using leave-one-out cross-validation, we have chosen the best com-
bination of k,a and c. Henceforth, this procedure is denoted by Sa,c. Note that
in this case, it may occur that the chosen a and c satisfy a = c = 0; thus, the
Sa,c procedure should give better results than S0,0.

The results of the comparison appear in Table 1, which includes the ob-
tained failure rates using the three methods proposed in [10] when applied to
the random Tukey depth and to the depths proposed in [11]. These methods
are: distance to the trimmed mean (Mα ,β ), weighted average distance (AM)
and trimmed weighted average distance (TAM). We have chosen α = β = 0.2
as in [10]. The depths handled in [10] are the band depth determined by
three different curves (DS3), by four different curves (DS4) and the gener-
alized band depth (DGS). Their error rates are contained in the last three
columns of Table 1 and have been taken from Tables 1-3 in [10]. The pre-
vious two columns of Table 1 concern the random Tukey depth. The first
includes the failure rates when using the procedure S0,0 and the second when
using Sa,c.

According to Table 1, if we employ the Mα ,β method, the random Tukey
depth with the procedure S0,0 works worse than the other depths and, when
coupled with Sa,c performs similarly to the DS3 and DS4 depths but worse
than the DGS. However, for the AM and TAM methods, the random Tukey
depth provides better results than the depths used in [10] when we take the
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Table 1 Rates of mistakes when classifying the growth curves by sex for the shown
methods and depths.

Classification Random Tukey Depths proposed in [10]

method S0,0 Sa,c DS3 DS4 DGS

Mα ,β .1858 .1825 .1828 .1828 .1613

AM .1403 .1368 .2473 .2473 .1935

TAM .1542 .1430 .2436 .2436 .1690

standard Brownian motion and even better when parameters a,c in Sa,c are
chosen with cross-validation.

The medians of the number of random vectors used have been 1 for each of
the three methods with S0,0. In the case of Sa,c, the median of the number of
random vectors has been 2 for the Mα ,β method and 1 for both of the other
two methods.

4 Conclusions

The Tukey depth is one of the best-behaved multidimensional depths but it
cannot be used in the functional setting. However, the random Tukey depth,
which approximates it in multidimensional spaces, does work in functional
settings.

The definition of the random Tukey depth involves choosing a distribution.
We have seen how in practice the behavior of this functional depth varies
depending on the chosen distribution. Specifically, its performance increases
when the distribution is data driven.

Furthermore, to compute the random Tukey depth, a finite number of
vectors have to be drawn with this chosen distribution. This number is of
great importance since the computational time needed to compute the ran-
dom Tukey depth depends on it. In [3] it was seen that this number is low
in multidimensional spaces and, in view of our experience, it seems that it is
also surprisingly low when dealing with functional data.
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On Concordance Measures and Copulas
with Fractal Support

E. de Amo, M. Dı́az Carrillo, and J. Fernández-Sánchez

Abstract. Copulas can be used to describe multivariate dependence struc-
tures. We explore the rôle of copulas with fractal support in the study of
association measures.

1 General Introduction and Motivation

Copulas are of interest because they link joint distributions to their marginal
distributions. Sklar [12] showed that, for any real-valued random variables
X1 and X2 with joint distribution H, there exists a copula C such that
H(u,v) = C(F1(u),F2(v)), where F1 and F2 denote the cumulative (or mar-
gin) distributions of X1 and X2, respectively. If the marginals are continuous,
then the copula is unique. Notice that it is also true the converse implication
of Sklar’s Theorem. In fact, we may link any univariate distributions with any
copula in order to obtain a valid joint distribution function. An implication of
Sklar Theorem is that the dependence among X1 and X2 is fully described by
the associated copula. Indeed, most conventional dependence measures can be
explicitly expressed in terms of the copula, and they are designed to capture
certain aspects of dependence or association between random variables.

On the other hand, all the examples of singular copulas we have found in
the literature are supported by sets with Hausdorff dimension 1. However, it
is implicit in some papers, for example in [11], that the well-known examples
of Peano and Hilbert curves provide self-similar copulas with fractal support,
since the Hausdorff dimension of their graphs is 3/2.
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Recently, Fredricks et al. [7], using an iterated function system, constructed
families of copulas whose supports are fractals. In particular, they give suffi-
cient conditions for the support of a self-similar copula to be a fractal whose
Hausdorff dimension is between 1 and 2.

In [1], the authors prove that a necessary and sufficient condition for a
copula to be the independence (or product) copula Π is that the pair of mea-
sure preserving transformations representing the copula be independent as
random variables; and a general constructive method for representation of
copulas in terms of measure preserving transformations is given. Specifically,
we study the copulas introduced by Fredricks et al. in [7], through two rep-
resentation number systems we construct ad hoc. This paper is devoted to
study these copulas in depth.

Firstly, we give an example of copula with a support with a Lebesgue mea-
sure 0, and a Hausdorff dimension 2. Moreover, we study the coefficients of
upper and lower tail dependence of these copulas. Finally, we explore some
well-known measures of dependence, namely Kendall’s τ, Spearman’s ρ , and
Gini’s index γ. The results we prove coincide with those regard to the inde-
pendence copula Π .

2 Preliminaries about Copulas with Fractal Support

This section contains background information and useful notation.
(1) Let I be the closed unit interval [0,1] and let I

2 = I× I be the unit
square. For an introduction to copulas see, for example, [4] or [9].

(2) A transformation matrix is a matrix T with nonnegative entries, for
which the sum of the entries is 1 and none row or column has zero as entry
everywhere.

Following [7], we recall that each transformation matrix T determines a
subdivision of I

2 into subrectangles Ri j = [pi−1, pi]×
[
q j−1,q j

]
, where pi (re-

spect. q j) denotes the sum of the entries in the first i columns (respect. j
rows) of T . For a transformation matrix T and a copula C, T (C) denotes the
copula that, for each (i, j), spreads mass on Ri j in the same way in which C
spreads mass on I

2.
Theorem 2 in [7] shows that for each transformation matrix T �= [1], there

is an unique copula CT such that T (CT ) = CT .
(3) Let T be a transformation matrix, and let us consider the following

conditions:
(i) T has at least one zero entry.
(ii) For each non-zero entry of T , the row and column sums through that

entry are equal.
(iii) There is at least one row or column of T with two nonzero entries.

Theorem 3 in [7] shows that if T is a transformation matrix satisfying
condition (i) , then CT is singular (that is, its support has Lebesgue measure
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zero or μCT ≡ μ s
CT

, where μ s
CT

is the singular measure given by the Lebesgue
Decomposition Theorem). See, for example, [9] or [10].

We say that a copula C is invariant if C = CT for some transformation
matrix T . An invariant copula CT is said to be self-similar if T satisfies
condition (ii).

Theorem 6 in [7] shows that the support of a self-similar copula CT , with
T satisfying (i) and (iii), is a fractal whose Hausdorff dimension is between 1
and 2.

(4) A mapping F : R
n →R

n is called a contracting similarity (or a similarity
transformation) of ratio r (0 < r < 1) if ‖F(x)−F(y)‖= r‖x− y‖, for all x,y ∈
R

n. A similarity transforms subsets of R
n into geometrically similar sets. The

invariant set (or attractor) for a finite family of similitaries is said to be a
self-similar set. Theorem 4 in [7] shows that the support of the copula CT

is the invariant set for a system of similarities obtained from partitions of I

which are determined by T. (See (2) above.)
For an introduction to the techniques of fractal representation by iterated

function systems (IFS) the reader can see [5] or [6].
(5) Finally, we recall that the notion of an IFS may be extended to define

invariant measures supported by the attractor of the system. Explicitly, let
{F1, ...,Fm} be an IFS on K ⊂R

n and p1, . . . , pm be probabilities or mass ratios,
with pi > 0 for all i and ∑m

i=1 pi = 1. A measure μ is said to be self-similar
if for some pi and Fi, μ (A) = ∑m

i=1 piμ
(
F−1

i (A)
)

and any Borel set A. The
existence of such measure is ensured. (See [6, Th.2.8].)

3 A Singular Copula with Fractal Support and
Hausdorff Dimension 2

Now, we consider the family of transformation matrices

Tr =

⎛

⎝
r/2 0 r/2
0 1−2r 0

r/2 0 r/2

⎞

⎠

with r ∈
]
0, 1

2

[
. According to (2) and (3) above,

{
Cr = CTr : r ∈

]
0, 1

2

[}
is a

family of copulas whose support is a fractal with a Hausdorff dimension in
the interval ]1,2[.

Precisely, Fredricks et al. [7, Th. 1] proved that if s∈ ]1,2[ , then there exists
a copula C = Cr(s) satisfying that the Hausdorff dimension of the support of
C is s. We denote it by Sr. It is clear that there exist singular functions whose
support is of Hausdorff dimension 1; and that there are no copulas whose
support is of Hausdorff dimension smaller than 1, as well.

On the other hand, as far as we know, there is no a singular copula whose
fractal support is, exactly, of Hausdorff dimension 2. We now show an example
of copula with these properties.
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Theorem 1. Let Ji =
[

1
i+1 , 1

i

]
, with i∈Z

+, and the copula Ci =Cr( 2i−1
i ). Then,

the ordinal sum of
{

Ci
}

i∈Z+ with respect to {Ji}i∈Z+ , that is,

C(u,v) =
{ 1

i+1 + 1
i(i+1)C

i
(
i(i+ 1)

(
u− 1

i+1

)
, i(i+ 1)

(
v− 1

i+1

))
, (u,v) ∈ J2

i

min(u,v), otherwise,

is a singular copula, and its support is of Hausdorff dimension 2.

Proof. The way we have defined C ensures that it is a copula (see [3] or [9]).
Out of the J2

i squares, the copula C does not have associated mass distri-
bution. On each square J2

i , the similarity

Fi(u,v)→
(

1
i+ 1

+
u

i(i+ 1)
,

1
i+ 1

+
v

i(i+ 1)

)

spreads the mass distribution in the support of Ci. It is straightforward (via
the definition of C) that ∂ 2Ci

∂u∂v (u,v) = 0 out of that set.
The function Fi is a similarity, and hence, bi-Lipschitz (i.e., a bijective Lips-

chitz function whose inverse function is also Lipschitz). Therefore, it preserves
the Hausdorff dimension (see [6, Cor. 2.4]). As a consequence,

dimH Fi

(
Sr( 2i−1

i )
)

=
2i−1

i
.

But, the Hausdorff dimension of the set ∪iFi
(
Sr((2i−1)/i)

)
is the supremum of

the above numbers; that is, 2. Therefore, C is a singular copula whose support
is of Hausdorff dimension 2. ��

4 Tail Dependence for Cr

Copulas are useful to model tail dependence, that is, the dependence that
arises between random variables from extreme observations.

Let X and Y be continuous random variables with distribution functions
F and G, respectively, and associated copula C. We study the coefficients of
upper and lower tail dependence of X and Y (their definition can be found in
[8] or [9]).

Theorem 2. Let r ∈
]
0, 1

2

[
. Given the copula Cr, we have

λU(Cr) = λL(Cr) = 0.

Proof. The symmetry of the mass distribution of the measure μCr ensures
that, if they exist, the two values are the same. We study the case λL.

The self-similarity of the measure provides that Cr(rn,rn) =
(

r
2

)n for n∈Z
+.

Let u ∈ ]0,1[ . Then, there exists n satisfying rn+1 < u ≤ rn. Therefore,
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Cr(rn+1,rn+1)
rn ≤ Cr(u,u)

u
≤ Cr(rn,rn)

rn+1 ;

that is,
r

2n+1 ≤ Cr(u,u)
u

≤ 1
2nr

.

But, in this case, if u → 0+, then n → ∞; and there exists the limit

λL = lim
u→0+

Cr(u,u)
u

= 0. ��

5 Concordance Measures for Cr

We study several association measures that mesh the probability of concor-
dance between random variables with a given copula. For a review of concor-
dance measures and the rôle played by the copulas in the study of dependence
or association between random variables, see [9, Chap. 5].

Let us recall that concordance or discordance are basic when introducing
association measures. Formally, two ordered pairs of real numbers, (x1,y1)
and (x2,y2) , are concordant if (x1− x2)(y1− y2) > 0. They are discordant if
they are not concordant.

Let (X1,Y1) and (X2,Y2) be two continuous random pairs with the same
marginal distribution functions, and associated copulas C1 and C2, respec-
tively. A concordance function is defined by

Q(C1,C2) = P [(X1−X2)(Y1 −Y2) > 0]−P [(X1−X2)(Y1−Y2) < 0] .

Moreover, if the above continuous random pairs (X1,Y1) and (X2,Y2) are in-
dependent then

Q(C1,C2) = 4
∫

I2
C2(x,y)dμC1(x,y)−1.

Definition 1. Let (X ,Y ) be a continuous random pair with associated copula
C. The value Q(C,C) is a measure of association called the Kendall’s τ of
(X ,Y ). Moreover, the value 3Q(C,Π) is a measure of association called the
Spearman’s ρ of (X ,Y ). And, the value Q(C,M)+Q(C,W ) is another measure
of association for (X ,Y ) called the Gini’s γ.

For computational purposes we have the following result (see (5) above):

Lemma 1. Let K ⊂ R
n and let μ be a self-similar measure associated to the

family of similarity transformations {F1, . . . ,Fm} with respective mass ratios
{p1, . . . , pm}. Then, for any continuous function g : K →R and any k,(1 ≤ k ≤
m), we have ∫

Fk(K)
g(x)dμ (x) = pk

∫

K
g(Fk (x))dμ (x) .
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Proof. The map Fk is a self-similarity transformation, hence, it is an isomor-
phism between measurable spaces. As a consequence, there exists a natural
bijection from the step functions on K to Fk (K) (considering the induced σ -
algebra, in both cases). The measures of the measurable sets A and Fk (A) are
proportional with ratio pk, therefore, and the statement is true in the case
that g is a step function. Density arguments establish that the statement is
also true for all integrable functions. ��

(6) An immediate consequence from the above lemma is the following useful
expression:

∫

K
g(x)dμ (x) =

m

∑
k=1

pk

∫

K
g(Fk (x))dμ (x) .

Now, by applying (6) and using (2) and (3), we can express the concordance
in terms of the family of copulas CTr .

Proposition 1. Given the copula CTr =Cr of parameter r ∈
]
0, 1

2

[
, the follow-

ing equalities hold:

a)
∫
[0,1]2 max(x + y−1,0)dCr(x,y) = 1−r

8−10r

b)
∫
[0,1]2 min(x,y)dCr(x,y) = 3−4r

8−10r

c)
∫
[0,1]2 xydCr(x,y) = 1/4

d)
∫
[0,1]2 Cr(x,y) dCr(x,y) = 1/4

Proof. a) Let us decompose the integral as a sum on five regions in the unit
square. The measure μCr is self-similar; and therefore:
∫

I2
W (x,y)dμCr(x,y) =

r
2

∫

I2
W (rx,ry)dμCr +

r
2

∫

I2
W (rx + 1− r,ry)dμCr

+
r
2

∫

I2
W (rx,ry + 1− r)dμCr

+
r
2

∫

I2
W (rx + 1− r,ry + 1− r)dμCr

+(1−2r)
∫

I2
W ((1−2r)x + r,(1−2r)y + r)dμCr

=
r
2

∫

I2
0 dμCr +

r
2

∫

I2
rW (x,y)dμCr +

r
2

∫

I2
rW (x,y)dμCr

+
r
2

∫

I2
(rx + ry + 1−2r)dμCr +(1−2r)2

∫

I2
W (x,y)dμCr

=
(

r2 +(1−2r)2
)∫

I2
W (x,y)dμCr(x,y)+

r (1− r)
2

;

and working out the integral, we have the statement.
b) We proceed as in the above case.
c) Here,
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∫

I2
xydμCr(x,y) =

r
2

∫

I2
rxrydμCr +

r
2

∫

I2
(rx + 1− r)rydμCr

+
r
2

∫

I2
(rx)(ry + 1− r)dμCr

+
r
2

∫

I2
(rx + 1− r)(ry + 1− r)dμCr

+(1−2r)
∫

I2
((1−2r)x + r)((1−2r)y + r)dμCr

= 2r3
∫

I2
xydμCr +(1−2r)3

∫

I2
xydμCr

+
(

2r2 (1− r)+ 2(1−2r)2 r
)∫

I2
ydμCr

+
r (1− r)2

2
+(1−2r)r2

=
(

2r3 +(1−2r)3
)∫

I2
xydμCr(x,y)+

3r
2
−3r2 +

3r3

2
;

and the statement follows.
d) We decompose the integral as in the first case:
∫

I2
Cr(x,y)dμCr (x,y) =

r
2

∫

I2
Cr(rx,ry)dμCr +

r
2

∫

I2
Cr(rx + 1− r,ry)dμCr

+
r
2

∫

I2
Cr(rx,ry + 1− r)dμCr

+
r
2

∫

I2
Cr(rx + 1− r,ry + 1− r)dμCr +

+(1−2r)
∫

I2
Cr((1−2r)x + r,(1−2r)y + r)dμCr

=
r
2

∫

I2

r
2

Cr(x,y)dμCr +
r
2

∫

I2

r
2

y +
r
2

Cr(x,y)dμCr

+
r
2

∫

I2

r
2

x +
r
2

Cr(x,y)dμCr +
r
2

∫

I2

r
2

+ 1−2r +
r
2
(x + y)

+
r
2

Cr(x,y)dμCr +(1−2r)
∫

I2

r
2

+(1−2r)Cr(x,y)dμC

=
(

r2 +(1−2r)2
)∫

I2
Cr(x,y)dμCr(x,y)+

3
4

r2 + r(1−2r);

and the result follows. ��

Corollary 1. Kendall’s τ, Spearman’s ρ , and Gini’s γ are zero for all r ∈]
0, 1

2

[
.

The independence copula Π is the limit case when r → 1/2. The values we
obtain for these association measures and for the copula Π are the same.
As a consequence, there is no monotone dependence in any degree for these
measures, that is the same case for Π .
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12. Sklar, A.: Fonctions de répartition à n dimensions et leurs marges, vol. 8, pp.

229–231. Publ. Inst. Statist. Univ., Paris (1959)



Factorisation Properties of the Strong
Product

Gert de Cooman, Enrique Miranda, and Marco Zaffalon

Abstract. We investigate a number of factorisation conditions in the frame-
work of sets of probability measures, or coherent lower previsions, with finite
referential spaces. We show that the so-called strong product constitutes one
way to combine a number of marginal coherent lower previsions into an in-
dependent joint lower prevision, and we prove that under some conditions it
is the only independent product that satisfies the factorisation conditions.

Keywords: Coherent lower previsions, Epistemic independence, Strong
independence, Factorisation.

1 Introduction

In this paper, we investigate some relationships between the formalist and
epistemic approaches to independence in a generalised setting that allows
probabilities to be imprecisely specified. By formalist approach, we mean a
way to construct an independent joint from given marginals that is based
on requiring the joint to satisfy a number of mathematical properties, such
as factorisation. An epistemic approach, on the other hand, uses judgements
of equality between the marginal and conditional probability models to con-
struct a joint from the marginals.
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We will consider a finite number of logically independent variables Xn as-
suming values in respective finite sets Xn, n ∈ N, where N denotes a finite
index set. In an epistemic approach, we want to express that these variables
are independent, in the sense that learning the values of some of them will
not affect beliefs about the remaining ones. We base our analysis on the
theory of coherent lower previsions, which are lower expectation functionals
equivalent to closed convex sets of probability mass functions. In the case of
precise probability, we refer to an expectation functional as a linear prevision.
We give a succinct introduction to the theory of coherent lower previsions in
Section 2.

The real work begins in Section 3, where, in the formalist spirit, we intro-
duce a number of factorisation conditions for coherent lower previsions, and
establish relationships between them. In Section 4, we investigate a specific
and fairly popular method for combining marginal coherent lower previsions
into a joint lower prevision: the strong product. We show that this method
satisfies all the formalist factorisation properties from Section 3, as well as
two independence notions of an epistemic bent, called epistemic many-to-one
and epistemic many-to-many independence. Moreover, we show that in cer-
tain cases the strong product is the only functional with these properties.
Due to limitations of space, we have omitted the proofs of the main results.

2 Coherent Lower Previsions

We start with a brief introduction to the notions of the theory of coherent
lower previsions; we refer to [8] for an in-depth study, and to [6] for a survey.

Consider a finite space X . A gamble on X is a real-valued map f : X →R.
The set of all gambles on X is denoted by L (X ). A linear prevision on
L (X ) is the expectation operator with respect to a probability on X. A
coherent lower prevision P on L (X ) is the lower envelope of a closed and
convex set of linear previsions, which we denote by M (P). One particular
instance is the vacuous lower prevision with respect to a subset A of X,
given by PA( f ) = minω∈A f (ω) for all gambles f on X.

Next, consider a number of random variables Xn, n∈N, taking values in the
respective finite sets Xn. For every subset J of N, we denote by XJ the tuple
of random variables (with one component for each j ∈ J) that takes values
in the Cartesian product XJ = × j∈JX j. We denote by L (XJ) the set of all
gambles on XJ . We will frequently use the simplifying device of identifying
a gamble fJ on XJ with its cylindrical extension to XN , which is the gamble
fN defined by fN(xN) = fJ(xJ) for all xN ∈ XN , where xJ is the element of XJ

consistent with xN (consistency means here that the components x j of xJ and
xN coincide for all j ∈ J).

Given two disjoint subsets O and I of N, we define a conditional lower
prevision PO∪I(·|XI) as a special two-place function. For any xI ∈XI , PO∪I(·|xI)
is a real-valued functional on the set L (XO∪I) of all gambles on XO∪I . For
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any gamble f on XO∪I , PO∪I( f |xI) is the lower prevision of f , conditional on
XI = xI . Moreover, the object PO∪I( f |XI) is considered as a gamble on XI that
assumes the value PO∪I( f |xI) in xI .

We define, for any gamble f on XO∪I , the XI-support SI( f ) of f as
SI( f ) =

{
xI ∈ XI : I{xI} f �= 0

}
. Then a number of conditional linear previsions

POj∪Ij (·|XIj ) defined on the sets of gambles L (XOj∪Ij ), j = 1, . . . ,m are called
coherent if for all f j ∈ L (XOj∪Ij ), j = 1, . . . ,m, there is some j∗ ∈ {1, . . . ,m},
x ∈ SIj∗ ( f j∗) such that:

[ m

∑
j=1

(
f j −POj∪Ij ( f j|XIj )

)
]
(xN) ≥ 0

for some xN ∈ XN consistent with x. A number of conditional lower pre-
visions POj∪Ij

(·|XIj ) on L (XOj∪Ij ), j = 1, . . . ,m are called coherent if and

only if they are the lower envelopes of some collection
{

PλOj∪Ij
(·|XIj ) : λ ∈Λ

}

of coherent conditional linear previsions. In that case, they also satisfy in
particular the property of weak coherence, which in this context holds if
and only if there is some coherent lower prevision PN on L (XN) such that
PN(I{xI j}

[ f −POj∪Ij
( f |xIj )]) = 0 for all xIj ∈ XIj and all gambles f on XOj∪Ij ,

j ∈ {1, . . . ,m}.
Finally, for any non-empty R ⊆ N, we denote by PR (and by Pr if R =

{r}) the XR-marginal of a coherent lower prevision PN on L (XN), given by
PR( f ) = PN( f ) for all gambles f ∈L (XR).

3 Factorisation Conditions

We begin our discussion by introducing a number of generalisations of the
notion of an independent product of linear previsions. We have used the first
of them in the context of our research on credal networks [2].

Definition 1. Consider a coherent lower prevision PN on L (XN). We call
this lower prevision
1. factorising if for all o ∈ N and all non-empty I ⊆ N \ {o}, all g ∈ L (Xo)

and all non-negative fi ∈L (Xi), i∈ I, PN( fIg) = PN( fIPN(g)), where fI =
∏i∈I fi.

2. strongly factorising if PN( f g) = PN( f PN(g)) for all g ∈ L (XO) and f ∈
L (XI), f ≥ 0, where I and O are any disjoint proper subsets of N.

Our notion of factorisation when restricted to lower probabilities and events,
is called strict factorisation in [7].

Next, we come to a property that V. Kuznetsov [5] first drew attention to:

Definition 2. Consider a coherent lower prevision PN on L (XN). We call
this lower prevision
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1. Kuznetsov if PN(∏n∈N fn) =�n∈NPn( fn) for all fn ∈L (Xn), n ∈ N.
2. strongly Kuznetsov if PN( f g) = PI( f )�PO(g) for all g ∈ L (XO) and all

f ∈ L (XI), where I and O are any disjoint proper subsets of N.

Here � is the (commutative and associative) interval product defined by:

[a,b]� [c,d] = {xy : x ∈ [a,b] and y ∈ [c,d]}
= [min{ac,ad,bc,bd},max{ac,ad,bc,bd}]

for all a ≤ b and c ≤ d in R, and P( f ) is the interval [P( f ),P( f )].

There are the following general relationships between these properties:

Proposition 1. Consider a coherent lower prevision PN on L (XN). Then

PN is strongly Kuznetsov ⇒ PN is strongly factorising

⇓ ⇓
PN is Kuznetsov ⇒ PN is factorising.

What about the converse implications? We show in Example 2 that factorisa-
tion is not equivalent to being Kuznetsov, and that strong factorisation is not
equivalent to being strongly Kuznetsov. In Example 3, we give an instance
of a lower prevision that is factorising but not strongly factorising.

4 The Strong Product

The remainder of this paper is devoted to the study of a particular product
of coherent lower previsions, called the strong product, which also appears
under the name type-1 product [8, Section 9.3.5]. Our name for it seems to
go back to Cozman [1]. If we have coherent lower previsions Pn on L (Xn),
then [8, Section 9.3.5] their strong product SN =×n∈NPn is defined by

SN( f ) = inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈ M (Pn)} (1)
= inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈ ext(M (Pn))} (2)

for every f ∈L (XN), where ×n∈NPn is the usual independent product of the
considered linear previsions. The strong product of lower previsions satisfies
the following marginalisation and associativity properties.

Proposition 2. Consider coherent lower previsions Pn on L (Xn), n ∈ N.
1. For any non-empty subset R of N, SR is the XR-marginal of SN ;
2. ext(M (SN)) = {×n∈NPn : (∀n ∈ N)Pn ∈ ext(M (Pn))};
3. For any partition N1 and N2 of N, SN = SN1

×SN2
.

We can deduce from the second statement that the infima in Eqs. (1) and (2)
are actually minima. This allows us to deduce that the strong product of
lower previsions satisfies all the conditions introduced in Section 3.
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Proposition 3. The strong product SN is strongly Kuznetsov, and therefore
also Kuznetsov, strongly factorising and factorising.

This generalises a result established for the case of two variables by Cozman
[1]. It also guarantees that the strong product satisfies the weak law of large
numbers established in [3].

As a next step, we establish a tighter relationship between the strong prod-
uct and the epistemic approach to independence. Consider two disjoint proper
subsets I and O of N. We say that a subject judges that XI is epistemically
irrelevant to XO when he assumes that learning which value XI assumes in XI

will not affect his beliefs about XO. We say that a subject judges the variables
Xn, n ∈ N to be epistemically many-to-many independent when he judges for
any disjoint proper subsets I and O of N that XI is epistemically irrelevant
to XO. If our subject has a coherent lower prevision PN on L (XN), and he
makes such an assessment, then he can infer from his joint model PN a family
of conditional models

I (PN) = {PO∪I(·|XI) : I and O disjoint proper subsets of N} ,

where PO∪I(·|XI) is a coherent lower prevision on L (XO∪I) that is given by:

PO∪I(h|xI) = PN(h(·,xI)) for all h ∈ L (XO∪I) and all xI ∈ XI .

Definition 3. A coherent lower prevision PN on L (XN) is called many-to-
many independent if it is coherent with the family of conditional lower previ-
sions I (PN), and in that case it is also called a many-to-many independent
product of its marginal coherent lower previsions Pn on L (Xn), n ∈ N.

In a similar way, we say that a subject judges the variables Xn, n ∈ N to be
epistemically many-to-one independent when he assumes that learning the
value of any number of these variables will not affect his beliefs about any
single other. If our subject has a coherent lower prevision PN on L (XN), and
he makes such an assessment, then he can infer from his joint model PN a
family of conditional models

N (Pn,n ∈ N) =
{

P{o}∪I(·|XI) : o ∈ N and I ⊆ N \ {o}
}

,

where P{o}∪I(·|XI) is a coherent lower prevision on L (X{o}∪I) given by:

P{o}∪I(h|xI) = PN(h(·,xI)) = Po(h(·,xI))

for all gambles h on X{o}∪I and all xI ∈ XI .

Definition 4. A coherent lower prevision PN on L (XN) is called many-to-
one independent if it is coherent1 with the family N (Pn,n ∈ N), and in that
case it is also called a many-to-one independent product of its marginal co-
herent lower previsions Pn on L (Xn), n ∈ N.

1 Actually, thanks to [4, Proposition 10], weak coherence suffices here.
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A basic coherence result [8, Theorem 7.1.6] states that taking lower envelopes
of a family of coherent conditional lower previsions again produces coherent
conditional lower previsions. Using this, we can deduce that there always
is at least one many-to-many (and therefore also many-to-one) independent
product: the strong product.

Proposition 4. Consider arbitrary coherent lower previsions Pn on L (Xn),
n∈N. Then their strong product ×n∈NPn is a many-to-many and many-to-one
independent product of the marginal lower previsions Pn.

The strong product is not in general the only many-to-one (or many-to-many)
independent product of given marginals: there usually are an infinity of them.
The smallest is called the independent natural extension. We have studied it
in detail in another paper [4]. It does not coincide in general with the strong
product [8, Section 9.3.4]. Neither is the strong product generally the greatest
many-to-one independent product of its marginals:

Example 1. Consider X1 = X2 = {0,1}, and let P1 and P2 be the vacuous
lower previsions on L (X1) and L (X2), respectively. Then the strong product
S{1,2} = P1 ×P2 is the vacuous lower prevision on L (X{1,2}).

Let Q{1,2} be the vacuous lower prevision relative to {(0,0),(1,1)}, which
clearly strictly dominates the strong product S{1,2}. To see that it is also
a many-to-one independent product of the marginals P1 and P2, it suffices
[cf. footnote 1] to show that Q{1,2}(I{x1}[g2−P2(g2)]) = 0 for all x1 ∈ X1 and
all g2 ∈ L (X2) [the case x2 ∈ X2 and all g1 ∈ L (X1) is symmetric]. But
Q{1,2}(I{x1}[g2−P2(g2)]) is equal to

min
{
I{x1}(0)[g2(0)−P2(g2)],I{x1}(1)[g2(1)−P2(g2)]

}
= 0,

since both I{x1}(0)[g2(0) − P2(g2)] and I{x1}(1)[g2(1) − P2(g2)] are non-
negative, and at least one of these numbers is zero. ♦

We have shown in [4, Proposition 13] that when N = {1,2} and one of the
marginals is vacuous, the strong product coincides with the independent nat-
ural extension and is therefore the smallest independent product of the given
marginals. Example 1 shows it is not the only many-to-one independent prod-
uct if one of the marginals is vacuous. Yet, it is the only one factorising:

Proposition 5. Let PA1
1 be the vacuous lower prevision on L (X1) relative

to the non-empty set A1 ⊆X1, and let P2 be any coherent lower prevision on
L (X2). Then any factorising product P of these marginals satisfies

P( f ) = (PA1
1 ×P2)( f ) = min

x1∈A1
P2( f (x1, ·)) for all gambles f ∈ L (X{1,2}).

We now come to the notion of external additivity:

Definition 5. Consider a coherent lower prevision PN on L (XN). It is called
externally additive if for all non-empty R⊆N and all gambles fr on Xr, r ∈ R,
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PN(∑r∈R fr) = ∑r∈R PN( fr), and strongly externally additive if PN( f + g) =
PN( f )+PN(g) for all f ∈L (XI),g ∈L (XO), where I and O are any disjoint
proper subsets of N.

Clearly, strong external additivity implies external additivity. Cozman calls
the latter summation independence, and shows [1, Theorem 1] that the strong
product is externally additive for the case of two variables. We generalise this
by proving that the strong product is strongly externally additive.

Proposition 6. Consider arbitrary coherent lower previsions Pn, n∈N. Then
their strong product SN is strongly externally additive.

We have established in [4, Theorem 5] that the independent natural extension
is strongly factorising. We now show that it is not Kuznetsov in general:

Example 2. Consider random variables X1, X2 assuming values in {0,1}, and
let their marginal lower previsions be given by

Pj( f j) =
1
2

f j(0)+
2
5

f j(1)+
1
10

min{ f j(0), f j(1)} for all f j ∈ X j

for j = 1,2 (these are linear-vacuous mixtures, and hence coherent [8, Sec-
tion 2.9.2]). Consider the gambles f = I{0}− I{1} on X1 and g = I{0}− I{1} on
X2. Then P1( f ) = P2(g) = 0 and P1( f ) = P2(g) = 1/5.

As a consequence, P1( f )�P2(g) = [0,1/25], whereas their independent nat-
ural extension assumes [8, Example 9.3.4] the value E{1,2}( f g) =−1/11. This
shows that the independent natural extension E{1,2}, which is factorising,
is not Kuznetsov. Moreover, in this example where N = {1,2}, factorisation
is equivalent to strong factorisation, and being Kuznetsov to being strongly
Kuznetsov. ♦

A convex combination of many-to-one independent products of the same mar-
ginals is again a many-to-one independent product of these marginals [4,
Proposition 8]. A similar result holds for factorising or Kuznetsov lower pre-
visions. We use these ideas to construct the following counterexample, which
shows that a many-to-one independent product is not necessarily many-to-
many, and that a factorising lower prevision need not be strongly factorising.

Example 3. Let N = {1,2,3}. Consider random variables Xj assuming values
in X j = {0,1} for j = 1,2,3. Let the corresponding marginal lower previsions
be given by

P j( f j) =
1
2

f j(0)+
2
5

f j(1)+
1

10
min{ f j(0), f j(1)} for all f j ∈L (X j)

for j = 1,2,3. Let EN be their independent natural extension and SN their
strong product, and define Q

N
on L (XN) as Q

N
= 1/2(EN + SN). It follows

from Propositions 3, 4 and [4, Proposition 8] that Q
N

is factorising and a
many-to-one independent product. We are going to prove that Q

N
is neither

a many-to-many independent product nor strongly factorising.
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Consider the conditional lower prevision Q
N
(·|X3) defined from the joint

lower prevision Q
N

using the epistemic irrelevance of X3 to X{1,2}. In order to
show that Q

N
is not a many-to-many independent product, it suffices to show

that it is not weakly coherent with Q
N
(·|X3). Consider the event A that X1 =

X2, and the corresponding indicator gamble g = IA on X{1,2}. It follows from
[8, Example 9.3.4] that EN(A) = 5/11 and SN(A) = 1/2, so Q

N
(A) = 21/44. Let

x3 = 0. Since both EN and SN are strongly factorising (by Proposition 3 and
[4, Theorem 5]), we see that EN(I{x3}[g−Q

N
(g)]) =−3/220 whereas SN(I{x3}[g−

Q
N
(g)]) = 1/88, and then Q

N
(I{x3}[g−Q

N
(g)]) = −1/440 < 0. This shows that

Q
N

is not weakly coherent with Q
N
(·|X3), and also that it is not strongly

factorising. ♦

5 Conclusions

The strong product satisfies all factorisation properties introduced in this
paper, and it is a many-to-many independent product of the given marginals.
In this sense, it satisfies more factorisation properties than the independent
natural extension we studied in another paper [4], because the latter need
not be Kuznetsov. Topics of future research could be the generalisation of
these results towards infinite spaces as well as the study of the sets of all
independent products in some interesting particular cases.
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Hadamard Majorants for the Convex
Order and Applications

Jesús de la Cal, Javier Cárcamo, and Luis Escauriaza

Abstract. The problem of establishing Hadamard-type inequalities for con-
vex functions on d-dimensional convex bodies (d ≥ 2) translates into the
problem of finding appropriate majorants of the involved random vector for
the usual convex order. In this work, we use a stochastic approach based on
the Brownian motion to establish a multidimensional version of the classical
Hadamard inequality. The main result is closely related to the Dirichlet pro-
blem and is applied to obtain inequalities for harmonic functions on general
convex bodies.

Keywords: Convex order, Hadamard inequalities, Convex functions, Brow-
nian motion, Dirichlet problem, Harmonic functions.

1 Introduction

It is well known that, for every real convex function f on the interval [a,b],
we have
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Bilbao, Spain
e-mail: jesus.delacal@ehu.es

Javier Cárcamo
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1
b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (1)

This is the celebrated Hadamard inequality. In probabilistic words, it says
that

E f (ξ ) ≤ E f (ξ ∗), f ∈ Ccx, (2)

where E denotes mathematical expectation, ξ (respectively, ξ ∗) is a random
variable having the uniform distribution on the interval [a,b] (respectively,
on the set {a,b}), and Ccx is the set of all real convex functions on [a,b];
another way of expressing (2) is

ξ ≤cx ξ ∗,

where ≤cx stands for the so called convex order of random variables (see [7]
and [10]).

There is an extensive literature devoted to develop applications of the
inequality (1), as well as to discuss its extensions, by considering other mea-
sures, other kinds of convexity, or higher dimensions. An account of many of
such realizations is given in [4].

In this paper, which follows the spirit of [2] and [3], we consider multi-
dimensional analogues of (2), where [a,b] is replaced by a (nonempty) d-
dimensional compact convex set K ⊂ R

d (d ≥ 2), ξ is an arbitrary integrable
random vector taking values in K, and Ccx is the set of all real continuous
convex functions on K. In this multidimensional setting, we can distinguish
two different problems, according to whether the role of {a,b} is played by
the set of extreme points of K, to be denoted by K∗, or by the boundary of
K, to be denoted by K∗.

• Strong problem: Find an H∗-majorant of ξ , that is, (the probability dis-
tribution of) a random vector ξ ∗ taking values in K∗, such that

E f (ξ ) ≤ E f (ξ ∗), f ∈ Ccx. (3)

• Weak problem: Find an H∗-majorant of ξ , that is, (the probability dis-
tribution of) a random vector ξ∗ taking values in K∗, such that

E f (ξ ) ≤ E f (ξ∗), f ∈ Ccx. (4)

Since K∗ ⊂K∗, each solution to the strong problem is also a solution to the
weak one, and both problems coincide when K∗ = K∗ (for instance, if K is a
closed ball in lp, with 1 < p < ∞).

The following theorem is a specific version, in the setting of finite-dimen-
sional spaces, of a more general result established by Niculescu [8] on the
basis of Choquet’s theory [9].
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Theorem 1. Every K-valued random vector ξ has at least one H∗-majorant.

This interesting result leaves open the problem of finding such an H∗-
majorant, a necessary task in order to achieve concrete inequalities of the
Hadamard type and other related results.

Remark 1. Observe that (3) (respectively, (4)) implies that Eξ = Eξ ∗ (respec-
tively, Eξ = Eξ∗), since affine functions are convex.

Remark 2. As it was pointed out in [2], the distributions of ξ∗ and ξ ∗ are not
necessarily unique. They depend on the geometric structure of K and on the
probability distribution of ξ .

Example 1. In the 1-dimensional case, the strong problem coincides with the
weak one. Further, taking into account Theorem 1 and Remark 1, given a
random variable ξ defined in the interval [a,b], it is easy to find the unique
(in the sense of distribution) H∗-majorant,

ξ ∗ =

⎧
⎨

⎩

a with probability b−Eξ
b−a ,

b with probability Eξ−a
b−a .

This H∗-majorant generates the Hadamard-type inequality

E f (ξ ) ≤ b−Eξ
b−a

f (a)+
Eξ −a
b−a

f (b), f ∈ Ccx,

which was first obtained by Fink [5] (see also [7, Example 1.10.5]).

In this paper, we deal with the weak problem described earlier. That is, given
a K-valued random vector ξ , where K is a compact convex set of R

d , we ob-
tain a majorant for the convex order of ξ concentrated on the boundary of
K, K∗. This is done in the next section. In Section 3, we show that the main
result is closely related to the solution of the Dirichlet problem on K. There-
fore, we derive some inequalities for the harmonic functions on K for which
the restriction to the boundary is a convex function. Some multidimensional
Hadamard-type inequalities are also obtained by using this new approach.

2 Main Result

Let K ⊂ R
d be a (nonempty) d-dimensional compact convex set and let ξ

be a K-valued random vector. The main result of this section, Theorem 2
below, provides an explicit H∗-majorant of ξ . To find such a majorant, we
note that given two integrable random vectors ξ and η such that ξ ≤cx η ,
the Strassen’s theorem (see for instance [10, Theorem 7.A.1., p. 324]) ensures
that there exist two random vectors ξ̂ and η̂ , defined on the same probability
space, such that ξ̂ and η̂ have the same distribution as ξ and η , respectively,
and {ξ̂ , η̂} is a martingale, that is,
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E[ η̂ | ξ̂ ] = ξ̂ , a.s.

Therefore, to find an H∗-majorant of the vector ξ , we can construct a con-
tinuous time martingale {ξt}t≥0 starting from ξ (i.e., ξ0 = ξ ) and stopped
at a random time τ on the border of K (i.e., ξτ ∈ K∗). We use the Brownian
motion as a natural continuous time martingale connecting ξ with ξτ (see
Figure 1).

Fig. 1 Construction of an H∗-majorant through the Brownian motion on the disk

Therefore, to achieve our main result we need the Brownian motion. For
general notions and results concerning this topic, we refer to [6].

We recall that a d-dimensional Brownian motion is an R
d-valued stochastic

process {ξt : t ≥ 0} having the following properties:

(a) it has stationary independent increments,
(b) for all s≥ 0 and t > 0, ξs+t −ξs has the Gaussian distribution with density

gt(x) = (2πt)−d/2e−|x|
2/2t , x ∈ R

d

(| · | being the Euclidean norm),
(c) with probability 1, it has continuous paths.

The random variable ξ0 gives the (random) starting point of the process. The
process {ξt − ξ0 : t ≥ 0} is a Brownian motion starting at 0, which is called
standard Brownian process. Such a process is defined on some probability
space (Ω ,F ,P), and it is well-known that it is a (continuous) martingale
with respect to the right-continuous filtration {F+

t : t ≥ 0} given by
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F+
t :=

⋂

s>t

Fs, t ≥ 0,

where, for s > 0, Fs is the sub-σ -field of F generated by {ξt : 0 ≤ t ≤ s}.
Our main result is stated as follows. We use the standard convention that

the infimum of the empty set is +∞, and we denote by K◦ the interior of K.
Also, ξ =st ξ ′ stands for the fact that the random vectors ξ and ξ ′ have the
same probability distribution.

Theorem 2. Let K ⊂R
d be a (nonempty) d-dimensional compact convex set,

let ξ be a K-valued random vector, and let {ξt : t ≥ 0} be a d-dimensional
Brownian motion such that ξ0 =st ξ . Then, the random time τ given by

τ := inf{t ≥ 0 : ξt �∈ K◦}

is a stopping time with respect to the filtration {F+
t : t ≥ 0} that fulfills

P(τ < ∞) = 1, (5)

and the random vector ξτ is an H∗-majorant of ξ .

3 Applications: Harmonic Functions and the Dirichlet
Problem

It is well known that the stopped Brownian motion that appears in Theorem
2 is connected with the solution of the Dirichlet problem. Since K is convex,
K◦ is obviously a regular domain, in the sense of [6, p. 394]. Then (see the
last reference, or [1, p. 90]), for each g ∈ C (K∗), the Dirichlet problem

{
Δu = 0 on K◦

u = g on K∗,

has a unique solution in C 2(K◦)∩C (K), to be denoted by Hg, which is given
by

Hg(x) = E[g(ξτ) | ξ0 = x], x ∈ K, (6)

(where E[· | ·] denotes conditional expectation). We therefore have

Eg(ξτ) = E[Hg(ξ0)] = E[Hg(ξ )]

(the last equality because ξ0 =st ξ ), and this yields the following corollary
(where we write H f instead of H f|K∗ ).

Corollary 1. For each f ∈ Ccx, the upper Hermite-Hadamard inequality
E f (ξ ) ≤ E f (ξτ ) can be written in the form

E f (ξ ) ≤ E[H f (ξ )].
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This result holds true for each K-valued random vector ξ . Therefore, on
taking ξ ≡ x (x ∈ K), we conclude the following.

Corollary 2. For each f ∈ Ccx, we have

f ≤ H f .

Example 2. Let K be the closed unit Euclidean ball in R
d . Using the previous

ideas it is possible to generate a multidimensional version of the classical
Hadamard inequality (1). When f ∈ Ccx and ξ has the uniform distribution
on K, we obtain

1
Vol(K)

∫

K
f (x)dx ≤ 1

σ(K∗)

∫

K∗
f (y)σ(dy),

where σ is the surface measure on K∗. This result was already found in [2]
by using a different approach.
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How to Avoid LEM Cycles in Mutual
Rank Probability Relations

K. De Loof, B. De Baets, and H. De Meyer

Abstract. The mutual rank probability (MRP) relation of a poset of size
n≥ 9 can contain linear extension majority (LEM) cycles. We experimentally
derive minimum cutting levels for MRP relations of posets of size n≤ 13 such
that the crisp cut relation is cycle-free.

1 Introduction

In the probability space consisting of the set of linear extensions of a given
poset P equipped with the uniform probability measure, the concept of the
mutual rank probability (MRP) relation of a poset appears naturally. It plays
an important role from an application [7] as well as from a theoretical [4, 12,
17] point of view. Although the study of the type of transitivity exhibited
by MRP relations has received considerable attention [4, 12, 19, 21], this
transitivity remains far from characterized. It is, however, well known that
MRP relations are in general not weakly stochastic transitive [4], allowing
for the occurrence of linear extension majority (LEM) cycles in the MRP
relation of posets of size n ≥ 9.

Quite some attention has been given to LEM cycles in literature. Examples
of posets with LEM cycles are given in [1, 11, 12, 13, 14, 16, 18], frequency
estimates for LEM cycles have been reported in [15, 17], and the occurrence
of LEM cycles in certain subclasses of posets has been studied in [2, 9]. More-
over, in previous work [8], the present authors have succeeded in counting the
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posets of size n ≤ 13 with LEM cycles. Besides the fact that the existence of
LEM cycles is an intriguing phenomenon in its own right, a better under-
standing of LEM cycles might help in the ongoing quest to characterize the
transitivity of MRP relations. In the present paper we focus on the determi-
nation of minimum cutting levels at which the MRP relation becomes free of
cycles.

2 Posets, MRP Relations and LEM Cycles

A binary relation ≤P on a set P is called an order relation if it is reflexive
(x≤P x), antisymmetric (x≤P y and y≤P x imply x =P y) and transitive (x≤P y
and y ≤P z imply x ≤P z). A linear order relation ≤P is an order relation in
which every two elements are comparable (x ≤P y or y ≤P x). If x ≤P y and
x �= y, we write x <P y. If neither x ≤P y nor x ≥P y, we say that x and y are
incomparable and write x ||P y. A couple (P,≤P), where P is a set of objects
and ≤P is an order relation on P, is called a partially ordered set or poset for
short. The size of a poset (P,≤P) is defined as the cardinality of P. A poset of
size n will be called an n-element poset for short. The poset (P,≤*

P ) for which
y ≤*

P x if and only if x ≤P y for all x,y ∈ P is called the dual poset of (P,≤P).
The binary relation ≺P, for which it holds that (x,y) ∈≺P if and only if

x <P y and there exists no z ∈ P such that x <P z <P y, is called the cover-
ing relation of (P,≤P). The covering relation ≺P of a poset (P,≤P) can be
conveniently represented by a so-called Hasse diagram where a sequence of
connected lines upwards from x to y is present if and only if x <P y. Exam-
ples of representations of posets by such Hasse diagrams can be found in the
appendix of this paper.

Let Q be a set and R and S two binary relations on Q. If R ⊂ S, then
(Q,S) is called an extension of (Q,R). A linear extension of a poset (P,≤P)
is an extension (P,≤L) for which ≤L is a linear order relation. The mutual
rank probability p(x > y) of two elements x and y of a poset (P,≤P) is defined
as the probability that x >L y in a linear extension (P,≤L) that has been
sampled uniformly at random from the set of linear extensions of (P,≤P).
Stated differently, it is the number of linear extensions of (P,≤P) in which
x >L y, divided by the number of linear extensions of (P,≤P). The mutual rank
probability (MRP) relation MP is the [0.1]-valued binary relation on P defined
by MP(x,y)= p(x > y) for all x,y∈P where x �= y and MP(x,x) = 1/2 for all x∈P.
Note that MP is a so-called reciprocal relation since MP(x,y)+ MP(y,x) = 1.

The linear extension majority (LEM) relation [20] of a poset P is the
binary relation ,LEM on P such that x ,LEM y if p(x > y) > p(y > x). Due to
the reciprocity of the MRP relation, it is equivalent to define x ,LEM y if
p(x > y) > 1/2. It is well known [10] that the LEM relation ,LEM can contain
cycles, i.e. subsets {x1,x2, . . . ,xm} of elements of P such that x1 ,LEM x2 ,LEM

· · · ,LEM xm ,LEM x1, and thus is not transitive. These cycles are referred to
as LEM cycles on m elements, or m-cycles for short.
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The strict δ -cut with δ ∈ [1/2,1[ of a reciprocal relation Q defined on a
set A is the crisp relation Qδ defined by

Qδ (x,y) =
{

1 , if Q(x,y) > δ ,
0 , otherwise.

We define the minimum cutting level δm as the smallest number such that for
any finite poset the strict δm-cut of the corresponding MRP relation is free
of l-cycles, with l ≤ m.

3 Minimum Cutting Levels for Posets of Size n ≤ 13

The present authors have shown in [6] that the MRP relation can be computed
using the lattice of ideals representation of a poset without necessitating
the enumeration of all linear extensions. This approach is ideally suited for
obtaining the MRP relation of posets of size n ≤ 13. A combination of the
poset generation algorithm of Brinkmann and McKay [3] and the algorithm
to compute the MRP relation for a given poset enabled us to obtain exact
counts of LEM cycles for posets on up to 13 elements [8]. We adapted this
algorithm to keep track of the minimum cutting level δ n

m and of all posets
requiring this cutting level δ n

m such that all mutual rank probabilities in an
m-cycle are greater than or equal to δ n

m. In Table 1 these minimum cutting
levels δ n

m to avoid m-cycles in n-element posets are shown.
Since one can trivially construct a poset of size n + 1 from a poset of

size n with an equal minimum cutting level by adding an element which is
either smaller than, larger than or incomparable to the given n elements, the
minimum cutting levels δ n

m are monotone in n. Therefore, a minimum cutting
level to avoid m-cycles avoids all LEM cycles of length l ≤ m. In Table 1 one
can observe that for n = 11 no higher cutting level for avoiding 4-cycles is
found than for n = 10 since δ 11

4 = δ 10
4 , and similarly it is found that δ 13

4 = δ 12
4 .

In Figures 1-14 the posets requiring the non-trivial minimum cutting levels
indicated in boldface in Table 1 are depicted by their Hasse diagrams. Note
that the dual of a poset has an equal minimum cutting level, and is therefore
not shown. However, four depicted posets are identical to their dual posets
(Figures 1, 5, 6 and 14). It is also interesting to mention that some posets

Table 1 Minimum cutting level δ n
m to avoid m-cycles in posets of size n = 9, . . . ,13

for m = 3, . . . ,7.

n\m 3 4 5 6 7
9 0.50314465 0.5 0.5 0.5 0.5

10 0.50396825 0.50284900 0.5 0.5 0.5
11 0.50619469 0.50284900 0.5 0.5 0.5
12 0.50735039 0.50866575 0.50039788 0.50242592 0.5
13 0.50886687 0.50866575 0.50289997 0.50246440 0.50018080
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have multiple LEM cycles with an identical cutting level, while others have
LEM cycles of different lengths. The 9-element poset in Figure 1, for example,
has three 3-cycles with identical probabilities, while for the 12-element poset
in Figure 5, aside from the cycle with length 3, a 4-cycle is present, since it
holds that p(5 > 7) = p(7 > 8)= 6184/12244. The 12-element poset in Figure 7
is quite remarkable in this respect, since aside from the 5-cycle, cycles of
length 3, 4 and 6 are present. The poset in Figure 14 even has cycles of
length 3, 4, 5, 6 and 7. Furthermore, the poset in Figure 8 also has a 3-
cycle, the poset in Figure 11 has cycles of length 3 and 4, and the posets in
Figures 12 and 13 both have 3-cycles. For some cutting levels multiple posets,
aside from their dual versions, are found. This is the case for the posets of size
13 in Figures 9 and 10 which attain the minimum cutting level for 3-cycles.
The same is true for 6-cycles in Figures 12 and 13.

4 Conclusion

One of the aims of this experiment was to find common properties for posets
with LEM cycles or to see a common structure emerging in the posets requir-
ing the minimum cutting level. However, to our surprise the posets have little
in common. Possibly due to the fact that the posets are still very limited in
size no common (sub)structures can yet be observed for increasing size. The
symmetrical and relatively simple structure of the 12-element poset in Fig-
ure 6 requiring the minimum cutting level δ4 inspired us to try to generalize
it and to find a lower bound for δ4 as sharp as possible for increasing poset
size. We have reported on these results elsewhere [5].
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Appendix: Posets Requiring Minimum Cutting
Levels δ n

m

321

8 97

4 5 6

p(7 > 8) = p(8 > 9) = p(9 > 7) =
720

1431
≈ 0.50314465

p(4 > 5) = p(5 > 6) = p(6 > 4) =
720

1431
≈ 0.50314465

p(1 > 2) = p(2 > 3) = p(3 > 1) =
720

1431
≈ 0.50314465

Fig. 1 9-element poset with a LEM cycle requiring the minimal cutting level δ 9
3 .
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p(8 > 6) = p(6 > 9) =
508
1008

≈ 0.50396825

p(9 > 8) =
512
1008

Fig. 2 10-element poset with a LEM cycle requiring the minimal cutting level δ 10
3 .

7

43

9 10
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8

1

p(7 > 3) = p(3 > 8) = p(8 > 6) = p(6 > 7)

=
1765
3510

≈ 0.50284900

Fig. 3 10-element poset with a LEM cycle requiring the minimal cutting level δ 10
4 .
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98

76
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1

5

2

p(5 > 8) =
1146
2260

p(8 > 6) =
1144
2260

≈ 0.50619469

p(6 > 5) =
1145
2260

Fig. 4 11-element poset with a LEM cycle requiring the minimal cutting level δ 11
3 .
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12

5

32

9

10

1

11

4

76
p(8 > 6) = p(6 > 5) =

6214
12244

p(5 > 8) =
6212

12244
≈ 0.50735039

Fig. 5 12-element poset with a LEM cycle requiring the minimal cutting level δ 12
3 .
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1211

9 10

5

4

2

7

1

3

8

6 p(5 > 7) = p(7 > 8) = p(8 > 6) = p(6 > 5)

=
7396

14540
≈ 0.50866575

Fig. 6 12-element poset with a LEM cycle requiring the minimal cutting level δ 12
4 .
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21

43

9

8

10

p(5 > 4) = p(4 > 3) =
60400

120640

p(3 > 6) = p(6 > 8) = p(8 > 5) =
60368

120640
≈ 0.50039788

Fig. 7 12-element poset with a LEM cycle requiring the minimal cutting level δ 12
5 .
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12
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1

32

6

5

1110 p(7 > 4) = p(6 > 5) =
46392
92336

≈ 0.50242592

p(4 > 10) = p(5 > 11) =
46560
92336

p(10 > 6) = p(11 > 7) =
46850
92336

Fig. 8 12-element poset with a LEM cycle requiring the minimal cutting level δ 12
6 .
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6

3

p(6 > 8) =
12240
24022

p(8 > 9) =
12262
24022

p(9 > 6) =
12224
24022

≈ 0.50886687

Fig. 9 First 13-element poset with a LEM cycle requiring the minimal cutting level
δ 13

3 .
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3

p(7 > 8) =
6112

12011
≈ 0.50886687

p(8 > 9) =
6120

12011

p(9 > 7) =
6131

12011

Fig. 10 Second 13-element poset with a LEM cycle requiring the minimal cutting
level δ 13
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6 7
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11

9

5

13

10

p(10 > 9) =
33871
67242

p(9 > 5) =
33916
67242

p(5 > 7) =
33816
67242

≈ 0.50289997

p(7 > 3) =
33834
67242

p(3 > 10) =
34151
67242

Fig. 11 13-element poset with a LEM cycle requiring the minimal cutting level
δ 13

5 .

6 7

11

8

2

43

5

109

1

12 13

p(12 > 9) = p(13 > 8) =
66354

131472

p(9 > 6) = p(8 > 5) =
66060

131472
≈ 0.50246440

p(6 > 13) = p(5 > 12) =
66306

131472

Fig. 12 First 13-element poset with a LEM cycle requiring the minimal cutting
level δ 13

6 .
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6 7

11

8

32

5

109

12 13

1

4

p(12 > 9) = p(13 > 8) =
132708
262944

p(9 > 6) = p(8 > 5) =
132120
262944

≈ 0.50246440

p(6 > 13) = p(5 > 12) =
132612
262944

Fig. 13 Second 13-element poset with a LEM cycle requiring the minimal cutting
level δ 13
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12 1311
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p(11 > 6) = p(6 > 8) = p(4 > 11) =
268352
536510

≈ 0.50018080

p(8 > 10) = p(5 > 4) =
268384
536510

p(10 > 12) = p(12 > 5) =
268465
536510

Fig. 14 13-element poset with a LEM cycle requiring the minimal cutting level
δ 13

7 .



Functional Inequalities Characterizing the
Frank Family of Copulas

Hans De Meyer and Bernard De Baets

Abstract. Given a random vector with components that are pairwisely cou-
pled by means of a same commutative copula C, we analyze the transitivity of
the reciprocal relation obtained from the pairwise comparison of these com-
ponents. The transitivity of this reciprocal relation can be elegantly described
within the cycle-transitivity framework if the commutative copula C satisfies
a countably infinite family of (functional) inequalities. Each functional in-
equality uniquely characterizes the Frank family of copulas. Finally, we high-
light the transitivity results for a random vector whose coupling structure is
captured by an extended Frank m-copula.

Keywords: Copulas, Frank family, Functional inequality, Reciprocal rela-
tions, Transitivity.

1 Introduction

Many methods can be established for the comparison of the components
(random variables, r.v.) of a random vector (X1, . . . ,Xn), as there are many
ways to extract useful information from the joint cumulative distribution
function (c.d.f.) FX1,...,Xn that characterizes the random vector.

A simplification consists in restricting the comparison strategy to methods
that aim at comparing the r.v. two by two. We have recently put forward
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such a method [8]. We associate to a random vector a reciprocal relation
Q, which can be regarded as a graded preference relation. The cornerstone
for computing the reciprocal relation Q is the copula Ci j that joins the one-
dimensional marginal c.d.f. FXi and FXj into the bivariate marginal c.d.f. FXi,Xj ,
i.e. FXi,Xj = Ci j(FXi ,FXj ). Note that the copulas should not be the same for all
pairs of r.v. For a collection of independent r.v., however, they all coincide
with the product TP(x,y) = xy.

We have analyzed the case where all copulas Ci j are the same but not neces-
sarily equal to the product, neither to the greatest copula TM(x,y) = min(x,y),
the minimum operator, nor to the smallest copula TL(x,y) = max(x+y−1,0),
also known as the �Lukasiewicz t-norm. Note that in the latter case the pair-
wise couplings should be considered as purely artificial, as no n-copula (n≥ 3)
exists such that all 2-copulas contained in it are equal to TL. Our analysis has
revealed that the reciprocal relations generated by these couplings possess
transitivity properties that can be nicely characterized [4, 7, 8, 9, 10].

The concept of transitivity is unique for crisp relations, but for reciprocal
relations there is a whole range of transitivity properties. Sometimes it is
possible to capture the transitivity in the form of a type of stochastic transi-
tivity or a type of T -transitivity, with T a t-norm, well known from the theory
of fuzzy relations, but mostly these types prove insufficient to deal with the
transitivity of reciprocal relations. Instead, we have developed a new frame-
work, called the cycle-transitivity framework, that allows to characterize the
types of transitivity that arise in the present investigation [3, 5].

As a by-product of our investigations, we have laid bare an infinite fam-
ily of functional inequalities, each of which characterizes the Frank family
of copulas [12]. In the past, many investigations were aimed at finding the
solution(s) of functional equations in the space of uniform distribution func-
tions [1]. The functional equation of Frank [11], the Frank equation for short,
is perhaps the best known example. This equation, however, does not char-
acterize uniquely the Frank family of copulas, as it also has as solutions the
ordinal sums of Frank copulas. Note that Frank copulas and ordinal sums of
Frank copulas are more often regarded as t-norms [13] and that in this con-
text the Frank equation has even been studied for the more general class of
uninorms [2]. The fact that a sharper characterization of a family of copulas
can be acquired by means of a functional inequality, rather than by means of
a functional equation, has to our knowledge, not been recognized before.

In the next section, we briefly summarize the concept of cycle-transitivity.
In Section 3 we recall the method used to compare r.v. and the way a recipro-
cal relation is generated from it. We investigate its transitivity when the r.v.
are coupled with the same copula and derive an infinite family of inequalities
which the copula should satisfy. Section 4 emphasizes the role of the Frank
family of copulas as unique solutions of the family of inequalities. Finally,
Section 5 is concerned with the transitivity of the reciprocal relation gener-
ated by a random vector whose coupling structure is described by a Frank
m-copula.
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2 Cycle-Transitivity of Reciprocal Relations

Reciprocal ([0,1]-valued binary relations Q satisfying Q(a,b) + Q(b,a) = 1,
provide a convenient tool for expressing the result of the pairwise comparison
of a set of alternatives. Recently, we have presented a general framework for
studying the transitivity of reciprocal relations, encompassing various types
of T -transitivity and stochastic transitivity [3, 5].

Recall that a fuzzy relation R on A is an A2 → [0,1] mapping that expresses
the degree of relationship between elements of A. For such relations, the
concept of T -transitivity is very natural.

Definition 1. Let T be a t-norm. A fuzzy relation R on A is called T -
transitive if for any (a,b,c) ∈ A3 it holds that T (R(a,b),R(b,c)) ≤ R(a,c).

Though the semantics of reciprocal relations and fuzzy relations are differ-
ent, the concept of T -transitivity is sometimes formally applied to reciprocal
relations as well. However, more often the transitivity properties of recip-
rocal relations can be characterized as of one of various kinds of stochastic
transitivity [3].

In the cycle-transitivity framework [5], for a reciprocal relation Q on A, the
quantities

αabc = min(Q(a,b),Q(b,c),Q(c,a)) , βabc = med(Q(a,b),Q(b,c),Q(c,a)) ,

γabc = max(Q(a,b),Q(b,c),Q(c,a)) ,

are defined for all (a,b,c)∈A3. Obviously, αabc ≤ βabc ≤ γabc. Also, the notation
Δ = {(x,y,z) ∈ [0,1]3 |x ≤ y ≤ z} will be used.

Definition 2. A function U : Δ → R is called an upper bound function if it
satisfies:

(i) U(0,0,1)≥ 0 and U(0,1,1)≥ 1;
(ii) for any (α,β ,γ) ∈ Δ :

U(α,β ,γ)+U(1− γ,1−β ,1−α)≥ 1 .

Definition 3. A reciprocal relation Q on A is called cycle-transitive w.r.t. an
upper bound function U if for any (a,b,c) ∈ A3 it holds that

αabc +βabc + γabc−1 ≤U(αabc,βabc,γabc) .

For two upper bound functions such that U1 ≤U2, it clearly holds that cycle-
transitivity w.r.t. U1 implies cycle-transitivity w.r.t. U2. It is clear that U1 ≤
U2 is not a necessary condition for the latter implication to hold. Two upper
bound functions U1 and U2 will be called equivalent if for any (α,β ,γ) ∈
Δ it holds that α + β + γ − 1 ≤ U1(α,β ,γ) is equivalent to α + β + γ − 1 ≤
U2(α,β ,γ).
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The different types of fuzzy and stochastic transitivity can be reformulated
in the cycle-transitivity framework and are then characterized by an upper
bound function U(α,β ,γ).

Proposition 1. A reciprocal relation Q is T -transitive, with T a 1-Lipschitz
t-norm (or equivalently, an associative copula), if and only if Q is cycle-
transitive w.r.t. to the upper bound function UT given by

UT (α,β ,γ) = α+β −T(α,β ) .

In fact, many examples of reciprocal relations we have encountered in our
research on the comparison of random variables are neither fuzzy nor stochas-
tic transitive, but have a type of transitivity that can be nicely expressed as
an instance of cycle-transitivity. In the present study we will encounter the
weaker counterparts of T -transitivity obtained by replacing in the expression
for UT α by β and β by γ.

Definition 4. A reciprocal relation Q that is cycle transitive w.r.t. to the
upper bound function UWT defined by

UWT (α,β ,γ) = β + γ−T(β ,γ) ,

with T a 1-Lipschitz t-norm, is called weak T -transitive.

Weak TM-transitivity is also known as partial stochastic transitivity, weak
TP-transitivity as dice-transitivity or weak product transitivity, whereas weak
TL-transitivity is equivalent to TL-transitivity.

3 Generating Transitive Reciprocal Relations from
Random Vectors

An immediate way of comparing two r.v. is to consider the probability that
the first one takes a greater value than the second one. Proceeding along
this line of thought, a random vector (X1,X2, . . . ,Xn) generates a reciprocal
relation.

Definition 5. Given a random vector (X1,X2, . . . ,Xn), the binary relation Q
defined by

Q(Xi,Xj) = Prob{Xi > Xj}+
1
2

Prob{Xi = Xj}

is a reciprocal relation.

Since the copulas Ci j that couple the univariate marginal c.d.f. into the bivari-
ate marginal c.d.f. can be different from another, the analysis of the reciprocal
relation and in particular the identification of its transitivity properties ap-
pear rather cumbersome. It is nonetheless possible to state in general, without
making any assumptions on the bivariate c.d.f., that the reciprocal relation
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Q generated by an arbitrary random vector always shows some minimal form
of transitivity.

Proposition 2. [4] The reciprocal relation Q generated by a random vector
is TL-transitive.

Our further interest is to study the situation where momentarily abstraction
is made that the r.v. are components of a random vector, and all bivariate
c.d.f. are enforced to depend in the same way upon the univariate c.d.f., in
other words, we consider the situation of all copulas being the same.

To get insight in what kind of transitivity properties one might expect
in general, the present authors have previously unravelled three particular
cases, namely the case of the product copula TP, and the cases of the two
extreme copulas, the minimum operator TM and the �Lukasiewicz t-norm TL,
respectively related to a presumed but not-necessarily existing comonotonic
and countermonotonic pairwise dependence of the r.v. [15]. From these studies
the following results can be reported.

Proposition 3. [8, 10] The reciprocal relation Q generated by a collection of
independent random variables (i.e. pairwisely coupled by TP) is dice-transitive
(weak TP-transitive).

Proposition 4. [7, 9] The reciprocal relation Q generated by a collection of
random variables pairwisely coupled by TM is TL-transitive.

Proposition 5. [7, 9] The reciprocal relation Q generated by a collection of
random variables pairwisely coupled by TL is partially stochastic transitive
(weak TM-transitive).

We further considered the case where all Ci j are the same copula C. It then
turns out that the transitivity of the generated reciprocal relation Q can
only be captured as a type of cycle-transitivity when the copula C fulfills a
countably infinite family of conditions. These conditions are presented in the
form of inequalities. Hence, we require C to be a solution of an infinite system
of inequalities.

Proposition 6. [4] Let C be a commutative copula such that for any k > 1
and for all 0 ≤ x1 ≤ x2 ≤ ·· · ≤ xk ≤ 1 and 0 ≤ y1 ≤ y2 ≤ ·· · ≤ yk ≤ 1, it holds
that

∑
i

C(xi,yi)−∑
j

C(xk−2 j,yk−2 j−1)−∑
j

C(xk−2 j−1,yk−2 j)

≤ C

(

xk +∑
j

C(xk−2 j−2,yk−2 j−1)−∑
j

C(xk−2 j,yk−2 j−1),

yk +∑
j

C(xk−2 j−1,yk−2 j−2)−∑
j

C(xk−2 j−1,yk−2 j)

)

, (1)
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where the sums extend over all integer values that lead to meaningful indices
of x and y. Then the reciprocal relation Q generated by a collection of random
variables pairwisely coupled by C is cycle-transitive w.r.t. to the upper bound
function UC defined by:

UC(α,β ,γ) = max(β +C(1−β ,γ),γ+C(β ,1− γ)) .

If C is stable, i.e. C(x,y)+1−C(1− x,1− y)= x+ y for all (x,y) ∈ [0,1]2, then

UC(α,β ,γ) = β +C(1−β ,γ) = γ+C(β ,1− γ)) .

Note that symmetrical ordinal sums of Frank copulas are stable [14].

4 Solving the Family of Inequalities

It is natural to ask whether commutative copulas that fulfil (1) can be char-
acterized in an alternative way. However, they are not necessarily satisfied
for any stable commutative copula, as is illustrated by the following example
of a symmetrical ordinal sum of two Frank copulas.

Example 1. Let C be the commutative copula defined by

C(x,y) =

{
1
3 + max(x + y−1,0) , if (x,y) ∈ [1/3,2/3]2 ,

min(x,y) , elsewhere .

It is the ordinal sum 〈1/3,2/3,TL〉 with TL linearly rescaled to the square
[1/3,2/3]2. It is easily verified that C is stable (as it is a symmetrical ordinal
sum of Frank copulas [14]). Let x1 = y1 = 1/4 and x2 = y2 = 3/4. For n = 2,
the left-hand side of (1) becomes C(1/4,1/4)+C(3/4,3/4)−C(1/4,3/4)−
C(3/4,1/4)= 1/4+3/4−1/4−1/4= 1/2, while the right-hand side evaluates
to C(x2 −C(x2,y1),y2 −C(x1,y2)) = C(1/2,1/2) = 1/3, showing that (1) does
not hold for n = 2 and for all 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1.

In [4], we conjectured that for the Frank copulas themselves conditions (1) are
always satisfied but only recently we were able to give a complete proof [6].
Moreover, the Frank copulas are the only associative copulas that are solution
of all inequalities separately. Hence, each inequality uniquely characterizes the
Frank family of copulas. Special attention is drawn on the first one (k = 2),
which we call ’the Frank inequality’.

Proposition 7. Let C be an associative copula. The following statements are
equivalent:

(i) For any 0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1, it holds that

C(x,y)+C(x′,y′)−C(x,y′)−C(x′,y)≤C(x′ −C(x′,y),y′ −C(x,y′));

(ii) C is a member of the Frank family of copulas.
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Note that the left-hand side of (i) is the C-volume of the rectangle [x,x′]×
[y,y′] and the condition states that this C-volume is bounded from above by
some well-defined C-dependent quantity, i.e. the C-volume of the rectangle
[0,x′ −C(x′,y)]× [0,y′ −C(x,y′)].

Proposition 7 can be extended to the other inequalities contained in 1.

Proposition 8. Let C be an associative copula. The following statements are
equivalent:

(i) C satisfies all inequalities contained in (1);
(ii) C satisfies any one of the inequalities contained in (1);
(iii) C is a member of the Frank family of copulas.

The following result is now immediate.

Proposition 9. The reciprocal relation Q generated by a collection of random
variables pairwisely coupled by the Frank copula T F

λ is cycle-transitive w.r.t.
the upper bound function UF

λ given by:

UF
λ (α,β ,γ) = β + T F

λ (1−β ,γ) = β + γ−T F
1/λ (β ,γ) ,

otherwise stated, Q is weak T F
1/λ -transitive.

In the above transition, we have used the fact that T F
λ (1−x,y)= y−T F

1/λ (x,y).
Since for λ ≤ λ ′ it holds that T F

λ ≥ T F
λ ′ , it also follows that UF

λ ≥UF
λ ′ . Therefore,

the lower the value of λ when the r.v. are coupled by T F
λ , the weaker the type

of transitivity exhibited by the probabilistic relation generated by these r.v.
In particular, the strongest type of transitivity is encountered when coupling
by TL (i.e. partial stochastic transitivity), the weakest when coupling by TM
(i.e. TL-transitivity).

5 Reciprocal Relations Generated by Frank m-Copulas

So far, we have considered collections of r.v. that are pairwisely coupled
by the same Frank copula. The obtained transitivity results can be easily
extended to the case of random vectors with m components, such that the
components are pairwisely coupled by the same Frank copula. It is known
that such random vectors exist for certain values of the λ -parameter.

Definition 6. For any m ≥ 2 and any λ ∈ ]0,1] , the m-ary function CmF
λ :

[0,1]m → [0,1], defined by

CmF
λ (x1,x2, . . . ,xm) = logλ

[
1 +

(λ x1 −1)(λ x2 −1) . . .(λ xm −1)
(λ −1)m−1

]
, (2)

is an m-copula, called Frank m-copula.
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Note that the definition can be slightly extended to cover the parameter
values λ ∈ ]0,sm], where sm is an m-dependent upper bound. For instance,
s3 = 2, s4 = 3−

√
3, s5 = 2(3−

√
6), . . ., s9 = 1.00438, limk→∞ sk = 1.

Proposition 10. The reciprocal relation Q generated by a random vector with
m components and coupled by CmF

λ is weak T F
1/λ -transitive.
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Recent Developments in Censored,
Non-Markov Multi-State Models

Jacobo de Uña-Álvarez

Abstract. Nonparametric estimation of transition probabilities for a cen-
sored multi-state model is traditionally performed under a Markov assump-
tion. However, this assumption may (and will) fail in some applications, lead-
ing to the inconsistency of the time-honoured Aalen-Johansen estimator. In
such a case, alternative (non-Markov) estimators are needed. In this work
we review some recent developments in this area. We also review the key
problem of testing if a given (censored) multi-state model is Markov, giving
modern ideas for the construction of an omnibus test statistic.

1 Introduction

A multi-state model is a model for a stochastic process {X(t),t ≥ 0} allowing
individuals to move along a finite number of states. At each time point t, X(t)
denotes the state occupied by a representative individual in a homogeneous
population, and let {Xr(t),t ≥ 0}, r = 1, ...,n, be a collection of n trajectories
(or histories) corresponding to n subjects randomly sampled from the target
population. In this setup, much effort has been made to estimate the so-called
transition probabilities

pi j(s, t) = P(X(t) = j|X(s) = i) (1)

where i and j are two states, and 0 ≤ s < t. The obvious estimator for pi j(s, t)
is the empirical transition probability

pi j,n(s,t) = ∑n
r=1 I (Xr(t) = j,Xr(s) = i)
∑n

r=1 I (Xr(s) = i)
(2)

which is simply the proportion of observed transitions from i to j in the time
interval [s,t]. In practice, this estimator is typically unavailable because of
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censoring. [1] introduced a nonparametric estimator for pi j(s, t) under cen-
soring. The Aalen-Johansen estimator has become the standard tool for es-
timating the transition probabilities in a nonparametric way. However, it is
constructed on the basis that the underlying process is Markovian, and its
consistency can not be ensured in general.

To be more precise, applications of multi-state models to biomedical data
have shown that the Markov assumption is sometimes violated. A stochastic
process is said to be Markovian when, given the present, the future evolution
does not depend on the past. Consider as an illustrative example the PROVA
trial of bleeding episodes and mortality in liver cirrhosis in [2]. In this example,
a three-state model is used to represent the individuals’ histories; this model
allows for three possible transitions in a progressive way: from healthy (no
bleeding) to bleeding, from bleeding to death, and directly from healthy to
death. This model is usually named ’illness-death model’, and it is progressive
in the sense that past states can not be visited again. [2] provided evidence
(in agreement to previous studies) on the fact that the mortality is markedly
increased shortly after the bleeding episode. This means that subjects in state
’bleeding’ may (and will) have a different prognosis according to their entry
times in that state (i.e., the past history is important for the future, so the
process is not Markov).

There has been some investigation oriented to analyze the properties of
the Aalen-Johansen estimator when the Markov assumption fails. For exam-
ple, Aalen et al. [1] and Datta and Satten [3] established the consistency of
the Aalen-Johansen estimator of the stage occupation probabilities Pj(t) =
P(X(t) = j) for a non-Markov process, while Glidden [4] developed confidence
bands for such an estimator. More recently, however, Meira-Machado et al.
[5] showed that, in general, the Aalen-Johansen estimator of pi j(s, t) may be
dramatically biased if the Markov assumption is not fulfilled. The practical
conclusion is that one should asses the Markovianity of the process before us-
ing the Aalen-Johansen estimator for estimation and inference purposes. And,
if there is evidence of non-Markovianity, some alternative estimators should
be used.

In this work we review some recent developments in nonparametric es-
timation of transition probabilities in non-Markov multi-state models. It is
assumed that the available trajectories can be right-censored by a potential
censoring time that is independent of the process. The available estimators
are given in Section 2. In Section 3, we consider the problem of testing if a
given process is Markov, reviewing the traditional approach and giving some
modern alternative ideas too.

2 Non-Markov Transition Probabilities

For the best of our knowledge, Meira-Machado et al. [5] proposed for the
first time nonparametric estimators for the transition probabilities of a
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censored non-Markov multi-state model. These authors considered the pro-
gressive illness-death (or disability) model, which consists in three different
states (1=’healthy’, 2=’diseased’, and 3=’dead’) and the three possible tran-
sitions 1→2, 2→3, and 1→3. Put Z and T for the sojourn time in state 1
and the total survival time of the process (that is, the time up to reaching
the absorbing state 3) respectively. It is seen in [5] that the transition prob-
abilities are probabilities involving (Z,T ), and hence the question becomes
how the joint distribution function of (Z,T ) can be consistently estimated
under censoring. Here we briefly present their ideas, with a slightly different
notation to simplify things.

The available information is represented by
(

Z̃, T̃ ,Δ1,Δ
)
, where Z̃ and

T̃ stand for the censored versions of Z and T , and Δ1 and Δ are their
respective censoring indicators. Note that the individual is observed to
pass through state 2 if and only if Z̃ < T̃ , and in such a case Z̃ is un-
censored. Let

{(
Z̃i, T̃i,Δ1i,Δi

)
,1 ≤ i ≤ n

}
be an iid sample of

(
Z̃, T̃ ,Δ1,Δ

)
,

and let Wi = Δi
n−Ri+1∏R j<Ri

[
1− Δ j

n−R j+1

]
be the Kaplan-Meier weight attached

to T̃i (here Ri = Rank(T̃i)). With this notation, any functional of the form
S (ϕ) = E [ϕ (Z,T )] is estimated by Sn (ϕ) = ∑n

i=1 Wiϕ
(

Z̃i, T̃i

)
. By noting that

p11(s, t) =
P(t < Z)
P(s < Z)

, p13(s, t) =
P(s < Z,T ≤ t)

P(s < Z)
=

E [ϕs,t (Z,T )]
P(s < Z)

, (3)

where ϕs,t (u,v) = I (u > s,v ≤ t), and p12(s, t) = 1− p11(s, t)− p13(s,t), we have
the following estimators for

{
p1 j(s, t), j = 1,2,3

}
:

p̂11(s, t) =
ŜZ(t)

ŜZ(s)
, p̂13(s,t) =

1

ŜZ(s)

n

∑
i=1

Wiϕs,t

(
Z̃i, T̃i

)
, (4)

and p̂12(s, t) = 1− p̂11(s,t)− p̂13(s, t), where ŜZ(.) is the Kaplan-Meier estima-
tor of the survival function of Z. Similarly, since

p23 (s,t) =
P(Z ≤ s,s < T ≤ t)

P(Z ≤ s < T )
=

E [ϕ̃s,t (Z,T )]
P(T > s)−P(s < Z)

(5)

where ϕ̃s,t (u,v) = I (u ≤ s,s < v ≤ t), and p22(s, t) = 1− p23(s, t), one can intro-
duce the following estimators for

{
p2 j(s, t), j = 2,3

}
:

p̂23 (s,t) =
1

ŜT (s)− ŜZ(s)

n

∑
i=1

Wiϕ̃s,t

(
Z̃i, T̃i

)
and p̂22(s, t) = 1− p̂23(s, t), (6)

where ŜT (.) is the Kaplan-Meier estimator of the survival function of T .
In the uncensored case, all the involved Kaplan-Meier weights reduce to

1/n, and hence the estimators introduced along (4) and (6) collapse to (2).
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Under censoring, the consistency of ŜZ(.) and ŜT (.) follows because the cen-
soring is independent of the process; on the other hand, Theorem 1 in [5]
ensures the consistency of p̂13(s, t) and p̂23 (s, t), which involve multivariate
Kaplan-Meier integrals in the sense of [7]. When the process is Markov, the
estimators (4)-(6) are less efficient than their Aalen-Johansen counterparts.
However, when the Markov condition is violated, these estimators are pre-
ferred since Aalen-Johansen can be systematically biased. Both estimators
(Markov, non-Markov) were compared in simulated and practical settings;
[5] used the PROVA trial data as an illustrative example, while [6] provided
a nice comparison of the methods in a trial on breast cancer.

The idea in [5] for the construction of non-Markov transition probabilities
in the illness-death model can be generalized to any other progressive multi-
state model. Certainly, since each given transition probability is a function
of the sojourn times in the several existing states, the Kaplan-Meier weights
pertaining to the time up to reaching the final absorbing state can be used to
construct consistent empirical weighted averages. Details on this are provided
in [8].

Doubtless, the main drawback of the non-Markov estimators is their large
variance, mainly in the heavily censored case. In order to mitigate this prob-
lem, some presmoothing of the censoring indicators Δi can be performed. By
’presmoothing’ it is meant that each Δi is replaced by some fit to the binary
regression m(z,t) = P

(
Δ = 1|Z̃ = z, T̃ = t

)
before the Kaplan-Meier weights Wi

are computed. In [10] this idea was applied in the scope of the three-state pro-
gressive model (which is just an illness-death model with forbidden transition
1→3) to introduce a new estimator of the joint distribution of the sojourn
times. Also, [11] consider presmoothed non-Markov transition probabilities
for the illness-death model. The main consequence of this approach is that
non-Markov estimators with improved variance can be obtained. In practice,
the presmoothing function m(z, t) is estimated by fitting some parametric
model or via nonparametric regression methods.

3 Testing the Markov Assumption

In this section, we consider the problem of checking the Markov assumption
in practice. Note that this issue is relevant, since (as discussed above) the
Aalen-Johansen estimator may be inconsistent when the Markov condition
is violated. For simplicity of exposure, consider the progressive illness-death
model and let λ (t|s) be the hazard rate of T at time t ≥ s conditionally on
Z = s and Z < T . Note that the Markov assumption states that the value
of λ (t|s) does not depend on s. This is typically tested via a proportional
hazards specification λ (t|s) = λ0(t)eβ s. Then, the null hypothesis representing
the Markov condition is H0 : β = 0. The model can be fitted (and a test
performed) by standard methods from the cases with an uncensored Z. For the
PROVA trial data, the estimated coefficient was β̂ = 0.00526 (s.e. = 0.00167),



Recent Developments in Censored, Non-Markov Multi-State Models 177

and the likelihood ratio test gave a p-value of p = 0.000434 thus rejecting the
Markov condition.

In practice, the model λ (t|s) = λ0(t)eβ s may not be appropriated due to
several reasons. First, the linear predictor β s can not cope in general with
other type of effects. To illustrate this, consider the three-state progressive
model with log(T2) = f (Z)+ ε where T2 = T −Z and where ε is an error term
independent of Z. In this case we get λ (t|s) = λ0((t − s)e− f (s))e− f (s) where
λ0 stands for the hazard of W = eε . Take a extreme-value distribution for ε
(so λ0 becomes constant), Z ∼U [0,2] and f (s) = (s−1)2. Then, the test for
β = 0 under the linear specification λ (t|s) = λ0(t)eβ s is expected to have low
(or even no) power. Second, the proportional hazards assumption may fail;
this is the case, for example, when log(T2) = f (Z)+ ε and W = eε does not
follow a Weibull distribution. Of course, this may influence the performance
of the test. In Table 1 we report the proportion of rejection of this test at level
α = 0.05 for several sample sizes n among 1,000 Monte Carlo trials in these
two situations (we take f (s) = 0 and ε ∼N(0,1) in the second case, labeled as
No PH; in this case, the Markov assumption does not hold because T2 is not
exponentially distributed). We see that, in these two cases, the classical test
exhibits a very poor power. Of course, in the first simulated scenario (labeled
as PH) power could be increased through a more flexible specification of the
predictor; in the second model, however, there is not a clear solution to the
lack of power of the test.

In Table 1, we have also reported the results pertaining to a new method
of testing. The new method is based on the fact that, under the Markov
assumption, the variables T and Z are independent conditionally on the event
At = {Z ≤ t < T} , for each given t > 0. More specifically, we have performed
a test of no correlation between T and Z conditionally on At with t = 2.
The choice t = 2 is interesting because it guarantees the maximum expected
sample size (i.e. the largest P(At)) under the two simulated models. We see
in Table 1 that this new idea may lead to a more powerful test. Besides, we
have seen in the simulations that there is some negative correlation between
the p-values of the classical test and those of the new approach, indicating
that both testing procedures are able to detect different type of alternatives.
Hence, a complementary use of both approaches could be recommended in
practice.

Clearly, the combination of several t values should help to increase the
power of the new method of testing. Moreover, by considering a whole set
of t-values one could explore the variation of the pertaining p-values. To
illustrate this, consider the significance trace {p(t) : t ∈ [t0, t1]}, where p(t)
stands for the p-value of the suggested correlation test, when conditioning on
At . In Figure 1 we depict this curve for the simulated model No PH in Table
1 with n = 500, t0 = 1 and t1 = 3; the given curve is indeed the first quartile
of the p-values along the 1,000 Monte Carlo simulations. Roughly speaking,
the information in this Figure is that (a) in more than 25% of the cases the
trace is able to reject the Markovianity of the process (recall however the
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Table 1 Proportion of rejection at level α = 0.05 along 1,000 Monte Carlo simula-
tions of sample size n for two non-Markov three-state progressive models: classical
method vs. new approach (t = 2).

PH No PH

n Classical New Classical New

100 .069 .119 .073 .097

250 .096 .159 .089 .157

500 .091 .193 .099 .248

1000 .122 .267 .148 .378
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Fig. 1 Significance trace for No PH model with n = 500: first quartile along 1,000
Monte Carlo simulations.

poor power of the classical method in this case, see Table 1), and that (b)
the greatest evidence against the null is achieved around t = 2.2.

Of course, although we have used the Pearson correlation coefficient to im-
plement the new method, it can be adapted in an obvious manner to be based
on other measures of association too. A key issue here is how to incorporate
the censoring effects in the definition of the test statistic. This is not obvious
at all. In [9], an omnibus test statistic which compares the joint distribution
function of (Z,T ) to the product of marginals conditioning on each At was
introduced, accounting for censoring effects. However, the performance of this
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test in practice is still unexplored, and this seems to be a very promising field
of research.

The problem of testing the Markov assumption has been discussed here
for the illness-death model (and for the three-state progressive model) for
the sake of conciseness. In general, one will be interested in testing that
the entry time to the present state (and other measured covariates in the
individual’s history) is unrelated to the future hazard. At the end, this type
of assumptions can be formalized in a simple manner so the methods reviewed
here (or obvious modifications) still apply.
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timation of transition probabilities in a non-Markov illness-death model. Life-
time Data Anal. 12, 325–344 (2006)
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Maximum Likelihood from Evidential
Data: An Extension of the EM Algorithm

Thierry Denœux

Abstract. We consider the problem of statistical parameter estimation when
the data are uncertain and described by belief functions. An extension of the
Expectation-Maximization (EM) algorithm, called the Evidential EM (E2M)
algorithm, is described and shown to maximize a generalized likelihood func-
tion. This general procedure provides a simple mechanism for estimating
the parameters in statistical models when observed data are uncertain. The
method is illustrated using the problem of univariate normal mean and vari-
ance estimation from uncertain data.

Keywords: Belief functions, Dempster-Shafer theory, Statistical inference,
Uncertain data.

1 Introduction

In statistics, observations of random quantities are usually assumed to be
either precise or imprecise, i.e., set-valued. The latter situation occurs, e.g.,
in the case of censored data, where an observation is only known to belong to a
set, usually an interval. The Expectation-Maximization (EM) algorithm [4, 8]
has proved to be a powerful mechanism for performing maximum likelihood
parameter estimation from such incomplete data.

There are situations, however, where the observations are not only impre-
cise, but also uncertain, i.e., partially reliable [1]. Consider, e.g., a classifica-
tion problem in which objects in a population belong to one and only one
group. Let X be the finite set of groups, and X be the group of an object
randomly drawn from the population. In some applications, realizations x
of X are not known with certainty. Rather, an expert provides a subjective
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assessment of x (a process known as labeling). This assessment may take the
form of a subset A⊆X , a probability distribution p on X or, more generally,
a mass function m on X , i.e., a function m : 2X → [0,1]. It must be stressed
that, in this example, the data generation process can be decomposed into
two components: a random component, which generates a realization x from
X , and a non random component, which produces a mass function m that
models the expert’s partial knowledge of x.

If this process is repeated n times independently, the data takes the form
of n mass functions m1, . . . ,mn, considered as a partial specification of an
unknown realization x1, . . . ,xn of an i.i.d. random sample X1, . . . ,Xn. We will
refer to such data as evidential data. If a parametric model is postulated for X ,
how can the method of maximum likelihood be extended to handle such data?
This is the problem considered in this paper. A generalization of the likelihood
function will be proposed, and an extension of the EM algorithm, called the
evidential EM (E2M) algorithm, will be introduced for its maximization.

We may note that, in the special case where each mass functions mi is con-
sonant, the data can be equivalently represented as n possibility distribution
x̃1, . . . , x̃n, which constitutes a fuzzy random sample. The problem of statistical
inference from fuzzy data, which has received a lot of attention in the past
few years [5, 6], is thus a special case of the problem considered here.

Early attempts to adapt the EM algorithm to evidential data, in the special
case of mixture models with evidential class labels, were presented in [10, 7].
A rigorous solution to this problem, which is a special case of the general
method presented in this paper, was introduced in [2].

The rest of the paper is organized as follows. The EM algorithm will first
be recalled in Section 2. The extension of the likelihood function and the
E2M algorithm will then be introduced in Sections 3 and 4, respectively.
Section 5 will demonstrate the application of this algorithm to the problem
of univariate normal mean and variance estimation using uncertain data.

2 The EM Algorithm

The EM algorithm is a broadly applicable mechanism for computing MLEs
from incomplete data, in situations where ML estimation would be straight-
forward if complete data were available [4]. Formally, we assume the existence
of two sample spaces X and Y , and a many-to-one mapping ϕ from X to
Y . The observed (incomplete) data y are a realization from Y , while the
corresponding x in X is not observed and is only known to lie in the set

X (y) = ϕ−1(y) = {x ∈ X |ϕ(x) = y}.

Vector x is referred to as the complete data vector. It is a realization from a
random vector X with p.d.f. gc(x;ΨΨΨ), where ΨΨΨ = (Ψ1, . . . ,Ψd)′ is a vector of
unknown parameters with parameter space ΩΩΩ . The observed data likelihood
L(ΨΨΨ ) is related to gc(x;ΨΨΨ) by



Maximum Likelihood from Evidential Data 183

L(ΨΨΨ ) =
∫

X (y)
gc(x;ΨΨΨ )dx. (1)

The EM algorithm approaches the problem of maximizing the observed-
data log likelihood logL(ΨΨΨ ) by proceeding iteratively with the complete-data
log likelihood logLc(ΨΨΨ) = loggc(x;ΨΨΨ). Each iteration of the algorithm involves
two steps called the expectation step (E-step) and the maximization step (M-
step).

The E-step requires the calculation of

Q(ΨΨΨ ,ΨΨΨ (q)) = EΨΨΨ (q) [logLc(ΨΨΨ )|y] ,

where ΨΨΨ (q) denotes the current fit of ΨΨΨ at iteration q, and EΨΨΨ (q) denotes
expectation using the parameter vectorΨΨΨ (q).

The M-step then consists in maximizing Q(ΨΨΨ ,ΨΨΨ (q)) with respect toΨΨΨ over
the parameter space ΩΩΩ . The E- and M-steps are iterated until the difference
L(ΨΨΨ (q+1))−L(ΨΨΨ (q)) becomes smaller than some arbitrarily small amount.

3 Generalized Likelihood Function

Let us now consider the more complex situation where the relationship be-
tween the observed and complete spaces is uncertain, so that observed data
y can no longer be associated with certainty to a unique subset of X . This
situation will be formalized as follows.

Let us assume the existence of a set Θ of interpretations, one and only one
of which holds, and a probability measure Pr onΘ . If y has been observed and
θ ∈Θ is the true interpretation, then the complete data x is known to belong
to X (y,θ ) ⊆ X . Having observed y, the probability measure Pr is carried
to 2X by the mapping θ → X (y,θ ), which defines a Dempster-Shafer mass
function m on X . For simplicity, we will assume from now on that Θ is finite:
Θ = {θ1, . . . ,θK}, in which case m is a discrete mass function with focal sets
Xk = X (y,θk) and masses mk = m(Xk) = Pr({θk}) for k = 1, . . . ,K.

With the same notations as in the previous section, the observed data
likelihood may now be defined as:

L(ΨΨΨ ) =
K

∑
k=1

mk

∫

Xk

gc(x;ΨΨΨ)dx =
∫

X
gc(x;ΨΨΨ)

(
K

∑
k=1

mk1Xk(x)

)

dx

=
∫

X
gc(x;ΨΨΨ)pl(x)dx = EΨΨΨ [pl(X)] , (2)

where pl : X → [0,1] is the contour function associated to m.
The generalized likelihood of ΨΨΨ is thus equal to the expectation of the

plausibility contour function, with respect to the probability distribution
gc(x;ΨΨΨ). We can remark that, when m is consonant, the contour function can
be seen as the membership function of a fuzzy subset of X : L(ΨΨΨ) is then the
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probability of that fuzzy subset, according to Zadeh’s definition of the prob-
ability of a fuzzy event [11].

In the more general setting of belief functions, L(ΨΨΨ ) has another interpre-
tation that will now be explained. Let gc(·|m;ΨΨΨ ) = m⊕ gc(·;ΨΨΨ ) denote the
p.d.f. obtained by combining m with the complete data p.d.f. gc(·;ΨΨΨ ) using
Dempster’s rule [3, 9]:

gc(x|m;ΨΨΨ) =
gc(x;ΨΨΨ )pl(x)

∫
X gc(u;ΨΨΨ)pl(u)du

=
gc(x;ΨΨΨ )pl(x)

L(ΨΨΨ )
. (3)

The normalizing constant L(ΨΨΨ ) at the denominator of the above expression
is equal to one minus the degree of conflict between m and gc(x;ΨΨΨ). Conse-
quently, maximizing L(ΨΨΨ ) amounts to minimizing the conflict between the
observations (represented by m) and the parametric model gc(·;ΨΨΨ ).

The expression of the observed data likelihood (2) can often be simplified
by making independence assumptions. Let us assume that the observed data
x = (x1, . . . ,xn) is a realization from a random vector X = (X1, . . . ,Xn). In many
applications, we can make the following assumptions:

A1: Stochastic independence of the r.v. X1, . . . ,Xn:

gc(u;ΨΨΨ ) =
n

∏
i=1

gc(ui;ΨΨΨ), ∀u = (u1, . . . ,un) ∈ X .

A2: The plausibility contour function pl(x) can be written as

pl(u) =
n

∏
i=1

pli(ui), ∀u = (u1, . . . ,un) ∈ X ,

where pli is the contour function corresponding to the marginal mass func-
tion mi on xi.

It should be noted that Assumption A2 is totally unrelated to A1: it is not a
property of the random variables X1 . . . ,Xn, but of the uncertain observation
process. It is actually a weaker form of the cognitive independence assumption,
as defined by Shafer [9].

Under Assumptions A1 and A2, the observed data log likelihood can be
written as a sum of n terms:

logL(ΨΨΨ ) =
n

∑
i=1

logEΨΨΨ [pli(Xi)] .

4 The Evidential EM Algorithm

To maximize function L(ΨΨΨ ) defined by (2), we propose to adapt the EM
algorithm as follows. Let the E-step now consist in the calculation of the
expectation of logLc(ΨΨΨ ) with respect to gc(·|m;ΨΨΨ (q)) defined by (3):
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Q(ΨΨΨ ,ΨΨΨ (q)) = EΨΨΨ (q) [logLc(ΨΨΨ )|m] =
∫

log(Lc(ΨΨΨ))gc(x;ΨΨΨ (q))pl(x)dx
L(ΨΨΨ (q))

. (4)

The M-step is unchanged and requires the maximization of Q(ΨΨΨ ,ΨΨΨ (q)) with
respect to ΨΨΨ . The E2M algorithm alternately repeats the E- and M-steps
above until the increase of observed-data likelihood becomes smaller than
some threshold. The following theorem shows that E2M algorithm inherits
the monotonicity property of the EM algorithm, which ensures convergence
provided the sequence of incomplete-data likelihood values remains bounded
from above.

Theorem 1. Any sequence L(ΨΨΨ (q)) for q = 0,1,2, . . . of likelihood values ob-
tained using the E2M algorithm is non decreasing, i.e., it verifies

L(ΨΨΨ (q+1)) ≥ L(ΨΨΨ (q)), ∀q. (5)

Proof. The proof is similar to that of Dempster et al. [4]. ��

To conclude this section, we may note that the p.d.f. gc(x|m;ΨΨΨ) and, con-
sequently, the E2M algorithm depend only on the contour function pl(x) and
they are unchanged if pl(x) is multiplied by a constant. Consequently, the
results are unchanged if m is converted into a probability distribution by
normalizing the contour function.

5 Normal Mean and Variance Estimation

To illustrate the above algorithm, let us assume that the complete data x =
(x1, . . . ,xn) ∈ X = R

n is a realization from an i.i.d. random sample from a
univariate normal distribution N (μ ,σ2). The parameter vector is thusΨΨΨ =
(μ ,σ). The observed data has the form y = (y1, . . . ,yn) with yi = (wi,αi), where
wi is an estimate of xi (provided, e.g., by a sensor), and αi ∈ [0,1] is a degree
of confidence in that estimation. For each yi, there are two interpretations θi1

and θi2. Under interpretation θi1, we admit that xi = wi; under interpretation
θi2, we know only that xi ∈ R. The probability for interpretation θi1 to be
correct is αi, which can thus be interpreted as a degree of reliability of the
piece of information yi. The induced mass function mi on R is defined by

mi({wi}) = αi, mi(R) = 1−αi.

The corresponding contour function is defined by

pli(x) = αiδ (x−wi)+ 1−αi

for all x ∈R, where δ (·) is the Dirac Delta function.
Let gc(·;μ ,σ) denote the normal p.d.f. with mean μ and standard deviation

σ . The observed data log likelihood is
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logL(μ ,σ) =
n

∑
i=1

log

(∫ ∞

−∞
gc(x;μ ,σ)pli(x)dx

)
=

n

∑
i=1

log(αigc(wi;μ ,σ)+ 1−αi) ,

which is to be maximized with respect to μ and σ .
The complete data log likelihood is

logLc(μ ,σ) =−n
2

log(2π)−n logσ − 1
2σ2

n

∑
i=1

(xi − μ)2 =

− n
2

log(2π)−n logσ − 1
2σ2

(
n

∑
i=1

x2
i −2μ

n

∑
i=1

xi + μ2

)

.

Consequently,

Q(ΨΨΨ ,ΨΨΨ (q)) =−n
2

log(2π)−n logσ

− 1
2σ2

(
n

∑
i=1
β (q)

i −2μ
n

∑
i=1
γ(q)

i + μ2

)

, (6)

where γ(q)
i and β (q)

i denote, respectively, the expectations of X and X2 with
respect to the conditional probability distribution

gc(·|mi;ΨΨΨ (q)) = gc(·;μ (q),σ (q))⊕mi

defined by

gc(x|mi;ΨΨΨ (q)) =
gc(x;ΨΨΨ (q))pli(x)

∫ +∞
−∞ gc(u;ΨΨΨ (q))pli(u)du

=
gc(x;ΨΨΨ (q)) [αiδwi(x)+ (1−αi)]

αigc(wi;ΨΨΨ (q))+ 1−αi
.

The following equalities thus hold:

γ(q)
i =

αigc(wi;ΨΨΨ (q))wi +(1−αi)μ (q)

αigc(wi;ΨΨΨ (q))+ 1−αi
(7)

and

β (q)
i =

αigc(wi;ΨΨΨ (q))w2
i +(1−αi)

[(
μ (q)
)2

+
(
σ (q)
)2
]

αigc(wi;ΨΨΨ (q))+ 1−αi
. (8)

The maximum of Q(ΨΨΨ ,ΨΨΨ (q)) defined by (6) is obtained for the following
values of μ and σ :

μ (q+1) =
1
n

n

∑
i=1

γ(q)
i (9)
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and

σ (q+1) =

√
1
n

n

∑
i=1

β (q)
i −

(
μ (q+1)

)2
. (10)

In E-step of the E2M algorithm for this problem thus consists in the cal-
culation of γ(q)

i and β (q)
i for all i using (7) and (8), respectively. The M-step

then updates the estimates of μ and σ using (9) and (10). The algorithm
stops when the relative increase of the observed data likelihood becomes less
than some threshold ε.

Example 1. To illustrate the application of the above algorithm to a situation
where data are unreliable, we considered the following experiments. Random
samples of size n = 100 were drawn from a standard normal distribution. For
each realization xi, a number αi was drawn from the uniform distribution
U[0,1]. With probability αi, wi was defined as xi, and with probability 1−αi it
was set to xi +εi, with εi ∼N (0,s2). Parameters μ and σ were estimated using
the E2M algorithm based on the data (wi,αi), i = 1, . . . ,n. The experiment was
repeated N = 100 times and mean squared errors on μ and σ were computed.
The results are shown in Figure 1. Our approach was compared with the
simple strategy that consists in estimating μ and σ by the sample mean and
standard deviation of the wi for all i such that αi ≥ c, for different choices
of c. We can see that the E2M algorithm is much more robust than this
simple reference method. Further experiments involving comparisons with
more sophisticated alternative estimators are under way.

μ

α

α

α

α σ

α

α

α

α

Fig. 1 Mean squared errors on μ (left) and σ (right, logarithmic y scale) as func-
tions of the noise standard deviation s for the E2M algorithm and alternative meth-
ods (see details in text).

6 Conclusion

An iterative procedure for estimating the parameters in a statistical model
using evidential data has been proposed. This procedure, which generalizes
the EM algorithm, minimizes the degree of conflict between the uncertain
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observations and the parametric model. It provides a general mechanism for
statistical inference when the observed data are uncertain. It remains an open
problem to determine the conditions under which the obtained estimator is
consistent. This is the topic of on-going research.
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A Decision Rule for Imprecise
Probabilities Based on Pair-Wise
Comparison of Expectation Bounds

Sébastien Destercke

Abstract. There are many ways to extend the classical expected utility de-
cision rule to the case where uncertainty is described by (convex) probability
sets. In this paper, we propose a simple new decision rule based on the pair-
wise comparison of lower and upper expected bounds. We compare this rule
to other rules proposed in the literature, showing that this new rule is both
precise, computationally tractable and can help to boost the computation of
other, more computationally demanding rules.

Keywords: Maximality, Hurcwitz criterion, E-admissibility, Lower previ-
sions, Γ -maximin.

1 Introduction

We are concerned here with the problem of making a decision d, which may
be taken from a set of N available decisions D = {d1, . . . ,dN}. Usually, this
decision is not chosen arbitrarily, i.e., it should be the best possible in the
current situation. In our case, the benefits that an agent would gain by taking
decision di depend on a variable X and the knowledge we have about its value.
We assume here that the true value of X is uncertain, that it takes its value on
a finite domain X and that the benefit (or gain, reward) of choosing di can
be modelled by a real-valued and bounded utility function Ui : X → R, with
Ui(x) the gain of choosing action di when x is the value of X . The problem
of decision making is then to select, based on this information, the decisions
that are optimal, i.e. are likely to gives the best possible gain.

When uncertainty on X is (or can be) modelled by a probability distribu-
tion p : X → [0,1], many authors (for example De Finetti [2]) have argued
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that the optimal decision d ∈ D should be the one maximising the expected
utility, i.e., dEp = argmaxdi∈D Ep(Ui) =∑x∈X Ui(x)p(x). Thus, selecting the op-
timal decision in the sense of expected utility comes down to considering the
complete (pre-)order induced by expected utility, here denoted by ≤E, over
decisions in D (di ≤E d j if Ep(Ui)≤Ep(Uj)), and to choose the decision which
is not dominated by others (Given a partial order ≤ on D , we say that d
dominates d′ if d′ ≤ d). In the sequel, we will say that a decision d is opti-
mal w.r.t. an order ≤, or a decision rule, if it is non-dominated in the order
induced by this decision rule.

However, it may happen that our uncertainty about the value of X cannot
be modelled by a single probability, for the reason that not enough informa-
tion is available to identify the probability p(x) of every element x ∈ X . In
such a case, convex sets of probabilities, here called credal sets [5] (which are
formally equivalent to coherent lower previsions [9]), have been proposed as
an uncertainty representation allowing us to model information states going
from full ignorance to precise probabilities, thus coping with insufficiencies
in our information. Formally, they encompass most of the uncertainty rep-
resentations that integrate the notion of imprecision (e.g., belief functions,
possibility distributions, . . . ). To select optimal decisions in this context, it
is necessary to extend the expected utility criterion, as the expected utility
E(U) is no longer precise and becomes a bounded interval [E(U),E(U)]. In
the past decades, several such extensions, based on the evaluations of expec-
tation bounds rather than of precise expected values, have been proposed (see
Troffaes [6] for a concise and recent review). Roughly speaking, two kinds of
generalisations are possible: either using a combination of the lower and up-
per expectation bounds to induce a complete (pre-)order between decisions,
reaching a unique optimal decision, or relaxing the need of a complete or-
der and extending expected utility criterion to obtain a partial (pre-)order
between decisions. In this latter cases, there may be several optimal deci-
sions, the inability to select between them reflecting the imprecision in our
information.

In this paper, we propose and explore a new decision rule of the latter kind,
based on a pair-wise comparison of lower and upper expectation bounds. This
rule, which has not been studied before in the framework of imprecise prob-
abilities (to our knowledge), is quite simple and computationally tractable.
Section 2 recalls the imprecise probabilistic framework as well as the existing
decision rules. We then present in Section 3 the new rule and compare it
to existing rules. We will show that this rule is (surprisingly) precise when
compared to other rules inducing partial pre-orders between decisions.

2 Imprecise Probabilities and Decision Rules

We consider that our information and uncertainty regarding the value of a
variable X is modelled by a credal set P . Given a function Ui : X → R over
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the space X , the lower and upper expectations EP(Ui),EP(Ui) of Ui are such
that

EP(Ui) = inf
p∈P

Ep(Ui) EP(Ui) = sup
p∈P

Ep(Ui)

In Walley’s [9] behavioural interpretation of imprecise probabilities, EP(Ui)
is interpreted as the maximum buying price an agent would be ready to pay
for Ui, associated to decision di. Conversely, EP(Ui) is interpreted as the
minimum selling price an agent would be ready to receive for Ui. These two
expectation bounds are dual, in the sense that, for any real-valued bounded
function f over X , we have E( f ) =−E(− f ).

When proposing a decision rule based on lower and upper expectations
E,E, a basic requirement is that this decision rule should reduce to the classi-
cal expected utility rule when P reduces to a single probability distribution.
Still, there are many ways to do so, providing D with a complete or a partial
(pre-)order. In the former case, there is a unique optimal non-dominated de-
cision, while in the latter there may be a set of such non-dominated decisions.
We will review the most commonly used approaches, dividing them according
to the kind of order they induce on D .

Example 1. In order to illustrate our purpose, let us consider the same exam-
ple as Troffaes [6]. Consider a coin that can either fall on head (H) or tails
(T ), thus X = {H,T}, with our uncertainty given as p(H) ∈ [0.28;0.7] and
p(T ) ∈ [0.3;0.72]. Different decisions and their pay-off in case of landing on
Heads or Tails are summarized in Table 1, together with the lower and upper
expectations reached by each decision.

Table 1 Example 1 possible decisions and expectation bounds.

D Ui H T E E

d1 U1 4 0 1.12 2.8
d2 U2 0 4 1.2 2.88
d3 → U3 3 2 2.28 2.7
d4 U4 1/2 3 1.25 2.3
d5 U5 47/20 47/20 2.35 2.35
d6 U6 41/10 −3/10 0.932 2.78

2.1 Rules Inducing a Complete Order

Let us start with the rules pointing to a unique optimal decision.

Γ -maximin. The Γ -maximin rule [3], denoted by ≤E, consists in replacing
the expected value with the lower expectation. The optimal decision under
this rule is such that

d≤E
= arg max

di∈D
EP(Ui).
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This rule correspond to a pessimistic attitude, since it consists in maximizing
the worst possible expected gain. In example 1, d≤E

= d5.

Γ -maximax. The optimistic version of the Γ -maximin, denoted by ≤
E

and
consisting in selecting as optimal the decision that maximises the expected
outcome is such that

d≤
E

= arg max
di∈D

EP(Ui).

In example 1, d≤
E

= d2.

Hurcwitz Criterion. Hurcwitz criterion in imprecise probabilities [4], de-
noted here by ≤α , consists in choosing a so-called pessimism index α ∈ [0,1],
and to induce an order where the behaviour of the decision maker range
from fully pessimistic (α = 1) to fully optimistic (α = 0). Once a pessimistic
index α has been chosen, Hurwictz rule is such that di ≤α d j whenever
αEP(Ui)+ (1−α)EP (Ui) ≤ αEP(Uj)+ (1−α)EP(Uj), and the optimal de-
cision d≤α under this rule is

d≤α = arg max
di∈D

αEP(Ui)+ (1−α)EP(Ui).

Γ -maximin and -maximax are respectively retrieved when α = 1 and α = 0. In
Example 1, the set of optimal decisions d≤α that can be reached by different
values of α is {d2,d3,d5}

Note that determining optimal decisions for these three criteria requires N
comparisons and at most 2N computations of expectation bounds.

2.2 Rules Inducing a Partial Order

The other alternative when extending expected utility criterion is to let drop
off the assumption that the order on the decisions has to be complete. That
is, to allow the order to be partial and to possibly induce a set of optimal
decisions rather than a single one. Three rules following this way have been
proposed up to now.

Interval dominance. A first natural extension to the comparison of precise
expectations to the case of interval-valued expectations is the interval domi-
nance order ≤I such that di ≤I d j if and only if EP(Ui)≤ EP (Uj). That is,
d j dominates di if the expected gain of d j is at least as great as the one of di.
The resulting set of non-dominated (or optimal) decisions is denoted by DI

and is such that
DI = {d ∈ D |� ∃d′ ∈ D ,d ≤I d′}.

Computing DI requires the computation of 2N expectations and 2N com-
parisons. For Example 1, we have DI = {d1,d2,d3,d5,d6}. As we can see,
this rule has the advantage to be computationally efficient, but is also very
imprecise.
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Maximality. When expectations are precise, we have di ≥E d j whenever
Ep(Ui) ≥ Ep(Uj) or, equivalently, whenever Ep(Ui −Uj) ≥ 0. The notion of
maximality consists in extending this notion by inducing a pre-order ≥M

such that di >M d j whenever EP (Ui −Uj) > 0. In Walley’s interpretation,
EP (Ui−Uj) > 0 means that we are ready to pay a positive price to exchange
Ui for Uj, hence that decision di is preferred to decision d j. The resulting set
of optimal decisions DM is such that

DM = {d ∈ D |� ∃d′ ∈ D ,d ≤M d′}.

Computing DM requires the computation of N2 −N lower expectations and
N2 −N comparisons. For Example 1, we have DM = {d1,d2,d3,d5}.

E-admissibility. Robustifying the expected utility criterion when uncer-
tainty is modelled by sets of probabilities can simply be done by selecting
as optimal those decisions that are optimal w.r.t. classical expected utility
for at least one probability measure of P. In this case, the set of optimal
decision DE is such that

DE = {d ∈ D |∃p ∈ P s.t. dEp = d}.

Utkin and Augustin [7] have proposed algorithms that allow computing DE

by solving N linear programs whose complexity is slightly higher than the ones
usually associated to the computation of a lower expectation. For Example 1,
we have DE = {d1,d2,d3}. Both E-admissibility and Maximality give more
precise statements than Interval dominance, but their computational burden
is also higher (hence, they are more difficult to use in complex problems).

3 The New Decision Rule

The rules presented in the previous section consist, for most of them, in com-
paring numeric values (expectation bounds) to determine which decisions are
dominated by others and are therefore non-optimal. Other ways to order
interval-valued numbers can therefore be considered and studied as poten-
tial decision rules. One such ordering that has not be studied in imprecise
probability theory (as far as we know) is the one where an interval [a,b]
is considered as lower than [c,d] if a ≤ c and b ≤ d. This comes down to a
pair-wise comparison of the interval bounds.

Using this ordering, we therefore propose a new decision rule, that we call
Interval bound dominance (I B-dominance for short), denoted by ≤I B , and
defined as follows

Definition 1 (Interval bound dominance). Given a credal set P and
two decisions di,d j ∈D , di ≤I B d j whenever EP(Ui)≤EP(Ui) and EP(Ui)≤
EP (Ui) (di <I B d j when at least one of the two inequalities is strict).
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Note that, as for the rules of Section 2.2, the order ≤I B is partial and induces
a set of optimal decisions. The set of optimal decisions DI B resulting from
this decision rule is such that

DI B = {d ∈ D |� ∃d′ ∈ D ,d ≤I B d′}.

In Example 1, we have DI B = {d2,d3,d5}, which is different from any set
obtained with other decision rules of Section 2.2.

Computing the set DI B requires the computation of 2N expectation
bounds (the same as for computing DI ) and 2N comparisons at most. It
is therefore as computationally efficient as the interval dominance criterion,
and can be more precise (see Example 1). Actually, we will show that it is
always at least as precise.

Let us now study the relation of this new decision rule with previous ones.
First, we will show that the I B decision rule is coherent with the rules
inducing a complete order between decisions, before processing to the rules
inducing a partial order.

3.1 Relations with Complete Ordering Rules

Let us first start with Γ -maximin and Γ -maximax. As indicates the next
proposition, we can easily show that the I B decision rule considers as opti-
mal the decisions selected by these two rules.

Proposition 1. The two optimal decisions d≤E
and d≤

E
in the sense of Γ -

maximin and Γ -maximax are also optimal in the sense of I B dominance,
that is {d≤E

,d≤
E
} ⊆DI B

Proof. We will only prove d≤E
∈DI B, proof for d≤

E
being similar. Let d≤E

=
di, as by definition there are no decision d j ∈D such that E(Ui) < E(Uj), this
means that there are no decision that I B-dominates di, hence d≤E

∈ DI B .
��

The next proposition shows that I B decision rule can also be seen as a
robustification of Hurwictz criterion.

Proposition 2. Let di,d j be two different decisions. Then, di ≤I B d j if and
only if di ≤α d j for every α ∈ [0,1]

Proof. Let us first prove the ”if”part. Since di ≤α d j for every α, if we consider
α = 1 and α = 0 we respectively have that EP(Ui)≤1 EP (Uj) and EP (Ui)≤0

EP (Uj). These two inequalities leading to di ≤I B d j.
Let us now concentrate on the ”only if” part. di ≤I B d j means that

EP (Ui) ≤ EP (Uj) and EP(Ui) ≤ EP(Uj) (these two inequalities covering
the case where α = 0 and α = 1). Hence, for any value α ∈ (0,1), we also
have αEP(Ui)≤αEP(Uj) and (1−α)EP(Ui)≤ (1−α)EP(Uj). Summing left
and right-hand sides of each equations, we have αEP(Ui)+(1−α)EP(Ui)≤
αEP(Uj)+ (1−α)EP(Uj), hence di ≤I B d j implies di ≤α d j for any α. ��
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The I B decision rule can thus be seen as a decision rule where a deci-
sion dominates another if and only if it dominates it under all different pes-
simistic/optimistic attitudes, thus safeguarding the decision maker against
the need to commit into such an attitude in a first analysis. Actually, it looks
possible that DI B contains all actions that are optimal in the Hurcwitz
sense for some value of α, as is the case in the example. Let us now study
the relations with the rules inducing a partial ordering.

3.2 Relations with Partial Ordering Rules

The next proposition indicates that Interval dominance implies I B domi-
nance.

Proposition 3. Given a decision set D and a credal set P, we have DI B ⊆
DB, with the inclusion being usually strict.

Proof. We need to show that if a decision di is not optimal w.r.t. ≤I , then it
is also not optimal w.r.t. ≤I B. If di is not optimal w.r.t. ≤I , it means that
there is a decision d j such that di <I d j, hence that EP(Ui) < EP(Uj). Since
EP (Ui)≤ EP(Ui) < EP(Uj) ≤ EP(Uj), this implies di <I B d j. ��

The next result concerns the relation of I B decision rule with maximality.

Proposition 4. Given a decision set D and a credal set P, we have DI B ⊆
DM , with the inclusion being usually strict.

Proof. Let us show that if a decision di is not optimal w.r.t. ≤M , then it will
also be non-optimal w.r.t. ≤I B . If di �∈ DM , then it means ∃d j s.t. E(Uj −
Ui) > 0. Using the properties of lower expectations (see Walley [9, Ch. 2]),
we have E(Uj)+ E(−Ui) ≥ E(Uj −Ui). Using this inequality and the duality
between lower and upper expectations, we have E(Uj)+ E(−Ui) = E(Uj)−
E(Ui) > 0, hence E(Uj) > E(Ui). Similarly, we have that E(Uj) + E(−Ui) ≥
E(Uj −Ui). Using the same reasoning and duality, we have E(Uj)−E(Ui) > 0,
meaning that E(Uj) > E(Ui). Hence, di <M d j implies di <I B d j, and di �∈
DI B. ��

This proposition tells us, among other things, that I B-dominance can be
used as a quick estimate of an inner approximation of the set DM , while
interval dominance can be used to estimate an outer approximation of this
set. This means that both interval dominance and I B-dominance, which
present a low computational complexity when compared to maximility, can
be used to reduce drastically the number of required computations to evaluate
DM . In the example, only two decisions that are in DI but not in DI B would
need to be verified: {d1,d6}.

Concerning E-admissibility and I B-dominance, it is easy to see, from
the example, that none imply the other, since the set of optimal actions
under these rules only overlap (and their union is the set DM ). Figure 1
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Γ -maximax

Γ -maximin

Hurcwitz

E-admissibility

I B−dominance

Maximality Interval dominance

Fig. 1 Relations between decision rules: A → B means that a decision optimal in
the sense of A is also optimal in the sense of B

recalls [6] and summarises the implications relation between the different
rules, integrating I B-dominance into it. Roughly speaking, the figure goes
from the most precise decision rules (left) to the most imprecise (right).

4 Conclusion

In this paper, we have proposed a simple new decision rule for imprecise
probabilities, based on expectation bound pair-wise comparison, and have
studied its relation with other existing decision rules. The interest of this
rule is that it remains in the spirit of an imprecise probabilistic approach,
since less information will lead to a larger set of optimal decisions, but is
both computationally tractable and less conservative than most other rules.
Another interesting fact is that this rule implies maximality (i.e. I B optimal
decisions are also maximal). Therefore, if not used for itself, the I B decision
rule can boost the computational tractability of DM , using it in conjunction
with interval dominance to reduce the number of decision whose optimality
under maximality criterion must be checked.

The next step is to evaluate to which extent this decision rule can improve
the results of some tasks such as classification [10], and if it is consistent with
a dynamic programming approach when dynamics enters the picture [1].
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Handling Bipolar Knowledge with Credal
Sets

Sébastien Destercke

Abstract. How to represent and handle bipolar information has recently
received a lot of attention. Being bipolar means that the information has
a positive and negative part. In this paper, we consider asymmetric bipo-
lar information (i.e. situations where positive and negative information are
unrelated and should be processed separately). We propose a framework to
represent and handle it with so-called credal sets, i.e., with convex sets of
probability distributions. We also provide some illustrative examples.

Keywords: Bipolarity, Imprecise probabilities, Information fusion.

1 Introduction

Bipolarity consists in differentiating between positive and negative informa-
tion. This information usually concerns either evidences about the true value
assumed by an ill-known variable or preferences expressed by some agents.
In this paper, we are concerned with the first type of information. One can
consider at least three different types of bipolarity (See [9] for more details).
The first one, called symmetric univariate, models bipolarity by the use of
an univariate scale and can be represented by the means of classical prob-
ability measures. The second one, called symmetric bivariate, handles two
separate unipolar scales (positive and negative) that refer to the same in-
formation and are usually linked by some duality relation. Lower and dual
upper previsions [16], whose expressiveness is equivalent to credal sets, are
examples of such kind of bipolarity, as well as other models encompassed
by this representation (lower/upper probabilities, belief functions, possibility
distributions).

The last type of bipolarity, coined as asymmetric or heterogeneous, is the
one addressed in this paper. Such bipolarity is used when considering two

Sébastien Destercke
UMR IATE, Campus Supagro, 34060 Montpellier, France
e-mail: sebastien.destercke@irsn.fr

C. Borgelt et al. (Eds.): Combining Soft Computing & Stats. Methods, AISC 77, pp. 199–207.
springerlink.com � Springer-Verlag Berlin Heidelberg 2010

sebastien.destercke@irsn.fr


200 S. Destercke

unrelated kinds of information that have to be processed in parallel: one
constraining the possible values of a variable (negative information), the other
exhibiting what is likely to be observed (positive information). The first kind
of information corresponds (for example) to constraints, physical laws, expert
opinions, while examples, observations and measurements are instances of the
second type. Note that the two kinds of information are effectively unrelated
(for instance, an expert may judge as possible a value that will never be
observed), hence the need for asymmetry. Also, some psychological studies [3]
support the fact that the brain processes differently positive and negative
information.

Notions of bipolarity have been declined in a number of frameworks: multi-
criteria decision making [11], conflict resolution in argumention [1], uncertainty
and preferences representation in possibility theory [9]. In this paper, we pro-
pose a framework to model, represent and treat bipolar information when un-
certainty is modelled by convex sets of probabilities, here called credal sets [12],
which constitute very generic uncertainty models. The idea behind this frame-
work is quite simple: we propose to represent each corpus of positive and neg-
ative information as two separate credal sets, and then to conjunctively merge
them in a single credal set. We also propose some solutions to deal with con-
flicting negative and positive information. After recalling the basics of credal
sets, Section 2 presents our proposal. Section 3 then provides some illustrative
examples, using the popular imprecise probabilistic representations that are
p-boxes and probability intervals.

2 Handling Bipolar Information with Credal Sets

In this paper, we consider that information regarding a variable X assuming
its values on a space X made of mutually exclusive elements is modelled by
the means of a credal set P. Let us denote by L (X ) the set of real-valued
bounded functions on X . Given a function f ∈L (X ), one can compute the
lower and upper expectations EP( f ),EP ( f ) induced by P such that

EP ( f ) = inf
p∈P

Ep( f ) EP( f ) = sup
p∈P

Ep( f ),

where p is a probability distribution over X and Ep( f ) the expected value of
f w.r.t. p. These two values are dual, in the sense that EP( f ) = −EP(− f ).
Thanks to this duality, one can only work with one of the two mappings
(usually E).

Alternatively, one can start from a lower mapping P : K →R from a subset
K ⊆L (X ), and consider the induced credal set P(P) such that

P(P) = {p ∈ PX |(∀ f ∈ K )(Ep( f ) ≥ P( f ))}.

with PX the set of all probability mass functions over PX . In his theory of
lower previsions [16], Walley starts from the mapping P that he calls lower
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prevision. He interprets P( f ) as the supremum buying price for the uncertain
reward f . A lower prevision P is then said to avoid sure loss iff P(P) �= /0,
and to be coherent if the lower expectation EP(P)( f ) = P( f ) coincides with P
for every f ∈ K (i.e., P is the lower envelope of P(P)). He also shows that
coherent lower previsions and credal sets have the same expressive power (in
the sense that any credal can be identified by a unique lower prevision, and
vice versa). Given a credal set P, its lower (resp. upper) probability of an
event A, denoted by PP(A) (resp. PP(A)), corresponds to the lower (resp.
upper) expectation of the indicator function 1(A) of the event , that takes
value one on A and zero elsewhere. By duality, we have PP(A) = 1−PP(Ac).

Credal sets are very general uncertainty models, in the sense that they
encompass most of the other known uncertainty models, in particular both
necessity measures of possibility theory [7] and belief measures of evidence
theory [13] correspond to particular classes of lower probabilities inducing
specific credal sets.

2.1 Collecting and Representing Bipolar Information

As what is done in possibility theory [9] and evidence theory [14], we propose
to model positive and negative information by using two separate models of
our chosen framework. That is, positive information is modelled by a credal
set P+, while negative information is modelled by another credal set P−.

Negative information (P−): Negative information expresses constraints
about the value X can assume. It rules out possible values of X , considering
them impossible or less likely than others (expert opinions are an example of
such information). The negative credal set P− corresponding to such infor-
mation will typically be induced by a collection of expectation bounds over
a set of chosen functions1 f1, . . . , fk ∈ L (X ), in the form

P( fi)≤
N

∑
n=1

fi(xn)p(xn) ≤ P( fi) (1)

Note that pieces of negative information are treated conjunctively, in the
sense that we consider the credal set induced by all constraints (1) at once.
This means that the more we accumulate negative information, the more
precise is P−. We assume here that P− �= /0 (i.e., the lower prevision P given
by Eq. (1) avoids sure loss).

Positive information (P+): Positive information consists in a set of M
observations (experiments), coming in the form of data in our case. To obtain
a positive credal set P+ from these data, one can use a model or a learning
process. For instance, multinomial data can be associated to the well-known

1 For example, functions corresponding to some chosen events, moments such as
the mean value.
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Imprecise Dirichlet model [2]. Again, positive information is accumulated
conjunctively, since the more data we have, the more precise is P+. This is
due to the fact that X is made of mutually exclusive elements, meaning that
observing a value more often makes the observation of others less likely.

Note that there are cases where either positive or negative information
should be combined disjunctively instead of conjunctively. Smets [14], when
combining reasons to believe and reasons not to believe, proposes a rule that
combines disjunctively negative information and conjunctively positive infor-
mation. He works at a different level from ours, since we work directly with
knowledge about variables, and not with evidences from which this knowledge
is inferred. In their possibilistic approach, Dubois and Prade [9] also work
directly with knowledge about variables, but propose to combine positive
information disjunctively and negative information conjunctively. However,
their proposal concerns variables taking their values on a conjunctive space
X , i.e., the true value of X can be several values of X (in their example,
the opening hours of a museum). In that case, it appears natural to combine
disjunctively positive information, as observing a particular value does not
make the others less likely.

2.2 Merging Bipolar Information

Once negative and positive information have been collected, it is desirable
to combine them into a unique credal set. This unique credal set should be
non-empty (i.e., consistent) and more precise than the positive and negative
credal sets considered separately. Given these requirements, it seems natu-
ral to merge them through a conjunctive combination operator, namely to
consider as our final information the merged credal set P+∩− := P+∩P−,
when this intersection is not empty.

When positive and negative information conflict with each other (i.e.,
P+∩− = /0), it is desirable to restore consistency through some revision pro-
cess. As in [9], we propose to weaken one type of information to restore con-
sistency. Given a parameter ε ∈ [0,1] and a credal set P, let us first define
the ε-discounted credal set Pε as

Pε = {ε pP +(1− ε)p|pP ∈ P, p ∈ PX }. (2)

When dealing with bipolar knowledge, observations are usually judged more
reliable than negative information, thus it seems more reasonable to weaken
P− rather than P+. A solution to restore consistency is to consider the
minimal value ε∗ such that P−

ε∗ is consistent with P+, i.e.,
ε∗ = min{ε ∈ [0,1]|P−

ε∗ ∩P+ �= /0} (3)

and then take P−
ε∗ ∩P+ as our final state of knowledge. However, as the

above revision can lead to a very precise final information state, one may
consider some value ε ≤ ε∗. The same revision process can be applied to P+.
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Even if this strategy makes more sense when bipolar information represent
preferences [9], it could also be used in knowledge representation when data
reliability is questionable.

2.3 Revising Knowledge with new Pieces of
Information

Another case where differentiating positive and negative information rather
than directly considering the merged representation P+∩− is useful is the
case when one receives new pieces of information to be incorporated into its
knowledge. For example, consider new negative information, possibly pro-
vided by an additional (reliable) expert, and modelled as a credal set P−

new.
The information conveyed by P−

new should be first added to P−, e.g., by
computing P

′− = P−
new ∩P−, before merging negative and positive infor-

mation in a single representation. Note that making this distinction can be
important, as P−

new may be non-conflicting with P− (i.e., P−
new ∩P− �= /0),

while it may be conflicting with the current positive and negative information
taken together (i.e., P−

new ∩P+∩P− = /0).

3 Illustrative Examples

Let us now provide some illustrative examples of the proposed way to deal
with bipolar knowledge. The examples concern two popular imprecise prob-
abilistic models: p-boxes [10] and probability intervals [4].

3.1 p-Boxes

A p-box [F,F ] defined on the (here discretized) real line R is a pair of lower
and upper cumulative distributions describing our uncertainty about the
value of a variable. They consists in lower and upper probabilities given over
events of the type (−∞,x], inducing a credal set P[F,F ] such that

P[F,F ] = {p ∈ PR|∀x ∈ R, F(x) ≤ Fp(x) = P([−∞,x])≤ F(x)},

where Fp is the cumulative distribution of p.

Positive information. Following [10], it is possible to derive a p-box from
a limited set of observations (x1, . . . ,xm) by using Kolmogorov-Smirnov con-
fidence limits to define bounds around the empirical distribution Fm, thus
making no assumption about the distribution form. The distribution Fm is
defined as

Fm(x) =

⎧
⎨

⎩

0 for x ≤ x(1)
i/n for x(i) ≤ x ≤ x(i+1)
1 for x(m) ≤ x
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where x(i) are the ordered sampled values. Given the samples and a confidence
level α ∈ [0,1], one can use KS confidence limits to obtain a p-box [Fm,Fm]
such that

Fm = max(0,Fm −Dm(α)) and Fm = min(1,Fm + Dm(α))

We denote by P+
[F ,F ] the credal set obtained from this positive information.

Negative information. Negative information forming p-boxes usually
comes from experts evaluating some percentiles for a set of fixed values. We
denote by P−

[F ,F ] the credal set induced by negative information.

Merging. In the particular case of p-boxes, the credal set P[F,F ]−∩+

= P[F ,F ]+∩P[F ,F ]− is also induced by a p-box [F ,F]−∩+ such that

[F ,F ]−∩+ = [max{F−,F+},min{F
−
,F

+}].

In case of conflict, applying Eq. (2) does not usually result in a credal set
induced by a p-box. However, given a value ε, the p-box [F ,F ]ε such that
Fε = εF and F

ε = εF + 1− ε induces an outer approximation of Pε .

Example 1. Assume X ∈ [0,16]. 10 samples (1; 1.5; 3; 3.5; 4; 6; 10; 11; 14; 15)
provide an empirical cumulative distribution. For a confidence level of 0.95,
the value D10(0.95) = 0.40925. An expert also provides its opinion about the
probabilities that the variable value is lower than values 4,8,12, in the form
of the following lower and upper bounds: [0,0.2], [0.1,0.3], [0.5,0.7]. Figure 1
displays the p-boxes [F,F ]+ and [F ,F ]− resulting from these two types of
information as well as the merging result.

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16

[F,F ]− [F,F ]+

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12 14 16

[F,F ]−∩+

Fig. 1 Illustrative example: p-boxes

3.2 Probability Intervals

Probability intervals [4] are a set of lower and upper probabilistic bounds
given over singletons x ∈X . They can be described by a set L = {[l(x),u(x)]|
x ∈X } of intervals. They induce a credal set PL such that
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PL = {p ∈ PX |∀x ∈ X , l(x) ≤ p(x) ≤ u(x)}.

Necessary and sufficient conditions for probability intervals to induce a non-
empty credal set are provided by [4]. They can be summarized by the condi-
tions that, ∀x ∈ X ,

u(x)+ ∑
y∈X \x

l(y) ≤ 1 and l(x)+ ∑
y∈X \x

u(y) ≥ 1

Positive information. There are mutliple models to compute confidence
bounds on multinomial data with a limited number of samples. This can be
done, for instance, by considering statistical confidence intervals over multi-
nomial data [6] or by using the so-called Imprecise Dirichlet Model (IDM) [2].
Here, we consider the IDM. Let {x1, . . . ,xN} be an arbitrary indexing of el-
ements of X , M the total number of observations, mk the number of times
xk has been observed, and s a positive real value determining the quickness
of convergence of the IDM. Then, the probability intervals derived from the
IDM are such that, for xk, k = 1, . . . ,N

l(xk) =
mk

m+ s
and u(xk) =

mk + s
m+ s

. (4)

We denote by L+ the obtained probability intervals, and P+
L the induced

credal set.

Negative information. As for p-boxes, negative information can be pro-
vided by some experts or by a propagation through a model (e.g., a credal
network [5]). We denote by L− the obtained probability intervals, and P−

L
the induced credal set.

Merging. The credal set P−∩+
L =P+

L ∩P−
L is again induced by a probability

interval L+∩− which is such that, ∀x ∈ X ,

l+∩−(x) = max{l+(x), l−(x),1− ∑
y∈X \x

u+(y),1− ∑
y∈X \x

u−(y)}

u+∩−(x) = min{u+(x),u−(x),1− ∑
y∈X \x

l+(y),1− ∑
y∈X \x

l−(y)}.

Also note that the result of Eq (2), when applied to probability intervals
L, result in a credal set still induced by probability intervals Lε such that,
∀x ∈X , lε(x) = εl(x) and uε(x) = εu(x)+ 1− ε

Example 2. We consider a 3-elements space X = {x1,x2,x3} on which are
defined our probability intervals. The observed samples are such that m = 8
with m1 = 1,m2 = 7,m3 = 0. To model positive information, we use the IDM
with a parameter s = 2 and apply Eq. (4) to obtain the probability intervals
L+ such that
u+(x1) = 0.3,u+(x2) = 0.9,u+(x3) = 0.2 ; l+(x1) = 0.1, l+(x2) = 0.7, l+(x3) = 0.
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Negative information is assumed to be an expert opinion given as a set L−

such that
u−(x1) = 0.4,u(x2)− = 0.5,u(x3)− = 0.3 ; l−(x1) = 0.2, l(x2)− = 0.4, l(x3)− = 0.

In this case, negative and positive information are conflicting (u(x2)− ≤
l(x2)+), as P+

L ∩P−
L = /0. Using Eq. (3), we obtain ε∗ = 0.6 and L−ε∗ such

that
u−(x1)=0.64,u(x2)− =0.7,u(x3)− =0.58; l−(x1)=0.12, l(x2)− =0.24, l(x3)− = 0.

Finally giving the merged structure L+∩−
ε∗

u−(x1) = 0.3,u(x2)− = 0.7,u(x3)− = 0.18 ; l−(x1) = 0.12, l(x2)− = 0.7, l(x3)− = 0

which indeed gives a very precise evaluation of the uncertainty of having
X = x2.

4 Conclusion

We have proposed a framework to handle bipolar asymmetric information
in the framework of imprecise probabilities, when this information concerns
knowledge about the value of a given variable. The proposal is illustrated
with some credal sets induced by specific probability bounds often used in
practice. This work is a first step towards the modelling and handling of bipo-
lar information within the recent theory of imprecise probabilities. It still has
to be compared in a deeper way with other approaches made in possibility
theory and evidence theory, possibly by making sense of the concept of guar-
anteed possibility [8] or of commonality function in the context of imprecise
probabilities.

Another interesting problem is how to handle bipolarity when credal sets
or lower previsions are used not to express uncertainty but imprecise pref-
erences or utilities. An idea would be to consider the alternative model of
desirable gambles, recently considered as a solution to multicriteria decision
problems [15].
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interaction. II: The choquet integral. Fuzzy Sets Syst. 151, 211–259 (2005)

12. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
13. Shafer, G.: A mathematical Theory of Evidence. Princeton University Press,

New Jersey (1976)
14. Smets, P.: The canonical decomposition of a weighted belief. In: Proceedings of

the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI
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Coherent Upper Conditional Previsions
and Their Integral Representation with
Respect to Hausdorff Outer Measures

Serena Doria

Abstract. In a metric space, a necessary and sufficient condition is given
for a coherent upper conditional prevision to be uniquely represented by the
Choquet integral with respect to the upper conditional probability defined
by its Hausdorff outer measure.

1 Introduction

Separately coherent upper conditional previsions [8] are functionals on a lin-
ear space of bounded random variables satisfying the axioms of coherence.
In this paper a model of separately coherent upper conditional previsions is
proposed in a metric space. They are defined by the Choquet integral with
respect to the Hausdorff outer measure if the conditioning event has positive
and finite Hausdorff outer measure in its dimension. Otherwise if the con-
ditioning event has Hausdorff outer measure in its dimension equal to zero
or infinity they are defined by a 0-1 valued finitely, but not countably, addi-
tive probability. If the conditioning event B has positive and finite Hausdorff
outer measure in its dimension s then the upper conditional prevision defined
on the linear space of all bounded random variables on B is proven to be
a functional, which is monotone, submodular, comonotonically additive and
continuous from below. Moreover, let L(B) be a linear lattice of bounded
random variables on B containing all constants. It is proven that a sufficient
condition for a coherent upper conditional prevision defined on L(B) to be
uniquely represented as Choquet integral with respect to the upper condi-
tional probability defined by the Hausdorff s-dimensional outer measure is
to be monotone, submodular, comonotonically additive and continuous from
below.
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2 Coherent Upper Conditional Previsions Defined with
Respect to Hausdorff Outer Measures

Separately coherent upper conditional previsions P(·|B) are functionals, de-
fined on a linear space of bounded random variables, satisfying the axioms of
coherence [8].

Definition 1. Let (Ω ,d) be a metric space and let B be a partition of Ω . For
every B ∈ B let L(B) be a linear space of bounded random variables defined
on B. Then separately coherent upper conditional previsions are functionals
P(·|B) defined on L(B), such that the following conditions hold for every X
and Y in L(B) and every strictly positive constant λ :

1) P (X |B) ≤ sup(X |B);
2) P(λ X |B) = λ P(X |B) (positive homogeneity);
3) P(X +Y)|B) ≤ P(X |B)+ P(Y |B);
4) P(B|B) = 1.

In this section coherent upper conditional previsions are defined by the Cho-
quet integral with respect to the Hausdorff outer measures if the conditioning
event B has positive and finite Hausdorff outer measure in its dimension; if
the conditioning event B has Hausdorff outer measure in its dimension equal
to zero or infinity they are defined by a 0-1 valued finitely, but not countably,
additive probability.

Let (Ω ,d) be a metric space. The diameter of a non empty set U of Ω is de-
fined as |U |= sup{d(x,y) : x,y ∈U} and if a subset A ofΩ is such that A⊂⋃i Ui

and 0 < |Ui| < δ for each i, the class {Ui} is called a δ -cover of A. Let s be a
non-negative number. For δ >0 we define hs,δ (A) = inf∑∞i=1 |Ui|

s
, where the in-

fimum is over all δ -covers {Ui}. The Hausdorff s-dimensional outer measure
[6] of A, denoted by hs(A), is defined as hs(A) = limδ→0hs,δ (A). This limit ex-
ists, but may be infinite, since hs,δ (A) increases as δ decreases because less δ -
covers are available. The Hausdorff dimension of a set A, dimH(A), is defined
as the unique value, such that hs(A) = ∞ if 0 ≤ s < dimH(A) and hs(A) = 0 if
dimH(A) < s <∞. We can observe that if 0 < hs(A) < ∞ then dimH(A) = s, but
the converse is not true. Hausdorff outer measures are metric outer measures,
that is hs(E∪F) = hs(E)+hs(F) whenever E and F are positively separated, i.e.
d(E,F) = inf{d(x,y) : x ∈ E,y ∈ F} > 0. A subset A of Ω is called measurable
with respect to the outer measure hs if it decomposes every subset of Ω addi-
tively, that is if hs(E) = hs(A∩E) + hs(E−A) for all sets E ⊆ Ω . All Borel sub-
sets ofΩ are measurable with respect to any metric outer measure [4, Theorem
1.5]. So every Borel subset of Ω is measurable with respect to every Hausdorff
outer measure hs since Hausdorff outer measures are metric. The restriction
of hs to the σ -field of hs-measurable sets, containing the σ -field of the Borel
sets, is called Hausdorff s-dimensional measure. In particular the Hausdorff 0-
dimensional measure is the counting measure and the Hausdorff 1-dimensional
measure is the Lebesgue measure. The Hausdorff s-dimensional measures are
modular on the Borel σ -field, that is hs(A∪B)+ hs(A∩B) = hs(A)+ hs(B) for



Coherent Upper Conditional Previsions and Their Integral Representation 211

every pair of Borelian sets A and B; so that [2, Proposition 2.4] the Hausdorff
outer measures are submodular (hs(A∪B)+ hs(A∩B) ≤ hs(A)+ hs(B)). More-
over Hausdorff outer measures are continuous from below [4, Lemma 1.3], that
is for any increasing sequence of sets {Ai}we have limi→∞ hs(Ai) = hs(limi→∞Ai).

Let μ : S → ℜ+ = ℜ+ ∪ {+∞} be a monotone set function defined on S
properly contained in ℘(Ω) and X : Ω → ℜ = ℜ∪ {−∞,+∞} an arbitrary
function on Ω then the set function Gμ,X (x) = μ {ω ∈Ω : X(ω) > x} is de-
creasing and it is called decreasing distribution function of X with respect to
μ . Denote by μ∗ and μ∗ respectively the outer and inner measure of μ . A
function X : Ω→ℜ is called upper μ-measurable if Gμ∗,X (x) = Gμ∗,X(x). Given
an upper μ-measurable function X : Ω →ℜ with decreasing distribution func-
tion Gμ,X (x), the Choquet integral of X with respect to μ [2] is defined by
∫

Xdμ =
∫ 0
−∞(Gμ,X (x)− μ(Ω))dx +

∫∞
0 Gμ,X(x)dx if μ(Ω) < +∞.

If X is bounded and μ(Ω) = 1 then the Choquet integral is given by
∫

Xdμ =
∫ supX

infX Gμ,X(x)dx + infX .

Theorem 1. Let (Ω ,d) be a metric space and let B be a partition of Ω . For
every B ∈B denote by s the Hausdorff dimension of the conditioning event B
and by hs the Hausdorff s-dimensional outer measure. Let L(B) be the class of
all bounded random variables on B. Moreover, let m be a 0-1 valued finitely,
but not countably, additive probability on ℘(B) such that a different m is
chosen for each B. Then for each B ∈ B the functionals P(X |B) defined on
L(B) by

P(X |B) =
1

hs(B)

∫

B
Xdhs if 0 < hs(B) < ∞

and by
P(X |B) = m(XB) if hs(B) = 0,∞

are separately coherent upper conditional previsions.

Proof. Since L(B) is a linear space we have to prove that, for every B ∈ B
P(X |B) satisfies conditions 1), 2), 3), 4) of Definition 1.

If B has finite and positive Hausdorff outer measure in its dimension s then
P(X |B) = 1

hs(B)
∫

B Xdhs, so properties 1) and 2) are satisfied since they hold
for the Choquet integral [2, Proposition 5.1]. Property 3) follows from the
Subadditivity Theorem [2, Theorem 6.3] since Hausdorff outer measures are
monotone, submodular and continuous from below. Property 4) holds since
P(B|B) = 1

hs(B)
∫

B dhs = 1. If B has Hausdorff outer measure in its dimension
equal to zero or infinity we have that the class of all coherent (upper) pre-
visions on L(B) is equivalent to the class of 0-1 valued additive probabilities
defined on℘(B) then P(X |B) = m(XB). Then properties 1), 2), 3) are satisfied
since m is a 0-1 valued finitely additive probability on℘(B). Moreover since
a different m is chosen for each B we have that P(B|B) = m(B) = 1. ��
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The unconditional upper prevision is obtained as a particular case when the
conditioning event is Ω . Upper conditional probabilities are obtained when
only 0-1 valued random variables are considered; they have been defined in [3]:

Theorem 2. Let (Ω ,d) be a metric space and let B be a partition of Ω . For
every B ∈B denote by s the Hausdorff dimension of the conditioning event B
and by hs the Hausdorff s-dimensional outer measure. Let m be a 0-1 valued
finitely, but not countably, additive probability on ℘(B) and a different m is
chosen for each B. Then, for each B ∈B, the functions defined on℘(B) by

P(A|B) =
hs(AB)
hs(B)

if 0 < hs(B) < ∞

and by
P(A|B) = m(AB) if hs(B) = 0,∞

are separately coherent upper conditional probabilities.

Let B ∈ B be a set with positive and finite Hausdorff outer measure in its
dimension s. Denote by hs the s-dimensional Hausdorff outer measure and
for every A ∈℘(B) by μ∗B(A) = P(A|B) = hs(AB)

hs(B) the upper conditional prob-
ability defined on ℘(B). From Theorem 1 we have that the upper condi-
tional prevision P(·|B) is a functional defined on L(B) with values in ℜ
and the upper conditional probability μ∗B integral represents P(X |B) since
P(X |B)=

∫
Xdμ∗B = 1

hs(B)
∫

Xdhs. The number 1
hs(B) is a normalizing constant. A

class of bounded random variables is called a lattice if it is closed under point-
wise maximum ∨ and point-wise minimum ∧. In the following theorem it is
proven that, if the conditioning event has positive and finite Hausdorff outer
measure in its dimension s and L(B) is a linear lattice of bounded random
variables defined on B, necessary conditions for the functional P(X |B) to be
represented as Choquet integral with respect to the upper conditional prob-
ability μ∗B, i.e. P(X |B) = 1

hs(B)
∫

Xdhs, are that P(X |B) is monotone, comono-
tonically additive, submodular and continuous from below.

Theorem 3. Let (Ω ,d) be a metric space and let B be a partition of Ω . For
every B ∈B denote by s the Hausdorff dimension of the conditioning event B
and by hs the Hausdorff s-dimensional outer measure. Let L(B) be the class
of all bounded random variables defined on B. If the conditioning event B has
positive and finite Hausdorff s-dimensional outer measure in its dimension
then the upper conditional prevision P(·|B) defined on L(B) as in Theorem 1
satisfies the following properties:

i) X ≤ Y implies P(X |B) ≤ P(Y |B) (monotonicity);
ii) if X and Y are comonotonic, i.e.(X(ω1)− X(ω2))(Y (ω1)− (Y (ω2)) ≥ 0

∀ω1,ω2 ∈ B, then P(X +Y |B) = P(X |B)+ P(Y |B) (comonotonic additivity);
iii)P(X ∨Y |B)+ P(X ∧Y |B)≤ P(X |B)+ P(Y |B) (submodularity);
iv)limn→∞P(Xn|B)= P(X |B) if Xn is an increasing sequence of random variables

converging to X (continuity from below).
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Proof. Since the conditioning event B has positive and finite Hausdorff outer
measure in its dimension s then the functional P(·|B) is defined on L(B)
by the Choquet integral with respect to the upper conditional probability
μ∗B(A)= hs(AB)

hs(B) ; so conditions i) and ii) are satisfied because they are properties
of the Choquet integral [2, Proposition 5.2]. Condition iii) is equivalent to
require that the monotone set function that represents the functional P(·|B) is
submodular and it is satisfied since Hausdorff outer measures are submodular.
Moreover every s-dimensional Hausdorff measure is continuous from below
then from the Monotone Convergence Theorem [2, Theorem 8.1] we have
that the functional P(·|B) is continuous from below, that is condition iv). ��

3 Uniqueness of the Representing Set Function for
Coherent Upper Conditional Previsions

If the conditioning event B has positive and finite Hausdorff measure in its
dimension there is the problem of determining conditions, which assure that
a coherent upper conditional prevision P(·|B) can be represented by the Cho-
quet integral with respect to a monotone set function and to determine the
interval of monotone set functions which represent P(·|B).

The representation of coherent lower previsions as Choquet integrals with
respect to supermodular lower probabilities has been studied in [1]. In the
quoted paper a representation result for exact n-monotone functionals in
terms of Choquet integrals has been proven. But the result does not ad-
dress the uniqueness of the representing function. Moreover 2-monotone lower
probabilities are investigated in [7].

Given a family L of functions X :Ω →ℜ and a functional Γ : L→ℜ we say
that Γ can be represented as Choquet integral with respect to a monotone
set function μ on ℘(Ω) if Γ (X) =

∫
Xdμ . In Denneberg [2, Chapter 13],

representation theorems for functionals with minimal requirements on the
domain are examined. Let L be a class of random variables such that

a) X ≥ 0 for all X ∈ L (non negativity);
b) aX ,X ∧a,X −X ∧a ∈ L if X ∈ L, a ∈ℜ+;
c) X ∧Y,X ∨Y if X ,Y ∈ L (lattice property).

In [2, Proposition 13.5] it is proven that if a functional Γ , defined on the
domain L, is monotone, comonotonically additive, submodular and continu-
ous from below then Γ is representable as Choquet integral with respect to
a monotone, submodular set function which is continuous from below. Fur-
thermore all set functions on ℘(Ω) with these properties agree on the set
system of weak upper level sets M = {{X ≥ x}|X ∈ L,x ∈ℜ+}. The unique-
ness of the representing set function [2, Lemma 13.1] is due to the fact that
the function Γ (X ∧ x) determines the distribution function Gμ,X of an upper
μ-measurable and positive random variable X with respect to any set func-
tion μ representing Γ ; it occurs since Gμ,X = d

dxΓ (X ∧ x) for X ∈ L and for
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all x ∈ℜ+ of continuity for Gμ,X . If μ is continuous from below then Gμ,X is
right continuous and it is the derivative from the right of Γ (Y ∧ x) for every
point x ∈ℜ+. If the domain L is a linear lattice containing all constants this
result can be extended to every bounded random variable. In fact since X is
bounded, there exists a constant k such that Y = X −k ∈ L and Y = X −k ≥ 0
so that Gμ,Y = d

dxΓ (Y ∧ x).
In the next theorem a sufficient condition is given such that a coherent

upper conditional prevision is uniquely represented as Choquet integral with
respect to the upper conditional probability μ∗B defined by Hausdorff outer
measure. It is proven that if the conditioning event B has positive and finite
Hausdorff outer measure in its dimension s and the coherent upper conditional
prevision P(·|B) is monotone, comonotonically additive, submodular and con-
tinuous from below then the upper conditional probability μ∗B defined by the
s-dimensional Hausdorff outer measure hs is the unique monotone set function
on the set system of weak upper level sets M = {{X ≥ x}|X ∈ L(B),x ∈ℜ},
which is submodular, continuous from below and representing P(·|B) as Cho-
quet integral. That is for every monotone set function β on ℘(B), which
is submodular, continuous from below and represents P(·|B) we have that
P(X |B) =

∫
B Xdβ =

∫
B Xdμ∗B = 1

hs(B)
∫

B Xdhs for every bounded random vari-
able X .

Theorem 4. Let (Ω ,d) be a metric space and let B be a partition of Ω . For
every B ∈ B denote by s the Hausdorff dimension of the conditioning event
B and by hs the Hausdorff s-dimensional outer measure. Let L(B) be a linear
lattice of bounded random variables on B containing all constants. If B has
positive and finite Hausdorff outer measure in its dimension and the coherent
upper conditional prevision P(·|B) on L(B) satisfies the properties i), ii), iii),
iv) then P(·|B) is representable as Choquet integral with respect to a mono-
tone, submodular set function which is continuous from below. Furthermore
all monotone set functions on℘(B) with these properties agree on the set sys-
tem of weak upper level sets M = {{X ≥ x}|X ∈ L(B),x ∈ℜ} with the upper
conditional probability μ∗B(A) = hs(AB)

hs(B) for A ∈℘(B). Let β be any monotone
set function on ℘(B), which is submodular, continuous from below and such
that represents P(·|B) as Choquet integral. Then the following equalities hold

P(X |B) =
∫

B
Xdβ =

∫

B
Xdμ∗B =

1
hs(B)

∫

B
Xdhs.

Proof. L(B) is a linear lattice containing all constants so we can assume
that property a) is true because otherwise since X is bounded there exists a
constant k such that X − k ∈ L(B) and X − k ≥ 0. Moreover conditions b) and
c) are satisfied. So from Proposition 13.5 of [2] we obtain that the functional
P(·|B) is representable by a monotone, submodular, continuous from below
set function and all set functions with these properties agree on the set system
of weak upper level sets M = {{X ≥ x}|X ∈ L(B),x ∈ℜ}. Every s-dimensional
Hausdorff outer measure is monotone, submodular and continuous from below
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so, if B has positive and finite Hausdorff outer measure in its dimension
then the monotone set function μ∗B(A) = hs(AB)

hs(B) defined on ℘(B) by the s-
dimensional Hausdorff measure represents the functional P(·|B). Moreover
all monotone set functions on℘(B) which are submodular, continuous from
below and represent the functional P(·|B) agree on the set system of weak
upper level sets with the upper conditional probability μ∗B(A) = hs(AB)

hs(B) . Denote
by β any monotone set function on ℘(B), which is submodular, continuous
from below and such that represents P(·|B) as Choquet integral. Then μ∗B and
β agree on the set system of weak upper level sets M and Gμ∗B,X(x) = Gβ ,X(x).
Moreover μ∗B(B) = β (B) = 1. Since every X belonging to L(B) is bounded the
following equalities hold:

P(X |B) =
∫

B
Xdβ =

∫ supX

infX
Gβ ,X(x)dx + infX

=
∫ supX

infX
Gμ∗B,X (x)dx + infX =

∫

B
Xdμ∗B =

1
hs(B)

∫

B
Xdhs.

��
The same result can be obtained if the coherent upper conditional proba-
bilities μ∗B and β are defined on the class S properly contained in ℘(B) and
L(B) is a linear lattice of bounded upper S-measurable random variables on
B containing all constants.

Given a monotone set function β in Greco [5] a definition of measurability
for positive functions with respect to a class S of subsets of Ω is given with
the aim to determine the functions X such that the Choquet integral

∫
Xdβ

depends only on the values of β on S.

Definition 2. [5, p.165] A positive random variable X is S-measurable if and
only if

∫
Xdβ =

∫
Xdα, where α,β are monotone set functions defined on

℘(Ω) such that α(A) = β (A) for every set A in S. A random variable X is
S-measurable if X+ and X− are S-measurable where X+ = X ∨ 0 and X− =
(−X)∨0.

The previous definition is proven [5, Theorem 1] to be equivalent to the
following condition 5):

∀a,b ∈ℜ,a < b there exists a set H ∈ S so that {X > a} ⊃ H ⊃ {X > b} .
In Denneberg [2, p.49] a random variable X is defined to be upper S-

measurable if it is upper μ-measurable (Gμ∗,X(x) = Gμ∗,X(x)) for any monotone
set function μ on S. Condition 5) is a necessary and sufficient condition [2,
Proposition 4.2] for upper S-measurability of a random variable X . In partic-
ular X is upper S-measurable if the upper set system MX = {{X ≥ x} ,x ∈ℜ},
is contained in S. If S is a σ -field and MX and M−X are contained in S then
we have the classical condition of measurability of functions.

Theorem 5. Let (Ω ,d) be a metric space and let B be a partition of Ω .
For every B ∈ B let L(B) be a linear lattice of bounded random variables
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on B containing all constants. Let P(·|B) be a coherent upper conditional
prevision satisfying i), ii), iii), iv). Let S be a subclass properly contained
in ℘(B) such that it contains the set system of weak upper level sets M =
{{X ≥ x}|X ∈ L(B);x ∈ℜ}. Denote by s the Hausdorff dimension of the con-
ditioning event B and by hs the Hausdorff s-dimensional outer measure. If
0 < hs(B) < +∞ define μ∗B(A) = hs(AB)

hs(B) , for every A ∈ S; let β be a coherent
upper probability on S, which is submodular, continuous from below and such
that represents P(·|B) as Choquet integral. Then the following equalities hold:

P(X |B) =
∫

Xdβ =
∫

Xdμ∗B = 1
hs(B)

∫
Xdhs.

4 Conclusions

In this paper coherent upper conditional previsions are characterized in a met-
ric space as Choquet integrals with respect to the upper conditional prob-
abilities defined by the Hausdorff outer measures. Let B be a conditioning
event with positive and finite Hausdorff outer measure in its dimension s; a
coherent upper conditional prevision P(X |B) defined on a linear lattice L(B)
of bounded random variables on B containing all constants, is proven to be
monotone, comonotonically additive, submodular and continuous from be-
low if and only if it is representable as the Choquet integral with respect
to the upper conditional probability μ∗B(A) = hs(AB)

hs(B) , defined on℘(B) by the
Hausdorff s-dimensional outer measure hs.
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Statistical Inference with Belief Functions
and Possibility Measures: A Discussion of
Basic Assumptions

Didier Dubois and Thierry Denœux

Abstract. This paper reconsiders the problem of statistical inference from
the standpoint of evidence theory and possibility theory. The Generalized
Bayes theorem due to Smets is described and illustrated on a small canonical
example. Critiques addressed to this model are discussed as well as the robust
Bayesian solution. Finally, the proposal made by Shafer to exploit likelihood
information in terms of consonant belief function within the scope of possibil-
ity theory is reconsidered. A major objection to this approach, due to a lack
of commutativity between combination and conditioning, is circumvented by
assuming that the set of hypotheses or parameter values is rich enough.

Keywords: Statistical inference, Belief function possibility theory, Likeli-
hood principle.

1 Introduction

Let X be a space of observations. Given a probabilistic parametric model
Pθ ,θ ∈Θ , interpreted as a conditional probability P(·|θ ), a set of independent
observations x1, . . . ,xk obtained in the same conditions and a subjective prior
probability Psub(θ ), Bayes’ theorem in probability theory prescribes that a pos-
terior probability on Θ can computed as P(θ |x1, . . . ,xk) ∝ Psub(θ )∏k

i=1 P(xi|θ ),
where P(xi|θ ) is the likelihood function. A recurring question in statistical in-
ference is: what information does observed data provide about a probabilis-
tic model when no prior probability is supplied and Bayes’ theorem cannot
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be applied? What to say on the basis of observations, when only likelihood
information is available?

In this paper, we review some statistical inference methods that can be
proposed in the setting of belief functions and possibility theory. Both set-
tings have the merit of not requiring prior knowledge when learning from
data. We try to provide a clear presentation of Smets’ Generalized Bayes
theorem without prior, laying bare the assumptions. Then we discuss the
related literature in probability theory. We study to what extent a similar
approach makes sense in possibility theory.

2 The Generalized Bayes Theorem for Belief Functions

The problem of inferring knowledge from likelihood functions has been ad-
dressed by Philippe Smets in his 1978 thesis [11] in the setting of belief
functions, given several observations forming a finite set X and a non-binary
parameter spaceΘ . The Generalized Bayes Theorem (GBT) computes a non-
trivial uncertainty measure on the parameter space from parameterized belief
functions on X even if no prior knowledge about the parameter is available.
If there is some prior information, it can be used. Bayes’ theorem is retrieved
in the special case where belief functions are probability measures and a
prior probability distribution on Θ is given. The GBT has been applied to
classification problems [4]. It is interesting to study what are its underly-
ing assumptions and under which conditions it can be applied to statistical
inference; of interest is how it compares with other approaches.

Let X be a frame of discernment. An uncertain body of evidence is defined
by means of a mass function m which is a probability distribution over the
power set 2X . In particular, ∑E⊆X m(E) = 1. The mass m(E) is the probability
mass that could be allocated to some element of E but is not by lack of
information. The quantity m( /0) represents a degree of internal conflict, and
according to Smets, may suggest the idea that the truth may lie outside X
(open world assumption). For simplicity, we assume m( /0) = 0 (closed world
assumption). The following notions are useful in the sequel:

• The degree of belief is bel(A) =∑E⊆A m(E);
• The degree of plausibility is pl(A) = ∑ /0 �=E∩A m(E) = 1−bel(Ā), where Ā is

the complement of A;
• Standard (normalized) conditioning :

pl(A|B) =
pl(A∩B)

pl(B)
; bel(A|B) =

bel(A∪ B̄)−bel(B̄)
1−bel(B̄)

;

• Conjunctive merging ∩©: (m1 ∩©m2)(C) = ∑A,B,A∩B=C m1(A)m2(B);
• Dempster rule of combination ⊕: It consists in renormalizing m1 ∩©m2 di-

viding it by 1− (m1 ∩©m2)( /0), which makes sense under a closed-world
assumption.
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Given a family {belX(·|θ ),θ ∈Θ} of belief functions (supposed to be normal-
ized), parameterized by θ , the ballooning extension (or conditional embed-
ding) of belX(·|θ ) into X ×Θ is the least committed belief function whose
conditional on θ is belX(·|θ ). It consists in assigning each mass mX(E|θ ) to
the subset E ∪{θ} ⊆ X ×Θ ,∀E ⊆ X . On X ×Θ , the ballooning extension is
such that belθ (E ∪{θ}) = belX(E|θ ) (assuming pl(E ∪{θ}) = 1,∀θ ∈Θ).

The inference problem can then be stated as follows: Given a set of para-
metric belief functions belX(·|θ ), θ ∈Θ , and some observation x∈ X , compute
belΘ (·|x). It is assumed that for T ⊆Θ , plX (x|T ) is a function of elementary
likelihoods plX (x|θ ), plX(x|{θ}), θ ∈ T . Computing the posterior belief func-
tion belΘ (·|x) goes as follows, given a finite parameter space Θ and a set of
parametric belief functions belX(·|θ ),θ ∈Θ :

1. Conditional embedding of each belX(·|θ ) in X ×Θ (ballooning);
2. Conjunctive merging of the embedded belief functions belθ ,θ ∈Θ on

X ×Θ ;
3. Conditioning of the result on the observation x;
4. Marginalizing on Θ .

The use of the conjunctive merging rule in step 2 assumes that the belief
functions belX(·|θ ),θ ∈Θ have been inferred from distinct sets of empirical
data obtained from independent sources. Moreover, this step comes down
to applying to T = Θ the disjunctive combination rule to the conditional
belief functions belX(·|θ ): belX(A|T ) =∏θ∈T belX(A|θ ),∀A ⊆ X . Finally, after
marginalization, posterior plausibility functions plΘ (T |A) are proportional to
1−∏θ∈T (1− plX(A|θ )),∀T ⊆Θ .

The problem has been extended to n independent observations x1, . . . ,xn in
{x, x̄}n [12]. The GBT has a nice commutativity property. One may compute
belXn(x1, . . .xn|θ ), conjunctively combining belX(·|θ ), perform a conditional
embedding on Xn×Θ , then get the posterior belief function belΘ (θ |x1, . . . ,xn).
It is equivalent to computing n posterior belief functions belΘ (θ |xi) and get the
same belΘ (θ |x1, . . . ,xn) by Dempster’s rule of combination of these belΘ (θ |xi).
In other words the following identity holds: belΘ (·|x1, . . . ,xn) = belΘ (·|x1)⊕
. . .⊕belΘ(·|xn).

3 Computing the Posterior Belief Function from
Likelihoods

Suppose only a finite number of frequentist likelihood functions {P(·|θi), i =
1, . . . , k}, are available, and each one comes from a different popu-
lation. The procedure described in the previous section then specializes as
follows:
1. Conditional embedding of P(·|θi) over X ×Θ into belief functions beli: the

associated mass function is defined by mi(θ̄i∪{x}) = mi({(θi,x)}∪({θi}×
X)) = P({x}|θi),x ∈ X ; beli on X ×Θ has a vacuous marginal on Θ and
yields P(·|θi) back when conditioned on θi.
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2. Conjunctive merging of the belθ ’s on X ×Θ . This step comes down to
assigning mass ∏i=1,...,k P(x ji |θi) to the set

⋂
i=1,...,k{(θi,x ji)}∪({θi}×X) =⋃

i=1,...,k{(θi,x ji)}. Let φ be the mapping assigning observation x ji to each
θi. We can write m(φ) for m(

⋃
i=1,...,k{(θi,x ji)}).

3. Conditioning m on the observation x. Then plΘ (θ |x) =
∑φ :φ (θ )=x m(φ)

∑θ∈Θ ∑φ∈XΘ :φ (θ )=x
m(φ) .

The simplest example of the problem is a simple space S = {x, x̄}×{θ , θ̄}
with two possible mutually exclusive hypothesesΘ = {θ , θ̄}, and two possible
mutually exclusive observations {x, x̄}. The available knowledge consists in
the two likelihood values a = P(x|θ ) > b = P(x|θ̄ ). And it is assumed that x is
observed.

For this example (actually studied by Shafer [10]), conditional embedding
comes down to defining m1(x∪ θ̄ ) = a,m1(x̄∪ θ̄ ) = 1−a, and likewise: m2(x∪
θ ) = b,m2(x̄∪θ ) = 1− b. Conjunctive merging yields m(x) = ab;m(x̄) = (1−
a)(1−b); m((x∩θ )∪ (x̄∩ θ̄ )) = a(1−b);m((x∩ θ̄)∪ (x̄∩θ )) = a(1−b).

The following results are obtained if x is observed:

belΘ (θ |x) =
pl(x)− pl(x∩ θ̄)

pl(x)
=

a(1−b)
a + b−ab

;belΘ (θ̄ |x) =
b(1−a)

a + b−ab
. (1)

It is natural that belΘ (θ |x) should be all the higher as P(x|θ ) is close to 1
and P(x|θ̄ ) is low. In particular
1. belΘ (θ |x) = 1 if and only if P(x|θ ) = 1 and P(x|θ̄ ) = 0;
2. belΘ (θ |x) = 0 = belΘ (θ̄ |x) if and only if P(x|θ ) = P(x|θ̄) = 0 or = 1;
3. If a = b then 0 ≤ belΘ (θ |x) = belΘ (θ̄ |x) ≤ 1/4.

Shafer [10] extended this example to n observations of the form x or x̄. He
showed that for large values of n,bel(θ |x1, . . . ,xn)+ bel(θ̄ |x1, . . . ,xn) ≈ 1 and
that the posterior beliefs agree at the limit with the Bayesian solution with
uniform prior.

A different approach applies sensitivity analysis to Bayes rule, varying the
unknown prior probability. This approach is popular in the robust Bayesian
community where some prior information is supposed to be available in the
form of a suitable family of probability functions (see Whitcomb [14] for a
bibliography). The sensitivity analysis approach and the GBT presuppose
different assumptions: In the former, no information on the dependence be-
tween the two items a = P(x|θ ) and b = P(x|θ̄ ) is assumed; but in case of total
ignorance on the prior, the resulting posterior is unknown and no informa-
tion is gained from observing x. But the GBT assumes cognitive independence
between two distinct populations or sources that provide each likelihood func-
tion. This is what makes the posterior belief function non-trivial. A number of
other approaches to the no prior problem come down to selecting a “reason-
able” probability measure on S in the set P = {P,a = P(x|θ ) > b = P(x|θ̄ )},
induced by the likelihood values, for instance applying the maximum like-
lihood principle, i.e., maximizing P(x) (which is not so good as it results
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in P(θ |x) = 1). Several such approaches are reviewed by Dubois, Gilio and
Kern-Isberner [7]: maximal entropy, Shapley value, uniform prior, etc.

Alternatively, one may keep the likelihood values upon observing x as
λ (θ ) = a,λ (θ̄ ) = b and view them as a measures of confidence, as strongly
advocated by frequentist statisticians after Fisher and Edwards [8]; however,
this approach may be considered as lacking formal foundations, all the more
so as this school of thought never considers extending such uncertainty mea-
sures from elementary parameter values to disjunctions thereof.

4 Critiques of the GBT

There are several situations where the GBT is questionable, as discussed by
Shafer [10]. Moreover, some authors like Walley [13] have criticized it as not
satisfying the strong likelihood principle.

The binomial example. Consider the case of a coin such that
P(x|θ ) = θ ∈ Θ = [0,1] is the probability of getting a tail (x), to be
learned from observations. We now have an uncountable infinite family
of conditional belief functions such that belX(x|θ ) = θ ,belX(x̄|θ ) = 1 − θ ,
θ ∈ [0,1]. The assumption that these belief functions have been obtained from
distinct sets of data is no longer tenable, as this would imply an infinite
quantity of information! A way to circumvent this problem could be to
discretize the domain Θ into Θ ′ = {θ1, . . . ,θk}, with θ1 ≤ θ2 ≤ . . . ≤ θk.
However, the k belief functions belX(·|θi) for i = 1, . . . ,k are now linked by the
following relations: belX(x|θi) ≤ belX(x|θ j) whenever θi ≤ θ j. Consequently,
they cannot be independent. As noted by Shafer [10], “the choice of a belief
function analysis depends on the nature of the evidence for the model, not
just on the model itself”.

The fiducial example. Shafer also considers the case of a measuring
instrument with errors. Let θ ∈ Θ be the unknown quantity and x ∈ X
be the measured value. It is supposed that Θ = X = N. Suppose we know
the symmetric probability distribution P of errors e = x − θ . This prob-
ability distribution can be viewed as a belief function on X ×Θ , letting
m({(x,θ ) : e = |x − θ |}) = P(e). The projection of this belief function on
X is bel(x|θ ) = P(x − θ ), i.e., it is additive and coincides with P(x|θ ).
But the same holds for the projection of this belief function on Θ , since
P(x|θ ) = P(θ |x) = P(x − θ ). If Θ = X = {0,1} and x = θ + e modulo 2,
assuming P(0) = a,P(1) = b = 1−a, we find that bel(θ = 1|x = 1) = a, which
differs from the value obtained with the GBT if b = 1− a, that is a2

1−a−a2 .
Again in this case the two likelihood functions are related.

The strong likelihood principle. In the statistical literature, likelihood
functions are considered to live on a ratio scale. Edwards [8] considers the
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likelihood function λ (θ ) to be proportional to P(x|θ ), the proportionality con-
stant being arbitrary. In particular, no comparison of likelihood of hypotheses
across data sets, say λ1(θ ) = P(x1|θ ) and λ2(θ ) = P(x2|θ ) is considered mean-
ingful; only likelihood ratios P(x|θ2)

P(x|θ1)
make sense. Moreover, the likelihood prin-

ciple states that all the information that is provided by the data x concerning
the relative merits of two hypotheses θ1 and θ2 is contained in the likelihood
ratio of these hypotheses. Hence the invariance property, recalled by Walley
[13], here stated in terms of belief functions: Let f be the function such that
belΘ (·|x1, . . .xn) = f (P(xi|θ ), i = 1, . . .n,θ ∈Θ). Then, for all real values c > 0,
f (P(xi|θ ), i = 1, . . .n,θ ∈Θ) = f (c ·P(xi|θ ), i = 1, . . .n,θ ∈Θ). It is clear that
the GBT violates this property, as well as some other inference techniques
recalled in Section 3. However the Bayesian inference method does satisfy
this strong likelihood principle. Walley essentially shows that, when the ini-
tial information takes the form of likelihood functions P(xi|θ ), enforcing the
strong likelihood principle to the GBT leads to a probabilistic posterior be-
lief function where the plausibility of each singleton θ ∈Θ is proportional
to P(x|θ )α for some α > 0. So it comes down to working with a Bayesian
approach under uniform priors, up to a rescaling of the likelihood functions.

Is the strong likelihood principle a sine qua non condition for statistical
inference? It can be questioned. First, there seems to be a clash of intuitions
between this principle and the frequentist approach based on a fixed amount
of observations N. Suppose P(x|θ ) derives from the result of experiments
that yield N(xθ ) = n1,N(x̄θ ) = n2,N(xθ̄ ) = n3,N(x̄θ̄ ) = n4 with N = ∑4

i=1 ni.
Then P(x|θ ) = a = n1

n1+n2
and P(x|θ̄ ) = b = n3

n3+n4
. Hence n1

a + n3
b = N, so that

multiplying a and b by positive constant c clearly implies dividing N by c.
In such a situation, claiming the invariance of the likelihood under positive
scalar multiplication comes down to considering the statistical validity of the
joint probability distribution on X ×Θ as not being affected by the number
N of outcomes.

Another reason for questioning the strong likelihood principle is that if
we extend the likelihood λ (θ ) = cP(x|θ ) of elementary hypotheses, viewed as
a representation of uncertainty about θ , to disjunctions of hypotheses, the
corresponding set-function Λ should obey the laws of possibility measures
[3, 6] in the absence of probabilistic prior, namely, the following properties
look reasonable for such a set-function Λ :

• The properties of probability theory enforce ∀T ⊆Θ ,Λ(T )≤maxθ∈T λ (θ );
• A set-function representing likelihood should be monotonic with respect

to inclusion: If θ ∈ T,Λ(T ) ≥ λ (θ );
• Keeping the same scale as probability functions, we assume Λ(Θ) = 1.

Then it is clear that λ (θ ) = P(x|θ)
maxθ∈Θ P(x|θ) and Λ(T ) = maxθ∈T λ (θ ), i.e., the

extended likelihood function is a possibility measure, and the coefficient c
is then fixed. We recover Shafer’s proposal of a consonant belief function
induced by likelihood information [9].
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5 Statistical Inference in Possibility Theory

It is interesting to see if the same approach as the GBT can be carried out in
the more restrictive setting of possibility theory, where only consonant belief
functions are used. Suppose conditional possibility distributions {π(·|θ ),θ ∈
Θ} in the unit interval are available. The consonant conditional embedding
consists in defining possibility distributions πθ on X×Θ as πθ (x,θi) =π(x|θ ) if
θi = θ and 1 otherwise. It is clear that the projection of πθ on Θ is vacuous,
i.e., maxx∈X πθ (x,θi) = 1,∀θi ∈ Θ . Combining all these πθ (·, ·) conjunctively
by means of any t-norm just yields the joint possibility distribution π(x,θ ) =
π(x|θ ). By conditioning on observation x, it yields πΘ (θ |x) = π(x|θ)

maxθ ′∈Θ π(x|θ ′) .
In case of n observations xi, we are faced again with two procedures to

compute π(θ |x1, . . . ,xn): either combine the resulting conditional possibilities
πΘ (θ |xi), using an appropriate t-norm �; or combine first the possibilistic
likelihoods as π(x1, . . . ,xn|θ ) and condition next. It is clear that these two
procedures are not equivalent since �i=1...n

π(xi|θ)
maxθ ′∈Θ π(xi|θ ′) �=

�i=1...nπ(xi|θ)
maxθ ′∈Θ �i=1...nπ(xi|θ ′) .

This difficulty is the cause of the rejection of this technique by Shafer himself
[10]. In fact it is easy to see that a sufficient condition for these two approaches
coinciding is that

max
θ ′∈Θ

π(x|θ ′) = 1,∀x ∈ X .

This property, previously laid bare in [5], can be called the Hypothesis Ex-
haustivity Assumption (HEA). It means that the distribution π(x|θ ) is a
normalized possibility distribution on Θ as much as it is on X . This situation
is similar to the one for probabilistic likelihood functions in the fiducial case.
This is an assumption about Θ stating that for any piece of evidence x ∈ X ,
at least one hypothesis θ is not in conflict with x, i.e., ∀x,∃θ ,π(x|θ ) = 1. It
will hold if Θ is large enough to explain all observations. Aickin [1] seems
to have rediscovered it and calls π(x|θ ) committed to the model. An example
where such an assumption is verified is the following: Suppose lower prob-
ability bounds 0 < axθ ≤ P(x|θ ) are available. They can be viewed as con-
ditional necessity values N({x}|θ ) = axθ ,θ ∈Θ . Now, N({x}|θ ) = axθ > 0 is
equivalent to π(x|θ ) = 1, π(x′|θ ) = 1− axθ for x′ �= x. The HEA on Θ now
means that for each x ∈ X there is a constraint of the form 0 < axθ ≤ P(x|θ )
for some θ ∈Θ , so that this observation is totally possible, under some as-
sumption θ . Let Θ(x) = {θ ∈Θ ,P(x|θ ) ≥ axθ > 0} be the set of hypotheses
that may tentatively explain x. The HEA says ∀x ∈ X ,Θ(x) �= /0. Note that
Θ(x) = {θ ∈Θ ,π(x|θ ) = 1}, so that ∀x ∈ X ,maxθ ′∈Θ π(x|θ ′) = 1 holds.

Let us now consider the properties of possibilistic inference in this case:

• If lower bounds on likelihoods are viewed as unrelated items of possibilis-
tic information, we can combine possibility degrees via product in case
of a sequence of observations x1, . . .xn: π(θ |x1, . . .xn) = ∏i=1,...,nπ(xi|θ ) =
∏i:θ �∈Θ (xi)(1− axiθ ). It means that we can all the more certainly rule out
assumption θ as there are more observations for which θ is not a plausible
explanation.
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• N(θ |x1, . . .xn) = 1 − maxθ ′ �=θ ∏i=1,...,nπ(xi|θ ′) > 0 only if ∀θ ′ �= θ , ∃xi,
π(xi|θ ′) < 1, that is: ∀θ ′ �= θ ,∃xi : θ ′ �∈Θ(xi). It means that:

– We become more and more certain about θ as long as all hypotheses
other than θ fail to plausibly explain one of the observations.

– We have no longer any certainty at all about θ , if θ ′ ∈⋃i=1,...,nΘ(xi), for
some θ ′ �= θ , i.e., some hypothesis other than θ can explain the whole
set of observations.

In other words this form of statistical inference looks as reasonable as can be.

6 Conclusion

It is clearly interesting from both theoretical and practical points of view to
reconsider the statistical inference methodology outside the Bayesian frame-
work, beyond a mere sensitivity analysis method as done by robust statis-
ticians, when only likelihood functions, or even only bounds on them are
available and prior probabilities are not assigned. In particular, it is clear
that the inference technique should depend on what kind of information is
available and on the way it is acquired. One situation where likelihood func-
tions can be exploited in a non-trivial way is when these likelihoods come
from separate populations for each parameter value. More generally, some
additional assumption is needed to complement the pure likelihood informa-
tion. This paper has reviewed a number of techniques to that effect, whereby
the notion of conditioning at work in learning schemes of probabilistic in-
ference is extended to other theories of uncertainty. It seems that possibility
theory may play a key role in the development of simple inference techniques
under poor information, especially as an approximation of more complex
methods, due to the close connections between likelihoods and possibility
distributions. A more extensive account of the literature is needed so as to
encompass alternative approaches based on imprecise probabilities such as
the imprecise Dirichlet model [2]. It is useful to re-examine, in the light of
the GBT and the possibilistic inference scheme, Bayesian objections against
classical likelihood-based inference techniques, which have often been devel-
oped in an ad hoc way with no relations to new uncertainty theories.
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Representation of Exchangeable
Sequences by Means of Copulas

Fabrizio Durante and Jan-Frederik Mai

Abstract. Given a sequence X = (Xn)n∈N of exchangeable continuous random
variables, it is proved that the joint distribution function of every finite subset
of random variables belonging to X is fully described by means of a suitable
bivariate copula and a univariate distribution function.

Keywords: Copula, Exchangeability.

1 Introduction

Given a family X = {Xi}i∈J of real-valued random variables (=r.v.’s) defined
on a probability space (Ω ,A ,P), it is well known that several properties of X
can be expressed in terms of the class H that contains the joint distribution
functions (=d.f.’s) of all the finite subfamilies of X, H = {HA}, where A is a
finite set of indices in J , A = {i1, i2, . . . , ik}, and HA : R

|A| → R is the d.f. of
(Xi1 ,Xi2 , . . . ,Xik), HA(x1, . . . ,xk) = P(Xi1 ≤ x1, . . . ,Xik ≤ xk).

Moreover, since Sklar’s Theorem [19], it is known that the d.f. H of every
continuous random vector (X1, . . . ,Xn) can be uniquely represented in terms
of the univariate marginal d.f.’s Fi, i ∈ {1, . . . ,n}, and a suitable Cn : I

n → I

(I := [0,1]), called copula, in the following way:

H(x1,x2, . . . ,xn) = Cn(F1(x1),F2(x2), . . . ,Fn(xn)), (1)
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for every x1,x2, . . . ,xn in R. We recall that a copula is an n–dimensional d.f.
having univariate marginals uniformly distributed on I. Basic examples of
copulas are: the independence copula Πn(x) = x1x2 · · ·xn, and the comono-
tonicity copula Mn(x) = min{x1,x2, . . . ,xn}. See, for example, [9, 10, 15].

Therefore, every family of continuous r.v.’s X = {Xi}i∈J can be uniquely
expressed in terms of the couple (FX,CX), where FX = {Fi}i∈J is the family
formed by the (univariate) d.f.’s associated with each Xi and CX contains the
copulas that are associated with all finite subsets of {Xi}i∈J , in such a way
that, if H is the joint d.f. of (Xi1 ,Xi2 , . . . ,Xin), then H can be expressed in the
form (1), where Cn is in CX and Fi1 ,Fi2 , . . . ,Fin are in FX. This representation
was adopted, for example, in [5] in order to describe a Markov process (see
also [12]).

In this short note, we aim at giving a representation of the same type for
an exchangeable sequence of continuous r.v.’s, i.e. for a sequence X = (Xn)n∈N

of r.v.’s such that the d.f. of every finite subset of k (k ≥ 1) of these r.v.’s
depends only upon k and not on the particular subset (see [11] for more
details).

2 The Representation

Given a random vector (X1, . . . ,Xn) with joint d.f. H and continuous univariate
marginals F1, . . . ,Fn, its associated copula Cn is actually the d.f. of the random
vector (F1(X1), . . . ,Fn(Xn)), and, hence, Cn can be recovered from the d.f. H of
(X1, . . . ,Xn) by taking, for all u ∈ I

n,

Cn(u1, . . . ,un) = H(F←
1 (u1), . . . ,F←

n (un)),

where F←(y) = inf{x ∈ R | F(x) ≥ y} denotes the quantile inverse of any uni-
variate d.f. F .

Every copula Cn is a Lipschitz function (with constant 1) and admits partial
derivatives ∂Cn

∂ui
= ∂iCn almost everywhere on I

n. If Cn is the copula of the
continuous random vector (X1, . . . ,Xn), then, similarly to [5], it can be proved
that

∂ jCn(F(x1), . . . ,F(x j−1),Fj(Xj),F(x j+1), . . . ,F(xn))

is a version of P
(
∩i�= j{Xi ≤ xi} | Xj

)
:= E

(
1{Xi≤xi,i�= j} | Xj

)
.

Following [16], X = (Xn)n∈N is an exchangeable sequence of real-valued r.v.’s
if, and only if, there exists a real-valued r.v. Λ such that X1,X2, . . . are con-
ditionally independent and identically distributed (briefly, i.i.d.) given Λ .

Now, starting with this last fact, we state our main result.

Theorem 1. Let (Xn)n∈N be an exchangeable sequence of continuous r.v.’s.
Then there exist a one–dimensional d.f. F and a 2–copula A such that, the
joint d.f. Hn of every subset of n ≥ 2 r.v.’s from the sequence may be repre-
sented, for all (x1,x2, . . . ,xn) ∈ R

n, as
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Hn(x1,x2, . . . ,xn) = Cn(F(x1),F(x2), . . . ,F(xn)), (2)

where the copula Cn is given, for all (u1, . . . ,un) ∈ I
n, by

Cn(u1, . . . ,un) =
∫ 1

0

∂A(u1,t)
∂ t

· ∂A(u2, t)
∂ t

· · · ∂A(un,t)
∂ t

dt. (3)

Proof. Given the exchangeable sequence (Xn)n∈N, as said before, there exists
a r.v. Λ with d.f. L, such that the r.v.’s Xn are conditionally i.i.d. given Λ
(see, e.g., [16]). Therefore, there is a family (Gλ )λ∈R of d.f.’s such that, for
all n ∈ N and for all (x1, . . . ,xn) ∈ R

n,

P(X1 ≤ x1, . . . ,Xn ≤ xn |Λ) = GΛ (x1) · · ·GΛ (xn).

Without loss of generality (since we are only interested in statements in distri-
bution) we may assume that the r.v.’s (Xn)n∈N and Λ are defined on a proba-
bility space (Ω ,A ,P) in the following canonical manner, see [2, p. 12-13].

• Let U and V1,V2, . . . , be i.i.d. r.v.’s on (Ω ,A ,P) that are uniformly dis-
tributed on I.

• Define Λ := L←(U), where L← denotes the generalized inverse of L, i.e. Λ
has distribution function L (see, for instance, [3, Theorem 2]).

• For each n ∈N define the r.v. Xn as a function of Λ and Vn via Xn := G←
Λ (Vn);

i.e. conditioned onΛ , Xn has d.f. GΛ , or, conditioned onU , Xn has d.f. GL←(U).

For each n, the copula Cn of (X1, . . . ,Xn) coincides with the joint distribution
function of

(
F(X1), . . . ,F(Xn)

)
since F is continuous. Hence, using the canon-

ical construction above as well as continuity of F (which implies that F← is
strictly increasing and F←◦F(Xn) is equal in distribution to Xn by [14, p. 495,
Proposition A.3-4]), it holds that

P
(
F(X1) ≤ u1,F(X2) ≤ u2, . . . ,F(Xn)≤ un |U

)
=

n

∏
i=1

GL←(U)
(
F←(ui)

)
.

Now let A be the joint distribution function of
(
F(Xn),U

)
. Notice that such

A does not depend on n by conditional independence; in fact:

P
(
F(Xn) ≤ x,U ≤ u

)
= E[P

(
F(Xn) ≤ x,U ≤ u |U

)
]

= E

[
E

[
1{

F
(

G←
L←(U)(Vn)

)
≤x
}
∣∣
∣U
]

1{U≤u}
]

(∗)
= E

[
E

[
1{

F
(

G←
L←(z)(Vn)

)
≤x
}
]∣∣
∣
z=U

1{U≤u}
]

= E

[
E

[
1{

F
(

G←
L←(z)(V1)

)
≤x
}
]∣∣
∣
z=U

1{U≤u}
]

= P
(
F(X1) ≤ x,U ≤ u

)
,
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where equality (∗) follows from [7, Example 1.5, page 224]. Then, for almost
all ui ∈ I, one has

GL←(U)
(
F←(ui)

)
= P
(
F(Xi) ≤ ui |U

)
=
∂
∂ t

A(ui, t)
∣
∣∣
∣
t=U

.

Thus, the copula Cn of any sequence of n r.v.’s in (Xn)n∈N can be represented
via (3). ��

The copula Cn given by (3) is called the n–product of A. In [5], the authors
considered an operation ∗ on the class of 2–copulas given, for any 2–copulas
A and B, by

(A∗B)(u1,u2) =
∫ 1

0

∂A(u1,t)
∂ t

· ∂B(t,u2)
∂ t

dt.

It is easy to show that the 2–product of A coincides with the copula given by
A∗AT , where AT (u1,u2) = A(u2,u1) for every (u1,u2) ∈ I

2.
Theorem 1 can be used in order to construct a sequence of exchangeable

r.v.’s by using only a univariate d.f. and a 2–copula. The procedure runs as
follows:

1. assign in any manner a 2–copula A and a d.f. F ;
2. for n > 1, set Cn the n–product of A given by (3);
3. set H1 = F and Hn = Cn(F,F, . . . ,F) for every n ≥ 2;
4. apply Daniell-Kolmogorov Theorem [17] to H = {Hn}n∈N in order to

obtain a sequence of exchangeable r.v.’s X = (Xn)n∈N such that every
joint d.f. of any finite subset of X is in H .

A sequence of i.i.d. r.v.’s can be constructed, for example, by taking any
univariate d.f. F and A =Π2. Notice that different 2–copulas can produce the
same sequence. For instance, the mapping W2 : I

2 → I given by W2(u1,u2) =
max{u1 +u2−1,0} is a 2–copula such that W2 ∗W2 = M2 ∗M2 = M2, therefore,
the sequences generated by M2 and by W2 can be associated with the same
family of finite-dimensional d.f.’s.

Some interesting consequences can be derived from Theorem 1.
We recall that a random vector (X1, . . . ,Xn) is infinitely extendible if it

is the first segment of a sequence of exchangeable r.v.’s (see [18, 20]). The
following corollary gives a representation for any copula that is associated
with an infinitely extendible random vector.

Corollary 1. Let (X1, . . . ,Xn) be an exchangeable random vector with (sym-
metric) copula C. Then (X1, . . . ,Xn) is infinitely extendible if, and only if, C
is the n–product of some copula A.

If the 2–copula C2 of (X1,X2) is symmetric and idempotent with respect to
the operation ∗, i.e. C2 ∗C2 = C2 (see [1, 5]), then (X1,X2) is infinitely ex-
tendible. Generally, if a family of symmetric bivariate copulas (like Fréchet
family and FGM family) is closed with respect to the ∗-operation (and, hence,
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with respect to the 2-product operation), then its members can be used for
constructing an infinitely extendible random pair.

Example 1. Corollary 1 is illustrated with bivariate Cuadras-Augé copulas,
defined, for every α ∈ I, by Cα(u,v) = min{u,v} max{u,v}1−α (see [4]). Let
(X1,X2) be a random vector with identical continuous marginals and 2–copula
Cα . Given the bivariate Marshall-Olkin copula A(u,v)= min{u,uα v}, it follows
easily that

Cα(u,v) =
∫ 1

0

∂
∂ t

A(u, t)
∂
∂ t

A(v,t)dt.

Hence (X1,X2) is infinitely extendible. Moreover, for n ≥ 2 it holds that

∫ 1

0

n

∏
i=1

∂
∂ t

A(ui,t)dt = u[1]

n

∏
i=2

u1−α
[i] , (4)

where u[1] ≤ u[2] ≤ . . . ≤ u[n] denotes the components of (u1, . . . ,un) ∈ I
n, re-

arranged in increasing order. Copulas of type (4) have been considered in
[6, 13].

The following result, instead, was proved in [2, Lemma 4.11] (see also [8])
and admits now another proof.

Corollary 2. Let (Xn)n∈N be a sequence of exchangeable r.v.’s. If Xi and Xj

are independent for every i, j ∈ N, i �= j, then (Xn)n∈N is a sequence of i.i.d.
r.v.’s.

Proof. In view of Theorem 1, given a sequence (Xn)n∈N of exchangeable r.v.’s,
there exists a 2–copula A such that the 2–product of A, denoted by B, is the
copula of the random pair (Xi,Xj) for every i, j ∈ N, i �= j. In particular,
if Xi and Xj are independent, then B = A ∗ AT = Π2. But, in general, A ∗
Π2 = Π2, which yields that (A∗AT )− (A∗Π2) = 0. Thus, for every (u1,u2) ∈
I

2, ∂tA(t,u2) = u2 for almost all t ∈ I, viz. A has linear section in the first
component being the second fixed. Thus, A = Π2 and the copula of every
subset of n r.v.’s of the sequence is Πn. ��

Note that, as well known, for a finite vector of exchangeable r.v.’s, pair-
wise independence does not imply independence. Consider, for example, the
trivariate vector (U1,U2,U3) whose d.f. H is given on I

3 by:

H(u1,u2,u3) = u1u2u3(1 +θ (1−u1)(1−u2)(1−u3)),

for a suitable θ ∈ [−1,1] (see, e.g., [15, Example 3.31]).

Acknowledgements. The first author acknowledges the support of School of Eco-
nomics and Management (Free University of Bozen-Bolzano) via the project “Mul-
tivariate dependence models”.



232 F. Durante and J.-F. Mai

References

1. Albanese, A., Sempi, C.: Countably generated idempotent copulas. In: Soft
methodology and random information systems, Adv. Soft Comput., pp. 197–
204. Springer, Berlin (2004)

2. Aldous, D.J.: Exchangeability and related topics. In: École d’été de probabil-
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Area-Level Time Models for Small Area
Estimation of Poverty Indicators

M.D. Esteban, D. Morales, A. Pérez, and L. Santamaŕıa

Abstract. Small area parameters usually take the form h(y), where y is the
vector containing the values of all units in the domain and h is a linear or nonlin-
ear function. If h is not linear or the target variable is not normally distributed,
then the unit-level approach has no standard procedure and each case should
be treated with a specific methodology. Area-level linear mixed models can be
generally applied to produce new estimates of linear and non linear param-
eters because direct estimates are weighted sums, so that the assumption of
normality may be acceptable. In this communication we treat the problem of
estimating small area non linear parameters, with special emphasis on the es-
timation of poverty indicators. For this sake, we borrow strength from time
by using area-level linear time models. We consider two time-dependent area-
level models, empirically investigate their behavior and apply them to estimate
poverty indicators in the Spanish Living Conditions Survey.

1 Area-Level Linear Time Model

In small area estimation samples are drawn from a finite population, but
estimations are required for subsets (called small areas or domains) where
the effective sample sizes are too small to produce reliable direct estimates.
An estimator of a small area parameter is called direct if it is calculated just
with the sample data coming from the corresponding small area. Thus, the
lack of sample data from the target small area affects seriously the accuracy
of the direct estimators, and this fact has given rise to the development of new
tools for obtaining more precise estimates. See a description of this theory in
the monograph of Rao ([4]).

Area-level models relate direct estimates of small area means to area-level
auxiliary variables. The idea is to borrow strength from other domains, related
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variables, past time instants and correlations, in order to produce new model-
based estimates. In this work we consider the model

ydt = xdtβββ + udt + edt , d = 1, . . . ,D, t = 1, . . . ,md , (1)

where ydt is a direct estimator of the indicator of interest for area d and time
instant t, xdt is a vector containing the aggregated (population) values of p
auxiliary variables, the random vectors (ud1, . . . ,udmd ), d = 1, . . . ,D, are i.i.d.
AR(1), with variance and auto-correlation parameters σ2

u and ρ respectively,
the errors edt ’s are independent N(0,σ2

dt) with known σ2
dt ’s, and the udt ’s and

the edt ’s are independent. In the applications to real data we may also consider
a simpler model obtained by restricting model (1) to ρ = 0. Model (1) is related
to the model of Rao and Yu [3] in the sense that ud is substituted by udt to take
into account the area-by-time variability through specific random effects.

In matrix notation, model (1) is

y = Xβββ + Zu+ e, (2)

where

y = col
1≤d≤D

(yd), yd = col
1≤t≤md

(ydt), u = col
1≤d≤D

(ud), ud = col
1≤t≤md

(udt),

e = col
1≤d≤D

(ed), ed = col
1≤t≤md

(edt), X = col
1≤d≤D

(Xd), Xd = col
1≤t≤md

(xdt),

xdt = col′
1≤k≤p

(xdtk), βββ = col
1≤k≤p

(βk), Z = IM×M , M =
D

∑
d=1

md .

We assume that u ∼ N(0,Vu) and e ∼ N(0,Ve) are independent with covari-
ance matrices

Vu =σ2
uΩ(ρ), Ω(ρ)= diag

1≤d≤D
(Ωd(ρ)), Ve = diag

1≤d≤D
(Ved), Ved = diag

1≤t≤md

(σ2
dt),

where the variances σ2
dt are known and

Ωd =Ωd(ρ) =
1

1−ρ2

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 ρ . . . ρmd−2 ρmd−1

ρ 1
. . . ρmd−2

...
. . . . . . . . .

...

ρmd−2 . . . 1 ρ
ρmd−1 ρmd−2 . . . ρ 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

md×md

.

The BLU estimators and predictors of βββ and u are

β̂ββ = (X′V−1X)−1X′V−1y and û = VuZ′V−1(y−Xβ̂ββ),
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where var(y) = V = σ2
u diag

1≤d≤D
(Ωd(ρ)) + Ve = diag

1≤d≤D
(σ2

uΩd(ρ) + Ved) =

diag
1≤d≤D

(Vd). The model is fitted by using the residual maximum likelihood

method and μdt = xdtβββ + udt is predicted with the empirical bet linear un-
biased predictor (EBLUP) μ̂dt = xdt β̂ββ + ûdt. If we do not take into account
the error, edt , this is equivalent to predict ydt = a′y, where a = col

1≤�≤D
(δd�a�)

and a� = col
1≤k≤m�

(δtk). The population mean Y dt is estimated by means of

Ŷ
eblup

dt = μ̂dt . Following Prasad and Rao [2], see also Rao [4] or Jiang and

Lahiri [1], the mean squared error (MSE) of Ŷ
eblup

dt takes the form

MSE(Ŷ
eblup

dt ) = g1(θ )+ g2(θ )+ g3(θ ),

where θ = (σ2
u ,ρ),

g1(θ ) = a′ZTZ′a,

g2(θ ) = [a′X−a′ZTZ′V−1
e X]Q[X′a−X′V−1

e ZTZ′a],

g3(θ ) ≈ tr
{
(∇b′)V(∇b′)′E

[
(θ̂ −θ )(θ̂ −θ )′

]}

and Q = (X′V−1X)−1, T = Vu−VuZ′V−1ZVu, b′ = a′ZVuZ′V−1. The estimator

of MSE(Ŷ
eblup

dt ) is

mse(Ŷ
eblup

dt ) = g1(θ̂ )+ g2(θ̂ )+ 2g3(θ̂ ). (3)

2 Estimation of Poverty Indicators

Let us consider a finite population Pt partitioned into D domains Pdt at time
period t, and denote their sizes by Nt and Ndt , d = 1, . . . ,D. Let zdt j be an
income variable measured in all the units of the population and let zt be
the poverty line, so that units with zdt j < zt are considered as poor at time
period t. The main goal of this section is to estimate the poverty incidence
(proportion of individuals under poverty) and the poverty gap in Spanish
domains. These two measures belongs to the family

Yα ;dt =
1

Ndt

Ndt

∑
j=1

yα ;dt j, where yα ;dt j =
(

zt − zdt j

zt

)α
I(zdt j < zt), (4)

I(zdt j < zt )= 1 if zdt j < zt and I(zdt j < zt )= 0 otherwise. The proportion of units
under poverty in the domain d and period t is thus Y0;dt and the poverty gap
is Y1;dt .
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We use data from the Spanish Living Conditions Survey (SLCS) corre-
sponding to years 2004-2006 with sample sizes 44648, 37491, 34694 respec-
tively. The SLCS is the Spanish version of the“European Statistics on Income
and Living Conditions” (EU-SILC), which is one of the statistical operations
that have been harmonized for EU countries. We consider D = 104 domains
obtained by crossing 52 provinces with 2 sexes. The SLCS does not produce
official estimates at the domain level (provinces × sex), but the analogous
direct estimator of the total Ydt = ∑Ndt

j=1 ydt j is

Ŷ dir
dt = ∑

j∈Sdt

wdt j ydt j.

where Sdt is the domain sample at time period t and the wdt j’s are the official
calibrated sampling weights which take into account for non response. In the
particular case ydt j = 1, for all j ∈ Pdt , we get the estimated domain size

N̂dir
dt = ∑

j∈Sdt

wdt j.

Using this quantity, a direct estimator of the domain mean Ȳdt is ȳdt =
Ŷ dir

dt /N̂dir
dt . The direct estimates of the domain means are used as responses

in the area-level time model. The design-based variances of these estimators
can be approximated by

V̂π(Ŷ dir
dt ) = ∑

j∈Sdt

wdt j(wdt j −1)
(
ydt j − ȳdt

)2 and V̂π(ȳdt) = V̂
(

Ŷ dir
dt

)
/N̂2

dt .

As we are interested in the cases ydt j = yα ;dt j, α = 0,1, we select the direct
estimates of the poverty incidence and poverty gap at domain d and time
period t (i.e. ȳ0;dt and ȳ1;dt respectively) as target variables for the time de-
pendent area-level models. The considered auxiliary variables are the known
domain means of the category indicators of the following variables:

• INTERCEPT: First auxiliary variable is equal to one.
• AGE: Age groups for the intervals ≤ 15, 16−24, 25−49, 50−64 and ≥ 65.
• EDUCATION: Highest level of education completed, with 4 categories for

Less than primary education level, Primary education level, Secondary
education level and University level.

• CITIZENSHIP: with 2 categories for Spanish and Not Spanish.
• LABOR: Labor situation with 4 categories for Below 16 years, Employed,

Unemployed and Inactive.

The Poverty Threshold is fixed as the 60% of the median of the normalized
incomes in Spanish households. The total number of normalized household
members is

Hdt j = 1 + 0.5(Hdt j≥14−1)+ 0.3Hdt j<14
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where Hdt j≥14 is the number of people aged 14 and over and Hdt j<14 is the
number of children aged under 14. The normalized net annual income of
a household is obtained by dividing its net annual income by its normalized
size. The Spanish poverty thresholds (in euros) in 2004-06 are z2004 = 6098.57,
z2005 = 6160.00 and z2006 = 6556.60 respectively. These are the zt -values used
in the calculation of the direct estimates of the poverty incidence and gap.

We consider the linear model ydt = X̄dtβββ + udt + edt , d = 1, . . . ,D, where
ydt = Ŷ dir

dt /N̂dir
dt , σ2

dt = V̂π(ȳdt) and X̄d is the 1× p vector containing the popu-
lation (aggregated) mean values of all the categories (except the last one) of
the explanatory variables. Random effects errors are assumed to follow the
distributional assumptions of model (1). Obtained EBLUP estimates of %
poverty proportions pd = 100 ·Ŷ eblup1

0;d,2006 and poverty gaps gd = 100 ·Ŷ eblup1
1;d,2006 are

presented in the Figure 1.

pd<10
10<pd<20
20<pd<30
pd>30

Poverty Proportion − Men

pd<10
10<pd<20
20<pd<30
pd>30

Poverty Proportion − Women

gd<3
3<gd<6
6<gd<10
gd>10

Poverty Gap − Men

gd<3
3<gd<6
6<gd<10
gd>10

Poverty Gap − Women

Fig. 1 Estimates of Spanish poverty proportions (top) and gaps (bottom) for men
(left) and women (right) in 2006.
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Flood Analysis: On the Automation of the
Geomorphological-Historical Method

Elena Fernández, Miguel Fernández, Soledad Anadón,
Gil González-Rodŕıguez, and Ana Colubi

Abstract. Different methods to assess the flood return period are available in
the literature. The hydrological-hydraulic approaches, among the best-known
quantitative methods, oversimplify the complex characteristics of the fluvial
systems. Additionally, they rely on data that are usually criticized because
of their low quality and representativity. In contrast, the semi-quantitative
approach based on geomorphological and historical information has lead to
more realistic and promising results in pilot studies. This approach is based
on highly informative field data providing valuable knowledge which can be
used to test the aforementioned quantitative approaches. The aim of this
work is to analyze the kind of information that is required to apply the latter
method and to explore the possibilities of its automation.

Keywords: Flood frequency, Geomorphological-historical information, Im-
precise data, Supervised classification.

1 Introduction

Floods are one of the most common hazards in Europe. They are causing
nowadays large losses. To reduce such losses, it is essential to improve the
assessment of the return period of these events. The approach that has tradi-
tionally been employed to estimate the return period is based on hydrological-
hydraulic models. Nevertheless, this approach is being more and more
criticized due to the unrealistic assumptions that it requires and the poor
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results that are obtained when the available data are scarce [7, 9]. These
limitations make the hydrological-hydraulic models not always suitable for
scarcely populated mountain zones where not enough reliable data have his-
torically been recorded [6]. An increasing number of authors are suggesting
the need of considering complementary information [3, 10]. In this sense,
the Spanish Authorities have approved a program to elaborate a National
Cartography System of Flooding Areas combining different methodologies.

The geomorphological-historical method [2] has shown to lead to more re-
alistic results in recent studies developed in North Spain [4, 7]. Nevertheless,
the employed information is very heterogeneous, has different degrees of reli-
ability and precision and the final combination to assess the return period is
made by expert criteria. In order to guarantee the objectivity of the approach
a systematic analysis of the information and an automation of the final as-
sessment is required. The usual flooding categories are those established by
the EU Flood Directive, namely, low, medium and high flooding probability
(respectively associated with return periods of about 500, 100 and 10 year).
The final aim will be to obtain an automatic classification rule from a su-
pervised experiment which has to be properly designed. In this work, some
results obtained by pilot studies are discussed.

2 Analyzing the Flood Frequency with
Geomorphological-Historical Information

Geomorphological and historical information is collected both in field and
office work. In [4] historical data obtained from documentary sources and
riverside inhabitants interviews are used to define an index of the flood mag-
nitude. The index is based on 5 partial indicators. Namely, the discharge
measure, the event magnitude according to the interviews, the proportion
of interviewees mentioning the event, the flooded area percentage and the
proportion of other documentary sources mentioning the event.

Given that the effect of some of the considered indicators cannot be pre-
cisely evaluated, intervals and fuzzy sets reflecting the imprecision are em-
ployed. The imprecision varies depending on different factors, so different
ways of obtaining the intervals as a function of those factors are introduced.
On the other hand, the importance and/or reliability of the indicators is dif-
ferent according to the expert criteria. Thus, the synthetic index gathering the
information of all the indicators is computed as a weighted (interval-valued)
mean of the valid data.

Once the information of the different indicators is computed and merged
into the synthetic interval-valued index, a representation as the one in Fig. 1 is
obtained. This index allows us to complete the flood chronology by deduction.
For instance, although no historical information was obtained for 1993 in a
given unit, it can be deduced because it is known that the unit was flooded
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Fig. 1 Interval values for the synthetic index measuring the magnitude of each
event.

in 2003: since it is known that a smaller event flooded the area, the larger
event had to flood that unit too.

After reconstructing the series of historical floods, a lower bound for the re-
turn period can be obtained. The flood probability can be estimated through
the flood frequency in the considered period. Since such a period is just a
sample, the underlying stochastic variability can be considered. Specifically,
confidence intervals based on the score method are proposed to be computed
in [4], due to the performance of this method for small sample sizes. Time
non-stationarity could also be considered to improve the results in this ap-
proach.

It is clear that having documentary references to all the historical floods is
not feasible, even in the current information society. This is especially critical
in sparsely populated areas. For this reason, it is proposed to complement this
information with geomorphological data.

If a given unit is frequently flooded, visible geomorphic evidences can be
found by the experts [8, 9]. Thus, observing the presence/absence of mor-
phologies such as those in Fig. 2 provides us with highly valuable informa-
tion about the flood frequency. Specifically, they allow to identify the high
frequently flooded plains, which is essential for the flood hazard management.
The shortcoming of this kind of data is that they do not allow to determine
high return periods. Additionally, a certain degree of expert knowledge is
required in order to identify the morphologies.

Nevertheless, there are other indicators, as the height of the river bank
which may also supply information about the flooding frequency. For instance,
in Fig. 3 a flooding plain with low river bank is shown. In contrast, Figure 4
displays the opposite situation. If they refer to the same stretch of the river,
it is clear that the first unit may be easily flooded. According to the experts,
the corresponding water cross-section to reach the flooding plain, and the
surface of the drainage basin of each flooding plain are other quantitative
variables to be considered. To quantify all these indicators, Digital Elevation
Models (DEMs) are frequently used when available. In this particular study,
DEMs were available with a 1-meter pixel resolution and up to milimetric
precision for the height values.

Pilot studies have shown that some of those variables (height and cross-
section) are statistically related to the probability of belonging to the class
of high/medium/low frequency flood determined by expert criteria. However,
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Fig. 2 Geomorphological evidences.

Fig. 3 Flood plain with low height.

considering only the height leads to results almost as good as those obtained
by taking into account more variables (see Table 1).

From Table 1, we can conclude that DEM height measurements are very
valuable for classifying between Medium and Low frequent flooding plains.
Unfortunately, this accuracy is partially lost when the critical classification
problem between High and Medium classes is considered. In this case, it seems
that the combination with the cross-section information improves the results.
This lack of accuracy is probably connected with the lower reliability of DEM
measurements due to the usual abundance of vegetation in the High and
Medium frequency flooding plains. Consequently, we consider that obtaining
more reliable measures of the height is an essential task.
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Table 1 Leave-One-Out percentage of right classification for discriminant analysis
based on DEM measurements.

High/Medium Medium/Low High/Medium/Low

Height 78.9% 93.3% 84.6%

Cross-section 78.9% 63.3% 64.1%

Surface 00.0% 68.8% 37.2%

Height and cross-section 84.2% 90.0% 87.2%

Fig. 4 Flood plain with high height.

Measuring exactly the height in field work would be too expensive. Nev-
ertheless, obtaining a subjective valuation from the field researchers by a
simple visual inspection is very easy. On the contrary, the cross-section and
surface measurements require more expensive tools, as DEM or 1:2000-scale
topographic maps.

Following the approach in [5], a fuzzy scale allowing to capture, not only
the perception but also the uncertainty of the field researcher is proposed.
Specifically, in the pilot study carried out, the field researchers were asked
to collect their valuation of the height by means of trapezoidal fuzzy sets. A
trapezoidal fuzzy set T is characterized by a [0,1]−valued function defined
on S ⊂ R assuming positive values over an interval [a,b], called 0-level, the
value 1 over an interval [c,d], called 1−level, linearly increasing between a
and c and linearly decreasing between b and d (see an example in Fig. 5).
For each x ∈ S, T (x) represents the degree of compatibility of the perception
of the expert with the assertion “the height is x”.

Thus, the experts are asked to choose the 0−level of the fuzzy set as the
smaller interval that they would not completely discard as containing the
“true” Height value, whereas the 1−cut is to be chosen as the interval of
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Fig. 5 Example of fuzzy perception of the height.

Table 2 Leave-One-Out percentage of right classification for discriminant analysis
based on fuzzy field valuations.

High/Medium Medium/Low High/Medium/Low

X1 =Inf T0 89.5% 83.3% 79.5%

X2 =Inf T0 89.5% 83.3% 82.1%

X3 =Sup T0 94.7% 83.3% 84.6%

X4 =Sup T0 89.5% 83.3% 82.1%

X1,X2,X3,X4 84.2% 90.0% 84.6%

D = (X1 +X2 +X3 +X4)/4 89.5% 83.3% 82.1%

values that they indeed consider completely compatible with the height that
they are observing. In other words, the 1−level would contain their personal
opinion and the 0−level the range that they could admit to a greater or
lesser extent. In this way, fuzzy perceptions of the length as that in Fig. 5
are available.

In order to verify if the collected fuzzy information is useful for the con-
sidered classification problem, several approaches can be considered. On the
one hand, a classical discriminant analysis based on the 4 variables recorded
for each trapezoidal fuzzy perception T (infima and suprema of the 0− and
the 1− level set), as well as an average of all of them as a defuzzifier can be
applied (see Table 2).

According to the results in Tables 1 and 2 it seems that the classification
results between High and Medium are better when the field valuation is
considered. On the contrary, the classification results between Medium and
Low are better when the DEM measures are employed.

However, the analysis in Table 2 is not taking into account the struc-
ture of fuzzy data in the classification problem. To consider the fuzzy sets
as structured data, the Proximity-based Classification Criteria for Fuzzy data
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Table 3 Leave-One-Out percentage of right classification for Proximity-based clas-
sification with fuzzy field valuations.

High/Medium Medium/Low High/Medium/Low

heigh valuation 89.5% 90.0% 84.6%

(PCCF) in [1] can be employed. The simplified idea of PCCF is to consider
the fuzzy data as observations of a fuzzy random variable X and to proceed
as follows:

• the ‘center’ Ci of each group Gi is computed by averaging of the fuzzy data
in this group.

• To classify a new fuzzy data T , the conditional probability

P(d(X ,Ci) > d(T,Ci)/Gi)

is estimated. This probability is a kind of measure of the affinity of T to
each one of the groups.

• T is assigned to the group Gi with highest estimated probability.

The results in Table 3 are obtained by applying PCCF to the fuzzy per-
ceptions of the height collected in the pilot study. These results indicate that
the consideration of fuzzy field valuations of the height is very valuable in
comparison with the consideration of the DEM measures for High/Medium
classes. Additionally, for Medium/Low and the overall classification, the re-
sults are comparable. Thus, taking into account these results, the cost of
both kinds of data, and since the experts have to visit anyway the flooding
plains to look for geomorphological evidences, we recommend to consider the
systematic collection of fuzzy valuations.

3 Concluding Remarks

In this paper we have surveyed some of the most useful geomorphological
and historical information that can be used in order to assess the flooding
frequency. The different sources show various degrees of imprecision and re-
liability. None of them is uniformly the best to classify the flooding plains
according to the expert criterion, nevertheless they supply complementary
information that can be merged to build a quantitative model in the future.

The documentary sources, the historical records and the interviews can
be used to determine lower bounds that may avoid critical underestimates
provided by other methods.

The geomorphological evidences are, of course, very useful to classify high
frequency flooding. However, these dichotomic variables are not enough to
accurately determine low return periods. Thus, although the expert crite-
rion is highly linked to these variables, they require more information to
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distinguish between medium and low frequency classes. One of the character-
istics that the experts use for that purpose is the river bank height, as well
as other quantitative variables involved in the hydrological-hydraulic models.
The pilot studies have shown that considering the height is essential. Nev-
ertheless, reliable measures are required. One of the ways of measuring this
indicator is to use DEM, but there are problems in presence of lush veg-
etation, which is related to high frequency classes. The pilot studies have
indicated that incorporating fuzzy valuations of height provided by the field
researchers gives, in general, better results than using DEM measures. Ad-
ditionally, it is a not expensive source of information which does not require
expert knowledge on geomorphology. Nevertheless, the necessity of develop-
ing pilot studies for each new basin should be underlined, because the heights
determining the cuts between classes are specific of each basin, whence the
sample to train the supervised classification has to be updated.
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Abstract. Uncertainty is always present in inverse problems. The main
reasons for that are noise in data and measurement error, solution non-
uniqueness, data coverage and bandwidth limitations, physical assumptions
and numerical approximations. In the context of nonlinear inversion, the un-
certainty problem is that of quantifying the variability in the model space
supported by prior information and the observed data. In this paper we out-
line a general nonlinear inverse uncertainty estimation method that allows for
the comprehensive search of model posterior space while maintaining compu-
tational efficiencies similar to deterministic inversions. Integral to this method
is the combination of model reduction techniques, a constrained mapping ap-
proach and a sparse sampling scheme. This approach allows for uncertainty
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1 Inverse Problems and Uncertainty

Inverse problems can be written in discrete form as F(m) = d, where
m ∈ M ⊂ Rn are the model parameters, d ∈ Rs the discrete observed data,
and

F(m) = ( f1(m), f2(m), . . . , fs(m))

is the vector field representing the forward operator and f j(m) is the scalar
field that accounts for the j-th data. Usually s < n, that is, the inverse problem
has an underdetermined character. Furthermore, many geophysical problems
are nonlinear and poorly sampled making the inverse ill-posed, non-unique,
and ill-conditioned. Ill-conditioning is an important issue when solving the
inverse problem as an optimization problem, because noise in data is amplified
back to the model parameters through the inverse forward operator, F−1. In
addition to these difficulties, we have measurement errors, data coverage and
bandwidth limitations, and numerical approximations, which all contribute
to uncertainty in our inverse solutions. In the context of nonlinear inversion,
the uncertainty problem is that of quantifying the variability in the model
space supported by prior information, the observed data, and the errors of
the method.

Global optimization algorithms can be a good alternative to deterministic
solutions, because they approach the nonlinear inverse problem as a sampling
problem instead of looking for the inverse operator. Also, they only need as
prior information the search space of possible solutions. Typically they use as
a cost (or objective) function the data prediction misfit in a certain norm p :

‖F(m)−d‖p .

It is possible to show analytically that the models in the neighborhood of
m0 that fit the data within the same tolerance, tol, belongs to the following
hyperquadric:

(m−m0)
T JFT

m0
JFm0 (m−m0)+ 2ΔΔΔdT (m−m0)+‖ΔΔΔd‖2

2 = tol2.

JFm0 is the Jacobian matrix of the operator F in m0 and ΔΔΔd =F(m0)−d. This
means that the region of equivalent models locally in m0 have the direction
of the vectors of the V base given by the singular value decomposition of
JFm0 and whose axes are proportional to the inverse of the singular values λk

in each direction. Due to the continuity of the Jacobian operator, we finally
conclude that with no regularization term the misfit function has a flat and
elongated valley shape. This approach assumes derivability of F in m0, which
is usually the case in most inverse problems.

These types of sampling methods can be useful, but they have limitations
for large spaces, since they sample each model parameter as independent
variables; a property that is not necessarily true for finite resolution methods
(i.e, electromagnetic imaging). In contrast, local optimization methods are
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not designed to approach this sampling problem, and they often fail to find a
solution without regularization. These algorithms can very effectively handle
inverse problems having thousands to millions of parameters. The main draw-
back of local methods is that they are highly dependent on the initial guess
and the quality of the prior information that is built into the regularization
term to achieve uniqueness and stability in the inverse solution. Furthermore
they do not provide any measure of nonlinear uncertainty around the solution
of the inverse problem.

An alternative to both these methods, presented by [7], is to solve the sam-
pling problem in a bounded transformed space using optimally sparse grids.
This method both accounts for the equivalence in our nonlinear inverse prob-
lem and allows for the inference of solution uncertainty by sampling the model
posterior. In the following sections we review two important aspects of this
technique including model parameter reduction using orthogonal transforma-
tions, and geometric sampling of the equivalent model space.

2 Model Reduction Techniques

The use of model reduction techniques act to decrease the dimension of the
inverse problem. For an underdetermined linear inverse problem of the form

Gm = d

the method consists in expanding the solution m as a linear combination of
a set of independent models,

{
v1,v2, . . . ,vq

}
:

m ∈
〈
v1,v2, . . . ,vq

〉
=

q

∑
k=1

αkvk, (1)

and to solve the linear system Bα = d where B = GV and V = [v1,v2, . . . ,vq].
This methodology is related to subspace methods and can be easily gener-
alized to nonlinear inverse problems, because once the base is determined,
the search is performed on the α-space. The use of a reduced set of basis
vectors that are consistent with our prior knowledge allows to regularize the
inverse problem and to reduce the space of possible solutions. There are sev-
eral ways of finding the base

{
v1,v2, . . . ,vq

}
in order to reduce complexity.

Principal Component Analysis (PCA), the Singular Value Decomposition,
the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform
have been presented in [2]. As stated in [2] the orthonormal base has to al-
low for classification of the model variability, and to be separable in order to
expand this methodology to large parameterizations. Also one of these meth-
ods is covariance-based (PCA) while the other techniques are model-based,
allowing for the use of different kinds of reduction techniques depending on
the dimension of our inverse problem and the quality of the prior information.
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3 Computing Uncertainty in High Dimensional Spaces

The methods to compute uncertainty in high dimensional spaces can be di-
vided into two main groups depending on whether the forward problem is fast
to solve or not. To the first category belong global optimization algorithms in
a reduced model space [3]. Monte Carlo techniques can not address this kind
of problem due to the dimensionality issue. Additionally they can be very inef-
ficient, since they typically spend much effort sampling parts of the posterior
that do not fit the observed data. Global optimization algorithms can address
the non-convexity of the cost function by sampling the family of equivalent
models. Nevertheless when the inverse problem has a very expensive forward
problem these methods are not a good alternative. The main reason is that the
tasks of sampling the posterior and the forward prediction are coupled.

3.1 The Geometric Sampling Approach

An alternative to stochastic sampling methods is geometric sampling as in-
troduced by Tompkins and Fernández Mart́ınez [7]. The methodology is com-
posed of four steps: 1) parameter reduction 2) model constraint mapping by
vertex enumeration, 3) sparse grid sampling, and 4) final forward evaluation.
Model reduction techniques have been already presented, and we discuss sam-
pling below.

Once we perform model reduction techniques on the model space we have
at our disposal a set of orthonormal vectors

{
v1,v2, . . . ,vq

}
allowing the linear

decomposition (1). Vectors vi increase their frequency with their index. Thus
this linear expansion has a regularization effect on the sampling. The next
step is to provide to the model m some lower and upper bounds, l and u:

l ≤
q

∑
k=1

αkvk ≤ u. (2)

At this stage we suppose a uniform prior distribution of m in these bounds.
Condition (2) is called the vertex enumeration problem [1] and generates in
the reduced model space a polytope P ⊂R

p for the coefficients on the reduced
base αk. This idea was first suggested by Ganapathysubramanian and Zabaras
[5] for heat flow problems in random media using the PCA base. Nevertheless,
in their work this idea was not used to compute uncertainty associated with
to non-linear inverse problems through the geometric sampling approach. Ge-
ometric Sampling consists in sampling within the polytope using an uniform
distribution and sparse grids [7]. This uniform sampling distribution induces
a non-uniform prior distribution in the original space M, since:

P(mi < ci) = P

(
q

∑
k=1

αkvki < ci

)

,

where the vectors of the base are fixed.
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This complete non-uniform distribution on M, the posterior, is not explic-
itly calculated, since we only have at our disposal some independent samples
whose number depend on the sparsity of the sampling scheme that has been
used. However, once we have sampled αk over our reduced space, our approx-
imation to this posterior is determined by mapping these samples back to our
original model space, M.

Optimizing the sampling on the reduced space is very important in our
methodology, since this allows us to tailor the sampling density to the cost
and to the complexity of the forward evaluations. Of particular interest are
sparse sampling techniques, such as the Smolyak grids [6], that can provide
for adaptive sample refinement. That is, if we wish to extend the accuracy or
breadth of our sampling from some initial set to some larger set, we simply
need to evaluate samples at the additional nodes over the second set, which
provides a means to optimize sampling based on some criteria (in our case,
convergence of statistical moments of our posterior).

In order to sample inside the polytope, defined by Equation (2), we circum-
scribe a hypercube in our q−dimensional space and perform the sampling on
a Cartesian grid in the reduced model space using Smolyak nested grids [8].
Once the sampling on the hypercube is performed, models, M, in our original
model space are reconstructed using (1). The final step in uncertainty esti-
mation is to evaluate the posterior model samples for their likelihood (i.e.,
data misfit). For this, forward simulations are performed and models are ac-
cepted or rejected based on a threshold misfit. The accepted models represent
the equivalence space of equiprobable models. The uncertainty of the non-
linear inverse problem then follows from either the model ensemble itself or
statistical measures (e.g., mean, covariance, percentile, interquartile range)
computed from it.

4 Example: A Subsurface Resistivity Image

Over the past decade, marine controlled-source electromagnetic (CSEM) sur-
veying has emerged as a useful technique for subsurface resistivity imag-
ing. In this method, a deep-towed electric dipole source is used to excite
a low-frequency (˜0.1–10 Hz) electromagnetic signal. This signal propagates
through the seawater and subsurface and is perturbed by geologic variation to
depths of several kilometers. Spatially-distributed, multi-component, seafloor
receivers record this electromagnetic energy at offsets up to 20km. These elec-
tromagnetic data are typically interpreted using geophysical inverse methods
that attempt to reconstruct subsurface resistivities from recorded fields [4].
Inversion of this data is nonlinear, and uncertainty comes from noise in the
data and assumptions about the earth model.

To demonstrate the extension of our uncertainty method to large parame-
ter spaces, we chose a marine CSEM field dataset collected by WesternGeco in
the Potiguar basin in Brazil during 2009. The electromagnetic data consisted
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of ∼3800 complex-valued fields at 4 frequencies (0.25, 0.50, 0.75, and 1.5Hz).
For this problem, the original uniform pixel space had 33,280 parameters;
however, we only considered the part of the final inverse model not occupied
by air, seawater, or homogeneous resistive basement (>4500m depths). This
left the inversion domain shown in Figure 1(A), which consisted of 5,461 pa-
rameters. Of particular interest, are the structures and magnitudes of the
resistive features at ∼4000m depth. After subtracting a global mean from
our inverse model, the SVD base was reduced to six terms that represented
∼ 81% of the variability in the residuals, following the methodology explained
in [2]. We then performed optimal sampling over this six-dimensional reduced
space to estimate the model posterior and solution uncertainty. The resulting
posterior polytope was defined by 15,990 vertices, which, in this case, we ap-
proximated with a 6-D hypercube (i.e., 6 bases were chosen). Based on sparse
sampling of this hypercube we evaluated 1942 equi-feasible models to gener-
ate the model posterior. The computational cost of evaluating these models
was approximately 6 days using two 8-core workstations. With a threshold
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misfit, RMS<15%, we generated the final equivalent model set (283 models).
Once we have this ensemble, we can compute statistical properties from it
as well, for example, e-types, variances, or indicator probabilities. Probabil-
ity (normalized frequency) maps are a useful way to visualize uncertainty.
Figures 1(B)–(D) show the probability maps for different cut-offs (3, 4 and
5Ω.m) deduced from the approximation of the model posterior over the low
misfit region. These probability maps represent the probability of occurrence
of a resistivity of at least 3, 4 and 5Ω.m in our model space, and quantifies
some aspects of the uncertainty in our subsurface resistivity image inverse
problem. Additional measures of uncertainty are possible using any number
of statistical properties of the model posterior.

5 Conclusions

The combined use of model reduction techniques, and sparse sampling al-
lows us to approach efficiently the uncertainty problem in high dimensional
spaces. This methodology can be efficiently applied to estimate nonlinear in-
verse model uncertainty in any kind of inverse problem. The combination
of these methods can reduce the nonlinear uncertainty problem to a deter-
ministic sampling problem in only a few dimensions, requiring only limited
forward solves, and resulting in an optimally sparse representation of the pos-
terior model space. While forward solves are required to evaluate the sampled
models, our scheme optimizes sample size by iteratively increasing sampling
complexity until uncertainty measures converge or a maximum number of
forward solves is completed.

Acknowledgements. We acknowledge WesternGeco for allowing us to use and
publish the resistivity image data set.
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Inverse problems and model reduction techniques. In: Borgelt, C., González-
Rodŕıguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.A., Grzegorzewski, P.,
Hryniewicz, O. (eds.) Combining Soft Computing and Statistical Methods in
Data Analysis. Advances in Soft Computing. Springer, Berlin (in this book,
2010)

3. Fernández-Mart́ınez, J.L., Mukerji, T., Garćıa-Gonzalo, E.: Particle Swarm Opti-
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mined and ill-posed. Good prior information and regularization techniques
are needed when using local optimization methods but only linear model ap-
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1 Inverse Problems and Uncertainty

Inverse problems can be written in discrete form as F(m) = d, where
m ∈ M ⊂R

n are the model parameters, d ∈R
s is the discrete observed data

and F(m) = ( f1(m), f2(m), . . . , fs(m)) is the vector function representing the
forward operator, being f j(m) the scalar field that predicts the j-th data.
Usually s� n, that is the inverse problem has an underdetermined character.
This makes the inverse very ill posed, that is no unique solution exist and
the inverse problem is very ill-conditioned. When using local techniques the
prior information is built in the regularization term that is aimed at achieving
uniqueness and stability in the inverse problem solution. The L-curve serves
to display the trade-off between the complexity of the regularized solution and
the data misfit. The results of applying this procedure is a unique model. In
fact the L-curve clearly shows the nature of the equivalencies, through the
family of models located along the L-curve that have similar data misfit but
differ increasingly from the prior. These models are called equivalent in our
approach as far as they satisfy some lower and upper bounds constraints.

2 Parameter Reduction via Orthogonal
Transformations

Most inversion algorithms involve a complicated forward model with a large
number of parameters needed for accomplishing accuracy on the data predic-
tion. However the model parameterization used in the forward problem may
not be the best choice for inversion since the observed data do not inform
about all the components of the model. In the linear case this is of course
related to the dimension of the null space of the linear operator. Model pa-
rameterization is a key concept in order to make the inverse problem less
ill-conditioned. Adopting the right parameterization (i.e. basis set) also re-
duces the number of dimensions in which the inverse problem is going to be
solved allowing performing posterior uncertainty analysis.

The use of model reduction techniques is based on the fact that the inverse
model parameters are not independent. Conversely, there exist correlations
between model parameters introduced by the physics of the forward problem
F in order to fit the observed data. We propose to take advantage of this
fact to reduce the number of parameters that are used to solve the identi-
fication problem. To illustrate this idea let us consider an underdetermined
linear inverse problem of the form G m = d where G ∈M (s,n) is the forward
linear operator and s, n stand respectively for the dimensions of the data and
model spaces. The solution m to this linear inverse problem is expanded as a
linear combination of a set of independent models

{
v1,v2, . . . ,vq

}
, which are

consistent with our prior knowledge:
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m ∈ M =
〈
v1,v2, . . . ,vq

〉
→ m =

q

∑
k=1

αkvk, q � n

The problem now is equivalent to find the model m in a subspace of R
n of

dimension q:

GVα = d → Bα = d, B = GV ∈M (s,q) ,

where V = [v1 v2 . . .vq]. This amounts to solving the linear system Bα = d
to find the set of weights α of the linear combination. Although this linear
system might still be ill-posed, the effect of this methodology is to reduce
the space of possible solutions. Additionally depending on the values of s and
q the linear system Bα = d might even have an over-determined character.
This methodology can be easily generalized to nonlinear inverse problems,
because once the base is determined, the search is performed on the α-space.
The use of a reduced set of basis vectors that are consistent with our prior
knowledge allows to regularize the inverse problem and to reduce the space of
possible solutions. These orthonormal bases have to allow the classification of
the model variability according to some criteria. Finally separability allows
the generalization of our methodology to higher dimensions. In this paper we
show several techniques that can be used to construct these bases, such as,
the Principal Component Analysis (PCA), the Singular Value Decomposition,
the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform
(DWT). Some of these methods are covariance-based such as the PCA, while
others techniques are model-based. Also some of these methods do not need
any diagonalization (DCT, DWT) and do not require the computation of
the Jacobian. This is important because both tasks might not be possible to
perform in very high dimensions.

2.1 Principal Component Analysis (PCA)

Principal component analysis [7] is a well-known mathematical procedure
that transforms a number of correlated variables (model parameters in this
case) into a smaller number of uncorrelated variables called principal com-
ponents, while maintaining their full variance and ordering the uncorrelated
variables by their contributions. The resulting transformation is such that the
first principal component represents the largest amount of variability, while
each successive component accounts for as much of the remaining variability
as possible [5]. Usually PCA is performed in the data space, but in this case
it is used to reduce the dimensionality of the model space based on a priori
samples obtained from conditional geostatistical realizations that have been
constrained to static data. Applied to our context, PCA consists in finding an
orthogonal base of the experimental covariance matrix estimated with these
prior geological models, and then selecting a subset of the most important
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eigenvalues and associated eigenvectors that are used as a reduced model
space base.

Given and ensemble of N possible models {mk}N
1 ⊂ M⊂R

n we compute the
ensemble centered covariance

C =
1
N

N

∑
k=1

(mk − μ)(mk − μ)T

where μ =
1
N

N
∑

k=1
mk is the experimental mean. The covariance matrix C is

symmetric and semi-definite positive, hence, diagonalizable with orthogonal
eigenvectors vi, and real semi-definite positive eigenvalues λi such that Cvi =
λivi. Eigenvectors vi are called, principal components. Eigenvalues can be
ranged in decreasing order, and we can select a certain number of them to
match most of the variability of the models. That is, the q first eigen-models
(q � N) representing most part of the energy spectrum of the decomposition
are chosen. Then, any model in the reduced space is represented as a unique

linear combination of the selected eigen-models mk= μ+
q
∑

k=1
αkvk. The model

covariance can also be a posterior covariance

Cpos ∝
(

JFT
m f

JFm f

)−1
,

where JFm f is the model Jacobian matrix computed about the last iteration
of the nonlinear inversion. The Jacobian matrix is rank deficient. The di-
mension of the null space of the Jacobian serves to account locally for the
linear uncertainty analysis around the base model. Truncation (Moore Pen-
rose pseudoinverse) and/or damping techniques can be used to invert it. In
the first case a regularization is input to the inverse problem by thresholding
the singular vectors that span the null space of JFm f . In the second case this
inverse also gathers the influence of these singular vectors that are typically
related to the high frequencies in the model. Finally, the posterior covari-
ance can be also computed experimentally from the ensemble of the models
that have been gathered in a certain region of error tolerance using global
optimization algorithms.

2.2 Singular Value Decomposition (SVD)

Although the inverse problem in abstract form is written as F(m) = d we
are interested in cases where the model m is a 2D or a 3D image. Examples
of this are the conductivity or the velocity field in a 2D or 3D tomography
problem.

The SVD has been applied extensively in many fields, such as, in the
resolution of linear inverse problems through the Moore-Penrose pseudo in-
verse, in signal processing and pattern recognition, etc. The SVD allows the
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factorization of any rectangular matrix m0 ∈M (s,n) in the form m0 = UΣΣΣVT .
U and V are orthogonal matrices that provide orthonormal bases for R

s,Rn

respectively. ΣΣΣ is a s-by-n box-diagonal matrix with non negative real num-
bers on the diagonal, called the singular values of the matrix m0. These bases
can be calculated as follows:

m0mT
0 = UΣΣΣΣΣΣT UT , mT

0 m0 = VΣΣΣTΣΣΣVT .

This means that the U base comes from the eigenvalue decomposition (PCA)
of the row correlation matrix, m0mT

0 . Similarly the V base is calculated from
the eigenvalue decomposition (PCA) of the column correlation matrix, mT

0 m0.
Both correlation matrices have the same rank as the original image m0. Once
the bases U, V are calculated, we project the image m0 onto one of the bases,
as follows:

Uimage = UT m0, Vimage = m0V.

The intent is to decorrelate and compress the image either to the du first
rows of Uimage (or the dv first columns of Vimage) corresponding to most of its
variability. Usually our earth models are horizontally stratified, hence Uimage
gives a more effective compression than Vimage. Finally (for the Uimage case)
we define a thresholding matrix, Ti, as a zero matrix with the dimensions of
Uimage but containing only its i−th row:

Ti (k, :) = Uimage (k, :) .δik, k = 1, . . . ,s, i = 1, . . . ,du,

where δik stands for the Kronecker delta. The reduced base is derived by
projecting the first rd threshold matrices back onto the original canonical
base as follows:

bui = UTi, i = 1, . . . ,du.

A similar procedure can be done using Vimage if we wish to compress by our
image vertically:

Tj (:,k) = Vimage (:,k) .δ jk, k = 1, . . . ,n, j = 1, . . . ,dv,

bv j = T jVT , j = 1, . . . ,dv.

2.3 The Discrete Cosine Transform (DCT)

DCT has been widely deployed by modern video coding standards. Like other
transforms, the Discrete Cosine Transform (DCT) attempts to decorrelate
the 2D model. The discrete cosine transform (DCT) is a discrete Fourier
transform operating on real data. It expresses a signal in terms of a sum of
sinusoids with different frequencies and amplitudes. This transformation is
separable, that is, it can be defined in higher dimensions. For instance for an
image m0∈M (s,n) the DCT is defined as follows:
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D(u,v) = c(u)c(v)
s−1

∑
i=0

n−1

∑
j=0

m0 (i, j)cos

(
π (2i+ 1)u

2s

)
cos

(
π (2 j + 1)v

2n

)
,

where u = 0, . . . ,s−1 and v = 0, . . . ,n−1, and

c(α) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
N

if α = 0,
√

2
N

if α �= 0.

being N either the number of rows (s) or columns (n) of the original image.
The DCT has also an inversion formula to recover the original signal from

the DCT transform (see for instance [8]). DCT can be expressed in matrix
form as an orthogonal transformation D = C(s,s)m0CT

(n,n). Thus, the method
to calculate the base shown for the SVD also holds for the DCT. Although
it is very easy to implement its use is very rare in geosciences maybe be-
cause in image compression the Wavelet transform achieves better results [6].
Nevertheless for our purposes it provides a very adequate model reduction.

2.4 The Discrete Wavelet Transform (DWT)

The discrete wavelet transform allows us to find two orthogonal transfor-
mations based on wavelets, named Uw and Vw, such as m = UwmLRVT

w.
These orthogonal matrices can be constructed as follows: Uw = WT

L and
Vw = WT

R where

WL =
[

H
G

]

s
, WR =

[
H
G

]

n
.

H represents a low pass or averaging portion of the matrices W, and G is the
high pass or differencing portion. In all of cases we have

mLR = WLmWT
R =
[

HmHT HmGT

GmHT GmGT

]
=
(

B V
H D

)

where B is the blur, V are the vertical differences, H are the horizontal
differences and D are the diagonal differences. In the case of Uimage

Uimage = WLm =
[

H
G

]

s
m =
[

Hm
Gm

]

(s,n)

This means that Uimage has in its upper part the “partial” blur and its lower
part the details. In the case of Vimage the “partial”blur is on the left part and
on its right the details:

Vimage = mWT
R = m

[
HT GT

]
n =
[

mHT mGT
]
(s,n)
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Different kind of filters can be used for this purpose [2]. These families of
wavelets define a discrete wavelet transform having a maximum number of
vanishing moments.

2.5 Multiscale Inversion

The orthonormal character of the vectors of the reduced base allows an easy
implementation of a multi-scale inversion approach adding more eigenvalues
to match higher frequencies to the model m as needed since:

m =(α1,α2, . . . ,αq){v1,v2,...,vq} = (α1,α2, . . . ,αq,0){v1,v2,...,vq,vq+1} .

Multiscale inversion is very easy to implement using global methods. To de-
termine which level of detail we have to consider is an important question
since all the finer scales might not be informed by the observed data. By
reducing the base we are setting these finer scales of heterogeneity (high fre-
quencies) to zero avoiding also the risk of over fitting the data. The choices
of parameters q in Principal Component Analysis (PCA), du or dv in the
Singular Value Decomposition (SVD), and a similar parameters in the DCT
and the DWT is an important question since they serve as regularization
parameters. In practice these parameters are determined empirically for each
problem depending on the resolution and on the value of the data misfit that
we want to achieve, similarly to the L-curve procedure in non-linear least
square methods [4].

A) Initial Image
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Fig. 1 Original image, reconstructed image using SVD and four terms of the SVD
base.
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3 Application to an Oil Reservoir Problem

To illustrate our model reduction approach we chose the P-wave velocity
image from the synthetic Stanford VI reservoir [1] (Fig. 1A) consisting in
12000 parameters (80 by 150 pixels). In Fig. 1B we show its reconstruction
using ten vectors of the geological base derived through the SVD. Figures 1C-
1F show the four first terms of the base. This procedure allows to reduce the
dimension from 12000 pixels to 10 parameters in the SVD base. Although this
example is synthetic, it is important to understand that the dimensionality
reduction allows to compute uncertainty around this model either using global
optimization methods or the geometric sampling approach [3], [9].
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A Linearity Test for a Simple Regression
Model with LR Fuzzy Response

Maria Brigida Ferraro, Ana Colubi, and Paolo Giordani

Abstract. A linearity test for a simple regression model with an imprecise
response is investigated. The values of the imprecise response are formalized
through LR-fuzzy numbers, and the stochastic variability through probabil-
ity spaces. The linear regression model and the least squares estimators of
the regression parameters are briefly recalled. The nonparametric model to
be employed as reference in the testing approach is also presented. The statis-
tic compares the variability explained by the linear regression with the one
explained by the nonparametric regression, since in case of linearity, both
quantities should be similar. The problem is approached by bootstrapping.
A simulation study has been carried out in order to check the performance
of the procedure.

Keywords: Fuzzy random variable, Fuzzy regression, Linearity test, Boot-
strap approach.

1 Introduction

To formalize an imprecise value, a useful kind of fuzzy numbers is the so-
called LR family. A linear regression model with an LR fuzzy response and
a real explanatory variable has been introduced and analyzed in [5, 6].
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Among the inferential procedures in a linear regression context, it can be
interesting to check the adequacy of the linear regression for modelling the
relationship between the imprecise response and the explanatory variable.
For this purpose, it is possible to use an expert criterion or an hypothesis
test. The aim of this work is to suggest a test statistic to check the linearity
of the relationship and its empirical behaviour.

The proposed linearity test takes inspiration from Azzalini & Bowman
[1], who suggest to check the linearity of the relationship by comparing the
residuals of the linear regression with those resulting from a nonparametric
model. Here, we apply this idea in the context of the regression model with
LR response taking into account the model in [5]. The hypothesis testing
problem is approached by bootstrapping. In details, we propose a residual
bootstrap test to check the linearity of the relationship.

In the next section we introduce some preliminary concepts. In Section 3 a
linear regression model with LR fuzzy response and the estimation problem
are recalled, and a nonparametric model is presented. Section 4 deals with
the proposed linearity test and, in order to check its performance, simulation
studies and a real-life example are carried out in Section 5. Finally, Section
6 contains some concluding remarks.

2 Preliminaries

A fuzzy set Ã is identified by the membership function μÃ : R → [0,1] so that
μÃ(x) is the membership degree of x in the fuzzy set Ã [9]. A particular class
of fuzzy sets very useful in practice is the LR family, FLR, whose members
are the so-called LR fuzzy numbers, determined by three values: the center,
the left and the right spread (see, for example, [2, 3]). Namely, a mapping
s : FLR → R

3, i.e., s(Ã) = sÃ = (Am,Al,Ar) (where Am, Al ≥ 0, Ar ≥ 0 are, re-
spectively, the center, the left and the right spread), is associated to each LR
fuzzy set Ã. In what follows it is indistinctly used Ã∈FLR or (Am,Al,Ar)∈R

3.
The membership function of Ã ∈ FLR can be written as

μÃ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L
(

Am−x
Al

)
x ≤ Am, Al > 0,

1{Am}(x) x ≤ Am, Al = 0,

R
(

x−Am

Ar

)
x > Am, Ar > 0,

0 x > Am, Ar = 0,

(1)

where the functions L and R are particular decreasing shape functions from
R

+ to [0,1] such that L(0) = R(0) = 1 and L(x) = R(x) = 0,∀x ∈ R \ [0,1],
and 1I is the indicator function of a set I. Ã is a triangular fuzzy number if
L(z) = R(z) = 1− z, for 0 ≤ z ≤ 1.
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The operations considered in FLR are the natural extensions of the
Minkowski sum and the product by a positive scalar for intervals. In details,
the sum of Ã and B̃ in FLR is the LR fuzzy number Ã+ B̃ so that

(Am,Al,Ar)+ (Bm,Bl,Br) = (Am + Bm,Al + Bl,Ar + Br),

and the product of Ã ∈ FLR by a positive scalar γ is

γ(Am,Al,Ar) = (γAm,γAl,γAr).

Yang & Ko [8] define a distance between two LR fuzzy numbers Ã and B̃
as follows

D2
LR(Ã, B̃) = (Am −Bm)2 + [(Am −λAl)− (Bm−λBl)]2

+ [(Am +ρAr)− (Bm +ρBr)]2,

where the parameters λ =
∫ 1

0 L−1(ω)dω and ρ =
∫ 1

0 R−1(ω)dω are related to
the shape of the membership function. In the triangular case, λ = ρ = 1

2 (see,
for more details, [8]). In order to embed the space FLR into R

3 by preserving
the metric a generalization of the Yang and Ko metric has been derived in
[5]. Namely, given a = (a1,a2,a3) and b = (b1,b2,b3) ∈ R

3, it is

D2
λρ(a,b) =(a1−b1)2+((a1−λa2)−(b1−λb2))2+((a1 +ρa3)−(b1 +ρb3))2,

where λ , ρ ∈R
+. According to Puri & Ralescu’s sense, the concept of fuzzy

random variable (FRV) can be introduced. Let (Ω ,A ,P) be a probability
space, a mapping X̃ : Ω → FLR is an LR FRV if the s-representation of X̃ ,
(Xm,Xl,Xr) : Ω → R×R

+ ×R
+ is a random vector [7]. The expectation of

an LR FRV X̃ is the unique fuzzy set E(X̃) (∈ FLR) such that (E(X̃))α =
E(Xα) provided that E‖X̃‖2

LR = E(Xm)2 + E(Xm −λXl)2 + E(Xm +ρXr)2 < ∞,
where Xα is the α- level of fuzzy set X̃ , that is, Xα =

{
x ∈ R|μX̃(x) ≥ α

}
,

for α ∈ (0,1], and X0 = cl(
{

x ∈ R|μX̃ ≥ 0
}
). In this particular case it results

sE(X̃) = (E(Xm),E(Xl),E(Xr)). The variance of X̃ can be defined as

σ2
X̃

= var(X̃) = E[D2
LR(X̃ ,E(X̃))]

and the covariance between two LR FRVs X̃ and Ỹ is

σX̃ ,Ỹ = cov(X̃ ,Ỹ ) = E〈sX̃ − sE(X̃),sỸ − sE(Ỹ)〉LR

= E((Xm −EXm)(Y m −EYm))

+E((Xm−EXm−λ (Xl −EXl))(Y m −EY m −λ (Yl −EY l)))

+E((Xm−EXm +ρ(Xr −EXr))(Y m −EYm +ρ(Yr −EY r))).
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3 A Linear Regression Model and a Nonparametric
Model with LR Fuzzy Random Response and Real
Explanatory Variables

Consider a random experiment in which an LR fuzzy response variable Ỹ and
a real explanatory variable X are observed on n statistical units, {Ỹi,Xi}i=1,...,n.
Since Ỹ is characterized by three real-valued random variables (Y m,Y l,Y r), the
regression model proposed in [5] concerns this tuple. The center Y m can be
related to the explanatory variable X through a classical regression model.
Due to some difficulties entailed by the non-negativity condition of Y l and Y r,
the authors proposed to model a transform of the left spread and a transform
of the right spread of the response through simple linear regressions (on the
explanatory variable X). This can be represented in the following way, letting
g : (0,+∞) −→ R and h : (0,+∞) −→ R be invertible:

⎧
⎨

⎩

Y m = amX + bm + εm,
g(Y l) = alX + bl + εl,
h(Y r) = arX + br + εr,

(2)

where εm, εl and εr are real-valued random variables with E(εm|X)= E(εl |X)=
E(εr|X) = 0. Concerning the spreads, model (2) is linear in the transformed
scales represented by functions g and h.

The variance of the explanatory variable X is denoted by σ2
X and Σ stands

for the covariance matrix of (εm,εl ,εr), whose variances are strictly positive
and finite. In the sequel we will assume the existence of all population vari-
ances and covariances involved in the developments.

In general, an LR fuzzy random variable Ỹ and a (real-valued) random
variable X can also be related by means of a nonparametric model. As in (2)
we consider jointly three equations in which the response variables are the
center Y m and two transforms of the left and the right spreads (g(Y l) and
h(Y r)) of Ỹ , that is,

⎧
⎨

⎩

Y m = fm(X)+ εm,
g(Y l) = fl(X)+ εl,
h(Y r) = fr(X)+ εr.

(3)

To estimate model (2), a least squares (LS) approach has been employed.
Let Ỹ and X be two (fuzzy and real-valued) random variables satisfying model
(2) observed on n statistical units, {Ỹi,Xi}i=1,...,n. It can be shown that the LS
estimators for the parameters of model (2) are strongly consistent and their
expressions in terms of the sample moments are (see [5])

âm =
σ̂XY m

σ̂2
X

, âl =
σ̂Xg(Y l)

σ̂2
X

, âr =
σ̂Xh(Y r)

σ̂2
X

, b̂m =

n
∑

i=1
Y m

i

n
− âm

n
∑

i=1
Xi

n
,
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b̂l =

n
∑

i=1
g(Y l

i )

n
− âl

n
∑

i=1
Xi

n
, b̂r =

n
∑

i=1
h(Y r

i )

n
− âr

n
∑

i=1
Xi

n
.

Concerning model (3), the functions fm, fl and fr can be estimated in prac-
tice by means of nonparametric smoothing. Following [1], a kernel approach
can be used yielding

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̂m(Z) =

n
∑

i=1
Y m

i K((Z−Xi)/w)

n
∑

i=1
K((Z−Xi)/w)

,

f̂l(Z) =

n
∑

i=1
g(Yl

i )K((Z−Xi)/w)

n
∑

i=1
K((Z−Xi)/w)

,

f̂r(Z) =

n
∑

i=1
h(Yr

i )K((Z−Xi)/w)

n
∑

i=1
K((Z−Xi)/w)

,

(4)

where K
(

Z−Xi
w

)
is a kernel function and w the smoothing parameter. In this

case we have used the same w for the three regression models because our aim
is not to estimate such a parameter. Nonetheless, in general, three different
smoothing parameters can also be considered.

For both the models, the residual sum of squares can be defined as

SSE =
n

∑
i=1

D2
λρ(Ỹ

T
i ,
̂̃Y T ), (5)

where Ỹ T
i = (Y m

i ,g(Y l
i ),h(Y r

i )) and
̂̃
Yi

T
= (Ŷ m

i , ̂g(Y l
i ), ĥ(Y r

i )), i = 1, ...,n.

4 A Linearity Bootstrap Test

The goal of this section is to test

H0 :

⎧
⎨

⎩

fm(X) = amX + bm

fl(X) = alX + bl

fr(X) = arX + br

(6)

against the alternative
H1 : fm(X), fl(X), fr(X) are smooth and non-linear functions.

For testing the null hypothesis the following test statistic is used

Tn =
SSE0−SSE1

SSE1
, (7)
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where SSE0 is the residual sum of squares under H0 according to the model
in (2), and SSE1 is the residual sum of squares according to the model in (3),

where ̂̃Y T
i = (Ŷ m

i , ̂g(Y l
i ), ĥ(Y r

i )) = ( f̂m(X), f̂l(X), f̂r(X)) are the values estimated
by means of kernel functions in (4).

Remark 1. We suggest to use a gaussian kernel, that is,

K

(
Z−Xi

w

)
=

1√
2πw

exp

(
− (Z−Xi)2

2w2

)
.

In this work we propose to fix the smoothing parameter w. It has been proved
that the value of w is expected not to be important since the level of the test is
unaffected by this value (see, for instance, [1]). In practice, suitable values of
w are from 1/n to 1/2 times the range of the X-values. Nevertheless, the power
of the test could be affected by the selection of the smoothing parameter.

A bootstrap approach can be used for testing the linearity. More specifically,
we generate B bootstrap samples from a bootstrap population fulfilling the
null hypothesis in (6), by means of a residual approach [4]. Then, a stan-
dard bootstrap algorithm can be implemented using the bootstrap statistic
given by

T ∗
n =

SSE∗
0 −SSE∗

1

SSE∗
1

.

For the sake of convenience, the bootstrap algorithm according to the residual
approach is summarized as follows:

Step 1: Compute the values âm, âl, âr, b̂m, b̂l, b̂r and Tn.
Step 2: Compute the residuals em

i = Y m
i − âmXi − b̂m, el

i = g(Y l
i )− âlXi − b̂l,

er
i = h(Y r

i )− ârXi− b̂r.
Step 3: Generate a bootstrap sample of the form

{(
X1,Z

m
1 = Ŷ m

1 + em
i1 ,Z

l
1 = ̂g(Xl

1)+ el
i1 ,Z

r
1 = ĥ(Xr

1)+ er
i1

)
, ...,

(
Xn,Z

m
n = Ŷ m

n + em
in ,Z

l
n = ĝ(Xl

n)+ el
in ,Z

r
n = ĥ(Xr

n)+ er
in

)}
,

where {i1, i2, ..., in} is a random sample of the integers 1 through n, Ŷ m
i =

âmXi + b̂m, ̂g(Xl
i ) = âlXi + b̂l, ĥ(Xr

i ) = ârXi + b̂r, i = 1, ...,n, and compute the
value of the bootstrap statistic T ∗

n .
Step 4: Repeat Step 3 a large number B of times to get a set of B estimators,

denoted by {T ∗
n1, ...,T

∗
nB}.

Step 5: Approximate the bootstrap p-value as the proportion of values in
{T ∗

n1, ..., T ∗
nB} being greater than Tn.
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5 Empirical Results

A simulation experiment has been carried out in order to illustrate the empir-
ical significance of the bootstrap test. Note that we have employed B = 1000
replications of the bootstrap estimator and we have considered 10000 it-
erations of the test at three different nominal significance levels α = 0.01,
α = 0.05 and α = 0.1 for different sample sizes n, from 30 to 200. We have
randomly generated X behaving as Uni f (−2,2), εm, εl, εr as N(0,1) and
Ym = 3X +5+εm, Y2 = g(Yl) = 1.5X +3.4+εl, Y3 = h(Yr) = 2X +4.2+εr, and we
have considered a gaussian kernel with w = range(X)/n. The empirical per-
centages of rejection under H0 are given in Table 1. It is easy to see that also
for small sample sizes n the empirical percentages of rejection are very close
to the nominal level. If we consider dependent errors, namely, εm behaving as
N(0,1) and εl = εm +ε1, εr = εm +ε2, with ε1 and ε2 behaving as N(0,0.5), we
carry out the empirical percentages of rejection under H0 reported in Table 2.
Also in this case, we obtain satisfactory results.

We introduce a real-life example concerning the atmospheric concentration
of carbon monoxide (CO) (mg/m3) and the daily maximum temperature (T)
(◦C) recorded at “Villa Ada” park in Rome in April, 1-10, 1999 (see Figure
1). The first variable has been managed as a triangular LR fuzzy random
variable where the center is the mean value of the 24 hourly observations
daily recorded, the left spread is given by the deviation of the minimum
value from the center and the right spread by the deviation of the maximum
value from the center.

In this case we obtain a p-value equal to 0.026, that is, the null hypothesis
of linearity should be rejected. Obviously, it should be noted that this result
could depend on the choice of the distance, of the kernel function and the
smoothing parameter.

Table 1 Empirical percentages of rejection under the hypothesis of linearity.

n\α ×100 1 5 10
30 1.20 5.31 9.94
50 1.17 5.13 10.15
100 1.15 4.82 9.89
200 1.00 4.99 10.20

Table 2 Empirical percentages of rejection under the hypothesis of linearity (de-
pendent errors).

n\α ×100 1 5 10
30 1.14 4.94 9.92
50 1.08 5.12 10.24
100 1.10 5.25 9.94
200 1.12 4.60 9.44
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Fig. 1 The observed extreme values of the 0-level and the single-value of CO by
the Temperature at “Villa Ada” park in Rome in April, 1-10, 1999

6 Conclusion

In this work we have introduced and analyzed a new linearity test to check
the adequacy of a linear relationship between an LR fuzzy response and
a real explanatory variable. In order to construct a test statistic, we have
jointly considered three equations involving the center of the response and
two transforms of the left and the right spread and we have taken into account
the residual sum of squares based on a suitable distance between LR fuzzy
numbers. The obtained results are as good as expected in this context. In the
near future, it will be interesting to study the power of the test.
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gression model for imprecise response. Internat. J. Approx. Reason (2010),
doi:10.1016/j.ijar.2010.04.003
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Soft Methods in Robust Statistics

Peter Filzmoser

Abstract. The focus is on robust regression methods for problems where the
predictor matrix has full rank and where it is rank deficient. For the first sit-
uation, various robust regression methods have been introduced, and here an
overview of the most important proposals is given. For the latter case, robust
partial least squares regression is discussed. The way of downweighting out-
lying observations is important. Using continuous weights (leading to “soft”
robust methods) has advantages over 0/1 weights in terms of statistical effi-
ciency of the estimators. This will be illustrated for both types of regression
problems. Soft methods are particularly useful in high-dimensional settings.

Keywords: Robust regression, Partial least squares, High-dimensional data.

1 Introduction

The term“soft computing”was coined by Lotfi Zadeh in 1991, and it refers to
the design of intelligent systems to process uncertain, imprecise and incom-
plete information. Since that time, many methods for soft computing have
been developed, and their application offers more robust and tractable so-
lutions than conventional techniques. The term “robust” can be seen under
various aspects. In this contribution it will be treated in the light of “robust
statistics” which includes statistical approaches that are less influenced by
outlying observations and deviations from strict statistical model assump-
tions [3]. Soft computing, and hence soft methods, are also common practice
in this field, and they refer to the way how data information is prepared
for the statistical methodology. While classical methods give equal weight
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to each data point, robust methods downweight atypical observations. The
weights could either be chosen as 0 or 1, corresponding to rejecting the ob-
servation or not, or continuously in the interval [0,1]. The latter case can be
associated with soft methods in robust statistics. Such methods should ideally
only discard data points if they are extremely distinct from the bulk of the
data. In all other cases, the information contained in the data should to some
extent be taken into account. The advantage of such a procedure is usually
an increase in statistical efficiency of the resulting estimator.

In this contribution we will focus on robust regression. Section 2 provides
an overview of the most important proposals and explains the choice of the
weight functions. Section 3 contains methods that can be used for high-
dimensional problems. Here the choice of the weights is even more important.
In section 4 we compare the efficiencies of the robust regression methods by
a simulation study.

2 Robust Regression

In a multiple linear regression model we consider the observations yyy =
(y1, . . . ,yn)t of a response variable and an n× p matrix XXX of non-random
predictor variables with elements xi j. For a regression model with intercept
the first column of XXX is a column of ones. The i-th observation of the pre-
dictor variables is denoted by the column vector xxxi = (xi1, . . . ,xip)t . The linear
regression model is then given by

yi = xxxt
iβββ + ei for i = 1, . . . ,n, (1)

with βββ = (β1, . . . ,βp)t the unknown regression coefficients, and ei the error
terms which are assumed to be i.i.d. random variables. The goal is to esti-
mate the regression coefficients. For a given estimator β̂ββ the resulting i-th
residual is ri = ri(β̂ββ) = yi − xxxt

i β̂ββ . The classical least squares (LS) estimator is
defined as

β̂ββ LS = argmin
βββ

n

∑
i=1

ri (βββ )2 . (2)

Under the assumptions of normally distributed errors with the same variance,
and if XXX has full rank, this estimator is known to have excellent statistical
properties. However, if the assumptions are violated, and in particular if
outliers are contained either in the response, in the predictors, or in both,
the performance of the LS estimator can be very poor [3].

2.1 Regression M Estimates

For this reason, the M estimator for regression was introduced as
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β̂ββM = argmin
βββ

n

∑
i=1

ρ
(

ri (βββ )
σ̂

)
, (3)

where σ̂ is a robust scale estimator of the residuals, which makes the regres-
sion estimator scale equivariant [2]. The function ρ controls the weighting
of the scaled residuals, and it needs to be chosen carefully. It should be a
bounded function such that very large residuals will have a limited influ-
ence on the estimator. A popular choice is the bisquare (also called biweight)
family, with

ρ (r) =

{(
r
k

)2(3−3
(

r
k

)2 +
(

r
k

)4) for |r| ≤ k

1 otherwise
. (4)

The value k is a tuning parameter, balancing efficiency and robustness. For
k → ∞, the corresponding estimate tends to LS and hence it becomes more
efficient but at the same time less robust. Differentiation of (3) with respect
to βββ gives a robustified version of the normal equations,

n

∑
i=1

wi(βββ )(yi − xxxt
iβββ )xxxi = 0 (5)

with the weights wi(βββ ) =ψ
(

ri(βββ )
σ̂

)
/
(

ri(βββ )
σ̂

)
where ψ = ρ ′. The solution can be

found by the IRWLS (iteratively reweighted least squares) algorithm. How-
ever, the resulting estimator is only robust with respect to outliers in the
residuals, but it is still not robust against outliers in the predictor variables.
This can be seen in the definition of the weights wi, where only outliers in the
residual space are considered. The crucial point is the way how the residual
scale (σ̂ in Equation (3)) is estimated.

2.2 Regression S Estimates

A possibility to estimate the residual scale is to use an M estimator of scale,
which is defined as the solution σ of the equation

1
n

n

∑
i=1
ρ
( ri

σ

)
= δ , (6)

where ρ is a bounded ρ-function (e.g. the bisquare function) and δ is a fixed
constant with δ ∈ (0,ρ (∞)) . Dividing Equation (6) by (ri/σ)2 yields

σ2 =
1

nδ

n

∑
i=1

ρ
( ri
σ
)

( ri
σ
)2 r2

i =
1

nδ

n

∑
i=1

wir
2
i (7)
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with weights wi = ρ
( ri
σ
)
/
( ri
σ
)2. Given some starting value σ0, an iterative

procedure can be implemented to find the M estimator of scale σ̂ . Using this
robust scale estimator, a robust regression estimator can be defined as

β̂ββS = argmin
βββ
σ̂
(
r1(βββ ), . . . ,rn(βββ )

)
(8)

resulting in the regression S estimator [1]. In can be shown that regression S
estimators satisfy Equation (5), which implies that they can be computed by
an IRWLS algorithm. Although regression S estimators achieve highest pos-
sible robustness, the efficiency of this estimator with ρ taken as the bisquare
function is only 29%, and in general it cannot exceed 33%.

2.3 Regression MM Estimates

A way to obtain the highest possible robustness with controllable efficiency
is given by regression MM estimators [8]. The procedure for the computation
is as follows [5]:

• Compute an initial estimator β̂ββ 0; this is done by a regression S estimator
(8) which is robust but inefficient.

• Compute a robust scale σ̂ of the residuals ri(β̂ββ 0); this is done by an M
estimator of scale (6).

• Compute β̂ββMM as a local solution of (3) using the IRWLS algorithm start-
ing from β̂ββ 0. The resulting MM estimator inherits its robustness from β̂ββ 0,
and the efficiency can be controlled by the parameter k from the bisquare
function (4). Using k = 3.44 in this step yields an asymptotic efficiency of
0.85. A higher value is not recommended because this would lead to an
increase of the bias [3].

2.4 Hard Rejection of Outliers for Regression

Regression MM estimators use weights for the observations from the interval
[0,1]. The further the weights are away from 1, the less information is used
from these observations. A popular regression estimator using weights of 0
and 1 for hard rejection of outliers is the LTS (least trimmed sum of squares)
estimator [4]. Similar to Equation (7), this estimator minimizes a measure of
scale, namely the trimmed squares scale

σ =

(
1
n

h

∑
i=1

|r|2(i)

)1/2

, (9)

where |r|(1) ≤ ...≤ |r|(n) are the ordered absolute values of the residuals. Here,
h determines the trimming proportion, and for obtaining the highest possi-
ble robustness one has to take h equal to (the integer part of) (n + p + 1)/2.
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Similar to Equation (8), the LTS estimator β̂ββLTS is given by σ̂ that results
from minimizing (9). The asymptotic efficiency of the LTS estimator is only
about 7%. Thus, although hard rejection of outliers results in a robust es-
timator, the efficiency is much lower than that of the MM estimator which
uses “soft” weights corresponding to the “useful” data information.

3 Partial Robust Regression

There exist many problems where the number of the explanatory variables is
much higher than the number of observations. This situation frequently oc-
curs in chemometrics, biostatistics, in applications of marketing and econo-
metrics, and in various other fields. Because of singularity, neither the LS
estimator could be used here, nor any of the discussed robust regression
methods. Partial least squares (PLS) regression, a method originally coming
from chemometrics, can deal with this situation, see, e.g. [7]. The idea is to
use only partial information for regression. Hence, rather than considering
the regression model (1), a so-called latent variable model

yi = uuut
iγγγ+ ei for i = 1, . . . ,n, (10)

is used, where uuui are score vectors of length h < p, γγγ are the regression coeffi-
cients, and ei the error terms. The scores uuui include only partial information
contained in the original xxxi’s because they are of lower dimension. They are
computed by uuut

i = xxxt
iAAA, with the so-called loading matrix AAA of dimension p×h.

The columns aaak, k = 1, . . . ,h, of AAA are obtained sequentially by

aaak = argmax
aaa

Cov(yyy,XXXaaa) (11)

under the constraints ‖aaa‖ = 1 and Cov(XXXaaa,XXXaaa jjj) = 0 for 1 ≤ j < k. Once γ̂γγ
is obtained, the final estimate for βββ for the original model (1) is directly
obtained as β̂ββ = AAAγ̂γγ.

The crucial point is the estimation of ‘Cov’ in Equation (11). For classical
PLS regression, the sample covariance is used. For the robust case, several
proposals were made, including robust covariance estimation, see [7]. Here
we refer to a highly robust and efficient method called partial robust M
regression [6]. The idea is to use for ‘Cov’ the sample covariance for weighted
observations wixxxi and wiyi with weights wi =

√
wu

i wr
i , for i = 1, . . . ,n. In terms

of the latent variable model (10), the weights originate from

γ̂γγRM = argmin
γγγ

n

∑
i=1

wu
i wr

i

(
yi−uuut

iγγγ
)2

. (12)

‘RM’ stands for robust M regression, because Equation (12) corresponds to
an M estimator (3) with weights wr

i for outliers in the residuals, but has
additional weights wu

i for outliers in the scores. The latter weights make the
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estimator fully robust against all types of contamination. The weights can be
chosen according to the so-called Fair function f (z,c) = 1/

(
1 + | z

c |
)2, where

wr
i = f

( ri

σ̂
,c
)

and wu
i = f

(
‖uuui − ũuu‖

mediani‖uuui − ũuu‖ ,c

)
(13)

with c = 4, see [6]. Here, ri = ri(γγγ) = yi − uuut
iγγγ are the residuals from (12), σ̂

is a robust scale estimate of the residuals, and ũuu denotes the robust center
of the scores. Using initial robust weights, an iterative procedure can be
formulated to obtain the solution β̂ββRM = AAAγ̂γγRM, see [6]. The need for an
iterative procedure is also the reason why this rather simple weighting scheme
is recommended. An MM estimator would achieve higher efficiency, but–
depending on the dimensionality of the problem–it would cause a substantial
increase in computation time.

The weights in (13) are chosen from the interval [0,1], and thus this is
another example of “soft weighting”. It is easy to modify the weights in order
to get hard rejection of the outliers by replacing f (z,c) in (13) by

f̃ (z,c) =
{

1 if |z| ≤ c
0 otherwise

(14)

with c = 2.5. The resulting estimator has the advantage that large values of
|z| have no effect, but the disadvantage that intermediate outliers are either
completely rejected of fully included.

4 Soft versus Hard Rejection: A Simulation Study

The use of a continuous weight function, or of weights 0 and 1, will affect
the efficiency of the regression estimator. It seems obvious that soft rejection,
i.e. the use of “soft”weights, is able to include information that is potentially
relevant to improve the statistical precision of the estimator, while hard rejec-
tion may fail to use this information. Note that with both types of weighting
schemes it is possible to achieve highest possible robustness.

In the following simulation study the effects of different choices of the
weights on the efficiency of the estimators will be illustrated. For the regres-
sion model (1) we generate standard normally distributed values, forming the
elements of the n× p matrix XXX . For the latent variable model (10) an n× h
score matrix UUU and a p×h loading matrix AAA are generated, both filled with
random standard normal numbers, and the predictor matrix is obtained by
XXX = UUUAAAt . Thus, for h < p a situation with perfect collinearity is simulated.
For each considered n and p, the predictor part is fixed. For both cases, the
true regression parameters are denoted by βββ 0, with components randomly
drawn from a standard normal distribution, leading to a model

yi = xxxt
iβββ 0 + ei for i = 1, . . . ,n. (15)
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The error terms ei are simulated from various distributions: standard normal,
Laplace, Student t with 5 and 2 degrees of freedom, Cauchy, and Slash. The
latter two are heavy-tailed distributions. From every generated sample with
specific values of n, p, and h (for the latent variable model), the estimate β̂ββ

j

is computed for j = 1, . . . ,m, using m = 1000 replications. The precision of the
estimator is measured by the mean squared error (MSE), given by

MSE =
1
m

m

∑
j=1

‖β̂ββ j −βββ 0‖2. (16)

The results are shown in Figure 1 (for the regression model) and in Figure
2 (for the latent variable model). For the regression model we compare LS,
LTS, S, and MM estimation. The LS estimator performs very poor under
heavier-tailed distributions, while the robust regression methods are not much
affected by the different error distributions. Overall, the MM estimator shows
the best efficiency among the robust estimators, and it is able to compete with
LS regression under normal errors.

For the latent variable model we compare in Figure 2 the results of clas-
sical estimation (PLS) and robust estimation using the weight function (13)
for soft rejection (PRM) and the weights (14) for hard rejection (PRM01).
Again, classical estimation dramatically fails for heavy-tailed error distribu-
tions. The efficiencies based on hard and soft weighting differ more and more
with increasing dimensionality of the predictor matrix: while they differ by
a factor of 1.1 to 1.8 for dimensions up to p = 20, the ratio increases to a
value of 2.5 to 2.8 for p = 1000. “Intelligent” robustness–in contrast to ro-
bustness based on outlier rejection–thus becomes particularly important for
high-dimensional problems, which occur frequently nowadays in practice.
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Fig. 1 Simulated MSEs for LS, LTS, S, and MM regression, using different error
distributions (legend on the bottom), and different dimensions of the predictor
matrix (legend on top).
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Fig. 2 Simulated MSEs for classical (PLS) and robust partial least squares re-
gression based on soft (PRM) and hard rejection (PRM01), using different error
distributions (legend on the bottom), and different dimensions and ranks of the
predictor matrix (legend on top).
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S-Statistics and Their Basic Properties

Marek G ↪agolewski and Przemys�law Grzegorzewski

Abstract. Some statistical properties of the so-called S-statistics, which gen-
eralize the ordered weighted maximum aggregation operators, are considered.
In particular, the asymptotic normality of S-statistics is proved and some pos-
sible applications in estimation problems are suggested.

Keywords: Aggregation, L-statistics, OWA, OWMax operators.

1 Introduction

The process of aggregation, i.e. combining many numerical values into a sin-
gle one, plays an important role in many areas of practical human activities,
such as statistics, decision making, computer science, operational research,
etc. Operators projecting multidimensional state space into a single dimension
are often called aggregation functions [5]. Among well-known examples are:
the sample maximum and other quantiles, arithmetic mean, ordered weighted
averaging (OWA) [11] and ordered weighted maximum (OWMax) [2] opera-
tors.

The OWA operators are a particular case of L-statistics. Their basic sta-
tistical properties were widely discussed, see e.g. [7, 10].

In this paper we consider another useful class of aggregation operators called
S-statistics, which generalize OWMax. We show that S-statistics are consistent
estimators of the so-called κ-index (Sect. 3). Moreover, they are asymptotically
normally distributed (Sect. 4). Regarding similar constructions it seems that
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S-statistics would be useful in many situations, e.g. in scientometrics to con-
struct reliable tools for scientific activity assessment (see [3, 4, 9]), pattern
matching [2] and decision making [1].

2 S-Statistics

Let (X1, . . . ,Xn) denote a sample of i.i.d. random variables, while X(1), . . . ,X(n)
are order statistics corresponding to this sample. Assume that the variance
of Xi is finite and the c.d.f. F of Xi is continuous and strictly increasing in
interval (a,b), where a = inf{x : F(x) > 0}, b = sup{x : F(x) < 1}.

Let κ : [0,1] → [a,b] be a strictly increasing function such that κ(0) = a
and κ(1) = b. Further on we will call such function a control function.

A linear combination of order statistics, called L-statistics, is a well-known
tool applied especially in robust estimation or testing. Typical examples of
L-statistics are trimmed and Winsorized means that are useful in situations
when data follow a heavy-tailed distribution. Its subclass is known in decision
making as the ordered weighted averaging (OWA) operator [11]. Below we
propose another function of ordered statistics which has some interesting
statistical properties.

Definition 1. An S-statistic associated with a control function κ and a ran-
dom sample (X1, . . . ,Xn) is a function

Vn,κ(X1, . . . ,Xn) =
n∨

i=1

κ
(

i
n

)
∧X(n−i+1), (1)

where ∨ and ∧ denote the supremum (hence the name) and infimum opera-
tors, respectively.

It can be seen that the S-statistic is a generalization of the ordered weighted
maximum operator (OWMax) defined firstly in [2]. Moreover, for any control
function κ , the corresponding S-statistic is a function Vn,κ : [a,b]n → [a,b]
which satisfies the following requirements:

1. Vn,κ is non-decreasing in each variable, i.e. (∀x,y∈ [a,b]n) x≤ y⇒Vn,κ(x)≤
Vn,κ(y),

2. Vn,κ fulfills the lower boundary condition, i.e. infx∈[a,b]n Vn,κ(x) = a,
3. Vn,κ fulfills the upper boundary condition, i.e. supx∈[a,b]n Vn,κ(x) = b.

Therefore, according to the definition given e.g. in [5], Vn,κ is an aggregation
function. Hence, Vn,κ may have (at least potentially) — like other aggregation
functions — many applications in different areas. In this paper we restrict
ourselves to their statistical properties related to their asymptotic distribu-
tion and estimation of a population location parameter.

Note that

Vn,κ(X1, . . . ,Xn) = κ

(
n∨

i=1

i
n ∧κ

−1 (X(n−i+1)
)
)

. (2)
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Hence, without loss of generality, we will consider S-statistics of a form

Vn(Y1, . . . ,Yn) =
n∨

i=1

i
n ∧Y(n−i+1), (3)

where (Y1, . . . ,Yn) = (κ−1(X1), . . . ,κ−1(Xn)) is a sequence of i.i.d. random vari-
ables given by the continuous c.d.f. G := F ◦κ defined on [0,1]. In other words,
Vn := Vn,id, where id is the identity function.

3 κ-index

Consider the following definition.

Definition 2. A κ-index of a random variable given by a c.d.f. G with respect
to the control function κ is a number ρκ ∈ [0,1] such that

ρκ = 1−G(κ(ρκ)). (4)

If S(x) = 1−G(x) is a survival function then, of course, a κ-index ρκ satisfies

ρκ = S(κ(ρκ)) = Pr(X > κ(ρκ)). (5)

Thus κ-index has an intuitive interpretation: it is such a number that the
probability of assuming a value greater than κ(ρκ) is equal to ρκ .

Example 1. If Y follows the Type-II Pareto distribution, i.e. G(x) = 1−
1/(1+ x) and the control function is the identity function, i.e. κ(x) = x, then
ρκ = (

√
5−1)/2 = 1/ϕ = ϕ−1 / 0.618034, where ϕ is the golden ratio.

It appears that the S-statistic is a strongly consistent estimator of the id-
index ρ := ρid for any c.d.f. G defined on [0,1]. However, to prove it we need
some lemmas given below.

Lemma 1. For any sample Y1, . . . ,Yn of i.i.d. random variables defined on
[0,1] with a continuous c.d.f. G we have

Vn(Y1, . . . ,Yn) = inf
{

x : Ĝn(x) ≥ 1− x
}

(6)

= sup
{

x : 1
n ∑

n
i=1 1(Yi ≥ x) ≥ x

}
, (7)

where Ĝn(x) = 1
n ∑

n
i=1 1(Yi ≤ x) denotes the empirical distribution function and

1 is the indicator function.

Proof. Since ∑n
i=1 1(Yi ≥ x) = max{i : Y(n−i+1) ≥ x} we get

Vn(Y1, . . . ,Yn) = max{ i
n : i

n ≤ Y(n−i+1)}∨max{Y(n−i+1) : Y(n−i+1) ≤ i
n}

= max
{

x : 1
n max{i : Y(n−i+1) ≥ x} ≥ x

}
.

Implication from (6) to (7) is obvious and the proof is complete. ��

Recall that (∀x) we have Ĝn(x)
a.s.→ G(x) and nĜn(x) ∼ Bin(n,G(x)).
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The exact distribution of Vn is given by the next lemma.

Lemma 2. The c.d.f. of Vn(Y1, . . . ,Yn) is given by

Dn(x) = 1−
n

∑
i=0xn+11

(
n
i

)
[1−G(x)]i [G(x)]n−i (8)

= I (G(x) ;n−0xn1,0xn1+ 1) (9)

for x ∈ [0,1), where I(p;a,b) is the regularized Euler beta function and 0y1 :=
max{i ∈ N : i ≤ y} is the floor function.

Proof. The c.d.f. of the ith order statistic Yi:n, i = 1,2, . . . ,n, is given by

Gi:n(x) = Pr(Yi:n ≤ x)

=
Γ (n + 1)

Γ (i)Γ (n− i+ 1)

∫ G(x)

0
ti−1(1− t)n−i dt

= I(G(x); i,n− i+ 1).

Note that Vn (by Lemma 1) is equal to the greatest number such that �nVn�=
min{i ∈ N : i ≥ nVn} observations are not less than Vn. Hence

Pr(Vn > x) = Pr(Yn−0xn+11:n > x) = 1− I (G(x) ;n−0xn1,0xn1+ 1),

and the lemma follows immediately. ��
Lemma 3. For any x ∈ (0,1) we have

Pr(Vn > x) = Pr(1− x > Ĝn(x)). (10)

Proof. Since nĜn(x) ∼ Bin(n,G(x)) then for any t ∈ (0,n)

Pr(nĜn(x) ≤ t) = I(1−G(x),n−0t1,1 + 0t1).

Now, by Lemma 2, we get for any x ∈ (0,1)

Pr(Vn > x) = 1− I (G(x) ;n−0xn1,0xn1+ 1)
= I (1−G(x);0xn1+ 1,n−0xn1)
= I (1−G(x);n− (n−0xn1−1),1+(n−0xn1−1))
= Pr(nĜn(x) ≤ n− (0xn1+ 1))
= Pr(Ĝn(x) < 1− x),

which holds because 0xn1 ≤ xn < 0xn1+ 1. Thus the proof is complete. ��
The following lemma (see [6]) will be also useful.

Lemma 4 (Hoeffding’s inequality). Let (Z1, . . . ,Zn) be a sequence of in-
dependent random variables with finite second moments and let 0≤ Zi ≤ 1 for
i = 1, . . . ,n. Then for any t > 0 the following inequality holds

Pr

(
1
n

n

∑
i=1

Zi − 1
n E

n

∑
i=1

Zi ≥ t

)

≤ e−2nt2
. (11)
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The next lemma shows that the S-statistic Vn converges to ρ exponentially
fast.

Lemma 5. For any n ∈ N and ε > 0

Pr(|Vn−ρ |> ε) ≤ 2e−2nδ 2
, (12)

where δ = G(ρ+ ε)− (1− (ρ+ ε))∧1− (ρ− ε)−G(ρ− ε).
Proof. It is worth noticing that the proof of this lemma would be analogous
to that of Theorem 2.3.2 [7] where a similar result on sample quantiles is
discussed. For any ε > 0 we get (by Lemmas 3 and 4)

Pr(Vn > ρ+ ε) = Pr(1−ρ− ε > Ĝn(ρ+ ε))
= Pr

(
1
n ∑

n
i=1 1(Yi > ρ+ ε) > ρ+ ε

)

= Pr
( 1

n ∑
n
i=1 1(Yi > ρ+ ε)− (1−G(ρ+ ε))

> ρ+ ε− (1−G(ρ+ ε)))
= Pr

( 1
n ∑

n
i=1 1(Yi > ρ+ ε)− 1

n E ∑n
i=1 1(Yi > ρ+ ε)

> G(ρ+ ε)+ρ+ ε−1)
≤ exp

{
−2nδ 2

1

}
.

On the other hand we have

Pr(Vn < ρ− ε) ≤ Pr(1−ρ+ ε ≤ Ĝn(ρ− ε))
= Pr

(
1
n ∑

n
i=1 1(Yi ≤ ρ+ ε)−G(ρ− ε)

≥ 1− (ρ− ε)−G(ρ− ε))
≤ exp

{
−2nδ 2

2

}

for δ2 = 1− (ρ− ε)−G(ρ− ε).
Hence

Pr(|Vn−ρ |> ε) = Pr(Vn > ρ+ ε)+ Pr(Vn < ρ− ε)≤ 2exp{−2n(min{δ1,δ2})2},

which completes the proof. ��
Now we are ready to prove the desired result.

Theorem 1. Vn is a strongly consistent estimator of ρ.

Proof. Pr(|Vn − ρ | > ε) → 0 exponentially fast (by Lemma 5) w.r.t. n and
therefore we get Vn

a.s.→ ρκ (by Theorem 1.3.4 in [7]). ��

4 Asymptotic Distribution of S-statistics

Unfortunately, the practical usage of the exact distribution (9) may some-
times be problematic. Therefore we are seriously interested in its approxi-
mation. In the present section we consider the asymptotic distribution of an
S-statistic.
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Let us also cite a well-known result that will be needed for proving the
next theorem.

Lemma 6 (Berry-Esséen). Let Z1,Z2, . . . denote a sequence of i.i.d. random
variables with a finite expectation μ and finite variance σ2 and such that (∀i)
E |Zi − μ |3 < ∞. Then for all n ∈ N

sup
x
|Hn(x)−Φ(x)| ≤C

E |Z1 − μ |3
σ3

√
n

, (13)

where
Hn(x) = Pr

(
∑n

i=1 Zi −nμ
σ
√

n
≤ x

)
,

Φ(x) denotes the c.d.f. of the standard normal distribution and C is a positive
constant independent of the distribution of Zi.

This lemma characterizes the rate of convergence in the Lindeberg-Lévy Cen-
tral Limit Theorem. Let us mention that the best currently known upper
bound for C is 0,7056 (see [8]). Now we can present the asymptotic distribu-
tion of the S-statistic.

Theorem 2. If G is a c.d.f. differentiable at ρ, then

Vn
D→ N

(

ρ ,
1

1 + G′(ρ)

√
ρ(1−ρ)

n

)

. (14)

Proof. Let x∈ (0,1) and A > 0 be a positive constant which will be determined
later. Let

Kn(x) = Pr

(
Vn−ρ

A

√
n ≤ x

)
.

We will show that Kn(x) →Φ(x) as n → ∞.
By Lemma 3 we have

Kn(x) = Pr
(

Vn ≤ ρ+ xAn−0,5
)

= Pr
(

1−ρ− xAn−0,5 ≤ Ĝn(ρ+ xAn−0,5)
)

.

Assuming thatΔn,x :=ρ+xAn−0,5 and recalling that nĜn(Δn,x)∼Bin(n,G(Δn,x))
we obtain

Kn(x) = Pr

(
nĜn(Δn,x)−nG(Δn,x)√
nG(Δn,x)(1−G(Δn,x))

≥ n(1−Δn,x)−nG(Δn,x)√
nG(Δn,x)(1−G(Δn,x))

)

.

Substituting Z∗
n,x and ζn,x given by

Z∗
n,x =

nĜn(Δn,x)−nG(Δn,x)√
nG(Δn,x)(1−G(Δn,x))
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ζn,x =
n(1−Δn,x)−nG(Δn,x)√

nG(Δn,x)(1−G(Δn,x))

into the previous equation we get Kn(x) = Pr(Z∗
n,x ≥ ζn,x).

If Z1 ∼ Bern(G(Δn,x)), then E |Z1 −EZ1|3 = G(Δn,x)(1 − G(Δn,x))((1 −
G(Δn,x))2 +G(Δn,x)2) and VarZ1 = G(Δn,x)(1−G(Δn,x)).

By Lemma 6 for some C > 0 we obtain
∣
∣Pr
(
Z∗

n,x < ζn,x
)
−Φ(ζn,x)

∣
∣ ≤ C√

n
(1−G(Δn,x))2 + G(Δn,x)2
√

G(Δn,x)(1−G(Δn,x))
n→∞→ 0,

because G(Δn,x)(1−G(Δn,x))
n→∞→ (1−ρ)ρ > 0, and since G is continuous at

ρ . Finally we have

|Φ(x)−Kn(x)| = |Pr(Z∗
n < ζn,x)− (1−Φ(x))|

= |Φ(x)−Φ(−ζn,x)+ Pr(Z∗
n < ζn,x)−Φ(ζn,x)|

≤ |Φ(x)−Φ(−ζn,x)|+ |Pr(Z∗
n < ζn,x)−Φ(ζn,x)|

→ |Φ(x)−Φ(−ζn,x)|.

Since our theorem will be proved when |Φ(x)−Φ(−ζn,x)| → 0 we would de-
termine A in such way that −ζn,x → x. It is seen that

−ζn,x =
1

√
G(Δn,x)(1−G(Δn,x))

1−Δn,x−G(Δn,x)
n−0,5

=
xA

√
G(Δn,x)(1−G(Δn,x))

1−ρ− xAn−0,5−G(ρ+ xAn−0,5)
xAn−0,5

= − xA
√

G(Δn,x)(1−G(Δn,x))
G(ρ+ xAn−0,5)−G(ρ)+ xAn−0,5

xAn−0,5

n→∞→ − xA
√

(1−ρ)ρ
(
G′(ρ)+ 1

)

and hence our desired A =
√
ρ (1−ρ)/(1 + G′(ρ)), QED. ��

Note that Theorem 2 implies that Vn is (weakly) consistent. In practice, Dn

approaches the normal distribution D∗
n quite quickly. For example if G is a

beta distribution B(0.5,0.5) (ρ = 0.5) then for n = 30 we have ||Dn −D∗
n||2 /

0.013 and max |Dn−D∗
n| / 0.072. and for B(10,3) (ρ / 0.713494) || · ||2 / 0.009

and max | · | / 0.071.

5 Conclusions

L-statistics are well-known aggregation operators useful in robust statistics.
S-statistics considered in this paper possess some desired statistical properties
which make them useful in many areas. Asymptotic normality proved in this
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paper enables interval estimation and the construction of statistical tests. Of
course, some questions remain open. In particular, the problem of finding well-
behaving estimators of G′(ρ) required for the above-mentioned constructions
have to be considered in further research.
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Particle Swarm Optimization and Inverse
Problems

Esperanza Garćıa-Gonzalo and Juan Luis Fernández-Mart́ınez

Abstract. In this paper we present a powerful set of Particle Swarm op-
timizers for inverse modeling. Their design is based on the interpretation
of the swarm dynamics as a stochastic damped mass-spring system. All the
PSO optimizers have very different exploitation and exploration capabilities.
Their convergence can be related to the stability of their first and second
order moments of the particle trajectories. Based on these results we present
their corresponding cloud algorithms where each particle in the swarm has
different inertia (damping) and acceleration (rigidity) constants. These algo-
rithms show a very good balance between exploration and exploitation and
their use avoids the tuning of the PSO parameters. These algorithms have
been successfully applied to environmental geophysics and petroleum reser-
voir engineering where the combined use of model reduction techniques allow
posterior sampling in high dimensional spaces.

Keywords: Inverse Problems, PSO, PSO Family, Cloud Design.

1 Particle Swarm Optimization Applied to Inverse
Problems

Particle swarm optimization is a stochastic evolutionary computation tech-
nique used in optimization, which is inspired by the social behavior of
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individuals (called particles) in nature, such as bird flocking and fish school-
ing [15]. Inverse problems are very important in science and technology and
sometimes referred to as, parameter identification, reverse modeling, etc.

Let us consider an inverse problem of the form F(m) = d, where
m ∈ M ⊂ Rn are the model parameters, d ∈ Rs the discrete observed data,
and

F(m) = ( f1(m), f2(m), . . . , fs(m))

is the vector field representing the forward operator and f j(m) is the scalar
field that accounts for the j-th data. The “classical ” goal of inversion given a
particular data set (often affected by noise), is to find a set of parameters m,
such the data prediction error ‖F(m)−d‖p in a certain norm p, is minimized.

The PSO algorithm to approach this inverse problem is at first glance very
easy to understand and implement:
1. A prismatic space of admissible models, M, is defined:

l j ≤ mi j ≤ u j, 1 ≤ j ≤ n, 1 ≤ i ≤ Nsize

where l j,u j are the lower and upper limits for the j-th coordinate of each
particle in the swarm, n is the number of parameters in the optimization
problem and Nsize is the swarm size. The misfit for each particle of the
swarm is calculated, ‖F(m)−d‖p and then we determine for each particle
its local best position found so far (called li(k)) and the minimum of all
of them which is called the global best (g(k)).

2. The algorithm updates at each iteration the positions mi(k), and velocities
vi(k), of each model in the swarm as follows:

vi(k + 1) = ωvi(k)+φ1 (g(k)−mi(k))+φ2 (li(k)−mi(k)) ,
mi(k + 1) = mi(k)+ vi(k + 1)

ω ,ag,al are the PSO parameters and are called inertia, local and global
acceleration constants; φ1 = r1ag,φ2 = r2al are the stochastic global and
local accelerations, and r1,r2 are vectors of random numbers uniformly
distributed in (0, 1). In the classical PSO algorithm these parameters are
the same for all the particles of the swarm. In an inverse problem the
position are the coordinates of the model m on the search space and the
velocities the perturbations needed to find the low misfit models.

1.1 Uncertainty or Why We Should Explore the
Search Space

Inverse problems are a very special type of optimization problems that turn
out to be ill-posed mainly due to several reasons:
1. There is a physical model F (forward operator) involved which is al-

ways a simplification of the reality. This includes physical hypothesis and
numerical approximations of the forward operator. Typically the predic-
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tion (forward problem) is well-posed, but not the inverse. The ill-posednes
is somehow related to the kind of question we ask in the inverse problem.

2. The observed data are part of the cost function and typically are noisy
and discrete in number (mainly due to economic and logistic reasons).

3. Finally, the forward problem usually involves the resolution of a partial
differential, integral, or algebraic set of equations, and a very fine model
discretization is used to achieve accurate data predictions. The number of
model parameters is in most cases significantly greater than the number
of discrete data points available.

Let us suppose that we have a model m0 that fulfills ‖F(m0)−d‖2 < tol.
It is possible to show analytically that the models in the neighborhood of
m0 that fit the data within the same tolerance, tol, belong to the following
hyperquadric:

(m−m0)
T JFT

m0
JFm0 (m−m0)+ 2ΔΔΔdT (m−m0)+‖ΔΔΔd‖2

2 = tol2

JFm0 is the Jacobian matrix of the operator F in m0 and ΔΔΔd =F(m0)−d. This
means that the equivalent models will have the direction of the vectors of the
V base given by the singular value decomposition of JFm0 and whose axes
are proportional to the inverse of the singular values λk in each direction.
Due to the continuity of the Jacobian operator, we finally conclude that with
no regularization term the misfit function has a flat and elongated valley
shape. Also, in other kind of optimization problems (e.g., experimental fitting
problems) many local minima might coexist. Thus, uncertainty in the model
parameters is always important in inverse problems, forcing the modeler to
explore the search space.

2 The Consistency of the PSO Family

Fernández Mart́ınez and Garćıa Gonzalo([8], [4]), proved that the PSO algo-
rithm can be physically interpreted as a particular discretization of a stochas-
tic damped mass-spring system:

m′′
i (t)+ (1−ω)m′

i(t)+φmi(t) = φ1g(t − t0)+φ2li(t − t0)

where φ = φ1 + φ2. This model has been addressed as the PSO continuous
model since it describes (together with the initial conditions) the continuous
movement of any particle coordinate in the swarm mi(t), where i stands for
the particle index, and g(t) and li(t) are its local and global attractors. In this
model the trajectories mi(t) are allowed to be delayed a time t0 with respect
to the attractors, g(t − t0) and li(t − t0).

Using this physical analogy we were able to analyze the PSO particle’s
trajectories [8] and to explain the success in achieving convergence of some
popular parameters sets found in the literature [2], [3], [16]. Also we derived
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a whole family of PSO algorithms [5], [14] considering different difference
schemes for m′′

i (t) and m′
i(t) :

1. GPSO or centered-regressive PSO (t0 = 0)

v(t +Δ t) = (1− (1−ω)Δ t)v(t)+φ1Δ t (g(t)−m(t))+φ2Δ t (l (t)−m(t)) ,
m(t +Δ t) = m(t)+ v(t +Δ t)Δ t.

The GPSO algorithm is the generalization of the PSO algorithm for any
time step Δ t , (PSO is the particular case for Δ t = 1). These expres-
sions for the velocity and position are obtained by employing a regressive
scheme in velocity and a centered scheme in acceleration.

2. CC-PSO or centered-centered PSO (t0 = 0)

m(t +Δ t) = m(t)+
[

2+(w−1)Δ t
2 v(t)+ Δ t

2 φ1(l(t)−m(t))+ Δ t
2 φ2(g(t)−m(t))

]
Δ t,

v(t +Δ t) = 2+(w−1)Δ t
2+(1−w)Δ t v(t)+ Δ t

2+(1−w)Δ t

1
∑

k=0

[
φ1(l(t +kΔ t)−m(t +kΔ t))

+φ2(g(t +kΔ t)−m(t +kΔ t))

]
.

3. CP-PSO or centered-progressive PSO (t0 = Δ t)

v(t +Δ t) =

(
(1−φΔ t2)v(t)+φ1Δ t(g(t)−m(t))+φ2Δ t(l(t)−m(t))

)

1 +(1−ω)Δ t
,

m(t +Δ t) = m(t)+ v(t)Δ t.

4. PP-PSO or progressive-progressive PSO (t0 = 0)

v(t +Δ t) = (1− (1−ω)Δ t)v(t)+φ1Δ t (g(t)−m(t))+φ2Δ t (l (t)−m(t)) ,
m(t +Δ t) = m(t)+ v(t)Δ t.

5. RR-PSO or or regressive-regressive PSO (t0 = Δ t)

v(t +Δ t) =
v(t)+φ1Δ t (g(t)−m(t))+φ2Δ t (l (t)−m(t))

1 +(1−ω)Δ t+φΔ t2

m(t +Δ t) = m(t)+ v(t +Δ t)Δ t.

The consistency of the different PSO family members has been related to
the stability of their first and second order trajectories [8], [5]. The type of
mean trajectories depend on the character of the eigenvalues of the first order
difference equation as a function of the inertia parameter (ω) and the total

mean acceleration (φ = φ 1 +φ2 =
ag + al

2
). Basically there are four kind of tra-

jectories: damped oscillatory in the complex eigenvalue region, symmetrically
and asymmetrically zigzagging in the regions of negative real eigenvalues and
almost monotonous decreasing character in the region of positive real eigen-
values. Maximum exploration is reached in the complex region. The second
order trajectories [5] show a similar kind of behavior. The second order spec-
tral radius controls the rate of attenuation of the second order moments of
the particle trajectories (variance and temporal covariance between m(t) and
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Fig. 1 Logarithmic median misfit errors for the Rosenbrock function in 50 simu-
lations (after 300 iterations) for different family members. Similar results can be
achieved for other benchmark functions.

m(t +Δ t)). These results have been confirmed by numerical experiments with
different benchmark functions in several dimensions. Figure 1 shows for each
family member the contour plots of the misfit error (in logarithmic scale) after
a certain number of iterations (300) for the Rosenbrock function. This numer-
ical analysis is done for a lattice of

(
ω ,φ
)

points located in the corresponding
first order stability regions over 50 different simulations. For GPSO, CC-PSO
and CP-PSO better parameter sets, (ω ,ag,al), are located on the first order
complex region, close to the upper border of the second order stability region
where the attraction from the particle oscillation center is lost, i.e. the vari-
ance becomes unbounded; and around the intersection to the median lines of
the first stability regions where the temporal covariance between trajectories
is close to zero [5]. The PP-PSO does not converge for ω < 0, and the good
parameter sets are in the complex region close to the limit of second order
stability and φ = 0. The good parameters sets for the RR-PSO are concen-
trated around the line of equation φ = 3(ω−3/2), mainly for inertia values
greater than two. This line is located in a zone of medium attenuation and
high frequency of trajectories. The CP-PSO and RR-PSO are the versions
that have the greatest exploratory capabilities. Finally we performed the full
stochastic analysis of the PSO continuous and discrete models [6], [7]. This
analysis served to analyze the GPSO second order trajectories, to show the
convergence of the discrete versions (GPSO) to the continuous PSO model
as the discretization time step goes to zero, and to explain the role of the
cost function on the first and second order continuous and discrete dynamical
systems. Thus, PSO should not be considered heuristic.
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3 How to Achieve Exploration: The Cloud Algorithms

Based on the consistency results shown above we have designed a PSO al-
gorithm where each particle in the swarm has different inertia (damping)
and local and global acceleration (rigidity) constants, being the

(
ω ,φ
)

sets
located in the low misfit regions. This idea has been implemented for the
particle-cloud PSO algorithm in [13] and extended to CC-PSO and CP-PSO
in [10]. Here we present the results for PP-PSO and RR-PSO. We also present
the coordinates-cloud algorithm where all the same index coordinates of all
the particles in the swarm will have the same (ω ,ag,al) constants.

The particle-cloud algorithm works as follows:

1. The misfit contours to design the clouds are based on the Rosenbrock
function in 50 dimensions. The Rosenbrock function has been chosen for
this purpose because in inverse problems the low misfit models are located
along flat elongated valleys. Nevertheless the cloud could be designed us-
ing other benchmark functions. For each

(
ω ,φ
)

located on the low mis-
fit region, we generate three different (ω ,ag,al) points corresponding to
ag = al, ag = 2al and al = 2ag. Particles are randomly selected depending
on the iterations. The algorithm keep track of the (ω ,ag,al) points used
to achieve the global best solution in each iteration. The criteria used
to select the points belonging to the cloud is not very rigid, since points
located on the low misfit region provide very good results.

2. The algorithm also uses the lime and sand modality, that is, varying Δ t
with iterations [4]. The first and second order stability regions increase
their size when Δ t goes to zero. In this case the exploration is increased
around the global best solution. Conversely when Δ t is greater than one
the exploration is increased in the whole search space.

Table 1 shows the results obtained for different benchmark functions in 50
dimensions, using the particle cloud algorithm. The misfits are compared in
to the reference values published in the literature. The RR-PSO, CC-PSO
and PSO are the most performing algorithms.

The coordinate cloud algorithm gives also very good results but it is a more
explorative version than the particle-cloud. Nevertheless, as pointed before,
in inverse modeling it is not only important to achieve very low misfits but
also to explore the space of possible solutions. When these algorithms have
to be used in explorative form the cloud versions become a very interesting
approach, because there is no need to tune the PSO parameters. Finally,
the exploration can be also increased by introducing repulsive forces in the
swarm by switching to negative the sign of the acceleration constants. This
strategy has been used in [9], [11] to solve geophysical environmental inverse
problems.
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Table 1 Comparison between the particle-cloud modalities and the reference misfit
values for Standard PSO [1] for different benchmark functions in 50 dimensions.

Median Griewank Rastrigin Rosenbrock Sphere

Standard PSO 9.8E-03 81 90 6.9E-11

PSO 9.6E-03 92 86 8.9E-19

CC-PSO 7.4E-03 99 90 1.0E-15

CP-PSO 1.8E-02 86 223 2.0E-07

PP-PSO 1.0E-01 91 251 8.4E-02

RR-PSO 1.2E-02 39 89 2.9E-25

4 Advantages and Drawbacks
of Particle Swarm Optimization

Particle Swarm Optimization is a global stochastic search algorithm and it
is typically used to solve optimization problems when the number of param-
eters is small (hundreds) and the forward problem is fast to compute. The
advantage of these methods is that they address the optimization problem as
a sampling problem. Thus, they do not do any regularization. In inverse prob-
lems, both a large number of parameters, and very costly forward evaluations
hamper the use of global algorithms. The combined used of PSO and model
reduction techniques allow us to address real world applications having thou-
sands of parameters [12]. The use of model reduction techniques is based on
the fact that the inverse model parameters are not independent. Conversely,
there exist correlations between model parameters introduced by the physics
of the forward problem in order to fit the observed data. Taking advantage
of this fact it is possible to reduce the number of parameters that are used to
solve the identification problem. Also the use of model reduction techniques
helps to regularize the inverse problem, allowing to perform model appraisal
by sampling the family of equivalent models that fit the observed data and
are in accord with the prior information that it is at disposal. Nevertheless,
their use should be evaluated from the perspective of each particular appli-
cation, that is, model reduction techniques should be used with care and not
just to accelerate computation.
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Linear Approximations to the Power
Function of Robust Tests

A. Garćıa-Pérez

Abstract. The main characteristics of robust tests, such as the power func-
tion, are computed using the asymptotic distribution of the robust test statis-
tics because the finite sample one is unmanageable. In this paper we propose
a finite sample linear approximation to the power function of a robust test
obtained using the von Mises expansion of the functional Tail Probability.

Keywords: Power Function, Robust Test, Tail Area Influence Function.

1 Introduction

The finite sample distribution of robust test statistics are usually unmanage-
able and, for this reason, the main characteristics (such as the critical value or
the power) are frequently computed using its asymptotic distribution. Hence,
asymptotically equivalent tests are also equivalent from a robustness point
of view. In this paper we propose an alternative procedure that consists in
using the von Mises expansion of the functional tail probability as a way to
compute powers using tail probabilities under the null hypothesis. We apply
the results to the location M-test based on the Huber estimator, and to the
fixed-carriers model based on the Huber estimator.

2 The von Mises Expansion of a Functional

Let T be a functional defined on a convex set F of distribution functions. If
F and G are two members of F , the (first order) von Mises expansion of T
at F is ([8, 2, 4])

A. Garćıa-Pérez
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T (F) = T (G)+
∫

IF(x;T,G) dF(x)+ Rem

where IF is the Hampel’s Influence Function. For the functional “Tail Prob-
ability” of statistic Tn, this von Mises expansion is

PF{Tn > t}= PG{Tn > t}+
∫

TAIF(x;t;Tn,G) dF(x)+ Rem

where TAIF is the Tail Area Influence Function defined in [3] as the influence
function of the tail probability

TAIF(x;t;Tn,G) =
∂
∂ε

PGε,x{Tn(X1, ..,Xn) > t}
∣
∣
∣∣
ε=0

where Gε,x = (1− ε)G + εδx. In [5], an extension of this definition to the
multivariate situation and an exact expression for the TAIF are obtained.

In [6] we extend these definitions and results to non-identically distributed
random vectors, defining the i-th Partial Tail Area Influence Functions of Tn

at G = (G1, ...,Gn) with relation to Gi, i = 1, ...,n, as

TAIFi(x;t;Tn,G) =
∂
∂ε

PGε,xi
{Tn(X1, ...,Xn) > t}

∣
∣
∣
∣
ε=0

in those x ∈ X where each limit exists. In the computation of TAIFi only
Gi is contaminated and the other distributions remain fixed, being the von
Mises expansion

PF{Tn(X1,X2, ...,Xn) > t}= PG{Tn(X1,X2, ...,Xn) > t}

+
n

∑
i=1

∫

X
TAIFi (x; t;Tn,G) dFi(x)+ Rem

where the remainder term

Rem =
1
2

∫ ∫
T (2)

GF
(x1,x2)d[F(x1)−G(x1)]d[F(x2)−G(x2)]

is small if distributions F and G are close. (T (2)
GF

is the second derivative of the
functional tail probability at the mixture distribution GF = (1− λ )G + λF,
for some λ ∈ [0,1].)

Hence, if F and G are close, we can write (using the results obtained in [5]
and [6])

PF{Tn(X1,X2, ...,Xn) > t}= PF1,...,Fn{Tn(X1,X2, ...,Xn) > t}

/ PG{Tn(X1,X2, ...,Xn) > t}+
n

∑
i=1

∫

X
TAIFi (x; t;Tn,G) dFi(x)
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= (1−n)PG{Tn(X1,X2, ...,Xn) > t}+
∫

X
PG2,...,Gn{Tn(x,X2, ...,Xn) > t}dF1(x)

+
∫

X
PG1,G3,...,Gn{Tn(X1,x, ...,Xn) > t}dF2(x)+ · · ·

+
∫

X
PG1,...Gn−1{Tn(X1, ...,Xn−1,x) > t}dFn(x)

that allows an approximation to the tail probability PF{Tn > t} under mod-
els (F1, ...,Fn), knowing the value of this tail probability under near models
(G1, ...,Gn).

3 A Linear Approximation to the Power Function of a
Test

Let us consider a level α-test of the null hypothesis H0 : θ ∈Θ0 against an
alternative H1 : θ ∈Θ1. We shall suppose that it rejects H0 for large values of
Tn and that the critical value is kαn . The previous von Mises approximation can
be used to obtain a linear approximation to the power function, considering
as distributions (F1, ...,Fn) the models under an alternative θ ∈ Θ1 and, as
distributions (G1, ...,Gn) the models under the null. In this case, for location
families, we obtain

Power(θ )/ (1−n)α+ PF1;θ0
,...,Fn;θ0

{Tn(X1 +(θ −θ0),X2, ...,Xn) > kαn }

+PF1;θ0
,...,Fn;θ0

{Tn(X1,X2 +(θ −θ0), ...,Xn) > kαn }+ . . .

+PF1;θ0
,...,Fn;θ0

{Tn(X1, ...,Xn−1,Xn +(θ −θ0)) > kαn }.

This linear approximation is very accurate if the alternative θ is close
to the null θ0. If this is not the case, we can extend its application using
an iterative procedure that consists in considering intermediate distributions
F j = (F1;θ j , ...,Fn;θ j) ≡ (F1 j, ...,Fn j), with location parameter θ j = θ0 + j(θ −
θ0)/(k + 1), j = 1, ...,k + 1, between the model distribution under the null
hypothesis θ0, F0 ≡ Fθ0 = (F1;θ0 , ...,Fn;θ0), and the model distribution under
the alternative θ , Fk+1 ≡ Fθ = (F1;θ , ...,Fn;θ ), obtaining the approximation

Power(θ )/ α+
k+1

∑
j=1

[PH0

{
Tn(X1 + c2 j,X2 + c1 j, ...,Xn + c1 j) > kαn

}

+PH0

{
Tn(X1 + c1 j,X2 + c2 j,X3 + c1 j + ...,Xn + c1 j) > kαn

}
+ ...
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+PH0

{
Tn(X1 + c1 j, ...,Xn−1 + c1 j,Xn + c2 j) > kαn

}

−nPH0

{
Tn(X1 + c1 j, ...,Xn + c1 j) > kαn

}
]

where c1 j = ( j−1)(θ −θ0)/(k + 1) and c2 j = j(θ −θ0)/(k + 1).
In this approximation we must express the tail probabilities in a different

way for any different problem. But, with the approximation, we transfer the
computation under the alternative hypothesis to computations under the null.

In the rest of the paper we shall consider tests based on the Huber es-
timator where the usual expression that connects the tail probability of an
M-estimator with its score function is used. Nevertheless, the method exposed
in the paper can be used not only for these problems but also to other more
complex ones; see for instance the approximations for saddlepoint tests in [6].

4 Huber Location Test

The previous linear approximation to the power function of the level α-test
of H0 : θ = θ0 against H1 : θ > θ0 considering as test statistics the Huber
statistics with score function ψb (iid situation, F1 = ... = Fn = F) is

Power(θ )/ α+ n
k+1

∑
j=1

[
PH0

{1Tn(X1, ...,Xn) > kαn − c1 j
}

(1)

−PH0

{
Tn(X1, ...,Xn) > kαn − c1 j

}]
·
[
Fθ0(k

α
n − c1 j + b)−Fθ0(k

α
n − c1 j −b)

]

where 1Tn is the M-estimator with score function 1ψ =ψb+(θ−θ0)/((k+1)n) .
We can see from this expression, for instance, that as we increase the tuning
constant b, the power increases obtaining the maximum power test when
b → ∞, i.e., for the sample mean.

In this simple case of the sample mean test, if Fθ ≡N(θ ,1), the exact power
function is Power(θ ) = 1−Φs(z1−α −θ

√
n) and approximation (1)

Power(θ )/ α+ n
k+1

∑
j=1

[
Φs((kαn − c1 j)

√
n)−Φs((kαn − c1 j −θ/(n(k + 1)))

√
n)
]

where Φs is the standard normal cumulative distribution function. Figure 1
shows the exact power of this test (solid line) and the approximation (dashed
line) for n = 3 and α = 0.025. In the left side we used only k = 6 iterations
and k = 15 in the right one.

For other b values, it is possible to use saddlepoint approximations given,
for instance, in [1] (or just the asymptotic distribution of an M-estimator),
to compute the tail probabilities in (1), always under the null hypothesis;
i.e., with the linear approximations that we propose in the paper, we can use
known approximations to the p-value to compute power functions.
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Fig. 1 Exact (solid line) and approximated (dashed line) power functions for the
mean test
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Fig. 2 Approximate power function of the Huber test for different tuning
constants b

The linear approximations of the Huber test for different tuning constants
appear in Figure 2.

5 Fixed-Carriers Model Based on the Huber Estimator

Let us consider the Simple Linear Regression Model with fixed-carriers. In
this model, we suppose that
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Yi = a +β xi + ei i = 1, ...,n

where the assumptions are that Yi (Yi|xi for the not fixed-carriers model)
follows a model distribution Fi with mean μi = E[Yi] = a +β xi and variance
σ2, being ei iid variables with a common distribution W .

Let us also suppose that we wish to test the usual null hypothesis H0 : β = 0
against H1 : β �= 0 using as test statistic Tn, the Huber estimator for β with
score function ψb.

Because the test is bilateral and we suppose with equal tails, if kαn here is
such that PH0{Tn > kαn } = α/2 , assuming that, under H0, the distribution of
Tn is symmetric,

Power(β ) = Pβ{Tn <−kαn }+ Pβ{Tn > kαn } = 2Pβ{Tn > kαn }.

The linear approximation (with no iterations) is now

Power(β )/ α+ 2
n

∑
i=1

(
PH0

{iTn(Y1, ...,Yn) > kαn
}
− α

2

)

·(W (kαn xi + bσ)−W(kαn xi−bσ))

where iTn(Y1, ...,Yi, ...,Yn) = Tn(Y1, ...,Yi +βxi, ...,Yn) is an M-estimator (the i-th
shifted version of Tn(Y1, ...,Yi, ...,Yn)) with score function

iψ = ψb +
βxi

nσ
.

Although it would be possible to use a saddlepoint approximation to com-
pute the tail probabilities under the null hypothesis, we shall consider here
the approximation to this distribution given by [7], obtaining finally,

Power(β )/ α+ 2
n

∑
i=1

[
1− α

2
−Φ
(

c∗n(k
α
n −β )γ
iσ

)]

· [W (kαn xi + bσ)−W(kαn xi−bσ)]

With the linear approximations proposed in the paper, we always obtain
analytic expressions for the power function. With them we can obtain general
conclusions. For instance, in these examples we see that, as we increase the
tuning constant b the power increases.

Moreover, since these power functions can easily be computed (we have
used R), we can, for example, to determine the tuning constant b for a given
power, just moving the argument b in the R function until the power is
obtained.
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novation Department (MTM2009-10072).



Linear Approximations to the Power Function of Robust Tests 303

References

1. Daniels, H.E.: Saddlepoint approximations for estimating equations.
Biometrika 70(1), 89–96 (1983)

2. Fernholz, L.T.: von Mises calculus for statistical functionals. Lecture Notes in
Statistics, vol. 19. Springer, New York (1983)

3. Field, C.A., Ronchetti, E.M.: A tail area influence function and its application
to testing. Commun. Stat. 4(1-2), 19–41 (1985)
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Decision Support for Evolving Clustering

Olga Georgieva and Sergey Nedev

Abstract. An evolving clustering algorithm applying the adaptive-distance
measure is developed. An incorporated fuzzy decision support procedure clas-
sifies the current income. The decision support increases the algorithm ro-
bustness. As it discovers on-line clusters with different shape and orientation
it is applicable to a wide range of practical tasks as diagnostics and prognos-
tics, system identification, real time classification.

Keywords: Dynamic Data Mining, Evolving Clustering, Real Time Classi-
fication, Prognostics.

1 Introduction

The advantages of the clustering methods are effectively explored as one of the
challenging theoretical and practical problems in data mining. The commonly
used Fuzzy C-Means (FCM) clustering method [4] discovers spherical clusters
with equal volumes and density. Several clustering algorithms extend the
original FCM method to the case of clusters with a general shape [3], [7], [13].
Among them the Gustafson-Kessel (GK) clustering algorithm [10] is widely
used as a powerful clustering technique with numerous applications in various
domains including image processing, classification and system identification.
Its main feature is the local adaptation of the distance metric to the shape
of the cluster.

Most of the clustering methods are based on the concept of batch cluster-
ing, i.e. the data set is assumed to be available before the clustering analysis
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is carried out. In a wide range of applications, however, the data is presented
to the clustering algorithm in real time. A growing number of methods try
to cope the problem of evolving data streams clustering [6], [11], [12]. Large
amount of these methods are based on the single pass clustering [8], [9], [15]
comprising techniques that are in contrast to the iterative strategies like K-
means and FCM based clustering.

Successful solution of the real time modeling and classification task [3],
[14] have been proposed by incorporating the Mountain clustering algorithm
[14] and its modification - the Subtractive clustering algorithm [5]. The on-
line extension of the Subtractive clustering utilizes recursive and noniterative
techniques for calculating the potential of the new data point in order to
update the existing clusters or to discover new ones [1], [2].

In this paper we propose a new evolving clustering algorithm that builds
upon the advantages of the GK algorithm enable to identify clusters with
a generic shape and orientation. In order to deal with the vagueness of the
classification task a fuzzy decision support algorithm was incorporated in
the evolving clustering procedure. The algorithm presents robust properties
according to variance of the algorithm parameters.

2 GK Clustering

Objective function-based clustering aims minimization of a criterion J that
represents the fitting error of the clusters with respect to the data. The un-
derlying objective function for most of the clustering algorithms is [4]:

J(V,U,F) =
c

∑
i=1

N

∑
k=1

um
ikd2

ik, (1)

where N is the number of data points, c is the number of clusters; uik and
dik denote correspondingly the membership degree and distance between the
k -th data point xk = [xk1,xk2, ...,xkn] and i-th cluster prototype vi; U = {uik},
i = 1, ...,c, k = 1, ...,N is a partition matrix and n is the number of features
describing each data point. V = [v1,v2, ...,vc]

T is a cluster prototypes matrix
and vi, i = 1, ...,c is the prototype vector vi = [vi1,vi2, ...,vin] of the i−th cluster.
In the simplest case, the cluster prototype is a single point called cluster
centre. The fuzzifier m ∈ [1,∞) is the weighted exponent coefficient which
determines how much clusters may overlap.

In case of GK clustering the distance dik is a squared inner-product distance
norm that depends on a positive definite symmetric matrix Ai:

d2
ik = ‖xk − vi‖2

Ai
= (xk − vi)Ai(xk − vi)T . (2)

The matrix Ai determines the shape and orientation of the selected cluster.
Commonly oblong clusters with different orientation in the space are pre-
sented in the data set. In order to cover such clusters the algorithm should
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employ an adaptive distance norm unique for every cluster. For this the norm
inducing matrix Ai is calculated according to the data covariance:

Ai = [ρidet(Fi)]1/nF−1
i , (3)

where ρi is the cluster volume and Fi is the fuzzy covariance matrix of the
i-th cluster:

Fi =
∑N

k=1 um
ik(xk − vi)T (xk − vi)

∑N
k=1 um

ik

. (4)

Without any prior knowledge the cluster volume ρi = 1, i = 1, ...,c is simply
fixed at one for each cluster.

The parameters that minimise the criterion (1) are the membership degrees

uik =
1

∑c
j=1 ( d2

ik
d2

jk
)

1
m−1

(5)

and the cluster parameters namely cluster centers

vi =
∑N

k=1 um
ikxk

∑N
k=1 um

ik

, (6)

that finally determine the distance dik. The optimization scheme that finds a
proper partition alternatively considers one of the parameter sets, either the
membership degrees or the cluster centers as fixed, while the other parameter
set is optimized, until the algorithm finally converges.

3 Evolving Clustering Based on GK Algorithm

The objective function clustering algorithms are not able to deal with data
streams. They process a fixed data set assuming that the number of clusters
is known in advance by that applying iterative optimization scheme. The new
incoming data could not be processed by the original algorithm scheme as
the stream of incoming data changes the data structure over time. Evolving
algorithm variants are need in this case.

Originally, we assume that the GK has been applied to identify an initial
set of c clusters of the previously collected data. Each of those clusters is
defined by its center vi and fuzzy covariance matrix Fi. The assumption is
realistic as in almost all evolving applications some initial knowledge about
the data being processed is available.

We assume that the boundary of each cluster is defined by the cluster
radius. We determine the radius ri of the i-th cluster equal to the maximal
distance between the cluster center vi and the points belonging to this cluster
with membership degree larger or equal to a given threshold membership
degree uh:
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ri = max
∥
∥vi − x j

∥
∥

Ai
for∀x j ∈ ith cluster and ui j ≥ uh (7)

where ‖.‖Ai
is the GK distance norm determined according to equation (2)

for which the data x j belongs to the i-th cluster with membership degree
ui j such that ui j ≥ uh. Three possibilities should be evaluated if a new data
point xk incomes currently. First, the data belongs to an existing cluster if it
is within the cluster boundary. This case imposes just clusters’ update. If the
data point is not within the boundary of any existing cluster it may define a
new cluster. Alternatively, xk could be an outlier, which does not affect the
data structure. Bellow those three possibilities are considered in detail.

The similarity between the new data point xk and each of the existing c clus-
ters is evaluated by checking the GK distances defined by eqs. (2) and (3):

dik =
√

(xk − vi)[det(Fi)]1/nF−1
i (xk − vi)T , (8)

where each cluster volume is fixed at one. The minimal distance dpk of the
k -th data determines the closest cluster p as

p = argmini=1,...,c(dik). (9)

The data point xk is assigned to the cluster p if the distance dpk is less or
equal to the radius rp, i.e. if the condition

dpk ≤ rp (10)

is satisfied. If this is the case we recalculate the p-th cluster parameters-
cluster center and covariance matrix according to Eqs. (4)-(6).

If condition (10) fails a new potential cluster is investigated. The credibility
of the estimated cluster is assessed by the number of points belonging to this
cluster with a certain degree of membership. Its lower bound is estimated
from the minimal number of data points necessary to learn the parameters of
the covariance matrix. Apparently, large amount of data not only guarantees
the validity of the covariance matrices but improves the robustness of the
algorithm with respect to outliers. Thus, we suggest a larger threshold Ptol

that corresponds to the desired minimal amount of points falling within the
ri boundary of each cluster. The threshold value is context determined due
to the specificity of the considered data set.

If the threshold Ptol is satisfied the number of clusters is incremented

c := c + 1. (11)

Then, the incoming data xk is accepted as a center of the new cluster vnew with
a covariance matrix Fnew initialized by the covariance matrix of the closest
cluster

vnew = xk, Fnew = Fp. (12)

In opposite case, if the threshold Ptol is not passed the data xk is treated
as an outlier, which does not affect the data structure.
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The choice of the membership threshold uh depends on the density of the
data set and the level of cluster overlapping. The default value of uh is 0,5 but
being stricter in the identification of proper clusters the prescribed threshold
membership degree should be chosen larger. For a more tolerant identification
it should be chosen smaller.

4 Decission Support Procedure

Decision of the data assignment is a multivariable task depending on differ-
ent parameters. During the data income the cluster radius and prototype’s
coordinates are changed in a real time mode. On the other hand the number
of points that form a valuable cluster should not be fixed but rather varied in
a certain diapason. The uncertainty of the clustering decision is dictated by
the necessity to take into account these vague parameters. A possible solution
could be found through a fuzzy decision support technique.

The distance D between the current income xk and the closest cluster as
well as the amount of the points Pinc surrounding this income are considered
as linguistic variables. In the simplest case two fuzzy values - small and large
constructed by respectively left and right opened Γ membership functions
grasp each variable universe. The respective membership functions over the
universe of D should have a projection of their intersection point equal to the
radius rp of the closest cluster. The universe of Pinc is characterized by low
and high membership functions that are left and right opened Γ functions
having an intersection point projected over the most acceptable number of
data Ptol that can form a cluster.

The rule base covers the possible combinations of the fuzzy values:
R1: If D is small then classify as Assign
R2: If D is large & Pinc is low then classify as Outlier
R3: If D is large & Pinc is high then classify as New
Singleton values determine the consequent of the three rules that corre-

spond to the three classification cases: a) Assign - assigning the income data
to the closest cluster; b) Outlier - the income is an outlier which does not
change the data structure and c) New - the income is surrounded with large
number of data that form a new cluster.

The intersection operation and in the antecedent of the rules R2 and R3 is
accomplished by Larsen product. It involves both input membership degrees
in calculation the rule degree of fulfillment. Every rule is solved by apply-
ing the Mamdani implication mechanism. The output is obtained as a value
within the interval [0,1]. The decision for the final classification is settled to
the maximal value among the three outputs calculated for the current income.
In the extreme case of equal maximal output degrees we give a preference to
keeping the data structure.

In practice, the membership functions of the fuzzy values govern the evolv-
ing classification process. Different strategies could be implemented in order
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to define their parameters. For instance, if the data set presents clusters hav-
ing equal size then the membership functions could be constantly determined.
If the available clusters are much different the membership functions of the
decision system should be changed according to the radius rp and Ptol in a
real time mode.

The decision procedure was incorporated in the evolving clustering algo-
rithm by the following step description procedure:

1. Initialization: Calculate the initial number of clusters c and the cor-
responding matrices V, U and F = [F1, ...,Fc] by off-line GK algorithm.
Choose in advance: uh; also rp and Ptol that are needed to construct the
membership functions of the fuzzy rule base.
Repeat for every new data point xk

2. Calculate dik by eq. (8).
3. Determine the closest cluster p by eq. (9).
4. Calculate the radius rp of the closest cluster by eq. (7).
5. Calculate the outputs of the three fuzzy rules.
6. Classify the new data point xk according to the maximal output value:

If Assign is the largest output then keep the structure. Recalculate V,
F = [F1, ...,Fc] and U ;
If Outlier is the largest output then keep the structure;
If New is the largest output then create a new cluster: c = c+1,vc+1 =
xk;Fc+1 = Fp

end

5 Data Set Example and Discussion

A two dimensional artificial data set of 500 data having clusters with different
shape and orientation among outliers was clustered to explore the algorithm
properties. The two fuzzy values for each linguistic variable of the fuzzy rule
base have been defined as Γ membership functions. The left opened functions
are set for the small values and the right opened ones for the large values.
Each corresponding pair of left and right membership function has a fixed
intersection. The two projections are set to rp = 4 for the distance universe
and Ptol = 12 for surrounding points universe.

Initial clusters (Fig. 1a) for the first 200 data points were identified by
batch GK procedure. The third cluster (Fig. 1b) was determined for the
next income that has been surrounded by enough data. The forth cluster
is recognized at 377 data income (Fig. 1c). The next added outliers do not
change the clustering result (Fig. 1d). The partition was obtained for the
default threshold uh = 0,5. The incorporated fuzzy decision support not only
reflects the existing uncertainty but provides robust properties. Thus, by
reducing the cluster credibility parameter Ptol = 10 the algorithm recognizes
strongly overlapping clusters (Fig. 2).
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Fig. 1 Data are given by dots, cluster centers - by stars and current income - by
circle.
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Fig. 2 Five clusters have been discovered by more tolerant clustering

6 Conclusion

The proposed algorithm is applicable in real time clustering tasks. It is based
on GK distance metrics and grasps well the data structure even it presents
clusters with different shape and orientation. Due to the incorporated fuzzy
decision support the algorithm poses robustness characteristics according to
the variation of the clustering parameters - the threshold membership degree
that affect the cluster radius and number of data that can form a new reliable
cluster. By extending the antecedent input vector of the decision support
rule base additional clustering parameters could be easily included in order
to increase the classification properties.
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On Jaffray’s Decision Model for Belief
Functions

Phan H. Giang

Abstract. In this paper, two decision models for Dempster-Shafer belief
functions proposed by Jaffray and Giang-Shenoy respectively are compared.
Jaffray’s model is applicable for general belief function while Giang-Shenoy’s
model works for the partially consonant class (pcb). Pcb has been shown by
Walley as the only class that is consistent with the likelihood principle of
statistics. While both models share many nice properties such as tractabil-
ity, the separation of risk attitude, ambiguity attitude from ambiguity belief,
they differ on important aspects. The comparison is made possible by ap-
plication of both models to pcb. It is shown that due to a Hurwicz-type
condition imposed on decision under ignorance, Jaffray’s approach violates
the consequentialism property (analogous to the law of iterated expectation
in probability theory) that is satisfied by Giang-Shenoy approach.

Keywords: Decision theory, Partially consonant, Belief function, Ambiguity
attitude.

1 Introduction

Twenty years ago, Jaffray [7] proposed a model of decision making for
Dempster-Shafer belief functions that has some remarkable properties.
Wakker [12] notes recently that “[Jaffray’s] models, developed 20 years ago,
achieve a tractability and a separation between risk attitudes, ambiguity at-
titudes, and ambiguity beliefs that have not yet been obtained in other mod-
els popular today”. From an axiomatic perspective, Jaffray and Wakker [9]
show that the model is a result of weakening Savage’s sure-thing principle for
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unambiguous events. Belief function theory grew out of Dempster’s effort in
1960s to generalize Bayesian statistics [1] and later Shafer’s proposal of evi-
dential reasoning [11]. Since then a rich body of literature on belief function
theory has been accumulated. One of the unsettled issues is decision making
with belief function. The problem is that going beyond the realm of probabil-
ity also means leaving behind the established Bayesian decision theory with
many of its nice properties such as the dynamic consistency, consequentialism,
immunity from Dutch book argument.

This note is the result of comparison of Jaffray’s model with the decision
model with consonant belief functions proposed in [4]. Several observations
motivate a comparative analysis. Jaffray and Wakker’s axiomatization [9]
in Savage’s style for general belief functions while [4] is in von Neumann-
Morgenstern style for a subclass of partially consonant belief function (pcb).
The most puzzling fact is that [9] and [4] behave differently when applied for
pcb. Given close links between decision and statistical reasoning tasks such as
hypothesis testing and estimation, it is important to understand the source
and consequences of such a difference.

2 Jaffray-Wakker Derivation

We begin with the framework and notations in which the approaches in [9] and
[4] can be described and compared.Ω is a finite set of states and U = [0,1] is a
set of outcomes. An outcome value is measured in risk-adjusted utility rather
than monetary unit. This assumption allows a focus on ambiguity. States can
be thought in terms of variables which are denoted by the capital letters to
the end of the alphabet e.g., X ,Y,Z. Variable instances are denoted by lower
case letters. Events are subsets of states and are denoted by capital letters
to the start of the alphabet e.g., A,B,C. A state is a tuple of instances of all
variables. An act is a mapping d : Ω → U . An act is resolved on a variable
if the knowledge of the variable value is enough to determine the outcome
of act. The uncertainty is described by belief functions over the states or, as
result of act, over the outcomes. Belief functions are denoted by lower case
letters in the middle of the alphabet f ,g,h,m etc. In section 3 a concept of
utility that has two components is used. Greek letter λ is reserved for the
left and ρ for the right component. Finally, for the rest of this paper slash
(/) does not denote arithmetic division, but to separate act’s outcome from
associating uncertainty degree.

For the sake of self-containedness we repeat basic definitions and well
known facts about DS belief functions. A probability mass function m
is a mapping from the power set of Ω to the unit interval such that
sum of masses is 1. The subsets with positive mass are called foci. m :
2Ω → [0,1] such that ∑A⊆Ω m(A) = 1. Two other forms of a belief function
are belief (Bel) and plausibility (Pl) defined from m as follows: Bel(B) =
∑A⊆B m(A) and Pl(B) = ∑A∩B �= /0 m(A) for any B ⊆ Ω . The most basic fact
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about DS belief functions is that three forms m, Bel and Pl are equivalent in
the sense that given any form the others can be computed. The computation
technique is based on the Möbius transform and its inverse. After learning
an event B, a belief function is conditioned on that set. In terms of plau-
sibility function, conditional belief assume the familiar form of conditional
probability: Pl(A|B) = Pl(A∩B)

Pl(B) for A,B ⊆Ω .

As a mapping from Ω to U , an act would “carry” uncertainty from the
states to the outcomes in the sense that the mass assigned to A would be
carried to d(A) def= ∪s∈Ad(s). So an act is identified with the belief function it
induces on U . A neutrality principle [9] requires that two acts that induce
the same belief function on U are indifferent. This assumption allows focus
on a preference relation 2 over set of belief functions on U denoted by F .
As usual, 2 is assumed to be a weak order (complete and transitive) with
asymmetric and symmetric parts denoted by , and ∼.

An event (subset) A is called ambiguous if there exists a focus that inter-
sects with both A and its complement Ā. An ambiguous event A is charac-
terized by a strict inequality Pl(A)+ Pl(Ā) > 1. This is the case because (i)
there exists a focus B whose strictly positive mass m(B) is counted twice in
both Pl(A) and Pl(Ā) and (ii) the mass of any other focus is counted at least
in either Pl(A) or Pl(Ā). Conversely, a unambiguous event is characterized by
equality Pl(A)+Pl(Ā) = 1. Because of symmetry, (un)ambiguity is a property
of both an event and its complement. Intuitively, a unambiguous event and
its complement separate the foci into two non-overlapping groups.

Jaffray and Wakker show that [9] the utility of act f is the weighted (by
foci masses) average of the utilities of elementary acts eB induced by its foci
if if relation 2 satisfies mixture continuity and and weak sure-thing principle.
This is a consequence of Herstein and Milnor’s theorem [6].

v( f ) = ∑
B⊆U

m f (B)v(eB) (1)

The weak sure-thing principle requires that two pairs of acts (d1,d2) and
(d′1,d

′
2) such that (i) d1(s) = d2(s) = c and d′1(s) = d′2(s) = c′ for all s ∈ Ā;

and (ii) d1(v) = d′1(v) and d2(v) = d′2(v) for all v∈ A where A is a unambiguous
event should have the same preference direction i.e., d1 2 d2 iff d′1 2 d′2. This is
weaker than the original Savagian sure-thing principle by adding a condition
on the unambiguity of the common-outcome set.

Belief functions are closed under linear mixture. For belief functions f ,g ∈
F and 0 ≤ μ ≤ 1 is a real number, a linear mixture of f and g: h ≡ μ f +
(1− μ)g defined as mh(A) def= μm f (A)+ (1− μ)mg(A) for any A ⊆ U is also a
belief function (m f is the mass function of f ). The corresponding equalities
for Bel and Pl also hold. The mixture continuity condition [6] requires that
for a triple f ,g,h ∈F satisfying f 2 g 2 h there is a real number μ such that
μ f + (1− μ)h ∼ g. The idea is that you can fine-tune mixture weight μ so
that mixture spans whole range from h to g.
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So the key problem is how to determine the utility of elementary belief
functions v(eB). Jaffray argued for the adoption of the principle of “total ig-
norance”because eB represents situation where the only information available
is that outcome will be in B. In particular,

v(eB) = α(⊥B,*B)⊥B +(1−α(⊥B,*B))*B (2)

where ⊥B (*B) is the minimal (maximal) element in B and α is two-place
real function. Interestingly, in v(eB) all intermediate outcomes are ignored
and only the top and the bottom elements of B matter. Thus, v( f ) =

∑
B⊆U

m f (B)(α(⊥B,*B)⊥B +(1−α(⊥B,*B))*B) (3)

This utility expression separates uncertain information represented by f and
the ambiguity attitude represented by α(·, ·).1 It is tractable because it is
only necessary to determine α value for every pair of elements of U rather
than for each subset.

3 A Decision Model with Partially Consonant Belief
Functions

In [4] Giang and Shenoy proposed a decision model for partially consonant
belief functions (pcb). First studied by Walley [13], pcb is a class of belief
functions with foci partitioned into non-overlapping groups and within each
group, they are nested. For example {A10 ⊃ A11 . . . ⊃ A1n1}, {A20 ⊃ A21 . . . ⊃
A2n2}. . . {Am0 ⊃ Am1 . . . ⊃ Amnm} and Ai0 ∩ A j0 = /0. We can assume without
loss of information that ∪iAi0 = Ω . This class includes both probability and
possibility functions as special cases. The fundamental importance of pcb is
due to Walley’s result [13] that pcb is the only class of DS belief functions
that is consistent with the likelihood principle of statistics.

Consider algebra A formed from {A10,A20 . . .Am0}, an event A is unam-
biguous iff A ∈ A . A pcb can be decomposed into a probability function on
A : Pl(Ai0)

def= Pl(Ai0) for 1 ≤ i ≤ m and m conditional possibility functions πi

on Ai0: πi(C) def= Pl(C|Ai0) for C ⊆ Ai0.
An act d : Ω → U can be rewritten d = [E1/w1,E2/w2 . . . ,Ek/wk] where

Ei = d−1(wi). A key observation is that act d under pcb can be viewed as
two-stage act [Ai0/[Bi1/w1, . . .Bik/wk]]mi=1 where Bi j = Ai0 ∩E j for i = 1,m and
j = 1,k. Thus, the first stage is a probabilistic act and the second stage is
a set of possibilistic acts. This is amenable to evaluation in a folding back
manner. First, the second-stage possibilistic lotteries are evaluated and their
certainty equivalences are plugged into the probabilistic lottery which in its
turn is evaluated by standard expected utility. This fold-back procedure im-
plies consequentialism property [10].

1 The risk attitude is ignored in this review for the sake of clarity.
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In [5], possibilistic lotteries are evaluated by a two-component or “binary”
utility function t : Fπ →Ψ where Fπ is the set of possibilistic functions on
U and Ψ def= {〈λ ,ρ〉 |λ ,ρ ∈ [0,1] and max(λ ,ρ) = 1}. An order 3 on Ψ , a
component-wise operation max on pairs and product of a scalar and a pair
can be defined as follows

〈λ ,ρ〉3
〈
λ ′,ρ ′

〉
iff λ ≥ λ ′ and ρ ≤ ρ ′ (4)

max(〈λ ,ρ〉 ,
〈
λ ′,ρ ′

〉
) def=

〈
max(λ ,λ ′),max(ρ ,ρ ′)

〉
(5)

π 〈λ ,ρ〉 def= 〈πλ ,πρ〉 (6)

t([πi j/wj]kj=1) = max{πi jt(wj)} =
〈

max
j

(πi jλ j),max
j

(πi jρ j)
〉

(7)

For a continuous t, one can define t−1 :Ψ → [0,1] as follows: for w ∈ [0,1]
t−1(〈λ ,ρ〉) 4→ w if t(w) = 〈λ ,ρ〉. This definition of t−1 justifies familiar can-
cellations: t(t−1(〈λ ,ρ〉) = 〈λ ,ρ〉 and t−1(t(w)) = w for w ∈ [0,1]. The utility
function for pcb lotteries [4] has the following form

u([pi/[πi1/w1,πi2/w2 . . .πik/wk]mi=1) =
m

∑
i=1

pit
−1(max

j
{πi jt(wj)}) (8)

4 A Comparison

We have seen that an act under uncertainty described by pcb can be evaluated
in two different ways according Jaffray’s model (J-utility function v) vs the
model in [4] (GS-utility function u). Our inquiry is to answer two questions
(a) is Jaffray’s model equivalent to GS model when the belief function is pcb
and (b) if it is not then why and what properties of GS model that are not
held by Jaffray’s model and vice versa.

Let us consider the simplest case of elementary belief functions eB with
the only focus B i.e., mass meB(B) = 1. J-utility v(eB) = α(⊥B,*B)⊥B +(1−
α(⊥B,*B))*B. This is a linear combination of utilities of the bottom and top
elements with the weight equal to α(⊥B,*B).

As for GS-utility, u(eB) = t−1 (max{t(b)|b ∈ B}). Suppose t(⊥B) =
〈
λB
⊥,ρB

⊥
〉
,

t(*B) =
〈
λB
*,ρB

*
〉

and t(b) = 〈λb,ρb〉. Because *B 3 b for any b ∈ B by
definition of 3 , for the left component λB

* ≥ λb. Similarly, because
b 3⊥B for the right component ρB

⊥ ≥ ρb for any b ∈ B. Therefore u(eB) =
t−1 (max{t(b)|b ∈ B}) = t−1

(〈
λB
*,ρB

⊥
〉)

. u(eB) depends on ⊥B and *B only.
Thus, in both J-utility and GS-utility, for decision under ignorance only ex-
treme outcome matter, the intermediate outcomes are ignored.

However, there is difference in the behavior of u and v. Consider the case
when the bottom element of B is still preferable to the fair gamble ⊥B 2
[1/1,1/0]. It follows that λB

⊥ = 1. So u(eB) = t−1(
〈
1,ρB

⊥
〉
) = t−1(

〈
λB
⊥,ρB

⊥
〉
) =

t−1(t(⊥B)) = ⊥B. Thus, GS-utility equalizes eB with its bottom element ⊥B.
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Analogously, it can be shown that if the fair gamble is preferable to the top
element of B, then u(eB) = *B. This particular behavior is consistent with
the “optimistic” and “pessimistic” modes of possibilistic decision described in
[3]. J-utility, being a linear combination of top and bottom elements, can not
have this behavior unless α(⊥B,*B) = 1 or α(⊥B,*B) = 0.

Let us consider an example to clarify properties of GS-utility that are not
satisfied by J-utility. There are two variables X ,Y with domains X = {x1,x2}
and Y = {y1,y2}. Ω = {x1y1,x1y2,x2y1,x2y2}. Suppose a belief function with
three nested foci is given as follows. Pl(x1) = 1, Pl(x2) = 1, Pl(y1|x1) = 1,
Pl(y2|x1) = 0.3, Pl(y1|x2) = 1 and Pl(y2|x2) = 0.5.

focus Ω x1y1,x2y1,x2y2 x1y1,x2y1

mass 0.3 0.2 0.5

Consider act d with the first stage resolved on X . If X = x1 then L1; if X = x2

then L2. The second stage is resolved on Y . If Y = y1 then both L1 and L2

deliver 1; if Y = y2 then both L1 and L2 deliver 0. In two-stage view L =
[x1/L1,x2/L2], L1 = [y1/1,y2/0] and L2 = [y1/1,y2/0]. This act will be evaluated
by J-utility and GS-utility in a single-stage and a two-stage views.

GS-utility calculates two-stage view of d as follows. Since u(L1) = 〈1,0.3〉
and u(L2) = 〈1,0.5〉, hence u(L) = 〈1,0.5〉. In one-stage view of d, L′ =
[{x1y1,x2y1}/1, {x1y2,x2y2}/0] i.e., if {x1y1,x2y1} occurs, the outcome is 1;
otherwise it is 0. Because Pl({x1y1,x2y1}) = 1 and Pl({x1y2,x2y2}) = 0.5
u(L′) = 〈1,0.5〉 . Thus, two views of an act are equal under GS-utility. In
general, GS-utility satisfies the consequentialism for possibilistic acts.

J-utility calculates one-stage view. d(Ω) = {0,1}, d({x1y1,x2y1,x2y2}) =
{0,1} and d({x1y1,x2y1}) = {1}. The belief function f on U induced by
d and m has 2 foci m f ({0,1}) = 0.5 and m f ({1}) = 0.5. J-utility is v( f ) =
0.5v(e{0,1})+ 0.5v(e{1}). Because v(e{0,1}) = 1−α(0,1), v(e{1}) = 1

v( f ) = 1−0.5α(0,1). (9)

In two stage view, to compute utility for second stage lotteries it is necessary
to compute belief functions obtained from m by conditioning on X = x1 and
X = x2 as shown in the following table.

focus Ω x1y1,x2y1,x2y2 x1y1,x2y1

mass 0.3 0.2 0.5
conditioning event x1y1,x1y2

conditional foci x1y1,x1y2 x1y1 x1y1

conditioning event x2y1,x2y2

conditional foci x2y1,x2y2 x2y1,x2y2 x2y1

Denote the conditionals on X = xi by mi for i = 1,2. m1({x1y1,x1y2}) = 0.3
and m1({x1y1}) = 0.7. m2({x2y1,x2y2}) = 0.5 and m2({x2y1}) = 0.5. The be-
lief function on U induced by mi is fi. m f1({0,1}) = 0.3, m f1({1}) = 0.7,
m f2({0,1}) = 0.5 and m f2({1}) = 0.5. J-utility calculation yields
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v( f1) = 0.3(1−α(0,1))+ 0.7 = 1−0.3α(0,1) (10)
v( f2) = 0.5(1−α(0,1))+ 0.5 = 1−0.5α(0,1) (11)

The first stage is that if X = x1 then the outcome is w1 = 1−0.3α(0,1) and
if X = x2 then it is w2 = 1− 0.5α(0,1). The induced belief function on U is
e{w1,w2} (i.e., the masses of the all original foci are transferred to {w1,w2}).
So the J-utility is

v(e{w1,w2}) = α(w1,w2)w1 +(1−α(w1,w2))w2 (12)
= 1−0.5α(0,1)+ 0.2α(0,1)α(w1,w2) (13)

The difference between (9) and (13) indicates that J-utility values of one-
stage and two-stage views of an act differently except for trivial weights. In
other words, the consequentialism does not hold for J-utility and hence the
folding-back procedure is not applicable.

The consequentialism failure of J-utility requires a careful examination
not just because folding-back is a convenient evaluation method but also it
embodies a normative requirement that the rational value of a choice should
not depend on the way it is presented to the decision maker (although in real
life such manipulations do have effect on choice). Shifting between one-stage
and two-stage views of an act does not add or lose any new information,
therefore, the utilities should not change. This is the idea behind the law
of iterated expectation in probability E[X ] = E[E[X |Y ]]. If this property is
violated, a DM can be subjected to a Dutch-book type trap in which she is led
to make a collection of choices that in toto costs her a sure loss. To understand
the reason behind this failure, we note that (1) set of pcb lotteries is closed
under mixture and (2) GS-utility satisfies both the mixture continuity and
independence conditions. By Herstein and Milnor’s theorem [6], u is consistent
with the form of (1). This observation points to Hurwicz’s condition (2), that
distinguishes J-utility from GS-utility, as responsible for the failure. Jaffray
and Jeleva [8] observe the problem of Hurwicz’s criterion in decision context
not involving belief function.

5 Conclusion

This note analyzes and compares two models of decision making with DS
belief function using J-utility and GS-utility. Jaffray’s model is applicable
for general belief function while Giang-Shenoy’s model is applicable only for
partially consonant belief function. Several nice properties such as tractabil-
ity, separation of risk attitude, ambiguity attitude from ambiguity belief and
the satisfaction of mixture continuity and independence are satisfied by both
models. The difference, however, is that while consequentialism holds for GS-
utility model when the secondary lotteries are possibilistic, J-utility loses this
property because Hurwicz’s condition is used for decision under ignorance.
The loss could have undesired consequences that the users of J-utility should
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keep in mind. For example, a folding-back algorithm can not be used and
J-utility of an act may depend on the way the act is presented.

An obvious question arisen at this point is about the consequence of re-
striction on pcb class in GS model. An answer is contained in Walley’s result
[13] that pcb is the only class that is consistent with the likelihood principle,
hence, pcb is not a restriction at all the statistical reasoning context. We also
note Dempster’s view [2] that a belief function is the image of a probability
distribution on a space S through a multi-valued mapping from S to Ω . We
can extend the focus Ai ⊆ Ω which is the image of si to siAi on S×Ω . The
foci on the extended space do not intersect. So, any belief function on Ω can
be viewed as a pcb on the extended space S×Ω .
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Quasi Conjunction and p-Entailment in
Nonmonotonic Reasoning

A. Gilio and G. Sanfilippo

Abstract. We study, in the setting of coherence, the extension of a probabil-
ity assessment defined on n conditional events to their quasi conjunction. We
consider, in particular, two special cases of logical dependencies; moreover,
we examine the relationship between the notion of p-entailment of Adams
and the inclusion relation of Goodman and Nguyen. We also study the prob-
abilistic semantics of the QAND rule of Dubois and Prade; then, we give a
theoretical result on p-entailment.

Keywords: Coherence, Lower/upper probability bounds, Quasi conjunc-
tion, QAND rule, p-entailment.

1 Introduction

In classical (monotonic) logic, if a conclusion C follows from some premises,
then C also follows when the set of premises is enlarged; that is, adding
premises never invalidates any conclusions. Differently, in (nonmonotonic)
commonsense reasoning typically we are in a situation of partial knowledge
and a conclusion reached from a set of premises may be retracted, when some
premises are added. Nonmonotonic reasoning is a relevant topic in the field of
artificial intelligence and has been studied in literature by many, symbolic or
numerical, formalisms (see, e.g. [2, 3, 8]). A remarkable theory, related with
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nonmonotonic reasoning, has been given by Adams in his probabilistic logic
of conditionals ([1]). We recall that the approach of Adams can be developed
with full generality by exploiting a coherence-based probabilistic reasoning,
which allows a direct assignment of conditional probabilities, without assum-
ing that conditioning events have a positive probability ([4]). A basic notion
in the work of Adams is the quasi conjunction of conditionals, which also
plays a relevant role in the work of Dubois and Prade on conditional objects,
where a suitable QAND rule is introduced to characterize entailment from a
knowledge base. In our paper we deepen some probabilistic aspects related
with QAND rule and with the conditional probabilistic logic of Adams.

The paper is organized as follows: In Section 2 we recall the p-consistency
and p-entailment notions in the setting of coherence; in Sections 3 and 4 we
study the lower and upper probability bounds for the quasi conjunction of
conditional events, by relating them to Lukasiewicz t-norm and Hamacher
t-conorm, respectively; we also examine two special cases of logical depen-
dencies related with the inclusion relation of Goodman and Nguyen and with
the compound probability theorem; in Section 5 we deepen the analysis on
the lower and upper probability bounds for the quasi conjunction, by ex-
amining further aspects; in Section 6 we examine the relation between the
notion of p-entailment and the inclusion relation of Goodman and Nguyen;
then, we study the probabilistic semantics of QAND rule, by proving the
p-entailment from any given family of conditional events F to the quasi con-
junction C (F ); finally, we prove the equivalence between p-entailment from
F and p-entailment from the C (S ), for some non-empty subset S of F ; in
Section 7 we give some conclusions.

Due to the lack of space (almost) all proofs of our results are omitted.

2 Some Preliminary Notions

In this section we recall, in the setting of coherence ([4, 5]), the notions of p-
consistency and p-entailment of Adams ([1]). Given a conditional knowledge
base Kn = {Hi|∼ Ei , i = 1, . . . ,n}, we denote by Fn = {Ei|Hi , i = 1, . . . ,n} the
associated family of conditional events.

Definition 1. The knowledge base Kn = {Hi|∼ Ei , i = 1, . . . ,n} is p-consistent
iff, for every set of lower bounds {αi, i = 1, . . . ,n}, with αi ∈ [0,1), there exists
a coherent probability assessment {pi, i = 1, . . . ,n} on Fn, with pi = P(Ei|Hi),
such that pi ≥ αi, i = 1, . . . ,n.

We say that Fn is p-consistent when it is p-consistent the associated knowl-
edge base Kn; then, we point out that the property of p-consistency for Fn

is equivalent to the coherence of the assessment (p1, p2, . . . , pn) = (1,1, . . . ,1)
on Fn (strict p-consistency, [4]).

Definition 2. A p-consistent knowledge base Kn = {Hi|∼ Ei , i = 1, . . . ,n}
p-entails the conditional A|∼ B, denoted Kn ⇒p A|∼ B, iff there exists a
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non-empty subset Γ ⊆ {1, . . . ,n} such that, for every α ∈ [0,1), there exists
a set of lower bounds {αi, i ∈ Γ }, with αi ∈ [0,1), such that for all coher-
ent probability assessments {z, pi, i ∈ Γ } defined on {B|A,Ei|Hi , i ∈ Γ }, with
z = P(B|A) and pi = P(Ei|Hi), if pi ≥ αi for every i ∈ Γ , then z ≥ α.

Remark 1. We say that a family of conditional events Fn p-entails a con-
ditional event B|A when the associated knowledge base Kn p-entails the
conditional A|∼ B. Therefore, p-entailment of B|A from Fn amounts to the
existence of a non-empty subset S = {Ei|Hi, i ∈Γ } of Fn such that, defining
P(Ei|Hi) = pi,P(B|A) = z, for every α ∈ [0,1), there exist lower bounds αi, i∈Γ ,
with αi ∈ [0,1), such that pi ≥ αi, i ∈ Γ , implies z ≥ α.

3 Lower and Upper Bounds for Quasi Conjunction

Let A,H,B,K be logically independent events, with H �= /0,K �= /0. The quasi
conjunction of two conditional events A|H and B|K, as defined in ([1]), is
given by C (A|H,B|K) = (AH ∨Hc)∧ (BK ∨Kc)|(H ∨K). We recall that quasi
conjunction plays a key role in the logic of conditional objects ([3]).

It can be easily verified that, for every pair (x,y), with x ∈ [0,1],y ∈ [0,1],
the probability assessment (x,y) on {A|H,B|K} is coherent. Then, it can be
verified (see [5]) that, for each given assessment (x,y) on {A|H,B|K}, the
probability assessment P = (x,y,z) on F = {A|H,B|K,C (A|H,B|K)}, with
z = P[C (A|H,B|K)], is a coherent extension of (x,y) if and only if

max(x + y−1,0) = l ≤ z ≤ u =
{ x+y−2xy

1−xy , (x,y) �= (1,1),
1, (x,y) = (1,1).

We observe that the lower bound l coincides with the Lukasiewicz t-norm
TL(x,y), while the upper bound u coincides with the Hamacher t-conorm
SH

0 (x,y), with parameter λ = 0 (see [7]).

Remark 2. Notice that, if the events A,B,H,K were not logically independent,
then some constituents Ch’s (at least one) would become impossible and the
lower bound l could increase, while the upper bound u could decrease. To
examine this aspect we will consider two special cases of logical dependencies.

3.1 The Case A|H ⊆ B|K

We recall the Goodman & Nguyen relation of inclusion for conditional events
([6]). Given two conditional events A|H and B|K, we say that A|H implies
B|K, denoted by A|H ⊆ B|K, if and only if AH ⊆ BK and BcK ⊆ AcH. Given any
conditional events A|H,B|K, we denote by Πx the set of coherent probability
assessment x on A|H, by Πy the set of coherent probability assessment y on
B|K and by Π the set of coherent probability assessment (x,y) on {A|H,B|K};
moreover we indicate by Tx≤y the triangle {(x,y) ∈ [0,1]2 : x ≤ y}. In the next
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result, to avoid the specific analysis of some trivial cases, we assume Πx =
Πy = [0,1]. We have

Theorem 1. Let A|H,B|K be two conditional events, with Πx = Πy = [0,1].
Then: A|H ⊆ B|K ⇐⇒Π ⊆ Tx≤y.

Actually, concerning Theorem 1, the implication =⇒ also holds in trivial
cases where Πx ⊂ [0,1], or Πy ⊂ [0,1].

Remark 3. We observe that, under the hypothesis A|H ⊆ B|K, we have C (A|H,
B|K) = (AH ∨HcBK) |(H ∨K) and, as we can verify, it is

A|H ⊆ C (A|H,B|K) ⊆ B|K . (1)

Moreover, if we do not assume further logical relations, then Π = Tx≤y

and, for each coherent assessment (x,y) on {A|H,B|K}, the extension z =
P[C (A|H,B|K)] is coherent if and only if l ≤ z ≤ u, where

l = x = min(x,y) , u = y = max(x,y) .

We remark that the values l,u may change if we add further logical relations;
in particular, if H = K, it is C (A|H,B|H) = A|H, in which case l = u = x.

Finally, in agreement with Remark 2, we observe that

TL(x,y) ≤ min(x,y) ≤ max(x,y) ≤ SH
0 (x,y).

3.2 Compound Probability Theorem

We now examine the quasi conjunction of A|H and B|AH, with A, B, H logi-
cally independent events. As it can be easily verified, we have C (A|H,B|AH)=
AB|H; moreover, the probability assessment (x,y) on {A|H,B|AH} is co-
herent, for every (x,y) ∈ [0,1]2. Hence, by the compound probability the-
orem, if the assessment P = (x,y,z) on F = {A|H,B|AH,AB|H} is coher-
ent, then z = xy; that is, l = u = xy. In agreement with Remark 2, we ob-
serve that TL(x,y) ≤ xy ≤ SH

0 (x,y). More in general, given a family F =
{A1|H,A2|A1H, . . . ,An|A1 · · ·An−1H}, by iteratively exploiting the associative
property, we have

C (F ) = C (C (A1|H,A2|A1H),A3|A2A1H, . . . ,An|A1 · · ·An−1H) =

= C (A1A2|H,A3|A2A1H, . . . ,An|A1 · · ·An−1H) = · · · = A1A2 · · ·An|H ;

thus, by the compound probability theorem, if the assessment P = (p1, . . . ,
pn,z) on F ∪{C (F )} is coherent, then z = l = u = p1 · p2 · · · pn.
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4 Lower and Upper Bounds for the Quasi Conjunction
of n Conditional Events

Given the family Fn = {E1|H1, . . . ,En|Hn}, we denote by C (Fn) the quasi
conjunction of the conditional events in Fn. By the associative property of
quasi conjunction, defining Fk = {E1|H1, . . . ,Ek|Hk}, for each k = 2, . . . ,n, it is
C (Fk) = C (C (Fk−1),Ek|Hk). Then, we have

Theorem 2. Given a probability assessment Pn = (p1, p2, . . . , pn) on Fn =
{E1|H1, . . . ,En|Hn}, let [lk,uk] be the interval of coherent extensions of the
assessment Pk = (p1, p2, . . . , pk) on the quasi conjunction C (Fk), where
Fk = {E1|H1, . . . ,Ek|Hk}. Then, assuming E1,H1, . . . ,En,Hn logically indepen-
dent, for each k = 2, . . . ,n, we have

lk = TL(p1, p2, . . . , pk) , uk = SH
0 (p1, p2, . . . , pk) ,

where TL is the Lukasiewicz t-norm and SH
0 is the Hamacher t-conorm, with

parameter λ = 0.

4.1 The Case E1|H1 ⊆ E2|H2 ⊆ . . .⊆ En|Hn

In this subsection we give a result on quasi conjunctions when Ei|Hi ⊆
Ei+1|Hi+1, i = 1, . . . ,n−1. We have

Theorem 3. Given a family Fn = {E1|H1, . . . ,En|Hn} of conditional events
such that E1|H1 ⊆ E2|H2 ⊆ . . . ⊆ En|Hn, and a coherent probability assess-
ment Pn = (p1, p2, . . . , pn) on Fn, let C (Fk) be the quasi conjunction of
Fk = {Ei|Hi, i = 1, . . . ,k}, k = 2, . . . ,n. Moreover, let [lk,uk] be the interval of co-
herent extensions on C (Fk) of the assessment (p1, p2, . . . , pk) on Fk. We have:
(i) E1|H1 ⊆ C (F2) ⊆ . . . ⊆ C (Fn) ⊆ En|Hn; (ii) by assuming no further log-
ical relations, any probability assessment (z2, . . . ,zk) on {C (F2), . . . ,C (Fk)}
is a coherent extension of the assessment (p1, p2, . . . , pk) on Fk if and only if
p1 ≤ z2 ≤ ·· · ≤ zk ≤ pk , k = 2, . . . ,n; moreover

lk = min(p1, . . . , pk) = p1 , uk = max(p1, . . . , pk) = pk , k = 2, . . . ,n .

Proof. (i) By iteratively applying (1) and by the associative property of quasi
conjunction, we have C (Fk−1) ⊆ C (Fk) ⊆ Ek|Hk , k = 2, . . . ,n;
(ii) by exploiting the logical relations in point (i), the assertions immediately
follow by applying a reasoning similar to that in Remark 3. ��

5 Further Aspects on the Lower and Upper Bounds

Now, given any coherent assessment (x,y) on {A|H,B|K}, we examine further
probabilistic aspects on the lower and upper bounds, l and u, for the coherent
extensions z = P[C (A|H,B|K)]. More precisely, given any number γ ∈ [0,1], we
are interested in finding:
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(i) the set Lγ of the coherent assessments (x,y) on {A|H,B|K} such that, for
each (x,y) ∈ Lγ , one has l ≥ γ;
(ii) the set Uγ of the coherent assessments (x,y) on {A|H,B|K} such that, for
each (x,y) ∈ Uγ , one has u ≤ γ.
Case (i). Of course, L0 = [0,1]2; hence we can assume γ > 0. It must be l =
max{x + y− 1,0} ≥ γ, i.e., x + y ≥ 1 + γ (as γ > 0); hence Lγ coincides with
the triangle having the vertices (1,1),(1,γ),(γ,1); that is

Lγ = {(x,y) : γ ≤ x ≤ 1, 1 + γ− x ≤ y ≤ 1} .

Notice that L1 = {(1,1)}; moreover, for γ ∈ (0,1), (γ,γ) /∈ Lγ .
Case (ii). Of course, U1 = [0,1]2; hence we can assume γ < 1. We recall that
u = x+y−2xy

1−xy ; hence

u− x =
y(1− x)2

1− xy
≥ 0 , u− y =

x(1− y)2

1− xy
≥ 0; (2)

then, from u ≤ γ it follows x ≤ γ,y ≤ γ; hence Uγ ⊆ [0,γ]2. Then, taking into
account that x ≤ γ and hence 1− (2− γ)x > 0, we have

x + y−2xy
1− xy

≤ γ ⇐⇒ y ≤ γ− x
1− (2− γ)x ; (3)

therefore

Uγ =
{

(x,y) : 0 ≤ x ≤ γ , y ≤ γ− x
1− (2− γ)x

}
.

Notice that U0 = {(0,0)}; moreover, for x = y = γ ∈ (0,1), it is u = 2γ
1+γ > γ;

hence, for γ ∈ (0,1), Uγ is a strict subset of [0,γ]2.
Of course, for every (x,y) /∈Lγ ∪Uγ , it is l < γ < u.
In the next result we determine in general the sets Lγ ,Uγ .

Theorem 4. Given a coherent assessment (p1, p2, . . . , pn) on the family
{E1|H1, . . . ,En|Hn}, where E1,H1, . . . ,En,Hn are logically independent, we have

Lγ = {(p1, . . . , pn) ∈ [0,1]n : p1 + · · ·+ pn ≥ γ+ n−1} , γ > 0 ,

Uγ = {(p1, . . . , pn) ∈ [0,1]n : 0 ≤ p1 ≤ γ , pk+1 ≤ rk , k = 1, . . . ,n−1} , γ < 1 ,
(4)

where rk = γ−uk
1−(2−γ)uk

, uk = SH
0 (p1, . . . , pk), with L0 = U1 = [0,1]n.

6 QAND Rule and Probabilistic Entailment

We recall that in [3], based on a three-valued calculus of conditional objects,
a logic for nonmonotonic reasoning has been proposed. Conditional objects
can be seen as the counterpart of the conditional assertions considered in [8]
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and, for what concerns logical operations, we can look at them as conditional
events. Given a set of conditional objects K , we denote by C (K ) the quasi
conjunction of the conditional objects in K . In [3] the following inference
rule, named QAND, derivable by applying the inference rules of System P
(see [8]), has been introduced

(QAND) K ⇒ C (K ) .

As shown in Section 2, the notions of p-consistency and p-entailment of
Adams can be suitable defined in the setting of coherence (see [4, 5]). In
the next theorem, to avoid a specific analysis of trivial cases, we assume
Πx =Πy = [0,1]. We have

Theorem 5. Given two conditional events A|H,B|K, with Πx = Πy = [0,1],
we have

A|H ⇒p B|K ⇐⇒ A|H ⊆ B|K .

The next result, related to the approach of Adams, deepens in the framework
of coherence the probabilistic semantics of the QAND rule.

Theorem 6. Given a p-consistent family Fn = {Ei|Hi, i = 1, . . . ,n} and denot-
ing by C (Fn) the associated quasi conjunction, for every ε ∈ (0,1] there exist
δ1 ∈ (0,1], . . . ,δn ∈ (0,1] such that, for every coherent assessment (p1, . . . , pn,z)
on Fn∪{C (Fn)}, where pi = P(Ei|Hi), z = P(C (Fn)), if p1 ≥ 1−δ1, . . . , pn ≥
1− δn, then z ≥ 1− ε. Hence, we have Fn ⇒p C (Fn).

Recalling Remark 1, in the next result we show that p-entailment of a condi-
tional event B|A from a family Fn is equivalent to the existence of a non-empty
subset S of Fn such that C (S ) p-entails B|A.

Theorem 7. A p-consistent family of conditional events Fn p-entails a con-
ditional event B|A if and only if there exists a non-empty subset S of Fn

such that C (S ) p-entails B|A.

An example. We illustrate Theorem 7 by using the well known inference
rules Cautious Monotonicity (CM), Or, and Cut, as shown below.
(CM) If {C|A,B|A} ⊆ Fn, then Fn ⇒p C|AB. The assertion follows by
observing that, defining S = {C|A,B|A}, it is C (S ) = BC|A ⊆C|AB, so that
C (S ) ⇒p C|AB.
(Or) If {C|A,C|B} ⊆ Fn, then Fn ⇒p C|(A∨B). The assertion follows by
observing that, defining S = {C|A,C|B}, it is C (S ) = C|(A∨ B), so that,
trivially, C (S ) ⇒p C|(A∨B).
(Cut) If {C|AB,B|A} ⊆ Fn, then Fn ⇒p C|A. The assertion follows by
observing that, defining S = {C|AB,B|A}, it is C (S ) = BC|A ⊆C|A, so that
C (S ) ⇒p C|A.
Of course, in the previous inference rules, the entailment of the conclusion
from Fn also follows by directly applying Definition 2, as made in [4].
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7 Conclusions

We have studied, in a coherence-based setting, the extensions of a given
probability assessment on n conditional events to their quasi conjunction, by
also considering two cases of logical dependency. We have analyzed further
probabilistic aspects on quasi conjunction, by also examining the relation
between the notion of p-entailment and the inclusion relation of Goodman
and Nguyen. Then, we have shown that each p-consistent family F p-entails
the quasi conjunction C (F ). Finally, we have given a result on the equivalence
between p-entailment from F and p-entailment from C (S ), where S is some
non-empty subset of F .
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Elements of Robust Regression for Data
with Absolute and Relative Information

Karel Hron and Peter Filzmoser

Abstract. Robust regression methods have advantages over classical least-
squares (LS) regression if the strict model assumptions used for LS regression
are violated. We briefly review LMS and LTS regression as robust alternatives
to LS regression, and illustrate their advantages. Furthermore, it is demon-
strated how robust regression can be used if the response variable contains
relative rather than absolute information.

Keywords: Multiple linear regression, Robustness, Relative and absolute
information, Compositional data.

1 Introduction

In multiple linear regression we consider a linear combination of several ex-
planatory variables, and use this aggregated information to predict a response
variable. It results in estimations of parameters of a linear functional that
reveal how the response depends on the set of explanatory variables. The
least-squares method that is commonly used to obtain the estimations, leads
to the best statistical efficiency if certain model assumptions are fulfilled. On
the other hand, this method is also very sensitive to outlying observations
that could completely destroy the results and thus make any interpretation
meaningless. For this reason, many robust counterparts were proposed in the
literature. They are usually less efficient than the classical approach, but they
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are in general substantially more resistant to outliers or other deviations from
the underlying regression model assumptions. The robust methods thus rep-
resent a practical and meaningful alternative to the classical approach, as far
as both the response variable and the covariates carry absolute information.
However, in many areas data occur which include only relative information
(known nowadays under the term compositional data) where all the relevant
information is contained in the ratios rather then in the absolute values as in
the usual case. As these data induce another sample space, they need to be
transformed before regression analysis is carried out.

This contribution is organized as follows. In Section 2 a brief review of the
classical and robust regression estimators is provided. In Section 3 the basic
concepts of compositional data are presented. The final section shows how
the relative information can be used in (robust) regression analysis using a
real data example.

2 Classical and Robust Linear Regression

Multiple regression analysis forms a tool for prediction of values of a quantity,
the response variable, using known (independent) variables. The main task is
to find a functional relationship (here assumed to be a linear one) between the
response and covariates, i.e. to estimate parameters of the regression function
[4]. Let x1, . . . ,xq be the q variables that we use for prediction of the response
variable y. Under the standard regression assumptions, y is a random variable
and x1, . . . ,xq are assumed to be non-random. Having n observations of both
y and the explanatory quantities, the linear multiple regression model is

yi = β0 +β1xi1 +β2xi2 + · · ·+βqxiq + εi, for i = 1, . . . ,n, (1)

or in matrix form
yyy = XXXβββ + εεε, (2)

with the n-dimensional vector yyy containing the observations of the response
variable, the random vector of errors εεε (are assumed to have mean zero), and
the n× (q+1) dimensional design matrix X with full column rank. Under the
assumption of uncorrelated components εi, with variance var(εi) = σ2, the
vector of unknown parameters can be estimated using the least-squares (LS)
method as

β̂ββLS = (XXX ′XXX)−1XXX ′yyy. (3)

Obviously, the estimate β̂ LS minimizes the term

n

∑
i=1

ε2
i (βββ ) = (yyy−XXXβββ )′(yyy−XXXβββ ) = εεε ′εεε . (4)
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It is easy to verify that β̂ββ is the best linear unbiased estimator of βββ , and under
the additional assumption of normality of εεε it is also the maximum-likelihood
estimator of βββ . Consequently, it can be used to obtain the predicted values
ŷyyLS of yyy as

ŷyyLS = XXX β̂ββ LS = XXX(XXX ′XXX)−1XXX ′yyy = HHHyyy, (5)

where HHH = XXX(XXX ′XXX)−1XXX ′ is known as the hat matrix. The estimated residuals
are

ε̂εεLS =

√
n

∑
i=1

ε2
i (β̂ββ LS) = yyy− ŷyyLS = (III−HHH)yyy, (6)

where III stands for identity matrix of order n.
LS-estimation may fail if the model assumptions are violated. Data points

deviating from the linear trend can have a strong influence on the estimation
because LS regression is based on the squares of the residuals, which then
can become very large. We now illustrate this effect in linear regression with
one predictor variable.

Figure 1 (left) shows five points that approximately follow a linear trend.
Moving one observation in y-direction has a strong influence on the LS pa-
rameters, because also the regression line follows this movement in y-direction
(right). Also the robust regression method LTS regression (see below) has
been applied here, and the movement of the point has no effect on this esti-
mate: the dashed line representing the resulting LTS line coincides with the
LS-line of the original data (dotted).

An even worse behaviour is shown in Figure 2, where in the left picture a
similar design is presented as in Figure 1 (left). When now an observation is
moved in x-direction, the LS regression line is completely changed (right). For
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Fig. 1 Influence of an outlier in y-direction on classical LS and robust LTS
regression.
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Fig. 2 Influence of an outlier in x-direction on classical LS and robust LTS
regression.

this reason, x-outliers are also called leverage points because they can “lever”
the LS regression line. This undesirable behaviour of LS regression can be
avoided by robust regression. The solution of LTS regression for the modified
data is almost the same as that for LS regression for the original data.

The basic principle of robust regression is to fit the model to the data
majority that follows the linear trend [5]. Accordingly, for Least Median of
Squares (LMS) regression the function

mediani ε2
i (βββ) (7)

is minimized. Here, the sum from (4) is simply replaced by a median. However,
any explicit solution for the regression coefficients as for LS regression is
not available, it has to be found using approximative algorithms. For LMS
regression it turns out that up to 50% of the data points can be moved
arbitrarily without any substantial change of the regression coefficients. This
behaviour is expressed by the breakdown point which equals 0.5.

Another very robust regression method is Least Trimmed Sum of Squares
(LTS) regression, where the term

h

∑
i=1

(ε2
i (βββ ))(i) (8)

is minimized, again using a numerical procedure. Here (ε2
i (βββ))(1) ≤ ·· · ≤

(ε2
i (βββ ))(n) are the sorted squared residuals. By taking h ≈ n/2, the method

has a breakdown point of about 0.5, for larger h it moves to (n−h)/n.
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3 Relative Information and Compositional Data

As far as the response variable y carries absolute information, the preceding
considerations can be used directly. However, in many practical situations the
information is not absolute but relative, often expressed in proportions or per-
centages. Examples of relative information are the unemployment rate in se-
lected countries, proportions of people working in agriculture, percentages of
inhabitants with tertiary education, or proportions of the household budget
spent on foodstuff. Here the usual model assumptions fail because the values
of the response variable are bounded in a certain interval, e.g. in (0,100) in case
of percentages, and the assumption of normal distribution is thus not meaning-
ful. However, the problem is in fact a conceptual one and it is inherent to the
nature of the data. Namely, here the idea of the relative scale is quite an intu-
itive concept of differences for them. While the difference between 5% and 10%
is the same as between 45% and 50%, the proportions show a quite contrasting
relation, because 5% is half of 10%, while 45% is 0.9 of 50%. Thinking in terms
of differences in ratios is natural for this kind of data, called in general composi-
tional data (or compositions for short) [1], where only the relative information
is of interest. They induce the simplex as the sample space with an own geom-
etry, called nowadays the Aitchison geometry. Thus, compositional data need
to be moved from the simplex to the usual Euclidean space isometrically before
any statistical analysis can be carried out. This causes in fact that the relative
information is transformed into absolute information. The best transformation
for this purpose seems to be the isometric logratio (ilr) transformation [2], for
both theoretical and practical reasons.

Here we consider a situation where only the response variable includes
relative information, but not the explanatory variables. Thus we deal with
the problem of an univariate analysis of compositional data [3]. In this case,
the ilr transformation of the response variable y simplifies to a new variable
(that reminds to the well-known logit transformation)

z =
1√
2

ln
y

c− y
, (9)

where c corresponds to the total value of the whole (1, 100%, total amount of
inhabitants working in agriculture, total household budget in Euro) for each
observation. After ilr transformation, the values can already be used for re-
gression analysis in the sense of the previous section. After regression analysis
and a corresponding prediction for z, the results can be back-transformed to
obtain an interpretation in the sense of the original variable y.

4 Use of Robust Regression for Compositional Data

To demonstrate the theoretical considerations numerically, we apply regres-
sion analysis to an example where the relation between the percentage of



334 K. Hron and P. Filzmoser

employees in the tertiary sector and the value of the Gross Domestic Product
(GDP) per capita in the member states of the European Union is investi-
gated. The considered data are from the year 2009. The tertiary sector is
also called “service” sector, where service provision is defined as an economic
activity that does not result in ownership, and this is in contrast to providing
physical goods. The GDP is a basic measure of a country’s overall economic
output. It is the market value of all final goods and services made within the
borders of a country in a year. The data were obtained from public sources of
the internet encyclopedia Wikipedia. Figure 3 (left) shows the data without
Luxembourg, where the response variable is already ilr-transformed. Thus
both variables contain absolute information and the regression analysis in
sense of the previous section can be applied. In the lower right corner of the
plot an outlier is clearly visible: Ireland, with a GDP of 30.900 Euro per
capita, but with only 49% of employees in tertiary sector. This outlier can
be considered as y-outlier, because it is still not exceptional in x-direction.
Still, a strong effect on LS estimation (solid line) is visible, LTS regression is
not affected by the outlier, and when excluding Ireland from the analysis, LS
would practically coincide with the LTS line.

Figure 3 (right) shows the original data, together with the regression lines
from the left picture back-transformed to the original space. Note that the
back-transformation is unique, because from Equation (9) we obtain y by

y =
c · exp(

√
2z)

1 + exp(
√

2z)
. (10)

Due to the different geometry of the simplex, the back-transformed regression
lines are no longer linear. To make the effect of the ilr transformation visible,
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Fig. 3 Regression analysis for the percentage of employees in the tertiary sector
after ilr transformation (response variable) and the GDP per capita (explanatory
variable) in the member states of the European Union.
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classical and robust regression is also applied in the wrong geometry using
the original y-variable. The results are shown by gray lines. Now Luxembourg
is projected into the plot. The GDP of Luxembourg is exceptionally high
with 65.009 Euro per capita, and 86% of the employees are in the tertiary
sector. The prediction from LTS regression in the ilr-space is closest to the
true value, while LS regression, as well as regression analysis (classical and
robust) applied in the wrong geometry differ substantially. The reasonability
of the robust approach applied in the ilr-space is confirmed by the fact that
the resulting regression line is almost unchanged if the outlier Luxembourg
is included already at the beginning of the analysis.
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On Testing Fuzzy Independence
Application in Quality Control

Olgierd Hryniewicz

Abstract. In many practical applications of statistics it is assumed that
the observed realizations of measurements are mutually independent. This
assumption is usually made in order to ease necessary computations. How-
ever, for real data sets, especially large ones, the application of statistical
tests of independence very often leads to the rejection of the hypothesis of
independence even if actual dependence is very weak, and does not have any
practical impact on phenomena of interest. Therefore, there is a practical
need to define a concept of “near-independence”. In the paper we analyze the
possibility of the usage of Kendall’s τ for this purpose. It has been shown,
using an example from statistical quality control (Shewhart control charts)
that the requirement on τ (or any other similar coefficient) is not sufficient
for the construction of statistical tests for testing fuzzy “near-independence”.

Keywords: Fuzzy independence, Control chart, Fuzzy data, Kendall τ.

1 Introduction

Statistical analysis of dependencies in data sets is one of the most applicable
areas of statistics. Statisticians usually are interested in finding dependencies
in observed data in order to use this knowledge for solving many practi-
cal problems. There exist, however, applications of statistical methods where
we are rather interested in confirmation that the considered variables or, in
general, phenomena are actually independent.The practical reasons for these
interests stem from the fact that probabilistic models of complex phenom-
ena are much simpler when variables which are used for their description are
statistically independent. For example, in the reliability analysis of complex
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systems the mathematical models used for the computations of probabilities
of failures may be very complicated even when failures of system’s compo-
nents are statistically independent. In case of existing dependence between
such failures the necessary computations can be performed only in very few,
rather simple, cases. Another example of the need of independence comes
from expert systems. When an expert system is built we cannot assume in-
dependence between considered features and phenomena, as the rationale of
expert systems is based on the assumption of such dependencies. However,
in practice we usually assume the existence of conditional independence be-
tween considered variables. In all these problems, in contrast to the problems
mentioned previously, we are interested in not rejecting the hypothesis of
statistical independence.

Statistical test of independence have been proposed by many authors dur-
ing the last one hundred (or even more) years. The most popular of them, such
as tests based on the Pearson coefficient of correlation ρ and non-parametric
rank tests based on the Spearman rank correlation statistic ρS are known
for more than one hundred years. Many other tests of independence, both
parametric and non-parametric, have been proposed by numerous authors,
and this research area is still considered interesting among statisticians who
try to built more efficient, and in certain applications optimal, procedures.

When we perform statistical tests of independence we either could accept
the tested hypothesis or we should reject it at a given significance level. When
we are interested in having statistical independence the acceptance of the
hypothesis of independence does not create any problems. The problem begins
when our data do not let us to assume that the considered random variables
are independent. This situation may happen when we analyse large data
sets. When we treat these data sets as large samples taken from hypothetical
infinite populations even a very small departure form independence will cause
the rejection of the hypothesis of independence. The practical question arises
then if such rejection indicates that the models built on the assumption of
independence cannot be used in practice. Therefore, there is often a practical
need to soften the independence requirements by defining the state of “near-
independence”. The question arises then, how to evaluate this state using
statistical data.

The vague concept of “near-independence”has been introduced in Hrynie-
wicz [4]. In contrast to the case of independence, that is very precisely de-
fined in terms of the theory of probability, the concept of“near-independence”
is a vague one. Hryniewicz [4] proposed that existing different measures of
the strength of dependence may be used - depending on the context - for
the evaluation of the state of “near - independence”. He claims that these
measures might be used for the analysis of dependence when the state of
independence is defined, using Zadeh’s terminology, “to a degree”. Let α be
a certain measure of the strength of dependence which in the case of in-
dependence adopts the value α0 (usually equal to zero). For this particular
value the independence is definitely to a degree one. However, if we know
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that 0 < |α −α0| ≤ ε,ε > 0 we can talk about the independence to a degree
με depending on the value of ε, and a given practical context. In this pa-
per we present a practical case, taken from statistical quality control, which
shows that this simple approach is insufficient in practice. We show that for
the same values of a certain measure of the strength of dependence, such as
Kendall’s τ coefficient of association, practical consequences of the departure
from independence may be different for different structures of dependence
described in terms of copulas.

In Section 2 we present a general mathematical framework for dealing with
the problem of “near-independence”. We focus our attention on using copu-
las for the description of dependence between random variables. When we
use copulas for the description of dependent data, Kendall’s τ seems to be
the most useful measure for the measurement of the strength of dependence.
Therefore, in this section we also present some general results that can be
useful for the analysis of “near-independence” using Kendall’s τ. In Section 3
we present results of Monte Carlo experiments which show how certain char-
acteristics of a basic tool of statistical quality control, known as a Shewhart
control chart, depend not only on the strength of dependence measured using
Kendall’s τ, but on the type of dependence as well. From the analysis of this
Monte Carlo experiment we derive recommendation for the construction of a
fuzzy test of independence that can be useful for testing “near-independence”
in the context of control charts.

2 Mathematical Modelling of Statistical Dependence

Mathematical models used for the description of dependent random vari-
ables are well known for many years. In the simplest two-dimensional case
we are interested in the description of dependence between two random vari-
ables X and Y having marginal distributions described by cumulative prob-
ability functions F(x) and G(y), respectively. In his fundamental work Sklar
[10] showed that for a two-dimensional distribution function H(X ,Y ) with
marginal distribution functions F(X) and G(Y ) there exists a copula C such
that H(x,y) = C(F(x),G(y)). For more information about copulas see e.g the
book by Nelsen [8].

All well known multivariate probability distributions, the multivariate nor-
mal distribution included, can be generated by parametric families Cα of
copulas, where real- or vector-valued parameter α describes the strength of
dependence between the components of the random vector. The number of
papers devoted to the theory and applications of copulas is still growing
rapidly. For more recent results the reader should consult already mentioned
book by Nelsen [8]. In this paper we focus our attention on three types of cop-
ulas. First is the normal copula, which in the two-dimensional case is defined
as follows:

C(u1,u2;ρ) =ΦN(φ−1(u1),φ−1(u2);ρ) (1)
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where ΦN(u1,u2) is the cumulative probability distribution function of the
bivariate normal distribution, φ−1(u) is the inverse of the cumulative proba-
bility function of the univariate normal distribution (the quantile function),
and ρ is the well known coefficient of correlation.

Another copula, considered in this paper is the Farlie-Gumbel-Morgenstern
(FGM) copula frequently used for modelling weak dependencies. This copula
is defined by the following formula:

C(u1,u2;θ ) = u1u2 +θu1u2(1−u1)(1−u2), |θ | ≤ 1 (2)

The remaining three copulas considered in this paper belong to a general
class of symmetric copulas, named the Archimedean copulas. They are gen-
erated using a class Φ of functions φ : [0,1] → [0,∞], named generators. It
can be proved that in the two-dimensional case a generator φ induces a cop-
ula if and only if it is convex. In case of more dimensions similar conditions
have not been clarified yet. For more information see, e.g., [7]. Every mem-
ber of the class of Archimedean copulas generates the following multivariate
distribution function for the random vector (X1, . . . ,Xp):

C(u1, . . . ,up) = Pr(F1(X1)≤ u1, . . . ,Fp(Xp)≤ up) = φ−1[φ(u1)+ · · ·+φ(up)] (3)

The two-dimensional Archimedean copulas that are investigated in this paper
are defined by the following formulae (copulas and their respective generators):

• Clayton’s

C(u,v) = max
([

u−α + v−α−1
]−1/α

,0
)

,α ∈ [−1,∞)\ 0 (4)

φ(t) = (t−α −1)/α,α ∈ [−1,∞)\ 0 (5)

• Frank’s

C(u,v) =− 1
α

ln

(
1 +

(e−αu−1)(e−αv−1)
e−α −1

)
,α ∈ (−∞,∞)\ 0 (6)

φ(t) = ln

(
1− e−α

1− e−αt

)
,α ∈ (−∞,∞)\ 0 (7)

• Gumbel’s

C(u,v) = exp

(
−
[
(− lnu)1+α +(− lnv)1+α

] 1
1+α
)

,α ∈ (0,∞) (8)

φ(t) = (− ln(t))α+1,α ∈ (0,∞) (9)

In case of independence the dependence parameter αind adopts the value
of 0 (in Clayton’s and Frank’s copulas as an appropriate limit).
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Genest and MacKay [2] considered the population version of the well
known Kendall’s association coefficient τ. This characteristic can be used
for the description of the strength of dependence in copulas, and its impor-
tance in characterizations of copulas has been shown e.g. in the paper by
Nelsen et. al. [9]. Statistical properties of this statistic for the considered in
this paper serially correlated data are presented in the paper by Ferguson et
al. [1]. Let K(t) be the cumulative probability function of the random variable
T = C(U1,U2), where U1 and U2 are random variables uniformly distributed
on [0,1]. The following relation links a copula with Kendall’s τ:

τ = 3−4
∫ 1

0
K(t)dt (10)

Estimation of K(t) for the case of two-dimensional copulas, and thus the
estimation of τ was considered by Genest and Rivest [3].

Closed formulae for Kendall’s τ are available only for some copulas. In the
case of the normal copula we have the following expression

τNorm = arcsin(ρ)/(π/2). (11)

For the FGM copula we can compute Kendall’s τ from a very simple formula

τFGM = 2θ/9 (12)

For the family of Archimedean copulas there exists the following general
formula that links Kendall’s τ with the generator function φ :

τArch = 1 + 4
∫ 1

0

φ(v)
φ ′(v)

dv (13)

For specific cases of the considered in this paper Archimedean copulas we
have

• Clayton’s copula
τ =

α
α+ 2

(14)

• Frank’s copula

τ = 1 + 4

(
1
α

∫ α

0

t
et −1

dt −1

)
/α (15)

• Gumbel’s copula
τ =

α
α+ 1

(16)

In the context of the analysis of “near-independence” we are interested in
cases when the values of the dependence parameter are close to the indepen-
dence value equal to zero. Using elementary technique of the expansion in
the Taylor series around zero (Maclaurin series) we have very simple rela-
tions: τNorm ≈ 2ρ/π for the normal copula, τFGM = 2θ/9 for the FGM copula,
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τGumb ≈ α for Gumbel’s copula, and τClay ≈ α/2 for Clayton’s copula. One
can also apply this extension technique for the general class of Archimedean
copulas. The expansion of (13) yields the following general formula

τArch ≈ 4α
∫ 1

0
[−xg(x)+ x2g′(x)ln(x)]dx (17)

where
g(x) = lim

α→0

d
dα
φα (x), (18)

and φα (x) is the generator of the copula. The general formula (17) let us
find, after some straightforward but tedious computations, that for Frank’s
copula we have τFrank ≈ α/9. The accuracy of the estimators of τ for different
copulas is generally unknown. However, simulation experiments show that
for the values of τ close to zero (i.e. in the case of “near-independence”) the
variance of the estimator is close to that obtained in the case of independence
(see [1]).

3 The Concept of “Near-Independence” in Statistical
Quality Control

One of the most frequently applied procedure of statistical quality control is
a control chart introduced by W.Shewhart in the 1920s. The aim of the con-
trol chart is to assist a process operator in keeping this process under control.
The process under consideration is sampled, and the results of measurements,
summarized in a form of certain statistics like sample mean, sample standard
deviation or sample range, are plotted against time. On each control chart
there are also plotted control lines. The area between the control lines repre-
sents the set of those values of the results of process’ inspection which indicate
that is very probable (probability larger than 0.99 in usual applications) that
the process is under control. When the observed value of a plotted statistic
falls beyond the control lines an alarm is triggered, as it seems to be very
likely that the process went out of control.

The most important characteristic of a control chart is the Average Run
Length (ARL) defined as the average number of inspected samples till the
moment of an alarm. If the control limits are too tight there is significant
probability of false alarm. On the other hand, when the area between the
control lines is too wide the probability of triggering a necessary alarm is too
low. Therefore, it is necessary to design the chart very carefully, taking into
account all pertaining probabilities. In everyday practice all these probabili-
ties are calculated under the assumption of statistical independence between
the consecutive measurements. It has been shown by many researchers (see
Hryniewicz and Szediw [6] for references) that the existence of the dependence
between observations may change dramatically the performance of the chart.
When we want to take all these dependencies into account the design and
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maintenance of a control chart may become very difficult, and practically im-
possible for the majority of users. Therefore, it is important to know that the
existing dependency does not influence very much the assumed performance
of the chart. Thus, we are confronted with the problem of the description of
“near-independence” in the context of statistical quality control.

In order to investigate the influence of the type of dependence (repre-
sented by 5 different copulas) on the performance of control charts we have
performed Monte Carlo experiments with the aim to evaluate the value of
ARL. Consecutive observations were generated in such a way that the joint
probability distribution of two consecutive observations was described by a
copula characterized by a predefined value of Kendall’s τ. Note that in this
experiment the actual value of Kendall’s τ, due to the serial correlation -
even in the case of independence - of the consecutive pairs of observations,
is different that the value used for the design of the experiment. A part of
obtained results in case of the so called “3-σ” decision rule, is presented in
Table 1. Similar results in case of the “6 in a row increasing (decreasing)”
decision rule are presented in Table 2.

The results of simulation experiments show undoubtedly that the concept
of “near-independence” strongly depends upon the context. It depends upon
a general type of dependence (positive or negative) and the type of appli-
cable copula. For example, in the case described in Table 1 departures from
independence strongly depend upon the value of a coefficient cτ in the ap-
proximate formula τ ≈ cτα when the dependence is positive. On the other
hand, when the dependence is negative,“near-independence”can be described

Table 1 ARLs (“3-σ” rule) for different types of dependence in data

Kendall’s τ Normal FGM Clayton Frank Gumbel

0,1 371,1 369,6 384,4 370,5 456,4
0,05 370,5 369,3 374,7 372,1 443,3
0 370,5 370,5 370,5 370,5 370,5
-0,05 371,3 370,8 370,0 371,7 x
-0,1 371,3 368,9 370,6 371,2 x

Table 2 ARLs (“6 in a row” rule) for different types of dependence in data

Kendall’s τ Normal FGM Clayton Frank Gumbel

0,1 97,1 147,3 95,3 96,1 92,4
0,05 119,2 146,4 117,1 118,5 115,0
0 147,1 147,1 147,1 147,1 147,1
-0,05 183,2 147,1 182,6 186,2 x
-0,1 225,7 146,6 225,8 236,7 x



344 O. Hryniewicz

by a fuzzy requirement “τ is near zero” without taking into account possible
differences between considered copulas. Thus, the fuzzy requirement for the
value of τ representing “near-independence” should be asymmetric around
zero with the membership function of a rectangular shape for the negative
values of τ, and triangular shape for the positive ones. In the case presented
in Table 2 the departures from independence are equally important both for
positive and negative dependence, except for the FGM copula which is known
as the one that well describes small departures from independence. Therefore,
“near-independence” can be modelled by a rectangular membership function
of the fuzzy τ which is symmetric around zero.

The conclusions from this experiment are, in a certain sense, negative.
It seems to be impossible to test a fuzzy concept of “near-independence”
independently on a particular context, as it has been proposed in [4]. The
construction of the membership function of this fuzzy hypothesis should be
context dependent. In testing the fuzzy hypothesis of “near-independence”
(see [5] for the information about this type of statistical tests) we must take
into account not only particular application, but also additional information
about the type of observed dependence.
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The Fisher’s Linear Discriminant

Iuliana F. Iatan

Abstract. In this paper we have chosen a proper vector b in order to prove
that the MSE discriminant function atY is directly related to Fisher’s linear
discriminant. The Fisher’s criterion is in the range of techniques for perform-
ing linear discrimination in the two class case. The Fisher’s linear discriminant
is a criterion function that involves all of the samples, while the perceptron
criterion function is focussed on the misclassified samples.

1 Introduction

Through the mapping from d- dimensional input space X to d+1- dimensional
space Y

Yt = (1,x1, . . . ,xd) = (1,Xt), at = (a0, . . . ,ad) = (ω0,w
t),

the decision rule

g(X) =
{

wtX +ω0 > 0 =⇒ X ∈ ω1,
wtX +ω0 < 0 =⇒ X ∈ ω2.

becomes

g(Y ) =
{

atY > 0 =⇒ Y ∈ ω1,
atY < 0 =⇒ Y ∈ ω2.

(1)

Suppose now that we have a set of N samples {Y1,Y2, . . . ,YN} ⊆ℜd+1, some
labelled ω1 and some labelled ω2. We want to use these samples to determine
the weights a in a linear discriminant function g(Y ) = atY .
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If such a weight vector exists, the samples are said to be linearly separable.
A sample Yi is classified correctly if

{
atYi > 0 f or Yi ∈ ω1,
atYi < 0 f or Yi ∈ ω2,

namely {
atYi > 0 f or di = 1,
atYi < 0 f or di =−1,

where di ∈ {−1,1}, i = 1,N is the label of the vector i.
This suggests a normalization that simplifies the treatment of the two

category case, which consists in the replacement of all samples labelled ω2

by their negatives. With this normalization we can forget the labels and look
for a weight vector a such that atZi > 0 for all of the samples, where

Zi =
{

Yi > 0 f or di = 1,
−Yi < 0 f or di =−1.

Such a weight vector is called a separating vector or more generally a
solution vector.

The Perceptron and relaxation procedures help us for finding a separating
vector when the samples are linearly separable. All of these methods are called
error correcting procedures, because they call for a modification of the weight
vector when and only when an error is encountered. Therefore, the criterion
functions considered in the case of the previous methods have focussed their
attention on the misclassified samples.

We shall now consider a criterion function that involves all of the samples.
Where previously we have sought a weight vector a making all of the inner
products atYi positive, now we shall try to make atYi = bi, where the bi are some
arbitrarily specified positive constants. Thus, we have replaced the problem of
finding the solution to a set of linear inequalities with the more stringent but
better understood problem of finding the solution to a set of linear equations.
The treatment of simultaneous linear equations is simplified by introducing
matrix notation. Let Y be n× d̂, matrix d̂ = d +1 whose ith row is the vector
Yt

i and let b the column vector b = (b1, . . . ,bn)t , bi > 0, i = 1, n, n being the
number of vectors. Our problem is to find a weight vector a satisfying

⎛

⎜⎜
⎝

Y10 Y11 . . . Y1d

Y20 Y21 . . . Y2d

. . . . . . . . . . . .
Yn0 Yn1 . . . Ynd

⎞

⎟⎟
⎠(a0,a1, . . . ,ad)

t =

⎛

⎜
⎝

b1
...

bn

⎞

⎟
⎠ (2)

or
Ya = b. (3)



The Fisher’s Linear Discriminant 347

If Y were nonsingular, we could write a = Y−1b and obtain a formal solution
at once. Since Y is rectangular (usually with more rows than columns) no
solution exists for the system (3). However, we can seek a weight vector a
that minimizes some function of the error between Ya and b. If we define
the error vector e by e = Ya−b, the one approach is to try to minimize the
squared length of the error vector. This is equivalent to minimizing the sum
of squared error criterion function

Js(a) = ‖Ya−b‖2 =
n

∑
i=1

(
atYi −bi

)2
. (4)

From the condition ∇Js(a) = 0, where

∇Js(a) = 2
n

∑
i=1

(
atYi −bi

)
Yi = 2Yt (Ya−b)

we shall deduce
YtYa = Ytb. (5)

In this way we have converted the problem of solving Ya = b to that of solving
YtYa = Ytb, which has the great advantage that the d̂-by-d̂ matrix YtY is
square and often nonsingular. The system (5) has the unique solution (is a
MSE=Minimum Squared Error solution)

a =
(
YtY
)−1

Ytb = Y ∗b, (6)

where Y ∗ = (YtY )−1 Yt is a d̂-by-n matrix called the pseudoinverse of Y .
The MSE solution depends on the margin vector b and we shall see that

different choices for b give the solution different properties.

2 The Relation Between MSE Solution and the
Fisher’s Linear Discriminant

In this section we shall prove that with the proper choice of the vector
b, the MSE discriminant function atY is directly related to Fisher’s linear
discriminant.

Theorem 1. We assume that we have a set of n d- dimensional samples
{X (1)

1 , . . . , X (1)
n1 ,X (2)

1 , . . . ,X (2)
n2 }, where ni samples are labelled ωi, i = 1,2, n1 +

n2 = n. The matrix Y, the vectors a and b can be partitioned as follows:

Y =
[

11 X (1)

−12 −X (2)

]
, a =

[
ω0

w

]
, b =

[
n
n1
·11

n
n2
·12

]

(7)
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where

• 1i is a column vector of ni ones, i = 1,2,
• X (i) is an ni-by-d matrix whose rows are the samples labelled ωi, i = 1,2.

The special choice for b links the MSE solution to the Fisher’s linear discrim-
inant.

Proof. We shall write (5) as

[
1t

1 −1t
2

X (1)t −X (2)t

]
·
[

11 X (1)

−12 −X (2)

]
·
[
ω0

w

]
=
[

1t
1 −1t

2

X (1)t −X (2)t

]
·
[

n
n1
·11

n
n2
·12

]

(8)

We define

mi =
1
n ∑X∈ωi

X

the mean vector of ωi, i = 1,2 and

Sw =
2

∑
i=1
∑

X∈ωi

(X −mi)(X −mi)t

the pooled sample scatter matrix.
We shall have

Sw =

⎛

⎜
⎜
⎝

X (1)
11 −m11

...
X (1)

1d −m1d

⎞

⎟
⎟
⎠

(
X (1)

11 −m11, . . . ,X
(1)
1d −m1d

)
+ . . .

+

⎛

⎜
⎜
⎝

X (1)
n11−m11

...
X (1)

n1d −m1d

⎞

⎟
⎟
⎠
(

X (1)
n11−m11, . . . ,X

(1)
n1d −m1d

)

+

⎛

⎜⎜
⎝

X (2)
11 −m21

...
X (2)

1d −m2d

⎞

⎟⎟
⎠
(

X (2)
11 −m21, . . . ,X

(2)
1d −m2d

)
+

+ . . .+

⎛

⎜
⎜
⎝

X (2)
n21−m21

...
X (2)

n2d −m2d

⎞

⎟
⎟
⎠

(
X (2)

n21−m21, . . . ,X
(2)
n2d −m2d

)
=

⎛

⎝
s11 . . . s1d

. . . . . . . . .
sd1 . . . sdd

⎞

⎠ .
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where

s11 =(X (1)
11 −m11)2 + . . .+(X (1)

n11−m11)2 +(X (2)
11 −m21)2 + . . .+(X (2)

n21−m21)2,

s1d =(X (1)
11 −m11)(X

(1)
1d −m1d)+ . . .+(X (1)

n11−m11)(X
(1)
n1,d −m1d)

+ (X (2)
11 −m21)(X

(2)
1d −m2d)+ . . .+(X (2)

n21−m21)(X
(2)
n2d −m2d),

sd1 =s1d ,

sdd =(X (1)
1d −m1d)2 + . . .+(X (1)

n1d −m1d)2 +(X (2)
1d −m2d)2 +(X (2)

n2,d
−m2d)2. (9)

Since

m1 =

⎛

⎜
⎝

m11
...

m1d

⎞

⎟
⎠=

1
n1

⎛

⎜
⎜
⎝

X (1)
11 + . . .+ X (1)

n11
...

X (1)
1d + . . .+ X (1)

n1d

⎞

⎟
⎟
⎠=⇒

⎧
⎪⎪⎨

⎪⎪⎩

X (1)
11 + . . .+ X (1)

n11 = n1m11
...
X (1)

1d + . . .+ X (1)
n1d = n1m1d

and

m2 =

⎛

⎜
⎝

m21
...

m2d

⎞

⎟
⎠=

1
n2

⎛

⎜
⎜
⎝

X (2)
11 + . . .+ X (2)

n21
...

X (2)
1d + . . .+ X (2)

n2d

⎞

⎟
⎟
⎠=⇒

⎧
⎪⎪⎨

⎪⎪⎩

X (2)
11 + . . .+ X (2)

n21 = n2m21
...
X (2)

1d + . . .+ X (2)
n2d = n2m2d

we shall obtain

n1

∑
i=1

(X (1)
i1 −m11)2 +

n2

∑
i=1

(X (2)
i1 −m21)2 =

n1

∑
i=1

X (1)
i1

2
−2m11n1m11 + n1m2

11

+
n2

∑
i=1

X (2)
i1

2
−2m21n2m21 + n2m2

21 =
n1

∑
i=1

X (1)
i1

2
−n1m2

11 +
n2

∑
i=1

X (2)
i1

2
−n2m2

21;

The relation (9) becomes

s11 =
n1

∑
i=1

X (1)
i1

2
−n1m2

11 +
n2

∑
i=1

X (2)
i1

2
−n2m2

21,

s1d =(X (1)
11 −m11)(X

(1)
1d −m1d)+ . . .+(X (1)

n11 −m11)(X
(1)
n1,d −m1d)

+ (X (2)
11 −m21)(X

(2)
1d −m2d)+ . . .+(X (2)

n21−m21)(X
(2)
n2d −m2d),

sd1 =s1d ,

sdd =
n1

∑
i=1

X (1)
id

2
−n1m2

1d +
n2

∑
i=1

X (2)
id

2
−n2m2

2d. (10)
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We can note that

U =
[

1t
1 −1t

2

X (1)t −X (2)t

]
·
[

11 X (1)

−12 −X (2)

]
,

namely

U =

⎛

⎜
⎜
⎝

n1 + n2 n1m11 + n2m21 . . . n1m1d + n2m2d

n1m11 + n2m21 A . . . B
. . . . . . . . . . . .

n1m1d + n2m2d B . . . A

⎞

⎟
⎟
⎠ , (11)

where

A =
n1

∑
i=1

X (1)
i1

2
+

n2

∑
i=1

X (2)
i1

2
,

B = X (1)
11 X (1)

1d + . . .+ X (1)
n11X (1)

n1d + X (2)
11 X (2)

1d + . . .+ X (2)
n21X (2)

n2d .

From (10) we shall calculate

s1d = X (1)
11 X (1)

1d + . . .+ X (1)
n11X (1)

n1d −m1dn1m11−m11n1m1d + n1m11m1d

+X (2)
11 X (2)

1d + . . .+ X (2)
n21X (2)

n2d −m2dn2m21−m21n2m2d + n2m21m2d .

Thus, finally we obtain

s1d = X (1)
11 X (1)

1d + . . .+X (1)
n11X (1)

n1d −n1m11m1d +X (2)
11 X (2)

1d + . . .+X (2)
n21X (2)

n2d −n2m21m2d .

(12)
From (11) and (12) it results

U =
[

n (n1m1 + n2m2)
t

n1m1 + n2m2 Sw + n1m1m1
t + n2m2m2

t

]
. (13)

Let’s evaluate now

V =
[

1t
1 −1t

2

X (1)t −X (2)t

]
·
[

n
n1
·11

n
n2
·12

]

=

⎛

⎜
⎜
⎜
⎝

0
n(m11−m21)

...
n(m1d −m2d)

⎞

⎟
⎟
⎟
⎠

.

We can write

V =
[

0
n(m1 −m2)

]
. (14)

Introducing (13) and (14) in (8) we shall obtain
[

n (n1m1 + n2m2)
t

n1m1 + n2m2 Sw + n1m1m1
t + n2m2m2

t

]
·
[
ω0

w

]
=
[

0
n(m1−m2)

]
, (15)
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namely
nω0 +(n1m1 + n2m2)

tw = 0 (16)

and
(n1m1 + n2m2)ω0 +(Sw + n1m1m1

t + n2m2m2
t)w = n(m1−m2). (17)

We denote

m =
1
n

[
n1

∑
i=1

X (1)
i +

n2

∑
i=1

X (2)
i

]

=
1
n

⎡

⎢
⎢
⎣

X (1)
11 + . . .+ X (1)

n11 + X (2)
11 + . . .+ X (2)

n21
...

X (1)
1d + . . .+ X (1)

n1d + X (2)
1d + . . .+ X (2)

n2d

⎤

⎥
⎥
⎦

=
1
n

⎡

⎢
⎣

n1m11 + n2m21
...

n1m1d + n2m2d

⎤

⎥
⎦ ;

therefore
m =

1
n
(n1m1 + n2m2). (18)

From (16) and (18) it results nω0 + nmtw = 0 and further,

ω0 =−mtw. (19)

Introducing (19) in (17) we shall have

nm(−mtw)+ (Sw + n1m1m1
t + n2m2m2

t)w = n(m1−m2) (20)

or (
1
n

Sw + Q

)
w = m1−m2, (21)

where

Q =− 1
n2

(
n2

1m1m1
t + n1n2m1m2

t + n1n2m2m1
t + n2

2m2m2
t)+

n1

n
m1m1

t +
n2

n
m2m2

t .

We shall write Q as Q = n1n2
n2 (m1 −m2)(m1−m2)

t . Thus (21) becomes

[
1
n

Sw +
n1n2

n2 (m1 −m2)(m1 −m2)
t
]

w = m1 −m2. (22)

From (22) we shall have

w = n
(

I +
n1n2

n2 Sw
−1(m1 −m2)(m1 −m2)

t
)−1

Sw
−1(m1−m2)

therefore w = αnS−1
w (m1 − m2), where α =

(
I + n1n2

n2 Sw
−1(m1−m2)(m1 −m2)

t
)−1

. ��
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From the decision rule (1) we deduce atY > 0 ⇐⇒
[
ωt

0 wt
]
·
[

1
X

]
> 0 and

taking into account (19) we have
[
−wtm wt

]
·
[

1
X

]
> 0 ⇐⇒ wt (X −m) > 0.

We shall obtain the Fisher’s decision rule:
{

wt(X −m) > 0 =⇒ X ∈ ω1,
wt(X −m) < 0 =⇒ X ∈ ω2.

3 Conclusions

In this paper we shall prove that with the proper choice of the vector b,
the MSE discriminant function atY is directly related to Fisher’s linear dis-
criminant. The equation w = αnS−1

w (m1 −m2), except for an unimportant
scale factor, is identical to the solution for Fisher’s linear discriminant. The
Fisher’s linear discriminant is a criterion function that involves all of the sam-
ples, while the perceptron criterion function is focussed on the misclassified
samples.
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Testing Archimedeanity

Piotr Jaworski

Abstract. The aim of this paper is to provide a simple asymptotic test for
Archimedeanity. The main idea is to test the associativity, which is a property
that distinguish Archimedean among other two-dimensional copulas.

Keywords: Archimedean Copulas, Asymptotic Tests, Empirical Copula
Processes.

1 Introduction

A copula C : [0,1]2 −→ [0,1] is called Archimedean if it can be expressed in
the form

C(x,y) = ψ(ϕ(x)+ϕ(y)), (1)

where ψ : [0,+∞] −→ [0,1] and ϕ : [0,1] −→ [0,+∞] are continuous convex
nonincreasing functions such that

ψ ◦ϕ = id and ϕ(1) = 0.

Depending on the source, either ψ ([5, 2]) or ϕ ([6]) is called the generator.
Furthermore, it is known that if ψ and ϕ are as above then ψ(∑2

i=1ϕ(ui)) is
a copula ([6], Theorem 4.1.4).

Archimedean copulas are frequently used in modeling bivariate depen-
dence, because they are easy to handle. They are given by closed analytical
formulas and are easy to simulate (see [1], Chapter 6).

Therefore there is a need to have a tool which will help to decide whether
some empirical data come from the distribution governed by an Archimedean
copula. To provide such a tool we will construct an asymptotic test based on
the associativity.

Piotr Jaworski
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We recall that a copula may be considered as a binary operation on the
unit interval. We say that the copula C is associative if the corresponding
binary operation is, i.e. if

∀x,y,z ∈ [0,1] C(x,C(y,z)) = C(C(x,y),z). (2)

This property is distinguishing the Archimedean copulas. Namely (see [6]
Theorems 4.1.5 and 4.1.6 and [4]):

Theorem 1. A copula C is associative if and only if it is Archimedean or it
is equal to the upper Fréchet-Hoeffding bound M(x,y) = min(x,y) or it is an
ordinal sum of Archimedean copulas and M’s.

Corollary 1. If a copula C is associative and cannot be represented as an
ordinal sum of two copulas then it is Archimedean.

There is no copula C differentiable at points (t,t) such that 0 �= t �= 1 and
C(t,t) = t. Therefore we get the following criterion:

Corollary 2. If a copula C is associative and is differentiable at every point
(t,t), t ∈ (0,1), then it is Archimedean.

Let (X ,Y ) be a pair of random variables with copula C and continuous
marginals F and G. Basing on independent copies (X1,Y1), . . . ,(Xn,Yn), we
construct the empirical copula function. Namely, let (x1,y1), . . . ,(xn,yn) be
the realizations. To each of them we associate a pair of ranks (ui,vi)

ui =
#{ j : x j ≤ xi}

n
, vi =

#{ j : y j ≤ yi}
n

.

The empirical copula function

Cn : [0,1]2 −→ [0,1]

is given by the formula

Cn(u,v) =
1
n
·#{k : uk ≤ u,vk ≤ v}. (3)

Note that although Cn is not a copula, its restriction to the lattice L = {( i
n , j

n) :
i, j = 0, . . . ,n} is a subcopula.

Next we construct a two-parameter family of test statistics

Tn(x,y) =
√

n(Cn(x,Cn(y,y))−Cn(Cn(x,y),y)), x,y ∈ (0,1). (4)

Basing on Tn we will provide a test for associativity, hence also for
Archimedeanity.
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2 Asymptotic Results

Let (Xk,Yk)+∞k=1 be a data generating process consisting of independent copies
of (X ,Y ). For the sample of size n we construct the statistics Tn. The first
observation is that under slight assumptions on differentiability of C these
statistics are asymptotically normal.

Theorem 2. Let 0 < x < y < 1 and x+ y > 1. If C has continuous derivatives
on a square [C(x,y),y]2 then as n grows to +∞

Tn(x,y)−
√

n(C(x,C(y,y))−C(C(x,y),y)) d−→ N(0,σ2), (5)

where σ does not exceed 2.

The above estimate on the asymptotic standard deviation can be improved
when C is associative.

Theorem 3. Let 0 < x < y < 1 and x + y > 1. If C is associative and has
continuous derivatives on a square [C(x,y),y]2 then as n grows to +∞

Tn(x,y)
d−→ N(0,σ2), (6)

where σ does not exceed
√

2(1− y).

Note that we do not require the differentiability of C at the points (0,0) or
(1,1) which would be very restrictive. As a matter of fact if we choose x and
y such that 0 < x < y < 1 and x + y > 1 then it is enough to assume that C
is C1 on the square [x+ y−1,y]2. Therefore if C is continuously differentiable
on the open square (0,1)2 then we can choose any x and y subject to the
condition 0 < x < y < 1 and x + y > 1.

The proofs of the above theorems are provided in the Appendix.

3 Test

We consider the following null hypothesis:

• H0: The copula C is Archimedean1 and is continuously differentiable on
the rectangle (0,1)2;

and an alternative hypothesis:

• H1: The copula C is not associative.

We fix the significance level α and apply the following decision rule:

1. Select a point (x,y), such that 0 < x < y < 1 and x + y > 1.
2. Count the value t of the test statistic Tn(x,y).

1 The word Archimedean may be replaced by associative - see Corollary 2
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3. Determine the critical value t∗ = q(1−α/2)
√

2(1− y), where q is a quantile
from the standard normal distribution.

4. If the absolute value of t exceeds t∗ then reject H0.

Alternatively we may instead of point 3 and 4 apply:

3’.Determine the p-value, p = 2F(−|t|(2(1−y))−0.5), where F is the distribu-
tion function of N(0,1).

4’. If p is smaller then α, then reject H0.

Remark 1. 1. Theorem 3 implies that the asymptotic size of the above test
does not exceed α.

2. The test can be repeated for different values x and y.
3. Theorem 2 gives some guidance how big should be the sample so that

the test will be able to reject with given power a nonassociative copula
C∗ with known value of δ = C∗(x,C∗(y,y))−C∗(C∗(x,y),y). Generally one
should take n >> δ−2 i.e. at least about 10 000.

4 Example - Real Data

As an illustration of our test we will study four copulas associated with ex-
change rates of British Pound (GBP) and Japan Yen (JPY) against American
Dollar (USD).
Let X and Y denote the one day logarithmic returns of prices of 1 GPB in
USD and of 1 JPY in USD. We assume that the pairs of daily returns are
independent and identically distributed. Let C00, C10, C01 and C11 be the cop-
ulas describing the dependencies between respectively X and Y , −X and Y ,
X and −Y , −X and −Y . Basing of the data for the period 4th January 1971
- 26th February 2010 (n = 9844 observations)2 we perform the tests for four
copulas and two points (x,y) = (0.4,0.75) and (x,y) = (0.45,0.8). The results
are gathered in Table 1. The Archimedeanity of the copulas C10 and C01 is
rejected on both levels, the Archimedeanity of the copula C00 is rejected only
on the level α = 0.1. For the last copula C11 the null hypothesis is not rejected.
The results of the test suggest that only the survival copula C11 ought to be
modelled as an Archimedean one.

5 Example - Artificial Data

To get some insight on the power with which the test is rejecting the non
Archimedean copulas we generated random variates from the Student two
dimensional distribution with two degrees of freedom and ρ ∈ {−0.5,0,0.5}.
We put n = 10000 and repeated the draw 100 times for each copula. In Table
2 we present the obtained results. In subsequent columns there are values
of the generalized correlation ρ , x, y, δ = Cρ(x,Cρ (y,y))−Cρ (Cρ(x,y),y), the

2 Source: PACIFIC Exchange Rate Service http://fx.sauder.ubc.ca/
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Table 1 Tests for Archimedeanity

copula x y test p-value t∗(0.05) t∗(0.1)

C00 0,4 0,75 1,119 0,114 1,386 1,163
C00 0,45 0,8 1,149 0,069 1,240 1,040
C10 0,4 0,75 1,512 0,033 1,386 1,163
C10 0,45 0,8 1,038 0,101 1,240 1,040
C01 0,4 0,75 1,411 0,046 1,386 1,163
C01 0,45 0,8 1,411 0,026 1,240 1,040
C11 0,4 0,75 0,554 0,433 1,386 1,163
C11 0,45 0,8 0,655 0,300 1,240 1,040

Table 2 Testing Student copulas

ρ x y δ mean σ t∗(0.05) t∗(0.1) N(0.05) N(0.1)

-0,5 0,4 0,75 0,02097 2,104 0,25 1,386 1,163 99 100
0 0,4 0,75 0,01651 1,668 0,25 1,386 1,163 85 98

0,5 0,4 0,75 0,01162 1,171 0,21 1,386 1,163 17 47

mean value of the sample statistics Tn(x,y) and the standard deviation – σ ,
critical values for α = 0.05 and α = 0.1, the number of times (out of 100)
when the test rejected the Archimedeanity for α = 0.05 and α = 0.1.

6 Appendix: Proofs

The proofs of Theorems 2 and 3 follow from the fact that in points of dif-
ferentiability the empirical copula process

√
n(Cn −C) converges weakly to

the Gaussian process GC - compare [3] and [7]. Namely if C is continuously
differentiable on a square [a,b]2 then

√
n(Cn−C)(u,v) d−→ GC(u,v) in l∞([a,b]2). (7)

The limiting Gaussian process can be written as

GC(u,v) = BC(u,v)− ∂1C(u,v)BC(u,1)− ∂2C(u,v)BC(1,v), (8)

where BC is a Brownian bridge on [0,1]2 with covariance function

E(BC(u,v) ·BC(u′,v′)) = C(min(u,u′),min(v,v′))−C(u,v)C(u′,v′). (9)
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It is not difficult to check the variance of GC is uniformly bounded. Indeed:

Lemma 1. For every copula C and every point of its differentiability

D
2(GC(u,v)) ≤ 1

4
. (10)

Proof

D
2(GC(u,v)) = E(BC(u,v)− ∂1C(u,v)BC(u,1)− ∂2C(u,v)BC(1,v))2

= C(u,v)(1−C(u,v))−2∂1C(u,v)(C(u,v)(1−u))−2∂2C(u,v)(C(u,v)(1− v))

+∂1C(u,v)2u(1−u)+ ∂2C(u,v)2v(1− v)+ 2∂1C(u,v)∂2C(u,v)(C(u,v)−uv).

Since C is nondecreasing in both variables and Lipschitz with constant
1, its partial derivatives belong to the interval [0,1] ([6] Theorem 2.2.7).
Therefore the variance of GC is bounded by the value of the quadratic
function

Ψ(ξ1,ξ2) = C(u,v)(1−C(u,v))−2ξ1C(u,v)(1−u)−2ξ2C(u,v)(1− v)

+ξ 2
1 u(1−u)+ ξ 2

2 v(1− v)+ 2ξ1ξ2(C(u,v)−uv)

at the vertices of the unit square.
Since C(u,v) ∈ [0,1], we get

Ψ(0,0) = C(u,v)(1−C(u,v))≤ 1
4
.

Since 0 ≤ u−C(u,v)≤ 1, we get

Ψ(1,0) = C(u,v)(1−C(u,v))−2C(u,v)(1−u)+u(1−u)

= (C(u,v)−u + 1)(u−C(u,v))≤ 1
4
.

In the same way we get

Ψ (0,1)≤ 1
4
.

Finally, since 0 ≤ u + v−C(u,v)≤ 1, we get

Ψ(1,1) = C(u,v)(1−C(u,v))−2C(u,v)(1−u)−2C(u,v)(1− v)

+u(1−u)+ v(1− v)+2(C(u,v)−uv)

= (C(u,v)−u− v)(−1 + u+ v−C(u,v))≤ 1
4
.

��
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From formula 7 and the delta method ([7] §3.9) we get:

Lemma 2. Under the assumptions of Theorem 2
√

n((Cn(x,Cn(y,y))−Cn(Cn(x,y),y))− (C(x,C(y,y))−C(C(x,y),y)))
d−→ HC(x,y), (11)

where HC is a Gaussian process, which can written as

HC(x,y) = GC(x,C(y,y))−GC(C(x,y),y)
−∂1C(C(x,y),y)GC(x,y)+ ∂2C(x,C(y,y))GC(y,y). (12)

Theorem 2 is a direct corollary of above lemmas. Indeed, since HC and GC

are Gaussian, we get

σ(HC(x,y)) ≤ σ(GC(x,C(y,y))+σ(GC(C(x,y),y))
+∂1C(C(x,y),y)σ(GC(x,y))+ ∂2C(x,C(y,y))σ(GC(y,y))

≤ 4 · 1
2

= 2 (13)

The proof of Theorem 3 requires more detailed study of HC. Due to associa-
tivity we have the following relations:

C(x,C(y,z)) = C(C(x,y),z), (14)
∂1C(x,C(y,z)) = ∂1C(C(x,y),z)∂1C(x,y), (15)

∂2C(x,C(y,z))∂2C(y,z) = ∂2C(C(x,y),z), (16)
∂2C(x,C(y,z))∂1C(y,z) = ∂1C(C(x,y),z)∂2C(x,y), (17)

which, after substitution z = y, imply:

Lemma 3. If the copula C is associative then

HC(x,y) = BC(x,C(y,y))−BC(C(x,y),y)
+∂1C(C(x,y),y)(BC(C(x,y),1)−BC(x,y))
+∂2C(x,C(y,y))(−BC(1,C(y,y))+BC(y,y))
+∂1C(C(x,y),y)∂2C(x,y)(BC(1,y)−BC(y,1)). (18)

Now we are in the position to prove Theorem 3.
Since partial derivatives of C belong to the interval [0,1], the variance of

HC is bounded by the maximum value of the quadratic functionΨ (ξ1,ξ2,ξ3),
where ξ1,ξ2,ξ3 ∈ [0,1] and ξ3 ≤ min(ξ1,ξ2).

Ψ (ξ1,ξ2,ξ3) = 2[C(x,C(y,y))−C(C(x,y),C(y,y))

+(ξ1 + ξ2)(C(C(x,y),C(y,y))−C(x,C(y,y)))
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+ξ 2
1 (C(x,y)−C(C(x,y),y))+ ξ 2

2 (C(y,y)−C(y,C(y,y)))

+ξ 2
3 (y−C(y,y))+ ξ1ξ2(−C(C(x,y),C(y,y))+ 2C(x,C(y,y))−C(x,y))

+ξ1ξ3(C(C(x,y),y)−C(x,y))+ ξ2ξ3(C(y,C(y,y))−C(y,y))]

Since the domain is a convex polyhedron,Ψ is attaining the maximum at one
of its vertices. So, it is enough to check the value of Ψ at the points (0,0,0),
(1,0,0), (0,1,0), (1,1,0), (1,1,1). Basing on the fact that C is Lipschitz we get

1
2
Ψ(0,0,0) = C(x,C(y,y))−C(C(x,y),C(y,y)) ≤ x−C(x,y)≤ 1− y,

1
2
Ψ(1,0,0) = C(x,y)−C(x,C(y,y)) ≤ y−C(y,y)≤ 1− y,

1
2
Ψ(0,1,0) = C(y,y)−C(y,C(y,y)) ≤ y−C(y,y)≤ 1− y,

1
2
Ψ(1,1,0) = C(y,y)−C(y,C(y,y)) ≤ y−C(y,y)≤ 1− y,

1
2
Ψ(1,1,1) = C(x,C(y,y))−C(x,y)−C(y,y)+ y ≤ y−C(y,y)≤ 1− y,

which finishes the proof.
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An Attempt to Define Graphical Models
in Dempster-Shafer Theory of Evidence

Radim Jiroušek

Abstract. The goal of this paper is to introduce graphical models in
Dempster-Shafer theory of evidence. The way the models are defined is a
natural and straightforward generalization of the approach from probabil-
ity theory. The models possess the same “Global Markov Properties”, which
holds for probabilistic graphical models. Nevertheless, the last statement is
true only under the assumption that one accepts a new definition of con-
ditional independence in Dempster-Shafer theory, which was introduced in
Jiroušek and Vejnarová (2010). Therefore, one can consider this paper as an
additional reason supporting this new type of definition.

Keywords: Graphical Markov models, Conditional independence, Factor-
ization, Multidimensional basic assignment.

1 Introduction

Graphical Markov models [8] developed to their variety and proficiency in the
last two decades of the 20th century, have become a benchmark with which
models from other theories of uncertainty are often compared. Here we have
in mind Bayesian networks (perhaps the most popular member of graphical
Markov models), decomposable models (indisputably the most efficient from
the computational point of view) and also “classical” graphical models. The
last models were originally studied within the class of log-linear models as
distributions whose interactions can be described with the help of simple
graphs.
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Faculty of Management, University of Economics, Jindřichuv Hradec, and Institute
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In this paper we want to show that the idea upon which graphical models
were founded can be (almost straightforwardly) exploit also within Dempster-
Shafer Theory of evidence. In fact, the only new idea of the approach is that
not all subsets of the considered space of discernment may be focal elements.

2 Basic Concepts and Notation

In the following text we will need just basic concepts od Dempster-Shafer
theory of evidence. However, to make the explanation more lucid we will ex-
plain our motivation originated in probability theory. Naturally, when speak-
ing about graphical models we cannot avoid a couple of notions from graph
theory. All these concepts will be briefly introduced in this section.

All our considerations will concern finite multidimensional space

XN = X1 ×X2× . . .×Xn. (1)

The reader can interpret it either as a space of possible combinations of values
of n (random) variables, or as an n-dimensional space on which the respective
measures will be defined. Subsets of N = {1,2, . . . ,n} will be denoted by K,L,M
with possible indices. So, XK will denote a Cartesian product of those Xi, for
which i ∈ K:

XK = �i∈KXi.

A projection of x = (x1,x2, . . . ,xn) ∈ XN into XK will be denoted x↓K , i.e. for
K = {i1, i2, . . . , i�}

x↓K = (xi1 ,xi2 , . . . ,xi�) ∈ XK .

Analogously, for K ⊂ L ⊆N and A⊂XL, A↓K will denote a projection of A into
XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.

Let us remark that we do not exclude situations when K = /0: A↓ /0 = /0.
One of the most important notions of this text will be a join of two subsets

A ⊆ XK and B ⊆ XL, which is defined

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}. (2)

Notice that if K and L are disjoint then the join of the corresponding sets
is just their Cartesian product A⊗B = A×B. For K = L, A⊗B = A∩B. If
K∩L �= /0 and A↓K∩L∩B↓K∩L = /0 then also A⊗B = /0.

In view of this paper it is important to realize that if x ∈C ⊆ XK∪L, then
x↓K ∈ C↓K and x↓L ∈ C↓L, which means that always C ⊆C↓K ⊗C↓L. However,
it does not mean that C = C↓K ⊗C↓L. For example, considering only a 2-
dimensional frame of discernment X{1,2} with Xi = {ai, āi} for both i = 1,2,
and C = {a1a2, ā1a2,a1ā2} one gets

C↓{1}⊗C↓{2} = {a1, ā1}⊗{a2, ā2} = {a1a2, ā1a2,a1ā2, ā1ā2} �= C.
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2.1 Graph Notions

In the paper we will exclusively consider simple graphs G = (N,E) with a set
of nodes N corresponding to the previously introduced index set. It means
that the considered graphs contain neither oriented nor multiple edges and
also no loops.

An important notion is that of a clique, which denotes a maximal subset
of N inducing a complete subgraph (i.e. all pairs of nodes of a clique are
connected by an edge and adding an additional node to the clique violates this
property). The graph in Figure 1(a) has three cliques: {1,2,3,4},{3,4,5},{6},
the graph in Figure 1(b) has five cliques: {1,2,3},{1,4},{3,6},{4,5},{5,6}.

A graph is decomposable if its cliques K1,K2, . . . ,Kr can be ordered in the
way that the sequence meets the so called running intersection property
(RIP):

∀i = 2, . . . ,r ∃ j(1 ≤ j < i) : Ki ∩ (K1 ∪ . . .∪Ki−1) ⊆ Kj. (3)

Notice that this property is met by any ordering of the cliques of the graph in
Figure 1(a), and that the cliques of the graph in Figure 1(b) cannot be ordered
to meet this property. It means that from the mentioned two graphs only
the former is decomposable. The graph in Figure 1(c) is also decomposable,
because the ordering of its cliques {1,2,4},{2,3,4},{4,6},{3,4,5} meets RIP
(in spite of the fact that, for example, {3,4,5},{1,2,4},{2,3,4},{4,6} does
not meet this property).

The last notions we will need are notions of separation and a separating set.
We say that two different nodes i, j ∈ N are separated by a set K ⊆ N \ {i, j}
if we cannot go along the graph edges from i to j without going through a
node from K. So, if there is no path from i to j (as, for example there is
no path from 1 to 6 in the graph in Figure 1(a)) then even the empty set
may be a separating set. A set K is a minimal separating set if there exists
a pair of nodes i and j, which is separated by K but no proper subset of K
separates i and j. Notice that in the graph in Figure 1(c) both {2,4} and {4}
are minimal separating sets; the former is a minimal separating set for 1 and
3, whereas the latter is a minimal separating set for 1 and 6.
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If graph G = (N,E) is not complete then it is always possible to find a couple
of subsets L,M ⊂ N (usually there are lot of such couples; the exception is
a graph consisting of only two cliques, for which this couple is unique) such
that

• L∪M = N;
• L∩M is a minimal separating set;
• each pair of nodes i ∈ L\M, j ∈ M \L is separated by L∩M.

The set of all these couples will be denoted by symbol S (G) - for examples
concerning all the graphs in Figure 1 see Table 1. Now, we are ready to
introduce a class of subsets of XN whose structures comply with graph G
(these sets will be used in the definition of graphical models in Section 4):

R(G) = {A ⊆ XN : ∀(L,M) ∈ S (G) (A = A↓L⊗A↓M)}. (4)

Table 1 S (G) for graphs in Figure 1

Graph G Couples (L,M) from S (G)

(a) ({1,2,3,4},{3,4,5,6})
({1,2,3,4,6},{3,4,5})
({1,2,3,4,5},{6})

(d) ({1,2,3,4,5},{6})
({1,2,3},{1,3,4,5,6})
({1,2,3,6},{1,3,4,5})
({1,2,3,5,6},{1,4,5})
({1,2,3,5},{1,4,5,6})
({1,2,3,4},{3,4,5,6})
({1,2,3,4,6},{3,4,5})

Graph G Couples (L,M) from S (G)

(b) ({1,2,4},{2,3,4,5,6})
({1,2,3,4},{3,4,5,6})
({1,2,3,4,5},{3,5,6})
({1,2,3,4,6},{4,5,6})

(c) ({1,2,4},{2,3,4,5,6})
({1,2,4,6},{2,3,4,5})
({1,2,3,4},{3,4,5,6})
({1,2,3,4,6},{3,4,5})
({1,2,3,4,5},{4,6})

2.2 Probabilistic Factorization

Consider a probability measure π on XN and L,M ⊆ N such that L∪M = N.
We say that π factorizes with respect to a couple (L,M) if the exist functions

φ : XL −→ [0,+∞), ψ : XM −→ [0,+∞),

such that for all x ∈ XN

π(x) = φ(x↓L) ·ψ(x↓M).

It is well known that π factorizes with respect to (L,M) if and only if for
all x ∈ XN

π(x) ·π↓L∩M(x↓L∩M) = π↓L(x↓L) ·π↓M(x↓M),

which corresponds to the conditional independence L\M ⊥⊥ M \L|L∩M [π ].
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This notion forms a basis for a more general notion of a graphical model,
which is a probability distribution factorizing with respect to a graph G =
(N,E) [8].

Consider a graph G = (N,E) with r cliques K1,K2, . . . ,Kr. We say that a
probability distribution π factorizes with respect to graph G if there exist r
functions φ1,φ2, . . . ,φr,

φi : XKi −→ [0,+∞),

such that for all x ∈ XN

π(x) =
r

∏
i=1
φi(x↓Ki).

What is the advantage of graphical models? Naturally, first of all we can
represent such a distribution with the help of (in the binary case) ∏r

i=1 2|Ki|

parameters (factors), which is usually much less than 2n, the number of prob-
abilities necessary to define a general n-dimensional distribution. Moreover,
graphical models have their “semantics” expressible with the help of their
conditional independence structure: If distribution π factorizes with respect
to G = (N,E) and K ⊂ N separates in G nodes i, j ∈ N, then i ⊥⊥ j |K [π ].

2.3 Basic Assignment Notation

The role of a probability distribution from a probability theory is in
Dempster-Shafer theory played by any of the set functions: belief function,
plausibility function, commonality function or basic (probability or belief )
assignment [4, 9]. In this text we will exclusively use normalized basic as-
signments for the purpose. Such a basic assignment m on XK (K ⊆ N) is a
function

m : P(XK) −→ [0,1],

for which m( /0) = 0, and ∑A⊆XK
m(A) = 1. All the sets A for which m(A) is

positive are called focal elements of m.
Having a basic assignment m on XK we will consider its marginal assign-

ment on XL (for L ⊆ K), which is defined (for each /0 �= B ⊆ XL):

m↓L(B) = ∑
A⊆XK :A↓L=B

m(A).

3 Factorization and Independence

Unconditional (marginal) independence has been introduced in Dempster-
Shafer theory in several equivalent ways; mostly as an application of con-
junctive combination rule (non-normalized Dempster’s rule of combination)
[1, 3, 7, 10], or with the help of commonality functions [12, 11]. Here, we will
use another (and as it was showed in [6] still equivalent) definition.
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Let K,L ⊂ N be disjoint. For a basic assignment m the independence K ⊥⊥
L[m] holds if for all A ⊆ XK∪L

m↓K∪L =
{

m↓K ·m↓L if A = A↓K ⊗A↓L

0 otherwise.
(5)

Having a probability measure π defined on a 2-dimensional space X1×X2

and factorizing with respect to ({1},{2}) we know that there exist functions
φ and ψ such that for each x ∈ X1×X2

π(x) = φ(x↓{1}) ·ψ(x↓{2}). (6)

It means that |X1| · |X2| probabilities of measure π is defined with the help
of |X1| and |X2| values of the factor functions φ and ψ . This fits the product
rule expressed by formula (6).

Is it possible to transfer this simple idea directly into Dempster-Shafer
theory? Basic assignment m on X1 ×X2 is defined with the help of 2|X1|·|X2|

values, whereas factor functions

μ : P(X1)−→ [0,+∞), ν : P(X2) −→ [0,+∞),

are defined with the help of 2|X1| and 2|X2| values, respectively. Thus using an
analogy to a product rule we can get only 2|X1|+|X2| different values. However
noticing that factorization (in this simple 2-dimensional situation) should
yield the independence {1} ⊥⊥ {2}, and looking at the definition formula (5),
we see that we do not need to define values of m for all subset A ⊆ X1 ×X2,
but only for those A for which A = A↓|1| ⊗A↓|2|.

Generalizing the above consideration to a more complex, overlapping fac-
torization we proposed the following definition of factorization in [5].

Definition 1. Simple Factorization. Consider two nonempty sets K∪L =
N. We say that basic assignment m factorizes with respect to (K,L) if there
exist two nonnegative set functions

μ : P(XK)−→ [0,+∞), ν : P(XL)−→ [0,+∞),

such that for all A ⊆ XK∪L

m(A) =

{
φ(A↓K) ·ψ(A↓L) if A = A↓K ⊗A↓L

0 otherwise.

It is almost obvious that for this notion the following simplified version of
Factorization Lemma is valid [13].

Lemma 1. Let K,L ⊆ N be disjoint and nonempty, K ∪L = N. m factorizes
with respect to (K,L) if and only if K \L ⊥⊥ L\K |K ∩L [m].
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4 Graphical Models

Definition 2. Let G = (N,E) be a graph with r cliques K1,K2, . . . ,Kr. We say
that basic assignment m factorizes with respect to graph G if there exist r
functions μ1,μ2, . . . ,μr, (μi : P(XKi) −→ [0,+∞)), such that for all A ⊆ XN

m(A) =

⎧
⎨

⎩

r
∏
i=1
μi(A↓Ki), if A ∈ R(G),

0 otherwise.

Example 1. Consider a 6-dimensional basic assignment factorizing with re-
spect to the graph in Figure 1(d). If all Xi are binary, then general basic
assignment may have up to 264 − 1 focal elements. Nevertheless, since the
considered graph consists of 5 cliques: {1,2,3}, {1,4}, {3,5}, {4,5} and {6},
all the necessary factor functions are defined with by 28 + 3 · 24 + 22 = 308
numbers.

We believe that the above presented example sufficiently illustrates an effi-
ciency with which graphical models can be represented in Dempster-Shafer
theory. What remains to be showed that it possesses also the second advan-
tageous property of probabilistic graphical models, i.e. that the dependence
structure of the distribution is somehow encoded in the graph. We do not
have enough space to formalize the property in a form of a theorem and to
prove it but an analogy of the probabilistic statement presented at the end of
Section 2.2 holds: If basic assignment m factorizes with respect to G = (N,E)
and K ⊂ N separates nodes i, j in G, then i ⊥⊥ j |K [m].

For this, however, we have to say what we understand by conditional inde-
pendence in Dempster-Shafer theory. Namely, we cannot apply the definition
used by most of the other authors (e.g. [2, 10, 12]) but the following definition
introduced in [6].

Definition 3. Conditional Independence. Let K,L,M ⊂ N be disjoint,
K,L nonempty. We say that for a basic assignment m conditional indepen-
dence K ⊥⊥ L|M [m] holds if for any A ⊆ XK∪L∪M such that A = A↓K∪M ⊗A↓L∪M

the equality

m↓K∪L∪M(A) ·m↓M(A↓M) = m↓K∪M(A↓K∪M) ·m↓L∪M(A↓L∪M)

holds, and m↓K∪L∪M(A) = 0 for all the remaining A ⊆ XK∪L∪M, for which A �=
A↓K∪M ⊗A↓L∪M.

5 Conclusions

We have introduced graphical models in Dempster-Shafer theory as a sim-
ple and natural generalization of probabilistic graphical models. Analogously
to probabilistic case, also for Dempster-Shafer graphical models one can
show that they can be efficiently represented with a reasonable number of
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parameters and that some conditional independence relations can be read
from the respective graphs. This holds, however, only when a new definition
of conditional independence in Dempster-Shafer theory (see Definition 3) is
accepted. Thus the paper brings an additional reason supporting this new
definition. Recall that the new concept of conditional independence does not
suffer from inconsistency with marginalization (for details and a Studený’s
example see [2]), for Bayesian basic assignments coincides with probabilistic
conditional independence, and meets all the semigraphoid axioms.
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Comparison of Time Series via Classic
and Temporal Protoforms of Linguistic
Summaries: An Application to Mutual
Funds and Their Benchmarks

Janusz Kacprzyk and Anna Wilbik

Abstract. We present a new approach to the evaluation of similarity of
time series that are characterized by linguistic summaries. We consider so-
called temporal data summaries, i.e. novel linguistic summaries that explicitly
include a temporal aspect. We consider the case of a mutual (investment) fund
and its underlying benchmark(s), and the new comparison method is based
not on the comparison of the consecutive values or segments of the fund
and its benchmark but on the comparison of classic and temporal linguistic
summaries (i.e. based on a classic and temporal protoform) best describing
their past behavior.

Keywords: Time series comparison, Linguistic data summarization, Tem-
poral protoform, Fuzzy logic, Computing with words.

1 Introduction

As in our previous works cited in the literature, we consider the following
setting: a decision maker has to decide on how much and in which mutual
fund (or a financial instrument) to invest. The decision maker has information
on some objective aspects of the past behavior of the mutual fund quotations,
exemplified by results of statistical analyses, macroeconomic data, exchange
rates, etc. and also has some additional information and knowledge, resulting
from experience, informal analyses, personal sources of information, intuition,
etc. which are of a tacit knowledge type, difficult to codify or share.

We follow the decision support philosophy, that is, the decision maker is to
make his/her investment decision autonomously, and additional information,
insight into the data, etc. may be of help.
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One of most interesting and relevant questions of a professional analyst
or a customer may be: how similar was the temporal evolution of quotations
of the particular investment fund and its benchmark(s)? This has clearly to
do with the measuring of similarity of time series. The problem of similarity
of time series or finding similar subsequences of time series is an important
issue, e.g., in indexing [21, 20], clustering [6] or motif discovery [3, 23]. Many
approaches to the similarity measures of time series were proposed, cf. those
based on the Euclidean distance [5], possibly with scaling or shifting [3], the
Dynamic Time Warping (DTW) [20], and Longest Common Subsequence
(LCS) [5], using the Discrete Fourier Transform (DFT) [1], wavelets [2], etc.

We also dealt with this problem (cf. [11]) and computed a degree of sim-
ilarity of two time series by comparing the membership values of linguistic
descriptions of the consecutive extracted segments (trends) of the two time
series, and then by aggregating the results obtained.

In this work we further develop the approach proposed in our previous
paper cf. [11]) by using a new type of protoforms of linguistic summaries of
time series data concerning the (past) quotations of a mutual fund under
consideration. Basically, the new protoforms – called temporal protoforms
– involve explicitly a time aspect with which a particular summary deals.
For instance, the traditional protoforms used in our previous papers may be
“Among all trends, most are short” or “Among all short trends, almost all are
increasing”. The new temporal protoforms proposed by us may :. for instance,
“recently, among all trends, most are of high variability” or “In the peak period
of the economic crisis, among all decreasing trends, most are long.

It is easy to see that the form of the new protoforms of linguistic summaries
proposed in more sophisticated and a comparison of linguistic summaries
whose structure follows such protoforms will be considerably more difficult.
The main problem is the additional time dimension that is present.

We follow the main idea proposed in Kacprzyk and Wilbik(cf. [11]) that
a very human consistent method of comparison of two time series (here: the
past quotations of an mutual fund and its benchmark) may be performed a
linguistic quantifier driven aggregation of partial comparison results. Then,
that idea was extended by Kacprzyk and Wilbik [12] to the comparison of
linguistic summaries of time series, not their numerical series of values.

The degree of similarity of two time series is the degree to which, for
instance, for a “majority” of distinctive time periods “most” valid summaries
of the fund have the truth values similar with a majority of similar summaries
of the benchmark”. This is an extension of our previous proposal [12] and has
very much to do with a soft definition of consensus meant as a degree to
which, for instance, “most of the important individuals agree as to almost all
of the relevant options”. This was introduced by Kacprzyk and Fedrizzi [7,
8, 9], Kacprzyk, Fedrizzi and Nurmi [10], and recently by Kacprzyk and
Zadrożny [16]. It is clearly to see that the use of temporal protoforms makes
the definitions similarity based on consensus difficult because of the temporal
character of the protoform of the summaries assumed.
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2 Linguistic Summaries of Time Series

A linguistic summary of data (database) is a (usually short) sentence (or a
few sentences) that captures the very essence of the data; the date is assumed
here numeric, its amount is large and not comprehensible for human users.
We use here Yager’s [24] basic approach, and a linguistic summary includes:
a summarizer P, a quantity in agreement Q, i.e. a linguistic quantifier, truth
(validity) T of the summary and optionally, a qualifier R; an extended, im-
plementable approach was shown in Kacprzyk and Yager [14], and Kacprzyk,
Yager and Zadrożny [18].

Thus, the core of a linguistic summary is a linguistically quantified propo-
sition in the sense of Zadeh [25] which may be written, respectively, as

Qy′s are P QRy′s are P (1)

which may be exemplified, respectively by: “Most of employees earn low
salary”, T =0.7, or “Most of young employees earn low salary”, T =0.82.

We focus on trends, linear segments extracted from the time series, ob-
tained via using a piecewise linear segmentation method (cf. [22]). We con-
sider three features of (global) trends in time series: (1) dynamics of change,
(2) duration, and (3) variability. All of them are treated as linguistic vari-
ables, and for for all we use a fuzzy granulation to represent the values by a
small set of linguistic labels as, e.g.: increasing, constant, decreasing, equated
with fuzzy sets.

Classic protoforms
For clarity and convenience we employ Zadeh’s protoforms for dealing with
linguistic summaries – cf. Kacprzyk and Zadrożny [15]. A protoform is a more
or less abstract prototype (template) of a linguistically quantified proposition.
We have two types of protoforms of linguistic summaries of trends:
– a simple (short) form, e.g., “Among all segments, most are increasing”:

Among all segments, Q are P (2)

– an extended form, e.g., “Among all short segments, most are slowly increas-
ing”:

Among all R segments, Q are P (3)

The basic quality criterion is the truth value (degree) [24]. Using Zadeh’s
calculus of linguistically quantified propositions [25] it is calculated as:

T (Among all y’s, Q are P) = μQ

(
1
n

n

∑
i=1
μP(yi)

)

(4)

T (Among all Ry’s, Q are P) = μQ

(
∑n

i=1 μR(yi)∧μP(yi)
∑n

i=1 μR(yi)

)
(5)
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where Q is a fuzzy set representing the linguistic quantifier in the sense of
Zadeh [25], i.e. regular, nondecreasing and monotone and ∧ is the minimum
(or a t-norm, cf. Kacprzyk, Wilbik and Zadrożny [19]).

Temporal protoforms
We extended (cf. [13]) our protoforms given in (2) and (3) by adding a tem-
poral expression ET like: “recently”, “in the very beginning” or “in May 2010”,
“initially”, etc., and the temporal protoforms are:
– a simple form as, e.g., “Recently among all segments, most are short”:

ET among all segments, Q are P (6)

– an extended form as, e.g., “Initially among all short segments, most are
slowly increasing”:

ET among all R segments, Q are P (7)

The truth values of the temporal protoforms (6) and (7) are, respectively:

T (ET among all y’s, Q are P) = μQ

(
∑n

i=1 μET (yi)∧μP(yi)
∑n

i=1μET (yi)

)
(8)

T (ET among all Ry’s, Q are P)=μQ

(
∑n

i=1 μET (yi)∧μR(yi)∧μP(yi)
∑n

i=1 μET (yi)∧μR(yi)

)
(9)

where μET (yi) is degree to which a trend (segment) occurs during the time
span described by ET .

3 Evaluation of the Similarity of Two Time Series
Based on a Set of Their Best Linguistic Summaries

We assume that if two time series are described by similar linguistic sum-
maries, then they may be considered as similar. So the degree of similarity
of two time series is defined as the degree to which, e.g., “‘most” valid sum-
maries of the fund have similar truth values as a majority of similar summaries
describing the benchmark’, i.e. we compare two groups of the most valid lin-
guistic summaries, with the truth value higher than some value. Notice that
the similarity as meant in this paper is of a somehow compound character
because in involves the similarity of fuzzy sets representing the particular
linguistic terms in the summaries, the similarity of temporal expressions, as
well as the similarity of the very structure of the summary. We follow a more
intuitive approach to the definition of similarity, expressed by the above cited
linguistically quantified proposition that represents a “softy” concept of con-
sensus. Clearly, the particular elements of similarity, the above mentioned
“subsimilarities” have a clear meaning and formal definitions, for instance as
discussed in Cross and Sudkamp [4].
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To get a deeper insight, we can generate the linguistic summaries with
the temporal expressions like “initially”, “in the the middle of considered
time span”, “recently”, etc. – cf. [13]). Then we can compare the best of those
summaries of the time series of the same temporal expression. So the degree of
similarity of two time series is now the degree to which, e.g., ‘for a “majority”
of temporal expressions, “most” valid temporal summaries of the fund have
the truth values similar with a majority of similar temporal summaries of the
benchmark’.

In case of the comparison based on a classic protoform, assume that we wish
to compare two time series A and B, A described by k linguistic summaries
sA j , j = 1, . . . ,k and B described by l summaries, sB j , j = 1, . . . , l, with their
respective truth values denoted as TA j , j = 1, . . . ,k and TB j , j = 1, . . . , l. First,
we calculate the degree of similarity between each summary describing A
and each summary describing B, sim(sAi ,sB j ) – cf. Kacprzyk and Wilbik [12].
Then, the degree to which a summary from time series A is similar to the
most valid summaries of B is:

sim(sAi ,B) = μsome

(
∑l

j=1(1−|TAi −TB j |) sim(sAi ,sB j )

∑l
j=1 sim(sAi ,sB j )

)

(10)

where 1−|TAi −TB j | is an evaluation of similarity of truth values.
Then, to aggregate the above similarity values, we use a linguistic quantifier

driven aggregation:

sim(A,B) = μmost

(
1
k

k

∑
i=1

sim(sAi ,B)

)

(11)

In the latter case, we first compare the summaries with the same temporal
expression, ETp as described above. Then, we aggregate the similarity values
for each temporal expression using a linguistic quantifier driven aggregation.
If sim(A,B,ETp) is the similarity value for temporal expression ETp , and we
have t such expressions, then

sim(A,B) = μmost

(
1
k

t

∑
p=1

sim(A,B,ETp)

)

(12)

4 Numerical Results: The Similarity of Time Series
which Are Represented as Linguistic Summaries

We will present now some numerical results of similarity evaluation of some
linguistic summaries representing the time series in question. The linguistic
summaries considered are based on novel temporal protoforms, and we will
use a new method of comparison for such a type of protoforms. We will
only deal with the comparison of linguistic summaries of time series, and
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not with the comparison of the original numerical time series which is the
domain of conventional methods of the comparison of time series. That is
why a comparison between the results obtained by our approach and by
conventional methods may be not meaningful as it would concern different
entities and aspects.

The method proposed in this paper was tested on data on quotations of an
investment (mutual) fund that invests at least 50% of assets in shares listed
at the Warsaw Stock Exchange (WSE). We have used two benchmarks, the
WIG index, the benchmark for the fund given in its prospectus, and WIG20,
the index of 20 biggest and most liquid companies; cf. (http://www.gpw.pl).

The data from from January 2002 to December 2009 contain a stable,
growth, and fall periods – cf. Fig. 1, with the single share value of PLN
(Polish zloty) 12.06 in the beginning to PLN 35.82 at the end, and with PLN
9.35 as minimal and PLN 57.85 as maximal. The biggest daily increase was
PLN 2.32, while the biggest daily decrease was PLN 3.46. The values for the
benchmark (WIG and WIG20), cf. Fig. 1, measured in different units, were:
13995.24 and 1217.32 at the beginning, 39985.99 and 2388.72 at the end,
with the minimal of 12582.38 and 1039.20, and the maximal of 67568.51 and
3917.87, respectively.
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Fig. 1 Daily quotations of an investment fund in question and WIG and WIG20
indices

Comparison based on a classic protoform
We considered the linguistic summaries the mutual fund with the least truth
value of 0.8. Basically, all 15 summaries describing the mutual fund were
also the 15 summaries describing the WIG. The WIG20 index was described
by 14 summaries only, and all of them were also describing the fund. Next
we calculated the similarities between the summaries and aggregated those
values obtaining the degree of similarity of those time series. The degree of
similarity of the fund and WIG was 0.9426, and the degree of similarity of
the fund and WIG20 was 0.9386. The WIG and WIG20 time series are very
similar.

Comparison based on a temporal protoform
We used the same threshold values, i.e. 0.8 for the truth value and 0.2 for the
degree of focus, and only 3 temporal expressions: “initially” (first 3 years), “in
the middle of the considered time span” and “recently” (from the beginning
of the financial crisis).
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Table 1 Degrees of similarities for given temporal expressions

temporal expression fund–WIG similarity fund–WIG20 similarity

initially 0.9694 0.8675
in the middle 0.9027 0.9133
recently 0.9680 0.9667

We obtained that the degree of similarity of the fund and WIG is 0.9467.
and the degree of similarity of the fund and WIG20 is 0.9158 so that the
difference is even bigger than for the comparison based on a clasic protoform.
We also compared the similarities on some time spans as shown in the Table 1.

The first results are encouraging and promising. It seems that by combining
a comparison of times series based on their global characteristics by (a set of)
linguistic summaries and temporal linguistic summaries of segments (trends)
may be very human consistent and intuitively appealing, hence best serving
the purpose of decision support.

5 Concluding Remarks

We presented a new approach to the evaluation of the similarity of time series
that are characterized by linguistic summaries of their past performance. We
considered an investment (mutual) fund and its underlying benchmark(s),
and the new comparison method is based not on the comparison of the con-
secutive values or segments of the fund and its benchmark but on the com-
parison of classic and temporal linguistic summaries (i.e. based on a classic
and temporal protoform) best describing their past behavior. The degree of
similarity of two time series was basically based on the soft degree of consen-
sus and was the degree to which, for instance, for a “majority” of distinctive
time periods “most” valid summaries of the fund have the truth values sim-
ilar with a majority of similar summaries of the benchmark”. The results
obtained indicated that the new method for the evaluation of similarity gives
very human consistent and intuitively appealing results.
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19. Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series
under different granulation of describing features. In: Kryszkiewicz, M., Peters,
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Mining Gradual Dependencies Based on
Fuzzy Rank Correlation

Hyung-Won Koh and Eyke Hüllermeier

Abstract. We propose a novel framework and an algorithm for mining grad-
ual dependencies between attributes in a data set. Our approach is based on
the use of fuzzy rank correlation for measuring the strength of a dependency.
It can be seen as a unification of previous approaches to evaluating gradual
dependencies and captures both, qualitative and quantitative measures of
association as special cases.

1 Introduction

In association analysis, a widely applied data mining technique, the goal is
to find “interesting” associations in a data set, that is, dependencies between
so-called itemsets (binary attributes) A and B expressed in terms of rules
of the form “IF A THEN B”. The intended meaning of a rule of that kind
is that, if A is present in a transaction, then B is likely to be present, too.
Association rule mining has also been extended to the fuzzy case, in which
the presence of an item in a transaction is a matter of degree [7].

Another type of association rule, called gradual dependency, has been in-
troduced in [10] and was further studied in [2, 11]. As explained in Section 2,
the idea is to express dependencies, not between the presence or absence of
attributes, but between the change of the presence of fuzzy items in a transac-
tion. The contribution of this paper is a novel framework for mining gradual
dependencies that is based on the use of fuzzy rank correlation as a measure
of confidence (Section 3). This framework can be seen as a unification of pre-
vious approaches and captures both, qualitative and quantitative measures
of association (Section 4). We also propose an algorithm for mining gradual
dependencies and illustrate the method on a wine quality data set.
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2 Gradual Dependencies

We adopt a feature-based representation of transactions (data records) and
denote by A the (finite) set of underlying fuzzy attributes. Thus, each trans-
action is represented in terms of a feature vector uuu, and for each A ∈ A,
A(uuu) ∈ [0,1] indicates the degree to which uuu has feature A or, say, to which
A is present in uuu. Correspondingly, the degree of presence of a feature sub-
set A = {A1, . . . ,Am} ⊂ A, considered as a conjunction of primitive features
A1, . . . ,Am, is given by A (uuu) =*(A1(uuu),A2(uuu), . . . ,Am(uuu)), where * is a trian-
gular norm (t-norm) serving as a generalized conjunction.

Given a data set consisting of N transactions uuu1, . . . ,uuuN , a standard problem
in (fuzzy) association analysis is to find all rules A ⇀ B whose support and
confidence, defined as

supp =
N

∑
i=1

*(A (uuui),B(uuui)), conf = ∑N
i=1*(A (uuui),B(uuui))

∑N
i=1 A (uuui)

, (1)

exceed user-defined thresholds. A rule of such kind indicates the frequent
occurrence of B given A (confidence), confirmed by sufficiently many ex-
amples (support). On a logical level, the meaning of a standard association
rule A ⇀ B is captured by the material conditional. On a natural language
level, such a rule is understood as an IF–THEN construct: If the antecedent
A holds true, so does the consequent B.

As mentioned above, another type of pattern, called gradual dependency,
was introduced in [10]. Here, the idea is to express dependencies between the
direction of change of attribute values. This idea is closely connected to so-
called gradual rules in fuzzy logic. On a logical level, such rules are modeled
in terms of residuated implication operators. Semantically, a rule A ⇀ B is
often understood as “THE MORE the antecedent A is true, THE MORE
the consequent B is true”, for example “The larger an object, the heavier it
is” [8]. This interpretation is arguable, however. In fact, to satisfy a gradual
fuzzy rule in a logical sense, it is enough that A (uuu) ≤ B(uuu); thus, there is
actually no consideration of the change of an attribute value and, therefore,
no examination of a tendency.

2.1 Evaluating Gradual Dependencies

Instead of pursing a logical approach using implication operators to evaluate a
rule A ⇀ B, it was proposed in [10] to take the so-called contingency diagram
as a point of departure. A contingency diagram is a two-dimensional diagram
in which every transaction uuu defines a point (x,y) = (A (uuu),B(uuu)) ∈ [0,1]2.
Thus, for every transaction uuu, the values on the abscissa and ordinate are
given, respectively, by the degrees x = A (uuu) and y = B(uuu) to which it satisfies
the antecedent and the consequent part of a candidate rule.
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Informally speaking, a gradual dependency is then reflected by the relation-
ship between the points in the contingency diagram. In particular, a “THE
MORE ... THE MORE” relationship manifests itself in an increasing trend,
i.e., an approximate functional dependency between the x- and y-values: the
higher x, the higher y tends to be. In [10], it was therefore suggested to ana-
lyze contingency diagrams by means of techniques from statistical regression
analysis. For example, if a linear regression line with a significantly positive
slope can be fit to the data, this suggests that indeed a higher x = A (uuu) tends
to come along with a higher y = B(uuu).

A qualitative, non-parametric alternative to this numerical approach was
proposed in [2]. Roughly speaking, to evaluate a candidate rule A ⇀ B, the
authors count the number of pairs of points (x,y) and (x′,y′) in the contingency
diagram for which x < x′ and y < y′. As an advantage of this approach, note
that it is more flexible in the sense of not making any assumption about the
type of functional dependency; as opposed to this, the regression approach
implicitly assumes a linear dependency. On the other hand, since the actual
distances between the points are ignored, there is also a disadvantage, namely
a loss of information about the strength of a relationship.

The two above approaches, the numerical and the qualitative one, essen-
tially come down to looking for two types of correlation between the x- and
y-values, namely the standard Pearson correlation and the rank correlation.
The goal of this paper is to combine the advantages of both approaches. To
this end, we propose to measure the strength of a dependency in terms of
a fuzzy rank correlation measure that combines properties of both types of
correlation. As will be seen, this measure is able to capture the strength of
a tendency while remaining flexible and free of specific model assumptions.
Our proposal is related to the approach presented in [12] but additionally
offers a sound theoretical justification.

3 Fuzzy Rank Correlation

Consider n ≥ 2 paired observations {(xi,yi)}n
i=1 ⊂ (X×Y)n of two variables

X and Y , where X and Y are two linearly ordered domains; we denote xxx =
(x1,x2, . . . ,xn) and yyy = (y1,y2, . . . ,yn). The goal of a rank correlation measure
is to measure the dependence between the two variables in terms of their
tendency to increase and decrease in the same or the opposite direction. If
an increase in X tends to come along with an increase in Y , then the (rank)
correlation is positive. The other way around, the correlation is negative if
an increase in X tends to come along with a decrease in Y . If there is no
dependency of either kind, the correlation is (close to) 0.

Several rank correlation measures are defined in terms of the number C of
concordant, the number D of discordant, and the number N of tied data points.
For a given index pair (i, j) ∈ {1, . . . ,n}2, we say that (i, j) is concordant,
discordant or tied depending on whether (xi−x j)(yi−y j) is positive, negative
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or 0, respectively. A well-known example is Goodman and Kruskal’s gamma
rank correlation [9], which is defined as γ = (C−D)/(C+ D).

3.1 Fuzzy Equivalence and Order Relations

Bodenhofer and Klawonn [5] propose a fuzzy extension of the gamma coeffi-
cient based on concepts of fuzzy orderings and *-equivalence relations, where
* denotes a t-norm [3].

A fuzzy relation E : X×X → [0,1] is called fuzzy equivalence with respect
to a t-norm *, for brevity *-equivalence, if it is reflexive (E(x,x) = 1), sym-
metric (E(x,y) = E(y,x)), and *-transitive (*(E(x,y),E(y,z))≤ E(x,z)). More-
over, a fuzzy relation L : X×X → [0,1] is called fuzzy ordering with respect
to a t-norm * and a *-equivalence E, for brevity *-E-ordering, if it is E-
reflexive (E(x,y) ≤ L(x,y)), *-E-antisymmetric (*(L(x,y),L(y,x)) ≤ E(x,y)),
and *-transitive(*(L(x,y),L(y,z))≤L(x,z)). We call a *-E-ordering L strongly
complete if max(L(x,y),L(y,x)) = 1 for all x,y∈X. Finally, let R denote a strict
fuzzy ordering associated with a strongly complete *-E-ordering L; in the case
of the well-known �Lukasiewicz t-norm, defined by *(x,y) = max(0,x + y−1),
this relation can simply be taken as R(x,y) = 1−L(x,y) [4].

3.2 The Fuzzy Gamma Rank Correlation

Consider a set of paired data points {(xi,yi)}n
i=1 ⊂ (X×Y)n and assume to be

given two*-equivalences EX and EY and two strict fuzzy order relations RX and
RY. Using these relations, the concepts of concordance and discordance of data
points can be generalized as follows: Given an index pair (i, j), the degree to
which this pair is concordant, discordant, and tied is defined, respectively, as

C̃(i, j) =*(RX(xi,x j),RY(yi,y j)), (2)
D̃(i, j) =*(RX(xi,x j),RY(y j,yi)), (3)
T̃ (i, j) =⊥(EX(xi,x j),EY(yi,y j)), (4)

where * is a t-norm and ⊥ is the dual t-conorm of * (i.e. ⊥(x,y) = 1−*(1−
x,1− y)). The following equality holds for all index pairs (i, j):

C̃(i, j)+ C̃( j, i)+ D̃(i, j)+ D̃( j, i)+ T̃ (i, j) = 1.

Adopting the simple sigma-count principle to measure the cardinality of a
fuzzy set, the number of concordant and discordant pairs can be computed,
respectively, as

C̃ =
n

∑
i=1
∑
j �=i

C̃(i, j), D̃ =
n

∑
i=1
∑
j �=i

D̃(i, j).
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The fuzzy ordering-based gamma rank correlation measure γ̃, or simply“fuzzy
gamma”, is then defined as

γ̃ =
C̃− D̃

C̃ + D̃
. (5)

From the definition of γ̃, it is clear that the basic idea is to decrease the
influence of “close-to-tie” pairs (xi,yi) and (x j,y j). Such pairs, whether con-
cordant or discordant, are turned into a partial tie, and hence are ignored
to some extent. Or, stated differently, there is a smooth transition between
being concordant (discordant) and being tied; see Fig. 1.

Fig. 1 Example of a contingency diagram. The pair (uuu1,uuu2) is concordant, while
(uuu1,uuu4) is discordant. Points with a distance < r from uuu1 in one of the dimensions
(gray region) are considered as partially tied with uuu1. For example, the pair (uuu1,uuu3)
is concordant to a degree < 1.

4 Mining Gradual Dependencies

Our idea is to evaluate a gradual dependency A ⇀ B in terms of two mea-
sures, namely the number of concordant pairs, C̃, and the rank correlation γ̃
as defined in (5). Comparing this approach with the classical setting of asso-
ciation analysis, C̃ plays the role of the support of a rule, while γ̃ corresponds
to the confidence. These measures can also be nicely interpreted within the
formal framework proposed in [7], in which every observation (in our case
a pair of points (A (uuu),B(uuu)) and (A (vvv),B(vvv))) is considered, to a certain
degree, as an example of a pattern, as a counterexample, or as being irrele-
vant for the evaluation of the pattern. In our case, these degrees are given,
respectively, by the degree of concordance, the degree of discordance, and the
degree to which the pair is a tie.
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4.1 Evaluation of Candidate Rules

More formally, we define the support and confidence of a gradual dependency
A ⇀ B as follows:

supp(A ⇀ B) = C̃, conf(A ⇀ B) =
C̃− D̃

C̃ + D̃
,

where

C̃ =∑
uuui

∑
uuu j

C̃(uuui,uuuj) =∑
uuui

∑
uuu j

*(R(A (uuui),A (uuuj)) , R(B(uuui),B(uuu j))) ,

D̃ =∑
uuui

∑
uuu j

D̃(uuui,uuuj) =∑
uuui

∑
uuu j

*(R(A (uuui),A (uuuj)) , R(B(uuu j),B(uuui))) .

Considering the special case of the �Lukasiewicz t-norm, it can be verified that
E(x,y) = [1−|x− y|/r]10 is a *-equivalence on R and R(x,y) = [(x− y)/r]10 is a
strict fuzzy ordering, where [·]10 denotes the mapping a 4→ min(1,max(0,a)).
Note that these relations are parameterized by the value r ∈ (0,1]. For r → 0,
the confidence measure converges toward the classical (non-fuzzy) rank corre-
lation, whereas for r = 1, we obtain R(x,y) = x− y if x ≥ y and = 0 otherwise.
The degree of concordance (discordance) is then proportional to the Eu-
clidean distances, which means that this case is very close to the numerical
evaluation in terms of Pearson correlation.

4.2 Rule Mining and Algorithmic Issues

Due to the associativity of a t-norm, the support of a rule A ⇀ B just
corresponds to the support of the itemset I = A ∪B. In other words, to
compute a degree of concordance, there is no need to separate an itemset
into an antecedent and a consequent part of a rule. Moreover, it is easy to
see that the support measure is anti-monotone, i.e., supp(I ) ≤ supp(J ) for
J ⊂ I . Consequently, the candidate generation and pruning techniques of
the standard Apriori framework can be used to find all frequent itsemsets,
i.e., all itemsets whose support exceeds a user-defined threshold [1].

To compute the support of an itemset, we adopt some ideas that were pre-
sented in [11] for the binary case and can easily be extended to the fuzzy case.
Suppose that, for a given itemset I , the concordance degrees C̃(uuui,uuuj) are
stored in an |N|× |N| matrix. From this matrix, supp(I ) can easily be com-
puted by summing all entries. Moreover, given the matrices for two itemsets
I and J , the matrix for the union I ∪J is obtained by a simple position-
wise t-norm combination. This approach is appealing for programming lan-
guages specifically tailored to matrix computations. In general, however, the
storage requirements will be too high, especially noting that the matrices are
normally quite sparse. More efficient implementations should hence exploit
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dedicated techniques for handling sparse matrices that, amongst others, avoid
the storage of zero entries.

For each itemset I exceeding the given support threshold, a set of can-
didate rules A ⇀ B is derived by splitting I into antecedent part A and
consequent part B. For reasons of comprehensibility, we restrict ourselves to
the case |B|= 1, i.e., to consequents with a single attribute. A candidate rule
of that kind is presented to the user if it exceeds the confidence threshold.
While the concordance of the rule, C̃, is already known, this decision requires
the additional computation of the discordance D̃.

4.3 Illustration

To illustrate our method (a thorough empirical evaluation is precluded due to
space restrictions), we applied it to the Wine Quality data set from the UCI
repository, in which each data record corresponds to a red wine described
in terms of 11 numerical attributes and a quality degree between 0 and 10.
Each attribute was replaced by two fuzzy attributes small and large with
membership degrees 1 (0) and 0 (1) for the smallest and largest value, re-
spectively, and linearly interpolating in-between. Using r = 0.1, we found the
following rules exceeding a confidence threshold of 0.6:

• The more fixed acids and the more alcohol, the better the quality.
• The more volatile acids and sulfur dioxides, the lower the quality.
• The more volatile acids and the less alcohol, the lower the quality.
• The more sulfur dioxides and the less sulfates, the lower the quality.
• The more sulfur dioxides and the less alcohol, the lower the quality.
• The more sulfates and alcohol, the better the quality.

Roughly, one can observe that the amounts of volatile acids, sulfates and
alcohol seem to have the strongest influence on the quality of the wine, with
the former in a negative and the latter two in a positive manner. These results
seem to agree quite nicely with oenological theory [6].

5 Concluding Remarks

We have presented a unified framework for mining fuzzy gradual dependen-
cies, in which the strength of association between itemsets is measured in
terms of a fuzzy rank correlation coefficient. As explained above, this frame-
work generalizes previous proposals and allows for a seamless transition from
a purely qualitative to a quantitative assessment.

An important aspect to be addressed in future work concerns more efficient
algorithms and implementations for mining gradual dependencies. Due to
the need to compare pairs of observations, the inherent problem complexity
increases from linear to quadratic in the size of the data set. Thus, in order
to guarantee scalability, efficient pruning techniques are needed that avoid
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unnecessary comparisons. Since the concordance relation in rank correlation
is in direct correspondence to Pareto-dominance in preference modeling, it
might be interesting to exploit algorithms that have recently been developed
for the computation of so-called skylines (Pareto sets) of a database [13].

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets
of items in large databases. In: Proceedings of ACM SIGMOD, Washington,
D.C., USA, pp. 207–216 (1993)

2. Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An alternative
approach to discover gradual dependencies. Internat. J. Uncertain. Fuzziness
Knowledge-Based Systems 15(5), 559–570 (2007)

3. Bodenhofer, U.: Representations and constructions of similarity-based fuzzy
orderings. Fuzzy Sets Syst. 137, 113–136 (2003)

4. Bodenhofer, U., Demirci, M.: Strict fuzzy orderings with a given context of
similarity. E Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 16(2),
147–178 (2008)

5. Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis
of fuzzy orderings: Initial steps. Mathware Soft Comput. 15, 5–20 (2008)

6. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine
preferences by data mining from physicochemical properties. Decis. Support
Syst. 47(4), 547–553 (2009)
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From Probabilities to Belief Functions on
MV-Algebras

Tomáš Kroupa

Abstract. In this contribution we generalize belief functions to many-valued
events represented by elements of the finite product of standard MV-algebras.
Our definition is based on the mass assignment approach from Dempster-
Shafer theory of evidence. The generalized belief function is totally monotone
and it has Choquet integral representation w.r.t. a classical belief function.

Keywords: Belief function, State, MV-algebra, Algebra of fuzzy sets.

1 Introduction

A main aim of this paper is to study belief functions in the more general set-
ting than Boolean algebras of events. This effort is in the line with a growing
interest in the generalization of classical probability towards “many-valued”
events, such as those resulting from formulas in �Lukasiewicz infinite-valued
logic. An algebra of such many-valued events is called an MV-algebra (Defi-
nition 1). The counterpart of a probability on a Boolean algebra is a so-called
state on an MV-algebra—see [10, 14, 11] for a detailed discussion of probabil-
ity on MV-algebras including its interpretation in terms of bookmaking over
many-valued events. The recent articles [7, 6, 9] focus on more general func-
tionals on MV-algebras: namely, upper (lower) probabilities and possibility
(necessity) measures. The presented paper is thus an attempt to fill the gap
in the classification of uncertainty measures on MV-algebras.

Section 2 contains basic definitions related to MV-algebras and totally
monotone functions. In Section 3 we will recall the notion of state and the
integral representation of states (Theorem 1). The states on an MV-algebra
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of certain set functions will be of particular interest (Example 4). Section 4
is devoted to belief functions. We will restrict their discussion only to the
MV-algebra of all [0,1]-valued functions on a finite set. The case of belief
functions on a general MV-algebra is left aside for future investigations since
it involves intricate mathematical tools such as topologies on spaces of closed
sets. Hence we develop a many-valued generalization of the usual notion of
belief function in the finite setting [15]. In particular, Definition 3 of a belief
function in the many-valued framework is based on a natural generalization
of the notion of mass assignment. The properties of such belief functions
are explored through Choquet integral representation (Proposition 1). This
representation implies total monotonicity of belief functions and some other
properties (Proposition 2). Finally, we give a complete description of the
convex set of all belief functions by finding its extreme points (Proposition 3).
Some proofs are omitted due to the lack of space.

2 Preliminaries

If X is any set, then P(X) denotes the set of all subsets of X . Put P /0(X) =
P(X) \ { /0}. For any A ∈ P(X), the characteristic function of the set A is
given by 1A(x) = 1, if x ∈ A, and 1A(x) = 0, otherwise, for every x ∈ X .

A fuzzy set on X is a function X → [0,1]. A set of fuzzy sets on X can
be endowed with an algebraic structure to introduce the union, intersection,
and other possible operations with fuzzy sets. This stream of research is
based on so-called tribes of fuzzy sets parameterized by a t-norm [1]—see
[12] for the latest exposition. Another motivation for investigating algebras of
fuzzy sets stems from mathematical fuzzy logics. In this contribution we will
tacitly confine to �Lukasiewicz infinite-valued logic whose associated algebras
of truth values are so-called MV-algebras—see [3] for their in-depth study.
MV-algebras play the same role in �Lukasiewicz logic as Boolean algebras in
the classical two-valued logic.

Definition 1. An MV-algebra is an algebra 〈M,⊕,¬,0〉 with a binary opera-
tion ⊕, a unary operation ¬ and a constant 0 such that 〈M,⊕,0〉 is an abelian
monoid and the following equations hold true for every f ,g ∈ M: ¬¬ f = f ,
f ⊕¬0 = ¬0, ¬(¬ f ⊕g)⊕g = ¬(¬g⊕ f )⊕ f .

On every MV-algebra M we define 1 = ¬0, f 7 g = ¬(¬ f ⊕¬g). For any two
elements f ,g ∈ M we write f ≤ g if ¬ f ⊕ g = 1. The relation ≤ is in fact
a partial order. Further, the operations ∨,∧ defined by f ∨ g = ¬(¬ f ⊕g)⊕ g
and f ∧g =¬(¬ f ∨¬g), respectively,make the algebraic structure 〈M,∧,∨,0,1〉
into a distributive lattice with bottom element 0 and top element 1.

Example 1. The most important example of an MV-algebra is the standard
MV-algebra, which is the real unit interval [0,1] equipped with operations
f ⊕ g = min(1, f + g) and ¬ f = 1 − f . Note that we have f 7 g =
max(0, f + g−1). The operations 7,⊕ are also known under the names
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�Lukasiewicz t-norm and �Lukasiewicz t-conorm, respectively. The partial order
≤ on the MV-algebra [0,1] coincides with the usual order of reals.

Example 2. More generally, the set [0,1]X of all fuzzy sets on a set X becomes
an MV-algebra if the operations ⊕ and ¬ and the element 0 are defined
pointwise. The corresponding lattice operations ∨,∧ are then the pointwise
maximum and the pointwise minimum of two real functions, respectively.

Example 3. MV-algebras generalize Boolean algebras in the following sense.
Every (Boolean) algebra of sets is an MV-algebra in which ⊕ coincides with
∨ and 7 coincides with ∧, where ∨ and ∧ is the union and the intersection
of two sets, respectively. The operation ¬ becomes the complement of a set.

We say that an MV-algebra is semisimple if it is (isomorphic to) an MV-
algebra of continuous functions [0,1] defined on some compact Hausdorff
space. In particular, all the MV-algebras from Examples 1–3 are semisim-
ple. Semisimple MV-algebras can be viewed as many-valued counterparts of
algebras of sets.

Throughout the remainder we deal with real functions on an MV-algebra
whose successive differences of all orders are nonnegative. This property (so-
called total monotonicity) of real functions was studied already by Choquet in
his foundational work about capacities [2]. Total monotonicity is the common
property of belief functions studied in different settings such as a finite algebra
of sets [15], any algebra of sets [16] or Borel σ -algebra of the real line [4]. We
consider the difference operator with respect to the lattice operations of an
MV-algebra M. This leads to the following definition. Let b : M → R and put
Δgb( f ) = b( f )−b( f ∧g), for every f ,g ∈ M.

Definition 2. A function b : M → R is totally monotone if

Δgn· · ·Δg1b( f ) ≥ 0, for every n ≥ 1 and every f ,g1, . . . ,gn ∈ M.

It is possible to show that b is totally monotone if and only if

(i) b( f ) ≤ b(g) whenever f ≤ g, for every f ,g ∈ M,
(ii) for each n ≥ 2 and every f1, . . . , fn ∈ M:

b

(
n∨

i=1

fi

)

≥ ∑
I⊆{1,...n}

I �= /0

(−1)|I|+1 b

(
∧

i∈I

fi

)

.

3 Probabilities on MV-Algebras

A state on an MV-algebra M is a mapping s : M → [0,1] such that s(1) = 1
and s( f ⊕ g) = s( f )+ s(g), for every f ,g ∈ M with f 7 g = 0. In case that M
is an algebra of sets, then the notion of state agrees with that of finitely
additive probability measure. Properties of states are best analyzed through
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their correspondence to Borel probability measures: it turns out that every
state on a semisimple MV-algebra is integral—see [8] or [13].

Theorem 1. If s is a state on a semisimple MV-algebra M, then there exists
a uniquely determined Borel probability measure μ on the compact Hausdorff
space X such that s( f ) =

∫
f dμ, for each f ∈ M.

It is possible to show by using linearity of Lebesgue integral that s is a totally
monotone function on M.

The following example is crucial for the investigation of belief functions in
the next section. We will introduce an MV-algebra whose elements are set
functions and single out a particular class of states for later use.

Example 4. Let X be a finite nonempty set. Consider the MV-algebra
[0,1]P(X) of all functions P(X)→ [0,1]. We will deal only with those states s
on [0,1]P(X) for which s(1{ /0}) = 0. Theorem 1 says that each such state s cor-
responds to a unique finitely additive probability μ on P(P(X)) satisfying
s(q) = ∑A∈P(X) q(A)μ({A}) and μ({ /0}) = 0, for every q ∈ [0,1]P(X). The set S
of all states s on [0,1]P(X) with s(1{ /0}) = 0 can be identified with a convex
subset of the (2|X |−1)-dimensional Euclidean space. Since the correspondence
between S and the set of all probabilities μ on P(P(X)) with μ({ /0}) = 0 is
a one-to-one affine mapping, the convex set S is in fact a (2|X | −2)-simplex.
The extreme points of S are in one-to-one correspondence with the nonempty
subsets of X : every state sA, A ∈ P /0(X) such that sA(q) = q(A), for each
q ∈ [0,1]P(X), is an extreme point of S. This characterization of state space
and its extreme points is a consequence of the description of state space of
any MV-algebra—see [10] or [8].

4 BFs on Finite Product of Standard MV-Algebras

The domain of belief functions introduced in this section is limited to those
MV-algebras [0,1]X with X finite. Each such MV-algebra is in algebraic terms
just a finite product of standard MV-algebras.

We will repeat basic definitions of Dempster-Shafer theory of belief func-
tions [15]. Let X be a finite nonempty set. We say that a function β : P(X)→
[0,1] is a belief function on P(X) if there is a mapping m : P(X) → [0,1]
with m( /0) = 0 and ∑A∈P(X) m(A) = 1 such that β(A) = ∑B⊆A m(B), for every
A ∈P(X). The function m is usually called a basic assignment. Observe that
an equivalent description of a belief function β is possible by a finitely additive
probability μ : P(P(X))→ [0,1] with μ({ /0}) = 0 and such that

β(A) = μ({B ∈ P(X) | B ⊆ A}), for every A ∈ P(X). (1)

Every belief function β on P(X) is totally monotone on the lattice P(X).
A point of departure for the generalization of the notion of belief function

to an MV-algebra [0,1]X of all [0,1]-valued functions from the finite set X is the
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introduction of the following operator. Let the operator ρ : [0,1]X → [0,1]P(X)

be defined for every f ∈ [0,1]X as

ρ( f )(B) =

{
min{ f (x) | x ∈ B}, B ∈ P /0(X),
1, B = /0.

Given A,B∈P(X), observe that ρ(1A)(B) = 1 if and only if B⊆ A. This means
that ρ(1A) is the characteristic function of {B∈P(X) | B ⊆ A}. Thus, we can
rewrite (1) with a slight abuse of notation as

β(A) = μ(ρ(1A)), for every A ∈ P(X). (2)

The preceding considerations lead naturally to the following definition of
belief function.

Definition 3. Let X be a finite nonempty set. A mapping b : [0,1]X → [0,1]
is called a belief function on [0,1]X if there is a state on the MV-algebra
[0,1]P(X) such that s(1{ /0}) = 0 and b( f ) = s(ρ( f )), for every f ∈ [0,1]X . The
state s is called a state assignment.

We are going to generalize the integral representation theorem for states (The-
orem 1) to belief functions. This requires introduction of Choquet integral [5].
Although we are integrating only the functions defined on the finite set X ,
we keep the integral notation to emphasize the analogy with Theorem 1 in
this setting.

If f is a function X → [0,1] and β is a set function P(X) → [0,1] with
β( /0) = 0, then Choquet integral of f with respect to β is defined as

∫
C f dβ=

∫ 1
0 β
(

f−1([t,1])
)

dt. Since X is finite, the Choquet integral
∫
C f dβ exists and

takes the form of a finite sum. Indeed, assume the set X has n elements
x1, . . . ,xn indexed in such a way that the numbers yi = f (xi), i = 1, . . . ,n satisfy
y1 ≥ ·· · ≥ yn. Put yn+1 = 0 and Si = {x1, . . . ,xi}, i = 1, . . . ,n. Then

∫
C f dβ =

∑n
i=1(yi − yi+1)β(Si).

0

1

X

ρ( f )({x})

P(X)\
{
{x} | x ∈ X

}

ρ( f )(B)

Fig. 1 Continuation of an element of the MV-algebra [0,1]X to [0,1]P(X)
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Proposition 1. For every belief function b on [0,1]X there exists a unique
belief function β on P(X) such that b( f ) =

∫
C f dβ, f ∈ [0,1]X .

Proof. Let s be the state assignment on [0,1]P(X) corresponding to b. Ac-
cording to Example 4 there is a unique probability μ on P(P(X)) such
that s(q) =∑A∈P(X) q(A)μ({A}) and μ({ /0}) = 0, for every q ∈ [0,1]P(X). This
means that b can be expressed as

b( f ) = s(ρ( f )) = ∑
A∈P(X)

ρ( f )(A)μ({A}). (3)

For every A ∈ P /0(X) and B ∈ P(X), let εA(B) = 1, whenever A ⊆ B, and
εA(B) = 0, otherwise. Then ρ( f )(A) = min{ f (x) | x∈A}=

∫
C f dεA. The equality

(3) together with linearity of Choquet integral with respect to the integrating
set functions εA yield

b( f ) = ∑
A∈P /0(X)

μ({A})
∫
C f dεA =

∫
C f d

(

∑
A∈P /0(X)

μ({A})εA

)

.

It suffices to show that the function β=∑A∈P /0(X)μ({A})εA is a belief function
on P(X). For each B ∈ P(X),

β(B) = ∑
A∈P /0(X)

μ({A})εA(B) = ∑
A⊆B

μ({A}) = μ({A ∈ P(X) | A ⊆ B}). ��

BF b on [0,1]X BF β on P(X)

State s on [0,1]P(X) Probability μ on P(P(X))

∫
C

ρ
∫

ρ

Fig. 2 The relation between belief functions (BF), states, and probabilities

The derived Choquet integral representation coincides with the definition of
a belief function on “formulas” of �Lukasiewicz logic proposed in [9]. Due to
Proposition 1 the properties of belief functions on [0,1]X are completely deter-
mined by the properties of Choquet integral. These are the most important
among them—see [5].

Proposition 2. Let b be a belief function on [0,1]X . Then b is totally mono-
tone and for every f ,g ∈ [0,1]X :

(i) b(0) = 0, b(1) = 1
(ii) if f 7g = 0, then b( f ⊕g)≥ b( f )+ b(g)
(iii) b( f )+ b(¬ f )≤ 1
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(iv) b is a state if the state assignment s satisfies s(q) = 0 for each q ∈
[0,1]P(X) such that q(A) > 0 for some A ∈P(X) with |A|> 1

(v) b( f ) = min{s( f ) | s state on [0,1]X with s ≥ b}

The property (ii) is so-called superadditivity. The condition (iv) is a gen-
eralization of the analogous fact about belief functions on P(X): a belief
function β on P is a probability iff the corresponding basic assignment sat-
isfies m(A) = 0 for each A ∈ P(X) with |A| > 1. The last property (v) means
that b is a lower probability in the sense of [6, Definition 4.1], which enables
interpreting the belief function b in the game-theoretical framework based on
a notion of coherence.

The geometrical structure of the set of all belief functions on [0,1]X is
fully determined by the associated simplex of state assignments on [0,1]P(X).
For each A ∈ P /0(X), a belief function bA( f ) = min{ f (x) | x ∈ A}, f ∈ [0,1]X

corresponds to the state assignment sA (see Example 4). Consequently, we
obtain the following characterization of the set of all belief functions.

Proposition 3. The set of all belief functions on [0,1]X is a (2|X | −2)-simplex
whose set of extreme points is {bA | A ∈ P /0(X)}.

Observe that every bA preserves finite minima since for every f ,g ∈ [0,1]X

we have bA( f ∧ g) = bA( f ) ∧ bA(g). In general, it can be shown that each
minimum-preserving function b : [0,1]X → [0,1] with b(0) = 0,b(1) = 1 is a be-
lief function. Such functions are termed necessity measures and they were
recently investigated on formulas of finitely-valued �Lukasiewicz logic in [7].
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Soft Methods in Trend Detection

Piotr �Ladyżyński and Przemys�law Grzegorzewski

Abstract. The problem of trend detection in fuzzy time series is consid-
ered. Two fuzzy tests are suggested and their basic properties are examined.
Moreover, the general problem of fuzziness in statistical data which might be
either inherent or imposed is discussed.

Keywords: Fuzzy numbers, Fuzzy sets, Granular computing, Time series,
Trend.

1 Introduction

Trend detection is a crucial problem in many real-life problems. It appears
whenever a time series, i.e. a sequence of observations measured at successive
time moments, is considered. Investors, e.g., try to predict trend in prices
recorded on a stock market since information on its strength and direction
(i.e. whether it is increasing or decreasing) is fundamental for their financial
decisions. Trend detection is important, of course, not only in finance but for
any forecasting in economy, industry, social sciences, medicine, etc.

It seems that the notion of trend is quite obvious but in fact there is no
unique definition of that concept. Moreover, available data may be imprecise
or vague, especially if they come from humans and are expressed in a natural
language. However, even if the data are just real numbers (like prices) their
adequate interpretation leading to reliable forecasts may be neither trivial
not straightforward. Thus, although broad statistical literature devoted to
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time series analysis is easily accessible, classical methods for trend detection
are not satisfactory in numerous practical situations. This is the reason why
soft methods applied in the decision support based on time series seem to be
desirable.

The paper is organized as follows: In Sect. 2 we try do define trend and
discuss some classical method for trend detection. In Sect. 3 we consider the
problem of fuzziness which either appears in time series or is intentionally
introduced to receive granule information. Then in Sect. 4 we propose some
trend detection tests for fuzzy data and discuss their properties.

2 How to Define and Detect Trend?

Nearly everybody is intuitively familiar with the concept of trend. However,
mere intuition might be insufficient for obtaining a proper time series analysis.
Unfortunately, there is no unique definition of trend. In the Encyclopedia of
Statistical Sciences [2] we can find such definitions: “The trend corresponds to
sustained and systematic variations over a long period of time” or “The trend
is generally thought of as a smooth and slow movement over a long term”.
The same Encyclopedia states that: “the identification of trend has always
posed a serious statistical problem. The problem is not one of mathematical
or analytical complexity but of conceptual complexity” (see [2]).

Despite general problems with the precise meaning of trend and its identi-
fication several statistical procedures for trend detection have been proposed
(e.g. see [1]). Unfortunately, they often require strong assumptions. Tests
based on linear regression can identify only linear trends; t-tests require i.i.d.
observations from the normal distribution, etc. Such situation is typical e.g.
in Statistical Process Control where we usually assume that the process is
normally distributed (see, e.g., [5, 9]). To avoid specific assumptions on the
underlying distribution nonparametric tests are often used. Many procedures
developed for detecting trends are based on runs like the test based on the
length of the longest run, test based on the shorter of the longest run, test
based on the longer of the longest run, test based on the number of runs or
test based on the total number of runs of signs (see [3, 4]). Other popular
distribution-free tests for detecting trend are the Spearman rank correlation
test and the Mann-Kendall test (see [8]).

Another approach to trend detection based on the averaging methods usu-
ally used for time series smoothing and prediction was proposed in [7]. Let
(Xi)n+1

i=1 denote a sequence of observations and let

mi =
Xi+1−Xi

Xi
, (1)

denote the rate of returns (t = 1, . . . ,n). A test statistic of the first test is
given by

T (arith) = ∑n
i=1 mi −nm
σ
√

n
, (2)
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where m = Emi, i = 2, . . . ,n. If the rate of returns mi are i.i.d. random variables
(which is a common assumption for the Black-Scholes market) and there is
no trend in data then T (aryt) is asymptotically normal.

We can also use the exponential smoothing for trend detection, i.e.

m(exp)
i+1 = λmi+1 +(1−λ )m(exp)

i , (3)

where λ ∈ [0,1] is a smoothing parameter. The greater values of λ the lesser
weights of the observations from the past and greater weights of the recent
observations. A test statistic of the second test is then defined as follows:

T (exp) = m(exp)
n . (4)

The distribution of statistics (4) under null hypothesis of no trend is calcu-
lated numerically using the Monte-Carlo method.

3 Time Series and Fuzziness

All statistical methods mentioned above were constructed for the real time se-
ries, i.e. observed variables that assume precise real values. However, in many
real-life situations observations are not precise. There are many reasons for
vagueness in data. Suppose we would like to know whether given star becomes
more active, or whether the pollution in given area increases, or the water level
of the river raises significantly. In all such situations imprecise measuring in-
struments and environmental interferences causes that measurements also be-
come imprecise. If we consider, e.g., the possible green mass growth at given
afforested territory then our observations are imprecise by definition since we
do not have any precise instrument and all we make very rough estimates. Such
situation is also typical when the data come directly from respondents/users,
i.e. from persons that express their opinions or perceptions using natural lan-
guage which abounds in vagueness. In all such cases fuzzy set theory might be
useful both for modelling and processing imprecise data.

However, sometimes too precise data may also be, paradoxically, not very
convenient to grasp the heart of the matter. Consider a following example.
Example 1. We have to program an automatic trading system which would
buy and sell shares on a stock market without any human supervision. Sup-
pose that signals generated by the system are connected with trends on the
market: we would like to buy in the presence of the increasing trend and con-
versely, we would like to sell our shares when the trend of the prices becomes
decreasing. Of course, the operation rules of a true system are much more
complicated and such crude requirement may be considered only as one of
many criteria for opening and closing positions.

The majority of the long and middle term trading methods utilize the end
of the day price for calculations. One can use these very prices to identify
possible trend in data but then he will loose the structure and the essential
behavior of prices of analyzed share during the whole day. Suppose that we
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register a share price every 15 minutes during the trading session. Often some
moments in the session may be more important for predicting the future price
than the others. For example, the prices on the Warsaw Stock Exchange can
drastically change after 3:30 p.m. when stock exchanges in US open and polish
investors are affected by the situation on US market. Let (Yi)31

i=1 represent
prices of a share collected during day session from 9:00 a.m. to 4:30 p.m. every
15 minutes. Suppose that experts claim that prices collected after 3:30 p.m.
are three times more valuable for price prediction than observations recorded
in other moments. However, experts suggested that the next day price also
depends on time structure of prices from the last day. For example, if one day
between 9:00 a.m. and 12:00 a.m. our share costed 100 USD, between 12:00
a.m. and 1:00 p.m. - 107 USD, while between 1:00 p.m. and 4:30 p.m. - 100
USD, the next day price will be rather 100 USD than 107 USD. Suppose we
want to combine all the prices Yi recorded during this day into a single fuzzy
set which might be considered as a kind of information granule containing not
only observational data but also some expert knowledge and other a priori
data. To perform this transformation we may utilize the following algorithm:

1. Duplicate two times last five observations (Yi)31
i=27 - the prices registered

from 3:30 to 4:30 p.m. Now we have 41 observations, where (Yi)41
i=1. Y27 =

Y32 = Y37, Y28 = Y33 = Y38,..., Y21 = Y36 = Y41.
2. A membership function μ : R→ [0,1] of a fuzzy granule corresponding to

a single day is given by:

μ(y) =
1

supy∈R f̂ (y)
f̂ (y), (5)

where f̂ (y) is estimated from (Yi)n
i=1, n = 41,

f̂ (y) =
1

nhn

n

∑
i=1

K

(
y−Yi

hn

)
, (6)

and where K is a positive kernel (e.g. the gaussian density function).

The suggested transformation of daily prices of GANT (Warsaw Stock Ex-
change) share into fuzzy price is shown in Fig. 1. Of course this algorithm is
only an example and everybody can construct his own algorithm according
to his experiences and knowledge in stock trading. Moreover, if we need not
arbitrary fuzzy numbers but fuzzy objects with some regular membership
function, e.g. fuzzy numbers or particular type of fuzzy numbers, we may
enrich the algorithm adding all necessary requirements.

Whatever is the source of vagueness in data we may use fuzzy sets for mod-
elling imprecise time series. And despite of the nature of imprecision we need
statistical tools for time series analysis and especially for trend detection. In
the next section we suggest such statistical procedures for detecting trend in
fuzzy data and discuss some basic properties of these utilities.
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Fig. 1 Transformation of the daily prices into a fuzzy granule.

4 Testing Trend with Fuzzy Data

Suppose that a random experiment is described as usual by a probability
space (Ω ,A,P), where Ω is a set of all possible outcomes of the experiment,
A is a σ−algebra of subsets of Ω (the set of all possible events) and P is
a probability measure. A fuzzy random variable (f.r.v.) is a mapping X :
Ω → FN(R), where FN(R) is a family of fuzzy numbers, which satisfies the
following properties:

i) {X (α,ω) : α ∈ (0,1]} is a set representation of X (ω) for all ω ∈Ω ,
ii) for each α ∈ (0,1] both X L

α = X L
α (ω) = infXα(ω) and X U

α = X U
α (ω) =

supXα (ω), are usual real-valued random variables on (Ω ,A,P).

Thus a f.r.v. X is considered as a perception of an unknown usual random
variable X :Ω →R, called an original of X (if only vague data are available it
is impossible to show which of the possible originals is the true one). Similarly
n-dimensional fuzzy random sample X1, . . . ,Xn may be treated as a fuzzy
perception of the usual random sample X1, . . . ,Xn (see [6]).

Let U and V denote two fuzzy numbers with α-cuts: Uα = {x∈R : μU(x)≥
α} =

[
UL
α ,UU

α
]
, Vα = {x ∈ R : μV (x) ≥ α} =

[
V L
α ,VU

α
]
, respectively. Below we

use a following distance between fuzzy numbers U and V :

D2
K(U,V ) =

∫ 1

0

(
UU
α −VU

α
)2

dα+
∫ 1

0

(
UL
α −V L

α
)2

dα. (7)

Suppose we consider a fuzzy sample (Xi)n+1
i=1 representing a fuzzy time series

under study. To generalize methods for a trend detection described above
into a fuzzy context let us firstly compute a fuzzy rate of return
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m̃i =
Xi+1 −Xi

Xi
, (8)

where i = 1, . . .n, and division is performed according to fuzzy arithmetic. Let
m denote a fuzzy average, i.e. M̃ = 1

n ∑
n
i=1 m̃i. Then we estimate a variance of

these fuzzy rates of return by

S2
m̃ = 1

n−1

n

∑
i=1

D2
K(m̃i,M̃). (9)

By 0̃ we denote a fuzzy zero, i.e. a fuzzy number with the following α-cuts:

0̃α = [0−Sm̃(1−α),0 + Sm̃(1−α)]. (10)

If the arithmetic mean of the fuzzy rate of return is close to zero, trend does
not occur. Thus we compare obtained fuzzy arithmetic mean with a fuzzy
zero using the appropriate metric. Therefore, we will test the null hypothesis
H0 : no trend, against alternative H1 : trend exists. Then the test statistics is
given by:

T (arith)
f uzz = DK

(
M̃, 0̃
)

. (11)

Assuming the significance level δ we reject H0 if statistics (11) belongs into
a critical region

Kα = (−∞,c δ
2
]∪ [c1− δ

2
,+∞), (12)

where c δ
2

and c1− δ
2

are the quantiles of order δ
2 and 1− δ

2 , respectively, of
statistic (11) under H0, which are calculated by the Monte-Carlo method.

In a similar way we may generalize the test based on exponential smoothing
for fuzzy data. Now, assuming the smoothing parameter λ ∈ [0,1] we obtain
a following test statistic:

T (exp)
f uzz = DK

(
m̃(exp)

n , 0̃
)

, (13)

where
m̃(exp)

n = λ m̃n +(1−λ )m̃(exp)
n−1 . (14)

Here again the critical region is obtained by the Monte-Carlo method. Please
note, that now to get a fuzzy zero (10) we substitute a fuzzy mean M̃ in the
fuzzy variance (9) by (14).

To examine the power of the two fuzzy test proposed above we performed
a simulation study. Assuming the Black-Scholes model we generated classical
trajectories Xt = X0exp

((
r− σ2

2

)
t +σWt

)
, where r ∈R,σ > 0 which were then

fuzzified. Situation with r = 0 corresponds to trajectory without trend. Hence
changing a value of r we may model trajectories with arbitrary trend. Some
empirical results showing the comparison of the power for our two tests are
given in Fig. 2.
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Fig. 2 The power of the fuzzy arithmetic mean test vs. fuzzy exponential test.

One may conclude that the power of the fuzzy arithmetic mean test dom-
inates the fuzzy exponential test. This result is not surprising since the same
situation happens for crisp data (see [7]).

During our simulation experiment we have also examined other distances
than (7). In particular, we have considered some weighted metrics like

D2
K′(U,V ) =

∫ 1

0
α3(UU

α −VU
α
)2

dα+
∫ 1

0
α3(UL

α −V L
α
)2

dα. (15)

For this very metric we have observed an interesting result. Namely, the
comparison of the power of the fuzzy arithmetic mean test with the classical
arithmetic mean test performed on the defuzzified data (by the popular center
of gravity method) showed that sometimes it is much better to process fuzzy
data than to defuzzify them too early (see Fig.3).

Fig. 3 The comparison of fuzzy test and appropriate classical test applied on
defuzzified data.
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5 Conclusions

In this paper we have proposed two trend detection tests for fuzzy data. Sim-
ulation study shows that the so called fuzzy arithmetic mean test is more
powerful than the second one. Of course, the suggested solution is just the
example how we could handle with imprecise time series but it does not de-
termine the hole problem and many questions still remain open. Although
trend detection is a crucial point of any time series analysis some other prob-
lems, like analysis of the seasonal components and reliable forecasting based
on fuzzy data is also of interest.
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Linguistic Decision Trees for Fusing Tidal
Surge Forecasting Models

Jonathan Lawry and Hongmei He

Abstract. The use of linguistic decision trees as represented within the la-
bel semantics framework, is proposed for the fusion of multiple forecasting
models. The learning algorithm LID3 is applied to infer a decision tree with
branches representing a set of rules each identifying a probability distribution
on the available models and where the constraints in each rule are generated
from fuzzy labels describing the relevant input attributes. The resulting ag-
gregated forecast for a given vector of input attributes x, is then taken to
be the mean value of the forecasts from each model relative to a probability
distribution on models conditional on x as determined from the linguistic
decision tree. The potential of this approach is then investigated through its
application to the fusion of tidal surge forecasting models for the east coast
of the UK.

1 Introduction

In environmental modelling there are often multiple forecasting models avail-
able for a given problem. Typically the performance of these models will vary
as environmental conditions change, resulting in different models giving best
predictive accuracy for different input values. A number of different model
fusion strategies have been studied in the literature. For example, Winkler
and Makridakis [9] proposed a weighted average combination of different time
series forecasting models where the weights were based on the relative predic-
tive performance of each model on a training data set. While this approach
can be effective, the weights are not dependent on input values and conse-
quently cannot capture those cases where different models perform best given
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values in different regions of the input space. Abrahart and See [1] carried
out a study of techniques for model fusion, including neural networks and
fuzzy methods, applied to river level and discharge forecasting on the River
Ouse and Upper River Wye catchments. Inputs to the fusion algorithms in-
clude current discharge or flow and current model accuracy for each model.
Results suggested that a combined probabilistic fuzzy model performed well
and indeed gave the best fusion results on the River Ouse data.

In this paper we propose the use of linguistic decision trees based on label
semantics [7] for model fusion. These tree structured rules integrate fuzzy
description labels and probabilistic uncertainty in a single coherent frame-
work (i.e label semantics [4], [5]). As such they naturally generate a weighted
probabilistic aggregation of forecasting models, while also providing a trans-
parent rule-base according to which decisions can be traced and explained.
The potential of this approach will be explored by application to the fusion
of tidal surge forecasting models for the east coast of the UK. Accurate fore-
casting of surges in this area is vital in order to provide advanced warning of
high water levels in the Thames, so that the Thames Barrier can be closed
to protect London from flooding.

2 Linguistic Decision Trees

Linguistic decision trees (LDT) [7] are a tree-structured classification model
based on label semantics. The information heuristics used for building the
tree are modified from Quinlan’s ID3 [8] in accordance with the label seman-
tics framework. The nodes of a LDT are linguistic descriptions of variables
and leaves are sets of appropriate labels. In such decision trees, the proba-
bility estimates for branches across the whole tree is used for classification,
instead of the majority class of the single branch into which the examples
fall. Linguistic expressions such as small, medium and large are used to learn
from data and build a linguistic decision tree guided by information based
heuristics. For each branch, instead of labeling it with a certain class (such
as positive or negative in binary classification) the probability of members of
this branch belonging to a particular class is evaluated from a given training
dataset. Unlabeled data is then classified by using probability estimation of
classes across the whole decision tree.

2.1 Brief Overview of Label Semantics

Label semantics [4] is a methodology for using linguistic expressions or fuzzy
labels to describe (typically numerical) values. Label semantics proposes two
fundamental and inter-related measures of the appropriateness of labels as
descriptions of an object or value. We begin by identifying a finite set of basic
labels LA = {L1, . . . ,Ln} for describing elements from the underlying universe
Ω . These are building blocks for more complex compound expressions which
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can then also be used as descriptors as follows. A countably infinite set of
expressions LE can be generated through recursive applications of logical
connectives to the basic labels in LA. The measure of appropriateness of an
expression θ ∈ LE as a description of instance x is denoted by μθ (x) and
quantifies an agent’s subjective probability that θ can be appropriately used
to describe x. From an alternative perspective, when faced with describing
instance x, an agent may consider each label in LA and attempt to identify
the subset of labels that are appropriate to use. Let this complete set of
appropriate labels for x be denote by Dx. Uncertainty concerning Dx is then
represented by a mass function mx defined on sets of labels.

Definition 1. Mass Function on Labels
∀x ∈ Ω a mass function on labels is a function mx : 2LA → [0,1] such that
∑S⊆LA mx (S) = 1

Note that there is no requirement for the mass associated with the empty set
to be zero. Instead, mx( /0) quantifies the agent’s belief that none of the labels
are appropriate to describe x.

Appropriateness measures for labels are then related to mass functions ac-
cording to the rule that μLi(x), denoting the appropriateness of Li to describe
x, corresponds to the sum of mx over those subsets of labels containing Li.

Definition 2. Appropriateness of Labels

∀x ∈Ω ,∀Li ∈ LA, μLi(x) = ∑
F⊆LA:Li∈F

mx(F)

In many cases we assume that for any x ∈ Ω the subsets of labels for which
mx is non-zero forms a nested sequence. This is referred to as the consonance
assumption and is particularly justifiable in cases where the appropriateness
of labels is judged based on a single shared criterion. See [4] or [5] for a more
detailed justification of this assumption. Making the consonance assumption
means that mx can be determined directly from the values for μLi(x) if these
are known for the basic labels Li ∈ LA. Specifically, given appropriateness
measures μL1(x), . . . ,μLn(x) ordered such that μLi(x)≥ μLi+1(x) for i = 1, . . . ,n−
1 then assuming consonance the mass function mx is given by:

mx ({L1, . . . ,Ln}) = μLn(x)
mx ({L1, . . . ,Li}) = μLi(x)− μLi+1(x) : i = 1, . . . ,n−1

and mx ( /0) = 1− μL1(x)

There are clear links between label semantics and other uncertainty theories
including probability theory, Dempster-Shafer theory, and Possibility Theory.
More details of these connections can be found in [5].
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2.2 The LID3 Algorithm

Consider a classification problem where examples are to be classified on the
basis of attributes x = 〈x1, . . . ,xm〉 as one of k classes C1, . . . ,Ck. Here we assume
that xi ∈ Ωi = [ai,bi] where ai < bi ∈ R and that LAi = {Li,1, . . . ,Li,ni} is a
predefined set of labels for describing the elements of Ωi. Furthermore, we
assume that Li, j is defined by an appropriateness measure μLi, j : Ωi → [0,1].
In this context a linguistic decision tree is a probabilistic tree structured
classifier with nodes corresponding to the description sets Dxi for attributes
x1, . . . ,xm. The branches of the tree are then generated by the possible values of
Dxi corresponding to those subsets of LAi which have non-zero mass function
value for some element of Ωi. More formally, the possible values of node Dxi

are the elements of the set Fi defined by:

Fi = {F ⊆ LAi : ∃x ∈Ωi, mx(F) > 0}

Consequently a branch B of a linguistic decision tree is a conjunction of the
form:

(Dxi1
= Fi1)∧ (Dxi2

= Fi2)∧ . . .∧ (Dxid
= Fid )

where 1 ≤ d ≤m i j �= ir for j �= r and Fij ∈Fi j for j = 1, . . . ,d. Associated with
each branch B there is a conditional probability distribution on the classes
P(C1|B), . . . ,P(Ck|B). Then given an instantiation of the attribute vector x
Jeffrey’s rule is applied across the branches B of the decision tree, to obtain
a probability distribution on classes conditional on x as follows:

P(Cl |x) =∑
B

P(Cl |B)P(B|x) where P(B|x) =
d

∏
j=1

mxi j
(Fij)

The LID3 algorithm is an extension of the well-known ID3 algorithm in-
troduced by Quinlan [8]. LID3 infers a linguistic decision tree from a training
database DB of examples each corresponding to a vector of attribute values
together with their associated class:

DB = {
〈

x(r),C(r)
〉

: r = 1, . . . ,N}

Using this database LID3 applies the standard ID3 entropy search heuristic
to identify the most informative attributes but where the relevant branch and
class probabilities are determined by:

P(B) =
1
N

N

∑
r=1

P(B|x(r)) and P(Cl |B) =
∑r:C(r)=Cl

P(B|x(r))

∑N
r=1 P(B|x(r))
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Fig. 1 Surface plot of the function z = sin(x×y) across a regular grid
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Fig. 3 Fused function obtained from
the linguistic decision tree

3 Model Fusion

Consider a regression problem where the aim is to identify a functional map-
ping from Ω1× . . .×Ωm into Ωm+1

1 which is consistent with data relating to
an underlying functional mapping g :Ω1× . . .×Ωm →Ωm+1. Let DBR denote
a regression training database of the form:

DBR = {(x(r),x(r)
m+1) : r = 1, . . . ,N} where x(r)

m+1 = g(x(r))

Now suppose we have k functions fl :Ω1× . . .×Ωm →Ωm+1 : l = 1, . . .k approx-
imating g. Here we investigate the possibility of using linguistic decision trees
to fuse (or aggregate) these functions. To do so we generate a classification
database DBC from DBR so that:

DBC = {(x(r), f (r)) : r = 1, . . . ,N} where

f (r) = argmin{| f (x(r))− x(r)
m+1| : f ∈ { f1, . . . , fk}}

1 Here we assume Ωi = [ai,bi] where ai < bi ∈ R for i = 1, . . . ,m+1.
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Applying LID3 to DBC then generates a linguistic decision tree from which
we can determine a conditional probability P( fl |x) for l = 1, . . . ,k and for any
instantiation of the attribute vector x. We can then generate an aggregated
approximation of g by taking the mean value of fl(x) with respect to this
distribution so that:

f̂ (x) =
k

∑
l=1

fl(x)P( fl |x)

Example 1. In this example a database of 529 points was generated describing
a surface defined according to the equation z = sin(x× y) where x,y ∈ [0,3] as
shown in figure 1. This database was then partitioned into 6 clusters C1, . . . ,C6

according to 0≤ xy < π
4 , π4 ≤ xy < π

2 , π2 ≤ xy < π , π ≤ xy < 3π
2 , 3π

2 ≤ xy < 5π
2 and

5π
2 ≤ xy < 7π

2 respectively. Least squares linear regression was then applied to
Ci to generate linear function fi for i = 1, . . . ,6. Using these different models a
classification database was generated as above and LID3 was applied to infer
a linguistic decision tree. Figure 1 shows the different functions fi applied in
a piecewise manner to each set Ci, while figure 2 shows the resulting fused
approximation obtained from the linguistic decision tree.

4 Tidal Surge Forecasting

Decisions regarding the closure of the Thames Barrier in London are based,
in part, on forecasts of sea level in the Thames Estuary. Sea level is mea-
sured by water height at some fixed point and is decomposed into two main
components:

• The astronomical tide, classified as the periodic movements of the ocean
with a coherent amplitude, that is dependent on the astronomical effects
of the sun, moon, and their position with respect to the earth.

• The meteorological effects produced by weather conditions.

In our study we used data from tidal gauges for the years 1997-2001. These
gauges form part of the UK National Tidal Gauge Network which records
sea level at 44 different locations around the UK coast. The data has been
preprocessed by the British Oceanographic Data Centre (BODC) in order to,
for example, remove null or improbable values. Figure 4 shows a time series
plot for the Sheerness gauge between 2000 and 2001 with data recorded at 30
minute intervals. In addition, we have generated residual data by subtracting
the tidal component, which can be accurately estimated using harmonic tidal
prediction methods [3]. The data was then divided into a training set (years
1997 to 1999) and a test set (years 2000 to 2001). In this paper we focus on the
problem of forecasting the residual at Sheerness 8 hours ahead, denoted yt+8

based on current and previous residual values further up the coast at Whitby,
denoted xt and xt−0.5. Consequently we simplifying the forecasting problem
by assuming an underlying function g according to which yt = g(xt ,xt−0.5).
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Fig. 4 Sea level data from the tidal gauge at Sheerness between 2000 and 2001
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Model fusion is applied to this forecasting problem by generating a number
of different linear approximations to g and then aggregating these by apply-
ing LID3 to learn a linguistic decision tree as outlined in section 3. In the
first instance the training data was divided into three subsets based on the
residual value at Sheerness with C1, C2 and C3 corresponding to those triples
〈xt−0.5,xt ,yt+8〉 where yt+8 ≤−0.39,−0.39 < yt+8 ≤ 0.52 and 0.52 < yt+8 respec-
tively. Least squares linear regression was then employed to infer functions
f1, f2 and f3 from C1, C2 and C3 respectively. The intuitive idea is that these
three functions provide different linear approximations of g for different lev-
els of the residual at Sheerness. A classification database was then generated
form the training data as described in section three and LID3 was applied to
infer a linguistic decision tree to fuse these three function. On the test set the
fused model gave a Mean Squared Error (MSE) of 0.025249m2 and a maximal
error value of 1.4533m. Figure 5 provides a graphical representation of the
accuracy of this fused model in the form of a scatter plot of actual against
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forecast residual values for the test data. Here perfect accuracy is represented
by the y = x line on the plot. This result is comparable with, and indeed a
small improvement on, a previous study involving this data in which a fuzzy
Bayesian approach gave a MSE of 0.026m2 [6].

In a second experiment we applied k-plane clustering [2] as an unsupervised
learning algorithm to learn 10 clusters with associated linear functions. Again
by generating a classification database for the training data and applying
LID3 we learnt a linguistic decision tree to fuse these functions. This resulted
in a MSE of 0.0255m2 and a maximal error of 1.443m. Figure 6 shows the
scatter plot of actual against forecast residual values for the linguistic decision
tree fusion of the 10 k-plane hyperplanes.

5 Conclusions

A model fusion method has been proposed based on linguistic decision trees
and the LID3 learning algorithm. This approach has been successfully applied
to the forecasting of the residuals for tidal surge data from Whitby to Sheer-
ness in the UK. For this problem decision trees where successfully applied in
order to aggregate linear models resulting in an improvement on an earlier
fuzzy Bayesian forecasting model [6].
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Set-Valued Square Integrable Martingales
and Stochastic Integral

Shoumei Li

Abstract. In this paper, we firstly introduce the concept of set-valued square
integrable martingales. Secondly, we give the definition of stochastic integral
of a stochastic process with respect to a set-valued square integrable mar-
tingale, and then prove the representation theorem of this kind of integral
processes. Finally, we show that the stochastic integral process is a set-valued
sub-martingale.

1 Introduction

In classical stochastic analysis, stochastic integral is one of the most impor-
tant concepts. Stochastic integrals mean the integrals of a stochastic process
with respect to firstly a Brownian motion, then a square integrable martin-
gale, and more general a semimartingale. They are many important applica-
tions such as optimal control (e.g. [31]), mathematical finance (e.g. [13]) and
so on. Recently, the theory of set-valued stochastic processes has been devel-
oped quickly due to the measurements of various uncertainties arising from
not only the randomness but also from the impreciseness in some situations.

Concerning set-valued stochastic analysis, it may relate two kind integrals:
stochastic integral of a set-valued stochastic process with respect to some kind
of single-valued processes (e.g. a Brownian motion), and stochastic integral
of a single-valued process with respect to some kind of set-valued processes
(e.g. a set-valued martingale). For the first type, Kisielewicz introduced the
definition of the stochastic integral of a set-valued stochastic process with
respect to a Brownian motion in [15]. More related works have [1], [2], [8],
[14]—[19], [27], [38], [41] and so on. There are also some work of Lebesgue
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integral of a set-valued stochastic process with respect to time t, readers may
refer to [20], [21], [39] and their related references.

Concerning set-valued martingales, it was first introduced by Van Cutsem
in the case of convex compact values in [7]. Hiai and Umegaki gave more
general definition of conditional expectation of a set-valued random variable
in [10] so that the theory of set-valued martingales could be developed deeply
and extensively. There are many works in this area, for instances, [4], [9]—
[12], [23]—[29], [32]—[34], [37], [40], [41].

But there are no so many works on stochastic integral of a stochastic
process with respect to a set-valued martingale. So far, we only find the
reference [35]. In their paper, Qi and Wang gave a definition of integral of a
stochastic process with respect to a set-valued square integrable martingale by
essential convex closure. But they even did not discuss whether the result of
integral is measurable or not. So it is difficult to have further applications. On
the other hand, it is necessary to develop this kind of theory. For example, it is
well-known that the method of equivalent martingale measure is play an very
important role in option pricing. But if the financial market is not complete,
the equivalent martingale measures are not unique in the dynamic pricing
model. In this paper, we shall give a new definition of the stochastic integral
of a classical stochastic process with respect to a set-valued martingale so
that the result of the stochastic integral process is still measurable. Then we
shall discuss some properties and a representation theorem of the stochastic
integral processes.

We organize our paper as follows: in Section 2, we shall introduce some
necessary notations, definitions and results about set-valued stochastic pro-
cesses. In Section 3, we shall give a new definition of stochastic integral of a
predictable stochastic process with respect to a set-valued square integrable
martingale, prove the representation theorem and discuss some properties of
set-valued stochastic integral, especially set-valued submartingale property.
Since the page limitation, we have to omit the proofs of results. If you are
interested in the proofs, please refer to our paper [22].

2 Set-Valued Martingales and Square Integrable
Matingales

Throughout this paper, assume that R is the set of all real numbers,
I = [0,T ], N is the set of all natural numbers, R

d is the d-dimensional Eu-
clidean space with usual norm ‖ · ‖, B(E) is the Borel σ -field of the metric
space E, (Ω ,A ,(At)t∈I ,μ) is a complete filtration probability space, the σ -
field filtration {At : t ∈ I} satisfies the usual conditions (i.e. complete, non-
decreasing and right continuous). Let Lp[Ω ,At ,μ ;Rd ] be the set of R

d-valued
At-measurable random variables ξ with E[‖ξ‖p] < ∞ (1 ≤ p < ∞), and write

‖ξ‖p = [E[‖ξ‖p]]
1
p . When At is replaced by A , Lp[Ω ,A ,μ ;Rd ] can be written

as Lp[Ω ;Rd ] for short.
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Now we review notations and concepts of set-valued stochastic processes.
Assume that K(Rd) is the family of all nonempty closed subsets of R

d , and
Kc(Rd) is the family of all nonempty closed convex subsets of R

d . For any
x ∈R

d , A is a nonempty subset of R
d , define the distance between x and A

d(x,A) = inf
y∈A

‖x− y‖.

The Hausdorff metric for two bounded sets A and B is defined as

dH(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)},

and define ‖A‖K = dH({0},A) = supa∈A ‖a‖.
If F : (Ω ,A ) → K(Rd) satisfies that for any open set O ⊆ R

d , F−1(O) =
{ω ∈Ω : F(ω)∩O �= /0}∈A , then F is called (A -) measurable (or a set-valued
random variable, random set, multivalued function (e.g. [5], [10], [26]). If F
is a sub-σ -field of A , Let

Sp
F(F ) = { f ∈ Lp[Ω ,F ,μ ;Rd ] : f (ω) ∈ F(ω) a.e. ω ∈Ω}.

When F = A , it is written Sp
F for short.

A set-valued random variable F : Ω → K(Rd) is called integrable if S1
F is

non-empty. F is Lp-bounded if and only if the real-valued random variable
‖F‖K ∈ Lp[Ω ;R]. If F is L1-bounded, then F is also called integrably bounded.
Let Lp[Ω , F ,μ ;K(Rd)] be the family of all K(Rd)-valued Lp-bounded
F -measurable random variables. Similarly, we have notations Lp[Ω ,F ,μ ;
Kc(Rd)].

Definition 1. A non-empty set Γ ⊆ Lp[Ω ,F ,μ ;Rd ] is called decomposable
with respect to the sub-σ -field F , if for any f ,g ∈ Γ , any U ∈ F , we have
IU f + IUcg ∈ Γ .

Firstly, we know that for any set-valued random variable F ∈ Lp[Ω ,F ,μ ;
K(Rd)], Sp

F(F ) is decomposable with respect to F . We also have the following
opposite result.

Theorem 1 (cf. [10] or [26]). Let Γ be a nonempty closed subset of
Lp[Ω ,F ,μ ; R

d ]. Then there exists an F -measurable set-valued random vari-
able F such that Γ = Sp

F(F ) if and only if Γ is decomposable with respect to
F . Furthermore, Γ is bounded if and only if F is integrably bounded, and Γ
is convex if and only if F is convex.

F = {F(t) : t ∈ I} is called a set-valued stochastic process if F : I×Ω →K(Rd)
is a set-valued function such that for any fixed t ∈ I, F(t, ·) is a set-valued
random variable. A set-valued process F = {F(t) : t ∈ I} is called adapted with
respect to the filtration {At : t ∈ I}, if F(t) is measurable with respect to At

for each t ∈ I, and denoted by {F(t),At : t ∈ I}.
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Now we start to recall set-valued martingale and set-valued square inte-
grable martingale.

Definition 2. A set-valued stochastic process F = {F(t),At : t ∈ I} is called a
set-valued martingale if

(i) F = {F(t),At : t ∈ I} is adapted and for any t ∈ I, F(t) is L1-bounded;
(ii) for any t ≥ s, t,s ∈ I, E[F(t)|As] = F(s), a.e.(μ).

Definition 3. An adapted R
d-valued stochastic process f = { f (t),At : t ∈ I}

is called an Lp-martingale selection of F = {F(t),At : t ∈ I} if
(1) For any t ∈ I, f (t) ∈ Lp[Ω ,At ,μ ;Rd ], f (t,ω) ∈ F(t,ω), a.e.;
(2) { f (t),At : t ∈ I} is a martingale.

Definition 4. A set-valued martingale F = {F(t),At : t ∈ I} is called square
integrable, if sup

t∈I
E[‖F(t)‖2

K] < ∞.

Note that a set-valued square integrable martingale is L2-bounded. Further-
more, if A is μ-separable, we can prove the following Theorem.

Theorem 2. Assume that F = {F(t),At : t ∈ I} is a set-valued square inte-
grable martingale taking values in Kc(Rd), and it is lower semicontinuous,
then there exists a continuous square integrable martingale selection of F.

Concerning more definitions and more results of the conditional expectations
of set-valued random variables and set-valued martingales, readers may refer
to the excellent paper [10] or the books [26] and [41].

Next we shall discuss stochastic integral of a stochastic process with re-
spect to a set-valued square integrable martingale. We assume that A is
μ-separable, F = {F(t),At : t ∈ I} is a set-valued square integrable martin-
gale taking values in Kc(Rd) and CMS(F) �= /0, which CMS(F) is the set
of R

d-valued continuous square integrable martingale selections of F , in the
following section.

3 Stochastic Integral a Stochastic Process with Respect
to a Set-Valued Square Integrable Martingale

Definition 5. Assume that F = {F(t),At : t ∈ I} is a set-valued square in-
tegrable martingale and F(0) = 0 a.e., g is a predictable bounded stochastic
process. For any ω ∈Ω , t ∈ I, (A)

∫ t
0 g(s, ω)dF(s, ω) is defined as the set

{∫ t

0
g(s, ω)d f (s, ω) : f = { f (t) : t ∈ I} ∈ CMS(F)

}
,

(A)
∫ t

0 g(s, ω)dF(s, ω) is said to be the Aumann type stochastic integral of g
with respect to the set-valued square integrable martingale F.
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Theorem 3. Assume that F = {F(t),At : t ∈ I} is a convex set-valued square
integrable martingale, g is a predictable bounded stochastic process, and for
any t ∈ I and ω ∈Ω , Γ (t,ω) =: (A)

∫ t
0 g(s,ω)dF(s,ω) defined above. Then for

any t ∈ I, Γ (t) =:
∫ t

0 g(s)dF(s) is a non-empty convex subset of L2[Ω ,At ,μ ;Rd ].

Remark 1. In [35], authors introduced a definition by taking convex clo-
sure of Γ (t). However, they did not discuss whether the integral is a set-
valued random variable or not. It is natural to hope that the result of
integral is a set-valued stochastic process taking values in Kc(Rd) rather
than in L2[Ω ,At ,μ ;Rd ]. According to Theorem 1, Γ (t) should be decompos-
able with respect to At and closed if we want it to decide an At -measurable
set-valued random variable. Unfortunately, it is not true in general. Hence
we will take the decomposable closure of Γ (t) to modify the definition 5.

Theorem 4. Assume that F = {F(t),At : t ∈ I} is a set-valued square inte-
grable martingale, g is a predictable bounded stochastic process, and Γ (t,ω)
=
∫ t

0 g(s, ω)dF(s, ω), then for any t ∈ I, there exists Mt(g) ∈ M [Ω ,At ,μ ;
Kc(Rd)] such that

S2
Mt(g)(At) = deAtΓ (t),

where the decomposable closure deAt is taken in L2[Ω ,At ,μ ;Rd ] (cf. [38]).

Now we may give our modified definition of stochastic integral with respect
to a set-valued square integral martingale.

Definition 6. The set-valued stochastic process M(g) = {Mt(g) : t ∈ I} defined
in Theorem 4 is called stochastic integral of g with respect to a set-valued
square integral martingale F, and denoted as Mt(g) = (M)

∫ t
0 gdF.

Now we start the study of representation theorem of stochastic integral of g
with respect to F . We need to prove the following Lemma.

Lemma 1. Assume that F = {F(t),At : t ∈ I} is a set-valued square integrable
martingale, then there exists a sequence { f n : n∈N}⊆CMS(F), such that for
every t ∈ I,

S2
Mt(g)(At) = deAt

{∫ t

0
g(s)d f n(s) : n ∈N

}
, (4.2)

where the closure is taken in L2.

Theorem 5. (Castaing representation theorem) Assume that F =
{F(t),At : t ∈ I} is a set-valued square integrable martingale, and g is a pre-
dictable bounded stochastic process, then there exists a sequence of R

d-valued
martingales { f i = { f i(t) : t ∈ I} : i ≥ 1} ⊆ CMS(F) such that for any t ∈ I,

Mt(g)(ω) = cl
{∫ t

0
g(s,ω)d f i(s,ω) : i ≥ 1

}
, a.e. ω ∈Ω .

Now we give the following property of the stochastic integral Mt(g).
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Theorem 6. Assume that F = {F(t),At : t ∈ I} is a set-valued square inte-
grable martingale and g is a predictable bounded stochastic process, then the
stochastic integral {Mt(g),At : t ∈ I} is a set-valued submartingale.
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Smooth Transition from Mixed Models to
Fixed Models

Maŕıa José Lombard́ıa and Stefan Sperlich

Abstract. In multi-level regression, such as small area studies, and in panel
data studies, using a fixed effect for each region leads to models that are
flexible but that have poor estimation accuracy; they are over-parameterized.
We bridge the gap between Fixed Effects Models, Mixed Effects Models and
Partial Linear Models by a flexible modeling of area effects. The transition
from Mixed Effects Models to Semiparametric Mixed Effects Models and
Fixed Effects Models is achieved by progressively relaxing the smoothness
assumption on the semiparametric area specific impact. The methodology is
illustrated with a complete simulation study and applied for a small area
analysis of tourist expenditures in Galicia.

Keywords: Semi-mixed effects models, Semiparametric regression, Multi-
level models, Small area statistics, Panel data analysis.

1 Introduction

For a response Yd j ∈R and covariates XXXd j ∈R
p, including the intercept, con-

sider a generalized linear Mixed Effects Model (MEM) with known link g

E
[
Yd j|uuud ,XXXd j

]
= g
{

XXXt
d jβββ + ZZZt

d juuud

}
, d = 1, . . . ,D; j = 1, . . . ,nd , (1)

with ZZZd j ⊆ XXXd j of dimension ρ , βββ ∈ R
p the fixed effect, and uuud ∈ R

ρ the
i.i.d. unobservable random effect with mean zero and unknown variances-
covariance matrix Σu. The latter has to be estimated. Suppose to have sample
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size n =∑D
d=1 nd , where D is the number of areas (domains or groups) with the

typical assumption that D →∞ at rate O(n). In panel data analysis i may be
time and d the individual. A crucial assumption for the existing methodology
is that XXXd j and uuud are independent and that g(·) is known. Note that, if g is
the identity, model (1) includes the nested-error model (ZZZd j = 1 and ud ∈R),
the random regression coefficient model (ZZZd j = XXXd j), and the Fay-Herriot
model (only area specific information, [3]); see [11] for a summary.

Today, mixed effects models are popular in many areas of statistics, es-
pecially in small area statistics, see [7] or [12] for reviews; for panel data
analysis [1], and [4] for a typical example. They are widely applied in biome-
dical, forestry, agricultural, economic and social science studies. Although
the different research areas favor different terminology, like small area statis-
tics, multi-level or simply mixed effects models, the statistical problems of
modeling, estimation and testing are basically the same; the differences arise
mainly in the subsequent inferences. For example, in biometrics they serve
to analyze data with repeated measurements; in panel data analysis they
account for possible heterogeneity over the cross sectional samples; in small
area statistics they serve to improve the prediction of area-level parameters,
while in econometrics they improve the calculation of macro indices from
micro-data. Apart from the increasing interest in multi-level modeling (see
[5]), they have also become popular in economics for data matching, i.e. to
impute a certain factor for the individuals in the sample of interest with the
aid of a different sample (see [2], for a recent example in poverty mapping).
At the end, they all have in common that they try to account for a certain
clustering, may it be due to space, time or individuals over time in panels, cli-
mate, administrative area or districts, villages or even large families, genetic
groups or species.

More recently, mixed effects models have entered the nonparametric world;
see [10], [6], and [13]. However the asymptotic theory for estimation in semi-
parametric mixed models was developed only recently. [8] and [9] introduced
an estimation procedure for generalized partial linear mixed effects models,
specification tests with bootstrap procedures, and provided asymptotic theo-
ry for these methods.

Thus, for a more flexible modeling we may also allow some covariates to
enter the model nonparametrically. To ease the notation let us call these vari-
ables TTT ∈R

q and be different from the variables XXX which enter the model lin-
early. Then we have a generalized Partial Linear mixed effects Model (PLM)
of the form

E
[
Yd j|XXXd j,TTT d j

]
= g
{

XXXt
d jβββ + γ(TTTd j + ZZZt

d juuud)
}

, (2)

with d = 1, . . . ,D, j = 1, . . . ,nd and a nonparametric function γ : R
q → R.
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The MEM is often motivated by the fact that it allows for efficient estima-
tion of the fixed part, but makes also use of the random effects for prediction.
This seems to outperform other parametric models in predicting and efficient
estimation. When predicting, the additional variance that results from assum-
ing this effect to be random, is only slightly larger than the variance of a fixed
effect estimate based on small samples, and this deficiency is easily compen-
sated by the efficient estimation of βββ . However, this improved prediction in
the mean is illusory if the somewhat unrealistic assumption of independence
between area effects and the covariates, as well as the unobserved individual
effects, is not met. Thus, even when a MEM leads to a better sample fit, it
does so at the cost of producing biased estimates, and consequently bad out-
of-sample prediction. Furthermore, methods to do valid inference have not
yet been developed. All the currently available methods for testing or pre-
diction intervals are clearly inconsistent if the assumption of independence is
violated. This deficiency is not shared by the Fixed Effects Model (FEM)

E
[
Yd j|XXXd j

]
= g
{

XXXt
d jβββ + cd

}
, d = 1, . . . ,D; j = 1, . . . ,nd , (3)

with cd being an area (domain or group) specific fixed effect without the
assumption of independence from the individual effects XXXd j.

We studied many applications where the random effects represented the ef-
fect of either a region, a climate type, a socio-economic group or the proband
group in biostatistics. In almost all cases the independence assumption was
hardly credible. This causes endogeneity giving inconsistent estimates for βββ
and potentially woeful out-of-sample prediction performance. The affirma-
tion, for the purpose of estimation the FEM, and for prediction the MEM,
would be the right model is unfortunately wrong. For example, the FEM does
not allow to include covariates which do not or hardly vary with i (time in
panel data) for given d. A prediction with MEM when the unrealistic inde-
pendence assumption is violated performs only well for in-sample prediction,
and parameter estimates can not be interpreted.

We therefore propose to use a flexible modeling of area effects that allows
to change continuously from a MEM (Eq. 1) without area specific covariates
to a Semiparametric Mixed Effects Model (SMEM, Eq. 4) with a smooth area
specific mean and a random effect, up to the other extreme, an FEM (Eq. 3).
Where SMEM is

E
[
Yd j|XXXd j,WWW d ,ud

]
= g
{

XXXt
d jβββ +ηv(WWW d)+ ud

}
, (4)

with ηv : R
q →R an unknown nonparametric function with a given “slider” v.

We bridge the gap between FEM, MEM and PLM by a flexible modeling of area
effects. The transition from MEM to SMEM and FEM is achieved by progres-
sively relaxing the smoothness assumption on the semiparametric area specific
impact: we start with the highest degree of smoothness (a constant) yielding
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to a random effects model, and end up with the lowest degree (interpolation
of the area effects) yielding a fixed effects model. This way one can resolve all
problems at once: model, and thus explain, the area or group effect, and dispose
of the “independence assumption” problem. One obtains consistent estimates
and valid inference. This is achieved without loosing the advantages of MEM,
and without running into the problems we would face in a FEM. It should be
emphasized that it nests MEM, FEM, and PLM. Consequently, it outperforms
them all in estimation and prediction.

We apply of our model class in the context of small area statistics predic-
ting average tourist expenditures in the 53 counties of Galicia, a region in the
Northwest of Spain. As with the rest of the country, tourism is one of the most
important sources of revenue. Therefore, official statistics and politics have
a strong interest in acquiring information about the expenditure behaviour
of tourists. Presently, the Galician Statistical Institute (IGE) is focusing its
efforts on extending their statistics to county level, and to the level of the
so-called comarcas of which 53 exist in Galicia.

Table 1 Descriptive statistics: mean, standard deviation, and median.

The dependent variable (Y )

lexp ln of total expenditure per day & cap. 4.064 .6464 4.086

Variables of the individuals (X)

sex = 1 if male .4774 .4995 .0000

age1 = 1 if strictly younger than 29 .2340 .4233 .0000

age2 = 1 if 29 ≤ age ≤ 65 .7057 .4557 1.000

single = 1 if single .4094 .4917 .0000

child = 1 if children ≤ 16 years old .2792 .4486 .0000

ngal = 1 if not from Galicia .7453 .4357 1.000

educ = 1 if academic .4981 .5000 .0000

stud = 1 if student .1226 .3280 .0000

self = 1 if self-employed .1000 .3000 .0000

pilgr = 1 if pilgrim .1189 .3236 .0000

family = 1 visit family, friends, etc. .3868 .4870 .0000

stay measured in days 16.74 17.71 10.00

Variables of the comarca (W)

lpopd ln of population density 3.276 .8068 3.156

ftrail = 1 if French pilgrim trail .0440 .0913 .0000

coast = 1 if coast .0839 .1122 .0000
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Table 2 Coefficients estimates with their bootstrap standard errors.

FEM SMEM MEM

β̂ S.E. β̂ S.E. β̂ S.E.

sex -.0284 .0447 -.0242 .0448 -.0327 .0409

age1 .2428 .1199 .2249 .1188 .2271 .1017

age2 .2665 .1080 .1978 .0966 .2145 .0879

single -.0402 .0613 -.0745 .0568 -.0543 .0526

child .0003 .0565 -.0166 .0501 -.0164 .0486

ngal .2288 .0560 .2377 .0565 .2474 .0471

educ .0648 .0487 .0481 .0454 .0517 .0410

stud -.2219 .1011 -.2212 .0963 -.2312 .0829

self .0809 .0786 .1288 .0740 .1131 .0721

pilgr -.7004 .0910 -.6926 .0752 -.6918 .0683

family -.1798 .0544 -.1478 .0487 -.1689 .0443

stay -.0047 .0014 -.0045 .0014 -.0044 .0011

σ̂2
u .0297 .0171 .0650 .0123

The presented study uses the set of variables described in Table 1. We
included all three area variables in ηv to account for interactions. Here we
show some preliminary results. We examine the coefficient estimates, together
with the bootstrap estimates of the standard errors, see Table 2. In the boot-
strap we used a pilot bandwidth for the pre-estimation, and 400 bootstrap
replications.

2 Conclusions

We have introduced a new class of semi-mixed effects models that combines
fixed effects, mixed effects and partial linear models. Nesting these models
it can benefit from the advantages each model offers, and at the same time
mitigate or even avoid its shortcomings. Our SMEM allows for a smooth
transition from FEM to MEM, i.e. our class contains the continuum between
them including also the PLM. Under the wrong assumption of independence
the model is estimated with a serious bias in the MEM, and the variance of
the estimates is larger than that in our semiparametric alternative. Moreover,
we do not only offer consistent estimators, but also outperform the nested
models FEM, PLM and MEM by construction. That this holds also true for
finite samples, is exactly the strength of the proposed class as it demonstrates
that we have successfully combined the advantages of these models to find a
compromise that avoids the pitfalls of each extreme.
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Further, although the construction of the MEM would favor it’s perfor-
mance in calculating macro or area parameters (rather than in estimating
individual effects), the simulations show that SMEM is superior in terms of
both out-of-sample and in-sample prediction. It is clear that SMEM is always
better for consistent estimation and modeling with respect to interpretability.
The example of analyzing tourist expenditures underpins this finding.

Finally, a consistent bootstrap arms us with a valid and feasible procedure
to do statistical inference. FEM and PLM based bootstrap will suffer from
a large variance in practice, whereas the SMEM is consistent and has small
variance. In contrast, applying bootstrap in MEM when the independence
assumption is violated is inconsistent as it is based on a wrong model and
therefore leads to wrong conclusions.
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Mixture Models with a Black-Hole
Component

Nicholas T. Longford and Pierpaolo D’Urso

Abstract. We define a class of mixture models in which a component com-
prises an assortment of units that are not associated with any proper dis-
tribution. The models, motivated by the EM algorithm and fitted by its
simple adaptation, are illustrated on several examples with large samples,
one of them about transactions of residential properties in Wellington, New
Zealand, in 2006.

Keywords: Black-hole component, Black-hole density, Clustering, EM
algorithm, Outliers.

1 Introduction

Mixture models ([4]) have a wide range of applications. They are used for
partitioning a population into subpopulations (groups) and, more generally,
for estimating and approximating distributions that do not have a simple
form. For example, a mixture of three normal distributions with distinct
means and variances can have up to three modes and a variety of asymmetries
in the tails and shoulders of the distribution. The density of such a mixture
around the mode(s) can differ substantially from the normal. Mixture models
are relatively easy to fit with the EM algorithm ([2]). Let fk , k = 1, . . . ,K,
be the densities of the K > 1 components of the model. Each density may
involve some parameters, such as the mean μk and variance σ2

k of the normal
distribution. The K densities may have different forms and may have some,
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but not all, parameters in common. The EM algorithm comprises iterations,
each with two steps. Prior to the first iteration, initial values are set for all
the model parameters; they include the parameters involved in the densities
fk and the marginal probabilities pk of belonging to components, which add
up to unity: p1 + · · ·+ pK = 1. The indicator of the component, Ii(k), equal to
unity if unit i belongs to component k and to zero otherwise, is regarded as
the missing data in the EM algorithm. In the E-step of the algorithm, the
conditional probability of belonging to component k, r̂ik = E{Ii(k) | θ̂ ,x}, given
the data x and the current values of the parameter estimates, is evaluated
for every unit i = 1, . . . ,n:

r̂ik =
p̂k f̂k(xi)

p̂1 f̂1(xi)+ · · ·+ p̂K f̂K(xi)
. (1)

The circumflexes ˆ indicate estimation. To avoid a clutter of indices, we omit
the iteration number; the right-hand side is associated with iteration t − 1
and the left-hand side with iteration t. In the M-step, the parameters of the
densities fk and the marginal probabilities pk are estimated by the algorithm
that would be applied if the assignment indicators Ii(k) were known. As these
indicators are are merely estimated, their estimated conditional expectations
r̂ik are substituted for them. For example, when fk is normal with mean and
variance involved in no constraints,

μ̂k =
1
r̂·k

n

∑
i=1

r̂ik xi

σ̂2
k =

1
r̂·k

n

∑
i=1

r̂ik

(
xi − μ̂ (t−1)

k

)2
,

where r̂·k = r̂1k + · · ·+ r̂nk . The marginal probabilities pk are estimated as the
averages r̂·k/n. In the expression for σ̂2

k we indicate that the estimate μ̂k from
the previous iteration should be applied.

In a mixture of symmetric unimodal distributions with finite expectations
and variances, it is natural to regard the estimated expectation μ̂k of each
component as a focus or centroid and the estimated standard deviation σ̂k as
the reciprocal of the force of attraction to component k. When unit i is in a
relatively large distance from μ̂k its assignment to component k is questionable
even when the unit is in a large distance also from the other estimated foci μ̂h ,
h �= k. This motivates our proposal for an additional (black-hole) component
that would have no focus, but would contain all the units that do not fit well
within any of the other (proper) components.

2 Black-Hole Component

The expression (1) can be interpreted as a competition of the mixture
components for unit i. The total prize of unity is split depending on the
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apparent relevance of the components for the unit, moderated by the esti-
mated marginal probabilities p̂k . Component k is said to be a poor winner (in
the contest for unit i) when r̂ik is large, but the value of the estimated density
fk(xi) is relatively small. To avoid having (many) poor winners, we introduce
another component (contestant), which is not subject to the rules of a proper
density (

∫ +∞
−∞ f = 1). It has no focus and is associated with no distribution. We

specify it by a non-negative function f0 that is non-increasing in an interval
(−∞;T ) and non-decreasing in (T ;+∞) for some real T . This function is used
in (1) as if it were the density of an additional component:

r̂ik =
p̂k f̂k(xi)

p̂0 f0(xi)+ p̂1 f̂1(xi)+ · · ·+ p̂K f̂K(xi)
,

k = 0,1, . . . ,K. An example of such an improper density is

f0(x) = H1
[
1− exp

{
−H2(x−T)2}] , (2)

where H1 > 0 and H2 > 0; H1 is the limit of f0(x) at ±∞. We refer to T , where
f0 attains its minimum, as the anti-focus, to the density in (2) as anti-normal
and, in general, to component 0 and its density as the black-hole component
and density, respectively. The other (original) components and densities are
referred to as proper. The black-hole component provides a generalisation
similar to the fuzzy clustering proposed by Dave ([1]), in which the degrees
of membership rik of component k add up to values smaller than unity for some
or all units i. The shortfalls 1− ri1− . . .− riK correspond to the probabilities
ri0 of the black-hole component.

The black-hole density f0 need not be symmetric and does not have to have
the same (or any) limit as x diverges to ±∞. For a fixed dataset, increasing
f0 results in greater probability p0 of component 0. The function f0 may be
equal to zero at T or in an interval that includes T . In this interval, the
component 0 does not compete with the other components; rik = 0 when xi is
in this interval. With increasing distance of xi from T , component 0 becomes
a more potent competitor, and for very large |xi |, when f1 , . . . , fK are all very
small, it is a clear winner. The behaviour (shape) of f0 for such values of x is
immaterial.

A black-hole component can be interpreted as having its focus at infinity.
If we regard the value of a symmetric unimodal density (e.g., of the normal
distribution) as a measure of proximity to the focus, then the black-hole
density can also be interpreted as such, with its focus at ±∞; units in greater
‘distance’ from ±∞ have smaller values of f0 . The density f0 does not have
to be continuous and can be set to a constant throughout the real axis.

3 Examples

This section illustrates the properties of mixture models with a black-hole
component. The first example is based on simulated data, and in the following



430 N.T. Longford and P. D’Urso

Values

D
en

si
ty

−2 0 2 4

0.
0

0.
2

0.
4

Fig. 1 The data and its generating distribution; Example 1.

two mixtures with a black-hole component are fitted to real datasets. We
denote by N (μ ,σ2) the normal distribution with mean μ and variance σ2.

Example 1. We generated a sample of 10 000 units from the mixture of the
normal distributions N (0,0.16) and N (1,1), with respective probabilities
0.3 and 0.7. For orientation, the empirical and exact densities of the mixture
are plotted in Figure 1.

We fit the mixture model with two proper and a black-hole component with
constant density f0 ≡D for D in the range (0.1,0.5). The results are displayed
in Table 1. They confirm that with increasing D the black-hole component
becomes more attractive. The proper components are competitive only at
close proximity to their respective foci μ̂k , k = 1,2, and so the fitted standard
deviations σ̂k decrease with D. For D = 0.1, the black-hole component is
unattractive (p̂0

.= 0), and for D = 0.5 the proper components are unattractive
(p̂0

.= 1). Convergence of the adapted EM algorithm appears not to present
any problems. We applied no methods for speeding up the convergence and,
except for D = 0.34, required between 66 and 405 iterations to satisfy the
criterion that the norm of the difference between two consecutive solutions
(vectors of the estimated means and variances) is smaller than 10−4. For
D = 0.34, 817 iterations were required.

The marginal probability of the second component, associated with a
greater variance, decreases faster than for the first component. This can be
interpreted as the black-hole component attracting or ‘recruiting’ more units
from the component with greater variance. We cannot assess the appropri-
ateness of these solutions by any diagnostic methods, because a mixture with
a black-hole component cannot be simulated. But the example shows that
such a mixture can be fitted even when it is not appropriate; the data were
generated by a model with D = 0.

Next we fit mixture models with two proper normal components and one
anti-normal black-hole density given by (2), with T = 0, H2 = 0.2 and
H1 = 0.1,0.2, . . ., 2.0. The fitted black-hole probability p̂0 increases rapidly
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Table 1 Model fits with constant black-hole density D.

Mean (μ) St. deviation (σ) Probability (p)

D 1 2 1 2 1 2 0

0.10 0.004 1.019 0.415 1.003 0.311 0.689 0.000
0.14 0.002 1.035 0.422 0.989 0.320 0.676 0.004
0.18 0.034 1.292 0.464 0.777 0.449 0.469 0.082
0.22 0.045 1.200 0.401 0.639 0.383 0.354 0.263
0.26 0.060 1.009 0.330 0.506 0.270 0.210 0.520
0.30 0.066 0.719 0.263 0.383 0.159 0.097 0.744
0.34 −0.067 0.286 0.146 0.198 0.044 0.075 0.881
0.38 0.066 0.338 0.157 0.094 0.045 0.016 0.939
0.42 0.141 0.175 0.137 0.131 0.019 0.003 0.978
0.46 0.152 0.156 0.044 0.046 0.001 0.000 0.998
0.50 0.122 0.122 0.003 0.003 0.000 0.000 1.000

for small H1 , and then more slowly; p̂0 = 0.000 for H1 = 0.1 and p̂0 = 0.445
for H1 = 1.0, but p̂0 = 0.573 for H1 = 2.0 and p̂0 = 0.860 for H1 = 25. For
H1 ∈ (0.1,0.3), the attractiveness of the first component increases. The esti-
mated standard deviation σ̂1 increases for small H1 , because the focus of the
second component, μ̂2 , increases and leaves the first component attractive
in a wider range. However, for values of H1 > 2.0, the black-hole component
takes over and the proper components become less attractive. Full listing of
the results can be obtained from the authors.

The dependence of p0 on H2 is also as expected; smaller H2 is associated
with smaller estimate p̂0 ; for example, with H1 fixed at 25.0, p0 is equal to
0.612, 0.860 and 0.912 for the respective values H2 = 0.02,0.2 and 0.5. The
estimated variances are decreasing functions of H1 and H2 ; uniformly greater
values of the improper density function f0 make the black-hole component
more attractive, and only units very close to the foci of the proper components
are attracted to them.

Example 2. The data for this example are records of six blood tests on
345 patients with liver disorder. They are extracted from the Univer-
sity of California Irvine (UCI) Machine Learning Repository, where they
are stored as dataset ‘BUPA liver disorders’ in archive.ics.uni.edu/ml/

machine-learning-databases/liver-disorders We explore the variables mean
corpuscular volume (mcv) and alkaline phosphatase (alkPh). Their histograms
are drawn in Figure 2. The sample correlation of the two variables is 0.044, so
we lose little by analysing the two variables separately.

For mcv, the estimates of μ̂ depend on D very weakly, and a single obser-
vation, No. 224, is assigned to the black hole with near certainty for a wide
range of settings of D. For example, for D = 0.001, when μ̂ = 90.16, σ̂2 = 16.74
and p̂ = 0.970, r̂224,1 < 10−6, and next in the order of size is r̂69,1 = 0.425. The
largest possible value of r̂i1 is 0.9898. Values very close to it are attained by

archive.ics.uni.edu/ml/machine-learning-databases/liver-disorders
archive.ics.uni.edu/ml/machine-learning-databases/liver-disorders
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Fig. 2 Histograms of the variables mcv and alkPh in the BUPA liver disorders
data. The vertical dashes indicate the sample mean μ̂ and the vertical dots are
drawn at μ̂±2σ̂ . The order No.s of the subjects mentioned in the text are marked
near their respective values of mcv and alkPh.

the majority of the observations; 210 of them (61%) have values greater than
0.9850. For D = 0.003, μ̂ = 90.19, σ̂2 = 15.25 and p̂ = 0.926; the black hole
is more attractive. The values of all r̂i1 are smaller than with D = 0.001 and
seven observations have r̂i1 < 0.5: r̂224,1 < 10−7, followed by observations with
r̂i1 equal to 0.14, 0.21, 0.26, and so on.

For alkPh, much smaller values of D should be used, because the values
of alkPh are dispersed much more than for mcv. For D = 0.0002, we have
μ̂ = 69.01, σ̂2 = 287.38 and p̂ = 0.969. There are two clear outliers, subjects
No. 335 and 123, with r̂i1 equal to 0.029 and 0.070; they have the largest
values of alkPh, 138, 134, respectively. The values of r̂i1 are smaller than 0.5,
but only by a narrow margin, for three other observations, all of them in the
right-hand tail.

Example 3. This example analyses the sale prices of single-household resi-
dential properties in the City of Wellington, the capital of New Zealand, in
2006. In New Zealand, every residential property has a valuation, an official
estimate of the value of the property; see Longford ([3]) for details. After dis-
carding duplicate entries, properties with a lot of land, and other problematic
transactions, we have 5201 records of capital values (CV), the official valu-
ation, and sale prices (SP), both in New Zealand dollars (NZ$). To simplify
the example and to focus on mixture modelling, we ignore other variables,
such as floor and land area and the year of construction, which would be
relevant in another context. As is common for variables for income, prices
and other monetary values, we analyse CV and SP on the log-scale.

The data is summarised in Figure 3. Two mixture components can be dis-
cerned, but also several outliers. We fit the mixture model with two bivariate
normal components and a constant black-hole component with the constant
D set to 0, 0.02, . . . , 0.2. The model fits are displayed in Table 2.
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Fig. 3 The capital values and sale prices of residential properties sold in 2006 in
Wellington City, New Zealand. Both variables are on the log scale.

Table 2 Model fits to the transactions of residential properties in Wellington
City, New Zealand, in 2006. Two bivariate log-normal and a uniform black-hole
component.

Proper components N2(μ ,Σ)

D Means Variances

log-CV log-SP log-CV log-SP Cor. Prob. p̂0 Iter.

0.00
13.035
12.968

12.786
12.833

0.112
0.251

0.086
0.247

0.871
0.852

0.496
0.504 0.000 24

0.02
13.130
12.858

12.783
12.842

0.152
0.153

0.153
0.153

0.971
0.915

0.504
0.473 0.023 26

0.04
13.129
12.856

12.782
12.840

0.149
0.149

0.148
0.148

0.971
0.916

0.503
0.467 0.030 25

0.06
13.127
12.855

12.781
12.839

0.146
0.145

0.147
0.144

0.971
0.916

0.501
0.463 0.036 24

0.08
13.127
12.854

12.781
12.838

0.145
0.142

0.145
0.141

0.972
0.917

0.499
0.460 0.041 25

0.10
13.126
12.853

12.781
12.838

0.143
0.140

0.140
0.139

0.972
0.917

0.498
0.456 0.046 25

...
...

0.20
13.125
12.852

12.781
12.835

0.137
0.136

0.132
0.130

0.972
0.917

0.490
0.445 0.065 23

Note: log-CV — the logarithm of capital value; log-SP — the logarithm of the sale
price.
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Without a black-hole component (with D = 0), we obtain a component with
a relatively high log-mean of CV and low log-mean of SP, 13.035 and 12.786,
respectively, which convert to NZ$458200 and NZ$357200. The fitted means
for the other component correspond to NZ$428500 (CV) and NZ$374400
(SP). The second component is associated with much greater variances (0.251
and 0.247 vs. 0.112 and 0.086, for log-CV and log-SP, respectively). The re-
sults for a black-hole component with D = 0.02 differ substantially. The two
foci for log-CV are in a greater distance (13.130− 12.858 = 0.272 vs. 0.067
for D = 0), and the variances are almost identical. The within-component
correlations are increased (by 0.971− 0.871 = 0.100 and 0.063), suggesting
that the black-hole component recruits transactions for which CV and SP
are not closely related. As we increase the black-hole density (D), the log-
means are changed only slightly, the variances decrease very gradually, and
the correlations are changed imperceptibly. As expected, the probability of
the black-hole component increases with D. The results for 0.10 < D < 0.18
can be obtained by linear interpolation with precision. The two proper com-
ponents have nearly identical marginal probabilities for D = 0. For greater D,
they decrease, but the probability of the first component (which has higher
log-mean CV) decreases much more slowly. The black-hole component is more
attractive for some of the transactions that had originally (with D = 0) higher
probabilities r̂2k for the second component. The column on the right-hand side
gives the number of iterations required to achieve precision to four decimal
places. No problems with convergence arise.

We obtain very similar results for a wide range of values of D. The black-hole
component is useful to dismiss the hypothesis that the variances of the two
(proper) components differ substantially. With a black-hole component, these
variances are very similar; the first component has a greater correlation than
the other.

4 Discussion

We defined a class of mixture models with an improper (black-hole) compo-
nent. The presented examples are for normal component distributions, but
extensions to other distributions, both continuous and discrete (and multi-
variate), present no conceptual difficulties.

In the examples with real data, the black hole can be interpreted as the
component that contains the outliers, so its probability p0 should always
be small. The black-hole density may be set so as to match the anticipated
value of p0 .

A mixture model specified with two or more black-holes is unlikely to be
useful in practice because a mixture of black holes can be regarded as a single
black hole.
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On the Preservations of Contractions: An
Application to Stochastic Orders

M.C. López-Dı́az and M. López-Dı́az

Abstract. We obtain conditions for a function to preserve contractions,
which do not involve convex sums of orthogonal matrices. The verification of
such conditions implies, in general, a considerable saving of time compared
with checking conditions already known. An application to stochastic orders
of the above results is developed.

Keywords: Contraction, Loewner order, Orthogonal matrix, Dispersion
order.

1 Introduction

Stochastic orders can be defined as partial order relations on a set of probabil-
ities associated with a measurable space which have been applied successfully
in many fields like reliability theory, economy, biology, medicine, genetics, sta-
tistical physics, decision theory, queueing systems, scheduling problems, etc.

Roughly speaking, a stochastic order aims to rank probabilities in accor-
dance with an appropriate criterion. Different criteria have been considered
for such rankings, like variability, dispersion, location, dependence, majoriza-
tion, etc.

The reader is referred for instance to the monographs of [4] and [5] for an
introduction to stochastic orderings.
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Most of the stochastic orders are developed for sets of probabilities on the
space (Rn,B), where B stands for the usual Borel σ -field on R

n.
A criterion for ranking probabilities on such a space is dispersion, which

attempts to determine which vector induces a more dispersive probability
distribution on (Rn,B), according to an appropriate viewpoint.

One of such orderings is the strong dispersion order, which is defined as
follows: given X and Y, R

n-valued random vectors, it is said that X is not
more dispersive that Y in the strong dispersion ordering if there exists a
mapping k : R

n →R
n such that X∼st k(Y), where ∼st stands for the stochastic

equality, and k is a contraction (see [3]). This relation will be denoted by
X �SD Y. Note that this means that the distribution of X can be obtained
by means of a contraction of the random vector Y.

The definition of the strong dispersion order involves contractions. We
analyze the problem of the preservation of the strong dispersion ordering
through transformations, studying the preservation of contractions.

Some conditions for preserving the strong dispersion ordering through
transformations were developed in [2]. Namely, if X and Y are random vec-
tors with X �SD Y, that is, X ∼st k(Y) for certain contraction k : R

n → R
n,

and h : R
n → R

n is a measurable mapping, conditions on h and k such that
h(X) �SD h(Y) are proposed.

Such conditions are the following:

1) k must be continuously differentiable,

2) there exists h−1,

3) h must be differentiable,

4) h−1 must be differentiable,

5) h ◦ k ◦ h−1 must be continuously differentiable,

6) the Jacobian matrix of h, Jh, must be weakly orthogonal in each point of
its domain. In [2] the authors call weakly orthogonal a matrix A if for any
orthogonal matrix Γ , the eigenvalues of AtAΓ t(AtA)−1Γ are all equal to 1,
and assert that it is equivalent to the existence of a constant α such that
αA is orthogonal,

7) h must be strongly attracted by k. This means that

Jh(k(x))J−1
h (x) =

M(x)

∑
i=1
αi(x)Γi(x)

with αi(x) > 0 for all x in the domain of h, Γi(x) is an orthogonal matrix for
each i and for each x in such a domain, 1 ≤ i ≤ M(x), and ∑M(x)

i=1 αi(x) = 1.

Perhaps the most difficult condition to analyze in practice is 7) since it in-
volves the existence of a convex sum of orthogonal matrices which depends
on each point of the domain of h.
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We obtain conditions for the preservation of the strong dispersion order,
which in some frequent cases are very easy to check, avoiding the condition
on the strong attraction required in [2].

2 Preliminaries

Some concepts and results that will be used to obtain conditions for the
preservation of the strong dispersion order through transformations are in-
troduced.

Let us denote by Mn×p the vector space of all n× p matrices with elements
in R. The identity matrix in Mn×n will be denoted by In. An invertible matrix
A in Mn×n will be called weakly orthogonal if there exists a positive real
number α such that αA is an orthogonal matrix. Recall that an invertible
matrix A in Mn×n is called orthogonal if At = A−1.

In [2] the authors defined weakly orthogonal matrices by means of eigen-
values. A matrix A in Mn×n is called weakly orthogonal if the eigenvalues of
AtAΓ t(AtA)−1Γ are all equal to 1 for all Γ in Mn×n orthogonal matrix.

We have obtained the equivalence of A being weakly orthogonal and
AtAΓ t(AtA)−1Γ having all eigenvalues equal to 1 for every Γ orthogonal ma-
trix, that is:

Let A be an invertible matrix in Mn×n, then A is a weakly orthogonal matrix,
that is, there exists a positive real number α such that αA is an orthogonal
matrix, if and only if the eigenvalues of AtAΓ t(AtA)−1Γ are all equal to 1 for
all Γ in Mn×n orthogonal matrix.

Conditions for the preservation of the strong dispersion order through
transformations will be obtained using the Loewner ordering of symmetric
matrices.

The Loewner ordering of symmetric matrices is given by A≤L B if and only
if B−A is a nonnegative definite matrix.

In [3] the following results are proved:

• A continuously differentiable function k : R
n → R

n is a contraction if and
only if

Jk(x)t Jk(x) ≤L In

for all x in R
n where Jk(x) is the Jacobian matrix of k.

• For two continuously differentiable functions f ,g : R
n → R

n with f invert-
ible, the condition

Jg(x)t Jg(x) ≤L Jf (x)t J f (x)

for all x in R
n is necessary and sufficient for the function g ◦ f−1 to be a

contraction.

In [1] the following result is proved:

• The closed convex hull of On in the vector space Mn×n, On being the group
of n×n orthogonal matrices, is {A ∈ Mn×n |AtA ≤L In}.
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Clearly, as a consequence of the results above, we have the following con-
secuence which is used in [2] for obtaining conditions on the preservation of
the strong dispersion order through transformations:

A continuously differentiable function k : R
n → R

n is a contraction if and
only if

Jk(x) =
m(x)

∑
i=1

ai(x)Pi(x)

where ai(x) > 0, ∑m(x)
i=1 ai(x) = 1 and Pi(x) is an orthogonal matrix, for all i ∈

{1, . . . ,m(x)} and for all x in R
n.

Now, let us consider the next definition which is introduced in [2]: A differ-
entiable function h : R

n → R
n is called weakly orthogonal if Jh(x) is a weakly

orthogonal matrix for all x in R
n.

Note that if a differentiable function h is weakly orthogonal, there exists a
function α : R

n → (0,+∞) such that α(x)Jh(x) is an orthogonal matrix for all
x in R

n.
Now let us introduce a new definition which will be relevant in our work:

A differentiable function h : R
n →R

n is called dominated weakly orthogonal by
a function k : R

n → R
n, if there exists a function α : R

n → (0,+∞) such that
α(x)Jh(x) is an orthogonal matrix with α(x) ≤ α(k(x)) for all x in R

n.

3 Main Results

In this section we obtain conditions for the preservation of the strong dis-
persion ordering through transformations without involving convex sums of
orthogonal matrices. Our main result is:

Let X and Y be two random vectors in R
n with X ≤SD Y. Suppose that

there exists k : R
n → R

n a continuously differentiable contraction such that
X ∼st k(Y). Let h : R

n → R
n be a continuously differentiable and invertible

function which is dominated weakly orthogonal by k. Then h(X)≤SD h(Y).
Hence conditions for the preservation of the strong dispersion ordering

through transformations which have been obtained are the following:

1) there exists the map h−1,
2) h must be continuously differentiable,
3) k must be continuously differentiable,
4) h must be dominated weakly orthogonal by k.

These conditions are easy to check in general since they do not involve convex
sums of orthogonal matrices.

Let us compare the above condition 4) with the condition where h is
strongly attracted by k which is required in [2]. As we show, 4) is equiva-
lent to the conditions where h is weakly orthogonal and where h is strongly
attracted by k.



On the Preservations of Contractions 441

Note that to check if h is strongly attracted by k implies dealing with
convex sums of orthogonal matrices. In particular Jh(k(x))J−1

h (x) must be a
convex sum of orthogonal matrices for every x. It is equivalent to verifying
that all eigenvalues of (Jh(k(x))J−1

h (x))t Jh(k(x))J−1
h (x) are lower than or equal

to 1 for every x. Verifying this condition is much more difficult in general
than checking if h is dominated weakly orthogonal by k.

We have seen the following equivalence:
Let g : R

n →R
n be a function and let h : R

n →R
n be a differentiable function

which is weakly orthogonal. Then h is dominated weakly orthogonal by g if
and only if h is strongly attracted by g.

If we analyze the conditions for checking the preservation of the strong
dispersion ordering through transformations which have been obtained in
this manuscript and in [2], we have the following table:

Reference [2] This manuscript Condition

Yes Yes k contraction continuously
differentiable

Yes Yes h differentiable

Yes Yes h weakly orthogonal

Yes Yes there exists h−1

Yes No h ◦ k ◦ h−1 continuously
differentiable

Yes No h−1 differentiable
An easier condition to check

Yes not involving convex sums h strongly attracted by k

of orthogonal matrices

No Yes h continuously differentiable
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2. Fernández-Ponce, J.M., Rodŕıguez-Griñolo, R.: Preserving multivariate disper-
sion: an application to the Wishart distribution. J. Multivariate Anal. 97, 1208–
1220 (2006)

3. Giovagnoli, A., Wynn, H.P.: Multivariate dispersion orderings. Stat. Probab.
Lett. 22, 325–332 (1995)

4. Müller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks.
John Wiley & Sons, Chichester (2000)

5. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)



A New Multivariate Stochastic Order,
Main Properties

Miguel López-Dı́az

Abstract. Different multivariate extensions of the bidirectional order can be
considered. In this paper we propose a multivariate stochastic order which
under mild conditions is an extension of the bidirectional order. The new
relation is a proper stochastic order in the sense that it satisfies reflexiv-
ity, transitivity and antisymmetric properties. Moreover, the new order is
integral. A maximal generator of it is obtained, which is used to obtain im-
portant properties of the order as a Strassen type theorem. We also obtain a
characterization of the order by construction of random vectors on the same
probability space. Different properties of the order are studied as well as con-
nections with other stochastic orders and conditions, which in conjunction
with the new order lead to the stochastic equality.

Keywords: Bidirectional order, Stochastic order, Strassen’s Theorem.

1 Introduction

The bidirectional stochastic order for univariate distributions has been stated
and studied in detail in a recent paper (see [3]).

This stochastic order is defined as follows: let X and Y be random variables,
then X is not superior to Y in the bidirectional order, denoted by X �bd Y ,
if X+ �st Y+ and X− �st Y−, where �st stands for the usual stochastic order,
a+ = max{a,0} and a− = max{−a,0} with a ∈ R. This definition is inspired
in the univariate version of symmetric stochastic order proposed in [1].

Different characterizations of the bidirectional order have been developed
in [3], as for instance:
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• X �bd Y if and only if FX −FY pivots on 0, that is, FX(x) ≤ FY (x) for all
x < 0, and FX(x)≥ FY (x) for all x ≥ 0, where FW stands for the distribution
function of the random variable W ,

• X �bd Y holds if and only if in any interval of the set {(−∞,−t), (t,∞) :
t ≥ 0}, the random variable Y deposits as much probability as the random
variable X ,

• X �bd Y if and only if there exist random variables X̃ , Ỹ , defined on the
same probability space, with X ∼st X̃ and Y ∼st Ỹ , satisfying that X̃+ ≤ Ỹ+
and X̃− ≤ Ỹ−.

Different multivariate extensions of this univariate stochastic order can be
proposed. In this paper we analyze one of them.

2 The New Order: Main Properties

We describe the new order, for such a purpose we need the following sets and
notations. Given z ∈ R, we define the set

Pz =
{

[z,∞) if z ≥ 0,
(−∞,z] if z < 0.

If z = (z1,z2, . . . ,zd) ∈R
d , then let Pz = Pz1 ×Pz2 × . . .×Pzd .

Let X and Y be R
d-valued random vectors. It will be said that X is not

superior to Y in the quadrant ordering if

P(X ∈ Pz) ≤ P(Y ∈ Pz)

for any z ∈R
d . Such a condition will be denoted by X�quad Y.

It is possible to show that �quad is a stochastic order on the set of prob-
abilities on (Rd ,Bd), where Bd stands for the usual Borel σ -algebra on R

d ,
that is, it satisfies the reflexive, transitive and antisymmetric properties.

We should indicate that the quadrant order is integral (see [4] or [5] for
integral stochastic orders). This is a direct consequence of the definition of
the order. Let D = {IPz : z ∈R

d}, trivially X�quad Y if and only if
∫

Rd
f dPX ≤

∫

Rd
f dPY

for all f ∈ D , that is, the class D is a generator of the order.
A maximal generator of the quadrant order can be obtained. Important

properties of integral stochastic orders can be derived by means of basic
properties of the functions of maximal generators.

Note that the concept of maximal generator of an integral stochastic or-
dering is associated with the so-called weight function, which determines the
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space of functions which is considered. Such a function is a measurable map-
ping b : R

d → [1,∞), which induces the so-called b-norm (see [4] or [5]). We
will consider the usual function b = 1. In this way, our space of functions will
be the class of bounded functions.

We introduce the following notations and definitions.
Given x,z ∈ R

d , the notation x ⊥ z will stand for xi ⊥ zi for all 1 ≤ i ≤ d,

where xi ⊥ zi means that
{

xi ≥ zi if zi ≥ 0,
xi ≤ zi if zi < 0.

We should observe that x ∈ Pz if

and only if x⊥ z.
We will say that a map f : R

d → [0,∞) is a quadrant function if f (y)≥ f (x)
for all x,y ∈ R

d with y⊥ x.
From now on we will denote by G the class of bounded quadrant functions.

Note that D ⊂ G .
It is possible to prove that the maximal generator of the quadrant order,

let us denote it by Rquad, is the class of bounded quadrant functions, that is,
Rquad = G .

Some consequences can be obtained by means of the above result. The first
one is a Strassen type theorem:

Let P1,P2 be probabilities on the space (Rd ,Bd). The following conditions
are equivalent:

i) P1 �quad P2,
ii) there exists a transaction kernel Q from R

d to R
d such that

P2(A) =
∫

Rd
Q(x,A)dP1,

and for all x ∈ R
d the probability Q(x, ·) : Bd → R verifies that

∫

Rd
f (s)dQ(x, ·) ≥ f (x)

for all f ∈ Rquad.

By means of the above result we can construct a characterization of the
quadrant order by construction of random vectors on the same probability
space. Thus:

Let X,Y be random vectors. Then X �quad Y if and only if there exist
random vectors, X̃,Ỹ, defined on the same probability space such that Ỹ⊥ X̃
a.s., with X∼st X̃ and Y∼st Ỹ.

As a consequence of the above result we obtain the following statement:
Let X,Y be random vectors with X �quad Y. Then there exist random

vectors, X̃,Ỹ, defined on the same probability space such that
(X̃1•1 , X̃2•2 , . . . , X̃d•d ) ≤ (Ỹ1•1 ,Ỹ2•2 , . . . ,Ỹd•d ) a.s.
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for any •1,•2, . . . ,•d belonging to the set {+,−}, where ≤ represents the usual
componentwise order, with X∼st X̃ and Y∼st Ỹ.

We can obtain the converse of the above result under mild conditions.
Thus:

Let X,Y be random vectors whose components have no atom at the origin.
Then X �quad Y if and only if there exist random vectors, X̃,Ỹ, defined on
the same probability space such that

(X̃1•1 , X̃2•2 , . . . , X̃d•d ) ≤ (Ỹ1•1 ,Ỹ2•2 , . . . ,Ỹd•d ) a.s.

for any •1,•2, . . . ,•d belonging to the set {+,−}, where X∼st X̃ and Y∼st Ỹ.

Other properties of the quadrant order are the following:

1. The quadrant order is closed under mixtures.
2. The quadrant order is not closed under convolutions.
3. Let X,Y be random vectors, let I = {i1, i2, . . . , il}⊂ {1,2, . . . ,d}. If X�quad

Y, then XI �quad YI , that is, the quadrant order is preserved by marginal-
ization.

4. Let X j,Y j, 1 ≤ j ≤ m, be independent random vectors, where for each
j, X j and Y j have the same dimension. If X j �quad Y j, 1 ≤ j ≤ m, then
(X1,X2, . . . ,Xm) �quad (Y1,Y2, . . . ,Ym), that is, the quadrant order is
preserved under the conjunction of independent vectors.

5. The stochastic order �quad is closed with respect to identical concatena-
tion, that is, if X,Y are random vectors with X�quad Y, then (XK ,XL)
�quad (YK ,YL) for all K,L ⊂ {1,2, . . . ,d}.

6. The quadrant order is closed with respect to the weak convergence for
limits whose components have no atom at the origin.

3 Relations with Other Stochastic Orders

In this section we briefly describe some relations of the new order with other
stochastic orders and state conditions, which in conjunction with the quad-
rant order guarantee the stochastic equallity.

Firstly we show that under mild conditions, the univariate version of the
quadrant order is the bidirectional order.

Let X ,Y be random variables with no atom at the origin. Then X �quad Y
if and only if X �bd Y .

Different extensions of the univariate usual stochastic order to the mul-
tivariate case have been stated, among them the multivariate stochastic or-
der (X �st Y if E( f (X)) ≤ E( f (Y)) for all bounded increasing mappings
f : R

d → R), the upper orthant order (X �uo Y if FX(z) ≤ FY(z) for all
z ∈R

d , where FW stands for the survival function of the random vector W),
and the lower orthant order (X�lo Y if FX(z) ≥ FY(z) for all z ∈ R

d , where
FW stands for the distribution function of the random vector W) (see for
instance [6]).
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There are not general implications between the quadrant order and any of
the above orders. However we can state the following results under additional
conditions.

Let X,Y be random vectors such that P(X ∈ P0) = 1, where 0 = (0, . . . ,0).
Then X�st Y implies that X�quad Y.

Let X,Y be random vectors such that FX(0) = 1. Then it holds that
X�uo Y if and only if X�quad Y.

Let X,Y be random vectors such that P(X1 < 0, . . . ,Xd < 0) = 1. Then it
holds that Y�lo X if and only if X�quad Y.

For random vectors with the same copula, whose components have no
atom at the origin, the quadrant order reduces to compare marginals with
this order.

Let X,Y be absolutely continuous random vectors with a common copula,
whose components have no atom at the origin. Then it holds that X�quad Y
if and only if Xi �quad Yi for all 1 ≤ i ≤ d.

Other connections we can state are the following:

1. Let X,Y be random vectors with X�quad Y. It holds that
(|X1|, |X2|, . . . , |Xd |) �uo (|Y1|, |Y2|, . . . , |Yd |).

2. Let X,Y be random vectors such that
(|X1|, |X2|, . . . , |Xd |) and (|Y1|, |Y2|, . . . , |Yd |)

have the same copula. If X�quad Y then it holds that
(|X1|, |X2|, . . . , |Xd |)�st (|Y1|, |Y2|, . . . , |Yd |).

3. Let X,Y be random vectors with independent components such that
Xi and Yi have symmetric distribution with respect to 0 and no atom
at such a point. Then X �quad Y if and only if (|X1|, |X2|, . . . , |Xd |) �st

(|Y1|, |Y2|, . . . , |Yd |).
Let (�icx) �cx stand for the (increasing) convex order, that is, (X�icx Y)
X�cx Y if E f (X)≤ E f (Y) for all (increasing) convex functions f : R

d →
R such that the expectations exist (see for instance [6]). The following
results show connections of the new order with these orders.

4. Let X,Y be random vectors with independent components and X�quad

Y. If EX≤ EY, then X�icx Y. Moreover, if EX = EY then X�cx Y.
5. Let X,Y be random vectors with independent components without atom

at the origin. Then X−X′ �quad Y−Y′ if and only if Xi �w Yi, 1 ≤ i ≤
d, where �w stands for the weak dispersive order (see [2] for the weak
dispersive order).

In relation to conditions which, in conjunction with the quadrant order, lead
to stochastic equality, we can enounce:

1. Let X,Y be random vectors having a same copula with X �quad Y and
E|Xi|= E|Yi| for all 1 ≤ i ≤ d. Then X∼st Y.

2. Let X,Y be random vectors having a same copula with X �quad Y. If
E(X j

i ) = E(Y j
i ) for all 1 ≤ i ≤ d and 1 ≤ j ≤ 2. Then X∼st Y.
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We obtain the following example for random vectors with normal distri-
butions. Let X∼st N(μX,ΣX),Y ∼st N(μY,ΣY) be random vectors with the
same copula. Then X− μX �quad Y− μY if and only if σXi ≤ σYi .
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ANOVA for Fuzzy Random Variables
Using the R-package SAFD

M. Asunción Lubiano and Wolfgang Trutschnig

Abstract. Due to the important role as central summary measure of a fuzzy
random variable (FRV), statistical inference procedures about the mean of
FRVs have been developed during the last years. The R package SAFD (Sta-
tistical Analysis of Fuzzy Data) provides basic tools for elementary statistics
with one dimensional Fuzzy Data (in the form of polygonal fuzzy numbers).
In particular, the package contains functions for doing a bootstrap test for
the equality of means of two or more FRVs. The corresponding algorithm will
be described and applied to both real-life and simulated data.

Keywords: ANOVA, Fuzzy random variable, R package.

1 Introduction

The concept of a Fuzzy Random Variable (FRV) in Puri & Ralescu’s sense
[13] was introduced as a notion combining both randomness (stochastic uncer-
tainty) and fuzziness (imprecision), where imprecision means non-statistical
uncertainty due to the inaccuracy of human knowledge or the inexactness of
measurements. FRVs can also be seen as natural generalisation of random
sets [10].

The mean of a FRV [13] has been defined as natural extension of the
Aumann-expectation of random sets - it is a fuzzy-valued quantity measuring
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(summarizing) the ‘central tendency’ of the FRV. Various ways of testing
about the mean of FRV can be found in the literature, most of them are
based on statistics analogous to the classical ones using different metrics on
the class Fc(R) of fuzzy numbers ([2, 3, 4, 7, 11, 12]).

In the above-mentioned papers the considered bootstrap statistic is just the
numerator of the extension of the classical statistic. Nevertheless simulations
studies have shown that considering the studentized version dividing by the
estimation of the variance of the involved random elements also works nicely.
Therefore we will consider the quotient when developing bootstrap testing
procedures for the multi-sample hypothesis test.

2 Preliminaries

Throughout the paper we will work with the class Fc(R) of fuzzy numbers, i.e.
mappings Ũ : R→ [0,1] such that for each α ∈ [0,1] the α-level set Uα := {x∈
R : U(x) ≥ α} is a nonempty compact interval [Uα ,Uα ] in R. For Ũ ∈ Fc(R)
we define the functions mid and spread for every α ∈ [0,1] by

mid(Ũ)(α) :=
1
2
(Uα +Uα) and spr(Ũ)(α) :=

1
2
(Uα −Uα).

Given two fuzzy numbers Ũ ,Ṽ ∈Fc(R), the sum Ũ ⊕Ṽ of Ũ and Ṽ is defined
as the fuzzy number Ũ ⊕ Ṽ ∈ Fc(R) such that for each α ∈ [0,1]

(Ũ ⊕ Ṽ)α =
{

y + z : y ∈ Ũα ,z ∈ Ṽα
}

holds. Analogously, given a fuzzy number Ũ ∈ Fc(R) and a real number γ,
the product γ 7 Ũ of Ũ and γ is defined as the fuzzy number γ ·Ũ ∈ Fc(R)
such that for each α ∈ [0,1]:

(γ7Ũ)α =
{
γ · y : y ∈ Ũα

}
.

Remark 1. Since the above mentioned operators are in fact levelwise
Minkowski operations (Fc(R),⊕,7) only has a semilinear structure.

One of the most important aspects of the (statistical) analysis of fuzzy data
is the usage of a suitable distance on the family Fc(R), a distance that is
both not too hard to calculate and which reflects the intuitive meaning of
fuzzy sets. One good choice is the metric Dϕθ introduced by Bertoluzza et al.
[1], which can also be generalized to the multivariate setting without losing
any nice property (see Trutschnig et al. [14]). Dϕθ can be expressed in terms of
the squared Euclidean distances between the mids and the squared Euclidean
distances between the spreads of the interval level sets of the fuzzy numbers
involved. Let ϕ be a probability density on [0,1] with ϕ(α) > 0 for almost
every α ∈ [0,1]. Define Dϕθ : Fc(R)×Fc(R) → [0,+∞) by
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Dϕθ (Ũ ,Ṽ )2 :=
∫

[0,1]

[
mid(Ũ)−mid(Ṽ )

]2
+θ ·

[
spr(Ũ)− spr(Ṽ )

]2
ϕ(α)dα.

The parameter θ plays the role of a weight of the (distance between the)
spreads against the (distance between the) mids. The absolutely continuous
measure dμ = ϕdα serves as a weight measure of the different α-levels, i.e.
we can assign weights according to our interpretation of the importance of
the α-levels. In the R-package SAFD (see Section 3) μ has been chosen to
be the Lebesgue measure on [0,1], i.e. ϕ ≡ 1

Given a probability space (Ω ,A ,P) a FRV X̃ is a mapping X̃ :Ω →Fc(R)
that is Borel-measurable w.r.t. the Borel σ -field generated by the metric Dϕθ
on Fc(R). A FRV X̃ is said to be integrably bounded if X0,X0 ∈ L1(Ω ,A ,P).
If X̃ is integrably bounded then the expectation (or mean) of X̃ is the
unique element E(X̃ ) ∈ Fc(R) such that

(
E(X̃ )

)
α = [E(minXα),E(maxXα )]

holds for every α ∈ [0,1].
The Dϕθ -variance of a FRV X̃ is defined as

Var(X̃ ) = E

([
Dϕθ

(
X̃ ,E(X̃ )

)]2
)

whenever this quantity is finite. It is easy to see that variance and expectation
fulfil the usual property of Fréchet expectation (also see [8]), i.e.

E

([
Dϕθ

(
X̃ ,E(X̃ )

)]2)
= inf

Ã∈Fc(R)
E

([
Dϕθ

(
X̃ , Ã)

)]2)
.

3 The R-package SAFD: Basic Features and How to
Test Equality of Means with It

The aim of the R-package SAFD (Statistical Analysis of Fuzzy Data) is to
provide some basic functions for statistics with one-dimensional fuzzy data.
The package allows to work with polygonal fuzzy numbers, being represented
as data frames with columns x and alpha (equidistant alpha levels in [0,1]).
SAFD contains functions for the basic operations on the class of fuzzy num-
bers (sum, scalar product, mean, Hukuhara difference) as well as for cal-
culating (Bertoluzza-) distance, sample variance, sample covariance, sample
correlation, and the Dempster-Shafer (levelwise) histogram. Moreover a func-
tion to simulate fuzzy random variables and a function to do linear regression
given trapezoidal fuzzy data is included. For more information see the reference
manual at http://cran.r-project.org/web/packages/SAFD/index.html.

http://cran.r-project.org/web/packages/SAFD/index.html
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Apart from the above mentioned functions SAFD also provides a bootstrap
test for the equality of means - the implemented procedure works as follows:
Let X̃1, . . . ,X̃k be independent FRVs (k ≥ 2). For each i ∈ {1, . . . ,k} consider
a sample X̃i1, . . . , X̃ini of X̃i. Denote the sample mean of group i by X̃ i· and the

overall sample mean by X̃ ··, i.e.

X̃ i· =
1
ni
·
(

X̃i1 + . . .+ X̃ini

)
and

X̃ ·· =
1
n
·
(

X̃11 + . . .+ X̃knk

)
=

n1

n
· X̃1·+ . . .+

nk

n
· X̃k·

whereby n = n1 + . . .+ nk is the overall sample size.
The implemented bootstrap test for H0 : E(X̃1) = . . . = E(X̃k) against

H1 : E(Xi1) �= E(Xi2) for some i1 �= i2 works as follows (also see [5]):

Algorithm. Implemented multi-sample bootstrap test.

Step 1. Compute the value of the statistic

T =

k

∑
i=1

ni

[
Dϕθ
(
X̃i·, X̃··

)]2

k

∑
i=1

1
ni

ni

∑
j=1

[
Dϕθ
(
X̃i j, X̃i·

)]2

Step 2. Compute the bootstrap populations by adding to each sample the
sum of the means of the other ones; for this purpose we set

ỹi j = x̃i j +
(

X̃1· + . . .+ X̃(i−1)· + X̃ (i+1)· + . . .+ X̃k·
)

and for each i define a FRV Ỹi that assume the above values ỹi j, j = 1 · · ·ni,
with the corresponding relative frequencies.

Step 3. Draw bootstrap samples (Ỹ ∗
i1, . . . ,Ỹ

∗
ini

) from Ỹi for each i = 1 . . .k.

Step 4. Compute the value of the bootstrap statistic

T ∗ =

k

∑
i=1

ni

[
Dϕθ
(
Ỹ ∗

i· ,Ỹ
∗
··
)]2

k

∑
i=1

1
ni

ni

∑
j=1

[
Dϕθ
(
Ỹ ∗

i j,Ỹ
∗
i·
)]2

Step 5. Repeat steps 3 and 4 a large number B of times.

Step 6. Compute the bootstrap p-value as the portion of values in
{T ∗

1 , . . . ,T ∗
B } being not smaller than T and return the p-value.
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4 Illustrative Example 1

Within a study about the progress of reforestation in a given area of Asturias
(Spain) the INDUROT (Institute of Natural Resources and Zoning of the
University of Oviedo) wanted to quantify the“mean quality”of the three main
species of trees used in the reforestation: birch (Betula celtiberica), sessile oak
(Quercus petraea) and rowan (Sorbus aucuparia). The available information
given was a (randomly collected) sample of n1 = 133 birches, n2 = 109 sessile
oaks and n3 = 37 rowans (see Table 1).

Table 1 Contingency table of the quality of the three species of trees

Quality of tree
Species x1 x2 x3 x4 x5 x6 x7 x7 x9

birch 4 6 13 15 44 9 23 11 8
sessile oak 17 10 19 13 32 9 7 1 1
rowan 1 0 7 8 9 4 5 0 3
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Fig. 1 Nine different tree qualities and group means

Each tree was assigned a trapezoidal fuzzy number that models the experts
subjective judgements/perceptions of the tree quality on a scale from 0 to 5
(0 meaning very bad quality to 5 meaning very good quality). Thereby the
1-cut is the interval in which the expert thinks the quality is contained and
the support (0-cut) is the interval in which the expert is highly willing to
accept that the quality is contained. The left part of Figure 1 depicts the
nine different values of the quality which were considered by the experts.
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In order to check whether or not the mean quality of the three species of
trees is equal we can directly use the function btestk.mean and the dataset
Trees.RData in the SAFD package:

> data(Trees); sel<-c(1,2,3)
> btestk.mean(Trees,sel,1000)

The group means as well as the overall mean of the sample are depicted in
the right part of Figure 1.
For θ = 1/3 we get T = 11.611 and an associated p-value of 0. Consequently
(for all standard significance levels) we can conclude that the ‘mean quality’
is not the same for all three species.
Since the sample mean of groups one and three seem to be similar we can
rerun the test for equality of means only for these two groups:

> btestk.mean(Trees,c(1,3),1000)
[1] 0.246

Consequently we will not reject the hypothesis of equality of means for groups
one and three. Figure 2 depicts the ecdf of the bootstrap statistic T � and the
corresponding value of T in the second test.
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Fig. 2 Ecdf of the bootstrap statistic T �
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5 Illustrative Example 2

The R package SAFD also offers the possibility to generate samples of fuzzy
random variables - essentially the procedure described in [6] has been imple-
mented. As second example we generated three samples of size 20 of three
different FRV having the same mean. The true mean of the FRVs as well as
the group means are depicted in Figure 3, the returned p-value is 0.536.

> data(XX); V<-translator(XX[[3]],20)
> YY<-ZZ<-WW<-list(length=10)
> for(i in 1:10){
+ YY[[i]]<-generator(V,,,) +
ZZ[[i]]<-generator(V,pertV=list(dist="unif",par=c(-3,3)),, +
pertR=list(dist="chisq",par=c(1))) +
WW[[i]]<-generator(V,pertV=list(dist="unif",par=c(-3,3)), +
pertL=list(dist="chisq",par=c(1)),) }
> XXX<-list(YY,ZZ,WW)
> A<-btestk.mean(XXX,sel=c(1,2,3),1000)
[1] 0.536
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Fig. 3 Group means and true mean in the second example
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6 Conclusions

The bootstrap test for the equality of means contained in the R-package
SAFD provides useful results for small or medium sample sizes. The R pack-
age will be extended and improved in the future, in particular the speed of
the bootstrap tests has to be increased.
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Probability Tree Factorisation with
Median Free Term

Irene Mart́ınez, Carmelo Rodŕıguez, and Antonio Salmerón

Abstract. We study the decomposition of probability trees as a product of
factors with reduced domains. We introduce exact and approximate factori-
sation techniques with respect to a median of proportional sub-trees as an
alternative to the factorisation with average free term.

1 Introduction

A Bayesian network can be seen as a representation of a multivariate proba-
bility distribution, such that the conditional independence relations induced
by the distribution are encoded by the structure of the network, according to
the d-separation criterion. This feature allows the computation of posterior
distributions (also called probability propagation) without actually handling
the joint distribution over all the variables in the problem.

Recent advances in propagation have come along with methods that incor-
porate the ability of dealing with factorised representations of the potentials
associated with the join tree, as Lazy [5] and Lazy-penniless propagation [4].

A particular feature of the Lazy-penniless algorithm is that is uses prob-
ability trees [1, 2] to represent probabilistic potentials. Probability trees are
usually more compact than probability tables and, what is more important,
provide a flexible way to reduce the space required to store a probabilistic
potential, approximating it by pruning some of the branches of the trees.
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A potential φ over a random vector X is a mapping φ : ΩX → R
+
0 , where

ΩX is the support of X. We will consider only discrete variables with a finite
number of cases, and the size of a potential φ is defined on ΩX, will be |ΩX|.

A probability tree [1, 2, 8] is a directed labeled tree, where each internal node
represents a variable and each leaf node represents a probability value. Each
internal node has one outgoing arc for each state of the variable associated
with that node. Each leaf contains a non-negative real number. The size of a
tree T , denoted as size(T ), is defined as its number of leaves.

A probability tree T on variables XI = {Xi|i ∈ I} represents a potential
φ :ΩXI → R

+
0 if for each xI ∈ΩXI the value φ(xI) is the number stored in the

leaf node that is reached by starting from the root node and selecting the
child corresponding to coordinate xi for each internal node labeled with Xi.

Probability propagation relies on the combination and marginalisation op-
erations, but the complexity is determined by the combination. For instance,
consider the situation in which we are about to delete a variable Xi in order
to send a message between two nodes of the join tree. The first step is to com-
bine the potentials (probability trees in this case) containing Xi. The result
will be, in the worst case, a potential of size equal to the product of the sizes
of the trees that took part in the combination. A gain in efficiency could be
achieved if we managed to decompose each tree containing Xi as a product
of two trees (factors) of lower size, one of them containing Xi and the other
not containing it. Then, the product would be actually carried out over po-
tentials (trees) with reduced domains and thus, the complexity of probability
propagation could decrease.

2 Exact Factorisation of Probability Trees

Now assume that the next variable to marginalise out is X , and we find it
in the tree shown in Fig. 1. Within context W = 0, all the children of X
are proportional. Thus, it is possible to factorise the tree as a product of
two trees, where the size of each factor is lower than the size of the original
tree (see Fig. 2), in such a way that one of the factor keeps the information
regarding X and the other contains the information irrelevant to X [6, 7].
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Fig. 1 A probability tree proportional below X for context (W = 0).
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Let T be a probability tree. Let (XC = xC) be a configuration of variables
leading from the root node in T to a variable X . We say that T is pro-
portional below X within context (XC = xC) if there is a xi ∈ ΩX such that
for every xi,x j ∈ΩX , ∃πi j > 0 such that T R(XC=xC,X=x j) = π ji ·T R(XC=xC,X=xi),

where T R(XC=xC,X=x) denotes the sub-tree of T reached following the path
determined by configuration (XC = xC,X = x). The values πππ = {πi j} are called
proportionality factors.

Let T be a probability tree proportional below X within context (XC = xC),
with proportionality factors πππ. The core term of T , denoted by T (XC =
xC,X = xi,ααα) is the tree obtained by replacing sub-tree T R(XC=xC,X=xi) in T
by constant 1 and any other sub-tree T R(XC=xC,X=x j) by constant π ji.

The free term of T , denoted by T (XC = xC,X = xi) is the tree obtained
from T by replacing sub-tree T R(XC=xC) by T R(XC=xC,X=xi) and any other
sub-tree T R(XD=xD) by 1 for any context inconsistent with (XC = xC). It holds
that T = T (XC = xC,X = x,πππ)×T (XC = xC,X = x).
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Fig. 2 Decomposition of the tree in figure 1 with respect to variable X .

Instead of factorising with respect to an arbitrary subtree, in [7], it is
proposed to factorise with respect to an average of the proportional sub-
trees, with the aim of avoiding the high values that appear in the leaves of
the core term of the factorisation (see Fig. 2(b)). Let T be a probability
tree proportional below X within context (XC = xC), with proportionality
factors πππ . The exact factorisation of T with average free term is T = T (XC =
xC,X = x)×T (XC = xC,X = x,πππ), where the free term, T (XC = xC,X = x), is
computed as the tree obtained from T by replacing T R(XC=xC) by T̄ R(XC=xC)

and replacing T R(XD=xD) by a 1 for every context (XD = xD) incompatible
with (XC = xC), and where T̄ R(XC=xC) is

T̄ R(XC=xC) =
1

|ΩX | ∑x j∈ΩX

T R(XC=xC,X=x j). (1)

The core term, T (XC = xC,X = x,πππ), is the tree obtained from T by replacing
each tree T R(XC=xC,X=x j) by a constant π j given by:

π j =
1
π̄· j

=
|ΩX |

∑k:xk∈ΩX
πk j

. (2)
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2.1 Factorisation with Median Free Term

By a motivation similar to those given in [7], a factorisation with median free
term could be considered as well. The median is more robust than average,
for example for outliers and moreover, a better accuracy could be obtained
for some divergence measures.

Definition 1. Let T be a probability tree proportional below X for context
(XC = xC) with proportionality factors πππ. We define the exact factorisation of
T with median free term as T = T (XC = xC,X = x)×T (XC = xC,X = x,πππ),
where the free term, T (XC = xC,X = x), is computed as the tree obtained from
T by replacing T R(XC=xC) by T

R(XC=xC)
Me and replacing T R(XD=xD) by a 1 for

every context (XD = xD) incompatible with (XC = xC), and where T
R(XC=xC)

Me
is the tree given by

T
R(XC=xC)

Me =

{
T ( n+1

2 ), if n is odd;
1
2 (T ( n

2 ) +T ( n
2 +1)), if n is even,

(3)

with n = |ΩX |, and for each x j ∈ΩX , T j represents the subtree T R(XC=xC,X=x j)

and {T ( j) : x j ∈ΩX} is the ordered sequence of the trees {T j : x j ∈ΩX}1.
The core term, T (XC = xC,X = x,πππ), is the tree obtained from T by re-

placing each tree T R(XC=xC,X=x j) by a constant π j given by:

π j =

⎧
⎪⎪⎨

⎪⎪⎩

1
πk j

= π jk, if n odd; T k = T ( n+1
2 )

2
πk j +π(k+1) j

=
2π jkπ j(k+1)

π jk +π j(k+1)
, if n even, T k = T ( n

2 ).
(4)
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Fig. 3 Median factorisation of the tree in Fig. 1 .

Remark 1. In general, not every set of trees can be ordered. In this case, we
define the median tree, T R(XC=xC)

Me , of a set of trees, {T R(XC=xC,X=x j) : x j ∈ΩX},
with the same structure as a tree with the same structure and each leaf,
T

R(XC=xC,li)
Me , is the median of the respective leaves of the subtrees, that is,

T
R(XC=xC,li)

Me = Median
{
T R(XC=xC,X=x j ,li),x j ∈ΩX

}
(5)

1 A set of proportional trees can be fully ordered, and therefore the median tree
given by 3 is well defined.
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It is immediately noticed that, in the case of proportional trees, both defini-
tions given by (3) and (5) coincide.

Theorem 1. Let T be a probability tree proportional below X for con-
text (XC = xC) such that T R(XC=xC,X=xi) = πi j ·T R(XC=xC,X=x j) xi,x j ∈ ΩX .
Then, the tree T

R(XC=xC)
Me defined as in (3) is proportional to all the factors

T R(XC=xC,X=xi) and it holds that
T = T (XC = xC,X = x,πππ)×T (XC = xC,X = x) (6)

where T (XC = xC,X = x,πππ) and T (XC = xC,X = x) are as in Definition 1.

3 Approximate Factorisation

The problem of approximate factorisation can be stated as follows. Let T1 and
T2 two sub-trees which are siblings for a given context (i.e. both sub-trees are
children of the same node), such that both have the same size and their leaves
contain only positive numbers. The goal of the approximate factorisation is
to find a tree T ∗

2 with the same structure than T2, such that T ∗
2 and T1

become proportional, under the restriction that the potential represented by
T ∗

2 must be as close as possible to the one represented by T2. Then, T2 can
be replaced by T ∗

2 and the resulting tree that contain T1 and T2 can be
decomposed, as it would become proportional or partially proportional for
the given context.

Two main issues are the determination of the proportionality factor, π ,
and measuring the accuracy of the approximation. Both are connected, as in
general, different divergence measures would result in different values for π .

The problem of approximate factorisation was introduced in [6], in which
the formulae for computing the proportionality factors according to several
divergence measures were given. A probability tree T is δ -factorisable within
context (XC = xC), with proportionality factors πππ with respect to a divergence
measure D if for each x j,xi ∈ ΩX ∃π ji > 0 such that D(T R(XC=xC,X=x j),π ji ·
T R(XC=xC,X=xi))≤ δ . Parameter δ > 0 is called tolerance of the approximation.
Observe that proportional and partially proportional trees for context (XC =
xC) are δ -factorisable, with δ = 0.

For carrying out the approximate factorisation, in this paper we follow the
methodology established in [7] and factorise with respect to the median free
term. We have found two ways of factorising in an approximate:

Strategy 1: Given a tree T δ -factorisable below X for context (XC = xC),
with respect to a divergence measure D , the approximately proportional
sub-trees are computed according to the chosen method, and the exact fac-
torisation with median free term is applied. We shall refer to this strategy
as approximate factorisation with median free term (MAF).

Strategy 2: Given a tree T , δ -factorisable below X for context (XC = xC),
an median tree is computed from the original factors, and the constants of
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Fig. 4 A probability tree δ -factorisable below X for context W = 0.
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Fig. 5 Approximation of the sub-trees below X for context W = 0 by the invariant
potential method, for which the proportionality factors are 1, 2 and 5.9991.

the core term are obtained by any approximation method, with respect to
the average tree. We shall refer to this strategy as approximate direct
factorisation with median free term (MDAF).

Fig. 4 shows a probability tree δ -factorisable below X for context W = 0.
Fig. 5 and 6 show the sub-trees of X for context W = 0 approximately pro-
portional according to the invariant potential method, and the approximate
factorisation resulting by applying Strategy 1 to the tree in Fig. 4.

Fig. 7 shows the median tree of the sub-trees δ -proportional for con-
text W = 0 from the tree in Fig. 4. Fig. 8 shows the approximate direct
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Fig. 6 Approximate factorisation with median free term of the tree in Fig. 4 ac-
cording to the invariant potential method.
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the tree in Fig. 4.
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Fig. 8 Approximate direct factorisation with median free term of the tree in Fig. 4
using the method of minimum χ2 divergence.

Table 1 Proportion (%) of experiments where MDAF is more accurate. Sce-
nario (i).

Method MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot 71.5 68.1 71 71 69.2 68.7 70.6
Min Dχ 71.3 68.1 70.9 70.9 69.1 68.5 70.1

Min MSE 71.3 68.1 70.6 70.6 68.9 68.3 70.4
Min WMSE 71.4 68.2 70.7 70.8 69.3 68.7 70.7
Null DKL 71.8 67.7 70.6 70.7 69 68.6 70.3

Wa 71.4 68 70.6 70.7 68.9 68.4 70.2
Min Hell 71.2 67.7 70.6 70.8 69 68.6 70.5

factorisation with median free term of the tree in Fig. 4 using the method of
minimum χ2 divergence.

We have carried out a simulation over randomly generated trees with vari-
ous features, and in each case, we have annotated which factorisation strategy
(approximate factorisation or approximate direct factorisation) provides the
best results. More precisely, we have conducted 10000 runs, each one with a
set of m sub-trees (m generated at random between 2 and 102) with n leaves
(n generated at random between 2 and 52), considering three scenarios: (i)
Each leaf with a random real number between 0 and 10. Table 1 shows the
proportion of runs in which the error of the direct approximation is lower,
for the different divergence measures considered. (ii) The leaves in each tree,
instead of containing random numbers, contain real numbers in increasing or-
der (Table 2). (iii) The leaves are generated in such a way that the resulting
trees are δ -factorisables with δ = 0.01. (Tab. 3).
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Table 2 Proportion (%) of experiments where MDAF is more accurate. Sce-
nario (ii).

Method MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot 99.7 99.9 98.5 98.5 99.9 99.9 99.9
Min Dχ 99.7 99.9 99.9 99.9 99.9 100 99.9

Min MSE 99.3 99.9 97.9 97.9 99.9 99.9 99.9
Min WMSE 99.4 99.9 95.2 95.2 99.9 99.9 99.9
Null DKL 99.7 99.9 99.5 99.5 99.9 99.9 99.9

Wa 99.8 99.9 99.9 99.9 99.9 99.9 99.9
Min Hell 99.6 99.9 98.6 98.6 99.9 99.9 99.9

Table 3 Proportion (%) of experiments where MDAF is more accurate. Sce-
nario (iii).

Method MAXD MAD Dχ NDχ MSE WMSE Hellinger
Inv Pot 38 68.6 75.8 75.8 70.3 68.8 75.8
Min Dχ 37.9 68.6 75.8 75.8 70.3 68.7 75.8

Min MSE 34.7 61.6 76.8 76.8 64.4 43.8 76.8
Min WMSE 34.2 62 77.9 77.9 65 41.3 77.9
Null DKL 38 68.6 75.8 75.8 70.3 68.9 75.8

Wa 38 68.6 75.8 75.8 70.3 68.9 75.8
Min Hell 37.9 68.6 75.8 75.8 70.3 68.8 75.8

4 Conclusions

We have introduced a methodology for decomposing probability trees with
respect to a median free term. Using the median can produce more robust
decompositions that using the mean in some cases. Also, it can increase the
accuracy of the decomposition if the mean absolute error is used as divergence
measure.
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Comparison of Random Variables
Coupled by Archimedean Copulas

I. Montes, D. Martinetti, S. Dı́az, and S. Montes

Abstract. Random variables are used to model many processes in real life
and in many cases we have to choose among those processes. The usual way to
compare random variables is the classical stochastic dominance. One draw-
back of stochastic orders is that it is not always possible (or easy) to use
them, arising then the need for alternative models in many situations. A new
model has been recently been developed and it was called statistical prefer-
ence. This method allows to compare every pair of alternatives. It also takes
into consideration the possible dependence between the alternatives. In this
contribution we analyze the possible relationship between statistical prefer-
ence and stochastic dominance of continuous random variables. We focus on
random variables whose joint cumulative distribution function is obtained by
Archimedean copulas.

1 Introduction

Stochastic dominance is used in investment decision-making under uncer-
tainty. In economics, investments usually involve some risk. Then, random
variables are employed to model these assets and therefore a criterion to
choose among those random variables is necessary. In decision-making the
comparison is carried out by pairs. Given two random variables, stochastic
dominance is the most usual way to compare them. It has been widely ap-
plied and also studied in depth (see among others [4, 9]). However, it is not
exhaustive. It does not always allow to fix a preferred random variable. There
are pairs of random variables for which no one of them stochastically domi-
nates the other one. In addition to this, stochastic dominance is not easy to
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be computed in some cases. And it does not take into account the possible
dependence between the random variables confronted.

Statistical preference is a new way of comparing random variables. It is
obtained departing from a probabilistic relation defined over the pair of ran-
dom variables. Let us recall that a probabilistic relation defined over a set of
alternatives is a binary relation that takes values in the unit interval and such
that the sum of the values of the relation acting over any pair of elements
and over the transposed pair is 1. De Schuymer et al. (see for example [2, 3])
defined a probabilistic relation over a set of random variables. And from such
a relation, statistical preference was defined.

The first natural step when a new definition appears is to confront it with
the classical definitions. In this work we confront stochastic dominance and
statistical preference. We do not restrict our study to independence, but we
admit possible dependence between the random variables. In fact, we will
consider the general framework of random variables coupled by means of
Archimedean copulas (see [10]).

The work is organized as follows: after this introduction, in Section 2
we give some previous notions. First of all we recall the different types of
stochastic dominance. We also recall the notion of copula. Section 3 is de-
voted to statistical preference. In Section 4 we compare statistical preference
and stochastic dominance. Finally, in Section 5 we provide some conclusions.

2 Previous Notions

A classical way to compare random variables is the stochastic dominance. In
this section we recall the definition of stochastic dominance of any degree, but
we pay special attention to the two most usual definitions: first and second
degree stochastic dominance.
After that we recall the notion of copula, that plays an important role in this
contribution.

2.1 Stochastic Dominance

The best known way to compare random variables is the first degree stochastic
dominance.

Definition 1. A random variable with cumulative distribution function FX

stochastically dominates in first degree a random variable Y with cumulative
distribution function FY , denoted as X ≥FSD Y , if for all real t it holds that
FX(t)≤ FY (t).

This definition is quite restrictive: for many pairs of random variables no one
of them stochastically dominates the other one in first degree.

This lead to less restrictive definitions of stochastic comparison.
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Definition 2. A random variable with cumulative distribution function FX

stochastically dominates in second degree a random variable Y with cumula-
tive distribution function FY , denoted as X ≥SSD Y if it holds that

∫ x

−∞
FX(t)dt ≤

∫ x

−∞
FY (t)dt

for all x ∈R.

Both types of dominance can be characterized by the mean of the variables
confronted (see for example [4]). It holds that X ≥FSD Y if and only if E[u(X)]≥
E[u(Y )] for every non-decreasing function u. It holds that X ≥SSD Y if and only
if E[u(X)]≥ E[u(Y )] for every non-decreasing concave function u. It is easy to
realize from this result that first degree stochastic dominance is a stronger
condition than second degree stochastic dominance.

Despite first and second degree stochastic dominances are the most em-
ployed ones, stochastic dominance can be defined for any degree n.

Definition 3. Let X and Y be two random variables with cumulative distri-
bution functions FX and FY , respectively. Let F1

X = FX , F1
Y = FY and recursively

define

Fn+1
X (x) =

∫ x

−∞
Fn

X (t)dt, Fn+1
Y (y) =

∫ y

−∞
Fn

Y (t)dt, for n ∈ {1,2 . . .}.

Random variable X stochastically dominates in nth degree Y , denoted as
X ≥nSD Y , if it holds that

Fn
X (x) ≤ Fn

Y (x), for all x ∈ R.

In general it holds that for any pair of random variables X and Y ,

X ≥nSD Y ⇒ X ≥mSD Y, ∀n ≤ m.

Example 1. Thus, consider the random variables X and Y with uniform dis-
tribution U(3,5) and U(1,4), respectively. It is obvious that X ≥FSD Y , and
therefore X ≥nSD Y for all n ∈ {1,2, . . .}.

2.2 Copulas

Stochastic dominance does not take into account the possible dependence be-
tween the random variables compared. It is well known that when the random
variables are independent, the joint cumulative distribution function FX ,Y is
obtained as the product of the marginal cumulative distribution functions

FX ,Y (x,y) = FX(x) ·FY (y).
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It is also known that in general, the joint cumulative distribution function
of two random variables X and Y , can be expressed by a copula whose argu-
ments are the marginal distribution functions of the original variables (Sklar’s
theorem).

Definition 4. A copula is an operator C : [0,1]2 → [0,1] satisfying

• C(x,0) = C(0,x) = 0 for all x ∈ [0,1],
• C(x,1) = C(1,x) = x for all x ∈ [0,1],
• the property of moderate growth:

C(x1,y1)+C(x2,y2)≥C(x1,y2)+C(x2,y1)

for every (x1,x2,y1,y2) ∈ [0,1]4 such that x1 ≤ x2 and y1 ≤ y2.

By the Fréchet-Hoeffding bounds inequality, for every copula C and every
(x,y) ∈ [0,1]2,

W (x,y) ≤C(x,y) ≤ M(x,y),

where the first one, M, is the minimum operator (M(x,y) = min(x,y)) and
the second one, W , represents the �Lukasiewicz operator (W (x,y) = max(x +
y− 1,0)). M is also referred to as the Fréchet-Hoeffding upper bound and
W as the Fréchet-Hoeffding lower bound. A third important copula is the
product copula, Π(x,y) = x ·y. As commented before, the product is the cop-
ula employed when the random variables are independent. In the other two
cases, the random variables are called comonotonic and countermonotonic,
respectively (see, for instance, [1, 11]).

These three copulas are also particular cases of Archimedean copulas.

Definition 5. An Archimedean copula is a function C from [0,1]2 to [0,1]
given by

C(x,y) = ϕ [−1](ϕ(x)+ϕ(y))

where ϕ (the generator of C) is a continuous, strictly decreasing function from
[0,1] to [0,∞] such that ϕ(1) = 0 and where ϕ [−1] denotes the pseudo-inverse
of ϕ:

ϕ [−1](t) =
{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞.

3 Statistical Preference

As commented in the introduction, stochastic dominance leads to a partial
order in a set of univariate random variables. De Schuymer et al. [2, 3]
introduced a different way of stochastic comparison, that allows to order any
pair of random variables. They defined a probabilistic relation D over the
pairs of random variables (X ,Y ) as follows:

D(X ,Y ) = Pr(X > Y )+
1
2

Pr(X = Y )
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It clearly holds that D is a probabilistic relation, that is, it takes values in
[0,1] and D(X ,Y )+ D(Y,X) = 1 for every pair of random variables X and Y .

D can be seen as a graded variant of stochastic orders because it allow us
to give degrees of preference. However, sometimes it is necessary to dissolve
the fuzziness inside this relation and obtain a crisp comparison for random
variables from it. It is very simple by means of the 1/2-cut of this relation.

Definition 6. [2] Given two random variables X and Y , the variable X is
statistically preferred to Y if D(X ,Y ) ≥ 1

2 . We will denote it X ≥SP Y .

As a consequence of this definition, we say that two random variables X and
Y are statistically indifferent if D(X ,Y ) = 1

2 .

Example 2. Let us consider X and Y uniformly distributed on the intervals
[0,20] and [1,4], respectively. It is easy to check that there are not first degree
stochastic dominance neither second degree stochastic dominance. Thus, they
are not comparable with that method. However, X intuitively seems (the most
of the times) greater than Y . We have that D(X ,Y ) = 7

8 and therefore X ≥SP Y .
Thus, we have found finally a way to compare X and Y .

Thus, statistical preference is a relation on a set of random variables which
avoids the pointwise comparison of performance functions. It also avoids spe-
cific reference points and it allows us to induce a total order relation on
the set of random variables, which is called statistical preference. Another
problem of stochastic dominance is that it does not take into account the
possible relationship between the random variables being compared. Statis-
tical preference does consider the connection between the random variables.
By the Sklar’s theorem, the statistical preference of one random variable X
over another one Y depends on the copula that connects them.

4 Statistical Preference versus Stochastic Dominance

We have already studied in detail the connection between statistical prefer-
ence and first and second degree stochastic dominance for independent ran-
dom variables [6]. The case of comonotonicity and countermonotonicity was
applied for comparing two fitness values of two knowledge bases [7].

Now we consider a more general case: we assume that the random vari-
ables can be coupled by any Archimedean copula. In that case, for any pair
of continuous random variables, we have proven that first degree stochastic
dominance is a stronger condition than statistical preference. Due to space
limitation, we will not detail the proof of the following results.

Theorem 1. Let X and Y be two continuous random variables. Let C be an
archimedean copula and FX ,Y (x,y) = C(FX (x),FY (y)). Then

X ≥FSD Y ⇒ XY .
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Thus, this theorem is a more general than the given by De Schuymer et
al. [2], where it was presented for the particular case of independent random
variables, although only proven for the continuous case. The proof for the
discrete case is a little more complicated but the result still holds.

Remark 1. The converse of previous theorem does not hold. Even more, we
can find a pair of random variables X and Y and a copula C such that:

• X and Y are coupled by C.
• X is statistically preferred to Y .
• There does not exist an integer number n, with n≥ 1, such that X stochas-

tically dominates in nth degree Y .

For example, it is sufficient to consider X ≡U(0,10) and Y ≡U(1,2). Then
it holds that Q(X ,Y ) > 1

2 when X and Y are independent, comonotonic or
countermonotonic. Therefore, in those cases XY . However, it is not possible
that X ≥nSD Y for any degree n.

Then, statistical preference is not as restrictive as first degree stochastic dom-
inance in general. However, for some particular probability distributions they
are equivalent [6].

From Theorem 1, we could think that any stochastic order implies statisti-
cal preference. However this implication is not fulfilled for any other stochas-
tic order different from the first degree order. This is a consequence that
second degree stochastic dominance does not guarantee the statistical pref-
erence when dealing with independent random variables (see [6]) and this is
a stronger condition than stochastic dominance of order n for n ≥ 3. Thus,
for any n ≥ 2, there exist two continuous random variables X and Y and an
Archimedean copula C such that:

• X and Y are coupled by C.
• X stochastically dominates in nth degree Y .
• X is not statistically preferred to Y .

Apart from Theorem 1, we have proven that no other implication among n-
degree stochastic dominance and statistical preference holds in general. Thus,
for instance, we know that second degree stochastic dominance and statistical
preference are not connected in general. We also know that each of them by
itself is not enough to obtain first degree stochastic dominance. We could
prove that both conditions together neither guarantee first degree stochastic
dominance. For these reason, we can find two continuous random variables X
and Y and an Archimedean copula C such that:

• X and Y are coupled by C.
• X is statistically preferred to Y .
• X stochastically dominates in second degree Y
• X does not stochastically dominate in first degree Y .
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The previous results can be graphically summarized:

SP SSD

FSD

As a completion of the study presented in [5], we have conducted an exper-
iment in order to investigate if these relationships are natural for the human
reasoning and we have found very supporting results.

In the case of independent continuous random variables, it was also proven
that X ≥SP Y is equivalent to EX(FX) ≤ EX(FY ), where EX(·) denotes the ex-
pectation with respect to the variable X . From here, Theorem 1 is trivial
in the particular case of independence. We have generalized that result for
archimedean copulas:

Theorem 2. Let X and Y be two continuous random variables and let C be
an archimedean copula with generator ϕ. Then XY if and only if

EX

([(
ϕ [−1]

)′
(ϕ(FX(x))+ϕ(FY (x)))−

(
ϕ [−1]

)′
(2ϕ(FX (x)))

]
ϕ

′
(FX(x))

)
≥ 0.

Remark 2. If X and Y are independent, ϕ(x) =− ln(x), and simplifying in the
previous expression we obtain that that condition is equivalent to EX(FX) ≤
EX(FY ).

Thus, we have obtained a new characterization of the statistical preference for
continuous random variables in the particular case they are coupled by means
of Archimedean copulas. In general, we had obtained (see [8]) the following
equivalence: XY ⇐⇒ MeX−Y ≥ 0.

5 Conclusion

Statistical preference is a new way of comparing random variables. It seems
to be a clear alternative to classical stochastic dominance. It takes into ac-
count the possible dependence between the random variables compared, and
it allows to order any pair of random variables. In this contribution we study
the connection between statistical preference and stochastic dominance. If the
random variables to be compared are independent, it is known that statistical
preference is a weaker condition than first degree stochastic dominance. In
this contribution we have considered pairs of random variables whose joint
cumulative distribution function is obtained by an archimedean copula act-
ing over the marginal distribution functions of the random variables. We have
compared first degree stochastic dominance and statistical preference and we
have proven that in any case, first degree stochastic dominance is a stricter
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way of comparing continuous random variables than statistical preference. We
expect an analogous result for discrete random variables and we are already
working on it.
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Two-Way Analysis of Variance for
Interval-Valued Data

Takehiko Nakama, Ana Colubi, and M. Asunción Lubiano

Abstract. We establish two-way analysis of variance (ANOVA) for interval-
valued data. Each observation is assumed to be a compact convex interval,
and the two-way ANOVA determines whether to reject null hypotheses about
the effects of two factors on the observed intervals. The Minkowski support
function is used to obtain a metric for intervals and to transform them to
Hilbert-space-valued functions. We derive test statistics that are appropri-
ate for testing the null hypotheses, and we develop a bootstrap scheme for
approximating the p-values of the observed test statistics.

1 Introduction and Summary

A wide variety of statistical procedures have been established for analyzing
data in which each observation is nominal, ordinal, or numerical. However,
there are many practical problems that require dealing with observations that
represent inherently imprecise, uncertain, or linguistic characteristics. In such
cases, intervals and fuzzy sets are more effective in encoding observations. For
instance, if one reports a perceived length of an object in a perceptual study,
imprecise responses such as “between 6 and 10” or “about 8” may reflect the
perceived length better than real-valued responses.

Various statistical tests have been developed to quantitatively analyze
fuzzy data. For instance, Körner [10], Montenegro et al. [14], and González-
Rodŕıguez et al. [9] developed one-sample methods for hypothesis testing
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about the fuzzy population mean. Montenegro et al. [13] and González-
Rodŕıguez et al. [8] established a two-independent-sample test of equality
of fuzzy means, and González-Rodŕıguez et al. [8] developed a paired-sample
test of the same type. These are considered extensions of classical t tests to
fuzzy data. Gil et al. [5] and Corral et al. [4] developed a multiple-sample test
of equality of fuzzy means; this is one-way analysis of variance (ANOVA) for
fuzzy data.

In this paper, we establish two-way ANOVA for interval-valued data. A
two-way layout is designed to examine the effects of two factors, which each
involve at least two levels. This experimental design offers two main advan-
tages compared to combining two one-way layouts in testing the effects of
two factors. Conducting one two-way-layout experiment is usually more cost-
effective than conducting two one-way-layout experiments since the two-way
layout uses the same observations to compare the levels of one factor as are
used to compare the levels of the other factor. The other advantage is that
the two-way layout allows us to examine the effect of interaction between the
two factors. There are cases where the interaction between the two factors
is significant even though the main effect of each factor is not significant.
Thus the two-way layout is an important experimental design, and two-way
ANOVA is an essential technique for analyzing the resulting observations.

The rest of this paper is organized as follows. In Section 2.1, we describe
fundamentals of interval arithmetic. As in most of the previous studies that
developed statistical methods for fuzzy data, we consider intervals in R

d that
are compact and convex. We use the Minkowski support function to establish
a metric for intervals and to transform them to Hilbert-space-valued func-
tions; see Section 2.2. As described in Section 2.3, this approach allows us to
derive convergence results for random intervals from the strong law of large
numbers and central limit theorems for Hilbert-space-valued random vari-
ables. Two-way ANOVA for interval-valued data is formulated in Section 3.
We describe test statistics that can be used to test null hypotheses about the
main effect of each factor and about the interaction between the two factors.
We develop a bootstrap scheme for approximating the distributions of the
test statistics and their p-values.

Space limitations on this paper force us to omit proofs of our theorems
presented in this paper. We will provide them in our full-length paper.

2 Preliminaries

2.1 Interval Arithmetic

As mentioned in Section 1, we consider intervals in R
d that are compact

and convex. Let Kc(Rd) denote the set of such intervals. Addition and scalar
multiplication are the basic arithmetic operations on intervals. For A,B ∈
Kc(Rd), the (Minkowski) addition of A and B is defined by
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A + B := {a + b |a∈ A, b ∈ B}.

For λ ∈ R, we define λA := {λa |a ∈ A}. Notice that in general, A−A �= 0,
where 0 denotes the additive identity (i.e., the interval that contains only 0);
except for 0, each element in Kc(Rd) has no additive inverse.

2.2 Metric and Transformation of Intervals to
Functions

We will follow the approach introduced by Puri and Ralescu [15, 16, 17] and
map the space of Kc(Rd) described in Section 2.1 to a closed convex cone
of a Hilbert space by means of the (Minkowski) support function. Let S

d−1

denote the unit sphere in R
d . For each A ∈ Kc(Rd), the support function sA

of A is defined by

sA(u) := sup
a∈A

〈a,u〉 ∀ u ∈ S
d−1, (1)

where 〈·, ·〉 denotes the standard inner product in R
d . The interval

[−sA(−u), sA(u)]

is the projection of A onto the line spanned by u.
With this support function, we can define a metric for intervals in Kc(Rd).

Several metrics can be used in our study. For concreteness, we use a family
of metrics recently proposed by Trutschnig et al. [18]. Let Hs denote the
space of all support functions that can be derived from Kc(Rd). For each
f ∈ Hs, define mid f (u) := f (u)− f (−u)

2 and spr f (u) := f (u)+ f (−u)
2 ; thus mid f (u)

and spr f (u) denote the middle point and half of the length of the interval
[− f (−u), f (u)], respectively. Let λ

Sd−1 denote the Lebesgue measure on S
d−1.

For each f ,g ∈Hs, define

〈 f ,g〉θ := �mid f ,mid g�+θ�spr f ,sprg�, (2)

where θ ∈ (0,1] and

� f ,g� :=
∫

u∈Sd−1
f (u)g(u)dλ

Sd−1(u).

The parameter θ specifies the relative importance of �spr f ,−sprg� compared
to �mid f ,−midg�. We define the metric Dθ for intervals in Kc(Rd) by

Dθ (A,B) := ||sA − sB||θ , (3)

where

||sA − sB||θ :=
√
〈sA − sB,sA − sB〉θ . (4)
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This is an extension of the metric introduced by Bertoluzza, Corral, and
Salas [1] for intervals in Kc(R)

Let H := { f : S
d−1 → R | || f ||θ < ∞}. Then (2) is an inner product for H ,

and the resulting inner product space is a Hilbert space. The support function
(1) isometrically embeds the space Kc(Rd) in a closed convex cone of the
Hilbert space. We will obtain important results for our two-way ANOVA
based on this isometric embedding.

2.3 Random Intervals and Hilbert-Space-Valued
Random Variables

As in previous studies (see, for instance, Gil et al. [6]), random intervals will be
considered compact convex random sets as follows. Given a probability space
(Ω,F ,P), we consider a measurable space (Kc(Rd),FK ) where FK denotes
the σ -field in Kc(Rd) generated by the topology induced by any metric that
belongs to the family defined at (3). We treat each random interval as a
mapping X that is measurable F/FK . Fundamental probabilistic notions
for real-valued random variables, such as distributions and independence of
random variables, remain the same for these random intervals.

Regarding the Hilbert space H described in Section 2.2, consider a σ -field
FH in H generated by the topology induced by the metric

DH
θ ( f ,g) := || f −g||θ ,

where || · ||θ is defined at (4). Let X ′ denote a mapping that is measurable
FK /FH . Then the composition X ′ ◦X is measurable F/FH , and this
is a Hilbert-space-valued random variable. The strong law of large numbers
and central limit theorems exist for Hilbert-space-valued random variables
(see, for example, Laha and Rohatgi [11], Ledoux and Talagrand [12], Colubi
et al. [3]). Using the isometric embedding described in Section 2.2, we can
thus derive various convergence results for random intervals from those for
the corresponding Hilbert-space-valued random variables. In fact, the results
described in Section 3 are obtained in this manner.

We define the expectation ẼX of a random interval X to be its Aumann
integral (see, for instance, Puri and Ralescu [17]):

ẼX :=
{∫

X(ω)dP(ω)
∣
∣∣
∣ X :Ω→ R

d , X ∈ L1(Ω,F ,P), X ∈ X a.e.

}
.

Using the metric (3), we define the variance of X by

Var(X ) := E[Dθ (X , ẼX )]2.
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3 Two-Way ANOVA for Random Intervals

Suppose that factors 1 and 2 have I and J levels, respectively. We let Xi jk

denote the kth interval-valued observation under the ith level of factor 1
and the jth level of factor 2. We let ni j denote the number of observations
under this condition and let n denote the total number of observations: n :=
∑I

i=1∑
J
j=1 ni j. In two-way ANOVA for these random intervals, we consider the

following model:

Xi jk = μ+αi +β j + δi j + εi jk. (5)

Here the parameters of the model, αi, β j, and δi j (1 ≤ i ≤ I, 1 ≤ j ≤ J), are
all compact and convex intervals (they all belong to Kc(Rd)), and εi jk de-
note random intervals, which are the random components of the model. We
assume that εi jk ∈ Kc(Rd) almost everywhere and that εi jk are independent
and identically distributed with finite variance. In the model, αi and β j rep-
resent the main effects of factors 1 and 2, respectively, and δi j represent the
interaction between the two factors. For all i, j, and k, let ε := Eεi jk. Then
we have

EXi jk = μ+αi +β j + δi j + ε.

In order to determine the significance of the main effects and interaction,
we test the following null hypotheses:

H(1)
0 : α1 = α2 = · · · = αI .

H(2)
0 : β1 = β2 = · · · = βJ.

H(1,2)
0 : δ1,1 = δ1,2 = · · · = δIJ .

First we describe how to test H(1)
0 . Define

X ··· :=
1
n

I

∑
i=1

J

∑
j=1

ni j

∑
k=1

Xi jk, X i·· :=
1

∑J
j=1 ni j

J

∑
j=1

ni j

∑
k=1

Xi jk,

X i j· :=
1

ni j

ni j

∑
k=1

Xi jk, T (1)
n :=

∑I
i=1(∑

J
j=1 ni j)(Dθ (X i··,X ···))2

∑I
i=1∑J

j=1∑
ni j
k=1(Dθ (Xi jk,X i j·))2

.

For each i and j, suppose that ni j/n → pi j > 0 as n → ∞. Then we can prove
the following theorem:

Theorem 1. If H(1)
0 does not hold, then P(T (1)

n ≤ t) → 0 as n → ∞ for any
t ∈ R.



480 T. Nakama, A. Colubi, and M. Asunción Lubiano

This theorem can be proved based on the corresponding results for the H -
valued random variables described in Section 2.3, which can be derived from
the strong law of large numbers and central limit theorems for Hilbert-space-
valued random variables. Therefore, if we let zα denote the 100(1−α) per-
centile of the distribution of T (1)

n under H(1)
0 , then we can reject H(1)

0 with
significance level α if the observed value of T (1)

n is greater than zα .
The distribution of T (1)

n is unknown. However, the Giné-Zinn bootstrap
central limit theorem (Giné and Zinn [7]) is applicable in this case due to
the isometric embedding of Kc(Rd) into a convex cone of H described in
Section 2.2. Thus we establish a bootstrap scheme for approximating the
distribution of T (1)

n and the value of zα . For each i and j, define

Γ(−i,− j) := ∑
1≤i′≤I:i′ �=i

∑
1≤ j′≤J: j′ �= j

X i′ j′· ,

and consider the set

Si j := {Xi jk +Γ(−i,− j) |1 ≤ k ≤ ni j}.

We can use
⋃I

i=1
⋃J

j=1 Si j as the bootstrap population. For each i and for each

j, we generate ni j bootstrap observations Y
(i, j)

1 ,Y
(i, j)

2 , . . . ,Y
(i, j)

ni j by simple
random sampling from Si j and compute

Y :=
1
n

I

∑
i=1

J

∑
j=1

ni j

∑
k=1

Y
(i, j)

k , Y i :=
1

∑J
j=1 ni j

J

∑
j=1

ni j

∑
k=1

Y
(i, j)

k ,

Y i j :=
1

ni j

ni j

∑
k=1

Y
(i, j)

k .

With these quantities, define

T ∗(1)
n :=

∑I
i=1(∑J

j=1 ni j)(Dθ (Y i,Y ))2

∑I
i=1∑

J
j=1∑

ni j
k=1(Dθ (Y

(i, j)
k ,Y i j))2

.

Then the distribution of T ∗(1)
n is the bootstrap approximation of that of T (1)

n

under H(1)
0 . Therefore, we generate a large number of realizations of T ∗(1)

n

and reject H(1)
0 with significance level α if T (1)

n > z∗α , where z∗α denotes the
100(1−α) fractile of the realizations of T ∗(1)

n .
We can test H(2)

0 and H(1,2)
0 analogously. We continue to assume that

ni j/n → pi j > 0 as n → ∞ for each i and j. Define
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X · j· :=
1

∑I
i=1 ni j

I

∑
i=1

ni j

∑
k=1

Xi jk,

T (2)
n :=

∑J
j=1(∑

I
i=1 ni j)(Dθ (X · j·,X ···))2

∑I
i=1∑

J
j=1∑

ni j
k=1(Dθ (Xi jk,X i j·))2

.

T (1,2)
n :=

∑J
j=1∑

I
i=1 ni j(Dθ (X i j·,X ···))2

∑I
i=1∑

J
j=1∑

ni j
k=1(Dθ (Xi jk,X i j·))2

.

Then we have the following theorems, which are analogous to Theorem 1:

Theorem 2. If H(2)
0 does not hold, then P(T (2)

n ≤ t) → 0 as n → ∞ for any
t ∈ R.
Theorem 3. If H(1,2)

0 does not hold, then P(T (1,2)
n ≤ t)→ 0 as n → ∞ for any

t ∈ R.

Therefore, we can use T (2)
n and T (1,2)

n as test statistics to determine whether
to reject H(2)

0 and H(1,2)
0 , respectively. Again, the bootstrap technique can

be used to approximate the distributions of the statistics under the null hy-
potheses. Since the procedures are entirely analogous to those described for
testing H(1)

0 , we omit details.

4 Discussion

To our knowledge, our study is the first to extend classical two-way ANOVA
to interval-valued data. We established a bootstrap approach to approximat-
ing the distribution and the p-value of each test statistic. The effectiveness
of bootstrap techniques in hypotheses testing for fuzzy data has been em-
pirically demonstrated (e.g., Montenegro et al. [14], González-Rodŕıguez et
al. [9], Gil et al. [5]; also see Colubi [2]), and we intend to conduct empirical
studies to examine our bootstrap scheme for the two-way ANOVA.

Currently we are extending the two-way ANOVA to factorial ANOVA for
interval-valued data and for fuzzy data. We hope that our study will help to
further facilitate rigorous statistical analyses of imprecise data.
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3. Colubi, A., López-Dı́az, M., Domı́nguez-Menchero, J.S., Gil, M.A.: A general-
ized strong law of large numbers. Probab. Theory Related Fields 114, 401–417
(1999)
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9. González-Rodŕıguez, G., Montenegro, M., Colubi, A., Gil, M.A.: Bootstrap
techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy
data. Fuzzy Sets Syst. 157, 2608–2613 (2006)

10. Körner, R.: An asymptotic α-test for the expectation of random fuzzy variables.
J. Statist. Plann. Inference 83, 331–346 (2000)

11. Laha, R.G., Rohatgi, V.K.: Probability Theory. Wiley, New York (1979)
12. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isometry and Pro-

cesses. Springer, Berlin (1991)
13. Montenegro, M., Casal, M.R., Lubiano, M.A., Gil, M.A.: Two-sample hypoth-

esis tests of means of a fuzzy random variable. Inform. Sci. 133(1-2), 89–100
(2001)

14. Montenegro, M., Colubi, A., Casal, M.R., Gil, M.A.: Asymptotic and bootstrap
techniques for testing the expected value of a fuzzy random variable. Metrika 59,
31–49 (2004)

15. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal.
Appl. 91, 552–558 (1983)

16. Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables.
Ann. Probab. 11, 1373–1379 (1985)

17. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114,
409–422 (1986)
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Estimating the Variance of a Kernel
Density Estimation

Bilal Nehme, Olivier Strauss, and Kevin Loquin

Abstract. This article proposes an interval-valued extension of kernel density
estimation. We show that the imprecision of this interval-valued estimation
is highly correlated with the variance of the density estimation induced by
the statistical variations of the set of observations.

Keywords: Kernel density estimation, Maxitive kernel, Imprecise
expectation.

1 Introduction

The Parzen-Rosenblatt density estimation is a well known nonparametric way
of estimating the probability density function (pdf) underlying a finite set of
observations. Since the convergence of this estimation towards the true den-
sity is only guaranteed for a infinite number of observations, it can be of prime
interest to have a measure of the statistical error of this estimation (e.g. its
variance). Such a measure cannot be directly computed when the pdf has to
be estimated with a single set of observations. One can use resampling tech-
niques, like Jackknife or Bootstrap [4], to perform this estimation. However,
those methods can lead to computationally very expensive solutions.

In this paper, we propose a very novel approach for computing this estima-
tion error. This approach is based on an extension of the Parzen-Rosenblatt
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method that leads to an interval-valued estimation of the pdf. Such an ex-
tension have been used in the past [8] for quantifying the effect of the input
random noise on the output of a filtering process. It is based on replacing the
summative kernel, on which is based the estimation, by a maxitive kernel [7],
i.e. a possibility distribution. In this case, however, the Parzen-Rosenblatt es-
timator has to be reformulated to comply with the maxitive-based estimation
extension.

2 Preliminarys Concepts

This section aims at presenting some preliminaries that are necessary to build
the interval-valued pdf estimation we propose. Let Ω be a subset of R, P(Ω)
the collection of all Lebesgue measurable subsets ofΩ and s :Ω→R a bounded
L1 function associated to a distribution in the meaning of Schwartz [12].

We call summative kernel [7] a function κ : Ω −→ R
+ such that∫

Ω κ(x)dx = 1. It defines a probability measure on Ω denoted Pκ : ∀A∈P(Ω),
Pκ(A) =

∫
Aκ(x)dx. Let K (Ω) be the set of summative kernels on Ω .

We call maxitive kernel [7] a function π : Ω −→ [0,1] such that
supx∈Ω π(x) = 1. It defines two dual confidence measures on Ω : a possibility
measure Ππ and a necessity measure Nπ by: ∀A ∈P(Ω), Ππ(A) = supx∈Aπ(x)
and Nπ(A) = 1−supx�∈Aπ(x). Based on [2], a maxitive kernel π defines a convex
set M (π) of summative kernels [6]:

M (π) = {κ ∈ K (Ω)/∀A ∈ P(Ω),Nπ(A) ≤ Pκ(A) ≤Ππ(A)}. (1)

Let Δ be a positive real value and x ∈ Ω , a summative kernel κx
Δ can be

derived from another summative kernel κ by: ∀u ∈ Ω , κx
Δ (u) = 1

Δ κ( u−x
Δ ). In

the same way, a maxitive kernel πx
Δ can be defined from a maxitive kernel π

by: ∀u ∈Ω , πx
Δ (u) = π( u−x

Δ ). Δ is called the bandwidth of the kernel.

2.1 Derivative of a Summative Kernel

Kernel used in density estimation are usually unimodal, symmetric with a
bounded support and having a first derivative. Let us denote K ′(Ω) the
subset of those kernels on Ω .

Property 1. Let κ ∈ K ′(Ω) and Δ ∈ R
+, the first derivative dκΔ of the

kernel κΔ can be written as a linear combination of two summative kernels
η+
Δ and η−Δ [9]:

∀u ∈Ω ,−dκΔ (u) = aΔ
(
η+
Δ (u)−η−Δ (u)

)
, (2)

where aΔ is a constant value defined by aΔ =
∫
Ω max(0,−dκΔ (u)) and η+

Δ (u) =
dκ+
Δ (u)
aΔ

, η−Δ (u) = dκ−Δ (u)
aΔ

with dκ+
Δ = max(0,dκΔ ), dκ−Δ = max(0,−dκΔ ). Note

that, by construction, aΔ = a
Δ , with a =

∫
Ω max(0,−dκ(u))du.



Estimating the Variance of a Kernel Density Estimation 485

2.2 Derivative in the Sense of Distributions

The convolution of a L1 function s by a summative kernel κ , denoted ŝκ = s�κ
is given by [5]:

ŝκ (x) =
(
s�κ
)
(x) =

∫

Ω
s(u)κ(x−u)du =

∫

Ω
s(u)κx(u)du = 〈s,κx〉 , (3)

κx being the function κ translated in x, and 〈., .〉 being the dot product defined
for L1 functions. The value ŝκ(x) can also be viewed as Eκx , the expectation
of s according to the neighborhood of x defined by the kernel κ .

If the summative kernel κ is differentiable, it can be seen as a test func-
tion [12]. It is thus possible to link ds, the derivative of s in the sense of
distributions, to dκ , the derivative of κ in the sense of functions by [5]:

〈ds,κx〉 =
∫

Ω
ds(u)κx(u)du =−

∫

Ω
s(u)dκx(u)du = 〈s,−dκx〉 . (4)

2.3 Reformulation of the Parzen-Rosenblatt Density
Estimator

Let (x1, ...,xn) be a sample coming from the same random variable X with
density function f . The Parzen-Rosenblatt kernel estimate [10, 11] of the
density f in every point x ∈Ω is given by:

f̂ n
κΔ (x) =

1
nΔ

n

∑
i=1

κ(
x− xi

Δ
) =

1
n

n

∑
i=1

κx
Δ (xi). (5)

Property 2. The estimation f̂ n
κΔ in every point x ∈Ω can be interpreted as

the expectation of the empirical distribution en according to a neighborhood
of x defined by the summative kernel κΔ :

f̂ n
κΔ (x) = Eκx

Δ
(en) = 〈en,κx

Δ 〉 . (6)

with en = 1
n ∑

n
i=1 δ xi and δ xi is the impulse Dirac translated in xi.

In the same manner, an estimate of the cumulative distribution function
FηΔ , associated with the random variable X , can be obtained by comput-
ing the expectation of the empirical distribution function En according to a
neighborhood of x defined by the summative kernel ηΔ :

F̂n
ηΔ (x) = Eηx

Δ
(En) = 〈En,ηx

Δ 〉 , (7)

with En(x) = 1
n ∑

n
i=1 H(x− xi) and H being the Heaviside function defined by

H(x) = 1 if x ≥ 0 and 0 elsewhere. Since en is the derivative of En in the sense
of distributions [12], the Parzen-Rosenblatt estimator can be rewritten, for
all x ∈Ω , as:
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f̂ n
κΔ (x) = 〈en,κx

Δ 〉 = 〈dEn,κx
Δ 〉 = 〈En,−dκx

Δ 〉 . (8)

Theorem 1. Let κΔ ∈K ′(Ω), whose first derivative dκΔ can be decomposed
in: ∀u ∈ Ω ,−dκΔ (u) = aΔ

(
η+
Δ (u)−η−Δ (u)

)
, with aΔ ∈ R

+ and
(
η+
Δ ,η−Δ

)
∈

K (Ω), then, for all x ∈Ω , f̂ n
κΔ (x) = aΔ

(
F̂n
η+
Δ
(x)− F̂n

η−Δ
(x)
)
.

Proof. According to (2) and (7), we have:

f̂ n
κΔ (x) = aΔ

(〈
En,ηx+

Δ
〉
−
〈
En,ηx−

Δ
〉)

= aΔ
(

F̂n
η+
Δ
(x)− F̂n

η−Δ
(x)
)

. ��

3 Interval-Valued Estimation

A maxitive kernel based imprecise estimate of the cumulative distribution
function has been proposed in [6]. It is defined for all x ∈Ω by:

F
n
πΔ (x) =

[
Fn
πΔ (x),Fn

πΔ (x)
]
= Eπx

Δ
(En) =

[
Eπx

Δ
(En),Eπx

Δ
(En)
]
, (9)

where π is a maxitive kernel, Δ ∈R
+ a bandwidth and Eπ(.) is the imprecise

expectation based on the maxitive kernel π [6].
The computation of the lower and the upper bounds of the imprecise cu-

mulative distribution estimator, defined by (9), is given in [6] by:

Eπx
Δ
(En) = CΠπx

Δ
(En) =

1
n

n

∑
i=1

(πx
Δ (xi)H(xi− x)+ H(x− xi)) , (10)

Eπx
Δ
(En) = CNπx

Δ
(En) =

1
n

n

∑
i=1

((1−πx
Δ(xi))H(x− xi)) , (11)

CΠπx
Δ
(En) (resp. CNπx

Δ
(En)) being the Choquet integral of En with respect to

the possibility measure Ππx
Δ

(resp. the necessity measure Nπx
Δ
). As shown in

[6] when κ ∈M (π), then ∀Δ ∈ R
+, ∀x ∈Ω , F̂n

κΔ (x) ∈ F
n
πΔ (x).

3.1 Interval-Valued Estimation of the Probability
Density Function

The idea underlying the maxitive based imprecise estimation of the density is
the following: instead of dominating the summative kernel on which is based
the density estimation like in (9), we will dominate the summative kernels
involved in the decomposition (2) of its derivative.

Let (x1, . . . ,xn) be a set of n observations, f the pdf underlying the observation
process and En the empirical distribution function associated with this set of
observations. Let κΔ ∈K ′(Ω) be a summative kernel, whose derivative −dκΔ
can be decomposed in: aΔ

(
η+
Δ −η−Δ

)
, aΔ ∈ R

+ and
(
η+
Δ ,η−Δ

)
∈K (Ω). Let π+

(rsp. π−) be the most specific maxitive kernel dominating η+ (rsp. η−) [7].
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Definition 1. A Parzen-Rosenblatt-like imprecise estimator of the pdf un-
derlying a set of observations, whose empirical cumulative is En, is defined
by:

∀x ∈Ω , f
n

(κΔ )(x) = aΔ
(

Eπ+x
Δ

(En)8Eπ−x
Δ

(En)
)

, (12)

where 8 is the Minkowski difference [1].

The question concerns now the properties of the obtained imprecise estima-
tion. We will first denote D (a,Δ ,(π+,π−)) a subset of K ′(Ω) defined by:

D
(
a,Δ ,(π+,π−)

)
=
{
υ ∈ K ′(Ω),∃ ξ+ ∈ M (π+

Δ ) and ξ− ∈ M (π−Δ ),
such that −dυ = aΔ (ξ+− ξ−)

}

where aΔ , Δ , a, π+
Δ and π−Δ have been previously defined.

The interval-valued estimation, defined by (12),verifies the following
property:

Property 3. Let f
n

(κΔ ) be the interval-valued estimation of the pdf defined
by Equation (12), then:

∀x ∈Ω ,∀ϕ ∈ D
(
a,Δ ,(π+,π−)

)
, f̂ n
ϕ (x) ∈ f

n

(κΔ )(x). (13)

Remark 1. The reverse property of expression (13) is not true, i.e.:

∃y ∈ f
n

(κΔ )(x),∀ϕ ∈D
(
a,Δ ,(π+,π−)

)
,y �= f̂ n

ϕ(x).

3.2 Integrated Imprecision of the Interval-Valued
Estimation

It would have been nice if the imprecision of the interval-valued density es-
timate we propose had decreased with Δ and 1

n . Unfortunately, as we prove
here, the integral of the imprecision of f

n

(κΔ ) depends neither on n nor on Δ .
To prove this property, we need the following theorem:

Theorem 2. Let πΔ be a maxitive kernel. Let εn
πΔ (x) = F

n
πΔ (x)−Fn

πΔ (x) be the
imprecision at x of the interval-valued estimation F

n
πΔ (x), defined by (9), then:∫

Ω εn
πΔ (x)dx = ρ(πΔ ) = Δ ρ(π), with ρ(π) =

∫
Ω π(x)dx being the granulosity of

the maxitive kernel π [7], i.e. its degree of imprecision.

Proof. According to (10) and (11), we have εn
πΔ (x) = 1

n ∑
n
i=1(πx

Δ (xi)−�x=xi).
Since

∫
Ω �x=xi dx = 0, ∀i ∈ {1, . . . ,n}, we obtain:

∫
Ω εn

πΔ (x)dx = 1
n ∑

n
i=1ρ(πΔ ) =

Δ ρ(π). ��

Theorem 3. Let κΔ ∈ K ′(Ω) be a summative kernel. Let ζ n
(κΔ )(x) =

f
n
(κΔ )(x)− f n

(κΔ )(x) be the imprecision at x of the interval-valued estimation

f
n

(κΔ ) defined by (12), then
∫
Ω ζ n

(κΔ )(x)dx is a constant value that we call α.
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Proof. According to (12) and by theorem 2 we have:

∫

Ω
ζ n

(κΔ )(x)dx = aΔ

(∫

Ω
(Fn
π+
Δ
(x)−Fn

π+
Δ
(x))dx +

∫

Ω
(Fn
π−Δ

(x)−Fn
π−Δ

(x))
)

dx,

= a
(
ρ(π+)+ρ(π−)

)
= α.

��
The main consequence of theorem 3 is that the defined imprecise estimator
cannot converge to the true density, i.e. when Δ → 0 and nΔ → ∞,

(
f

n
(κΔ ) −

f n
(κΔ )

)
�→ 0.

4 Link between Imprecision and Variance

This section is dedicated to an experiment showing that the imprecision
ζ n

(κΔ )(x) of the interval-valued estimate f
n

(κΔ )(x) can be used to estimate

var( f̂ n
κΔ (x)), the variance of the Parzen-Rosenblatt estimate of f via the ker-

nel κΔ . First, as shown by numerous other works, theoretically var( f̂ n
κΔ (x))

decreases when n and Δ increases. In fact, as stated in [13]:

∀x ∈Ω , var( f̂ n
κΔ (x)) ≈ (nΔ)−1 f (x)R(κΔ ), (14)

with R(κΔ ) =
∫
Ω κΔ (x)2dx. Since the integral of ζ n

(κΔ ) depends neither on n

nor on Δ , the direct value of ζ n
(κΔ )(x) cannot be used directly to estimate

var( f̂ n
κΔ (x)) but should be multiplied by a factor γ(n,Δ) that depends on both

n and Δ . Let us suppose this relation to be linear, i.e.:

var( f̂ n
κΔ (x)) = E

(
γ(n,Δ) ζ n

(κΔ )(x)
)
. (15)

Thus, by integrating expression (15), we directly obtain γ(n,Δ) = R(κΔ )
αnΔ , with

α =
∫
Ω ζ n

(κΔ )(x)dx. The experiment we report here aims at testing whether
(
γ(n,Δ) ζ n

(κΔ )(x)
)

is correlelated or not with var( f̂ n
κΔ (x)). It is based on sim-

ulating a random process whose underlying pdf is a mixture of two Gaus-
sian distributions of mean 3 (resp. 8) and variance 1 (resp. 4). We use the
symmetric summative kernel defined by κΔ (x) = 1

2Δ (1 + cos( |x|πΔ ))�[−Δ ,Δ ](x).
The computation of the different values associated with this kernel are:
η+
Δ (x) = η−Δ (x) = π

2Δ (cos( |x|πΔ ))�[−Δ2 , Δ2 ], a = 1, α ≈ 0.7268 and R(κΔ ) = 3
4Δ .

The value of Δ is fixed to Δ = 1, while the number of observations varies
from n = 1000 to n = 10000. For each values of n, we compute 400 different
sets of observation. We then estimate both var( f̂ n

κΔ (x)) and E
(
γ(n,Δ) ζ n

(κΔ )(x)
)

on 500 equally spaced samples of the reference subset Ω = [−5,20].
Fig. 1 shows the result of this experiment by plotting var( f̂ n

κΔ ) versus
E
(
γ(n,Δ) ζ n

(κΔ )

)
. As can be seen on Fig. 1, the correlation between var( f̂ n

κΔ )
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variance of the density estimate
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Fig. 1 The cloud of values E
(
γ(n,Δ ) ζ n

(κΔ )

)
versus var( f̂ n

κΔ ).

and E
(
γ(n,Δ) ζ n

(κΔ )

)
is high (correlation coefficient r ≈ 0.995). However, the

cloud of the computed values is close but rather above the theoretical line
materializing equation (15) on Fig. 1. This bias can be explained first by
the fact that relation (14) is an approximation and second by the fact that
the dependence is possibly not exactly linear. However, the numerous exper-
iments we carried out show that

(
γ(n,Δ) ζ n

(κΔ )

)
provide a good estimation

of var( f̂ n
κΔ ).

5 Conclusion

The interval-valued nonparametric extension of the kernel density estimation
improves on the traditional approach by providing an estimation of the error
induced by the statistical variation of the set of observations with a significant
increase of the computational complexity.

Future work should focus on the relation between the median of this
interval-valued density and the true density (convergence if any ?) and pro-
pose a modification of expression (12) that leads to an interval-valued density
whose imprecision decreases with the bandwidth of the kernel or when the
number of observation increases. We are now working on comparing this ap-
proach with the classical approach based on confidence intervals [3].

Acknowledgements. This work is in part supported by VOODDO (2008-2011),
a project of ANR and the region of Languedoc Roussillon, France.



490 B. Nehme, O. Strauss, and K. Loquin

References

1. Danilov, V., Koshevoy, G.: Cores of cooperative games, superdifferentials of
function, and the minkowski difference of sets. Math. Anal. Appl. 247, 1–14
(2000)

2. Dubois, D., Prade, H.: When upper probabilities are possibility measures. Fuzzy
Sets Syst 49(1), 65–74 (1992)
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Uncertainty Invariance Transformation in
Continuous Case

Maŕıa José Pardo and David de la Fuente

Abstract. In this work, a general procedure for transforming a possibility
distribution into a probability density function, in the continuous case, is
proposed, in a way that the resulting distribution contains the same uncer-
tainty as the original distribution. A significant aspect of this approach is
that it makes use of Uncertainty Invariance Principle which is itself a general
procedure for going from an initial representation of uncertainty to a new
representation.

Keywords: Possibility/Probability Transformation, Uncertainty Invariance
Principle, Uncertainty Measures, Consistency Principle.

1 Introduction

It has been carried out a wide review of the existent possibility → probability
transformations in the literature, in the continuous case, and we have only
found transformations in [1], [2], [6], [7], [9], [14], [18] and [23]. The transfor-
mations in [2], [6] and [18] are based on the Principle of Insufficient Reason,
but obtained from different methods, so the calculated probability density
function is similar, and it is the transformation more used by other authors
who need to incorporate uncertainty in their works ([15], [16], [21]). In the
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whole literature that was analyzed, we have not found any work that devel-
ops a possibility → probability transformation with uncertainty invariance in
the continuous case, except in [23]. His transformation meets the Principle of
Uncertainty Invariance through a parameter β , like the new proposed trans-
formation. The advantage of the developed method in this work is that the
computational cost is lower.

The transformations with uncertainty invariance in the discrete case are
extensively studied in [8] and [12]. These transformations are basically guided
by two principles: i) the conservation of uncertainty; namely, the uncertainty
contained in the possibility distribution is equal to the probability uncertainty
expressed in terms of Shannon entropy [22]; ii) an appropriate scale that
defines some mechanical transformation of data. In [12] are proposed different
scale transformations: ratio scale, interval scale and log-scale.

2 Uncertainty Invariance Principle

The Principle of Uncertainty Invariance, introduced in [12], ensures that the
total amount of information supplied by each model is kept unchanged.

In order to transform the representation of a problem in a theory T1,
into an equivalent representation in other theory T2 using the Principle of
Uncertainty Invariance, the following aspects must be met:

• The amount of uncertainty associated with the situation must be main-
tained when we move from T1 to T2. In order to achieve this, the uncer-
tainty measure in both theories will be studied and the transformation
developed, so if U (μ) is the uncertainty measure of the possibility distri-
bution μ and H ( f ) is the uncertainty measure of the probability density
function f , then both must be the same, U (μ) = H ( f ) .

• The degree of belief in T1 will be converted into its compensation in T2
by means of an appropriate scale. This condition guarantees that certain
features of μ , which are considered essential in the given context (e.g.
the order), are maintained in the transformation. In measurement the-
ory, these transformations are known as scales. Therefore, the proposed
transformation must be f (x) = fscaleμ (x) , where fscale is some function
standing for the scale preservation. The different scale transformations,
in the discrete case, proposed in [12] have been studied, and the only
transformation that maintains the Principle of Uncertainty Invariance is
the log-interval scale transformation, which is formulated as: pi = α ·πβi .

3 Uncertainty Measures in the Continuous case

In this section, a study of different measures of uncertainty in the continuous
case has been carried out.
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Uncertainty Measures of Probability Density Functions

In [3] the concept of differential entropy is defined, which is the entropy of
a continuous random variable, and it is similar in some way to the Shan-
non entropy [22]. The differential entropy H ( f ) of a continuous random
variable X with probability density function f (x) is defined as: H ( f ) =
−
∫
R

f (x) ln f (x)dx.
The uncertainty measures should reach the maximum value when the dis-

tribution is uniform [11]. So, when X is a uniformly distributed random vari-
able in [a,b] then the differential entropy is H ( f ) = ln(b−a) and the range
is (−∞, ln(b−a)] .

Uncertainty Measures of Possibility Distributions

The Principle of Uncertainty Invariance will be respected if it is chosen the
uncertainty measure that reflects the kind of uncertainty equivalent to the
differential entropy. Therefore the range of the uncertainty measure of the
possibility distribution must be (−∞, ln(b−a)] . When the possibility distri-
bution is uniform then the uncertainty measures should reach the maximum,
U (μ) = ln(b−a). In the analyzed literature there are uncertainty measures
of possibility distributions in continuous case in [4], [10], [13], [17], [19], [23],
[24] (this is only a list of the most representative works). For all of them, the
range and the value when the possibility distribution is uniform have been
calculated and only [10] and [23] verify the conditions, so they reflect the
kind of uncertainty equivalent to the differential entropy. Furthermore, it is
verified that when space is one-dimensional then the expression of the two
measures is the same. This uncertainty measure for a possibility distribution
μ (x) using the notion of α-cut is: U (μ) =

∫ 1
0 ln |Aα |dα, where Aα =

[
AL
α ,AU

α
]

is the α-cut of μ (x) and |Aα |= AU
α −AL

α is the cardinality of Aα .

4 Uncertainty Invariance Transformation in the
Continuous Case

At this point, the only thing that has to be defined is the scale transformation,
for example adapting the transformation in [12] to the continuous case. In
this way, we define the transformation of the possibility distribution μ (x)
into the probability density function f (x) as: f (x) = α ·μ (x)β .

Now, considering the probabilistic normalization condition, (
∫

f (x)dx = 1)
the parameter α is calculated:

f (x) = α ·μ (x)β =
μ (x)β

∫
μ (x)β dx

(1)

And the parameter β is the solution to the equation: U (μ) = H ( f ) .
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If β = 1, we find the transformation that Lee and Li have proposed in
[14]. They believe that when the only known information is the membership
function μ (x) for a fuzzy event, then a very reasonable probability density
function is the proportional probability density function, which means that
f (x) = α ·μ (x) .

Properties of the Uncertainty Invariance Transformation

In the continuous case, besides the uncertainty preservation and preserva-
tion of scale, the Uncertainty Invariance Transformation meets the following
properties [20]: i) Bijectiveness, if T is the possibility → probability trans-
formation, then the inverse mapping T−1 sets for the inverse probability →
possibility transformation; ii) Strong preference preservation, if the element
x is preferred over another element y according to the possibility distribu-
tion, then this preference is maintained in the probabilistic setting; iii) Igno-
rance preservation, if the complete ignorance state occurs in one formalism, it
should be translated into its counterpart in another formalism (if all elements
of the universe of discourse have possibility one then the probability density
function is formulated as a uniform probability density function over the set
of alternatives X); and iv) Symmetry preservation, the general shape of the
probabilistic data should be the same as its possibilistic counterpart. Usually,
the strong preference preservation entails symmetry preservation.

Comparison of the Uncertainty Invariance Transformation with the
Transformation by Dubois et al. [6]

The transformation of Dubois et al. [6] has been chosen because it is the most
used method by the researchers who need to transform. We have also com-
pared the method developed in this work with the transformations proposed
in [9] and [14], but the results are not included here in order to shorten this
study. To carry out the comparison, we have set as a starting point that the
possibility distribution is determined by a triangular fuzzy number (TFN),
because the TFNs are simple and easy to manipulate in mathematical calcu-
lus; they are also very used in practical situations and in the design, modelling
and simulation of systems. The comparison has also been carried out when a
trapezoidal fuzzy number is transformed, but due to the limitation of space
the analysis of the results is not detailed in the work. Moreover, the compari-
son can be performed with other possibility distributions. In order to compare
the two methods the possibility distribution must be known. Therefore, in
this work more general results can not be obtained.

First, the TFN is going to be transformed following the method proposed
in this work, and then following the method developed in [6]. In both cases,
the differential entropy and the consistency degree between the possibility
distribution and the probability density function have been calculated.

The Possibility/Probability Consistency Principle starts from the existence
of two kind of information: the possibilistic and the probabilistic ones, both
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over a variable X . Since it is possible to understand the simultaneous exis-
tence of both kinds of information, it is then when the question about the
relation between them arises and the transformations between possibilistic
data to probabilistic data and vice versa are possible. This principle is a re-
sult of the fact that “what is possible” influences and is influenced by “what
is probable”. For this situation, in [25] is established, in the discrete case, the
Principle of Possibility/Probability Consistency and in [2] is calculated, in the
continuous case, the consistency degree or measure between μ (x) and f (x) :
γ =
∫
R
μ (x) f (x) dx. Thus, “the greater γ becomes the better the consistency

between the two concepts [20]”.
Let be Ã a TFN, Ã = [a−d1,a,a + d2] with membership function:

μÃ (x) =

⎧
⎪⎨

⎪⎩

x− (a−d1)
d1

i f a−d1 ≤ x ≤ a

(a + d2)− x
d2

i f a ≤ x ≤ a + d2

(2)

with α-cut Aα = [a−d1 (1−α) ,a + d2 (1−α)] , and if D = d1 +d2 then |Aα |=
(d1 + d2)(1−α) = D(1−α) is the cardinality and U

(
μÃ (x)

)
= lnD−1 is the

uncertainty measure of Ã.

Transformation of a TFN with Uncertainty Preservation

The following steps are carried out:
• The probability density function is calculated:

f (x) =
μÃ (x)β

∫ ∞
−∞ μÃ (x)dx

(3)

The term of denominator is:
∫ ∞
−∞ μÃ (x)dx =

D
β + 1

, then:

f (x) =
β + 1

D
μÃ (x)β (4)

• The differential entropy of the probability density function is calculated:

H ( f (x)) =−
∫ ∞

−∞
f (x) ln f (x)dx =

β
β + 1

− ln
β + 1

D
(5)

• Finally, the parameter β is computed from U
(
μÃ (x)

)
= H ( f (x)) , obtain-

ing β = 5.3054. And substituting this result in (4) is:

f (x) =
6.3054

D
μÃ (x)5.3054 (6)

• Differential entropy and consistency degree:

H ( f (x)) = lnD−1 (equal to U
(
μÃ (x)

)
) and γ = β + 1/β + 2 = 0.863.
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Transformation of a TFN Following the Method of Dubois et al. [6]

If the probability density function calculated from the transformation of a
TFN following [6] is denoted by fD (x) , then:

fD (x) =
∫ μÃ(x)

0

dα
|Aα |

=
−1
D

⎧
⎪⎨

⎪⎩

ln
a− x

d1
i f a−d1 ≤ x ≤ a

ln
x−a

d2
i f a ≤ x ≤ a + d2

(7)

• Differential entropy and consistency degree:

H ( fD (x)) = lnD−1+gamma = lnD−1 + 0.577 and γD = 0.75.

Analysis of Results when a TFN is Transformed

The method developed in [6] bases its transformation on the Principle of
Insufficient Reason and since it does not verify the Principle of Uncertainty
Invariance, the probability density function fD (x) contains more uncertainty
than the original possibility distribution μÃ (x) . Our method meets such prin-
ciple and no information is added or removed in the transformation. There-
fore, H ( fD (x)) > H ( f (x)) , that means that the differential entropy H ( fD (x))
of the probability density function fD (x) is greater than the measure of un-
certainty U

(
μÃ (x)

)
of the original possibility distribution μÃ (x) , which at

the same time is equal to the differential entropy H ( f (x)) of the probability
density function f (x) .

Regarding the consistency degree between both distributions, the prob-
ability density function f (x) has a consistency degree with the possibility
distribution μÃ (x) equal to γ = 0.863, which is greater than the consistency
degree of the probability density function fD (x) , equal to γD = 0.75 and there-
fore, f (x) is more consistent and coherent with μÃ (x) than fD (x) . Both results
are also obtained when a trapezoidal fuzzy number is transformed.

Consistency Degree by Dubois and Prade [5]

In order to complete the study of the method proposed in this work, we are
going to prove that the basic premise of consistency between the possibility
distribution and the probability density function or consistency degree by
Dubois and Prade [5], from the form μ (A) ≥ f (A) , ∀A, is verified. In [23] it
is proved that the transformation by Dubois et al. [6] meets the consistency
degree by Dubois and Prade.

Let be μ (A) = max
x∈A

μ (x) . The set A can be formed at the most by

A = [a−d1,x1]∪ [x2,a + d2] , with x1 < x2 and μ (A) = μ (x1) = μ (x2) . Then
f (A) is:

f (A) =
∫ x1

a−d1

f (x)dx +
∫ a+d2

x2

f (x)dx = (8)
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=
(x1− (a−d1))

β+1

Ddβ1
+

((a + d2)− x2)
β+1

Ddβ2

As μ (x1) = μ (x2) then
x1− (a−d1)

d1
=

(a + d2)− x2

d2
, and with β = 5.3054 is

x1− (a−d1)
d1

>

(
x1− (a−d1)

d1

)β
, and

x1 − x2 + D
D

< 1 and we come immedi-

ately to μ (A) ≥ f (A) , ∀A. Following a similar reasoning, it is proved that if
a trapezoidal fuzzy number is transformed with the proposed method, then
the consistency degree by Dubois and Prade is also verified.

5 Conclusions

After carrying out a broad study of the different possibility → probabil-
ity transformations that are in the literature in order to transform data in
the continuous case, and also the uncertainty measures in both theories, a
new possibility → probability transformation for the continuous case have
been developed, which meets significant requirements so that this kind of
transformation is accepted by the researchers. The main requirement that
verifies is the Principle of Uncertainty Invariance, which guarantees that no
information is unconsciously added or removed when changing the mathe-
matical framework from which a concrete phenomenon is formalized. And it
verifies the consistency degree of Dubois and Prade [5] and the properties
of bijectiveness, strong preference preservation, ignorance preservation and
symmetry preservation. The proposed transformation have been compared
with the transformation from Dubois et al. [6], both of a TFN and of a trape-
zoidal fuzzy number, and in this cases the proposed transformation provides
a probability density function that is more consistent and coherent with the
initial possibility distribution, and maintains the uncertainty without adding
or removing information. In a future work, this transformation will be used
to develop the fuzzy negative exponential density function.
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Detection of Outliers Using Robust
Principal Component Analysis:
A Simulation Study

C. Pascoal, M.R. Oliveira, A. Pacheco, and R. Valadas

Abstract. Outlier detection is an important problem in statistics that has
been addressed in a variety of research areas and applications domains. In
this paper, we tackle this problem using robust principal component analy-
sis. We consider different robust estimators along with the classical estimator
of principal components and develop a simulation study to compare the en-
visage outlier detection methods in two different scenarios: semi-supervised,
where we have a training set composed only by regular observations, and an
unsupervised scenario, where nothing is known about the class (regular or
outlier) of each training observation.

Keywords: Outlier detection, Robustness, Principal component analysis,
Simulation.

1 Introduction

The development of new technology, opposite to the benefits it brings to
the daily life of human beings, originates new types of threats, e.g. criminal
activities on electronic commerce. In general, these threats are atypical ob-
servations from the main bulk of data, leading to the need of applying outlier
detection methods to identify it.
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A recent review of the large body of literature on outlier detection is done
in [4], which provides a structured and comprehensive overview of the research
on anomaly detection covering a variety of application domains. Despite the
existence of other recent methodologies [3, 4, 12], our emphasis will be only on
the use of robust Principal Component Analysis (PCA) for outlier detection,
extending the work in [11, 13].

Reference [11] uses a principal component classifier in an intrusion detec-
tion problem where the training data is only composed of regular observations
(semi-supervised case). These authors construct a predictive intrusion model
from major and minor principal components of regular instances. They ar-
gue that this new method outperforms the k-nearest neighbor method, the
density-based local outliers (LOF) approach, and the outlier detection algo-
rithms based on Canberra metric. Using both major and minor PCs, the
method would be able to detect, respectively: extreme observations with
large values and observations that do not conform to the common correlation
structure.

ROBPCA was used in [13] to distinguish regular observations from outliers
in unsupervised learning. The authors applied it to traffic flow of cars in a
city. They argue that the method is an useful tool for distinguishing the
regular from the abnormal traffic flow patterns caused by accidents and loop
detector faults, reducing the human effort in finding potential anomalies in
the traffic flow.

The contents of the paper are the following. In Section 2 we briefly review
PCA and in Section 3 we explain how it can be used in outlier detection
problems. In Section 4 we develop a simulation study to analyze and compare
the performance of different robust principal component approaches on the
classification of observations, in semi-supervised learning, and also to the
case where the investigator does not have any prior information about the
class (regular or outlier) each observation belongs to (unsupervised learning).
Finally, in Section 5 we present some conclusions.

2 Principal Components Analysis

PCA seeks to maximize the variance of uncorrelated linear combinations
of the original variables [8], called principal components (PCs). If a small
number of PCs explain a large proportion of the total variance of the p
original variables, then PCA can be successfully used as a dimension reduc-
tion technique. Given the random vector X = (X1,X2, . . . ,Xp)t , with expected
value μμμ , the j-th principal component is defined as the linear combination,
Zj =αααt

j(X−μμμ), such that αααt
jααα j = 1, Zj has maximum variance and is uncor-

related with the previous PCs (for j ≥ 2). It can easily be proved that the
loadings, ααα j, and the variances of the PCs, λ j = Var(Zj), are, respectively,
the eigenvectors and eigenvalues of the covariance matrix of X, where the
eigenvalues are arranged by decreasing order of magnitude.
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In real applications,ααα j and λ j have to be estimated. Given xi, the values as-
sociated with the random vector X on subject i, the score of subject i on the jth

PC is given by zi j = α̂αα t
j(xi− μ̂μμ) where μ̂μμ and α̂αα j denote the estimates of the ex-

pected value and the loadings, and zi = (zi1, . . . ,zip)t . Several estimation meth-
ods have been proposed in the literature. The classical method (called CPCA,
in the following sections) uses the eigenvalues and eigenvectors of the sample
covariance matrix to estimate λ j and ααα j. Even though this is an easy and fast
estimation method, it is known that the presence of atypical observations can
strongly influence the estimation process, leading to biased estimates. Several
robust estimation methods have been proposed to overcome this limitation. In
this paper, we are going to consider some of these methods.

Locantore et al. [10] proposed a simple methodology that performs classical
PCA to the projected centered data onto the p−sphere with unitary radius
(this will be referred as SPHE). The method requires low computation time
and has good performance, reasons that justify it still being used.

The Projection Pursuit (PP) approach [5, 6] seeks for projections of mul-
tivariate data that reveal interesting structures of the data. In the case of
PCA, we look for the univariate projection of the data that maximizes a
robust scale and proceed looking for the second direction, orthogonal to the
first, with maximum robust scale, and so on [1, 5, 6]. Several variants of
these ideas have been explored leading to different estimation methods. In
this paper we will consider two of these alternatives: one proposed in [5], and
referred as PCAPROJ, and another one proposed in [6], called PCAGRID.

One of the most popular approaches to construct robust principal compo-
nents is the method proposed in [7], ROBPCA. This method combines PP
ideas with robust scatter matrix estimation. It is known that the method
produces accurate estimates for non-contaminated datasets and robust ones
for contaminated data. Besides this, it is computationally fast and can be
applied to datasets with more variables than observations.

Recently, [1] described a new robust principal component method
(WCPCA) intended to handle high-dimensional data eventually containing
atypical observations. Its good performance associated with its computational
efficiency are considerable advantages to take into account.

3 Detection of Outliers Using Principal Components

PCA can be used to detect atypical observations and, as such, it can be
regarded as a classification procedure. Given an observation, it belongs to
one of the following classes: (i) regular, non-outlier or non-atypical; or (ii)
anomaly, outlier or atypical1.

Usually, in a classification problem the data is divided in two sets: the train-
ing and the test set. The training set is used to train the classifier and the

1 In some domains these observations are also known as “discordant”, “exceptions”,
“aberrations”, “surprises”, “peculiarities”, or “contaminants”; vide [4].
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test set to estimate error rates. In Telecommunications, several authors have
detected anomalies using CPCA, admitting they have a training set that con-
tains only regular observations [9], a scenario which is called semi-supervised
learning. However, this is an unrealistic assumption since the available meth-
ods to determine if an observation is an anomaly are not 100% trustful. Thus,
the investigator can not guarantee that the training set is composed only of
regular observations, and this is the principal reason for the unsatisfactory
performance of the method [2]. A more realistic situation is the one where
the class (regular or outlier) to which the training observation belongs to is
unknown. This is called unsupervised learning.

Traditionally, statisticians pay more attention to the estimation process,
using all the available data to estimate the classifier. Thus, the observations
used to train are also used to classify leading to optimistic estimates of the
error rates. Henceforth, results and discussions are mainly oriented towards
describing and comparing the performances of the estimation methods and
less to the performance of the classifiers and the estimation of error rates (cf.
e.g. [1]).

In the semi-supervised scenario the method is described by the following
steps:
1. Estimate the first k PCs and their variances, λ j, j = 1, . . . ,k, based on the

data set composed only of regular observations;
2. Given a new observation, x0, project it into the subspace obtained in 1.;

the projection is henceforth denoted by z0;
3. Calculate the Mahalanobis or Score Distance, SD(x0) = (∑k

j=1 z2
0 j/λ j)

1/2
,

of the projected observation;
4. If the scores are normally distributed, classify x0 as an outlier if SD(x0) >

(χ2
k,1−α)1/2 (vide [7]). Otherwise, classify x0 as an outlier if SD(x0) > Q1−α

where Q1−α is the 1−α quantile of the score distances calculated for the
training set [11] and α, known as false alarm rate, is the probability of an
observation being classified as outlier when in fact is a regular observation.

The previous procedure only uses the major (or highest) k principal compo-
nents. By contrast, [11] proposes a modified procedure that also uses minor
(or lowest) PCs to detect outliers. Let αM (αm) denote the probability that
the major (minor) k (r) PCs detect an outlier, when in fact it is a regular
observation. The procedure proposed in [11] starts with steps 1.− 4. with
α = αM . Note that in 1. we need to estimate all the p PCs. The procedure is
then completed with the following two steps:

5. Calculate the score distance of the projection of the new observation into
the space spanned by the lowest r PCs, SDm (x0) = (∑p

j=p−r+1 z2
0 j/λ j)

1/2;
6. Classify x0 as an outlier if SDM (x0) > Q1−αM

or SDm (x0) > q1−αm where
Q1−αM

(q1−αm) is the 1−αM (1−αm) quantile of the score distances
calculated for the k major (r minor) PCs obtained from the training
set [11].
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Considering that the major and minor PCs are independent, then the global
false alarm rate is α = αM +αm −αMαm, and αM and αm should be chosen
to reflect the relative importance of the types of outliers we would like to
detect. However, as we are not interested in distinguishing the importance of
different types of outliers, we choose αM = αm.

This methodology can be seen as unrealistic since it demands a training
set with only regular observations, which in pratice can be difficult to obtain.
The unsupervised learning approach constitutes a more realistic scenario. In
this case, no information about the label of the data in the training set is
available. In our simulation study, we admit that the labels for the test set
are always known, which leads to more trustful estimates of the error rates
and fairer comparisons between the scenarios under study.

For the unsupervised case the procedure is:

1. Estimate the first k PCs of the training set and their variances, λ j, j =
1, . . . ,k;

2. Calculate the score distance and the orthogonal distance of the train-
ing set observations projected into the space spanned by the first k
PCs determined in 1. The Orthogonal Distance is defined by OD(xi) =∥
∥(xi −μμμ)−Pp,kzi

∥
∥, i = 1, . . . ,n, where Pp,k is the p× k matrix having by

columns the loadings of the first k PCs.
3. Classify a new observation x0 as an outlier if SD(x0) > (χ2

k,1−α)1/2 ([7])
or OD(x0) > (μ̂ + σ̂Φ−1(1−α))3/2, where μ̂ and σ̂ are the estimates
of the mean, μ , and standard deviation, σ , of the orthogonal distances
obtained from the training set and Φ(·) denotes the standard normal
distribution function. Thresholds based on 3 different pairs of estimates
are considered:

a. The location and scale univariate MCD estimates, μ̂MCD and σ̂MCD [7];
b. μ̂MEDIAN and σ̂MAD;
c. μ̂MEDIAN and σ̂Q [1].

Even though the different thresholds may seem similar and their differ-
ences irrelevant, they play an important role in the performance of anomaly
detection methods.

In the next section, we present our simulation study and discuss the results
in terms of measures of the classification procedure. For that, we use: (i)
Recall, the probability that an observation is classified as outlier when in fact
is an outlier; and (ii) False positive rate, the probability that and observation
is classified as outlier, when in fact is a regular observation (also known as
false alarm rate).

4 Comparing the Methods by a Simulation Study

A simulation study was develop to compare the performance of the out-
lier detection methods based on PCA. In future work, other (robust and
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non-robust) alternatives should be considered as, e.g., the ones presented in
[3] and [12].

For the simulation study we follow a setup similar to Case 1 in [1]. We con-
sider 6 estimation methods previously mentioned (CPCA, SPHE, ROBPCA,
PCAPROJ, PCAGRID, WCPCA) and the semi-supervised scenario was sub-
divided in two cases: using the two major PCs and using the two major and
the minor PCs.

To construct different contaminated data sets, we randomly generate 500
samples of size n = 100 from: (1− ε)Np (0,ΣΣΣ)+ εNp (μμμ i,ΣΣΣ/ f ), i = 0,1, . . . ,10,
f = 1,15, ε = 0.1, μμμ i = (0,0,0,2i)t , i = 0,1, . . . ,10, and ΣΣΣ = diag(8,4,2,1). The
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Fig. 1 Average of the estimated recall obtained by the semi-supervised approach
with (a) 2 major PCs and (b) 2 major and 1 minor PCs, for 20 contaminated
scenarios using the CPCA, SPHE, ROBPCA, PCAPROJ, PCAGRID, WCPCA,
(α = 0.1).
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Fig. 2 Average of the estimated false positive rate obtained by the semi-supervised
approach with (a) 2 major PCs and (b) 2 major and 1 minor PCs, for 20 contami-
nated scenarios using CPCA, SPHE, ROBPCA, PCAPROJ, PCAGRID, WCPCA,
(α = 0.1).
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Fig. 3 Average of the estimated recall obtained by the unsupervised approach
considering 3 different thresholds for the orthogonal distance, for 20 contami-
nated scenarios using CPCA, SPHE, ROBPCA, PCAPROJ, PCAGRID, WCPCA,
(α = 0.1).
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Fig. 4 Average of the estimated false positive rate obtained by the unsupervised
approach considering 3 different thresholds for the orthogonal distance, for 20 con-
taminated scenarios using CPCA, SPHE, ROBPCA, PCAPROJ, PCAGRID, and
WCPCA, (α = 0.1).

considered value for the global false alarm rate is α = 0.1. Note that i = 0
and f = 1 implies that the data is not contaminated.

Taking into account the results obtained for the simulation study using the
semi-supervised approach presented in Fig. 1 and 2, it is easy to notice that
the minor PC seems to have an important role on the detection of outliers,
with its use leading to higher values of the estimated recall, reaching one.
The inclusion of one minor PC implies that almost all outliers are detected
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even in cases with soft contamination, e.g. f = 15 and μ = (0,0,0,4)t . The
drawback of this option is a slightly higher estimated false positive rate.

For the unsupervised approach, ROBPCA has the highest and CPCA the
lowest estimated recall, vide Fig. 3. From the thresholds point of view, the
choice μMEDIAN and σMAD lead to greater or equal estimated recall for all
methods except for ROBPCA, where the parameters estimated based on the
univariate MCD constitute a better choice. If we want to choose a method
to detect outliers with the smallest estimated false positive rate, PCAGRID
and PCAPROJ are the best methods, vide Fig. 4. In this case, the best
threshold is the one using MCD estimators, except for ROBPCA where the
choice should be the one using μMEDIAN and σQ.

5 Conclusions

In this paper we develop a simulation study to compare the performance
of several robust principal component methods to detect outliers. In order
to do so, several contamination schemes are considered, and recall and false
positive rate estimates were the two measures used to summarize the results
and identify the best outlier detection method.

Taking into account the results, if the investigator has a training set with
only regular observations we should choose a classifier based on major and
minor PCs. However, a more complete and exhaustive study should be done
in order to justify this decision and the choice of the number of major and
minor PCs to use needs to be addressed. As expected, if the training set
does not contain outliers, the best estimates for recall are obtained with
CPCA. Nevertheless, all other robust methods produced very high values for
estimated recall. Moreover, for soft contamination schemes, WCPCA slightly
outperforms the other robust methods. If no information is available about
the class of each training observation, the results are slightly worse. That
is, the classifiers have more difficulties in detecting outliers in the presence
of soft contamination. However, under more severe contamination all robust
methods considered reached an estimated recall of 1. Moreover, ROBPCA
lead to the highest and CPCA to the lowest estimated recall. This means
that training with outliers using non-robust methods has a major negative
impact in the performance of the classifier.
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Exploiting Sparse Dependence Structure
in Model Based Classification

Tatjana Pavlenko and Anders Björkström

Abstract. Sparsity patterns discovered in the data dependence structure
were used to reduce the dimensionality and improve performance accuracy of
the model based classifier in a high dimensional framework.

Keywords: Classification, High dimensionality, Sparsity, Lasso, Variable
selection.

1 Introduction

We focus on the classification problem which is concerned with the allocation
of a given object, X, represented by a set of features (X1, . . . ,Xp), to one of
known classes, Πi, i = 1, . . . ,c. Let Y : R

p → {1, . . . ,c} be a non-randomized
decision rule with Borel measurable decision regions Ωi ⊂ R

p, Ωi = Y −1(i)
corresponding to class Πi. In the model-based setting, we assume that classes,
Πis, are represented by the densities, f (x;θ i), and a priori probability of Ωi is
πi. Then the optimal decision rule minimizing the posterior misclassification
probability E (Y , f (x;θ )) = ∑c

j=1π jP(Y �= j|x ∈ Ω j) is based on the Bayes
theorem

P(Y = i|x,θ i) =
πi f (x;θ i)

∑c
j=1π j f (x;θ j)

(1)

and assigns the observed x to the class Πi for which a class posterior proba-
bility P(Y = i|x;θ i) is maximum.
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The performance accuracy of the sample based classifier (1) is known to be
poor in a high-dimensional framework, i.e. if the sample size n and dimension-
ality p are both large, and the decline in accuracy is especially pronounced
if p > n. To overcome this problem, we suggest a two-stage procedure which
first groups the feature variables into blocks using the sparsity patterns of
the underlying dependence structure, and then exploits the Lasso technique
[3] for selection the variables with highest classification potential at the block
level. This approach allows for substantial global dimensionality reduction
while maintaining the misclassification probability at a certain desired level.
To capture the high-dimensionality of the model (1) in an asymptotic sense,
we allow the number of variables p = pn and the parameters θ i = θ i

n depend
on the sample size n. To indicate that parameters can change with n we turn
to the sequence of classification problems {p,ni, f (x;θ ),E ,φi}n, n = 1,2, . . . ,
instead of the isolated one, and allow p grow to infinity together with n → ∞
in such a way that p/ni → φi < ∞, i = 1, . . . ,c. It is in particular possible for
the following analysis that the number of variables is much larger than the
number of observations, p 3 ni.

The principle difference of this approach from the standard asymptotics can
be demonstrated by the following example: Let X1, . . . ,Xn be a sample of inde-
pendent observations from Np(0,σ2I). The square length of X̄ , i.e. square of its

�2-norm is ||x̄||22 = ∑p
i=1(x̄

(i))2 = ∑p
i=1

(
∑n

j=1 x(i)
j /n
)2

→ φσ2 > 0 as p,n → ∞
unlike the standard asymptotic where ||x̄||22 would converge to 0.

2 Covariance Structure and Classification Accuracy

To exploit the covariance structure for reducing the dimensionality, we first
turn to the binary classifier and model each class conditional distribution as
X ∼Np(μi,Σ) given the class variable Y , i = 0,1. Then the Bayesian classifier
(1) is equivalent to

L (x;μ0,μ1,Σ) =
(

x− 1
2
(μ1 + μ0)

)′
Σ−1(μ1 − μ0)≶ ln

π0

π1
→ x ∈

{
Ω0

Ω1
(2)

which is known as the Anderson-Fisher discriminant that preserves the or-
dering of class posterior probabilities and can therefore be used instead of
them for classification. The posterior misclassification probability of this rule
can be computed as

Eopt = P(L (X;μ0,μ1,Σ) ≤ 0|X ∈Ω1) =Φ
(
− 1

2

√
δ (μ0,μ1,Σ)

)
, (3)

where Φ is the Gaussian cumulative distribution function and δ (μ0,μ1,Σ) =
(μ1 − μ0)′Σ−1(μ1 − μ0) is the Mahalanobis distance between the classes. Ob-
serve that (3) directly relates the classification accuracy to the structure of
Σ and Σ−1.
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Fig. 1 Sparse covariance matrix using spy-plot technique, non-zero patterns are
colored in blue in (a)-(c) (a) A model of covariance with sparsity patterns, num-
ber of non-zero elements is about 3% (b) The same covariance structure after the
reverse Cuthill-McKee reordering algorithm. (c) A model of the block-diagonal ap-
proximation. (d) Classification accuracy for bi = 1 and τ going from 1 to 20.

An example of sparsity patterns discovered in the covariance structure is
illustrated by the panel (a) of Figure 1. We apply Cuthill-McKee reordering
algorithm, a permutation invariant transform of Σ (see e.g. [1] and references
therein ) that moves all non-zero elements closer to the diagonal thereby
reducing the bandwidth of the original matrix. Observe that the permuta-
tion invariance of the covariance structure with respect to indexing the class
predictor variables is a key feature associated with the suggested variable
selection technique. The panel (b) of Figure 1 shows an example of such a
transform of Σ . and in the panel (c) we infer a block-diagonal approximation
of Σ with a given number of sub-matrices Σ[bi] having various degree of re-
maining within-block sparsity where i = 1, . . . ,b The main advantage of the
block-dependence structure in a high-dimensional framework will be shown
in Sections 4 and 5.

It turns out that the block-diagonal approximation of the covariance matrix
while reducing the dimensionality does not lead to a serious decline of the
performance accuracy of (2) assuming that the true Σ is sparse and well-
conditioned. An impression of the increase of the misclassification probability
induced is given by an extreme case of the approximation where Σ in the
classifier L (x;μi,Σ) is replaced Λ = Diag[Σ ], i.e. all off-diagonal elements
of Σ are replaced by zero. This is a special case of the block structure with
b[i] = 1, i = 1, . . . , p For a Gaussian class conditional model the misclassification
probability P(L (X;μi,Σ) ≤ 0|X ∈Ω1) is then given by

EΛ =Φ
(
− 1

2
(μ1− μ0)′Λ−1(μ1 − μ0)√

(μ1− μ0)′Λ−1ΣΛ−1(μ1 − μ0)

)
, (4)

and EΛ > Eopt. Now we notice that Eopt is a monotone decreasing func-
tion of the Mahalanobis distance, i.e. δ (μ0,μ1,Σ) =−2Φ−1(Eopt), and hence
δ (μ0,μ1,Σ) and Eopt provide equivalent information about the classification
performance. Then we evaluate the relative accuracy of EΛ to Eopt by comput-
ing the quot of the arguments of EΛ and Eopt. By denoting μ =Λ−1/2(μ1−μ0)
and Ψ =Λ−1/2ΣΛ−1/2, and after some rearrangements we get
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Q2 =
arg(Eopt)
arg(EΛ )

=
μ ′Ψ−1μ ·μ ′Ψμ

(μ ′μ)2 .

Now using the matrix version of Cauchy inequality for a symmetric positive
defined p× p matrix A and any p×1 vector u (see [5])

(u′A −1u)(u′A u)≤ [αmin(A )+αmax(A )]2

4 ·αmin(A )αmax(A )
· (u′u)2, (5)

where αmin(A ) and αmin(A ) are maximal and minimal eigenval-
ues of A , respectively, we obtain Q2 ≤ (1 + τ(Ψ ))2/4τ(Ψ), where
τ(Ψ ) = αmax(Ψ )/αmin(Ψ ) is the condition number of the matrix Ψ . Fur-
ther, by monotonicity of Φ(·) the upper bound of the misclassification
probability EΛ is found as

EΛ ≤Φ
(
− 1

2

√
4τδ (μ0,μ1,Σ)

1 + τ

)
(6)

Now, recall that for a reasonable decision rule we must stipulate that
0 < const ≤ δ (μ0,μ1,Σ) ≤ ∞ in (3). Thus, if the eigenvalues of Σ are close
to 0 or ∞ as p → ∞ so that τ → ∞ then argEΛ in goes to 0 resulting in the
upper bound of misclassification probability of 1/2. However, numerical anal-
ysis of (6) shows that for a moderate values of τ an increase of EΛ is not that
pronounced event for the b[i] = 1 for all i, as illustrated in Figure 1(d). Hence
when approximating Σ with the structure illustrated in Figure 1(c), the de-
cline in the performance accuracy will even be less observed due to capturing
more true entire dependence.

3 Sparsity Conditions and Approximation Accuracy

To demonstrate the importance of the sparsity assumption, we consider the
classifier (2) with Σ = Mp(i, j) = σ21p1′p +(1−σ2)Ip, where 1p is p×1 vector
of ones and Ip is the p× p identity matrix. This means that all the features
are assumed to be equally dependent exhibiting thereby no sparsity patterns
in the covariance structure (Mp is zero-sparse). Then the p eigenvalues of Mp

are λ1 = 1 +(p−1)σ2, and λi = 1−σ2 for the remaining i = 2, . . . , p so that
τ(Mp)→∞ as p→∞, and thus by applying the bounding condition(5) we see
that for large enough values of p the resulting asymptotic misclassification
EΛ tends to 1/2 so that the classification does no better than a pure guess
work. Such a decline in the classification accuracy would be anticipated: since
the true covariance matrix is zero-sparse the block-diagonal approximation
totally ignores the underlying dependence in the classification procedure. On
the other hand, inducing a certain degree of sparsity on Σ in (3) makes
it possible to bound EΛ away from 1/2 when using the approximation. To
show this we let Σ = Tp(i, j) = p−1/21{|i− j|≤2} in the classifier (2) and find the
eigenvalues λk of Tp to equal 1 + 2p−1/2 cos(kπ(p + 1)−1) for k = 1, . . . , p, so
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that τ(Tp) → const as p → ∞ which ensures that the corresponding classifier
does not degenerate. Observe that the matrix Tp in this example is a special
case of the symmetric Toeplitz structure of the order 2 and the degree of
sparsity induced on Σ is of order O(p).

The observed phenomena can intuitively be explained as a trade-off that
occurs with the block-diagonal covariance approximation in a way that a
small increase in the misclassification probability can be traded for an essen-
tial dimensionality reduction that led to better classification results.

4 Block-Wise Variable Selection with the Lasso

The discovered sparsity and block-diagonal covariance structure can be re-
lated to the grouping of feature variables and, for a Gaussian model, zero
patterns in the covariance structure can be equated with the variables inde-
pendence. This means that observed vector x is decomposable into a family
of b independent groups (blocks) so that for each given bi xi ∈ Rbi . Further-
more, since Σ is a block-diagonal, its inverse is also block-diagonal with each
diagonal block equal to Σ−1

[bi]
so that the within-block dependence structure

is preserved. For a non-Gaussian f (x;θ j),+ the sparsity can be related the
asymptotic independence, that is, for a large p the joint density of any two
blocks xi = (xi1, . . . ,xim) and x j = (x j1, . . . ,x jm) such that xi ∩ x j = ∅ can be
approximated by the product of densities. The disjointness assumption is
essential to our classification approach, as we see below.

The approximation of Σ represented in Figure 1(c) has another advantage
of allowing a flexible amount of sparsity within the discovered blocks. We
focus on those groups of variables for which Σ[bi] remains sparse and show that
the within-block Lasso can be very useful as a second stage of our procedure
suggested for discovering the variables with high predictive potential.

Firstly, to embed the Lasso technique in the classification framework
we turn to the logistic regression model where the class variable Y is as-
sumed to be a binary response whose conditional distribution given a spe-
cific block, xi, is modelled as a Bernoulli random variable with parameter
exp(β ′x)/(1+exp(β ′x)), where β is the parameter vector corresponding to the
ith block. Then, by the technique discussed in [3], the �1-penalized maximum
loglikelihood estimate for β can be found as β̂λ = argminβ

(
l(β ;y)+λ ||β ||�1

)

where l(β ;y) = ∑n
j=1

(
yiβ ′xi− log(1+ exp(β ′xi)

)
is the log-likelihood function

constructed by n observations (y j; [xi] j)n
j=1, and λ ≥ 0 is the tuning parameter

that controls the amount of penalization.
In our numerical examples we set class priors π0 = π1 = 1/2, fix bi = 160,

n1 = n2 = n = 100 and let the mean vectors μ0 and μ1, covariance matrix
Σ[bi] and the penalty parameter λ vary in the experiments. To encourage the
block-wise sparsity we let most of the coordinates of the block shift vector
Δ = μ1−μ0 be zero which means that the most of predictor variables in the
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set xi are irrelevant for accurate classification. In some of our simulations
we have used Δ = 0, that is, μ0 = μ1, in order to see how the Lasso performs
when no feature is informative for predicting Y . Due to sparse data structure
this is a situation we expect to meet for many of the blocks. In addition to
the number of nonzero components in Δ , one can also vary the absolute value
of Δ . As for the second factor, covariance matrix, we generate two types of
Σ[bi] structures, one with conditional number τ = 10 and the other one with
τ = 103. We let the eigenvalues λis of Σ[bi] progress in equal steps from 0.2 to 2
for the former case, and from 0.02 to 20 in the latter case. For this setting, the
Lasso based technique for the ith block is described in the following algorithm:

Step 1: Generate n independent outcomes of Y ∈Be(π1).
Step 2: For each observed y j generate a (n×bi)-matrix X where the j:th row

Xj,· ∼N (μy , Σ[bi]), y = Y j, j = 1, . . . ,n

Step 3: Use glmnet with X and y as input, to compute a sequence β̂λ for a range
of λ .

Step 4: Find λ̂5 = argmaxλ β̂λ for which the number of nonzero in βλ is at least 5.
Step 5: Check whether the relevant feature is among those 5.
Step 6: Repeat steps 1-5 many times and check how often the method succeeds

in finding the correct feature.

Observe that this algorithm can also serve as a block selector: if the re-
sulting sequence β̂λ is similar to the left panel in Figure 2, this indicates that
the block can be discarded from the model as non-informative. In the case of
ill-conditioned Σ[bi], i.e.for τ = 103 one may apply PLS technique to construct
the block linear predictor ∑bi

k=1 ckxk and check its predictive potential for Y
as described in e.g. [2].

Typically, the estimated Lasso traces look like the three graphs in Figure
2, depending on whether the true Δ has zero, one or two nonzero components.
There are zero, one or two coefficients of the vector β̂λ that are significantly
larger than the others, and they remain (stably) non-zero for higher values
of the tuning parameter λ . This hints that the Lasso trace is a useful way
to identify those feature variables that are highly relevant for predicting Y .
However, simulations do not always yield plots that belong distinctly to the
appropriate type. Even when no feature is relevant, we get a pattern presented
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Fig. 2 Lasso coefficients β̂λ vs log(λ ) for j = 1, . . . ,160, in a case when non (left
panel), one (middle panel), or two (right panel) of the features are highly predictive
for Y .
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Table 1 Percentages of times when 0, 1, or 2 of the relevant features are among
the 5 captured, for various combinations of τ and (Δ1, Δ2).

τ = 10 | 103

(Δ1, Δ2) = (0.3 ,0.3) | (0.3, 1.0) | (1.0, 1.0) | (0.3 ,0.3) | (0.3, 1.0) | (1.0, 1.0)
0 | 75% | 12% | 2% | 82% | 22% | 4%
1 | 24% | 80% | 23% | 18% | 72% | 32%
2 | 1% | 8% | 75% | 0% | 6% | 64%

Sum | 100% | 100% | 100% | 100% | 100% | 100%

in the middle panel of Figure 2 with roughly 20 % probability. When one
feature is relevant, the chance for the corresponding trace to stand out in
the plot increases with ||Δ ||2, but is far from 100 % even when ||Δ ||2 ≈ 1.
After visual inspection of a number of trace plots, we have concluded that
only when 1.5 ≤ ||Δ ||2 ≤ 2 we can be fairly certain that the relevant feature
will stand out in the plot. The necessary size of ||Δ ||2 appears to be smaller
if the condition number of Σ[bi] is τ = 103 than when τ = 10. Since irrelevant
features will sometimes also yield traces that stand out from the majority,
we do not want to increase the penalty parameter λ further than to have at
least 5 x-variables remaining in the model.

By simulations, we have explored the probability that the relevant feature(s)
will be included among the 5 captured, for various different types of Δ and
Σ[bi]. When only one component of Δ is nonzero, this feature is found in 14%
of all cases when Δ = 0.3, and in 90% of all cases when Δ = 1.0, in the well-
conditioned case. In the ill-conditioned case, the relevant feature is found in
10% of the cases when Δ = 0.3, and 75% when Δ = 1.0. Not surprisingly, the
chance to identify the correct component increases with the distance between
μ1 and μ2. The case τ = 10 performs somewhat better than τ = 103.

When two components of Δ are nonzero (say, Δ1 and Δ2), none, one or
both of these may be included in the model among the 5 captured. Table 1
shows in how many out of 100 cases these respective outcomes were observed,
for various condition number τ.

5 Generalised Additive Classifier

The block-wise Lasso variable selection is especially efficient for sparse high-
dimensional data because the �1 penalty allows for controlling the number of
nonzero β̂λ coefficients when forming a dense block of class predictor variables.
This in turn makes it possible to constrain the size b̃i � bi of preprocessed
blocks, so that for some 0 ≤ m < 1, maxi b̃i = O(nm), i = 1, . . . , b̃, and even
bound the number of selected blocks, b̃ < b by limn→∞ b̃/n = κ ≤ 1. Jointly,
these two asymptotic assumptions control global rate of growth of the number
highly predictive variables p̃ = O(n) in the sequence of classification problems.
Henceforth, when analysing the performance property of the classifier based
on b̃ selected blocks we assume that these constraints are fulfilled.
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Observe that the Lasso variable selection in combination with the asymp-
totic independence of the resulting blocks allows for factorization of the class
conditional density f (x,θ ) =Π b̃

i=1 f (xi,θi), so that using the set of n observa-
tions from each class Π j the corresponding binary classifier can be estimated
as L (x;θ ) =∑b̃

i=1 Li(xi; θ̂ 0
i , θ̂ 1

i ) where θ̂ = (θ̂ 0
i , θ̂ 1

i ) satisfies the standard set of
good asymptotic properties. To investigate the performance properties of this
classifier we modify the initial sequence of classification problems discussed
in Introduction rewriting it as { p̃,bi,n j,κ ,L (x;θ ),D ,E j}k, where j = 0,1,

k = 1,2, . . . and D = ∑b̃
i=1 Di = ∑b̃

i=1
∫

ln f (xi;θ1
i )

f (xi;θ0
i )

[ f (xi;θ 1
i )− f (xi;θ 0

i )]dxi is the

Jeffrey’s distance between two distributions. Observe that D is the analog of
δ (μ0,μ1,Σ) for a non-Gaussian case and 0 < D < ∞. Given the asymptotic
block independence, the classifier L (x;θ ) is a special case of the Generalized
Additive Model, [4] we can state convergence of the sum towards a normal
distribution and then get a closed form expression for the misclassification
probabilities E in terms of the first and second moments of L (x, θ̂ ). The
details of this estimation technique are presented [6]. Furthermore, in the
high-dimensional setting, i.e. when p̃ ∼ n, each sample-based term L (xi; θ̂ )
is essentially overestimated with the local bias is of order O(b̃i/n). Accumu-
lating this bias over b̃ blocks naturally leads to a loss in the classification
accuracy. Given that b̃/n→ κ and κ < 1 this bias can be captured and essen-
tially reduced by down-weighting the corresponding block input. We consider
a weighted classifier Lω(x; θ̂ ) = ∑b̃

i=1ωiLi(x;θ ) where weights ωi := ωi

(
nD̂i

2

)

represent the estimate of the i block distance input towards the Jeffrey’s dis-
tance between the classes. Given the asymptotic normality of the weighted
classifier Lω(x; θ̂ ) and assuming that that E1 = E2 the optimal in a sense of
minimum misclassification probability choice of ω is given by

argmin
ω(u)

Eω = ω0(u) =
∫
γ2

i χ(u; b̃i + 2,γ2)dH(γ2
i )

u
∫
γ2χ(u; b̃i,γ2

i )dH(γ2
i )

,

where χ(u; b̃i,γ2
i ) is the density of the non-central χ2 distribution with b̃is

degrees of freedom and non-centrality parameter γ2 representing the true ith
block impact towards the Jeffrey’s distance, and H(u) = 1

b̃ ∑
b̃
i=1 1{ nDi

2 ,∞}(u); see

detailed proof of this result in [6]. Since ω0(u) is a decreasing function of u
the suggested procedure provides desirable down-weighting.
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Independence Tests for Uncertain Data
with a Frequentist Method

Simon Petitrenaud

Abstract. In this paper, the analysis of contingency tables and the problem
of independence of two variables are tackled, when information concerning
one or both variables is missing or uncertain. In a first approach, the relations
between the variables are described with the belief function theory. A second
approach, a “frequentist”one, takes into account all the possible probabilistic
distributions of contingency tables. With the use of classical statistical tests
as the chi-square test, several dependence criteria adapted to the data are
proposed and analyzed. A simulation and a real data example are presented
to illustrate the methods.

1 Introduction

The analysis of contingency tables and independence tests of two variables
have always received considerable attention in statistics [1, 5, 10]. In some
cases, for some observations, information concerning one or the other variable
are missing or uncertain. Statistical analysis with incomplete data have been
largely developed in literature [4, 5, 9, 10]. In most cases, tests of indepen-
dence are based on an EM algorithm with missing data but generally the
studies are restricted to binary data.

To the best of our knowledge, no works have been made on the test of
independence for data with uncertain observations. In [6], we proposed to use
the belief functions [7, 8] since it allows an easier data description. But this
method was restrictive, because we did not manage to keep all information
in the decision process. In this article, we come back to the probabilistic
formalism, and we propose a frequentist method that takes into account the
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set of all probabilistic distributions of contingency tables in order to capture
the more information as possible.

Firstly (in Section 2), we will briefly recall the classical independent tests
used. Section 3 defines generalized contingency tables and presents existing
methods in the particular case of missing data. In Section 4 we recall the
belief function method. In Section 5, we describe the frequentist approach
and we define several dependence criteria adapted to uncertain data and a
confidence measure concerning this dependence. Several experiences showing
the relevance of these criteria and measures are introduced in Section 6 and
Section 7 concludes the article.

2 Classical Independence Tests

Let X and Y be two variables respectively described by a set of I categories
X = {x1, . . . ,xI} and J categories Y = {y1, . . . ,yJ}. Let us denote by pi j the
joint probability pi j = PXY (xi,y j) and pi. = PX(xi), p. j = PY (y j) the correspond-
ing marginal probabilities. We suppose we have a sample of n couples of
variables (Xk,Yk)n

k=1 coming from (X ,Y ). The variable Ni j represents the si-
multaneous occurrences of the categories (xi,y j). Let us denote by fi j =

ni j
n , the

joint frequency of the couple (xi,y j), that estimates pi j and by fi. = ∑J
j=1 fi j,

f. j = ∑I
i=1 fi j the marginal frequencies that respectively estimate the pi. and

the p. j. The independence condition in probability between X and Y , denoted
H0, is defined by:

H0 : pi j = pi.p. j (i = 1, . . . , I; j = 1, . . . ,J). (1)

Let us consider the independence test:“H0: X and Y are independent, versus
H1: X and Y are not independent”. We can measure the independence degree
between the two variables with the famous Pearson’s χ2 test. The χ2 distance,
computed with the distribution of the joint frequencies f = { fi j}i=1,...I; j=1,...,J

is defined by:

D( f ) = n
I

∑
i=1

J

∑
j=1

( fi j − fi. f. j)2

fi. f. j
. (2)

As n → +∞, D( f ) converges in law to a χ2((I − 1)(J− 1)) distribution if H0

is true. Let α ∈]0,1[ be the risk of rejecting hypothesis H0 by mistake. Let
K1−α be the quantile of order 1−α of the χ2 distribution with (I−1)(J−1)
degrees of freedom. If D( f ) ≤ K1−α , we could accept H0 at the significance
level α, otherwise, we should reject H0 at this level. Then, in some cases,
for some observations, information concerning one or the other variable are
missing or uncertain and it is necessary to adapt independence tests to these
situations.
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3 Independence Tests for Generalized Contingency
Tables

3.1 Generalized Contingency Tables

In this section, we propose to generalize the notion of contingency table to
the case when the variables X and Y are not always perfectly observed. Let
us assume that again we have a sample of size n of (X ,Y ), but now, the
observations are not necessarily precise but take the form of a subset C ∈
Rect(X ,Y ) = {(A,B)| A⊂X ,B⊂Y }, whose number of occurrences is denoted
by nC. In the rest of the paper, for simplicity sake, n{xi}×{y j}, nX ×{y j} and
n{xi}×Y are respectively denoted by ni j, nX j and niY . Table 1 gives an example
of that sort of generalized contingency table. For obvious reasons linked to
the simultaneous knowledge of the variables, the set of “useful” subsets C is
restricted to Rect(X ,Y ). The table size is then: (2I − 1,2J − 1). If we assume
that available information is given by this kind of table, what can we say
about the independence of X and Y?

Table 1 Example of a generalized contingency table (I = 2, J = 3)

y1 y2 y3 {y1,y2} {y1,y3} {y2,y3} Y = {y1,y2,y3}
x1 33 5 12 2 8 2 1
x2 11 9 4 3 2 5 0

X = {x1,x2} 1 1 1 0 0 0 1

3.2 EM Approach for Missing Data

In this section, we briefly recall a popular solution in the particular case
of missing data, where the sets A and B are singletons or the whole set X
and Y respectively. In this case, it is possible to iteratively determine the
estimates p̂i j of pi j by a formula combining the two steps of the Expectation-
Maximization (EM) algorithm. At each iteration t, the frequencies p(t+1)

i j are
computed as follows [4]:

p(t+1)
i j = fi j +

niY

n

p(t)
i j

∑J
j=1 p(t)

i j

+
nX j

n

p(t)
i j

∑I
i=1 p(t)

i j

(i = 1, . . . , I; j = 1, . . . ,J). (3)

The frequencies p(t) =
(

p(t)
i j

)
converge to the estimates p̂ = (p̂i j). Then we

can easily define independence tests using the statistic D(p̂) (cf. Equation
2) or likelihood ratio tests. Many variants of the EM algorithm have been
proposed in literature [5, 9].
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4 Belief Function Approach

4.1 Belief Functions

The following section recalls and discuss the proposed solution developed in
[6], when information is described as a belief function. First, we very briefly
recall some notions of the belief function theory [7, 8]. Let Ω be a finite set,
the uncertainty representation is made by the means of the concept of belief
function, defined as a function m from 2Ω to [0,1] such as: ∑A⊆Ω m(A) = 1.
The quantity m(A) represents the belief exactly allowed to proposition A. The
plausibility function Pl, which quantifies the maximal belief which might be
allowed to a proposition, is defined by: Pl(A) = ∑B∩A �= /0 m(B), ∀A ⊂ Ω . The
function m describes the state of a belief. Once a structure m is defined,
it is possible to transform it to a probability distribution, particularly for
decisional aspects. One of these distributions, called pignistic probability and
denoted by P∗, consists in sharing equitably the mass of a subset of Ω between
its elements. So it is defined for all ω ∈Ω by [8]:

P∗({ω}) = ∑
A⊂Ω

m(A)
|A|(1−m( /0))

δA(ω), (4)

where |A| is the cardinal of A, δA(ω) = 1 if ω ∈ A and δA(ω) = 0 if ω /∈ A .

4.2 Uncertain Observations and Pignistic Criterion

A generalized contingency table with uncertain observations defined in Sec-
tion 3.1 can also be associated to a normalized belief function m inΩ =X ×Y
which generalizes the joint frequency of (X ,Y ) to uncertain observations:
m(C) =

nC

n
, C∈Rect(X ,Y). In the example of Table 1, m({(x1,y1),(x1,y3)})=

0.08. Instead of trying to capture all the uncertainty of the data, we proposed
a simple dependence criterion using belief functions, based on a representative
distribution, the pignistic distribution:

P∗({(xi,y j)}) = ∑
{(A,B)|xi∈A,y j∈B}

m(A×B)
|A×B| (i = 1, . . . , I; j = 1, . . . ,J). (5)

Then we can obtain an independence indicator when computing the χ2 statis-
tic D(P∗) for this particular distribution (cf. Equation 2). This method gen-
eralizes the classical cases when the observations are accurate and complete
but has the disadvantage of not checking the principle of neutrality towards
independence of the belief function measuring the total ignorance (m(Ω) = 1).
This function expresses the total lack of information concerning the relation-
ship between the variables X and Y whereas the associated pignistic distribu-
tion leads to the exact independence. Several definition of independence for
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belief functions are defined in [2, 3]. Consequently, other criteria, in particular
based on the plausibility function of m and its projections on X and Y , are
discussed in [6], but they have not been found enough relevant.

5 Frequentist Approach

5.1 Analysis of All Probabilistic Distributions

Now, if we want to keep and use the information of the complete contingency
table T of (2I − 1,2J − 1) size as best as possible, we can notice that it
corresponds to N classical tables (Tq)Nq=1 of size (I,J) which have not been
specified. For example, in Table 1, there are 4 ways of distributing the 3
elements of the cell {x1,x2}×{y2} in the two classical cells:{x1,y2} and {x2,y2}.
The total number of possible tables (counted with the probability that they
come true) is:

N = ∏
A∈Ω

|A|nA , (6)

where nA is the number of occurrences of A. In the example of Table 1,
N = 225 ∗6/ 2∗108. We suppose that the distribution of the nA occurrences
of a cell A among the corresponding classical cells has a multinomial dis-
tribution with parameters nA and the uniform proportions 1

|A| . Then, the
distribution of the Tq is the result of a mixing of multinomial distributions.
The uncertainty concerning the independence of the two variables X and Y
appears at two levels: the dependence measure of these variables, for example
defined by the χ2 statistic of a given random distribution and the uncertainty
concerning this measure itself, which is due to the multiplicity of possible dis-
tributions. The idea is to take into account all the N possible distributions
of the n individuals in the IJ cells of the “real”table of singletons (xi,y j). Each
table (Tq)Nq=1 corresponds to a distribution defined by the joint frequency fq,
and leads to a χ2 distance Dq = D( fq). The complete set of all possible dis-
tributions D = (D1, . . . ,DN ) is then built and studied. It is possible to find
a representative value such as the mean D or the median DMe of the family
D . More generally, if D− and D+ denote respectively the minimum and the
maximum of the family D , three cases occur:

• if D− > K1−α , the independence hypothesis is rejected at level 1−α;
• if D+ < K1−α , the independence hypothesis is accepted at level 1−α;
• if K1−α ∈ [D−,D+], we cannot conclude a priori, because some distributions

accept H0 but other ones reject it.

In general cases, when I > 2 or J > 2, D− and D+ are not analytically defined
but are iteratively computed, since the use of an optimization program with
linear constraints generally lead to a local minimum or maximum. But when
I = J = 2, the analytic computation of D+ is straightforward:
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D+ = max{D( f ),D(g)} , (7)

where f11 =
n11+n{x1}×Y +nX 1

n , f12 = n12
n , f21 = n21

n , and f22 = n22+n2Y +nX 2
n and

g12 = n12+n1Y +nX 2
n , g11 = n11

n , g22 = n22
n , and g21 = n21+n2Y +nX 1

n .

5.2 Dependence Degree of Variables

Since the interval [D−,D+] may be large, the rule derived in Section 5.1 leads,
either to binary decisions, or in most cases to a lack of decision as soon as
the proportion of uncertain observations becomes important. We propose to
refine the decision process by introducing the notion of dependence degree.
We define a dependence degree (∈ [0,1]) between the variables X and Y , as
the proportion of possible distributions fq for whom H0 would be rejected:

C(D) =
N

∑
q=1

1{Dq>K1−α}( fq). (8)

Thanks to the empirical distribution function F̂D of D , it is possible to build
robust fluctuation intervals of D: [d β

2
,d

1− β
2
] containing a proportion of 1−β

of the values, with dγ , the quantile of order γ of F̂D. As we have seen earlier,
N may be very large. In order to make computations possible in a reasonable
time, we can estimate this distribution by randomly building a representative
sample in a Monte-Carlo way. Finally, in order to measure the uncertainty
degree concerning the independence, we define a confidence index which is
expressed in the form of an interval ∈ [0,1]:

CI1−β (D) = [Fχ2(d β
2
),Fχ2(d1− β

2
)], (9)

in which Fχ2 is the χ2 cumulative distribution function with (I − 1)(J − 1)
degrees of freedom. The idea is the following: the more uncertain the distri-
bution, the largest the interval. If we take the two extreme cases, the total
ignorance leads to a very large confidence index, and for a single distribu-
tion f , CI1−β ( f ) is reduced to a singleton. In the case of total ignorance, D

has a multinomial distribution with uniform proportions 1
IJ , thus approxi-

mately a χ2 distribution with (I − 1)(J − 1) degrees of freedom. Therefore,
CI1−β (D) = [β2 ;1− β

2 ], which makes the decision obviously unreliable.

6 Experiments

In this section, we illustrate the proposed measures within two situations.
We take an error risk α = 0.05 and the parameter β = 0.05. In each case, the
distribution of D is simulated with a sample of size 10000.
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Example 1 (Analysis of crime data.). The crime data, given in Table 2, have
been taken as an example of real incomplete categorical data sets by several
authors [9]. The sample size n of the data is 641 and the data originally come
from the National Crime Survey by the U.S. Bureau of the Census. In this
example, the number of missing data is quite important (80), so the size N
of possible distributions D is extremely large (≈ 2∗1024). All situations may
a priori occur, since D− = 1.9 and D+ ≈ 69.5 3 K0.95(1) = 3.84. But these
extreme values are very rare, and we can see in Figure 1 that almost all
values are greater that 3.84. The reference pignistic value D(P∗) is equal to
21.77. Center values of D are very close: D = 21.86 and Dme = 21.77. So, the
independence null hypothesis H0 is unquestionably rejected. Similar results
can be found in [9, 4]. The EM algorithm in Equation (3) leads to D(p̂) =
33.40.

Table 2 Example 1: Victimization status of housing units occupants.

y1 y2 Y = {y1,y2}
x1 392 55 33
x2 76 38 9

X = {x1,x2} 31 7 0

Example 2. Let us take the Example 1 (cf. Figure 1). If we make the decision
with the pignistic measure, H0 is rejected: D(P∗) = 9.44 > K0.95(2)≈ 5.99. Here
again, center values of D are close: D = 9.66 and Dme = 9.45. If we take all
the distributions into account, the decision is not as clear as in the first case,
since 1−α ∈CI1−β (D) = [0.902;1], but we can say that X and Y have 91.5%
of chances to be dependent (C(D) = 0.915).
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Fig. 1 Left: Example 1 (crime data) and Right: Example 2. Distribution of the
distances D, D(P∗) (−−), [d0.025,d0.975], (-.-), decision threshold (-)
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7 Conclusion

In this article, we analyzed the independence of two variables X and Y in
the case when observations may be uncertain or incomplete. We proposed
criteria generalizing independence tests for two variables as extension of the
classical χ2 test. In a first approach, the joint frequency of the variables is
expressed in the form of a belief function m and the decision is made with the
pignistic transformation of m. A second approach, a “frequentist” one, taking
all the possible probabilistic distributions of contingency tables into account,
has been presented.

Experiments have been made in little sized tables (2×2 or 3×2) but the
benefit of our methods should increase with their dimension, as a next study
should show. In a future work, we will also consider the extension of the inde-
pendence test when the data are not only uncertain, but also fuzzy. Finally,
it should be interesting to study the impact of this sort of uncertain data
to the similar problem of estimating and testing the multinomial parameters
pi j = PXY (xi,y j) of the joint distribution.
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Why Imprecise Regression: A Discussion

Henri Prade and Mathieu Serrurier

Abstract. Machine learning, and more specifically regression, usually focuses
on the search for a precise model, when precise data are available. It is well-
known that the model thus found may not exactly describe the target concept,
due to the existence of learning bias. In order to overcome the problem of
learning models having an illusory precision, a so-called imprecise regression
method has been recently proposed for non-fuzzy data. The goal of imprecise
regression is to find a model that offers a good trade-off between faithfulness
w.r.t. data and (meaningful) precision. In this paper, we propose an improved
version of the initial approach. The interest of such an approach with respect
to classical regression is discussed in the perspective of coping with learning
bias. This approach is also contrasted with other fuzzy regression approaches.

1 Introduction

Fuzzy regression methods have been proposed for now more than twenty
years. Apparently, the motivations for such extended forms of regression have
been either to generalize regression to fuzzy data, or to describe envelopes
for the data by associating each input with an interval covering output data.
This second type of regression (often termed possibilistic regression) yields
interval representations even when input and output data are non-fuzzy. This
suggests that possibilistic regression does not serve exactly the same purpose
as classical regression. Still the purpose of possibilistic regression has never
been fully laid bare (beyond the informal idea of coverage of the data). Clas-
sical least square regression has both a geometrical and a statistical justifica-
tion that coincide. Indeed the regression line is supposed to pass through the
“middle” of the “cloud” of data points. Moreover, in the statistical view, the
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regression curve is interpreted as the mean of the normal probability distribu-
tion for the output given an input vector. This interpretation requires that the
data variations obey a Gaussian law with fixed standard deviation. Imprecise
regression, whose a preliminary form has been proposed in [19], may be con-
sidered as being midway between possibilistic regression (due to its coverage
concern) and least square regression (due to an uncertainty interpretation).
Indeed, learning biases involve different kinds of uncertainty due to noisy data
on the one hand and to the description language on the other hand. Noise
may be handled by a probabilistic representation (if the distribution type is
known), while description language is pervaded with epistemic uncertainty.
In imprecise regression, we propose to describe the data by means of possibil-
ity distributions, which can be seen as providing a representation of a family
of probabilities [6]. Possibility distributions are indeed well known as a tool
for representing epistemic uncertainty. The paper is structured as follows.
First we present an improved version of the imprecise regression approach
with an illustrative example. Next, we discuss the differences between least
square regression and imprecise regression. The last sections are devoted to
comparisons with the related literature, and to concluding remarks.

2 Imprecise Regression

The new setting. The goal of imprecise regression [19] is to overcome the
learning biases by considering them as factors that have impact on the pre-
cision of the models rather than as a boundary to the effectiveness of the
learning process. Knowing that the representation of the examples and the
hypothesis correspond necessarily to an incomplete view of the world, we will
search for imprecise hypotheses that take into account this incompleteness.
Thus, given a set of crisp data, we will search for a model that is as precise
as possible and which provides a faithful description of the data. When the
imprecision tends to 0, we obtain a crisp hypothesis that describes the con-
cept exactly. In a formal way, imprecise regression allows us to represent the
imprecision associated with the model by taking into account the incomplete-
ness of the information provided by the data and the chosen representation
space for the hypotheses.

A regression database is a set of m pairs (−→x i,yi), 1 ≤ i ≤m, where −→x i ∈R
n

is a vector of n input variables and yi ∈ R is the real output variable. An
imprecise fuzzy function F is a function from R

n to (R→ [0,1]) that associates
a distribution on the possible values of the output to the input vector −→x . The
goal of imprecise regression is to find the fuzzy function F(−→x ) that maximizes
the evaluation function:

In f o(F) =−
m

∑
i=1

πi(yi)∗ log(
Area(πi)+ Area(A(πi(yi)))

2 ∗Area(πmax)
) (1)
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where πi = F(−→x i) and A(πi(yi)) is the πi(yi)-level cut of the fuzzy set A having πi

as membership function. πmax is the maximal binary possibility distribution,
fixed a priori by the user, that covers all the data. Note that the evaluation
function has been improved with respect to the one initially used in [19], which
had more parameters to be tuned in order to obtain good results. This is an
information measure which may be viewed as a counterpart of the Kullback-
Liebler one in the possibilistic setting. It measures how much the distribution
πi increases information about the output w. r. t. πmax. By maximizing to-
gether the accuracy of the imprecise function, here estimated through the
terms πi(yi)’s, and its precision, estimated by Area(πi)+Area(A(πi(y))), we en-
sure a trade-off between accuracy and precision of the model. Note that we
use Area(πi)+Area(A(πi(y))) rather than 2∗Area(πi) in order to avoid that the
maximum be systematically reached for a rectangular possibility distribution.
Indeed the second term Area(A(πi(y))) creates a synergy between gradualness
and precision (area). Using this second term only would not properly handle
the data that are out of the core of the distribution. Maximum is reached
when the function describes exactly the data without imprecision. Since the
learning bias may prevent reaching this maximum, the function will describe
both the general tendency of the data and the variations around it.

Algorithm. In the following, we consider imprecise regression functions of
the form Fa,b,c,d(−→x ) = Tfa(−→x ), fb(

−→x ), fc(−→x ), fd(−→x ) which associate a trapezoidal
fuzzy set to a vector of input variables, although the framework would be
applicable to any kind of membership functions. Functions fa, fb, fcet fd can
be linear functions of the form f (−→x =< x1, . . . ,xn >) = a0 +a1∗x1 + . . .+an∗xn,
or kernel functions (e.g. Gaussian functions in our application) f (−→x ) =
a0 + a1 ∗K(s1,x) + . . . + an ∗K(sk,x), where s1,sk are support vectors which
are computed previously by using a clustering algorithm. Finding optimal
fa, fb, fc, fd constitutes a hard problem which is not solvable by classical op-
timization methods. We propose to solve the problem by using a simulated
annealing algorithm [16]. The goal of simulated annealing is to determine the
function F which maximizes the measure defined by the Equation 1. In order
to use simulated annealing, we first need to define the neighborhood V of a
function F :

V (Fa,b,c,d) =< V ( fa),V ( fb),V ( fc),V ( fd) > (2)

The neighborhood of a linear or kernel function is obtained by randomly
adding or removing a fixed small value to all the coefficients. The use of a
fixed small value for the variations is due to the fact that simulated annealing
is designed for discrete exploration of the space.

Illustration. We illustrate the approach on the learning of Fitt’s law [10].
Fitt’s law is used for predicting the movement time for an interaction given
its difficulty. The interaction considered here is the pointing of a circular
target with mouse device from a fixed starting point. The input variable is
the interaction difficulty which depends on the movement amplitude and the
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target size. The output variable is the time for interaction with success. The
database used here is obtained by means of an experiment where 20 different
users that performed 100 interaction tasks, each dispatched in a dozen of
different difficulty degrees. Results are presented in Figure 1.

Fig. 1 Imprecise non-linear regression
for Fitt’s law using Gaussian kernel.

Such a data are usually processed
in the following way. An average
point is computed for each pair (dif-
ficulty degree, user). Then a linear
regression is performed and the line
obtained is usually found to be ac-
ceptable in statistical terms. If we
consider all the data as in Figure
1, the direct use of classical regres-
sion is not appropriate for at least
two reasons. First, the residual val-
ues are too high for being statisti-
cally accepted. Second, the data are
not distributed around the general
tendency in a normal way (the dis-
tribution are not even symmetrical
for physical reasons, and the distribution is generally multi modal due to
the existence of different kinds of users), which makes problem at least for
least square regression. Using imprecise regression enables us to overcome
these limitations (in Figure 1, the possibility distribution is described in the
third dimension). Observe that what is obtained is not strictly linear, not
symmetrical and has a varying spread. We can also notice that imprecise
regression leaves naturally away the outliers which are numerous in the con-
sidered dataset.

3 Discussion

Least square regression can be considered from at least two different view-
points. In the first view, the problem considered amounts to determine a line,
and more generally a curve, that fits a set of data points in the sense that
the curve is as close as possible to each point. This leads to minimize the
sum of some evaluations based on the distances of the points to the curve.
Gauss and Legendre have shown that minimizing the squares of the distance
leads to a solvable linear system of equations in the case of linear regression.
This point of view turns to coincide with a particular statistical view of the
problem. Namely, the points are viewed as a result of a measurement whose
error behaves as a Gaussian noise. In this second view, regression amounts
to consider the conditional probability of the output variable given the input
variable(s). Assuming that the error follows a normal distribution, the regres-
sion curve is nothing but the locus of the means of the distributions associated
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with input vectors. Finding the optimal curve that maximizes the likelihood
in the Bayesian sense corresponds to find the curve that minimizes the sum
of the squares of the distances. Robust regression methods no longer require
Gaussian distributions and allow for variance depending on the input vari-
ables. However these methods still assume that the type of the distribution
is known.

When learning from crisp data, different important kinds of biases have to
be considered. The first one, called description language bias, comes from the
data description itself. More precisely, the language used constitutes a bound
for the descriptive power of the data and leads to an incomplete view of the
world. The second one, called sample bias, refers to the fact that the available
data are limited and may be irregularly distributed, and thus provides only
an incomplete view of the world. The last one, called noise bias, reflects that
the data may be pervaded with noise (measurement noise, variability, ...).
One advantage of the least square regression, in the case where the normal
distribution has the same variance everywhere, is that we can easily describe
the variations around the general tendency. Then, statistical criteria can be
used in order to check that the description is acceptable. If not, the hypothesis
learned has to be rejected. Non parametric approaches can then be used for
describing the dispersion around the curve. However, it also requires the
choice of a particular kind of probability distribution (whose parameters may
vary) and a large amount of data. Since it is a local estimation problem
with respect to the data in the neighborhood, this approach is not suitable
for prediction or for handling sparse data. The Bayesian view of regression
corresponds to a treatment of the noise bias. Moreover, it assumes that the
distribution of the noise is known, which is not always the case.

Imprecise regression which rather associates a conditional possibility dis-
tribution to the input does not suppose a particular kind of probability dis-
tribution, but rather implicitly handles a family of conditional probabilities
since a possibility distribution is an exact or approximate way for describing
such a family [6]. Thus, this takes care of the description language bias. The
description language bias means that there exist hidden variables that influ-
ence the conditional probabilities. This corresponds to epistemic uncertainty
whose handling requires some kind of imprecise probability models. Note also
that generalizing the geometrical view of linear regression by only requiring
that the data points be close to one among two, three or four lines (associat-
ing interval, triangular or trapezoidal fuzzy numbers with input data), would
not really cover all the data, since data points that are not outliers would
remain outside the fuzzy numbers scope, which will not be satisfactory.

The sample bias which also refers to epistemic uncertainty is not really
handled by any type of regression. Indeed, when there is a lack of input data
in between two areas where data are available, the imprecise regression may
yield a more narrow trapezoid in the area where data are lacking, while one
may have expected larger trapezoids there for reflecting the larger amount
of ignorance. This is due to the fact that the absence of data induces less
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constraints for the optimization process and may lead to some over-fitting.
Another major bias is the complexity of the hypothesis space. Indeed, due
to the limitation of the hypothesis language and the complexity of the al-
gorithms, it is rarely possible to find the hypothesis that describes exactly
the concept we want to learn. One of the major machine learning theorems
[22] shows that these biases lead to a bound on the effectiveness of the learn-
ing method used. It has been shown that too complex hypotheses language
(e.g., polynomials of too high degree in regression, or the use of too many
input variables w.r.t. the number of examples in linear regression) may lead
to learn models whose precision is illusory. This remains true with imprecise
regression.

As for classical regression, imprecise regression is well suited for inter-
polation. However, when considering extrapolation, as in time series, extra
information such as the general shape of the function has to be taken into
account in the model.

4 Related Works

In this section, we emphasize the differences between imprecise regression
and the different proposals in fuzzy regression. A first type of fuzzy regression
approach assumes that we start with fuzzy data, which means that the output
values are fuzzy and maybe also the input values. Then, a fuzzy representation
is searched for describing such data [3, 4]. Diamond’s method is based on the
extension of least square error minimization using a metrics on fuzzy sets.
Such a fuzzy extension of classical regression has been extensively studied [18]
in the linear case [8, 9, 17, 11]. Non-linear approaches have been also proposed
by using neural networks [7, 13], SVM’s [12] and genetic algorithms [2]. The
major advantage of the least square method is that it appears to be a natural
mathematical extension of crisp regression. In this context, when data inputs
and output are not fuzzy, fuzzy least square regression reduces to standard
least square regression, thus leading to a non fuzzy result. This constitutes a
major difference with our approach. In fact, imprecise regression aims at being
faithful to the distribution of the data, and associates a fuzzy representation
with crisp input and output data. In contrast, fuzzy least square regression
propagates the imprecision/fuzziness of the data. Moreover, the use of set
distances extended to fuzzy sets do really not agree with the view of a fuzzy
number as a possibility distribution restricting the possible values of a real-
valued variable (since the distance between two identical sets is always 0 even
if these sets are not singletons).

A second type of approach, named possibilistic regression, has been initially
proposed by Tanaka [20], and is reminiscent of quantile regression. The goal of
this approach is to associate the data with a pair of upper and lower regression
functions, while minimizing the total spread of the output coverage. In the
original method, the lower bound and the upper bound of the regression
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function are computed separately. Clearly, this method can be used with crisp
data and/or with fuzzy data. A linear model [20] has been initially proposed
and then extended [21] to non-linear possibilistic regression in [14] by using
neural networks. The main disadvantage of this method is that it is very
sensitive to outliers (even if it may be somewhat controlled [15, 23] by using
SVM’s together with outliers tolerance). Indeed, the optimal upper (resp.
lower) bound function is basically the function that is immediately above
(resp. below) the whole set of output data. Thus, outliers may affect to a large
extent the function that is learnt. Recently, Bisserier et al. [1] have proposed
a slightly different approach also aiming at providing a fuzzy coverage of the
dataset. These authors look for a fuzzy linear regression model, represented
by means of fuzzy parameters. In fact, it reduces to an interval regression
problem by considering the support of these fuzzy parameters (supposed to
be symmetrical triangle fuzzy numbers).

At first glance, imprecise regression may seem to be very close to possib-
listic regression. First, the two approaches deal with crisp data. Second, they
use separate functions in order to represent fuzzy sets or intervals. However,
the two approaches differ both at the theoretical level and at the algorithmic
level. Possibilistic regression aims at finding the most precise function that
is totally accurate with respect to all the examples up to some fixed outliers
tolerance. On the contrary, the goal of imprecise regression is to find the func-
tion that has the better trade-off between data faithfulness and precision in
order to take into account epistemic uncertainty associated with the learning
problem. This is why imprecise regression is less sensitive to outliers than pos-
sibilistic regression. Moreover, the lower bound and the higher bound of the
function in possibilistic regression are learned separately. Thus, when deal-
ing with crisp data, possibilistic regression can only produce intervals rather
that genuine fuzzy sets. Imprecise regression quality measure is global, and
all the functions that describe the fuzzy sets are learnt together. It allows
us to learn models that can represent the imprecision by any kind of fuzzy
sets (here trapezoidal) in a coherent way. Moreover, imprecise regression is
liable to receive an interpretation in terms of imprecise probabilities (family
of probability measures).

5 Conclusion

In this paper we have contrasted different extensions of regression methods.
The choice of a particular method depends on the problem at hand. If the
shape of the law to be learnt is known and the data are just noisy due to
the measurement device (think for instance of the Hooke’s law which states
that the extension of a spring is proportional to the force applied to it),
then classical regression is enough for the task (e.g. identifying the value of
the force constant in Hooke’s law for a given spring). On the contrary, as
illustrated in our Fitt’s law example, if the law to be learnt is not completely
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determined by the input variables available, imprecise regression allows us to
capture the epistemic uncertainty associated with the model. A further line
of research is obviously the study of the interpretation of imprecise regression
in terms of imprecise probabilities. Possibilistic regression seems to be more
suitable when the possible values of the output variable are represented by
intervals. The application of imprecise regression to fuzzy data is also worth
considering. This would basically amount to replace the degree of membership
πi(yi) in Eq. 1 by the possibilistic lower or the upper expectation of the
compatibility of the fuzzy output value with respect to πi [5].
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Power Analysis of the Homoscedasticity
Test for Random Fuzzy Sets

Ana Belén Ramos-Guajardo, Gil González-Rodŕıguez,
Manuel Montenegro, and Maŕıa Teresa López

Abstract. Some tools for testing hypotheses about the variance of random
fuzzy sets are already available. Asymptotically correct procedures for the
k-sample homoscedasticity tests have been recently developed. However, the
power of such procedures has not been analyzed yet. In this paper, some
studies about the power function of the asymptotic procedure for the ho-
moscedasticity test are presented. The theoretical analysis is carried out by
considering the capability of the test under local alternatives. Finally, the
behavior of the power function is illustrated by means of simulation studies.

Keywords: Homoscedasticity test, Random fuzzy sets, Power function,
Local alternatives.

1 Introduction

Random fuzzy sets (RFS’s for short) in Puri & Ralescu’s sense [8] were in-
troduced to model random mechanisms generating imprecisely-valued data
which can be described by means of fuzzy sets. The stochastic variability of
the fuzzy values of an RFS can be measured by means of the Fréchet variance
defined in terms of a generalized metric. This measure quantifies the squared
error of approximating RFSŠ values by means of its fuzzy mean.

The problem of testing about the variance of an RFS has been previously
analyzed. The one-sample test has been developed in [7] in a particular class of
fuzzy sets by using the large sample theory. These studies have been extended
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to a more general setting in [9] by considering other asymptotic and bootstrap
techniques.

Additionally, a test for analyzing the equality of variances of k RFS’s has
been developed in [10] inspired by the classical Levene’s test [6]. The the-
oretical results developed in this context have been mainly focussed on the
type I error (more precisely on the test size). However, the analysis of the
power function has not been addressed yet. In this work, the capability of
the test is analyzed by using a sequence of alternatives converging to the null
hypothesis as the sample size increases (also called local alternatives).

In Section 2, some preliminaries about RFS’s are gathered. The ho-
moscedasticity test for RFS’s is introduced in Section 3. The analysis of
the power of the test under local alternatives is developed in Section 4. In
Section 5, some simulations of the power function are carried out. Finally,
some concluding remarks and open problems are presented in Section 6.

2 Preliminaries

Let Kc(Rp) be the family of all non-empty compact convex subsets of R
p

and let Fc(Rp) denote the class of the fuzzy sets U : R
p → [0,1] such that the

α-levels of U , Uα ∈Kc(Rp) for all α ∈ [0,1], where Uα = {x ∈ R
p|U(x) ≥ α} if

α ∈ (0,1] and U0 = cl{x ∈ R
p|U(x) > 0}.

The usual arithmetic between elements of Fc(Rp) is based on Zadeh’s
extension principle [12], and it agrees levelwise with the Minkowski addition
and the product by a real number for compact convex sets.

Let ‖ · ‖2 denote the usual functional L2-norm. In [11] a distance between
two fuzzy sets U and V has been introduced defined as:

Dϕθ (U,V ) =

√∫

[0,1]

(
‖midUα −midVα‖2

2 +θ‖sprUα − sprVα‖2
2

)
dϕ(α),

where midVα (u) =
sVα (u)− sVα (−u)

2
, and sprVα (u) = sVα (u)+sVα (−u)

2 , with sVα be-

ing the support function of Vα , which is the mapping sVα : S
p−1 →R such that

sVα (u) = sup
w∈Vα

〈u,w〉 for all u ∈ S
p−1.

The value θ > 0 (often assumed to belong to (0,1]) determines the relative
weight of the distance of the generalized spread against the distance of the
generalized mid. The mapping ϕ is an absolutely continuous measure with
positive mass function on the unit interval weighting the importance of each
level [11].

Given the probability space (Ω ,A ,P), an RFS is a Borel measurable map-
ping [2, 11]. This definition is equivalent to the one by Puri & Ralescu [4, 8].

Let ‖ · ‖ be the usual norm in R
p. If supx∈X0

‖x‖ ∈ L1(Ω ,A ,P), then the
expected value of an RFS is defined in terms on the Aumann integral [1] as
the unique fuzzy set E(X ) ∈ Fc(Rp), such that for all α ∈ [0,1],
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E(Xα ) =
{∫

Ω
f (w)dP(w) | f :Ω → R , f ∈ L1(Ω ,A ,P), f ∈Xα a.s.− [P]

}
.

If supx∈X0
‖x‖ ∈ L2(Ω ,A ,P), the Fréchet-type variance [3] is defined as

σ2
X = E

(
Dϕθ (X ,E(X ))

)2
.

3 Homoscedasticity Test for RFS’s

Consider k populations and k independent associated RFS’s, X1, . . . ,Xk.
From each Xi, a simple random sample {Xi1, . . . ,Xini}

ni
j=1 is drawn, where

the total sample size equals N.
The aim is to test the hypotheses

{
H0 : σ2

X1
= . . . = σ2

Xk
vs.

H1 : ∃ i, j ∈ {1, . . . ,k} s.t. σ2
Xi

�= σ2
X j

(3.1)

The sample mean associated with the i-th variable and the total sample
mean are defined as usual on the basis of the fuzzy arithmetic. In addition:

- The variance in the i-th sample is defined as σ̂2
Xi

=
∑ni

j=1 Dϕθ (Xi j,Xi·)

ni
.

- The quasi-variance in the i-th sample (unbiased and consistent estimate
of the population variance as shown in [5]) is Ŝ2

Xi
= niσ̂2

Xi
/(ni−1).

Inspired by the classical Levene’s theory [6], the following statistic has
been considered in [10] to test the proposed null hypothesis:

T(n1,...,nk) =

k

∑
i=1

ni

(
σ̂2

Xi
− 1

N

k

∑
l=1

nlσ̂2
Xl

)2

k

∑
i=1

1
ni

ni

∑
j=1

[(
Dϕθ

(
Xi j,Xi·

))2
− σ̂2

Xi

]2 .

Under the null hypothesis H0, if supx∈X0
‖x‖ ∈ L4(Ω ,A ,P) and ni/N → pi ∈

(0,1) as ni → ∞ for all i ∈ {1, . . . ,k}, then

T(n1,...,nk)
L−→

k

∑
i=1

(
yi −

k

∑
l=1

√
pi plyl

)2
/

k

∑
i=1

σ2
(Dϕθ (Xi,E(Xi)))2 ,

where (y1, . . . ,yk)T ≡Nk

(
0,∑
)

with covariance matrix

∑ =diag
(
σ2

(Dϕθ (X1,E(X1)))2 , . . . ,σ2
(Dϕθ (Xk,E(Xk)))2

)
.

Thus, the following asymptotic procedure is obtained: for all β ∈ [0,1], the
size of the test that rejects H0 whenever T(n1,...,nk) > t1−β converges to β , where
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t1−β is the [1−β ]-quantile of the asymptotic distribution of T(n1,...,nk) under
H0, converges to β .

4 Power Analysis Under Local Alternatives

Local alternatives are a sequence of alternative hypotheses which converge to
the null one as the sample size increases and determine the sensitivity of the
test under small deviations from the null hypothesis.

Let X1 . . .Xk be k independent RFS’s verifying H0 : σ2
X1

= . . . = σ2
Xk

. For
ni ∈N and i ∈ {1, . . . ,k}, let {Xi j}ni

j=1 be a random sample obtained from Xi,

and consider a ’correction’ {X [ni]
i j }ni

j=1 of {Xi j}ni
j=1 defined as follows:

X
[n1]

1 j =
√

1 +
an1√

n1
X1 j for j ∈ {1, . . . ,n1}

X
[n1]

i j = Xi j for j ∈ {1, . . . ,ni}, i ∈ {2, . . . ,k}

in order to obtain RFS’s which variances are given by

σ2

X
[n1]

1

=
(

1 +
an1√

n1

)
σ2

X1
, and σ2

X
[ni]

i

= σ2
Xi

for i ∈ {2, . . . ,k}

where an1 is a sequence belonging to the interval (0,∞). Thus, if an1 → ∞
and an1/

√
n1 → 0 as n1 → ∞, then the sequence of variances σ2

X
[n1]
1

converges

pointwise to σ2
X1

as the sample size n1 tends to ∞. Consider the ‘corrected’
statistic:

T ∗ =

k

∑
i=1

ni

[
σ̂2

X
[ni]

i

− 1
N

k

∑
l=1

nlσ̂2

X
[nl ]

l

]2

k

∑
i=1

1
ni

ni

∑
j=1

[(
Dϕθ

(
X

[ni]
i j ,X

[ni]
i·

))2
− σ̂2

X
[ni]

i

]2 .

In Theorem 1 it is shown that the power of the test under the proposed
local alternatives converges to 1.

Theorem 1. Let X1, . . . ,Xk be k RFS’s verifying H0. For ni ∈ N and i ∈
{1, . . . ,k}, let {Xi j}ni

j=1 be a random sample obtained from Xi, and consider

a ’correction’ {X [ni]
i j }ni

j=1 defined as above to obtain RFS’s with variances

σ2

X
[n1]

1

=
(

1 +
an1√

n1

)
σ2

X1
, and σ2

X
[ni]

i

= σ2
Xi

for i ∈ {2, . . . ,k}

where an1 ∈ (0,∞) converges to ∞ and an1/
√

n1 → 0 as n1 → ∞.
Then, if supxi∈(Xi)0

‖xi‖ ∈ L4(Ω ,A ,P), ni/N → pi ∈ (0,1) as ni → ∞ and
the asymptotic procedure in Section 3 with significance level β is applied to
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the sequence of the corrected samples {X [ni]
i1 , . . . ,X

[ni]
ini

}ni for i ∈ {1, . . . ,k}, we
have that

lim
ni→∞

P(T ∗ > t(1−β )) = 1.

Proof. First of all, the denominator of T ∗ (denoted by D∗) satisfies that

D∗ =
(

1 +
an1√

n1

)
1
n1

n1

∑
j=1

[(
Dϕθ

(
X1 j,X1·

))2
− σ̂2

X
[n1]

1

]2

+
k

∑
i=2

1
ni

ni

∑
j=1

[(
Dϕθ

(
Xi j,Xi·

))2
− σ̂2

Xi

]2

.

In [9] it is shown that if supxi∈(Xi)0
‖xi‖ ∈ L4(Ω ,A ,P), then

1
ni

ni

∑
j=1

[(
Dϕθ

(
Xi j,Xi·

))2
− σ̂2

Xi

]2
a.s.−→ σ2

(Dϕθ (Xi,E(Xi)))2

for i ∈ {2, . . . ,k}. Moreover,
(

1 +
an1√

n1

)
n1→∞−→ 1. Therefore,

D∗ a.s.−→ D =
k

∑
i=1
σ2

(Dϕθ (Xi,E(Xi)))2 .

The numerator of T ∗ (denoted by M∗) can be decomposed as

M∗ = n1

[
σ̂2

X
[n1]

1

− 1
N

k

∑
i=1

niσ̂2

X
[ni]

i

]2

+
k

∑
i=2

ni

[
σ̂2

X
[ni]

i

− 1
N

k

∑
l=1

nlσ̂2

X
[nl ]

l

]2

.

We can expand the first term of M∗, M∗
1 , as follows:

M∗
1 =
[√

n1
(
σ̂2

X1
− 1

N

k

∑
i=1

niσ̂2
Xi

)]2

(4.2)

+
[

an1

(
σ̂2

X1
− n1

N
σ̂2

X1

)]2

(4.3)

+ 2n1

(
σ̂2

X1
− 1

N

k

∑
i=1

niσ̂2
Xi

)(
an1√

n1

(
σ̂2

X1
− n1

N
σ̂2

X1

))
(4.4)

The second term of M∗, M∗
2 , has the following decomposition:

M∗
2 =

k

∑
i=2

ni

[
σ̂2

Xi
− 1

N

k

∑
l=1

nlσ̂2
Xl

]2

(4.5)

+ (N−n1)
(

n1a2
n1

N2

)
σ̂4

X1
(4.6)

− 2
√

n1an1

N
σ̂2

X1

k

∑
i=2

ni

[
σ̂2

Xi
− 1

N

k

∑
l=1

nlσ̂2
Xl

]
(4.7)
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Firstly, (4.2) is a function of the variables {ξi}k
i=1 given by

fn(ξ1, . . . ,ξk) =
(
ξ1−

k

∑
i=1

√
n1

N

√
ni

N
ξl

)2

Taking into account that ni/N → pi ∈ (0,1) as ni → ∞ for all i ∈ {1, . . . ,k},
this function converges uniformly to the function defined as

f (y1, . . . ,yk) =
(

y1 −
k

∑
i=1

√
p1 piyi

)2
,

where the vector (y1, . . . ,yk)T is distributed as the one in Section 3. Analo-
gously, (4.5) converges uniformly to

f (y1, . . . ,yk) =
k

∑
i=2

(
yi−

k

∑
l=1

√
pi plyl

)2
.

Since an1 →∞ and
(
σ̂2

X1
− n1

N σ̂
2
X1

)2 a.s−→ (1− p1)2σ4
X1

, we conclude that the

term (4.3) divided by (D∗an1) converges to ∞ as ni/N
ni→∞−→ pi for i ∈ {1, . . . ,k}.

In addition, by taking into account the preceding arguments, it is satisfied
that (4.4) divided by (D∗an1) converges in law to

2(1− p1)σ2
X1

(y1−
k

∑
i=1

√
p1 piyi)2.

On the other hand, since
(

n1
N

)(
N−n1

N

)2
σ̂4

X1

a.s−→ p1σ4
X1
∑k

i=2 pi and the sequence

an1 →∞, then the term (4.6) divided by (D∗an1) converges to ∞ as ni/N
ni→∞−→ pi

for i ∈ {1, . . . ,k}. Moreover, from the former results it is easy to see that (4.7)
divided by (D∗an1) converges in law to

[
−2p1

k

∑
i=2

pi
(
yi −

k

∑
l=1

√
pi plyl

)]
.

Finally, from the preceding expressions, we have that

T ∗/an1

P−→ ∞

as ni/N
ni→∞−→ pi for i ∈ {1, . . . ,k} and, as a result,

lim
ni→∞

P(T ∗ > t(1−α)) = 1. ��

Remark 1. Theorem 1 indicates that for any sequence {an1} such that an1 ∈
(0,∞), an1 → ∞ and an1/

√
n1 → 0 as n1 → ∞, then σ2

X
[n1]

1

−→ σ2
X1

pointwise,

and the proposed asymptotic procedure rejects H0 with probability 1 in the
limit.
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5 Simulation Studies

To analyze the consistency of the Test (3.1) for RFS’s, some simulations of
the power function have been carried out by using local alternatives. Given
a ∈ (0,∞), 3 triangular RFS’s have been considered, namely,

• X a
1 ≡
√

a/6.44 ·T (l1,c1,r1) s.t. l1 ≡ χ2
3 , c1 ≡N (1,2) and r1 ≡ χ2

8 ,
• X2 ≡ T (l2,c2,r2) s.t. l2 ≡ χ2

8 , c2 ≡N (0,2) and r2 ≡ χ2
3 ,

• X3 ≡ T (l3,c3,r3) s.t. l3 ≡ χ2
5 , c3 ≡N (−1,2) and r3 ≡ χ2

6 ,

These random elements verify that

σ2
X a

1
= a for all a ∈ (0,∞) and σ2

X2
= σ2

X3
= 6.44.

It should be noted that when a = 6.44, then the null hypothesis H0 =
σ2

X a
1

= σ2
X2

= σ2
X3

is verified. The power function at the level α = .05 as a

function of a is shown in Figure 1. The involved metric Dϕθ was chosen so that
θ = 1/3 and ϕ=Lebesgue measure. Three simple random samples of size 100
from X a

1 , X2 and X3 respectively have been drawn for different values of a
ranging in (0,17], and 10,000 simulations of the asymptotic testing procedure
have been carried out. As a result, Figure 1 shows that the power is close to
1 as far as the alternative hypothesis is from the null one.

6 8 10 12 14 162 4
0

0.2

0.4

0.6

0.8

1

Fig. 1 Power of the test H0 : σ2
X1

= σ2
X2

= σ2
X3

6 Concluding Remarks

The power of the homoscedasticity test for k RFSŠs has been theoretically
and empirically analyzed by using local alternatives. The results show that
the asymptotic procedure is consistent.

One immediate problem to be discussed is that of analyzing the power
under local alternatives of the bootstrap testing procedure proposed in [10].
It would be also interesting to develop sensitivity analyses concerning the
influence of choice of the value θ and the measure ϕ .
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Periodic Generalized-Differentiable
Solutions to Fuzzy Differential Equations

Rosana Rodŕıguez-López

Abstract. We study the existence of solution to a class of periodic boundary
value problems for first-order fuzzy differential equations under generalized
differentiability.

We allow the coefficient of the linear equation to change its sign an ar-
bitrary number of times in the interval of interest, extending some previous
results.

Keywords: Fuzzy differential equations, Generalized-differentiability, Peri-
odic boundary value problems.

1 Introduction

The study of the existence of solution to fuzzy differential equations is based
on the establishment of the concept of differentiability of a fuzzy function. The
differentiability in the sense of Hukuhara [15] is one of the first approaches,
and it allows to study the existence and uniqueness of solution [6]. However,
one important drawback of this approach is the nondecreasing character of
the diameter of the level sets of the solutions, so that the introduction of
impulses [16] is a procedure to obtain periodic solutions to first-order fuzzy
differential equations under Hukuhara differentiability. In this reference, a
periodic boundary value problem related to an impulsive fuzzy differential
equation is considered, and the monotone iterative technique is used to ap-
proximate the extremal solutions in a fixed fuzzy functional interval. We also
cite references [4, 5, 6, 7, 9, 11, 12, 14] for the foundations of fuzzy sets,
fuzzy differential equations and fuzzy functional differential equations, other
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approaches in the analysis of uncertain systems, and some periodic bound-
ary value problems for second-order fuzzy differential equations. For strongly
generalized differentiability, we refer to [1] and [2, 3, 8, 13, 19].

In [19], the authors solve interval differential equations by proving a char-
acterization by ODEs and using a numerical procedure, which is applied to
some initial value problems for fuzzy linear differential equations whose solu-
tions are obtained by combination of two types of derivatives using a switch-
ing point. In [10], the authors use generalized differentiability and establish
sufficient conditions for the existence of solution to boundary value problems
for first-order differential equations of the type

{
y′(t) = a(t)y(t)+ b(t), t ∈ J,
y(0) = y(T ),

where J = [0,T ], and a : [0,T ] → R, b : [0,T ] → RF are continuous functions.
In the results provided, the sign of function a is allowed to change only once
in the interval J.

We study a more general problem, proving the existence of periodic so-
lutions for a class of fuzzy differential equations under strongly generalized
differentiability, providing weaker hypotheses for the coefficients of the equa-
tion. Under this approach, we illustrate the capability of fuzzy differential
equations to modeling periodic phenomena.

1.1 Preliminaries

We consider the space of fuzzy intervals RF as the class of elements u : R →
[0,1] such that

(i) u is normal, i.e., there exists s0 ∈ R such that u(s0) = 1,
(ii) u is fuzzy-convex, that is, u(ts + (1− t)r) ≥ min{u(s),u(r)}, ∀t ∈ [0,1],

and s,r ∈ R,
(iii) u is upper semicontinuous on R,
(iv) cl{s∈R | u(s) > 0} is compact, where cl denotes the closure of a subset.

For each 0 < α ≤ 1, we denote the level set [u]α = {s ∈ R | u(s) ≥ α} and
[u]0 = cl{s ∈ R | u(s) > 0}, which is a non-empty compact interval for all
0 ≤ α ≤ 1 and every u ∈ RF.

We also denote [u]α = [uα ,uα ] and diam[u]α = uα −uα . Functions u and u
are the lower and upper branches of u, respectively.

The addition and multiplication by an scalar in RF are defined levelsetwise
and the metric structure is given by the distance D : RF×RF → R+ ∪{0},
defined as

D(u,v) = sup
α∈[0,1]

max{|uα − vα |, |uα − vα |}, for u, v ∈RF. (1)
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With this metric, RF is a complete metric space. We also define the difference
of Hukuhara of fuzzy intervals.

Definition 1. Given x,y ∈ RF, if there exists z ∈ RF with x = y + z, we say
that z is the H-difference of x,y, denoted by x8 y.

For the differentiability of fuzzy-valued functions, we consider the concept of
generalized differentiability [1, 2].

2 Existence of Periodic Solutions

We consider the periodic boundary value problem
{

y′(t) = a(t)y(t)+ b(t), t ∈ J,
y(0) = y(T ), (2)

where J = [0,T ], and a : [0,T ] → R, b : [0,T ] → RF are continuous functions.
This problem is connected with problem (6) in [3] and the equation studied
in [10].

In the interval J = [0,T ], we consider a finite sequence of real numbers
δk ∈ (0,T ), k = 1,2, . . . ,m, in such a way that 0 = δ0 < δ1 < · · ·< δm < δm+1 = T .

We define the concept of solution to problem (2), by defining the space of
functions where the solutions lie, as follows.

Definition 2. Let J = [0,T ] be a real interval and consider the sequence of
real numbers δk ∈ (0,T ), k = 1,2, . . . ,m, satisfying that

0 = δ0 < δ1 < · · · < δm < δm+1 = T.

We define the space F{δk} = F{δ1,...,δm}, consisting on the functions u ∈
C(J,RF) which are differentiable in the sense of generalized differentiability
on J \ {δ1, . . . , δm} and such that there exist the one-sided limits u′(δ−k ) and
u′(δ+

k ) in the sense of generalized differentiability, for every k = 1,2, . . . ,m.

Definition 3. A solution of (2) is a function in the space F{δk} = F{δ1,...,δm}
satisfying the conditions in (2).

For an arbitrary number of terms of the sequence {δk}, we consider that the
continuous real function a : [0,T ] → R is such that

a > 0 on (δk,δk+1), for k an even number with k ≤ m,

and
a < 0 on (δk,δk+1), for k an odd number with k ≤ m.

It is obvious that a(δk) = 0, for every k = 1, . . . ,m.
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Theorem 1. Suppose that J = [0,T ], a : [0,T ] → R, b : [0,T ] → RF are con-
tinuous functions satisfying

a > 0 on (δk,δk+1), for k an even number with k ≤ m,

a < 0 on (δk,δk+1), for k an odd number with k ≤ m.

Suppose also that, for every α ∈ [0,1], and every odd number j with δ j < T
(1 ≤ j ≤ m), j

∑
l=0

(−1)l
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds ≥ 0, (3)

and ∫ T

0
a(u)du < 0. (4)

Then there exists a solution to problem (2) in the space F{δ1,...,δm}. Fur-
thermore, this solution u is (i)-differentiable on

⋃

k even
(δk,δk+1) and (ii)-

differentiable on
⋃

k odd
(δk,δk+1).

Proof. The proof is based on the definition of an operator which maps a cer-
tain initial condition y0 into a fuzzy number equal to the value at T of a
solution to the equation (in the sense of Definition 3) starting at y0 which is
obtained piecewise by using (i)-differentiable and (ii)-differentiable solutions
according to the sign of the coefficient a on each interval, where the expres-
sions of the solutions given in [3] play an important role. Indeed, for each
initial condition y0 ∈ RF, we consider the solution y ∈C(J,RF) to the linear
fuzzy differential equation y′(t) = a(t)y(t)+ b(t), t ∈ J, given recursively by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e
∫ t
δ j

a(r)dr
(

y(δ j)+
∫ t
δ j

b(s)e
−
∫ s
δ j

a(r)dr
ds

)
,

for t ∈ (δ j,δ j+1], and j even,

e
∫ t
δ j

a(r)dr
(

y(δ j)8
∫ t
δ j

(−b(s))e
−
∫ s
δ j

a(r)dr
ds

)
,

for t ∈ (δ j,δ j+1], and j odd,

where y(δ0) = y(0) = y0. Next, we define the operator

G : RF −→ RF,

given by G (y0) = y(T ), for y0 ∈ RF.
The integral condition (4) provides the contractive character of the oper-

ator G which has, in virtue of the contractive mapping theorem, a unique
fixed point, which is a periodic solution to the fuzzy differential equation.
The remaining conditions are imposed in order to define the operator prop-
erly, in what concerns the expression of the solution on the intervals of (ii)-
differentiability, that is, to prove the existence of the Hukuhara differences
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y(δ j)8
∫ t

δ j

(−b(s))e
−
∫ s
δ j

a(r)dr
ds,

for every t ∈ (δ j,δ j+1], where j is odd. In our procedure, it is also important
to control the value of the diameter of the level sets of the piecewise solution
at the conjunction points δ j. For the full details of the proof of this result,
we refer to [18]. ��

Corollary 1. In Theorem 1, taking m = 3, that is, 0 = δ0 < δ1 < δ2 < δ3 <
δ4 = T and a : [0,T ]→ R a continuous real function satisfying that

a > 0 on (0,δ1)∪ (δ2,δ3),

a < 0 on (δ1,δ2)∪ (δ3,T ).

we just have to check condition (3) for j = 1 and j = 3, that is, we derive
conditions

∫ δ2

δ1

diam[b(s)]α e−
∫ s

0 a(u)du ds ≤
∫ δ1

0
diam[b(s)]α e−

∫ s
0 a(u)du ds (5)

and

∑
j=1,3

∫ δ j+1

δ j

diam[b(s)]α e−
∫ s

0 a(u)du ds

≤ ∑
j=0,2

∫ δ j+1

δ j

diam[b(s)]α e−
∫ s

0 a(u)du ds, (6)

for every α ∈ [0,1]. These hypotheses, joint to condition (4) which provides
the contractive character of the operator, allow to affirm the existence of a
solution to problem (2) which is (i)-differentiable on (0,δ1)∪(δ2,δ3) and (ii)-
differentiable on (δ1,δ2)∪ (δ3,T ).

Corollary 2. For m = 2, 0 = δ0 < δ1 < δ2 < δ3 = T and a : [0,T ] → R a con-
tinuous real function satisfying that

a > 0 on (0,δ1)∪ (δ2,T ), a < 0 on (δ1,δ2),

conditions (4) and (5) provide the existence of a solution to problem (2) which
is (i)-differentiable on (0,δ1)∪ (δ2,T ) and (ii)-differentiable on (δ1,δ2).

Corollary 3. For the case m = 1, if a > 0 on (0,δ ), and a < 0 on (δ ,T ), then
Theorem 1 is reduced to the results in [10].

Next, we consider the case where the continuous function a : [0,T ]→R is such
that

a < 0 on (δk,δk+1), for k an even number with k ≤ m,

a > 0 on (δk,δk+1), for k an odd number with k ≤ m.

Again a(δk) = 0, for every k = 1, . . . ,m.
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Theorem 2. Suppose that J = [0,T ], and a : [0,T ] → R, b : [0,T ] → RF are
continuous functions satisfying

a < 0 on (δk,δk+1), for k an even number with k ≤ m,

a > 0 on (δk,δk+1), for k an odd number with k ≤ m.

Suppose also that, for every α ∈ [0,1], and every even number j satisfying
that j ∈ {0, . . . ,m}, the following inequality holds

e
∫ T

0 a(u)du
m

∑
l= j+1

(−1)l+1
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds

≥
j

∑
l=0

(−1)l
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds, (7)

and ∫ T

0
a(u)du < 0.

Then there exists a solution to problem (2) in the space F{δ1,...,δm}. Fur-
thermore, this solution u is (i)-differentiable on

⋃

k odd
(δk,δk+1) and (ii)-

differentiable on
⋃

k even
(δk,δk+1).

Proof. For the proof of this result, we consider, for a fixed initial condition
y0 ∈ RF, the solution y ∈ C(J,RF) to the linear fuzzy differential equation
y′(t) = a(t)y(t)+ b(t), t ∈ J, given recursively by

y(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e
∫ t
δ j

a(r)dr
(

y(δ j)8
∫ t
δ j

(−b(s))e
−
∫ s
δ j

a(r)dr
ds

)
,

for t ∈ (δ j,δ j+1], and j even,

e
∫ t
δ j

a(r)dr
(

y(δ j)+
∫ t
δ j

b(s)e
−
∫ s
δ j

a(r)dr
ds

)
,

for t ∈ (δ j,δ j+1], and j odd,

where y(δ0) = y(0) = y0. We define the operator

G̃ : C −→C,

given by G̃ (y0) = y(T ), for y0 ∈C, where

C =

{

y0 ∈ RF : diam[y0]α ≥
j

∑
l=0

(−1)l
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds,

for every α ∈ [0,1], and every even number j with 0 ≤ j ≤ m} .

The choice of C is made in order to ensure that the Hukuhara differences in
the expression of y exist. The hypothesis (4) can be used again to check the
contractive character of the operator G̃ so that there exists a unique fixed
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point of G̃ , which is a solution to problem (2). On the other hand, condition
(7) is important for a good definition of G̃ . For the complete proof of this
result, we refer again to [18]. ��
The previous result extends some results given in [10] for a < 0 on (0,δ ) and
a > 0 on (δ ,T ).

Remark 1. In [18], it is also proved that in the same context

a < 0 on (δk,δk+1), for k an even number with k ≤ m,

a > 0 on (δk,δk+1), for k an odd number with k ≤ m,

we can also deduce the existence of solution to the periodic boundary value
problem (2) in the set

Ĉ =
{

y0 ∈ RF : diam[y0]α ≥
∫ δ1

0
diam[b(s)]α e−

∫ s
0 a(u)du ds,∀α ∈ [0,1]

}
, (8)

just by assuming (4) and the corresponding sufficient conditions which are
established in order to guarantee that operator G̃ is well-defined and maps Ĉ
into itself. See [18] for details.

Finally, similarly to [10], it is possible to study conditions to guarantee that
solutions are crisp at the points where the type of differentibility changes from
an interval of (ii)-differentiability to another interval of (i)-differentiability,
that is:

• Points δ j where j is an even number with 2 ≤ j ≤ m, in the case

a > 0 on (δk,δk+1), for k an even number with k ≤ m,

a < 0 on (δk,δk+1), for k an odd number with k ≤ m.

• Points δ j where j is an odd number 1 ≤ j ≤ m, in the case

a < 0 on (δk,δk+1), for k an even number with k ≤ m,

a > 0 on (δk,δk+1), for k an odd number with k ≤ m.

In this last case, as established in [18], the condition to be imposed is

e
∫ T

0 a(u)du
m

∑
l= j+1

(−1)l+1
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds

=
j

∑
l=0

(−1)l
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds, ∀α ∈ [0,1], (9)

which has to be fulfilled for every even number j with 0≤ j < m. If m is an
even number, we also have to impose (see [18]) the additional hypothesis

m

∑
l=0

(−1)l
∫ δl+1

δl

diam[b(s)]α e−
∫ s

0 a(u)du ds ≤ 0. (10)
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16. Rodŕıguez-López, R.: Periodic boundary value problems for impulsive fuzzy
differential equations. Fuzzy Sets Syst. 159(11), 1384–1409 (2008)
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The Selection of the Shrinkage Region in
Small Area Estimation

Cristina Rueda and José A. Menéndez

Abstract. In this article we consider general mixed models to derive small
area estimators. The fixed part of the models links the area parameters to
the auxiliary variables using a shrinkage region. We show how the selection
of the shrinkage region depends on two main factors: the inter-area variation
and the correlation coefficient of the auxiliaries with the response.

Keywords: James-Stein estimator, Order restricted inference, Mixed mod-
els, Fay-Herriot model.

1 Introduction

Typically, a Fay-Herriot model assumes a D× p matrix (D being the number
of areas) of auxiliary variables x related to the D-dimensional parameter of
interest Y by a linear model Yd = x′dβ + ud, d = 1, ...,D. Moreover, it is also
assumed that the direct estimates verify yd = Yd + ed, where ed is the survey
error. An extreme case, when the auxiliary is constant, gives the James-Stein
estimator.

In this paper, we propose a general approach to small area estimation that
includes the James-Stein and Fay-Herriot methodologies as particular cases
and also other estimators obtained by relaxing the linearity assumption about
the relationship between the auxiliaries and the response.

To motivate the definition of the proposed models, we will first comment on
the role of auxiliary variables in the small area estimation problem. A general
assumption in this context is that some kind of shrinkage would provide more
precise estimators in the presence of high sample variability. The simplest
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way of achieving this shrinkage is by using the James-Stein estimator based
on shrinkage towards the mean, which therefore implies the use of the a
priori idea of equality among the areas. Mathematically, this means that
the shrinkage region is of dimension 1. In many applications, this seems to
be too strong an assumption and the availability of auxiliary information is
used to define other (higher dimensional) shrinkage regions. The Fay-Herriot
methodology uses p auxiliary variables to define linear shrinkage subspaces
of dimension p. Using only the knowledge of the monotonicity, the shrinkage
regions can be defined in several ways, mathematically represented by convex
cones in ℜD, with dimensions going from 2 to D. In a similar way, other
shrinkage regions arise if a more complex shape relationship, such as a convex
relation, is assumed.

We will show that the mathematical formulation is the same for the differ-
ent alternatives. Estimators for area means prediction are derived by combin-
ing Order Restricted Inference (ORI) and mixed models standard approaches.
We analyze, using simulated experiments, two important factors determin-
ing the selection of the shrinkage region: the small-area variation and the
correlation coefficient. A bootstrap approach is proposed to select the best
alternative and to provide estimators of the mean square prediction error and
confidence intervals for the means.

First, we introduce the general model and the estimators for the small
areas and for the variance of the random effect in Section 2. The bootstrap
approach is also introduced in this section. In Section 3, several simulation
results are presented and conclusions about the selection of the shrinkage
region are derived. Finally, in Section 4, the baseball data set is revisited and
it is used to illustrate the questions introduced in the paper.

2 Isotonic Area-Level Models

Let Y d = μd , d = 1, ...D, be the parameters of interest that we will assume,
for simplicity, are the area means. For each area, we have a direct estimator
yd and the information on p auxiliary variables xd . Consider the general
restricted mixed model that is given by the two-level model:

Level 1: Sampling model yd/μd � N(μd ,σ2
d ), d = 1, ...,D.

Level 2: Linking model μd�N
(
θd ,σ2

u

)
, d = 1, ...,D. θ = (θ1, ... θd)∈C(x).

Level 2 links the true small area means μd to the auxiliary variable by
using C(x), a region in ℜD that defines the relationship between x and Y. As
usual in this framework, we assume σ2

d is known.
An important particular case is the Fay-Herriot model where C(x)=L(x)={
θ ∈ℜD/θ = α+β ′x

}
, is the linear subspace that generates x. Besides, when

C(x) =
{
θ ∈ℜD/θi = θi+1

}
the James-Stein estimator arises (Rao [7]).

In this paper we consider the following isotonic models:
The C−SimpleOrder model: define, from the auxiliary information, a new

variable z = g(x) and assume that the responses are ordered according to
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z (zi = z(i)). Now, let C(x) = C0(z) be the cone that defines the order in-
duced by z. As the areas are ordered according to z we have that: C0(z)
=
{
θ ∈ℜD/θi ≤ θi+1

}
, which is usually known as the simple order cone. This

latter cone represents the a priori idea that Y increases with z, and then
that the auxiliary information is used to derive an order between the area
parameters: θ1 ≤ ...≤ θD.

The C−Additive model: define C(x) = CA(x) = C0(x1)+...+ C0(xp) where
C0(xi) is the simple order cone that generates the auxiliary xi. In this case
the shrinkage region increases with respect to that defined by C0(z).

The C− Intersection model: consider the intersection cone C(x) = CI(x) =
C0(x1)∩...∩C0(xp), which causes a reduction of dimensionality of the shrink-
age region compared with the other alternatives.

Although we will only consider the models with shrinkage regions deter-
mine by the cones defined above in this paper, alternative models with more
complex shrinkage regions could be defined, depending on the application
at hand. For instance, a model with a linear component plus an isotonic
component, a model with isotonic components defined by the levels of a cat-
egorical predictor, or models with shrinkage regions that define other shape
restrictions different from the monotone one, etc...

2.1 The ORI Estimators

Some mathematics (see [9]) give, for the isotonic models defined above, the
empirical maximum likelihood predictor for the area means (ORI predictors).
The ORI predictors have a similar expression to the Fay-Herriot predictors
as follows,

μ̂d
C =

(

1− σ̃u
2,C

σ2
d + σ̃u

2,C

)

θ̂d
C

+
σ̃u

2,C

σ2
d + σ̃u

2,C yd , d = 1,2, ....,D (1)

where θ̂C = arg min
θ∈C(x)

D
∑

d=1

(yd−θd)2

σ2
d +σ2

u
is the projection of y onto C(x) (see [8]), and

σ̃u
2,C is an estimator of the random effect variance σ2

u that depends on θ̂C and
is obtained using an iterative algorithm ([9]). In the simple case of σd = σ ,
d = 1, ...,D, the estimator is given by: σ̃u

2,C = max(0, σ̂u
2,C) where,

σ̂2
u

C
=

D
∑

d=1

(
yd − θ̂C

d

)2

D− l
−σ2

where l = dim(L),L the linear subspace such as P(y|L)= P(y|C). In particular,
for the isotonic models defined above:
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C−SimpleOrder : θ̂C = P(y|C0(z)), l = dimL.
C−Additive : θ̂C is the additive regression: θ̂C = θ̂1 + ...+ θ̂p, θ̂i ∈ Li, l =

dim(L1 + ...+ Lp). ([6]).
C− Intersection : θ̂C = P(y|CI(x)), l = dimL.

To compare the performance of the estimators we use the mean squared
prediction error (MSPE) : E(μ̂− μ)2.

2.2 The Bootstrap Approach

We follow a similar parametric bootstrap approach as the one in Chatterjee
et al. ([2]) and Hall and Maiti ([5]).

Consider θ̂C = P(y/C(x)) and calculate σ̃2,C
u using the definitions above,

with σ2 known. A bootstrap sample is given by y∗d = θ̂C
d + u∗d + e∗d , where

u∗d and e∗d are values generated from independent N(0, σ̃2,C
u ) and N(0,σ2

d ),
respectively. Now, obtaining θ̂C∗ and σ̃2,C∗

u as before, but applied to y∗, we
get the bootstrap empirical predictor μ̂C∗ using Eq 1. By selecting B bootstrap
samples, the bootstrap estimator for the MSPE in the area d is defined by

M̂SPE
C
d,B = 1

B

B
∑

b=1
(μ̂C∗

d,b− θ̂C
d −u∗d). Also, we define M̂SPE

C
B =

18
∑

d=1
M̂SPE

C
d,B.

3 Analyzing Simulated Data

To evaluate the behavior of the ORI estimators defined in Section 2 we have
conducted two simulation experiments. In the first one, we generate an arti-
ficial auxiliary variable. For the second one, we have selected two auxiliaries
from the Australian farm data ([1]) to generate the data. In all the scenarios,
for simplicity we consider the equal variance cases, σ2

d = σ2 = 1, and σ2
u = 1,

and we simulate three different models for standardized θ and three different
values of ‖θ‖. Scenarios with high values of ‖θ‖ correspond to high inter-area
variation and represent situations where the area means are far from the total
mean. In these cases, the synthetic estimator, the sample mean, is expected
to perform badly as an estimator for the individual areas, it is also expected
that the James-Stein approach will not be a good choice. These scenarios
represent the situations where more sophisticated estimation methods, which
use auxiliary information, should be used because they serve a purpose.

Besides the James-Stein, μ̂JS, and the Fay-Herriot estimator, μ̂FH , we have
also calculated two ORI estimators, the estimator that uses the additive cone,
μ̂CA , and the estimator that uses the intersection cone, μ̂CI . For the first
experiment, with only one auxiliary, these latter two cones are equal and we
refer to it as C.
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3.1 One Auxiliary

In order to simplify the experiment, we get (x1, ...,x30) = (1, ...,30), for which:
C =
{
θ ∈ℜ30/θ1 ≤ ...≤ θ30

}
and L(x) = {θ∈ℜ30/θd −θd−1 = θd+1−θd}. We

also select different standardized θ values verifying: θ = θ 0 ∈ L(x) (the Fay-
Herriot model is true), θ = θ c1,θ = θ c2 ∈ C− L(x) (the isotonic model is
true but the Fay-Herriot model is not true) and θ = θ x /∈C (neither the Fay-
Herriot nor the isotonic model are true). We compare, in Table 1, the MSE of
σ̃u

2,C and σ̃u
2,FH , and the MSPE of μ̂C with μ̂FH and μ̂JS. For each scenario,

Table 1 also gives the correlation, ρ(θ ,x).

Table 1 MSE for σ̃u
2,C and σ̃u

2,FH and MSPE for μ̂C , μ̂FH and μ̂JS

MSE MSPE
θ ‖θ‖ ρ(θ ,x) σ̃u

2,C σ̃u
2,FH μ̂C μ̂FH μ̂JS

θ 0 low 1.00 0.299 0.278 0.611 0.574 0.566

θ 0 moderate 1.00 0.412 0.278 0.664 0.574 0.916
θ 0 high 1.00 0.493 0.278 0.693 0.574 0.967
θ c1 low 0.95 0.300 0.278 0.611 0.574 0.566

θ c1 moderate 0.95 0.369 0.963 0.662 0.694 0.917
θ c1 high 0.95 0.404 4.862 0.684 0.800 0.968
θ c2 low 0.77 0.297 0.278 0.611 0.576 0.565

θ c2 moderate 0.77 0.347 12.372 0.679 0.842 0.913
θ c2 high 0.77 0.399 89.006 0.721 0.926 0.965
θ x low 0.61 0.298 0.279 0.612 0.577 0.564

θ x moderate 0.61 2.1350 26.732 0.799 0.881 0.912
θ x high 0.61 16.088 231.205 0.902 0.949 0.965

3.2 Two Auxiliaries

In this experiment we simulate the model: yd = θd + ud + ed , d = 1,2, . . . ,29,
θd = f1(xd)+ f2(xd).

We define three scenarios from different functions f1 and f2. S1 : f1(x) =
log(x1), f2(x) = log(x2); S2 : f1(x) = x1/2

1 , f2(x) = x5
2; S3 : f1(x) = −sin(x1/3),

f2(x) = sin(x1/4 + x2/4).
We include, in Table 2, the MSPE of μ̂M, M = CA,CI ,FH,JS. For each

scenario, Table 2 also gives the correlations ρ(θ ,x).

3.3 Conclusions

Table 1 shows that the MSE is clearly smaller for σ̃u
2,FH than for σ̃u

2,C, only
for θ 0. Also, from the figures in Tables 1 and 2, it is clear that, in most cases,
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Table 2 MSPE for μ̂M ,M = CA,CI ,FH,JS

Scenario ‖θ‖ ρ(θ ,x) μ̂CA μ̂CI μ̂FH μ̂JS

S1 low 0.93 0.684 0.724 0.651 0.709
S1 moderate 0.93 0.743 0.921 0.839 0.924
S1 high 0.93 0.780 0.970 0.927 0.931
S2 low 0.74 0.690 0.654 0.708 0.707
S2 moderate 0.74 0.737 0.835 0.917 0.926
S2 high 0.74 0.761 0.924 0.970 0.973
S3 low 0.43 0.739 0.677 0.734 0.711
S3 moderate 0.43 0.914 0.877 0.937 0.931
S3 high 0.43 0.972 0.953 0.980 0.977

the ORI estimators for the area means have smaller MSPE than the FH or
the JS estimators.

Specifically, for scenarios where the inter-area variability is low, the best
estimators are those associated with the more restrictive shrinkage regions:
μ̂JS and μ̂CI . For scenarios with moderate or high inter-area variability, Fay-
Herriot is clearly better only when ρ(θ ,x) = 1. However, in scenarios corre-
sponding to ρ(θ ,x) < 1, the ORI estimators are better; μ̂CI being the best
choice when ρ(θ ,x) < 0.5, and μ̂CA the one with the smallest MSPE values,
when 0.5 < ρ(θ ,x) < 1.

4 The Baseball Data Set Revisited

We now revisit the baseball data example given in Efron and Morris ([3]) and
used by many other authors.

For the player d (d = 1, ...,18), let pd and πd be the batting average for the
first 45 ’at-bat’ and the true season batting average of the 1970 season re-
spectively. Consider, also used by other authors, the arc-sine transformation:
yd =

√
narcsin(2pd − 1), μd =

√
narcsin(2πd − 1). We use as an auxiliary in-

formation, x, the previous ’at-bat’, and consider the players ordered using x.
Assume the following model: yd ∼ N(μd ,1), μd ∼ N

(
θd ,σ2

u

)
, θd = f (x).

In order to find a plausible θd , we fit a polynomial regression of μ against x.
σ2

u = 0.5 is also obtained from this fitted model.
We have simulated the above model (100 iterations). The results of the

MSPE for the different estimators of μ appear in Table 3. Figures in the first
column show that the James-Stein estimator, μ̂JS, is the best and also that
the auxiliary information based estimators, μ̂C and μ̂FH , perform very well,
comparing the MSPE values with those of the direct estimator. This is due to
the relatively low inter-area variance. The second column of Table 3 compares
the estimators using only the observed y, instead of several repetitions of the
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Table 3 Baseball example: MSE for estimators with different methods

Method model MSE Observed data MSE
ORI 9.60 5.81
Fay−Herriot 8.64 5.44
James−Stein 8.53 4.45
Direct 17.91 13.71
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Fig. 1 Baseball example: MSPE of the predictors μ̂FH , μ̂JS, μ̂C and y.

model; the conclusions are similar to those in column 1. The good behavior
of the James-Stein estimator shown in Table 3 implies that the auxiliary
information is not useful in this particular case.

Figure 1 displays the MSPE of the new estimator μ̂C along with that of
μ̂FH , μ̂JS and the direct estimator y for different scenarios, using the model
above for different values of θ = λθ 0, log(λ ) ranging from −1 to 4. From
Fig. 1, we conclude that when the inter-area variance increases, μ̂JS is no
longer the best estimator and that in these cases, the new estimator, μ̂C,
is the one with the best behavior and the estimator that uses the auxiliary
information more efficiently.

The bootstrap approach introduced in Section 2.2 was used with this data.
In order to validate the bootstrap estimation, we have included a summary,
in Table 4, of the results from 100 simulated samples, B = 1000, and different
values of ‖θ‖. The mean values of M̂SPEB for the three estimators repli-
cate the values in Fig. 1, demonstrating the good performance of the proposed



560 C. Rueda and J.A. Menéndez

Table 4 Baseball example: Mean values of bootstrap estimates, M̂SPEB, from 100
simulated samples under different values of ‖θ‖.

log(‖θ‖)

Method 2 3 4 5 6

ORI 8.47 8.66 9.74 10.20 11.87

Fay−Herriot 7.06 7.50 10.88 16.05 17.65

James−Stein 7.10 8.56 13.71 17.14 17.84

Direct 17.99 18.00 17.99 18.00 17.97

bootstrap approach, which could be adopted to select the best estimator in
a given scenario and to estimate the MSPEs.
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Set-Valued Stochastic Processes and Sets
of Probability Measures Induced by
Stochastic Differential Equations with
Random Set Parameters

Bernhard Schmelzer

Abstract. We consider stochastic differential equations depending on pa-
rameters whose uncertainty is modeled by random compact sets. Several
approaches are discussed how to construct set-valued processes from the so-
lutions. The induced lower and upper probabilities are compared to a set of
probability measures constructed from the distributions of the solutions and
the selections of the random set.

Keywords: Stochastic differential equation, Random set, Parameter uncer-
tainty, Set-valued stochastic process, Parameterized probability measures.

1 Introduction

We consider stochastic differential equations (SDEs) whose initial value and
coefficients depend on random set parameters. More precisely, we study so-
lutions of SDEs of the integral form

xt,a = xt0,a +
∫ t

t0
f (s,a,xs,a)ds+

∫ t

t0
G(s,a,xs,a)dbs (1)

where time t ranges within some finite interval [t0,t], the (deterministic) pa-
rameter a takes values in some set A ⊆ R

p and b denotes an m-dimensional
Brownian motion (Wiener process) on a probability space (Ωb,Σb,Pb). The
initial value xt0 and the coefficients f and G are maps of the form

xt0 : A×Ωb → R
d , (a,ωb) 4→ xt0,a(ωb),

f : [t0,t]×A×R
d → R

d , (t,a,x) 4→ f (t,a,x),
G : [t0,t]×A×R

d → R
d×m, (t,a,x) 4→ G(t,a,x).
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If for each a the conditions for the existence and uniqueness of a solution (see
[9, Th. 1, 3]) are fulfilled this leads to a family of stochastic processes which
can be summarized by the following map

x : [t0,t]×A×Ωb → R
d ,(t,a,ωb) 4→ xt,a(ωb). (2)

In [18, Prop. 2, 3] conditions have been given under which the map x is a
continuous and thus measurable stochastic process, that is, for each ωb ∈Ωb

the sample path x(ωb) is continuous on [t0,t]×A and x is measurable with
respect to the product σ -algebra B([t0,t])⊗B(A)⊗Σb. (Note that B(A) =
B(Rp)|A.) Throughout the paper we will assume that x is continuous and
measurable. As a model for the parameter uncertainty of a we use a random
compact set

A :ΩA → K ′(A),ωA 4→ A(ωA)

on the probability space (ΩA,ΣA,PA) where K ′(A) denotes the set of non-
empty compact subsets of A. Since K ′(A)⊆K ′(Rp) (i.e. A is also a random
compact set in R

p) this means that for each Borel set B ∈ B(Rp) its upper
inverse defined by A−(B) = {ωA : A(ωA)∩ B �= /0} lies in ΣA ([17]). It is a
well-known fact ([2, 11, 17, 16]) that A has measurable selections, that is,
there exist measurable functions α :ΩA →A such that α(ωA) ∈ A(ωA) for all
ωA ∈ΩA. Denoting by S (A) the set of all measurable selections of A one can
even find a Castaing representation of A, that is, a sequence {αn}n∈N ⊆S (A)
such that cl({αn(ωA)}n∈N) = A(ωA) for all ωA ∈ΩA.

Let (Ω ,Σ ,P) denote the product space (ΩA ×Ωb,ΣA ⊗ Σb,PA ⊗Pb). The
basic idea in [18] was to define a set-valued map

X : (t,ω) 4→ Xt(ω) = {xt,a(ωb) : a ∈ A(ωA)} (3)

by merging at each time and for each sample path of the Brownian motion
all values of the solutions. Furthermore, for α ∈S (A) one can consider

ξα : [t0,t]×Ω → R
d ,(t,ω) 4→ xt,α(ωA)(ωb) (4)

which is a measurable and continuous stochastic process. We cite [18, Prop.
4] which is proved by using the selections ξα .

Proposition 1. The map X is a continuous and measurable set-valued stochas-
tic process whose values are non-empty compact subsets of R

d. More precisely,
X−(G) ∈ Σ for each open set G ⊆ R

d and X−(B) ∈ Σ0 for each Borel set B ∈
B(Rd) where Σ0 denotes the completion of Σ with respect to P. For each ω ∈Ω
the sample function X(ω) is continuous with respect to the Hausdorff-metric
on K ′(Rd). Furthermore, for a Castaing representation {αn}n∈N of A the pro-
cesses {ξαn}n∈N form a Castaing representation of X and for each t ∈ [t0,t] the
family {ξαn

t }n∈N forms a Castaing representation of Xt = Xt(·).
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As an example let us consider the trivial SDE

dxt,a = adbt, x0 = 0 (5)

whose solution is clearly xt,a = abt . Let A = [1,2] and A = A be deterministic
(ΩA exists of only one element). Then Equation (3) (ΩA can be omitted)
implies

X : (t,ωb) 4→ {xt,a(ωb) : a ∈ A} =

⎧
⎪⎨

⎪⎩

[bt(ωb),2bt(ωb)] if bt(ωb) > 0,

{0} if bt(ωb) = 0,

[2bt(ωb),bt(ωb)] if bt(ωb) < 0.

(6)

−2 0 2 4 6 8 10
−1

0

1

2

3

4

5

b
t 2b

t

B
1

X
t

b t

Fig. 1 Bounds of the focal sets Xt (thin solid lines), together with a special focal
set (thick solid line) and the interval B1 (dotted bounds).

From Figure 1 one can see that the lower and upper probability ([5]) of B1 =
(2,4), i.e. the probabilities of {ωb : Xt(ωb)⊆ B1} and X−

t (B1), are computed as:

P(B1) = Pb({ωb : Xt(ωb) ⊆ B1}) = Pb({ωb : 2 < bt(ωb) < 2}),
P(B1) = Pb({ωb : Xt(ωb)∩B1 �= /0}) = Pb({ωb : 1 < bt(ωb) < 4}).

Note that bt is normally distributed with mean zero and variance t which
leads to the values P(B1) = 0 and P(B1) = 0.286 at time t = 4. Since in this
simple example the distributions of the random variables xt,a are known one
might think of computing for each a the probability of xt,a lying in B1 and
taking the smallest and the greatest values instead of P and P. If we do so
we obtain as extreme values 0.136 and 0.161 which are much tighter bounds
than P(B1) and P(B1).
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The purpose of this paper is to find out the reason for these quite different
results. In Section 2 alternative definitions of set-valued processes induced
by (1) are proposed and compared to (3). In Section 3, an approach is pre-
sented how to use the distributions of the solution processes to compute
probability bounds for certain events. Furthermore, the discrepancy between
the two approaches is clarified theoretically and illustrated by continuing the
above example.

2 Alternative Definitions of Set-Valued Processes

From Equation (4) one can see that for each α ∈S (A) the process ξα consists
of sample functions that are sample paths of solutions of the parameterized
SDE (1) although the corresponding value of the parameter varies with ω .
But note that the set-valued process X encloses as selections many other
stochastic processes that are not directly related to solutions or their sample
paths. Instead of x it is thus reasonable to consider the map

x̃ : A×Ωb → C ([t0,t]),(a,ωb) 4→ x·,a(ωb) (7)

where C ([t0,t]) together with ‖·‖∞ (defined by ‖ f‖∞= supt∈[t0,t] ‖ f (t)‖) denotes
the separable Banach space of continuous functions from [t0,t] to R

d . Hence,
the map x̃ assigns to each parameter value a and each ωb the whole solution
path. We assume that x̃ consists of continuous sample functions and is thus
B(A)⊗Σb-measurable (which is a consequence of the continuity of x assumed
in the introduction). We can now proceed as in the foregoing section which
means that we define a set-valued map by

X̃ : ω 4→ {x·,a(ωb) : a ∈ A(ωA)} (8)

and that for α ∈S (A) we consider the C ([t0,t])-valued random variable

ξ̃ α :Ω → C ([t0,t]),ω 4→ x·,α(ωA)(ωb).

We can state the following proposition which is proved in a similar manner
as Proposition 1.

Proposition 2. The map X̃ is a random set on the completed probability
space (Ω ,Σ0,P0) whose values are non-empty compact subsets of C ([t0,t]).
More precisely, X̃−(G) ∈ Σ for each open set G ⊆ C ([t0,t]) and X̃−(B) ∈ Σ0

for each Borel set B∈B(C ([t0,t])). For a Castaing representation {αn}n∈N of
A the processes {ξ̃ αn}n∈N form a Castaing representation of X̃.

Note that every selection of X̃ consists of sample functions of solutions of
the SDE (1), indeed let ξ̃ ∈ S (X̃) which means that for all ω ∈ Ω we have
ξ̃ (ω) ∈ X̃(ω) = {x·,a(ωb) : a ∈ A(ωA)}. Hence, for each ω ∈ Ω there exists an
a ∈ A(ωA) such that ξ̃ (ω) = x·,a(ωb). Thus, X̃ seems to be conceptually more
appropriate then X .
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To establish the relation between X̃ and X we consider the evaluation map
πt : C ([t0,t])→ R

d , f 4→ f (t) that assigns for fixed t ∈ [t0,t] to each continuous
function its value at time t. Obviously, πt is continuous. Applying πt to the
random set X̃ leads to the random set Xt which means that in view of the
example given in the introduction X̃ leads to the same results as X :

πt(X̃(ω)) = {πt(x·,a(ωb)) : a ∈ A(ωA)} = {xt,a(ωb) : a ∈ A(ωA)} = Xt(ω)

We will now present a third possibility for defining a set-valued process
which has also been used in [12, 13, 14] and is based on the following theorem
([10, Theorem 3.1]).

Theorem 1. Let (M,M ,μ) be a complete σ -finite measure space, let E be a
separable Banach space and let S be a non-empty closed subset of Lp(M;E) =
{ f : M → E :

∫
M
‖ f‖pdμ < ∞}, 1 ≤ p < ∞. Then there is a random closed

set Y on M such that S equals the set S p(Y ) of p-integrable selections of Y
if and only if S is decomposable which means that for each finite partition
{C1, . . . ,Cn} ⊆M of M and { f1, . . . , fn} ⊆ S it holds that ∑n

i=1 fi�Ci ∈ S.

In [18, Prop. 6] it has been proved that under certain conditions ξα ∈S 2(X)
for any bounded α ∈S (A). (These conditions are also assumed in [18, Prop.
2] implying the continuity of x.) We assume that these conditions are fulfilled
and consider S0 = {ξα : α ∈S (A) bounded} ⊆S 2(X). By decl(S0) we denote
the smallest closed and decomposable subset of L2([t0,t]×Ω ;Rd) containing
S0 (see [12, 13, 14]). One can infer that there exists a random closed set X̂
on the completion of the product space ([t0,t]×Ω ,B([t0,t])⊗Σ0,λ ⊗P0) such
that decl(S0) = S 2(X̂) (λ denotes the Lebesgue measure on B([t0,t])). The
next proposition shows that X has almost surely the same values as X̂ which
can be interpreted as the smallest set-valued process such that S0 is a set of
square-integrable selections.

Proposition 3. For almost all (t,ω) ∈ [t0,t]×Ω it holds that Xt(ω) = X̂t(ω).

Proof. As argued above it holds that S0 ⊆ S 2(X) and consequently (by the
above theorem) S 2(X̂) = decl(S0) ⊆ S 2(X) which implies that X̂t(ω) ⊆ Xt(ω)
for almost all (t,ω) because of [10, Lemma 1.1]. From the same lemma we follow
that there is aCastaing representation{αn}n∈N consisting of bounded selections
of A. Since ξαn ∈ S0 ⊆ decl(S0) = S 2(X̂) one can conclude that by [10, Lemma
1.1] ξαn

t (ω) ∈ X̂t(ω) almost surely. Since Xt(ω) = cl({ξαn
t (ω)}n∈N) by Proposi-

tion 1 and X̂t(ω) is closed one obtains Xt(ω)⊆ X̂t(ω) for almost all (t,ω). ��

3 Measures Induced by Parameterized Stochastic
Processes

In this section we will mainly consider the map x̃ defined by Equation (7) and
the corresponding distributions on B(C ([t0,t])), more precisely, for a ∈A we
define
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pa : B(C ([t0,t])) → [0,1],B 4→ Pb ◦ x̃−1
a (B) = Pb({ωb : x·,a(ωb) ∈ B}).

Again, we use the random compact set A to model the parameter uncer-
tainty of a which induces different sets of probability measures on B(A) (see
[7, 16, 15, 3]), for example the set S(A) = {PA ◦α−1 : α ∈ S (A)} of distribu-
tions of measurable selections of A. Following [7, 8] we consider

P =
{∫

A

pa dν(a) : ν ∈S(A)
}

(9)

which consists of probability measures on B(C ([t0,t])) under the assumption
that the map a 4→ pa(B) is measurable for any B ∈ B(C ([t0,t])). In view of
[9, Th. I.7.3] and [1, Th. 2.1] it turns out that this measurability holds under
weaker conditions than those ([18, Prop. 2]) implying the continuity of x
or x̃.

From [16, Th. 8, 14] or [3, Th. 1, Prop. 3] one can deduce the following
proposition concerning the set P(B) of values of P for B ∈ B(C ([t0,t])).

Proposition 4. Let B∈B(C ([t0,t])) such that a 4→ pa(B) is measurable. Then
the following two equalities hold

∫

A

pa(B)dPA(a) = infP(B),
∫

A

pa(B)dPA(a) = supP(B)

where the left-hand integrals are the Choquet-integrals ([4, 6]) with respect to
the lower and upper probability induced by the random set A. If the probability
space (ΩA,ΣA,PA) is non-atomic then the set P(B) is convex.

We will now show that the values of P are bounded by the lower and the
upper probability induced by the random compact set X̃ .

Proposition 5. Let B ∈ B(C ([t0,t])) such that a 4→ pa(B) is measurable and
assume that x̃(ωb) continuously depends on a for each ωb ∈Ωb. Then

P(B)≤ infP(B)≤ supP(B)≤ P(B)

where P and P are the lower and upper probabilities induced by X̃ .

Proof. From Prop. 2 we can infer that for an open set B ⊆ C ([t0,t]) it holds
that X̃−(B) ∈ Σ = ΣA ⊗Σb. Hence, for any ν = PA ◦α−1 ∈ S(A) (α ∈ S (A))
∫

A

pa(B)dν(a) =
∫

ΩA

Pb({ωb : ξ̃ α(ωA,ωb) ∈ B})dPA(ωA) ≤

≤
∫

ΩA

Pb({ωb : X̃(ωA,ωb)∩B �= /0})dPA(ωA) = PA⊗Pb(X̃−(B)) = P(B)

since x̃α(ωA)(ωb) = ξ̃ α(ω) ∈ X̃(ω) for all ω ∈ Ω . By using [3, Prop. 2] this
inequality can be extended to B(C ([t0,t])). The inequality for P follows from
the duality of P and P. ��
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Assume that one can find an α ∈ S (A) such that Pb({ωb : ξ̃ α(ωA,ωb) ∈
B}) = Pb({ωb : X̃(ωA,ωb)∩B �= /0}) for all ωA. Then the above proof shows
that the equality supP(B) = P(B) holds.

Let us now return to the example given in the introduction. Note that
S (A) = A and S(A) = {δa : a ∈ A} is a set of point measures. As argued in
Section 2 the set-valued process (6) is equivalent to the K ′(C ([t0,t]))-valued
random set

X̃ : ωb →{ab(ωb) : a ∈ A}

defined by Equation (8). Let us consider the event B2 = (2,∞) which corre-
sponds to B̃2 = π−1

4 (B2)∈B(C ([t0,t])). Then X̃−(B̃2) is completely determined
by the selection process ξ̃ α = 2b (α = a = 2) representing the upper interval
bound of X̃ . Furthermore, {X̃ ⊆ B̃2} is completely determined by the selection
process ξ̃ α = b (α = a = 1) representing the lower interval bound. Hence, we
obtain P(B̃2) = supP(B̃2) = 0.31 and P(B̃2) = infP(B̃2) = 0.16. The reason for
the different results in the case of B1 is that the events X−

4 (B1) and {X4 ⊆ B1}
can only be expressed by using both the lower and the upper boundary
process.

4 Summary and Conclusions

The aim of this work is to consider solution processes of stochastic differ-
ential equations depending on parameters whose uncertainty is modeled by
random compact sets. Two different approaches have been presented how to
estimate the probability of the solution taking values in a certain set. The
first approach uses set-valued processes obtained from the parameterized so-
lutions. After reviewing a pointwise construction two alternative definitions
have been proposed. Although the latter might be conceptually more appro-
priate, it has turned out that the three constructions lead to the same random
sets at any fixed time. In the second approach a set of probability measures
has been constructed from the distributions of the solution processes and the
selections of the parameter random set. It has been shown that probability
bounds are not wider than in the first approach. A very simple example has
demonstrated that both approaches can lead to quite different results.

There seem to be many applications, for example in earthquake engineer-
ing where stochastic processes (related to white noise) can be used to model
ground accelerations. Random sets can serve as a robust model for the un-
certainty of structural parameters. The reader is referred to [19] for an appli-
cation of set-valued processes to a problem in earthquake engineering.
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Coupled Brownian Motion

Carlo Sempi

Abstract. We present a way of considering a stochastic process {Bt : t ≥ 0}
with values in R

2 such that each component is a Brownian motion. The dis-
tribution function of Bt , for each t, is obtained as the copula of the distribu-
tion functions of the components. In this way a “coupled Brownian motion”
is obtained. The (one–dimensional) Brownian motion is the example of a
stochastic process that (a) is a Markov process, (b) is a martingale in con-
tinuous time, and (c) is a Gaussian process. It will be seen that while the
coupled Brownian motion is still a Markov process and a martingale, it is not
in general a Gaussian process.

Keywords: Copulas, Brownian motion, Markov processes, Martingales,
Gaussian processes.

1 Introduction and Definitions

In a probability space (Ω ,F ,P) let {B(1)
t : t ≥ 0} and {B(2)

t : t ≥ 0} be two
Brownian motions (=BM’s) and consider, for every t ≥ 0, the random vector

Bt :=
(

B(1)
t ,B(2)

t

)
. (1)

Then {Bt : t ≥ 0} defines a stochastic process with values in R
2. The literature

deals mainly with the independent case, viz. B(1)
t and B(2)

t are independent for
every t ≥ 0; this is usually called the two–dimensional BM (see, for instance,
[3, 5]). However, we think it useful, both for its own sake and in view of
potential applications, to introduce a more general multidimensional BM.
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For every t ≥ 0, let F (1)
t and F (2)

t be the (right–continuous) distribution
functions (=d.f.’s) of B(1)

t and B(2)
t , respectively; thus, for every x ∈ R,

F ( j)
t (x) = P

(
B( j)

t ≤ x
)

( j = 1,2).

Actually, For every t ≥ 0, F (1)
t (x) = F (2)

t (x) = Φ(x), where Φ is the d.f. of the
standard normal distribution N(0,1).

In order to describe the bivariate d.f. of Bt , the concept of copula will
be needed. There is now an extensive literature on copulas; we shall quote
here only the original papers ([7, 8]), and books that deal with this topic
([1, 2, 4, 6]).

A bivariate copula C is the restriction to the unit square I
2 (I = [0,1]) of

a two–dimensional d.f. that concentrates all the probability mass on I
2 and

which has uniform marginals on I. Equivalently a bivariate copula C is a
function C : I

2 → I such that

(a) satisfies the boundary conditions

∀ t ∈ I C(t,0) = C(0, t) = 0, C(t,1) = C(1, t) = t; (2)

(b) is 2–increasing, namely, for all u, u′, v and v′ in I, with u ≤ u′ and v ≤ v′,

C(u′,v′)−C(u,v′)−C(u′,v)+C(u,v)≥ 0. (3)

The importance of copulas stems from Sklar’s theorem, which is here stated
in a form adapted to the aims of the present paper.

Theorem 1 (Sklar). For every two–dimensional d.f. H with marginals F1
and F2, there exists a copula C such that, for all x and y in R,

H(x,y) = C (F1(x),F2(y)) . (4)

If F1 and F2 are both continuous, then the copula C is unique.

For every t ≥ 0, we shall consider a bivariate copula Ct , which depends on t,
to be the copula of the random pair (B(1)

t ,B(2)
t ). Then the d.f. Ht : R

2 → I of
the random pair Bt , is given, for all x and y in R, by

Ht(x,y) = Ct

(
F (1)

t (x),F (2)
t (y)

)
. (5)

The BM’s B(1)
t and B(2)

t may be assumed to be continuous (we shall always
make this assumption), and, in fact, absolutely continuous since both B(1)

t

and B(2)
t are normally distributed. Therefore, their respective d.f.’s F (1)

t and
F (2)

t are also absolutely continuous for every t ≥ 0, and, as a consequence, the
copula Ct , for every t ≥ 0, is uniquely determined.
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Through an abuse of notation we shall write

Bt := Ct

(
B(1)

t ,B(2)
t

)
. (6)

Notice that, in principle, a different copula is allowed for every t ≥ 0. The
process {Bt : t ≥ 0} will be called the 2–dimensional coupled Brownian motion.

The traditional two–dimensional BM is included in the picture we have
presented so far; in order to recover it, it suffices to choose the independence
copula Π2(u,v) := uv ((u,v) ∈ I

2) and set Ct =Π2 in (5) for every t ≥ 0, so as
to obtain

Ht(x,y) = F (1)
t (x)F (2)

t (y) ((x,y) ∈ R
2).

A possible extension will have to be considered in future developments.
Since there is no reason why one should limit oneself to dimension 2, it
should also be possible to consider also the d–dimensional case, namely, given
d BM’s (B(1)

t ,B(2)
t , . . . ,B(d)

t ) on (Ω ,F ,P), let Bt : Ω → R
d be, for every t ≥ 0,

the random vector defined by

Bt :=
(

B(1)
t ,B(2)

t , . . . ,B(d)
t

)
. (7)

Thus, by recourse to d–dimensional copulas, briefly d–copulas, one can write

Bt := Ct

(
B(1)

t ,B(2)
t , . . . ,B(d)

t

)
. (8)

In this paper, we shall limit ourselves to studying the model (6).
The (one–dimensional) BM is the example of a stochastic process that has

three properties

• it a Markov process;
• it is a martingale in continuous time;
• it is a Gaussian process.

These three possible aspects of a coupled BM will be examined in the
following sections.

2 The Markov Property

Since the Markov property for a d–dimensional process {Xt : t ≥ 0} disregards
the dependence relationship of its components at every t ≥ 0, but is solely
concerned with the dependence structure of the random vector Xt at differ-
ent times, the traditional proof for the ordinary (independent) BM (see, for
instance, [3, §2.5.12]) holds for the coupled BM {Bt := Ct(B

(1)
t ,B(2)

t ) : t ≥ 0}.
Therefore, we have
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Theorem 2. A coupled Brownian motion {Bt := Ct(B
(1)
t ,B(2)

t ) : t ≥ 0} is a
Markov process.

3 The Coupled Brownian Motion Is a Martingale

One can prove the following result, already announced by the title of this
section.

Theorem 3. The coupled Brownian motion {Bt := Ct(B
(1)
t ,B(2)

t ) : t ≥ 0} is a
martingale.

Proof. Let (Ft)t≥0 be the natural filtration: for every t ≥ 0, Ft is the smallest
σ–algebra with respect to which both B(1)

t and B(2)
t are measurable, and let

Es := E(· | Fs) denote the conditional expectation with respect to Fs. Let s

and t be such that 0 ≤ s < t. Then, since each component B( j)
t ( j = 1,2) of Bt

is a martingale, one has, for every set A ∈ Fs,

∫

A
Es

(
Ct

(
B(1)

t ,B(2)
t

))
d P =

∫

A
Ct

(
B(1)

t ,B(2)
t

)
d P =

∫

A
Bt d P

=
(∫

A
B(1)

t d P,
∫

A
B(2)

t d P

)
=
(∫

A
Es

(
B(1)

t

)
d P,
∫

A
Es

(
B(2)

t

)
d P

)

=
(∫

A
B(1)

s d P,

∫

A
B(2)

s d P

)
=
∫

A
Bs d P =

∫

A
Cs

(
B(1)

s ,B(2)
s

)
d P,

which proves the martingale property

Es

(
Ct

(
B(1)

t ,B(2)
t

))
= Cs

(
B(1)

s ,B(2)
s

)
a.s.,

or, equivalently,
Es(Bt) = Bs a.s.,

which proves the assertion. ��

4 Is a Coupled Brownian Motion a Gaussian Process?

One has first to state what is meant by the expression “Gaussian process”
when a stochastic process with values in R

2 is considered. We shall adopt the
following definition.

Definition 1. A stochastic process {Xt : t ≥ 0} with values in R
d is said to be

Gaussian if, for n∈N, and for every choice of n times 0≤ t1 < t2 < · · ·< tn, the
random vector (Xt1 ,Xt2 , . . . ,Xtn) has a (d×n)–dimensional normal distribution.

As the following examples will make it clear, the answer to the question of
the title is an emphatic No.
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Example 1. Let the copula Ct coincide, for every t ≥ 0, with M2, i.e., M2(u,v) =
min{u,v}, u and v in I. Then

Ht(x,y) =
1√
2π t

min

{∫ x

−∞
exp{−v2/(2t)}du,

∫ y

−∞
exp{−u2/(2t)}dv

}

=Φ
(

min{x,y}√
t

)
.

A simple calculation shows that

∂ 2Ht(x,y)
∂x∂y

= 0 a.e. (9)

with respect to the Lebesgue measure λ2, so that Ht is not even absolutely
continuous.

Example 2. If the copula Ct is given, for every t ≥ 0, by W2, where

W2(u,v) := max{u + v−1,0},

then the d.f. Ht of Bt is given by

Ht(x,y) = max

{
Φ
(

x√
t

)
+Φ
(

y√
t

)
−1,0

}
,

which again leads, after simple calculations, to (9), so that, again, Bt is not
even absolutely continuous.

It will have been noticed that in both the previous examples the copula
considered was singular; thus it is hardly surprising that the coupled BM Bt

turns out not to be absolutely continuous, and, a fortiori, not a Gaussian
vector.

The two previous examples represent extreme cases; in fact, since the d.f.’s
involved are continuous, the copula of two random variables is M2 if, and only
if, they are comonotone, namely, each of them is an increasing function of
the other, while their copula is W2 if, and only if, they are countermonotone,
namely, each of them is a decreasing function of the other. In this sense both
examples are the opposite of the independent case, which is characterized by
the copula Π2.

We recall that a copula can be either absolutely continuous or singular or,
again, a mixture of the two types (see, e.g., [4]). In general, if the copula C is
singular, namely the d.f. of a probability measure concentrated on a subset
of zero Lebesgue measure λ2 in the unit square I

2, then also Bt is singular.
Now let the copula Ct be absolutely continuous with density ct ; a simple

calculation shows that Bt is absolutely continuous and that its density is
given by
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ht(x,y) =
1

2π t
exp

(
−x2 + y2

2t

)
ct

(
Φ
(

x√
t

)
,Φ
(

y√
t

))
a.e..

As a consequence, Bt has a normal law if, and only if, ct(u,v) = 1 for almost
all u and v in I; together with the boundary conditions (2), this implies
Ct(u,v) = uv =Π2(u,v). One has thus proved the following result

Theorem 4. In a coupled Brownian motion
{

Bt = Ct

(
B(1)

t ,B(2)
t

)
: t ≥ 0

}
,

Bt has a normal law if, and only if, Ct =Π2, viz., if, and only if, its components
B(1)

t and B(2)
t are independent.
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The Median of a Random Interval

Beatriz Sinova, Maŕıa Rosa Casals, Ana Colubi, and Maŕıa Ángeles Gil

Abstract. In dealing with real-valued random variables, the median of the
distribution is the ‘central tendency’ summary measure associated with its
‘middle position’. When available random elements are interval-valued, the
lack of a universal ranking of values makes it impossible to formalize the
extension of the concept of median as a middle-position summary measure.
Nevertheless, the use of a generalized L1 Hausdorff-type metric for interval
data enables to formalize the median of a random interval as the central-
tendency interval(s) minimizing the mean distance with respect to the ran-
dom set values, by following the alternate equivalent way to introduce the
median in the real-valued case. The expression for the median(s) is obtained,
and main properties are analyzed. A short discussion is made on the main
different features in contrast to the real-valued case.

Keywords: Generalized Hausdorff metric, Median, Random interval.

1 Introduction

Interval data in connection with random experiments usually come either
from the observation/measurement of an intrinsically interval-valued random
attribute (say fluctuations, ranges, etc.), from an uncertain measurement or
from a grouping of real-valued data in accordance with a given list of intervals
(like often happens with age or income groups).

The statistical analysis of interval data, and especially the inferential de-
velopments, requires an appropriate formalization within the probabilistic
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setting. In this respect, compact convex random sets represent a suitable tool
to handle the random mechanisms producing interval data.

In the literature, one can find several statistical studies devoted to interval
data, most of them being based on descriptive techniques and approaches.
Concerning the random set approach to deal with interval data some devel-
opments can be found, for instance, in López-Garćıa et al. [9], Gil et al. [4],
[5], González-Rodŕıguez et al. [6], Montenegro et al. [11], Blanco [2], Sinova
et al. [12].

In most of the studies carried out using the random set approach, the
central tendency measure to be used is the mean, which extends the mathe-
matical expectation of a real-valued random variable. It is formalized by the
Aumann-type integral, is supported by the Strong Laws of Large Numbers
and satisfies Fréchet’s principle w.r.t. a generalized L2-type metric.

As for the real-valued case, the mean of a random interval takes into ac-
count all the possible values, and it is usually very much influenced by ‘small’
or ‘high’ values, so that for very large one-sided skews (like it happens with
income ranges) it is hardly the most suitable representative of the central
tendency. This reason motivates to consider an extension of the median of
random variables to alternately summarize the central tendency of a random
interval. Usually, the median(s) is introduced to be the middle position value
once data have been sorted from ‘smallest’ to ‘largest’. However, there is no
universal ranking between interval data, so one cannot extend this formaliza-
tion to the interval-valued case but in a very restrictive way.

The median of the distribution of a real-valued random variable can also
be introduced as the value minimizing the mean Euclidean distance w.r.t.
variable values. This approach will be now followed to formalize the extension
of the median to random intervals. Furthermore, the extension can be made
by involving appropriate L1 metrics, and this is to be made in Section 3,
after recalling in Section 2 some preliminaries on interval data and random
intervals. In Section 4 we will analyze the main properties of the extended
median and the differences in contrast to the real-valued case. Finally, some
concluding remarks will be commented in Section 5.

2 Preliminaries on Interval Data and Random Intervals

Interval arithmetic (in particular, the sum and the product by a real number)
is a particular case of set arithmetic, and is stated as follows:

• If K,K′ ∈Kc(R) = class of the nonempty compact intervals, the sum of K
and K′ is defined as the Minkowski sum of K and K′, i.e., as the interval

K + K′ =
[
infK + infK′,supK + supK′] .

• If K ∈ Kc(R) and γ is a real number, the product of K by the scalar γ is
defined as the interval in Kc(R) such that
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γ ·K =

{
[γ · infK,γ · supK] if γ ≥ 0

[γ · supK,γ · infK] otherwise

It should be pointed out that (Kc(R),+, ·) has not a linear (but a conical)
structure.

In previous statistical developments with interval data using the random
set approach, the particularization of the Bertoluzza et al. [1] metric has
shown to be very useful and satisfying convenient properties, especially in
connection with least squares approaches and other statistical developments.
This metric has been alternatively defined (see Gil et al. [4],) as a generalized
L2-distance allowing us to weight the influence of the ‘location’ of interval
values (represented by the corresponding mid-points or centers, mid) in con-
trast to the influence of the ‘imprecision’ of the values (represented by their
spread or radius, spr). More concretely, given θ ∈ (0,+∞), the dθ -metric is
defined for K,K′ ∈ Kc(R) so that

dθ (K,K′) =
√(

midK−midK′)2 +θ ·
(
sprK− sprK′)2.

dθ is an L2-type metric on Kc(R), and (Kc(R),dθ ) is a separable metric
space.

The notion of random interval, as a model for a random mechanism pro-
ducing interval data, can be introduced in several equivalent ways. The ran-
dom set-based way makes use of the well-known Hausdorff metric on Kc(R),
which by following a similar equivalence to the one stated between Bertoluzza
et al.’s metric and dθ by Gil et al. [4], and by considering some properties
of absolute values, can be expressed for the interval-valued case so that for
K,K′ ∈Kc(R) it is given by

dH(K,K′) =
∣
∣midK−midK′∣∣+

∣
∣sprK− sprK′∣∣

(see, for instance Chavent et al. [3], Trutschnig et al. [13]). Thus, given a
probability space (Ω ,A ,P) a mapping X :Ω →Kc(R) is said to be a random
interval (for short RI) associated with it, if it is a compact convex random
set (that is, it is a Borel measurable mapping w.r.t. A and the Borel σ -field
generated by the topology induced by dH . Analogously, X is an RI if, and only
if, the real-valued functions infX :Ω → R,supX :Ω → R (with infX ≤ supX)
are real-valued random variables, which is equivalent to say that midX :Ω →
R,sprX :Ω→ [0,∞) are real-valued random variables. The Borel measurability
of RIs guarantees that one can properly refer to concepts like the distribution
induced by an RI, the stochastic independence of RIs, and so on, which are
crucial for inferential developments.

The mean value of an RI X is given by the Aumann expectation, so that
the mid-point of the mean equals the expected value of midX and the spread
of the mean equals the expected value of sprX . This (interval-valued) mean
satisfies the usual properties of linearity and it is the Fréchet expectation
w.r.t. dθ (that is, it is the unique interval value minimizing over K ∈Kc(R) the
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expected squared distance E
[
(dθ (X ,K))2

]
, which corroborates its adequacy

as a central tendency measure). It is also coherent with the usual interval
arithmetic.

3 The Median of an RI

Aiming to weigh the influence of the ‘location’ in contrast to the influence of
the ‘imprecision’ as for dθ (since allocating the same weight to the deviation
in location as to the deviation in imprecision is often viewed as a concern in
the Hausdorff metric), we can state

Definition 1. Given θ ∈ (0,+∞), the mapping dH,θ : Kc(R) × Kc(R) →
[0,+∞) such that for any K,K′ ∈ Kc(R)

dH,θ (K,K′) =
∣
∣midK−midK′∣∣+θ ·

∣
∣sprK− sprK′∣∣

will be called the generalized Hausdorff metric on Kc(R).

dH,θ is an L1-type metric on Kc(R), and
(
Kc(R),dH,θ

)
is a separable metric

space.
If one now looks for the interval value minimizing the expected distance

E
[
dH,θ (X ,K)

]
= E [|midX −midK|]+θ ·E

[∣∣sprK− sprK′∣∣] ,

over K ∈ Kc(R), then one can look for minimizing E
[∣∣midX −midK

∣∣] over
midK ∈ R and E

[∣∣sprX − sprK
∣
∣] over sprK ∈ [0,∞) separately. Therefore, ir-

respectively of the value of θ , we can define the median of an RI as the
interval value(s) minimizing E

[
dH,θ (X ,K)

]
(which corroborates its adequacy

as a central tendency measure), that is,

Definition 2. Given a probability space (Ω ,A ,P) and an RI X associated
with it, the median of the distribution of X , Me[X ] is(are) the nonempty
compact interval(s) such that

midMe[X ] = Me(midX), sprMe[X ] = Me(sprX).

As for the real-valued case, the median of an RI can be either defined by a
unique interval or not, depending on the medians of midX and sprX being
both defined in a unique way or not. The definition above coincides with the
descriptive idea given recently by Irpino and Verde [7].

The next two real-life examples illustrate the computation of the median
of an RI in two different situations. In the first one, the RI corresponds to
an intrinsically interval-valued random element obtained by observing the
daily fluctuation of a certain real-valued variable in a sample. The second
one deals with the usual way in which data are grouped either to present
them properly (because of having been measured in a large population or
sample) or to ensure ‘statistical confidentiality’.

Example 1. The data in Table 1 have been supplied in 1998 by the Nephrol-
ogy Unit of the Hospital Valle del Nalón in Langreo (Asturias, Spain). The
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associated RI is the “range of the pulse rate over a day”, X , observed over a
sample of 59 patients (suffering different types of illness) from a population
of 3000 who are hospitalized per year in a given area.

Values of X are obtained from several registers of the Pulse rate of each
patient measured at different moments (usually 60 to 70) over a concrete day.
Rate pulse data are often collected by taking into account simply the fluctu-
ation during a day (actually, some devices used for this purpose only record
these extreme values along a day). In these cases, the knowledge of the whole
registers for a day and the associated variation could distort the informa-
tion on the characteristic which is considered to be relevant in some clinical
studies: the range/fluctuation. In this way, X is intrinsically interval-valued;
irrespectively of whether it is or not based on a real-valued characteristic, the
attribute of interest or observable is interval-valued.

Table 1 Data on the ranges of pulse rate (X)

58-90 64-107 54-78 52-78 56-133 75-124
47-68 54-84 53-103 55-84 37-75 58-99
32-114 47-95 47-86 61-101 61-94 59-78
61-110 56-90 70-132 65-92 44-110 55-89
62-89 44-108 63-115 38-66 46-83 55-80
63-119 63-109 47-86 48-73 52-98 70-105
51-95 62-95 56-103 59-98 56-84 40-80
49-78 48-107 71-121 59-87 54-92 56-97
43-67 26-109 68-91 49-82 53-120 37-86
55-102 61-108 62-100 48-77 49-88

By computing the empirical distribution functions of the mids and the
spreads of the intervals, we get that

FmidX (73) =
29
59

< .5 <
30
59

= FmidX (74),

FsprX (19) =
29
59

< .5 <
30
59

= FsprX (19.5),

whence Me(midX) = 74 and Me(sprX) = 19.5 and, hence, the median of X
corresponds to

Me[X ] = [74−19.5,74 + 19.5]= [54.5,93.5].

Example 2. Table 2 has been constructed on the basis of data
supplied in http://politicalcalculations.blogspot.com/2007/06/

comparing-us-distribu-tion-of-income-by.html.
This table collects US income ranges X in US dollars in 2005. This situa-

tion corresponds to grouping data (either for reasons of presentation or for
statistical confidentiality) from a very large population (close to 177 millions

http://politicalcalculations.blogspot.com/2007/06/comparing-us-distribu
http://politicalcalculations.blogspot.com/2007/06/comparing-us-distribu
-tion-of-income-by.html


580 B. Sinova et al.

Table 2 Number of US income earners by income range in 2005

Income range # of income earners
1-2499 11547934

2500-4999 10907381
5000-7499 10368655
7500-9999 9907187

10000-12499 9498515
12500-14999 9122469
15000-17499 8761899
17500-19999 8406086
20000-22499 8045078
22500-24999 7673230
25000-27499 7287988
27500-29999 6889501
30000-32499 6480073
32500-34999 6066183
35000-37499 5645333
37500-39999 5229308
40000-42499 4821088
42500-44999 4425150
45000-47499 4045250

Income range # of income earners
47500-49999 3684309
50000-52499 3344410
52500-54999 3026840
55000-57499 2732199
57500-59999 2460499
60000-62499 2211300
62500-64999 1983806
65000-67499 1776968
67500-69999 1589578
70000-72499 1420325
72500-74999 1267858
75000-77499 1130828
77500-79999 1007912
80000-82499 897842
82500-84999 799420
85000-87499 711518
87500-89999 633097
90000-92499 563091
92500-94999 500926

of income earners). Although there is an underlying real-valued characteristic
the usually observable attribute is interval-valued.

As it often happens in this case, the width of intervals (an hence their
spread) is degenerate, so that the median for the spreads is trivially computed.
On the other hand, by accumulating the absolute frequencies of the intervals,
we get that the cumulative distribution function of midX satisfies that

FmidX (mid [20000,22499])= .489 < .5 < .533 = FmidX(mid [22500,24999]),

whence the median of X corresponds to

Me[X ] = [22500,24999].

4 Properties of the Median of an RI

An immediate difference in contrast to the real-valued case is that the median
of an RI as defined in Section 3 should not be necessarily an interval value
the RI takes on. Thus, in Example 1 Me[X ] does not coincide with any of the
(sample) interval data, whereas in Example 2 it does.

On the other hand, and as for the real-valued case, Me[X ] is not always
a unique interval value, since the uniqueness of Me(midX) and Me(sprX)
does not hold necessarily (but in case of using some conventions). In this way,
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if Me(midX) and Me(sprX) are any median of midX and sprX , respectively,
then the interval

[Me(midX)−Me(sprX),Me(midX)+ Me(sprX)]

is a median of the distribution of X .
The median of an RI preserves most of the elementary operational prop-

erties for real-valued random variables, namely,

Proposition 1. Suppose that X is an RI associated with a probability space.
Then,
i) if the distribution of X is degenerate at an interval value K ∈ Kc(R),

Me[X ] = K;
ii) whatever K ∈ Kc(R) and γ ∈ R may be, Me[γ ·X + K] = γ ·Me[X ]+ K.

Furthermore, although there is no universal ranking between elements in
Kc(R), there is at least a partial ordering which is fully coherent with Me[X ]
in Definition 2 as a measure of middle position in accordance with such an
ordering. The ordering is the one stated in Ishibuchi and Tanaka [8], and
stating that K ≤CW K′ if, and only if, midK ≤ midK′ and sprK ≥ sprK′, i.e.,
an interval value is considered to be CW -larger than another iff its location
is greater and its imprecision lower than those for the second one. One can
then prove that

Proposition 2. For any sample of individuals (ω1, . . . ,ωn) for which
X(ω1) ≤CW . . . ≤CW X(ωn)

we have that
• if n is an odd number, then Me[X ] = X(ω(n+1)/2),
• if n is an even number, then Me[X ] = any interval value ‘between’ X(ωn/2)

and X(ω(n/2)+1), the ‘between’ being intended in the ≤CW sense, that
is, midMe[X ] can be any value in

[
midX(ωn/2),midX(ω(n/2)+1)

]
, whereas

sprMe[X ] can be any value in
[
sprX(ω(n/2)+1),spr(ωn/2)

]
.

Since this study is an introductory one, deeper statistical developments (es-
pecially those related to robustness, comparison with the mean, asymptotic
relative efficiency, and so on) will be left for future analysis. However, what
one can easily derive is the strong consistency of the sample median in esti-
mating the population one under very mild conditions. Thus,

Proposition 3. Suppose that X is an RI associated with a probability space
(Ω ,A ,P) and Me[X ] is unique. If M̂e[X ]n denotes the sample median associ-
ated with a simple random sample (X1, . . . ,Xn) from X , then

lim
n→∞

dH,θ

(
M̂e[X ]n,Me[X ]

)
= 0 a.s.[P].
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5 Concluding Remarks

This introductory study presents a generalized Hausdorff-type metric, and
the median of the distribution of an RI is defined as a central tendency sum-
mary measure minimizing the mean distance w.r.t. the RI values. The median
defined in this way preserves relevant properties of the real-valued case and
agrees with the middle-position approach for a known partial ordering be-
tween intervals.

A future direction to be considered is the one related to the relationship
between the mean and the median of RIs for symmetric and skewed distribu-
tions of RIs. In this respect, the robustness of the median should be discussed
in depth.

Furthermore, it should be interesting to extend the notion to compact con-
vex random sets of higher dimension and to random fuzzy sets, by extend-
ing the L1 metric in a way similar to what has been followed in Trutschnig
et al. [13].
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13. Trutschnig, W., González-Rodŕıguez, G., Colubi, A., Gil, M.A.: A new family
of metrics for compact, convex (fuzzy) sets based on a generalized concept of
mid and spread Inform. Sci. 179, 3964–3972 (2009)



The Use of Sets of Stochastic Operators
to Constructing Imprecise Probabilities

Damjan Škulj

Abstract. A new approach to constructing sets of probabilities is presented.
We use sets of stochastic operators that represent rules that preserve desir-
ability of gambles. We also provide a set of criteria that allow constructing
imprecise probability models consistent with the desirability preserving rules.
The model is more general than the standard imprecise probability models
using lower and upper previsions. The greater generality means that credal
sets and therefore lower previsions can be understood as a special case. Some
results on extensions of such models are also provided that generalise the
corresponding results from the theory of lower and upper previsions.

Keywords: Imprecise probabilities, Lower previsions, Stochastic operators,
Credal sets.

1 Introduction

Lack of precision in probability distributions is modelled in a very convenient
way by the use of lower an upper previsions [5], which turn out to coincide
with the lower and upper expectations with respect to sets of finitely additive
probabilities. Another equivalent way to arrive to the same implications is
through sets of desirable gambles, i.e. those random gambles that a decision
maker is willing to accept.

Additional assumptions, such as risk aversion, may sometimes be imposed
on the sets of desirable gambles. Thus, a risk averse decision maker is sup-
posed to always accept a gamble with the same expectation and that is less
risky than a desirable gamble. It has been shown previously in literature that
such additional assumptions imply interesting properties to the corresponding
sets of probabilities.
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The aim of this paper is to build a unified model that allows imposing
additional requirements to the models of imprecise probabilities. Very differ-
ent types of such requirements can be combined. The result is an imprecise
probability model that satisfies all given requirements.

The paper has the following structure. In the next section we repeat the
most basic elements of imprecise probabilities. In Section 3 we describe our
model and show that it is able to describe the classical imprecise probability
models. In Section 4 we give two basic results on extension which generalise
known results from the theory of imprecise probabilities.

Although the results are mostly general enough to be valid in more gen-
eral probability spaces, to avoid technical difficulties and to be able to use
simplified notations, we assume all probability spaces to be finite.

2 Elements of Imprecise Probability Theory

The theory of imprecise probabilities, as proposed by Walley [5], is based on
subjective Bayesian interpretation of probability. Thus a set L of gambles is
assumed with a subset D of desirable gambles. A desirable gamble is a gamble
that a decision maker is willing to accept.

Mathematically, the set of gambles is represented by a set of bounded ran-
dom variables on a set X . A gamble is denoted as X : X → R. The set of de-
sirable gambles in particular contains all gambles with sure gains, i. e. X such
that infx∈X X(x) ≥ 0 and no sure losses, i.e. gambles where supx∈X X(x) < 0.

Moreover, a pair of real values P(X) and P(X) is assumed for each gamble
X , called the lower and the upper prevision respectively, and interpreted as
the buying and selling price. They are defined using the set of desirable
gambles as follows. Given a gamble X its lower prevision P(X) is defined as
the supremum of the set {μ ;X−μ ∈D}. The upper prevision can be obtained
as P(X) =−P(−X). Therefore it is enough to focus on lower previsions only.

In general P(X) ≤ P(X) holds, however, if equality holds for every X ∈ L
then we are talking about a linear prevision. In the case of a finite space every
linear prevision can be represented by a probability mass function p so that
P(X) = Ep(X) = ∑x∈X p(x)X(x).

A lower prevision P on a linear space of gambles K which may be a proper
subspace of L is called coherent whenever it satisfies the following axioms:

(P1) P(X)≥ infX X for all X ∈ K (accepting sure gains);
(P2) P(λX) = λP(X) for any X ∈K and λ > 0 (positive homogeneity);
(P3) P(X +Y) ≥ P(X)+ P(Y ) for all X ,Y ∈K (superlinearity).

One of the consequences of coherence is

P(X) = min
P≥P

P(X), (1)
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where the minimum is taken over the set of all linear previsions dominating
P. The set M (P) = {P;P ≥ P} of linear previsions or, equivalently, finitely
additive probabilities, is called the credal set of P.

In the finite case, a probability on the set X can be represented via its
probability mass function, which is a real map on X . Thus, the set Λ of all
probabilities on X can be viewed as a subset of L . Let p be a probability
mass function on X . Then the expectation operator with respect to p maps
a gamble X to EpX =∑x∈X p(x)X(x). In the case of finite spaces we may write
EpX = pX if p is assumed as a row and X as a column vector. It follows
from the Riesz representation theorem that every positive functional on L
with the norm 1 can be represented as an expectation with respect to some
probability mass function.

3 Sets of Linear Stochastic Operators

Except for convexity no additional structure is required in general for sets
of desirable gambles or credal sets. However, very often there are additional
requirements for these sets that have to be considered. In this section we
will show that such requirements can often be described in terms of (linear)
stochastic operators that preserve desirability. Thus given a desirable gamble
X ∈ D and an operator T preserving desirability, we assume that the gamble
T X is desirable as well. We will show that sets of such operators allow a
more general description of imprecise probabilities and additionally, they may
be used to force additional structure to sets of desirable gambles and the
corresponding credal sets.

Definition 1. A positive linear operator T ∈ B(L ) is called stochastic when-
ever T 1X = 1X .

We denote by S(K ) the set of all stochastic operators on a linear space of
gambles, where we assume that K contains all constant gambles.

Clearly, the adjoint of any stochastic operator maps the set of proba-
bility density functions into itself. Since all spaces considered here are as-
sumed to be finite, we may consider all operators to be given in the form
of matrices. We will therefore write pT to denote the action of the adjoint
operator on a probability mass function. For set operations, we will write
MT := {pT ; p ∈ M ,T ∈ T }, and similarly for the actions of sets of opera-
tors on sets of gambles.

Very often in decision theory risk aversion with respect to some reference
probability distribution p is assumed. One of the interpretations of risk aver-
sion is that a conditional expectation Ep(X |B), where B is an algebra of
sets, should be considered more desirable than the gamble itself. The oper-
ator E(·|B) is clearly a stochastic operator. It has been shown in literature
(see e.g. [3, 6]) that if the set of desirable gambles is closed under conditional
expectations with respect to some reference probability measure p then the
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corresponding credal set is closed for the set of adjoint operators which in
this case coincide with the Jeffrey’s conditioning rule (see [3]).

Another class of desirability preserving transformations that partially over-
laps with stochastic operators has been studied by Walley [5, Section 3.5]
and de Cooman and Miranda [1]. They consider imprecise probability mod-
els that are invariant for sets of transformations of the set X . The induced
transformations on the set of gambles are not necessarily stochastic operators;
however, in the case where permutations of elements of X are considered,
the induced operators are permutation operators that can be described as
follows. Let π be a permutation of elements in X . Then the operator Tπ such
that TπX(x) = X(π−1(x)) is a permutation operator. If a decision maker has
a symmetric information about the probabilities of occurrence of elements
in X then the gamble TπX should be desirable whenever X is desirable, and
therefore permutation operators can as well be used sometimes as desirability
preserving operators.

The following definitions give the most important consistency requirements
between the set T and the corresponding set of desirable gambles D and
credal set M .

Definition 2. A credal set M

(i) is consistent with T iff, for every X ∈K and for every T ∈T , EM T X ≥
EM X ;

(ii) dominates T iff, for every X ∈ K , minT∈T EM T X ≤ EM X ;
(iii) is generated by T iff it is both consistent with T and dominates it.

Consistency, (i), clearly implies that for every desirable gamble X the gamble
T X is desirable too, while dominance, (ii), implies that for every undesirable
gamble X there exists at least one T ∈ T such that T X is undesirable. The
connection with the usual requirements for credal sets will become clear later
in this section where we connect the representation with operators with the
standard models.

Proposition 1. Let T ⊆ S(L ) and M be a set of probabilities. Then M

(i) is consistent with T iff MT ⊆M ;
(ii) dominates T iff MT ⊇M ;
(iii) is generated by T iff MT = M .

Proof. All parts are easy consequences of the definitions and the fact that
EM T X = EM T X and minT∈T EM T X = EMT X respectively.

The sets with the property (iii) of the last proposition are known from the
study of imprecise Markov chains where they are called invariant sets of
probabilities. The following proposition is implied by a general result about
invariant sets of probabilities (see e.g. [4]).

Proposition 2. Let T be a set of operators. Then there always exists the
largest set of probabilities generated by T . If additionally for some T ∈ T
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exists the limit limn→∞ pT n = q and is independent of p then there exists the
smallest closed set of probabilities generated by T .

The largest set generated by T turns out to be

M =
⋂

n∈N

Mn, (2)

where {Mn} is the sequence of sets where M0 =Λ is the set of all probabilities
and Mn+1 = MnT . The largest set generated by T is always non-empty and
corresponds to the most conservative lower prevision that is consistent with
and dominates T , which is usually the object of interest when studying
extensions of lower previsions. Therefore, we denote the largest set generated
by a set of operators T with M (T ).

Proposition 3. The maximal set of probabilities M generated by T is ex-
actly the maximal set that dominates T .

Proof. It is easy to see that a maximal set (which could not be unique) dom-
inating T must be generated by T , and since M contains all sets generated
by T , it follows that it must be the unique largest set dominating T .

Now we demonstrate that every lower prevision can equivalently be described
with sets of operators. Let P be a lower prevision on a linear subspace of
gambles K . Then we can define the following set of operators

TP = {TP|P is a linear prevision on K ,P ≥ P}, (3)

where TPX = P(X)1X .
The classical model is therefore only a special case of the generalised model

where every operator maps the set of gambles into constant gambles. The
decision whether a gamble is desirable or not is then obvious since there is
a clear cut about desirability of constant gambles, the non-negative gambles
are desirable while the negative ones are not. In the general case the gambles
T X are not constant and therefore there is no such an obvious criterion about
their desirability; however, the consistency requirements allow assigning, not
necessarily in unique ways, sets of desirable gambles consistent with the more
general sets of operators.

4 Extensions

A set of operators T may not be defined on the space of all gambles L but
rather on a proper subspace K . An extension T̄ is a set of operators on a
larger domain, say H ≥ K such that T = {T̄ |K ; T̄ ∈ T̄ }. In this section we
study such extensions from the point of view of the lower expectation operators
corresponding to the generated sets of probabilities. We give two basic results.
The first one shows that extensions do not affect the behaviour on the set K ,
and the second is a generalisation of the marginal extension theorem.
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4.1 The Basic Extension Theorem

In this subsection we prove that given a set of operators T on the domain
K and its arbitrary extension T̄ to a larger domain, say H , then the lower
expectation operators corresponding to M (T ) and M (T̄ ) coincide on K .
To prove this we first provide an equivalent way to arrive to the most con-
servative lower prevision generated by T . The alternative way makes use of
the smallest set of desirable gambles generated by T . It is clear that smaller
sets of desirable gambles correspond to more conservative lower previsions
and therefore larger sets of probabilities.

Let T ⊆ S(K ) be a set of operators. The smallest set of desirable gambles
is constructed using the following monotone sequence of sets of gambles. Let
D0 = {X ∈ K ;X ≥ 0} and Dn be the largest set of gambles in K such that
T Dn ⊆ Dn−1. Since T D0 ⊆ D0 we have that, for all n > 0, Dn−1 ⊆ Dn (see
similar constructions in e.g. [4]). Monotonicity of the sequence allows the
construction of the set DK = D∞ :=

⋃
n∈N Dn. The following holds.

Proposition 4. The set DK is the smallest set of desirable gambles in K
generated by T , i.e. corresponding to a credal set generated by T .

To form a set of desirable gambles on the whole space L of course we need
to take also all gambles that dominate those in DK : D̄K = {Y ∈L ;∃X ∈K :
X ≤ Y}, which is a convex set that contains all gambles Y ≥ 0.

Proof. Clearly the set DK is convex and contains all non-negative gambles
in K which are the minimal requirements for a set of desirable gambles.
We only need to prove that all its members are necessarily desirable. Let M
be a set of probabilities generated by T . Take any X ∈ DK . Then there is
some r ∈N such that, for every possible sequence T1, . . . ,Tr ∈T ,T1 . . .TrX ≥ 0.
The fact that M is generated by T now implies that minT1∈T EM T1 . . .TrX =
EM T2 . . .TrX . A sequential application of this argument r times gives that
0 ≤ minTi∈T EM T1 . . .TrX = EM X , which implies that X must be desirable.

The extension theorem follows.

Theorem 1. Let T ⊆ S(K ) be given and T̄ ⊆ S(H ), where K ≤ H an
extension. Let E = EM (T ) and Ẽ = EM (T̄ ). Then we have that Ẽ|K = E|K .

Proof. The claim will clearly follow from the fact that DH ∩K = DK . We
will prove this by inductively proving that every set Dn, corresponding to
T , coincides with D ′

n ∩K where D ′
n corresponds to T̄ . In the case n =

0 this holds by definition. Now suppose that Dn−1 = D ′
n−1 ∩K . We have

T̄ (Dn) ⊆ Dn−1 = D ′
n−1 ∩K ⊆ D ′

n−1. Thus Dn ⊆ D ′
n ∩K . Next we have that

T (D ′
n ∩K ) = T̄ (D ′

n ∩K ) ⊆D ′
n−1∩K = Dn−1, and therefore D ′

n∩K ⊆Dn.
Together this implies that Dn = D ′

n ∩K .

The following proposition is an immediate consequence of definitions.

Proposition 5. Let T and T̄ be as in Theorem 1. Then any set M that
dominates T̄ also dominates T .
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4.2 Generalised Marginal Extensions

Another important extension in the theory of lower previsions is the marginal
extension (see [5, 2]). It is applied in the situation where a lower prevision P is
defined on the set L (B) of B-measurable gambles and additionally we have
a conditional lower prevision P(·|B) that maps a set of gambles H ⊇L (B)
to L (B) so that P(X |B) = X for all X ∈ L (B) and that satisfies certain
coherence requirements. The marginal extension theorem essentially says that
there exists the smallest lower prevision E on the set L that coincides with
P(P(·|B)) on H and with the natural extension of P on L (B).

This situation as well can naturally be generalised to sets of operators.
Thus we will assume a set T ⊆ S(K ) where K ≤ L . Further we have a
set of projections R from H ≥ K to K . That is, every R ∈ R is a positive
linear operator H →K such that RX = X for every X ∈K . Under the above
assumptions, the set T R ⊆ S(H ) can be formed that maps H to K and
coincides with T on K . The following theorem shows that M (T R) satisfies
the properties of marginal extension.

Theorem 2. Let K ≤H ≤L be linear spaces of gambles and let T and R
have the properties described above. Then we have:

(i) A set of probabilities M dominates T R iff it dominates T and R.
Thus, M (T R) is the largest credal set that dominates both T and R.

(ii) EM (T )X = EM (T R)X for every X ∈ K .

Proof. Theorem 1 implies (ii), since T R is an extension of T from K
to H . Now let M dominate T R. Then it must dominate T , by Propo-
sition 5. Moreover, any set M that dominates T dominates T R iff it
dominates R. To see this, take any X ∈ L . We have that minT R EM T RX =
minR minT EM T RX = minR EM RX , which implies our claim.

5 Concluding Remarks

The use of sets of stochastic operators has been shown to be a convenient
new way how imprecise probabilities can be constructed. For finite probability
spaces we have shown that the classical model with lower probabilities can
naturally be considered as a special case of the new more general model.

There are of course many tasks that still wait to be accomplished. The
assumption of finiteness of the probability spaces that allowed us to use sim-
plified forms of some concepts, such as the marginal extension, does not seem
crucial in most of the theory. So transition to more general spaces seems to
be a very reasonable next step.

Another interesting question is the following. We have shown that if the
domain for a set of operators T is not the whole space L , this does not
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present great difficulties, due to the natural extension. However, it would be
interesting to have a simple method of the extension of such a set of operators
to a set T̄ defined on the whole space L such that M (T ) and M (T̄ ) would
coincide.
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Prediction of Future Order Statistics from
the Uniform Distribution

K.S. Sultan and S.A. Alshami

Abstract. In this paper, we use the r smallest Type-II censored order statis-
tics X1:n ≤ X2:n ≤ ·· · ≤ Xr:n from the uniform distribution to predict the upper
bound for the remaining n− r observations. We use a certain statistic based
both classical and Bayesian approaches. In order to show the efficiency of the
proposed techniques, we point out some numerical illustrations.

Keywords: Percentage points, Probability coverage, Simulation.

1 Introduction

The prediction of future observations of order statistics have many applica-
tions in the real life studies such as, the biological studies, life testing and
quality control problems. Prediction problems come up naturally in several
real life situations, for example, the prediction of rain fall extremes, high-
est water level of the seas and temperatures. Also, some other applications
involving data from weather, sport and economics.

Prediction of order statistics have been investigated by many authors, for
example, Lawless [5] and Lingappaiah [6] have considered the case of expo-
nential distribution for fixed sample size. Specifically, they have predicted
the j-th order observation in a sample of size n based on observing the
first i ordered observations ( j > i). Wright and Singh [15] and Adatia and
Chan [2] have considered the problem of predicting the future order statistics
from Weibull distribution. Nelson and Schmee[9] have investigated the pre-
diction limits for the last failure time of a sample from lognormal distribution.
Lu [7] has predicted intervals of an ordered observation from one-parameter
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exponential based of multiple type-II censoring samples. Wu and Lu [16] have
predicted intervals for an ordered observation from the logistic distribution
based on censored samples. Balasooriya [4] and Ogunyemi and Nelson [10]
have considered the prediction of future distribution order statistics based on
Type-II censored samples from gamma distribution. Abd Ellah and Sultan
[1] and Sultan and Abd Ellah [13] have generalized the results by Lawless [5]
and Lingappaiah [6] to predict future order statistics from the exponential
distribution. Uniform distribution has many applications in real life problem.
Goodness-of-fit test of the uniform distribution is considered by many au-
thors, see for example, Samuel-Cahn [12], Marries and Szynal [8] and Steele
and Chaseling [14].

Let X1:n ≤ X2:n, · · · ≤ Xr:n be the available Type-II censored order statistics
from uniform distribution U(0,1). In this paper, we follow similar approach
of Abd Ellah and Sultan [1] and Sultan and Abd Ellah [13] to develop the
classical and Bayesian prediction of the upper bound of the future n− r ob-
servations from U(0,1). This technique can be used to construct the upper
bound of the future order statistics from some other continuous distributions
with explicit cumulative distribution functions. In Section 2, we discuss the
classical approach while in Section 3, we discuses the Bayesian approach. In
Section 4, we give some numerical illustrations and application. Finally, in
Section 5, we draw some conclusions.

2 Classical Approach

In this section, we propose the following statistic to develop the predictive
function of the future order statistics from the uniform distribution

W = Xj:n−Xi:n, 1 ≤ i < j ≤ n, (1)

where Xi:n and Xj:n represent the i-th and j-th order statistics from uniform
distribution U(0,1).

The following lemma presents the probability density function (pdf) and
the corresponding cumulative distribution function (cdf) of the proposed
statistic W .

Lemma 1. Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be order statistics from uniform distri-
bution U(0,1), then the statistic W defined in (1) is distributed as β ( j− i,n−
j+ i+1) and the corresponding cdf is given by (see Arnold, Balakrishnan and
Nagaraja [3])

FW (w) = IBw( j− i,n− j + i+ 1), (2)

where IBW (p,q) is the incomplete beta function defined by

IBw(p,q) =
1

β (p,q)

∫ w

0
up−1(1−u)q−1du, 0 < u < 1. (3)
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From Lemma 1, the (1−α)100% predictive upper bound for the future order
statistic Xj:n is given by

Pr(Xj:n ≤ xi:n + w) = 1−α, (4)

where w represents the (1−α)100% percentage points of FW (w) given in (2)
and calculated in Table 1 by solving the nonlinear equation

FW (w) = 1−α. (5)

As examination of the entries in Table 1, we note that the upper percentage
points of W increase as the confidence level and the difference j− i increase.

Also, from Table 1, we see that when i increases for a given value of j and
a given confidence level, we get better (sharper) upper bounds which is ex-
pected since we increase i more information is obtained. In addition, when the
pair (i, j) increases and the confidence level increases, the upper bound of W
increases. In order to show how to use Table 1, we give the following example.

Example 1. In this example we generate the first r order statistics from U(0,1)
(say r = 8) when n = 10 as follows: 0.072, 0.140, 0.162, 0.192, 0.234, 0.366,
0.466, 0.536. By using the 8−th order statistic and Table 1, then the 90%
upper bound of the 9−th order statistic is obtained as: U8:10 + w = 0.536 +
0.2057 = 0.7417.

To examine the efficiency of our technique, the probability coverage of the
predictive confidence intervals are simulated when n = 10 based on 10,000
repetitions through Monte Carlo simulation as given in Table 2. Some other
table for different sample sizes are available with the authors upon request.

From Table 2, we note that the simulated probability coverage is quite close
to the corresponding confidence levels for the cases 90%,95%,97.5% and 99%.
Also the simulated probability coverage increases when the confidence level
increases for any pair (i, j).

Table 1 The upper percentage points of the upper bound of W .

i j 90% 95% 97.5% 99% i j 90% 95% 97.5% 99%

5 6 0.2057 0.2589 0.3085 0.3690 7 8 0.2057 0.2589 0.3085 0.3690
5 7 0.3368 0.3942 0.4450 0.5043 7 9 0.3368 0.3942 0.4450 0.5043
5 8 0.4496 0.5069 0.5561 0.6117 7 10 0.4496 0.5069 0.5561 0.6117
5 9 0.5517 0.6066 0.6524 0.7029 8 9 0.2057 0.2589 0.3085 0.3690
5 10 0.6458 0.6965 0.7376 0.7817 8 10 0.3368 0.3942 0.4450 0.5043
6 7 0.2057 0.2589 0.3085 0.3690 9 10 0.2057 0.2589 0.3085 0.3690
6 8 0.3368 0.3942 0.4450 0.5043
6 9 0.4496 0.5069 0.5561 0.6117
6 10 0.5517 0.6066 0.6524 0.7029
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Table 2 The Probability coverage of the upper bound of W .

i j 90% 95% 97.5% 99% i j 90% 95% 97.5% 99%

5 6 0.9017 0.9491 0.9746 0.9893 7 8 0.8959 0.9481 0.9729 0.9889
5 7 0.9032 0.9473 0.9778 0.9906 7 9 0.8997 0.9494 0.9726 0.9921
5 8 0.9046 0.9499 0.9740 0.9892 7 10 0.9058 0.9528 0.9740 0.9916
5 9 0.9022 0.9477 0.9749 0.9895 8 9 0.8982 0.9474 0.9760 0.9898
5 10 0.8966 0.9463 0.9725 0.9906 8 10 0.9012 0.9474 0.9739 0.9890
6 7 0.9021 0.9518 0.9760 0.9894 9 10 0.8978 0.9527 0.9724 0.9894
6 8 0.8999 0.9473 0.9743 0.9897
6 9 0.9029 0.9520 0.9757 0.9900
6 10 0.8992 0.9514 0.9756 0.9893

Example 2 (Prediction from the exponential distribution). Let t1:n ≤ t2:n ≤ ·· · ≤
tr:n denote the first r order observations (Type-II censoring) from the standard
exponential distribution, with pdf f (t) = exp{−t}, 0 ≤ t < ∞. By using the
inverse transform x = F−1(u) = − log(1− u), where u is a random variate
follows U(0,1), we can obtain the predictive upper bounds of the exponential
distribution through the following steps:

1. Generate the first r ordered observations from the exponential distribu-
tion say: t1:n ≤ t2:n ≤ ·· · ≤ tr:n

2. Calculate the corresponding first r ordered observations from U(0,1) as
Ui:n = 1− exp{−ti:n}, i = 1,2, . . .r

3. Predict the upper bound of the future order statistics from U(0,1) as
explained before, say: Ur+1:n,Ur+2:n . . .Un:n.

4. Then use x = F−1(u) = − log(1− u) to calculate the corresponding pre-
dicted upper bounds tr+1:n,tr+2:n, . . . tn:n from the exponential distribution.

In this case, we generate the first 5 order statistics from the standard exponen-
tial distribution when n = 10 as follows: 0.0167, 0.0902, 0.1110, 0.2716, 0.3117
and the corresponding uniform observations are: 0.0166, 0.0862, 0.1051,
0.2379, 0.2678. Then the 90% upper bound of the 6-th to 10-th ordered ob-
servations from U(0,1) can be obtained based on statistic W from Table 1.
Next, use the the inverse transformation method to get the predicted upper
bound from the the exponential distribution as displayed in the following
table:

j 6 7 8 9 10

Uj:n 0.4735 0.6046 0.7174 0.8195 0. 9136
t j:n 0.6415 0.9278 1.2637 1.7119 2.4485



Prediction of Future Order Statistics from the Uniform Distribution 597

3 Bayesian Approach

In this section, we derive the exact Bayesian predictive function of the upper
bound of the future order statistics from the uniform distribution.

Let X1:n ≤ X2:n ≤ ·· · ≤ Xi:n be the first i order statistics from the uniform
distribution U(0,θ ) and Xi+1:n ≤ Xi+2:n ≤ ·· · ≤ Xn:n be the remaining (n− i)
order statistics.

The predictive density function of y = Xj:n, j = i+ 1, i+ 2, . . . ,n given X =
(X1:n,X2:n, . . .Xi:n) can be written as

h(y | X) =
∫

f (y | θ )π(θ | X)dθ , (6)

where f (y | θ ) is the conditional pdf of the future observation y and π(θ | X)
is the posterior pdf. The following theorem gives the Bayesian predictive
function of the upper bound of the future order statistics from U(0,θ ) based
on the statistics W given in (1).

Theorem 1. Let X1:n ≤ X2:n ≤ ·· · ≤ Xi:n be the smallest i Type-II order statis-
tics from the uniform distribution U(0,θ ). Considering the prior g(θ )= 1, 0 <
θ < 1, then the predictive density function of W defined in (1) can be obtained
from (6) as

h(w | x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ci, j:n∑n− j
r=0∑

n−i
k=0∑

n− j+i
d=0 (−1)d+k+r

(n− j
r

)(n−i
k

)(n− j+i
d

)

×[( 1
xi
)d+ j−1− xk

i ]
wd+ j−i−1

(i+r)(a)(d+ j+k−1) , 0 < w < xi,

Ci, j:n∑n− j
r=0∑

n−i
k=0∑

n− j+i
d=0 (−1)d+k+r

(n− j
r

)(n−i
k

)(n− j+i
d

)

× xk
i

(i+r)(a)(d+ j+k−1) [(
1
w )i+k −wj+d−i−1], xi < w < 1,

(7)

where Ci, j:n = n!
(i−1)!( j−i−1)!(n− j)! and a is given by

a =
n−i

∑
m=0

(−1)m
(n−i

m

)
(xi)m[( 1

xi
)i+m−1 −1]

i+ m−1
. (8)

Proof. Let W3 = Xj:n −Xi:n and V3 = Xi:n, then the joint pdf of W3 and V3 is
given by

fi, j:n(v3,w3) =
n!

(i−1)!( j− i−1)!(n− j)!

n− j

∑
r=0

(−1)r
(

n− j
r

)
w3

j−i−1vi+r−1
3

× (
1
θ

) j+r(1− w3

θ
)n− j−r, 0 < v3 < θ −w3, 0 < w3 < θ ,

hence, the marginal pdf of W3 is obtained as
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f (w3 | θ ) =
n!

(i−1)!( j− i−1)!(n− j)!

n− j

∑
r=0

(−1)r
(

n− j
r

)
θ i− j

i+ r

× wj−i−1
3 (1− w3

θ
)n− j+i, 0 < w3 < θ . (9)

Using the prior density g(θ ) = 1,0 < θ < 1, and the likelihood function

L(x | θ ) =
n!

(n− i)!
(θ − xi)n−i(

1
θ

)n, 0 < θ < 1,

then posterior distribution based on W3 is given by

π(θ | X)∝ L(x | θ )g(θ ) =
(θ − xi)n−i( 1

θ )n

a
, xi < θ < 1, (10)

where a is defined as in defined in (8).
From (6), (9) and (10), we have the predictive function of W3 is given by

h(w3 | X) =
∫ 1

θ=t
f (w3 | θ )π(θ | X)dθ , t = max(xi,w3),

=
∫ 1

θ=t
Ci, j:n

n− j

∑
r=0

(−1)r
(

n− j
r

)
wj−i−1

3 [
1

a(i+ r)
]θ i− j[1− w3

θ
]n− j+i

× (θ − xi)n−i(
1
θ

)ndθ .

Expanding (θ − xi)n−i and (1− w3
θ )n− j+i binomially and simplify we get (7).

��

Lemma 2. The corresponding cdf of the predictive pdf in Theorem 1 is
given by

H(w | x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci, j:n
a ∑n− j

r=0∑
n−i
k=0∑

n− j+i
d=0 (−1)d+k+r

(n− j
r

)(n−i
k

)(n− j+i
d

)

× xk
i

(i+r)( j+d−i)
[( 1

xi
)d+ j+k−1−1]
d+ j+k−1 wj+d−i, 0 < w < xi,

Ci, j:n
a ∑n− j

r=0∑
n−i
k=0∑

n− j+i
d=0 (−1)d+k+r

(n− j
r

)(n−i
k

)(n− j+i
d

)

× xk
i

(i+r)(d+ j+k−1)

[
( 1

k+i−1 )[( 1
w )k+i−1− ( 1

xi
)k+i−1]

−(w j−i+d

j−i+d −
x j−i+d

i
j−i+d )+ (( 1

xi
)i−1− xd+ j+k−i

i )
]
, xi < w < 1,

(11)

where a is defined in (8) and Ci, j:n = n!
(i−1)!( j−i−1)!(n− j)! .

Then the Bayesian percentage points of the upper bound of the future order
statistics can be calculated in view of (5) when n = 10 as given in Table 3.
The conclusions of Table 3 are the same as those of Table 1.
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Table 3 The upper percentage points of the upper bound of W based on Bayesian
approach..

i j 90% 95% 97.5% 99% i j 90% 95% 97.5% 99%

i j 90% 95% 97.5% 99% i j 90% 95% 97.5% 99%
5 6 0.1219 0.1585 0.1952 0.2435 7 8 0.1518 0.1932 0.2330 0.2832
5 7 0.2059 0.2513 0.2951 0.3504 7 9 0.2512 0.2985 0.3423 0.3960
5 8 0.2821 0.3341 0.3827 0.4422 7 10 0.3385 0.3891 0.4350 0.4900
5 9 0.3549 0.4121 0.4643 0.5261 8 9 0.1533 0.1946 0.2341 0.2836
5 10 0.4258 0.4872 0.5417 0.6044 8 10 0.2530 0.2996 0.3426 0.3949
6 7 0.1432 0.1833 0.2223 0.2722 9 10 0.1402 0.1779 0.2138 0.2592
6 8 0.2383 0.2853 0.3293 0.3838
6 9 0.3227 0.3740 0.4211 0.4778
6 10 0.4017 0.4562 0.5050 0.5623

Example 3. In this example, we generate 7 order statistics from U(0,1) when
n = 10 as follows: 0.072,0.140,0.162,0.192,0.234,0.366,0.466. To predict, for
example, the 90% upper bound of the 9-th order statistic by using the 7-th
order statistics, we have

The 90% upper bound of U9:10 = U7:10 + w = 0.466 + 0.2512 = 0.7172.

In order to examine the efficiency of our technique in this case, the probability
coverage of the predictive confidence intervals can be calculated as given in
Table 4.

From Table 4, we see that the empirical probability coverage in this case
of 80% and even lower for a theoretical of 90%. This probability coverage
becomes more efficient for large n.

Table 4 The Probability coverage of the upper bound of W based on Bayesian
approach.

i j 90% 95% 97.5% 99% i j 90% 95% 97.5% 99%

5 6 0.7285 0.8250 0.8886 0.9388 7 8 0.8100 0.8842 0.9334 0.9668
5 7 0.6500 0.7679 0.8471 0.9207 7 9 0.7634 0.8510 0.9044 0.9510
5 8 0.5753 0.7100 0.8114 0.9010 7 10 0.7112 0.8163 0.8829 0.9398
5 9 0.5080 0.6555 0.7733 0.8774 8 9 0.8062 0.8866 0.9316 0.9658
5 10 0.4338 0.5973 0.7274 0.8490 8 10 0.7575 0.8489 0.9107 0.9531
6 7 0.7981 0.8774 0.9230 0.9604 9 10 0.7764 0.8579 0.9053 0.9489
6 8 0.7379 0.8353 0.8956 0.9460
6 9 0.6862 0.7938 0.8664 0.9277
6 10 0.6270 0.7521 0.8387 0.9114
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4 Application

The following data given by Proschan [11] that are the times between succes-
sive failure of air conditioning equipment in a Boeing 720 airplane, arranged
in increasing order of magnitude. The first nine of the data points are: 12,
21, 26, 29, 29, 48, 57, 59, 70. Assuming that the data follows an exponential
distribution τe−τt , then upon using the percentage points of W in Tables 1
and 3, we predict the 90% upper bounds for the 10-th observation based on
the first 9 order observations as follows:

1. Calculate the maximum likelihood estimate of τ as:

τ̂ =
r

∑r
i=1 ti +(n− r)tr

=
9

351 + 70
= 0.021377672.

2. Calculate the corresponding 9-th uniform observation as:

U9:10 = 1− e−0.021377672×70 = 0.776073.

3. From Table 3, we have the 90% upper bound of the 10-th uniform
observation is 0.776073 + 0.14020 = 0.916273. Similarly from Table 1,
we have the 90% upper bound of the 10-th uniform observation is
0.776073 + 0.2057 = 0.981773.

4. The 90% classical and Bayesian prediction of the upper bound of the 10-
th order statistic from the exponential distribution is given, respectively,
by

− ln(1−0.981772)
τ̂

= 187 and
− ln(1−0.916273)

τ̂
= 116.

If we assume the true value of the 10-th observation lies in the middle of the
intervals (70,187) and (70, 116) for the classical and Bayesian techniques, re-
spectively. Then the classical and Bayesian estimates of the 10-th observation
are 128.5 and 93, respectively.

From the above results, we recommend the Bayesian technique for this
data since the box plot identifies the value 128.5 as an outlier. Also, the
standard error of the mean in the Bayesian case is 8.04 while it is 10.7 in the
classical case.

5 Conclusions

In this paper, some techniques for predicting the upper bound of the future
order statistics from the uniform distributions are developed. Both Classical
and Bayesian approaches are used to develop the upper bound of the future
order statistics by using the smallest Type-II censoring observations. To show
the performance of the developed techniques, Some numerical illustrations via
Monte Carlo simulations are used in different situations. Also, some examples
and application are discussed. In conclusion, we summarize the following:
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1. The classical and Bayesian predictive upper bounds for the future order
statistics from uniform distribution are obtained and used to develop the
corresponding prediction of upper bound of the future order statistics
from the exponential distribution.

2. The Bayesian approach gives better results than the classical approach in
the sense of the average predictive width which is observed to be narrower
in the Bayesian approach than that of the classical one.

3. The empirical probability coverages for the classical approach are closer
to the theoretical confidence levels than the corresponding values for the
Bayesian approach. It is observed, however, that the probability coverage
values for the two approaches give very close results for large n. Adapt-
ing reasonable prior distrusting could leads to better efficiency in the
Bayesian setup.
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Balance Sheet Approach to Agent-Based
Computational Economics: The EURACE
Project

Andrea Teglio, Marco Raberto, and Silvano Cincotti

Abstract. Handling carefully monetary and real flows, given by agents’ be-
haviors and interactions, is a key requirement when dealing with complex
economic models populated by a high number of agents. The paper shows
how the stock-flows consistency issue has been faced in the EURACE model,
by considering a dynamic balance sheet approach for modeling and validation
purposes.

Keywords: Agent-based computational economics, Balance sheet approach,
EURACE project.

1 Introduction

This paper proposes a rigorous approach to agent-based economic modelling,
which stresses the importance of agents’ balance sheets consistency. This
approach has been adopted while designing a highly complex economic model,
like the EURACE model, and has proved to be a very useful theoretical tool.

The EURACE simulator is the outcome of a three years project, started
in September 2006 with the aim to realize an agent-based macroeconomic
design and simulation platform. It is a fully-specified agent-based model of a
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complete economy that integrates many different sectors and markets, whose
main features are described in Section 2.

The balance sheet approach is alternative to the mainstream paradigm,
which is based on the inter-temporal optimization of welfare by individual
agents. It introduces a new methodology for studying how institutions (firms,
banks, governments and households) create flows of income, expenditure and
production together with stocks of assets (including money) and liabilities,
thereby determining how the whole economy evolves through time. Indeed,
our crucial assumption is that the EURACE model, as any realistic repre-
sentation of a monetary economy, must be grounded in a fully articulated
system of income and flow of funds accounts.

The overall philosophy of the EURACE Project is part of the research
program on a Generative Social Science [7, 8], which seeks to explain socio-
economic phenomena by constructing artificial societies that generate possible
explanations from the bottom-up. The field of agent-based computational
economics (ACE) has been characterized by a great deal of development in
recent years (see [15] for a recent survey), but the EURACE project has
probably been the first successful effort to build a complete economy that
integrates all the main markets and economic mechanisms. As a matter of
fact, in the last decade there have been many studies regarding finance in the
ACE field (see [12] for a review), while others have focused on labour and
goods market [14, 16, 6] or industrial organization [11]. However, only a few
partial attempts have been made to model a multiple-market economy as a
whole [1, 2, 13, 5]. In this respect, the EURACE simulator is certainly more
complete, incorporating many crucial connections between real economy and
financial markets.

Therefore, the EURACE agent-based framework provides a powerful com-
putational facility where experiments concerning policy design issues can be
performed. It offers a realistic environment, characterized by non-clearing
markets and bounded rational agents, well suited for studying the out-of
equilibrium transitory dynamics of the economy caused by policy parameter
changes.

2 The Simulator

The EURACE model represents a fully integrated macroeconomy, consisting
of three economic spheres: the real sphere (consumption goods, investment
goods, and labour market), the financial sphere (credit and financial markets),
and the public sector (Government, Central Bank and Eurostat).

The implementation of the EURACE platform is based on innovative tech-
nological instruments, in order to be scalable to a large number of agents. In
particular, the software framework is based on FLAME (Flexible Large-scale
Agent-based Modelling Environment), a logical communicating extended fi-
nite state machine theory (X-machine) which gives the agents more power to
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enable writing of complex models for large complex systems. The agents are
modeled as X-machines allowing them to communicate among each other by
broadcasting messages according to a specific model design. This information
is automatically read by the FLAME framework and generates a simulation
program for efficient execution in a parallel computing environment [10, 3].

FLAME uses X-machines to represent all agents acting in the system.
Each agent possesses a set of internal states, transitions functions operating
between states, internal memory and a language for broadcasting messages
among agents.

Given the complexity of the underlying technological framework and given
the considerable extension of the EURACE model, it is not possible to
present within this paper an exhaustive explanation of the economic mod-
elling choices, together with a related mathematical or algorithmic descrip-
tion. We will limit the presentation to a general qualitative explanation of
the key features of the model.

Full details about the EURACE implementation can be found in [9]. More-
over, when needed, we will cite specific EURACE deliverables. Some general
information on EURACE can be found in [4].

We resume in the following some of the main distinguishing features of
EURACE.

• Closure: EURACE is one of the very rare fully-specified agent-based mod-
els of a complete economy. EURACE is dynamically complete, that is, it
specifies all real and financial stocks and flows, allowing us to aggregate
upward from the micro-specifications to the macroeconomic variables of
interest.

• Encompassing real and financial markets populated by economic interact-
ing agents.

• Wide use of empirically documented behavioural rules.
• Different levels of time and space granularity. It is possible to investigate

the impact of real-life granularity on the economic outcomes, and to anal-
yse the consequences of a modification of this granularity.

• Treatment of time: asynchronous decision-making across different agents.
• Explicit spatial structure, allowing to take into account not only regional

and land-use aspects, but also more generally the fact that all human
activities are localized in geographical space.

• Evolving social network structure linking the different agents.
• Very large number of agents, possibly allowing to discover emerging phe-

nomena and/or rare events that would not occur with a smaller population.
• Use and development of innovative software frameworks, code paralleliza-

tion in order to employ super-computers, allowing very large-scale simula-
tions.

• Calibration on European economic data and focus on European policy
analysis.

• Use of a balance sheet approach as a modelling paradigm.
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In the next section we describe the last feature of this list, stressing the
importance of using a balance sheet approach as a modelling paradigm for
agent-based computational economics.

3 The Balance Sheet Approach

In the Eurace model, a double-entry balance sheet with a detailed account of
all monetary and real assets as well as monetary liabilities is defined for each
agent. Monetary and real flows, given by agents’ behaviors and interactions,
determine the period by period balance sheet dynamics. A stock-flow model is
then created and used to check that all monetary and real flows are accounted
for, and that all changes to stock variables are consistent with these flows.
This provides us with a solid and economically well-founded methodology to
test the consistency of the model.

In order to explain our approach, let us consider the balance sheets of the
different agents of the model.

Household’s balance sheet is reported in Table 1. Its financial wealth is
given by

W = Mh + ∑
f∈{ f irms}

nh
f p f + ∑

b∈{banks}
nh

b pb + ∑
g∈{governments}

nh
g pg

where p f , pb are daily prices of equity shares issued by firm f and bank b,
respectively; while pg is the daily price of the bond issued by government g.

Table 1 Household (H): balance sheet overview

Assets Liabilities

Mh: liquidity deposited at a given bank

nh
g: government bonds holdings (none)

nh
f , nh

b: equity shares holdings of

firm f and bank b

Table 2 Firm (f): balance sheet overview

Assets Liabilities

M f : liquidity deposited at a given bank D f
b : debts to banks

I f
m: inventories at malls E f : equity

K f : physical capital
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Firm’s balance sheet is shown in Table 2. M f and I f
m are updated daily

following firms’ cash flows and sales, while K f and D f
b are updated updated

monthly. The equity E f is also updated monthly according to the following
rule:

E f = M f + pC ∑
m∈{malls}

I f
m + pKK f − ∑

b∈{banks}
D f

b

where pC is the average price level of consumption goods and pK is the price
of capital goods.

Table 3 reports the balance sheet of the bank. Mb
h , Mb

f , Lb
f are updated daily

following the private sector deposits changes and the credit market outcomes.
Mb and Eb are updated daily following banks cash flows and keeping into
account the balance constraint:

Mb = Db + ∑
h∈{households}

Mb
h + ∑

f∈{ f irms}
Mb

f + Eb− ∑
f∈{ f irms}

Lb
f

If Mb becomes negative, Db is increased to set Mb = 0. If both Mb and Db

are positive, Db is partially or totally repaid.

Table 3 Bank (b): balance sheet overview

Assets Liabilities

Mb: liquidity (reserves) Db: standing facility
deposited at the central bank (debts to the central bank)

Lb
f : loans to firms Mb

h : households’ deposits

at the bank
Mb

f : firms’ deposits at the bank

Eb: equity

In order to understand the functioning of money creation, circulation and
destruction in EURACE, we first need to explain the outlay of bank’s balance
sheet.

Let’s start with the money creation issue: four channels of money formation
are open. The first, and most important one, activates when banks grant
loans to firms, and new money (M1) appears in the form of firm’s increased
payment account (and, thus, increased deposits). The second channel operates
when the central bank is financing commercial banks through lending of last
resort, and money creation (Fiat money) translates in augmented bank’s
reserves. Government Bond issuing constitutes the third channel: it is at
work whenever the quantitative easing (QE) feature is active, allowing the
CB to buy government bonds in the financial market. Finally, the fourth and
last channel is represented by bailouts of commercial banks by the CB.
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Table 4 Government (g): balance sheet overview

Assets Liabilities

Mg: liquidity deposited at the Dg: standing facility with the
central bank central bank

ng: number of outstanding bonds

So far we have dealt with money creation, let us now comment money
circulation and destruction. Since there is no currency, that is no money is
present outside the banking system, when agents (firms, households or Gov-
ernment) use their liquid assets to settle in favor of other agents, money
should simply flow from payer’s bank account to taker’s bank account, obvi-
ously keeping itself constant (such cash movements are accounted at the end
of the day, when agents communicate to banks all their payments). On the
contrary, whenever a debt is repaid, money stock has to decrease accordingly.
For technical details and a more exhaustive discussion on these issues, see [9].

Finally, the balance sheets of the government and of the central bank are
reported in Tables 4 and 5, respectively.

The government budget is composed by taxes on corporate profits, house-
hold labor and capital income, as revenues, and unemployment benefits,
transfer and subsidies, as expenses.

Since the Central Bank is not allowed to make a profit, its revenues from
government bonds and bank advances are distributed to the government in
the form of a dividend. In case of multiple governments, the total dividend
payment is equally divided among the different governments.

These modelling hypothesis lead to the definition of a precise “EURACE
time invariant” feature, consisting in a fundamental macroeconomic account-
ing identity:

Δ
(
∑
h

Mh +∑
f

M f
)

︸ ︷︷ ︸
private sector deposits

+ Δ
(
∑
b

Eb
)

︸ ︷︷ ︸
banks equity

+ Δ
(
∑
g

Mg + Mc
)

︸ ︷︷ ︸
public sector deposits

=

Δ
(

Mc +∑
b

Lc
b +∑

g
Lc

g

)

︸ ︷︷ ︸
fiat money

+Δ
(
∑
b
∑

f

Lb
f

)

︸ ︷︷ ︸
credit money

This accounting identity ensures the coherence of the aggregate stock-flow
in the EURACE model. For policy considerations, it is clearly important to
consider the monetary endowment of agents in the private sector, i.e.,

∑
h

Mh +∑
f

M f +∑
b

Eb
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Table 5 Central Bank (c): balance sheet overview

Assets Liabilities

nc
g: Government bonds (QE) Mc: fiat money due to QE

Mc: liquidity Mc
g: Governments liquidity

Lc
b: loans to banks Mc

b: banks reserves
Lc

g: loans to governments Ec: equity

A higher monetary endowment due, e.g., to a loose fiscal policy and QE,
leads to a higher nominal demand. Depending on the behavior of prices, the
higher nominal demand could translate into a higher real demand.

4 Conclusions

This paper describes how the EURACE modeling approach is based on bal-
ance sheets. This approach guarantees several advantages in the agent-based
economics computational framework. From the point of view of model val-
idation, considering aggregate balance sheets allows to monitor stock flows,
checking the presence of conceptual errors. Indeed, the agent-based approach
is characterized by modelling the behavior of the single agent, independently
from the aggregate behavior, which is achieved by the balance sheet which
depends on the interaction of many different agents and therefore represents
the aggregate vision. Moreover, features that are not included in single agents
and that emerge from the bottom-up can be detected and analyzed by looking
at aggregate balance sheets. Network relations, for instance, can be described
by the balance sheets structure. Finally, the recent crises showed how shock
propagation and financial fragility depend on balance sheets. As a conclusion,
we think that the balance sheet approach should be the standard approach
for every agent-based economic model.
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Connections between Statistical Depth
Functions and Fuzzy Sets

Pedro Terán

Abstract. We show that two probabilistic interpretations of fuzzy sets via
random sets and large deviation principles have a common feature: they re-
gard the fuzzy set as a depth function of a random object. Conversely, some
depth functions in the literature can be regarded as the fuzzy sets of central
points of appropriately chosen random sets.

1 Statistical Depth Functions

Depth functions try to order, in a center-outward sense, the points in a data
set or the whole Rd with respect to a given probability distribution. That
allows one to extend concepts from univariate statistics to the multivariate
setting. A general reference on depth functions is [5], see also [8]. Applica-
tions can be found in statistical problems like classification, outlier detection,
exploratory analysis, measures of multivariate scatter, skewness and kurtosis,
and so on.

Zuo and Serfling [15] distilled the following four desirable properties from
various particular cases in the literature: (a) Depth is maximal at a center of
symmetry of the distribution, if the latter exists. (b) Depth decreases along
any ray departing from the center. (c) Depth vanishes as the distance to the
center goes to infinity. (d) The depth function should be affinely equivariant
(so that conclusions do not depend on the chosen coordinate system).

However, one should be warned that abundant examples exist of depth
functions failing one or another of those properties (e.g. Lp-depth, defined in
that very paper by Zuo and Serfling themselves).
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Since depth functions are [0,1]-valued, superficially they look quite like
a fuzzy set measuring the degree of ‘deepness’ of each point of Rd in the
probability distribution. Our aim is to pursue, at a more rigorous level, the
connections between fuzzy sets and depth functions.

2 Fuzzy Sets and Statistical Depth Functions

Let us show that the two main probability-theoretical interpretations of fuzzy
sets can be interpreted as depth functions. Yet a third view of fuzzy sets as
depth functions generated by random objects appears when the given fuzzy
set is obtained as the expectation of a fuzzy random variable.

2.1 Fuzzy Sets as Coverage Functions of Random Sets

The first interpretation, dating back to the late seventies and variously at-
tributed to Goodman and Nguyen, is the coverage function of a random set.
If X is a random set, its coverage function is the function given by

pX(x) = P(x ∈ X),

which generalizes the probability mass function of a random variable.
For any random set, pX is [0,1]-valued and so can be regarded as a fuzzy

set. If X is almost surely closed, then pX is upper semicontinuous. Conversely,
for any upper semicontinuous fuzzy set A there is a canonical random set
LA : α ∈ [0,1] 4→ Aα (mapping each α to the α-cut of A) whose coverage
function is that fuzzy set.

Is pX a depth function? Properties (a) through (d) of depth functions
are devised for random variables and it is not too easy to translate them
literally to general random sets. For instance, the sense of properties like (b)
and (c) depends implicitly on the fact that single points are bounded and
convex, which no longer holds true for arbitrary sets. One possibility is to
show that pX arises as a particular case of a general method for constructing
depth functions. A second possibility is to restrict our analysis to random
sets which preserve some special properties of points.

Cascos and López–Dı́az [2] presented an abstract approach to depth func-
tions for random variables, extended in [14] in a way which allows one to
define depth for random sets and other imprecise probability models. In the
latter, an integral depth function is defined as follows: given a specified family
of functions F , the integral depth of a point x in a random set X is given by

dF (x;X) = sup{α ∈ (0,1] | ∀ f ∈F , f (x) ≤ sup
Q≤α−1P for some P∈Sel(X)

∫
f dQ},

where Sel(X) is the set of all selectionable distributions of X .
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Proposition 1. Let X be a random closed set. Then, pX is an integral depth
function with respect to the family F of all indicator functions of singletons.

Proof. By definition,

dF (x;X) = sup{α ∈ (0,1] | ∀a ∈ Rd , I{a}(x) ≤ sup
Q≤α−1P,P∈Sel(X)

∫
I{a}dQ}

= sup{α ∈ (0,1] | sup
Q≤α−1P,P∈Sel(X)

Q({x}) = 1}.

For any α satisfying the condition in the right-hand side, one finds probability
distributions Qn and Pn under the following restrictions:

Qn ≤ α−1Pn, Pn ∈ Sel(X), Qn({x})→ 1.

But then

pX(x) = P(x ∈ X)≥ sup
n

Pn({x})≥ α sup
n

Qn({x}) = α.

Since dF (x;X) is the supremum of all those α, we have dF (x;X) ≤ pX (x). To
show the converse inequality, we need to check the identity

sup
Q≤pX (x)−1P,P∈Sel(X)

Q({x}) = 1.

The only distribution Q where the supremum might be reached is the Dirac
distribution δx at x. To show that

δx ≤ pX(x)−1P for some P ∈ Sel(X),

we just need to find P ∈ Sel(X) such that pX (x) ≤ P({x}). The Measurable
Selection Theorem yields a selection ξ of X . Define η = x · Ix∈X +ξ · Ix�∈X . The
mapping η is still a selection of X , but P(η = x) = P(x ∈ X) = pX(x), so it
suffices to take P to be the distribution of η . That concludes the proof. ��

For the second, direct approach we assume the random set is almost surely
convex. That corresponds to convex fuzzy sets.

Proposition 2. Let X be a random closed convex set. Then, pX is a depth
function satisfying properties (a), (b), and (d). If X is almost surely bounded,
then property (c) holds as well.

Proof. Proof of (a): Assume that X is centrally symmetric with respect to
some point x, namely x+u∈ X if and only x−u∈ X . Since X is almost surely
non-empty, for any fixed ω ∈Ω there is some u such that x+u∈ X(ω). Taking
into account the symmetry, x−u ∈ X(ω) as well, so

x = .5(x + u)+ .5(x−u)∈ X(ω)

by the convexity of X . Since ω was arbitrary, we have
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pX(x) = P(x ∈ X) = 1

so indeed x maximizes pX .
Proof of (b): Let x be the center of symmetry in part (a). We need to show

pX(x + tu)≥ pX(x + u)

for any arbitrary t > 1,u∈Rd . As shown above, x∈ X almost surely. If x+ tu∈
X then, by the convexity of X , also

x + u = (1− t−1)x + t−1(x + tu)∈ X .

Thus, {x + tu∈ X} ⊂ {x + u∈ X}.
Proof of (c): Under the boundedness assumption, the random variable

‖X‖= supy∈X |y| is almost surely finite. For any sequence {ym}m with |ym|→∞,

pX(ym) = P(ym ∈ X)≤ P(‖X‖ ≥ |ym|) → 0

since ⋂

m

{‖X‖ ≥ |ym|} = /0.

Proof of (d): Let A be a regular matrix of size d, and let b ∈ Rd . Since the
transformation φ : x 4→ Ax + b is bijective,

pφ(X)(φ(x)) = P(φ(x) ∈ φ(X)) = P(x ∈ X) = pX(x). ��

2.2 Fuzzy Sets as Large Deviation Limits

The second interpretation is due to Nguyen and Bouchon-Meunier [10] and
relies on the so-called ‘idempotent probability’ approach to large deviation
problems in probability theory [11]. For a given probability distribution, take
a sequence of i.i.d. random vectors {ξn}n. The weak law of large numbers
gives conditions under which the sample average Sn = n−1∑n

i=1 ξi converges
in probability. The question is how likely it is that Sn remains far from its
limit as n progresses (hence the name ‘large deviations’). Under appropriate
assumptions on ξ , that probability decreases exponentially. Moreover, there
exists a non-negative, lower semicontinuous rate function Iξ such that

liminf
n

n−1 logP(Sn ∈ A)≥− inf
x∈intA

Iξ (x)

and
limsup

n
n−1 logP(Sn ∈ A)≤− inf

x∈clA
Iξ (x),

namely ξ satisfies a large deviation principle. It must be noted that the
function Jξ = exp(−Iξ ) is [0,1]-valued and it is very natural to interpret it
as the possibility distribution of a possibility measure Πξ . Indeed, it follows
easily from the inequalities above that

liminf
n

P(Sn ∈ G)1/n ≥Πξ (G)



Connections between Statistical Depth Functions and Fuzzy Sets 615

and
limsup

n
P(Sn ∈ F)1/n ≤Πξ (F)

for any open G and closed F , whenceΠξ is in a sense, very close to convergence
in distribution, the limit of the set functions (PSn)

1/n (see [9, 11]). Therefore,
this probabilistic semantics of possibility measures and distributions yields a
probabilistic interpretation of the fuzzy set Jξ .

Proposition 3. Let ξ be an integrable random vector satisfying the large
deviation principle. Then, Jξ is a depth function in the sense of properties
(a) through (d) above, taking its maximum value 1 at the expectation of ξ .

Proof. Proof of (a): The expectation is the center of symmetry of the random
vector ξ for some definitions of symmetry, e.g. when ξ − x and x− ξ are
identically distributed for some x.

Therefore, it suffices to show that indeed the expectation Eξ maximizes
Jξ . Note that, for each ε > 0,

supJξ (Eξ + εB)≥ liminf
n

P(Sn ∈ Eξ + εB)1/n

= liminf
n

P(|Sn−Eξ | ≤ ε)1/n ≥ liminf
n

P(|Sn−Eξ | ≤ ε) = 1.

Taking a decreasing sequence εn ↘ 0, we find a sequence xn → Eξ with
Jξ (xn) → 1. Since Jξ is upper semicontinuous,

Jξ (Eξ )≥ limsup
n

Jξ (xn) → 1.

Since Jξ is [0,1]-valued, clearly Eξ maximizes Jξ .
Proof of (b): Let us show that Jξ is quasiconcave. Since

{x | Jξ (x) ≥ α} = {x | e−Iξ (x) ≥ α} = {x | Iξ (x) ≤− lnα},

but the latter level sets are convex since the function Iξ is convex [3, Theorem
2.2.30 and Lemma 2.2.31].

Now, using the quasiconcavity, for any t > 1,

Jξ (Eξ +λ ) = Jξ
(
(1− t−1)Eξ + t−1(Eξ + tλ )

)
≥ min{Jξ (Eξ ),Jξ (Eξ + tλ )}

= min{1,Jξ (Eξ + tλ )}= Jξ (Eξ + tλ ).

Proof of (c): Since Iξ is a good rate function, the level sets {x | Iξ ≤ t} are
compact [3, Theorem 2.2.30 and Lemma 2.2.31]. Reasoning like before, the
α-cuts of Jξ are compact as well.

Let {ym}m be a sequence such that |ym| → ∞. Clearly, for each ε ∈ (0,1] we
eventually have ym �∈ (Jξ )ε , and so Jξ (ym) ≤ ε.
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Proof of (d): Let A be a regular matrix of size d, and let b ∈ Rd . Since the
transformation φ : x 4→ Ax + b is continuous and bijective, the equivariance
property follows from a direct application of the contraction principle [3,
Theorem 4.2.1]. ��

The conclusion is that both probabilistic interpretations are very different
(based on random sets vs. limit theorems) but both interpret fuzzy sets as
depth functions of certain random objects.

3 Statistical Depth Functions and Fuzzy Sets

It is also possible to take the opposite viewpoint: instead of ‘explaining’ fuzzy
sets as depth functions, to explain some depth functions as special fuzzy sets.

Recently [12, 13] we introduced a gradual notion of centrality for location
estimation, based on defining a fuzzy set of central points. Given a specified
family of fuzzy events A , the degree of centrality of a point x in a family of
distribution P is defined to be

C(x) = sup{α ∈ (0,1] | ∀A ∈ A , sup
P∈P

P(A) ≥ αA(x)}.

We begin by showing that coverage functions of random sets are special
cases of fuzzy sets of central points.

Proposition 4. Let X be a random closed set. Then, pX is the fuzzy set of
central points of the family of all selectionable distributions of X with respect
to the family A of all indicator functions of singletons.

Proof. Taking into account Proposition 1, it suffices to prove

dF (x;X) = C(x)

for the choice F = A . Observe that both definitions are similar, though not
exactly the same. While the definition of C involves the condition

sup
P∈Sel(X)

P(A)≥ αA(x), ∀A ∈A ,

that of dF translates into

sup
Q≤α−1P for some P∈Sel(X)

P(A)≥ A(x), ∀A ∈ A .

Replacing A by the indicator functions of all singletons, we must compare
conditions

sup
P∈Sel(X)

P({x})≥ α (1)

and
sup

Q≤α−1P,P∈Sel(X)
Q({x})≥ 1 (2)
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Take x ∈ Rd such that (1) holds. There exist Pn ∈ Sel(X) such that Pn({x})≥
(1−n−1)α. For each n, let ξn be a selection of X having law Pn, and define a
random variable ηn which equals x with probability min{α−1Pn({x}),1} and
equals ξn otherwise. Let Qn be the law of ηn. Then,

Qn ≤ α−1Pn, Qn({x})≥ 1−n−1, Pn ∈ Sel(X),

so
sup

Q≤α−1P,P∈Sel(X)
Q({x})≥ sup

n
Qn({x}) = 1.

Conversely, if (2) holds, there exist appropriate distributions Qn,Pn with Qn ≤
α−1Pn and Qn({x})→ 1. Thus,

Pn({x})≥ αQn({x})→ α

and
sup

P∈Sel(X)
P({x})≥ sup

n
Pn({x})≥ α.

��

As a consequence, some statistical depth functions in the literature can easily
be shown to be fuzzy sets of central points.

Let {x1, . . . ,xn} be a data sample. Convex hull peeling [4, 1] proceeds by
taking the convex hull C1 of the sample and finding its vertices V1. Those
vertices are ‘peeled’ away and we go on iteratively defining C2 = co(C1\V1),
V2 its set of vertices and so on. The depth of a point x in the sample is then
defined to be proportional to the number of data points that need to be peeled
away so as to leave x out of the convex hull of the remaining data, namely

dCHP(x) =∑
i

card (Vi)
n

· I{x∈Ci}.

The simplicial depth [6] of a point x in the distribution of a random vector
ξ is defined to be the probability that x is in the simplex generated by d +1
independent observations of ξ .

The majority depth [7] of x is defined to be the probability that x is in the
major side of d independent observations of ξ , that is, the P-largest halfspace
having ξ1, . . . ,ξd in its boundary.

Proposition 5. Let ξ be a random vector. For appropriate choices of A and
P, the corresponding fuzzy set of central points is:

(1)The convex hull peeling depth function.
(2)The simplicial depth function.
(3)The majority depth function.

Proof. Proof of (1): The depth function is the coverage function of the random
set which takes on values Ci with probabilities n−1card (Vi).
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Proof of (2): The simplicial depth function is the coverage function of the
random set co{ξ1, . . . ,ξd+1}, where the ξi are d + 1 independent copies of ξ .

Proof of (3): The majority depth function is the coverage function of
the random set MajorSide[ξ1, . . . ,ξd ], where the ξi are d independent copies
of ξ . ��
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An Alternative Approach to Evidential
Network Construction

Jǐrina Vejnarová

Abstract. We present an alternative approach to belief network construc-
tion based on operator of composition of basic assignments. We show that
belief networks constructed in this way have similar structural properties
to Bayesian networks in contrary to previously proposed directed evidential
networks by Ben Yaghlane at al.

1 Introduction

Bayesian networks are at present the most popular representative of so-called
graphical Markov models. Therefore it is not surprising that some attempts
to construct an analogy of Bayesian networks have also been made in other
frameworks as e.g. in possibility theory [4] or evidence theory [3].

In this paper we bring an alternative to [3], which does not seem to us to be
satisfactory, as graphical tools well-known from Bayesian networks are used
in different sense. Our approach is based on previously introduced operator
of composition for basic assignments [7, 6]. The evidential network is recon-
structed from the resulting compositional model. We concentrate ourselves to
structural properties of the network, the problem of definition of conditional
beliefs is not solved here.

The paper is organized as follows. After a brief summary of basic notions
from evidence theory (Section 2), in Section 3 we recall the definition of
the operator of composition (and its basic properties) and in Section 4 af-
ter recalling perfect sequences of basic assignments we present an algorithm
for transformation of a perfect sequence into an evidential network. We also
demonstrate, through a simple example, in which sense our approach is su-
perior to the previous one [3].
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2 Basic Notions

In this section we will briefly recall basic concepts from evidence theory [9]
concerning sets, set functions and (conditional) independence.

2.1 Set Projections and Joins

For an index set N = {1,2, . . . ,n} let {Xi}i∈N be a system of variables, each Xi

having its values in a finite set Xi. In this paper we will deal with multidi-
mensional frame of discernment XN = X1 ×X2 × . . .×Xn, and its subframes
(for K ⊆ N) XK = �i∈KXi. When dealing with groups of variables on these
subframes, XK will denote a group of variables {Xi}i∈K throughout the paper.

A projection of x = (x1,x2, . . . ,xn) ∈XN into XK will be denoted x↓K , i.e., for
K = {i1, i2, . . . , ik}

x↓K = (xi1 ,xi2 , . . . ,xik) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will denote a projection of A
into XM:1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also need an opposite
operation, which will be called a join. By a join2 of two sets A ⊆ XK and
B ⊆ XL (K,L ⊆ N) we will understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆C↓K �� C↓L, but generally
C �= C↓K �� C↓L.

2.2 Set Functions

In evidence theory [9] (or Dempster-Shafer theory) two measures are used to
model the uncertainty: belief and plausibility measures (the latter one will
not be used in this paper). Both of them can be defined with the help of
another set function called a basic (probability or belief) assignment m on
XN , i.e.,

m : P(XN) −→ [0,1],

where P(XN) is power set of XN and ∑A⊆XN
m(A) = 1. Furthermore, we as-

sume that m( /0) = 0. A set A ∈ P(XN) is a focal element if m(A) > 0.
Belief measure is defined for any A ⊆ XN by the equality

Bel(A) = ∑
B⊆A

m(B). (1)

1 Let us remark that we do not exclude situations when M = /0. In this case A↓ /0 = /0.
2 This term and notation are taken from the theory of relational databases [1].
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For a basic assignment m on XK and M ⊂ K, a marginal basic assignment
of m on XM is defined (for each A ⊆ XM):

m↓M(A) = ∑
B⊆XK :B↓M=A

m(B).

Having two basic assignments m1 and m2 on XK and XL, respectively (K,L⊆
N), we say that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such that
both m1 and m2 are marginal assignments of m. Let us note that according
to the convention m↓ /0 ≡ 1 for arbitrary basic assignment m, m1 and m2 are
projective whenever K ∩L = /0.

2.3 Independence

When constructing graphical models in any framework, (conditional) inde-
pendence concept plays an important role. In evidence theory the most com-
mon notion of independence is that of random set independence [5]: Let m
be a basic assignment on XN and K,L ⊂ N be disjoint. We say that groups of
variables XK and XL are independent with respect to basic assignment m (in
notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K ×A↓L, and m(A) = 0 otherwise.
This notion can be generalized in various ways [10, 2, 11]; the concept

of conditional non-interactivity XK ⊥m XL|XM from [2], based on conjunction
combination rule, is used for construction of directed evidential networks in
[3]. In this paper we will use the concept introduced in [11, 6], as we consider
it more suitable (the arguments can be found in [11]).

Definition 1. Let m be a basic assignment on XN and K,L,M ⊂ N be dis-
joint, K �= /0 �= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
the equality

m↓K∪L∪M(A) ·m↓M(A↓M) = m↓K∪M(A↓K∪M) ·m↓L∪M(A↓L∪M) (2)

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M, and m(A) = 0 oth-
erwise.

It has been proven in [11] that this conditional independence concept satisfies
so-called semi-graphoid properties taken as reasonable to be valid for any
conditional independence concept (see e.g. [8]).



622 J. Vejnarová

3 Operator of Composition and Its Basic Properties

Operator of composition of basic assignments was introduced in [7] in the
following way.

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL

a composition m1 � m2 is defined for all C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K �� C↓L then

(m1 � m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 � m2)(C) = m1(C↓K);

[c] in all other cases (m1 � m2)(C) = 0.

Its basic properties are contained in the following lemma proven in [7].

Lemma 1. For arbitrary two basic assignments m1 on XK and m2 on XL the
following properties hold true:
(i) m1 � m2 is a basic assignment on XK∪L,
(ii) (m1 � m2)↓K = m1,
(iii) m1 � m2 = m2 � m1 ⇐⇒ m↓K∩L

1 = m↓K∩L
2 .

From these basic properties one can see that operator of composition is not
commutative in general, but it preserves first marginal (in case of projec-
tive basic assignments both of them). In both these aspects it differs from
conjunctive combination rule. Furthermore, operator of composition is not
associative and therefore its iterative applications must be made carefully, as
we will see in the next section.

A lot of other properties possessed by the operator of composition can
be found in [6, 7], nevertheless here we will confine ourselves to the follow-
ing theorem (proven in [6]) expressing the relationship between conditional
independence and operator of composition.

Theorem 1. Let m be a joint basic assignment on XM, K,L ⊆ M. Then (K \
L) ⊥⊥ (L\K)|(K∩L) [m] if and only if

m↓K∪L(A) = (m↓K � m↓L)(A)

for any A ⊆ XK∪L.
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4 Belief Network Generated by a Perfect Sequence

Now, let us consider a system of low-dimensional basic assignments m1,m2,
. . . , mn defined on XK1 ,XK2 , . . . ,XKn , respectively. Composing them together
by multiple application of the operator of composition, one gets multidimen-
sional basic assignments on XK1∪K2∪...∪Kn . However, since we know that the
operator of composition is neither commutative nor associative, we have to
properly specify what “composing them together” means.

To avoid using too many parentheses let us make the following convention.
Whenever we put down the expression m1 � m2 � . . . � mn we will understand
that the operator of composition is performed successively from left to right:3

m1 � m2 � . . . � mn = (. . . ((m1 � m2)� m3)� . . .)� mn. (3)

Therefore, multidimensional model (3) is specified by an ordered sequence of
low-dimensional basic assignments — a generating sequence m1,m2, . . . ,mn.

4.1 Perfect Sequences

From the point of view of artificial intelligence models used to represent
knowledge in a specific area of interest, a special role is played by the so-
called perfect sequences, i.e., generating sequences m1,m2, . . . ,mn, for which

m1 � m2 = m2 � m1,

m1 � m2 � m3 = m3 � (m1 � m2),
...

m1 � m2 � . . . � mn = mn � (m1 � . . . � mn−1).

The property explaining why we call these sequences “perfect” is expressed
by the following assertion proven in [6].

Theorem 2. A generating sequence m1,m2, . . . ,mn is perfect if and only if all
m1,m2, . . . ,mn are marginal assignments of the multidimensional assignment
m1 � m2 � . . . � mn:

(m1 � m2 � . . . � mn)↓Kj = m j,

for all j = 1, . . . ,n.

4.2 Reconstruction of a Belief Network

Having a perfect sequence m1,m2, . . . ,mn (m� being the basic assignment of
XK�

), we first order all the variables for which at least one of the basic as-
signments m� is defined in such a way that first we order (in an arbitrary
3 Naturally, if we want to change the ordering in which the operators are to be

performed we will do so using parentheses.



624 J. Vejnarová

way) variables for which m1 is defined, then variables from m2 which are not
contained in m1, etc.4 Finally we have

{X1,X2,X3, . . . ,Xk} = {Xi}i∈K1∪...∪Kn .

Then we get a graph of the constructed belief network in the following way:

1. the nodes are all the variables X1,X2,X3, . . . ,Xk;
2. there is an edge (Xi → Xj) if there exists a basic assignment m� such that

both i, j ∈ K�, j �∈ K1 ∪ . . .∪K�−1 and either i ∈ K1∪ . . .∪K�−1 or i < j.

Evidently, for each j the requirement j ∈ K�, j �∈ K1 ∪ . . .∪ K�−1 is met
exactly for one � ∈ {1, . . . ,n}. It means that all the parents of node Xj must
be from the respective set {Xi}i∈K�

and therefore the necessary conditional
belief function Bel(Xj|Xpa( j)) can easily be computed from basic assignment
m� via (1) and some (not yet specified) conditioning rule. As far as we know,
the use of a conditioning rule is still not fixed in evidence theory, and therefore
we leave this question open for the present.

It is also evident, that if both i and j are in the same basic assignment
and not in previous ones, then the direction of the arc depends only on
the ordering of the variables. This might lead to different independences,
nevertheless, the following theorem sets forth that any of them is induced by
the perfect sequence.

Theorem 3. For a belief network defined by the above procedure the following
independence statements are satisfied for any j = 2, . . .k:

{ j} ⊥⊥ ({i < j} \ pa( j)) | pa( j). (4)

Proof. Let j ∈ K�, j �∈ K1∪ . . .∪K�−1. Due to the fact that

m1 � m2 � . . . � m�−1 � m� = (· · · (m1 � m2)� · · ·� m�−1)� m�

and Theorem 1 we have that

K� \ (K1 ∪ . . .∪K�−1) ⊥⊥ (K1 ∪ . . .∪K�−1)\K� |K�∩ (K1∪ . . .∪K�−1) . (5)

It is evident that (K1 ∪ . . .∪K�−1)\K� = {i < j} \ pa( j), let us denote it by L.
Now, there are two possibilities: either K�∩(K1∪ . . .∪K�−1) = pa( j) (if j does
not have any parents appearing first in K�) or K� ∩ (K1 ∪ . . .∪K�−1) � pa( j)
(otherwise).

In the first case either K�\(K1∪ . . .∪K�−1) = { j} and we immediately obtain
(4), or K� \ (K1 ∪ . . .∪K�−1) � { j} and (4) follows from (5) due to K ∪M ⊥⊥
L|I [m] ⇒ K ⊥⊥ L|I [m] (following for any mutually disjoint sets I,K,L,M from
semi-graphoid properties), where K = { j},M = K� \ (K1∪ . . .∪K�−1)\ { j} and
I = K�∩ (K1 ∪ . . .∪K�−1) = pa( j).

In the latter case, we start by application of the implication K ∪M ⊥⊥
L|I [m] ⇒ K ⊥⊥ L|M ∪ I [m], whose validity for any mutually disjoint sets
4 Let us note that variables X1,X2, . . . ,Xk may be ordered arbitrarily, nevertheless,

for the above ordering proof of Theorem 3 is simpler than in the general case.
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I,K,L,M follows again from semi-graphoid properties, to K = K� \ (K1 ∪ . . .
∪K�−1) \ { j} \ pa( j), M = K� \ (K1 ∪ . . .∪K�−1)∩ pa( j) and I = K� ∩ (K1 ∪ . . .
∪K�−1). As M∪ I = {i < j}\ pa( j) we can then proceed analogous to previous
paragraph to obtain (4). ��

Let us note that it is different than in the case of directed evidential net-
works with conditional belief functions introduced in [3], where is no distinc-
tion between conditionally and unconditionally independent variables, as the
following simple example suggests.

Example 1. Let us consider a sequence of basic assignments m1,m2 and m3,
defined on X1,X2 and X1 ×X2 ×X3. This sequence need not be perfect, in
general, but it is perfect iff

m↓{1,2}
3 (x1,x2) = m1(x1) ·m2(x2).

This perfect sequence induces independence statements 1 ⊥⊥ 2, but generally
not 1 ⊥⊥ 2|3. Using the above-presented algorithm, we can easily obtain the
following graph expressing the same independence statements.

��

��

��

��

��

��
��X1 X3 X2

On the other hand, in [3] the same situation is described by Bel(X1),
Bel(X2), Bel(X3|X1) and Bel(X3|X2) and the joint belief function is com-
puted using conjunctive combination rule. Therefore, in the resulting model
X1 ⊥m X2|X3, which corresponds rather to so-called pseudobayesian networks
than to Bayesian ones.

5 Conclusions

We introduced an alternative approach to evidential network construction to
that presented in [3]. The evidential network is constructed from so-called
perfect sequences of basic assignments through a simple transformation al-
gorithm. We proved that the independence relations in the resulting models
are analogous to those valid in Bayesian networks, while it does not hold
for models introduced in [3]. Due to the limited extent of the paper we are
not able to bring more detailed comparison of these two approaches, but we
believe that Theorem 3 and Example 1 give the basic idea. Nevertheless, still
one substantial problem should be solved — the choice of a proper condi-
tioning rule compatible with (conditional) independence concept used in our
models. It will be one of the main goals of our future research.
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Large Deviations of Random Sets and
Random Upper Semicontinuous Functions

Xia Wang and Shoumei Li

Abstract. In this paper, we obtain large deviations (necessary and sufficient
conditions) of random sets which take values of bounded closed convex sets on
the underling separable Banach space with respect to the Hausdorff distance
dH . We also give necessary and sufficient conditions of large deviations for
random upper semicontinuous functions whose values are of bounded closed
convex levels on the underling separable Banach space in the sense of the
uniform Hausdorff distance d∞H . The main tool is the work of Wu on the large
deviations for empirical processes [16].

Keywords: Random sets, Random upper semicontinuous functions, Large
deviations.

1 Introduction

The theory of large deviation principle (LDP) deals with the asymptotic es-
timation of probabilities of rare events and provides exponential bound on
probability of such events. Some authors have discussed LDP on random sets
and random upper semicontinuous functions. In 1999, Cerf [2] proved LDP
for sums i.i.d. compact random sets in a separable type p Banach space with
respect to the Hausdorff distance dH , which is called Cramér type LDP. In
2006, Terán obtained Cramér type LDP of random upper semicontinuous
functions whose level sets are compact [14], and Bolthausen type LDP of
random upper semicontinuous functions whose level sets are compact convex
[15] on a separable Banach space in the sense of the uniform Hausdorff dis-
tance d∞H . In 2009, Ogura and Setokuchi [12] proved a Cramér type LDP for
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random upper semicontiunous functions on the underling separable Banach
space with respect to the metric dQ (see [12] for the notation) in a different
method, which is weaker than the uniform Hausdorff distance d∞H . In 2010,
Ogura, Li and Wang [11] also discuss LDP for random upper semicontinu-
ous functions whose underlying space is d-dimensional Euclidean space R

d

under various topologies for compact covex random sets and random upper
semicontinuous functions. However, previous works in this direction were re-
stricted to compact random sets and compact random upper semicontinuous
functions. In this paper, we will obtain LDP for bounded closed convex ran-
dom sets and related random upper semicontiunous functions. The results
of LDP on a Banach space (not necessarily separable) related to this paper
come from Wu’s paper [16].

The paper is structured as follows. Section 2 will give some preliminaries
about bounded closed convex random sets and random upper semicontinuous
functions. In Section 3, we will give large deviations (necessary and sufficient
conditions) of random sets which take values of bounded closed convex sets on
the underling separable Banach space with respect to the Hausdorff distance
dH , and prove that of random upper semicontiunous functions whose values
are of bounded closed convex levels on the underling separable Banach space
in the sense of the uniform Hausdorff distance d∞H .

2 Preliminaries

Throughout this paper, we assume that (Ω ,A ,P) is a complete probability
space, (X,‖ · ‖X) is a real separable Banach space with its dual space X∗,
which is separable with respect to usual norm ‖ · ‖X∗ . K (X) is the family of
all non-empty closed subsets of X, Kb(X) (resp. Kbc(X)) is the family of all
non-empty bounded closed (resp. bounded closed convex) subsets of X.

Let A and B be two non-empty subsets of X and let λ ∈ R, we can define
addition and scalar multiplication by A + B = cl{a + b : a ∈ A, b ∈ B},λA =
{λa : a ∈ A}, where clA is the closure of set A taken in X. The Hausdorff
distance on Kb(X) is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B

‖a−b‖X,sup
b∈B

inf
a∈A

‖a−b‖X

}
.

In particular, we denote ‖A‖K = dH({0},A) = sup
a∈A

{‖a‖X}. Then (Kb(X),dH)

is a complete metric space (see Li, Ogura and Kreinovich [7, p.5 Theorem
1.1.2]).

X is called bounded closed convex random sets, if it is a measurable mapping
from the space (Ω ,A ,P) to the space (Kbc(X),B(Kbc(X))), where B(Kbc(X))
is the Borel σ -field of Kbc(X) generated by the Hausdorff distance dH . The
expectation of X denoted by E[X ], is defined by E[X ] = cl{

∫
Ω ξdP : ξ ∈ SX},

where
∫
Ω ξdP is the usual Bochner integral in L1[Ω ;X] (the family of integral
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X-valued random variables), and SX = {ξ ∈ L1[Ω ;X] : ξ (ω)∈ X(ω),a.e. P}. We
call E[X ] Auman integral (see Auman [1]).

Let S∗ be unit sphere of X∗ with strong topology whose related strong
distance is denoted by d∗s . Since we assume the dual space X∗ is a separable
Banach space, the unite sphere S∗ is also separable. Let D1 = {x∗1,x

∗
2, · · · } be

the countable dense subset in the unit sphere S∗. Denote by C(S∗,d∗s ) be
space of all continuous functions on S∗ with the strong topology with the
uniform norm ‖ · ‖C(S∗)(‖ f‖C(S∗) = sup{| f (x∗)| : x∗ ∈ S∗}, for f ∈ C(S∗,d∗s ), in
fact ‖ f‖C(S∗) = sup{| f (x∗)| : x∗ ∈ D1}). We know that C(S∗,d∗s ) is a Banach
space, and in general it is not separable.

For each A ∈ Kbc(X), we define its support function s(A) : S∗ → R as

s(A)(x∗) = sup{x∗(x) : x ∈ A}, x∗ ∈ S∗.

The mapping s : Kbc(X) → C(S∗,d∗s ) has the following properties: for any
A1,A2 ∈ Kbc(X) and λ ∈ R

+ = [0,∞), (1) s(A1 + A2) = s(A1) + s(A2), (2)
s(λA1) = λ s(A1), (3) dH(A1,A2) = ‖s(A1)− s(A2)‖C(S∗). In fact, the mapping s
is an isometric embedding of (Kkc(X),dH) into a closed convex cone of the
Banach space (C(S∗,d∗s ), ‖ · ‖C(S∗)) (see Li, Ogura and Kreinovich [7, p.11
Theorem 1.1.12]).

In the following, we introduce the definition of a random upper semi-
continuous function. Let I = [0,1], I0+ = (0,1]. Let Fb(X) denote the fam-
ily of all functions u : X → I satisfying the conditions: (1) the 1-level set
[u]1 = {x ∈X : u(x) = 1} �= /0, (2) each u is upper semicontinuous, i.e. for each
α ∈ I0+, the α level set [u]α = {x ∈ X : u(x) ≥ α} is a closed subset of X, (3)
the support set [u]0 = cl{x ∈ X : u(x) > 0} is bounded.

Let Fbc(X) (resp. Fc(X)) be the family of all bounded closed convex (resp.
convex) upper semicontinuous functions. It is known that u is convex in the
above sense if and only if, for any α ∈ I, uα ∈ Fc(X) (see Chen [3, Theorem
3.2.1]).

For any two upper semicontinuous functions u1,u2, define

(u1 + u2)(x) = sup
x1+x2=x

min{u1(x1),u2(x2)} for any x ∈ X.

Similarly, for any upper semicontinuous function u and for any λ ≥ 0 and
x ∈X, define

(λu)(x) =

⎧
⎨

⎩
u(

x
λ

), if λ �= 0,

I0(x), if λ = 0,

where I0 is the indicator function of 0. It is known that for any α ∈ [0,1], [u1 +
u2]α = [u1]α +[u2]α , [λu]α = λ [u]α .

The following distance is the uniform Hausdorff distance which is extension
of the Hausdorff distance dH : for u,v∈Fb(X), d∞H(u,v) = supα∈I dH([u]α , [v]α ),
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this distance is the strongest one considered in the literatures. The space
(Fbc(X),d∞H) is complete. We denote ‖u‖F = d∞H(u, I{0}) = ‖u0‖K .

X is called a random upper semicontinuous function (or random fuzzy
set or fuzzy set-valued random variable), if it is a measurable mapping
X : (Ω ,A ,P) → (Fbc(X),B(Fbc(X))) (where B(Fbc(X)) is the Borel σ -
field of Fbc(X) generated by the uniform Hausdorff distance d∞H). It is well
known that the level mappings Lα : U 4→ [U ]α(α ∈ I) are continuous from
the space (Fbc(X),d∞H) to the space (Kbc(X),dH), so if X is a random up-
per semicontinuous function, then [X ]α is a bounded closed convex random
set for any α ∈ I. The expectation of an Fbc(X)-valued random variable
X , denoted by E[X ], is an element in Fbc(X) such that for every α ∈ I,
[E[X ]]α = cl

∫
Ω [X ]αdP = cl{Eξ : ξ ∈ S[X ]α }.

Let D(I,C(S∗,d∗s )) = { f : I → C(S∗,d∗s ) is left continuous at I0+, right
continuous at 0 and bounded, and f has right limit in (0,1)}. Then it is a
Banach space with respect to the norm ‖ f‖D = sup

α∈I
‖ f (α)‖C(S∗) (see Li Ogura

and Nguyen [9, Lemma 3.1]), and it is not separable.
For any u ∈ Fbc(X), the support process of u is defined to be the process

j(u)(α,x∗) = s([u]α)(x∗) = sup
x∈[u]α

{x∗(x)}, (α,x∗) ∈ I×S∗.

The mapping j : Fbc(X) → D(I,C(S∗,d∗s )) has the following properties:
(1) j(u + v) = j(u) + j(v), for any u,v ∈ Fbc(X), (2) j(λu) = λ j(u), λ ≥
0, for any u ∈ Fbc(X), (3)‖ j(u)− j(v)‖D = d∞H(u,v), for any u,v ∈ Fbc(X).

In fact, the mapping j is an isometrically embedding of (Fbc(X),d∞H) into
a closed convex cone of the Banach space (D(I,C(S∗,d∗s )),‖ · ‖D).

Now, we will introduce some notations that we need corresponding to Wu’s
paper [16]. Since D1 = {x∗1,x

∗
2, · · · } is countable dense in the unit sphere S∗,

D̃1 = {x̃∗1, x̃
∗
2, · · · } is a subset of the unit ball of the dual space of (C(S∗,d∗s ),‖ ·

‖C(S∗)), where x̃∗i ( f ) = f (x∗i ), for any i ∈ N, f ∈ C(S∗,d∗s ). Let �∞(D̃1) be the
space of all bounded real function on D̃1 with supnorm ‖F‖

�∞(D̃1) = sup
ν∈D̃1

|F(ν)|.

This is a nonseparable Banach space.
Denote M(C(S∗,d∗s ),‖ · ‖C(S∗)) be space of probability measures on

(C(S∗,d∗s ), ‖ · ‖C(S∗)). For every ν ∈ M(C(S∗,d∗s ),‖ · ‖C(S∗)), we can define an

element ν D̃1 in �∞(D̃1) as ν D̃1(x̃∗i ) = ν(x̃∗i ) =
∫

C(S∗,d∗s ) x̃∗i dν, for all x̃∗i ∈ D̃1. In

particular, denote the mapping g1 : C(S∗,d∗s ) → �∞(D̃1) given by

g1( f ) = δ D̃1
f , δ D̃1

f (x̃∗i ) = δ f (x̃∗i ) =
∫

C(S∗,d∗s )
x̃∗i dδ f = x̃∗i ( f ) = f (x∗i ),

for all x̃∗i ∈ D̃1,δ f is the Dirac measure concentrated at f . In fact, the mapping
g1 is linear and isometric from the Banach space C(S∗,d∗s ) to �∞(D̃1), i.e.
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(1)g1(α f +βh) = αg1( f )+βg1(h) for any f ,h ∈C(S∗,d∗s ),α,β ∈ R,

(2)‖ f −h‖C(S∗) = sup
x∗∈S∗

|δ D̃1
f (x̃∗)− δ D̃1

h (x̃∗)|= ‖g1( f )−g1(h)‖
�∞(D̃1).

Let Q0 be all rational numbers in the interval I, D2 = Q0×D1, D̃2 = {(̃α,x∗) :
(α,x∗)∈D2} is a subset of the unit ball of the dual space of (D(I,C(S∗,d∗s )),‖·
‖D), where (̃α,x∗)( f ) = f (α,x∗), for any f ∈D(I,C(S∗,d∗s )). Let �∞(D̃2) be the
space of all bounded real function on D̃2 with supnorm ‖F‖

�∞(D̃2) = sup
ν∈D̃2

|F(ν)|.

This is a nonseparable Banach space.
Denote M(D(I,C(S∗,d∗s )),‖ · ‖D) be space of probability measures on (D(I,

C(S∗, d∗s )),‖·‖D). For every ν ∈M(D(I,C(S∗,d∗s )),‖·‖D), we can also define an

element ν D̃2 in �∞(D̃2) as ν D̃2((̃α,x∗i )) = ν((̃α,x∗i )) =
∫

D(I,C(S∗ ,d∗s )) (̃α,x∗)dν, for

all (̃α,x∗i )∈ D̃2. In particular, we define another mapping g2 : D(I,C(S∗,d∗s ))→
�∞(D̃2) given by

g2( f ) = δ D̃2
f ,

δ D̃2
f ((̃α,x∗)) = δ f ((̃α,x∗)) =

∫

D(I,C(S∗,d∗s ))
(̃α,x∗)dδ f = (̃α,x∗)( f ) = f (α,x∗),

for all (̃α,x∗), f ∈ D̃2. In fact, the mapping g2 is also linear and isometric from
Banach space D(I,C(S∗,d∗s )) to �∞(D̃2), i.e.

(1)g2(α f +βh) = αg2( f )+βg2(h) for any f ,h ∈ D(I,C(S∗,d∗s )), α,β ∈ R,
(2)‖ f − h‖D = supα∈I supx∗∈S∗ | f (α,x∗) −h(α,x∗)| = sup(α ,x∗)∈D2

| f (α,x∗)

−h(α,x∗)| = sup
(̃α ,x∗)∈D̃2

|δ D̃2
f ((̃α,x∗)) − δ D̃2

h ((̃α,x∗))| = ‖g2( f ) −
g2(h)‖

�∞(D̃2).

3 Main Results and Proofs

Before giving LDP for bounded closed convex random sets and random upper
semicontinuous functions, we define rate functions and LDP following Dembo
and Zeitouni [5]. Let X be a regular Hausdorff topological space.

Definition 1. ([5, p.4, Definition]) (1) A rate function is a lower semicon-
tinuous mapping I : X → [0,∞].

(2) A good rate function is a rate function such that the level setsΨI(α) :=
{x : I(x)≤ α} are compact subset of X .

Definition 2. ([5, p.5, Definition]) A family of probability measures {μn : n∈
N} on a measurable space (X ,B) where B is the Borel σ -algebra is said to
satisfy the LDP with the rate function I if, for all closed set U ⊂X ,

limsup
n→∞

1
n

lnμn(U)≤− inf
x∈U

I(x),
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for all open set V ⊂X ,

liminf
n→∞

1
n

lnμn(V ) ≥− inf
x∈V

I(x).

We first give LDP for (Kbc(X),dH)-valued i.i.d. random variables.

Theorem 1. Let X , X1, . . . ,Xn be (Kbc(X),dH)-valued i.i.d. random variables
such that E

[
eλ‖X‖K

]
< ∞ for all λ > 0. The following conditions

(a)The space (D̃1,d
(1)
2 ) is totally bounded, where d(1)

2 (x̃∗i , x̃
∗
j) = (E[s(X)(x∗i )−

s(X)(x∗j)]
2)1/2,

(b)dH

(
X1+···+Xn

n ,E[X ]
)

P−−−→ 0,

are necessary and sufficient that LDP holds, i.e. for any open set U ⊂
(Kbc(X),dH),

liminf
n→∞

1
n

logP

{(X1 + · · ·+ Xn

n

)
∈U

}
≥− inf

A∈U
h(1)

�∞(D̃1)
(g1(s(A))),

any for any closed set V ⊂ (Kbc(X),dH),

limsup
n→∞

1
n

logP

{(X1 + · · ·+ Xn

n

)
∈V

}
≤− inf

A∈V
h(1)

�∞(D̃1)
(g1(s(A))),

where h(1)
�∞(D̃1)

(F) is

inf{h(ν; P◦ s(X)−1) : ν ∈ M(C(S∗,d∗s ),‖ · ‖C(S∗)), ν D̃1 = F on D̃1}

and h(ν; P ◦ s(X)−1) =
∫

C(S∗,d∗s )
dν

d(P◦s(X)−1)
log dν

d(P◦s(X)−1)
d(P ◦ s(X)−1), if ν �

d(P◦ s(X)−1). Otherwise, h(ν; P◦ s(X)−1) = +∞. In fact, h(ν; P◦ s(X)−1) is
the relative entropy of ν with respect to P◦ s(X)−1.

Remark 1. We omit the proof of Theorem 1 because the key point and main
idea of proof are included in the proof below of Theorem 2.

In the following, we then give LDP for (Fbc(X),d∞H)-valued i.i.d. random
variables.

Theorem 2. Let X , X1, . . . ,Xn be (Fbc(X),d∞H)-valued i.i.d. random variables

such that E
[
eλ‖X‖F

]
< ∞ for all λ > 0. The following conditions

(a)The space (D̃2,d
(2)
2 ) is totally bounded, where d(2)

2 ((̃α,x∗i ), (̃β ,x∗j))
= (E[ j(X)(α,x∗i )− j(X)(β ,x∗j)]

2)1/2,

(b)d∞H
(

X1+···+Xn
n ,E[X ]

)
P−−−→ 0,
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are necessary and sufficient that LDP holds, i.e. for any open set U ⊂
(Fbc(X),d∞H),

liminf
n→∞

1
n

logP

{
X1 + · · ·+ Xn

n
∈U

}
≥− inf

A∈U
h(1)

�∞(D̃2)
(g2( j(A))), (1)

any for any closed set V ⊂ (Fbc(X),d∞H),

limsup
n→∞

1
n

logP

{
X1 + · · ·+ Xn

n
∈V

}
≤− inf

A∈V
h(1)

�∞(D̃2)
(g2( j(A))), (2)

where h(2)
�∞(D̃2)

(F) is

inf{h(ν;P◦ j(X)−1) : ν ∈ M(D(I,C(S∗,d∗s )),‖ · ‖D),ν D̃2 = Fon D̃2} (3)

and h(ν; P ◦ j(X)−1) =
∫

D(I,C(S∗,d∗s ))
dν

d(P◦ j(X)−1)
log dν

d(P◦ j(X)−1 )d(P ◦ j(X)−1), if

ν� d(P◦ j(X)−1). Otherwise, h(ν; P◦ j(X)−1) = +∞. In fact h(ν;P◦ j(X)−1)
is the relative entropy of ν with respect to P◦ j(X)−1.

Proof. Since {X ,Xn : n ∈ N} are (Fbc(X),d∞H)-valued i.i.d. random vari-
ables, j is an isometrical mapping from (Fbc(X),d∞H) to the Banach space
(D(I,C(S∗,d∗s )),‖ · ‖D), and g2 is an also linear and isometric mapping from
(D(I,C(S∗,d∗s )),‖ · ‖D) to the Banach space (�∞(D̃2),‖ · ‖�∞(D̃2)), we have
that { j(X), j(Xn) : n ∈ N} are (D(I,C(S∗,d∗s )),‖ · ‖D)-valued i.i.d. random

variables satisfying E
[
e
λ‖g2( j(X))‖

�∞(D̃2)
]

= E
[
eλ‖X‖F

]
< ∞ for all λ > 0.

And since ‖( 1
n ∑

n
i=1 δ j(Xi) − P ◦ ( j(X))−1)D̃2‖

�∞(D̃2) = d∞H

(
X1+···+Xn

n ,E[X ]
)
, we

know that condition (b) is equivalent to the following condition (b’):
( 1

n ∑
n
i=1 δ j(Xi) −P ◦ ( j(X))−1)D̃2 → 0, in probability in �∞(D̃2). One hand, by

Theorem 4 in Wu [16], the conditions (a) in Theorem 2 and condition (b’)
are necessary and sufficient that

{
P◦
((

1
n ∑

n
i=1 δ j(Xi))

D̃2
)−1) : n ∈N

}
as n → ∞

satisfy the LDP in (�∞(D̃2),‖ · ‖�∞(D̃2)) with speed 1
n and with the good rate

function given in (3). Further the image under g2 ◦ j, g2( j(Fbc(X))),
is a closed subset of the Banach space (�∞(D̃2),‖ · ‖

�∞(D̃2)), and

P
(∑n

i=1 g2( j(Xi))
n ∈ g2( j(Fbc(X)))

)
= 1,∀ n≥ 1, then in view of [5, Lemma 4.1.5],

the proposition that
{

P ◦
((

1
n ∑

n
i=1δ j(Xi))

D̃2
)−1) : n ∈ N

}
satisfy the LDP in

g2( j(Fbc(X))) equipped with the topology induced by (�∞(D̃2),‖ · ‖�∞(D̃2)) is

necessary and sufficient that
{

P ◦
((

1
n ∑

n
i=1 δ j(Xi))

D̃2
)−1) : n ∈ N

}
satisfy the

LDP in (�∞(D̃2),‖·‖�∞(D̃2)). On the other hand, by virtue of good properties of
the mapping j and g2 and the contraction principle [5, p.126, Theorem 4.2.1],
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we know the fact that
{

P ◦ (
(
∑n

i=1 Xi
n

)−1
) : n ∈ N

}
satisfies LDP in the space

(Fbc(X),d∞H) is equivalent to the fact that
{

P◦
((

1
n ∑

n
i=1 δ j(Xi))

D̃2
)−1) : n ∈N

}

satisfy the LDP in g2( j(Fbc(X))). In view of those, so we complete the proof
of Theorem 2. ��
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A Note of Proposed Privacy Measures in
Randomized Response Models

Hong Zhimin, Yan Zaizai, and Wei Lidong

Abstract. Randomized response (say, RR) techniques on survey are used
for collecting data on sensitive issues while trying to protect the respondents’
privacy. The degree of confidentiality will clearly determine whether or not
respondents choose to cooperate. There have been many proposals for privacy
measures with very different implications for an optimal model design. These
derived measures of protection privacy involves both conditional probabilities
of being perceived as belonging to the sensitive group A under given an answer
“yes”or“no”, denoted as P(A | yes) and P(A | no). This motivates us to evaluate
the proposed measures of protection privacy. This article shows that the most
of the proposed measures of protection privacy are unified.

Keywords: Privacy of respondent, Randomized response, Efficiency.

1 Introduction

When conducting personal interview surveys on sensitive or highly personal
questions, such as tax evasion, drug use, and sexual behavior, refusal to re-
spond or untruthful responses are a major problem. Warner [6] introduced
a technique known as “randomized response” to obtain information on πA,
the proportion of people with the sensitive characteristic A, while protect-
ing the privacy of the respondent. Since that time, the problem has been
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reconsidered with new techniques being proposed and studied. A major con-
cern in randomized response techniques is how to produce good estimators
of the population proportion of people having a stigmatizing characteristic
while at the same time the privacy of participants is protected.

Except when stated otherwise, we assume truthful reporting in random-
ized queries. In RR surveys, although a respondent is not asked to divulge his
or her true standing in respect to a sensitive characteristic, the person does,
nevertheless, run certain risks of disclosures. It is possible that among the re-
spondents there may be intelligent and knowledgeable people well equipped
intellectually to analyze and weigh the hazards in giving out secrets. Natu-
rally, they must be convinced that their privacy is well guarded before they
will be persuaded to make available damaging and incriminating documents.
So the degree of protection of privacy is an essential ingredient of RR theory
and practice. In some RR models, a general phenomenon was observed that
maintenance of privacy and efficient estimation with RR were in conflict.
Hence, in RR surveys, a problem of optimally efficient estimation subject
to practical constraints imposed by the requirement of protecting the pri-
vacy of a respondent. Several research workers ([1, 2, 3, 4, 5, 7, 8] among
others) have discussed the relationship maintenance of privacy and efficient
estimation with RR.

2 Statistical Analysis of Efficiency and Protection

Consider a population divided into complementary sensitive group A and
non-sensitive group A with unknown proportions πA and 1−πA, respectively.
Considering a dichotomous response model, a typical response is R, which is
“yes” (say, y) or “no”(say, n). The conditional probabilities that a response R
comes from an individual of groups A and A, respectively, are P(R | A) and
P(R | A). These are quantities at the investigator’s disposal.

The posterior probabilities that a respondent belongs to groups A and A,
when he or she reports R are P(A | R) and P(A | R). These are the revealing
probabilities. By Bayes’ rule,

P(R | A) =
P(R)P(A | R)

P(A)
, P(R | A) =

P(R)P(A | R)
P(A)

,

P(R | A)
P(R | A)

=
1−P(A)

P(A)
· P(A | R)

1−P(A | R)
.

Now, clearly, the probability of a “yes” response is

λ = P(A)P(y | A)+ P(A)P(y | A) = πA{P(y | A)−P(y | A)}+ P(y | A) (1)
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If a sample of n individuals is selected from the population according to
simple random sampling with replacement(SRSWR), and λ̂ is the sample
proportion of “yes” replies, then an unbiased estimator of πA is

π̂A =
λ̂ −P(y | A)

P(y | A)−P(y | A)
(2)

which is defined if and only if

P(y | A)−P(y | A) �= 0 (3)

holds.
Now suppose that the RR procedure is designed so that (3) is satisfied

allowing unbiased estimation of πA even at the cost of privacy, which has to
be sacrificed to some extent. It is easy to work out the variance formula for
π̂A as

V (π̂A) =
λ (1−λ )

n{P(y | A)−P(y | A)}2
=

π2
A(1−πA)2

n(πA−P(A | y))(P(A | n)−πA)
(4)

The response R is non-jeopardizing if and only if

P(A | y) = P(A | n) = P(A) = πA (5)

The difference of the conditional probabilities is

P(y | A)−P(y | A) =
(P(A | y)−πA)(P(A | n)−πA)
πA(1−πA)(P(A | n)−P(A | y))

(6)

Hence, by (3) and (6), for a defined π̂A, the expression (5) is violated.
Without loss of generality, we assume that P(A | y)>πA>P(A | n). It follows

from (4) that
∂V (π̂A)
∂P(A | y)

< 0,
∂V (π̂A)
∂P(A | n)

> 0 (7)

Hence, for the sake of efficiency, one needs a major level for P(A | y) and a
minor level for P(A | n).

From practical considerations regarding protection of privacy, one can fix
a maximal allowable level of P(A | y) and a minimal allowable level of P(A | n),
say t1 and t2 in (0,1), respectively. Thus the problem now becomes one of
constrained optimization about P(A | y) and P(A | n), that is, of minimizing
V (π̂A) subject to

πA < P(A | y) ≤ t1, t2 ≤ P(A | n) < πA (8)

Naturally, a relation (8) may be satisfied only for values of πA in a subinterval
of [0,1] , say [π1,π2].
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3 Proposed Privacy Measures

3.1 Leysieffer and Warner’s (1976) Criterion for
Protecting Privacy

Leysieffer and Warner [4] proposed the measures of jeopardy carried by R
about A and A, respectively. These measures are as follows:

g(R | A) =
P(R | A)
P(R | A)

, g(R | A) =
1

g(R | A)
(9)

The response R is non-jeopardizing if and only if

g(R | A) = 1 (10)

According to (3), an unbiased estimator of πA is defined as (2) that is, (10)
is violated. Assuming without loss of generality, that P(y | A) > P(y | A), so
that g(y | A) > 1,g(n | A) > 1. Therefore, for the sake of efficiency, one needs
as large magnitudes as possible for g(y | A) and g(n | A) and both above unity.
Hence, from the practical point of view, regarding protection of privacy, one
can fix some maximal allowable levels of g(y | A) and g(n | A), say k1 and k2,
respectively. Thus the problem now becomes one of constrained optimization,
that is, of minimizing V (π̂A) subject to 1 < g(y | A) ≤ k1,1 < g(n | A) ≤ k2. By
(9), the jeopardy function is rewritten by, say,

g(y | A) =
1−πA

πA
· P(A | y)

1−P(A | y)
, g(n | A) =

πA

1−πA
· 1−P(A | n)

P(A | n)
, (11)

it follows from (11) that

∂g(y | A)
∂P(A | y)

> 0,
∂g(n | A)
∂P(A | n)

< 0 (12)

By (8) and (11), for every πA in [π1,π2],

g(y | A)≤ 1−πA

πA
· t1

1− t1
, g(n | A)≤ πA

1−πA
· 1− t2

t2
.

This implies that g(y | A)≤ 1−π1

π1
· t1

1− t1
and g(n | A) ≤ π2

1−π2
· 1− t2

t2
.

Thus Leysieffer and Warner’s (1976) criterion for protection of confiden-
tiality effectively sets upper bounds for g(y |A) and g(n |A) and for minimizing
V (π̂A), subject to the foregoing restrictions (8), it is enough to take P(A | y)
and P(A | n) at their maximal and minimal allowable levels.
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3.2 Anderson’s (1975) Criterion for Protecting
Privacy

Anderson [1] called P(A | R) and P(A | R) the two “risks of suspicion” corre-
sponding to response R. He suggested restricting them such that

P(A | R)≤ ξ1 < 1, P(A | R) ≤ 1− ξ1 < 1, (13)

respectively, if A and A are embarrassing, suitably fixing ξ1 and ξ2 in (0,1).
Evidently, (13) demands the revealing probability such that ξ1 ≤P(A |R)≤ ξ2.
This implies that P(A | y) ≤ ξ2 and ξ1 ≤ P(A | n).

Thus Anderson’s (1975) criterion for protection of privacy subjects to the
foregoing restrictions (8).

3.3 Lanke’s (1976) Criterion for Protecting Privacy

Lanke [3] argued that “it is membership in Group A that people may want
to hide, not membership in the complementary Group A. Hence, it is ‘yes’
answers that may be embarrassing, and obviously a ‘yes’ answer is more
embarrassing the less often the unrelated question has the answer ‘yes’.”This
focus on the maximal “suspicion of belonging to A” led Lanke [3] to propose
that the measure of protection privacy is

ϕ = max{P(A | y),P(A | n)} (14)

Assuming without loss of generality, that is P(A | n) < πA < P(A | y), so that
Lanke’s (1976) criterion is ϕ = P(A | y). Following Lanke [3], the response R has
less jeopardizing with respect to A if ϕ = P(A | y) has less level. Hence, for the
sake of efficiency, Lanke suggested restricting ϕ such that πA < P(A | y) ≤ η .

By the restrictions (8), it is enough to take P(A | y) at a reasonable allowable
level.

3.4 Fligner et al.’s (1977) Criterion for Protecting
Privacy

Fligner et al. [2] took another criterion as the measures of a response jeopardy
with respect to either A or A. Let the expressions for P(A | y) under the RR
devices d1 and d2 be denoted by Pd1(A | y) and Pd2(A | y), respectively. Similarly,
defined Pd1(A | n) and Pd2(A | n).

According to Fligner et al. [2], the two model afford equal treatment, in
terms of protection of confidentiality if and only if

Pd1(A | y) = Pd2(A | y) and Pd1(A | n) = Pd2(A | n) (15)

By (4) and (15), we obtain that Vd1(π̂A) = Vd2(π̂A).
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As a consequence, if both P(A | y) and P(A | n) are equal across models,
two models are said to afford “ equal treatment” to the respondent. It can be
shown that the estimators have the same distribution and there is no reason
to select one over the other.

3.5 Nayak’s (1994) Criterion for Protecting Privacy

Nayak [5] formalized the commonly emphasized issues of Fligner et al. [2].
According to the discussion of Nayak [5], the posterior probabilities, P(A | y),
P(A | n), P(A | y) = 1−P(A | y) and P(A | n) = 1−P(A | n), that are relevant for
assessing respondents’ protection. The efficiency increases as V (π̂A) decreases,
and the respondents’ protection increases as the posterior probabilities P(A |
y) and P(A | n) decrease.

Thus, Nayak has the following definitions:
A design d1 is said to be better than another design d2 if

Pd1(A | y) ≤ Pd2(A | y) , Pd1(A | n)≤ Pd2(A | n) and Vd1(π̂A) ≤Vd2(π̂A), (16)

for all πA ∈ [0,1] at least one strict inequality holds for some πA, where the
subscripts d1 and d2 specify the design.

By (7), (8), and (16), Nayak’s (1994) criterion shows that both efficiency
and protection of pricacy increase as the posterior probability P(A | n) de-
creases, which suggests that one should always take a minimal allowable level
of P(A | n) as t2 for some admissible RR models. Nayak’s (1994) criterion
shows that efficiency and respondents’ protection do not necessarily move in
opposite directions.

3.6 Zaizai and Zankan’s (2004) Criterion for
Protecting Privacy

Zaizai and Zankan [7] considered the difference of two responses with respect
to A as measure of protecting of privacy. Namely, | P(A | y)−P(A | n) |, say, Δ .
The response R has less jeopardize as Δ is close to zero. Hence, for the sake
of efficiency and protection of privacy, one can fix a maximal allowable level
of Δ , say c.

Assuming without loss of generality, that is P(A | n) < πA < P(A | y), there-
fore, Zaizai and Zankan [7] took the measure of protection privacy that

Δ = P(A | y)−P(A | n) (17)

It follows from (17) that
∂Δ

∂P(A | y)
= 1 > 0 and

∂Δ
∂P(A | n)

=−1 < 0. According

to (8) and (17), that is Δ ≤ t1− t2, namely, c = t1 − t2.
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Thus Zaizai and Zankan’s (2004) criterion for protection of confidentiality
effectively sets upper bound for Δ and for minimizing V (π̂A), subject to the
foregoing restrictions (8).

3.7 Zhimin and Zaizai’s (2008) Criterion for
Protecting Privacy

Similar analysis on the problems of efficient estimation and protecting privacy
was carried out by Zhimin and Zaizai [8], who reached parallel conclusions
with Nayak’s (1994) criterion. Zhimin and Zaizai’s (2008) measures are that

Δ(A) =
P(y | A)
P(n | A)

, Δ(A) =
P(n | A)
P(y | A)

(18)

This criterion measures the jeopardy carried by R about A and A, respectively.
The response R is non-jeopardizing if and only if Δ(A) = 1 and Δ(A) = 1.
But the existence of an unbiased estimator π̂A necessarily makes a response
jeopardy with respect to either A or A.

Assuming without loss of generality, that Δ(A) ≥ Δ(A), Δ(A) �= 1 and
Δ(A) �= 1. Zhimin and Zaizai [8] defined Δ(A) as a measure of protecting
of privacy.

Hence, for the sake of efficiency and protection of privacy, one can fix an
allowable level of Δ(A), such that | Δ(A)−1 | is minimal.

By Bayes’ rule,

Δ(A) =
P(n | A)
P(y | A)

=
πA −P(A | y)
1−P(A | y)

· 1−P(A | n)
P(A | n)−πA

, (19)

it follows from (19) that ∂Δ (A)
∂P(A|y) > 0, ∂Δ (A)

∂P(A|n) > 0. This implies that

∂ | Δ(A)−1 |
∂P(A | y)

> 0,
∂ | Δ(A)−1 |
∂P(A | n)

> 0 (Δ(A) > 1) (20)

or

∂ | Δ(A)−1 |
∂P(A | y)

< 0,
∂ | Δ(A)−1 |
∂P(A | n)

< 0 (Δ(A) < 1) (21)

By (7), (8), (20) and (21), note that both efficiency and respondents’ pro-
tection increase as P(A | n) decreases, which suggests that one should always
take a minimal allowable level of P(A | n) as t2. This conclusion also disproves
the common belief that in RR surveys efficiency and respondents’ protection
are always in conflict.
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4 Summary

In this paper, we evaluated the difference of the proposed privacy measures.
From practical considerations, regarding protection of privacy, the problem
of all randomized response surveys becomes one of constrained optimization
about P(A | y) (a maximal allowable level of P(A | y), say t1) and P(A | n) (a
minimal allowable level of P(A | n), say t2), that is, of minimizing V (π̂A) subject
to πA < P(A | y) ≤ t1, t2 ≤ P(A | n) < πA. It also showed that the most of pro-
posed measures of privacy are consistent with the conclusion that efficiency
and respondents’ protection are always in conflict, while Nayak’s (1994) and
Zhimin and Zaizai’s (2008) criterions show that the maintenance of privacy
and efficiency in RR surveys do not necessarily move in opposite directions.
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