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Preface

It was a great pleasure to organize the First International Workshop on Human
Behavior Understanding (HBU), which took place as a satellite workshop to
International Conference on Pattern Recognition (ICPR) on August 22, 2010,
in Istanbul, Turkey. This workshop arose from the natural marriage of pattern
recognition with the rapidly advancing area of human behavior analysis. Our aim
was to gather researchers dealing with the problem of modeling human behavior
under its multiple facets (expression of emotions, display of relational attitudes,
performance of individual or joint actions, etc.), with particular attention to
pattern recognition approaches that involve multiple modalities and those that
model actual dynamics of behavior.

The contiguity with ICPR, one of the most important events in the pat-
tern recognition and machine learning communities, is expected to foster cross-
pollination with other areas, for example temporal pattern mining or time se-
ries analysis, which share their important methodological aspects with human
behavior understanding. Furthermore, the presence of this workshop at ICPR
was meant to attract researchers, in particular PhD students and postdoc-
toral researchers, to work on the questions of human behavior understanding
that is likely to play a major role in future technologies (ambient intelligence,
human–robot interaction, artificial social intelligence, etc.), as witnessed by a
number of research efforts aimed at collecting and annotating large sets of multi
sensor data, collected from observing people in natural and often technologically
challenging conditions.

This proceedings volume contains 13 papers presented at the workshop, as
well as the abstracts of the keynote talks by Ramesh Jain (UCI) and Ivan Laptev
(INRIA), and a summarizing paper by the editors. We received 29 submissions
in total, and each paper was peer-reviewed by two members of the Technical
Program Committee.

We would like to thank our Program Committee members and reviewers
for their rigorous feedback, and our keynote speakers for their contributions.
We also thank the ICPR organization team, most importantly Aytül Erçil and
Osman Rahmi Fıçıcı for their support. The website of the workshop was created
by Hamdi Dibeklioğlu and maintained by Osman Rahmi through its countless
updates.

August 2010 Albert Ali Salah
Theo Gevers

Nicu Sebe
Alessandro Vinciarelli
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Challenges of Human Behavior Understanding
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2 Dept. of Information Engineering and Computer Science

University of Trento
Trento, Italy
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Abstract. Recent advances in pattern recognition has allowed computer
scientists and psychologists to jointly address automatic analysis of of
human behavior via computers. The Workshop on Human Behavior Un-
derstanding at the International Conference on Pattern Recognition ex-
plores a number of different aspects and open questions in this field, and
demonstrates the multi-disciplinary nature of this research area. In this
brief summary, we give an overview of the Workshop and discuss the
main research challenges.

1 Introduction

Domains where human behavior understanding is a crucial need (e.g., human-
computer interaction, affective computing and social signal processing) rely on
advanced pattern recognition techniques to automatically interpret complex be-
havioral patterns generated when humans interact with machines or with others.
This is a difficult problem where many issues are still open, including the joint
modeling of behavioral cues taking place at different time scales, the inherent
uncertainty of machine detectable evidences of human behavior, the mutual in-
fluence of people involved in interactions, the presence of long term dependencies
in observations extracted from human behavior, and the important role of dy-
namics in human behavior understanding.

The target topics of the Human Behavior Understanding (HBU) Workshop
reflect some of the old and new questions in this domain:

– Social behavior analysis & modeling, multimodal behavior patterns
– Temporal patterns
– Facial, gestural and voice-based affect recognition
– Sign-language recognition
– Human motion analysis

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 1–12, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 A.A. Salah et al.

– Pattern recognition applied to novel sensors
– Pattern discovery in personal sensor networks, reality mining
– Smart environments
– Human-computer interaction
– Benchmarking studies on novel databases
– New feature selection and extraction methods
– Mathematical description and integration of contextual information
– Behavioral biometrics

Some of these topics have been actively researched for a long time, like the
analysis of face, voice, and bodily signals, yet these are taken up to new levels
of difficulty by relaxing some of the simplifying constraints. Research focuses
now on more natural settings with uncontrolled conditions, real-time operation
requirements and interaction dynamics. Furthermore, domain-specific semantic
information is drawn into the picture as we move from generic techniques to
specific applications. This re-focusing is partly done by introducing richer tax-
onomies and increasing volumes of multi-modal data.

This chapter is meant as a summary of the issues covered in the Workshop,
and subsequently, it is neither a balanced treatment of the domain, nor an exten-
sive survey of all open questions. In Section 2 we distinguish between different
spatio-temporal scales of human behavior. In its largest scale, patterns are dis-
covered in the collective behavior of masses. Section 3 deals with the most heavily
researched area of behavior analysis, pertaining to visual sensors. The visual pat-
terns are usually shorter in their temporal extent, but we see that the temporal
aspects are gaining importance in this modality as well. Section 4 focuses on so-
cial signal processing, which adds social semantics to signal processing. Finally,
we conclude in Section 5 and give pointers to further reading material on some
of the key issues.

2 Temporal Levels of Behaviors

It is possible to look at behaviors at different temporal levels. The microscopic
behaviors happen in a short time frame, and have to be analyzed as such. A
blink of the eye, a rapid hand gesture, a yawn can all be seen as microscopic
behaviors. On the other hand, the movement of masses over longer temporal
and spatial scales also contains recognizable patterns, and these can be said to
exist in a macroscopical scale. The continuous range that stretches between these
extremes contains many problems that are approached with a host of pattern
recognition methods.

One of the areas in which different temporal scales come together is ambient
intelligence. In [1], daily activities of people living in a sensed environment (like
eating, using a computer, reading, watching television, etc.) are analyzed. The
smaller time frame in which the activity is actually performed and the larger time
frame which is composed of longer segments prone to contain the activity are
combined in a hierarchical framework. Here, SVM classifiers predict locally on-
going activities, and Conditional Random Fields are used to refine the prediction
by estimating time segments of global activities.
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While most of the papers submitted to the HBU Workshop dealt with be-
havior dynamics on a microscopical scale, we admitted work on both types of
patterns. In [2], daily activity patterns of individuals are analyzed using large
collections of mobile phone data. These reveal that activity patterns within a
given area of work strongly resemble each other. As more data are available
from the population, it becomes possible to create reality mining applications
and discover behavior patterns [3].

The diversity in the behavior-related patterns suggests the possibility of using
diverse sensors in their assessment. Modern mobile phones are equipped with a
host of sensors, thus allowing unprecedented opportunities of personal data col-
lection. In [4], body-worn miniature inertial and magnetic sensors were used the
collect data for activity classification. Each sensor unit used in the study com-
prises a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetometer.
Using multiple types of sensors potentially increases the cost of a given system,
but offers great increase in robustness. Especially in the context of ambient in-
telligence, multimodal analysis of behavior opens up new venues of applications
such as behavioral biometrics and automated care for the elderly. In [1], infrared
and object motion sensors are used in conjunction to classify daily activities in
a sensor-equipped home setting.

The human behavior is not restricted to physical actions and behaviors. Many
people now have a presence on the Web, and exhibit social networking behavior
that is becoming ever more relevant. In the keynote talk of Ramesh Jain [5], the
macroscopic behavior of masses on the Web is investigated.

3 Visual Action Recognition

Vision is currently the most heavily used sensory modality in the analysis of
human behavior. Visual human action recognition concerns the detection and
tracking of people, and more generally, the understanding of human behaviors
from image sequences involving humans [6,7]. Automated vision-based analysis
of human actions finds many applications in surveillance, ambient assisted living,
concept-based video retrieval, automatic sports video annotation and summa-
rization, customer behavior analysis for marketing and gaming. So far a scalable
and widely applicable system for this purpose remains elusive.

3.1 Tracking the Body

Tracking of humans and human behavior inherently involves estimation of body
pose, locations and movements of body parts, interaction with objects, and some-
times also gaze estimation. While estimating the pose means determining the
location and the orientation for an object, humans manifest more complex pose
aspects. Pose estimation can be a post processing step in a tracking algorithm, or
it can be an active part of the tracking process. Recent approaches to tracking
favor particle filtering based methods, as these can maintain multiple proba-
bilistic hypotheses with respect to a parametrized body posture at any given
time [8].
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Pose estimation can be approached with different methods. A model of the
human shape can be used in constraining the interpretation of the pose. In
model-free pose estimation, the pose can be represented as a set of feature points,
as a combination of simple shapes, or with stick-figures, which connect points
with lines. [9] introduced the motion history image to represent human body
movement. [10] recently extended this paradigm to propose a spatio-temporal
silhouette representation, called silhouette energy image to characterize motion
and shape properties. The challenges in this problem are dealing with both
indoor and outdoor conditions, real-time operation, low level features extraction,
motion analysis, and saliency computation, multi-camera fusion, among others.

While some methods aim at tracking and labelling the body parts in 2D, others
try to map 2D sequences of image observations into 3D pose representations.
In some cases, equipment is available to obtain depth information from the
scene. Two papers in this collection describe such systems. In [11], a trinocular
camera system is used for this purpose. In [12] input from multiple cameras are
fused to determine the gesture trajectories of humans performing signs. In both
approaches, hidden Markov model (HMM) is the classifier of choice to effect
temporal classification.

The use of an explicit model of a person’s kinematics, shape, and appearance
in an analysis-by-synthesis framework is a widely investigated approach to hu-
man pose estimation from video [13]. In these approaches the model is used to
synthesize an appearance from the current parametrization of the model, which
is compared to the actual appearance. The discrepancy is minimized by changing
the parameters appropriately, to a point where the model is able to synthesize a
close match of the appearance. At that point, the converged parameters can be
directly used to represent the pose of the person. The direct model pose estima-
tion can de subdivided in multiple view 3D pose estimation [14] and monocular
3D pose estimation. For a detailed overview on methods of pose estimation,
see [15].

Once the people are tracked and spatio-temporal features are extracted, ac-
tion classification can take place. In recent work, static SIFT features were shown
to perform well for many detection tasks, while histogram of oriented gradient
(HoG) and histogram of optical flow (HoF) features were successful for action
recognition [16]. Yet the temporal dimension is taken into account in only a few
low-level descriptors: A 3D Harris operator that describes spatio-temporal inter-
est points was described in [17]. In [18] human actions were modelled as three-
dimensional shapes induced by the silhouettes in the space-time volume. [19]
presented a spatio-temporal interest point detector, and analyzed a number
of cuboid descriptors for action recognition. Most approaches opt for tempo-
ral integration of spatial descriptors, using different forms of dynamic Bayesian
networks [20].

3.2 The Context

Automatic detection of an action may involve complex spatiotemporal and se-
mantic reasoning. To constrain this problem, contextual cues are used. For the
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integration of contextual information, we need to define the context properly. It
can mean several things:

1. Geometrical scene properties, i.e. 3D composition of the scene. The scene
can be classified by using visual cues into one of the possible scene classes.

2. Scene type, i.e. the content and context of the scene. This property can be
derived via texture analysis, and indicate indoor vs. outdoor, or common
locations like street, football field, etc.

3. Objects in the scene: The objects of interaction provide valuable contextual
cues.

4. Persons in the scene: The number of persons in the scene, and their visual
features can provide contextual cues.

5. Temporal context: Detection of other prior actions will influence the detec-
tion of related actions. Interaction semantics would be in this category, and
hence this is probably the richest source of contextual information.

The application setting mostly determines what kind of contextual cue will be
used in each setting. There are marked differences between content-based re-
trieval of actions from movies and detection of actions from one or more surveil-
lance cameras. In the latter the cameras are mostly static, providing poorer
context, as opposed to constructed narratives of films. There are also lots of self-
occlusions, and the scale of action is typically much smaller. In a surveillance
setting real-time operation is usually essential. On the other hand, videos can be
processed in an offline fashion, have often higher resolution and scale for people
performing the actions, engineered camera perspectives, moving and zooming
camera angles. Furthermore, multimedia solutions often come to rescue where
vision-based processing fails; subtitles (text), speech (transcript), social tags and
file name associations are used to label videos. In one of the keynotes of the HBU
Workshop, Ivan Laptev discusses several supervised and weakly-supervised ap-
proaches for action recognition in movies [21].

3.3 Benchmarking

Increased interest in human action/activity recognition in recent years resulted
in several benchmarking and database annotation efforts. In this domain, we
observe that the application focus shifts from the recognition of simple, generic
human actions to the analysis of activities in a context and/or interactions be-
tween humans. The CAVIAR1 Dataset for instance contains video recordings
of settings like city center surveillance and analysis of customer behavior in a
shopping mall. Activities include people walking alone, meeting with others,
window shopping, entering and exiting shops, and leaving a package in a public
place. The latest editions of Performance Evaluation of Tracking and Surveil-
lance (PETS)2 propose similar challenges such as crowd analysis and tracking
of individuals in a crowd.
1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
2 http://www.cvg.rdg.ac.uk/PETS2009/
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Recognition of unusual or dangerous actions is important for public
infrastructure surveillance, and the existence of CCTV cameras and surveil-
lance by security staff makes automated activity recognition a natural extension
in these settings. The automated action recognition technology can support the
existing personnel, and reduce the burden of inspection by making potentially
interesting actions salient, as well as blocking obviously irrelevant information.
The TRECVID3 challenge for 2010 states that “Detecting human behaviors effi-
ciently in vast amounts surveillance video, both retrospectively and in realtime,
is fundamental technology for a variety of higher-level applications of critical
importance to public safety and security.” For this purpose, a large dataset col-
lected from Gatwick airport is made available in the 2010 challenge.

The recent SDHA (Semantic Descriptions of Human Actions) Challenge4, or-
ganized as a satellite event to ICPR’2010, provides three public databases for
various action recognition settings [22]. Some of the labelled actions have com-
plicated semantic associations (e.g., stalking, flirting), which makes the dataset
challenging. Further datasets for this type of research are detailed in [23]. In the
present collection, [24] provides a detailed survey of evaluation protocols on the
KTH action database, which is one of the most studied among these [25].

Apart from individual efforts, a number of previous projects tackled human ac-
tion recognition from different perspectives. To give a few illustrative examples,
the ADVISOR EC-IST project (Annotated Digital Video for Intelligent Surveil-
lance and Optimised Retrieval) aimed at using computer vision algorithms to
detect unusual human behavior and to use the developed technologies to im-
prove the effectiveness of existing security operators5. The tackled behaviors
were blocking, fighting, jumping over barriers, vandalism and overcrowding, all
in a public transport scenario. The CAVIAR EC-IST project (Context Aware
Vision using Image-based Active Recognition) targeted local image descriptors
combined with task, scene, function and object contextual knowledge to improve
image-based recognition processes.

3.4 Challenges

The primary challenge in this area is the great range of actions and gestures pro-
duced by humans even in relatively restricted domains. Humans use contextual
cues extensively to recognize small but discriminative differences. Consider for
instance the gestures of an orchestra conductor, which simultaneously specify
the rhythm, the style and conductor’s interpretation of the piece. A subtle facial
expression or posture can convey that the players should play more legato, or
the energy in the overall composure of the conductor may suggest forte. The
expression of the rhythm can temporarily shift from one hand to the other, as
the conductor overlaps the expression of several cues. The gestures will be highly
idiosyncratic, yet the orchestra generally knows how to adapt to the conductor.

3 http://trecvid.nist.gov/
4 http://cvrc.ece.utexas.edu/SDHA2010/index.html
5 http://www-sop.inria.fr/orion/ADVISOR/default.html
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It is the representation of assumed knowledge (i.e. priors) in combination with
real-time, adaptive and multi-modal information processing on both sides that
makes the problem really difficult for a computer. This problem is investigated
under the rubric of social signals.

4 Social Signals

A great class of human behaviors pertain to expressing and recognizing social
signals, which have communicative and interactive aspects. Even in the absence
of other people, socially formed habits manifest themselves in different ways like
facial expressions and idiosyncratic gestures. Studying social interactions and
developing automated ways of classifying human social behavior from all kinds
of sensors is becoming important not only for natural human-computer inter-
action, but also for all kinds of applications we have mentioned in the previous
section.

4.1 Taxonomies

In [26], a taxonomy is introduced for the analysis of social signals. The ver-
bal signals that are usually direct manifestations of communicative intent are
accompanied by behavioral cues that serve to convey information about the
emotion, personality, status, dominance, regulation and rapport in a given so-
cial context. These cues reside in different modalities, like the physical appear-
ance, gesture, posture, facial expression, focus of attention, vocal behavior (e.g.,
prosody and silences), and even the spatial arrangement of participants during an
interaction.

In one of the major efforts directed for social signal processing, the SSPNet6

project focuses on the analysis of political debates as a rich source of behavioral
signals. The project defines the core questions of social signal processing as
follows:

1. Is it possible to detect automatically nonverbal behavioral cues in data cap-
tured with sensors like microphones and cameras?

2. Is it possible to automatically infer attitudes from nonverbal behavioral cues
detected through sensors like microphones and cameras?

3. Is it possible to synthesize nonverbal behavioral cues conveying desired rela-
tional attitudes for embodiment of social behaviors in artificial agents, robots
or other manufacts?

These questions are generic, in the sense that they apply to many domains of
behaviors equally. However, the computational aspects (for both analysis and
synthesis) depend largely on the application domain, making the problem diffi-
cult or very difficult in each case.
6 http://sspnet.eu/
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4.2 Domains for Analysis

The automatic analysis of behavioral cues in a particular domain requires and
fosters a decomposition of all activities in that domain. Each such domain has
its own challenges and rewards. In the present collection, a number of such do-
mains are investigated. Poggi and D’Errico present a scheme for the annotation of
signals of dominance in political debates [27], which are behaviorally rich and in-
teractive settings. In [28] a taxonomy of communicative and non-communicative
behaviors of teachers towards their pupils is proposed, which can be used for
guiding the development of an automatic analysis tool for a classroom. Such a
tool would be a very valuable teaching aid.

In [29], Lepri et al. investigate prediction of personality traits from behavioral
cues. A well-known taxonomy proposes five traits as constitutive of people’s per-
sonality: Extraversion, Emotional Stability, Agreeableness, Conscientiousness,
Openness to Experience [30]. In [29], the extraversion-introversion dimension is
analyzed using four acoustic features (Conversational Activity, Emphasis, Influ-
ence and Mimicry) and one visual feature. In [31], the emotion content of the
speech is analyzed and the resulting system is usable as a virtual speech coach
for improving public speaking skills. The authors use a discriminative approach,
and train SVM classifiers for each type of emotion.

The idiosyncratic variations constitute a major challenge of social signals. In
successful dyadic interactions, human subjects exhibit a remarkable adaptivity
to these variations. In the study of Özkan and Morency, backchannel feedback in
dyadic interactions is analyzed [32]. A feature selection approach is proposed to
automatically discover the subset of features relevant to this specific application.

4.3 Face Analysis

Affect-related signals constitute a large portion of nonverbal behavioral cues, and
facial expressions are among the most extensively studied signals in this category.
These result from movements of the facial muscles as the face changes in response
to a person’s internal emotional states, intentions, or social communications. Psy-
chological studies suggest that facial expressions, as the main mode for nonverbal
communication, play a vital role in human face-to-face communication [33,34].
Computer recognition of facial expressions has many important applications in
intelligent human-computer interaction, computer animation, surveillance and
security, medical diagnosis, law enforcement, and awareness systems. Therefore,
automatic facial expression analysis (from video or images) has received much
attention in last two decades [35,36]. Face analysis in conjunction with body and
head pose orientation can reveal the attention focus of a person, which can also
be a very useful cue in putting a behavior in its proper context [37].

The challenges of face analysis in the present context are finding the cor-
rect level of description, feature extraction and representation, spontaneous and
posed expression classification, head pose and gaze direction estimation. The
Workshop has received a number of submissions on these areas. In [38] spa-
tiotemporal DCT features are used in a boosted classification framework for the
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classification of face and head gestures. Face detection, tracking and analysis are
much more difficult in real-life settings, as the resolution of the face area and
the pose show great variations. In [39], a probabilistic approach is proposed for
a multi-camera setup to track and recognize faces across difficult conditions.

5 Concluding Remarks

Understanding affective and social behavior of humans with computational tools
is receiving increased interest. The present volume demonstrates that pattern
recognition is an essential component of research in this area. Researchers seek
to analyze patterns emanating from interactions between humans, as well as
between humans and computers or smart systems, with the goal of designing
more responsive and natural interfaces and applications.

Automatic classification of human behavior involves understanding of bodily
motion [7,15,23], gestures and signs [40], analysis of facial expressions [36], and
interpretation of affective signals [35]. On a higher level, these signals are in-
tegrated with the contextual properties of an application domain. Social signal
processing deals with interactions between humans [26]. It integrates verbal cues
with rich sets of non-verbal behavioral cues to deeply analyze social interactions.
Ambient intelligence deals with smarter environments [41]. In ambient environ-
ments, the living space is equipped with many sensors that observe the behavior
of humans and with many actuators to make the space responsive to changes in
these behaviors. As a more focused application, perceptual user interfaces are
concerned with more responsive human-computer interfaces [42,43]. In this do-
main the computer is given the capacity to detect behavioral changes of its user.
The analysis of spatio-temporal dynamics of human actions, observed through
different sensory modalities, allows inference and customization on many lev-
els [44,45].

The submissions for the HBU Workshop demonstrate that the range of be-
haviors in the proposed applications is rapidly expanding. The set of behaviors
under study includes concepts that are hard to describe precisely and mathemat-
ically. However, recent pattern recognition approaches developed for multimedia
retrieval have shown us that a precise description is sometimes not necessary for
the recognition of a concept. If an informative feature extraction step is com-
bined with a powerful pattern classifier and a training set with sufficiently rich
variation, it may be possible to learn appropriate descriptors for even the most
challenging concepts. Subsequently, it is obvious that human behavior under-
standing will continue to be a very active research area in the near future, and
will be instrumental in providing the tools for building more interactive systems.
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Abstract. The Web has changed the way we live, work, and socialize.
Web-thinking has been influencing how we understand, design, and solve
important societal problems and build complex systems. For centuries,
emergence has been considered an essential property underlying the way
complex systems and patterns emerge out of relatively simple interac-
tions among different components. The Web has compellingly demon-
strated results of emergence in understanding human behavior not at an
individual level but at different macro levels ranging from social networks
to global levels. Recent rapid advances in sensor technology, Web 2.0,
Mobile devices, and Web technologies have opened further opportunities
to understand macroscopic human behavior. In this talk, we will discuss
our approach to build a framework for studying macroscopic human be-
havior based on micro-events including Tweets and other participatory
sensing approaches.
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Abstract. Being able to understand dynamics of human mobility is
essential for urban planning and transportation management. Besides
geographic space, in this paper, we characterize mobility in a profile-
based space (activity-aware map) that describes most probable activity
associated with a specific area of space. This, in turn, allows us to capture
the individual daily activity pattern and analyze the correlations among
different people’s work area’s profile. Based on a large mobile phone data
of nearly one million records of the users in the central Metro-Boston
area, we find a strong correlation in daily activity patterns within the
group of people who share a common work area’s profile. In addition,
within the group itself, the similarity in activity patterns decreases as
their work places become apart.

1 Introduction

For better understanding of the effects of human movement, characterizing hu-
man mobility patterns is crucial. For example, without such characterization,
the impact of inhabit dynamics in the city cannot be understood. As spatio-
temporal and geo-referenced datasets are growing rapidly because of the daily
collection of transaction data through database systems, network traffic con-
trollers, sensor networks, and telecommunication data from mobile phones and
other location-aware devices, the large availability of these forms of data allows
researchers to better characterize human mobility. The additional information of
activities associated with human mobility further provides a unique opportunity
to better understand the context of human movement, and hence better urban
planning and management. In this paper, we develop the activity-aware map,
which provides information about the most probable activity associated with
a specific area in the map. With the activity-aware map and an analysis of a
large mobile phone data of nearly one million records of location traces, we are
able to construct the individual daily activity patterns. This allows us to carry
out a correlation analysis of work area’s profile and similarity in daily activity
patterns.

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 14–25, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Related Work

A rapidly increasing number of mobile phone users has motivated researchers
from various fields to study its social [1][2][3] and economic [4][5][6] impact. With
the extensive records of mobile phone data such as calling pattern and location
of the mobile phone user, analyses have been performed on numerous aspects
including behavioral routine [7][8][9], social proximity [10][11], call prediction
[12][13], social closeness [14][15], and human mobility [16][17][18][19][20].

Understanding dynamics of social networks is beneficial to urban planning,
public transport design, traffic engineering, disease outbreaks control, and emer-
gency response management. To study dynamics in human mobility, GPS re-
ceiver has been handy for researchers in collecting a large real-life traces. Azevedo
et al. [16] study pedestrian mobility behavior using GPS traces captured at
Quinta da Boa Vista’s Park in Rio de Janeiro (Brazil). Movement elements are
analyzed from data collected from 120 pedestrians. They find that the velocity
and acceleration elements follow a normal distribution while the direction angle
change and the pause time measure fit better to lognormal distribution. Based
on 226 daily GPS traces of 101 subjects, Lee et al. [17] develop a mobility model
that captures the effect of human mobility patterns characterized by some funda-
mental statistical functions. With analytical and empirical evidence, they show
that human movement can be expressed using gaps among fractal waypoints [21]
(people are more attracted to more popular places).

With a large set of mobile phone data, Candia et al. [18] study spatiotemporal
human dynamics as well as social interactions. They investigate the patterns
in anomalous events, which can be useful in real-time detection of emergency
situation. At the individual level, they find that the interevent time of consecutive
calls can be described by heavy-tailed distribution, which is consistent with the
previous reports on other human related activities. Gonzalez et al. [19] examine
six-month trajectory of 100,000 mobile phone users and find a high regularity
degree in human trajectories contrasting with estimation by Levy flight and
random walk models. People tend to return a few frequent locations and follow
simple repeated patterns despite the diversity of the their travel history. The
most recent study in human mobility based on a large mobile phone data by
Song et al. [20], whose result is consistent with Gonzalez et al.’s [19] that human
mobility is highly predictable. Based on data from 50,000 mobile phone users,
they find that predictability in human mobility is independent of distance that
each individual regularly travel and show that the predictability is stabled at
93% for all regular traveled distances of more than 10km.

In contrast with other work in human mobility, our work is focusing on human
mobility concerning the spatial profile (i.e. type of space or surrounding area such
as dinning, shopping, and entertainment) rather than geographical location.

3 Methodology

A number of literature have described geographical human mobility pattern con-
cerning movement of people between multiple locations. Here we are interested
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in characterizing the mobility not by geographic location but its associated spa-
tial profile. This spatial profile-based mobility pattern, in turn, becomes a human
activity pattern. In addition, our interest expands to investigation of relationship
between this activity pattern and demographic of people. Therefore, in this sec-
tion, we will describe our methodology used in characterizing space, capturing
daily activity pattern, as well as preprocessing our dataset.

3.1 Data Preparation

In this research, we use anonymous mobile phone data collected during the pe-
riod from July 30th, 2009 to September 12th, 2009 by Airsage[22] of about one
million users in the state of Massachusetts, which account for approximately 20%
of population, equally spread over space. This includes 130 million anonymous lo-
cation estimations in (latitude,longitude)-coordinates, which are recorded when
the users are engaged in communication via the cellular network. Specifically,
the locations are estimated at the beginning and the end of each voice call
placed or received, when a short message is sent or received, and while internet
is connected. Note that these location estimations have an average uncertainty
of 320 meters and median of 220 meters as reported by Airsage[22] based on
internal and independent tests. For our analysis, we consider the mobile phone
data within an area of 33x42km2, which includes 52 cities (Boston, Cambridge,
and others) in the county of Essex, Middlesex, Suffolk, and Norfolk as shown in
Fig. 1. The list of the counties and their corresponding area covered (in km2) by
this study are shown in Table 1.

Within this area in the map, we need to extract mobility traces of each user
from the mobile phone data. As the estimation of the user’s location is aggregated

Fig. 1. Area of study in this research, cropped by yellow line
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Table 1. List of the counties and their area covered by this study

County Area covered (km2)
Essex 110.30

Middlesex 452.52
Suffolk 154.39
Norfolk 26.12

only when network connection is established, mobility thus can be derived as a
temporal sequence of locations. To segment these traces into trajectories so that
daily mobility pattern of each individual can be identified, we describe here some
basic algorithms to extract trajectory and stop [23].

Let Xk denote a set of sequential traces of user k such that Xk = {xk(1), xk(2),
xk(3), ...} where xk(i) is a position i of user k. A trajectory can then be obtained
by segmenting Xk with the spatial threshold �S. If a distance between adjacent
positions is greater than the threshold (distance(xk(i), xk(i + 1)) > �S), then
the early position xk(i) becomes the end position of the last trajectory while the
later position xk(i+1) becomes the starting position of the next trajectory. Once
the trajectories are detected, a stop can be identified as an event during which
the user stays in a specific location for a sufficiently long period of time. As each
position i contains location and timestamp, i.e. xk(i) = (lat(i), long(i), t(i)),
extraction of a stop depends on time and space. A stop is thus regarded as
a sequence of positions {x(j), x(j + 1), x(j + 3), ..., x(j + m)} where the dis-
tance between any adjacent positions is less than a spatial threshold Sth i.e.,
distance(x(j), x(j + 1)) < Sth, and time spent within the location is greater
than a time threshold Tth i.e., t(m) − t(j) > Tth.

After stops have been identified, work location of each user is then estimated
as a most frequent stop during the day hours. The information about work
location allows us to derive the mobility choices of the users, and detect activity
patterns throughout the day.

3.2 Spatial Profiling

To model the space, we construct a virtual grid reference by dividing the map
into square cells of size 500 by 500 meters (to compensate location estimation
uncertainty). Since our interest is in the activities associated with the space, we
thus characterize space based on the type of activities expected to be performed
within given space. For example, if restaurants were clustered within a particular
area, then this area would be associated with eating activity.

In this study, we consider four different human activities in which people typ-
ically spend time engaging on daily basis. These activities are concerning eating,
shopping, entertainment, and recreational. Profiling the map according to these
activities requires information about the types of places within each cell. To ac-
quire the information regarding these activities, we search for Points of Interest
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Table 2. Considered activities and keywords used for POIs search

Activity Keywords used
Eating Restaurant, Bakery, Coffee shop

Shopping Mall, Store, Market
Entertainment Theater, Bowling, Night club
Recreational Park, Gym, Fitness

(POIs) for each cell location. We use pYsearch (Python APIs for Y! search ser-
vices) version 3.1 [24] for POI search service, and Reverse Geocoding with Geopy
(A Geocoding Toolbox for Python) [25] for translating (latitude, longitude)-
coordinate into a physical address. For each activity category of each cell, we
make three search attempts using different keywords. The keywords used for each
activity category are listed in Table 2. With the limit of 5,000 queries per day
restricted by Yahoo, an extensive amount of search time is required inevitably.

Once POI searches are completed, the number of POIs associated with each
activity category is recorded for each cell. The raw activity distribution map is
then composed of 500x500m2 cells where each cell contains distribution of each
activity. Each cell Ci contains normalized portion of each activity:

Ci = [αi(1), αi(2), αi(3), αi(4)], (1)

where i = 1, 2, 3, ..., N , N is the total number of cells, and normalized portion
of each activity αi(a) in cell i is computed as

αi(a) =
nαi(a)∑N
i=1 nαi(a)

, (2)

where nαi(a) denotes the number of POIs associated with activity a within the
cell i and a = 1, 2, 3, 4 corresponds to eating, shopping, entertainment, and
recreational activity, respectively.

Based on our POI search, Fig. 2 shows a map with the visual grids and POIs
found by 12 different keywords (described in Table 2) in different colors.

To further classify these cells into a more crisp distribution map, we apply
k-means algorithm with k=4. The resulting crisp activity distribution map is de-
picted in Fig. 3 where each cell is classified to one of the four activities according
to Bayes theorem:

P (a|nαi(a)) =
P (nαi(a)|a)P (a)

nαi(a)
. (3)

The interest here is to find the most probable activity category a for each of the k
clusters. Therefore, for each cluster, we find a that maximizes a posteriori (MAP
method). So we use Bayes theorem above to compute the posterior probability
of each activity category as follows:
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Fig. 2. POI search results on the map with 500x500m2 visual grids

aMAP ≡ arg max
a

P (a|nαi(a))

= arg max
a

P (nαi(a)|a)P (a)
nαi(a)

= arg max
a

P (nαi(a)|a)P (a). (4)

3.3 Daily Activity Patterns

Generally, people perform different activities throughout the day. A lot of these
activities are repeated on daily basis, e.g. eating around 12pm (noon), jogging in
the evening, and hence producing recognizable patterns. With our mobile phone
data, each user is more likely to engage in an activity during “stop” rather than
on the move. Therefore, for each stop, activity is identified according to the crisp
activity distribution map.

To infer a daily activity pattern for each user, we divide 24-hour time scale
into eight 3-hour segments starting at 5AM as shown in Fig. 4. So daily activity
pattern is simply a sequence of activities performed by the user during each stop
throughout the day. For each user, daily activity patterns are collected over the
course of the data collection period. Note that, in this study, we consider only
weekdays (Monday, Tuesday, Wednesday, Thursday, Friday) as our speculation
is that weekday pattern is different from weekend pattern due to typical work
schedule and hence different daily activity sequences – this will be addressed and
further discussed in our future work.
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Fig. 3. Crisp activity distribution map

5AM 8AM 11AM 2PM 5PM 8PM 11PM 2AM2AM 5AM

  1           2           3          4           5           6          7          8

Fig. 4. The eight 3-hour temporal windows are used to frame the daily activity pattern

To derive the representative daily activity pattern of each user, we simply
assign each segment with the most frequent activity during that time interval
over the period of data collection. Precisely, if λd

a(t) represents the count of
activity a on d-th day during time segment t (where t = 1, 2, 3.., 8), then

z(t) = argmax
a

M∑
d=1

λd
a(t) (5)

where z(t) is the assigned activity for time segment t and M is the total number
of days.

4 Work Area’s Profile and Similarity in Daily Activity
Patterns

The activity map and individual daily activity patterns developed in the previous
section allows us to conduct a number of studies that can be useful for better
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understanding of human behavior in the city. In this present research, we are
particularly interested in relationship between people’s daily activity patterns
and the characteristic of their work area. Do people who work in the same area’s
category (e.g. eating, shopping, etc.) also have similar daily activity patterns?
With the same type of work area, how does distance impact the similarity in
their daily activity patterns (e.g. do people who work in an urban shopping area
have similar activity pattern with people who work in a distant shopping area)?
In this current study, we are attempting to answer these two questions.

As a first step, we classify the users into four groups based on their work cell’s
profiles. Each group then consists of a number of different individual daily ac-
tivity patterns who have a common work cell’s profile. To represent each group’s
activity pattern, we need to find a group signature for further correlation anal-
yses. The representative daily activity pattern or signature of each group can
be obtained in a similar fashion with the individual patterns described in the
previous section (using Eq. (5)). The derived signatures are shown in Table 3.

It can be noticed that there is no Eating element appears in any of other
group signatures beside its own group (showing in form of a working activity,
W). Our speculation is that it could be caused by first, people normally eat at
home (breakfasts) and at work or somewhere nearby workplace (lunches), and
second, people are not frequently involved in a phone communication while at
eating area. Note also that the patterns are derived from weekdays activities so
if weekends-only activities are considered, Eating elements could emerge in the
group patterns.

To answer the first question, we need to measure similarity in daily activity
patterns among individuals within the same group as well as among other groups.
To measure distance (dissimilarity) between two daily activity patterns, we use
Hamming distance, which is normally used to measure distance between two
strings of equal length. The distance is essentially the number of positions at
which the corresponding symbols are different, which is quite suitable for our
case as a series of activities can be considered as symbols. The result of the
average Hamming distance within the group is shown in Table 4.

Using group signatures obtained earlier, we then measure dissimilarity between
each group signature and other group’s individual patterns. The result of this
between-group distance is shown in Table 5 in forms of averageHamming distance.

As the result of our first investigation, Fig. 5 illustrates a bar plot intended
to make a comparison between within-group and between-group distances where

Table 3. Signature of each group based on work cell’s profile. Note: Eat. = Eating,
Sho. = Shopping, Ent. = Entertainment, Rec. = Recreational, W = Work cell.

Group Group’s daily activity pattern
Eating W–W–W–W–Sho.–Rec.–Rec.–Sho.

Shopping W–W–W–W–Rec.–Rec.–W–W
Entertainment Sho.–W–W–W–W–Rec.–Sho.–Sho.
Recreational W–W–W–W–W–Sho.–Sho.–Sho.
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Table 4. Average within-group distance

Work cell’s profile Average distance
Eating 4.78

Shopping 2.58
Entertainment 4.67
Recreational 3.61

Table 5. Average between-group distance

Eating Shopping Entertainment Recreational
Eating – 6.53 6.60 6.96

Shopping 4.90 – 4.92 5.05
Entertainment 6.43 6.88 – 7.00
Recreational 5.04 4.81 5.13 –

red bars represent within-group distance while blue bars represent between-group
distance. Clearly, it shows that within-group distances are less than between-
group distances. This implies that people who have a common work cell’s profile
tend to exhibit more similar daily activity patterns than people who have dif-
ferent work cell’s profile.

For the second investigation about the impact of physical distance on the
similarity in activity patterns, we decide to proceed by placing a growing spatial
window (a circle of an arbitrary radius) onto the map then measure similarity
between between the users’ activity pattern whose work cell located at the cen-
ter of the window and other users whose work cells are within the vicinity of
the spatial window. The similarity is being measured while the radius of the
window grows from a small to larger value. The process is repeated for each
activity category. This way, we can see the change(if any) in similarity for each
work profile as we move away from the center area. Precisely, we choose to
grow the spatial window from the center of Boston area with the radius varying
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Fig. 5. When users are grouped together based on their work cell’s profiles, within-
group and between-group distances are illustrated with red and blue bars respectively.
This shows higher degree in similarity within the group than between groups.
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Fig. 6. Dissimilarity in daily activity patterns is measured by average Hamming dis-
tance as the radius varies from 0.5km to 30km for each work cell’s profile. The center
of the growing radius is near the center of city of Boston. Dissimilarity is between the
users whose work cells are within the 0.5km radius and other users covered by growing
radius.

from 0.5km to 30km. The result for each work category is shown in Fig. 6. We
can observe that, overall, the similarity in activity patterns decreases as radius
increases, which implies that physical distance has an impact on similarity in
daily activity patterns. People whose work area’s profile are although the same,
their activity patterns tend to deviate more as they work areas become further
apart.

In summary, we have observed a strong correlation in daily activity patterns
within the group of people who share a common work area’s profile. Addition,
within the group itself, the similarity in activity patterns decreases as the dis-
tance between them increases.

5 Limitations of the Study

There are a number of limitations of this study. First and foremost, the lack
of continuity of mobility traces due to the fact that the location is estimated
from mobile phone data only when connection with a cellular network is made
through either voice, text, or data communication, which constricts us to a
smaller number of users that can be analyzed. Secondly, our POI search is con-
strained by Yahoo’s search limit and capability. Lastly, home and work locations
are estimated intuitively according to the data provided. Although ground-truth
validation is desired, it would be very difficult to perform due to the privacy
issue.
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6 Conclusions

In this paper, we have developed an activity-aware map that contains most
probable activity associated with a specific area in the map based on POIs
information. With activity-aware map, we are able to extract individual daily
activity patterns from analyzing a large mobile phone data of nearly one million
records. Results from our correlation analysis show a strong correlation in daily
activity patterns within the group of people who share a common work area’s
profile. In addition, within the group itself, the similarity in activity patterns
decreases as the distance between them increases. This study is the first report
of many more to come in using activity-aware map to study inhabitant behavior.
So as our future direction, we will continue to investigate on daily activity pattern
and its dynamics for better understanding of human dynamics, which in turn
benefits urban planning and management.
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Abstract. Activity recognition can be seen as a local task aimed at
identifying an on-going activity performed at a certain time, or a global
one identifying time segments in which a certain activity is being per-
formed. We combine these tasks by a hierarchical approach which locally
predicts on-going activities by a Support Vector Machine and globally
refines them by a Conditional Random Field focused on time segments in-
volving related activities. By varying temporal scales in order to account
for widely different activity durations, we achieve substantial improve-
ments in on-going activity recognition on a realistic dataset from the
PlaceLab sensing environment. When focusing on periods within which
related activities are known to be performed, the refinement stage man-
ages to exploit these relationships in order to correct inaccurate local
predictions.

1 Introduction

Automatic monitoring of Activities of Daily Living (ADLs, such as eating, drink-
ing, cleaning, and so on) is an important component for the implementation of
advanced services in the fields of Ambient Assisted Living and Assisted Cogni-
tion. In assessing the level of self-sufficiency of patients, clinicians consider the
capabilities of performing basic ADLs such as cooking and eating [1]. The auto-
matic recognition and tracking of these activities may allow for a more reliable
and cheaper automatic reporting to clinicians or relatives. At the same time, it
allows for the provision of advanced services that can contribute to older people’s
independent life: services like reminders, help in activity execution, etc.

As defined in [2], the activity classification task can take at least two guises
which differ according to the kind of perspective taken on the activities. The first
type is the “complete activity” (CA) recognition task and considers finished ac-
tivities and asks about their type. This task involves an external perspective on
the activity and humans talk about these activities using the perfective tenses
as in the following example: A-“What did Mark do yesterday afternoon?”, B-
“He played basketball”. For automatic systems, the task is to assign the right
activity label to the unknown segmented and complete one. Different works in
activity recognition field dealt with CA task; in particular it has been often used
by researchers adopting the object-use approach whereby activities are modeled

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 26–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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as sequences of used objects [3,4]. The second kind of classification task, called
“on-going activity” recognition task (OGA) takes an internal perspective on
activities. The human subject or the automatic system are temporally located
inside the activity. In this case, humans would use imperfective tenses or progres-
sive forms: A-“What is Mark doing now?”, B-“Mark is playing basketball”. So,
the task is anchored to a given time and the goal of the human or of the machine
is finding signs of the on-going activity and define their type. We can cite some
previous works adopting the OGA paradigm; for example, [5, 6]. In this paper
we are going to deal with both of these tasks (OGA and CA): more precisely, we
deal with OGA task using Support Vector Machines (SVM) in order to predict
what is happening inside a given small time interval. These local predictions are
fed as input to a sequential model, namely a Conditional Random Field (CRF),
aimed at performing CA recognition on larger segments of the day. In the real
world, people often perform multiple activities concurrently in their daily living;
e.g. a person might have the habit of watching TV while ironing. Furthermore,
related activities can have quite different recognition complexity. We build on
this observation by focusing on time segments involving highly related activi-
ties, and exploiting a well-predicted activity to improve recognition of a difficult
one. Finally, our evaluation highlights the importance of calibrating the tempo-
ral scale at which an activity should be searched for depending on its average
duration.

This paper is organized as follows. In Section 2 we discuss some related works
on activity recognition. Section 3 describes the sensing environment and the
learning algorithms we employed. Experimental results are reported in Section 4,
and conclusions are drawn in Section 5.

2 Previous Works

The problem of human activity recognition has received increasing interest in
recent years in the pattern recognition and machine learning communities. In
particular, good results were achieved both on low-level activities (e.g. ADLs
such as sitting, standing, walking, and lying [7,8]), and high-level activities (e.g.
eating, watching TV, dishwashing, and cooking [9,10], and office activities [11]).
Different sensors were used for activity recognition tasks: several works have
explored the use of switches and motion detectors (similar to those used in com-
mon alarm systems) to collect data regarding the performance of ADLs [12].
Recently, Logan et al. [5] compared different modalities on data approaching
real-world conditions: they collected 104 hours of annotated data of a person
living in a house, instrumented with over 900 sensors, including power and wa-
ter flow inputs, objects and person motion detectors, and RFID tags. They found
that 10 infra-red motion detectors outperformed the other sensors on many of
the studied activities, especially those that were usually performed in the same
location. From a machine learning point of view, most of the work in the activ-
ity recognition area is based on supervised algorithms such as Naive Bayes [9],
Decision Trees [7, 5], Hidden Markov Models [13, 8, 3, 14], Support Vector Ma-
chines [13, 2], and Conditional Random Fields [14]. In particular, Conditional
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Random Fields were found to offer higher overall accuracy than Hidden Markov
Models (HMM) for multi-label activity classification, even if HMMs can better
discriminate between multiple activities when the training dataset contains un-
balanced class labels [14]. A limited number of works used relational learning
techniques to deal with activity recognition tasks: [15] used Relational Markov
Networks (RMNs) for recognizing activities from location data. Landwher et
al [16] introduced a relational transformation based tagging system in order to
integrate various principles of inductive logic programming (e.g., search, oper-
ators, representations, and background knowledge) with transformation-based
tagging (e.g., error-driven search, branch and bound idea).

3 Activity Classification

3.1 The Sensing Environment

PlaceLab is an instrumented home environment operated as a shared research
facility. The complete description of the sensing environment can be found in [5].
Logan et al. [5] collected and analyzed data from a couple who lived at the home
for a period of 10 weeks. The home is a custom built condominium instrumented
with several hundred sensors, including an audiovisual recording system that
captures ground truth of the participants activities. The environment contains
several classes of sensors, including wired reed switches, power and water flow
inputs, objects and person motion detectors, and RFID tags. We focused on
infrared (IR) and object motion (OM) sensors, those found in Logan et al. [5]
to be the most discriminant.

3.2 Data Preparation

Following Logan et al. [5], we divided each day into 30s intervals overlapped by
15s. We formulated the activity recognition problem as nine binary classification
tasks at the interval level, one for each of the nine possible activities. Each
interval was labeled positively for a certain activity if it had occurred at any
time within it. Note that many activities are not mutually exclusive (i.e. they

Table 1. Activity duration statistics

Activity Instances Avg. duration (min)
ActivelyWatchingTV 15 53
DishWashing 21 1
Grooming 28 2
GroupedEating 101 4
Hygiene 20 3
MealPrep 40 2
Reading 29 17
UsingComputer 50 37
UsingPhone 68 3
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can both be performed within the 30s timeframe) and the problem should be
addressed as multi-label rather than multi-class prediction.

We represented an interval as a vector of sensor features, indicating the num-
ber of times each sensor was activated during the interval.

Most activities have average durations on the order of a minute, with some like
ActivelyWatchingTV or UsingComputer having a far longer duration as showed
in Table 1.

In order to account for such temporal correlations we applied a sliding window
approach computing average feature vectors on intervals surrounding the one of
interest, either separately for past and future (asymmetric) or combining both
together (symmetric).

3.3 Local Classification by Support Vector Machines

We addressed each binary classification task at the interval level with an SVM
classifier [17]. SVM are state-of-the-art discriminative classifiers capable of effi-
ciently handling thousands of features and learning complex non-linear functions
thanks to the kernel trick. Experimental results show substantial improvements
over the decision tree classifiers employed in [5], as will be detailed in the exper-
imental section.

3.4 Global Refinement by Conditional Random Fields

CRFs [18] are undirected graphical models conditioned on observation sequences.
Linear-chain CRF allow to efficiently model sequential observations and have
been successfully applied to a variety of recognition tasks in text classification,
bioinformatics and activity recognition, to name a few application domain. Here

Fig. 1. Graphical model representation of a linear-chain CRF, on the left, and a facto-
rial CRF with two chains, on the right, unrolled for three time intervals. The x(t) nodes
represent the predicted OGAs over time, while the yi(t) variables are the detected CAs.
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we employ them as a refinement stage, in order to combine sequences of local
OGA predictions from multiple related activities into a global CA prediction.
Figure 1 shows a graphical representation of the models we employed. The in-
puts x(t) represent local OGA predictions for all or some of the activities at
time interval t. The outputs y(t) represent CA predictions for the activity being
globally refined. The model to the left is a plain linear-chain CRF, where a sin-
gle activity is predicted in output. Connections are provided between outputs at
consecutive time instants, with the effect of propagating predictions along the
time range. The model to the right is a more complex factorial CRF [19], where
multiple activities (two in this example) are jointly predicted. Linear-chain mod-
els for each activity are combined by adding co-temporal connections between
activities. Note that the higher complexity of the factorial model implies more
parameters to be estimated and approximate inference. In conjunction with the
scarcity of positive examples for most activities, this often resulted in a perfor-
mance worsening with respect to the simpler linear-chain case, as will be detailed
in the experimental section.

4 Experimental Results

We conducted a leave-one-day-out cross validation procedure as in [5]. The aims
of the experimental evaluation are: 1) identifying the most discriminative sensors
and time frames (i.e. sizes of the sliding windows) for the different activities; 2)
comparing to previous activity recognition approaches on this dataset; 3) verify-
ing the usefulness of sequential models to refine local predictions. In the following
we will report experimental results for each of these points. For comparability
to [5], we employed area under the ROC curve (AUC) as a figure of merit in all
experiments.

For each of the binary classification tasks, we conducted an extensive model
selection phase to identify 1) the best set of sensors, IR, OM or IR+OM; 2) the
best sliding window size; 3) the best SVM parameters, namely regularization
parameter C and kernel type among linear, polynomial or Gaussian with varying
width size.

Model selection was conducted by an inner leave-one-day-out cross validation
on the training set of the first fold (i.e. the first 8 days), and obtained parameters
and feature sets were kept fixed for the outer cross validation.

4.1 Model Selection Results

The best kernel was a second degree polynomial for all activities. Concerning
sensor classes, IR sensors performed much better than OM ones. Furthermore,
we did not experience significant advantages in combining OM and IR sensors,
especially when increasing the size of the sliding window. These results are con-
sistent with those reported in [5] where IR sensors where found to be the most
discriminant.

Figure 2 reports AUC values for varying window sizes for the different activi-
ties. Both IR and IR+OM results are shown. Two aspects are worth mentioning.
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Fig. 2. AUC dependence on window size, comparison between IR and IR+OM for the
different activities

First, large differences can be observed in the optimal window size of different
activities. This size is actually highly correlated with the average duration of the
activity (see Table 1), with the three longest activities, namely ActivelyWatch-
ingTV, Reading (for which the maximum is outsize of the range shown) and
UsingComputer, having by far the largest optimal window sizes. Second, IR and
IR+OM behave quite differently with respect to optimal window size, with the
latter early starting to show performance worsening. This seems to indicate the
need to separately optimize window sizes for the two classes of sensors. We plan
to investigate this issue in future experiments.

4.2 SVM Results

Table 2 reports experimental comparisons between our local SVM classifiers and
the decision trees (DT) used by Logan et al. [5].

SVM substantially outperforms DT in all experiments. The largest improve-
ments can be observed for the three hardest recognition tasks, GroupedEating,
Reading and UsingPhone. Note that an appropriate window size is also crucial
in achieving these results, especially for the first two activities which perform
drastically worse if only the activations in the target interval are considered (see
Figure 2). UsingComputer is by far the best predicted activity, as the other ac-
tivities with AUC > 0.95 have much less positive examples, and AUC is very
sensitive to the unbalancing in the data.
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Table 2. Leave-one-day-out cross validated AUC (%) for DT and SVM. Optimal win-
dow size refers to SVM and was obtained by an inner cross-validation on the training
set of the first fold.

Activity Best win. SVMAUC DTAUC

ActivelyWatchingTV s85 90 80
DishWashing s3 97 89

Grooming s45 95 87
GroupedEating s55 91 56

Hygiene a19 96 86
MealPreparation s11 97 87

Reading s135 81 54
UsingComputer s95 96 85

UsingPhone s9 85 64

4.3 CRF Results

We investigated the usefulness of relying on well-predicted activities in order to
improve recognition of more difficult ones. Figure 3 shows the cross-correlation
between UsingComputer and Reading, the two activities with highest cross-
correlation. Note that activities are frequently co-occurrent (Lag=0), but also
frequently follow one after the other within a short time frame.

We employed either the true labels or the local SVM predictions in order
to focus on time segments likely to contain one of these activities. We selected
segments of consecutive intervals where at least one of the two activities was
actually performed or locally predicted to be performed, allowing for a small
gap of inactivity (10 intervals) between consecutive positive intervals. We then
retained those segments in which each activity was performed for at least 3 inter-
vals. During test, we applied the same selection mechanism to identify candidate
time segments.

We experimented with two different models: a linear-chain CRF predicting a
single activity, and a factorial CRF jointly predicting Reading and UsingCom-
puter. Each model was input either the margins of the activity being predicted,
the margins of both activities, or the margins of all the nine activities.
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Table 3. Results of CRF experiments. Both training and test data is segmented ac-
cording to the true labels. A ‘-’ indicates that there are no positive instances of the
given activity. L-CRF stands for linear-chain CRF, F-CRF for factorial CRF.

Predictions for Reading

Prediction 1 2 3 4 5 6 7 8 9

SVM 0.31 – 0.25 0.48 0.85 – 0.12 0.55 0.56
L-CRF, Reading 0.38 – 0.5 0.85 0 – 0.66 0.32 0.56
L-CRF, Reading+UsingComputer 0.38 – 0.5 0.94 0 – 0.86 0.5 0.54
L-CRF, All Activities 0.45 – 0.5 0.71 0 – 0.67 0.68 0.65
F-CRF, Reading+UsingComputer 0.36 – 0.04 0.61 0.24 – 0.33 0.49 0.48
F-CRF, All Activities 0.42 – 0.93 0.55 0 – 0.69 0.5 0.72

Predictions for Using Computer

Prediction 1 2 3 4 5 6 7 8 9
SVM 0.48 – 0.95 0.68 0.8 – 0.79 0.83 0.77
L-CRF, UsingComputer 0.99 – 0.98 0.94 0.9 – 0.91 0.76 0.89
L-CRF, Reading+UsingComputer 0.98 – 0.98 0.94 0.9 – 0.87 0.78 0.89
L-CRF, All Activities 1 – 1 0.85 0.97 – 0.91 0.87 0.87
F-CRF, Reading+UsingComputer 0.71 – 0.95 0.86 0.78 – 0.79 0.86 0.79
F-CRF, All Activities 0.72 – 0.67 0.96 0.14 – 0.87 0.87 0.78

Table 3 summarizes the results for the prediction of Reading and UsingCom-
puter with the different CRF models. Each row contains the AUC of the predic-
tions for the given combination of CRF type and inputs, for each day of the test
data. The AUCs of the SVM predictor are included for reference. Numbers in
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Fig. 4. Plot showing the predictions of the linear-chain CRF for Reading on cross-
validation day 7. On the bottom row we report the true labels for Reading. The middle
row represents the SVM predictions. The top represents the CRF predictions.
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Fig. 5. Plot showing the predictions of the factorial CRF for both Reading and Using-
Computer, with all 9 activities as inputs. The predictions refer to day 4. For simplicity,
only the labels and local predictions for Reading and UsingComputer are shown.

bold highlight the best result for each test day. Using the true labels to segment
both train and test data is clearly infeasible in realistic conditions, where the
true labels are not available during the testing stage. However, these experiments
allow us to highlight the potential advantages of a sequential refinement stage for
CA recognition, abstracting away the problem of identifying candidate periods
of the day to focus on.

The first observation is that the linear-chain CRF typically outperforms the
SVM, on all days and for both activities, with the sole exception of Reading
during day 5. In general the CRF manages to overcome the local predictions.
These can be very bad especially in the case of Reading, which is particularly
difficult to predict on a local basis. Interestingly, this behavior occurs even if
only one input is given. A particular instance of this behavior can be seen in
Figure 4, referring to day 7 of the one input case. Here the local predictions are
quite bad, but the CRF is able to approximately detect the second large segment
of activity.

The factorial CRF does not show this consistent behavior, performing rather
worse on some of the test instances. This may be due to the higher complexity
of the model, requiring more parameters and approximate inference, and the
sparseness of the train data available for Reading. One exception is shown in
Figure 5, which refers to the predictions from all activities as inputs on day 4.

We also note that usually increasing the number of inputs improves the pre-
diction for both the linear-chain and factorial models. This fact hints at the
positive effect that combining multiple local predictions has on the accuracy of
the CRF. As an example, Figure 6 shows how the CRF combines the wrong
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Fig. 6. Plot showing the predictions of Reading with both Reading and UsingComputer
as inputs, performed with the linear-chain CRF. The predictions refer to day 4.

Table 4. Results of CRF experiments. Both training and test data is segmented ac-
cording to the local predictions. A ’-’ indicates that there are no positive instances of
the given activity.

Predictions for Reading

Prediction 1 2 3 4 5 6 7 8 9

SVM – – – 0.62 0.95 0.76 0.33 0.91 0.74
L-CRF, Reading – – – 0.49 0.42 0.35 0.78 0.1 0.49
L-CRF, Reading+UsingComputer – – – 0.51 0.39 0.23 0.79 0.05 0.39
L-CRF, All Activities – – – 0.43 0.36 0.47 0.71 0.63 0.86

F-CRF, Reading+UsingComputer – – – 0.46 0.08 0.33 0.71 0.05 0.36
F-CRF, All Activities – – – 0.14 0.02 0.45 0.4 0.94 0.8

Predictions for Using Computer

Prediction 1 2 3 4 5 6 7 8 9
SVM 0.88 0.79 – 0.83 0.96 0.39 0.88 0.79 0.55
L-CRF, UsingComputer 0.6 0.97 – 0.92 0.88 0.48 0.86 0.9 0.21
L-CRF, Reading+UsingComputer 0.6 0.88 – 0.85 0.76 0.55 0.83 0.9 0.14
L-CRF, All Activities 0 0 – 0.4 0.4 0.47 0.65 0.65 0.86

F-CRF, Reading+UsingComputer 0.38 0.85 – 0.67 0.81 0.67 0.21 0.48 0.43
F-CRF, All Activities 0.69 0.53 – 0.99 0.93 0.48 0.94 0.88 0.64

local prediction of Reading with the prediction of UsingComputer to accurately
locate both positives and negatives of Reading, even though its SVM prediction
is almost completely wrong.

Table 4 summarizes the results of the CRFs when the test and train data are
segmented according to the local predictions. In this case, the contributions of
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the CRF are not as clear cut. For both activities, the best CRF model seems the
most complex one, namely a factorial CRF with all 9 activities in input. However,
the comparison with the local SVM predictions does not allow to draw clear
conclusions, with three wins vs three losses for3.4 Reading, and five wins vs three
losses for UsingComputer. Experiments in which training data were segmented
according to the true labels did not produce substantially different results. This
indicates that further work is needed in order to make CRF predictions more
robust to a noisy identification of candidate periods.

5 Conclusion

We addressed the problem of activity recognition from the two perspectives of
on-going and complete identification. We showed that by varying the temporal
scale at which sensor readings are aggregated, we can account for the different
average duration of activities, achieving substantial improvements on the on-
going recognition task. The combination of local predictions by CRF sequential
models allowed us to refine them into a complete activity recognition prediction.
Preliminary results indicate that when focusing on periods containing related
activities, this relationship helps to correct inaccurate local predictions, espe-
cially in exploiting information on easier activities to improve predictions of a
harder one. In order to successfully apply this strategy in a real setting, how-
ever, we need to improve its robustness to a noisy identification of these periods,
for instance by focusing on reliable predictions only and searching for the more
difficult activities in the surroundings of the simpler ones.
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Abstract. This paper provides a comparative study on the different
techniques of classifying human activities that are performed using body-
worn miniature inertial and magnetic sensors. The classification tech-
niques implemented and compared in this study are: Bayesian decision
making (BDM), the least-squares method (LSM), the k-nearest neighbor
algorithm (k-NN), dynamic time warping (DTW), support vector ma-
chines (SVM), and artificial neural networks (ANN). Daily and sports
activities are classified using five sensor units worn by eight subjects
on the chest, the arms, and the legs. Each sensor unit comprises a tri-
axial gyroscope, a triaxial accelerometer, and a triaxial magnetometer.
Principal component analysis (PCA) and sequential forward feature se-
lection (SFFS) methods are employed for feature reduction. For a small
number of features, SFFS demonstrates better performance and should
be preferable especially in real-time applications. The classifiers are val-
idated using different cross-validation techniques. Among the different
classifiers we have considered, BDM results in the highest correct classi-
fication rate with relatively small computational cost.

Keywords: inertial sensors, magnetometers, human activity recogni-
tion and classification, feature selection and reduction.

1 Introduction

Computers have been in peoples’ lives for many decades. With rapidly accel-
erating technology, hand-held computers have already made their way to our
daily lives. Human-computer interaction has been an active research area since
the introduction of computers; however, it is now becoming essential to design
context-aware systems that recognize and interpret human behavior correctly.
One aspect of human behavior understanding is the recognition and monitoring
of daily activities. A wearable activity recognition system can improve the qual-
ity of life in many critical areas, such as ambulatory monitoring, home-based
rehabilitation, and fall detection.

Earlier activity recognition systems mostly used vision as the sensing modal-
ity [1,2] and that track of research is still going on today [3]. However, vision-
based systems can only be used in a confined space, e.g., a house, an office, or
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c© Springer-Verlag Berlin Heidelberg 2010



Activity Recognition Using Inertial/Magnetic Sensors 39

a laboratory, with carefully adjusted environmental parameters such as proper
illumination. Using cameras can also interfere with the privacy of the individual
in question and this may even cause him/her to act differently than normal.
Furthermore, when a single camera is used, the 3-D scene is projected onto a
2-D one, with significant information loss. Occlusion or shadowing of points of
interest (by human body parts or objects in the surroundings) is circumvented
by positioning multiple camera systems in the environment and using several
2-D projections to reconstruct the 3-D scene. This requires each camera to be
separately calibrated.

It is said in [4] that “Activity can be best measured where it occurs.” Miniature
inertial sensors can be flexibly used inside or behind objects without occlusion ef-
fects. This is a major advantage over visual motion-capture systems, that require
a free line of sight. Because of such restrictions, alternative activity recognition
systems, mostly using wearable miniature inertial sensors are being developed.
References [5,6,7] provide comprehensive surveys on the use of inertial sensors
in motion recognition and analysis.

Inertial sensor based activity recognition systems are used in monitoring and
observation of the elderly remotely by personal alarm systems [8], detection
and classification of falls [9,10], medical diagnosis and treatment [11], monitor-
ing children remotely at home or in school, rehabilitation and physical ther-
apy [12], biomechanics research [7], ergonomics [13], sports science [14], ballet
and dance [15], animation, film making, TV, live entertainment, virtual reality,
and computer games [16].

Vision-based systems and inertial sensor based systems are by no means exclu-
sive; in a number of studies, video cameras are used as a reference for comparison
with inertial sensor data [17,18,19], whereas in some studies the vision data is
integrated or fused with inertial sensor data [20]. Fusion of inertial sensors with
magnetometers is also reported in the literature [18,21].

In inertial sensor based systems, there has not been a universal agreement
on the number and types of sensors to use, positioning of the sensors, and the
methods to use for recognition. Some studies distinguish between postures, i.e.,
sitting, standing, and lying using the static component of acceleration [8,17,22],
whereas some distinguish between as many as 20 activities [22]. Some studies also
recognize transitions between postures [8,19,23,24]. The number of sensors used
vary between one [8,23] to twelve [4]. To the best of our knowledge, techniques
that optimally determine the number, types, and positions of sensors do not
exist [22].

This paper presents the results of a comparative study on human activity
recognition, using accelerometers, gyroscopes, and magnetometers. We use five
sensor modules, each of which includes a triaxial accelerometer, a triaxial gyro-
scope, and a triaxial magnetometer. We compare the successful differentiation
rates, reliability and repeatability of the results, and computational requirements
of various classification techniques using two different feature reduction methods.
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Fig. 1. Xsens sensor modules and their positioning on the body

2 Classified Activities and Experimental Methodology

The 19 activities that are classified using body-worn miniature sensor units are:
sitting (A1), standing (A2), lying down on back and on right side (A3 and A4),
ascending and descending stairs (A5 and A6), standing in an elevator still (A7)
and moving around in an elevator (A8), walking in a parking lot (A9), walking
on a treadmill with a speed of 4 km/hr (in flat and 15◦ inclined positions) (A10
and A11), running on a treadmill with a speed of 8 km/hr (A12), exercising on a
stepper (A13), exercising on a cross trainer (A14), cycling on an exercise bike in
horizontal and vertical positions (A15 and A16), rowing (A17), jumping (A18),
and playing basketball (A19).

Five MTx 3-DOF orientation trackers are used, manufactured by Xsens Tech-
nologies [25]. Each MTx has a triaxial accelerometer, a triaxial gyroscope, and a
triaxial magnetometer so that the sensor units acquire acceleration, rate of turn,
and Earth-magnetic field data, all in 3-D.

Accelerometers of two of the MTx trackers can sense up to ±5g and the other
three can sense in the range of ±18g, where g = 9.80665 m/s2 is the gravitational
constant. All gyroscopes in the MTx unit can sense in the range of ±1200◦/sec
angular velocities; magnetometers can sense in the range of ±75μT. We use all
three types of sensor data in all three dimensions.

The sensors are placed on five different places on the subjects’ body, as de-
picted in Fig.1. Since leg motions in general may produce larger accelerations,
two of the ±18g sensor units are placed on the sides of the knees (right side of
the right knee and left side of the left knee), the remaining ±18g unit is placed
on the subjects’ chest, and the two ±5g units on the wrists.
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Table 1. Subjects that performed the experiments and their profiles

subject no. profile
1 female age: 25 height: 170 cm weight: 63 kg
2 female age: 20 height: 162 cm weight: 54 kg
3 male age: 30 height: 185 cm weight: 78 kg
4 male age: 25 height: 182 cm weight: 78 kg
5 male age: 26 height: 183 cm weight: 77 kg
6 female age: 23 height: 165 cm weight: 50 kg
7 female age: 21 height: 167 cm weight: 57 kg
8 male age: 24 height: 175 cm weight: 75 kg

Each activity listed above is performed by eight different healthy subjects for
5 min. The profiles of the subjects are given in Table 1. The subjects are asked
to perform the activities in their own style and were not restricted on how the
activities should be performed. For this reason, there are inter-subject variations
in the speeds and amplitudes of some activities. The activities are performed at
the Bilkent University Sports Hall, in the Electrical and Electronics Engineering
Building, and in a flat outdoor area on campus. Sensor units are calibrated to
acquire data at 25 Hz sampling frequency. The 5-min signals are divided into
5-sec segments, from which certain features are extracted.

3 Feature Extraction and Reduction

Each of the five sensor units has nine sensors; thus, 45 signals are available for
each 5-sec time window. We calculate the following 26 features for each signal:
the minimum and maximum values, the mean value, variance, skewness, kurtosis,
10 equally spaced samples from the autocorrelation sequence, first five peaks of
the discrete Fourier transform of the signal and the corresponding frequencies.
As a result, 1, 170 (= 45 × 26) features are available for each 5-sec window for
each activity. All features are normalized to the interval [0, 1] to be used for
classification.

Because this set of features is quite large and not all features are equally useful
in discriminating between the activities, we have investigated different feature
reduction methods. Primarily, we reduce the number of features from 1,170 to
30 through principal component analysis (PCA) [26], which is a transformation
that finds the optimal linear combinations of the features, in the sense that
they represent the data with the highest variance in a feature subspace, with-
out taking the intra-class and inter-class variances into consideration separately.
As an alternative to PCA, we considered using sequential forward feature selec-
tion (SFFS) and sequential backward feature selection (SBFS) algorithms [26]
that use the extracted features themselves instead of linear combinations of fea-
tures. Since SFFS performed better than SBFS in general, here we report the
results of SFFS that adds features one at a time to the selected feature set such
that the classification performance is maximized.
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4 Classification Techniques

The classification techniques used in this study are: Bayesian decision mak-
ing (BDM), least-squares method (LSM), k-nearest neighbor algorithm (k-NN),
dynamic time warping (DTW), support vector machines (SVM), and artificial
neural networks (ANN).

In BDM, we assume that the feature vectors are samples from a multi-variate
Gaussian distribution. The mean vector and the covariance matrix of the dis-
tribution are estimated using maximum likelihood estimators on the training
vectors and the maximum a posteriori decision rule is used for classification.
LSM is also known as the nearest-mean classifier. The training vectors belong-
ing to each class are averaged. Then, for a test vector, the Euclidean distance
to each average vector is calculated. The vector is assigned the class that has
the minimum distance. The k-NN and SVM are widely used classifiers (see [26]).
DTW is a technique used mostly in speech recognition and aims to find the
similarity between two sequences by “warping” them nonlinearly in the time di-
mension [27,28]. In ANN, we use a three-layer perceptron trained with the back-
propagation algorithm [26]. Detailed explanations of these algorithms within the
context of human activity recognition can be found in [27,29].

5 Experimental Results

5.1 Results with Features Reduced by PCA

The classification techniques mentioned in Section 4 are employed to classify the
19 different activities using the 30 features selected by PCA. A total of 9, 120
(= 60 segments×19 activities×8 subjects) feature vectors are available, each con-
taining the reduced features of the sensor signals. In the training and testing phases
of the classification methods, we use the repeated random sub-sampling (RRSS),
P -fold, and subject-based leave-one-out (L1O) cross-validation techniques. In
RRSS, we divide the 480 (= 60 segments × 8 subjects) feature vectors from each
activity type randomly into two sets so that the first set contains 320 feature vec-
tors (40 from each subject) and the second set contains 160 (20 from each subject).
Therefore, two-thirds (6,080) of the 9,120 feature vectors are used for training and
one-third (3,040) for testing. This is repeated 10 times and the resulting correct
differentiation percentages are averaged.

In P -fold cross validation, the 9,120 feature vectors are divided into P = 10
partitions, where the 912 feature vectors in each partition are selected completely
randomly, regardless of the subject or the class they belong to. One of the P
partitions is retained as the validation set for testing, and the remaining P − 1
partitions are used for training. The cross-validation process is then repeated
P times (the folds), where each of the P partitions is used exactly once for
validation. The P results from the folds are then averaged to produce a single
estimation. The random partitioning is repeated 10 times and the average correct
differentiation percentage is reported.
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Table 2. Correct differentiation rates for all classification methods and three cross-
validation techniques. The results of the RRSS and P -fold cross-validation techniques
are calculated over 10 runs, whereas those of L1O are over a single run.

correct differentiation rate (%)
± one standard deviation

method RRSS P -fold L1O
BDM 99.1 ±0.12 99.2 ±0.02 75.8
LSM 89.4 ±0.75 89.6 ±0.10 85.3
k-NN (k = 7) 98.2 ±0.12 98.7 ±0.07 86.9
DTW1 82.6 ±1.36 83.2 ±0.26 80.4
DTW2 98.5 ±0.18 98.5 ±0.08 85.2
SVM 98.6 ±0.12 98.8 ±0.03 87.6
ANN 86.9 ±3.31 96.2 ±0.19 74.3

Finally, we also used subject-based L1O cross validation, where the 7, 980
(= 60 vectors×19 activities×7 subjects) feature vectors of seven of the subjects
are used for training and the 1,140 feature vectors of the remaining subject are
used in turn for validation. This is repeated eight times such that the feature
vector set of each subject is used once as the validation data. The eight correct
classification rates are averaged to produce a single estimate. This is similar to
P -fold cross validation with P being equal to the number of subjects (P = 8),
and where all the feature vectors in the same partition are associated with the
same subject.

Correct differentiation rates of the classification techniques and their standard
deviations are tabulated in Table 2 for the three cross-validation techniques we
considered. All of the correct differentiation rates are above 80% with standard
deviations usually lower than 0.5% with a few exceptions. From the table, it
can be observed that there is not a significant difference between the results of
RRSS and P -fold cross-validation techniques. The results of subject-based L1O
are always lower than the two. In terms of reliability and repeatability, the P -fold
cross-validation technique results in smaller standard deviations than RRSS.

We have implemented the DTW algorithm in two different ways: In the first
(DTW1), the average reference feature vector of each activity is used for com-
parison. As a second approach (DTW2), DTW distances are calculated between
the test vector and each of the reference vectors from different classes. The class
of the nearest reference vector is assigned as the class of the test vector.

In SVM, following the one-versus-the-rest method, each type of activity is
assumed as the first class and the remaining 18 activity types are grouped into
the second class. We use a radial basis function kernel K(x,xi) = e−γ|x−xi|2

with γ = 4. In the implementation, LIBSVM toolbox [30] is used in MATLAB
environment.

In ANN, we use a network with 30 input neurons (the features), 12 hidden
neurons and 19 output neurons. The target output is one for the neuron number
that the training vector belongs to, and zero for other neurons. We use the
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sigmoid function as the activation function. Correct classification for a test vector
is achieved when the norm of the difference between actual output and the target
output is below a certain threshold.

The confusion matrices for these methods can be found in [28]. We observed
that A7 and A8 are the activities most confused with each other. This is because
both of these activities are performed in the elevator and the signals recorded
from these activities have similar segments. Therefore, confusion at the classifi-
cation stage becomes inevitable. A2 and A7, A13 and A14, as well as A9, A10,
A11, are also confused from time to time for similar reasons. Two activities that
are almost never confused are A12 and A17.

Among the classification techniques we considered and implemented, when
RRSS and P -fold cross validation techniques are used, BDM gives the highest
classification rate, followed by SVM and k-NN. SVM and k-NN methods give
the highest classification rates also with subject-based L1O cross validation,
but the performance of BDM is not as good. To further compare these three
methods, we calculated the correct classification rates using data from subsets
of the subjects. All possible subject combinations are considered exhaustively,
and those that result in the highest correct classification rates are reported in
Tables 3 and 4, using P -fold and subject-based L1O cross validation, respectively.
Note that for L1O cross validation (Table 4), the results of a single subject cannot
be provided. This is because partitioning in this method is subject-based and
requires the availability of data from at least two subjects.

When P -fold cross validation is used, the performances of all three methods
are comparable (Table 3). Using data from more than two subjects causes a slight
decrease in performance which is expected. When L1O cross validation is used
(Table 4), the classification rates are lower than those in Table 3 and it can be also
observed that k-NN and SVM are superior to BDM, regardless of the number
of subjects used. This means that although data from multiple subjects can
be well-approximated by a multi-variate Gaussian distribution, the parameters
of the distribution, when calculated by excluding one of the subjects, cannot
represent the data of the excluded subject sufficiently well. The performance of
BDM and SVM tend to increase with increasing number of subjects (Table 4),
indicating that these classifiers generalize better as data from more subjects are
included. In the case of BDM, the data may be slowly converging to a multi-
variate Gaussian distribution as the number of subjects is increased. In k-NN,
there is a slight decrease in performance after the addition of the fourth subject.

5.2 Computational Cost of the Classification Techniques

We also compared the classification techniques based on their computational
costs. Pre-processing and classification times are calculated with MATLAB ver-
sion 7.0.4, on a desktop computer with AMD Athlon 64 X2 dual core processor
at 2.2 GHz and 2.00 GB of RAM, running Microsoft Windows XP Professional
operating system. Pre-processing/training times and storage requirements of the
different techniques are tabulated in Table 5. The pre-processing time of BDM is
used for estimating the mean vector and the covariance matrix that need to be
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Table 3. Best combinations of the subjects and correct classification rates using P -fold
cross validation

BDM k-NN SVM
subject no. % subject no. % subject no. %
5 99.0 1 98.9 5 98.5
2,5 99.6 1,2 99.4 1,2 99.4
2,5,6 99.5 1,2,5 99.3 1,2,5 99.4
1,2,4,6 99.5 1,2,5,6 99.1 1,2,5,6 99.3
2,4,5,6,7 99.4 1,2,3,5,6 99.0 1,2,5,6,7 99.1
1,2,3,5,6,7 99.4 1,2,3,4,5,6 98.9 1,2,3,4,5,6 99.0
1,2,3,4,5,6,7 99.2 1,2,3,4,5,6,8 98.8 1,2,3,4,5,6,7 98.9

Table 4. Best combinations of the subjects and correct classification rates using
subject-based L1O

BDM k-NN SVM
subject no. % subject no. % subject no. %
1,7 64.5 2,6 87.0 2,6 65.7
1,2,7 73.2 2,4,6 90.2 2,6,7 76.6
1,2,6,7 75.9 2,4,6,7 89.8 1,2,6,7 80.0
1,2,3,6,7 75.6 1,2,4,6,7 89.3 1,2,5,6,7 82.0
1,2,3,5,6,7 76.4 1,2,4,6,7,8 88.6 1,2,4,5,6,7 85.0
2,3,4,5,6,7,8 76.8 1,2,4,5,6,7,8 88.1 1,2,4,5,6,7,8 86.9

stored for the test stage. In LSM and DTW1, the averages of the training vec-
tors for each class need to be stored for the test phase. For k-NN and DTW2, all
training vectors need to be stored. For the SVM, the SVM models constructed in
the training phase need to be stored for the test phase. For ANN, the structure
of the trained network and the connection weights need to be saved for testing.
ANN and SVM require the longest training time.

The resulting processing times of the different techniques for classifying a
single feature vector are also given in Table 5. The classification time for ANN
is the smallest, followed by LSM, BDM, SVM, and DTW1 methods. k-NN and
DTW2 take the longest time for classification, but no training time is needed.

5.3 Feature Reduction by SFFS

As another approach to feature reduction, we employ the sequential forward
feature selection (SFFS) method. This method is a greedy algorithm for finding
the most discriminative features, and is computationally costly. For this reason,
we employ this method only for BDM, LSM, and k-NN classifiers. The selected
features and the corresponding correct classification rates are presented in or-
der in Table 6. The algorithm is run several times and the run with the most
frequently selected features is shown in the table. As an example, the scatter
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Table 5. Pre-processing and training times, storage requirements, and processing times
of the classification methods. The processing times are given for classifying a single
feature vector.

pre-processing/training time (ms) storage requirements processing time (ms)
method RRSS P -fold L1O RRSS P -fold L1O
BDM 28.98 28.62 24.70 mean, covariance, CCPDF 4.56 5.70 5.33
LSM 6.77 9.92 5.42 av. train. vector for each class 0.25 0.24 0.21
k-NN – – – all training vectors 101.32 351.22 187.32
DTW1 6.77 9.92 5.42 av. train. vector for each class 86.26 86.22 85.57
DTW2 – – – all training vectors 116.57 155.81 153.25
SVM 7,368.17 13,287.85 10,098.61 SVM models 19.49 7.24 8.02
ANN 290,815 228,278 214,267 connection weights 0.06 0.06 0.06

Table 6. First five features selected by SFFS using BDM, LSM, and k-NN (RL: right
leg, LL: left leg, RA: right arm, LA: left arm, T: torso)

BDM LSM k-NN
feature loc. sensor % feature loc. sensor % feature loc. sensor %
mean LL x-acc 33.1 min RL x-acc 40.0 max LL x-mag 47.2
DFT pk 5 RL y-mag 57.5 DFT pk 3 T x-gyro 59.0 mean RL z-mag 84.9
max LL y-mag 74.8 min RA x-acc 70.4 mean RL y-mag 92.4
max T x-acc 86.0 max RL x-acc 76.0 max T x-mag 94.7
mean RL y-acc 92.0 max LL z-acc 79.6 min RL x-mag 96.0

Table 7. Correct classification percentages using the first five features obtained by
PCA using BDM, LSM, and k-NN

no. of features BDM LSM k-NN
1 38.4 36.2 34.9
2 52.7 47.1 56.8
3 75.8 67.0 84.3
4 84.1 73.9 90.5
5 90.0 78.0 94.9

plots of the first three selected features are shown pairwise in Fig.2 for the BDM
method.

Based on Table 6, it can be concluded that features of magnetometer and
accelerometer signals recorded on the legs are more discriminative in general,
verifying our previous results on sensor selection and combination [28]. Fur-
thermore, time-domain features are selected more often than frequency-domain
features, as also confirmed in a previous study [31]. For the first five features, the
classification rates of the k-NN method are higher than BDM and LSM. How-
ever, when about 10 features are selected, both the BDM and k-NN methods
achieve above 95% correct classification rate. In fact, in most runs, the correct
classification rate is around 99%. We note that since feature selection is per-
formed sequentially in SFFS, these features may not be the optimal subsets of
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Fig. 2. (color online) Scatter plots of the first three features selected using BDM and
SFFS

all features considered together. One should consider all subsets of the total
number of features to determine the optimal subsets with a certain number of
features. Obviously, this is a very time-consuming process.

Table 7 gives the results of BDM, LSM, and k-NN classifiers when up to
first five features selected by PCA are used. Comparing with Table 6, it can
be observed that SFFS gives better results, especially for the first few selected
features. While the SFFS algorithm tries to maximize the correct classification
rate, PCA captures the features with highest variances in the data by making
a transformation into principal directions. The difference in performance of the
two feature reduction techniques becomes smaller as more features are added to
the set.

5.4 Rejection Performances

In this study, the classification performances of the methods are evaluated based
on a bounded set of daily activities. The number of possible activities in daily
life is much larger than the limited set of 19 activities considered here. Thus,
a robust classifier should be able to reject the data from activities that do not
belong to any activity class in the set. As an example, we test the rejection
performances of LSM and ANN methods using a three-fold activity-based cross-
validation scheme. We divide the activities randomly into three sets. At each fold,
we train the classifiers using activities from two of the sets and use the remaining
one for testing. We train a threshold-based classifier for each activity and each
classifier is expected to reject every vector in the test set. A suitable threshold
value is estimated and used based on the receiver operating characteristic (ROC)
curves [26]. (The ROC curves for BDM, LSM, k-NN, and ANN methods using
the data set in this study can be found in [28].)
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Following this procedure, the ANN method performed perfectly and 100% of
the test vectors are rejected. For the LSM method, the rejection rate is 79%.
In accordance with the confusion matrices and ROC curves in [28], incorrectly
classified activities are mostly A7, A8, A9, A10, and A11.

5.5 Discussion

Given its very high correct classification rate and relatively small pre-processing
and classification times and storage requirements, it can be concluded that BDM
is superior to the other classification techniques we considered for the given
classification problem. This result supports the idea that the distribution of
the activities in the feature space can be well approximated by multi-variate
Gaussian distributions. However, its correct classification rate is lower when
subject-based L1O cross validation is used. In any case, the low processing and
storage requirements of the BDM method make it a strong candidate for similar
classification problems.

The k-NN method is also very accurate but it requires considerable amount
of time for classification, even though no training time is needed. SVM, although
accurate, requires a considerable amount of pre-processing/training time to con-
struct the SVM models. For real-time applications, LSM could also be a suitable
choice because it is faster than most methods only at the expense of a slightly
lower correct classification rate.

When a small number of features is used in the classification, the SFFS method
gives better results than PCA in general (Tables 6 and 7). The correct classifi-
cation rates obtained by using SFFS and PCA features become similar as more
features are included. When about 10 features are used, correct classification
rates above 95% are achieved, regardless of whether SFFS or PCA is used in
feature reduction. In a real-time application, calculating all the features of the
test data and performing PCA would be time consuming. For such a problem,
selecting the most discriminative features beforehand by SFFS and calculating
only the selected features for the test data would be a suitable approach. There-
fore, if only a few features need to be calculated and used, SFFS should be
employed because of its better performance with a small number of features and
its speed.

6 Conclusions and Future Work

We have presented the results of a comparative study where features extracted
from miniature inertial sensor and magnetometer signals are used for classifying
human activities. We compared a number of classifiers based on the same data
set in terms of their correct differentiation rates and computational requirements.
We employed different feature reduction and cross-validation techniques for this
purpose.

This work can serve as a guideline in designing context-aware wearable sys-
tems that involve recognition of daily activities of an individual. Many context-
aware wearable systems are designed to be used by a single person. This work
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shows that for such applications, a simple quadratic classifier such as BDM is
sufficient with almost perfect performance. If such a system is to be used by more
than one person, providing training data from all the users is expected to result
in above 95% performance. However, it is evident that if, for some reason, such
training data is not available, then one must resort to more complex classifiers
such as k-NN and SVM that require more computational resources.

There are several possible future research directions that can be explored:
An aspect of activity recognition and classification that has not been much

investigated is the normalization between the way different individuals do the
same activities. Each person performs a particular activity differently due to dif-
ferences in body size, style, and timing. Although some approaches may be more
prone to highlighting personal differences, new techniques need to be developed
that involve time-warping and projections of signals and comparing their differ-
entials. We plan to explore these issues by increasing the number and the variety
of subjects used in this study.

To the best of our knowledge, optimizing the positioning, number, and type
of sensors has not been much studied. Typically, some configuration, number,
and modality of sensors is chosen and used without strong justification.

Detecting and classifying falls using inertial sensors is another important prob-
lem that has not been sufficiently well investigated [10], due to the difficulty of
designing and performing fair and realistic experiments in this area [6]. There-
fore, standard and systematic techniques for detecting and classifying falls still
do not exist.

Fusing information from inertial sensors and cameras can be further explored
to provide robust solutions in human activity monitoring, recognition, and clas-
sification. Joint use of these two sensing modalities increases the capabilities of
intelligent systems and enlarges the application potential of inertial and vision
systems.
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Abstract. We propose a method that tracks and recognizes faces simul-
taneously. In previous methods, features needed to be extracted twice for
tracking and recognizing faces in image sequences because the features
used for face recognition are different from those used for face tracking.
To reduce the computational cost, we propose a probabilistic model for
face tracking and recognition and a system that performs face tracking
and recognition simultaneously using the same features. The probabilis-
tic model handles any overlap in the camera’s field of view, something
that is ignored in previous methods. The model thus deals with face
tracking and recognition using multiple overlapping image sequences.
Experimental results show that the proposed method can track and rec-
ognize multiple faces simultaneously.

Keywords: Face tracking, Face recognition 3D positional hypotheses,
Bayesian framework.

1 Introduction

Recently, security camera systems have been installed in public facilities to crack
down on and prevent crimes. Videos from security camera systems are used to
find crimes such as violence, theft, and so on. In current security systems, a secu-
rity guard checks the recorded video, witch typically contains footage of a great
number of people, including possible missing persons, stray children, and crim-
inals. If these individuals could be identified and tracked on the video footage,
security camera systems would be useful for finding missing persons and stray
children and arresting criminals. However, as the security guard checking the
video has limited capabilities of finding people, it is impossible for the system to
find specific individuals on the security footage. Thus the goal of this research
is to track and recognize specific individuals in security camera footage auto-
matically. To achieve this goal, we propose a new method for face tracking in
multiple image sequences. Face recognition is the best method for distinguishing
people since we normally identify individuals by their faces.

� This work was supported by Grant-in-Aid for JSPS Fellows No. 21558.

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 52–63, 2010.
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Solving a multi video-based face tracking problem requires three tasks: simul-
taneously implementing face tracking and recognition, adapting to any changes
in facial appearance, and integrating the results of face tracking and recognition
in multiple image sequences.

Several video-based face tracking and recognition methods have been proposed
in previous studies. Merging of face tracking and recognition has specifically at-
tracted the attention of researchers in the vision community. Fan et al.[1] presented
a method using the AdaBoost classifier for tracking and a Modified Probabilis-
tic Neural network (MPNN) for recognition. Other combinations of face tracking
and recognition methods such as skin color detection for tracking and PCA for
face recognition[2] and SVM for tracking and HMM for recognition[3] have also
been proposed. However, using a method that employs different frameworks for
face tracking and recognition requires too much time when tracking specific faces
in video sequences as features need to be extracted twice. A probabilistic model
has been proposed to track and recognize faces in the same framework[4]. Meth-
ods based on this model implement effective face tracking and recognition because
common features are used for face tracking and recognition.

To handle changes in facial appearance caused by changes in facial orien-
tation, fitting 3D facial models[5] and learning the facial appearance for each
orientation[6] have been proposed. Dynamic models such as the Kalman filter[7]
and particle filter[8] are used to track faces. Dynamic models track faces ro-
bustly even if the tracked face is temporarily occluded. The particle filter is a
particularly flexible system because it can represent non-linear motion.

When face tracking and recognition are performed in multiple videos, it is
necessary to integrate face tracking information. In pedestrian tracking, stereo
matching[2] and homography[9] are applied to integrate the tracking informa-
tion. Stereo matching and homography are separate from the face tracking and
recognition frameworks and additional computational cost is required for the
integration. If the pedestrian is occluded, these methods may fail to integrate
the tracking information.

As the main contribution of this work, we propose a probabilistic face tracking
and recognition model that considers overlap in image sequences. The proposed
method tracks and recognizes faces using common features. Since the model
considers the camera view, integration of tracking information is performed by
calculating probabilities. To cope with changes in facial appearance, we present
a facial rotation and translation model. Facial texture information is modeled
by Haar-like features. Features are learned by the AdaBoost M1 algorithm for
each facial orientation. Experimental results show that the proposed method can
track and recognize three individuals in 5 image sequences.

2 Probabilistic Model for Face Tracking and Recognition

The positional hypothesis of face ωi of person i at time t is represented as
Hi,t = (x i,t, φi,t,x i,t−1, φi,t−1, · · · ,x i,t−k, φi,t−k), where x i,t is the 3D position
of face ωi, and φi,t is the rotation angle thereof. We assume that observation
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Fig. 1. Fields of views of multiple cameras

Y v
i,t is acquired from camera s ∈ S, where S is a set of cameras in the camera

network system. We denote Ss(H) as the set of cameras that can observe person
i in the position hypothesis H as shown in Fig. 1. The set of observations Y i,t

is defined as follows:
Y i,t =

⋃
s∈Ss(H)

Y s
i,t. (1)

Face recognition is performed by maximizing the joint probability density
p(ωi,Y i,0,Y i,1, · · · ,Y i,T ) as follows:

ωk = argmax
ωi

p(ωi,Y i,0,Y i,1, · · · ,Y i,T ). (2)

Due to the computational cost, it is difficult to calculate this joint probabil-
ity density accurately, and therefore, we assume that each observation arises
independently. The joint probability density is represented simply as

p(ωi,Y i,0,Y i,1, · · · ,Y i,T ) =
T∏

t=0

p(ωi,Y i,t). (3)

Hence, we can recognize a face to maximize p(ωi,Y i,t) for each t. We can also
track a face by maximizing the probability. p(ωi,Y i,t) is given by the following
equation:

p(ωi,Y i,t) =
∫

H

p(ωi,Y i,t, Hi,t)dH.

=
∫

H

p(ωi,∪s∈Ss(H)Y
s
i,t, Hi,t)dH. (4)

Here we assume that the Y s
i,t are mutually disjoint and independent, and that

p(ωi,Y i,t) can be written as

p(ωi,Y i,t) =
∫

H

∏
s∈Ss(H)

p(ωi,Y
s
i,t, Hi,t)dH. (5)
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We also assume that the joint probability density p(ωi,Y
s
i,t, Hi,t) has the prob-

abilistic structure shown in Fig. 2, and that p(ωi,Y
s
i,t, Hi,t) is given as follows:

p(ωi,Y
s
i,t, Hi,t) = p(Y s

i,t|Hi,t)p(Hi,t|ωi)P (ωi). (6)

Finally, Eq. (2) can be rewritten as follows:

ωk = argmax
ωi

T∏
t=0

∫
H

∏
s∈Ss(H)

p(Y s
i,t|Hi,t)p(Hi,t|ωi)P (ωi)dH

≈ argmax
ωi

T∏
t=0

∑
H

∏
s∈Ss(H)

p(Y s
i,t|Hi,t)p(Hi,t|ωi)P (ωi).

(7)

It is difficult to calculate Eq. (7) because integration over all hypotheses H is
impossible. Eq. (7) is, therefore, approximated by using the Monte Carlo method.
We describe in detail how the probabilities are calculated in the next section.

2.1 Individual Observed Probability

Probability P (ωi) represents the existence of person i in the observable area of
the face tracking system. P (ωi) can be a function of t or a form thereof that is
changed by the system environment. Nevertheless, for simplicity we adopt the
discrete uniform distribution given below as the individual observed probability
in this paper:

P (ωi) =
1
N

, (8)

where N is the number of individuals in the facial database.

2.2 Occurrence Probability of the Hypothesis

The probability density p(Hi,t|ωi) indicates the occurrence probability of hy-
pothesis Hi,t corresponding to face ωi of person i. When the Monte Carlo ap-
proximation is adapted to calculate the integration of Eq. (7), it is desirable to
generate hypothesis H with the probability p(Hi,t|ωi). From the above hypoth-
esis generation, Eq. (7) can be calculated as follows:

ωk ≈ argmax
ωi

T∏
t=0

∑
H

∏
s∈Ss(H)

p(Y s
i,t|Hi,t)P (ωi). (9)

The range of the hypothesis can be configured with probability p(Hi,t|ωi). If the
hypothesis that probabilities p(Hi,t|ωi) and p(Y s

i,t|Hi,t) are both low is sam-
pled, and the posterior probability is then calculated, the sampled hypothesis
does not affect the posterior probability. Therefore, the hypothesis that proba-
bilities p(Hi,t|ωi) and p(Y s

i,t|Hi,t) are low can be ignored in the calculation of
the posterior probability. For efficient calculation, it is also desirable to predict
accurate positions of the faces. A complicated probabilistic model may predict a
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Fig. 2. Probabilistic structure of observations

facial position accurately, but it takes a great deal of time to calculate the pre-
dicted position, and this increases the sampling time. To decrease the sampling
time, it is possible to track a face using a simple probabilistic model. Therefore,
the occurrence probability of hypothesis p(Hi,t|ωi) is defined in this paper as
follows:

p(Hi,t|ωi) =
∫

H

p(Hi,t|Hi,t−1)p(Ĥi,t−1|ωi)

≈
∑
H

p(Hi,t|Hi,t−1)p(Ĥi,t−1|ωi), (10)

where p(Hi,t|Hi,t−1) is the transition probability of the hypothesis at the next
time interval, and p(Ĥi,t−1|ωi) is the occurrence probability of the hypothesis
updated by the observations. In this paper, we use a random walk model for the
transition probability of the hypothesis defined as follows:

p(Hi,t|Hi,t−1) ∼ N (x i,t−1(Hi,t−1), Σ), (11)

where x i,t−1(Hi,t−1) is the 3D position of face ωi indicated by hypothesis Hi,t.
N (µ, Σ) denotes the normal distribution, where μ is the average and Σ is the
covariance matrix. The transition probability is described in detail in Section 3.2.

2.3 Likelihood

The likelihood p(Y s
i,t|Hi,t) represents the possibility of the existence of a face

located by the 3D positional hypothesis Hi,t. A face appearance model is required
to calculate this possibility. In this paper, we regard image feature Y s

i,t, which
expresses a face, as a feature vector extracted around feature points selected
by the AdaBoost M1 algorithm[10]. We describe the face appearance model
in detail in the next section. It is impossible to compare hypothesis H and
image feature Y directly, since both the scale and dimensions are different.
Therefore, a mapping F : H → Y from hypothesis Hi,t to image feature Y
is needed for the comparison. It is possible that this mapping may distort the
shape of the probability distribution, and thus affect the computational results.
While it would be better to use a mapping function that does not affect the
computational results, such a mapping function remains unknown. Therefore,
we use the mapping F : H → Y implemented by the AdaBoost classifier. The
details of the likelihood function are described in Section 3.3.
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(a) Feature points (b) Face coordinates

Fig. 3. Face shape model
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Fig. 4. Haar-like features

3 Implementation

In this section, we explain how the proposed method is implemented. We describe
three face models: shape, movement, and texture. We also explain the integration
of the joint probability density calculated for each camera.

3.1 Shape Model

Feature points of a face are a representation of the facial shape. In the facial
shape model, feature points are selected as shown in Fig. 3(a). These feature
points are represented in a face coordinate system as shown in Fig. 3(b). The
3D positional hypothesis denotes the origin of the coordinate system. By using
3D positional hypotheses and face rotation, feature points are projected onto
images and facial regions are cropped.

3.2 Movement Model

Facial rotation and translation are modeled in a facial movement model. The
proposed system only deals with rotation around the z-axis in the face coordinate
system as shown in Fig. 3. We have chosen five facial images, varying from a
full frontal image (0 degrees) to facial profiles (-90, -30, 30, and 90 degrees), to
represent an individual face. Facial translation is modeled by the random walk
model. The position xt at time t is represented using the position xt−1 at time
t − 1 by the following equation:

x t = x t−1 + εt, (12)

where εt is the random displacement with a normal distribution.
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3.3 Texture Model

The texture model consists of image features extracted from face images. We use
Haar-like rectangular filters to extract text features as shown in Fig. 4. Haar-like
features are effective for face tracking [11] and recognition [12]. To perform face
tracking and recognition efficiently, we use the same Haar-like features for both.

The AdaBoost M1 learning algorithm[10] is used for feature selection. Features
are selected in descending order of the training error ratios until the classifier of
the selected features achieves a desirable false acceptance rate. Five classifiers
are built for the five rotation angles (±90,±30, 0 degrees) as texture models of
an individual face. The likelihood is calculated according to the output of the
classifiers as follows:

p(Y s
i,t|Hi,t) ∝ 1

1 + exp
(
− g(Y s

i,t)−a

b

) , (13)

where g(Y s
i,t) is the output of the classifier and a, b are the scale and translation

parameters, respectively.

3.4 Integration of Probability Densities

In our proposed camera network system, the likelihood p(Y s
i,t|Hi,t) in each of

the camera node computers is integrated with the other likelihoods by the in-
tegration node computer to calculate p(ωi,Y i,t) in Eq. (7). Face recognition is
then performed using the joint p.d.f. p(ωi,Y i,t).

In order to calculate the approximation of the joint p.d.f. p(ωi,Y i,t), we must
first calculate p(Hi,t|ωi) in Eq. (11), which corresponds to the face tracking
process. First, we consider the whole hypothesis space ΩH , and the division
thereof by hypercube Ck:

ΩH =
⋃
k

Ck. (14)

CH and VH denote the hypercube containing the hypothesis H and the volume
of the hypercube, respectively. The updated occurrence p.d.f. of the hypothesis
H can be approximated as follows:

p(Ĥi,t|ωi) ≈
∏

s∈Ss(CH)

K

NVH
, (15)

where Ss(CH) is the set of cameras such that their field of view contains the
hypercube CH . K is the weighted average of the number of hypotheses in the
hypercube CH defined as follows:

K =
∑

Hi∈CH

wi(Hi). (16)

The weight is used to update the likelihood from the observation. In this paper,
we use Eq. (13) as the weight since reuse of the weights reduces the computational
cost. The flow of the calculation process in our camera system is shown in Fig. 5.
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Fig. 5. Calculation process flow

4 Experiments

We conducted experiments to evaluate the efficiency of the proposed method.
Five omni-directional cameras were used to acquire an image sequence of three
pedestrians. The image size was 1024 × 768 pixels with a depth of 8 bits gray
and the frame rate of the images 15 fps. Facial images of seven individual were
used for learning and to construct classifiers for the three individual. For each
person, we collected 3000 face images in each orientation. We also collected
21000 non-face images for learning. In addition, we used 300 images from the
Softpia Japan face database and 7143 images from the FERET Database. All
images were cropped and normalized to 100×100 pixels. For each orientation of a
person, 3000 images were used as positive data and the rest as negative data. The
width of rectangular filters was 32 and 64 pixels and the features were extracted
using parallel transformation every four pixels. We selected 1000 features in each
classifier with the false acceptance rate for all classifiers being less than 2%. 3D
positional hypotheses were generated using the center coordinate of the top 50
p(Ĥi,t|ωi) as the average of the normal distribution. 5000 positional hypotheses
were generated in each camera.
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The results of face tracking are shown in Fig. 6 and 7. In Fig. 6, rectangles
show the regions with the highest likelihood. The colors of the rectangle denotes
the personal ID. In the left image of Fig. 7, red rectangles show the hypotheses
with high likelihood generated in the camera while green rectangles show those
generated in other cameras. In the right image of Fig. 7, red rectangles show the
hypotheses with high likelihood after integration of the likelihood.

As shown in Fig. 6, the proposed method can track and recognize faces ap-
propriately. Not only frontal faces, but also facial profiles can be tracked. The
proposed rotation and texture models work well for face tracking in image se-
quences. According to Fig. 7, integration of the tracking information improves
tracking accuracy. This shows that the proposed probabilistic model is effective

t = 76 t = 103 t = 121

Camera
A

Camera
B

Fig. 6. Tracking results

(a) Before integration (b) After integration

Fig. 7. Likelihood integration
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t = 76 t = 103 t = 121

Camera
A

Camera
B

Fig. 8. Likelihood maps of a person

t = 76 t = 103 t = 121

Fig. 9. Hypotheses in 3D space

for face tracking and recognition in multiple image sequences. As shown in Fig 6,
there may be hypotheses with high likelihood on a non-face region. We need to
use a more adaptive learning algorithm for real image sequences, such as an
online learning algorithm, to improve the accuracy of the classifiers.

Likelihood maps are given in Fig. 8. These maps show the existence of the
person tracked with red rectangles in Fig. 6. Dots show the hypotheses of facial
existence, while the degree of red indicates the strength of likelihood. The hy-
potheses on faces have high likelihood and the system can calculate likelihood
well. However, in camera B, certain hypotheses other than those on faces also
have high likelihood. Owing to the integration of the probability density, hy-
potheses with incorrect likelihood do not affect tracking results, although they
may contribute to low tracking accuracy. A more adaptive learning algorithm,
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such as an online learning algorithm, is needed for real image sequences to im-
prove the accuracy of classifiers.

The hypotheses generated for a person in 3D space are shown in Fig. 9. These
hypotheses are generated for the person tracked with yellow rectangles in Fig. 6.
Spheres show the positions of faces, while cubes show the positions of the cam-
eras. Blue dots show the hypotheses that have low likelihood, while red dots
show those with high likelihood. According to Fig. 9, hypotheses are generated
around the tracked face, and a random walk is used as the facial movement
model. As shown in Fig. 6, the person was occluded in image t = 105 from cam-
era A. Despite the fact that one of the faces was occluded in one camera, the
hypotheses could still be generated because the face was not occluded in other
cameras and the likelihoods of all cameras are integrated.

5 Conclusion

In this paper, we proposed a face tracking and recognition method based on a
probabilistic model with multiple cameras. We used three facial models for the
posterior calculation: 3D shape, movement, and texture models. Facial shape is
expressed by 3D facial feature positions, while texture is represented by Haar-like
features extracted from five different orientations of facial images. Facial move-
ment is expressed by the random walk model. Experimental results confirm that
the proposed method can track and recognize a face correctly. In future work,
we aim to improve the likelihood function to avoid tracking non-face regions.
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Spatiotemporal-Boosted DCT Features for Head
and Face Gesture Analysis
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Abstract. Automatic analysis of head gestures and facial expressions is
a challenging research area and it has significant applications in human-
computer interfaces. In this study, facial landmark points are detected
and tracked over successive video frames using a robust method based
on subspace regularization, Kalman prediction and refinement. The tra-
jectories (time series) of facial landmark positions during the course of
the head gesture or facial expression are organized in a spatiotemporal
matrix and discriminative features are extracted from the trajectory ma-
trix. Alternatively, appearance based features are extracted from DCT
coefficients of several face patches. Finally Adaboost algorithm is per-
formed to learn a set of discriminating spatiotemporal DCT features for
face and head gesture (FHG) classification. We report the classification
results obtained by using the Support Vector Machines (SVM) on the
outputs of the features learned by Adaboost. We achieve 94.04% subject
independent classification performance over seven FHG.1,2

1 Introduction

Human face is a rich source of nonverbal information. Indeed, not only it is the
source of identity information but it also provides clues to understand social feel-
ings and can be instrumental in revealing mental states via social signals. Facial
expressions form a significant part of human social interaction [1,2]. While com-
municating, we express ideas that are visualized in our minds by using words
integrated with nonverbal behaviors. Therefore when the body language and
verbal messages are used in complementary roles, our messages can be more
clear and can be conveyed more accurately. Face then functions as a channel in
communicating the emotional content of our messages. Gestures, eye and head
movements, body movements, facial expressions and touch constitute the non-
verbal message types of our body language. Therefore, empowering computers
with the capability to recognize and to respond to nonverbal communication
clues is important [3,4,5,6].

In this study, we consider two data representation types, namely facial land-
mark trajectories and intensity image patches on expressive regions of the face
1 This work was supported by TUBITAK project with number 107E001 and by

Bogazici University project with number 09HA202D.
2 Thanks to Arman Savran for providing his Adaboost code.

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 64–74, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Spatiotemporal-Boosted DCT Features for Head and Face Gesture Analysis 65

extracted throughout the video sequences. DCT features are extracted from
those face representations for the automatic analysis of facial expressions and
head gestures. Adaboost algorithm is exploited in order to reduce the dimen-
sionality of the total features and to obtain more discriminative DCT coefficients
for the classification.

The paper is organized as follows. In the next section we briefly review re-
lated works. Section 3 describes the data representation types and extracted
features. Classification method is explained in Sect. 4. Section 5 gives details
of the used dataset and presents implemented classifiers and the experimental
results. Finally, conclusions are drawn in Sect. 6.

2 Related Work

Most of the work in the literature on facial expression analysis is focused on
the six basic emotions, i.e., happiness, surprise, sadness, fear, anger and disgust
[7,8,9,10,5,11,12]. The majority of facial expression recognition systems attempt
to identify Facial Action units (FAUs) [13,7,8,14,15,16,12] based on Facial Action
Coding System (FACS) [17]. In FACS, the facial behavior is decomposed into 46
action units (AUs), each of which is anatomically related to the individual facial
muscles. Although they only define a small number of distinctive AUs, different
combinations of AUs can be sufficient for accurately detecting and measuring a
large number of facial expressions.

Head displays, sometimes called as emblems [14,18] fulfill a semantic function
and provide conversational feedback. Examples of emblems are head nodding
(head up and down) and head shaking (head swinging left and right) with or
without accompanying facial expressions. In social interactions head and facial
displays may convey a message, provide conversational feedback, and form a
communicative tool [2,1]. For example, head nod is an affirmative cue, frequently
used throughout the world to indicate understanding, approval and agreement
[2,1,19,20,21]. On the other hand, head shake is almost a universal sign of dis-
approval, disbelief, and negation [2,1,19,20,21]. Prediction of frustration and hu-
man fatigue detection problems were analyzed by integrating information from
various sensory information [22,23,24].

Bartlett et al. [25] used Gabor filters for appearance based feature extraction
from the still images. They obtained their best recognition results by selecting
a subset of Gabor filters using AdaBoost and then training Support Vector Ma-
chines on the outputs of the filters selected by AdaBoost. Shan [11] studied facial
representation based on LBP features for facial expression recognition. They ex-
amined different machine learning methods, including template matching, SVM,
LDA, and the linear programming technique on LBP features. They obtained
their best results with Boosted-LBP by learning the most discriminative LBP
features with AdaBoost, and the recognition performance of different classifiers
were improved by using the Boosted-LBP features.

There are relatively few papers in the literature addressing the FHG detec-
tion issue. In Kang et al. [20], location of eyes is detected and tracked in video
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sequence, and the resulting trajectory is used to recognize head shake and head
nod gestures using HMMs. Somewhat similarly, Kapoor and Picard [19] used an
active camera with infrared LEDs to track pupils. The position of pupils are used
as observations by a discrete HMM pattern analyzer to detect head nods/shakes.
Morency et al. [21] investigated how dialog context from an embodied conver-
sational agent can improve visual recognition of user gestures such as head nod
and head shakes. For recognizing these gestures, they tracked head position and
rotation, then computed head velocity vector and used SVM classifiers. In Aran’s
study [26] a multi-class classification strategy for Fisher scores was proposed and
tested on a hand gesture dataset and a sign language expression dataset [27].

3 Data Representations and Spatiotemporal Features for
FHG

Once the facial landmark points are tracked in each FHG video frame, two
different data types are extracted: i) Landmark trajectories; ii) Intensity face
image patches. Even though, head and facial gestures may differ in total duration
they mostly follow a fixed pattern of temporal order. Therefore, in order to
process extracted data from face videos, we used both spatial normalization and
temporal normalization. The details of the feature extraction process is given in
the following subsections.

3.1 Facial Landmark Trajectories

A number (l) of facial landmark points are detected and tracked over succes-
sive video frames using an automatic landmark detection and algorithm [28]
(Figure 1). The algorithm detects facial landmarks in the initial frame using
DCT-features trained with SVM classifiers, and then applies a multi-step track-
ing method based on adaptive templates, Kalman predictor and subspace regu-
larization for the subsequent frames.

Once the landmark coordinates are detected over the successive frames, the
landmark coordinate data of the face video is reduced to a FxT matrix P . Here,
each row of the P matrix represents the time sequence of the x or y coordinates
of one of the 17 landmarks. In order to obtain landmarks independent from the
initial position of the head the first column is subtracted from all columns of
P , so that we only consider the relative landmark displacements with respect to
the first frame. This presupposes that the landmark estimates in the first frame
of the sequence are reliable.

In our work we used 17 (l = 17) landmarks as illustrated in Figure 1 which
resulted in F = 34 coordinates.

3.2 Feature Extraction from Face Image Patches

Deformations occurring on the face during an expression involves changes over
whole regions, such as mouth and eye regions. The estimated landmarks enable
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Fig. 1. Illustration of the 17 tracked facial landmarks on sample image sequences

us to parse the face into regions of interest. We have heuristically selected four
patches covering the most expressive facial parts, as shown in Figure 3. Patch
sizes are chosen large enough to cover a whole expressive face region. Further-
more patches are positioned using the tracked facial landmark locations. In that
respect, sizes and semantic positions of the patches do not vary with changes in
head orientation.

Extracted patches are scaled into fixed block size as in Table 1. The discrim-
inative features from patches consist of DCT coefficients, not from the whole
patch but from the 16x16 non-overlapping blocks tessellating the patch. Since
the expressive eye region is critical, it is doubly covered. Beside the eye and eye-
brow patches, one larger patch that jointly covers them and that overlaps with
the other four (16x16 DCT block) is used in order to better interpret the appear-
ance changes between the eyebrows. We selected the first 20 DCT coefficients
(after skipping the DC value) from the zigzag order. All DCT block patterns
are then concatenated into a single vector to form the feature vector 20 x (to-
tal block number = 15). Since the patch-based, 300-coefficient long appearance
feature is extracted from each of the T frames, the gesture video thus generates
300xT dimensioned feature matrix S. As can be seen from Figure 2, the rows of
the S matrix represents the temporal changes of the selected DCT coefficients
and the columns represents the selected 300 DCT coefficients (spatial features
extracted at time k).

Temporal Domain
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p
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l D

o
m

a
in

Fig. 2. Representation of S matrix which is composed of DCT features of image patches
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Fig. 3. Facial patches defined on a sample image

Since duration of FHG videos is variable depending on the gesture type and
upon the actor, we normalized length of the landmark trajectories and appear-
ance features by using the “resample” function of the Matlab so that all gestures
spatiotemporal consisted had length T . Note that “resample” function basically
changes the sampling rate of a given sequence to a desired one using a polyphase
implementation. The resulting spatiotemporal trajectory matrix P has rows cor-
responding to landmark coordinates and columns corresponding to normalized
time index; similarly appearance feature matrix S has rows corresponding to
spatial features (300 DCT coecients) and columns corresponding to normalized
time index. In our study we chose T as 60 which is also the average length of
the gesture sequences with 11 frames standard deviation.

In order to decrease the dimensionality of P and S matrices, in our case
34x60=2040 for landmark trajectory data and 300x60=18000 for appearance
data, respectively, we apply DCT to each row of the data matrix P and S
to extract the temporal information of the data matrices. Here rows of the P
and S matrix correspond to normalized time domain of the data. We select
the first 20 DCT coefficients, by excluding the DC term, and normalize the
resulting DCT feature vector to unit norm. DCT is chosen because it is known
to have good energy compaction property for highly correlated data and can
serve the purpose of summarizing and capturing the data content. Hence we get

Table 1. Facial patch dimensions and sub-block sizes on original intensity frames

Patch Label Region on the Face Patch
Size

number of 16x16
blocks

1 eyes and eyebrows 16x64 5
2 nose 16x32 2
3 mouth 16x64 4
4 forehead 16x64 4
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680x1 (34x20) dimensioned DCT coefficients for trajectory matrix P and 6000x1
(300x20) dimensioned DCT coefficients for appearance features.

4 Classification of FHGs

A set of discriminative and effective features should be selected from the DCT
coefficients to construct the FHG classifier. It is known that the motion of certain
landmarks are more expressive and hence contain more discriminative informa-
tion, and this selection depends on the face and head gesture types. Therefore
it would pay to pinpoint these more discriminative and effective features per
gesture. The Adaboost [29] algorithm seems to be the right tool for optimal fea-
ture selection [30,11,31] from the high dimension data. In this paper, we use the
Adaboost [29] learning to select 7 to 30 percent of the features from the initial
set extracted features.

4.1 Boosting the DCT Features

A sequence of weighted weak classifiers are boosted to form a final strong classi-
fier. A weak classifier is designed by selecting a single feature performance and
by setting optimally a threshold such that the best classification performance is
achieved. In this study, weak classifiers are chosen as nearest mean classifiers.

4.2 Classification with SVM

We combine Adaboost selected feature with SVM [32] classification. Note that,
we run the Adaboost-based feature selection separately for each experiment
setup and then SVM is trained for the two-class classification problem. There-
fore we formulate C (number of classes) two-class problems, and in each one we
separate one of the classes from the ensemble of all other classes. This result in
C different SVMs. When a test feature vector arrives, we calculate the output of
each SVM classifier for this test data, where the C outputs give the class likeli-
hoods. Then the classifier with maximum probability is declared as the gesture
class of the test data. In order to find the parameter setting, we carried out grid-
search on the hyper-parameters in the 11-fold cross-validation and selected the
parameters with maximum recognition accuracy. Note that, radial basis function
is used as an SVM kernel in the implementation of SVM classifier.

5 Experimental Results

5.1 Video Database (BUHMAP)

We tested our FHG recognition algorithm on the BUHMAP video data-
base [27] (http://www.cmpe.boun.edu.tr/pilab/pilabfiles/databases/buhmap/).
BUHMAP includes seven non-manual gesture classes (but not including neutral
state) selected from Turkish Sign Language (TSL). The details of the gesture
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Table 2. Characteristics of the BUHMAP FHG videos

Head and Facial Gesture Classes in BUHMAP DB [27]
Head shaking (G1): Rotating head left and right sides repetitively
Head up (G2): Tilting the head back while at the same time raising

the eyebrows
Head forward (G3): Moving head forward and raising eyebrows
Sadness (G4): Lips turned down, eyebrows down
Head up-down (G5): Nodding head repetitively
Happiness (G6): Smile and expression of joy
Happy up-down (G7): Nodding with smile

Table 3. Test set and experiment setup

Test Subjects (S) Class (C) Repetitions (R)
11 7 (G1, G2, G3, G4,

G5, G6, G7)
5

Experiment Training Testing Method
11 fold 10 S, 5 R, 350 videos 1 S, 5 R, 35 videos Leave-one-S-out

cross validation

classes are given in Table 2. Our test set includes seven gesture types acted by
eleven subjects, with five repetitions each, hence overall 385 video shots.

The videos are recorded at 30 fps at the resolution of 640x480. Each video
starts and ends in the neutral state of the face.

As presented in Table 3 an 11-fold cross-validation scheme is carried out for
training and testing any one feature set and classifier combination. For each fold,
one subject’s gesture samples (7x5=35 gesture samples) are left out as test set
and the 350 gesture samples of the remaining subjects are used for training.
Thus for each fold, each gesture class has 5 test samples and 50 positive training
samples. Notice that, recognition results reported in this study are computed as
the average of 11-fold testing.

5.2 Results

The classifiers chosen for the face and head gesture classification problem are
given in Table 4. The classification performance of DCT features and boosted-
DCT features are given in order to compare the performances of these two feature
extraction methods. Table 5 represents the recognition results of the each in-
dividual classifier over seven gesture classes. We give the following clarifications
for the Tables 4 and 5: Set P denotes the landmark trajectory features and S
denotes the sequence of image patch features. Furthermore the superscript in-
dicates the number of features used and the subscript indicates the selection
method. Thus for example:
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Table 4. Proposed classifiers FHG classification

Classifier Data / Size Feature selection /
Size/Classification

P 200
DCT ADA : DCT of Trajectory matrix P / 680x1 Adaboost/200/SVM

P 680
DCT : DCT of Trajectory matrix P / 680x1 −/680/SVM

S400
DCT ADA DCT of intensity image patches S /

6000
Adaboost/400/SVM

S6000
DCT DCT of intensity image patches S /

6000
−/6000/SVM

(S+P )600DCT ADA DCT of intensity image patches S +
DCT of Trajectory matrix P/ 6680

Adaboost/600/SVM

(S + P )6680DCT DCT of intensity image patches S +
DCT of Trajectory matrix P/ 6680

−/6680/SVM

Table 5. Proposed classifiers FHG classification (C1:)

Classifier G1 G2 G3 G4 G5 G6 G7 Total
P 200

DCT ADA 96.4 100 89.1 70.9 80 89.1 78.2 86.2
P 680

DCT 98.2 98.2 89.1 67.3 70.9 87.3 72.7 83.4
S400

DCT ADA 100 92.7 87.3 89.1 100 81.8 94.6 92.2
S6000

DCT 96.4 94.6 87.3 90.9 90.9 76.4 85.5 88.8
(S + P )600DCT ADA 96.4 98.2 89.1 90.9 90.9 80 89.1 93.77
(S + P )6680DCT 100 100 87.3 98.2 98.2 83.6 89.1 90.65
P 200

DCT ADA +S400
DCT ADA 100 100 92.7 92.7 92.7 89.1 90.9 94.03

– P 200
DCT ADA: 200 DCT coefficients out of 680x1 available DCT coefficients of

trajectory matrix P have been selected via Adaboost.
– (S +P )600DCT ADA: DCT features from the trajectory matrix and image patch

sequence have been pooled, and then 600 of them have been selected via
Adaboost.

The results show that:

(i) Feature selection by Adaboost algorithm improves the classification per-
formance about 3 to 4 percentage points.

(ii) 92.22 % best individual classification performance is obtained with boosted-
DCT features extracted from face intensity image patches (S400

DCT ADA).
(iii) Feature-based fusion of boosted-DCT features of trajectory matrix and

boosted-DCT features of intensity image patches ((S + P )600DCT ADA) sur-
pass the classification performance of boosted-DCT features of intensity
image patches.

(iv) Best overall classification performance (94.03 % Table 6) is achieved by de-
cision fusion of boosted-DCT features of trajectory matrix (P 200

DCT ADA) and
and boosted-DCT features of face intensity image patches (S400

DCT ADA).
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Table 6. Decision fusion of P 200
DCT ADA and S400

DCT ADA

G1 G2 G3 G4 G5 G6 G7
G1 100 0 0 0 0 0 0
G2 0 100 0 0 0 0 0
G3 0 7.3 92.7 0 0 0 0
G4 0 0 1.8 92.7 1.8 1.8 1.8
G5 0 0 1.8 5.4 92.7 0 0
G6 0 0 0 0 0 89.1 10.9
G7 0 0 1.8182 0 1.8 5.4 90.9

Note that, decision combination is implemented by summing the scores of the
classifiers.

6 Conclusion

In this study we have analyzed spatiotemporal feature extraction methods based
on accurate tracking of facial landmarks on facial expressions and head gesture
sequences. Two types of data representations are investigated, namely facial
landmark trajectories and patches of face intensity images. Both modalities have
been subjected to DCT transformation for feature extraction. Selection of DCT
features is implemented both heuristically using only the low-pass coefficients
and algorithmically, using the Adaboost algorithm. The first conclusion is that
the proposed classifiers perform satisfactory FHG identification as they achieve
scores well above 90 %. In fact, our method surpass significantly the average
classification performances reported recently, i.e., 77 % in [26] and 86.4% [28]
using the subset of BUHMAP dataset (210 videos of four subjects).

An interesting observation is that sequence and subspace classifiers have very
similar performances. While sequence classifiers (e.g. HMM) are designed to com-
pensate for time variations between sequences, the fact that, subspace classifiers
with spatiotemporal features have on a par performance can be attributed to the
mitigation of this variability by linear time normalization. The best classifica-
tion result of an individual classifier (without any decision fusion) is achieved for
a database with seven gesture classes is 92.2% is state-of-the-art performance.
Work is progressing on FHG classification involving a larger set of gestures and
mental states.
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Abstract. One of the key challenge in social behavior analysis is to au-
tomatically discover the subset of features relevant to a specific social
signal (e.g., backchannel feedback). The way that these social signals
are performed exhibit some variations among different people. In this
paper, we present a feature selection approach which first looks at im-
portant behaviors for each individual, called self-features, before building
a consensus. To enable this approach, we propose a new feature ranking
scheme which exploits the sparsity of probabilistic models when trained
on human behavior problems. We validated our self-feature concensus
approach on the task of listener backchannel prediction and showed im-
provement over the traditional group-feature approach. Our technique
gives researchers a new tool to analyze individual differences in social
nonverbal communication.

Keywords: Feature selection, non-verbal behavior analysis,
L1 regularization.

1 Introduction

Nonverbal communication is a highly interactive process, in which the partici-
pants dynamically send and respond to nonverbal signals such as speech prosody,
gesture, gaze, posture, and facial expression movements. These signals play a sig-
nificant role in determining the nature of a social exchange. This coherence in
communication plays an important role in various areas including contradict
resolution [1], psychotherapeutic effectiveness [2], and improved classroom test
performances [3]. One of the key challenge in social behavior analysis is to au-
tomatically discover the subset of features relevant to a specific social signal [4].

It is well known that culture, age and gender affect people’s nonverbal com-
munication [5,6]. The traditional approach for feature selection looks at the
most relevant features from all observations (e.g. all human interactions in the
dataset). This group-feature approach has the potential to select features that
are not relevant to any specific individual but only to the average model. This
technique is likely to miss some discriminative features which are specific to
subset of the population.
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In this paper, we present a feature selection approach which first looks at
important behaviors for each individual, called self-features, before building a
consensus. Figure 1 compares our self-feature concensus approach to the typi-
cal group-feature approach. To enable efficient feature selection, we propose a
feature ranking scheme based on a sparse regularization method called L1 regu-
larization [7,8,9]. This scheme is a non-greedy ranking method where two or more
features can have the same rank, meaning that these features have joint influence
and they should be selected together. Our sparse feature ranking approach can
be applied for both group-features and self-features.

We evaluate our approach on the task of listener feedback prediction, to pre-
dict the starting points of listener head-nods in a dyadic interaction of two
people. We use a sequential probabilistic model, Conditional Random Fields,
which is a recently used technique for predicting the backchannels [10]. The ex-
periments are conducted on the RAPPORT dataset from [11] which contains 42
storytelling dyadic interactions.

The following section present related work in nonverbal behavior analysis and
feature selection. In Section 3, we describe our self-feature consensus framework.
Sparse ranking scheme is described in Section 4. In Section 5, we explain the
dataset, features and evaluation metrics used in our experiments, and give the
results on the task of listener head-nod prediction. Finally, we conclude with
discussion and future work.

2 Related Work

Nonverbal behavior plays an important role in human social interactions. The
ability to correctly understand and respond to social signals is considered to be
the indicative of social intelligence [12] [13]. Due to it’s necessity, social signal
processing has became a new domain that aims to automatically sense and un-
derstand human social interactions through machine analysis [4] [14]. One of the
earliest works in this domain focused on social signal detection for predicting the
outcome of dyadic interactions such salary negotiations, hiring interviews, and
speed-dating conversations [15]. Second focus of attention has been analysis of
social interactions in multimedia recordings. There are three main tasks explored
in this context: (1) analysis of interactions in small groups, (2) recognition of
roles, and (3) sensing of users interest in computer characters. An extensive list
of studies for each domain can be found in [4].

One of the recent approaches in dyadic interactions analysis include recog-
nition [16] and prediction [10] of listener backchannel feedbacks. Earlier, the
researchers took a unimodal approach using only either the prosodic features
such as pitch and power contours [17] [18], or features like pause duration and
trigram part-of-speech frequency [19]. Maatman et al. [11] presented a multi-
modal approach that combines the prosodic feature based method in [18] with a
simple head-nod mimicking method. Later, Morency et al. [10] proposed a multi-
modal approach to automatically learn a predictive model of listener backchannel
feedback.
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Feature selection refers to the task of finding a subset of features that are
most relevant to the model, and provides a good representation of data. It al-
leviates the problem of overfitting by eliminating the noisy features. With only
the relevant features, a better understanding and analysis of data is facilitated.
Based on the gradient-based feature selection method (grafting) in [20], Vail et.
al. [21] proposed an incremental feature selection technique for Maximum En-
tropy Modeling. A Boosting-like method was presented in [22] that iteratively
constructs feature conjunctions, which increases the conditional log-likelihood
of the model when added. A well known feature selection technique based on
L1 regularization was also applied for conditional random fields in robot tag
domain [9].

Although well studied in psychology and sociology [23] [5] [6], individual differ-
ences in nonverbal communication have not yet been explored through machine
analysis. In this paper, we present a computational approach which enables a
better analysis of individual differences in non-verbal behaviors.

3 Concensus of Self-features

Figure 1(a) shows an overview of our self-feature concensus approach. The first
step of our algorithm is to find a ranked subset of the most relevant features
for each person individually. We refer to this subset as self-features. Section 4
describes our feature ranking algorithm. Figure 1(b) compares our approach to
the typical group-feature approach.

(a) (b)

Fig. 1. (a) Self-feature concensus.Features of each person in the data is ranked
first. Then, we select top n from these ranked list of self-features to construct nth order
histogram of feature counts. In this figure, only the 1st and 2nd order histograms are
shown. (b) Group-feature approach. Features are selected by using all people’s
observations at once.
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Once the ranked lists of self-feature are obtained, we create a consensus over
self-features by using only the top n of each list. A concensus is represented by
composing an nth order histogram using the top n of each self-feature. This con-
sensus provides a ranking of self-features, and we expect the relevant features
to be replicated in these histograms. To remove possible outliers, we apply a
threshold on the concensus features to keep only a subset of relevant features.
The intuition behind this threshold is that the relevant features are expected
to appear frequently in top n of many self-features corresponding to different
people, whereas the outlier features would not appear that as often. The mini-
mum required concensus threshold has been selected to be n+1 for an nth order
histogram in our experiments. Figure 1(a) shows two consensus examples: first
and second order histograms.

4 Sparse Ranking

Our feature ranking scheme relies on sparse regularization that applies some
constraints on model parameters during training. For a better understanding,
we first describe the Conditional Random Fields model used in our experiments
and then show how sparse regularization enable feature ranking in a non-greedy
manner.

4.1 Conditional Random Fields

Conditional Random Field (CRF) [24] is a probabilistic discriminative model
for sequential data labeling. It is an undirected graphical model that defines a
single log-linear distribution over label sequences given a particular observation
sequence. CRF learns a mapping between a sequence of multimodal observations
x = {x1, x2, ..., xm} and a sequence of labels y = {y1, y2, ..., ym}. Each yj is a
class label for the jth frame of a video sequence and is a member of a set Y of
possible class labels, for example, Y = {head-nod, other-gesture}. Each frame
observation xj is represented by a feature vector φ(xj) ∈ Rd, for example, the
prosodic features at each sample.

Given the above definitions, the conditional probability of y is defined as
follows:

P (y | x, θ) =
1

Z(x)
exp(

∑
α

θαFα(y,x)) (1)

where θ is a vector of linear weights, and Z(x) is a normalization factor over all
possible states of y. Feature function Fα is either a state function sk(yj ,x, j) or a
transition function tk(yj−1, yj ,x, j). State function sk depends on the correlation
between label at position j and the observation sequence; while transition func-
tion tk depends on the entire observation sequence and the labels at positions i
and i-1 in the label sequence.

Given a training set consisting of m labeled sequences (xi,yi) for i = 1...m,
training of conditional random fields involves finding the optimum parameter
set, θ, that maximizes the following objective function:
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Fig. 2. Sparse ranking using regularization path. As λ goes from higher to lower
values, feature weights start to become non-zero based on their relevance to the model.

L(θ) =
m∑

i=1

log P (yi | xi, θ) (2)

which is the conditional likelihood of the observation sequence.

4.2 The Method

Our method exploits regularization technique which provides smoothing when
the number of learned parameters is very high compared to size of available
data. Using a regularization term in the optimization function during training
can be seen as assuming a prior distribution over the model parameter. The
two most commonly used priors are Gaussian(L2 regularizer) and Exponential
(L1 regularizer) priors. A Gaussian prior assumes that each model parameter is
drawn independently from a Gaussian distribution and penalizes according to
the weighted square of the model parameters. An Exponential prior penalizes
according to the weighted L1 norm of the parameters and is defined as follows:

R(θ) = λ ‖ θ ‖1= λ
∑

i

| θi | (3)

where θ is the model parameters and λ > 0. In training of conditional random
fields, this regularization term is added as a penalty in the log-likelihood function
that is optimized. Therefore, Equation 2 becomes:

L(θ) =
m∑

i=1

log P (yi | xi, θ) − R(θ) (4)
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L1 regularization results in sparse parameters vector in which many of the pa-
rameters are exactly zero [25]. Therefore, it has been widely used in different
domains for the purpose of feature selection [22] [9]. The λ in Equation 3 deter-
mines how much penalty should be applied by the regularization term. Larger
values indicate larger penalty, thus produces sparser vector parameters.

Figure 2 shows the effect of regularization on feature weights. This regular-
ization path was created by starting with a high regularization penalty λ where
all the features are zero and then gradually reduce the regularization until all
the features have non-zero values. In this path, if a feature becomes non-zero in
earlier stages (i.e., large λ), this signifies that it is an important feature. Our
ranking scheme is based on this observation. We rank the features in the order
of it’s becoming non-zero in the regularization path. The pseudo code for our
algorithm is as follows:

ranked features = empty
for λ = ∞ down to 0 do

train a CRF with current λ
for all nonzero feature params θi do

if θi is NOT in selected features then
ranked features = selected features + θi

end if
end for

end for
return ranked features

5 Experiments

We test the validity of our approach on the multimodal task of predicting listener
nonverbal backchannel (i.e., listener head-nods). Backchannel feedback predic-
tion has received considerable interest due to its pervasiveness across languages
and conversational contexts [11] [10].

5.1 The Data

We are use the RAPPORT dataset [11] that contains 42 dyadic interactions
between a speaker and a listener. Data is drawn from a study of face-to-face
narrative discourse (’quasi-monologic’ storytelling). In this dataset, participants
in groups of two were told they were participating in a study to evaluate a com-
municative technology. Subjects were randomly assigned the role of speaker and
listener. The speaker viewed a short segment of a video clip taken from the Edge
Training Systems, Inc. Sexual Harassment Awareness video. After the speaker
finished viewing the video, the listener was led back into the computer room,
where the speaker was instructed to retell the stories portrayed in the clips to
the listener. The listener was asked to not talk during the story retelling. Elicited
stories were approximately two minutes in length on average. Participants sat
approximately 8 feet apart.
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5.2 Multimodal Features and Encodings

We use four different type of multimodal features in our models: prosodic, lexi-
cal, part-of-speech, and visual gesture features. Prosody refers to the rhythm,
pitch and intonation of speech. Several studies have demonstrated that listener
feedback is correlated with a speaker’s prosody [17]. Listener feedback often fol-
lows speaker pauses or filled pauses such as “um” (see [19]). We encode the
following prosodic features, including standard linguistic annotations and the
prosodic features suggested by Ward and Tsukhara [18]:

– Downslopes in pitch continuing for at least 40ms; regions of pitch lower than
the 26th percentile continuing for at least 110ms (i.e., lowness); drop or rise
in energy of speech (i.e., energy edge); fast drop or rise in energy of speech
(i.e., energy fast edge), vowel volume (i.e., vowels are usually spoken softer),
pause in speech (i.e., no speech).

Gestures performed by the speaker are often correlated with listener feedback [26].
Eye gaze, in particular, has often been implicated as eliciting listener feedback.
Thus, we encode speaker looking at the listener as our visual gesture feature.

Some studies have suggested an association between lexical features and lis-
tener feedback [19]. Therefore, we include top 100 individual words (i.e., uni-
grams) that are selected based on their frequency in the data.

Finally, we attempt to capture syntactic information that may provide rel-
evant cues by extracting four types of features from a syntactic dependency
structure corresponding to the utterance. Using a part-of-speech tagger [27],
we extract the part-of-speech tags for each word (e.g. noun, verb, etc.) as our
Part-of-speech(POS) features.

We encode our features using 13 different encoding templates as introduced
by [10]. The purpose of this encoding dictionary is to capture different relation-
ships between speaker features and listener backchannels. For instance, listener
backchannels sometimes happen later after speaker features, or when the speaker
features are present for certain amounts of time and its influence may not be
constant over time. To automatically obtain these relations, we use three encod-
ing templates in our experiments: binary encoding that is designed for speaker
features which influence on listener backchannel is constraint to the duration of
the speaker feature, step function that is a version of binary encoding with
two additional parameters: width of the encoded feature and delay between the
start of the feature and its encoded version. and ramp function that linearly
decreases for a set period of time (width parameter). Step and ramp functions
are used with 6 different parameters(width and delay): (0.5 0.0), (1.0 0.0), (0.5
0.5), (1.0 0.5), (0.5 1.0), (1.0 1.0) for step, and (0.5 1.0), (1.0 1.0), (2.0 1.0), (0.5
0), (1.0 0), (2.0 0) for ramp.

5.3 Methodology

We performed hold-out testing by randomly selecting a subset of 10 interactions
(out of 42) for the test set. The training set contains the remaining 32 dyadic
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interactions. All models evaluated in this paper were trained with the same
training and test sets. The test set does not contain individuals from the training
set. Validation of model parameters was performed using a 3-fold strategy on
the training set. For L1 regularization, λ ranged 1000 ∗ 0.95k, k = [20, 22..170].
For L2 regularization, the validated range was 10k, k = [−3..3]. The training of
CRF models was done using the hCRF library [28].

The performance is measured by using the F-measure, which is the weighted
harmonic mean of precision and recall. Precision is the probability that predicted
backchannels correspond to actual listener behavior. Recall is the probability
that a backchannel produced by a listener in our test set was predicted by the
model. We use the same weight for both precision and recall, so called F1. During
validation we find all the peaks (i.e., local maxima) from the marginal probabili-
ties. These backchannel hypotheses are filtered using the optimal threshold from
the validation set. A backchannel (i.e., head-nod) is predicted correctly if a peak
happens during an actual listener backchannel with high enough probability.

5.4 Results

We ran four experiments: (1) group-feature approach with sparse ranking, (2)
effect of the order parameter on self-feature concensus, (3) analysis of selected
self-features and (4) comparison of self-feature concensus to group-feature ap-
proach.

For the first experiment, we apply our sparse ranking scheme using all the
training people in a group-feature manner. To show the effect of sparse rank-
ing, we train a separate CRF for each subset of group-features. For compari-
son, we trained one CRF using all features (1833 encoded features). All CRFs
were retrained using L2 regularization following previous work on CRF-based
backchannel prediction [10]. (L1 was still used during the sparse ranking step).

Table 1. Group-features with sparse ranking. We incrementally add features
as they appear in the regularization path and use for retraining. Each row shows the
features added at that stage, therefore the model at this stage is retrained with these
new features plus the features above it. Final row shows values for using all the features
instead of feature selection.

Features Precision Recall F1

EyeGazes-binary 0.16469 0.14164 0.1523
... + POS:NN-step(1,.5)
... + VowelVolume-step(.5,1) 0.15281 0.25903 0.19222
... + Pause-step(1,0)
... + Lowness-step(1,.5) 0.19818 0.37516 0.25935

... + POS:NN-step(1,1) 0.2002 0.1918 0.19591

... + Lowness-step(1,0)

... + VowelVolume-step(.5,.5) 0.20512 0.1943 0.19956
Baseline: All features
No feature selection 0.1643 0.6079 0.2587
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Table 2. Selected features with self-feature concensus using histograms of different
orders (after outlier rejection)

1stOrder 2ndOrder 3rdOrder

POS:NN-step(1,1) POS:NN-step(1,1) POS:NN-step(1,1)
Utterence-binary POS:NN-step(1,.5) POS:NN-step(1,.5)
EyeGaze-binary Utterence-binary Utterence-binary
Pause-binary EyeGaze-binary EyeGaze-binary
POS:DT-step(1,.5) EyeGaze-step(1,1) Pause-step(1,0)
Lowness-step(1,0) Pause-binary POS:DT-step(1,.5)

Pause-step(1,0) Lowness-step(1,0)
POS:DT-step(1,.5) Lowness-step(1,.5)
Lowness-step(1,0)

Precision, recall and F1 values are given in Table 1. In each row, features are
added as they appear in the L1 regularization path of our sparse ranking scheme.
The best performance happens in the third step with five selected features and
F1 value of 0.25935. The last row of Table 1 represents the performance when no
feature selection is applied (all features are used). This result shows that sparse
ranking can find a subset relevant of features, with performance similar to the
baseline model that contain all features.

For the same listener backchannel prediction task, Morency et al. [10] used a
greedy-forward feature selection method on the RAPPORT dataset. Although,
the experimental set up was slightly different (i.e. different test and train sets
were used), the best precision, recall and F1 values archived with this method
were 0.1862, 0.4106, 0.2236, respectively.

Our second experiment studies the effect of the order parameter on self-feature
concensus. We constructed feature histograms with orders 1, 2, and 3 by looking
at the top 1st, 2nd, and 3rd features in each list. Then, we applied a threshold
of 2, 3, and 4 respectively on the histograms for outlier rejection. The list of
features for each order is listed in Table 2. This result is really interesting since
the same features appear in all three consensus.

For our third experiment, we analyze the features selected for our task of
head-nod prediction. It is interesting that some features are selected by both
self-feature concensus and group-feature approach, such as Pause, EyeGaze,
Lowness, POS:NN. Utterance and POS:DT are the two features selected by
self-feature concensus approach that do not appear in the top 20 features from
the group-feature approach. POS:DT refers to determiners in language, such as
the, this, that. Utterance refers to the beginning of an utterance. Mixed together,
these two features represent moments where the speaker starts an utterance with
a determiner. To show the relative importance of the Utterance and POS:DT
features, we added these two features to the list of features obtained by group-
feature approach and trained a new CRF model. Precision, recall and F1 values
are 0.21685, 0.38653, 0.27783, respectively. We see an improvement over group-
feature approach, showing the importance of self-feature concensus.
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Table 3. Precision, recall and F1 values of retrained CRFs with group-feature approach
and self-feature concensus

Method Precision Recall F1

self-feature concensus
Order 1 0.2192 0.4939 0.3037
Order 2 0.23802 0.48628 0.3196
Order 3 0.24449 0.28211 0.26196
group-feature approach 0.19818 0.37516 0.25935
Baseline: all features 0.1643 0.6079 0.2587

Our last experiment compares our self-feature concensus approach to the typ-
ical group-feature approach. Using the selected self-features from Table 2, we
retrained a L2 regularized CRFs over all training instances. Precision and re-
call values for these retrained CRFs of self-feature concensus and group-feature
approach (best result from first experiment) are given in Table 3. The best F1
value achieved with 2nd order histogram is 0.3196. Also, all three self-feature
concensus models perform better F1 than the group-feature approach and the
CRF trained with all features (i.e., no feature selection). This results show that
using self-features improves listener backchannel prediction.

6 Conclusion

Nonverbal behaviors play an important role in human social interactions and
a key challenge is to build computational models for understanding and ana-
lyzing this communication dynamic. In this paper, we proposed a framework
for finding the important features involved in human nonverbal communication.
Our self-feature concensus approach first looks at important behaviors for each
individual before building a consensus. It avoids the problem with the group-
feature approach which focused on the average model and oversees the inherent
behavioral differences among people. We proposed a feature ranking scheme ex-
ploiting from L1 regularization technique. This scheme relies on the fact that
adding more penalty on the model parameters will result in sparser results in
which only the important features will be promoted.

Our framework was tested on the task of listener head-nod prediction in dyadic
interactions. We used the RAPPORT dataset that contains 42 dyadic communi-
cations between a speaker and a listener. The results are promising and provides
improvement over traditional group-feature approach. In our future work, we
plan to use this framework for different prediction tasks, such as gaze aversion
and turn-taking prediction.
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Abstract. Automatic recognition of human actions is a growing re-
search topic urged by demands from emerging industries including (i)
indexing of professional and user-generated video archives, (ii) automatic
video surveillance, and (iii) human-computer interaction. Most applica-
tions require action recognition to operate reliably in diverse and realis-
tic video settings. This challenging but important problem, however, has
mostly been ignored in the past due to several issues including (i) the
difficulty of addressing the complexity of realistic video data as well as
(ii) the lack of representative datasets with human actions “in the wild”.
In this talk we address both problems and first present a supervised
method for detecting human actions in movies. To avoid a prohibitive
cost of manual supervision when training many action classes, we next
investigate weakly-supervised methods and use movie scripts for auto-
matic annotation of human actions in video. With this approach we au-
tomatically retrieve action samples for training and learn discriminative
visual action models from a large set of movies. We further argue for the
importance of scene context for action recognition and show improve-
ments using mining and classification of action-specific scene classes. We
also address the temporal uncertainty of script-based action supervision
and present a discriminative clustering algorithm that compensates for
this uncertainty and provides substantially improved results for temporal
action localization in video. We finally present a comprehensive evalua-
tion of state-of-the-art methods for actions recognition on three recent
datasets with human actions.
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Abstract. Human action recognition has become a hot research topic, and a lot of 
algorithms have been proposed. Most of researchers evaluated their performances 
on the KTH dataset, but there is no unified standard how to evaluate algorithms 
on this dataset. Different researchers have employed different test setups, so the 
comparison is not accurate, fair or complete. In order to know how much differ-
ence there is when different experimental setups are used, we take our own spatio-
temporal MoSIFT feature as an example to assess its performance on the KTH 
dataset using different test scenarios and different partitioning of the data. In all 
experiments, support vector machine (SVM) with a chi-square kernel is adopted. 
First, we evaluate performance changes resulting from differing vocabulary sizes 
of the codebook, and then decide on a suitable vocabulary size of codebook. 
Then, we train the models using different training dataset partitions, and test the 
performances one the corresponding held-out test sets. Experiments show that the 
best performance of MoSIFT can reach 96.33% on the KTH dataset. When differ-
ent n-fold cross-validation methods are used, there can be up to 10.67% difference 
in the result. And when different dataset segmentations are used (such as KTH1 
and KTH2), the difference in results can be up to 5.8% absolute. In addition, the 
performance changes dramatically when different scenarios are used in the train-
ing and test dataset. When training on KTH1 S1+S2+S3+S4 and testing on KTH1 
S1 and S3 scenarios, the performance can reach 97.33% and 89.33% respectively. 
This paper shows how different test configurations can skew results, even on 
standard data set. The recommendation is to use a simple leave-one-out as the 
most easily replicable clear-cut partitioning. 

Keywords: Action Recognition, training/test data sets, partitioning,  
experimental methods. 

1   Introduction 

The problem of data sets and partitioning the data sets has confronted every re-
searcher. Some standard evaluation efforts, such as TRECVID, organized by the U.S. 
National Institute of Standards (NIST), provide enough data and specify a partitioning 
of the data into training and testing for all published experiments. While researchers 
still at times evaluation only subsets of the data that perhaps are most suitable to their 
approaches, the basic partitioning ensures at least a clear method to duplicate and 
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validate any experiments, as well as developing improved methods. The problem is 
more acute, when there is not enough data for reliable trainings. This is the case with 
the well-known Weizmann and KTH action data sets, where the data sets have been 
made public, but no standard has been agreed for evaluation.  

The typical research approaches, discussed in more detail in section 2, try multiple 
folder cross-validation, where some data is used for training, and some held out for 
testing. In addition, each KTH video includes multiple repetitions of an action, and 
some papers treat adjacent scenes as separate instances in the data, using one for train-
ing and the other for testing, while others partition the data at the complete video file 
level. Similar choices exist with the same person performing an action in different 
camera settings, etc. While one might argue that this is unlikely to result in major 
different, this paper intends to show that the differences are quite significant and we 
argue for a uniform leave-one-file-out approach in these situations, which is easy to 
understand and replicate, but also provides a relatively large amount of training data 
in each iteration.  

In general, action recognition has been widely researched and applied in many do-
mains, such as visual surveillance, human computer interaction and video retrieval 
etc. Many schemes have been proposed for the human action recognition, and we give 
a brief overview over some of the more frequently cited approaches in the literature. 

Aggarwal and Cai [1] give an overview of the various tasks involved in the motion 
analysis of human body. Hu et al. [2] review the visual surveillance in dynamic 
scenes and analyze possible research directions. Dollar et al. [3] use sparse spatiotem-
poral features to perform behavior recognition including human and rodent behavior. 
Schuldt et al. [4] construct video representations in terms of local space-time features 
and integrate such representations with SVM classification schemes for recognition. 
Laptev and Lindeberg [5] build on the idea of the Harris and Forstner interest point 
operators and detect local structures in space-time. Shechtman and Irani [6] extend the 
notion of 2-dimensional image correlation into a 3-dimensional space-time volume, 
thus enabling them to correlate dynamic behaviors and actions. Liu and Shah [8] use 
the Maximization of Mutual Information (MMI) technique to select the optimal num-
ber of words for bag-of-words algorithm.  

Laptev et al. [9] address recognition of natural human actions in diverse and realis-
tic video settings. Klaser et al. [13] present a local descriptor based on histograms of 
oriented 3D spatio-temporal gradients. Wong and Cipolla [12] utilize the global in-
formation to yield a sparser set of interest points for motion recognition. Willems et 
al. [14] present the spatio-temporal interest points that are at the same time scale-
invariant (both spatially and temporally). Oikonomopoulos et al. [18] detect the spati-
otemporal salient points by measuring changes in the information content of pixel 
neighborhoods not only in space but also in time. Sun et al[32] exploit  what kinds of 
features are suitable for different action datasets, and fuse local the holistic feature 
can get much better performance. Bobick and Davis [21] use temporal templates, 
including motion-energy images and motion-history images to recognize human 
movement. Gorelick et al. [22] exploit a solution to the Poisson equation to extract 
various shape properties from images. Wang and Suter [23] learn explicit representa-
tions for dynamic shape manifolds of moving humans.  

Jia and Yeung [29] use a dimensionality reduction approach called LSTDE to rec-
ognize silhouette-based human action. Gorelick et al. [28] regard human actions as 
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three dimensional shapes induced by silhouettes in the space time volume. Weinland 
et al. [19] use learned 3D exemplars to produce 2D image information to perform 
view-independent action recognition. Rodriguez et al. [24] use a frequency domain 
technique, called the Maximum Average Correlation Height (MACH) filter, to recog-
nize single-cycle human actions. Wang et al. [31] use the Discrete Fourier Transform 
(DFT) and Discrete Wavelet Transform (DWT) to describe silhouette-based image.  

The experimental setup of different research papers will be discussed in the section 2. 
We then briefly describe our MoSIFT algorithm for interest point detection and feature 
description in section 3. In section 4, we present experimental performance results for 
the same system on the KTH dataset under different conditions. Finally, we conclude 
with a summary and discussion.  

2   Related Work 

The main idea of this paper is to highlight the fact that the performance will be greatly 
influenced by the different ways and data are used for training and testing. We assume 
testing will always be done on data not used for training. However, in order to com-
pare fairly and completely, we should have a uniform standard which data is used for 
training and which for testing. First of all, we will review some related papers that all 
use different experimental setups. The typical performance evaluation of action rec-
ognition uses one of several available action databases, most prominent among those 
are the Weizmann database [28] and the KTH database (see Fig 2) [4]. Both have 
been widely used to evaluate action recognition approaches and many results have 
been reported on them (see Table 3). This is very positive, in that it allows others to 
judge the difficulty of recognizing actions in this type of video, and perhaps perform 
their own experiments. Some approaches are evaluated on both databases (e.g. [13, 
15, 25-26]) while others either only on the Weizmann (e.g. [27-31, 34]) or the KTH 
database (e.g. [7-12, 14, 24]). With the Weizmann database, almost all of them (e.g. 
[27-31, 34]) assess the performance using a leave-one-out setup (See 4.1 in details). 
Since this is fairly uniform for this dataset in the literature, we will not discuss differ-
ences in performance on Weizmann due to methodology. However, on the KTH data-
base, researchers have published widely different kinds of test methods (See Table 3). 
Some approaches [4, 7, 9, 13, 34] are evaluated on the KTH2 set, but some research-
ers [8, 10, 12, 14-15, 17, 24-26, 32-33] test their performance on KTH1. Dollar et al. 
[3] extract selected clips from the KTH data (complete details about KTH, KTH1 and 
KTH2 will be introduced in section 4.1). Unfortunately, even if researchers use the 
same basic database, such as KTH1 or KTH2, they often adopt different numbers of 
folds in the cross-validation. In some papers [4, 7, 13, 34], the authors [7, 13, 34] 
follow the setting of Schuldt et al [4] using 1-fold cross-validation, but Laptev et al 
[9] does not adopt this setting, instead a 10-fold cross-validation is used in their ex-
periments. For KTH1, some authors [10, 14, 25] just use 1-fold cross-validation, but 
5-fold cross-validation is employed in [15, 24, 26]. Furthermore, some authors [8, 12, 
17, 32-33] adopt leave-one-out way to evaluate their performance. From the above 
analysis, even if the reported performance of some methods is much higher than oth-
ers, since different experimental settings are employed, the comparison is difficult to 
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trust. Thus, the quality of different methods of performance evaluation for action 
recognition remains unclear, and people can not compare their approaches fairly and 
completely. In order to understand how much difference there might be when differ-
ent test scenarios are employed, we will use our MoSIFT feature and simple SVM 
classifiers to assess the differences. The following will introduce the MoSIFT feature 
in brief. 

 

Fig. 1. The MoSIFT framework 

3   MoSIFT 

Methods based on feature descriptors around local interest points are now widely used 
in object recognition. This part-based approach assumes that a collection of distinc-
tive parts can effectively describe the whole object. Compared to global appearance 
descriptions, a part-based approach has better tolerance to posture, illumination, oc-
clusion, deformation and cluttered background. Recently, spatio-temporal local fea-
tures [4-5, 12-14, 18] have been used for motion recognition in video. The key to the 
success of part-based methods is that the interest points are distinctive and descrip-
tive. Therefore, interest point detection algorithms play an important role in a part-
based approach.  

The straightforward way to detect a spatio-temporal interest point is to extend a 2D 
interest point detection algorithm. Laptev et al. [35] extended 2D Harris corner detectors 
to a 3D Harris corner detector, which detects points with high intensity variations in 
both spatial and temporal dimensions. On other words, a 3D Harris detector finds spatial 
corners with velocity change, which can produce compact and distinctive interest points. 
However, since the assumption of change in all 3 dimensions is quite restrictive, very 
few point results and many motion types may not be well distinguished. Dollar et al. [3] 
discarded spatial constraints and focused only on the temporal domain. Since they re-
laxed the spatial constraints, their detector detects more interest points than a 3D Harris 
detector by applying Gabor filters on the temporal dimension to detect periodic fre-
quency components. Although they state that regions with strong periodic responses 
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normally contain distinguishing characteristics, it is not clear that periodic movements 
are sufficient to describe complex actions. Since recognizing human motion is more 
complicated than object recognition, motion recognition is likely to require with en-
hanced local features that provide both shape and motion information, So MoSIFT 
algorithm[33] are proposed, which detects spatially distinctive interest points with sub-
stantial motions. They first apply the well-know SIFT algorithm to find visually distinc-
tive components in the spatial domain and detect spatio-temporal interest points with 
(temporal) motion constraints. The motion constraint consists of a 'sufficient' amount of 
optical flow around the distinctive points. The framework is shown in Fig 1. Details of 
the algorithm can be viewed in [33]. 

4   Experiments 

For the evaluation, we use the KTH database, containing six types of human actions 
(walking, jogging, running, boxing, hand waving and hand clapping) performed sev-
eral times by 25 subjects in four different scenarios: outdoors S1, outdoors with scale 
variation S2, outdoors with different clothes S3 and indoors S4 (see Fig 2). All se-
quences were taken over homogeneous backgrounds with a static camera with a 25 
fps frame rate. The sequences were down-sampled to the spatial resolution of 
160*120 pixels and have a length of four seconds in average. To the best of our 
knowledge, this is the largest video database with sequences of human actions taken 
over different scenarios that is widely used for research. In our experiments, we will 
divide the KTH dataset into different training and test datasets in different ways fol-
lowing some of the published papers [4, 7-9, 12-15, 17, 24-26, 32-34], and also 
evaluate the performance in these different scenarios.  

4.1   Experimental Setup 

In order to follow the researchers ([4, 7, 9, 13, 34] and [8, 10, 12, 14-15, 17, 24-26, 32-
33]), we rename the KTH database in two ways. One is that some person performs the 
same action three or four times in the same video, named KTH1, the other is that a 
person just does an action only one time, named KTH2. In KTH1, there are 599 se-
quences, while the KTH2 database contains 2391 sequences. We examine two kinds 
of cross-validation that are frequently employed for KTH1 and KTH2 (n-fold and 
leave-one-out). Leave-one-out cross-validation uses 24 of 25 subjects to build action 
models and then tests on the remaining subject. Performance is reported as the aver-
age accuracy of 25 runs, each with a different person. As for n-fold, we also follow 
the Schuldt et al [4] in which all sequences were divided with respect to the subjects 
into a training set (8 persons), a validation set (8 persons) and a test set (9 persons). 
The classifiers were trained on a training set while the validation set was used to op-
timize the parameters of each method. The presented recognition results were ob-
tained on the test set. Performance is reported as the average accuracy of n runs. On 
KTH1 and KTH2, 1-fold, 5-fold, 10-fold, 30-fold, and leave-one-out cross validation 
are adopted, as done by various authors.  
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Fig. 2. Examples of sequences corresponding to different types of actions and scenarios 

4.2   Experiment 1 

Firstly, we extracted around 2 million interest points from the whole KTH dataset with 
the MoSIFT detector. Since the number of interest points is large, we randomly sample 
25% of the interest points to construct a video codebook. Several codebooks with dif-
ferent vocabulary sizes are produced by k-means clustering. Each interest point is 
mapped into one cluster (i.e. visual word) based on its feature vector. We then aggregate 
all the visual words over the duration of a single event. Thus, each event is represented 
by a visual word histogram. We then apply a χ2 kernel with an SVM classifier because 
it has been shown to be better for calculating histogram distances. We perform the ex-
periments on the KTH1 dataset with a leave-one-out experimental setup. In this first 
experiment, we merely want to know how performance changes with different vocabu-
lary sizes, and select a suitable size for future comparisons. Table 1 and 2 show the 
performance and the confusion matrix for different codebook sizes. 

Table 1. Comparison of different vocabulary sizes 

 Codebook Size 

KTH1 100 200 600 1000 2000 3000 4000 

Accuracy (%) 89.58 0.9382 0.9383 0.9499 0.9567 0.9633 0.9583 

Table 2. Confusion matrix of MoSIFT with a 3000 visual-word vocabulary size 

 Boxing Clapping Waving Jogging Running Walking
Boxing 0.99 0.01 0 0 0 0 
Clapping 0.01 0.979 0.01 0 0 0 
Waving 0 0.01 0.99 0 0 0 
Jogging 0 0 0 0.93 0.07 0 
Running 0 0 0 0.11 0.89 0 
Walking 0 0 0 0 0 1 
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Table 1 shows that MoSIFT has good and stable performance when varying the 
vocabulary size. When the vocabulary size is 100, its accuracy can still reach 89.58%. 
After the codebook size is above 200, the performance is stable, but the performance 
still shows some improvement with further increases in vocabulary size.  

When the vocabulary size of codebook is 3000, the best performance is achieved, 
but when the vocabulary size increases further, performance starts to decline. Table2 
gives the confusion matrix of MoSIFT with a 3000 word vocabulary size. The most 
confusion is between jogging and running, and we found that even humans have diffi-
culties distinguishing them. Table 3 presents the comparison of different published 
results with a variety of methods all evaluated on the KTH dataset. In Table 3 we find 
that the MoSIFT feature with a 3000 visual word vocabulary size has the best per-
formance when compared to all other published algorithms we have found to date.  

Table 3. Comparison of different methods all using the KTH dataset 
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4.3   Experiment 2 

In [4, 7, 9, 13, 34] and [10, 14-15, 24-26], all sequences were divided with respect to the 
subjects into a training set (8 persons), a validation set (8 persons) and a test set (9 per-
sons). Unfortunately, most of these methods do not describe precisely how they split the 
KTH dataset into training and testing parts. This makes an accurate comparison impos-
sible. A quick calculation shows that there are 8 8 9

25 25 25 2.3899e+018C C C× × ≡  choices of parti-

tions. In the next experiments, we will show how performance changes with different 
training and testing datasets. In order to balance performance and computation, we 
choose the 600 word vocabulary size for MoSIFT, and all of the following experiments 
will adopt a 600 word vocabulary. First, we divide the KTH2 database into a training set 
(8 persons), a validation set (8 persons) and a test set (9 persons) randomly, but perform 
the experiments 30 times with different randomly selected partitions.  

Table 4. Performance comparison of different data partitioning on KTH2 

Run# Random1Random2 Random3 Top10 Bottom10
#1-3 89.19 90.15 85.66 94.65 85.66
#4-6 90.50 93.35 89.88 93.36 88.64
#7-9 90.27 92.95 89.63 93.35 89.19

#10-12 91.50 92.18 90.20 93.34 89.31
#13-15 90.72 89.31 91.73 93.16 89.63
#16-18 90.01 93.05 94.65 93.05 89.70
#19-21 93.36 93.34 89.70 92.95 89.88
#22-24 90.95 92.18 92.78 92.78 90.01
#25-27 91.26 91.26 88.64 92.18 90.15
#28-30 93.16 91.72 91.00 92.18 90.20

Average 91.09 91.95 90.39 93.10 89.24

Table 5. Performance comparison of different data partitioning on KTH1 

Run# Random1Random2 Random3 Top10 Bottom10 
#1-3 93.49 93.23 93.23 95.83 92.15
#4-6 92.13 90.10 93.72 95.37 92.13
#7-9 91.67 94.24 95.83 94.79 92.13

#10-12 94.42 94.79 90.63 94.79 91.67
#13-15 92.59 93.75 93.19 94.42 91.67
#16-18 94.42 91.67 90.63 94.42 91.67
#19-21 95.37 93.72 92.19 94.27 91.62
#22-24 91.67 92.67 93.75 94.24 90.63
#25-27 92.13 92.15 94.27 93.75 90.63
#28-30 93.06 91.62 94.79 93.75 90.10

Average 93.09 92.79 93.22 94.56 91.44
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Table 4 shows that if we have no cross-validation, the performance can vary from a 
low score of 85.6579% to a high 94.6545%.  

The performance varies from 88.487% to 93.57% when an average of 5 sample 
partitions is used. If we have 10-different partitions, the performance can fluctuate 
from 89.237% to 93.10%. When using all of our 30 runs, we can get an average accu-
racy of 91.14%.  

The same experiments are performed on KTH1, and Table 5 gives the results.  
Table 5 indicates that the best and worst performance is 95.83% and 90.10% respec-
tively without cross validation, choosing simply the best or worst single result. When 
5 partitioning are average, the performance can range from 90.93% to 95.04%. The 
fluctuation of averaging 10 partitionings runs from 91.44% to 94.56%.  

From Table 4 and 5, we can see that the fluctuation will be small with the increase 
of n in the n-fold cross validation. Table 3 gives the comparison of different methods 
using KTH, and the fluctuation also is shown for our method. For example, for testing 
on KTH2 without cross-validation, if we choose the best performance of our algo-
rithms, it will be 94.65%, which is much better than 91.4% in [13], but the lowest 
performance of our algorithms is 85.66%, which is much worse than 91.4% in [13]. 
What is worse, we also do not exactly know what setting was used in [13]. The same 
situation occurs when we perform the experiments on KTH1 with 5-fold cross-
validation.  Thus, we cannot draw strong conclusions that our algorithm is much  
better or worse than that in [13], which is unfortunate. Since we just performed 30 
experiments from 2.38993e+18 possibilities, fluctuation could still much bigger than 
in our experiments. However, for the leave-one-out setup, all experiments have the 
same setting, so performance can be compared fairly and completely.  

4.4   Experiment 3 

From the above experiments, we can see that different test designs affect perform-
ance, but the leave-one-out way always has the same setting, so in the following ex-
periments, the leave-one-out way will be used. Table 3 shows that the authors [4, 7, 9, 
13, 34] evaluate their performance on the KTH2 database, but the KTH1 database is 
used in experiments by [8, 10, 12, 14-15, 17, 24-26, 32-33], so in this experiment, we 
will assess the difference between KTH1 and KTH2. In order to evaluate this com-
pletely, we will train and test on different scenarios. 

In the KTH database, there are four scenarios: outdoors S1, outdoors with scale 
variation S2, outdoors with different clothes S3 and indoors S4. To analyze the influ-
ence of these different scenarios, we perform training on different subsets of {S1}, 
{S1, S3}, {S1, S3, S4} and {S1, S2, S3, S4}, at the same time, {S1}, {S2}, {S3}, 
{S4}, and {S1, S2, S3, S4} will be used to test. We perform experiments on the 
KTH1 and KTH2 respectively. In order to compare fairly and completely, all the 
settings are otherwise the same. The performance is given in Fig.3 and Fig.4, and the 
comparison is shown in Table 6.  

From Fig.3 and 4, we find that when we train the models and test on different sce-
narios, the biggest change occurs for the actions of jogging and running, while other 
actions are relative stable. When we the train the models without the S2 scenario and 
test on all scenarios, the performance of the S2 scenario is the worst, but when the 
training database includes the S2 scenario, the performance will increase rapidly. 
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Fig. 3. Each action performance when training and testing on KTH2 in different scenarios 

The same effect also can be seen in the S3 and S4 scenarios. In Table 6, we see that 
when we train the models on the S1 scenario and test on S1, S2, S3, S4, 
S1+S2+S3+S4 on KTH1 and KTH2, the performance on KTH1 is much better than 
on KTH2. Similar results occur in other experiments except the red fold in the  
Table 6. Schuldt et al [4] noted that the S2 scenario was the most difficult to detect as 
there are scale variations in this scenario. However, the last row in Table 6 shows that 
its performance is much better than in the S3 scenario on KTH1 and KTH2.  

Training on S1 Scenario

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4 S1+S2+S3+S4

Test Scenario

A

c

c

u
r

a

c

y

boxing

handclapping

handwaving

jogging

running

walking

average

Training on S1+S3 Scenario

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4 S1+S2+S3+S4

Test Scenario

A

c

c

u

r

a

c

y

boxing

handclapping

handwaving

jogging

running

walking

average

 
Training on S1+S3+S4 Scenario

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4 S1+S2+S3+S4

Test Scenario

A

c

c

u

r

a

c

y

boxing

handclapping

handwaving

jogging

running

walking

average

Trainging on S1+S2+S3+S4 Scenario

0

0.2

0.4

0.6

0.8

1

1.2

S1 S2 S3 S4 S1+S2+S3+S4

Test Scenario

A

c

c

u
r

a

c

y

boxing

handclapping

handwaving

jogging

running

walking

average

 

Fig. 4. Each action performance when training and testing on KTH1 in different scenarios 
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We suspect the reason is that MoSift has better tolerance to scale variation than to 
appearance variation (remember the S3 scenario is outdoors with different clothes), 
and the confusion of the S2 and S3 scenario also has some influence on the perform-
ance of S3. 

Table 6. Average performance of training/testing in different scenarios on KTH1 and KTH2 

  Training Scenario 
  S1 S1+S3 S1+S3+S4 S1+S2+S3+S4 

Test Scenario KTH1KTH2 KTH1 KTH2 KTH1 KTH2 KTH1 KTH2 
S1 0.96 0.95 0.97 0.95 0.97 0.96 0.97 0.95 
S2 0.83 0.80 0.79 0.82 0.81 0.83 0.93 0.92 
S3 0.83 0.80 0.92 0.90 0.92 0.90 0.89 0.87 
S4 0.95 0.91 0.93 0.87 0.97 0.96 0.95 0.95 

S1+S2+S3+S4 0.89 0.86 0.90 0.88 0.92 0.91 0.94 0.92 

Table 7 gives the performance with different training and testing on KTH1 and 
KTH2 different scenarios. The biggest difference between KTH1 and KTH2 can 
reach 5.85%. When we train on S1+S2+S3+S4, and test on S1, S2, S3, S4, 
S1+S2+S3+S4, the difference is 2.5%, 1.3%, 1.9%, 0.1%, 1.38% respectively. If we 
are not careful about the cross-validation and database used in our experiments, the 
total range of performance differences can reach 10.67%. 

Table 7. Performance difference of training and testing on KTH1 and KTH2 different scenarios 

  Training Scenario 
Test Scenario S1 S1+S3 S1+S3+S4 S1+S2+S3+S4 

S1 0.0134 0.0217 0.0134 0.0250 
S2 0.0300 0.0250 0.0200 0.0133 
S3 0.0251 0.0224 0.0239 0.0190 
S4 0.0367 0.0584 0.0101 0.0016 

S1+S2+S3+S4 0.0276 0.0210 0.0084 0.0139 

5   Conclusion 

In this paper we reviewed existing action recognition approaches’ performance on 
KTH dataset, and found that people evaluated their performances by different test 
ways. Based on our analysis, we performed the experiments by different test ways and 
different scenarios. Experiments show that the performance deviations of different  
n-fold cross-validation can achieve 9%, and the performance diversity of different 
database can reach 5.85%. What is worse, if we consider the both conditions, the 
difference can be 10.66%.  
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To compare the performance fairly and completely, the uniform standard should 
set up, and the leave-one-out way maybe a good one. In our experiments, we find that 
the increase of training samples will affect the performance in some cases. We there-
fore recommend that future research always adopts leave-one-out experimental set-
ups, and that training scenarios be always carefully described to avoid unscientific 
and confusing comparisons. 
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Abstract. In this study we describe a method for 3D trajectory based
recognition of and discrimination between different working actions in an
industrial environment. A motion-attributed 3D point cloud represents
the scene based on images of a small-baseline trinocular camera system.
A two-stage mean-shift algorithm is used for detection and 3D track-
ing of all moving objects in the scene. A sequence of working actions
is recognised with a particle filter based matching of a non-stationary
Hidden Markov Model, relying on spatial context and a classification of
the observed 3D trajectories. The system is able to extract an object
performing a known action out of a multitude of tracked objects. The
3D tracking stage is evaluated with respect to its metric accuracy based
on nine real-world test image sequences for which ground truth data
were determined. An experimental evaluation of the action recognition
stage is conducted using 20 real-world test sequences acquired from dif-
ferent viewpoints in an industrial working environment. We show that
our system is able to perform 3D tracking of human body parts and a
subsequent recognition of working actions under difficult, realistic con-
ditions. It detects interruptions of the sequence of working actions by
entering a safety mode and returns to the regular mode as soon as the
working actions continue.

1 Introduction

The efficiency of many industrial production processes can be increased by es-
tablishing a close collaboration between humans and machines exploiting their
unique capabilities. A safe interaction between humans and industrial robots
requires vision methods for 3D pose estimation, tracking, and recognition of the
motion of human body parts. A robust method often used for object tracking is
the mean-shift algorithm [2,3,5], which searches for a local mode of the empirical
density function.

The mean-shift tracking approach introduced in [4] is extended to 3D space in
[12]. In the experiments in [12], a large-baseline system consisting of four colour
cameras is used. The head of a human is tracked using an ellipsoid model. The
large baseline results in a high accuracy of the 3D pose estimation, since in this
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setting relatively small errors of the estimated disparities of the order of a few
pixels do not lead to large errors of the depth estimation. Furthermore, in the
scenes regarded in [12] the objects and the background can be separated easily
as both can be described unambiguously by colour histogram features.

To recognise gestures or actions, many recognition systems use Hidden Markov
Models (HMMs) due to their ability to probabilistically represent the variations
of the training data. Li et al. [11] use HMMs to classify hand trajectories of ma-
nipulative actions and take into account the object context. Black and Jepson [1]
present an extension of the CONDENSATION algorithm and model gestures as
temporal trajectories of the velocity of the tracked hands.

This study addresses the problem of tracking and recognising the motion of
humans in a working environment, which is a precondition for a close collabo-
ration between human workers and industrial robots. As an imaging system, we
use a small-baseline trinocular camera sensor similar to that of the SafetyEYE
protection system (www.safetyeye.com) which is used in production processes
to protect human workers. In the context of this application, we are restricted
to the small-baseline configuration and therefore cannot make use of the ad-
vantages of the multi-view setup described in [12]. Small disparity errors may
thus lead to large depth errors, and it is often difficult to distinguish the tracked
object from the cluttered background. Hence, the extension of the 3D mean-
shift tracking approach proposed in this study relies on grey value histograms
and 3D point cloud data generated by stereo image analysis. The subsequent
action recognition stage consists of a particle filter based non-stationary HMM
framework.

2 3D Tracking Stage

The idea behind our tracking approach is to extract the motion of all moving
objects in the observed scene with a 3D mean-shift tracking algorithm and a
simple ellipsoid model. At each time step the recognition stage then determines
the relevant object (e.g. the hand) which performs the working actions, and
recognises the current working action with a particle filter based matching of a
non-stationary HMM.

2.1 Clustering and Object Detection

Object detection and 3D tracking are based on a scene flow field. We use a
combination of dense optical flow and sparse correlation-based stereo. The dense
optical flow algorithm described in [14] is used to determine the object motion
in the image sequence. We combine the optical flow field with the 3D points
from the stereo algorithm to obtain the scene flow field (cf. Fig. 1). The velocity
component parallel to the depth axis is not computed.

At each time step, a graph based clustering stage extracts all moving objects
from the scene flow field, essentially separating moving objects from the (sta-
tionary or differently moving) background. The computed clusters are approxi-
mated as ellipsoids and the 3D ellipsoid pose Φ = [cx, cy, cz, β]T is determined
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Fig. 1. Dense optical flow computed according to [13]. (a) Horizontal component.
(b) Vertical component. Warmer colours denote larger values of the components. (c) Re-
projected sparse scene flow field. (d) Enlarged section of the sparse scene flow field.

Fig. 2. Left: Ellipsoid model used for tracking arbitrary objects or object parts in the
3D point cloud. Right: Reprojection of four tracked objects.

(cf. Fig. 2). Only the 3D centre c = [cx, cy, cz]T of the ellipsoid and the rotation
angle β around the depth axis are part of the pose vector Φ, since we assume
that the approximated objects are parallel to the image plane. The 3D pose up-
date of all tracked objects is based on a two-stage 3D extension of the mean-shift
algorithm [3,5]. If a tracked object is not moving for more than 5 time steps it
is deleted.
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Fig. 3. Two-stage mean-shift procedure. Projected search region (left), 3D probability
grid (middle), final result (right).

2.2 Target Model

The target model q̂(id) with the object index id is computed based on the first
3D ellipsoid pose Φ(id) and is updated at every time step. It consists of a one-
dimensional histogram of greyscale values. To compute the histogram q̂(id) we
place a grid on the surface of the ellipsoid, the resolution of which is equal to the
pixel resolution at the current depth. Every 3D point on the surface grid of the
ellipsoid is projected into the images of all three cameras. The histogram bin of a
3D-point p is obtained with the lookup function iBin(p) = 1

3

(
IC1
uv + IC2

uv + IC3
uv

)
,

where ICc
uv is the greyscale value in the image from camera c at the projected

position (u, v) of the 3D point p. With all 3D points on the surface grid of the
ellipsoid a one-dimensional histogram of the object appearance is computed. We
employ a convex and monotonically decreasing kernel profile g which assigns a
smaller weight to locations that are farther away from the centre of the ellipsoid.
A normalisation of the histogram yields the relative frequency of each greyscale
value on the ellipsoid surface, which is interpreted as a probability.

2.3 Image-Based Mean-Shift

In the first stage, the mean-shift procedure is applied to a search region, a
3D plane parallel to the image plane centred at the last object position. Sim-
ilar to [2] in 2D, we use the target model q̂(id) as a look-up table to compute
the probability value for all 3D points in the search region. The lookup func-
tion iBin is used to obtain a probability value for each 3D point on the grid.
Fig. 3 (left) depicts the projected search region in the image of one camera and
Fig. 3 (middle) shows the inferred 3D probability grid. The 3D centre point c̃ is
estimated with the mean-shift procedure using a geometric ellipse model. The
ellipse orientation β is computed similar to [2]. This mean-shift stage allows only
for an update of the lateral pose of the tracked ellipsoid, since the probability
grid is parallel to the image plane. No information from the scene flow field is
used, such that a pose update of the ellipsoid is computed even if there is no
new 3D information available.
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2.4 Point Cloud Based Mean-Shift

In this stage all moving 3D points of the scene flow field are used to update the
3D pose of the tracked ellipsoid. At the first iteration j = 1 of the mean-shift
procedure the ellipsoid centre cj=1 is initialised with the estimated 3D centre
point c̃ of the image-based mean-shift stage. For all subsequent iterations, the
ellipsoid model is moved to the new position

cj+1 =
∑N

n=1 sn · g (sn, cj) · q̂(id)(iBin(sn))∑N
n=1 g (sn, cj) · q̂(id)(iBin(sn))

, (1)

where cj is the previous centre position. In the mean-shift procedure we use
a truncated Gaussian kernel [3] with a smaller weight g (sn, cj) assigned to
3D points sn farther away from the ellipsoid centre cj . Our mean-shift based
3D tracking approach incorporates an appearance weighting q̂(id)(iBin(sn)) ob-
tained by looking up the appearance probability of the moving 3D point sn in
the target model q̂(id), such that a 3D point with an appearance similar to the
target appearance is assigned a higher weight. Fig. 3 (right) depicts all mov-
ing 3D points and the final result of the two-stage mean-shift procedure for
3D tracking.

3 Action Recognition Stage

The working action recognition stage is based on a 3D trajectory classification
and matching approach. The tracking stage yields continuous data streams of
the 3D poses of all tracked objects in the scene. The trajectories are given by
the 3D motion of the centre point of the tracked ellipsoid. The cyclic sequence of
working actions in an engine assembly scenario is known to our system. However,
it may be interrupted by “unknown” motion patterns. To allow an online action
recognition, we apply a sliding window approach.

Due to the fact that our system is designed for safe human–robot interaction,
we implemented a recognition stage with two levels (Fig. 4). At the first level,
a decision is made whether the human worker performs a known working action
(regular mode) or an unknown motion (safety mode) based on a set of trajectory
classifiers [8]. In the safety mode (level 1), the system may prepare to slow down
or halt the industrial robot. The regular mode (level 2) defines the cyclic working
process performed by the human worker. It is implemented as a HMM in which
the hidden state is continuously estimated by a particle filter.

3.1 Trajectory Classifiers

The state of level 1 according to Fig. 4 is determined by a set of classifiers [8]
based on features extracted from the trajectory data in the sliding window of
size W = 8 time steps for all tracked objects. Movements between two work-
ing actions (transfer motion) are recognised by a transfer classifier. Since it is
known where the worker has to tighten a screw or to fit a plug, a second classifier
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Fig. 4. Two-level architecture of the action recognition stage

(working action classifier) is used for recognising working actions by incorporat-
ing spatial context for the actions “screw 1”, “screw 2”, “clean”, and “plug”.
The reference locations are obtained based on the known 3D pose of the engine.
A third classifier (distance classifier) is applied to the result of the working ac-
tion classifier and decides whether the recognised working action is a known one,
since such motion patterns can only occur close to the 3D object associated with
that action. The combination of the three classifiers, resulting in an output dis-
criminant vector for the six classes “unknown”, “transfer”, “screw 1”, “screw 2”,
“clean”, and “plug”, is described in detail in [8].

3.2 Recognition of the Sequence of Actions

The decision whether the system is in safety mode or in regular mode is made
based on the result of the distance classifier and the matching accuracy of the
particle weights in level 2, where the observed trajectories are analysed with
respect to the occurrence of known working actions. Similar to [11] we apply a
particle filter based matching of a non-stationary HMM in order to recognise
the sequence of working actions. The HMM of level 2 (cf. Fig. 4) is derived from
the known cyclic working task, defined by a parameter set λ = (S, A, B, Π)
where S denotes the set of hidden states, A the non-stationary (time-dependent)
transition probabilities, B the probabilities of observing the visible state vk given
the hidden state si, and Π the initial probability of state si. We assigned a set of
reference trajectories to each hidden state {q1, . . . , qn} based on the associated
working action. Our approach relies on a small number of reference trajectories
which are defined by manually labelled training sequences.

The CONDENSATION algorithm is used to estimate the state of the
HMM based on temporal propagation of a set of N weighted particles
((s(1)

t , w
(1)
t ), . . . , (s(N)

t , w
(N)
t )) with the particle state s(i)

t = (q(i)
t , φ

(i)
t , id

(i)
t ).

The particle s(i)
t contains the hidden state q

(i)
t , the current phase φ

(i)
t in this

hidden state, and the index id
(i)
t of the relevant object. The phase indicates the

fraction by which the working action has been completed. The resampling step
reallocates a certain fraction of the particles with regard to the predefined ini-
tial distribution Π and the currently tracked objects. The propagation of the
weighted particles over time consists of a prediction, selection, and update step
as follows:
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Select: Selection of N − M particles s(i)
t−1 according to their respective weight

w
(i)
t−1 and random distribution of M new particles over all other states in the

HMM.

Predict: The current state of each particle s(i)
t is predicted based on the selected

particles, the HMM structure (cf. Fig. 4), the current phase φ
(i)
t , and the object

index id
(i)
t . The transition probabilities denoted by A are not stationary but

depend on the current phase φ
(i)
t of the particle. The phase is always restricted

to the interval [0, 1]. A high phase value indicates that the reference trajectories
are almost traversed and that there is an increased probability to proceed to the
next state.

Update: To compute the weight w
(i)
t of a predicted particle s(i)

t , the 3D data
in the current sliding window are matched with the current sub-trajectory of
all reference trajectories of the hidden state q

(i)
t . The current sub-trajectory in

a hypothesis trajectory is defined by its phase φ
(i)
t and length W . The final

weight is given by the Levenshtein distance on trajectories (LDT) measure [7]
of the best matching reference trajectory multiplied by the discriminant value
associated with the corresponding action class of the hidden state q

(i)
t .

4 Experimental Evaluation

We evaluate the proposed tracking and action recognition system using real-
world image sequences acquired with a trinocular camera system with a hori-
zontal and vertical baseline of 150 mm. The time interval between subsequent
image triples amounts to 71 ms. In each test sequence, a person performs a
pre-defined sequence of working actions. The background is fairly cluttered, the
contrast between the persons and the background tends to be low, and the per-
sons are wearing various kinds of clothes e.g. with long and short sleeves and
with and without work gloves.

4.1 Evaluation of the 3D Mean-Shift Tracking Stage

The metric evaluation of the tracking stage of our system is performed on nine
test sequences with five different test persons. Sequences 1–5 display various per-
sons working in an office environment, while sequences 6–9 show persons working
in a typical industrial production environment. Each sequence consists of at least
300 image triples. The average distance of the test persons to the camera system
varies from 2.7 m to 3.3 m. As required by the envisioned application scenario we
use greyscale images. The ground truth data consist of the coordinates of three
reference points in the world coordinate system, which correspond to the finger-
tip, the wrist, and the upper forearm. To extract the ground truth data, three
markers were attached to the hand-forearm limb. The positions of the markers
in the images were measured with a chequerboard corner localisation routine
[10], and their 3D coordinates were determined based on bundle adjustment.
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Fig. 5. Positional error of the mean-shift tracking stage (Euclidean distance with re-
spect to ground truth data (GT)) for the nine test sequences. The “100%” labels
indicate that the method is able to track the hand performing the working actions
completely across all test sequences.

For the image sequences and ground truth data, see http://aiweb.techfak.uni-
bielefeld.de/content/hand-forearm-limb-data-set.

In the test sequences, an average number of 6.3 objects are tracked simul-
taneously by the mean-shift method. These objects always comprise the right
hand of the person (which performs the working actions). The ellipsoid associ-
ated with the right hand is indicated manually once for the first image of the
sequence. When tracking fails and the hand gets lost, the corresponding ellip-
soid is re-initialised based on the ellipsoid located closest to the last known hand
position. The average Euclidean distances between the estimated hand position
and the ground truth data (here: the coordinates of the wrist point) along with
the corresponding standard deviations are depicted for each test sequence in
Fig. 5. Due to the re-initialisation step, our system is able to track the hand per-
forming the working actions completely across all test sequences, as indicated
by the labels on top of the error bars in Fig. 5. The average Euclidean distance
corresponds to 45–90 mm, the standard deviation to 16–50 mm. The metric ac-
curacy of the hand position estimated by the 3D mean-shift approach is thus
comparable to the accuracy of the wrist point estimated by the model based
shape flow method [9] on the same data set. In the latter work, however, the
full 3D pose of the articulated hand-forearm limb, including internal degrees of
freedom, is determined along with its temporal derivative.

Fig. 6 illustrates the results of the mean-shift tracking approach for four test
sequences. In part, large values of the Euclidean distance between the estimated
hand position and the ground truth data may result from the fact that the centre
of the ellipsoid associated with the hand does not necessarily correspond to the
wrist but rather to the middle of the hand (cf. second example in Fig. 6).

The average runtime of our Matlab implementation of the 3D mean-shift
tracking algorithm corresponds to 260 ms per tracked ellipsoid on a 2.4 GHz
Core 2 Duo processor. For a C++ implementation we thus expect frame rates
around 10 fps, which is at least an order of magnitude higher than the frame rate
achievable with the model-based approach described in [9]. In our experiments,
the stereo and optical flow information was determined offline but is computable
nearly in video real-time using graphics hardware (cf. e.g. [6,13]).
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Fig. 6. Example results of the mean-shift tracking algorithm for four test sequences.
Left column: Reprojected ellipsoid associated with the person’s right hand. Right col-
umn: Moving 3D points in the scene along with the 3D tracking result.

4.2 Evaluation of the Action Recognition Stage

The action recognition stage of our system is evaluated by analysing 20 trinocu-
lar real-world test sequences acquired from different viewpoints. The sequences
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Table 1. Action recognition results in terms of the average action recognition rate
(RR), the average word error rate (WER), and the average and standard deviation of
the temporal offsets

screw1 screw2 clean plug
total [#] 26 27 31 33
correct [#] 24 26 29 31
duplicate[#] 2 2 3 3
deletion [#] 2 1 2 1
substitution [#] 0 0 0 1
insertion [#] 1 2 0 0
recognition rate (RR) [%] 92.3 96.3 93.5 93.9
word error rate (WER) [%] 11.5 11.1 6.5 6.1
temporal offset (begin):
mean [ms] −324 116 625 −31
std [ms] 754 826 1192 1262
temporal offset (end):
mean [ms] −71 78 −461 572
std [ms] 822 1060 1458 1707

contain working actions performed by eight different test persons in front of a
complex cluttered working environment. The distance of the test persons to the
camera system amounts to 2.2–3.3 m. For training, only two sequences in which
the working actions are performed by two different individuals were used. Only
these two individuals (teachers) are well trained. The teacher-based approach is
motivated by our application scenario, in which workers are generally trained
by only a few experts. We assigned ground truth labels manually to all images
of the training and test sequences. All results were obtained with a total num-
ber of N = 500 particles and M = 100 uniformly distributed particles. Table 1
shows that the system achieves an average action recognition rate (RR) of more
than 90% on the test sequences. The average word error rate (WER), which
is defined as the sum of insertions, deletions, and substitutions, divided by the
total number of test patterns, amounts to less than 10%. The action recognition
results in Table 1 are similar to those achieved in [8], where the model-based
tracking approach described in [9] is used to extract the trajectory data. In con-
trast to [8] where a single object is analysed, objects performing known actions
are extracted out of a multitude of tracked objects in this study.

Beyond the recognition of working actions, our system is able to recognise
disturbances, occurring e.g. when the worker interrupts the sequence of working
actions by blowing his nose. The system then enters the safety mode and returns
to the regular mode as soon as the working actions continue. Fig. 7 (top) depicts
the tracked objects and the recognition history of the relevant object. Fig. 7
(bottom) shows the final action recognition result compared to the ground truth
data (GT) (red: screw 1; black: screw 2; green: clean; brown: plug; blue: transfer).
On the average, our system recognises the working actions with a temporal offset
of several tenths of a second when compared to the manually defined beginning
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Fig. 7. Recognition of working actions for an example image sequence. Upper left:
All objects tracked by the mean-shift algorithm. Upper right: Trajectory of the object
assigned to known working actions by the action recognition stage. Bottom: Likelihoods
of the individual actions for a complete sequence, recognition result, and manually
labelled ground truth (GT) (red: screw 1; black: screw 2; green: clean; brown: plug;
blue: transfer).

of an action, where the standard deviations are always larger than the mean
values. One should keep in mind, however, that our manually assigned action
labels are not necessarily perfectly accurate.

The computation time per image of the action recognition stage amounts to
less than 1 s in our Matlab implementation, such that we expect less than 100 ms
per image for a C++ implementation.

5 Summary and Conclusion

In this study we have introduced a method for 3D trajectory based recognition
of and discrimination between different working actions. A two-stage mean-shift
algorithm is used for detection and 3D tracking of all moving objects in the scene.
Sequences of working actions have been recognised with a particle filter based
non-stationary HMM framework, relying on the spatial context, a trajectory
classification, and a similarity matching between observed 3D trajectories and
a set of reference trajectories. For our test sequences, the average Euclidean
distance between the estimated position of the hand performing the working
actions and the ground truth data corresponds to 45–90 mm and the standard
deviation to 16–50 mm. The action recognition stage of the system is able to
extract the relevant object from a multitude of tracked objects. The average
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word error rate on the real-world data set amounts to less than 10%. The action
recognition results are comparable to those achieved using a computationally
much more complex model-based tracking approach. Our system is able to detect
interruptions of the sequence of working actions by temporarily entering a safety
mode. The evaluation results render our system a promising, computationally
efficient approach to 3D body tracking and action recognition in complex real-
world environments.
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10. Krüger, L., Wöhler, C.: Accurate chequerboard corner localisation for camera cal-
ibration and scene reconstruction. Submitted to Pattern Recog. Lett. (2009)

11. Li, Z., Fritsch, J., Wachsmuth, S., Sagerer, G.: An object-oriented approach using
a top-down and bottom-up process for manipulative action recognition. In: Franke,
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Abstract. In human-machine interaction, gestures play an important
role as input modality for natural and intuitive interfaces. The class of
gestures often called “emblems” is of special interest since they convey a
well-defined meaning in an intuitive way. We present an approach for the
visual recognition of 3D dynamic emblematic gestures in a smart room
scenario using a HMM-based recognition framework. In particular, we
assess the suitability of several feature representations calculated from a
gesture trajectory in a detailed experimental evaluation on realistic data.

Keywords: 3D dynamic gesture recognition, human-machine interac-
tion, smart rooms, time-series analysis.

1 Introduction

In building interfaces for Human-Machine-Interaction (HMI), different facets of
natural inter-human interaction should be taken into account to realize intuitive
interfaces. This includes the analysis of speech and gesture, as well as gaze, facial
expression and body language. While some of these modalities may be very
subtle and subject to considerable variations between users, speech and gestures
are much more explicit. Thus, they have been studied extensively as important
cues for interpreting user intents and realizing human-centered interfaces. In
this publication, we focus on the automatic visual recognition of dynamic arm
gestures. For natural interaction, there should be as few constraints as possible
imposed on the user. In particular, users should be able to interact with the
interface from anywhere in the environment, which requires view- and position-
invariant recognition. To achieve this, we aim at recognising gestures in 3D space
using a (potentially arbitrary) multi-camera setup.

Since the term gesture has been used in very different meanings (including
fingertip motion and full-body actions), some clarification is needed. In linguis-
tics and semiotics, a variety of gesture taxonomies exist (cf. eg. [1]). Generally,
three major classes of gestures can be identified, with speech-accompanying sub-
conscious gesticulation at one end of the spectrum, artificial well-defined sign
languages at the other, and emblems in between. The first is inherently multi-
modal [2] and difficult to interpret due to its subconscious nature. Sign language
typically lacks intuitiveness and requires special user training.

A.A. Salah et al. (Eds.): HBU 2010, LNCS 6219, pp. 113–124, 2010.
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Emblems are gestural actions that are well-defined and convey a certain mean-
ing on their own, but are understood intuitively since they are established within
a certain cultural region. Therefore, they are especially suited for natural HMI.
We focus on one-armed emblems performed by cooperative users.

Dynamic arm gestures are defined by subsequent movements of a few prominent
points (e.g. joint positions) relative to the body. Thus, given a spatio-temporal
track of these points, recognition is a problem of time-series or trajectory analysis.
Results from other work on gesture analysis (cf. Sec. 2) suggest that, for emblems,
this problem reduces to analysis of the hand trajectory. Indeed, measurements
like in [3] indicate that, for simple stroke-like arm movements the trajectories of
the joints and hand are qualitatively similar. Furthermore, analyzing typical em-
blematic gestures shows that they tend to be composed of a relatively small set
of basic movements. This suggests strong similarities to the field of on-line hand-
writing recognition, where the track of one point (the pen tip) is recognized based
on basic units (characters or strokes) and some features describing their general
spatio-temporal evolution (cf. e.g. [4]).

Accordingly, we exploit findings from this field and investigate whether 3D
emblematic arm gestures can be recognized using approaches inspired by on-line
handwriting recognition. Since the latter is a 2D problem, the concepts must
either be transferred to 3D, or the 3D gesture trajectory has to be projected
to some appropriate 2D frame. We will investigate both possibilities in the fol-
lowing. In particular, we propose representing a gesture by projection on its
principal plane of motion, which we call the action plane. For the acquisition of
gesture trajectories, we build upon our previous work on 3D pointing gesture
recognition [5] and saliency-based view selection in multi-camera setups [6].

2 Related Work

The relevance of gestures for natural HMI – either as exclusive cue or as part
of multi-modal systems – is undisputed. However, most work in the field focuses
either on the recognition of specially crafted artificial gesture alphabets and sign
language [7,8] or on the interpretation of full-body movements, generally referred
to as action recognition (cf. e.g. [9] for a recent survey, [10,11]). While the short-
comings of artificial gesture alphabets regarding their intuitiveness have already
been mentioned, full-body action recognition is related closely to emblematic
gesture analysis, but typically operates on a higher level of abstraction: Instead
of creating an input modality for HMI, it rather aims at analysing human be-
havior in surveillance settings, or for scene understanding. Approaches from the
field may, however, also be suitable for gestural interfaces.

Regarding the classification of emblematic dynamic gestures, the dominant
approach is to represent gestures as trajectories in some reference frame and
classify them with probabilistic graphical models encoding temporal relation-
ships. In particular, (Hidden) Markov Models ((H)MM) have been used exten-
sively. Good results have been achieved on gestures representing arabic digits
[12] using only trajectory orientation information. In [13], bimanual movements
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are classified by combining the trajectory with a shape descriptor of the hand,
whereas [14] use the centroid positions of hand candidates and their mean opti-
cal flow. [15] transform the spatiotemporal trajectory to discrete symbols with
a Self-Organizing Map, and classify the symbol sequence together with optical
flow features in a MM framework. Combinations of 2D hand trajectories and
associated inertial sensor data have also been used [16,17]. Gaussian density
features extracted at visual interest points are applied in [18], and gestures are
classified using a protocol learning strategy.

In on-line handwriting recognition (cf. [4] for an overview of the field), state
of the art recognizers are typically either also based on HMM [19] or on con-
nectionist approaches [20]. However, the features used to describe time-series of
points are much more diverse. Examples include velocity and curvature along
with shape-describing features of short trajectory segments [20] or Hu moments
[21]. [22] and [19] use pen pressure, vicinity, curliness and features relating the
trajectory to the baseline. Appearance-based descriptors and higher-level struc-
tural features, like ascenders, descenders and crossings, are also frequently com-
bined with online trajectory features (e.g. in [20][19]). Some of these features
lack a straighforward resemblance for the task of gesture recognition. E.g., pen
pressure is not available, and features referring to a baseline (like ascenders and
descenders) are difficult to apply, since, opposed to handwriting, it is not clear
what the baseline of a gesture should be. However, a multitude of interesting
features for trajectory representation remain, and impressive results have been
published in the field. To the best of our knowledge, no previous work exists
applying similar features to 3D dynamic arm gesture recognition, and we will
demonstrate their suitability in this work.

3 Visual Recognition of 3D Emblematic Gestures

As stated before, our goal is the automatic recognition of one-armed dynamic
emblems performed by cooperative, but untrained users. Restricting the interac-
tion space to a predefined area or camera setup, as well as requiring the user to
wear markers or tracking gear, would impose severe limitations on the general
applicability of such a system. Furthermore, the pose or orientation of the user
with respect to the interface should not be restricted. Therefore, we aim at a
3D recognition framework based on visual cues utilizing off-the-shelf cameras
in a principally arbitrary multicamera setup. Figure 1 shows an overview of the
proposed approach. We will describe the individual components in the following.

The key assumption is that emblematic arm gestures may be analysed using
the trajectory of the active hand alone, which means that no expensive full-body
model tracking is required. While this seems like a strong assumption, its validity
is indicated by the good results reported in the related literature. The first step is
the extraction of 2D spatiotemporal hand and head trajectories in the individual
camera images. These are then combined to a 3D trajectory. Also, the estimation
of the action plane from the trajectory points and the representation of projected
trajectories is shown. The main contribution lies in the assessment of different
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Fig. 1. Overview of the proposed approach

alternate feature representations inspired by on-line handwriting recognition,
which will be done in a detailed experimental evaluation on a realistic data set.
We conclude with a discussion of the results.

3.1 2D Trajectory Acquisition

In order to extract gesture trajectories, persons and their gesturing hands have
to be detected first. We apply a detector based on Histograms of oriented Gradi-
ents (HoG) and a Multi-Layer Perceptron classifier which does not rely on skin
color or face structure, but uses the shape of the head-shoulder line instead.
Therefore, it is able to detect persons under a large variety of poses and viewing
angles. The centers of the detection rectangle in subsequent frames form the
head trajectory. Hand candidates are found combining motion detection with a
personalized skin color model trained on-line [5]. The result is a series of spatial
image coordinates for head and hands, along with temporal information. These
are postprocessed using Gaussian smoothing to eliminate detection jitter, and
short tracks of duplicate points are removed.

3.2 3D Combination

Given spatiotemporal trajectories from at least two cameras, the original 3D
gesture trajectory can be reconstructed. First, the individual trajectories have
to be aligned. We use a simple greedy aggregation algorithm taking into account
temporal differences and reconstruction errors of pairs of data points. For the
somewhat idealised data we use here (cf. Sec. 5.1), this is sufficient. Note that, in
a multi-camera setting, a view selection algorithm can be applied choosing the
two “best” views according to some global criteria [6]. Aligned trajectory points
are then projected to 3D by ray casting.

It should be pointed out that our cameras are not synchronised. Therefore,
and because of detection inaccuracies and the discretization of the image plane,
the rays will generally be skewed. Thus, the projection is calculated as follows:
Given two aligned points pt

i = (pt
xi, p

t
yi), qt

j = (pt
xj, p

t
yj) from cameras i and j at

time t (we omit these indices in the following for readability), their corresponding
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3D rays rp = ci + γp′ and rq are obtained by backprojection using the camera
calibration matrices. Here, ci is the projection center of camera i, p′ is the ray’s
directional vector, and similar for rq. The two directional vectors along with one
of the projection centers define a plane P : nT x − nT ci = 0 with n = p′ × q′.
It contains one of the rays and is parallel to the other with distance d. Let v be
the intersection point calculated after translating both rays into the plane. The
reconstructed 3D point u is then given by linear interpolation

u = (1 − αi

αi + αj
) · v + (1 − αj

αi + αj
) · (v + dn) (1)

where αi and αj are some confidence measures for the point positions in the
individual images. Setting them to equal values yields the mean point along the
direction of n where the two rays are closest. Candidate selection or rejection
can be done based on d. The resulting 3D trajectory finally is resampled and
smoothed using curvature-aware impulse resampling [22].

3.3 The Action Plane

Classifying gesture trajectories without seriously limiting the amount of allowed
variation according to, e.g., viewpoint, gesturing speed or spatial expansion,
cannot be performed reliably on raw spatial coordinates. Normalization to some
common reference and abstraction from the absolute positions is necessary. A
simple approach to achieve this are derivative features that do not encode the
absolute values of trajectory points, but their consecutive changes. However,
these may still depend on the external alignment of the trajectory in 3D space.

Another possibility we investigate here arises from our observation that, for
most natural emblems, the 3D trajectory exhibits an inherent planar character-
istic. This suggests that 3D emblem trajectories may be represented without too
much loss of information by projecting them on an appropriate plane. A similar
assumption has been made in [16] to compensate for camera pan and tilt. Op-
posed to them, however, in our setup the plane may be oriented arbitrarily in
space, and will only rarely coincide with any of the image planes. We call this
concept the action plane in the following, and show how an estimation of such
a plane can be derived and used as a common reference for normalization.

Suppose we have a 3D trajectory T = [t1...tn] with n points ti = (txi, tyi, tzi).
We seek a plane P : nT x − λ = 0 that best approximates T. This can be
formulated as a least-squares regression problem with the objective function

f(n) =
n∑

i=1

(nxtxi + nytyi + nztzi − λ)2 → Min (2)

assuming that n is normalized to unit length. This is a well-known problem,
and the sought plane normal n is given by the Eigenvector corresponding to the
smallest Eigenvalue of Ψ = MT M, M = {tx,i − t̄x ty,i − t̄y tz,i − t̄z}, with
the data mean t̄ = 1

n

∑n
i=1 ti.
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Fig. 2. Examples of action plane projections. Original images with overlaid hand tra-
jectories and their 2D representations for “circle” (left) and “horizontal wave” (right)

Calculating a regression plane in this way may result in a solution strongly
influenced by outlier points. Therefore, the above procedure is carried out on the
concensus set obtained from RANSAC. Since n and −n correspond to the same
global orientation of the plane and the sign depends on the choice of points, n is
forced to always point towards the mean of head detections. In our experiments,
this yields a good estimate of a gesture’s principal plane of motion. When the
above procedure is applied incrementally to online data, a smoothness constraint
should be applied to the orientation of n to avoid abrupt changes. One possibility
is adding a penalty term taking into account the angle between two consecutive
plane normals in the model selection phase of RANSAC.

Projecting T onto P requires an 2D orthonormal coordinate system in P .
An obvious choice are the remaining two Eigenvectors of M. This results also
in a normalization of the global gesture orientation, which may not always be
intended. Therefore, we also evaluate a solution where one coordinate axis is
forced to be parallel to the ground plane. The trajectory mean t̄ is chosen as
coordinate origin. Figure 2 shows some projection results.

3.4 Classification with Hidden Markov Models

HMMs are a popular tool for time-series analysis because of their ability to
model temporal relationships between samples in a sound probabilistic frame-
work and provide an integrated approach for segmentation and classification.
Their properties are well understood and efficient algorithms exist for training
and decoding. Therefore, they have been widely used, and their discriminative
power has been demonstrated on a wide variety of tasks.

We use an open source HMM toolbox [23] to train one model for each ges-
ture. The number of states in each model is initialised automatically according
to the minimum observation length of the respective gesture class. Emission
probabilities are modelled by Gaussian mixture densities with diagonal covari-
ances. The resulting codebook is shared among models and states, i.e. we have
semi-continuous HMMs. Classification is done according to the maximum path
probability calculated by Viterbi alignment.
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4 Trajectory Features

The features used for representing gesture trajectories are mostly motivated by
[20]. Some changes are made to adapt them to the different characteristics of
the data. In order to increase robustness against noise and detection errors, the
features are calculated in a sliding window scheme. Let w be the window size,
and let Oi = oi, ...,oi+w−1 be the trajectory points in the ith sliding window
and om

i the median point. Then, the features are calculated as follows:

Raw trajectory: Mean point of the window: Ōi = 1
w

∑
k ok, k = i...i + w − 1

Normalized trajectory: Ôi = Ōi/h̄, where h̄ is the average height of the
person calculated from the trajectory of head positions.

Normalized polar trajectory: Pi = {|ri|, φi}. For the 3D case,

ri = (Ōi − H̄i)/h̄, φi = arctan(
√

r2
xi + r2

yi/rzi), i.e. the radius between
mean trajectory and mean head point inside the window normalized by the
person’s height and the elevation angle of their connecting line. Note that
the azimuth angle would correspond to the global orientation of the person,
so it is not included. For 2D, |ri| and φi are polar coordinates in the plane
relative to the coordinate origin.

Velocity: The mean velocity of data points in the window, i.e.
vi = 1

w

∑i+w−1
k=i+1 (ok − ok−1)/(tk − tk−1) where tk is the time associated with

ok. The mean length of the velocity vectors is also included.
Curvature: Curvature is defined as the cosine and sine of the angle between

the vectors from om
i to oi and oi+w−1.

Vicinity: These features are intended to describe the general shape of a fea-
ture window. Let di = oi+w−1 − oi be the vector connecting the win-
dow boundaries. The vicinity features comprise the vicinity aspect α =
(dyi − dxi)/(dyi + dxi) for 2D data and three values with permutations of
the vector components for 3D data, the cosine and sine of the angle between
di and the x-axis or ground plane, respectively, the normalized trajectory
length li =

∑i+w−1
k=i+1 |ok−ok−1|/|di| and the average sum of squared distances

between trajectory points and di.
Orientation change: For two subsequent windows Oi and Oj , the orientation

change is calculated as the cosine and sine of the angle between di and dj.
Head distance: The mean distance between points in Oi and the mean head

position H̄i, normalized by h̄. This feature encodes some very weak repre-
sentation of the spatial relation between gesturing hand and head.

All features together yield 20 and 25-dimensional feature vectors for 2D and 3D
points, respectively, and twice the size including derivative features.

5 Experiments

The main goal of this publication is the investigation of alternative features
regarding their applicability to gesture trajectory recognition, in order to derive
a richer representation and optimize recognition results. To this purpose, we
have conducted a detailed experimental evaluation on a realistic dataset.
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Fig. 3. Selected (cropped) examples of the gesture set with original trajectories over-
laid. Gestures marked with (R) are repetitive, (r) indicates a gesture that may or may
not be repetitive. From left to right: “circle”(r), “come here”(r), “down”, “go away”(r),
“pointing”, “stop”, “up”, “horizontal wave”(R) and “vertical wave”(R).

5.1 Experimental Setup and Data

The evaluation took place in a realistic setup inside a smart conference room
equipped with several Sony EVI D70P pan-tilt-zoom cameras. The cameras are
mounted on the ceiling and are calibrated, but not synchronized. Throughout
the experiments, the same pair of cameras was used. In neutral position, their
principal axes form an angle of approximately 90◦, but their orientations were
changed several times during data recording.

A set of nine emblematic command gestures was chosen such that they ei-
ther represent natural gestures that are commonly used, or their meaning can
be understood intuitively. Some examples are shown in Fig. 3. The potential
meanings they convey can be used in a variety of scenarios, e.g. directing a mo-
bile robot, steering computational attention, or controlling services of the smart
room. The set contains short one-stroke as well as more complicated repetitive
gestures, and gestures that can be both. Note that the pointing gesture is not
purely emblematic, since it can only be interpreted with additional context.

Short sequences of still images were recorded from 17 different people each
performing one to three instances of each gesture with their right as well as
their left arm. The sequences were captured with a resolution of 378 by 278
pixels at 20 Hz. No instructions on gesture speed, absolute or relative position,
etc., were given. The subjects were allowed to move freely inside the cameras’
fields of view, including their orientation with respect to the cameras. Thus,
the dataset is quite challenging since it contains multiple viewpoints as well as
considerable variations in gesture appearance, speed and trajectory diameter. In
total, it contains 51217 images and 799 gesture instances.

The positions of hands and heads were annotated semi-automatically. First,
the 2D head and hand detection algorithm was applied. The generated hypothe-
ses were then inspected manually. Missing detections were added and erroneous
hypotheses were corrected. In general, if a hypothesis from the detector was re-
motely correct, it was kept. The gesture instances were furthermore segmented
manually, with considerable variations in starting and end points as well as num-
ber of repetitions. From the 2D trajectories obtained in this way, the 3D projec-
tions were computed using the described algorithm. The resampled trajectory
lengths vary between 16 and 364 data points.



Feature Representations for the Recognition of 3D Emblematic Gestures 121

Table 1. Classification accuracy in % for single features (left) and respective derivative
(Δ) features (right). The best results for each trajectory type are highlighted.

Feature 3D 2D-Ground 2D-PC Δ3D Δ2D-Ground Δ2D-PC

Raw trajectory 59.3 65.0 59.4 85.1 62.7 61.1
Norm. cart. trajectory 80.0 65.8 57.1 44.2 21.3 23.7
Norm. polar trajectory 81.9 61.8 58.8 73.7 66.5 60.6
Curvature 40.3 40.3 39.8 48.6 48.2 47.1
Headdistance 61.3 61.3 61.3 27.0 27.0 24.2
Orientation change 44.6 46.7 45.6 48.6 48.2 49.9
Velocity 83.0 61.5 59.2 76.8 55.9 50.9
Vicinity 74.7 59.7 61.2 71.1 53.2 57.7

5.2 Results

First, each feature type is evaluated separately in order to assess the perfor-
mance of individual features. Two types of HMM topologies (Linear left-right
and Bakis) with different parameter sets were trained and evaluated using 17-
fold cross-validation. In each iteration, 16 persons were used for training, and
the remaining one for testing. Thus, the reported results are user-independent.
For feature extraction, sliding window sizes of 5, 7 and 9 were applied, with 50%
window overlap. Table 1 summarizes the best results for 3D trajectory features
and 2D projection features using both described coordinate system choices (first
coordinate axis parallel to ground plane, denoted as “Ground”, and first axis
chosen according to first principal component, denoted as “PC”).

The best classification results in all cases were achieved using a Bakis model
and a window size of five. For the 3D case, using the derivative of the raw
trajectory yields a classification accuracy of 85.1%. Compared to this, the 2D
features perform poorly, with best results of 66.5% and 61.3%, respectively.
This may indicate that our assumption about the inherent planar nature of
3D emblematic gestures is invalid. On the other hand, this assumption is backed
up by the low average reconstruction error of the projection (Tab. 2). Thus, the
performance loss is more likely to be caused by the loss of positional information
in relation to the body as a result of the projection and normalization. This is
further indicated by the fact that choosing the 2D coordinate system according
to the principal components of the 2D trajectory, thereby normalizing out the
trajectory’s global orientation, further degrades performance. In this case, the
only feature type that encodes some weak relative positional information, the
head distance, performs best.

For the remaining two trajectory types, the best results are achieved with
derivative representations of the hand trajectory. This, on the one hand, con-
firms that classifying gestures based on their trajectory alone is indeed a suitable
approach, on the other hand it shows that some abstraction from the raw tra-
jectory is needed. As mentioned before, using derivatives of the trajectory is a
very simple possibility of abstracting from the absolute spatial positions. Using
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Table 2. Average reconstruction errors for projected 2D gesture trajectories

Gesture RError (mm) Gesture RError (mm) Gesture RError (mm)

circle 18.8 comehere 15.2 down 15.0
goaway 13.7 pointing 9.6 stop 9.1
up 9.3 hor. wave 22.3 ver. wave 28.6

Table 3. Classification accuracy of feature combinations in %. Feature combinations
are: FC1: Δ Raw traj. + velocity + vicinity + headdist; FC2: Δ Raw traj. + vel.; FC3:
Δ Raw traj. + vic.; FC4: Δ Norm. polar traj. + vel. + vic.; FC5: Δ Norm. polar traj.
+ vel.; FC6: Δ Norm. polar traj. + vic.; FC7: vel. + vic.

Features FC1 FC2 FC3 FC4 FC5 FC6 FC7

3D 82.4 84.4 82.2 83.1 85.5 80.4 81.0
2D Ground 64.0 65.6 63.0 64.8 65.6 62.7 65.0
2D 1st PC 63.3 64.2 62.5 63.7 65.0 62.7 63.2

the raw trajectory results in a severe performance loss (59.3% classification accu-
racy) for the 3D case, while in the 2D case, where the “raw” trajectory is already
normalized due to the projection, the results are close to the best. Considering
the alternative feature representations, the velocity profile and vicinity features
also yield promising results on our data, while orientation change and curvature
seem less suited for the task.

Following these findings, combinations of the best-performing trajectory rep-
resentations with velocity and vicinity features were evaluated, along with the
head distance, which seems to be beneficial in the 2D case. The results are sum-
marized in Tab. 3. No improvement in classification accuracy could be achieved,
and the results of most combinations are comparable. This suggests that the
different feature types are highly correlated. Furthermore, the increased dimen-
sionality of the features leads to a higher complexity of the model, and much more
data is needed to accurately estimate the parameters, which may be detrimental
to the classifier’s performance. Indeed, opposed to the previous experiment, the
best results were achieved with Linear models and bigger window sizes (7 for 2D
Ground, 9 for the others), which corresponds to simpler models with less states.

This raises the question whether better performance can be achieved by decor-
relating the features. In order to assess this, a third experiment was carried out.
After normalizing the features to zero mean and unit variance in order to ac-
count for the different feature dynamics, Principal Component Analysis (PCA)
was applied to the complete feature representation (all feature types + deriva-
tives) of the data, and classifiers were trained using different numbers of Principal
Components. Table 4 summarizes the results.

Using PCA features indeed resulted in a substantial improvement in classi-
fication accuracy. The best result was again achieved using the first 10 PC of
3D features, which yielded 90.4% correct classifications, a relative improvement
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Table 4. Classification accuracy for PCA features in %

No. of PC 1 2 3 4 5 6 7 8 9 10 12 15

3D 60.3 74.5 79.5 83.4 85.4 86.6 88.7 88.0 89.7 90.4 89.5 88.6
2D 48.7 63.1 69.3 71.5 72.1 73.2 73.1 76.0 76.5 76.7 76.3 78.1
2D+3D 48.1 65.8 76.3 83.0 83.6 83.7 84.4 86.6 86.0 85.6 85.4 87.0

of 6.2%. The 2D features still perform substantially worse, with 78.1% accu-
racy (17.4% relative improvement). However, these findings clearly indicate that
emblematic gesture recognition can benefit from the incorporation of alterna-
tive feature representations. Surprisingly, combining 2D and 3D features yielded
worse results compared to 3D only. A possible reason for this is the high dimen-
sionality (90) of the combined feature space. The amount of available data may
not be sufficient for estimating reliable statistics.

6 Summary

We presented an approach to hand-trajectory based 3D emblematic arm gesture
recognition for Human-Machine Interaction in a smart room. In particular, we
evaluated several alternative feature representations inspired by approaches in
on-line handwriting recognition, and demonstrated their suitability for the task
in a detailed experimental evaluation on realistic data. It could be shown that
the incorporation of the additional features indeed improved the recognition
results, and very promising overall results were achieved. The experiments were
conducted with offline data, but all presented concepts and algorithms can be
applied incrementally to online data in a straightforward way. We plan to extend
the recognition approach to a hierarchic system building on strokes or subgesture
units, aiming for a more powerful and flexible recognizer.

Furthermore, we suggested that natural emblematic gestures have an inherent
planar nature, and proposed representing them by projection on an estimate of
this inherent plane. While the recognition results for the projected data were
inferior in our experiments, the estimated plane might serve as a cue for inferring
the addressee of a gesture – a question we will investigate in our future research.
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Abstract. Psychological and social researches of last decades suggest that 
studying helping relationships may offer important suggestions for a better un-
derstanding of human behavior. In this work we present a study on the over-
helping behaviors of teachers in their interaction with pupils, which may deepen 
our knowledge on how prosocial conducts can eventually produce unexpected 
effects over social interaction and cognitive development. To differentiate be-
tween helping and over-helping, we propose a taxonomy of communicative and 
non-communicative behaviors of teachers towards their pupils (Section 3), and 
an annotation scheme aimed to detect both helping and over-helping in teacher-
pupil dyads (Sect. 4). Results of the study show how the annotation scheme  
presented allows to classify the different types of helping behavior, provides a 
reliable basis for the analysis of the teacher’s behaviors, and suggest hints use-
ful to empower teachers’ self-reflection, in view of an improvement of the 
teacher-pupil relationship and of the pupils’ learning processes.  

Keywords: helping and over-helping, multimodal analysis. 

1   Help and Over-Help 

Within research on altruistic behavior, an intriguing issue is the role of helping in 
social relationships. According to Nadler [1] and Leone [2], help can convey the 
meaning of a caring intention of the helper, but it also has a dark side, at least in two 
senses. On the one hand, the helped person may feel in debt with the helper, and on 
the other hand the very fact of being helped may perpetuate the asymmetry of the 
relationship. To occur, in fact, any helping presupposes a power asymmetry between 
the helper and the helped one. This is why, from the point of view of the receiver, 
help offers a solution, but also makes socially visible the helped person’s lack of 
autonomy and competence. If help is denied, autonomy is not at stake, but the joint 
solution is not reached, leading to a situation of under-help. If help is given, the solu-
tion is offered, but autonomy is threatened. Anyhow, although help always implies 
ambivalent consequences and is a turning point for the social relationship between 
helper and the helped person [2], it is important to arrive to distinguish help from 
over-help. Here, three questions are crucial:  
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1. Is the problem to be solved possibly manageable by the helped one? 
2. May a humiliating intention (vs. a caring one) be inferred from the helping  

behavior? 
3. Do the consequences of the helping behavior increase (vs. decrease) the power 

asymmetry needed for the help to occur? 

Over-help occurs when the answer to at least one of these questions is positive. If 
answer to n.2 is negative, then over-help is in good face, and we may speak of a be-
nevolent over-help; if positive, we may label it as malevolent over-help [2]. 

Reviewing the literature on helping, we find very few contributions on over-
helping, mostly focussed on malevolent over-helping (see for instance [3]).  

Our contribution aims to describe the much less explored benevolent over-help, 
addressing our attention to teacher-pupil relationships. But, just because of the crucial 
importance of this relationship in shaping the future development of children’s social 
competences in giving, asking and receiving help, we may not simply import the 
theoretical assumptions used to design empirical research on helping relationships 
between adults. In this case, in fact, the educational function of the adult implies a 
specific helping process that Lev Vygotskij, in the pioneering works he conducted in 
the somehow isolated context of Soviet psychology, defined as “scaffolding” [4; 5]. 
According to this classic theoretical framework, adults bearing an educational respon-
sibility are expected to help children when they cope with a problem that lies in the 
zone of their proximal development (ZPD), defined by “the distance between what 
children can do by themselves and the next learning that they can be helped to achieve 
with competent assistance” [6]. The scaffolding concept implies therefore to slow 
down helping behavior, as soon as the child interiorizes the adult’s help. The ultimate 
goal of scaffolding is, in fact, that the learner should to master the task autonomously, 
and the more knowledgeable other could withdraw [7].  

In the adult-child relationship, therefore, the adult over-helps anytime s/he is not 
able to perceive that the child, having interiorized the knowledge and skills originally 
received by the adult him/herself, can produce an autonomous problem-solving. This 
misperception may be due to the “noise” of other distractive stimulations, as for in-
stance a particularly high degree of anxiety of the adult, making it difficult for 
him/her to wait for a spontaneous problem-solving on the part of the child [2]. In this 
situation, the adult can exceedingly perseverate in helping behaviors for problems that 
are no longer comprised in the child’s ZPD, not only interfering with, but also intrud-
ing upon the child’s autonomous action. This difference between help and over-help 
can be clearly assessed by putting the adult-child dyad in a situation in which the 
child confronts a problem-solving s/he could easily overcome autonomously; such a 
situation makes it easier to see when the adult’s help is a scaffolding, or when it is 
rather an intrusion into a plan of action that the child already masters. In a previous 
work, we used this research technique (for an overall comment on these methodologi-
cal choices, [8]) to compare the over-helping tendencies of mothers of chronically ill 
children vs. mothers of healthy children. Results showed not only a significant in-
crease of over-help for mothers of chronically ill children [9], but also a relevant role 
of the coping with negative emotions experienced by these mothers during problem 
solving activities performed by their chronically ill children [10]. Further elaborations 
made it clear that among these emotions mothers’ anxiety was the crucial predictor 
for intrusive helping to occur [11]. A similar increase in over-help was evident for 
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teacher-pupil dyads of an Italian primary school, when comparing interactions involv-
ing pupils of a socially stigmatized group (Rumanians) with interactions involving 
Italian children [12]. 

2   Help and Over-Help in the Teacher’s Behavior: An 
Observational Study 

In the previously quoted works, over-helping behavior has been shown to occur more 
for mothers of children with chronic disease mothers as opposed to mothers of healthy 
children and for teachers interacting with pupils of a stigmatized culture as opposed to 
teachers interacting with pupils of their own culture. Anyway, more fine-grained 
observations were needed, to further distinguish between different types of help and 
over-help. Hence, the goal of this work is to propose a way to better assess which type 
of help is being provided, through a careful analysis of multimodal behavior of teach-
ers interacting with a pupil of a stigmatised culture.  

2.1   Research Issue 

The issue we address in this study is to distinguish the various types of helping and 
over-helping behaviors in teacher – pupil interaction, and to test whether the types of 
behaviors hypothesised can actually be found in teacher – pupil dyads. To do so we 
propose a taxonomy of helping behaviours provided by teachers to pupils, to cope 
with a problem the child could already solve autonomously. In this kind of interaction 
we could observe both helping and over-helping behaviours, therefore arriving to give 
more fine-grained examples of subtle differences distinguishing these two kinds of 
effective vs. superfluous scaffolding interactions [13]. We maintain in fact that a 
better assessment of the occurrence of helping or over-helping behaviours, through a 
very detailed analysis of two fragments of highly intrusive vs. low intrusive adult-
child interactions, may offer a reliable method for the extraction of multimodal behav-
iour characterising adult-child helping interactions. In our opinion, this extraction 
could be later applied to more molar units of scaffolding interactions, so better distin-
guishing effective helping from unsuccessful over-helping. We propose therefore an 
annotation scheme for the analysis of the teacher’s verbal and nonverbal, communica-
tive and non communicative behaviour, from which is possible to recognize, in the 
continuum of adult-child interactions, some meaningful signals either of effective 
helping or of counter-productive over-helping. 

2.2   Procedure 

The study presented here is part of a larger study about helping and over-helping 
behavior, which analysed the interaction between Italian teachers and their Italian and 
Rumanian pupils. Rumanians are in fact, in the region where the study was conducted 
(Rome and its immediate surroundings), a numerous and negatively stigmatised im-
migrant group [15]. In that study [11], 21 teacher-pupil dyads were observed in an 
Italian Primary school, 9 teachers interacting with Rumanian pupils and 12 with Ital-
ian pupils, all children being between 6 and 8 years old, balanced for pupil gender. 
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All dyadic interactions were videotaped during a game simulation, designed to imply 
some crucial helping interactions, where the teacher could choose how and if help 
their pupils. The Scenario of the game was the Primitive village of the Flintstones 
family: the pupil acted as Bam Bam or Pebbles (the Flintsones’ little boy or little girl), 
and the teacher as Wilma, the adult who knows all the secrets of the village. After 
introducing the scenario, the Master (the dinosaur Dino, played by the experimenter 
who conducted the game) explained that the village was threaten by a magic spell. In 
order to gain the magic formula breaking the spell, the child had to solve a riddle; in 
this step Wilma could choose to help (providing some hints), to over-help (telling 
how to make the complete picture) or not to help at all. This “helping warm-up” 
leaded to the next step of the game, where the crucial help sequence could be  
observed. The child had to solve a puzzle, that when completed showed a magical 
sentence “Hocus pocus…”, and this task was easy enough to be coped with autono-
mously by the child. The teacher-Wilma was free to choose how and if help the child. 
When the child, thanks to the solution of the puzzle, pronounced the magic formula, 
the master finally declared the successful end of the game.  

2.3   Helping and Over-Helping Teachers 

In the study quoted above [11] we measured how much teachers help their pupils. 
Results showed that they tend to over-help more Rumanian pupils than Italian ones. 
Moreover, large differences were found between teachers in their helping strategies, 
leading to distinguish “high intrusive” teachers from “low intrusive” ones.  

In this work we focus to a more fine-grained analysis only on two teacher-pupil 
dyads, already assessed by the previous research as a good example of “high intru-
sive” or “low intrusive” teacher.  

To answer our research issue of a more fine-grained description of multimodal be-
haviours signalling either helping or over-helping interactions, it is first necessary to 
distinguish different types and forms of help and over-help. Moreover we have to 
describe and analyse the behaviors of teachers and pupils, to detect which of them 
imply a goal to help, and possibly to quantify the kind of help given. In order to this, 
we built a taxonomy of helping behaviors (Sect. 4) and an annotation scheme for the 
analysis of teachers’ and students’ behaviors (Sect. 5). 

3   A Taxonomy of Helping and Over-Helping Behaviors 

In this section we propose a taxonomy of helping and over-helping behaviors in 
teacher-pupil interaction. But before distinguishing them we must wonder what can 
we define as help and what as over-help. 

In general, help can be defined as an action – or a deliberate non-action – of a per-
son T which is aimed at favouring another person P, that is, at fulfilling some goal P 
has – even if P herself is not aware of having it. According to a view of learning as an 
active process, as seen in the above Vygotskian view of scaffolding, teaching can be 
conceived of as a series of behaviors aimed at providing a person with permanent 
capacities that make her autonomous, that is, potentially able to solve her own prob-
lems, to achieve her goals, by herself. In this sense, when a teacher is helping a pupil 
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to complete some task, we can say she is providing an adequate level of help if she 
gives him partial – though useful – hints for task execution, or if she takes advantage 
of it to teach him general principles he could eventually transfer to future tasks; on the 
other hand, if she does the pupil’s job herself when the child could already autono-
mously achieve the solution, she is over-helping him. More generally, a teacher is 
over-helping when she definitely tells the pupil what to do, while she is adequately 
helping when she sets the conditions for the pupil to understand what to do. From this 
point of view, a teacher’s behaviors can be classified as to its level of help toward the 
student.  

Table 1 below shows different possible types of helping and over-helping behav-
iors, distinguished along two dimensions, cutting across each other: Teacher’s behav-
ior and Pupil’s processes. The former dimension refers to what the teacher does, while 
the latter refers to the processes, in the pupil’s mind, to which the teacher’s action or 
non-action is aimed, that is, the processes which, if favoured by the teacher’s inter-
vention, should have an impact over task performance. As to the dimension of 
Teacher’s behavior, both help and over-help can be performed through communica-
tion, non-communicative action, or finally even by non-action. Obviously, we count 
as non-action only “deliberate non-action”, that is, cases in which a teacher could 
have done something, but apparently decided not to do what she could have done. 
Within all three cases we can distinguish technical, cognitive and affective help or 
over-help, as to the dimension of the Pupil’s process affected by the Teacher behav-
ior. So we speak of technical help/over-help when an action or deliberate non-action 
directly allows or induces the pupil to perform some moves; of cognitive help/over-
help if it provides information or cognitive strategies useful for task completion; of 
affective help/over-help if it induces affective states that may have an impact over task 
performance.  

Starting from COMMUNICATIVE ACTIONS, typical cases of technical help are the 
communicative actions of providing information, hints, suggestions, but also criti-
cism. Criticising may be seen as a form of adequate help to the extent to which, at 
least indirectly, it provides positive information as to how to do something. On the 
other hand, orders, directions, prohibitions can be seen as technical over-help. Here 
our definition of over-help can be specified. We classify as over-help those cases in 
which the helper is intruding into the helped person’s free choice and autonomy. If I 
tell you: “there is a nice piece here”, I give you a chance to decide yourself whether 
or not to place it into the puzzle, while if I tell you “put this there”, I do not. Cases of 
cognitive help are those communicative actions that provide not specific solutions but 
reasoning strategies: for instance, when the teacher puts general questions to make the 
pupil reason, when she explains processes or proposes doubts in case the pupil is 
making mistakes. Moreover, if a teacher not only corrects the pupil’s move, but ex-
plains why it is incorrect, making him reflect over his mistaken process of thought, 
we have a good example of cognitive help. On the other and, we consider cognitive 
over-help the cases of communication in which the teacher reveals specific moves or 
strategies the pupil could discover by himself.  

Again, one can provide both help and over-help through “affective” communica-
tion, that is, communicative acts inducing or preventing emotions that could either 
favour or hinder the helped person’s action. Cases of helping affective communica-
tion are the communicative actions of encouraging, inciting, praising, confirming, 
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reassuring, sharing emotions with the pupil, and finally minimising his possible nega-
tive emotions; while a case of over-helping affective communication occurs, for 
example, if the teacher expresses compassion, or if she hurries the pupils, or simply 
induces stress in the pupils through the leaking of her own anxiety. 

Let us come to non-communicative actions. Some of the movements a teacher 
may perform while assisting a pupil are not aimed at communicating but nonetheless 
they are helping – or over-helping – actions. Some can be seen as technical helping 
behaviors in that they fulfil the physical conditions for the pupil to do things well: for 
example, if the teacher prepares the game table, or places a lamp in the right place to 
let him see better. On the other hand, the teacher performs technical over-helping 
through non-communicative actions when she is substituting herself for the pupil by 
making the moves the pupil should do: for instance, handing the right piece of the 
puzzle or placing it herself. But she is over-helping also if she undoes his incorrect 
move, or corrects the pupil’s move, by taking away a piece he put into the wrong slot, 
without telling him why it is incorrect. 

A non-communicative action providing cognitive help occurs when the teacher 
does something to put the condition for some cognitive process to take place in the 
pupil’s mind. A typical case is when the teacher turns the pieces of the puzzle in the 
right direction, so the pupil can better see how to place them. In this case, she is not 
communicating anything, but simply does something that in the pupil might trigger 
the insight for his problem solving.  

A non-communicative cognitive over-help occurs if the teacher prevents the pu-
pil from making a mistake, for instance by taking the piece away from his hand, or 
else if she undoes the pupil’s error – say, by removing a piece placed by him – with-
out an explanation. In an active view of learning that aims at developing the learner’s 
autonomy, errors are an important step towards competence. So, if the teacher, after 
the pupil has made a mistake, corrects his move and explains why it is an incorrect 
move, this is adequate help; but if she prevents him from making errors, or if, in any 
other way, she does not give him the chance of understanding why an error is an er-
ror, this is over-help. 

Finally, the teacher’s action may also fulfil the affective conditions of the pupil’s 
work, by influencing the pupil’s emotional state. Thus, it provides affective help if it 
makes the environment warm, motivating or relaxing. Strangely enough, though, it is 
difficult to find examples of the corresponding affective over-help in the domain of 
non-communicative action. If for example the teacher’s anxiety inadvertently leaks, 
thus inducing stress in the pupil, we consider this a case of – even unconscious – 
communication [15]. On the other side, if anxiety simply leads the teacher to do the 
pupil’s moves herself, we consider this a technical over-help, albeit caused by the 
teacher’s emotional state. In this case, her emotion is not communicated but directly 
acted out by performing (intruding and over-helping) actions. 

Sometimes a right way to help is non-action. In fact, if the teacher for example 
hurries the pupil, this could make him anxious and perform worse. The opposite of 
this communicative affective over-help, and sometimes the best kind of help, is wait-
ing, that is, refraining from action. In such cases it is clear how non-action implies a 
deliberate decision not to act. For example, if the teacher is moving her hand toward 
the puzzle, but then she refrains and puts it behind her hip, she is just trying not to 
intervene. We consider this a case of affective help through non-action. Of course, 
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sometimes a teacher might stay there doing nothing while the pupil actually would 
need her help. This is a case of lack of help, that should be clearly distinguished from 
deliberate non action. So it is just when you detect movements of inhibition that you 
can speak of deliberate non-action.  

Another non intruding way to help are epistemic actions, that is, cognitive actions 
aimed at acquiring knowledge about how the task is being performed. A typical epis-
temic action is looking at the pupil’s behavior attentively in order to check if he is 
performing well. Checking, or controlling, can be defined as an epistemic action of 
acquiring knowledge about how some process is proceeding, in order to be able to re-
direct it if something is going badly. Thus epistemic action may be considered, though 
indirectly a case of help, because it is a step before possibly deciding whether to help, 
and whether to provide technical, cognitive or affective help. Epistemic action may 
precede – and hence be indirectly – either technical or cognitive or affective help. For 
instance, if observing the pupil I see he is almost having the insight, but lacks a  
crucial information, I can provide it, thus giving cognitive help; if I see he is discour-
aged, I can decide to encourage, providing affective help. On the other hand, the non-
action of refraining from doing is most typically a case of affective help, being a way 
to leave the pupil reflect without hurry or anxiety.  

Table 1. A taxonomy of helping behaviors 

Teacher’s 
behavior 

Pupil’s 
process Help Over-help 

Technical 
provides or reminds information, 
suggestion, hints, soft criticism 

orders, directs, forbids 

Cognitive 

puts general questions to make the 
pupil reason and find the solution, 
explains the process, how one 
should do, proposes doubts in case 
of likely mistakes; explains errors 

reveals specific moves or strategies 
COMMUNI-

CATION 

Affective 

encourages, incites, reinforces, 
confirms, reassures, share and 
model emotions, minimizes 
child’s negative emotions 

expresses compassion, insists in 
hurrying up, shows anxiety 

Technical 
fulfils technical conditions: pre-
pares game table, put light in the 
right place  

makes pupil’s moves  
substitutes herself for the child 

Cognitive 
fulfils cognitive conditions: 
performs actions to induce insight 
(turns pieces) 

prevent pupil’s errors (takes a piece 
away from the child’s hand) 
or undo pupil’s errors (takes pieces 
put by the child away) without 
explanation  

 
 
 
ACTION 
 
 
 

Affective 

fulfils affective conditions: makes 
the environment motivating: 
relaxation, amusement, empow-
erment, gratification 

 

refrain from action: 
waits, inhibits own action 

 
 
NON-ACTION 

Technical 
Cognitive 
Affective 

epistemic action only: 
look, check, control 
 

 
 



132 F. D’Errico, G. Leone, and I. Poggi 

4   An Annotation Scheme of the Teacher’s Multimodal Behavior 

The taxonomy above allows to classify general categories of action/non-action. But to 
analyse our videorecorded data of the teacher-pupil dyads we need to assess the spe-
cific concrete behaviors performed by teachers, and classify them as belonging to one 
or the other of the categories above.  

To detect which of them imply a goal to help, to quantify the amount of help or 
over-help given, and to assess whether and what types of help or over-help are pro-
vided it is necessary to describe and analyse the behaviors of teachers and pupils in a 
detailed manner. So we elaborated a specific annotation scheme based on the model 
of multimodal communication of Poggi [15].  

According to this model action has a hierarchical structure: any action – or deliber-
ate non-action – is aimed at a conscious or unconscious goal, and possibly at a super-
goal, a further goal for which the former goal is a means. Communication is a social 
action whereby a Sender S has the goal of having an Addressee A assume some belief 
B, and in order to this produces a communicative act – a sentence, gesture, facial 
expression, gaze, posture, body movement – that conveys belief B as its meaning. 
Each communicative act has a goal, and possibly one or more supergoals, with a su-
pergoal being a meaning that the Sender wants the Addressee to understand through 
inference.  
The annotation scheme is divided into 6 columns (see Tables 2 and 3).  
- Column 1 contains the time in the video of the behavior under analysis.  
- Columns 2 and 3 contain a description, respectively, of the teacher’s verbal and 
nonverbal behavior. 
- In col. 4 we write the goal of the communicative or non-communicative behaviors in 
columns 2 and / or 3. For the verbal behavior written in col. 2, its goal is by definition 
a communicative goal, while for the action written in col. 3 the goal to be written in 
col. 4 may be either a communicative goal (for the so called non-verbal communica-
tive signals) or not (for those behaviors through which the Agent does not intend to 
have the other Agent know something). The goal in col. 4, as well as in the following 
col. 5, is phrased as a sentence of the first person (the teacher) addressed to the second 
person (the pupil)  
- Further, since an action – whether communicative or not – besides its direct goal 
may aim at one or more supergoals – other goals for which the direct goal is a means 
– in col. 5 we write the possible supergoal of the actions in 2 or 3. For a non-
communicative action a supergoal is some further effect the agent wants to bring 
about through the goal of col. 4. For instance, if a teacher turns the pieces of the puz-
zle on the right side, she may do this to check the location of pieces better, hence to 
know herself where they should go. For a communicative act, the supergoal is an 
inference the Sender wants the Addressee to draw from that communicative act: so, if 
the teacher points at the place in the puzzle where the piece belongs, her communica-
tive supergoal is to suggest the pupil to put it there. 
- In col. 6 we classify the goal of col. 4 (or the supergoal written in col 5., when there 
is one) in terms of the taxonomy of help and over-help above (Table 1). 

Let us see two fragments of our analysis.  
In Table 2, at line 1, time 7.09 (Col.1), teacher n. 2 places the two posts of the 

game in front of the child and orients them toward her (col. 3). The direct goal of this 
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nonverbal action is for the child to pay attention and concentrate to start the game 
(col.4). This is a Communicative Cognitive Help (col. 6). Immediately after (line 2, 
time 7.10), the teacher bends her head in a head canting posture (3), a posture of wel-
come, of non-dominance, which means: ”I put myself at your level” (4). This is then a 
Communicative action that provides Affective Help of making the child feel welcome 
(6). At line 3, time 7.11, the teacher asks the child if she has ever done a puzzle. Her 
goal is to ascertain if the prerequisites hold for the child to play the game. This is, on 
the teacher’s side, a benevolent goal, aimed at fulfilling the cognitive conditions for 
game playing; but it may result in over-help, since it is not plausible that the pupil has 
never done a puzzle. Moreover her hypothesis unmasks a presupposition that in the 
child’s culture such kind of game is not used as an educational tool, and the teacher’s 
act may sound as an indulgent attitude toward a person that is worth compassion, 
which might possibly have a negative effect on the pupil’s affective state. So we clas-
sify this as Communicative Affective Over-help. (Col. 6).  

Table 2. Annotation scheme. The high intrusive teacher. 

1. 
Time 

2.  
Speech 

3.  
Action 

4.  
Goal 

5.  
Supergoal 

6.  
Type of Help/ 

Over-help 
1 
7.09 

 Places both 
posts and 
orients them 
toward the 
child 

Pay attention here and 
concentrate, let’s start 
the game 

 C Cognitive 
Help  

2 
7.10 

 Head canting I put myself at your 
level. 
I welcome you as a 
mother with her child 

 C Affective 
Help 

3. 
7.11 

L’hai mai fatto 
un puzzle? 
Have you ever 
done a puzzle?  

 I ask you to confirm if 
the prerequisites are 
fulfilled for you to do 
this game 

I am very 
indulgent with 
your possible 
flaws 

C Affective 
Over-help  

Legenda: A = Action; C = Communicative Action; -A = Deliberate Non-Action 

 
Table 3 shows the other teacher’s behavior, which is more rarely over-helping.  
On lines 1 and 2, time 48.46, she says (col. 2): ”Come on, Bam Bam, c’mon let’s 

start”. Wnile calling the pupil as the character of the story (line 1, col.4), she incites 
him to start (line 2, col.4). The supergoal of the former communicative act is to have 
the child put himself into the character’s shoes (line 1,col.5), thus inducing a playful 
attitude; with the latter (line 2, col.5) she encourages him to start the game. Both acts 
provide communicative affective help.  

Then (line 3) she puts the pieces closer to the child (col.3), to set the conditions for 
him to start (4), thus making the start easier (5): a non-communicative Action of 
Technical Help. 

After he has put some pieces and some letters appear in the puzzle, at time 48.50 
(line 4) she asks him: “What will be written there?”. The literal goal of the question is 
to ask what is written in the puzzle (col.4), but its supergoal is to teach the child a 
general method to solve problem: to ask questions to himself (col.5). Thus she is 
performing a Communicative Action that provides Cognitive Help. Moreover, the 
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epistemic future tense used to phrase the question, “what will be written there?”, with 
its goal of inducing the pleasant emotion of curiosity, aims at making the game more 
motivating, thus providing Communicative Affective Help. 

At 48.53 (line 5), the teacher says “Let us start there” and at the same time points 
at an area of the puzzle. She is suggesting where to start from (col.4): a Communica-
tive Technical help. 

Then (line 6), she withdraws her hand as if she did not want to point too precisely 
(col.4), not to be too suggestive and thus develop the pupil’s reasoning (5): a deliber-
ate Non-action of Cognitive Help. At the same time, though (line 7), she smiles at the 
pupil (col.3), meaning she is friendly to him (4), with he supergoal to encourage him 
(5): a Communicative Affective Help. Then (line 8) she puts her left hand on the nape  
 

Table 3. Annotation scheme. The low intrusive teacher. 

1. 
Time 

2. 
Speech 

3. 
Action 

4. 
Goal 

5. 
Supergoal 

6. 
Type of 

Help/Over-help 
1. 
48.46 

forza Bam Bam,  
c‘mon Bam 
Bam,  
 
 

 I call you Bam 
Bam 
 
 

By letting you put 
in the Character’s 
shoes, I induce a 
playful attitude  

C Affective Help 
 
 
 

2. 
48.46 

dài iniziamo.  
C’mon let’s start 

 I incite you to 
start 

I encourage you 
to start 

C Affective Help 
 

3. 
48.46 

 She puts the 
pieces closer to 
the child 

I make the 
pieces avail-
able for you to 
start 

I make it easier 
for you to start 
 

A Technical Help 
 

4. 
48.50 

Cosa ci sarà 
scritto? 
 
 
What will be 
written here? 

 I ask you what 
might be 
written there 
 
I want to 
induce curios-
ity in you  

I teach you what 
kind of questions 
you should put 
yourself 
 
I elicit a pleasant 
emotion 

C Cognitive Help 
 
 
 
 
C Affective Help 

5. 
48.53 

Cominciamo di 
là 
 
Let us start there 

With left index 
f. she points at 
the area where 
to start 

I suggest you 
where to start 

 C Technical Help  

6. 
48.53 

 
 

She withdraws 
her hand  
 
 

I don’t want to 
point at it too 
precisely 

I don’t want to 
suggest too much, 
I want you to 
understand it by 
yourself 

A Cognitive Help 
 

7. 
48.53 

 She smiles  I am friendly 
to you 

 C Affective Help 

8. 
48.54 

 She puts her 
hand on the 
nape of her 
neck  
 

I refrain from 
helping more 
 

I want you to 
proceed by your-
self 
 
 

A Cognitive Help 
 

9. 
48.54 

 Looks at the 
pieces the child 
is placing 

I check if you 
are putting the 
pieces well 

But I don’t let you 
alone to make 
mistakes 

A Affective Help 
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of her neck (col.3) to refrain from pointing more (col.4), in order to let him find the 
solution by himself (5). A Non-action aimed to Help Cognitive development, and a 
good example of how, strangely enough, one can help by non-helping! At the same 
time (line 9), though, she leans forward to look at the pieces the child is placing 
(col.3) to check if he is putting them well (col.4), not to let him alone should he make 
mistakes (5): a Non-action (namely, epistemic action) aimed at Affective Help.  

5   Results 

The total timing of the two observations was 13 minutes 31seconds (7.27 for the High 
intrusive teacher, from minute 7.09 to 14.36, and 6.04 for the Low intrusive teacher, 
from minute 48.35 to 54.39), balanced for the two teacher. The helping behaviors 
computed through the annotation scheme confirm the results of the previous study 
[11] as to the level of help and over-help given. A chi-square test revealed a signifi-
cant difference between the low and the high intrusive teacher regarding the general 
type of help, be it performed through communication, action, or non-action [χ² (1, 
221)= 40,11; p<0.001]. Table 4 shows that the level of help provided by the two 
teachers during the game simulation follows an inverse behavior pattern: the high 
intrusive teacher over-helps more than the low intrusive one (55% vs 15%, respec-
tively); while the low intrusive teacher mostly helps adequately (85% vs 45%). 

Table 4. Help vs. over-help (percentage and standard errors) 

overhelphelp

100,0%

80,0%

60,0%

40,0%

20,0%

0,0%

low intrusive

high intrusive

teacher

 

The analysis on the types of help also revealed a significant difference [χ² (4, 253)= 
44.53; p<0.001]. In particular (see Table 5), the type of help given by the low intrusive 
teacher is mostly communication (71% for help and 12% over-help) while she presents 
a very low amount of non-communicative action (6 % for help and 2% over-help). She 
also presents a very low percentage (9%) of help through deliberate non action (in our 
annotation scheme we distinguish the cases of help through non action from other forms 
of the teacher’s relaxation or distraction that are not aimed at helping). This could mean 
that (her) most adequate way of helping is mainly through communication rather than 
through simply acting or even barely controlling. On the other hand, the high intrusive 
teacher’s communication is equally distributed between help (33%) and over-help 
(32%), but she also exhibits over-help thought action (14%). That the high intrusive 
teacher tends to over-help mainly through non-communicative action could confirm the 
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interpretation already proposed for the mothers of children with chronical disease. Over-
help could be seen as a “buffering behavior” that responds to the helper’s anxiety – due, 
for instance, to her feeling judged by the experimenter, or to her being worried because 
the child is slower than she wants–, rather than a long term strategy in favour of recipi-
ent [10]. Moreover, the high intrusive teacher helps the pupil through non-action – 
mainly epistemic action – almost twice as much the low intrusive teacher (17% vs 9%): 
she checks and looks at the pupils’ action more frequently, and she displays a more 
controlling attitude. This could be another form of expression of the teacher’s anxiety.  

Table 5. Type and modality of help 

o.act.o.comm.h.non act.h.act.h.comm.

80,0%

60,0%

40,0%

20,0%

0,0%

low intrusive

high intrusive

teacher

 

The analysis of the teachers’ helping behavior shows that the particular processes 
of the pupil (affective, cognitive and technical) to which help is directed differ sig-
nificantly for the two teachers [χ² (5, 190)= 30.79; p<0.001]. As shown in Table 6, the 
low intrusive teacher helps the pupil mainly in an affective manner (44%), but she 
also tries to offer technical hints (23%) or to explain the method and the rationale 
behind the task (13%), taking the pupil’s cognitive processes into account. On the 
other hand, the over-helping behavior of the high intrusive teacher is primarily of a 
technical type (45%), and essentially aimed at replacing the child’s action. She also 
helps affectively (23%), by encouraging the pupil, and, in fewer cases, she helps cog-
nitively (9%) and technically (11%).  

The taxonomy of help and over-help in Table 7 displays the complete helping  
pattern of the teachers in the two different conditions (low and high intrusiveness), 
revealing significant differences [χ² (11, 253)= 55.24; p<0.001]. First of all it is inter-
esting to notice that the low intrusive teacher chooses a communicative modality of 
help, giving preference to the affective communication (38%), next to the technical 
(21%) and cognitive one (12%).  

The behavior pattern of the high intrusive teacher is oriented mostly to technical 
over-help, both communicated (25%) and acted (14%), but she also tends to help the 
pupil by communicating in an affective way (19%). The broad spectrum allows to 
observe that the two teachers differ in help through deliberate non action. The general 
bias towards “over-action” of the high intrusive teacher and her tendency to intrude 
into the pupil’s action even occurs in the epistemic actions, since the comparison 
between the two teachers shows that high intrusiveness is correlated to a higher con-
trolling attitude during interaction (13% vs 4%). 
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Table 6. Helped processes 

techn. o.cogn. o.aff. o.techn. h.cogn. h.aff. h.

60,0%

50,0%

40,0%

30,0%

20,0%

10,0%

0,0%

low intrusive
high intrusive

teacher

 

Table 7. Taxonomy of help 

techn
. o. 
act.

techn
. o. 

com.

cogn. 
o. 

com.

affec. 
o. 

com.

refr. 
h. 

no…

epist. 
h. 

no…

techn
.h. 
act.

cogn. 
h. 

act.

affec.
h. 

act.

techn
. h.

com.

cogn. 
h.

com.

affec. 
h. 

com.

50%

40%

30%

20%

10%

0%

low intrusive

high intrusive

teacher

 

6   Conclusion 

In this work we have proposed a taxonomy of helping and over-helping behaviors and 
an annotation scheme to assess if a teacher, while interacting with her pupil, helps or 
over-helps him/her, and what kind of help she is providing. The detailed observation 
carried on thanks to these tools allowed us to deepen our understanding of the over-
helping behaviors of teachers that interact with pupils of a socially stigmatised group 
[11]. According to the data presented above, most interestingly, the high intrusive 
teacher showed a significantly higher percentage both of deliberate non-action and of 
acted over-help, while the low intrusive teacher showed a higher percentage of help 
through communicative action. This shortcut to action that affects more the high 
intrusive teacher may be interpreted, referring to the Vygotskian concept of scaffold-
ing [4, 5] broadly discussed above, as linked to a less frequent use of a strategy of 
“wait and see”. This does not allow the highly intrusive teacher to perceive the actual 
degree of competence already mastered by the child. On the contrary, the communica-
tive strategy of interaction with the pupil more often adopted by the low intrusive 
teacher allows her to more accurately perceive it. Let apart the high frequency of 
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affective communication, that could also be linked to the early age of the children 
observed, the inverse relationship between action and communication could be re-
ferred, in more general terms, to a particular deficit in scaffolding for the high intru-
sive teacher, made clear by her over-helping actions, that makes it difficult for her to 
pay the due attention to the spontaneous capabilities of the child. The very detailed 
analysis led by the annotation scheme proposed opens to new research directions. 
More studies have to be conducted, testing, among others, the different effects of 
these two kinds of helping and over-helping (both benevolent in teachers’ intentions) 
on the child’s autonomous problem-solving. Due to the different implications for the 
child of helping vs. intruding interference by the adult, we expect that only the effects 
of over-help linked to this shortcut to action should lead, if repeated in time, to a 
lower autonomous problem solving of the child. The whole device of over-help and 
its motives, though, cannot be caught but through an analysis of teachers’ and pupils’ 
behavior that takes into account all the nuances of their multimodal communication, 
and that succeeds in extracting out of it the very bulk of their attitude toward the 
other.  
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Abstract. In our paper we focus on the usage of different kind of "honest" sig-
nals for the automatic prediction of two personality traits, Extraversion and Lo-
cus of Control. In particular, we investigate the predictive power of four classes 
of speech honest signal features (Conversational Activity, Emphasis, Influence, 
and Mimicry), along with three fidgeting visual features by systematically 
comparing the results obtained by classifiers using them. 

Keywords: Personality Modeling, Social Signal Processing, Human Behavior 
Analysis, Support Vector Machine. 

1   Introduction  

Personality is the complex of all the attributes — behavioral, temperamental, emo-
tional and mental — that characterize individual dispositions. Humans have the ten-
dency to understand, explain and predict other humans’ behavior in terms of stable 
properties — personality traits — that are variously assorted on the basis of the ob-
servation of everyday behavior.  

In folk-psychological practice, the personality of a person is assessed along several 
dimensions: we are used to talk about an individual as being (non-)open-minded,  
(dis-)organized, too much/little focused on herself, etc. Several existing theories have 
formalized this folk-psychological practice to model personality by means of multi-
factorial models, whereby an individual’s ‘objective’ personality is described in terms 
of a number of more fundamental dimensions known as traits. A well known example 
of a multi-factorial model is the Big Five [1] which owes its name to the five traits it 
takes as constitutive of people’s personality: Extraversion, Emotional Stability, Agree-
ableness, Conscientiousness, Openness to Experience. 

In our work we limit ourselves to the extraversion-introversion dimension of the 
Big Five. The choice of the this trait was due to the fact that of the Big Five traits, 
Extraversion is the one that shows up more clearly in, and has the greater impact on, 
social behaviour [2]. 

Besides models, as the Big Five, that attempt to provide a comprehensive assess-
ment of people personality, others have privileged specific dimensions, possibly  
useful to characterize specific dispositions in specific domains. An example is the so-
called Locus of Control (LoC) [3], which measures whether causal attribution [4] for 
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one’s behavior or beliefs is made to oneself or to external events or circumstances. It 
consists of a stable set of belief about whether the outcome of one’s actions is de-
pendent upon what the subject does (internal orientation) or on events outside of her 
control (external orientation) [3]. For example, college students with a strong internal 
locus of control may believe that their grades were achieved through their own ef-
forts, while students with a strong external locus of control may believe that their 
grades are the result of good or bad luck; hence, they are less likely to expect that 
their own efforts will result in success and are less likely to work hard for high grades.  

The work described in this paper intends to contribute to the task of the automatic 
recognition of people’s personality investigating the predictive power of four acoustic 
feature sets (Conversational Activity, Emphasis, Influence and Mimicry) and one set 
of visual features, Bodily Activation, by systematically comparing the results ob-
tained by classifiers using them. 

2   Previous and Related Work  

Personality traits have been broadly studied in psychology over the last years, as well 
as their association with particular behavioral markers. Scherer [5; 6] has found ex-
troversion to be associated with shorter latency, fewer silent pauses and fewer “filled” 
brief pauses. Moreover, he has shown that extroversion attributions correlate signifi-
cantly with voice quality indicators such as high pitch and variations in the fundamen-
tal frequency [6]. Other studies on the differences between the communication styles 
of introverts and extroverts suggest that the latter speak more and more rapidly, with 
fewer pauses and hesitations [7].  

To the best of our knowledge, the first work addressing the automatic recognition 
of personality was [8], who used the relative frequency of function words and of word 
categories based on Systemic Functional Grammar, to train Support Vector Machines 
for the recognition of Extraversion and Emotional Stability. The data concerning the 
two personality traits were based on self-reports. Oberlander and Nowson [9] trained 
Naive Bayes and Support Vector Machines for four (Neuroticism, Extraversion, 
Agreeableness, and Conscientiousness) of the Big Five traits on a corpus of personal 
weblogs, using n-gram features extracted from the dataset. Also their personality data 
were obtained through self-reports. A major finding of theirs is that the model for 
Agreeableness was the only one to outperform the baseline. Mairesse et al. [10; 11] 
applied classification, regression and ranking models to the recognition of the Big 
Five personality traits. They also systematically examined the usefulness of different 
sets of (acoustic and textual) features suggested by the psycholinguistic and psycho-
social literature. As to the personality data, they compared self-reports with observed 
data. Mairesse et al. [10] showed that Extraversion is the easiest personality trait to be 
modeled from spoken language, since prosodic features play a major role, while their 
results were closer to those based on observed personality than on self-reports. 

In a recent work, Olguín and colleagues [12] collected various behavioral meas-
urements of the daily activities of 67 professional nurses in a Hospital. The data were 
collected by means of the sociometer badge [13], a wearable device integrating a 
number of sensors (an accelerometer, a microphone, and an infrared sensor) measur-
ing aspects such as physical and speech activity, a number of face-to-face interactions 
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with other people, the level of proximity to relevant objects (people, but also beds, 
etc.) and some social networks parameters. Although the authors’ goal was not to pre-
dict personality traits from those signals, by exploiting simple correlation analysis 
they were able to prove that the signals they targeted can provide quite a lot of infor-
mation about people’s personality. 

3   The Mission Survival Corpus 

For this study, we used the multimodal corpus of Mission Survival II (MS2), which is 
based on the so-called Mission Survival Task (MST), frequently used in experimental 
and social psychology to elicit decision making processes in small groups [14]. The 
MST task comprise in reaching a decision on ranking a list of 12 items, in descending 
order, according to their contribution in surviving after a plane crash. The MS2 corpus 
consists of twelve multi-party meetings, with a total duration of 6 hours, of four par-
ticipants each (see [15] for a more comprehensive description) that involve in a social 
interaction in which each participant expresses his/her own personal opinion and then 
the group reaches a consensus mutual decision. 

Two modalities were included in this corpus, audio and video. Audio streams were 
recorded from close-talk microphones as well as one omni-directional microphone 
placed in the middle of the table. Video streams were recorded from four cameras 
placed at the corners of the room. 

All participants were asked to complete a standard questionnaire validated on the 
Italian language that corresponds to the Italian version of Craig’s Locus of Control 
(LOC) of Behavior scale [16], as well as the part of Big Marker Five Scales related to 
the Extraversion dimension [17]. LOC’s questionnaire was composed by 17 items, 
with a rating scale from 0 to 5 points, while the Extraversion’s questionnaire was 
composed by 10 items, with a rating scale from 1 to 7. To the best of our knowledge, 
the MS2 dataset is the only multimodal data collection, in which the individuals are  
interacting in a meeting scenario,  while at the same time there is available a system-
atic data collection of the participants’ personality traits. 

The personality traits of each participant, were characterized from the individual 
LoC and Extraversion scores. The LoC’s mean scores was µ = 27 (standard deviation 
σ = 7.67; variance σ2 = 58.86), while for the Extraversion the mean is µ = 46 (stan-
dard deviation σ =  8.02;  variance  σ2 = 64.30). Both are consistent with Italian dis-
tribution reported by the validation studies above. 

4   Framework – Honest Signals 

In Pentland’s view [18] that we use as reference framework in this paper, some human 
social signals are reliable because they are too costly to fake. In human-human interac-
tion the non verbal behavior is a great source of reliable signals which give information 
about emotions, mental states, personality, attitudes, preferences, and other traits of peo-
ple [19]. De Paulo [20] affirmed that these expressive non-verbal behaviors are harder to 
suppress and to fake in comparison with verbal behaviors and are more accessible to the 
external observers. Hence, the lack of control and of accessibility of expressive behavior 
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implies that such behaviors provide the observer with a relatively sound source of infor-
mation regarding the internal states and the dispositions of the other subjects. A related 
implication is that the attempts of intentionally manipulating and faking these expressive 
behaviors during self-presentations are usually unsuccessful. In fact, expressive behavior 
could be more revealing of communicative intentions and internal states than what is 
being consciously and verbally communicated [21].  

In this work, our goal is to explore how four different sets of acoustic honest sig-
nals (Conversational Activity, Emphasis, Influence, and Mimicry) and a set of visual 
ones related to the bodily activation contribute to the recognition of personality traits 
during a social interaction.  

4.1   Acoustic Features 

For the automatic extraction of the acoustic features the toolbox developed at the 
Human Dynamics group at Media Lab1 was used. The relevance of these specific fea-
tures  for the analysis of human behavior in social setting was discussed by [18]. Pre-
vious works, ([22] and [23]), grouped them into the following four subsets:  

Emphasis includes the following relevant features: formant frequency, confidence 
in formant frequency, spectral entropy, values of the larger autocorrelation peaks, 
number of the larger autocorrelation peaks, location of the larger autocorrelation 
peaks, time derivative of energy in frame. Emphasis is considered as a measure of the 
strength of the speaker’s motivation. The consistency of emphasis (the lower the 
variations, the higher the consistency) is a signal of mental focus, while variability 
may signal an openness to influence from other people.  

Conversational Activity consists of the following features: energy in frame, length 
of voiced segments, length of speaking segments, fraction of time speaking, and voic-
ing rate. It is usually an indicator of interest and engagement.  

Influence measures the amount of influence each person has on another one in a 
social interaction, by estimating the ratio of overlapping speech segments to the total. 
Influence is a signal of dominance. Moreover, its strength in a conversation can serve 
as an indicator of attention.  

Mimicry, meant as the un-reflected copying of one person by another during a con-
versation (i.e. gestures and prosody of one are “mirrored” by the other), is expressed 
by short interjections (e.g. “yup”, “uh-huh”,) or back-and-forth exchanges consisting 
of short words (e.g. “OK?”, “done!”). Usually, more empathetic people are more 
likely to mimic their conversational partners: for this reason, mimicry is often used as 
an unconscious signal of empathy. Mimicry is a complex behavior and therefore diffi-
cult to computationally measure. A proxy of its measure is given by the z-scored fre-
quency of these short utterances (< 1 second) exchanges. 

4.2   Visual Features 

Regarding the visual context, we have mainly focused on few features related to the 
energy (fidgeting) associated with head, hands and body movements. 

The fidgeting features were automatically annotated by employing the MHI (Mo-
tion History Images) techniques [24], which use skin region features and temporal 
                                                           
1 http://groupmedia.media.mit.edu/data.php 
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motions to detect repetitive motions in the images and associate such motions to an 
energy value in such a way that the higher the value, the more pronounced the motion.  

All these visual features were extracted and tracked for each frame at a frequency 
of three hertz.  

5   Comparing Feature Sets Predictive Power 

Our overall goal is to model and predict personality traits by considering the behavior 
of a subject in 1-minute temporal windows; a task similar to that of a psychologist, 
asked to assess personality traits based on thin slices of behavior [25].  

Here, we will investigate the predictive power of the 5 feature sets (4 audio + 1 
video) discussed above by systematically comparing the results obtained by classifiers 
using them. As in past work [26; 27], we assign much importance to the possibility 
that, once targeting a given subject in a meeting, the Target, knowledge of the behav-
ior of the other participants of the meeting, the Others, could help in predicting the 
Target’s personality. This position reflects the idea that Target’s behavior is jointly 
determined by its personality and the social context is in. Hence, besides an across the 
board comparison of the various feature sets used to characterize Target’s behavior, 
we will systematically exploit those very same feature sets to model the Others’ be-
havior, which essentially forms the social context. 

As in [26], the task was modeled as a classification one, with the scores on the two 
personality traits divided into three classes of (approximately) equal numerosity. 

For classification, we used an Support Vector Machine with a Radial Basis Func-
tion (RBF) kernel [28]. The cost parameter C and the kernel parameter γ were esti-
mated through the grid technique by cross-fold validation using a factor of 10. 

The baseline is represented by the naïve classifier that works on the basis of the 
prior class probabilities, with accuracy=0.33. 

5.1   Experimental Design 

Given our purposes, the study was based on a repeated measure design, with two de-
pendent variables ‒ accuracy in predicting Extraversion and accuracy in predicting 
LoC ‒and two within factors: 

• Target, with five levels corresponding to the five feature sets discussed above: 
ACT (Activity), EMP (Emphasis), MIM (Mimicry), INF (Influence) and FID 
(Fidgeting). 

• Others, with six levels, five of which are the same as with Target with the sixth 
is No_Feat, corresponding to a condition where no information about the context 
at all is used in personality prediction. 

The resulting 5x6 design was analyzed by means of two repeated measures analysis of 
variance on the accuracy scores obtained from leave-one-subject-out cross-validation 
runs. 
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6   Results  

Table 1 reports the average accuracy (with SDs) for Extraversion for each conditions, 
along with the marginal ones. 

A first relevant observation is that in most cases the results are well above the 
baseline. All effects are significant: Target (F1.440, 47=31.709, p<.0001), Others 
(F2.236, 47=19.810, p<.0001) and the Target*Others interaction (F20, 47=6.267; 
p<.0001). Concerning Target, all the marginal means are pairwise statistically differ-
ent (p<.05, with Bonferroni correction for multiple comparisons) except the following 
pairs: <MIM, INF>, <MIM, FID>, <INF, FID>. Hence, the best performing feature 
set for Target is Emphasis, followed by Activity, that lies quite lower, and then by 
Mimicry, Influence and Fidgeting that are even lower and forming a group with simi-
lar effects on Target. 

Table 1. Mean accuracy scores for Extraversion 

  Others  
  No_Feat ACT EMP MIM INF FID marginals 

ACT 0.48 
(0.26) 

0.83 
(0.27) 

0.84 
(0.29) 

0.56 
(0.30) 

0.54 
(0.29) 

0.58 
(0.25) 

0.64  

EMP 0.75 
(0.27) 

0.83 
(0.31) 

0.85 
(0.31) 

0.56 
(0.31) 

0.78 
(0.28) 

0.78 
(0.29) 

0.76  

MIM 0.32 
(0.45) 

0.50 
(0.46) 

0.52 
(0.46) 

0.39 
(0.35) 

0.38 
(0.37) 

0.46 
(0.32) 

0.43  

INF 0.35 
(0.45) 

0.52 
(0.42) 

0.55 
(0.43) 

0.39 
(.034) 

0.43 
(0.39) 

0.45 
(0.31) 

0.45  

T
ar

ge
t 

FID 0.32 
(0.41) 

0.59 
(0.39) 

0.59 
(0.39) 

0.40 
(0.34) 

0.45 
(0.37) 

0.53 
(0.29) 

0.48  

 marginals 0.44 0.65 0.67 0.46 0.52 0.56   
          

Turning to Others, all the pairwise comparisons are statistically different (p<.05, 
with Bonferroni adjustment), except for <No_Feat, MIM>, <ACT, EMP>, <MIM, 
INF>, <INF, FID>. Hence, there  are two best performing conditions for Others: Ac-
tivity and Emphasis. 

Concerning the Target*Others interaction, the more noticeable aspect is that when 
Target=Emphasis performances are uniformly high, even with Others=No_Feat (ac-
curacy=0.75); in other words, just by observing the Emphasis features of the target 
subject it is possible to reach 0.75 mean accuracy. The only exception is the condition 
<EMP, MIM>, where performance has a sharp decrease; see Table 1 and Figure 1. 

Figure 1 suggest the existence of a monotonically increasing dependency of accu-
racy on the size of the feature sets employed both for Target and for Others (with the 
exception of <EMP, MIM>). Polynomial contrast analysis confirms this impression, 
revealing significant linear and quadratic contrasts for Target, quadratic for Others 
and linear*quadratic and quadratic*linear contrasts for the Target*Others interaction.  
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Fig. 1. Extraversion - Average accuracy per conditions, with Others’ levels on the X axis 

Descriptively, the comparisons of the lines for Target=ACT and Target=EMP in Fig-
ure 1 shows a low growth rate of Target=EMP when greater feature sets are consid-
ered for Others (the growth rate remains significant, though). The situation is different 
when Target=ACT, with a higher sensitivity of the growth rate on feature set size. 

The best accuracy results are obtained by the conditions <EMP, ACT>, <EMP, 
EMP>, <ACT, ACT> and <ACT, EMP>, which are pairwise non statistically different 
(t-test, p<.-05 with Bonferroni correction). For the sake of completeness, Table 2 reports 
the results for Macro Precision, Macro Recall and Macro F for the four best conditions. 

Table 2. Macro-P, Macro-R and Macro-F for best performing conditions on Extraversions 

 Macro P Macro 
R 

Macro F 

ACT, ACT 0.825 0.829 0.825 
ACT, EMP 0.838 0.839 0.835 
EMP, ACT 0.835 0.838 0.834 
EMP, EMP 0.849 0.849 0.845 

 
Finally, we ran two more training-test session using the complete feature set dis-

cussed above for Target and no features/ the complete feature set for Others. The av-
erage accuracy for <ALL, No_Feat> is 0.82 while that for <ALL, ALL> is 0.84. 
These results do not statistically differ from those seen above for <ACT, ACT>, 
<ACT, EMP>, <EMP, ACT> AND <EMP, EMP>. Average accuracy scores for LoC 
are reported in Table 3. 

Target and Others main effects are both significant (Target: F1.539, 47=18.572, 
p<.0001; Others: F1.549, 47=10.178, p<.0001). Pairwise comparisons on marginal 
averages for Target shows that EMP produces the highest performance, followed by 
ACT and then by MIM, INF and FID, the latter three having pairwise statistically non 
different values. The Target*Others interaction goes close to significance (F3.434, 
47=2.515, p=0.052). 
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Table 3. Mean accuracy scores for LoC 

  Others   

  No_Feat ACT EMP MIM INF FID marginals  
ACT 0.54 

(0.31) 
0.83 
(0.26) 

0.83 
(0.29) 

0.61 
(0.28) 

0.59 
(0.30) 

0.67 
(0.25) 

0.68  

EMP 0.74 
(0.28) 

0.85 
(0.31) 

0.86 
(0.30) 

0.61 
(0.27) 

0.77 
(0.28) 

0.79 
(0.29) 

0.77  

MIM 0.50 
(0.46) 

0.58 
(0.46) 

0.60 
(0.46) 

0.47 
(0.37) 

0.46 
(0.38) 

0.54 
(0.30) 

0.52  

INF 0.46 
(0.45) 

0.57 
(0.45) 

0.57 
(0.47) 

0.46 
(0.39) 

0.48 
(0.38) 

0.52 
(0.33) 

0.51  T
ar

ge
t 

FID 0.48 
(0.336) 

0.63 
(0.38) 

0.65 
(0.37) 

0.48 
(0.32) 

0.47 
(0.37) 

0.56 
(0.29) 

0.55  

 marginals 0.54 0.69 0.70 0.53 0.55 0.62   
          

 

 

Fig. 2. LoC - Average accuracy per conditions, with Others’ levels on the X axis 

The results for LoC are very similar to those seen for Extraversion. In both cases 
Target=Emphasis provides performance that are higher or comparable to those of the 
other conditions. A similarly low growth rate is noticed (with the exception of <EMP, 
MIM>) for Target=EMP, starting, however, from much higher values when no fea-
tures are used for the context. As with Extraversion, the best results are obtained in 
conditions exploiting the biggest feature sets: <ACT, ACT>, <ACT, EMP>, <EMP, 
ACT> and <EMP, EMP>. The figures for Macro-R, Macro-P and MACRO-F are 
reported in Table 4. 

The values of accuracy for the additional conditions <ALL, No_Feat> and <ALL, 
ALL. Are 0.82 and 0.40, respectively. As with Extraversion, these values do not sta-
tistically differ from those obtained for the best conditions just discussed. 
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Table 4. Macro-P, Macro-R and Macro-F for best performing conditions on LoC 

 Macro P Macro R Macro F 
ACT, ACT 0.806 0.805 0.805 
ACT, EMP 0.830 0,829 0.830 
EMP, ACT 0.844 0.844 0.843 
EMP, EMP 0.855 0.855 0.855 

7   Discussion and Conclusions 

Both for Extraversion and for LoC the conditions performing better are those where 
Activity and Emphasis features are used either for characterizing the target subject or 
the other participants. The Emphasis set has the additional property that it works 
pretty well also when no contextual information is provided. Given the different size 
of our feature sets, our results also show a dependence on the amount of information 
(number of features) each set contains, with the two larger ones performing better. 
Notice, however, that the <EMP, MIM> low results and the comparison with the two 
conditions where the entire feature sets are used suggest that the dependence on the 
mere size of the feature sets is not absolute. In particular, when all the features are 
used for the target there are no differences (either for Extraversion or for LoC) ac-
cording to whether all or no features at all are used for characterizing the context; 
moreover, the accuracies for <ALL, No_Feat> and <ALL, ALL> are never statisti-
cally different from those for <ACT, ACT>, <ACT, EMP>, <EMP, ACT> and 
<EMP, EMP>.  

All these data taken together seem to point to the idea that the two personality traits 
addressed here (Extraversion and Locus of Control) are such that consideration of the 
simple behavior of the target subject is enough to obtain reasonably high perform-
ances, provided that the larger feature sets (EMP and ALL) are used. Completeness of 
information about the subject can be traded off with information concerning the other 
participants, as with <ACT, ACT>, <ACT, EMP>, <EMP, ACT> and <EMP, EMP>.  

Future work involves improving the modelling of the social context, extending it 
by introducing an index of visual attention received/given by a person, and its relation 
to his/her specific personality traits. According to psychologists social context has a 
major impact on one’s ability to to process social signals.  Furthermore, considering 
also the remaining personality traits of Big Five’s scale would enlarge the scope of 
the context explored beyond the social one. It is well known, in fact, that traits such as 
Extraversions are more deeply involved in social behaviour than others, such as Con-
scientiousness.  

References 

1. John, O.P., Srivastava, S.: The Big five trait taxonomy: History, measurement and theo-
retical perspectives. In: Pervian, L.A., John, O.P. (eds.) Handbook of personality theory 
and research. Guilford Press, New York (1999) 

2. Funder, D.C.: Personality. Annual Review of Psychology 52, 197–221 (2001) 



 Honest Signals and Their Contribution to the Automatic Analysis of Personality Traits 149 

3. Rotter, J.B.: Generalized Expectancies for Internal versus External Control of Rein-
forcment. Psychological Monographs 80 (1, Whole N. 609) (1965) 

4. Weiner, B.: Achievement motivation and attribution theory. General Learning Press, Mor-
ristown (1974) 

5. Scherer, K.R.: Personality Inference from Voice Quality: the Loud Voice of Extraversion. 
European Journal of Social Psychology 8, 467–487 (1978) 

6. Scherer, K.R.: Personality markers in speech. In: Scherer, K.R., Giles, H. (eds.) Social 
Markers in Speech, pp. 147–209. Cambridge University Press, Cambridge (1979) 

7. Furnham, D.: Language and Personality. In: Giles, H., Robinson, W. (eds.) Handbook of 
Language and Social Psychology. Winley (1990) 

8. Argamon, S., Dhawle, S., Koppel, M., Pennbaker, J.: Lexical predictors of personality 
type. In: Proceedings of Interface and the Classification Society of North America (2005) 

9. Oberlander, J., Nowson, S.: Whose thumb is it anyway? Classifying author personality 
from weblog text. In: Proceedings of the Annual Meeting of the ACL, pp. 627–634. Asso-
ciation for Computational Linguistics, Morristown (2006) 

10. Mairesse, F., Walker, M.: Automatic recognition of personality in conversation. In: Pro-
ceedings of HLT-NAACL (2006) 

11. Mairesse, F., Walker, M.A., Mehl, M.R., Moore, R.K.: Using Linguistic Cues for the 
Automatic Recognition of Personality in Conversation and Text. Journal of Artificial Intel-
ligence Research 30, 457–500 (2007) 

12. Olguín, D.O., Gloor, P.A., Pentland, A.: Capturing Individual and Group Behavior with 
Wearable Sensors. In: Proceeding of AAAI Spring Symposium on Human Behavior Mod-
eling (2009a) 

13. Olguin, D., Waber, B., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations: 
technology and methodology for automatically measuring organizational behavior. IEEE 
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 39(1) (2009b) 

14. Hall, J.W., Watson, W.H.: The Effects of a normative intervention on group decision-
making performance. Human Relations 23(4), 299–317 (1970) 

15. Mana, N., Lepri, B., Chippendale, P., Cappelletti, A., Pianesi, F., Svaizer, P., Zancanaro, 
M.: Multimodal Corpus of Multi-Party Meetings for Automatic Social Behavior Analysis 
and Personality Traits Detection. In: Proceedings of Workshop on Tagging, Mining and 
Retrieval of Human-Related Activity Information, at ICMI 2007, International Conference 
on Multimodal Interfaces, Nagoya, Japan (2007) 

16. Farma, T., Cortivonis, I.: Un Questionario sul “Locus of Control”: Suo Utilizzo nel Con-
testo Italiano (A Questionnaire on the Locus of Control: Its Use in the Italian Context), 
Ricerca in Psicoterapia, vol. 2 (2000) 

17. Perugini, M., Di Blas, L.: Analyzing Personality-Related Adjectives from an Eticemic Per-
spective: the Big Five Marker Scale (BFMS) and the Italian AB5C Taxonomy. In: De 
Raad, B., Perugini, M. (eds.) Big Five Assessment, pp. 281–304. Hogrefe und Huber Pub-
lishers, Göttingen (2002) 

18. Pentland, A.: Honest Signals: how they shape our world. MIT Press, Cambridge (Septem-
ber 2008) 

19. Richmond, V.P., McCroskey, J.C.: Nonverbal Behavior in Interpersonal Relations, 3rd 
edn. Allyn & Bacon, Needham Heights (1995) 

20. DePaulo, B.M.: Nonverbal behavior and self-presentation. Psychological Bulletin 111, 
203–243 (1992) 

21. Ekman, P., Friesen, W.V.: The repertoire of nonverbal behavior: Categories, origins, us-
age, and coding. Semiotica 1, 49–98 (1969) 



150 B. Lepri, K. Kalimeri, and F. Pianesi 

22. Lepri, B., Mani, A., Pentland, A., Pianesi, F.: Honest Signals in the Recognition of Func-
tional Relational Roles in Meetings. In: Proceedings of AAAI Spring Symposium on Be-
havior Modelling, Stanford, CA (2009) 

23. Pentland, A.: A Computational Model of Social Signaling. In: Proceedings of the 18th In-
ternational Conference on Pattern Recognition (ICPR 2006), vol. 1(2006), pp. 1080–1083 
(2006) 

24. Chippendale, P.: Towards Automatic Body Language Annotation. In: Proceedings of the 
7th International Conference on Automatic Face and Gesture Recognition - FG 2006 
(IEEE), Southampton, UK, pp. 487–492 (2006) 

25. Ambady, N., Rosenthal, R.: Thin slices of expressive behaviors as predictors of interper-
sonal consequences: A meta-analysis. Psychological Bulletin 111, 256–274 (1992) 

26. Pianesi, F., Mana, N., Cappelletti, A., Lepri, B., Zancanaro, M.: Multimodal Recognition 
of Personality Traits in Social Interactions. In: Proceedings of ICMI 2008, International 
Conference on Multimodal Interfaces, Chania, Crete, Grecia (2008) 

27. Lepri, B., Mana, N., Cappelletti, A., Pianesi, F., Zancanaro, M.: Modeling Personality of 
Participants during Group Interaction. In: Houben, G.-J., McCalla, G., Pianesi, F., Zanca-
naro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 114–125. Springer, Heidelberg (2009) 

28. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge 
University Press, Cambridge (2000) 



Speech Emotion Classification and Public
Speaking Skill Assessment

Tomas Pfister and Peter Robinson

University of Cambridge
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

{tjp35,pr10}@cam.ac.uk

Abstract. This paper presents a new classification algorithm for real-
time inference of emotions from the non-verbal features of speech. It
identifies simultaneously occurring emotional states by recognising cor-
relations between emotions and features such as pitch, loudness and en-
ergy. Pairwise classifiers are constructed for nine classes from the Mind
Reading emotion corpus, yielding an average cross-validation accuracy
of 89% for the pairwise machines and 86% for the fused machine. The
paper also shows a novel application of the classifier for assessing public
speaking skills, achieving an average cross-validation accuracy of 81%.
Optimisation of support vector machine coefficients is shown to improve
the accuracy by up to 25%. The classifier outperforms previous research
on the same emotion corpus and achieves real-time performance.

1 Introduction

Emotions are fundamental for humans, impacting perception and everyday activ-
ities such as communication, learning and decision-making. They are expressed
through speech, facial expressions, gestures and other non-verbal clues.

Speech emotion analysis refers to analysing vocal behaviour as a marker of
affect, with focus on the non-verbal aspects of speech. Its basic assumption is
that there is a set of objectively measurable features in voice that reflect the
affective state of a person. This assumption is supported by the fact that most
affective states involve physiological reactions which modify the process by which
voice is produced. For example, anger often produces changes in respiration and
increases muscle tension, influencing the vibration of the vocal folds and vocal
tract shape, thus affecting the acoustic characteristics of the speech [1].

Discovering which features are indicative of emotional states and consecu-
tively capturing them can be a difficult task. Furthermore, features indicating
different states may be overlapping, and there may be multiple sets of features
expressing the same emotional state. One widely used strategy is to compute as
many features as possible. Optimisation algorithms can then be applied to select
the features contributing most to the discrimination while ignoring others. This
avoids making difficult a priori decisions about which features may be relevant.

Previous studies indicate that several emotions can occur simultaneously [2].
Examples of co-occurring emotions include being happy at the same time as
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being tired, or feeling touched, surprised and excited when hearing good news.
Improving upon the inference solution for co-occurring emotions presented by
Sobol Shikler [3], the new system proposed in this paper is able to achieve real-
time performance and higher classification accuracy.

In this paper, we describe an approach for real-time classification of co-
occurring emotions. The classification output is a set of classes rather than a
single one, allowing nuances and mixtures of emotions to be detected. More-
over, rather than attempting to make difficult a priori decisions about which
features may be relevant, our strategy is to compute as many features as possi-
ble, and then select those offering the best discrimination. Finally, we present a
novel application of the classifier to virtual speech coaching for improving public
speaking skills.

2 Implementation Methodology

The design of the classifier considers three main factors: (i) the choice of a train-
ing corpus, (ii) the need for real-time performance, (iii) the ability to recognise
co-occurring emotions.

For emotion classification we choose the Mind Reading corpus [4] which pro-
vides a hierarchical structure between groups with a large number of emotion
concepts. It was developed by psychologists at University of Cambridge Autism
Research Centre, aiming to help autistic children and adults to recognise both
basic and complex emotions. The corpus consists of 2927 acted sentences, cover-
ing 442 different concepts of emotions, each with 5-7 sentences. The acting was
induced and the labelling was done by ten people in different age groups [5]. The
labelling of each sample in the corpus required the agreement of 8 members of a
panel of 10 expert assessors. Although the samples are acted, the large number
of samples makes the corpus suitable for training an emotion classifier.

The main emotion groups of Mind Reading are shown in Table 1. Each of
these is further divided into concepts, giving a total of 422 subgroups. For the
classifier, a subset of 9 categories representing a large variety of emotions is
chosen. Each category contains samples from the groups as shown in Table 1.
These are chosen to minimise the overlap between categories. The categories
and samples are the same as those used by Sobol Shikler [3,6], allowing direct
comparison of results.

Achieving real-time performance required a careful choice of feature extrac-
tion and classification algorithms. Recognising co-occurring emotions needed a
method for ranking candidate emotions.

2.1 Support Vector Machines

Several potential classifiers were investigated. In previous work on emotion recog-
nition from speech [3], support vector machines (SVMs) and tree algorithms such
as C4.5 have been found to be effective. We also tried other methods such as the
Naive Bayesian classifier and Perceptrons using the Weka data mining toolkit
[7], but SVMs gave the most promising results.
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Table 1. The 24 emotion groups in the Mind Reading corpus [5]. The superscripts
indicate the main groups from which a subset of affective states is selected to al-
low comparison of the results to previous research [3]. These subsets are: absorbed1,
excited2, interested3, joyful4, opposed5, stressed6, sure7, thinking8 and unsure9.

afraid angry bored bothered1 disbelieving

disgusted excited2 fond happy3 hurt

interested4,5 kind liked romantic sad

sneaky sorry sure6 surprised think7

touched unfriendly8 unsure9 wanting

We create the model by constructing an N -dimensional hyperplane that opti-
mally separates data into two categories. Each data instance i is a tuple (li, fi),
where li ∈ {1,−1} is a class label, with 1 and −1 indicating the class, and fi ∈ R

n

is a set of feature attributes. Optimality is taken to be the maximal separation
between the two classes. Any such hyperplane can be written as the set of points
x satisfying w · x− b = 0 where x = fi, w is the normal vector perpendicular to
the hyperplane, ‖w‖ is the Euclidean norm of w, and |b|

‖w‖ is the perpendicular
distance from the hyperplane to the origin.

We use a modified version of SVMs [8] that allows for mislabelled examples
by choosing a hyperplane as cleanly as possible even if there is no hyperplane
that can split the two classes. We measure this degree of misclassification by the
variable ξi and require the solution of the optimisation problem

min
w,b,ξ

{1
2
‖w‖2 + C

∑
i

ξi} (1)

under constraints
li(w · xi − b) ≥ 1 − ξi 1 ≤ i ≤ n (2)

ξi ≥ 0. (3)

where C > 0 is the penalty for mislabelled examples and n is the number of data
instances in the corpus. This can be solved using Lagrange multipliers.

We use a non-linear classifier, replacing the linear dot product xi ·xj by a ker-
nel function that transforms the original input space into a higher-dimensional
feature space, allowing the SVM to potentially better separate the two classes.
After trialling several possible kernel function candidates, the Radial Basis Func-
tion (RBF) kernel

K(xi,xj) = exp(−γ‖xi − xj‖2) (4)

with γ > 0, was found to yield the most promising results.
To generalise SVMs to more than two classes, pairwise classification is used. A

single multiclass problem is reduced into multiple binary problems by building a
classifier for each pair of classes, using only instances from two classes at a time.
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2.2 Training

The training system architecture is shown in Fig. 1. Its main components are
discussed below.

Input corpus with labels (l1, ..., ln)

Convert into pairwise corpora C =
{(l1, l2), ..., (l1, ln), ...(ln−1, ln)}

For all i, j.ci,j ∈ C extract feature
set F (ci,j)

Select best separating features
f(ci,j) ⊆ F (ci,j)

Grid search SVMi,j ’s RBF kernel
parameters (Ci,j , γi,j) that max-
imise cross-validation accuracy

Compute SVM model τi,j from op-
timal parameters (Ci,j , γi,j)

Output models τi,j

�

�

�

�

�

�

Fig. 1. The training system architecture. SVMi,j represents the support vector for
comparing label li with lj .

Feature Extraction. For this work, the openSMILE [9] feature extraction
algorithms are used. OpenSMILE provides sound recording and playback via
the open-source PortAudio library, echo cancellation, windowing functions, fast
Fourier transforms and autocorrelation. Moreover, it is capable of extracting fea-
tures such as pitch, loudness, energy, mel-spectra, voice quality, mel-spectrum
frequency coefficients, and can calculate various functionals such as means, ex-
tremes, peaks, percentiles and deviations with a Real-Time Factor � 1.

Feature Selection. Since a large feature set will be extracted from the speech,
it is expected that there are some irrelevant and redundant data that will not
improve the SVM prediction performance. Classification algorithms are unable
to attain high classification accuracy if there is a large number of weakly relevant
and redundant features, a problem known as the curse of dimensionality [10].
Algorithms also suffer from computational load incurred by the high dimensional
data.
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Our approach is to use the predefined openSMILE set emo large with 6552
features, and pick the most relevant ones using feature selection. For choosing
relevant features, the Correlation-based Feature Selection (CFS) algorithm [11]
is used. It uses a heuristic based on the assumption that good feature sets contain
features highly correlated with the class and uncorrelated with each other.

Grid Search. When using the Radial Basis Function SVM kernel, it is im-
portant to choose a suitable penalty for mislabelled examples C and the expo-
nentiation constant γ. Because the optimal values are model-specific, a search
algorithm is needed for finding a near-optimal set of values.

The goal is to identify good (C, γ) values so that the classifier can accurately
predict unseen testing data, rather than choosing them to maximise prediction
accuracy for the training data whose labelling is already known. In this work we
use v-fold cross-validation. The training set is divided into v equal-sized subsets,
with each subset sequentially tested used a classifier trained on the remaining
v − 1 subsets.

We use a Grid Search algorithm that sequentially tries pairs of (C, γ) in
a given range, and picks the one with the highest cross-validation accuracy.
Exponentially growing sequences worked well in practice, confirming findings in
previous research [12]. The algorithm is run recursively on a shrinking area.

2.3 Classification

The real-time classification system architecture is shown in Fig. 2. Its main
components are discussed below.

Segmentation. Real-time analysis of speech requires segmenting the audio.
Our static threshold algorithm achieves this by defining three thresholds. First,
the silence threshold η defines the threshold for the energy E =

∑n
i |si|2 > η,

for signals si in frame of size n. Second, ρstart sets the number of frames with
energy above η that are required until a segment start is detected. Third, ρend

defines the number of frames below η until a segment end is detected. After the
audio is segmented, openSMILE is used to extract the features.

Pairwise Fusion Mechanism. Once the audio is segmented and the features
are extracted, n(n − 1)/2 pairwise machines for n classes are run in parallel to
predict the class for a segment. In order to determine the most probable class,
the probabilities of the multiple binary classifiers are fused.

We propose a fusion method for determining co-occurring emotions. Whereas
in traditional single-label classification a sample is associated with a single label
li from a set of disjoint labels L, multi-label classification associates each sample
with a set of labels L′ ⊆ L. A previous study concluded that the use of com-
plex non-linear fusion methods yielded only marginal benefits (0.3%) over linear
methods when used with SVMs [13]. Therefore, three linear fusion methods are
implemented:
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Input live audio A

For all i, j.ci,j ∈ C read model τi,j

and selected features f(ci,j)

Segment A into utterances with
loudness above threshold

Extract selected features f(ci,j)

Run SVM1,2(f(c1,2))
and extract p1, p2

...
Run SVMn−1,n(f(cn−1,n))
and extract pn−1, pn

Calculate win count ωi and total
probability ψi

Output ψi
n

if ωi ≥ λ, where λ is
the threshold

�

�

�

� � �

� � �

�

Fig. 2. The real-time classifier architecture. SVMi,j computes the probabilities pi and
pj for labels i, j, using features f(ci,j).

1. Majority voting using wins from binary classifiers.
2. Maximum combined probability from binary classifiers.
3. Binary classification wins above a threshold.

In the first method we consider all n−1 SVM outputs per class as votes and select
the class with most votes. Assuming that the classes are mutually exclusive, the
a posteriori probability for feature vector f is pi = P (f ∈ classi). The classifier
SVMi,j computes an estimate p̂i,j of the binary decision probability

pi,j = P (f ∈ classi|f ∈ classi ∪ classj) (5)

between classes i and j. The final classification decision D̂voting is the class i for
which

D̂voting = arg max
1≤i≤n

∑
j �=i

g(p̂i,j) (6)

where

g(p) =

{
1 for p ≥ 1

2

0 otherwise
. (7)

Ties are solved by declaring the class with higher probability to be the winner.
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In the second method, the maximum probability ψi =
∑

p∈Si
p of the binary

SVMs is determined. The winner of decision D̂probability is i such that

D̂probability = arg max
1≤i≤n

∑
j �=i

p̂i,j . (8)

Finally, for detecting co-occurring emotions, the classes are ranked according to
the number of wins. The classes with wins above a threshold λ are returned,
with the classification decision D̂threshold being the set of classes

D̂threshold = {i |
∑
j �=i

g(p̂i,j) ≥ λ}. (9)

We set λ = �(μ+σ)n� where μ is the mean win count, σ is the standard deviation
and n is the class cardinality to allow comparison with Sobol Shikler [3].

3 Application for Public Speaking Skill Assessment

We present a novel application of the classifier for assessing the quality of public
speaking skills.

In persuasive communication, the non-verbal clues a speaker conveys require
special attention. Untrained speakers often come across as bland and lifeless.
Precisely analysing the voice is difficult for humans and is subjective. By using
a similar approach as for detecting emotions, our system enables more objective
assessment of public speaking skills.

We retrain our classifier using six labels describing public speaking skills shown
in Table 2. Following the requirements by Schuller et al. [14], we use non-acted,
non-prompted, realistic data with many speakers, using all obtained data. An
experienced speech coach was asked to label 124 one-minute-long samples of
natural audio from 31 people attending speech coaching sessions. The chosen six
labels are the ones that the professional is accustomed to using when assessing
the public speaking skills of clients. The samples are labelled on a scale 4–10 for
each class. We then divided the samples of classes into higher and lower halves
according to the score. The upper half represents a positive detection of the class
(e.g. clear), and the lower half represents a negative detection (e.g. not clear).

One binary SVM per class is used to derive a class-wise probability. If a
pairwise approach similar to that in emotion classification had been used, the
same samples would have existed in several classes, making separating the classes
intractable. As a result, unlike in emotion detection where the most prominent
labels describing the speech are selected, for speech quality assessment all classes
are detected, each labelled with a probability. This allows users to attempt to
maximise all class probabilities, a goal which is more useful for speech coaching.

The results of public speaking skill assessment are shown in Table 2. All classes
can be accurately detected. The classes competent and dynamic present slightly
lower detection accuracies, perhaps due to the smaller variation in scores result-
ing from a small corpus size. Overall, however, the speech quality assessment
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Table 2. Detection accuracies in percentages for assessing public speaking skills

Class 10-fold cross-validation Training samples

clear 80 66

competent 74 49

credible 80 42

dynamic 77 45

persuasive 82 79

pleasant 93 73

Mean 81 59

accuracies are high (average 81%) and may provide useful feedback to speakers.
In future work, performance using alternative evaluation metrics such as those
specified by Schuller et al. [14] will be investigated.

4 Evaluation

In this section we evaluate the overall classification results.
The result of applying grid search is shown in Table 3. The optimisation is

done on the training data, with the testing data kept unseen. A significant im-
provement, between 10% and 25%, was observed. As the optimisation maximises
the cross-validation accuracy of the training data instead of the training data
classification accuracy, the optimisation did not result in overfitting of the model.

The average latency in milliseconds of the classification stage is shown in
Fig. 3. It was measured as the time between the detection of the end of a segment
and the output of the result. As shown in the figure, normal sentences (1–15 s)
are classified in 0.046–0.110 s, making the delay barely noticeable. Improving
upon Sobol Shikler’s inference solution [3], this allows real-time classification.

The ten-fold cross-validation results for the pairwise SVMs are shown in
Table 4. All accuracies are greater than the values obtained in previous research
using the same classes and corpus. The results are constantly above 80%, in
contrast to the lower bound 60% obtained previously.

A summary of the accuracies for the three different fusion methods is shown in
Table 5. The average accuracies are higher than or equal to the results achieved

Table 3. Detection accuracies in percentages with a 70–30% training/testing split for
the three fusion methods, with and without grid search

Type of data Threshold Max probability Max wins

Grid search 86 72 70

No grid search 76 47 48
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Fig. 3. Average live classification latency in milliseconds on a dual-core 2.66 GHz PC
with 4 GB RAM

Table 4. The 10-fold cross-validation accuracy for pairwise SVMs in percentages. The
average accuracy is 89%. For comparison, Sobol Shikler’s results [3] are in parentheses.
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absorbed 93 (81) 87 (82) 96 (82) 96 (78) 89 (87) 85 (84) 82 (73) 84 (64)

excited 90 (71) 84 (60) 81 (71) 80 (61) 94 (83) 90 (72) 87 (75)

interested 92 (77) 92 (75) 91 (66) 90 (78) 90 (84) 85 (72)

joyful 86 (71) 85 (61) 99 (83) 95 (72) 92 (75)

opposed 93 (84) 91 (72) 94 (81) 92 (79)

stressed 86 (84) 88 (75) 86 (78)

sure 94 (75) 88 (78)

thinking 90 (89)

Table 5. Accuracies in percentages for the three fusion methods. Sobol Shikler’s results
[3] are shown in parentheses. 2.5 classes were inferred on average with a threshold λ = 6.

Type of data Threshold Max probability Voting

70–30% training/ testing split 86 (79) 72 70

Training data 99 (81) 86 88
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previously on the same corpus [3]. Notably, the average accuracy of the maximum
probability fusion technique is higher than that achieved by majority voting
(72% vs 70%). However, for some classes the majority voting accuracy is higher
(e.g. stressed and interested). A higher average accuracy could be achieved by
combining these methods. In future work, more advanced fusion methods such
as the ensemble classification presented by Schuller et al. [15] and the tree-based
approach by Lee et al. [16] will be investigated.

Confusion matrices for fusion using thresholding and maximum probability
are shown in Tables 6 and 7 respectively. Inspection of the confusion matrices
reveals that some classes are better detected than others. The classes opposed
and sure present the lowest values using any method. This is reflected by the
lower number of training samples (38 and 53 samples, compared to the average of
61) resulting from the categorisation choice to allow comparison to Sobol Shikler
[3]. Similarly, the class with most samples (joyful, 94 samples) is most frequently
mistaken to be the correct class. In future work classes with equal numbers of
training samples could be used.

As expected, the thresholding fusion method for co-occurring emotion classifi-
cation yields highest detection accuracies since several classes can be selected at
a time. This, however, also leads to much higher confusion values because of the
assumption that more than one emotion can be occurring simultaneously. For
example, as shown in Table 7, samples labelled excited are detected as joyful in
35% of cases, compared to a correct detection rate of 85%. It is likely that some
high confusion rates are caused by the overrepresentation of certain classes.

Table 6. Confusion matrix using maximum probability for pairwise fusion. The column
headings show the ground truth and the rows show inferences. Average accuracy is 72%.
A random choice would result in 11% accuracy.
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absorbed 74 0 2 0 0 1 2 1 1

excited 0 75 2 6 0 2 6 0 1

interested 4 0 69 0 0 2 2 3 1

joyful 4 10 6 79 16 11 4 3 4

opposed 0 2 0 2 62 1 2 0 0

stressed 4 8 6 3 8 67 9 1 8

sure 0 0 2 2 5 2 63 0 0

thinking 7 0 8 3 0 4 11 86 17

unsure 7 4 6 4 8 8 2 6 68
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Table 7. Confusion matrix using thresholding for pairwise fusion. The column headings
show the ground truth and the rows show inferences. Average accuracy is 86%. A
random choice would result in 11% accuracy.
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absorbed 93 4 15 0 0 4 12 23 24

excited 15 85 10 29 27 46 24 6 14

interested 22 2 83 14 3 10 11 17 14

joyful 15 35 21 91 41 39 22 23 22

opposed 0 14 6 22 73 11 17 7 8

stressed 15 60 31 56 51 92 31 24 29

sure 11 19 6 4 16 9 74 11 9

thinking 48 15 42 19 24 19 28 93 56

unsure 48 8 52 24 22 31 26 56 91

5 Conclusion

We have presented a framework for real-time speech emotion classification whose
accuracy outperforms previous work using the same corpus [3]. We have also
shown that the novel application of the system for assessing public speaking
skills achieves high classification accuracies.

The framework consists of n(n − 1)/2 pairwise SVMs for n labels, each with
a differing set of features selected by a correlation-based feature selection algo-
rithm. We demonstrated a considerable improvement in classification accuracy
from optimising the misclassification and exponentiation coefficients (C, γ) in
(1) and (4) using a grid search algorithm. Improvements between 10% and 25%
were observed.

Overall, this paper presented a high-accuracy training and classification frame-
work for emotion detection from speech, and shows that it can be successfully ap-
plied for real-time assessment of public speaking skills.
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Abstract. The paper analyzes the signals of dominance in different modalities 
displayed during TV talk shows and debates. Dominance is defined, according 
to a model in terms of goals and beliefs, as a person’s having more power than 
others. A scheme is presented for the annotation of signals of dominance in po-
litical debates: based on the analysis of videotaped data, a typology is proposed 
of strategies to convey dominance, and the corresponding signals are over-
viewed. Strategies range from the aggressive ones of imperiousness, judgement, 
invasion, norm violation and defiance, to the more subtle touchiness and vic-
timhood, ending up with haughtiness, irony and ridicule, easiness, carelessness 
and assertiveness. 

Keywords: Dominance, Social signals, Debates. 

1   Dominance 

The notion of dominance reflects different research approaches and sometimes it is 
confused with notions like status or power.  

In the sociological perspective the notion of status refers to a hierarchical position 
in a group or organization that is determined by native (e.g., gender or ethnic belong-
ing) or gained characteristics (e.g., work position). In Social Psychology, according to 
the expectation states theory [1] the concept of status is replicated at the interpersonal 
level by expectations of status,  evaluative beliefs about positive or negative compe-
tences associated to this nominal feature, and at the personal level by expectations of 
performance, which anticipate the contribution needed for a specific task. In the so-
cial identity theory [2], the awareness of belonging to a social group is a central part 
of the self concept, with associated emotional, motivational, behavioural responses; so 
people tend to evaluate the stability and legitimacy of status differences to decide 
what cognitive strategy is useful in their condition: re-categorization, social creativity, 
individual or collective mobility across the hierarchy [3].  

Power is defined as “the ability to influence or to control other persons or groups” 
[4]. Status may well be a condition for power in that sense, but does not necessarily 
imply attitude change and control, and it is focused not on personal competence but 
on a nominal or structural position in a social group or institution.      

Dominance might be seen as a combination of status and power since it is defined as 
“ability to influence or control others, but it also involves groupness. Specifically, domi-
nance concerns power relationships within a relatively enduring social organization” [4].  
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As to its roots, some authors view dominance as a personality trait [4], stressing its being 
a steady feature of an individual, others propose a situational view: dominance as gained 
from time to time depending on the context [5; 6; 7]. 

In recent literature, for the social dominance theory [8] one possible explanation of 
discrimination phenomena is the psychological construct of social dominance orienta-
tion (SDO), i.e. the personal preference for hierarchical relationships between social 
groups. The degree of social dominance is determined by group membership because 
members of more powerful groups are more dominant then less powerful ones (e.g., 
men more dominant than women); further, SDO is a way to fulfil the social hierar-
chies, since people with high level of social dominance tend to legitimate racism, 
nationalism and conservatism.  

In the dyadic power theory [9] dominance is seen from an interpersonal point of 
view: “interpersonal dominance is a relationally-based communication strategy de-
pendent on the context and motives of the individuals involved” [6]. This definition of 
dominance is a dynamic combination of personal and contextual characteristics and it 
is based on a relational model, pointing out that the influence or control of powerful 
individuals depends on the submission or acquiescence of another one. Thus domi-
nance is seen as a dynamic communicative act based on a relation, by means of which 
an individual exerts power or influence over another individual.  

From this perspective much research has focused on the verbal and non verbal in-
dicators of dominance (for ample reviews see 10; 11; 7; 9). 

2   Signals of Dominance 

Signals of dominance in various modalities have been explored. Within studies on 
gaze, Keating [12] demonstrated that in western cultures lowered eyebrows are per-
ceived as a strong signal of dominance. Argyle [11] pointed out that the dominant 
person gazes less and during interaction reduces the amount of gaze and breaks mu-
tual gaze first. Yet, in close relationships the dominant person has a more expressive 
face, he looks more than the less dominant and shows higher visual dominance, i.e. 
higher looking while speaking than while listening [4; 7]. As to hand movements, the 
dominant person uses more gestures, more illustrators than adaptors, but giving an 
impression of relaxation and confidence [7]. Posture and spatial behaviour are salient 
in the expression of pride [13], where expanded postures are typical especially in 
males [14]. In vocal behaviour, dominance passes through speech intensity, tempo 
and pitch [10; 15], but also through turn taking management [16]: perception of 
dominance is strictly connected to amount of speaking [17], topic introduction [18], 
frequency and maintenance of turns, and interruptions [19]. 

3   A Definition of Dominance in Terms of Goals and Beliefs 

We propose a definition of dominance according to a model of cognitive and social 
action in terms of goals and beliefs [20; 21].  In this model, the life of natural and 
artificial, individual and collective systems consists of pursuing goals, regulatory 
states which, if not realized, trigger action. To achieve goals a system performs a 
hierarchically arranged plan of actions by using internal resources (action capacities 
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and beliefs) and external resources (world conditions, material resources, others’ help 
in goal pursuit). In this framework, “power of” is defined as the likeliness for a sys-
tem to achieve its goals.  

If system A has a goal G but does not have the “power of” achieving it for the lack 
of capacities or conditions, while B has them, A may “depend on” B to achieve G. 
The devices of adoption and influence stem from this dependence: if A depends on B, 
A can achieve G only if B adopts A’s goal G, putting one’s resources to the service of 
A’s goal. So, both A and B may have the goal to influence each other, i.e., to have 
each other pursue or give up some goal. When A depends on B, B has the “power to 
influence” A; but if dependence is not reciprocal, B can both influence A and refuse 
to adopt A’s goal, thus having “power over” A. 

Besides “power to influence” and “power over” power may also stem from com-
parison: B has “more power than” A. Adoption enhances the power of systems of 
achieving goals thanks to resource exchange; but to decide whose and what goals to 
adopt, a system needs to evaluate other systems, to form an image of them. In humans, 
image is the set of evaluative and non-evaluative beliefs that others conceive of about a 
person. We strive to present a positive image of ourselves to have others adopt our 
goals. In rare cases we obtain adoption by presenting an image of lack of power (e.g., 
when C helps A out of compassion); but generally we must elicit positive evaluations,  
show an image of power (e.g., C adopts B’s goals because she esteems him). To choose 
whether to adopt A’s or B’s goal, C compares their respective power as to specific 
goals. In an electoral debate, to decide which candidate to vote, elector C compares the 
respective powers of A and B as to the goal of fulfilling C’s political expectations.  

These “social” notions of power, power to influence, power over and more power 
than, are strongly intertwined. If I have more power than you I may have power over 
you, and this gives me the power to influence you. So, to state social hierarchies, 
assessing who has more power than others (e.g., who is the alpha male winning con-
tests) is a basis to institutionalize his power over others, to credit him with a higher 
status than others, and this gives him the power to influence.  

We can now state a correspondence between the classical notions of status, power 
and dominance and the three social notions of power defined above. Power over oth-
ers corresponds to having a higher status than others, power to influence to the classi-
cal notion of power, and dominance, in our terms, is the fact that one has more power 
than another. Dominance thus entails power comparison; B is dominant compared 
with A if B has more power than A with respect to goal G. So B may be dominant in 
some fields but not in others, and his dominance may either be a personality trait or be 
gained in a specific situation thanks to A’s behaviour. 

Dominance is the basis for power over and hence for power to influence, but only 
if others know it. This is why signalling dominance is so important, in humans and 
other animals. We define as “signal of dominance” any signal, in whatever modality, 
that conveys the belief “I have more power than B” to either B himself or to C. 

4   Dominance in Debates 

This work presents a study on the signals of dominance displayed during TV debates. 
In a debate a person may want to appear dominant, i.e., to signal “I have more power 
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than you”, to do so he may use a number of different strategies – from more direct 
and aggressive to more subtle and indirect ones – and these strategies exploit specific 
signals in various modalities. The point of our work is to single out these strategies 
and their typical signals.  

4.1   Method 

To single out different dominance strategies, we performed a qualitative analysis of 
multimodal communication in 7 political debates in Italian TV talk shows and 1 judi-
cial debate in a trial of high political import (the “Clean Hands Trial”, see 4.2.2.). The 
analysis is based on a model [22] that views communication as a social action 
whereby a Sender S, in order to the (conscious, unconscious or biological) goal of 
having an Addressee A assume some belief B, produces a signal (a sentence, gesture, 
facial expression, gaze, posture, body movement) that conveys belief B as its mean-
ing. Each signals has a literal meaning, and possibly indirect meanings that the Sender 
wants the Addressee to understand through inference.  

We analyzed fragments for a total of 80 minutes using the annotation scheme in 
Table 1. Column 1 contains time in the video and name of the Sender of the analyzed 
behaviour, cols. 2 and 4 describe, respectively, the speaker’s verbal and nonverbal 
behaviours, and cols.3 and 5 their meaning. Col.6 mentions the indirect meaning: 
what the Sender wants to be inferred from the meanings of col. 3 and/or 5. Col.7 clas-
sifies the behaviour as being a signal of dominance (D) or not, assigning it to a spe-
cific “dominance strategy”.  

Let us see a fragment from a political talk show in 2008.  

(1) Eugenio Scalfari, founder and president of “La Repubblica”, an impor-
tant leftist newspaper in Italy, argues against Roberto Castelli, a Minis-
ter of the government of the right, who has just maintained that Scalfari 
is not an expert in economic issues, since he hardly knows what a com-
pany is. Scalfari says: “Voglio dire all’… onorevole, eh…  che io 
conosco le aziende, sa. Io ne ho fatta una, che adesso ha cinquecento 
giornalisti”. (I want to tell… Lord … well… that I know companies, 
you know, I made one that now has 500 reporters). 

The first part of the sentence, “Voglio dire all’” (I want to tell) (col. 2) is uttered in 
a low voice (col.4), meaning the Sender is quiet (col. 5), thus indirectly conveying 
(col. 6) that Scalfari does not worry about Castelli’s argument. So Scalfari exhibits a 
dominance strategy of “calm strength” (col.7; see Sect.4.2.9). Before saying “Ono-
revole” (which is the name credited in Italy to members of Parliament, but literally 
means “Honourable”), he makes a pause (col. 4), conveying he is uncertain (col. 5) 
whether the literal meaning “honourable” can apply to Castelli: an insinuation imply-
ing (col. 6) contempt towards his opponent, exploiting a dominance strategy of 
“haughtiness” (col. 7). While finally saying “onorevole”, he looks at Moderator (col. 
4), and ignores Castelli (col.5), conveying he is not worth taking into account (col. 6). 
A strategy of “careless attitude” (col.7). Then Scalfari says: “Eh… che io conosco le 
aziende, sa?” (well… that I know companies, you know) (col. 2), and he looks at 
Castelli (col. 4), meaning he is now addressing him (col. 5). By saying “sa?” (do you 
know it?) he literally asks Castelli (col. 3) if he ever knows that Scalfari is the founder 
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Table 1. An annotation scheme for dominant communicative acts 

1. 
Time, 
Send. 

2. 
Speech 

3. 
Meaning 

4. 
Signal 

5. 
Meaning 

6. 
Indirect 
meaning 

7. 
Domi-
nance 
Strategy 

Scal-
fari 
3.39 
 

Voglio dire… 
all’…  
 
I want to 
tell….  

I tell Mod-
erator that I 
want to tell 
something to 
my opponent 

  I do not 
consider my 
opponent at 
all 

D: 
Careless 
attitude 

3.39 
 

  Low voice 
intensity 

I am quiet I am not 
worried or 
afraid 

D:  
Calm 
strength 

3.39 
 

  Pause  I am uncer-
tain if he 
deserves 
being called 
“honourable”

I feel con-
tempt toward 
my opponent  

D: 
Haughti-
ness 

3.39 
 

Onorevole 
 
Lord… 

My opponent 
is a member 
of Parliament 
(but he is not 
honourable) 

Looks at 
Moderator 
(not to the 
opponent) 

I ignore him I do not 
consider my 
opponent at 
all 

D: 
Careless 
attitude 

3.46 
 

Eh… che io 
conosco le 
aziende 
 
Ehm… that I 
know com-
panies 

I affirm I do 
know com-
panies 

  It is not true 
that I cannot 
speak of 
economic 
issues 

Counter 
argument 

3.49 Sa 
 
You know 

I ask you, my 
opponent, if 
you know 
this 

Looks at 
opponent 

I address you 
now 

I am ironic 
about your 
not taking 
this into 
account 

D: 
Irony 

3.57 Io ne ho fatta 
una 
 
I made one 

I remind you 
that I made a 
Company 

High voice 
intensity  

I remark this, 
this is impor-
tant 

You should 
take it into 
account 

D: Asser-
tive-ness 

3.58 che adesso 
ha 
cinquecento 
giornalisti  
 
That now has 
500 reporters 

 Slow voice I need not  
hurry up in 
talking  

I am quiet, I 
don’t fear 
you 

D: 
Calm 
strength 
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of “La Repubblica”, but being this a well known thing, the question sounds ironic 
(cols. 6 and 7). Finally, he says: “Io ne ho fatta una” (I made one) (col.2) in a loud 
voice (col. 4)  remarking his statement (col. 5), as if reminding this to Castelli, and 
inviting him to take it into account (col.6). He is now “assertive” (col. 7), i.e., main-
taining his point without aggressing the other. Then he adds: “che ora ha cinquecento 
giornalisti” (that now has 500 reporters) (col.2), with a slow voice: he conveys he is 
not in a hurry (col.5), hence showing not worried nor afraid of the opponent (col. 6) 
and displaying “calm strength” again (col. 7).  

4.2   Results. Dominance Strategies 

Based on our qualitative analysis we concluded that people in debates adopt various 
strategies to show dominance, each exploiting peculiar signals in various modalities. 
We define a strategy as a set of behaviours directly or indirectly aimed at conveying a 
specific message, like those in column 6 of the annotation scheme. Conveying that 
particular message implies one has the particular attitude towards the other, or wants 
to project the particular image, that is written in column 7 of Table 1. 

The dominance strategies we singled out are the following. 

4.2.1   Aggressiveness 
A first trivial way to show dominant in a debate is aggressiveness. The message con-
veyed is: I am stronger than you, and if you do not do what I want, I intend to, and I 
can, punish you. This strategy subsumes the following behaviours: imperiousness, 
judgement, invasion and norm violation.  

 
a. Imperiousness. A straightforward way to exhibit dominance is imperiousness. The 
message conveyed in this strategy is: I give you commands, hence I can afford to do 
so, hence I have power over you. The types of signals used to this end are primarily 
requestive communicative acts and deontic words like must, ought to, necessarily. 

Let us take a case of a requestive gesture.  

(2) Luigi De Magistris, a former judge, now a leftist member of the European 
parliament, is talking. Roberto Castelli starts speaking during De Magistris’ turn, 
trying to interrupt him. De Magistris does not stop speaking and, while continu-
ing, simply raises his right hand, spread fingers, palm to Castelli, as if saying: 
“Stop (speaking)”. 

This gesture counts as an imperative sentence conveying a peremptory order, 
namely, that Castelli should not interrupt, and. Let us now see a use of a deontic verb. 

(3) Ignazio La Russa, a Minister from the government of the right, has been 
invited in a talk show of a leftist channel to discuss about the wiretapping of the 
premier’s phone-calls, its constitutional validity, and whether the actions men-
tioned in the wiretapped dialogues were illicit or not. La Russa is trying to man-
age the turn-taking himself, and instead of letting the Moderator do so, he says: 
“Un minuto di fila io devo parlare”. (A whole minute continued I must speak!).  

Verbs of this kind imply one makes appeal to right, to law, which is supposed to 
win over individuals’ goals. 
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b. Judgement. A typical aggressive dominance strategy is playing the judge, showing 
entitled to judge others. This conveys the message: I can judge you, so I have power 
over you. One way to do so is to use insulting words or strong negative evaluations. 
Let us see a case of this. 

(4) La Russa shows indignation about the Premier’s phone call wiretapping 
through a rhetorical question: “È impossibile dire in questa televisione, che è il 
regno della libertà, che è una fetenzia quello che sta succedendo?” (Is it impos-
sible to say in this TV, which is the realm of freedom,  that what is happening is 
really a filthy thing?).  

The word fetenzia (filthy thing) is a case of dysphemism: an ostentatiously nega-
tive and insulting word, used with the aim of offending, i.e., aggressing the oppo-
nent’s image. Moreover, if the Speaker affords using evaluative words, while not 
bothering to extenuate the strongly negative evaluation through politeness or euphe-
mism, this implies he feels entitled to judge others.  

Another device to imply one is acting as a judge is showing severity: this can be 
conveyed through communicative (verbal or nonverbal) acts of accusation, blame, 
reproach, but also by displaying anger. Since anger is generally due to norm violation, 
showing angry implies that some of one’s rights (possibly the right to be obeyed) 
have been violated, or that one’s will (deserving obeyence), has not been fulfilled. 
Anger is displayed by eyebrow frowning, wide open eyes, and complete absence of 
smile; but also by those parameters of gesture and voice that are a cue to high activa-
tion, like hectic gestures and high voice intensity. Besides revealing emotional 
arousal, these aspects of gesture and voice also convey emphasis, implying that what 
one is saying is more important and worth being heard than what said by others.  

 
c. Invasion. A person adopting an aggressive dominance strategy typically takes more 
room than he is entitled to, to widen one’s territory at the expense of the other’s, in 
both time and space. Signals invading space are ample gestures, while a typical way 
to invade time is aggressive turn taking behaviour, characterized by frequent interrup-
tions and overlapping, and by taking more time for one’s turn, often ignoring the 
Moderator’s requests.  

(5) La Russa says to the Moderator, who is trying to put him a question: “Non 
ho bisogno della domanda. Mi faccia rispondere. Lo lasci dire a me.”. (I don’t 
need the question. Let me answer. Let me say this). His voice has a high intensity; 
he tilts his head upward-forward, then he makes repeated jerky nods and batonic 
gestures.  

La Russa refuses the Moderator’s question, he does not accept to submit to her turn 
taking management, and does so not only by his very explicit sentence (“I don’t need 
the question”), but also by voice and gesture intensity, displaying high activation and 
strength. A case of multimodal aggressive floor management. 

 
d. Norm violation. Invasion in turn taking behaviour is also a cue to another aggres-
sive strategy: norm violation. Blatant violation of generally accepted rules implicitly 
conveys the idea that one is so strong as to be above rules.  
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(6) La Russa goes on talking far beyond the turn assigned to him by the Mod-
erator, and continuously overlaps on her attempts to manage turn taking with the 
other invited politician. When she finally asks him: “E mi fa  fare la domanda?” 
(And do you let me put the question?) he says: “Beh, per questa volta gliela las-
cio fare” (Well, for this time I will).  

With this self-ironical concession to the Moderator, he is reversing the roles, hence 
indirectly communicating: “It is me who have the right to turn management in this 
debate”. 

4.2.2   Defiance 
A way to express dominance, mainly from a down to an up position, is defiance.  
Interesting cases of this strategy come from the “Clean Hands trial”: a trial of high 
political importance for Italy, viewed as a “degradation ritual” [23; 24; 25], i.e., a 
ceremony in which someone guilty of juridical or moral faults gets publicly devoid of 
his public identity and status, as an outcome of public moral indignation. In the 
“Clean Hands” trial many previously important politicians charged of corruption were 
put pilloried and lost their face from a political and ethical point of view, losing all 
their power. Yet many of them, during the trial, tried to make appeal to their previous 
power and to challenge the judicial power accusing them. Here is an example. 

(7) The politician Paolo Cirino Pomicino is examined by the public accuser, 
Antonio Di Pietro, for having taken money on behalf of his party by Italian indus-
try owners. Di Pietro is hunting him down by continuous sarcastic questions 
about how much money he has got while pretending it was legal, and the judge 
appears quite convinced that Di Pietro is right. So Di Pietro (the judicial power) is 
now winning over Cirino Pomicino (the political power). Notwithstanding this, 
during nearly the whole examination, Cirino Pomicino keeps displaying a defying 
stare and raised chin, as if telling Di Pietro: “I am not afraid of you, I still have 
more power than you”.  

4.2.3   Touchiness 
The dominance strategies seen so far are straightforward ways to claim one has more 
power than the other. Now we move to more indirect and subtle ways to display 
dominance: strategies of decreasing (apparent) aggressiveness and increasing subtlety. 

A such strategy is showing touchiness. Being touchy means to have a low thresh-
old for feeling offended. You feel offended when you feel that some communicative 
or non-communicative action of another caused a blown to your image. Image is the 
set of evaluative and non-evaluative beliefs others have about you [26], and their 
evaluations are beliefs about how much power you have: in brief, image is how much 
power people think you have. So, the more power you claim you have, the worthier 
your image, and the more severe a blow to it: as if a direct correlation held between 
severity of an offence and power of the offended one. So, if you want to let people 
infer you have more power, you simply have to show offended also for things that 
would not be so serious for other people.  

During the debate with La Russa, Di Pietro, a leftist member of the parliament, ac-
cuses La Russa and the Premier of being already exalted about their future victory at 
the elections, which they consider certain. To describe their exaltation he uses the 
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word gasati (gassed: something like “enflated with gas”), which is not a very insult-
ing word, but rather an expression of Di Pietro’s creative popular language. La Russa 
makes a scandal about this word: in a provocative way he asks Di Pietro to explain 
what gasati means, and asks the Moderator how can she stand that in her talk show 
one says words like this, to make it clear that he considers it a severe offence.   

4.2.4   Victimhood 
A strategy only apparently opposite to dominance is playing the victim. If you are a 
victim, others unduly did wrong to you violating your rights, so you are entitled to 
retaliate, and this strengthens your claiming of your rights.  

Here is an example from La Russa’s multimodal behaviour. 

(8) The Moderator invites La Russa to let other people speak, and he says: 
“Ma perché non mi lasciate finire di parlare? Un minuto di fila io devo parlare”. 
(But why don’t you let me finish? A whole minute continued I must speak!). 
While saying: “Ma perché non mi lasciate finire di parlare?” (But why don’t 
you let me finish?), he moves his joint hands, like praying hands, up and down 
repeatedly, as if begging for something. Then he goes on: Un minuto di fila io 
devo parlare” (a whole minute continued I must speak!), and opens arms, show-
ing helplessness. 

The first sentence asks why don’t they let him finish to speak, but being a rhetori-
cal question, it pretends to be allowed to speak. Praying hands and open arms adopt a 
strategy of victimhood, as if he were denied the right to speak. Then with the second 
sentence (“A whole minute continued I must speak!”) he definitely claims his right to 
speak, moving to the imperiousness strategy.  

4.2.5   Haughtiness 
Opposed to a strategy of victimhood is one of haughtiness: the Sender wants the audi-
ence to understand his superiority over the opponent, and does so not through boast-
ing, but in a covert and indirect way, conveying “I am superior; but so much so that I 
neither bother to communicate it explicitly”. The “haughty dominant” has a prig and 
didactic attitude towards opponents, bystanders, even audience. He behaves as if all 
others were children or stupid: he explains things clearly, using gestures (like the 
“ring”, thumb and index f. in a circle moved up and down) that convey precision and 
seriousness. He sits down with trunk backward, as if withdrawing from others to 
avoid contact, to take distance and to communicate “I am not like he is, I am different 
(superior)”. One more signal of haughtiness are half-closed eyelids, that conveying 
relaxation mean “I need not worry about you” and again imply the other’s inferiority.  

4.2.6   Ridicule and Irony 
Two more ways to show superiority are ridiculization and irony. Let us see why. 

Laughter is an emotional expression triggered by surprise and then relief, caused 
by an incongruous event that violates an expectation, but after leaving you in a sus-
pense, does not finally result in a dangerous outcome, so the previous worry results in 
relief and in a sense of superiority about the event or its cause [26]. Thus, laughing at 
something or someone makes you feel superior to events or other people. We laugh at 
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someone who reveals some fault or lack of power that is finally innocuous, not threat-
ening – simply impotence. The one laughing at feels superior while the one laughed 
at feels abased, humiliated, ridiculed: someone people make fun of. His impotence is 
publicly sanctioned, yet not through punishment, that would credit him with some 
threatening power, but through laughter: he does not scare or worry anyone. So, 
laughing at someone is an aggression to his image and self-image, possibly more 
humiliating than plain scorn.  

In the “Clean Hands Trial”, Cirino Pomicino often makes fun of Di Pietro, to  
demonstrate that he is still a well-known politician, while Di Pietro is an unknown 
prosecutor [27].  

Also irony can be used as a dominance strategy. In irony the Sender’s literal goal is 
to communicate a meaning x, but through this he wants the addressee to infer another 
meaning y, contrasting with or opposite to x [22]. Both the literal and the indirect 
meaning of an ironic statement often convey some evaluation: if the literal meaning is 
positive, the ironic one is negative (e.g., ironic praise), and vice versa (ironic blame). 

Irony about another is often used to tease, to make fun of him. As we saw in  
Table 1, irony is used as a dominance strategy by Scalfari. By saying “Io conosco le 
aziende, sa?” (I know companies, you know), with his “sa?” (do you know it?) he 
literally asks Castelli if he knows he is the founder of an important newspaper. But 
since everyone knows this, the question is ironic, and aimed at ridiculing him. The 
real meaning Scalfari may be conveying is: “If you don’t know I am the founder of 
“La Repubblica” you are such a poor thing that you would neither be worth being in 
this talk-show”. And possibly, his attitude in asking “sa?”, apparently innocent, is in 
fact one of severity: “You should definitely know this”. An aggressive move masked 
by the elegance of the rhetorical figure of irony. 

4.2.7   Easiness  
A way to communicate one is superior to others is to show totally at ease. Here the 
meaning conveyed is: I am satisfied, so I do not depend on you, you have no power 
over me.  

(10) Matteo Salvini belongs to a party of the right which had an unexpected 
victory at the elections. On the evening of the election day, when results are clear, 
he appears in a TV talk show with a gloating posture and face. He sits down on 
his chair in a very relaxed posture, and with a smile between exulting and ironic. 

4.2.8   Carelessness 
A subtle but very cruel way to show dominance is carelessness: behaving as if the 
other did not exist or were not there. Its message is: you are nothing, I do not care you 
at all. Its typical signal is not gazing at the opponent, even if talking about him, while 
possibly  looking at another participant. Like does Scalfari (see Table 1, at time 3.39). 

4.2.9   Assertiveness and Calm Strength 
The last dominance strategy is assertiveness. Assertiveness [28] is a communicative 
strategy opposed to aggressiveness and passivity, oriented to self-affirmation and 
defence of one’s own right but also to respect for the other. The assertive person is 
self confident, certain he will succeed without needing to aggress others, which gives 
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him a “calm strength”. Scalfari in Table 1 provides three examples of this strategy. At 
time 3.57, as he speaks of his having founded a Company, his high voice intensity 
remarks his own accomplishment. But his low voice intensity at 3.39 and slow tempo 
at 3.58 express calmness. 

5   Conclusion 

The goal of this work was to provide a qualitative analysis of dominance displays in 
debates, and to single out dominance strategies; later works will conduct quantitative 
analysis about the frequency of these strategies and their relation to personality and 
cultural factors.  

Looking for signals of dominance in TV debates, we found several strategies to 
show dominant: from the more aggressive ones of imperiousness, judgement, inva-
sion, norm violation and defiance, to more subtle ones like touchiness and victim-
hood, ending up with the distancing ones of haughtiness and other ways of showing 
superior, like irony and ridicule, easiness, carelessness and assertiveness. In all of 
these ways people try to show better – stronger, more intelligent, noble or important – 
than others. But why do people want to appear dominant? Probably due to an impor-
tant law of power: that exhibiting an image of power is the first step to actually gain 
power…  
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