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Preface

This volume contains papers presented at the 5th International Conference on Mathe-
matical Methods, Models and Architectures for Computer Network Security  
(MMM-ACNS 2010) held in St. Petersburg, Russia, during September 8-10, 2010. 
The conference was organized by the Institution of the Russian Academy of Sciences 
St. Petersburg Institute for Informatics and Automation of RAS (SPIIRAS) in coop-
eration with Binghamton University (SUNY). 

The previous conferences in the series (MMM-ACNS 2001, MMM-ACNS 2003, 
MMM-ACNS 2005 and MMM-ACNS 2007) organized by SPIIRAS and Binghamton 
University (SUNY) demonstrated the great interest of the international scientific community 
in the theoretical and practical aspects of computer network and information security.  

MMM-ACNS 2010 provided the next international forum for sharing original re-
search results among specialists in fundamental and applied problems of computer 
network security. A total of 54 papers from 19 countries related to significant aspects 
of the theory and applications of computer network and information security were 
submitted to MMM-ACNS 2010: 16 papers were selected for regular and 6 for short 
presentations (30% of acceptance for full papers and 40% for all papers).  

Six technical sessions were organized, namely: security modeling and covert chan-
nels; security policies and formal analysis of security properties; authentication,  
authorization, access control and public key cryptography; intrusion and malware 
detection; security of multi-agent systems and software protection; adaptive security, 
security analysis and virtualization. The MMM-ACNS 2010 program was enriched by 
papers presented by five distinguished invited speakers: Hervé Debar (Institut Tele-
com – Telecom SudParis, France), Dieter Gollmann (Technical University of Ham-
burg-Harburg, Germany), Greg Morrisett (Harvard University, USA), Bart Preneel 
(Katholieke Universiteit Leuven, Belgium), and Ravi Sandhu (University of Texas at 
San Antonio, USA).  

The success of the conference was assured by the team effort of the sponsors,  
organizers, reviewers and participants. We would like to acknowledge the contribution 
of the individual Program Committee members and thank the paper reviewers. Our 
sincere gratitude goes to the participants of the conference and all authors of the sub-
mitted papers. We are grateful to our sponsor, the European Office of Aerospace  
Research and Development (EOARD) of the US Air Force, the US Office of Naval 
Research Global (ONRGlobal), and the Russian Foundation for Basic Research, for 
their generous support.  

We wish to express our gratitude to the Springer LNCS team managed by Alfred 
Hofmann for their help and cooperation.  

September 2010 Igor Kotenko 
Victor Skormin 
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Abstract. In the complex world of information services, we are realizing

that system dependencies upon one another have not only operational

implications but also security implications. These security implications

are multifold. Beyond allowing an attacker to propagate over an informa-

tion system by leveraging stepping stones vulnerabilities, it also allows

a defender to select the most interesting enforcement points for its poli-

cies, overall reducing the cost of managing the security of these complex

systems. In this paper, we present a dependency model that has been de-

signed for the purpose of providing security operators with a quantitative

decision support system for deploying and managing security policies.

1 Introduction

Today’s world of information services is becoming more and more reliant on
a web of interconnected “unitary” services, whose composition forms the basis
of so-called Web Services. In fact, this notion of service composition can be
extended to any information system, where the simplest form of application
(e.g. a word processor) relies on an operating system, itself relying on a set
of hardware components to provide the capability to display, modify, store or
print documents. The value to users is the documents, not any of the underlying
services, and the user often only realizes the value of the word processor software,
including all underlying components within this value.

There have been many efforts to model information systems and their services,
including dependencies. Modeling is in fact one of the most common tools used
in computer science, for example the Turing machine [1] or the Von Neuman
computer [2]. These models have been used to understand the properties of the
modeled information system and are largely used today, for example in policy-
based management in networks [3,4]. Our work fully embraces the definitions of
Policy Enforcement Point (PEP) and Policy Decision Point (PDP) as defined in
RFC 2748 [4].

Our work target a specific sub-problem of policy-based management. We wish
to model and use the dependencies that naturally exist between the components

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 H. Debar et al.

of an information system. The model expressed above of a standalone computer
is very detailed, we can construct coarser or finer models, but in any case we
will obtain a model where a user enters a particular service and will trigger a
set of dependent actions for the realization of such service. Given the wealth of
existing models using graph theory, petri nets and other related formalisms, we
believe that the existence of these relations expressed as dependencies is well
established.

We furthermore assume that these dependencies have security implications.
For at least some of them, a change in the security status of one of the compo-
nents on each side of a dependency will imply a change in the (security) status
of the other component. This implication has multiple consequences and uses.
In the scope of our work on countermeasures, we are mostly interested in two
of them, finding the proper enforcement points for specific security rules (which
then support countermeasure deployment), and computing the impact of attacks
and countermeasures that propagate over an information system.

2 State of the Art on Service Dependency Models

2.1 Existing Dependency Models

Model-based management has recently emerged as an important tool to manage
large information systems and networks, as well as security properties [5]. fol-
lowing this line of work, or even before, several models have been proposed for
dependency modeling.

[6] presents an XML based dependency model. This model provides a backend
for building a dependency database, without providing a formal specification of
service dependencies. [7] defines a dependency algebra for modeling dependency
strengths. It separates the Dependency relation from the Use relation. It states
that critical components should only use and not depend on non-critical compo-
nents. In [8], a UML-based dependency model describes service dependencies in
ad hoc systems. It focuses on the dependencies relevant to ad hoc collaborative
environments. Moreover, a service dependency classification for system manage-
ment analysis is provided in [9]. It separates between functional (implementation-
independent) and structural dependencies (implementation-dependent).

More closely related to security, an intruder uses the privileges obtained on
the target service in order to increase his benefits [10] in service oriented ar-
chitectures. Intrusions are compared to black stains which spread in the system
through the dependencies available due to attack success. An intrusion impact
thus propagates through some dependencies to the target service, but not all
dependencies. Existing tree or graph-based service dependency models do not
represent conditional impact propagations because they do not implement the
privileges which may be obtained by successful attackers on target services. Fur-
thermore, this model limits itself to the propagation of the attacker, not of the
impact of the attack.
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2.2 Cost Propagation and Response in Service Dependency Models

More recently, several researchers have focused on the evaluation of impact prop-
agation rather than attacker propagation. [11] provides a cost-sensitive approach
for balancing between intrusion and response costs. A system map holding de-
pendency information is used as a basis for deciding on response strategy. [12]
proposes a function which evaluates intrusion response impacts using depen-
dency trees. It allows a cost-sensitive selection of intrusion responses. Another
cost-sensitive analysis of intrusion responses is presented in [13]. It uses depen-
dency graphs instead of dependency trees. Service dependencies are also used
for fault analysis [14], dependability analysis [15] and many other applications.

As in [16], informing the response process starts with an accurate assessment
of intrusion impacts. While attack graphs trace dependencies between elemen-
tary steps constituting an exploit plan, each step is only assigned an abstract
cost [17,18,19]. Unless relying on expert knowledge, no formal approach to eval-
uate elementary costs is provided. It has been shown that service dependencies
provide a suitable platform for reasoning about intrusion impacts [20,21,22,23].

While we are clearly inscribed in this line of work, conventional service depen-
dency models, by introducing services as black boxes regrouped in tree [23] or
graph [20,21,22] based structures, are unable to catch the way intrusion impacts
spread in the system. Instead, they provide only means for propagating availabil-
ity impacts, but not confidentiality nor integrity. We argue that to better assess
intrusion impacts, a representation of service dependencies which includes more
than the only information about dependency strengths is required. This is the
reason why we introduce the notion of privileges in section 3.2.

2.3 Requirements for Dependency Modeling

The existing dependency models such as graph [11,13,12] or class-based [8] mod-
els classify service dependencies using static attributes. These are often infor-
mally defined, adapted to only specific system implementations, prone to issues
related to their expressiveness and the dependency characteristics they model.
The decision process needs to know more than just the existence of a certain de-
pendency and its strength. It needs to model full chains of relationships, taking
into account how, when and why a dependency is activated. It must also support
the attribution of security properties to these dependencies, to ensure that the
different effects of attacks are properly modeled and propagated.

On the other hand, the proposed modeling framework must enable the re-
grouping of elementary services into dependency blocks with well-defined inter-
faces. Those blocks can be implemented in other dependency blocks, and thus
providing reusability of the dependency model. It must also allow the abstraction
of certain dependencies, and thus representing only the dependencies relevant
for the application purposes. This capacity for multi-level modeling is impera-
tive to ensure that the proposed models remain actionable, i.e. that they can
be understood that the operators that will need to put in practice the results
obtained. Our objective being decision support for security operators, we must
ensure that modeling is a mean to this end and not an end by itself.
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This paper provides a formal representation of service dependencies. It en-
ables the inline evaluation of intrusion costs using both the privileges realized
on the target service and its dependencies. The notion of privilege enables the
distinction of availability impacts from those of confidentiality and integrity. In
the former, the attacker revokes some privileges to legitimate users (e.g., a DoS
attack prevents user from accessing to the denied server). In the latter, the at-
tacker seeks to acquire illicit privileges, and thus to have fraudulent access to
some assets.

3 Formal Dependency Model

3.1 Simple Service Model

An information service S is generally delivered to users through a protocol spec-
ification describing the network interactions, the syntax and the semantics of
the messages delivered to the parties (users and service components). Examples
of such public specifications are the IETF requests for comments (RFC) (e.g.
HTTP, DNS, ...) or web services specifications. A model MS of a service S is an
abstraction describing S using a specific formalism (in our case the AADL for-
malism [24], see Section 4). The model aims at describing the architecture and
behavior of the service while remaining easy to handle for multiple purposes:
simulation, proof of properties, management, etc. This informal description is
adaptable to many formalisms such as graphs, petri nets, UML diagrams, and
many others.

We consider that a service is a somewhat large entity that is build of smaller
objects, also called indifferently components (for example software components)
or assets (for example information assets of some value). Thus, a model is com-
posed of a set of connected components Ci, some of these components being
basic building blocs and others being models by themselves. In a graph repre-
sentation, the components Ci would be modeled by nodes, and the connections
between these components by edges. We also include users in our set of inter-
acting components, in order to obtain a complete model of the service. We thus
define the set of components CS used in the provision of service S as :

CS = {Ci, i ∈ {1 . . . n}} (1)

This equation only represents the set of nodes of the graph, not the edges. To
introduce the edges, we define the require relationship =⇒ between two compo-
nents Cx and Cy expressed as Cx =⇒ Cy, when Cx needs information from Cy in
order to deliver its service. This require relationship represents the dependency
of Cx over Cy. As specified in section 4.2, Cx is the antecedent component and
Cy is the dependent component.

Thus, each component Ci is associated with two sets, the set PCi of com-
ponents that provide resources in order to enable Ci to deliver its service to
users, and the set SCi of components that rely on Ci to deliver their service
to users. The components in PCi are the providers of resources to Ci and the
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components of SCi are the subscribers of resources provided by component Ci.
This relationship is formalized as equations 2 and 3.

PCi = {Cj ∈ CS , Ci =⇒ Cj} (2)

SCi = {Ck ∈ CS , Ck =⇒ Ci} (3)

and our model MS is finally defined as the set of triples, as shown in equation 4 :

MS = {(Ci, PCi, SCi), i ∈ {1 . . . n}} (4)

While there is redundancy in the specification of the model (components appear
in symmetric roles, as apparent in section 4.2), this is equivalent to the specifica-
tion of the connected input and output interfaces for each component Ci. Each
component of PCi offers an input interface that is connected to the appropriate
output interface of Ci. Similarly, Ci offers input interfaces to all components of
SCi. Note that the model developed in section 4 also allows the definition of
interfaces that are not connected to any other component. This enables to view
basic models as building blocs that can be reused to construct more complete
service models. Thus, the proposed formalism is hierarchical. A component can,
at a lower level of granularity, be a model itself, as long as the interface used to
communicate with it is unique for all the other components.

3.2 The Privileges Extension

In the previous model definition, we simply connect components together in
a graph-like fashion. We now extend this definition by adding the following
specifications: (1) the privileges granted to the service (consequently the assets
it uses), (2) the credentials accredited to this service and (3) the trust it has
regarding other privileges and/or credentials. A component is thus defined as
C = (PrC , T rC , CrC) where PrC , T rC and CrC respectively represent the
privileges, trust relationships and credentials implemented by the service C.
These implementations specify the access permissions granted to a component
and configure the way it interacts with other components through component
dependencies. In the remaining of this section, we define the notions of priv-
ilege, credential and trust. Further we use these definitions to propose a new
representation of component dependencies and the system model as a whole.

We first define an authorization as a logical right that applies to some assets.
An authorization may be granted to a subject, and thus we introduce the notion
of privilege to model the grant of a permission to a subject. A privilege is specified
by the following rule:

1 Permiss ion ( Subj , Act , Obj ) :−
2 Pr i v i l e g e ( Priv ) , Sub jec t ( Priv , Subj ) ,
3 Author i zat ion ( Priv , Auth ) , Action (Auth , Act ) , Object (Auth , Obj ) .
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A privilege specifies a subject and an appropriate authorization. The latter in-
cludes an action which applies to an object. We represent a privilege Priv de-
tained by a subject Subj with the notation Subj.Priv. It is interpreted as:

Subj.Priv ⇔ Privilege(Priv), Subject(Priv, Subj) (5)

We use privileges in order to define security objectives in terms of confidentiality
(Co), integrity (Ig) and availability (Av). We argue that the assignment of CIA
(Confidentiality, Integrity, Availability) cost vectors to critical assets, as in [25],
does not provide enough expressiveness. As discussed in [21], Av is not managed
the same way as for Co and Ig. Co and Ig are only related to the asset to which
they apply, but Av is related to both the asset and the entity which seeks access
to this asset.

We specify the security objectives in terms of Co and Ig as cost metrics as-
signed explicitly to the appropriate assets. They are defined as square cost vec-
tors (Coi, Igi) which apply to the component Ci. The metric Coi (resp. Igi) takes
a higher value as the compromise of the Co (resp. Ig) of Ci provokes higher losses
to the system.

The resulting cost for illicitly acquiring an authorization α which applies to
Ci is evaluated to max(Cα×Coi, Iα× Igi). Cα (resp. Iα) is set to null when the
authorization α does not disclose (resp. alter) the Co (resp. Ig) of the compo-
nent Ci.

We specify security objectives in terms of Av by assigning cost scalars to priv-
ileges rather than objects. A privilege S.Priv is thus critical if the unavailability
of the privilege Priv to the component C (i.e. user) provokes higher losses to
the system. While Co and Ig impacts are evaluated according to the authoriza-
tions illicitly acquired by an attacker, Av impacts are evaluated according to
the privileges which are revoked to their appropriate users. We thus dispose of
more granularity to evaluate Av costs because some privileges may be denied to
certain, but not all, users.

3.3 Privilege Sharing: Credential and Trust

A credential is an ‘entitlement to privilege’, it is not coupled to an object, but to
an entity which trusts this credential and shares in counterpart some privileges.
A credential thus enables an entity which is not assigned some privilege, to
share this privilege with some other entities. We introduce credentials with the
predicate Credential which is defined by the expression:

Credential(Cr) ⇔ ∃(Subj1, Subj2) : Owner(Cr, Subj1), Authority(Cr,Subj2) (6)

In other terms, the credential Cr is granted to the subject Subj1, and trusted
by the subject Subj2. We represent a credential Cr owned by a subject Subj
with the notation Subj.Cr. It is interpreted as:

Subj.Cr ⇔ Credential(Cr), Owner(Cr, Subj) (7)
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We define trust as an association of a privilege to be shared in counterpart to
some credentials and/or privileges. Trust relationships are implemented as part
of an authorization scheme by which we may specify the way privileges may be
shared between the different subjects of a system. We introduce these relation-
ships using the predicate Trust which is defined by the following specification.

1 Trust (Tr ) ⇔∃( Subj , Inp , Out ) :
2 Subjec t (Tr , Subj ) , Grantee (Tr , Out) , P r i v i l e g e (Out ) ,
3 Trustee (Tr , Inp ) , Creden t i a l ( Inp )∨Pr i v i l e g e ( Inp ) .

In other terms, the subject Subj implements a trust relationship by which it
shares the privilege Out in counterpart to the trusted credential or privilege
Inp. The satisfaction of a trust relationship results in additional authorizations
granted to the trusted subject (i.e. the subject which has the trusted creden-
tials or privileges). The satisfaction of a trust relationship is formalized by the
following specification:

1 Subj2 . Out:− Trust (Tr ) , Sub jec t (Tr , Subj ) , Trustee (Tr , Inp ) , Grantee (Tr , Out) ,
2 Subjec t (Out , Subj ) , [ P r i v i l e g e ( Inp ) , Sub jec t ( Inp ,Subj2 ) ]∨
3 [ Cr eden t i a l ( Inp ) ,Owner ( Inp , Subj2 ) , Authority ( Inp , Subj ) ]

Trust relationships are used to configure and set access control associated with
service dependencies. The satisfaction of a dependency is constrained by the
implementation of appropriate trust relations. These are threatened by attackers
who try to bypass those relations.

4 Model Formalism Using AADL

4.1 Introduction to AADL

AADL has been standardized and released by the Society of Automotive Engi-
neers. AADL provides formal modeling concepts for the description and analysis
of application system architectures in terms of distinct components and their
interactions. We privileged AADL over common modeling languages like UML
because AADL provides more powerful features for modeling system runtime be-
haviors. AADL provides standardized textual and graphical notations for model-
ing systems and their functional interfaces. It has been designed to be extensible
so that analyses that the core language does not support can be supplied. The
extensibility in AADL is provided through the Annex extension construct.

Our AADL framework models user runtime behaviors when accessing the data
provided by dependent services. It contrasts with most functional dependency
models since it focuses on the data flows associated with the access to a de-
pendent service rather than on the model of its functional dependencies. This
is a key concept in our approach since policy-driven responses require policy
enforcement points to deny some of these data flows.

Since our approach focuses on information systems security, we generally avoid
to model functional dependencies if these dependencies do not provide a way to
alter or enforce security properties. We for example rarely include a dependency
between software and the underlying hardware platform, and will also ignore the
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operating system if it is not part of the managed environment (e.g. in a cloud
computing environment). We also rarely model network link properties, unless
filtering devices partition the network in zones with different traffic policies.

We thus model services as abstractions, and these are decoupled from the
concrete components which realize them. Our decision can be best motivated by
the fact that concrete components only introduce functional dependencies which
are not relevant in our approach. For instance, a web service is defined through
its dependencies, independently whether it is implemented by apache2 server or
windows web server. We use for this purpose AADL system abstractions.

AADL models dependencies using inter-component connections. AADL con-
nections reproduce the service topology. They allow modeling multiple service
paths through the use of multiple connection paths to the same data. We also
use AADL operational modes in order to represent the dependency sequencing
during the workflow of the dependent service.

We use the AADL Error Model Annex [26] which has also been standardized
to add features for modeling the system behavior in the presence of faults. We
use faults as model constructs in order to represent the behavior of a dependent
service when it can not access to the antecedent service due to a response ap-
plication. In the remaining of this section, we describe the main elements of our
AADL dependency model.

4.2 Specification of Dependencies in AADL

We define a service as the implementation of an interface which provides data
access to its users (e.g. Web service, IP service). A service often requires access
to subsidiary data during its normal behavior. It is thus identified through the
specification of its required and provided data accesses. We model an elementary
service in AADL as a black box with specific requires/provides interfaces. Each
interface enables a specific data access, either required or provided by the service
(see Figure 1). We may add constraints between data required and provided by
a service (e.g. the required account is the owner of the provided data). These are
expressed as predicates assigned, when necessary, to the corresponding interfaces.

Service A depends on service B when A requires data access which is provided
by B. A is the dependent service, and B is the antecedent service. The failure of

1 −− Implementation of elementary
se rv i c e −−

2 system Service Name
3 f e a t u r e s
4 RF1 : r e qu i r e s data ac c e s s da ta Se t r1 ;
5 . . .
6 RFn: r e qu i r e s data ac c e s s da ta Se t rn ;
7 PF1 : prov ides data ac c e s s data Set p1 ;
8 . . .
9 PFm: prov ides data ac c e s s data Set pm ;

10 end Service Name ;

R e q u i r e s  d a t a  a c c e s s

P r o v i d e s  d a t a  a c c e s s

. . .

 S e r v i c e _ n a m e

. . .

P F 1 P F 2 P F m

R F 1 R F 2 R F n

Fig. 1. Elementary Service definition
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B, due to an attack or a response, prevents it from providing the data required
by A. The proper behavior of A is thus conditioned by the proper behavior of
B. Required data accesses enable dependency compliance check: A may never
depend on a B if the data access provided by B is not required by A. However,
a required data access does not necessarily imply the need for a dependency,
because this access can be managed by the service itself. For instance, a mail
delivery service requires access to user accounts. These can be managed locally
by the service (passwords file), or remotely accessed through a directory service.
Only the latter case implies a dependency for the directory service.

We model the dependency of service A to service B by connecting the provides
interface of B to its complementary requires interface of A. The AADL model
checks the compliance of this dependency by verifying that the access required
by A corresponds to the access provided by B (see Figure 2).

1 system implementation
Dependency Model .A

2 subcomponents
3 A: system dependent ;
4 B: system antecedent ;
5 connect ions
6 const AB : data ac c e s s B.PF1 −> A.RF1 ;
7 end Dependency Model .A;

R e q u i r e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

P r o v i d e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

.. .

  B
P F 1

.. .

      A

. . .

R F 1

.. .

Fig. 2. Explicit Service Dependency Representation

In the formalism of section 3.1, S = {A, B} according to equation 1, PCA =
{B}, SCA = ∅, PCB = ∅, SCB = {A}, and S = {(A, {B‘} , ∅), (B, ∅, {A})}
according to equation 4.

5 Dependencies Properties

We define the following dependency characteristics.

Dependency type defines the path of the network flow, and describes the data
assets exchanged between the dependent and the antecedent service.

Dependency mode makes precise the occurrence of a dependency within the
life cycle and workflow of the dependent service.

Dependency impact evaluates the influence of the absence or degradation of
the relation between antecedent and dependent services.

While these characteristics may be completed at a later time, we believe that
they are the most relevant for our purpose of using the dependency model for
assisting the decision process. In the remainder of this section, we discuss each
attribute, and we show how it is modeled in AADL.
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5.1 Dependencies Types

They describe elementary paths followed by the data provided by the antecedent
service. They only describe access paths for the direct dependencies of a service.
Complete data paths, due to indirect dependencies (dependencies of the direct
antecedents of a service), are automatically inferred from elementary access paths
for each service.

A dependency type may be either service-side, user-side or proxy dependency.

Service-side dependency: The dependent service initiates the interaction with
the antecedent service. The user connects to the dependent service as if no
dependency exists (see Figure 3-a).

User-side dependency: The user obtains credentials from the antecedent ser-
vice and present them to the dependent service. The connection is transpar-
ent for the dependent service (see Figure 3-b).

Proxy dependency: The access path to the dependent service is intercepted
by the antecedent service. No access path explicitly exists between the de-
pendent service and its user during the dependency (see Figure 3-c).

a- Service-side

U A

B

1  -  3

2

b- User-side

A

B

1

U 2

3

c- Proxy

A

1

U

2

3

B

White interfaces represent the data flow provided by the dependent service for its users.
Gray interfaces represent data flow provided by the antecedent service.
A is the dependent service, B is the antecedent service, and U is the user of the dependent service.

Fig. 3. Service Dependency Types

5.2 Dependencies Modes

The dependencies mode describes the sequencing of dependencies within the life
cycle and workflow of the dependent service. We use AADL operational modes
for modeling dependency sequencing. AADL modes are constructs which rep-
resent operational states of a component. Each mode illustrates an operational
phase for the dependent service which is characterized by the need for a certain
dependency. As such, the dependent service does not notice the failure and/or
inaccessibility of the antecedent service unless the former reaches an operational
mode where it requires the access to the data provided by the antecedent service.
The transition into a dependency mode means that the dependent service has
reached an operational phase where it requires access to the data provided by the
antecedent service. The transition out of this mode means that the dependency
is no longer required.
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A service has four operational modes. These modes describe the life cycle of
this service. Every dependency mode exists necessarily in at least one of these
operational modes. We shall first describe service life cycle in AADL, and later
we describe dependency sequencing during this life cycle. The service life cycle
holds four operational modes: Start, Idle, Request and Stop modes (see the
associated AADL model in Figure 4). They are defined as follows:

Start Mode characterizes the launching period of a service. The process real-
izing the service is loading configurations and assets. The transition out of
this mode occurs when the process is ready to receive user requests. Depen-
dencies in start mode are one-time dependencies only required during service
start-up.

Idle Mode characterizes the period during which a service is waiting for in-
coming user requests. The transition out of this mode is initiated by a user
request, or by a decision to stop the service. The dependencies in this phase
are mainly functional dependencies not relevant for the purpose of this pa-
per, but which can be further investigated as for impact evaluations (see
section 9).

Request Mode starts when the service receives a user request. It character-
izes the in-line dependencies required in order to process this request. The
transition from this mode occurs after the user connection is closed.

Stop mode All the actions a service may take before stopping are considered
as part of the stop mode.

The time spent in each operational mode varies according to service configura-
tions. Transitions between operational modes may also vary for certain services.
For instance, a service configured through the Internet super daemon inetd
starts on a per-request basis and therefore directly switches to the stop mode
at the end of the request mode. The same service started through the boot se-
quence configuration files /etc/rc.d/ will run throughout the entire uptime of
the system, and will only be in start mode during the boot sequence.

S t a r t

I d l e

R e q u e s t

S t o p

t rans i t

t rans i t

t rans i t

d o w n

1 system implementation Dependent . i n s t ance
2 subcomponents
3 CStart : system op State in modes ( Star t ) ;
4 CIdle : system op State in modes ( I d l e ) ;
5 CRequest : system op State in modes ( Request ) ;
6 CStop : system op State in modes ( Stop ) ;
7 modes
8 Star t : i n i t i a l mode ;
9 I d l e : mode ; Request : mode ; Stop : mode ;

10 Star t −[CStart . t r a n s i t ]−> I d l e ;
11 I d l e −[CIdle . t r a n s i t ]−> Request ;
12 Request −[CRequest . t r a n s i t ]−> I d l e ;
13 I d l e −[CIdle . down]−> Stop ;
14 end Dependent . i n s t ance ;

Fig. 4. Dependent Service Modes
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5.3 Dependencies Sequencing

Dependencies in each operational mode are invoked in a certain sequence related
to the service behavior. These are defined as AADL operational sub-modes as-
signed to the components of each operational mode (lines 2-6 in Figure 4). We
thus state dependencies within the life cycle of the dependent service, and we
determine the dependency sequencing within the same life cycle phase. We ob-
tain a Dependency Finite State Machine (DFSM) with sub-states. Dependencies
appear in three possible sequences described as follows.

a- Stateless sequencing

i + 2
D e p

i + 1
D e pi

D e p

b- Stateful sequenc-

ing l sequencing

i
D e p

i + 1
D e p i + 2

D e p

c- Alternative sequencing

i + 2
D e p

i + 1
D e p i

D e p

Fig. 5. Service Dependency Sequencing

– Stateless sequencing : the satisfaction of the parent dependency is an obliga-
tion prior to the access to the child dependency. However, the former does
not need to remain satisfied once the latter is accessed (Figure 5-a).

– Stateful sequencing: the parent dependency must remain satisfied as long as
the child dependency is not satisfied yet (Figure 5-b).

– Alternative sequencing: characterizes redundant dependencies. The transi-
tion from the parent dependency leads to one of the child dependencies
(Figure 5-c).

Stateless and stateful sequencings express conjunctive dependencies. Alternative
sequencing expresses disjunctive dependencies where only one alternative depen-
dency is required. Each dependency mode is associated with a specific require
interface (see Figure 1) which is connected to a specific antecedent service.

5.4 Dependencies Impacts

The dependencies impacts express the consequence of any degradation of the
antecedent service, which alters the access to data required by the dependent
service. The failure of a dependency alters the transitions between operational
modes. This alteration is motivated by the fact that the failure of a dependency
denies reaching its subsequent dependencies in case of no alternative dependency.

Dependency failure does not only alter the normal transition out of the failed
dependency. It may also restrain the service to switch to another operational
mode. For instance, a web server may switch to insecure connections when the
SSL service does not respond. We use the AADL error model annex to rep-
resent the impact of a dependency failure. Each service is attributed at least
two AADL error states, which are normal and failure states. The impact of a
dependency is expressed by constraining the transition out of a dependency to
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occur depending on the error state of the antecedent service. This is done by
defining Guard Transition properties which use error propagations. Error prop-
agations are AADL constructs which notify the component at the remote end of
a connection about the error state of the other component. We use Error Free
and Failed propagations which notify respectively an error free and a failed de-
pendency states. Each dependency state may dispose of two transitions. The
first is the normal transition, constrained by the satisfaction of the dependency.
The second transition is optional. It is constrained by the inability to satisfy the
dependency.

6 Dependency Model Framework and Implementation

Section 5 has defined the service dependency characteristics managed using our
approach. This section describes the steps for building a dependency model
using our framework summarized in Figure 6. We use the Open Source AADL
Tool Environment (OSATE)1 which is a set of Eclipse plug-ins. OSATE maintains
AADL models as XML-based files, which allows the reusability of the model.

S e r v i c e  d e p e n d e n c y  d e s c r i p t i o n s

4

1 2

E x p l i c i t  d e p e n d e n c i e sO S A T E  t o o l

*

M o d e l  t r a n s l a t i o n  a n d  v a l i d a t i o n

M u l t i - f i l e s  X M L  m o d e l

O S A T E  s u p p o r t  f o r  A A D L  X M L  I n t e r c h a n g e  r e p r e s e n t a t i o n

3

J a v a  b a s e d  Q u e r y  i n t e r f a c e

+  d e p S t a t e I d :  i n t

#  P a r e n t S t a t e :  d e p S t a t e

#  A n t S e r v i c e :  S e r v i c e

#  R e q u i r e d D a t a :  D a t a

#  R e q u e s t e t :  S e r v i c e

#  F a i l u r e T r a n s :  S e r v i c e

d e p S t a t e

+  C h e c k P a t h  ( ) :  b o o l e a n

+  c h k C o n s t r a i n t  ( ) :  b o o l e a n

+  g e t F a i l u r e T r a n s  ( ) :  d e p S t a t e

+  a d d H i s t o r y  ( ) :  b o o l e a n

1

*

I t e r a t i v e  m o d e l

c o n s t r u c t i o n

M o d e l  a c c e s s

A A D L  o p e r a t i o n a l  m o d e l A A D L  I m p a c t  t r a n s i t i o n s

Fig. 6. Dependency Model Framework

The modeling framework is split into four steps. The user is intended to do
the first two steps. The last two steps are automatically generated.

Step 1 consists of modeling the explicit dependencies of a service. Each service
has a dedicated dependency model defined in an AADL package. Only explicit
dependencies are represented. Antecedent services are considered as independent
services, and therefore indirect dependencies are not represented.

Step 2 consists of modeling the dependency impacts. Only the impacts of
explicit dependencies are modeled. Indirect dependency impacts are inferred
from those of explicit dependencies.

1 http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html

http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html
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The iteration over the first two steps consists of replacing antecedent ser-
vices by the implementation of their composite dependency models. Antecedent
services, previously used as abstract independent components, are replaced by
instantiations of their dependency packages (see the case study for examples).

In Step 3, OSATE translates the AADL model into a multi-file XML model.
Each package (i.e. elementary dependency model) is saved as an XML file ex-
pressed using the AADL XML Interchange format. This step is preceded by an
automated model validation. OSATE checks the connections between model com-
ponents. It flags inappropriate dependencies where a dependent service is made
dependent of an antecedent service which does not provide its required data.

Step 4 is the implementation of a query interface which manages the ac-
cess to the dependency model. This interface is queried for the dependencies of
a specific service. We use the Java-based Document Object Model to explore
the AADL/XML model. The query interface builds a Dependency Finite State
Machine (DFSM) with sub-states in order to represent service dependencies.

The DFSM schema is illustrated in Figure 6. It summarizes all the depen-
dency characteristics modeled in the first two steps. The attributes of a de-
pendency state are (1) the antecedent service, (2) the required data, (3) the
requester (dependency type), (4) the dependency impact, (5) the parent depen-
dency and (6) the next dependency (dependency modes). Cyclic dependencies
are discarded, and thus a dependency state cannot be a parent for another de-
pendency state which points to the same service.

7 Using Dependencies Models for PEP Selection

In the context of our work on the use of the OrBAC security policy language
for intrusion response [27], we have used the proposed model for selecting policy
enforcement points as enforcers of OrBAC policy rules.

7.1 Modeling Policy Enforcement Points

The derivation of concrete elementary accesses is followed by a decision process.
It aims to reconfigure elementary accesses so that the initial response access
rule could be applied. In case of permission, the decision process satisfies at
least a minimal set of dependencies. In case of a prohibition, it checks that
no dependency path enables the prohibited data access. Access permissions are
modified through the reconfiguration of PEPs which are modules associated
with services. We therefore consider each service as a PEP having limited access
control capabilities. This capability, when it exists, is limited to a specific class of
subjects. It thus restrains the PEP capability to apply elementary access rules.
For instance, firewall visibility is limited to network level information, it is not
able to monitor user-level credentials.

A PEP is able to apply a security rule when (1) the subject in this rule
belongs to the capability set of the PEP, (2) the service pointed by the action is
managed by the PEP and (3) the object is a data provided by the service. The



Service Dependencies in Information Systems Security 15

capability of a PEP depends on its concrete implementation. It is defined as a
constraint which must be satisfied by the subject in the security rule. Services
which do not have access control capabilities are assigned null capability sets.
The PDP may select a certain PEP if the subject within the elementary concrete
rule derived for this PEP belongs to its capability class. The PDP selects the
optimal response set according to two criteria.

– A prohibition is applied the closer possible to the start state of the DFSM,
in order to reduce resource consumption. This is motivated by the fact that
when the access is denied at the beginning of the DFSM, subsequent depen-
dency accesses are denied, which contributes in reducing resource consump-
tion.

– The PDP minimizes the configuration changes required for the application
of a security rule by minimizing the services which need to be reconfigured.

7.2 Selecting Policy Enforcement Points

S is the set of services obtained from the AADL model. We model the DFSM for
the service sDep as DFSMsDep = {Sa, Ta} where si ∈ Sa ⊂ S is an antecedent
for sDep and aij ∈ Ta ⊂ S×S is a transition. A path pij is a sequence of adjacent
transitions which lead from the dependency state si to the dependency state sj .
If this path does not exist then pij = φ. For an input security rule, the PDP
crosses DFSMsDep . It searches the minimal set of dependencies which applies
the security rule and reduces superfluous resource transactions. Algorithm 1
illustrates the behavior of the PDP. In case of a permission, the PDP searches for
the dependency path which requires the least modifications (i.e. reconfigurations)
in order to allow the access. The selected path is liberated in order to apply the
input permission. In case of a prohibition, the PDP denies all dependency paths.
When altering a dependency state, the PDP switches to the failure transition of
this state and checks that it does not belong to a permissible path.

8 Using Dependencies Models for Attack Impact
Propagation

A service dependency expresses the need for the dependent service to access the
antecedent service. The dependent service, which requires some privileges not
explicitly assigned to this service (e.g. an online directory service needs access
to public data), accesses its antecedent service (e.g. database service) in order
to acquire the required privileges (e.g. fetch data).

We formalize the service dependency definition using the RT framework in
[28], and specifically the RT D component. RT D introduces the concept of request
which is represented by a delegation credential that delegates from the requester
to the request. For example, that Ea requests an authorization which belongs
to the role Rb from Eb with its capacity of being empowered in the role Ra can

be represented by: Ea
Ea as Ra
−−−−−−→ Eb.Rb. We use the same delegation concept as
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input : Sr(Type, s, a, o)
output: List < si, Sri > Resp with si ∈ S

FSMa = makeTransClosure(getDFSM(a), Sr);
dStart = FSMa.start; dEnd = FSMa.end;
if Type = Prohibition then

foreach pij in FSMa with (i=dStart) & (j=dEnd) do
if chkRespHistory(pij) (returns False if the path has been already intercepted)
then

curState = dStart;
repeat

curState = curState.getNext(pij); returns the next state on the path pij

if chkCapability(curState) then
Resp.add(curState.AntService, curState.Sr);
curState.addHistory(curState.Sr); add Sr to the resp. history
auxPath = FSMa.getPath(curState.getFailureTrans(), dEnd);
if (auxPath �= φ)∧(curState.getFailureTrans().parent �= Idle) then
pij ← auxPath;

end

until curState = dEnd;

end

end

else
In case of permission, the PDP allows the path requiring minimum modifications
minPath = null; minLength = Infinity;
foreach pij in FSMa with (i=dStart) & (j=dEnd) do

curLength = 0;
repeat

curState = curState.getNext(pij);
if !chkRespHistory(curState) then curLength ++;

until curState = dEnd;
if curLength < minLength then {minLength = curLength; minPath = pij ;}

end
allow(minPath); Liberates the path in parameter

end

Algorithm 1. Evaluation of the resulting impact transfer matrices

in [28], but while replacing roles with privileges. This can be best motivated by
the fact that the role concept in role-based management languages is treated as
a collection of permissions (i.e. authorizations) [29], which makes it compatible
with the privilege concept for service dependencies.

We thus represent a dependency for a service A towards service B by the

following specification: A
(A.Cr,A.Pr)
−−−−−−−−→ B.R. It states that the dependent service

A, in its faculty of having the credential (Cr) and/or the privilege (Pr), requests
the privilege R from the antecedent service B. We shall note that the dependent
service may use more than a single credential and/or privilege to access the
antecedent service. These will be specified in the dependency definition. The
dependent service, after it satisfies its dependency, acquires additional privileges
granted by the antecedent service. The satisfaction of the dependency implies
the sharing of the privilege set R between the dependent and the antecedent
services.

We use the definitions of a service dependency and trust in order to specify
the condition for a dependency to be satisfied. It is written as:
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1 (A
A.Cr,A.P r

−−−−−−−−−→ B.R ⇒ A.R) ⇔ ∀ t r : ( Trust ( t r ) , Sub jec t ( tr ,B) , Grantee ( tr ,
R) ) ,

2 [ ( Trustee ( tr , Cr ) , Owner (Cr ,A) )∨( Trustee ( tr , Pr ) , Sub jec t (Pr ,A) ) ] .

It states that a dependency is only satisfied when the dependent service uses the
credentials and privileges which apply to the trust relationships implemented by
the antecedent service.

8.1 Modeling Attacks in the Framework

A privilege is affected either by being illicitly acquired by an attacker or by being
denied to its legitimate user. Intrusions are thus introduced in this paragraph as
a way by which an attacker alters the privilege assignments. An intrusion either
provokes a denial of access to legitimate users and/or provides illegitimate access
to the attacker. We define infected privileges as being those which are illegally
acquired by the attacker, and revoked privileges as being those which are illegally
revoked to the target service, and consequently to all of its users.

We use the vulnerability being exploited within an attack to identify the im-
pact of this attack on the target service. We thus define a vulnerability using
the pre/post-condition model, as in [30], by introducing the following attributes:
1. Target to represent the vulnerable service, 2. Access to represent the vulner-
ability access vector (i.e. the privileges which must be satisfied by the attacker
before he could access the vulnerability), 3. Infects to represent privileges for
the target service which are infected by the intruder in case the attack succeeds
and 4. Revokes to represent privileges which are revoked to the target service
in case the attack succeeds. We model an attack using the same request state-
ment as for a service dependency. An attacker, with his faculty of having some
privileges (i.e. vulnerability access vector), exploits a vulnerability on a target
service in order to increase his benefits and thus to acquire additional privi-
leges and/or deny other privileges to the target service. Meanwhile, the success
condition of the request is extended in order to include information about the
exploited vulnerability. We thus introduce an attack impact using the following
specifications:

1 Att
Att.P r

−−−−−−→ B.R ⇒ Att .R ⇔
2 ∃v : Vu lne rab i l i t y (v ) , Target (v ,B) , I n f e c t s (v ,R) , Access (v , Pr ) , Sub jec t

(Pr , Att ) .

3 Att
Att.P r

−−−−−−→ B.R ⇒ ¬ (B.R) ⇔
4 ∃v : Vu lne rab i l i t y (v ) , Target (v ,B) , Revokes (v ,R) , Access (v , Pr ) , Sub jec t

(Pr , Att ) .

We introduce the predicate Infected(B.R) to represent the outcome of the first
attack, and the predicate Revoked(B.R) to represent the outcome of the second.
We may also explore the correlation of attacks by comparing the outcome of
one attack to the access vector of the second, as in [30]. Meanwhile, attack
correlation using the privilege model is not among the objectives of this paper.
Attack correlation enables the combination of elementary impacts with the level
of expertise required for succeeding an attack and the prediction of intrusion
objectives in order to foresee additional impacts. This is a subject of interest
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which must be detailed in a future extension to this study. We are thus interested
in this paper in evaluating impacts of elementary (i.e. separated) attacks.

8.2 Attack Impact Propagation

The impact of an attack propagates when components other than the one being
attacked are affected by the attack. The attacker acquires (resp. revokes) privi-
leges granted to components other than his target component. He bypasses the
trust relations already configured for service dependencies, by using the privi-
leges he already acquired, in order to increase his gain (i.e. system loss). We infer,
using the definitions of attacks, dependencies and trust relations, the conditions
for attack impact propagation which are summarized in listing 1.

Listing 1. Attack Impact: Propagation of Infections and Revocations

1 Stmt 1 : In f e c t ed (A.R)∧ ∃ (B,Q ) : A
A.R

−−−−−→B.Q ⇒ In f e c t ed (A.Q)

2 Stmt 2 : Revoked (B.R)∧ ∃ (A,Q ) : A
A.Q

−−−−−→B.R ⇒ Revoked(A.R)

3 Stmt 3 : Revoked (A.R)∧ ∃ (B,Q ) : A
A.R

−−−−−→ B.Q ⇒ Revoked (A.Q)

4 Stmt 4 : In f e c t ed (B.R)∧ ∃ (A,Q ) : A
A.Q

−−−−→ B.R ⇒ In f e c t ed (A.R)

Statement 1 characterizes an opportunistic attacker who accesses an antecedent
service after his attack against a dependent service. The attacker illicitly ac-
quires from the dependent service some credentials and/or privileges which are
trusted by the antecedent service. The attacker benefits are thus extended to in-
clude all the privileges granted by the antecedent service. Statement 2 illustrates
availability propagation. The revocation of some privileges from an antecedent
service makes them unavailable for its dependent services. In statement 3, a tar-
get service is revoked from some credentials and/or privileges it uses to access
an antecedent service. It is thus revoked from the privileges shared by the an-
tecedent service, and so for all the users of the dependent service. Statement 4
characterizes an undisciplined attacker who uses the infected privileges in order
to access any dependency and thus to increase his gain.

While impacts iteratively propagate through service dependencies, the result-
ing attack impact corresponds to all infected (∀(u, Pr) : Infected(u.Pr)) and
revoked (∀(u, Pr) : Revoked(u.Pr)) privileges. Our model also evaluates the
conjunction of multiple attacks. By separately infecting more privileges, more
dependencies could be infected, and so more damages could be inflicted to the
system. Since we evaluate also the impact of countermeasures on users, we can
compare the impact of attacks and countermeasures candidates to select the best
operational compromise.

9 Conclusion

In this paper, we have demonstrated the modeling of dependencies in the context
of information systems security, with an application to finding policy enforcement
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points and to propagating the impact of attacks and countermeasures. While in
the paper we limit ourselves to the theoretical aspects of these models, additional
work has shown that these models can be of use do model simple services including
messaging, authentication and web services.

We are further extending this work towards simulation, in order to compute
the impact of attacks and counter-measures on larger information systems. This
will enable operators to obtain a decision support tool that iteratively informs
them about the costs associated with the current configuration of their infor-
mation systems, and to help them decide upon configuration changes based on
quantitative information.
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Abstract. The Internet (together with other communications systems)

has become a critical infrastructure in industrialized societies. We will

examine to which extent this infrastructure needs to be secured for ap-

plications to be deployed securely. We will give examples for application

layer attacks that cannot be defended against at the infrastructure layer.

Hence, deploying a secure infrastructure is not sufficient to protect criti-

cal applications. Conversely, we will give examples where an application

can be protected without relying on security services provided by the

infrastructure. Hence, deploying a secure infrastructure is not necessary

to protect critical applications. We will argue that it is only essential for

the computing infrastructure to protect its own execution integrity and

for the communications infrastructure to offer availability.

Keywords: Critical infrastructures, application security, security engi-

neering.

1 Introduction

It is today common place to observe that industrialized societies have become
reliant on IT to such an extent that the Internet (together with other com-
munications systems) has become a critical infrastructure. It would then seem
natural that this infrastructure must be protected against attacks; otherwise we
could no longer use the services we have become so accustomed to rely on. This
view would be supported by the history of IT security, which has important ori-
gins in operating systems security and communications security. Both provide
protection at the level of IT infrastructures.

We will argue that such a view is mistaken. Protection of the infrastructure
is neither necessary nor sufficient to protect applications deployed on the infras-
tructure. Society relies in the first instance on the services provided by these
applications. Hence, critical applications need to be protected. Protection of the
infrastructure is only necessary to the extent required by the application. To be
precise, we have to start from a risk analysis for a given application and then
decide which attacks are best defended against within the application, and when
it is better to rely on security services provided by the infrastructure.

We will illustrate this point with a number of case studies. With the advent of
the World Wide Web security functions such as access control started to move
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from the operating system into the browser. This trend is still continuing. Access
control in browsers increasingly resembles access control in a traditional oper-
ating system. Attacks such as cross-site request forgery and cross-site scripting
cause us to move defences from the browser into individual web pages. We will
then briefly cover DNS security and in particular DNS rebinding attacks to dis-
cuss which security services should be expected from the infrastructure (DNS, in
this case) and where the application should protect itself. Finally, we will discuss
attacks on applications that rely on SSL/TLS to show that securing communi-
cations may not be sufficient for securing the application. In summary, we will
make the case that security is moving to the application layer.

2 Browser Security

In the 1970s and 1980s work in computer security had a strong focus on operating
system security. The operating system can be viewed as an infrastructure compo-
nent providing users and applications with a file system, managing memory, and
managing processes. The security services provided by this infrastructure refer in
the main to memory and file management. Processes should not be able to read
from or write to memory locations allocated to other processes, unless explicitly
intended by inter-process communications. Users sharing a machine should get
access to files only if permitted by the policy given (multi-user security). Funda-
mental security concepts such as status information (supervisor/root and user
mode), capabilities, and access control lists were developed in this time.

The attacker was a user with (legitimate) access to the operating system
interface trying to enhance his privileges or to get illegitimate access to resources.
Security features in an application could typically be disabled by an attacker with
supervisor permissions at the operating system level, for example by changing
the security settings of the application. In this scenario application security
intrinsically relies on the security services supplied by the infrastructure.

2.1 Browser Sandbox

This situation changed in the 1990s when the Internet was opened to general use
and the first graphical web browsers emerged. The attacker now was a remote
entity using the interfaces provided by network protocols and in particular by
the web browser. Access control in the Java sandbox could constrain code inde-
pendently of any security services implemented by the operating system. If we
treat the browser as an application running on top of an operating system, we
have an instance of an application that includes its own protection mechanisms
without relying on security services provided by the infrastructure. The reference
monitor had moved from the operating system into the browser.

2.2 Software Security

At the same time software security deficiencies in the operating system started
to attract much attention. A remote attacker could, for example, exploit a buffer
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overrun vulnerability to run code on a victim’s machine [13]. Ping-of-death was
a denial-of-service attack of the same kind. To defend against such attacks the
infrastructure had to be secure in the sense that it could deal with intentionally
malformed inputs [9]. In other words, the infrastructure has to guarantee its own
execution integrity but does not have to supply the application with security
services.

3 Web Page Security

A web page is requested by the client’s browser through an HTTP request.
HTTP cookies included in a request may authenticate the client to the browser.
Server-side scripts process request parameters to construct instructions to back-
end servers. The response is transmitted from web server to client and ren-
dered by the client’s browser. The server may set cookies in a response header.
Dynamic web pages contain scripts accepting user input. Scripts may request
further server connections. Several attack vectors target this interplay between
client and servers.

– An attacker may retrieve cookies from the client, be it to profile the user or
to use the cookies to impersonate the client.

– A malicious script in a web page may perform inappropriate operations on
the client.

– A malicious script may use the client as a stepping stone to attack a third
party.

– A malicious user may send malformed inputs in an HTTP request to perform
inappropriate actions with the help of vulnerable server-side scripts (code
injection).

3.1 Code Injection Attacks

SQL injection is an example for a code injection attack. A server-side script con-
structs a SQL query for a back-end database server as a string put together from
code fragments that should capture the query logic and from request parame-
ters. Malformed user input in request parameters can change the query logic or
insert new database instructions. Note that a single quote terminates strings in
SQL. The attacker could thus submit input containing a single quote followed
by SQL clauses which would then become part of the query.

To defend against this attack we could either include suitable sanitization
operators in the script that aim to detect and neutralize malformed inputs. This
defence is located firmly within the application. Alternatively, we could mod-
ify the infrastructure so that it can protect its own execution integrity. Instead
of constructing database queries as strings, queries are precompiled with place-
holders for user input. The actual user input is substituted for these placeholders
(bound parameters) at runtime.
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3.2 Origin Based Access Control

At the client side the browser has become the infrastructure for handling web
pages. Today, this infrastructure provides the following security services:

– The browser controls how cookies are included in requests; the widely adopted
same origin policy states that a cookie may only be included in requests to
the domain that had set the cookie.

– The browser controls to which extent a script in a web page may access
local memory; in the initial Java sandbox policy a script had no access to
local memory; in the Java 2 security model more fine grained access control
became possible [8].

– The browser controls where a script in a web page may connect to; again,
the same origin policy is usually applied to regulate this aspect.

In all three cases the browser performs access control with respect to an origin
based security policy. To enforce such a policy, the browser must authenticate
the origin of a web page. Current browsers do this in a rudimentary way. They
translate between the IP address of the server the page has been received from
(more on this in section 4) and the domain name of this server, but there is no
fine grained authentication of the individual parts of a web page.

3.3 Cross-Site Scripting and Cross-Site Request Forgery

This shortcoming is exploited by cross-site scripting attacks (XSS) [5]. Such an
attack uses a ‘trusted’ server, i.e. a server with more access rights than those
granted to the attacker, as a stepping stone. A malicious script might be placed
directly in a page on the trusted server (stored XSS, e.g. via a bulletin board). In
another version of XSS the script is hidden in a form in a page on the attacker’s
server. When a victim visits this page a request that contains the hidden script
as a query parameter is automatically sent to the trusted server. Should the
server mirror this query parameter back to the victim (e.g. in a response to a
search) the script is executed in the victim’s browser with the access rights of the
trusted server (reflected XSS). XSS can be used, for example, to steal cookies
from the client.

Authentication of origin has failed as it did not correctly capture the true
origin of the attacker’s contribution to the page received from the server. Cross-
site request forgery attacks targeting a server follow a similar principle [4]. The
server has to ‘trust’ a client, i.e. there has to be an authenticated session (more
on this in section 5) where the client has more access rights than those granted
to the attacker. The attacker manages to send actions to the server within this
session, which are then executed with the access rights of the client.

Client and server could perform authentication at the application layer to
defend against this type of attack, rather than relying on the infrastructure
provided by browsers and web servers. So-called XSRF prevention tokens are
message authentication codes for actions computed from a shared secret that
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had been established when the session was created. It is essential to store this
secret at the client side in a place out of reach for an attacker able to circumvent
the browser’s origin based security policies. Once more, the application takes care
of security and does not rely on a security service provided by the infrastructure.

4 DNS Security

The Domain Name System (DNS) is, in a nutshell, a distributed directory ser-
vice managing information about so-called domain names. Its core service is the
mapping from host names to IP addresses, performed for each domain by one of
the authoritative name servers for that domain. The DNS is a critical infrastruc-
ture for the World Wide Web. Users rely on a correct binding from host names
to IP address to get access to the services they wish to use. Browsers rely on
correct bindings when enforcing origin based security policies.

4.1 Cache Poisoning

There are two types of attacks that break the correct binding between host
names and IP addresses. On one side there are the ‘traditional’ attacks imper-
sonating an authoritative name server to forge IP addresses in the domain of that
server. Cache poisoning attacks exploit certain features of the DNS, including
the caching strategy of resolving name servers and a challenge-response authen-
tication that relies only on the unpredictability of challenges, to achieve this
goal. A particularly effective cache poisoning attack using so-called additional
resource records is due to Dan Kaminsky1. Defences against cache poisoning
attacks can be provided at the infrastructure level, e.g. by running separate
resolving and authoritative name servers in a domain, by designating random
ports for replies from the authoritative name server as to increase unpredictabil-
ity, and ultimately by having the response from the authoritative name server
digitally signed (DNSSec, RFC 4033 to RFC 4035 [1,2,3]).

4.2 DNS Rebinding

There is a second type of attack where an authoritative name server is the source
of incorrect bindings. Such DNS rebinding attacks and were first discussed in [6].
DNS rebinding attacks exploiting features of browser plug-ins are described in
[10]. With DNS rebinding the attacker circumvents origin based policies in the
client browser. For example, a script from a page hosted by the attacker may
connect to a victim’s IP address the browser accepts to be in the attacker’s
domain because it has been told so by the attackers authoritative name server.

The client browser would have to double check with the host at the designated
IP address whether it considers itself to be in the attacker’s domain. It must also
1 For details see e.g.,

http://unixwiz.net/techtips/iguide-kaminsky-dns- vuln.html
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be noted that it is an intrinsic problem if the client accepts policy information
from a third party without checking its veracity.

More generally, we may ask whether it is necessary for an application to rely
on the DNS to provide an authenticated binding between a name (not neces-
sarily a domain name) and an IP address. Alternatively, we could split the task
of a rendezvous service that binds a name to an unauthenticated IP address
from the task of an authentication service verifying that an address given indeed
belongs to that name. The security property expected from the infrastructure
would then be availability, which might be achieved by running multiple inde-
pendent rendezvous services. Address authentication could be implemented in
the application layer, e.g. based on secrets shared between client and server such
as a user password.

5 Secure Sessions

Besides operating systems security, communications security has been the second
main pillar of information security. Protocol suites such as SSL/TLS (TLS v1.2,
[7]) or IPsec [11] facilitate the establishment of secure channels between two
parties that are connected via an insecure network. More precisely, the threat
model assumes an attacker that can read, delete, insert, modify, and replay
traffic; direct attacks against end systems are, however, not considered.

In the 1990s distributed applications were ‘secured’ by running the application
over SSL. https is a prime example for this pattern: a secure web page is a
page accessed via an SSL/TLS channel. Application security builds directly on
security services provided by the communications infrastructure.

This approach has two shortcomings. Many end systems are not well secured.
This invalidates one major assumption of the threat model that underpins tradi-
tional communications security. Arguably, it is more realistic to assume that the
communications system is secure but current end systems are not, rather than
the other way round. Section 2 has already hinted at this problem. Secondly,
attempts at linking concurrent sessions established at different protocol layers
may fail.

Consider the following procedure for establishing a mutually authenticated
application layer session between a user and a server that share a secret password.
First, the user’s client establishes an SSL/TLS channel with the server (host).
In this step the client’s browser checks that the distinguished name in the server
certificate matches the host visited and that the certificate is still valid. The user
then sends the password via the SSL/TLS channel; the server authenticates the
user and returns a HTTP cookie to the client. This cookie is included in future
requests issued within the application layer session. The server takes the cookie
as evidence that the requests are coming from the user previously authenticated.
The EAP-TTLS protocol gives a concrete implementation of this authentication
pattern (Figure 1).
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1. EAP-Request/Identity�

2. EAP-Response/Identity (id) �
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Fig. 1. EAP Tunneled TLS: EAP-TTLSv0 with CHAP

5.1 Man-in-the-Middle Attacks

A protocol such as EAP-TTLS achieves its goal as long as the SSL/TLS channel
has as its endpoint the server holding the password. This is not guaranteed by
the protocol itself. Server authentication during the SSL/TLS handshake just
guarantees that the server has a valid certificate. It is up to the user to make
sure that the host is the one intended.

This check is not always straightforward; host names are not always indica-
tive of service offered. Furthermore, there exist various ways of luring users into
connecting to the wrong server. For example, an attack2 targeting traders with
the German Emissions Trading Authority (DEHSt) started from an email pur-
porting to come from a security manager requesting an upgrade to improved
security standards3.
2 First report on http://www.ftd.de/unternehmen/finanzdienstleister/:gestoh

lene-co2-zertifikate-hacker-greifen-emissionshaendler-an/50069112.html
3 This mail – in German – can be found at http://verlorenegeneration.de/2010/

02/03/dokumenation-die-phishing-email-im-emissionshandels-hack/
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Fig. 2. Man-in-the-middle attack exploiting TLS session renegotiation

Once a user is lured into establishing an SSL/TLS channel with the attacker,
the attacker can act as a man-in-the-middle establishing its own SSL/TLS chan-
nel with the server. Authentication requests from the server are passed on to the
user; the user’s response is forwarded to the server; the cookie from the server
is sent back to the man-in-the-middle who now can hijack the user’s application
layer session. A possible countermeasure are cookies tied also to the SSL/TLS
channel as proposed in [14]. In the presence of a man-in-the-middle attack client
and server use different SSL/TLS channels and could thus detect that cookies
are not received in the same channel as they had been originally sent.

A man-in-the-middle attack in time is described in [12]. It exploits a partic-
ular usage of SSL/TLS for controlling access to protected resources on a web
server. Here, client and server are in possession of certificates. The client ini-
tially gets anonymous access to a secure web site by establishing an SSL/TLS
channel with server authentication only. When the server receives a request for
a protected resource, SSL/TLS session renegotiation is triggered with a Hello
Request message. In the new session the server asks for client authentication.
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applications

web page 2000s

�
web browser 1990s

�
operating system 1980s

Fig. 3. The reference monitor is moving into the web page

In the man-in-the-middle attack (Figure 2) the attacker waits for a session
initiation from the client. The client’s message is suppressed and the attacker
starts its own session with the server. The attacker sends a request for a pro-
tected resource (in Figure 2 a web page is posted to the server) whereupon the
server triggers session renegotiation. From this time on the attacker acts as relay
between client – that is in the process of establishing a new channel – and server
until both have established a new mutually authenticated SSL/TLS channel. A
request sent in this new channel will be attributed correctly to the authenticated
user and executed with that user’s access rights. The attacker’s HTTP request
had been constructed so that it would be a prefix to the next request in the
current session and will now also be executed with that user’s access rights.

Note that RFC 5246 does not promise any link between sessions when defin-
ing TLS renegotiation. Application designers who had used renegotiation to
‘upgrade’ the authentication status of the client had thus assumed a service not
provided by the infrastructure. To address this situation, RFC 5746 [15] defines
a TLS extension where renegotiations are cryptographically tied to the TLS
connections they are being performed over. In this case, the infrastructure has
followed to meet the – initially unwarranted – expectations of an application.

6 Conclusion

Security is moving to the application layer. Once, the design of secure operating
systems and Internet security protocols were the main foundations of information
security. According to the then predominant mood, IT systems could be used
securely once secure infrastructures were in place. Remnants of this era can still
be found in claims that one MUST secure operating systems or the Internet to
be able to securely use today’s critical IT infrastructures.

We observe, however, that security mechanisms in end systems are moving
to the application layer of the software stack. The reference monitor has moved
from the operating into web pages (Figure 3). Security components at upper
layers may be effective without support from below. This works as long as direct
access to the lower layers need not be considered as a threat. In parallel, com-
munications security mechanisms have been moving to the application layer of
the protocol stack. At the point where end system security and communications
security meet, i.e. in the software components running network protocols, we
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have seen shared secrets moved up to the application layer to defend against
attacks at the infrastructure layer (Section 3.3), contrary to the conventional
security strategy that tries to embed secrets at a layer as low as possible, e.g. in
tamper resistant hardware.

The security services expected from the infrastructure may thus change over
time. We can also observe that our view of what constitutes the infrastructure
may change over time. The web browser that started as a new application has
today become an essential infrastructure component for Web services.

The Internet is a critical infrastructure because it is the platform for critical
applications. Our primary challenge is the protection of these applications. Se-
curity services provided by the infrastructure may help in this cause, but trust
in these services may also be misplaced when application writers misunderstand
the security properties actually guaranteed.

It is a trivial observation on security engineering that defenders ought to
know where their systems will be attacked. When attacks are launched via the
interface of web applications, the first line of defence should be at that layer.

Attacks may be directed against the application, e.g. fraudulent bank transfers
in an e-banking application. Application-level access control necessarily relates
to principals meaningful for the application. There may be mappings from those
principals to principals known to the infrastructure so that security services from
the infrastructure can support application security. However, in every instance
we must verify that it is not possible for attackers to redefine the binding between
principal names at different system layers. We may thus surmise that it is more
likely to find access control solutions at the application layer, as borne out by
our earlier observations on reference monitors. In this respect, we have secure
applications without a security infrastructure.

Attacks may be directed against the end system hosting the application. Soft-
ware vulnerabilities in an application may present the attacker with an oppor-
tunity to step down into the infrastructure. Although software security issues
could be addressed in each application, it would be desirable to have a ‘secure’
computing infrastructure, i.e. an infrastructure that can deal with malformed in-
puts forwarded via the applications. In this respect, critical applications benefit
from a computing infrastructure that can protect its own execution integrity.

The primary property required from the communications infrastructure is avail-
ability. Security services such as confidentiality, integrity, or authenticity may or
may not be provided by the communications infrastructure. The relative merits of
delivering these services in the various layers of the network stack have been dis-
cussed extensively in the research literature. The most relevant issue for critical
applications are the choice of relevant principals that can serve as logical endpoints
for application layer transactions, and the authentication of those principals.

We leave the reader with a final challenge. When security is moving to the
application layer, responsibility for security will increasingly rest with application
writers and with end users. At this point in time, neither of the two communities
is well prepared to take on this task, but nor has security research made much
progress in explaining to non-experts the implications of security decisions.
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Abstract. Today, the majority of security errors in software systems

are due to implementation errors, as opposed to flaws in fundamental

algorithms (e.g., cryptography). Type-safe languages, such as Java, help

rule out a class of these errors, such as code-injection through buffer over-

runs. But attackers simply shift to implementation flaws above the level

of the primitive operations of the language (e.g., SQL-injection attacks).

Thus, next-generation languages need type systems that can express and

enforce application-specific security policies.
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1 Overview

In theory, there is no difference between theory and practice. But, in
practice, there is.

Jan L. A. van de Snepscheut

Most security problems today are rooted in implementation errors: failure to
check that an array index stays in bounds, failure to check that an input string
lacks escape characters, failure to check that an integer passed to an allocation
routine is positive, etc. Furthermore, the techniques we use for validating that
code is free from these errors (fuzz testing, manual inspection, static analysis
tools, etc.) have proven woefully inadequate. For example, in spite of a large
security push starting in 2002, hackers are still finding buffer overruns in Mi-
crosoft’s operating system and other applications.

The irony is that many of the simplest kinds of errors, such as buffer overruns,
could be prevented by the use of a type-safe language instead of C or C++. This
is because a type-safe language is required to enforce the basic abstractions of the
language through a combination of static and dynamic tests. Languages such as
Java, Scheme, and ML are all examples of languages where, at least in principle,
buffer overruns cannot occur.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 32–35, 2010.
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However, in practice there are four problems with today’s type-safe languages:

1. It is expensive to re-write programs in new languages. For example, Windows
consists of more than 60 million lines of code.

2. Today’s type-safe languages perform poorly when compared to C or C++,
particularly for systems-related tasks (e.g., operating systems, networking,
databases, etc.)

3. Today’s languages check for buffer overruns at run-time and throw an excep-
tion that is rarely caught. This shifts the flaw from a possible code injection
to a denial of service attack.

4. The type systems for today’s languages are too weak to enforce policies
needed to stop next-generation attacks.

The first problem is a key issue for legacy systems, but not for next-generation
environments (e.g., cell phones, tablets, etc.) Furthermore, for key segments of
the software market, notably the medical, military and financial industries, the
cost of developing highly secure, new software is practical.

The other three problems require fundamental new research in the design of
systems programming languages. On the one hand, we need a way to express
rich, application-specific security policies and automatically check that the code
respects those policies. On the other hand, we need languages that, like C and
C++, provide relatively direct access to the underlying machine for performance-
critical code.

2 Refinement Types

A number of researchers are looking at next-generation programming languages
that support refinement types. Refinement types take the form “{x : T | P (x)}”
where T is a type and P is a predicate over values of the type T . For example,
the type {x : int | x > 0} captures the set of all positive integers.

The principal challenge with refinement types is finding a way to support
type-checking. Some languages, such as PLT Scheme [1], rely upon dynamic
checks, so that when a value is “cast” to have a refinement type, the predicate is
evaluated on the value, and if it fails, an exception is thrown. This is a simple and
expedient way to incorporate refinements, but leads to a number of problems.

First, it restricts the language of predicates that we can use to a decidable
fragment. Second, the semantics of these run-time checks are not clear, especially
when the predicates can have side effects or when the predicates involve mutable
data shared amongst threads. Third, as noted with array-bounds checks, the
potential for dynamic failure (an exception) provides for a possible denial of
service attack.

To address this last problem, many systems, such as JML# [2] try to discharge
these tests at compile time using an SMT theorem prover. In practice, this works
well for simple predicates (e.g., linear constraints on integers), but less well for
“deep predicates” (e.g., this string is well-formed with respect to this grammar.)
Furthermore, SMT provers are focused on fragments of first-order logic (with
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particular theories). In practice, we have found that, just as programs need to
abstract over other sub-programs, specifications need support for abstractions,
and higher-order logics provide a powerful way to achieve this.

3 Type-Theoretic Refinement

Proof assistants, such as Coq [3], provide a powerful, uniform way to write (a)
programs, (b) specifications and models that capture desired properties of pro-
grams ranging from simple typing and safety properties up to full correctness,
and (c) formal, machine-checked proofs that a given program meets its speci-
fication. They sacrifice automation for finding proofs that code is well-formed,
relying instead upon programmers to explicitly construct these proofs. In this
sense, they are less convenient than fully automated type-checking techniques.
But they are far less limited than the approaches listed above.

For example, Xavier Leroy and his students have used Coq to construct an
optimizing compiler that translates a (well-defined) subset of C to PowerPC
code, defined operational semantics for both C and PowerPC code, and mechan-
ically proved that when the compiler succeeds in producing target code, that
code behaves the same as the source code, thereby establishing the correctness
of the compiler [4]. Coq is not alone in providing support for this style of pro-
gram development: Other examples include ACL2 [5], Agda [6], Epigram [7], and
Isabelle [8].

Nevertheless, today’s proof assistants suffer from a number of limitations that
limit their applicability. One serious shortcoming is that we are limited to writ-
ing and reasoning about only purely functional programs with no side effects,
including diverging programs, mutable state, exceptions, I/O, concurrency, etc.
While some programming tasks, such as a compiler, can be formulated as a pure,
terminating function, most cannot. Furthermore, even programs such as a com-
piler need to use asymptotically efficient algorithms and data structures (e.g.,
hash-tables) but current dependently typed languages prevent us from doing so.
Thus a fundamental challenge is scaling the programming environments of proof
assistants to full-fledged programming languages.

4 Ynot

For the past few years, my research group has been investigating a design
for a next-generation programming language that builds upon the foundation
provided by proof-assistants. We believe that environments, such as Coq, that
provide powerful tools for specification and abstraction provide the best basis
moving forward, and thus the central issues are (a) how to incorporate support
for computational effects, and (b) how to scale proof development and mainte-
nance to real systems.

In the case of effects, we developed a modest extension to Coq called Ynot,
which is based on Hoare Type Theory (HTT) [9]. HTT makes a strong distinction
between types of pure expressions, and those that may have side-effects, similar
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to the modality found in Haskell’s monadic treatment of IO and state. Impure
expressions are delayed, and their effects only take place when they are explicitly
run. Because impure expressions are delayed, they can be treated as “pure”
values, avoiding some of the problems with refinements in the presence of effects.

In addition to extending Coq with support for effects, the Ynot project has
investigated techniques for effective systems programming. For example, we built
a small, relational database management system using Ynot which was described
in previous work [10]. This included an optimizing query compiler, as well as
complicated, pointer-based data structures including hash-tables and B+-trees.
The whole development, including the parser for queries, the query optimizer,
the data structures, and execution engine are verified for partial correctness.

Our experience building verified systems software in this fashion is promising,
but a number of hard issues remain to be explored. First and foremost, construct-
ing proofs of correctness demands a clean specification for the problem domain.
And of course, a bug in the specification can lead to a bug in the code. So one
challenge is finding specifications for systems that can be verified in their own
right. Another issue is the cost of developing and maintaining proofs. Originally,
we coded proofs by hand. Since then, we have shifted towards a semi-automated
style that makes liberal use of custom tactics [11]. The latter approach not only
cuts the size of the proofs, but makes them far more robust to changes in the
program or specification.

Finally, the programming language embedded in Coq is a relatively high-
level, ML like language. For many applications, it is ideal, but for many systems
programming tasks (e.g., hypervisors or device drivers), it is too high-level. Thus,
we still lack a good low-level programming environment which can effectively
replace C.
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Abstract. This article discusses the state of the art of cryptographic

algorithms as deployed for securing computing networks. While it has

been argued that the design of efficient cryptographic algorithms is the

“easy” part of securing a large scale network, it seems that very often

security problems are identified in algorithms and their implementations.
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1 Introduction

The first boom in cryptography can be attributed to the introduction of wireless
data communications at the beginning of the 20th century [28]: it is clear that
wireless communications are as easy to read for an adversary as for the legitimate
receiver. There is also the mistaken perception that intercepting wired commu-
nications is really difficult; while the introduction of optical communications
has raised the threshold, a well motivated opponent can also bypass this hur-
dle. From the 1960s, dedicated or switched wired networks were introduced for
computer networks. Only military, governmental and financial communications
were encrypted; until the early 1990s this encryption was mostly implemented
in expensive hardware at the data link layer. The development of the world
wide web resulted in broad use of cryptography for e-commerce and business
applications. The underlying enabling technologies are inexpensive fast software
cryptography and open security protocols such as TLS (SSL), SSH and IPsec
as introduced in the second half of the 1990s. In spite of this development, only
a small fraction of the Internet traffic is encrypted. Most of this encryption is
situated at the network or transport layer; the communication is protected end-
to-end (e.g., from the browser in the client to the web server), from gateway to
gateway (for a VPN based on IPsec using tunnel mode) or from client to gate-
way (e.g., a VPN for remote access to company networks). In the last decade we
have witnessed an explosion of wireless data networks, including Wireless LANs
(WLAN, IEEE 802.11), Personal Area Networks (PANs such as Bluetooth or
IEEE 802.15, Zigbee or IEEE 802.15.4, and Ultrawideband or IEEE 802.15.4a)

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 36–54, 2010.
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and Wireless Metropolitan Area Networks (WiMAX or IEEE 802.16). All these
technologies have been introduced with cryptographic security at the link layer;
the early solutions are typically not very robust. In addition mobile data com-
munication is growing on the evolving GSM mobile phones using technologies
such as GPRS and EDGE as on the third generation mobiles phones such as
3GSM.

End to end protection of voice communication is a relatively recent phe-
nomenon. The main reason has been technological limitations, but there is also
a significant legal barrier, since governments want to maintain the capability
to perform wiretaps for law enforcement and national security purposes. Ana-
log voice scramblers do not offer a very high security level. The US delegation
in the 1945 Yalta conference brought along very voluminous devices for digi-
tal voice encryption; apparently they were never used, a.o. for the poor quality.
Efficient digital coding of voice for mass market products arrived in the 1980s:
secure digital phones (e.g. the STUs) became available, but outside the govern-
ment and military environment they were never successful. However, today Voice
over IP (VoIP) technologies result in widespread end-to-end security based on
software encryption. The first analog mobile phones provided no or very weak
security, which resulted in serious embarrassment (e.g., the private conversations
of Prince Charles being exposed or the eavesdropping of the Soviet mobile com-
munication systems by the US). The European GSM system designed in the late
1980s provided already much better security, even if many flaws remain; these
flaws did not stop the system: in 2010 there are more than 4 billion GSM and
WCDMA-HSPA subscribers. The GSM security flaws have been resolved in the
3GSM system, but even there no end-to-end protection is provided. The current
generation of smart phones users can clearly run software (such as Skype) with
this capability.

This short article tends to briefly describe the situation in terms of crypto-
graphic algorithms used in communication networks. In Sect. 2 we present an
update on hash functions, stream ciphers, block ciphers and their modes. Sec-
tion 3 focuses on public key algorithms and Sect. 4 presents the conclusions.

2 Symmetric Primitives

In this section, we discuss the following symmetric primitives: block ciphers,
stream ciphers, MAC algorithms, hash functions and modes for authenticated
(or unforgeable) encryption.

2.1 Block Ciphers

Block ciphers are a flexible building block for many cryptographic applications.
This includes the original goal of encryption (in CBC, CFB, OFB or CTR mode),
but they can also be used to construct MAC algorithms (cf. Sect. 2.3), hash
functions (cf. Sect. 2.4), pseudo-random functions and one-way functions.
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The DES algorithm was published by the US government in the 1970s; it is a
block cipher with a 64-bit block length and a 56-bit key. In spite of initial contro-
versy around its design, the deciding factors in the success of the DES algorithm
were the standardization by the US government and the generous licensing con-
ditions. However, in the 1990s it became obvious that the 56-bit key size was
no longer adequate.1 The financial world started moving towards two key triple-
DES in the late 1990s; this move was completed around 2006, a few years later
than planned. In 2004 NIST (National Institute of Standards and Technology,
US) announced that DES was no longer adequate and published a triple-DES
specification [72]; two-key triple-DES is approved until 2009, while three-key
triple-DES is deemed to be adequate until 2030. The modes for triple-DES have
been defined in ANSI X9.52 [2]. The main reason for the limited lifetime of the
two-key triple-DES variant is the attack by Wiener and van Oorschot [95] that
requires 280 time when 240 known plaintexts are available; this is not a concern
for the financial sector, as keys are typically changed frequently and messages
are very short. On the other hand, three-key triple-DES is very vulnerable to a
related-key attack [58]; in this attack an opponent obtains the encryption of a
plaintext P under a key K and a key K ⊕Δ for a constant Δ. In most contexts
such an attack is not feasible, but an exception is applications that use control
vectors [68].

In 1997, NIST started an open competition to find a replacement for the DES.
The AES algorithm has a block of length of 128 bits, and should support keys
lengths of 128, 192 and 256 bits. In October 2000 NIST selected the Rijndael
algorithm (designed by the Belgian cryptographers Vincent Rijmen and Joan
Daemen) as the AES algorithm [24,39]. In 2003, the US government announced
that it would also allow the use of AES for secret data, and even for top secret
data; the latter applications require key lengths of 192 or 256 bits. AES is a
rather elegant and mathematical design, that among the five finalists offered
the best combination of security, performance, efficiency, implementability and
flexibility. AES allows for compact implementations on 8-bit smart cards (36
bytes of RAM), but also highly efficient implementations on 32-bit architectures
(15 cycles/byte on a Pentium III and 7.6 cycles/byte on a Core 2 [55]). Moreover,
hardware implementations of AES offer good trade-offs between size and speed.
AES has been taken up quickly by many standards and implementations; in
May 2010 more than 1300 AES implementations have been validated by the US
government.

So far, AES has resisted all shortcut attacks, including algebraic attacks. In
2009, it was demonstrated by Biryukov and Khovratovich [11] that AES-192 and
AES-256 are vulnerable to related-key attacks: the attack on AES-256 requires
4 related keys and 2119 encryptions, which is much less than 2256. These attacks
indicate that they key schedule of AES should have been stronger; on the other
hand, they clearly do not form a practical threat and one can easily defend
against them by not allowing any key manipulations or by hashing a key before

1 A US $ 1 million machine today would recover a DES key in a few seconds – the

same design would have taken 3 hours in 1993 [103].
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use. It is also worth to point out that it is not possible to design a cipher that
is secure against any related key attack.

In 2010 Dunkelman et al. [31] have published a related key attack on the 64-
bit block cipher KASUMI (that is standardized for GSM under the name A5/3
and that is also used for encryption in 3GPP); the attack requires 4 related keys,
226 plaintexts, 230 bytes of memory and time 232; while these complexities are
rather low, the attack cannot be applied to KASUMI as deployed in current
mobile networks.

The most powerful attacks against AES and other block ciphers have not been
pure mathematical attacks, but timing attacks based on cache effects – this kind
of attack applies in principle to any cryptographic algorithm implementation that
uses tables (see e.g. [9,76,94]). This attack is one of the reasons why Intel has de-
cided to add dedicated AES instructions to its processors from 2010 onwards [44];
these instructions also boost the performance of AES to about 0.75 cycles/byte
(in decryption mode). Note that the fast implementation of AES of Kas̈per and
Schwabe [55] is bitsliced and hence not vulnerable to cache-based attacks.

2.2 Stream Ciphers

Because of their low implementation cost, additive stream ciphers have been the
work horse of symmetric cryptography until the 1980s. They take as input a
short secret key and a public initialization value IV and stretch this to a long
string that can be simply added to the plaintext to yield the ciphertext. This
implies that the encryption transformation is very simple but depends on the
location in the plaintext. Hardware oriented stream ciphers typically operate on
short data units (bits or bytes) and have a small footprint. The initialization
value IV serves for resynchronization purposes. Both the IV and the internal
memory need to be sufficiently large to resist time-memory-data tradeoffs (see
for example [46,62]).

From the 1960s to the late 1980s, most stream ciphers were based on Linear
Feedback Shift Registers (LFSRs) that are optimal for hardware implementa-
tions (see for example Rueppel [87] and Menezes et al. [71]). However, it has
become clear that most LFSR-based stream ciphers are much less secure than
expected; powerful new attacks include fast correlation attacks [70] and alge-
braic attacks [23]. Notable cryptanalytic successes are the attack by Barkan and
Biham [3] on A5/1 (the stream cipher used in GSM) and the attack by Lu et
al. [65] on E0 (the stream cipher used in Bluetooth). Both attacks are realistic
attacks on widely used algorithms.

RC4 has been designed in 1987 by Rivest for efficient software encryption on 8-
bit machines. RC4 was a trade secret, but leaked out in 1994; it is currently still
implemented in browsers (SSL/TLS protocol). While several statistical weak-
nesses have been identified in RC4 [40,77], the algorithm seems to resist key
recovery attacks.

In the last decade, fast stream ciphers have been proposed that are oriented
towards 32-bit and 64-bit processors. Two stream ciphers that have been in-
cluded into the ISO standard are MUGI [100] and SNOW [33]; a strengthened
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variant of SNOW has been selected as backup algorithm for 3GSM. Between
2004 and 2008 the EU Network of Excellence ECRYPT [32] has organized an
open competition eSTREAM with as goal to identify promising stream ciphers
that are either very fast in software (128-bit key and 64 or 128-bit IV ) or that
offer a low footprint in hardware (80-bit key and 32 or 64-bit IV ). During the
four years of the competition, dozens of stream ciphers have been broken. The
competition has resulted in a portfolio with four software-oriented ciphers with a
performance of 3-10 cycles/byte (HC-128, Rabbit, Salsa20/12 and Sosemanuk);
three hardware-oriented ciphers are recommended (Grain, Mickeyv2, and Triv-
ium). An important conclusion from the eSTREAM project is that for very low
footprint implementations, 64-bit block ciphers are more efficient; however, if
one desires a very high performance implementation with a low hardware cost,
the hardware-oriented stream ciphers offer an improvement with a factor of two
to four over block ciphers. More details on the eSTREAM competition can be
found in [84].

2.3 Message Authentication Codes (MACs)

Message Authentication Codes are used to authenticate messages between par-
ties that share a secret key. MACs are widely use in networks, because they
are more efficient in terms of performance and memory than digital signature
schemes. The most widely used constructions are derived from block ciphers or
hash functions.

The most popular MAC algorithm for financial transactions is still CBC-
MAC. Initially, variants based on DES were used; these have been migrated to
triple-DES variants. AES is gradually replacing DES for this application (cf.
Sect. 2.1).

The CBC-MAC construction based on an n-bit block cipher can be described
as follows. First the input string is padded to a multiple of the block length, and
the resulting string is divided into t n-bit blocks x1 through xt.

c1 := Ek(x0) (1)
ci := Ek(xi ⊕ ci−1), 1 < i ≤ t . (2)

Here ⊕ denotes the bitwise exclusive-or operation. Note that – unlike in CBC
encryption – no IV value should be used. The recommended variant for use with
DES is the ANSI retail MAC [1]: it computes the MAC value with two inde-
pendent keys k and k′: MACk(x0 . . . xt) = Ek (Ek′ (ct)). For AES, EMAC is the
preferred construction: MACk(x0 . . . xt) = Ek′ (ct). Here k′ is a key derived from
k. An even simpler scheme is LMAC; it uses the key k′ for the last encryption
(i = t).

NIST has published yet another variant under the name of CMAC [73] (CMAC
was previously called OMAC [53], which is an optimization of XCBC [14]).
CMAC modifies the last computation in CBC-MAC by exoring k2 or k3 to
xt. The key k2 is chosen when the last block xt requires no padding (i.e., it is
of length n), while k3 is chosen otherwise. The keys k2 and k3 are computed as
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k2 = ‘2’ · Ek(0n) and k3 = ‘4’ · Ek(0n) where 0n denotes the n-bit all zero
string, ‘2’ and ‘4’ are two elements of the finite field F2n , and “·” represents
multiplication in the finite field F2n .

On the Internet, HMAC is by far the most popular construction [5]; in the light
of the attacks on MD4 and MD5 (cf. Sect. 2.4), the HMAC security analysis has
been refined by Bellare [4]. The state of the art in cryptanalysis is that HMAC-
MD4 has been broken by Leurent et al. [41]; their attack requires 288 chosen texts
and 295 computations. Some doubts have been cast on HMAC-MD5 [21,59]; the
best known attack on HMAC-MD5 is a related key attack that requires 251

chosen plaintexts and 2100 time (see also [99]). For the time the security margin
offered by HMAC-SHA-1 is acceptable.

In the past five years there has been a growing interest in unconditionally
secure MAC algorithms. They were introduced as authentication codes by Sim-
mons [92] and more practical constructions were known as universal hash func-
tions (following Carter and Wegman [101]). If they are combined with a block
cipher (such as AES) or a pseudo-random function (such as HMAC), the un-
conditional security is lost, but they result in MAC algorithms that are very
efficient and elegant. UMAC [13] is about 10 times faster than CBC-MAC based
on AES or HMAC-SHA-1, but it offers a limited key agility and has a rather
large Random Access Memory (RAM) requirement; moreover, Handschuh and
Preneel have demonstrated [45] that for a large class of MAC algorithms based
on universal hash functions (including UMAC) a few forgeries lead to efficient
key recovery. Bernstein’s Poly1305-AES [9] is one of the constructions based
on polynomial universal hashing. It is only three times faster than AES, but it
has a better key agility than UMAC and requires less RAM; it seems also less
vulnerable to key recovery attacks.

2.4 Hash Functions

Cryptographic hash functions are a widely deployed primitive for message au-
thentication. They compress strings of arbitrary lengths to strings of fixed lengths
(typically between 128 and 256 bits). Cryptographic hash functions need to sat-
isfy the following three security properties [71,79]:

– preimage resistance: it should be hard to find a preimage for a given hash
result;

– 2nd preimage resistance: it should be hard to find a 2nd preimage for a given
input;

– collision resistance: it should be hard to find two different inputs with the
same hash result.

For an ideal hash function with an n-bit result, finding a (2nd) preimage re-
quires approximately 2n hash function evaluations. On the other hand, finding
a collision requires only 2n/2 hash function evaluations (as a consequence of
the birthday paradox). Collision resistance implies 2nd preimage resistance, but
the formal relation between these definitions is more complex and subtle than
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one would expect (see Rogaway and Shrimpton [86]). In practice on requires
also other properties such as indifferentiability from a random oracle [22], and
pseudo-randomness (this assumes that a secret key is part of the input).

The main application of hash function is digital signature schemes, in which
one signs the hash value of a message rather than the message itself. Digital
signatures are used in some key establishment protocols to bind a protocol mes-
sage to an entity. Hash functions can also be used to construct MAC algorithms;
the most popular construction of this type is HMAC (cf. Sect. 2.3). HMAC
constructions are also used for deriving symmetric keys in protocols such as
Diffie-Hellman. In practice HMAC is used with hash functions such as MD5,
SHA-1 and RIPEMD-160. In the SSL/TLS protocol, a hash function is used at
the end of the handshake protocol (in which the cipher suites are negotiated) to
confirm the integrity (TLS version 1.0/1.1 uses the concatenation of MD5 and
SHA-1, while in TLS version 1.2 a single hash function is used).

In the last decade, a number of structural weaknesses have been identified
in hash functions; these weaknesses are related to the way cryptographic hash
functions are constructed from smaller building blocks. Most constructions use
a simple iteration, and are therefore called iterated hash functions. The most
remarkable attack is a result by Joux [54] who shows that if finding a collision for
an iterated hash function takes time T (for an ideally secure hash function T =
2n/2), one can find 2s strings hashing to a single value in time s·T . As an example,
finding a billion messages that all hash to the same result requires only thirty
times the effort to find a single collision. This result has the surprising corollary
that the concatenation of two iterated hash functions (g(x) = h1(x)||h2(x))
is only as strong as the strongest of the two hash functions (even if both are
independent). If hi is a hash function with an ni-bit result (i = 1, 2 and w.l.o.g.
n1 ≥ n2), finding a collision for g requires time at most n1 · 2n2/2 + 2n1/2 �
2(n1+n2)/2 and finding a preimage or 2nd preimage for g requires time at most
n1 · 2n2/2 + 2n1 + 2n2 � 2n1+n2 . If either of the functions is weak, the attacks
may work better. This attack is particularly relevant since weaknesses have been
discovered in several widely used hash functions (cf. supra) and the concatenation
construction has been proposed as a robust solution (e.g. in SSL/TLS). It seems
that once the collision resistance of our current iterated hash functions breaks
down, the other security properties are also undermined.

Until recently, the most widely used hash functions were MD5 and SHA-1.
MD5 is a 128-bit hash function designed by Rivest in 1991 [82]; it is a strength-
ened version of MD4. MD5 was one of the first cryptographic algorithms that
was designed to be fast on 32-bit processors in software. Early cryptanalytic re-
sults by den Boer and Bosselaers [26] and Dobbertin [30] indicated that finding
collisions for MD5 would require less than 264 operations; in spite of the fact that
cryptographers advised against using MD5, the algorithm has been widely de-
ployed. The first collisions for MD5 were announced in 2004 by Wang et al. [98],
who were able to push the limits on differential attacks by introducing some
innovative cryptanalytic techniques; their attack required time 239, which corre-
sponds to a few hours on a PC. Since then the attack has been further optimized;
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the best collision search algorithm known today requires milliseconds [93]. While
this represents a major breakthrough, it is important to note that with about
US$100000 of hardware, a brute-force collision search for MD5 (or any 128-bit
hash function of comparable cost) should take a few days with the design of van
Oorschot and Wiener [96].

In 1995, NIST has published SHA-1 [37]; it is a strengthened version of SHA,
which was standardized two years earlier [36] (SHA is now called SHA-0 by some
researchers). Both SHA(-0) and SHA-1 have a 160-bit result. While SHA-1 is
slower but more secure than MD5, it became very popular for applications that
require long term security. In 2005, Wang et al. [97] have published a collision
search algorithm for SHA-1 that requires only 269 steps, which is 2000 times
faster than a brute force collision search. Five years later, several researchers
have announced improvements (sometimes even very spectacular ones), but so
far none of these attacks has materialized. In 2005 Joux et al. [54] found collisions
for SHA(-0) with complexity 251. Today the best collision attack for SHA-0 by
Manuel and Peyrin [67] takes only 233 steps. The implications of the attack on
SHA(-0) are limited, since this algorithm is not deployed.

The collision attacks on MD4 and MD5 are quite unusual in the sense that
they are extremely efficient. However, so far their practical implications have
been limited, as very few applications use digital signatures and very few appli-
cations require collision resistance. In December 2008, Sotirov et al. [93] created
a rogue CA certificate using MD5, which allows them to impersonate any web-
site on the Internet. This attack required cryptanalytic improvements beyond
simple collision search. Only after this attack, several Certification Authorities
decided to remove MD5 from their offerings. While there is substantial progress
with preimage attacks on MD4 and MD5, these attacks are far from practical.
Leurent [64] has shown that preimages for MD4 can be found in 2102 steps, and
the preimage attack by Sasaki and Aoki [89] on MD5 has complexity 2123.

RIPEMD-160 [19] could act as a replacement for SHA-1; it seems to resist all
cryptanalytic efforts. NIST has also a series of standards that offer longer hash
results: SHA-256, SHA-224, SHA-384 and SHA-512 [38], which are known under
the common name SHA-2. Cryptanalysis of the SHA-2 family suggests that this
second generation functions has a substantial security margin against collision
attacks (the results by Indesteege et al. [48] and Sanadhya and Sarkar [88] can
only break 24 out of 64 steps of SHA-256). A third alternative is Whirlpool,
a design by Rijmen and Barreto [51] based on the design principles of AES.
For the most recent status of attacks on Whirlpool, see [61]. All these hash
functions have been standardized by ISO in IS 10118–3 [51], together with
SHA-1.

NIST is currently running an open competition for a new hash function stan-
dard that will be called SHA-3. Sixty-four submissions have been received, 14
of which are currently being evaluated in the second round. It is expected that
NIST will announce the winner by mid 2012. For more details on the SHA-3
competition and on the state of hash functions, see [79].
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2.5 Authenticated or Unforgeable Encryption

Most applications need a secure channel between sender and receiver; such
a channel requires both confidentiality and data authentication. In the 1980s
and 1990s, separate primitives were introduced for each of these properties.
However, it is not so hard to show that confidentiality protection without data
authentication can lead to serious problems; in particular, such a scheme is vul-
nerable to a chosen ciphertext attack in which the opponent uses decryption
queries to learn information on the plaintext. Practical chosen ciphertext at-
tacks have been demonstrated by several authors; we just mention the attack by
Canvel et al. on SSL/TLS [20] and the attack by Degabriele and Paterson on
IPsec [25].

The first approach to achieve both properties was to introduce redundancy to
the plaintext before encryption in order to achieve both goals, but this is clearly
not adequate. A first formalization of unforgeable encryption was published by
Katz and Yung [56]. Bellare and Namprempre [6] showed that if the MAC al-
gorithm satisfies a strong security requirement (namely strong unforgeability),
the best generic solution is to apply a MAC algorithm to the ciphertext (the so-
called Encrypt-then-MAC model), which is the option chosen by IPsec. Other
alternatives (MAC-then-Encrypt of SSL/TLS and Encrypt and MAC of SSH)
can also be shown to be secure, but they require a specific rather than a generic
analysis (e.g., taking into account the specific encryption mode).

The above schemes require both an encryption algorithm and a MAC al-
gorithm. Jutla showed that it was possible to achieve both properties at a
much lower cost; for this purpose he introduced in 2000 two modes, the IACBC
(Integrity-Aware Cipher Block Chaining) and IAPM (Integrity-Aware Paralleliz-
able Mode). Gligor and Donescu proposed the XCBC and XECB schemes in [43].
Rogaway et al. [85] introduced an optimized version of IAPM called the OCB
mode (Offset CodeBook). These schemes require an overhead of less than 10%
over CBC encryption and offer some attractive features; for example, some of
them are fully parallellizeable. An important non-technical disadvantage is that
all these schemes are encumbered by patents, which has been a barrier to their
adoption.

As a consequence of this patent issue, several alternative schemes have been
introduced that are slower than these schemes, but that are free. NIST and ISO
have standardized a combination of the counter mode with a polynomial based
authentication (the Galois Counter Mode or GCM [69,75]) and with CBC-MAC
(the Counter with CBC-MAC mode [102,74]). For a more detailed overview of
authenticated encryption schemes, see the overview article by Black [12] and the
ECRYPT II report [32].

3 Public Key Algorithms

In network security, public key algorithms are only used for the establishment
of session keys and for the mutual authentication of the parties. The main rea-
son is that public key operations are two or three orders of magnitude slower
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than symmetric key primitives. Moreover, the block lengths and overhead are
substantially larger. Public key algorithms need to be integrated into a protocol
such as the Station-to-Station protocol [29]; more elaborate variants of this pro-
tocol have been standardized for SSL/TLS (RFC 5246) and for IPsec (IKEv2 in
RFC 4306). The details of these protocols fall outside the scope of this article.

3.1 RSA

RSA, invented by Rivest, Shamir and Adleman in 1978 [83] is by far the most
widely used public key algorithm (the RSA patent has expired in 2000). The
RSA encryption operation is written as C = P e mod N and the decryption is
computed as P = Cd mod N . Here the encryption and decryption exponent are
related by e · d = 1 mod lcm(p− 1, q− 1), with N = p · q. The security of RSA is
based on the fact that it is relatively easy to find two large prime numbers p and
q, but no efficient methods are known to factor their product N . Note that the
security of RSA is based on the fact that extracting random eth roots modN
is hard. This problem could be easier than factoring N (it cannot be harder);
surprisingly, whether or not it is easier is still an open problem.

The best known algorithm to factor an RSA modulus N is the General Num-
ber Field Sieve (GNFS). Lenstra and Verheul have related the complexity of
GNFS to breaking symmetric keys and computing discrete logarithms in [63]
(see also the ECRYPT II report on this topic [32]). The current factoring record
(achieved in January 2010) is 768 bits [60]. The recommended minimum size
for an RSA modulus today is 1024 bits; factoring such a modulus requires ap-
proximately 272 steps. Shamir and Tromer [90] proposed in 2003 a hardware
design that would need an R&D effort of US$20 M. The hardware cost to fac-
tor a 512-bit modulus in ten minutes would be US$ 10 000; a 768-bit modulus
could be factored with a similar budget in 95 days; factoring a 1024-bit modulus
in 1 year would require a hardware investment of US$ 10 M. Note that these
cost estimates do not include the linear algebra step. These estimates show that
for long-term security (10-15 years), an RSA modulus of 2048 bits or more is
recommended.

Textbook RSA has other weaknesses (see [18] for details). For example, RSA
for small arguments is not secure: −1, 0 and 1 are always fixed points and if
P e < N extracting a modular eth root simplifies to extracting a natural eth
root, which is an easy problem. In addition, RSA is multiplicative, which means
that the product modN of two ciphertexts will decrypt to the product of the
corresponding plaintexts.

The standard PKCS#1v1.5 specifies a padding method for encryption and
signing with the RSA algorithm. For encryption, the format consists of the fol-
lowing sequence: a byte equal to 00, a byte equal to 02, at least 8 non-zero
padding bytes, a byte 00, and the plaintext. Note that the RSA assumption
states that extracting random modular eth roots is hard, which means that one
should map the plaintext space in a uniform way to the interval [0, n[; it is clear
that PKCS#1v1.5 is quite far from this goal. This has been exploited by Ble-
ichenbacher [15] to recover the plaintext corresponding to a selected ciphertext
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using a chosen ciphertext attack (in which encryptions of different but related
ciphertexts are obtained); more specifically, Bleichenbacher’s attack only needs
to know whether the plaintext is of the right format (it is based on the error
messages). In 1993, Bellare and Rogaway published the OAEP (Optimal Asym-
metric Encryption) transform, together with a security proof [7]. This proof
essentially states that if someone can decrypt a challenge ciphertext without
knowing the secret key, he can extract random modular eth roots. The proof
is in the random oracle model, which means that the hash functions used in
the OAEP construction are assumed to be perfectly random. However, seven
years later Shoup pointed out that the proof was wrong [91]; the error has been
corrected by Fujisaki et al. in [42], but the resulting reduction is not very mean-
ingful, that is, the coupling between the two problems is not very tight in this
new proof. Moreover, Manger showed that a careful implementation is necessary,
since otherwise a chosen ciphertext attack based on error messages may still ap-
ply [66]. Currently the cryptographic community believes that the best way of
using RSA is the RSA-KEM mode [80]: this is a so-called hybrid mode in which
RSA is only used to transfer a session key, while the plaintext is encrypted using
a symmetric algorithm with this key.

For RSA PKCS#1v1.5 signatures, no practical attack is known, even if this
padding format is again very far from random. The RSA signing operation is
applied to the following sequence: a byte equal to 00, a byte equal to 01, a
series of bytes equal to FF, a byte 00, and the hash value (with some ASN.1
prepended). At the rump session of Crypto 2006, Bleichenbacher showed that
many implementations of RSA signature verifications stop at the end of the
hash value. This opens the possibility to append a large random string S (and
shorten the series of FF bytes accordingly). It is very easy to choose S such that
the complete string is a perfect cube, and extracting cube roots over the integers
is easy. This means that one can forge any signature for e = 3 without knowing
the private key; even better, this forged signature works for any modulus N
that is large enough. A variant of the attack is based on the fact that some
verification software ignores the content of the ASN.1 string. These attacks can
be precluded by implementing a correct verification, which consists of checking
that the hash value is right aligned or alternatively by re-generating the whole
block as the signer does and checking that it is correct. The problem is however
that as a signer may not be able to influence the verification software, hence it
is better to increase the verification exponent to 216 + 1. Implementations that
were reported to be vulnerable to this problem include OpenSSL, Mozilla NSS,
and GnuTLS. A better solution is to use RSA-PSS [8], which has been included
together with OAEP in PKCS#1 v2.1. Even if the scheme dates back to 1996
and the standard to 2002, so far implementors seem to be reluctant to upgrade
to the more robust algorithms.

For performance reasons, the RSA private key operations (decryption and
signing) are often executed using the Chinese remainder theorem. This means
that they are computed mod p and mod q and that both results are combined to
recover the result modN . One of the most important vulnerabilities of RSA in
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practice is the observation by Boneh et al. [17]: if a transient fault is introduced in
the calculation mod p or modp (but not both), one can recover p and q. Making
an implementation robust against these powerful fault attacks is non-trivial.

An important lesson that can be drawn from this is that it is surprisingly
difficult to use RSA correctly: it has taken the cryptographic community more
than 20 years to learn how to do this. The most efficient solutions still rely on
the random oracle model, and it is an important problem how one can use RSA
efficiently without this assumption.

3.2 Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is a public-key primitive that is increasingly
important as alternative to RSA. The standards (e.g., [52,47]) support both
elliptic curves over Fp with p prime and F2m with m prime. The first curves can
take advantage from an arithmetic coprocessor for RSA if available, while the
latter allow for very compact hardware implementations.

An important advantage of elliptic curves are the shorter key lengths. Based
on the best known algorithms today, one can estimate that 160-bit elliptic curves
correspond to 1248-bit RSA, and 224-bit elliptic curves correspond to 2432-bit
RSA (see the ECRYPT II report [32]). For these bit-lengths, signing is about five
(resp. 20) times faster with elliptic curves, but verifying a signature is seven (resp.
five) times faster with RSA. Moreover, very compact hardware implementations
of ECC have been developed.

ECC was proposed in 1985; for the first 15 years the market was reluctant
to adopt this new and more complex primitive. However, in the past five years
ECC has been selected by the governments of Austria, Germany, Switzerland
and the USA and are gaining more widespread acceptance. The main attraction
lies clearly in the shorter key lengths; this advantage over RSA will grow larger
over time.

4 Conclusions

During the past decade, the AES has become the de facto standard for encrypting
network data. HMAC-MD5 and HMAC-SHA-1 are the most common algorithms
used for message authentication. We see a gradual evolution towards using mech-
anisms for authenticated or unforgeable encryption, which combine encryption
and data authentication in one operation. Those modes require a redesign of the
protocol. In this context, HMAC is increasingly replaced by CBC-MAC based
on AES or a polynomial hash function; the latter is substantially faster but per-
haps a bit less robust. Wireless networks still use older block ciphers or stream
ciphers; 3G networks offer data authentication based on MAC algorithms.

For public key algorithms the evolution has been much slower. RSA and Diffie-
Hellman based protocols over Fp are getting more and more competition from
ECC, in particular for low footprint or low power environments. The relatively
smaller keys for ECC is a key factor in this development.
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Side channel attacks have become an important area of research: they cur-
rently strongly influence hardware and software implementations, but at the
cost of a decreased performance. One can expect that in the future some algo-
rithms will be re-designed from scratch so that implementing these algorithms
in a secure way is easier.

In addition to new attacks, new security proofs and models have been devel-
oped, that increase our understanding in areas such as modes for confidentiality
and authenticated encryption and padding methods for RSA and ECC.

In both cases (new attacks and new models and designs), there is a need for
efficient and secure procedures to upgrade and retire cryptographic algorithms.
However, even if we live in a world in which the environment can change in days
or months, replacing a cryptographic algorithm still takes many years. System
designers need to build systems that are agnostic to the cryptographic algorithm
and that allow for fast and secure key length and algorithm upgrades.
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Abstract. To share information and retain control (share-but-protect) is a clas-
sic cyber security problem for which effective solutions continue to be elusive.
Where the patterns of sharing are well defined and slow to change it is reason-
able to apply the traditional access control models of lattice-based, role-based
and attribute-based access control, along with discretionary authorization for fur-
ther fine-grained control as required. Proprietary and standard rights markup lan-
guages have been developed to control what a legitimate recipient can do with the
received information including control over its further discretionary dissemina-
tion. This dissemination-centric approach offers considerable flexibility in terms
of controlling a particular information object with respect to already defined at-
tributes of users, subjects and objects. However, it has many of the same or similar
problems that discretionary access control manifests relative to role-based access
control. In particular specifying information sharing patterns beyond those sup-
ported by currently defined authorization attributes is cumbersome or infeasible.
Recently a novel mode of information sharing called group-centric was intro-
duced by these authors. Group-centric secure information sharing (g-SIS) is de-
signed to be agile and accommodate ad hoc patterns of information sharing. In
this paper we review g-SIS models, discuss their relationship with traditional ac-
cess control models and demonstrate their agility relative to these.

Keywords: DAC, Groups, LBAC, MAC, RBAC, Secure Information Sharing.

1 Introduction

The need to share but protect is one of the oldest and most challenging problems for
trustworthy computing. Saltzer-Schroeder [1] identified the desirability and difficulty
of maintaining “some control over the user of the information even after it has been
released.” The ensuing three and half decades have further compounded the technical
difficulties to the point where one may ask if it is even reasonable to seek solutions. The
analog hole [2] wherein content is captured at the point it is rendered into human per-
ceptible form and converted back into unprotected digital form highlights the intrinsic
limits. At the same time our increasingly information-rich and information-dependent
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society needs to exploit secure information sharing (SIS) to fully benefit from the pro-
ductivity, social and national security benefits of the ongoing cyber revolution.

SIS presents two major research challenges. The containment challenge is to ensure
that protected information is accessible on the recipient’s computer only as permitted
by policy, including inability to make unprotected or less-protected copies. The latter
has inherent limits such as the analog hole. Containment requires a trusted computing
base on the recipient’s machine and a mix of cryptography and access control, with
the degree of assurance correlated with tamper-resistance. There is a rich literature on
containment including the currently dominant TCG approach [3]. While high assurance
is elusive and may remain so, there is consensus that low to medium assurance is within
state-of-the-art.

In this paper, we assume that adequate assurance for containment is available com-
mensurate with the application. We focus on the policy challenge of specifying, analyz-
ing and enforcing SIS policies assuming adequate containment. A basic premise is that
this requires new access control models that can integrate and go beyond earlier ones,
have intuitive grounding and rigorous mathematical foundations, are usable by the or-
dinary citizen and enforceable in distributed systems. The paper will build upon a novel
approach called Group-centric Secure Information Sharing (g-SIS) recently introduced
by the authors [4,5,6]. Another basic premise is that the policy challenge in specifying
and analyzing the intrinsic application policy should be clearly separated from enforce-
ment policy issues that arise due to the realities and practicalities of a distributed system.
Following [7,8,9] we call these respectively P-layer (for application policy) and E-layer
(for enforcement policy) concerns. These premises are elaborated below.

Although many access control models have been published and analyzed, only three
have received meaningful practical traction [10]. Discretionary access control
(DAC) [11,12,13] enforces controls on sharing information at the discretion of the
“owner” of the information but fails containment completely by allowing unprotected
copies to be made. (Originator Control or ORCON [14,15,16,17] attaches policies from
the original to the copies to fix this defect, but does not directly address the policy chal-
lenge.) Lattice-based access control (LBAC) [11,18,19,20] restricts information to flow
in one direction in a lattice of security labels. Copies inherit the least upper bound of
labels from the originals and remain contained. Information sharing in LBAC is essen-
tially preordained in that information is either not shared or shared with everyone who
has a sufficiently strong clearance. Any deviation from this pattern requires creation of
a new label, which is not supported in existing LBAC models and breaks their exist-
ing mathematical foundations. Role-based access control (RBAC) [21,22] is designed
to facilitate assigning permissions based on job function and such considerations. Al-
though RBAC can be configured to enforce DAC and LBAC [23] it is not designed with
information sharing in mind, so it does not directly address the containment or policy
challenges. (Attribute-based access control models such as UCON [24] and XACML
[25] use general attributes in addition to roles and security labels, but likewise do not
directly address containment or policy.) This bears out the premise that new access
control models are needed for SIS. At the same time these successful classic models
embody intuitions and principles that are likely to be vital to a comprehensive solution.
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Fig. 1. A family of g-SIS models

The premise of sharply separating P- and E-layers builds on the much practised pol-
icy/mechanism separation principle first articulated in HYDRA [26]. P-layer specifica-
tions express a policy that is ideal in the sense that it ignores issues such as distributed
authorization state, network latency, caching, and requirements for off-line use. E-layer
specifications define authorization decisions that approximate those given by the ideal
policy in a manner that provides the desired application-dependent balance between
resource availability and timely propagation of authorization-state changes. They also
include additional entities such as trusted authorization/revocation servers which are
abstracted out at the P-layer.

This paper primarily focusses on P-layer aspects of g-SIS. In g-SIS, users and in-
formation come together in a group to facilitate sharing. Users gain access to group
information by virtue of membership. Likewise information is made available to mem-
bers by adding it to the group. Constituting a group as the unit of SIS provides many
of the same benefits of using roles versus individual users for permission distribution.
Two useful metaphors for a g-SIS group are a subscription service and a secure meeting
room. Subscription disseminates information to subscribers who participate in blogs
and forums. A meeting room brings people together to share information available in
the room. The times at which users join and leave and at which objects are added and
removed affect user authorizations both during and after periods of group membership.
For example, in the much studied secure multicast problem [27] new members joining
the group cannot access content added prior to joining (backward secrecy) and mem-
bers leaving the group cannot access new content thereafter (forward secrecy). The
requirements of a committee meeting room could allow members access to older in-
formation once they join (no backward secrecy). These metaphors further indicate the
need for multiple groups. In the simplest case we can have multiple groups that are
isolated or independent in that membership in one group has no impact on what a user
can do in another group, whereas with coupled or connected groups such impact can
occur. A theory of g-SIS thus needs to model and enable specification of such temporal
and coupling interactions. Looking within a group we can distinguish undifferentiated
versus differentiated groups. In an undifferentiated group user authorizations are undif-
ferentiated once users are admitted into the group. Specifically, authorizations do not
depend on attributes other than group membership (and associated temporal relations
between users and objects as discussed above earlier). Combining these two character-
istics of groups we have four possible cases shown in figure 1 for g-SIS models. In this
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figure the lowest class (isolated, undifferentiated) is included in all the higher classes;
the highest class (connected, differentiated) includes all the others; and the two classes
in the middle (isolated, differentiated) and (connected, undifferentiated) are incompa-
rable in this respect.

Our prior work [5] primarily focussed on the isolated group model. In this paper, we
outline our vision on building the connected, undifferentiated group model and com-
pare it with classic access control models such as LBAC, Domain and Type Enforce-
ment [28] and RBAC. We show that our proposed connected, undifferentiated group
model can express such policies and conveniently handle more dynamic information
sharing scenarios. The remainder of this paper is organized as follows. In section 2,
we briefly review the isolated group model. In section 3, we discuss candidate inter-
group relationships for the connected group model. We also discuss constructions of
LBAC [20] and a read-write RBAC0 model [22] and demonstrate the agility of the
connected group model in relation to these. We conclude in section 4.

2 Background

Group-Centric models for secure information sharing (g-SIS) have been recently in-
troduced [4,5,6]. In this paper we focus entirely on undifferentiated groups. There are
then two classes of g-SIS models: isolated, undifferentiated (g-SISi) and connected, un-
differentiated (g-SISc). For convenience we will henceforth drop explicit mention of
undifferentiated and simply call these two classes isolated and connected respectively.
In g-SISi, groups are isolated in the sense that they do not directly interact with each
other. For instance, a user’s membership in one group has no implication on her autho-
rizations in other groups. Our prior work [4,5,6] focusses primarily on isolated g-SIS
models. In g-SISc, groups may be related. For instance, user’s membership in one group
may be contingent upon her membership in another group or groups could be hierarchi-
cal where users in one group may dominate another group. In this section, we briefly
review the core aspects of isolated g-SIS models. In the subsequent sections, we discuss
candidate relationships in the connected group models.

In g-SISi, a group is established, for instance, between two or more organizations
for a specific purpose. Users from these organizations may join, leave and possibly
re-join the group. Similarly, objects from participating organizations may be added,
removed and possibly re-added. Users in the group may read and write such group
objects and potentially create new objects in the group. Such new objects typically
represent intellectual property created as a result of collaboration between participating
organizations. In such scenarios, authorizations in the group may depend upon various
aspects such as the time at which a user joined and the time at which the object was
added. Specifically, there is a requirement of simultaneous membership of a user and
an object in order to be able to read/write the object.

g-SISi recognizes a range of group policies. For instance, in some scenarios, users
may be authorized to access certain objects even after leaving the group. In another, a
joining user may access objects added prior to her join time. Two metaphors highlight
such scenarios: secure meeting room and subscription service. For the secure meeting
room metaphor, consider a program committee meeting where participants discuss in a
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room. Suppose, Alice is a member whose paper is currently discussed. Typically, Alice
steps out of the room for a brief period. During this period, Alice may retain access to
discussions that occurred prior to the time at which she left the room. Further, on re-
joining the room at a later period, her access to discussions resumes (except those that
occurred during her period of absence). In another scenario (where Alice to had to step
out of the room for reasons other than conflict-of-interest), discussions that occurred
during Alice’s absence may be recorded in a white board and she may access them
on re-join.

For the subscription service metaphor, consider a secure multicast network which
typically has a notion of backward and forward secrecy. When a node joins the multicast
network, it cannot access data distributed on the network prior to join time (backward
secrecy). When a node leaves the network, it cannot access data shared between other
nodes after leave time (forward secrecy).

In general, there could be numerous variations of such policies in g-SISi. A g-SISi

specification characterizes the precise conditions under which a user is authorized to
perform a certain action (such read and write) on an object. All g-SISi specifications
are required to satisfy a set of core properties. The core properties specify under what
conditions it is appropriate for a specification to hold in the g-SISi model. We informally
discuss these properties below (see [5] for a formal treatment).

Persistence Properties: This class of properties specifies that authorization may not
change unless some authorization changing event occurs. In g-SISi, authorization
changing events include a user joining and leaving a group and an object being
added and removed from a group. Authorization (or Revocation) persistence prop-
erty states that if a user is authorized (or not authorized) to access an object in a
group, she will remain so unless one of the authorization changing event occurs.

Authorization Provenance: This class of properties is concerned about when autho-
rization may begin to hold. As mentioned earlier, in certain scenarios, it is possible
that a user may be able to access a group object even after leaving the group. (For
instance, after the subscription ends, the user may retain access to articles that she
had paid for.) This property states that a user’s authorization to access an object
may begin to hold for the first time only after a simultaneous period of group mem-
bership between the user and the object in question. Note that subsequent times at
which the same authorization holds have no such requirement. Thus it is possible
to construct a valid g-SISi specification in which after an initial overlapping period
of user and object membership, the user may continue to remain authorized for that
object even after leaving the group (or even after the object is removed from the
group).

Bounded Authorization: This class of properties is concerned about what authoriza-
tions are allowed to hold during the non-membership periods of users/objects. For
users, the property states that the set of objects that a user is authorized to access
after she leaves the group cannot increase after leave time. (Note that she may lose
access to such objects after leave time but she cannot gain access to new objects af-
ter leaving the group.) Similarly, for objects, the property states that the set of users
authorized to access an object after it is removed from the group cannot increase
after remove time.
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Fig. 2. A snapshot of relationships between various groups

In [5], we characterized a variety of useful authorization semantics for user join and
leave operations and object add and remove operations. For instance, a Strict join to a
group restricts a user’s access to objects added to the group after join join time while
a Liberal join allows access to all objects. We also developed a family of g-SISi spec-
ifications based on such authorization semantics and showed that they satisfy the core
properties. In our follow on work, we have also shown that the core properties are logi-
cally consistent and mutually independent. We have further considered additional core
properties in light of versioning support for object write. Here each object is composed
of a growing set of versions and any specific version may be written to create a new
version. Further, the core properties accommodate additional authorization changing
operations such as update and object create.

3 Connected Group g-SIS Models

In this section, we introduce a connected g-SIS model (g-SISc) where groups are con-
nected by some type of relationship. Before we discuss these relationships, it is impor-
tant we distinguish the notion of user from that of a subject in access control. Typically,
user a representation of a human being in the system (e.g. user id) and subjects represent
processes (e.g. a word processing program) that a user may create to carry out various
tasks. A user is typically trusted, within limits, in the system while a subject is not. For
instance, a subject may be a trojan horse performing some hidden malicious activities
such as a word processing program uploading contents to a remote server. Thus a user
may create a subject with restricted privileges for containment purposes.

3.1 Inter-group Relationship Semantics in g-SISc

We discuss a few candidate inter-group relationships for the g-SISc model below:

1. Conditional Membership (condM): A conditional membership relation between
two groups specifies that a users membership in one group is contingent upon her
membership in another group. We define conditional membership relation to be
reflexive. Transitivity and symmetry must be explicitly defined if required. Con-
ditional membership requirements are common in collaboration scenarios. For in-
stance, consider a collaboration group g3 established between two organizations
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represented by groups g1 and g2 respectively (see figure 2). It is typical that ev-
ery user in g3 is required to be a member of either g1 or g2. The definitions
condM(g3,g1) and condM(g3,g2) can easily specify this requirement. Note that
conditional membership is a relation defined between groups for users. It does not
specify any direct requirement on subjects.

2. Subordination: The subordination relations, in general, characterize the notion of
one entity dominating another. In g-SISc, we define a number of subordination re-
lations where one group dominates another in different ways. Again, all of these
relationships are reflexive by definition. Transitivity and symmetry must be explic-
itly defined if required.

– Create Subordination (subordC): A subordC(g3,g5) definition states that users
in group g3 may create subjects in group g5.

– Read Subordination (subordR): A subordR(g3,g5) definition states that sub-
jects in group g3 may read objects in group g5.

– Write Subordination (subordW): A subordW(g4,g3) definition states that sub-
jects in group g4 may write to objects in group g3.

– Move Subordination (subordM): A subordM(g3,g5) definition states that sub-
jects in group g3 may move to group g5. After moving to g5, the subject no
longer resides in g3 which may result in losing access to objects in g3.

Evidently, these subordination relations allow users in one group to read and write
objects in another related group by means of their subjects.

3. Mutual Exclusion: Two groups may be specified to be mutual exclusive with respect
to membership. That is a user (or an object) may not be a member of mutually
exclusive groups at the same time. Furthermore, dynamic mutual exclusion can
also be specified where a user may be a member of two mutually exclusive groups
but cannot create subjects in the two groups at the same time.

4. Cardinality: There could be many different types of cardinality constraints. For
instance, a group could have membership cardinality for users, subjects and objects.
Furthermore, a cardinality restriction on the number of relationships that a group
may have with other groups could be specified.

Figure 2 shows a snapshot of relationships established between different groups. An
important aspect of g-SISc is that relationships may change over time as per the varying
requirements of the information sharing or collaboration application.

3.2 Configuring LBAC Policies in g-SISc

In this section, we discuss how Lattice-Based Access Control [20] policies such as Bell-
LaPadula [18] information flow policies can be easily configured using the relationships
defined in g-SISc. We also demonstrate the agility of g-SISc by shoing how it addresses
some of the limitations of LBAC models.

Figure 3(a) shows two sample Bell-LaPadula lattices for orgs A and B. The org A
lattice has four security labels: L, M1, M2 and H. In LBAC, the domination relationship
is reflexive, transitive and anti-symmetric. In this lattice, M1 and M2 dominate L and
H dominates M1 and M2 (and L by transitivity). M1 and M2 are incomparable. As
per standard terminology, users are assigned one of these four security clearances and
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(a) A sample lattice for one-
directional information flow.

(b) An equivalent g-SISc configuration of org A
lattice.

Fig. 3. LBAC in g-SISc

objects are assigned one of these four classifications. Users may then create a subject
with a clearance that is dominated by the user’s clearance. A subject may read objects
whose classifications are dominated by the subject’s clearance. A subject may write to
objects whose classifications dominate the subject’s security clearance.

Figure 3(b) shows an equivalent construction of org A lattice in g-SISc. It consists
of four groups G L, G M1, G M2 and G H representing the labels L, M1, M2 and H
respectively. Read, write and subject create subordination relationships have been de-
fined according to the specification of the org A lattice in figure 3(a). The subordination
relationships are defined in such a manner that a group at the arrow end is subordinate
to the group at the tail end. For instance, G M1 is both create subject and read subor-
dinate to G H, while G H is write subordinate to G M1. Since the relationships are not
transitive, we needed to define direct subordination relationships between G H and G L
as shown in the figure.

Suppose orgs A and B in figure 3(a) need to collaborate on a mission. Specifically,
suppose that org B wants to share all its S classified objects (but not its TS and C clas-
sified objects) with H cleared users in org A. This is not feasible by simple adjustments
to the two lattices in figure 3(a).

Figure 4 shows a construction in g-SISc that allows such collaboration scenarios. By
assigning a read subordination relation between groups G H and G S and groups G H
and G C respectively, org B is able to allow H cleared org A users to read both S and
C classified org B objects. If the subordRrelation is excluded between G H and G C,
read access can be restricted to S cleared objects.1 Note that other types of subordina-
tion relationships may be specified between org A groups and org B groups to realize

1 It is true that information may flow from G C to G S and thus restricting org A users’ access
only to G S may not be completely feasible. Nevertheless, only information that is explicitly
copied from G C to G S by a subject is available to G H users. G H users do not have direct
access to G C objects.
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Fig. 4. Agile collaboration enabled by g-SISc

other interesting policies. For instance, G L users may be allowed to write to G TS ob-
jects by defining subordW(G L, G TS). These relationships are temporary and may be
terminated or modified as collaboration evolves.

Now consider another collaboration scenario illustrated in figure 5. Suppose org A
and org B need to collaborate on a mission. They establish groups G1 and G2. TS
users/objects from org A and H users/objects from org B may join/be added to G1 (sim-
ilarly for G2). Conditional membership relations between groups TS and G1 and groups
H and G1 are respectively defined. This ensures that if a user leaves the source orga-
nization, her membership in G1/G2 is automatically terminated. New information may
be created in G1 and G2 as a result of collaboration which may be exported to groups
E1 and E2 respectively. The export operation may be performed only by special sub-
jects that have administrative rights in the system. By defining a subordRrelationship
between respective source organization groups and these export groups, we allow peri-
odic updates about the mission to be communicated to users in source organizations.

3.3 Configuring Domain and Type Enforcement in g-SISc

Domain and Type Enforcement (DTE) (see [28] for example) assigns a subject to a
specific domain and an object to a specific type and enforces information flow by spec-
ifying the read and write permissions in the form of a matrix. A classic example of
the application of DTE is to address the problem of trusted pipelines. Suppose org A
(figure 3(a)) needs to enforce that information may flow from L to H but only via M1
or M2.2 This is not possible to achieve in classic LBAC. Due to the transitive nature

2 For instance, before a subject at some clearance level may write to a print queue, the docu-
ment needs to be sent to a trusted print queue manager that visibly stamps every page of the
document to be printed with the correct label. In this scenario, the subject should not bypass
the queue manager and write to the printer directly.
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Fig. 5. A collaboration scenario between orgs A and B. The four groups in the middle column
(G1, G2, E1 and E2) are established for collaboration between org A (groups in first column)
and org B (groups in third column). Groups E1 and E2 are used for exporting new information
created as a result of collaboration to G1 and G2 respectively. As indicated, the export operation
may be performed only by trusted/administrative subjects.

Fig. 6. A DTE matrix to enforce a trusted pipeline from L to H via M1 or M2 for org A lattice in
figure 3(a). Note that a subject in L Dom cannot write directly to objects in H Ty.

of domination relation, subjects in L may directly write to objects in H (bypassing M1
and M2). In order to achieve this, DTE assigns subjects to domains (instead of security
clearances) and objects to types (instead of classifications) and specifies the rights in
the form a matrix as shown in figure 6. Note that, as per this matrix, a subject in L Dom
cannot directly write to H Ty. However, L Dom subjects may write, for instance, to
M1 Ty and M1 Dom subjects may then read that object and write to H Ty.

Figure 7 shows an equivalent g-SISc configuration for the DTE matrix in figure 6.
Users join one of the four first level of groups (H G, M1 G, M2 G and L G). The sec-
ond level of groups represent domains for subjects. A user in one of the first level groups
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Fig. 7. An equivalent g-SISc configuration of the DTE matrix in figure 6. Users join one of the
first level of groups (light gray). Users may create subjects in the second level groups representing
domains. Objects belong to the third level groups (dark gray) representing types.

may create a subject in the second level domain groups as per the create subject subor-
dination relation (subordC) defined between them. The third level of groups represent
the types for objects. Read and write subordination relations are defined between the
domain and type groups as per the DTE matrix in figure 6.3

3.4 Configuring RBAC Policies in g-SISc

In this section, we show the configuration of Role-Based Access Control (RBAC) mod-
els [22] in g-SISc. In RBAC, a set of roles are created which typically represent job
functions of users (employees) in an organization. Each role is assigned with a set of
abstract permissions (permission-role assignment) such as credit and debit and users are
assigned to specific roles (user-role assignment). Users may activate any combination of
roles assigned to them by creating a session. Sessions in RBAC are similar to subjects.
The permissions available to a user in a session is the set of all permissions assigned to
the set of roles activated in the session by the user. Users may dynamically activate and
de-activate specific roles in the session for containment purposes. A family of models
have been specified in the well-known RBAC96 [22]. RBAC0 is the basic model de-
scribed above. RBAC1 supports role hierarchies (where a role inherits the permissions
of other roles that it dominates). RBAC2 supports constraints such as separation of duty
and role cardinality. RBAC3 supports all the features of RBAC0, RBAC1 and RBAC2
models.

Here we only discuss the basic model, RBAC0. g-SISc is a model for information
sharing where read and write permissions to objects are of concern. However RBAC
supports abstract permissions (to accommodate varied permissions in an organization)
and hence it is not feasible to directly configure RBAC policies in g-SISc. For the

3 The figure outlines the approach for the construction but excludes some finer details. For in-
stance, users/objects may not be members of domain groups and hence we need a user/object
membership cardinality constraint on those groups. Similarly, users cannot join more than one
of the first level groups which requires a mutual exclusion constraint between those groups.
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Fig. 8. An equivalent g-SISc configuration for the RBACrw
0 model

purpose of our construction, we consider an RBAC0 model with only read and write
permissions to objects. Thus for every object, we have two permissions: one to read and
the other to write that object. We denote this read-write RBAC0 model as RBACrw

0 .
Consider two roles R1 and R2 and two objects O1 and O2. As mentioned earlier,

we have two permissions (read and write) for each object, resulting in a total of four
permissions. Suppose R1 is assigned permissions to read and write O1 and R2 is as-
signed permissions to read and write O2. Figure 8 shows an example construction of
RBACrw

0 model with two roles R1 and R2 and two objects O1 and O2 in g-SISc. The
first level of unshaded groups (R1 G, R2 G and R1R2 G) represent groups for user-
role assignment. A user may be a member of one of these groups. For instance, users in
R1 G have role R1 while users in R1R2 G are assigned to roles R1 and R2. The second
level of light-gray groups represent sessions. Note that the group R1R2′ S represents
activating a session with no roles assigned. The second level of groups are related to
unshaded groups using subordCrelations specifying the rules for subject creation (sim-
ilar to session in RBACrw

0 ). Note that subjects may move between the light-gray groups
as per the subordMrelation defined. This allows users to activate and de-activate a role
dynamically.4 Finally, the last level of dark-gray groups represent object permissions.
Groups Read O1 and Write O1 and Read O2 and Write O2 represent permissions for
objects O1 and O2 respectively. These groups are related to the light-gray groups as
per the requirements of permission-role assignment. In the figure, roles R1 and R2 have
read and write permissions to objects O1 and O2 respectively. Thus users assigned to
both roles R1 and R2 have read and write permissions to both objects O1 and O2. The
subordRand subordWrelations defined in figure 8 reflect this configuration.

4 Again, constraints are necessary for a complete construction. For instance, a subject may move
from R1 S or R2 S to R1R2 S only if the user who owns the subject is a member of R1R2 G.
Additional constraints are also necessary to ensure that users are not assigned to more than one
of R1 G, R2 G and R1R2 G.
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4 Conclusion and Discussion

We presented some of design choices for a connected, undifferentiated group g-SIS
model and demonstrated its agility with respect to the ease with which changes to infor-
mation flow/sharing pattern in classic LBAC models can be efficiently handled. We also
showed an equivalent representation of an RBAC model with read-write permissions.
Because of this result and as per [23], we claim it is feasible to configure Discretionary
Access Control policies in g-SISc. This positive result allows a system to use the same
trusted computing base to configure any of these policies. Prior work on non-transitive
information flow in the literature (see [29] for example) is relevant in this context. How-
ever, g-SIS is far richer and brings in additional concepts such as subject creation and
movement subordination. Furthermore, g-SIS accommodates various useful semantics
for group operations such as join and leave for users and add and remove for objects as
illustrated in [4,5].

Another area of related work is that of Dynamic Coalition (see for example [30,31]).
This problem is concerned about forming a coalition amongst different organizations,
for instance, in response to a crisis. Most of the security research in this domain has
been carried out in the enforcement or E-layer with the exception of a few. (For in-
stance, in [32,33], the authors focus on enriching role-based access control to address
the challenges involved in dynamic coalition.) While dynamic coalition is a very broad
and large-scale problem, the focus of g-SIS models is more on information sharing.
Specifically, it focusses on read and write permissions to objects and containing subject
level information flow. We believe that g-SIS policy models can be beneficially used in
dynamic coalition scenarios.

Our future work involves formal specification and analysis of a connected group
g-SIS model. In our prior work [4,5,6,34], we have formally specified and analyzed an
isolated group g-SIS model. We are exploring candidate core security properties for the
connected g-SIS model similar to those of the isolated model. A major challenge in the
connected model is that relationships are not static like that of LBAC models. Modern
information sharing scenarios are dynamic and inter-group relationships change over
time. This complicates information flow analysis in the connected model. For instance,
information may flow from group g1 to g3 even if g1 and g3 never existed at the same
time (it may currently flow from g1 to g2 and from g2 to g3 in the future). Thus, unlike
LBAC, information flow properties tend to be temporal in nature in g-SISc.
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Abstract. A side channel is an information channel that unintentionally com-
municates information about a program as a side effect of the implementation.
Recent studies have illustrated the use of shared caches as side channels to ex-
tract private keys from computationally secure cryptographic applications. The
cache side channel is imperfect in the sense that the attacker’s ability to detect
cache leakage of critical data is limited by the timing issues. Moreover, some de-
tected leakages are due to non-critical data. Thus, it is difficult to assess the degree
of vulnerability given the imperfect nature of the side-channel. Similarly, when
solutions that further degrade the quality of the channel, but do not necessarily
close it completely, are employed, it is difficult to evaluate their effectiveness.
To address this need, this paper proposes a mathematical model to evaluate the
expected leakage in a cache as a function of the cache parameters and the victim
application behavior. We use simulation to quantify these parameters for typical
attack scenarios to validate the model. We demonstrate that the proposed model
accurately estimates side channel leakage for for AES and Blowfish encryption
and decryption on a variety of cache configurations.

Keywords: architecture, security, side channel attack, caches.

1 Introduction

In recent years, security has emerged as one of the key design issues in computing
and communication systems. Security solutions typically rely on a set of cryptographic
algorithms, such as symmetric ciphers, public-key ciphers, and hash functions. The
strength of modern cryptography makes it infeasible for the attackers to uncover the
secret keys used in these algorithms by brute-force trials, differential [9] or linear crypt-
analysis [14]. Instead, almost all known attacks on the secret keys today exploit weak-
nesses in the physical implementation of the system performing the encryption, rather
than exploiting the mathematical properties of the cryptographic algorithm itself.

A subtle form of vulnerability in the physical implementation of otherwise secure
systems is a possible leakage of information through unintended (or side) channels.
The leaked information is called side-channel information, and the attacks exploiting
side-channel information leakage are called side-channel attacks [1,19,21]. Examples
of side-channels include observation of execution time, power consumption, heat, elec-
tromagnetic radiation, or even sound emanating from a device [21]. A large number
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of side-channel attacks have been successfully demonstrated against a range of soft-
ware and hardware security mechanisms: they have been used to break many cryp-
tosystems including block ciphers (such as DES, AES, Camellia, IDEA, and Misty1),
stream ciphers (such as RC4, RC6, A5/1, and SOBER-t32), public key ciphers (such
as RSA-type ciphers, ElGamal-type ciphers, ECC, and XTR), signature schemes, mes-
sage authentication code schemes, cryptographic protocols, and even the networking
subsystems[21]. Thus, it is critical to build systems that are immune to side-channel
attacks.

Traditionally, side-channel attacks were used to break simple systems such as smart
cards. However, a new class of attacks that exploit the shared caches in microprocessors as
side-channels had recently emerged as a serious security threat [26,27,12,24,18,19,1,3,5].
The nature of this new threat is rooted in the ability of modern microprocessors to exe-
cute several programs concurrently on the same chip to exploit so-called Thread-Level
Parallelism (TLP). TLP is exploited by the processor designers in two ways: Simultane-
ous Multithreading (SMT) and Chip Multiprocessing (CMP, also called multicore). In
an SMT processor [25], several independent programs are simultaneously executing on
the same processing core, and most of the core’s resources, including the on-chip caches,
are shared among the threads. In contrast, CMPs consist of completely replicated pro-
cessing cores that share only a small subset of resources such as lower level caches, main
memory and I/O pins.

Consider the concurrent execution of two programs in an SMT environment – a
security-critical encryption kernel (which we refer to as the ”victim”) and a process
performing an attack on the secret key used by the victim (which we refer to as the ”at-
tacker”). By sharing the data cache with the victim, the attacker can detect the victim’s
cache accesses when the victim evicts the data belonging to the attacker. The detec-
tion is possible because on its next access to the same data, the attacker will miss into
the cache, and cache misses can be easily distinguished from hits by using timing in-
structions readily available in most modern innstruction sets. Several studies [19,1,3,24]
showed that the information leaked through the cache side channel is often sufficient
to reconstruct the full secret key in a short period of time. Similar leakage is possible
through the shared lower-level caches in multicore system, even without multithreading
in individual cores.

Although cache-based side-channel attacks have been demonstrated, a successful
attack involves gleaning of the critical information from an imperfect channel. In par-
ticular, some memory accesses may not be leaked at all (we explain the reasons for that
in detail in the later sections). Moreover, some non-critical accesses may be detected;
these accesses do not correlate with the secret key and therefore add noise to the infor-
mation collected from the side-channel. Thus, key reconstruction involves a significant
effort, depending on the amount and quality of the information detected from the side-
channel. If the amount of useful information collected through the side channel is small,
key reconstruction may require prohibitive computational overhead, or just fail.

Being able to quantify this relationship between a side channel leakage proper-
ties and the computational difficulty of compromise is critical. It allows quantitative
evidence of vulnerabilities. Moreover, it may be impossible or extremely expensive to
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completely shut down the side-channel[26,27]. Thus, low complexity solutions that re-
duce the quality of the channel may be of interest. However, it is difficult to accept such
defenses based on informal evidence; being able to formally quantify the security of
imperfect channel can lead to effective solutions that have acceptable complexity while
providing sufficient security.

To help the computer designers implement the right level of protection against cache-
based attacks, two key questions have to be addressed: 1) How much information is
leaked through the side channel, and 2) what is the effort required to convert this infor-
mation into a full secret encryption key. In this paper, we address the first question and
develop a simple analytical model to predict the amount of critical information leakage
through the cache-based side channel. The model takes into account the capabilities
of the attacker, the parameters of the victim process and the hardware configuration of
the cache. We validate the developed model through cycle-accurate simulations of two
encryption kernels (AES and Blowfish) and demonstrate that the side channel leakege
predicted by the analytical model matches simulation-based results. Finally, we explain
how the designers can use the proposed model to reason about the threat level, the im-
pact of different attack optimizations, and the impact of possible defense approaches.

The remainder of the paper is organized as follows. We review the AES and Blowfish
algorithms and analyze why they are vulnerable to cache-based attacks in Section 2.
Sesction 3 describes the proposed leakage prediction model. In Section 4, we present
the simulation methodology and simulation results to validate the model. Section 5
reviews the related work and we conclude in Section 6.

2 Background

In this section we describe how the Advanced Encryption Standard (AES) and Blowfish
encryption lend themselves to exploitation by side channel attackers. We also explain
how a side channel attack through the L1 data cache works. An attack on last level
cache in a multicore system can be performed in a similar fashion.

2.1 The Advanced Encryption Standard (AES)

AES, the Advanced Encryption Standard, is a widely used symmetric block cipher. It
encrypts and decrypts 128-bit data blocks using either a 128-, 192-, or 256-bit key. Each
block is encrypted in 10 rounds of mathematical transformations. To achieve high per-
formance, AES implementations use precomputed lookup tables instead of computing
the entire transformation during each round. The indexes to these tables are partially
derived from the secret key, thus by detecting the cache sets accessed by the victim
(through the side channel observations), the attacker can derive some information about
parts of the secret key. By using multiple measurements, the entire key can be success-
fully reconstructed. The version of the AES code that we use in this study [6] employs
five tables (1KB each) for both encryption and decryption. The first four tables are used
in the first nine rounds of encryption/decryption, and the fifth table is used during the
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last round. Separate sets of tables are used for encryption and decryption. More details
on the AES encryption algorithm and specific side channel attacks on AES can be found
in [24].

2.2 The Blowfish Encryption Algorithm

Blowfish [2] is a keyed, symmetric block cipher, included in a large number of ci-
pher suites and encryption products. Blowfish has a 64-bit block size and a variable
key length from 32 up to 448 bits. It is a 16-round Feistel cipher and uses large key-
dependent S-boxes. The algorithm keeps two subkey arrays: the 18-entry P-array and
four 256-entry S-boxes. The S-boxes accept 8-bit input and produce 32-bit output. One
entry of the P-array is used every round, and after the final round, each half of the
data block is XORed with one of the two remaining unused P-entries. The F-function
splits the 32-bit input into four eight-bit quarters, and uses the quarters as input to the
S-boxes. The outputs are added modulo 232 and XORed to produce the final 32-bit out-
put. Again, just in the case with AES, the accesses to S-boxes are the critical accesses
that can reveal the key-related information through the cache side channel.

2.3 Cache-Based Side Channel

A dangerous side channel exists if an attacker can determine which table rows, which
we call critical data, are accessed. A shared memory cache can carry such a side chan-
nel. The time to access data present in the cache (a cache hit) is different from the time
to access data not in the cache (a cache miss), so it is possible to tell which data is in
the cache by measuring access time.

Caches typically have a set-associative organization. Each memory location is part
of a multi-byte data block called a cache line, and several lines are grouped into a cache
set. When data is loaded, an entire line is brought in and is deterministically mapped,
by address, into a specific set. Multiple lines coexist in a set (the number of lines in a
set is the associativity of the cache), but when new lines are loaded, an old line must
usually be evicted. This is done according to a replacement policy, such as evicting the
least recently used (LRU) line.

When a line of critical data is loaded, it replaces some other line. If the cache is
shared with an attacker, the evicted line may belong to the attacker. By later accessing
that line, and timing that access, the attacker learns whether the victim accessed an
address mapping to the same set.

The Attack. Given such a side channel, an attack is relatively straightforward. An at-
tacker fills the entire cache, ensuring that any memory access by the victim will evict the
attacker’s data. After a cryptographic operation, the attacker returns to each cache set
and accesses the same data to determine if it misses, indicating that the victim accessed
the set.

The attacker needs to perform the following steps:

– Gain user-level access to the computer performing cryptography.
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– It must also be aware of the cache configuration—number of sets, associativity,
line size, replacement policy, etc. This might be known ahead of time, or it might
be programatically deduced.

– For a side channel to be useful, the attacker must be somehow synchronized with
the victim. For simplicity, we assume that a synchronous attack is possible. That
is, the attacker can trigger the cryptographic process, say, by an inter-process com-
munication or networking mechanism. If an attacker can trigger single–data-block
encryption or decryption, it need not worry about keeping pace with the victim to
ensure that the cache stays full of attacker data.

– The attacker cannot “look within” a line. When an attacker line is evicted, all it can
learn is that the victim accessed a location within a particular line, not the specific
critical data index within the line. This is the nature of the side channel—an attacker
will have to do some brute force work.

– The critical data accessed can be difficult to determine, not just because of line-
size granularity, but because other, unrelated victim data can map to the same set,
creating noise in the side channel.

3 Model for Side Channel Leakage Prediction

The goal of the proposed model is to predict the probability that a critical cache access
(that is, the access to the critical data that is dependent on the secret key) is exposed on a
cache-based side channel, both in aggregate and per each cache set. More precisely, we
predict the conditional probability that the attacker detects a memory access on the side
channel, given that there was access to critical data. This probability can be expressed
as P(D|C), where D is the event of detection, and C is the event of a critical access.

P(D|C) is defined to be equal to P(D∩C)
P(C) . Using a few basic algebraic transformations

of this definition, we obtain a simple statement of Bayes’ theorem, which gives the
relationship between a conditional probability and its inverse:

P(D|C) =
P(C|D)P(D)

P(C)
(1)

Table 1. Summary of symbols

A event of an access
α number of memory accesses
C event of critical access
D event of detected access
m number of lines used in a set
N number of sets
s cache set number
Ta time between repeat accesses by attacker
Tv time between repeat accesses by victim
w cache associativity
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This formula is the basis of the proposed model. We predict the variables P(C|D) (the
conditional probability that there was a critical access, given that the attacker detected
an access), P(D), and P(C) based on properties of the attacker and victim programs,
and the system on which they execute. In the next section, we measure the variables
through simulation and evaluate our predictions.

P(D) and P(C) refer to the probabilities of events D and C when an access occurs,
not for any instruction. That is, we assume an initial condition A, that there is a memory
access. So P(D) is a shortened notation for P(D|A). Accordingly, P(D) and P(C) are
affected by the real timeline of CPU cycles, but are calculated relative to the timeline
of memory access instructions only.

The events A, C, and D can refer to all accesses, or can be restricted accesses to a
subset of data. We consider both aggregate measures and those restricted to individual
cache sets. In the latter case, As, Cs, and Ds refer to the events of accesses to set s.

The rest of this section analyzes the components variables of the above Bayesian
formula, then combines the variable predictions into a single formula to predict side
channel exposure of critical data.

3.1 Estimating Critical Accesses (P(C))

We define the probability of a critical access, P(C) as the average rate of critical ac-
cesses. This probability defines how many accesses during the execution of a crypto-
graphic program are critical, if the total number of accesses is α. This value is an invari-
ant property of the implementation of a cryptographic algorithm, and can be estimated
through static analysis or profiling.

In our Bayesian prediction formula, 1
P(C) is a constant for a given program. However,

it varies among cryptographic algorithms (and implementations), and between encryp-
tion and decryption routines.

3.2 Access Detection (P(D))

The probability that the attacker detects an access, P(D), is the number of detected
accesses out of the total number of accesses.

P(D) =
αD

α
(2)

P(D) is 100% for a perfect attacker, which measures the victim without error after every
instruction. Realistically, there are several reasons that a memory access may be hidden
from the side channel. The number of hidden accesses is α¬D, and P(D) can be restated
in terms of hidden accesses:

P(D) = 1− α¬D

α
(3)

The simplest reason that a memory access may not be detected is a cache hit. The
attacker only sees a victim’s access if it misses into the cache and evicts attacker’s data.
The attacker’s data is not automatically placed back in the cache when the victim evicts
it; rather, the attacker scans and refills the particular cache location at some point after
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the victim accesses it. In the time it takes the attacker to traverse the cache, the victim
may have performed several accesses to the same cache location, and all but one of
those will remain undetected by the attacker.

The percentage of accesses hidden from the side channel by the cache hits depends
on the victim’s pattern of access to individual critical data entries and the speed with
which an attacker returns to each set. These behaviors can vary depending on victim
and attacker implementations, as well as the cache configuration.

For a fixed cache configuration, the victim’s “rate of return” to a particular critical
data entry depends on the input data and the secret key. The average rate is a property
of the cryptographic code. Since the side channel operates at the granularity of cache
lines, the cache line size also affects the hit rate. The victim does not necessarily have
to access the exact same critical data to hit into the cache, but must access data within
a resident cache line. Larger cache lines, besides confounding multiple possible critical
data addresses when an access is detected, increase the likelihood of cache hits which
are hidden from the side channel.

The attacker can also be accelerated by larger cache lines, since fewer memory ac-
cesses are required to scan the entire cache. If the rate of return for both the victim and
attacker scale linearly with the line size, then the effect is canceled out. However, a vic-
tim automatically exploits the increased hit rate, while an attacker may have to address
synchronization issues that result. In a synchronous attack that is synchronized at block
encryption boundaries, increased line size helps only the victim. Even in a purely asyn-
chronous attack, where “synchronization” is done by post-attack analysis, the attacker
must still emit or save its timing results after each cache traversal, which will happen
more often with shorter traversal times.

Depending on the attack code, the cache dimensions—number of sets and
associativity—can affect the speed of the attack. At the cost of higher code complexity,
an attacker can reduce the number of accesses it must perform by accessing each set just
once1. If this sort of an attack is used, then the attacker can traverse a highly associative
cache with fewer sets faster than it can traverse a less associative cache (with more sets)
of the same size. Similar to increasing line size, increasing associativity can increase
the attack speed and decrease hidden critical accesses, but only if this optimized attack
is used, and if synchronization issues are handled.

Memory accesses can also be hidden from the side channel by design. Hardware or
software defense mechanisms can reduce P(D). A perfect defense mechanism reduces
P(D|C) to 0. Of course, if no critical accesses are detected, the side channel does not
exist. Specific defense mechanisms are outside the scope of this paper, but they can be
captured in this portion of the model.

3.3 Estimating Critical Accesses Given Detection (P(C|D))

P(C|D) is the fraction of detected accesses that are critical. This represents how clean
the signal on the side channel is—100% means that every access that is detected is use-
ful to the attacker. A real side channel, however, has sources of noise. Noise is expressed

1 Assuming the cache replacement policy is Least Recently Used (LRU), the attacker can ensure
that it always accesses the LRU line of a set. If that is a hit, the other lines in the set will also
hit.
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as P(¬C|D), or the probability that there is no critical access, given a detected access.
(With our assumptions, C also means that there was a non-critical access.) Since we
consider the cause of noise, not of signal, we represent P(C|D) as 1−P(¬C|D).

Even with no complicating factors, some noise is inherent in the cryptographic im-
plementation. A victim’s access to non-critical data that maps to the same cache set as
critical data cannot be distinguished from a critical access. The attacker, in its analysis
stage, can try to filter out a pattern of noise. An attack must have tolerance for noise,
so that some brute force trials can be performed while still utilizing data from the side
channel as a hint.

Noise can also come from the attacker’s side, in the form of instruction cache misses,
from misses in the translation lookaside buffer, from the operating system, or from
anything else that may confound timing results.

3.4 Model Formalization

We now unify the ideas presented above into a formal predictive model. We return to
our Bayesian formula, predicting side channel exposure in a single set:

P(Ds|Cs) =
P(Cs|Ds)P(Ds)

P(Cs)
(4)

The probability of a critical access is simply the ratio of critical accesses to total
accesses:

P(Cs) =
αC,s

αs
(5)

To model the probability of a detected access, we first consider the average likelihood
that an access will be hidden by hitting into the cache. Repeated victim’s access to a
cache location before the attacker scans and refills that location will be hidden from
the side channel. Consequently, in the time it takes an attacker to return to a location,
Ta, all accesses after the first one will be hidden. The time between repeated accesses
to that location is Tv. The probability of an access to a single location being detected,
then, is Tv

Ta
, assuming there is an intervening victim access to the location (Tv ≤ Ta). Tv,

on average across accesses during an attacker traversal, is expressed as Ta
αlocation

. So we
obtain:

P(Dlocation) =
1

αlocation
(6)

Since we assume that a cache access has taken place, α > 0, this value is defined.
Next, we expand our model to a cache set, rather than a single location. There is

some number of lines of data mapping to set s, which we call ms. The cache is w-way
associative. If ms ≤ w, then all the data fits in the set without eviction, and accesses to
all these data can be detected. In this case P(Ds) = ms

αs
. When ms > w, only w

ms
of the

data lines used are resident in the cache, and can possibly leak information. This is a
“fit factor” that limits the probability of detection in a set. Generalizing, we obtain:
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P(Ds) =
ms ·min

(
w
ms

,1
)

αs
(7)

ms ·min
(

w
ms

,1
)

can be thought of as the “pressure” on the cache set.

We now model the probability of critical access, given detected access, which can be
expressed as 1−noise. The simple noise we consider is caused by non-critical accesses.
This model considers the number of critical accesses to a set αC,s, which along with
non-critical accesses α¬C,s, make up all accesses αs. We start with the definition of
conditional probability:

P(Cs|Ds) =
P(Cs∩Ds)

P(Ds)
(8)

P(Ds) is already modeled. The model for P(Cs ∩Ds) is very similar—we just look at
the subset of detected accesses that are critical. mC,s ≤ms is the number of critical data
lines mapping to set s. We restrict P(D) to just these lines:

P(Cs∩Ds) =
mC,s ·min

(
w
ms

,1
)

αs
(9)

Thus, the equation for 1−noise is the following:

P(Cs|Ds) =

(
mC,s·min( w

ms
,1)

αs

)
(

ms·min( w
ms

,1)
αs

) =
mC,s

ms
(10)

We can now unify the model into a single formula:

P(Ds|Cs) =

(
mC,s
ms

)(
ms·min( w

ms
,1)

αs

)
(

αC,s
αs

) (11)

Our single-set model simplifies to:

P(Ds|Cs) =
mC,s ·min

(
w
ms

,1
)

αC,s
(12)

Finally, we consider the entire cache rather than a single set. We ignore sets without crit-
ical accesses, since the condition of the probability is that there were critical accesses,
and take the average:

P(D|C) =

∑N
s=0

{
0 : αC,s = 0
mC,s·min( w

ms
,1)

αC,s
: otherwise

∑N
s=0

{
0 : αC,s = 0
1 : otherwise

(13)
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This model predicts the effectiveness of a side channel using only a simple profile of
the victim (distribution of critical and overall cache accesses within a period of attack),
and cache associativity.

4 Model Validation Methodology

To validate the model proposed in the previous section, we performed cycle-accurate
simulations of AES and Blowfish encryption algorithms running alongside the ideal-
ized attacker on an SMT processor. We used M-Sim 3.0 [17]—a SMT and CMP simu-
lator that was derived from Simplescalar 3.0d [7]. The crypto programs were compiled
on an Alpha AXP machine running Tru64 UNIX, using the native C compiler with
-04 -fast -non_shared optimization flags. We simulated an 8-way processor with
128-entry Reorder Buffer and a 32KB L1 data cache under several configurations.

We simulated both an 8-way set-associative cache, and a direct-mapped (1-way)
cache. The 8-way cache is a typical configuration, while the direct-mapped cache was
used to exercise the fit factor of the model. Both caches used 32 byte lines, so the caches
had 128 and 1024 sets, for 8-way and direct-mapped, respectively.

We simulated the execution of an idealized attacker as a separate thread alongside
an encryption or decryption process. It is “idealized” because it is implemented with
simulator support to synchronize perfectly with cryptographic block operations. The
only noise, therefore, occurred during the core cryptographic operation, and the attacker
did not operate under time constraints. This is the best an attacker can do, and a is worst-
case bound on security.

We ran simulations of 1,000 truly random [20] input data blocks. The experiments
included all permutations of the following operations:

– Algorithm: AES or Blowfish
– Operation: encryption or decryption
– Cache configuration: 8-way or direct-mapped

Our simulations outputted memory access traces; a script used these data to generate
predictions. We also generated attacker traces which labeled memory accesses as de-
tected or not. For each block operation (that is, each instance of the attack), the model
matches the measured detection rates. This makes sense, because the same data block
is used both to profile the victim for the model and to measure the side channel. We
also show how the average side channel that we measure as a profile is a good predictor
for individual blocks. Our experiments show low variation in side channel leakage from
block to block.

5 Results and Evaluation

Figure 1 shows the aggregate detection rate averaged across 1,000 cryptographic block
operations. This is the measured rate of detection, which matches the rate predicted by
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our model for each of the same blocks. The average value of P(D|C) is 76% for AES and
87% for Blowfish on the 8-way cache. The direct-mapped cache exhibits similar results,
77% and 88% for AES and Blowfish, respectively. Figure 2 shows same side channel
leakage broken down by set. The 8-way cache has a fairly consistent distribution of
accesses among its 128 sets, since the critical data tables are spread evenly across all
sets. The direct-mapped cache only shows leakage in 256 sets for AES and 268 sets for
Blowfish, out of 1024 available sets. This is because only those sets have critical data
(since direct mapped cache has a larger number of sets).

Figure 3 shows, for each experiment, how the detection rate for each block compares
to the average rate across all the blocks. These graphs show bell curves in a small
range around the average, with a standard deviation of 2% in all cases. The maximum
deviation is 7% for AES and 8% for Blowfish. Therefore, our simple predictive model
which is based on the average detection rate across all blocks predicts the detection
within individual blocks with an error of only 8% in the worst case.

Fig. 1. Aggregate detection rate. This graph shows the detection rate (P(D|C)) as an average
across 1,000–data block cryptographic operations. Predicted and measured detection rates are
equal for each block operation.

Therefore, our experiments confirm that the results obtained by the proposed model
closely match the simulated results. Furthermore, they demonstrate that different input
data causes only a low level of variation in side channel leakage, so simple metrics,
such as estimated average characteristics across all blocks can be used for accurately
predicting the amount of leaked data on a block-by-block basis.



A Predictive Model for Cache-Based Side Channels 81

(c) Blowfish encryption, 8-way cache (d) Blowfish encryption, direct-mapped
cache

Fig. 2. Detection by set. These graphs show detection rate in each set (P(Ds|Cs)) as averages
across 1,000–data block encryptions (decryption graphs are omitted because they are nearly iden-
tical). Predicted and measured detection rates are equal for each block operation.
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(a) AES enc., 8-way (b) AES dec., 8-way (c) AES enc., direct-mapped

(d) AES dec., direct-mapped (e) Blowfish enc., 8-way (f) Blowfish dec., 8-way

(g) Blowfish enc., direct-
mapped

(h) Blowfish dec., direct-
mapped

Fig. 3. Each graph shows the number of block operations with side channel leakage within a given
1% range
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6 Related Work

The security of cryptographic implementations with respect to side-channel attacks has
not been widely investigated. Despite the presence of a number of a solutions to side-
channel problems that do not perfectly close the channel [10,15], the security properties
of side-channels and the effectiveness of such imperfect solutions were open questions.
Micali and Reyzin were the first to present a theoretical analysis of general side-channel
attacks [16]. Using very general assumptions, this model defines the notion of an ab-
stract computer and a leakage function that together can capture almost all instances of
side channels. However, the overly general assumptions make it difficult to apply this
analysis to particular algorithms (e.g., DES or AES) or for specific side-channels.

Standaert et al. started from Micali and Reyzin model and specialized it for more
practical situations [23]. Specifically, they restricted some of the assumptions to a range
that corresponds to relevant adversary and leakage models. Moreover, they show how
to map the abstract computational model to physical instances such as circuits and op-
erations. Although this model brings the original model by Micali and Reyzin closer
to practice, it models the leakage and adversary abstractly using information theoretic
principles. More recently, Standaert et al. created a uniform model of side-channel at-
tacks to address the problem of how compare different algorithm implementations and
defense mechanisms in a way that enables comparing them [22].

Kopf and Basin developed an information theoretic model of side-channels [13].
Like our model, they restrict their analysis to the amount of information leaked from the
channel. This model considers a generic side channel, and does not capture the detailed
operation of cache based side-channel attacks that we characterize in this paper.

Both software and hardware solutions to address cache-based side channel attacks
have been proposed. On the software side, the main idea is to rewrite the code of the en-
cryption algorithms such that known side channel attacks are not successful. Examples
of such techniques include avoiding the use of table lookups in AES implementations,
preloading the AES tables into the cache before the algorithm starts, or changing the
table access patterns [18,24,4,21]. The limitation of the software solutions is that that
they are tied up to a specific algorithm/attack, do not provide protection in all cases, are
subject to errors on the part of programmers, and often result in significant performance
degradation [26]. Another recent approach to address side channel attack is by dedicat-
ing special functional units and ISA instructions to support a particular cryptographic
algorithm. An example of this approach is the Intel AES instruction [11]. This, how-
ever, requires non-trivial hardware and software changes and only protects against the
attacks on the crypto algorithms that are supported—support has to be re-implemented
to defend new algorithms.

In response to the limitations of software solutions, several hardware schemes have
been recently introduced. The advantage of hardware solutions is that they prevent
the attacks in principle, by eliminating the side channel. The main challenge in these
schemes is to keep the impact on the design complexity, cache access time, and perfor-
mance overhead to the minimum. Following this line of research, a partitioned cache
was proposed [8], along with ISA changes to make the cache a visible part of the ar-
chitecture. Specifically, new instructions are added to define a partition and specify
its size and parameters. This scheme requires changes to both the ISA and the cache
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hardware design and can lead to significant performance degradation. Several alterna-
tive cache designs for thwarting cache-based attacks have been proposed by Wang and
Lee [26,27]. Partition-Locked Cache (PL cache) design [26] uses cache line locking to
prevent evictions of cache lines containing critical data, thus closing the side channel.
The main drawback is the performance hit due to cache underutilization, as the locked
lines cannot be used by other processes, even after they are no longer needed by the pro-
cess that owns them. In addition, the PLcache requires system support to control which
cache lines should be locked. This support is in the form of new ISA instructions, or OS
modifications for marking the regions of memory that contain the AES or RSA tables
as lockable. In either case, ISA/compiler/OS modifications are also needed in addition
to the hardware changes.

7 Conclusion

Cache-based software side-channel attacks represent a new and serious security threat
that exploits parallel processing capabilities of modern processor chips. Defense mech-
anisms that provide a complete closing of the side channel are expensive and often incur
significant performance overhead. A possible alternative is to consider solutions that do
not result in a complete elimination of the side channel, but rather attempt to reduce
its strength to the levels that make the remaining post-attack effort for the secret key
reconstruction infeasible.

To assist system designers with such solutions, we developed an analytical model for
estimating the percentage of accesses to the critical data that would be leaked through
the cache side channel as a function of the victim’s characteristics and the configu-
ration of the cache hardware. We validated the proposed model using cycle-accurate
simulation of side-channel attack on two popular encryption kernels (AES and Blow-
fish) and also described how the model can be used in exploring the design space of
low-complexity solutions for cache-based attacks.
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search Laboratory under agreement number FA8750-09-1-0137. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies and endorsements, either expressed or implied, of Air Forse Research
Laboratory or the U.S. Government.
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Abstract. The BDMP (Boolean logic Driven Markov Processes) mod-

eling formalism has recently been adapted from reliability engineering

to security modeling. It constitutes an attractive trade-off in terms of

readability, modeling power, scalability and quantification capabilities.

This paper develops and completes the theoretical foundations of such

an adaptation and presents new developments on defensive aspects. In

particular, detection and reaction modeling are fully integrated in an

augmented theoretical framework. Different use-cases and quantification

examples illustrate the relevance of the overall approach.

Keywords: Security modeling, attack trees, BDMP, risk analysis.

1 Introduction

Graphical attack formalisms are commonly used in security analysis to share
standpoints between analysts, enhance their coverage in terms of scenarios, and
help ordering them and the related system vulnerabilities by various quantifica-
tions. The authors have recently introduced a new approach based on BDMP
(Boolean logic Driven Markov Processes) [3], adapting this formalism used in re-
liability engineering to attack modeling [16]. BDMP have proven to be an original
and advantageous trade-off between readability, modeling power, scalability and
quantification capabilities in their original domain [2]. The same advantages are
expected from their adaptation to the security area. In this paper, we consol-
idate the theoretical foundations of such an adaptation, and extend it to take
into account detection and reaction aspects in an integrated approach. Section 2
presents the state of the art in graphical attack modeling. Section 3 develops, on
a theoretical and practical point of view, how BDMP can be changed to model
attack scenarios. Section 4 focuses on defensive aspects, presenting the extension
developed for detection and reaction modeling. Section 5 presents on-going and
future work related to this new approach.

2 State of the Art

The clear interest of the computer security community for graphical attack mod-
eling techniques has led to numerous proposals; they can be grouped into two
categories, each being dominated by a specific model:

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 86–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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– Static models : also called structural models, they provide a global view of the
attack, without being able to capture its evolution in time. The dominant
type of model is the Boolean-logical tree based approach. Generally known
as Attack Trees [21,10], they are present in the literature under different
variations: threat trees [1], vulnerability trees [14] etc.

– Dynamic models : also called behavioral models, they take into account de-
pendance aspects such as sequences or reactions. Richer than static models,
they can be built by hand only in very simple cases. There are two approaches
in the other cases:
• The first one is based on detailed state-graphs capturing the possible evo-

lutions of an attack, automatically generated from formal specifications.
Such approaches, initiated by Sheyner et al. with Attack Graphs [22] and
followed by other relevant approaches (e.g. [8,7]), are not graphical mod-
els per se as they are not directly designed to be graphically manipulated
by analysts.

• The second relies on compact and high-level graphical formalisms, de-
signed to efficiently represent dynamic aspects like sequences or reac-
tions, and to be directly usable by human analysts. In this category,
Petri net-based approaches are the most widely known. Attack Nets,
one of the first proposals in the domain [11], or PE Nets, a more recent
approach with a complete software support [18], are two good represen-
tatives.

Each approach allows for a different balance in terms of modeling power, read-
ability, scalability and quantification capabilities. Static models are usually very
readable but are lacking in their modeling power and quantification capabilities.
Dynamics models are more interesting for these aspects, but often have their
own limits in terms of clarity and scalability. Note that these statements are
also relevant in the domain of reliability and safety modeling [12,17], where sim-
ilar approaches have been historically first used, modeling system component
failures instead of attacker actions and security events.

3 The BDMP Formalism Applied to Attack Modeling

3.1 Foundations

Originally, BDMP are a formalism which combines the readability of classical
fault trees with the modeling power of Markov chains [3]. Generally speaking,
it changes the fault tree semantics by augmenting it with a special kind of links
called triggers, and associating its leaves to Markov processes, dynamically se-
lected in function of the states of some other leaves. This allows for sequences
and simple dependencies modeling, while enabling efficient quantifications. The
original definition, the mathematical properties and different examples are pro-
vided in [3]. In this section, we present the main elements of theory and features
offered by a straightforward adaptation of BDMP to security modeling, summing
up and completing ref. [16].
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r

P1 P2 Pn

Q

...

Fig. 1. A small BDMP

The components of BDMP. Informally,
“triggered” Markov processes (noted Pi and
presented in this section) are associated to the
leaves i of an attack tree A. Each process has
two modes: Idle and Active (formally noted 0
and 1). The former models an on-going event,
in general an attacker action, the latter is used
when nothing is in progress. The mode of a
given Pi is a Boolean function of the states of
the other processes. Fig. 1 presents the com-
ponents of a security-oriented BDMP.

More formally, it is a set {A, r, T, P} com-
posed of:

– an attack tree A = {E, L, g}, where:
• E = G ∪ B, with G a set of logical gates, and B a set of basic security

events (e.g. attacker actions), corresponding to the leaves of the BDMP;
• L ⊂ G × E is a set of oriented edges, such that (E, L) is a directed

acyclic graph with ∀i ∈ G, sons(i) �= ∅ and ∀j ∈ B, sons(j) = ∅, with
E

sons−−−→ P (E), sons(i) = {j ∈ E/(i, j) ∈ L}
• g : G → N

∗ is a function defining the parameter k of the gates which
are all considered to be k/n logical gates (k = 1 for OR gates, k = n for
AND gates, with n the number of sons)

– r, the final attacker’s objective. Formally, it corresponds to a top of (E, L).
– a set of triggers T ⊂ (E − {r})× (E − {r}) such that ∀(i, j) ∈ T, i �= j and
∀(i, j) ∈ T, ∀(k, l) ∈ T, i �= k ⇒ j �= l. If i is called origin and j target, it
means that origin and target of a trigger must differ, and that two triggers
cannot have the same target. Triggers are represented by dotted arrows.

– a set P of triggered Markov processes {Pi}i∈B. Each Pi is defined as a set{
Zi

0(t), Z
i
1(t), f

i
0→1, f

i
1→0

}
where:

• Zi
0(t) and Zi

1(t) are two homogeneous Markov processes with discrete
state spaces. For k in {0, 1}, the state space of Zi

k(t) is Ai
k(t). Each Ai

k(t)
contains a subset Si

k(t) which corresponds to success or realization states
of the basic security event modeled by the process Pi.

• f i
0→1 and f i

1→0 are two “probability transfer functions” defined as follows:
∗ for any x ∈ Ai

0, f i
0→1(x) is a probability distribution on Ai

1 such that
if x ∈ Si

0, then
∑

j∈Si
1
(f i

0→1(x))(j) = 1,
∗ for any x ∈ Ai

1, f i
1→0(x) is a probability distribution on Ai

0 such that
if x ∈ Si

1, then
∑

j∈Si
0
(f i

1→0(x))(j) = 1.

Triggers and Pis are intimately linked, as the Pis switch instantaneously be-
tween modes, via the relevant probability transfer function, according to the
state of some externally defined Boolean variables, called process selectors (de-
fined in the next paragraph). The process selectors are defined by means of trig-
gers. Generally speaking, a trigger modifies the mode of the Pi associated to the
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leaves of the sub-tree it points at, when its origin changes from false to true.
The modes are then switched from Idle to Active, representing the progress of
the attacker in the attack scenario possibilities captured by the overall BDMP.

The three families of Boolean functions of time. A BDMP defines a global
stochastic process, modeling the evolution of an attack and the dynamic behavior
of its perpetrator. Each element i of A is associated to three Boolean functions of
time: a structure function Si(t), a process selector Xi(t) and a relevance indicator
Yi(t). The three families of these functions are defined as follows (note that to
simplify reading, the time t is not indicated but should appear everywhere):

– (Si)i∈E is the family of structure functions: ∀i ∈ G, Si ≡ (
∑

j∈sons(i)
Sj ≥ g(i))

and ∀j ∈ B, Sj ≡ (Zj
Xj
∈ F j

Xj
) with Xj indicating the mode in which Pj

is at time t. Sj = 1 corresponds to the realization of a basic security event
(like an attacker action success).

– (Xi)i∈E are the mode selectors, indicating which mode is chosen for each pro-
cess. If i is a top ofA, then Xi = 1 else Xi ≡ ¬ [(∀x ∈ E, (x, i) ∈ L ⇒ Xx = 0)
∨ (∃x ∈ E/(x, i) ∈ T ∧ Sx = 0)]. This means that Xi = 1 except if the origin
of a trigger pointing at i has its structure function equal to 0, or if i has at
least one parent and all its parents have their process selector equal to 0.

– (Yi)i∈E are the relevance indicators. They are used to mark the processes to
be “trimmed” during the processing of the Markov chain when exploring the
possible sequences. Trimming strongly reduces the combinatorial explosion
while yielding exact results in our assumptions (cf. the next paragraph and
3.4). If i = r (final objective), then Yi = 1, else Yi ≡ (∃x ∈ E/(x, i) ∈ L ∧ Yx∧
Sx = 0)∨(∃y ∈ E/(i, y) ∈ T ∧ Sy = 0). This formally says that Yi = 1 if and
only if i = r, or i has at least one “relevant parent” whose Si = 0, or i is the
origin of at least one trigger pointing at an element whose Si = 0.

Mathematical properties. A BDMP can be seen as a robust mathematical
formalism thanks to the two following theorems:

Theorem 1. The functions (Yi), (Xi), (Yi) are computable for all i ∈ E what-
ever the BDMP structure.

Theorem 2. Any BDMP structure associated to an initial state defined by the
modes and the Pi states, uniquely defines a homogeneous Markov process.

The proof for these theorems can be found in [3]. In addition to their robustness,
BDMP allow for a dramatic combinatory reduction by relevant event filtering,
thanks to the trimming mechanism associated to the (Yi) values. This mechanism
can be illustrated as follows: in Fig. 1, once a basic security event Pi has been
realized, all the other Pj �=i are no longer relevant: nothing is changed for “r” if
we inhibit them. The number of sequences leading to the top objective is n if
the relevant events are filtered ((P1, Q), (P2, Q),...); it is exponential otherwise
((P1, Q), (P1, P2, Q), (P1, P3, Q),...).
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Theorem 3. If the (Pi) are such that ∀i ∈ B, ∀t, ∀t′ ≥ t, Si(t) = 1 ⇒ Si(t′) = 1
(which is always true in our paper), then Pr(Sr(t) = 1) is unchanged whether
irrelevant events (with Yi = 0) are trimmed or not.

The proof of this last theorem is given in [3]. It implies that trimming on the
basis of the (Yi) does not change the quantitative values of interest (cf. 3.4).
Moreover, it corresponds to the natural and rational behavior of the attacker.

The basic leaves and their triggered Markov processes. The definition
of three kinds of leaves is sufficient to offer large attack modeling capabilities.
Their triggered Markov processes are represented informally in Tab. 1.

Table 1. The three basic security leaves for attack modeling

Leaf type
& icon

Transfer
between modesIdleMode (Xi=0) ActiveMode (Xi=1)

Attacker
Action (AA)

Instantaneous
Security Event

Timed
Security Event

Potential Success On-going Success

Si 1

Potential Realized
Not

Realized Realized

Si 1

Not
Realized Realized

Si 1

Potential

Not
Realized Realized

'

Si 1

P O (with Pr = 1)
S S (with Pr = 1)

P NR (with Pr = 1)
NR NR (with Pr=1)
R R (with Pr = 1)

P NR (with Pr=1- )
P R (with Pr = )
R R (with Pr = 1)
P NR (with Pr = 1)

– The “Attacker Action” (AA) leaf models an attacker step towards the accom-
plishment of his objective. The Idle mode means that the action has not at
this stage been tried by the attacker. The Active mode corresponds to actual
attempts for which the time needed to succeed is exponentially distributed
with a parameter λ. When (Xi) changes from 0 (Idle) to 1 (Active), the leaf
state goes from Potential to On-going; when (Xi) goes back from 1 to 0, if the
attack has not succeeded, the leaf state goes back to Potential, if it has suc-
ceeded, the leaf comes back to the Success state of the Idle mode. Formally,
the probability transfer functions are: f0→1(P ) = {Pr(O) = 1, Pr(S) = 0},
f1→0(O) = {Pr(P ) = 1, Pr(S) = 0}, f1→0(S) = {Pr(P ) = 0, Pr(S) = 1}.

– The “Timed Security Event” (TSE) leaf models a timed basic security event
the realization of which impacts the attacker’s progress, but which is not under
the attacker’s direct control. The time needed for its realization is exponen-
tially distributed. When the leaf comes back to the Idle mode, the leaf state
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can then be either Realized or Not Realized, depending on whether the TSE
occurred or not in Active mode. If unrealized, it is up to the analyst to decide
if a realization is then possible in Idle mode, by using a λ′ �= 0. This can be
useful when using phased approaches as described in Section 3.3. Formally,
the transfer functions are as follows: f0→1(P ) = {Pr(NR) = 1, Pr(R) = 0},
f0→1(NR) = {Pr(NR) = 1, Pr(R) = 0}, f0→1(R)= {Pr(NR)=0, Pr(R)=1},
f1→0(NR)={Pr(NR)=1, Pr(R)=0}, f1→0(R)={Pr(NR)=0, Pr(R)=1}.

– The “Instantaneous Security Event” (ISE) leaf models a basic security event
that can happen instantaneously with a probability γ, when the leaf switches
from the Idle to Active mode. In the Idle mode, the event cannot occur
and the leaf stays in the state Potential. In the Active mode, the event is
either Realized or Not Realized. State changes are necessarily the result of
changes in (Xi). Formally, the probability transfer functions are: f0→1(P ) =
{Pr(NR) = 1− γ, Pr(R) = γ}, f0→1(R)= {Pr(NR)=0, Pr(R)=1}, f1→0(R)
= {Pr(NR) = 0, Pr(R) = 1}, f1→0(NR) = {Pr(P ) = 1, Pr(R) = 0}.

3.2 Sequence Modeling

AND

Gain_OS_Access

OS finger-
printing

Vulnerability
exploitation

OS vulnerability
identification

Gain_OS_Access

Fig. 2. A simple OS attack

The triggers allow for an efficient and readable
modeling of the sequential nature of attacks: of-
ten, some actions or events need to be undertaken
or realized first before further steps in the attack
process can be attempted. Fig. 2 presents a sim-
ple example with a sequence of three actions with
such a constraint, based on an Operating System
(OS) attack. Reference [16] proposes an alterna-
tive example, modeling the attack of a Remote
Access Server (RAS), while a complete use-case
is presented in Section 3.4.

3.3 Concurrent or Exclusive Alternatives

For a given intermediate objective, an attacker may have different alternatives.
A natural way of modeling this with BDMP and classical attack trees is with OR
gates. Fig. 3 represents two different approaches with an example dealing with
OS fingerprinting. On the left side, a simple OR gate is used: passive and active
techniques are tried simultaneously, which may not reflect a realistic attacker
behavior. Passive techniques, being more discrete, would normally be tried first
and, if not successful, given up after some time for active ones. Triggers cannot
model such a behavior. “Phase leaves”, used on the right side of Fig. 3, allow
this behavior to be modeled; their formal definition is given in [16].

3.4 Diverse and Efficient Quantifications: Principles and Use-Case

The interest of BDMP does not only lie in the possibility to represent sequences.
They enable diverse time-domain quantifications, including the probability for
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Passive
Fingerprinting

phase

Passive
fingerprinting

Active_fingerprinting

OR

AND

Passive_fingerprinting

AND

Active
Fingerprinting

phase

OR

OS_fingerprinting

Active
fingerprinting

OS_fingerprinting

Active
Fingerprinting
success

OS_fingerprinting

Passive_fingerprinting_success

a) b)

Fig. 3. Modeling parallel or phased alternatives

an attacker to reach his objective in a given time or the overall mean time for the
attack to succeed. In addition, BDMP analysis yields the enumeration of all the
possible attack paths, ordered by their probability of occurrence in a given time.
Such results can be efficiently computed thanks to an original analytical method
developed for large Markov models, and thus applicable to BDMP [4]. Indeed, as
explained previously, BDMP are high-level representations of potentially large
Markov chains; however, the treatment of such chains is usually confronted with
state-space explosion. It is overcome using a path-based approach, exploring
the sequences leading to the undesirable states. Such an approach enables exact
calculations for small models by exhaustive exploration. For larger models, it is
possible to obtain controlled approximations by limiting the sequence exploration
to those having a probability greater than a given threshold. In both cases, the
probability of the explored sequences is computed by the closed form expression
given in [5]. Sequence exploration takes advantage of the trimming mechanism
described in Section 3.1, which leads to a strong combinatorial reduction.

More concretely, the analyst must define the λ parameters of the exponential
distributions and the γ parameters of the ISE leaves. Defining the λs is done by
reasoning in terms of Mean Time To Success (MTTS), i.e. 1/λ, like in [9,6,20].
The γs are also set subjectively. The parameters should be estimated based on
the intrinsic difficulty of the attacker actions, his estimated skills and resources,
and the level of system protection. We have used the KB3 workbench [2] for
the model construction and quantitative treatments in this paper. Fig. 4 models
the attack of a password-protected file, of which a copy has been stolen. In our
scenario, obtaining the password is the only way to access its content, needed
by the attacker within a week (this may take place in a call for tender in a
competitive environment). The parameters chosen are not given here for space
limitation reasons, but they can be found in the technical report [15].

Such parameters lead to a probability of success in a week of 0.422, with
an overall MTTS of 22 days. An exhaustive exploration gives 654 possible
sequences; Table 2 shows a representative excerpt. The beginning of a phase
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Fig. 4. Attack of a password-protected file

is marked as “<phase>” and its end as “</phase>”. Even if phases are not
basic security events, they are fully part of the sequences as they structure their
chronology. The same applies to the leaves that are realized unnecessarily; they
are marked in italics. As one can see, most of the sequences include one or more
unnecessary actions or events that have no effect on the global success of the
attack and as such, these sequences are non-minimal. The minimal sequences
are called success sub-sequences, or SSS. Seq. 1 to 4 are minimal and weigh
probabilistically 47% of all the sequences. Seq. 5 and 6 are good examples of
non-minimal sequences. Bruteforce is a specific leaf as it is also the only single
element SSS. It appears directly as a minimal sequence in line 3, but also ends
numerous non-minimal sequences. In fact, the consolidated contribution of all
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Table 2. Selection of sequences with quantifications

Sequences
Probability
in a week

Average
duration

Contrib.

1 <Social Eng>Generic reconn., Email trap exec., User trapped 1.059 × 10−1 9.889 × 104 25.1%
2 <Social Eng>Generic reconn., Phone trap exec., User trapped 5.295 × 10−2 9.889 × 104 12.5%
3 Bruteforce 2.144 × 10−2 5.638 × 104 5.1%
4 <Social Eng></Social Eng><Keylogger><Remote></Remote>

<Physical> Physical reconn., Keylogger local installation,
Password intercepted

1.749 × 10−2 2.976 × 105 4.1%

5 <Social Eng></Social Eng><Keylogger> <Remote>Generic re-
connaissance </Remote><Physical>Physical reconnaissance,
Keylogger local installation, Password intercepted

1.350 × 10−2 3.677 × 105 3.2%

6 <Social Eng>Generic reconnaissance, Email trap execution,
User trapped(failure), Bruteforce

1.259 × 10−2 2.610 × 105 3.0%

...
20 <Social Eng></Social Eng><Keylogger><Remote>Generic re-

connaissance, Payload crafting, Appropriate payload, Pass-
word intercepted

2.500 × 10−3 2.761 × 105 0.6%

...
34 <Social Eng></Social Eng><Keylogger> <Remote>Generic re-

conn., Payload crafting </Remote> <Physical>Crafted at-
tachement opened, Appropriate payload, Physical reconn.,
Keylogger local installation, Password intercepted

1.506 × 10−3 4.594 × 105 0.4%

the sequences ended by bruteforce weighs 40% of all the sequences. Such a strong
weight despite bruteforce’s large MTTS is due to the absence of other steps to
be fulfilled. This points to a more generic statement: a complete analysis should
not only use the list of sequences, but also consider complementary views, incl.
consolidated contributions of SSS. Seq. 3 to 19 involve only two SSS; seq. 20
relies on a new SSS, then one has to wait until seq. 34 to find another one. This
latter sequence illustrates the specificity of TSE leaves, which are able to be
realized in Idle mode if the leaf has been Active at least once.

3.5 Hierarchical and Scalable Analysis

It is possible to choose for each attacker action the depth of analysis, leading to
different breakdowns depending on the analysis needs. This hierarchical behavior
is a powerful property directly inherited from the attack tree formalism. In Fig. 4,
the password cracking alternatives have been broken down quite roughly into
three techniques which might have been decomposed themselves into much finer
possibilities; on the other hand, the social engineering and the keylogger sub-
trees are slightly more developed. More detailed breakdowns would have been
possible. In fact, BDMP with more than 100 leaves are routinely processed in
reliability studies [2]: the method is also scalable for security applications.

4 Integrating Defensive Aspects: Detection and Reaction

Holistic approaches to security generally cover protection, detection and reaction.
The level of protection can be considered as intrinsically reflected by the BDMP
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structure, modeling only possible ways for attacks, and its leaves’ parameters
(λs and γs), reflecting the attack difficulty confronted with a given protection
level. This section presents the specifically tailored extensions to BDMP needed
to model detection and reaction aspects.

4.1 The IOFA Detection Decomposition

The integration of detection in a dynamic perspective has led us to distinguish
four types of detection for the AA and TSE leaves, differentiated by the moment
when the detection takes place. Type I (Initial) detections take place at the very
start of the attacker actions or of the events modeled; type O (On-going) take
place during the attacker attempts or during the events modeled; type F (Final)
detections take place at the moment the attacker succeeds in an action or when
an event is realized; Type A (A posteriori) detections take place once an action
or an event has been realized, based on the traces left by such an action or
event.

Each of them has a specific relevance in a security context. Such distinction
allows for a fine-tuned and complete modeling of detection; it is designated by
the acronym IOFA. ISE leaves have been treated slightly differently with two
distinct detections, depending on the realization outcome.

4.2 Extending the Theoretical Framework

In order to model detections & reactions, we extend the framework of § 3.1 by:

– associating to each element a Boolean Di, called Detection status indicator;
– replacing the Active mode by Active Undetected and Active Detected modes;
– selecting the mode on the basis of XiDi, and not only Xi, as described

in Tab. 3 (note that in the formal notations of the following sections, 0 in
subscript corresponds to the Idle mode and covers XiDi = 00 or 01);

– extending the leaves’ triggered Markov processes with new states, transitions,
and probability transfer functions, modeling detections and reactions.

Table 3. The new compound process selector XiDi and the corresponding modes

XiDi 00 01 10 11

Mode Idle Active Undetected (AU) Active Detected (AD)

Detection and reaction in the triggered Markov processes. In this frame-
work, a Pi is a set

{
Zi

0(t), Zi
10(t), Zi

11(t), f i
0→10, f

i
0→11, f

i
10→11, f

i
10→0, f

i
11→0

}
where:

– Zi
0(t), Z

i
10(t), Z

i
11(t) are three homogeneous Markov processes with discrete

state spaces. For k ∈ {0, 10, 11}, the state space of Zi
k(t) is Ai

k. Each Ai
k

contains a subset Si
k which corresponds to success or realization states of

the basic security event modeled by the process Pi, and a subset Di
k which

corresponds to detected states.



96 L. Piètre-Cambacédès and M. Bouissou

– f i
0→10, f

i
0→11, f

i
10→11, f

i
10→0, f

i
11→0 are five “probability transfer functions” de-

fined as follows:

• for any x ∈ Ai
0, f i

0→10(x) is a probability distribution on Ai
10, such

that if x ∈ Si
0, then

∑
j∈Si

10
(f i

0→10(x))(j) = 1, and if x ∈ Di
0, then∑

j∈Di
10

(f i
0→10(x))(j) = 1;

• for any x ∈ Ai
0, f i

0→11(x) is a probability distribution on Ai
11, such

that if x ∈ Si
0, then

∑
j∈Si

11
(f i

0→11(x))(j) = 1, and if x ∈ Di
0, then∑

j∈Di
11

(f i
0→11(x))(j) = 1;

• for any x ∈ Ai
10, f i

10→11(x) is a probability distribution on Ai
11, such

that if x ∈ Si
10, then

∑
j∈Si

11
(f i

10→11(x))(j) = 1, and if x ∈ Di
10, then∑

j∈Di
11

(f i
10→11(x))(j) = 1;

• for any x ∈ Ai
11, f i

11→0(x) is a probability distribution on Ai
0, such

that if x ∈ Si
11 then

∑
j∈Si

0
(f i

11→0(x))(j) = 1, and if x ∈ Di
11, then∑

j∈Di
0
(f i

11→0(x))(j) = 1;
• for any x ∈ Ai

10, f i
10→0(x) is a probability distribution on Ai

0, such
that if x ∈ Si

10 then
∑

j∈Si
0
(f i

10→0(x))(j) = 1, and if x ∈ Di
10, then∑

j∈Di
0
(f i

10→0(x))(j) = 1.

Note that f i
11→10 is not defined: an attacker once detected cannot subsequently

become undetected.
The triggered Markov processes of Section 3.1 are re-engineered to integrate

detection and reaction features, as presented in Tab. 4. They support the IOFA
detection model of Section 4.1. Transition parameters associated to detection
are marked with a “D” in subscript. In the case of the AA and TSE leaves, this
letter is followed in parenthesis by the type of detection (I, O, F or A) they
characterize; in the case of the ISE leaves, it is followed by the characterized
outcome (“/R” in case of realization, “/NR” in case of bad outcome for the
attacker). The success and realization parameters are linked to the detection
status of the leaf: “/D” in subscript means “having been detected”, whereas
“/ND” means “having not been detected”. Discs with dotted circumferences
represent “instantaneous” states whereas full discs are regular timed states. By
instantaneous states we mean either:

– Artificial states introduced for the sake of clarity, but which could be removed
by merging the incoming timed transitions with the outgoing instantaneous
transitions into single timed transitions (e.g. the state SPD in Tab. 4),

– Special “triggering” states which have been introduced to change the Di

values, and trigger mode changes based on internal leaves evolution. For in-
stance in Tab. 4, in AU mode, an arrival either in the “Detected” or the
“Success Detected” states triggers an instantaneous mode switch towards
the AD mode: both arrivals set the Detection indicator status Di at 1, pass-
ing the Boolean XiDi value, used to select the mode, from 10 to 11. Such
“triggering” instantaneous states are represented by striped discs.
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Reaction “propagation”. The extended Markov model of the “Attacker Ac-
tion” leaf in AU mode (cf. Tab. 4) is a good illustration on how detection is taken
into account “within” a given leaf, and can provoke a local mode switch towards
the AD mode. This changes the leaf parameter λS/ND to a new value λS/D, turn-
ing the action more difficult or even impossible, if λS/D = 0, when the attacker
is detected. The same applies for the other leaves. But such mode switches can
also be provoked “externally”, i.e. by a detection having occurred at the level of
a different leaf. In fact, the following possibilities can be distinguished:

– the detection has a strictly local incidence: only the detected attacker action
or security event is affected, the rest of the BDMP is unchanged, i.e. the
other leaves keep the same parameters λs and γs;

– the detection has an extended incidence, changing not only the on-going
detected leaf parameters but also a specific set of other leaves in the BDMP;

– the detection has a global incidence: in case of detection, all the Di are set
to 1, meaning that all the future attacker actions or security events will be
in Detected mode, with the associated parameters.

This last option is the one that has been adopted in this paper: it is both mean-
ingful in terms of security and straightforward in terms of formalization and
implementation. Note that the intermediate option, especially relevant when
dealing with multi-domain systems, has been explored by the authors and can
be implemented by the introduction of “detection triggers”. The associated de-
velopments are not given here for space limitation reasons.

Use-case taking into account detections and reactions. The use-case
of Section 3.4 has been completed by adding detection and reactions possibil-
ities. The chosen parameters, not given here for space limitation reasons, can
be found in [15]. Globally, the introduction of detections and reactions reduces
the probability of success within a week by about 14%, from 0.423 to 0.364.
This modest reduction can be explained by the fact that the most probable suc-
cess sequence, the single off-line bruteforce, is not subject to detection. In fact,
even with systematic detections and perfect reactions (the attack is stopped),
the attacker would still have a 0.201 probability of success, just by the off-line
bruteforce attack. In terms of sequences analysis, the number of possible se-
quences is much higher (4231 vs. 656 in Section 3.4). Tab. 5 gives a selection of
sequences with the conventions of Tab. 2; in addition, detections that occurred
are indicated in brackets for the relevant leaves. Here again, the top 2 sequences
are direct successes of social engineering techniques, followed by the success of a
direct bruteforce attack. In the present case, they are followed by several brute-
force terminated non-minimal sequences, before the first sequences based on the
trapped email with malicious payload approach appear (seq. 14 and 17). This
differs from Tab. 2 in which the sequences based on physical approaches appear
first, whereas they are relegated to seq. 20 and further in the present case. This
is related to the detection and reaction possibilities associated here to such se-
quences. In seq. 20, the attacker has failed in his social engineering attempt to
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Table 4. The triggered Markov processes of the AA and ISE leaves

S/ND

D(O)

Success
Undetected

1- D(F)

D(F)

D(A)

Success
with

Potential
Detection

Si 1

Di 1

Success
DetectedDetected

On-going
Undetected

Idle

Active Undetected

Active Detected

))(( 0 tZi
Markov processes Probability transfer functions

))(( 10 tZ i

))(( 11 tZi

Potential
Undetected

Success
Undetected

Success
Detected

On-going
Detected

Success
Detected

S/D

if 100 (PU)={Pr(OU)=1 D(I), Pr(D)= D(I), Pr(SD)=0, Pr(SU)=0}
(PD)= {Pr(OU)=0, Pr(D)=1, Pr(SD)=0, Pr(SU)=0}
(SU)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 0,Pr(SU)= 1}
(SD)={Pr(OU)= 0, Pr(D)= 0, Pr(SD)= 1,Pr(SU)= 0}

if 110 (PU)= {Pr(OD)= 1, Pr(SD)= 0}*
(PD) = {Pr(OD)= 1, Pr(SD)= 0}
(SU)= {Pr(OD)= 0, Pr(SD)= 1}*
(SD)= {Pr(OD)= 0, Pr(SD)= 1}

if 1110 (OU)= {Pr(OD)= 1, Pr(SD)= 0}*
(D)= {Pr(OD)= 1, Pr(SD)= 0}**
(SD) = {Pr(OD)= 0, Pr(SD)= 1}**
(SU) = {Pr(OD)= 0, Pr(SD)= 1}*

if 011 (OD)= {Pr(PU)= 0, Pr(PD)= 1, Pr(SD)= 0, Pr(SU)= 0}
(SD)= {Pr(PU)= 0, Pr(PD)= 0, Pr(SD)= 1, Pr(SU)= 0}

(OU)= {Pr(PU)= 1, Pr(PD)= 0, Pr(SD)= 0, Pr(SU)= 0}
(SU) = {Pr(PU)= 0, Pr(PD)= 0, Pr(SD)= 0, Pr(SU)= 1}

if 010

Potential
Detected

Si 1

* The detection has occured at a different leaf

** Despite D and SD having null durations, these lines are necessary to specify
the transfer function, the transfer being potentially triggered by the leaf itself.

Markov processes Probability transfer functions

Not realized
Undetected

Idle ))(( 0 tZi

Not realized
Detected

Realized
Undetected

Realized
Detected

Active Undetected ))(( 10 tZ i

Active Detected ))(( 11 tZi

Not realized
Undetected

Realized
Undetected

Not realized
Detected

Realized
Detected

if 100

if 110

if 1110

(NU)={Pr(NU)=(1 S/ND)(1 D/NR),Pr(RU)= S/ND(1 D/R),
P(ND)=(1 S/ND) D/NR,P(RD)= S/ND D/R}

(RU)={Pr(NU)= 0, Pr(RU)=(1 D/R), Pr(ND)= 0, Pr(RD) = D/R}
(ND)={Pr(NU)=0, Pr (RU)=0, Pr(ND)= 1 S/D, Pr(RD) = S/D}
(RD)={Pr(NU)=0, Pr (RU)=0, Pr(ND)= 0, Pr(RD) = 1}

(NU)={Pr(ND)=(1 S/ND), Pr(RD)= S/ND}
(RU)={Pr(ND)= 0, Pr(RD)= 1}
(ND)={Pr(ND)= (1 S/D), Pr (RD)= S/D}
(RD)={Pr(ND)=0, Pr (RD)=1}

(NU)={Pr(ND)=1, Pr(RD)= 0}
(RU)={Pr(ND)= 0, Pr(RD)= 1}

Not realized
Detected

Realized
Detected

Di 1 Di 1

if 011

if 010

(ND)={Pr(NU)=0, Pr(RU)= 0, Pr(ND)= 1, Pr(RD)=0}
(RD)={Pr(NU)=0, Pr(RU)= 0, Pr(ND)= 0, Pr(RD)=1}

(NU)={Pr(NU)=1, Pr(RU)= 0, Pr(ND)= 0, Pr(RD)=0}
(RU)={Pr(NU)=0, Pr(RU)= 1, Pr(ND)= 0, Pr(RD)=0}

Attacker Action (AA)

Instantaneous Security Event (ISE)
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Table 5. Selection of sequences with quantifications

Sequences
Probability
in a week

Average
duration

Contrib.

1 <Social Eng>Generic reconn., Email trap exec., User trapped 1.091 × 10−1 9.889 × 104 30.0%
2 <Social Eng>Generic reconn., Phone trap exec., User trapped 5.456 × 10−2 9.889 × 104 15.0%
3 Bruteforce 2.144 × 10−2 5.638 × 104 5.9%
4 <Social Eng>Generic reconnaissance, Bruteforce 1.055 × 10−2 9.889 × 104 2.9%
... ([...], Bruteforce) × 9
14 <Social Eng><Social Eng><Keylogger><Remote>Generic recon-

naissance, Payload crafting(no detection), Appropriate pay-
load(no detection), Password intercepted

2.250 × 10−3 2.761 × 105 0.6%

... ([...], Bruteforce) × 2
17 <Social Eng>Generic reconnaissance <Social Eng><Keylogger>

<Remote>Payload crafting(no detection), Appropriate pay-
load(no detection), Password intercepted

1.923 × 10−3 2.688 × 105 0.5%

... ([...], Bruteforce) × 2
20 <Social Eng>Generic reconnaissance, Email trap

exec., User trapped(failure and detection) <Social

Eng><Keylogger><Remote><Remote> <Physical>Physical
reconn., Keylogger local installation, Password intercepted

1.549 × 10−3 5.991 × 105 0.4%

manipulate the user by a forged email and has been detected; the parameters of
the subsequent leaves are those corresponding to a detected status. Here again, a
complete analysis is not provided, but would benefit from success sub-sequences
consolidation views.

5 On-Going and Future Work

A first group of on-going developments aims at supporting security decisions.
The new modes related to detection enable new quantifications which may be of
interest for the analyst. This includes the mean time to detection (MTTD) or at-
tack sequences classification ordered by their probability of detection. Besides, if
the list of sequences provides insightful qualitative and quantitative information,
finer-grain analysis, for instance regarding success sub-sequences, are needed to
take complete advantage of the model results. Moreover, individual leaf impor-
tance factors, adapted to dynamic models as discussed in [13], could be defined
for our framework to complete the analyst tool-box. We intend to develop com-
plete and automated tools implementing all these aspects in order to provide a
finer and easier support to security decision.

A second type of perspective deals with the BDMP theoretical framework.
BDMP have been built on Markovian assumptions and exponential distributions,
commonly accepted in reliability engineering [19]. Although such a framework
has also been used in security (see [16] for a short review), there is much debate
on the appropriate way to model stochastically the behavior of an intelligent
attacker, if any. In this perspective, it may be of interest to enable the use of
other distributions. This is possible without changing the graphical formalism,
but the quantifications could not fully benefit from the methods described in
Section 3.4 and would rely on Monte-Carlo simulation.
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Finally, the construction of diverse models during this research has led to the
identification of recurrent patterns in attack scenarios. A rigorous inventory and
categorization of such patterns could lead to a library of small BDMP, modeling
classical attack steps ready to assemble when building a complete model.

6 Conclusion

The adaptation and extension of the BDMP formalism offers a new security
modeling technique which combines readability, scalability and quantification
capability. This paper has presented a complete view of its mathematical frame-
work and has illustrated its use through different use-cases. Sequences, but also
concurrent actions or exclusive choices can be easily taken into account. On the
defensive side, detection aspects have been integrated while several alternatives
are possible for reaction modeling. This extended formalism inherits from the
hierarchical and scalable structure of attack trees, allowing different depths of
analysis and ease of appropriation, but goes far beyond by taking into account
the dynamics of security. It enables diverse and efficient time-domain quantifica-
tions, taking advantage of the BDMP trimming mechanism and their associated
sequence exploration approach, which have been used extensively in the relia-
bility engineering area. If there is still room for further developments as seen in
Section 5, the framework presented here can be already considered as ready to
use, bringing an original approach in the security modeling area.
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Abstract. While there exist strong security concepts and mechanisms, imple-
mentation and enforcement of these security measures is a critical concern in 
the security domain. Normal users, unaware of the implications of their actions, 
often attempt to bypass or relax the security mechanisms in place, seeking  
instead increased performance or ease of use. Thus, the human in the loop be-
comes the weakest link. This shortcoming adds a level of uncertainty unaccept-
able in highly critical information systems. Merely educating the user to adopt 
safe security practices is limited in its effectiveness; there is a need to imple-
ment a technically sound measure to address the weak human factor across a 
broad spectrum of systems. In this paper, we present a game theoretic model to 
elicit user cooperation with the security mechanisms in a system. We argue for 
a change in the design methodology, where users are persuaded to cooperate 
with the security mechanisms after suitable feedback. Users are offered incen-
tives in the form of increased Quality of Service (QoS) in terms of application 
and system level performance increase. User’s motives and their actions are 
modeled in a game theoretic framework using the class of generalized pursuit-
evasion differential games.1,2 

Keywords: Game theory, Human factor in security, Quality of Service, Com-
puter Security, Threat model. 

1   Introduction 

Traditionally security and quality of service (QoS) have been perceived as only  
orthogonally achievable goals. The enforcement of security is thought to be a perfor-
mance obstacle, and guaranteeing QoS is thought to require the relaxation of security 
mechanisms [4]. These are the misconceptions that drive normal users to bypass or 
relax the security mechanism in place. Unaware of the implications of their actions, 
they seek, instead, increased performance or ease of use. Using ineffective passwords 

                                                           
1 Approved for Public Release; Distribution Unlimited: 88ABW-2008-1165 dated 02 Dec 08. 
2 Work done by first author while at SUNY, Buffalo. 
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[2], disabling critical security features, installing untrusted software [5], and not ap-
plying security patches in a timely manner are a few instances of user level lapses that 
impede security. According to a survey [19] conducted by McAfee, users, in the hope 
of gaining an immediate functionality, may recklessly download and install shareware 
programs on their company issued laptops or bring in their own gadgets to the 
workplace. Such lapses are unacceptable in highly critical information systems. How-
ever this brings out an interesting point. If the human in the loop proves to be the 
weakest link, regardless of the sophistication and strength of the security measures 
taken, their implementation and particularly, their enforcement in a system must be of 
critical concern. We argue that enforcement of these security measures requires re-
versing or in the least, manipulating the above misconceptions. Recently there has 
been some work done on viewing security as one aspect of QoS and in turn, seeking a 
symbiotic relationship between the two system interests.  

In this paper, we aim to exploit the obvious interdependence between quality of 
service and security in order to improve overall system security, particularly in inter-
active systems. Unlike previous approaches that tend to address a single threat vector 
[4, 6, 10], the work in this paper describes an underlying approach, similar in theme to 
[9], that may be used in interactive systems. Given that users prefer greater perfor-
mance and increased quality of service, we propose a model to prevent security 
breaches and elicit user cooperation with the security mechanism. The focus of this 
paper is towards dealing with this class of problems where the system security level is 
degraded due to user action/inaction. We take the view that all failures due to user 
action or inaction have to be treated as engineering failures, instead of being ignored. 
We present a game theoretic model intended to directly counterbalance this risk. The 
purpose of the model is twofold: 

• elicit user cooperation with the security mechanisms in place by gracefully 
providing incentives to end users as they provide demonstrable evidence of 
cooperation with the security subsystem 

• punish potential intruders who refuse to cooperate with the security subsystem 
with a reduced QoS 

This approach is similar to [7], where hostile users in a wireless ad-hoc network are 
punished by active jamming. Our approach enjoys two main benefits: It encourages 
legitimate users to cooperate with security mechanisms as well as deters rogue users 
by proportionally degrading QoS in light of suspected security breaches.  

The underlying concept of degrading performance in case of observed security 
problems is present in different forms. In the area of network-security, for example, a 
server may gradually start dropping connections or reducing the QoS to stop a DoS 
attack or delay the propagation of Worms. We extend this idea to service throttling in 
order to address the weak human factor. Our mechanism is applied in cases where 
there is no absolute certainty that there is an attack (malicious traffic in the case of a 
DoS and improper user activity in our case). Degrading performance is done for two 
reasons: delaying the attack (if there is one in progress) and ensuring user level com-
pliance to the security policies. 

The rest of the paper is organized as follows. Section 2 discusses related work on 
addressing the weak human factor. Section 3 presents the QoS degradation model and  
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the flow of control in the model. Section 4 presents a proof-of-concept simulation that 
illustrates the usage of this model. Concluding remarks are given in Section 5. The 
appendices contain the differential games used in the underlying QoS degradation 
model of Section 3. 

2   Related Work 

Researchers in [2], [9] and [22] all arrive at the general conclusion that users may be 
careless and unmotivated when it comes to system security; however they argue that 
the fault lies ultimately with the design and implementation of these security mechan-
isms. Adam and Sasse[2] discuss “Users’ Perceptions on Security” and the impor-
tance of accounting for these perceptions. Dourish et al. [9] argue the importance of 
creating degrees of security as opposed to the traditional “all-or-nothing” black-box 
approach. In this way, users naturally distinguish between highly sensitive versus 
less-sensitive information systems and this manifests itself through different behavior 
in these different environments. Adam [2] and Sasse[22] also emphasize the impor-
tance of removing the transparency from security tools, particularly in highly critical 
systems, and actively involving users in the security cycle. With these criteria in mind, 
in this paper, we developed a graded QoS model to make users personally accounta-
ble for the state of the system. Linn [16] introduces a parameter intended to manage 
the level of protection provided by a security mechanism. Irvine et al. [14, 15] define 
security as a constructive dimension of QoS rather than an obstacle. Our approach 
translates variable security levels directly into variable QoS levels returned to the 
user. In this way, there is a tangible motivation for the user not to circumvent the 
security mechanism.  

The problem of the weak human factor has been researched in the same vein, by 
using fear appeals [29] or by forcing the user to interrupt their workflow [31] for the 
‘greater good.’ Generic approaches have also been proposed by means of equating 
safety properties to security properties [3]. Certain online banking systems ask in 
addition to the password, personal information about the user (like SSN number, 
Drivers license, etc.) during a login procedure. However such measures are geared 
only towards malicious users and do not involve legitimate users in the security sub-
system. A model called ‘safe staging’ [30] by Whitten and Tygar  extends this notion 
to legitimate users, where a system restricts the rights of Java applets (the service 
quality) in response to users' demonstrated understanding of the security implications. 
As users become more familiar with the security issues, the service quality is in-
creased. Our model extends this notion a step further by incorporating a monitoring 
and feedback control mechanism to involve legitimate users in a constructive manner.  

3   QoS Throttling (QoS-T) Model 

Essentially, the problem we seek to solve is an important one, but has eluded a tech-
nical solution due to a variety of reasons. Primary among them is the act of interfe-
rence and lack of control; any technological solution that seeks to remedy the weak 
human factor does so by means of either interfering in the workflow of the user or 
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taking away control of the system from the user, or a combination of both factors. 
These two factors irk users; security designers have not found the correct balance or 
an alternative. Our approach is a combination of these two factors, but in a very gra-
dual and subtle manner with appropriate feedback, thereby giving the user complete 
control at every stage, with minimum to zero interference to the workflow. The nature 
of this problem involves understanding and quantifying user actions, their incentives 
and ensuring an optimal state where the user objectives are met and the system securi-
ty is also maintained. Thus, the problem may be viewed as one of balancing the objec-
tives of the user and that of the system. In such a situation, game theoretic models 
apply naturally.  

3.1   Why Game Theory? 

We have chosen the class of generalized pursuit-evasion differential games for model-
ing this problem. Game theory helps model a set of ‘selfish’ and ‘rational’ players 
who act in a setting solely for their own advantage. Users in our setting can be said to 
act selfishly to improve their own QoS. Game theoretic models have been used to 
infer the incentives of attackers [20] based on their perceived incentives. In this work, 
we use a game theoretic model to provide incentives to the user in order to elicit co-
operation. The purpose of the game theoretic model is to derive a measurable quantity 
out of the user’s actions that can be given as a feedback to the security mechanism. 
User’s actions in the game theoretic setting are equivalent to strategies of a player. 
The security mechanism can use the payoff function of the game to adjust the QoS. 
The advantage of modeling the user/resource/security-mechanism scenario as a diffe-
rential game is that it allows for a flexible definition of the act of “a user accesses a 
resource.” While this definition is abstract at the level at which this model is de-
scribed, it can be properly interpreted and applied on the specific security domain 
where its application is relevant. The model is self enforcing; we do not make any 
assumptions about the coordination between the players of the game. Users in a sys-
tem need not be aware of the model, nor are they required to consciously participate 
in any ‘game.’ Differential game-theory also has the notion of ‘continuous’ play, 
which makes it conducive to use it in situations as these. Lastly, the usage of game 
theoretic notions allows us to specify notions of strategy or best responses of the par-
ticipating players (the users and the system) thereby leading to good mechanism de-
sign that elicits cooperation from users as a natural process. The reader is referred to 
[8, 17] for a more detailed exposition on game theory. The specifics of the games 
used in our model are described in the appendix.  

3.2   Types of Users 

The threat posed by legitimate users in an organization has appropriately been  
labeled as “The Enemy Within” [19] in a recent survey by McAfee Corpo- 
ration (http://www.mcafee.com). We can divide the user broadly into two different  
categories: 

• Type I: A Legitimate User – This category of users includes legitimate and autho-
rized users of the system. These users log into the system and execute workflow 
processes according to their roles. According to the McAfee Survey [19], such 
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users are varyingly labeled as “The Security Softie”, “The Gadget Geek” or “The 
Squatter.” While they do not have any stated intentions to disrupt the  
system, their actions nonetheless endanger the system. For example, these users 
do not have any idea of the threat model of the system and hence, may not  
implement the best practices suggested by the organization. 

• Type II: A Legitimate, but Malicious User – Similar to Type I users, users in this 
category are legitimate, i.e., they possess authorized credentials to log into the 
system. However, their goal is to disrupt the system, either through a self in-
flicted cataclysmic system compromise or through slow poisoning attacks like 
leaking confidential information about the organization to its competitors.  
According to the Survey [19], such users are labeled as “The Saboteur.” 

Let us first examine the challenges that researchers and designers face when dealing 
with the weak human factor. In any system, users perform actions towards fulfilling 
their roles. The notion of actions is an abstract one that can be generalized to most, if 
not all, systems. Actions can be split in the following manner.  

• Action Type I – the fundamental user actions required for the workflow: These 
fundamental actions are defined by the user’s role in the environment. For exam-
ple, a graphics designer will need to use some photo/video editing software. In 
addition, a device like a tablet may need to be connected to the computer via the 
USB interface for rendering hand sketches. 

• Action Type II – Ancillary actions required for the fundamental actions to work: 
For example, exploring the hard drive is a prerequisite for most job roles. In addi-
tion, connecting USB devices, burning images onto a CD may be in this list for a 
graphics designer. 

• Action Type III – These are actions that are not predefined like Action types I and 
II. These actions are the ones that users normally execute without any restric-
tions, since they do not fall under the purview of ‘restricted objects.’ They might 
have the potential to disrupt the working of the system, or may be inimical to the 
individual. Examples of such actions include clicking on a potential phishing link 
in an un-trusted/unsigned email.  

For those actions that are relevant to the security of the system, there exists an easy or 
an efficient manner of performing them. For example, choosing a password is an (one 
time) action that users have to perform when registering into the system. The easy 
way is to choose a password that is easy to remember (and hence easy to guess/crack). 
The efficient way, on the other hand, is to choose a complex password that is tough to 
remember. Similar is the situation with security updates; it is easy to ignore them 
while it is efficient to update the system. For reasons that are mostly context and do-
main specific, users prefer to perform only the easy action, and not the efficient one. 
Viewing the interaction between the user and the system as a set of easy vs. efficient 
actions, where the easy action is most often the inefficient one, provides us a global 
view to look into this issue. Thus the main challenge for human centered security 
schemes is to ensure that users perform the efficient action with awareness of the 
consequences of their actions. Viewing these actions under the three prisms provides 
us one methodology to address the human factor related security issues. 
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3.3   Process Flow 

The flow of control for the QoS throttling model is shown in Figure 1. We first start 
with the security mechanism and derive its requirements. Towards this, we may use 
the systems’ best practices as a guide. Concurrently, we define the user’s workflow 
process. These two steps are one-time processes which ensure that (a) at no cost is the 
users workflow adversely affected and (b) the Monitoring agent is aware of the secu-
rity subsystem’s expectations. The user’s session then proceeds as usual, where every 
user action is first filtered by the security policies in the system. These filtered actions 
are monitored by the monitoring agent, which decides if the actions are in confor-
mance with the security subsystems requirements. If the user is cooperative, he is 
rewarded with a gradual increase in the QoS. If the user is not cooperative, a feedback 
is given (similar to ‘Install Updates’ dialog box in the windows environment, etc.) 
with a request to cooperate. If the user still blatantly refuses to cooperate, the gradual 
application and context specific QoS throttling is initiated. 
 

 

 

Fig. 1. Control Flow 

3.4   QoS-T Model 1: Exponential Back-Off      

Given a singleton process, we discuss a simplistic exponential back-off model to evaluate 
a decreasing time delay. This time delay could be used as a parameter to the artificial 
sleep statements (or any other context specific delay). This model is useful in situations 
where the system (and its threat model) is simple enough with an automated mechanism 
that classifies the user. We define the QoS throttle through a simple equation: 

f(x) = (1 - x)·e1/x      : x ∈ [0,1] (1) 

where x is the quantitative input that grades the users classification and f(x) the time 
delay (in some appropriate time units) that is imposed by the system. The value x can 
be the trust level of the user in the system, a real number between 0 and 1, where 0 
represents a untrustworthy user and 1 a trustworthy user. For those systems that have 
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a mechanism to detect their security level (or trust level of users), the exponential 
back-off model may be used. For example, the Compensatory Trust Model[28] is an 
automated trust evaluation mechanism specifically designed for users in an authenti-
cated system.The exponential back-off model has the advantage of simplicity, clear 
intuition and an easy translation to an implementation. Also, the intuition behind it 
may be changed depending on the system (and the users) to derive other ancillary 
models (different distributions) that may perform better for particular systems.  

3.5   QoS-T Model 2: Game Theoretic Approach 

Given a workflow process with multiple sub-processes, we present a game theoretic 
model that can be used to gradually reduce the QoS of a sub-process and tag the user 
as proceeding gradually from a non-cooperative user to a malicious user during the 
workflow.  

 

 

Fig. 2. Modeling the Workflow and constituent Sub-Processes 

We leverage on two well-studied problems of game theory – the two player diffe-
rential game of “Guarding a Territory” [12] and the “Dolichobrachistochrone” [11]. 
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Each fragment represents some sub-process in the workflow (e.g., the execution of a 
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infer the security state of the system). The second differential game of “Guarding  
the territory” models the security state of the system. This game also models the  
point where the noncompliant user becomes a malicious user. These two games are 
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Dolichobrachistochrone game is also called a supergame, within which repetitions of 
the smaller ‘guarding the territory’ game is played. The game-theoretic model is more 
involved, with a greater emphasis on system specifics and an inbuilt mechanism for 
user classification. A detailed description of these games is given in the appendix.  

The control variables of the two games are chosen depending on the system under 
consideration and the security mechanism. The final step in the model is to chain the 
two games so that the output of the Dolichobrachistochrone is the input of the 
“Guarding the territory” game. The payoff of the Dolichobrachistochrone is x(T), 
which is the distance traveled by the particle P. The player u in the “Guarding the 
territory” game can now travel a distance x(T) towards the region Ωby a predeter-
mined angle.If the playerwere to reach the region before the session is over, the secu-
rity state of the system can be changed and appropriate action can be initiated. 

4   Proof-of-Concept Illustration 

In this section, we introduce a simplified, yet generalized scenario encountered by 
network administrators in most IT organizations. We then derive the threat model 
from a basic social engineering attack and present the application of the game theoret-
ic QoS-T model to this problem, illustrating its practical utility. 

4.1   Threat Scenario 

An experiment [26] was conducted by “The Training Camp” where commuters in 
London were offered free CD’s with special Valentine Day’s promotion. Despite a 
clear warning, most employees apparently inserted the CD and ran the program 
(which displayed a warning against such actions). In a similar vein, another experi-
ment [25] (akin to a social engineering penetration testing) revealed that free USB 
disks which were ‘discovered’ by employees were blindly inserted into computers, 
thereby triggering the execution of a (potentially malicious) program. 

The situation is similar with the case of downloading and installing programs from 
the Internet. For example, consider the process of downloading and executing a file 
from the Internet. The user launches a browser, connects to the web site that hosts the 
file (or is redirected to the site), downloads the executable and then executes it. As-
sume that the systems’ best practices state that unless a downloaded executable is 
signed by a trusted publisher, it is preferable to not execute it. This typical sequence of 
operations initiated by the user can be broken down into sub-processes, each of which 
plays a role in the complete operation. This example brings out the following points: 

(a) The process of downloading and running untrusted executables is a manifestation 
of the weak human factor. 

(b) This process is not part of the user’s workflow in the organization. 
(c) The entire process can be split into a number of sub-processes:  

a. Browsing to an untrusted zone 
b. Initiating a File download 
c. Executing the file 

For the sake of illustration, we assume that executing untrusted executables in the 
current user context is not completely prohibited, but is undesirable.With this  
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scenario, let us explore how the new paradigm can be applied. We have two levels 
here. First we want to throttle the service quality, but not affect the user’s legitimate 
workflow. Secondly, we would like to use the additional CPU cycles gained to per-
form some useful work, in terms of increasing system performance and security. To 
degrade the application level QoS, the browser could be slowed down in a number of 
ways (inserting artificial sleep statements in the browser process, slowing down the 
network bandwidth available to the browser process, etc.).  This degradation is in-
itiated only after a proper feedback is provided to the user, warning him to refrain 
from the actions. This degradation by no means affects the system performance (if 
there are any background processes running) and provides the developer an opportu-
nity to insert (for example) security logging statements, like logging the site where the 
browser navigated to, the plug-ins activated by the site, etc. After the application has 
been downloaded, the user could be given an option to run the application inside a 
sandbox with restricted permissions, or run the application with less than normal 
privileges. Additionally, the application level QoS could be degraded by inserting 
artificial sleep statements in an approach similar to [30].  

4.2   Threat Model: Multiple Untrusted Applications Execution 

In this threat model, we envisage a scenario where users are required to specify in 
their workflow patterns the most commonly used applications in a typical session. 
This represents a secure and controlled environment such as the military operations or 
a secure and compartmentalized job in an industry. As mentioned in Figure 1, specify-
ing the workflow is a onetime process. If the applications users execute fall within the 
purview of the workflow, they are accorded a high application level QoS. As they 
execute applications outside the workflow specification (possibly due to malicious 
intent or due to an impersonation attack), the QoS is gradually reduced. When the 
number of applications outside the workflow specification exceeds a limit defined by 
the users trust level, the user is declared malicious. This clearly illustrates the game 
theoretic model; one game is used to determine the QoS and the other is used to de-
termine when the non-cooperative user becomes a malicious user. 

The QoS degradation for this threat modelis similar to the concept of penalizing 
specific system processes, which is the approach by Somayaji and Forrest [24], where 
an exponentially increasing delay (artificial sleep statements) was introduced between 
system calls.  

The final step is translating the model to the actual timing details. We fixed the dis-
tance of the user from the territory Ω (Figure 6 in the appendix) to be the maximum 
number of unauthorized applications for a standard user (xo = 7 units in Eq. 5 in the 
appendix). As we shall see, users are tagged malicious if their trust level is low or 
never tagged as malicious if their trust level is high, even if they exceed the maximum 
value set for the standard user. The users’ trustworthiness (UT) was varied between 0 
and 1 (0 <UT≤ 1). ω in Eq. 5 in the appendix was set to 1. Finally the delay time (T) 
in the Dolichobrachistochrone game is inversely proportional to UT (T = α / UT). One 
time unit is set to 10 milliseconds for this plug-in. These assignments finally reduced 
the model to evaluation of the Dolichobrachistochrone game Eq. 5 in the appendix, 
which now reads as follows: 
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 (2) 

The variable α (in T = α / UT) for each action was set and subsequently increased 
according to Table 1. Subsequent values of xo were assigned to the previous values of 
x(T) as calculated by Eq. 5 in the appendix. We varied the users’ trust level and plot-
ted the time delay as well as the number of unauthorized applications it would take for 
the user to execute to penetrate the territory. The resulting action by the security sub-
system depends on the domain. The plug-in raised an administrative alert when the 
territory was reached by the user. 

Table 1. Values of UT and corresponding α 

Trust Level (UT) Alpha (α in T = α / UT) Figure 
0.1 Initially set to 0.1 and increased by 0.1 3.a 
0.3 Initially set to 0.1 and increased by 0.1 3.b 
0.7 Initially set to 0.15 and increased by 0.15 4.a 
1.0 Initially set to 0.2 and increased by 0.2 4.b 

 
Figure 3 shows the time delay for low values of user trust levels and the number of 

actions (or equivalently, the number of untrusted applications executed) it takes for 
the users to transit from a non-cooperative user to a malicious user.  
QoS Degradation for UT = 0.1: Figure 3.a shows the time delay rate (T) and the 
progress of the user towards the territory (x(T) ) for a trust level of 0.1. Since the users 
trust level is very low, the user rapidly progresses towards the territory, indicative of  
his  low trust level; he is tagged as malicious (at the point where x(T) crosses y = 0) 
by the fifth unauthorized application.  
QoS Degradation for UT = 0.3: Contrast this with Figure 3.b, which shows the same 
plot for a trust level of 0.3. The time delay rate is still the same (α is the same), but 
the user approaches the territory slowly, indicative of an increased trust level, and is 
tagged  as malicious only by the 11th unauthorized application, as opposed to the fifth 
one in Figure 3.a. Figure 4 shows the time delay for high values of user trust levels. In 
this case, we note that the user does not actually penetrate the territory, indicative of 
the high trust level. Instead, there is a gradual oscillatory movement due to the sinu-
soidal component in Eq. 5 in the appendix. 
QoS Degradation for UT = 0.7: As illustrated in Figure 4.a, the user initially ap-
proaches the territory since the session scope is not complied with. Due to the sinu-
soidal component in Eq. 5 in the appendix, the initial approach towards the territory is 
replaced with a movement away from the territory. We interpret this sinusoidal oscil-
lation as follows: This user is not deemed malicious at any point of time, due to his 
high trust level. But, we also set a lower time delay rate as the system expects him to 
be cooperative and security conscious due to his high trust level. For example, the 
time delay for this user at the end of the 11th unauthorized application action is 2.35 
time units (23.5 milliseconds)  while the time delay for the user in Figure 4.b (UT = 
0.3) is 3.66 time units  (36.6 milliseconds). 

1
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(a) QoS degradation for UT = 0.1 (b) QoS degradation for UT = 0.3 

Fig. 3. QoS degradation for low values of user trust level 

 
(a) QoS degradation for UT = 0.7 (b) QoS degradation for UT = 1 

Fig. 4. QoS degradation for high values of user trust level 

QoS Degradation for UT = 1: Here we illustrate a situation where the user is com-
pletely trustworthy. In Figure 6.b, the user does not even approach the territory (in-
deed, he moves away from it) since he is completely trustworthy. However, the time 
delay is made higher (0.2 units). The time delay at the end of the 11th action for this 
user is 4.4 units (44 milliseconds). Such progressively high time delays virtually 
render the unauthorized applications inoperable (for the user). Note that the act of 
setting higher time delays for highly trusted users is intuitive and logical, since trusted 
users in mission critical areas are expected to be aware of the security subsystem and 
hence, cooperative. Their high trust levels ensure that they are not tagged as malicious 
at any point in time, a privilege they earn at the cost of actively cooperating with the 
security subsystem. A simple scheme to ensure that users consistently approach the  
territory as time progresses is to provide a feedback loop and lower their trust level 
progressively. This aspect, however, is out of scope of this paper, for trust assignment 
and management is another research area by itself. 

5   Conclusion and Future Work 

Farmer’s Law states, “The security of a computer system degrades in direct propor-
tion to the amount of use the system receives.” Farmer self-proclaimed this as his law 
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in a survey on the security of Key Internet Hosts, highlighting the fact that users are 
often the greatest risk to system security. In a similar vein, Schneier[23] states that the 
very interaction between humans and systems forms the greatest risk to IT systems. 
For specific threat models (like weak passwords, phishing, social engineering, etc.), 
there are specific solutions. But the greater problem of involving the users in the  
security loop has remained unaddressed so far. The reason for this lies in the miscon-
ception that QoS and security are orthogonally achievable goals. In highly-critical 
information systems the need to appeal to these users and elicit their cooperation is 
paramount. Trading application level QoS in terms of transparency/ease of usage for 
user involvement with the security mechanisms in place is justified and in fact, neces-
sary. The solution advocated in this paper is a graceful degradation of the rendered 
application specific QoS that the user perceives in the face of a conspicuous lack of 
cooperation. For example, consider the case of data breaches in corporate environ-
ments; a recent article in the Wall Street Journal states [32] states that data breaches 
are on the rise; most often, the data breaches are not detected immediately and of-
fenders are rarely, if ever, held accountable. The QoS-T framework proposed in this 
paper could be viewed as a contractual requirement by the customer of businesses; it 
may be viewed as a mechanism to correct complacency by corporate members’ in-
situ. Any complacency by businesses (and their employees) in applying appropriate 
security measures towards data protection would lead to a lowering of QoS, which in 
turn, would directly affect productivity (and hence, would affect the “sacred” bottom-
line). Thus conformance to security measures will not be limited to merely a moral 
code but enforced with a monetary means.The application of game theoretic models 
to practical scenarios will lead us into interesting problems [18] which have to be 
resolved in a context specific manner. Although it is debatable if such a model will 
really ensure user cooperation, we hope that in the same manner a user types his 
password carefully the second time to avoid typographical mistakes (and hence addi-
tional delays in password systems), the implementation of this model will encourage 
the user to cooperate and actively participate with the security subsystem. 
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Appendix 

Dolichobrachistochrone: The Dolichobrachistochrone game is a two player differen-
tial game where a point mass P in a uniform gravitational field is constrained to move 
without friction along a given curve γ. This is illustrated in Figure 5. For equation 
convenience, the gravitational field is in the direction of the positive y axis. The objec-
tive of P is to choose a curve so that it reaches the line x = 0 (the y-axis) in minimum 
time. The player E has an objective of trying to slow P as much as possible. E has a 
force ψ that can be applied to slow P from reaching x = 0. The conditions of the game 
dictate that the particle P will definitely reach the y axis in a finite time. P’s objective is 
to minimize its arrival time to x = 0. E’s objective is to maximize the time for P to 
reach x = 0. In our model, P represents the user and E the security mechanism. For 
every access to a resource, the user attempts to minimize his time of access. This trans-
lates to P minimizing its arrival time to x = 0. The security mechanism (E in the game) 
attempts to vary the rendered QoS according to the force ψ. Figure 5.a shows the par-
ticle P falling through the curve γtowards the y axis (x = 0). Figure 5.b shows the play-
er E with an opposing force ψ. The equations of motion for the particle P are described 
in [11]. The payoff of the game is the distance traveled by the particle P.  

P(ψ) = x(T) (3) 

where T is the time for P to reach x = 0 and ψ is a positive constant (ψ = EB = EC in 
Figure 5.b). 

 

 

Fig. 5. Dolichobrachistochrone Game 
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The optimal trajectory for the particle P is given by: 

 (4) 

; yo = y(0) (5) 

where -1 ≤ ω ≤ 1. The reader is referred to [11] for more details. The Value of the 
game (which is the payoff under optimal conditions) is x(T) that is evaluated from Eq. 
5. Hence the security mechanism can choose T (which is the time (delay) taken by the 
user to access the resource) or equivalently, the force ψ based on the system parame-
ters like the value of the resource being pursued (Rv), the trustworthiness of the user 
(UT), etc.  
 
Guarding the Territory: This game represents a model in which a player v is guard-
ing a territory Ωagainst an invasion by the player u, asshown in Figure 6. The motion 
of u and v are described by differential equations [12]. The initial conditions are set as 
x(0) = A and y(0) = B. As illustrated in Figure 4, player v, the Security mechanism, is 
located at B, while player u, the user, is located at A. In Figure 6, the players are  
initially separated by a distance AB. C is the mid-point of segment AB. CY* is per-
pendicular to AB, with Y* being the nearest point to the region Ωsuch that Y*Z* is 
perpendicular to Y*C. Z* is the point on the region Ω that is nearest to the line seg-
ment CY*. We denote the distance of any point x on the plane to the territory Ω as 
d(x,Ω). Each cooperative action by the user symbolically takes him farther away from 
the region Ω. The model expects the security mechanism to provide a feedback on the 
nature of the user’s action and a quantitative measure of the same (which is obtained, 
in this case, from the Dolichobrachistochrone game). 

 

 

Fig. 6. Guarding the territory 
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This measure effectively takes the user towards the region Ω or away from it. The 
region Ω is the “intrusive” region which the security mechanism can be thought of as 
trying to protect. The payoff function of the differential game is given as: 

 

P(u,v) = { 

d(x(τ), Ω), if τ<T  
N, if τ = T and x(τ) lies on the same side of CY* as A (6) 
0, if τ = T and x(τ) lies on the same side of CY* as B  

 
where N >d(Y*, Ω).  In a typical equilibrium  strategy, every motion of u towards the 
regionΩ is matched by v by a similar mirror image move across CY* as indicated by 
the dotted lines in Figure 4. For instance, the move AA` is matched by BB`, A`A`` by 
B`B``. The objective of the player u is to minimize the payoff P(u,v) in Eq. 5, whe-
reas player v tries to maximize it. Hence, in the original game, if player uchose not to 
come near the territory Ω, he is penalized by a payoff N. If v did not guard the territo-
ry “very well”, he is penalized by a payoff of 0. 
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1 Introduction

Applications of statistical methods in the analysis of covert channels or covert
communication are widely discussed in the literature [1,2]. Then everywhere
we’ll use the term covert channel. In the analysis of covert channels the focus is
concentrated on statistical detection of communications with hidden information
[3,4,5]. Another important task is to assess the capacity of covert channels [6,7].
All works, which are associated with these tasks, use probabilistic models of legal
communications and probabilistic models of information hiding.

In this paper we discuss some problems of probabilistic modeling in the anal-
ysis of covert channels. Sometimes the analysis of covert channels is weakly
dependent on the correctness of probabilistic models. We show that the problem
of detection of covert channels depends strongly on the correctness of the choice
of probabilistic model. We note that the small differences in that probabilistic
models can significantly affect the topological structure of the sets, associated
with supports of probability measures, used in the simulation. We show that the
topological structure of such sets depends on the bans (prohibitions) of certain
configurations which cannot appear in legal communications.

1 This work was supported by the Russian Foundation for Basic Research, grant 10-

01-00480.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 118–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Problems of Modeling in the Analysis of Covert Channels 119

Research of such bans received little attention in the analysis of covert chan-
nels. The appearance of forbidden configurations can greatly simplify the search
of covert channels.

The paper has the following structure. In section 2 we consider the motiva-
tion examples to explain the problem of modeling of covert channels. Section 3
shows how to build a topological space, whose structure reflects the properties
of probabilistic models of covert channels. We find some topological properties
of some sets related to the restrictions in the structures of legal communications.
We have built an example in which the appearance of a ban severely alters the
topological structure of the considered sets. In conclusion we summarize the
results and outline the path for further research.

2 Preliminary Discussion

Let T - a channel from computer A to computer B. All transmitted information
in T must not contradict business processes in A and B, which T supports. A’ is
an agent of an adversary in A and B’ is an agent of an adversary in B. A’ may
suspend the transmission of legal information and inserts its own message. The
schedule of hidden message transfer is known to B’. It is a key.

We consider the Simmons’s model [8] for hidden signal (message) from A’
to B’, having the channel (network) T at their disposal. Observer U intercepts
everything that is transmitted from A to B and decides if there is a covert
communication or not. When A chooses messages independently then the case
was considered in [9]. There we proved conditions of absolute invisibility of covert
channel.

Let X be the set of possible messages. Regardless of what methods of analysis
U has, his decision is based on a set S ⊆ X of messages that U considers as covert
communications. If x is the message, which U has observed, then U makes the
decision on the existence of hidden transmission in the case, when x ∈ S. That
is, U has a computable for him function π(x, S), where π(x, S) - an indicator of
the set S.

If x does not belong to the set S, then U does not consider the transfer of x
as illegal, i.e., U ”does not see” the threat of x.

Suppose that A’ and B’ know S. Then the hidden transfer must be constructed
so that the transmitted message x /∈ S. We say that in this case U ”does not
see” a covert channel. This approach describes both as deterministic so and
probabilistic models of covert channels. For deterministic models it is obvious.

Consider a probabilistic model of a covert channel. It presupposes the exis-
tence of a probability measure P0 on X , which corresponds to a legal choice of
message x. That is, U tests the hypothesis H0 : P0 by the observation x. Cri-
terion is defined by the critical set S, rejecting the hypothesis H0 with a given
level of error probability ε (i.e. P0(S) ≤ ε).

A with the ”help” of A’ chooses a message x in accordance with his probability
measure P1. For example A’ uses pauses between the sentences to introduce its
own information. In this case B receives the message x, and B’, knowing the
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secret key k, uses the distribution P1(x|k) to get information like in [10]. For
example B’ counts the posteriori probability to make a decision about covert
information transfer out of secretly determined periods of time. Here P1(S) -
the probability to be noticed when sending covert messages.

There are two approaches in constructing models of action of the participants
A’, B’ and U. The first approach is typical for U. He builds any sort of model. In
this model, U builds critical set S, and decides if there is or there is no a covert
channel. If U guessed and correctly solved the problem of protection, then it
does not matter how correct is his model. He succeeded because his model has
suggested him the way to success. Such an approach to model in the analysis of
covert channels we’ll call ”lodestar”.

The second approach in constructing models of action of the participants is
typical for A’. When building a covert channel, he must explain the invisibility
of the transmission, because defeat could follow severe consequences for him.
To justify the invisibility of the covert communication A’ and B’ must have an
adequate model of the set S.

Consider the problem of the adequacy of the model of a covert channel. If
U knows that for any choice of the key distributions P0 and P1 coincide, it is
obvious that he has no criterion for identifying the covert channel [2]. We explain
this in the following example.

Example 1. Participants A’ and B’ suggest that the model of legal transfer
through the channel T is determined by the distribution P0. Transfer in the
channel T is a realization of an infinite sequence of iid random variables taking
values in the alphabet χ = (x1, ...xm) with probabilities p = (p1, ...pm), pi >
0, i = 1, ..., m,

∑m
i=1 pi = 1. A’ may do insert into legal transmission. In this

model A’ can easily prove that the following transmission scheme is absolutely
invisible for U.

Let the set of messages of participant A’ consists of L1, ..., LN . He encodes
them as follows. A’ builds N random sequences Δ1, ..., ΔN in accordance with the
measure P0, and each message Li, i = 1, ..., N , is associated with Δi, i = 1, ..., N .
In addition, he builds a long key random binary sequence G. To arrange invisible
channel for U, this set of data secretly from the U is transmitted to B’. Let A’
is going to transmit message Lj. On the place, where the sequence G has 1, A’
additionally inserts the next character of the sequence Δj . We obtain thus a
sequence of iid random variables with the (p1, ...pm) -distribution of characters
on the set χ. Thus, for U we have P0 = P1 and U does not see the hidden
transfer.

Example 2. Assume, for simplicity that in the previous example, m = 2, χ =
{0, 1} and the legal channel is generated by the simple homogeneous Markov
chain, in which the transition probability matrix has all elements positive except
P (1, 1) = 0.

The covert communication using the method of the previous example can
be easily detected. It may be done even in the case when sequences Δj , j =
1, ..., N , are chosen in accordance with the same Markov chain as in the legal
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communication. In fact, in the sequence Δj , j = 1, ..., N , there is an infinite
number of 1, and the probability, that before places of incorporating the hidden
elements it will always be element equals to 0, tends to 0. Hence, with probability
tending to 1, there will be the combination (1, 1) which is outlawed in the Markov
chain. When such a combination is obtained, U identifies the covert transmission.

These examples show that a mistake in the choice of measure P0 may lead to
detection of covert channel constructed by A’.

More difficulties for A’ in the construction of a covert channel occur, if the
distributions of sequences, transmitted through the channel (network) T, may
vary. That is, instead of P0 the distribution of the legal transmitted sequence
belongs to the family {Pλ, λ ∈ Λ}, and the choice of a critical set S for U may
depend on λ. It means that U receives from A additional information about the
distribution in the channel (network) T. In this case A’ does not possess such
information.

3 Asymptotical Case

Consider the problem of constructing invisible covert channel in an asymptotic
formulation. Let Xi, i = 1, 2, ..., be the sequence of finite sets, the time is discrete.
At each n U observes the vector xn = (x1, ..., xn), xi ∈ Xi. We can assume that
the maximal information available to U is an infinite sequence x in the space of
all possible messages X :

x ∈
∞∏

i=1

Xi = X.

In accordance with the previous assumptions, there are several models of legal
communications defined by the probability measures Pλ, λ ∈ Λ, on X as func-
tions on σ-algebra A, which is generated by cylindrical subsets of X . Denote
Pλ, n, λ ∈ Λ, n ∈ N , be the projections of measures Pλ on the first n coordi-
nates of the sequences of X . Denote Dλ, n be the support of the measure Pλ, n

in the space
∏n

i=1 Xi, and

Δλ, n = Dλ, n ×
∞∏

i=n+1

Xi.

In the asymptotic formulation of the problem of covert communication detection
U has a sequence of criteria tλ, n, λ ∈ Λ, n ∈ N , that are specified by a sequence
of critical sets

Sλ, n ⊆
n∏

i=1

Xi.

U chooses n and uses Sλ, n to make his decision about the presence of a covert
channel in

∏n
i=1 Xi with a known Pλ, n. Namely, if the sequence xn belongs to

Sλ, n, then U announces the identification of a covert channel. We believe that
Sλ, n chosen so that

Pλ(Sλ, n)→n→∞ 0.
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for any λ ∈ Λ. This means that U asymptotically identifies the correct legal
transfer. Obviously, the covert channel is not seen for U for any λ, if the choice
of hidden messages does not belong to

⋃
λ∈Λ Sλ, n for any n.

If it is not known how U selects a critical set, then A’ must comply with
certain rules for the selection of hidden messages.

1. At a certain λ ∈ Λ for every n hidden message should belong to Dλ, n.
For U it is reasonable to include in Sλ, n all the sequences xn from

∏n
i=1 Xi for

which
Pλ, n(xn) = 0.

This rule is illustrated in Example 2.
2. If

F = X \
[⋃

n

⋃
λ∈Λ

(
Sλ, n ×

∞∏
i=n+1

Xi

)]
.

becomes empty, that will make impossible for A’ to choose a hidden message.
If F consists of a finite number of sequence, then U increases a total number of
forbidden messages by adding last several messages from F . In the case, when F
consists of a countable set of sequences, then U can decrease F to a sufficiently
large finite set, and significantly limit the ability to hide information.

Let’s investigate the effect of these rules on the choice of A’. The discrete
topology can be considered on Xi. Then X becomes a topological space (Ty-
chonoff product [11,12]). This space is compact, because Xi is finite. In addition,
the topological space X has a countable base, because class of cylindrical sets
is countable. In our case, the Borel σ-algebra B coincides with A. Therefore, all
measures Pλ, λ ∈ Λ , are defined on B.

It is obvious that for any λ ∈ Λ the sequence Δλ, n, n ∈ N , is nonincreasing,
since

Dλ, n−1 ×Xn ⊇ Dλ, n.

Hence, there is a limit

Δλ =
∞⋂

n=1

Δλ, n.

All Δλ, n, n ∈ N , are closed and open sets of a topological space X . Therefore,
for all λ ∈ Λ sets Δλ are closed in the Tychonoff product. Then Δ is a closed
set:

Δ =
⋂
λ∈Λ

Δλ =
⋂
λ∈Λ

∞⋂
n=1

Δλ, n. (1)

In formula (1) we can take a countable set of nonincreasing cylindrical sets
Δn, n ∈ N , such that

Δ =
∞⋂

n=1

Δn.

There are several cases.
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Case I. Δ = �. Because by the compactness of X there exists M , for which

M⋂
n=1

Δn = �.

By nonincreasing of sequence Δn, n ∈ N ,

ΔM = �.

This means that for some n A’ has no choice for invisible covert communication.
Any choice of A’ can be seen by U in these circumstances. I.e. for A’ there is no
guarantee of invisibility of the hidden transfer.

Case II. The set Δ includes some open set of X . Since any open set in X is a
countable union of some of cylindrical sets, then all sets Δλ, λ ∈ Λ, include at
least one cylindrical set which is common for all sets Δλ. Any cylindrical set is
uncountable. Consequently, in Δλ there exists an uncountable set of points, each
of them has measure 0. Therefore, A’ can choose of them a satisfactory sequence
(a finite set of sequences) for covert communication, ensuring the nonexistence
of a consistent sequence of criteria for detection this communication by U. And
there is a consistent procedure for B’ to understand the information that A’ sent
to him.

Case III. If the conditions I or II are not fulfilled, then the topological structure
of a closed set Δ is more complex and requires further study.

Example 3. Consider the family of distributions (P0, P2), corresponding to the
examples 1 and 2. That is, P0 corresponds to a sequence of iid random variables
taking values 0 and 1 with probabilities 1− p and p, 0 < p < 1. P2 corresponds
to a stationary homogeneous Markov chain on the states 0 and 1 with a matrix
P , where p11 = q1, p12 = 1− q1, p21 = q2, p22 = 1− q2.

If 0 < q1 < 1 and 0 < q2 < 1, then for any n, the equality D0, n = D0, n is
fulfilled. Therefore Δ = Δ0 = Δ2 = X . In this case Δ contains an open set. As
was shown [13] A’ can choose any sequence as a hidden signal. In this case for
U there is no consistent sequence of criteria for identifying a covert channel.

Consider the case when 0 < q1 < 1, as q2 = 1. In this case, for any n
D0, n ⊃ D2, n. So Δ = Δ2 and Δ is an uncountable closed set without interior
points. Thus we have conditions of the case III.

4 Conclusion

We found the dependence of judgments about invisibility of covert channels and
the choice of a probabilistic model of the legal communication. When we try to
simplify the probabilistic models of legal communications we may loose the bans,
which are prohibited in legal communications. Bans may generate significant
changes in the topological structure of certain subsets of supports of probability
measures. These structural changes can be detected by a computer simulation
that may give a chance to simplify the search of bans in real systems.
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Abstract. Intelligent systems often operate in a blend of cyberspace
and physical space. Cyberspace operations—planning, actions, and ef-
fects in realms where signals affect intelligent systems—often occur in
milliseconds without human intervention. Decisions and actions in cy-
berspace can affect physical space, particularly in SCADA—supervisory
control and data acquisition—systems. For critical military missions, in-
telligent and autonomous systems must adhere to commander intent and
operate in ways that assure the integrity of mission operations. This pa-
per shows how policy, expressed using an access-control logic, serves as a
bridge between commanders and implementers. We describe an access-
control logic based on a multi-agent propositional modal logic, show how
policies are described, how access decisions are justified, and give exam-
ples of how concepts of operations are analyzed. Our experience is policy-
based design and verification is within the reach of practicing engineers.
A logical approach enables engineers to think precisely about the secu-
rity and integrity of their systems and the missions they support.
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1 Introduction

Cyber space and physical space are ever more intertwined. Cyber-physical sys-
tems, i.e., systems with tight coordination between computational and physical
resources, operate in these intertwined worlds. Automatic pilots in aircraft and
smart weapons are examples of cyber-physical systems where the capability to
complete Boyd’s observe-orient-decide-act decision loop [1] in milliseconds with-
out human intervention is essential.

For commanders, fulfilling the missions entrusted to them is of paramount
importance. As autonomous cyber and cyber-physical systems have by their very
nature little, if any, human supervision in their decision loops, mission assurance
and mission integrity concerns require that the trustworthiness of these systems
be rigorously established.

A practical concern is how commanders and implementers will communicate
with each other. Commanders operate at the level of policy: what is permitted
and under what circumstances. Implementers are concerned with mechanisms.
Our observation is that commanders and implementers communicate through de-
scriptions of policy and concepts of operation. Our key contribution is a method-
ology for describing policies and trust assumptions within the context of concepts
of operations.
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The remainder of this paper is organized as follows. First, we informally de-
scribe the central elements of policy and concepts of operation that we wish to
describe and justify rigorously. Second, we describe the syntax and semantics of
our access-control logic. Third, we describe a hypothetical concept of operations,
formalize its description, and provide a formal justification for its operations.
Finally, we offer summary remarks and conclusions.

2 Elements of Policy and Concepts of Operation

Policies are principles, guides, contracts, agreements, or statements about deci-
sions, actions, authority, delegation, credentials, or representation. Concepts of
operation (CONOPS) describe a system from the user’s perspective. CONOPS
describe the goals, objectives, policies, responsibilities, jurisdictions of various
authorities, and operational processes.

The elements of policy we are concerned with include:

– who or what has control over an action and under what circumstances,
– what are recognized tokens of authority,
– who are recognized delegates,
– what credentials are recognized,
– what authorities are recognized and on what are they trusted, and
– any trust assumptions used in making decisions or judgments.

We conceptualize CONOPS as a chain of statements or requests for action. These
requests are granted or rejected based on the elements of policy listed above.
This is illustrated in Figure 1. What Figure 1 shows is an abstract depiction of a
CONOPS that has three or more principals or agents: P1, P2, and P3. Principals
are entities such as subjects, objects, keys, tokens, processes, etc. Principals are
anything or anybody that makes requests, is acted upon, or is used as a token
representing a principal.

CONOPS begin with a statement or request s1 by P1. In the syntax of the
access-control logic we introduce next, this is the formula P1 says s1. Principal
P2, is envisioned to receive the statement P1 says s1, and within the context of
jurisdiction statements, policy statements, and trust assumptions, P2 concludes
s2 is justified. As a result of this justification, principal P2 transmits a statement
P2 says s2 to principal P3, who then reacts within the context of its jurisdiction
and policy statements, and trust assumptions. We repeat this for all principals
and processes in the CONOPS.

Within the boxes labeled Principal 2 and Principal 3 are expressions

Fig. 1. Concept of Operations
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P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

s2 and

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

s3 .

What the above expressions intend to convey is that based on: (1) the statements
or requests s1 and s2 made by principals P1 and P2, and (2) the statements
of jurisdiction, policy, and trust assumptions under which principals P2 and
P3 operate, P2 and P3 are logically justified (using the logic and calculus we
describe next) to conclude s2 and s3. As we will see after formally describing
the syntax and semantics of our logic, the two expressions above have the form
of derived inference rules or theorems in our calculus. Each step of a CONOPS
expressed in this fashion is a theorem justifying the behavior of a system.

One of the principal values of using the access-control logic is the evaluation
of a CONOPS for logical consistency within the context of given policies, cer-
tifications, and trust assumptions. The process we outline here makes explicit
underlying assumptions and potential vulnerabilities. This leads to a deeper un-
derstanding of the underpinnings of security and integrity for a system. This
greater understanding and precision, when compared to informal descriptions,
produces more informed design decisions and trade-offs.

In the following section, we define the syntax and semantics of the access-
control logic and calculus.

3 An Access-Control Logic and Calculus

3.1 Syntax

Principal Expressions. Let P and Q range over a collection of principal expres-
sions. Let A range over a countable set of simple principal names. The abstract
syntax of principal expressions is:

P ::= A / P&Q / P | Q

The principal P&Q (“P in conjunction with Q”) is an abstract principal making
exactly those statements made by both P and Q; P | Q (“P quoting Q”) is an
abstract principal corresponding to principal P quoting principal Q.

Access Control Statements. The abstract syntax of statements (ranged over by
ϕ) is defined as follows, where P and Q range over principal expressions and p
ranges over a countable set of propositional variables :

ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Informally, a formula P ⇒ Q (pronounced “P speaks for Q”) indicates that
every statement made by P can also be viewed as a statement from Q. A formula
P controls ϕ is syntactic sugar for the implication (P says ϕ) ⊃ ϕ: in effect, P is
a trusted authority with respect to the statement ϕ. P reps Q on ϕ denotes that
P is Q’s delegate on ϕ; it is syntactic sugar for (P says (Q says ϕ)) ⊃ Q says ϕ.
Notice that the definition of P reps Q on ϕ is a special case of controls and in
effect asserts that P is a trusted authority with respect to Q saying ϕ.
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EM[[p]] = I(p)
EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]
EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]
EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]
EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =
{

W, if J(Q) ⊆ J(P )
∅, otherwise

EM[[P says ϕ]] = {w|J(P )(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P | Q says ϕ ⊃ Q says ϕ]]

Fig. 2. Semantics

3.2 Semantics

Kripke structures define the semantics of formulas.

Definition 1. A Kripke structure M is a three-tuple 〈W, I, J〉, where:

– W is a nonempty set, whose elements are called worlds.
– I : PropVar → P(W ) is an interpretation function that maps each propo-

sitional variable p to a set of worlds.
– J : PName → P(W ×W ) is a function that maps each principal name A

to a relation on worlds (i.e., a subset of W ×W ).

We extend J to work over arbitrary principal expressions using set union and
relational composition as follows:

J(P&Q) = J(P ) ∪ J(Q)
J(P | Q) = J(P ) ◦ J(Q),

where

J(P ) ◦ J(Q) = {(w1, w2) | ∃w′.(w1, w
′) ∈ J(P ) and (w′, w2) ∈ J(Q)}

Definition 2. Each Kripke structure M = 〈W, I, J〉 gives rise to a function

EM[[−]] : Form → P(W ),

where EM[[ϕ]] is the set of worlds in which ϕ is considered true. EM[[ϕ]] is defined
inductively on the structure of ϕ, as shown in Figure 2.

Note that, in the definition of EM[[P says ϕ]], J(P )(w) is simply the image of
world w under the relation J(P ).

3.3 Inference Rules

In practice, relying on the Kripke semantics alone to reason about policies,
CONOPS, and behavior is inconvenient. Instead, inference rules are used to
manipulate formulas in the logic. All logical rules must be sound to maintain
consistency.
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Taut
ϕ

if ϕ is an instance of a prop-
logic tautology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P | Q says ϕ ≡ P says Q says ϕ

&Says
P&Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of | P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Associativity of | P | (Q | R) says ϕ

(P | Q) | R says ϕ

P controls ϕ
def= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def= P | Q says ϕ ⊃ Q says ϕ

Fig. 3. Core Inference Rules

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Rep Says
P reps Q on ϕ P | Q says ϕ

Q says ϕ

Fig. 4. Derived Rules Used in this Paper

Definition 3. A rule of form
H1 · · ·Hn

C
is sound if, for all Kripke structures

M = 〈W, I, J〉, if EM[[Hi]] = W for each i ∈ {1, . . . , n}, then EM[[C]] = W .

The rules in Figures 3 and 4 are all sound. As an additional check, the logic
and rules have been implemented in the HOL-4 (Higher Order Logic) theorem
prover as a conservative extension of the HOL logic [2].

3.4 Confidentiality and Integrity Policies

Confidentiality and integrity policies such as Bell-LaPadula [3] and Biba’s Strict
Integrity policy [4], depend on classifying, i.e., assigning a confidentiality or
integrity level to information, subjects, and objects. It is straightforward to
extend the access-control logic to include confidentiality, integrity, or availability
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levels as needed. In what follows, we show how the syntax and semantics of
integrity levels are added to the core access-control logic. The same process is
used for levels used for confidentiality and availability.

Syntax. The first step is to introduce syntax for describing and comparing secu-
rity levels. IntLabel is the collection of simple integrity labels, which are used
as names for the integrity levels (e.g., hi and lo).

Often, we refer abstractly to a principal P ’s integrity level. We define the
larger set IntLevel of all possible integrity-level expressions:

IntLevel ::= IntLabel / ilev(PName).

A integrity-level expression is either a simple integrity label or an expression of
the form ilev(A), where A is a simple principal name. Informally, ilev(A) refers
to the integrity level of principal A.

Finally, we extend our definition of well-formed formulas to support compar-
isons of integrity levels:

Form ::= IntLevel ≤i IntLevel / IntLevel =i IntLevel

Informally, a formula such as lo ≤i ilev(Kate) states that Kate’s integrity level
is greater than or equal to the integrity level lo. Similarly, a formula such as
ilev(Barry) =i ilev(Joe) states that Barry and Joe have been assigned the same

integrity level.

Semantics. Providing formal and precise meanings for the newly added syntax
requires us to first extend our Kripke structures with additional components
that describe integrity classification levels. Specifically, we introduce extended
Kripke structures of the form

M = 〈W, I, J, K, L,�〉,
where:
– W , I, and J are as defined earlier.
– K is a non-empty set, which serves as the universe of integrity levels.
– L : (IntLabel ∪PName)→ K is a function that maps each integrity label

and each simple principal name to a integrity level. L is extended to work
over arbitrary integrity-level expressions, as follows:

L( ilev(A)) = L(A),

for every simple principal name A.
– �⊆ K × K is a partial order on K: that is, � is reflexive (for all k ∈ K,

k � k), transitive (for all k1, k2, k3 ∈ K, if k1 � k2 and k2 � k3, then
k1 � k3), and anti-symmetric (for all k1, k2 ∈ K, if k1 � k2 and k2 � k1,
then k1 = k2).

Using these extended Kripke structures, we extend the semantics for our new
well-formed expressions as follows:

EM[[1 ≤i 2]] =
{

W, if L(1) � L(2)
∅, otherwise

EM[[1 =i 2]] = EM[[1 ≤i 2]] ∩ EM[[2 ≤i 1]].

As these definitions suggest, the expression 1 =i 2 is simply syntactic sugar for
(1 ≤i 2) ∧ (2 ≤i 1).
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�1 =i �2
def= (�1 ≤i �2) ∧ (�2 ≤i �1)

Reflexivity of ≤i
� ≤i �

Transitivity of ≤i
�1 ≤i �2 �2 ≤i �3

�1 ≤i �3

sl ≤i
ilev(P ) =i �1 ilev(Q) =i �i �1 ≤i �2

ilev(P ) ≤i ilev(Q)

Fig. 5. Inference rules for relating integrity levels

Logical Rules. Based on the extended Kripke semantics we introduce logical
rules that support the use of integrity levels to reason about access requests.
Specifically, the definition, reflexivity, and transitivity rules in Figure 5 reflect
that ≤i is a partial order. The fourth rule is derived and convenient to have.

4 Expressing Policy Elements in the Logic

With the definition of the syntax and semantics of access-control logic, we pro-
vide an introduction to expressing key elements of policy.

Statements and requests. Statements and requests are made by principals. Re-
quests are logical statements. For example, if Alice wants to read file foo, we
represent Alice’s request as Alice says 〈read, foo〉. We interpret 〈read, foo〉 as
“it would be advisable to read file foo.”

Credentials or certificates are statements, usually signed with a cryptographic
key. For example, assume we believe public key KCA is the key used by certificate
authority CA. With this belief, we would interpret a statement made by KCA to
come from CA. In particular, if KCA says (KAlice ⇒ Alice), we would interpret
this public key certificate signed by KCA as having come from CA.

Jurisdiction. Jurisdiction statements identify who or what has authority, spe-
cific privileges, powers, or rights. In the logic, jurisdiction statements usually
are controls statements. For example, if Alice has the right to read file foo, we
say Alice controls 〈read, foo〉. If Alice has read jurisdiction on foo and Alice re-
quests to read foo, then the Controls inference rule in Figure 4 allows us to infer
〈read, foo〉 is a sound decision, i.e.,

Alice controls 〈read, foo〉 Alice says 〈read, foo〉
〈read, foo〉.

Controls statements are also statements of trust. Suppose CA is recognized as the
trusted authority on public-key certificates. If CA says (KAlice ⇒ Alice) then we
believe that KAlice is Alice’s public key. An important consideration is that trust
is not all or nothing in our logic. A principal may be trusted on some things but
not others. For example, we may trust CA on matters related to Alice’s key, but
we may not trust CA on saying whether Alice has write permission on file foo.
Essentially, the scope of trust of a principal is limited to the specific statements
over which a principal has control.
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Proxies and delegates. Often, principals who are the sources of requests or state-
ments, do not in fact make the statements or requests themselves to the guards
protecting a resource. Instead, something or somebody makes the request on
their behalf. For example, it is quite common for cryptographic keys to be used
as proxies, or stand-ins, for principals. In the case of certificate authority CA, we
would say KCA ⇒ CA. If we get a certificate signed using KCA, then we would
attribute the information in that certificate to CA. For example, using the De-
rived Speaks For rule in Figure 4 we can conclude that certificate authority CA
vouches for KAlice being Alice’s public key:

KCA ⇒ CA KCA says (KAlice ⇒ Alice)
CA says (KAlice ⇒ Alice).

In situations where delegates are relaying orders or statements from their su-
periors, we typically use reps formulas. For example, say Alice is Bob’s delegate
on withdrawing funds from account1 and depositing funds into account2. If we
recognize Alice as Bob’s delegate, we would write:

Alice reps Bob on (〈withdraw $106
, account1〉 ∧ 〈deposit $106

, account2〉).

From the semantics of reps, if we recognize Alice as Bob’s delegate, in effect we
are saying that Alice is trusted on Bob stating that he wishes a million dollars to
be withdrawn from account1 and deposited into account2. If Alice says Bob says
withdraw a million dollars from account1 and deposit it into account2, we will
conclude that Bob has made the request. Using the Rep Says rule in Figure 4
we can conclude:

Alice reps Bob on (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉)
Alice | Bob says (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉)

Bob says (〈withdraw $106, account1〉 ∧ 〈deposit $106, account2〉).

5 An Extended Example

In this section we describe a hypothetical example CONOPS for joint operations
where Joint Terminal Air Controllers (JTACs) on the ground identify targets and
request they be destroyed. Requests are relayed to a theater command author-
ity (TCA) by controllers in Airborne Early Warning and Control (AEW&C)
aircraft. If approved by commanders, AEW&C controllers direct aircraft to de-
stroy the identified target. To avoid threats due to compromised communications
and control, the CONOPS specifies the use of a mission validation appliance
(MVA) to authenticate requests and orders. What follows is a more detailed
informal description of the scenario followed by a formalization and analysis of
the CONOPS.

5.1 Scenario Description

The sequence of requests and approvals is as follows:
1. At the squad level, Joint Terminal Air Controllers (JTACs) are authorized

to request air strikes against enemy targets in real time.
2. Requests are relayed to theater command authorities (TCAs) by Airborne

Early Warning and Control (AEW&C) controllers.
3. Requested air strikes are approved by TCAs. These commanders are geo-

graphically distant from the squad requesting an air strike.
4. Command and control is provided by AEW&C aircraft operating close to

the squad requesting an air strike.
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Threat Avoidance. For mission security and integrity, JTACs, AEW&C con-
trollers, pilots, and TCAs use a mission validation appliance (MVA) to request,
transmit, authenticate, and authorize air strikes. MVAs are envisioned to be
used as follows:

1. JTACs will use MVAs to transmit air strike requests to AEW&C controllers.
2. AEW&C controllers use MVAs to (a) authenticate JTACs, and (b) pass

along JTAC requests to TCAs.
3. TCAs use MVAs to (a) authenticate JTACs and AEW&C controllers, and

(b) send air strike authorizations to AEW&C controllers.
4. AEW&C controllers use MVAs to transmit air strike orders to pilots.

Security and Integrity Requirements. The CONOPS for using MVAs must meet
the following security and integrity requirements.

– All requests, commands, and approvals must be authenticated. No voice
communications will be used. This includes at a minimum:
• All personnel are to be authenticated into mission roles, i.e., joint termi-

nal air controller (JTAC), airborne early warning and controller (AEW&C)
controller, pilot, theater command authority (TCA) , and security officer
(SO).

• All communications, commands, and approvals are to be encrypted and
signed for integrity.

– All aircraft pilots receive their directions from AEW&C controllers and can
only act with the approval of the TCA.

– All keys, certificates, and delegations, i.e., the foundation for trust, must be
protected from corruption during operations. Only personnel with proper
integrity levels are allowed to establish or modify the foundation of trust.

5.2 An Example CONOPS

MVA Use Cases. We consider two use cases. The first use case shows how MVAs
are used when an air strike is requested by a JTAC. The second use case shows
how MVAs are used when a TCA orders an air strike. Figure 6 illustrates the flow
of requests starting from Alice as JTAC, through Bob as Controller, resulting in
an authenticated request to Carol as TCA. The process starts with Alice using
her token TokenAlice to authenticate herself and her request to the JTAC MVA.

Fig. 6. Request Use Case
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Table 1. Requests and Relayed Requests

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉
relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated
request 1

JTAC says 〈strike, target〉
request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)
authenticated
request 2

Controller says (JTAC says 〈strike, target〉)

Fig. 7. Order Use Case

Table 2. Orders and Relayed Orders

Statement Formal Representation
order 1 (TokenCarol | TCA) says 〈strike, target〉
relay 3 (KTCA−MV A | TCA) says 〈strike, target〉
authenticated
order 1

TCA says 〈strike, target〉
order 2 (TokenBob | Controller) says (TCA says 〈strike, target〉)
relay 4 (KController−MV A | Controller) says (TCA says 〈strike, target〉)
authenticated
order 2

Controller says (TCA says 〈strike, target〉)

The JTAC MVA authenticates Alice and her role, and relays Alice’s request using
its key, KJTAC-MVA to the Controller MVA. The Controller MVA authenticates
the JTAC MVA and presents the authenticated request to Bob.

Should Bob decide to pass on Alice’s request, he uses his token to authenticate
himself to the Controller MVA, which relays his request to the TCA MVA, which
presents the authenticated request to Carol, a Theater Command Authority.
Table 1 lists the formal representation of each request, relayed request, and
authenticated request in Figure 6.

Figure 7 shows a similar flow of orders starting from Carol as TCA, through
Bob as Controller, resulting in an authenticated order to Dan as Pilot. Carol
authenticates herself to the TCA MCA using her token. Her orders are relayed to
Bob. When Bob decides to pass on the order to Dan, he does so by authenticating
himself to the Controller MVA, which relays to orders to Dan via the Pilot MVA.
The formulation of each order and relayed order is shown in Table 2.
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Fig. 8. General Pairing of MVAs

Table 3. Statements and Relayed Statements

Statement Formal Representation
statement (Token | Role) says ϕ
relayed statement (KMV A−1 | Role) says ϕ
authenticated statement Role says ϕ

Deducing Policies, Certifications, Delegations, and Trust Assumptions. Based
on the use cases for air strike requests and air strike orders, we determine what
policies, certifications, delegations, and trust assumptions are required to justify
each MVA action in the CONOPS. We look at each MVA’s input and output,
and based on the CONOPS, infer what policies, certifications, delegations, and
trust assumptions are required. We look for repeated patterns of behavior that
lead to repeated patterns of reasoning. Both use cases exhibit the same pattern
of behavior as illustrated in Figure 8 and formulated in Table 3.

1. A person authenticates herself and claims a role using a token. Acting in a
role, the person makes a statement (request or order). The first MVA, MVA
1, authenticates both the person and the role, and then relays the statement
using its key to the second MVA, MVA 2.

2. MVA 2 authenticates MVA 1 and the role it is serving, then passes the
statement up to the person using MVA 2.

Given the repeated pattern, we prove two derived inference rules (MVA 1 and
MVA 2 ) that justify the behavior of MVA 1 and MVA 2.

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)
Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMV A1 | Role says ϕ

MVA 2

(KMV A1 | Role) says ϕ
KAuth says (MV A1 reps Role on ϕ)

KAuth says (KMV A1 ⇒ MV A1)
Auth controls (MV A1 reps Role on ϕ)

Auth controls (KMV A1 ⇒ MV A1)
KAuth ⇒ Auth

Role says ϕ

Both rules have the same components, as shown in Table 4. The components
have the following functions:
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Table 4. MVA Inputs, Outputs, Certificates, Jurisdiction, and Trust Assumptions

Item Formula
Input (Token or Key | Role) says ϕ

Delegation Certificate KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key ⇒ Person or Object)
Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key ⇒ Person or Object)
Trust Assumption KAuth ⇒ Auth

1. input : a token or key quoting a role
2. certificate: a certificate authorizing a delegation
3. certificate: a public key certificate
4. jurisdiction: an assumption about an authority’s jurisdiction to authorize a

person or MVA to act in a role
5. jurisdiction: an assumption about an authority’s jurisdiction over keys
6. trust assumption: knowledge of the trusted authority’s key

Both rules have nearly identical proofs that are direct application of inference
rules described in Section 3.3.

Using the inference rule MVA 1, we easily prove the following rule for the TCA
MVA authenticating Carol and validating her order for an air strike, where SO
is the Security Officer role, the SO has jurisdiction over roles and keys, and KS
is the key that speaks for the SO.

TCA-MVA

TokenCarol | TCA says 〈strike, target〉
KSO says (Carol reps TCA on 〈strike, target〉)

KSO says TokenCarol ⇒ Carol
SO controls TokenCarol ⇒ Carol

SO controls (Carol reps TCA on 〈strike, target〉)
KSO ⇒ SO

KTCA-MVA | TCA says 〈strike, target〉

Similar rules and proofs are written for each MVA. The above discussion on
certificates installed properly in MVAs leads us to the final use case, namely the
trust establishment use case.

5.3 Trust Establishment

Biba’s Strict Integrity model [4] is the basis for maintaining integrity of the
MVAs. As Strict Integrity is the dual of Bell and LaPadula’s confidentiality
model [3], the short summary of Strict Integrity is, no read down and no write
up. For subjects S and objects O, S may have discretionary read rights on O
if O’s integrity level meets or exceeds S’s. For write access, S’s integrity level
must meet or exceed O’s.

ilev(S) ≤i ilev(O) ⊃ S controls 〈read, O〉
ilev(O) ≤i ilev(S) ⊃ S controls 〈write, O〉.

There are two integrity levels: Lop and LSec, where Lop ≤i LSec. All certificates
have an integrity level LSec, i.e., ilev(cert) =i LSec. Table 5 show the integrity
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Table 5. Roles and Rights to Certificates

Role Rights
SO (LSec) install, read

JTAC (Lop) read
Controller (Lop) read

TCA (Lop) read
Pilot (Lop) read

level and certificate access rights for each role. Strict integrity is satisfied as only
the security officer SO (with the same integrity level LSec as certificates) can
install or write certificates into MVAs. Every other role is at the Lop level and
can only read certificates.

Installing KSO. Establishing the basis for trust in MVAs starts with the installa-
tion of the Security Officer’s key, KSO. This is assumed to be done by controlled
physical access to each MVA that is deployed. Once the Security Officer’s key is
in place, the certificates that an MVA needs can be installed.

Certificate Installation. Suppose Erica is acting as the Security Officer SO. The
policy is that security officers can install certificates, if the SO has a high enough
integrity level, and is given by

ilev(cert) ≤i ilev(SO) ⊃ SO controls 〈install, cert〉.

Erica’s authorization to act in the Security Officer role to install certificates is
given by

Kso says Erica reps SO on 〈install, cert〉.

This authorization is accepted under the assumption that KSO ⇒ SO and that
the SO has jurisdiction, which is given by

SO controls Erica reps SO on 〈install, cert〉.

The proof for justifying Erica’s capability to install certificates acting as a Secu-
rity Officer, assuming her integrity level is Lso is a straightforward application
of inference rules described in Section 3.3.

6 Related Work

The access-control logic we use is based on Abadi and Plotkin’s work [5], with
modifications described in [6]. Many other logical systems have been used to
reason about access control. Some of them are summarized in [7].

Our contribution is the methodology and application of logic to describe poli-
cies, operations, and assumptions in CONOPS. Moreover, we have implemented
this logic in the HOL-4 theorem prover, which provides both an independent
verification of soundness as well as support for computer-assisted reasoning.
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7 Conclusions

Our objective is the put usable mathematical methods into the hands of prac-
ticing engineers to help them reason about policies and concepts of operations.
We have experimented with policy-based design and verification for five years
in the US Air Force’s Advanced Course in Engineering (ACE) Cybersecurity
Bootcamps [8]. Our experience with a wide variety of students, practicing engi-
neers, and Air Force officers suggests that using the access-control logic meets
this objective.
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Abstract. In this paper, we present a new framework of runtime se-

curity policy enforcement. Building on previous studies, we examine the

enforcement power of monitors able to transform their target’s execution,

rather than simply accepting it if it is valid, or aborting it otherwise. We

bound this ability by a restriction stating that any transformation must

preserve equivalence between the monitor’s input and output. We pro-

ceed by giving examples of meaningful equivalence relations and identify

the security policies that are enforceable with their use. We also relate

our work to previous findings in this field. Finally, we investigate how an

a priori knowledge of the target program’s behavior would increase the

monitor’s enforcement power.

Keywords: Monitoring, Security Policy Enforcement, Program Trans-

formation, inlined reference monitors.

1 Introduction

In light of the increasing complexity and interconnectivity of modern software,
there is a growing realization that formal security frameworks are needed to en-
sure code safety. Because they have solid theoretical underpinnings, such frame-
work can provide assurance that the desired security policy will be enforced
regardless of the target program’s output. One such formal security framework,
which has gained wide acceptance in recent years is runtime monitoring. This
approach to code safety seeks to allow an untrusted code to run safely by ob-
serving its execution and reacting if need be to prevent a potential violation of
a user-supplied security policy.

The monitor is modeled as an automaton which takes the program’s execution
as input, and outputs an alternate execution, usually by truncating the input
if it is invalid. Several studies have focused on establishing the set of security
policies that are enforceable by monitors operating under various constraints.
This is necessary to best select the appropriate enforcement mechanism given
the desired security policy and enforcement context. In this study, we take this
framework one step further and examine the enforcement power of monitors
capable of transforming their input. However, the monitor’s ability to do so
must be constrained by a requirement to maintain an equivalence between input
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and output. This intuitively corresponds to an enforcement paradigm, closer to
one that would be encountered in practice, in which the actions taken by the
monitor are constrained by a limitation that certain behaviors present in the
original sequence be preserved.

The question of identifying the set of security policies (termed properties)
enforceable by monitors able to transform invalid executions was raised several
times in the literature [16,4,13,10]. While these studies observe that this ability
considerably extends the monitor’s enforcement power, they do not provide a
more specific characterization of the set of enforceable properties w.r.t equiv-
alence relations other than syntactic equality. This results from the lack of a
framework constraining the ability of a monitor to transform its input. This
point is concisely explained by Ligatti et al. in [13]. “A major difficulty with
semantic equivalence is its generality: for any reasonable property P̂ there exists
a sufficiently helpful equivalence relation that enables a security automaton to
enforce P̂”.

Indeed, the authors go on to note that if all valid sequences can be thought of
as being equivalent to one another, any security policy can be enforced simply by
always outputting the same valid arbitrarily chosen sequence for all inputs. This
strictly meets the definition of enforcement but does not provide a meaningful
enforcement of the desired policy.

For example, consider a system managing online purchases, and a security
policy forbidding a user from browsing certain merchandise without prepaying. A
monitor could abort the execution as soon as this is attempted. But the property
would also be enforced by replacing the input sequence with any sequence of
actions respecting the policy, even if it contains purchases unrequested by any
users, or by outputting nothing, depriving legitimate users of the ability to use
the system.

In this paper, we suggest a framework to study the enforcement power of
monitors. The key insight behind our work is to state certain criteria which
must be met for an equivalence relation to be useful in monitoring. We then give
two examples of such equivalence relations, and show which security properties
are enforceable with their use.

The contributions of this paper are as follows: First, we develop a framework
of enforcement, termed corrective∼= enforcement to reason about the enforcement
power of monitors bounded to produce an output which is semantically equiva-
lent to their input with respect to some equivalence relation ∼=. We suggest two
possible examples of such relations and give the set of enforceable security poli-
cies as well as examples of real policies for each. Finally, we show that the set of
enforceable properties defined in [13] for effective enforcement can be considered
as special cases of our more general framework.

The remainder of this paper is organized as follows. Section 2 presents a
review of related work. In Section 3, we define some concepts and notations that
are used throughout the paper. In Section 4, we show under what conditions
equivalence relations can be used to transform sequences and ensure the respect
of the security policy. The set of security policies which can be enforced in
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this manner is examined in Section 5. In Section 6, we give two examples of
possible equivalence relations and show that they can serve as the basis for
the enforcement of meaningful security properties. In section 7, we investigate
how an a priori knowledge of the target program’s behavior would increase the
monitor’s enforcement power. Concluding remarks and avenues for future work
are laid out in Section 8.

2 Related Work

Schneider, in his seminal work [16], was the first to investigate the question of
which security policies could be enforced by monitors. He focused on specific
classes of monitors, which observe the execution of a target program with no
knowledge of its possible future behavior and with no ability to affect it, except
by aborting the execution. Under these conditions, he found that a monitor could
enforce the precise security policies that are identified in the literature as safety
properties, and are informally characterized by prohibiting a certain bad thing
from occurring in a given execution.

Schneider’s study also suggested that the set of properties enforceable by
monitors could be extended under certain conditions. Building on this insight,
Ligatti, Bauer and Walker [4,12] examined the way the set of policies enforceable
by monitors would be extended if the monitor had some knowledge of its target’s
possible behavior or if its ability to alter that behavior were increased. The au-
thors modified the above definition of a monitor along three axes, namely (1) the
means at the disposal of the monitor in order to respond to a possible violation
of the security policy; (2) whether the monitor has access to information about
the program’s possible behavior; and (3) how strictly the monitor is required
to enforce the security policy. Consequently, they were able to provide a rich
taxonomy of classes of security policies, associated with the appropriate model
needed to enforce them. Several of these models are strictly more powerful than
the security automata developed by Schneider and are used in practice.

Evolving along this line of inquiry, Ligatti et al. [13] gave a more precise
definition of the set of properties enforceable by the most powerful monitors,
while Fong [9] and Talhi et al. [18] expounded on the capabilities of monitors
operating under memory constraints. Hamlen et al. [10] , on the other hand,
showed that in-lined monitors (whose operation is injected into the target pro-
gram’s code, rather than working in parallel) can also enforce more properties
than those modeled by a security automaton. In [3], a method is given to en-
force both safety and co-safety properties by monitoring. The set of properties
enforceable by monitors aided by static analysis of the program is examined in
[6,7]. In [5], Bielova et al. delineate the set of properties enforceable by a mon-
itor limited to suppressing a finite subsequence of the execution before either
outputting or deleting them. In [15], Ligatti et al. propose an alternate, more
general model of monitoring, which imposes on the monitor that it respond to
the target program’s actions in lock step.
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3 Preliminaries

Let us briefly start with some preliminary definitions.
Executions are modeled as sequences of atomic actions taken from a finite or

countably infinite set of actions Σ. The empty sequence is noted ε, the set of all
finite length sequences is noted Σ∗, that of all infinite length sequences is noted
Σω, and the set of all possible sequences is noted Σ∞ = Σω ∪Σ∗. Likewise, for
a set of sequences S, S∗ denote the finite iterations of sequences of S and Sω

that of infinite iterations, and S∞ = Sω ∪ S∗. Let τ ∈ Σ∗ and σ ∈ Σ∞ be two
sequences of actions. We write τ ; σ for the concatenation of τ and σ. We say that
τ is a prefix of σ noted τ � σ, or equivalently σ � τ iff there exists a sequence
σ′ such that τ ; σ′ = σ. We write τ ≺ σ (resp. σ  τ) for τ � σ ∧ τ �= σ (resp.
σ  τ ∧ τ �= σ). Finally, let τ, σ ∈ Σ∞, τ is said to be a suffix of σ iff there exists
a σ′ ∈ Σ∗ s.t. σ = σ′; τ .

We denote by pref(σ) (resp. suf(σ)) the set of all prefixes (resp. suffixes) of
σ. Let A ⊆ Σ∞ be a subset of sequences. Abusing the notation, we let pref(A)
(resp. suf(A))stands for

⋃
σ∈A pref(σ) (resp.

⋃
σ∈A suf(σ)). The ith action in

a sequence σ is given as σi, σ1 denotes the first action of σ, σ[i, j] denotes the
sequence occurring between the ith and jth actions of σ, and σ[i, ..] denotes the
remainder of the sequence, starting from action σi. The length of a sequence
τ ∈ Σ∗ is given as |τ |.

A multiset, or bag [17] is a generalization of a set in which each element may
occur multiple times. A multiset A can be formally defined as a pair 〈A, f〉 where
A is a set and f : A → N is a function indicating the number of occurrences
of each element of A in A. Note that a �∈ A ⇔ f(a) = 0. Thus, by using this
insight, to define basic operations on multisets one can consider a universal set
A and different functions of type A → N associated with it to form different
multisets.

Given two multisets A = 〈A, f〉 and B = 〈A, g〉,the multiset union A ∪ B =
〈A, h〉 where ∀a ∈ A : h(a) = f(a) + g(a). Furthermore, A ⊆ B ⇔ ∀a ∈ A :
f(a) ≤ g(a). The removal of an element a ∈ A from multiset A is done by
updating the function f so that f(a) = max(f(a)− 1, 0).

Finally, a security policy P ⊆ Σ∞ is a set of allowed executions. A policy
P is a property iff there exists a decidable predicate P̂ over the executions of
Σ∞ s.t. σ ∈ P ⇔ P̂(σ). In other words, a property is a policy for which the
membership of any sequence can be determined by examining only the sequence
itself. Such a sequence is said to be valid or to respect the property. Since all
policies enforceable by monitors are properties, we use P̂ to refer to policies and
their characteristic predicate interchangeably. Properties for which the empty
sequence ε is a member are said to be reasonable.

A number of classes of properties have been defined in the literature and are
of special interest in the study of monitoring. First are safety properties [11],
which proscribe that certain “bad things” occur during the execution. Let Σ be
a set of actions and P̂ be a property, P̂ is a safety property iff

∀σ ∈ Σ∞ : ¬P̂(σ) ⇒ ∃σ′ � σ : ∀τ � σ′ : ¬P̂(τ) (safety)
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Alternatively, a liveness property [2] is a property prescribing that a certain
“good thing” must occur in any valid execution. Formally, for an action set Σ∞

and a property P̂ , P̂ is a liveness property iff

∀σ ∈ Σ∗ : ∃τ ∈ Σ∞ : τ � σ ∧ P̂(τ) (liveness)

Any property can be stated as the conjunction of a safety property and a live-
ness property [1]. Another relevant set of properties is that of infinite renewal
properties (renewal), defined in [13] to characterize the set properties enforceable
by edit-automata monitors using syntactic equality as the equivalence relation.
A property is member of this set if every infinite valid sequence has infinitely
many valid prefixes, while every invalid infinite sequence has only finitely many
such prefixes. Formally, for an action set Σ and a property P̂, P̂ is a renewal
property iff it meets the following two equivalent conditions

∀σ ∈ Σω : P̂(σ) ⇔ {σ′ � σ|P̂(σ′)}is an infinite set (renewal1)

∀σ ∈ Σω : P̂(σ) ⇔ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂(τ)) (renewal2)

Note that the definition of renewal imposes no restrictions on the finite sequences
in P̂ . For infinite sequences, the set of renewal properties includes all safety
properties, some liveness properties and some properties which are neither safety
nor liveness.

Finally, we formalize the the set of transactional properties, suggested in [13],
which will be of use in section 6.1. A transactional property is one in which
any valid sequence consists of a concatenation of valid finite transactions. Such
properties can model, for example, the behavior of systems which repeatedly
interacts with clients using a well defined protocol, such as a system managing
the allocation of resource or the access to a database. Let Σ be an action set
and T ⊆ Σ∗ be a subset of finite transactions, P̂T is a transactional property
over set T iff

∀σ ∈ Σ∞ : P̂T (σ) ⇔ σ ∈ T∞ (transactional)

This definition is subtly different, and indeed forms a subset, to that of iterative
properties defined in [5]. transactional properties also form a subset to the set
of renewal properties, and include some but not all safety properties, liveness
properties as well as properties which are neither.

4 Monitoring with Equivalence Relations

The idea of using equivalence relations to transform execution sequences was
first suggested in [10]. The equivalence relations are restricted to those that are
consistent with the security policy under consideration. Let P̂ be a security
policy, the consistency criterion for an equivalence relation ∼= is given as:

∀σ, σ′ ∈ Σ∞ : σ ∼= σ′ ⇒ P̂(σ) ⇔ P̂(σ′). (consistency)
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Yet, upon closer examination, this criterion seems too restrictive for our pur-
poses. If any two equivalent sequences always meet this criterion, an invalid
prefix can never be made valid by replacing it with another equivalent one. It is
thus impossible to “correct” an invalid prefix and output it.

It is still necessary to impose some restrictions on equivalence relations and
their relation to properties. Otherwise, as discussed above, any property would
be enforceable, but not always in a meaningful manner.

In this paper, we suggest the following alternative framework.
Following previous work in monitoring by Fong [9], we use an abstraction

function F : Σ∗ → I, to capture the property of the input sequence which the
monitor must preserve throughout its manipulation. While Fong made use of
abstractions to reduce the overhead of the monitor, we use them as the basis
for our equivalence relations. Such an abstraction can capture any property
of relevance. This may be, for example, the presence of certain subwords or
factors or any other semantic property of interest. We expect the property to be
consistent with this abstraction rather than with the equivalence relation itself.
Formally:

F(σ) = F(σ′)⇒ P̂(σ) ⇔ P̂(σ′) (4.1)

Furthermore, we restrict ourselves to equivalence relations which group together
sequences for which the abstraction is similar. To this end, we let ≤ stand for
some partial order over the values of I. We define ! as the partial order defined
as ∀σ, σ′ ∈ Σ∗ : σ ! σ′ ⇔ F(σ) ≤ F(σ′). We equivalently write σ′ " σ and
σ ! σ′.

The transformation performed by the monitor on a given sequence τ produces
a new sequence τ ′ s.t. τ ′ ! τ . To ease the monitor’s task in finding such a suitable
replacement, we impose the following two constraints on the equivalence relations
used in monitoring.

First, if two sequences are equivalent, any intermediary sequence over ! is
also equivalent to them.

σ ! σ′ ! σ′′ ∧ σ ∼= σ′′ ⇒ σ ∼= σ′ (4.2)

Second, two sequences cannot be equivalent if they do not share a common
greatest lower bound.Conversely, the greatest lower bound of two equivalent
sequences is also equivalent to them. These last two criteria are stated together
as:

∀σ, σ′ ∈ Σ∗ : σ ∼= σ′ ⇒ ∃τ ∈ Σ∗ : τ = (σ # σ′) ∧ τ ∼= σ (4.3)

where (σ # σ′) = τ s.t. τ ! σ ∧ τ ! σ′ ∧ ¬(∃τ ′ " τ : τ ′ ! σ ∧ τ ′ ! σ′)
The intuition behind the above two restrictions, is that, if an equivalence

restriction meets these two criteria, a monitor looking for a valid sequence equiv-
alent to an invalid input simply has to iteratively perform certain transforma-
tions until such a sequence is found or until every equivalent sequence has been
examined.
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We define our equivalence relations over finite sequences. Two infinite se-
quences are equivalent, iff they have infinitely many valid equivalent prefixes.

Let ∼= be an equivalence relation over the sequences of Σ∗

∀σ, σ′ ∈ Σω : σ ∼= σ′ ⇔ ∀τ ≺ σ : ∃υ � τ : ∃τ ′ ≺ σ′ : υ ∼= τ ′ (4.4)

It is easy to see that an equivalence between infinite sequence not meeting this
criterion would be of no use to a monitor, which is bound to transform its input
in finite time.

Finally, we impose the following closure restriction:

τ ∼= τ ′ ⇒ τ ; σ ∼= τ ′; σ (4.5)

This may, at first sight, seem like an extremely restrictive condition to be imposed
but in fact every meaningful relation that we examined has this property.

Furthermore, no security property can be enforced using an equivalence rela-
tion lacking this property. Consider for example what would happen if a monitor
is presented with an invalid prefix τ of a longer input sequence for which there
exists a valid equivalent sequence τ ′. It would be natural for the monitor to
transform τ into τ ′. Yet it would also be possible that the full original sequence
σ  τ be actually valid, but that there exists no equivalent sequence for which
τ ′ is a prefix.

In fact, ! organizes the sequences according to some semantic framework,
using values given by an abstraction function F , P̂ establishes that only certain
values of F are valid or that a certain threshold must be reached, while ∼= groups
the sequences if their abstractions are equivalent. In section 6, we give examples
that show how the framework described in this section can be used to model
desirable security properties of programs and meaningful equivalence relations
between their executions.

5 Corrective Enforcement

In this section, we present the automata-based model used to study the enforce-
ment mechanism, and give a more formal definition of our notion of enforcement.

The edit automaton [4,13] is the most general model of a monitor. It captures
the behavior of a monitor capable of inserting or suppressing any action, as well
as halting the execution in progress.

Definition 1. An edit automaton is a tuple 〈Σ, Q, q0, δ〉 where1:

– Σ is a finite or countably infinite set of actions;
– Q is a finite or countably infinite set of states;
– q0 ∈ Q is the initial state;
– δ : (Q × Σ) → (Q × Σ∞) is the transition function, which, given the cur-

rent state and input action, specifies the automaton’s output and successor

1 This definition, taken from [18], is equivalent to the one given in [4].
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state. At any step, the automaton may accept the action and output it intact,
suppress it and move on to the next action, output nothing, or output some
other sequence in Σ∞. If at a given state the transition for a given action is
undefined, the automaton aborts.

Let A be an edit automaton, we let A(σ) be the output of A when its input is σ.
Most studies on this topic have focused on effective enforcement. A mechanism

effectively enforces a security property iff it respects the two following principles,
from [4]:

1. Soundness : All output must respect the desired property.
2. Transparency : The semantics of executions which already respect the prop-

erty must be preserved. This naturally requires the use of an equivalence
relation, stating when one sequence can be substituted for another.

Definition 2. Let A be an edit automaton. A effectively∼= enforces the property
P̂ iff ∀σ ∈ Σ∞

1. P̂(A(σ)) (i.e. A(σ) is valid)
2. P̂(σ) ⇒ A(σ) ∼= σ

In the literature, the only equivalence relation ∼= for which the set of effecti-
vely∼= enforceable properties has been formally studied is syntactic equality[4].
Yet, effective enforcement is only one paradigm of enforcement which has been
suggested. Other enforcement paradigms include precise enforcement[4], all-or-
nothing delayed enforcement[5] or conservative enforcement[4].

In this study, we introduce a new paradigm of security property enforcement,
termed corrective∼= enforcement. An enforcement mechanism correctively∼= en-
forces the desired property if every output sequence is both valid and equivalent
to the input sequence. This captures the intuition that the monitor is both re-
quired to output a valid sequence, and forbidden from altering the semantics of
the input sequence. Indeed, it is not always reasonable to accept, as do preceding
studies of monitor’s enforcement power, that the monitor is allowed to replace
an invalid execution with any valid sequence, even ε. A more intuitive model
of the desired behavior of a monitor would rather require that only minimal
alterations be made to an invalid sequence, for instance by releasing a resource
or adding an entry in a log. Those parts of the input sequence which are valid,
should be preserved in the output, while invalid behaviors should be corrected
or removed. It is precisely these corrective behaviors that we seek to model us-
ing our equivalence relations. The enforcement paradigm thus ensures that the
output is always valid, and that all valid behavior intended by the user in the
input, is present in the monitor’s output.

Definition 3. Let A be an edit automaton. A correctively∼= enforces the property
P̂ iff ∀σ ∈ Σ∞

1. P̂(A(σ))
2. A(σ) ∼= σ
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A monitor can correctively∼= enforce a property iff for every possible sequence
there exists an equivalent valid sequence which is either finite or has infinitely
many valid prefixes, and the transformation into this sequence is computable.

Theorem 1. A property P̂ is correctively∼= enforceable iff

1. ∃P̂ ′ : (P̂ ′ ⊆ P̂) ∧ (P̂ ′ ⊆ Renewal)
2. P̂ is reasonable
3. There exists a computable function γ : Σ∞ → P̂ ′ : ∀σ ∈ Σ∞ : γ(σ) ∼= σ.
4. ∀σ′ � σ : γ(σ′) � γ(σ)

Proof. (⇒ direction)
By construction of the following automaton. A = 〈Σ, Q, q0, δ〉 where

– Q = Σ∗, the sequence of actions seen so far.
– q0 = ε
– The transition function δ is given as δ(σ, a) = (σ; a, σ′), where σ = a′; τ and

γ(σ; a) = γ(σ); σ′

Note that from condition 3 of theorem 1 we have that γ(σ; a) is always
defined, and from condition 4 that it will take the recursive form described
above.

The automaton maintains the following invariants INV(q): At state q = σ, γ(σ)
has been output so far, this output is valid and equivalent to σ.
The invariant holds initially, as by definition, ε is valid and equivalent to itself.
An induction can then show that the invariant is preserved by the transition
relation.

(⇐ direction) Let γ(σ) be whatever the automaton outputs on input σ. By
definition, γ is a computable function. Furthermore, we have that P̂(σ) and
γ(σ) ∼= σ.

We need to show that the image of γ is a property P̂ ′ included in P̂ and
in renewal. That the image of γ is a subset of P̂ follows trivially from the
assumptions ∀σ ∈ Σ∞ : P̂(A(σ)). Furthermore, were the output not in renewal,
it would include valid sequences with only finitely many valid prefixes. Yet,
since the automaton’s transition function is restricted to outputing finite valid
sequences by the requirement that the finite input be equivalent to the output
and equation 4.4 , this is impossible. It follows that the image of γ is a subset
of P̂ and renewal. It is also easy to see that P̂(ε), since if it were not the case,
a violation would occur even in the absence of any input action. Finally, since
γ is applied recursively to every prefix of the input, it is thus unavoidable that
∀σ′ � σ : γ(σ′) � γ(σ). #%

An equivalence relation ∼= over a given set Σ∗ can be seen as a set of pairs
(x, y), with x, y ∈ Σ∗. This allows equivalence relations over the same sets to be
compared. Relation ∼=1 is a refinement of relation ∼=2, noted ∼=1< ∼=2 if the set
of pairs in ∼=1 is a strict subset of those in ∼=2.
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Theorem 2. Let ∼=1, ∼=2 be two equivalence relations and let enforceable∼= stand
for the set of properties which are correctively∼= enforceable, then we have ∼=1< ∼=2
⇒ enforceable∼=1 ⊂ enforceable∼=2 .

Proof. It is easy to see that any property which is correctively∼=1 enforceable is
also correctively∼=2 enforceable, since every pair of sequence that are equivalent
w.r.t.∼=1 are also equivalent w.r.t.∼=2. The property can thus be correctively∼=2 en-
forced using the same transformation function γ as was used in its correctively∼=1

enforcement.
Let [σ]∼= stand for the set of sequences equivalent to σ with respect to relation

∼=. By assumption, there is a σ s.t. [σ]∼=1 ⊂ [σ]∼=2 . Let P̂ be the property defined
s.t. ¬P̂(τ) ⇔ τ ∈ [σ]∼=1 . This property is not correctively∼=1 enforceable as there
exists no valid equivalent sequences which the monitor can output when its input
is σ. The property can be correctively∼=2 enforced by outputting a sequence in
[σ]∼=2\[σ]∼=1 when the input is σ. #%

It follows from this theorem that the coarser the equivalence relation used by
the monitor is, the greater the set of enforceable∼= properties.

The following lemma is used in setting an upper bound to the set of enforceable
properties.

Lemma 3. Let ∼= be an equivalence relation and P̂ be some correctively∼= en-
forceable property. Then, for all P̂’ s.t. P̂ ⊆ P̂ ′ we have that P̂’ is correctively∼=
enforceable.

The monitor has only to simulate it’s enforcement of P̂ in order to correctively∼=
enforce P̂’.

6 Equivalence Relations

In this section, we consider two examples of the equivalence relation ∼=, and
examine the set of properties enforceable by each.

6.1 Factor Equivalence

The first equivalence relation we will consider is factor equivalence, which mod-
els the class of transactional properties introduced in section 3. A word τ ∈ Σ∗

is a factor of a word ω ∈ Σ∞ if ω = υ; τ ; υ′, with υ ∈ Σ∗ and υ′ ∈ Σ∞. Two
sequences τ, τ ′ are factor equivalent, w.r.t. a given set of valid factors T ⊆ Σ∗ if
they both contain the same multiset of factors from T . We use a multiset rather
than simply comparing the set of factors from T occurring in each sequence so as
to be able to distinguish between sequences containing a different number of oc-
currences of the same subset of factors. This captures the intuition that if certain
valid transactions are present in the input sequence, they must still be present
in the output sequence, regardless of any other transformation made to ensure
compliance with the security property. In this context, the desired behavior of
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the system can be defined by a multiset of valid transactions. A valid run of this
system consists of a finite or infinite sequence of well-formed transactions, while
an invalid sequence is a sequence containing malformed or incomplete transac-
tions. One may reasonably consider all sequences exhibiting the same multiset of
valid transactions to be equivalent to each other. Transactional properties form
a subset to the class of renewal properties which can be effectively= enforced
[13], which allows the longest valid prefix to be output [14]. In [5], Bielova et al.
propose an alternate enforcement paradigm, which allows all valid transactions
to be output. Corrective� enforcement can be seen as a generalization of their
work.

Let validT (σ), which stand for the multiset of factors of from the sequence
σ which are present in T , be the abstraction function F . The partial order !
used to correctively enforce this property is thus given as ∀σ, σ′ ∈ Σ∞ : σ !
σ′ ⇔ validT (σ) ⊆ validT (σ′). This partial order captures the intuition that any
valid transaction present in the original sequence must also be present in the
monitor’s output.

For example, let Σ = {open, close, log} be a set of atomic actions and
let T = {open; log; close} be the set containing the only allowed transac-
tion. If the input sequence is given as σ = log; open; log; close; log; open;
close; open; log; close, then validT (σ) is the multiset containing two instances
of the factor open; log; close.

Intuitively, a sequence is smaller than another on the partial order if it has
strictly fewer transactions, and two sequences are equivalent if they share the
same valid transactions.

We now turn our attention to the set of properties that are correctively∼=T

enforceable. Intuitively, a monitor can enforce this property by first suppressing
the execution until it has seen a factor in T , at which point the factor is out-
put, while any invalid transaction is suppressed. This method of enforcement is
analogous to the one described in [5] as delayed all-or-nothing enforcement. Any
sequence output in this manner would preserve all its factors in T , and thus be
equivalent to the input sequence, but is composed of a concatenation of factors
from T , and hence is valid.

Let T ⊆ Σ∗ be a set of factors and let P̂T a transactional property as defined
in section 3. Note first that all properties enforceable by this approach are in
renewal, as they are formed by a concatenation of valid finite sequences. Also,
the property necessarily must be reasonable, (i.e. P̂(ε)) as the monitor will not
output anything if the input sequence does not contain any factors in T . Finally,
for the property P̂T to be correctively∼=T enforceable in the manner described
above, the following restriction, termed unambiguity must be imposed on T :

∀σ, σ′ ∈ T : ∀τ ∈ pref(σ) : ∀τ ′ ∈ suf(σ′) : τ �= ε ∧ τ ′ �= ε ⇒ τ ; τ ′ /∈ T
(unambiguity)

To understand why this restriction is necessary, consider what would happen in
its absence: it would be possible for the monitor to receive as input a sequence
which can be parsed either as the concatenation of some valid transactions, or as
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a different valid transaction bracketed with invalid factors. That is, let σ1; σ2 =
τ1; σ3; τ2 be the monitor’s input, with σ1, σ2, σ3 ∈ T and τ1, τ2 /∈ T . If the
monitor interprets the sequence as a concatenation of the valid transactions σ1
and σ2, then it has to preserve both factors in its output. However, if it parses the
sequence as τ1; σ3; τ2, then it must output only the equivalence sequence σ3. Since
the two sequences are syntactically identical, the monitor has no information of
which to base such a decision.

Theorem 4. A property P̂T correctively∼=T enforceable if it is transactional,
reasonable, and T is unambiguous.

Proof. The proof has been omitted out of space considerations. It is available
from the authors upon request. #%

We have only to refer to lemma 3 in order to state a precise upper bound to the
set of enforceable properties.

Theorem 5. A property P̂ is correctively∼=T enforceable iff P̂T ⊆ P̂ and T is
unambiguous.

Proof. The proof has been omitted out of space considerations. It is available
from the authors upon request. #%

6.2 Prefix Equivalence

In this section, we show that Ligatti et al.’s result from [13], namely that the
set of properties effectively= enforceable by an edit automaton corresponds to
the set of reasonable renewal properties with a computability restriction added2,
can be stated as a special case of our framework.

First, we need to align our definitions of enforcement. Using effective enforce-
ment, they only require that the monitor’s output be equivalent to its input when
the latter is valid, and while placing no such restriction on the output otherwise.
The semantics of their monitor however, do impose that the output remain a
prefix of the input in all cases, and indeed, that the longest valid prefix always
be output (see [8]). This characterization can be translated in our formalism by

instantiating ∼= to ∼=�
def
= ∀σ, σ′ ∈ Σ∗ : σ ∼=� σ′ ⇔ pref(σ) ∩ P̂ = pref(σ′) ∩ P̂ .

Using this relation, two sequences are equivalent, w.r.t. a given property P̂ iff
they have the same set of valid prefixes.

Theorem 6. A property P̂ is effectively= enforceable iff it is correctively∼=�

enforceable.

2 Actually, the authors identified a corner case in which a property not in the set

described above. This occurs when the monitor reaches a point where only one valid

continuation is possible. The input can then be ignored and this single continuation

is output. We have neglected to discuss this case here as it adds comparatively little

to the range of enforceable properties.
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Proof. The proof has been omitted out of space considerations. It is available
from the authors upon request. #%

It would be intuitive to instantiate the partial order ! to �. Other possibilities
can be considered, which would more closely follow the specific property being
enforced.

Theorem 7. A property P̂ is correctively∼=� enforceable iff it is in renewal,
reasonable and computable.

Proof. Immediate from theorem 6 and theorem 3 of [13]. #%

As discussed in [13], this set includes a wide range of properties, including all
safety properties, some liveness properties such as the “eventually audits” prop-
erties requiring that an action eventually be logged, and properties which are
neither safety nor liveness such as the transactional properties described in sec-
tion 4. Furthermore, if the behavior of the target system is known to consist
only of finite executions, then every sequence is in renewal.

7 Nonuniform Enforcement

In this section, we investigate the possibility of extending the set of enforce-
able properties by giving the monitor some knowledge of the target program’s
possible behavior. This question was first raised in [16]. In [4], the authors dis-
tinguish between the uniform context, in which the monitor must consider that
every sequence in Σ∞ can occur during the target program’s execution, from
the nonuniform context, in which the set of possible executions is a subset of
Σ∞. They further show that in some case, the set of properties enforceable in a
nonuniform context is greater than that which is enforceable in a uniform con-
text. Later Chabot et al. [7] showed that while this result did not apply to all
runtime enforcement paradigms, it did apply to that of truncation-based mon-
itor. Indeed, they show that in this monitoring context, a monitor operating
with a subset of Σ∞ is always more powerful than one which considers that
every sequence can be output by its target.

Let S stand for the set of sequences which the monitor considers as possible
executions of the target program. S is necessarily an over approximation, built
from static analysis of the target. We write correctivelyS∼= enforceable, or just
enforceableS∼=, to denote the set of properties that are correctively∼= enforceable,
when only sequences from S ⊆ Σ∞ are possible executions of the target program.
A property is correctivelyS∼= enforceable iff for every sequence in S, the monitor
can return a valid and equivalent sequence.

Definition 4. Let A be an edit automaton and let S ⊆ Σ∞ be a subset of
executions. A correctivelyS∼= enforces the property P̂ iff ∀σ ∈ S

1. P̂(A(σ))
2. A(σ) ∼= σ
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Theorem 8. A property P̂ is correctivelyS∼= enforceable iff

1. P̂ is Reasonable
2. ∃P̂ ′ ⊆ P̂ : P̂ ′ ∈ renewal : (∃γ ∈ S → P̂ ′ : (∀σ ∈ S : γ(σ) ∼= σ)∧ (∀σ, σ′ ∈ S :

σ′ � σ ⇒ γ(σ′) � γ(σ)) ∧ γ is computable)

Proof. The proof follows exactly as that of Theorem 1. #%

Lemma 9. Let S ⊆ Σ∞ and P̂ be a reasonable property P̂ is trivially correc-
tivelyS∼= enforceable iff S ⊆ P̂. If this is the case, the monitor can enforce the
property by always returning the input sequence.

We assume that S represent an upper approximation of a program executions
set, determined by static analysis. It would be desirable if the set of enforceable
properties increased monotonously each time a sequence was removed from S.
This means that any effort made to perform or refine a static analysis of the
target program would payoff in the form of an increase in the set of enforceable
properties. This is unfortunately not the case. As a counterexample, consider
the equivalence relation defined as ∀σ, σ′ ∈ Σ∞ : σ ∼= σ′. It is obvious that any
satisfiable property can be trivially enforced in this context, simply by always
outputting any valid sequence, which is necessarily equivalent to the input. No
benefit can then be accrued by restricting S.

There are, of course, some instances where constraining the set S does result
in an increase in the set of correctivelyS∼= enforceable properties. This occurs
when invalid sequences with no valid equivalent are removed from S. Indeed, for
any subsets, S,S′ of Σ∞ s.t. S ⊂ S′ ∧ S′\S �= {ε}, there exists an equivalence
relation ∼= for which enforceableS

′
∼= ⊂ enforceable ⊂S∼=.

Theorem 10. Let S ⊂ S′ ⊆ Σ∞ ∧ S′\S �= {ε}. There exists an equivalence
relation ∼= s.t. enforceableS

′
∼= ⊂ enforceable ⊂S∼=.

Proof. Let ∼= be defined s.t. ∃σ ∈ S′\S : [σ] ∩ S �= ∅. Let P̂ be the property
defined as P̂(σ) ⇔ (σ /∈ S ∧ σ �= ε). This property is not enforceableS

′
∼= since

there exists sequences in S′ with no valid equivalent. The property is trivially
enforceable ⊂S∼=. #%

A final question of relevance on the topic of nonuniform enforcement is whether
there exists some equivalence relations ∼= for which every reduction of the size of
S monotonously increases the set of properties that are correctivelyS∼= enforceable.
In other words, if there exists some ∼= for which S ⊂ S′ ⇒ enforceableS

′
∼= ⊂

enforceableS∼=. Anyone operating under such an equivalence relation would have
an added incentive to invest in static analysis of the target, as he or she would
be guaranteed an increase in the set of enforceable properties. Unfortunately, it
can be shown that this result holds only when ∼= is syntactic equality and at
least one sequence different from ε is removed from the set of possible sequences.

Theorem 11. (σ ∼= σ ⇔ σ = σ′) ⇔ ∀S,S′ ⊆ Σ∞ : (S ⊂ S′ ∧ S′\S �= {ε} ⇒
enforceableS

′
∼= ⊂ enforceableS∼=)
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Proof. (⇒ direction) Let P̂ be defined such that P̂(σ) ⇔ (σ /∈ S′\S). This prop-
erty cannot be correctivelyS′

∼= enforceable since any sequence in S′\S does not
have a valid equivalent. The property is trivially correctivelyS∼= enforceable.
(⇐ direction) By contradiction, let ∼= be different than syntactic equality. This
implies there exists σ, σ′ ∈ S′ : σ ∼= σ′ ∧ σ �= σ′. Further, let S′ = {σ, σ′} and
S = {σ}. We show that any property that is correctivelyS∼= enforceable is also
correctivelyS′

∼= enforceable. There are five cases to consider. :

– σ, σ′ ∈ P̂: In this case, the property is always trivially enforceable.
– σ ∈ P̂ ∧ σ′ /∈ P̂: Such a property would be both correctivelyS∼= enforceable

and correctivelyS′
∼= enforceable by automaton A for which A(τ) = σ for all τ

in the input set.
– σ′ ∈ P̂ ∧ σ /∈ P̂ : Such a property would be both correctivelyS∼= enforceable

and correctivelyS′
∼= enforceable by automaton A for which A(τ) = σ′ for all

τ in the input set.
– σ, σ′ /∈ P̂ ∧ ∃σ′′ ∼= σ : P̂(σ′′) : Such a property would be both correctivelyS∼=

enforceable and correctivelyS′
∼= enforceable by automaton A for which A(τ) =

σ′′ for all τ in the input set.
– σ, σ′ /∈ P̂ ∧ ¬∃τ ∼= σ : P̂(τ) : This property can neither be correctivelyS∼=

enforceable nor can it be correctivelyS′
∼= enforceable since there exists some

sequences with no valid equivalent.

Finally, observe that since only reasonable sequences are enforceable, no possible
gain can be accrued from removing only ε from the set of possible sequences. #%

8 Conclusion and Future Work

In this paper, we propose a framework to analyze the security properties enforce-
able by monitors capable of transforming their input. By imposing constraints
on the enforcement mechanism to the effect that some behaviors existing in the
input sequence must still be present in the output, we are able to model the de-
sired behavior of real-life monitors in a more realistic and effective way. We also
show that real life properties are enforceable in this paradigm, and give prefix
equivalence and factor equivalence as possible examples of realistic equivalence
relations which could be used in a monitoring context. The set of properties
enforceable using these two equivalence relations is related to previous results in
the field.

Future work will focus on other equivalence relations. Two meaningful equiv-
alence relations which we are currently studying are subword equivalence and
permutation equivalence. The first adequately models the behavior of a monitor
that is allowed to insert actions into the program’s execution, but may not sub-
tract anything from it. The second models the behavior of a monitor which can
reorder the actions performed by its target, but may not add or remove any of
them. An even more general framework that could be envisioned would be one
in which the behavior that the monitor must preserve is stated in a temporal
logic.
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Abstract. Verification of security for mobile networks requires specifi-
cation and verification of security policies in multiple-domain environ-
ments. Mobile users present challenges for specification and verification
of security policies in such environments. Formal methods are expected
to ensure that the construction of a system adheres to its specification.
Formal methods for specification and verification of security policies en-
sure that the security policy is consistent and satisfied by the network
elements in a given network configuration. We present a method and a
model checking tool for formal specification and verification of location
and mobility related security policies for mobile networks. The formal
languages used for specification are Predicate Logic and Ambient Calcu-
lus. The presented tool is capable of spatial model checking of Ambient
Calculus specifications for security policy rules and uses the NuSMV
model checker for temporal model checking.

Keywords: model checking, ambient calculus, security policy.

1 Introduction

Resource sharing and provision of services in networks with multiple administra-
tive domains is an ever-increasing need. Roaming is another concept that comes
into consideration when dealing with multi-domain resource sharing applica-
tions where users are allowed to use network connectivity of multiple domains.
Roaming means that users are able to connect to and use networks of multiple
administrative domains. Security management in such an environment requires
specification of inter-domain security policies and cross-domain administration
of security mechanisms. Authorization mechanisms determine the access rights
for a user based on the security policy. The access control mechanisms then con-
trol the user access to the resource based upon these determined access rights.
The user actions should be verified against home and visited domain policies
as they access resources on visited domains. Formal verification can be used to
ensure that visiting users are not bypassing security mechanisms and violating
security policy by making use of the internal trust relationships.

In this paper, we propose a method and a model checking tool for formal
specification and verification of multi-domain security policies with location and
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mobility constraints. Appropriate to the nature of multi-domain mobile net-
works, the proposed method focuses on the location and mobility aspects of
security policies. The formalism of the method is based on predicate logic, am-
bient calculus and its ambient logic. An ambient calculus model checker capable
of spatial and temporal model checking has been built for the implementation of
proposed method. The model checker presents novel computational methods for
decreasing the time and space complexity of spatial model checking. The model
checking approach complements our previous work on use of theorem proving
for security policies [19].

2 Formal Languages and Methods for Specification and
Verification of Policies

Logic-based security policy models provide a general framework for security pol-
icy specification. Becker et al.’s SECPAL [1] is a formal security policy language
for Grid environments. The Flexible Authorization Framework (FAF) is a logic
programming based method for definition, derivation and conflict resolution of
authorization policies [14,13]. Another study based on logic that supports ex-
plicit denials, hierarchies, policy derivation and conflict resolution is [2]. Ponder
[9] is a general purpose formal security policy language. Woo and Lam [20] define
a paraconsistent formal language for authorizations based on logical constructs.
In [8] deontic logic is used for modeling the concepts of permission, obligation
and prohibition with organizational constructs. A security policy language based
on the set-and-function formalism is presented in [16].

Model checking and theorem proving have been applied for verification of se-
curity policies. Acpeg [21] is a tool for evaluating and generating access control
policies based on first-order logic. We have previously applied theorem proving
to verification of security policies. In [19] we use Coq for checking that an au-
thorisation security policy is conflict-free, initially and as authorisation rules are
added and removed, while [10] uses first order linear temporal logic embedded
within Isabelle to formalise and verify RBAC authorisations constraints. A more
recent study, [18] uses nontemporal and history-based authorization constraints
in the Object Constraint Language (OCL) and first-order linear temporal logic
(LTL) to verify role-based access control policies with the help of a theorem
prover.

Ambient Calculus [4] has been used for modeling and reasoning about security
in mobile systems. Reasoning about spatial configurations for application level
security policies in ubiquitous environments is one of the issues investigated in
Scott’s PhD thesis [17]. In this study a simplified version of ambient calculus and
ambient logic is used in policy rules of a security policy. BACIR [7] is a boxed
ambient calculus with RBAC mechanisms used to define access control policies
for ambients. Similarly, in our approach, the Ambient Calculus and Ambient
Logics [3] are utilized. In contrast to BACIR which places policies inside Ambient
Calculus formulas, we use Ambient Calculus for specification of processes and
Ambient Logics for specification of policies and complement them with Predicate



Model Checking of Security Policy Specifications in Ambient Calculus 157

Logic based relational model. In contrast to Scott’s approach, network level
policies rather than application level policies will be covered and locations will
denote placement in domains and hosts. For model checking of ambient calculus
specifications, our approach is similar to the work of Mardare et al [15]. We
use a modified version of Mardare algorithm and present an algorithm based
on use of capability trees that reduces complexity of state space generation and
matching of ambient logic formulas to states. In the works of Charatonik et
al. [5,6] exhaustive search is offered for searching possible decompositions of
processes and searching sub locations when checking spatial modalities. We offer
heuristics for searching possible decompositions of processes and searching sub
locations to reduce the search space.

3 A Formal Model for Security Policies for Multi-domain
Mobile Networks in Ambient Calculus

3.1 Formal Model for Security Policy

Access Control Model: The access control model is specified using Predicate
Calculus and First Order Set Theory. The access control model is based on the
RBAC [11] model. The Hierarchical RBAC model extends the Core RBAC model
with role hierarchies. We use the hierarchical RBAC model that supports role
hierarchies. For introduction of location and mobility constraints into the secu-
rity policy, we extend the Hierarchical RBAC model by adding Domains, Hosts,
Object Types, Conditions and Location Constraints. The concept of sessions are
not utilized in our model.

– Constants:
d, n, m, o, t, v: Number of domains, hosts, users, roles, objects and object
types, respectively.

– Sets:
• D = {D1, D2, ...Dd} : Domains , H = {H1, H2, ...Hn} : Hosts
• U = {U1, U2, ...Um} : Users , R = {R1, R2, ...Ro} : Roles
• O = {O1, O2, ..., Ot} : Objects , OT = {OT1, OT2, ...OTv} : Object Types

– Relations:
HOD : H ×D : Maps hosts to domains. HOD(Hi, Da) denotes that Hi is
enrolled to Domain Da.
UOD : U × D: Maps users to domains. UOD(Uj , Da) denotes that Uj is
enrolled to Domain Da.
OOT : O → OT :Function that specifies the type of an object. OOT (Ok)
gives the type of object Ok.
UA : U ×R: Relation for assignment of users to roles.
PA : R×AO × SA: Relation for associating roles with permissions.

Authorization Terms and Security Policy
An Authorization Term is of the form at = (as, ao, sa, fo, co) where as∈AS, ao
∈ AO, sa∈ S ×A,fo: a formula, where formula is an ambient logic formula, co:
a condition, where condition is a predicate logic formula. Security policy is a set
of authorization terms.
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– Sets:
AS: AS = U ∪R. The set of Authorization Subjects. Authorization Subjects
are active entities that may conduct an Action on an Authorization Object.
AO: AO = O ∪OT ∪ H ∪D. The set of Authorization Objects. The autho-
rization object is the entity upon which an action is conducted.
A : Set of actions conductable by subjects on objects. We take A to be fixed
in this study:
A ={Enroll, Login, Logout, Execute, Read, Write, Send, Receive, Delete,
Create}
Signs: S = {+,−} Represents permission or denial.
Signed Actions: S×A: Represents permission or denial of an action (+,read)
denotes that read action is permitted.

– Predicates:
• EnrolledDomainHost (host, domain): host is a registered member of the

Domain domain
• EnrolledDomainUser (user, domain): user is a registered member of

domain
• ActiveDomainUser (user, domain): user has logged into a domain
• RoleAllowed (user, role): user has assumed the Role of role
• ActionAllowed (as, action): Authorization Subject as is allowed to

execute action action
– Conditions: First-order sentences built on the Predicates defined above.
– Spatial Formula: Ambient Logic formula that includes names of domains, au-

thorization subjects and authorization objects. The formula will be
described in the following sections.

3.2 Formal Specification of Mobile Processes

Ambient calculus, proposed by Cardelli and Gordon, is a process calculus which
is able to theorize about concurrent systems that include mobility and locations
[4]. The proposed methodology uses ambient calculus for specifying multi-domain
mobile network configurations. Fragment of ambient calculus used in this paper
is shown at Table 1. The semantics of ambient calculus is based on structural
congruence relation.

The formal model for mobility is a finite fragment of the ambient calculus with
public names as used in [6]. In the formal specification, domains, hosts, users
and objects are modeled as Ambients. The actions are modeled as Ambient
Calculus capabilities. A process specification shows a trace of a process in a
certain mobile network scenario. Each scenario may be modeled as a set of
process specifications. These specifications will then be checked against a security
policy for compliance. The process specification involves capabilities, objects and
ambients. Resources may be input and output by the ambients. The ambients
may be World, Domains, Hosts and Users. Below some examples of object, host
and user mobility specification of mobility as ambient calculus processes are
listed. Some known notation conventions are utilized: for example n[] means
n[0]. The symbol→ represents the reduction relation and→* represents a series
of reductions.
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Table 1. Mobility and communication primitives of Ambient Calculus

P, Q ::= processes M ::= capabilities
0 inactivity x variable
P |Q composition n name
M [P ] ambient in M can enter M
M.P capability out M can exit M
(x).P input open M can open M
〈M〉 asynchronous

output
ε null

M.M path

– File1 is copied to Portable1 :

World [DomainA[Server1 [folder [out folder. out Server1. in Portable1. in
folder. File1 [] | File1 []]] | Portable1 [folder[]]]] →*

World [DomainA[Server1 [folder [File1 []]] | Portable1 [folder[File1 []]]]]

– A message M is sent from User1 to User3 :

World [DomainA [Server1 [User1 [message[M | out User1. out Server1.
out DomainA. in DomainB, in Client2. in User3.0]]]] | DomainB [Client2

[User3 [open message.(m).0]]]] →*
World [DomainA[Server1 [User1 []]] | DomainB [Client2 [User3 [M ]]]]

We also provide the mapping of actions in the security policy model to Ambient
Calculus specifications. These are provided as a template and based on inference
of specific subject and object names from the high-level specifications of security
policy, the model checking tool is presented with suitable Ambient Calculus
specifications.

Enroll =def newz.indomain.z[]|domain[], wherez ∈ U ∪H, domain ∈ D (1)

Login =def domain[z[inhost]|host[]], wherez ∈ U, host ∈ H, domain ∈ D (2)

Logout =def domain[host[z[outhost]]], wherez ∈ U, host ∈ H, domain ∈ D (3)

3.3 Formalization of Location and Mobility Related Actions in
Authorization Term

The spatial formula in the Authorization Term is specified using the Ambient
Logic[3]. Fragment of ambient logic used in this paper is shown in Table 2. Am-
bient logic has temporal and spatial modalities in addition to propositional logic
elements. Semantics of the connectives of the ambient logic are given through
satisfaction relations defined in [3]. The definition of satisfaction is based heavily
on the structural congruence relation. The satisfaction relation is denoted by |=
symbol. To express that process P satisfies the formula A , P |= A is used. The
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Table 2. Syntax of ambient logic

η a name n
A , B, C ::= T true A |B composition

¬A negation n[A ] location
A ∨ B disjunction ♦A sometime modality
0 void 	A somewhere modality

symbol Π denotes the set of processes, Φ denotes the set of formulas, ϑ denotes
the set of variables, and Λ denotes the set of names.

The possibility of conflicts arising of conflicting actions are resolved using
the theorem prover as presented in our previous work in [19] before presenting
rules to the model checker. Using the formalization methodology for authoriza-
tion terms and spatial formula described above, some example security policy
definitions with location constraints, which can be specified with our formal
authorization terms are presented below.

1. All allowed users can read files in folder Project_Folder, if they are in a
location that contains this folder: (as = *, ao = Project_Folder, sa = + read,
co = ActionAllowed (as, sa), fo = &(as [] | ao[]))

2. All allowed users can send E-mail between the UniversityA and UniversityB
domains: (as = *, ao = E-mail, sa = + send, co = ActionAllowed (as,
sa), fo = UniversityA [&as []] | UniversityB [&ao[]] \/ UniversityB [&as []] |
UniversityA[&ao[]])

To check location constraints in security policy, the input to the model checker
tool is an Ambient Calculus specification and a set of Ambient Logic formulas.
An example scenario specified in Ambient Calculus and a security policy rule
specified in Ambient Logic is presented below. In this example there are two
domains, Domain1 and Domain2, where User2 is mobile and tries to read data
from File1 by logging into Host1. Spatial formula in the policy rule states that
Host2 can not contain Data1 and Data2 at the same time. This is a rule that
means Domain2 data should not be copied to Domain1.

– Ambient Calculus Specification: Domain1 [User1 [] | Host1 [File1 [Data1 [
in User2.0 | out User2.0]]]] | Domain2 [Host2 [User2 [out Host2.0 | out Do-
main2.0 | in Domain1.in Host1.0 | out Host1.out Domain1.0
| in Domain2.in Host2.0 in File1.0 | in File2.0 | out File1.0 | out File2.0]
| File2 [Data2 []]]]

– Ambient Logic Specification: � { ¬ & { & Host2 [ & {Data1 [T] | Data2 [T]}]
| T}

4 Model Checking of Security Policy Specifications in
Ambient Calculus Model Checker

The general structure of the Ambient Calculus model checker is given in Figure 1.
To benefit from existing methodologies we divide our problem into two sub
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problems as temporal model checking and spatial model checking. The temporal
model checker is used for carrying out satisfaction process for the Sometime and
Everytime connectives of ambient logic. The proposed model checking method
generates all possible future states and build a state transition system based on
the Ambient Calculus process specification. After evaluation of Ambient Logic
formula in each state, this state transition system is processed into a Kripke
Structure (Definition 4) which is then given to temporal model checker. NuSMV
[12] is used as a temporal model checker. Outline of the proposed algorithm for
the model checking problem is below.

1. Define atomic propositions with respect to spatial properties of ambient logic
formula and register the (atomic proposition-spatial modality) couples.

2. Reduce ambient logic formula to temporal logic formula (CTL) by replacing
spatial modalities with atomic propositions.

3. Generate state transition system of the ambient calculus specification with
respect to reduction relations. This involves generation of initial state from
given ambient calculus specification, generation of new states by applying
available capabilities with respect to ambient calculus reduction relations and
addition of new states to state transition system with transition relation.

4. Generate Kripke Structure from state transition system. This step involves
the assignment of the values of the atomic propositions for each state of
state transition system (labeling) by applying model checking for spatial
modalities on ambient topology of the related state and the addition of a new
state with its label (values of atomic propositions) to the Kripke Structure.

5. Generate NuSMV code from Kripke Structure and CTL Formula.

4.1 Ambient Topology and Spatial Formula Graphs

In [15], state information is represented with sets. In [6], calculus and logic infor-
mation is represented as strings and algorithms are based on string operations.
In the method proposed, ambient calculus specifications and logic formulas are
represented as graphs. State information associated with a process specified in
ambient calculus consists of static and dynamic properties. Static properties
of state are the ambients and their hierarchical organization, i.e. the “ambient
topology”. The dynamic properties of the state are the capabilities and their de-
pendencies on each other. Static and dynamic properties of an ambient calculus
specification are kept in separate data structures.

Definition 1. Ambient Topology, GAT = (NAT , AAT ), is an acyclic digraph
where elements of set of nodes v ∈ NAT denotes ambients within the ambient
calculus specification (elements of Λ) and arcs a ∈ AAT , a = {xy | x, y ∈ NAT }
denotes parent-child relation among ambients. The indegree of nodes deg−(v) =
1 for any node (vertex) v whereas the outdegree of nodes deg+(v) ∈ N.

The following defines capability trees which is a novel data structure used in our
algorithm.
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Fig. 1. Block diagram of the Ambient Calculus Model Checker

Definition 2. Capability Tree, GCT = (NCT , ACT ), is an acyclic digraph where
set of nodes v ∈ NCT denotes capabilities and arcs a ∈ ACT , a = {xy | x, y ∈
NCT } denotes priority relation among capabilities. Nodes contain the informa-
tion about which ambient the capability is attached and which ambient the capa-
bility effects. deg−(v) = 1 for any node v, whereas deg+(v) ∈ N.

Graphs representing formulas are more complex than the others. They are acyclic
digraphs where nodes denote connectives and locations whereas arcs denote the
operator-operand relation. There are multiple types of nodes and arcs in formula
graphs because of the different structure of the ambient logic connectives.

Definition 3. An ambient logic formula, GF = (NF , AF ), is an acyclic digraph
where

– The set of nodes: NF = (NL ∪ NBinary ∪ NUnary ∪ NPC). NL is the set
of nodes representing ambients. Elements of NL are labeled with elements
of Λ. NUnary is the set of nodes representing unary connectives (¬, &, ♦) at
formulas. NBinary is the set of nodes representing binary connectives, (∨)
at formulas. NPC is the set of nodes representing parallel compositions at
formulas.

– The set of arcs: AF = (APC ∪ ABinary ∪ AUnary), where elements of APC

represents parallel compositions, ABinary represents binary connectives and
AUnary represents unary connectives of ambient logic formulas.

– apc ∈ APC = x, y|x ∈ NPC , y ∈ (NL ∪ NBinary ∪ NUnary),
au ∈ AUnary = (x, y | x ∈ (NL ∪ NUnary), y ∈ NPC) , ab ∈ ABinary =
(x, y|x ∈ NBinary, y ∈ NPC)
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– for v ∈ NF , deg−(v) = 1, for v ∈ NPC , deg+(v) ∈ N, for v ∈ NUnary, and
v ∈ NL, deg+(v) =1, for v ∈ NBinary, deg+(v) =2.

– Elements of NPC can have a special attribute to represent the T construct of
the logic. If T attribute of a NPC node is set to true this means the parallel
composition of process that the NPC node stands for, includes the constant
T.

4.2 State Transition System Generation

In the proposed model checking methodology the state transition system is gen-
erated from the initial model specification by executing capabilities in the ambi-
ent calculus specification. Since replication is excluded from specifications, the
state transition system can be represented by an acyclic digraph where nodes
represent states and edges represent the execution of a capability. For selection
of the next capability to execute, some condition checks are carried out. These
conditions are the location of the object ambient and the availability of the
subject ambient. A capability can not be executed if the location of the object
ambient for the capability is not the current location, if it is prefixed by another
capability path, or the parent ambient of the subject ambient is prefixed by a
capability path. In the proposed method these conditions are checked each time
a capability is to be executed.

In this work a new data structure is offered to represent temporal behaviors.
The use of this data structure named “capability trees” eliminates the need to
check the availability of a subject ambient. Capability paths are organized as an
acyclic digraph that represent the interdependencies of capabilities. Capability
trees are built at parsing stage so no pre-processing is needed. The selection of
the next capability to execute starts from the root of this graph. This method
guarantees that the capabilities of the parent processes are executed before the
capabilities of child processes.

4.3 Checking Spatial Modalities

The basic element for building an ambient calculus model checker for ambi-
ent logic is to express and implement the satisfaction relation. In the proposed
method, all the generated states generated must be checked against the spatial
formulas. Ambient logic formulas are decomposed into a CTL formula and a set
of spatial formulas by formula reduction. The ambient topology and the spa-
tial formula graphs are inputs to the spatial model checker. The spatial model
checking takes place before generation of Kripke Structures.

Matching of an ambient topology and a spatial formula is a recursive proce-
dure in which ambient topology nodes are assigned to formula nodes. Matching
process starts with assigning the ambient topology’s root to the root of the
spatial formula graph. Spatial formula nodes can forward the assigned ambi-
ent topology node to its children partially or completely in a recursive manner.
Match process is successful when all nodes at ambient topology is matched to a
spatial formula node. Match processes at different type of spatial formula nodes
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are different. Different match processes are introduced after auxiliary heuristic
functions which are explained below.

Heuristic Functions. Heuristic functions are used at matching the Parallel
composition (|) and Somewhere (&) connectives. Former works try to match ev-
ery alternative while searching a match for these connectives. In our proposed
method, the number of these trials are reduced by the help of auxiliary heuristic
functions. Some connectives of ambient logic called wildcard connectives match
different kinds of ambient topology. These connectives are used for matching am-
bients of ambient topology which are not expressed in formulas. The constant T
of the logic matches any ambient topology assigned to it. Negation connective of
the logic can be seen as another kind of wildcard connective. Negations matches
any ambient topology unless the sub formula of the negation matches this am-
bient topology. Another source of wildcard property is Somewhere connectives.
The parallel process of the parent ambient are neglected when searching sublo-
cations. So if the sublocation search is obtained by applying ↓ one or more times,
the associated Somewhere connective gains a wildcard property. Function wild-
card is a recursive function used for determining if a node of formula graphs has
wildcard property.

It is not obvious to see which ambients are expected at sub formulas of Dis-
junction and Somewhere connectives. guessExpectedAmbients function is a re-
cursive function which returns a set of expected ambient combinations for a
formula graph node. The returned set includes all possible ambient combina-
tions expected by children of that node. The returned value is a set instead of
a single ambient combination. Function findSublocation is a recursive function
used to find parent of an ambient at an ambient topology.

Matching of Spatial Formula. In a match between an ambient topology and
spatial formula graph, all nodes of ambient topology must be matched with a
node of spatial formula graph. Some nodes of spatial formula graphs can forward
the ambient topology nodes assigned to them to their children, while others
match assigned ambient topology nodes directly. The proposed spatial model
checking algorithm tries alternative assignments of a given ambient topology
nodes over a given spatial formula graph. The proposed spatial model checking
algorithm is recursive where matching process starts from the roots of a graph
and continues to underlying levels. If a suitable matching found at the upper
level then matching process continues to find matches in lower levels. The match
process is regulated by the semantics of spatial formula graph nodes.

4.4 Generation of Kripke Structure

A Kripke Structure is a state transition system where states are labeled by the
set of atomic propositions which hold in that state. Atomic propositions can be
considered as the marking of system properties.

Definition 4. Let AP be a non-empty set of atomic propositions. A Kripke
Structure is a four-tuple; M = (S, S0, R, L) where S is a finite set of states, S0
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⊆ S is the set of initial states, R ⊆ S× S is a transition relation, and L: S →
2AP is a function that labels each state with the set of atomic propositions that
are true in this state.

The state transition data structure provides sets S, S0 and relation R of a
Kripke Structure. The elements of the set of atomic propositions come from for-
mula reduction. In formula reduction, spatial formulas are replaced with atomic
propositions. The function L is generated by applying spatial model checking
for each state in state transition data structure against each spatial formula.
Kripke Structure is obtained by attaching the values, coming from spatial model
checking, into the state transition system graph.

4.5 NuSMV Code Generation

The model checking mechanism explained above provides CTL formulas and
a Kripke Structure. The next step is the generation of NuSMV code which is
semantically equivalent to the Kripke Structure and temporal logic formula. In
the NuSMV specification a variable state is used for specifying states in the
Kripke Structure. The other kind of variables used in NuSMV code generation
is boolean variables for representing atomic propositions. CTL formulas provided
by the formula reduction step are then converted to NuSMV code according to
CTL formula graph provided by formula reduction, where the Sometime (♦)
connective is represented as EF and Everytime (�) connective is represented as
AG. The atomic propositions are reflected into strings with their names.

4.6 Example for Spatial Model Checking Algorithm

Let’s consider the scenario and policy example presented in Section 3.3. When
the Ambient Calculus specification is input to the model checker, a total of 53
states are generated. One Atomic Proposition (AP) is generated, where

AP = &{&Host2[ & {Data1[T ]|Data2[T ]}]|T } (4)

A part of the execution of the algorithm is presented in Table 3. Only the initial
and the last two states are shown. For each state an action is executed to produce
a new spatial state. For state 53 the spatial model checking algorithm matches
the spatial formula AP to the current state of World.

Table 3. Part of output generated by the spatial model checker for the example policy
presented in 3.3

State Spatial state of World AP Action
0 Domain1[User1[]|Host1[File1[Data1[]]]]|

Domain2[Host2[User2[]|File2[Data2[]]]]
F User2[out Host2]

52 Domain1 [User1 [Host1 [File1[]]]| Domain2 [Host2 [File2
[User2[]|Data2 []|Data1 []]]

F User2[out File2]

53 Domain1 [User1 [Host1 [File1[]]]| Domain2 [Host2 [File2
[Data2 []|Data1 []]|User2[]]

T -
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4.7 Complexity and Performance Analysis

Time Complexity. Time complexity of generation states transition system is
dependent on the number of capabilities. The execution of a capability causes
a future state. In the worst case, all capabilities are independent. Independence
of capabilities means that capabilities are in sequence or they operate on dif-
ferent ambients. Where n is the number of capabilities in the ambient calculus
specification, the time complexity of generating state transition system in worst
case is

n∑
k=0

n!
k!

(5)

The time complexity of checking spatial modalities are dependent to the type
and number of the connectives of the spatial formulas. The overall time cost of
the match process for Somewhere connective is linear with the cost of match
process of parallel composition for specifications with Somewhere connectives.
However, the time complexity of the match process is exponential with the num-
ber of ambients as defined in Formula 6 where ane is the number of topmost
ambients of the ambient topology which are not expected by the heuristic func-
tions, dw is the number of disjunctions which have wildcard property in the
parallel composition, not is the number of negations in the parallel composition,
sww is the number of Somewhere connectives which have wildcard property in
the parallel composition:

O(a(sww+not+dw)
ne ) (6)

In contrast, when the brute force search is used for decomposing ambient calculus
specifications, the time complexity is calculated as defined in Formula 7 where
a = ane + ae is the total number of topmost ambients in the ambient topology,
including those expected by the heuristic functions (ae), l is the number of
location in the parallel composition, sw is the number of Somewhere connectives
which have not wildcard property in a parallel composition, d is the number of
disjunctions which have not wildcard property in the parallel composition:

O((a)(sww+sw+l+not+d+dw)) (7)

As presented above, the variables that effect the exponential complexity of the
match process is significantly reduced by the proposed algorithm.

4.8 Space Complexity

Proposed algorithm builds a state transition system in a depth-first manner. The
depth of the state transition system is at most equal to the number of capabilities.
Therefore, the space complexity of the space generation is O(n) where n is the
number of capabilities. When checking spatial modalities, the space needed is
equal to the size of the formula which is dependent on the number of connectives
of the formula. Therefore, the space complexity of checking spatial modalities is
O(c), where c is the number of the connectives at formula.
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4.9 Performance

Due to space limitations, the details of performance tests will not be presented.
As a summary, our performance tests suggest that the state transition system
generation cost outweighs the spatial model check for both time and space con-
sumption. As an example to performance results, a specification with 16 ambients
and 37 capabilities generates nearly 630,000 states with memory consumption
under 8 MB and a time of under 300 seconds. The performance test has been
run on an Intel G5 server with 2.93 GHz CPU and 10 GB memory.

5 Future Work and Conclusions

We presented a method and tool for the specification and verification of security
policies of multi-domain mobile networks. The main focus of this method is
location and mobility aspects of security policies. The basic elements of this
method are predicate logic, ambient calculus and ambient logic. In this paper,
model checking techniques are applied for verification of security policies and an
ambient calculus model checker is presented.

The size of the state transition system is the most significant element at time
and spatial cost of model checking. Number of states grows exponentially as ca-
pability number increase linearly. A partial order reduction might decrease the
number of the states of the state transition system and reduce time consump-
tion and size of generated NuSMV code. Investigating partial order reduction
techniques for ambient calculus is a direction for our future work.

In our ongoing research we are developing tools for automatic extraction of
formal process calculus specifications and logic formulas from security policy.In
order to extract the Ambient Logic formula and specification from security pol-
icy, we are building a tool called “Formal Specification Generator”. The tool will
be based on analysis of scenarios depicting sequences of actions of system el-
ements. These high-level actions are more suitable for our problem domain in
contrast to Ambient Calculus primitives. Therefore our aim is to provide an au-
tomated means to translate high level policy and actions to formal calculus and
logic specifications.
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Abstract. Partner key management (PKM) is an interoperable cre-

dential management protocol for online commercial transactions of high

value. PKM reinterprets traditional public key infrastructure (PKI) for

use in high-value commercial transactions, which require additional con-

trols on the use of credentials for authentication and authorization. The

need for additional controls is met by the use of partner key practice

statements (PKPS), which are machine-readable policy statements pre-

cisely specifying a bank’s policy for accepting and processing payment

requests. As assurance is crucial for high-value transactions, we use an

access-control logic to: (1) describe the protocol, (2) assure the logical

consistency of the operations, and (3) to make the trust assumptions

explicit.

Keywords: authentication, authorization, protocols, trust, logic.

1 Introduction

Authorizing online high-value commercial transactions requires a higher level of
diligence when compared to consumer or retail transactions. A single high-value
transaction may involve the transfer of hundreds of millions of dollars. The inher-
ent risk associated with wholesale online banking compels many banks to require
additional security beyond authenticating users at login time. Additional secu-
rity often takes the form of tighter controls and limits on the use of credentials.
Ultimately, each bank trusts itself more than any other entity. This naturally
leads to the practice of banks issuing their own credentials. Historically, a cash
manager of a corporation would hold separate credentials from each bank with
which he or she deals. While this serves the needs of commercial banks, as cor-
porations want to simultaneously hold accounts in multiple banks, the insistence
upon and proliferation of unique credentials is viewed by customers as poor ser-
vice. Hence, it is increasingly important for global financial services providers,
such as JP Morgan Chase, to offer credentials that: (1) are interoperable to
provide customer convenience, and (2) meet the needs of high-value commercial
transactions in terms of authentication, authorization, and liability.

Traditional Public Key Infrastructure (PKI) credentials while interoperable,
alone are insufficient to surmount the following obstacles inherent to the use of
interoperable credentials in high-value transactions:
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1. Autonomy: Interoperability and autonomy are in tension with each other. An
implication of interoperability is the need to allow audits. For example, say
Second Bank is contemplating recognizing credentials issued by First Bank.
Second Bank would understandably want to audit First Bank’s practices
as a credential issuer against Second Bank’s policies. Understandably, First
Bank would be reluctant to agree to audits of its operations by competitors
such as Second Bank.

2. Liability: Non-bank issuers of PKI credentials neither want, nor are in a po-
sition to accept, liability for failed high-value transactions. One way around
this is for a bank to issue its own credentials to limit risk and to recognize
only the credentials it issues; however, the solution is not interoperable by
definition.

3. Expense: If commercial banks were to recognize non-bank certificate issuers
for high-value commercial transactions, then commercial banks would need
to be connected to the non-bank certificate issuers. This is an added oper-
ational expense for banks, which is another barrier to achieving interoper-
ability.

In this paper, we describe an interoperable certificate management protocol
called partner key management (PKM). PKM is designed to address the three
obstacles to interoperability of credentials in high-value transactions described
above. Under the PKM model, each bank publishes a partner key practice state-
ment (PKPS), which is a machine readable document that describes the bank’s
policy for accepting interoperable credentials. PKM enables each bank to avoid
liability on transactions executed at any other bank, while preserving creden-
tial interoperability. Furthermore, PKM supports a general validation model,
where each corporation need only connect to the credential issuers to which it
subscribes. Moreover, we describe the certificate management protocol using an
access-control logic to prove its logical consistency and also to make the under-
lying trust assumptions explicit.

The rest of this paper is organized as follows. Section 2 presents the PKM
model, PKPS, and sender validation. Section 3 defines the syntax, semantics, and
inference rules of the logic used to describe and reason about PKM. Section 4
is an overview of how key parts of PKPS are expressed in the logic. Section 5
provides an extended example describing and analyzing the operation of PKM.
Related work is briefly discussed in Section 6. We offer conclusions in Section 7.

2 Partner Key Management

2.1 Credentials Registration

The PKM model focuses on authorization to use a credential as opposed to secure
distribution of a credential. As an analogy, consider mobile phone distribution
logistics. A user may purchase a mobile phone from any distributor. At the time
that the user physically acquires the phone, the telecom operator does not know
the user’s identity and does not allow use of the phone. Subsequently, the user
and the telecom operator agree to terms of use; and the mobile phone operator
authorizes the phone’s connection to the telecom network. In the PKM model,
the credential plays the role of the phone, and the bank plays a similar role to
the telecom operator.



Credentials Management for High-Value Transactions 171

In PKM, the user first obtains a credential from a credential distributor. The
credential distributor has the responsibility to distribute ‘secure’ credentials un-
der a definition of security defined by the operator. For example, one operator
may only distribute certificates on secured USB devices, while another operator
may distribute software for self-signed certificates. After obtaining a credential,
the user submits a request to each of his or her banks to allow use of the cre-
dential. On this step, the bank has two responsibilities. First, the bank must
securely assure itself of the user’s true identity. Second, the bank must examine
the credential to determine if the credential meets the bank’s standards. For
example, some banks may prohibit credentials other than certificates that reside
in a secured hardware token. If the bank accepts the credential, then the bank
authorizes the credential to represent the user. The user may use the same cre-
dential with multiple banks by appropriately registering the credential with the
respective banks. The authorization process may vary between the banks. Each
bank may have its own operational policy governing the conditions in which it
accepts the credentials based upon the bank’s published operating rules.

In effect, the credentials are interoperable, and banks have the liberty to follow
their own procedure for accepting the credentials and allowing users to employ
those credentials. The result is an infrastructure that allows the possibility of in-
teroperability without mandating interoperability. If two banks agree to accept a
single credential, then that credential would interoperate between the two banks.
No bank needs to rely upon any other bank or external credential provider.

2.2 Partner Key Practice Statement

Banks participating in the PKM model publish an XML document called the
Partner Key Practice Statement (PKPS), which is written using WS-Policy [1].
A PKPS defines how a corporation and a bank agree to work together, as gov-
erned by their mutually agreed upon security procedures. The corporation and
the bank have the freedom to impose almost any conditions to which they mutu-
ally agree, provided that the conditions do not require unsupportable program-
ming logic. The list below presents some examples types of information that may
appear in a PKPS:

1. Credential Media: The definition of the credential media may mandate a
smart card, USB token, HSM, FIPS-140-2, or a software credential.

2. Credential Provider: This item contains the list of credential providers to
which the corporation and the bank mutually subscribe. Example providers
are third party trusted providers, self-signed certificates, the corporation’s,
or the bank’s own infrastructure.

3. Revocation: The revocation definition describes the type of permissible cre-
dential revocation mechanism, e.g., certificate revocation list (CRL), online
certificate status protocol (OCSP) [2], etc. The revocation definition also
describes the party responsible for enforcing credential revocation; and it
describes any specific usage practice. For example, the revocation mecha-
nism may mandate that the recipient of a signature validate a CRL signed
by a particular party.

4. Timestamp: The timestamp definition defines timestamp rules and the times-
tamp provider, if any. The timestamp definition may specify a real-time
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threshold value. The recipient must ensure that it receives and validates a
signature before the threshold timelimit after the timestamp. For example, a
six hour threshold value means that the recipient must validate a signature
before six hours expires after the timestamp.

5. Signature Policy: The PKPS can specify the number of signatures required
for a specific type of transaction, and the roles of signatories. An example of
a signature policy is one which requires both an individual signature and a
corporate “system” signature in order to consider either signature as valid.

6. Credential Technology: A certificate that supports the X.509 standard is an
obvious choice for interoperability. However, additional technologies such as
the portable security transaction protocol (PSTP) [3] exist, and the PKPS
may specify alternative technologies.

The security requirements mutually agreed to by the bank and the corporation
are reflected in a specific PKPS, or possibly a list of PKPSs. The security re-
quirements may mandate that the corporation must attach the PKPS on each
signed transaction in order to consider any signature valid.

2.3 Revocation

This paper presents three example validation models. A bank’s PKSP should
define the model that a particular bank allows.

1. Receiver validation: The receiver validation model is typically used in a
PKI model. First, Alice submits a signed transaction to the bank. Upon re-
ceipt, the bank validates Alice’s signature against a CRL or OCSP responder
managed by the certificate provider.

2. Sender validation without evidence: Alice submits signed transactions
to the bank, but the bank performs no revocation check. Alice’s company
and the bank manage Alice’s credential using mechanism outside the scope
of the signed transaction.

3. Sender validation with evidence: Alice submits her certificate to an
OCSP responder, and obtains a response signed by the OCSP responder.
Alice signs the transaction and the OCSP response, and then submits to the
bank. The bank validates both Alice’s signature and the OCSP responder’s
signature. If the bank finds no error, then the bank accepts the transaction.

Each bank has the opportunity to allow any of the three example models, or
build its own variant model. Multiple banks may all accept the same creden-
tial from Alice, while requiring different revocation models.The second model,
sender validation without evidence, merits further discussion. If Alice proves to
be an untrustworthy person, then Alice’s company reserves the right to disable
Alice’s credential. For example, if Alice has a gambling problem, then autho-
rized representatives of Alice’s company should contact each of its banks with
the instruction to stop allowing Alice’s credential. Another use case which also
results in credential disabling, is one where Alice contacts each bank because she
suspects that her own credential was lost or stolen.

An OCSP responder, or a certificate revocation list is merely a revocation
mechanism optimized for scalability. As opposed to requiring the Alice’s com-
pany to contact each of its banks, an OCSP responder or Certificate Revocation
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List provides a centralized repository which handles certificate revocation. The
advantage of the OCSP responder or certificate revocation list is scalability as
opposed to security. If Alice were authorized to transact on accounts at hundreds
or thousands of banks, then the second model (sender validation without evi-
dence) would not be practical. However, in practice, wholesale banking does not
need such enormous scalability. Rather, Alice typically works with just a handful
of banks. Although Alice’s company may find the credential disabling process to
be relatively tedious because the company needs to contact each of the banks in
the handful, we normally find that corporations employ the credential disabling
process relatively infrequently.

In practice, corporations tend to contact each of their banks whenever a user’s
credential changes status, even if the bank happens to use the traditional receiver
validation model. In fact, some banks require immediate notification of such
events in their operating model. Intuitively, if the corporation ceases to trust
Alice to authorize high-value transactions, then the corporation probably wants
to contact each of its banks directly.

Both the second and the third models assume sender validation, as opposed to
receiver validation. An advantage of sender validation is that it better handles
expense. Suppose, for example, a corporation agrees to the services of a new
credential distributor. Credential interoperability encourages a dynamic market
by allowing the corporation the freedom to choose any acceptable credential
distributor. In the receiver validation model, the corporation could not use that
credential with its bank until the bank agrees to build an online connection to
the credential distributor’s OCSP responder or certificate revocation list. In the
sender validation models, on the other hand, the corporation may immediately
use the credential with the bank without waiting for the costly and possibly slow
technology development process.

3 An Access-Control Logic and Calculus

We use an access-control logic to describe and reason about the validity of acting
on payment instructions. This section introduces the syntax, semantics, and
inference rules of the logic we use.

3.1 Syntax
Principal Expressions. Let P and Q range over a collection of principal expres-
sions. Let A range over a countable set of simple principal names. The abstract
syntax of principal expressions is:

P ::= A / P&Q / P | Q

The principal P&Q (“P in conjunction with Q”) is an abstract principal making
exactly those statements made by both P and Q; P | Q (“P quoting Q”) is an
abstract principal corresponding to principal P quoting principal Q.

Access Control Statements. The abstract syntax of statements (ranged over by
ϕ) is defined as follows, where P and Q range over principal expressions and p
ranges over a countable set of propositional variables :

ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ
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Informally, a formula P ⇒ Q (pronounced “P speaks for Q”) indicates that
every statement made by P can also be viewed as a statement from Q. A formula
P controls ϕ is syntactic sugar for the implication (P says ϕ) ⊃ ϕ: in effect, P is
a trusted authority with respect to the statement ϕ. P reps Q on ϕ denotes that
P is Q’s delegate on ϕ; it is syntactic sugar for (P says (Q says ϕ)) ⊃ Q says ϕ.
Notice that the definition of P reps Q on ϕ is a special case of controls and in
effect asserts that P is a trusted authority with respect to Q saying ϕ.

3.2 Semantics

Kripke structures define the semantics of formulas.

Definition 1. A Kripke structure M is a three-tuple 〈W, I, J〉, where:

– W is a nonempty set, whose elements are called worlds.
– I : PropVar → P(W ) is an interpretation function that maps each propo-

sitional variable p to a set of worlds.
– J : PName → P(W ×W ) is a function that maps each principal name A

to a relation on worlds (i.e., a subset of W ×W ).

We extend J to work over arbitrary principal expressions using set union and
relational composition as follows:

J(P&Q) = J(P ) ∪ J(Q)
J(P | Q) = J(P ) ◦ J(Q),

where

J(P ) ◦ J(Q) = {(w1, w2) | ∃w
′
.(w1, w

′) ∈ J(P ) and (w′
, w2) ∈ J(Q)}

Definition 2. Each Kripke structure M = 〈W, I, J〉 gives rise to a function

EM[[−]] : Form → P(W ),

where EM[[ϕ]] is the set of worlds in which ϕ is considered true. EM[[ϕ]] is defined
inductively on the structure of ϕ, as shown in Figure 1.

Note that, in the definition of EM[[P says ϕ]], J(P )(w) is simply the image of
world w under the relation J(P ).

3.3 Inference Rules

In practice, relying on the Kripke semantics alone to reason about policies and
behavior is inconvenient. Instead, inference rules are used to manipulate formulas
in the logic. All logical rules must be sound to maintain consistency.

Definition 3. A rule of form
H1 · · ·Hn

C
is sound if for all Kripke structures

M = 〈W, I, J〉, if EM[[Hi]] = W for each i ∈ {1, . . . , n}, then EM[[C]] = W .

The rules in Figures 2 and 3 are all sound. If sound rules are used throughout,
then the conclusions derived using the inference rules are sound, too.
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EM[[p]] = I(p)
EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]
EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]
EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]
EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =
{

W, if J(Q) ⊆ J(P )
∅, otherwise

EM[[P says ϕ]] = {w|J(P )(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P | Q says ϕ ⊃ Q says ϕ]]

Fig. 1. Semantics

Taut
ϕ

if ϕ is an instance of a prop-
logic tautology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P | Q says ϕ ≡ P says Q says ϕ

&Says
P&Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of | P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Associativity of | P | (Q | R) says ϕ

(P | Q) | R says ϕ

P controls ϕ
def= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def= P | Q says ϕ ⊃ Q says ϕ

Fig. 2. Core Inference Rules

4 Expressing Statements and the PKPS in Logic

With the definition of the syntax and semantics of access-control logic, we pro-
vide an introduction to expressing actual payment instructions and the PKPS
in logic.

Statements and Certificates: Statements and requests are made by principals.
Requests are logical statements. For example, say Alice wants to transfer $106

dollars from acct1 to acct2. If 〈transfer 106, acct1, acct2〉 denotes the proposition
it is justifiable to transfer $106 from acct1 to acct2, then we can represent Alice’s
request as Alice says 〈transfer 106, acct1, acct2〉. Credentials or certificates are
statements, usually signed with a cryptographic key. For example, assume we
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Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Rep Says
P reps Q on ϕ P | Q says ϕ

Q says ϕ

Fig. 3. Derived Rules Used in this Paper

believe KCA is the key used by certificate authority CA. With this belief, we
would interpret a statement made by KCA to come from CA. In particular, if
KCA says (KAlice ⇒ Alice), we would interpret this public key certificate signed
by KCA as having come from CA.

Authority and Jurisdiction: Jurisdiction statements identify who or what
has authority, specific privileges, powers, or rights. In the logic, juris-
diction statements usually are controls statements. For example, if Al-
ice has the right to transfer a $106 dollars from acct1 to acct2, we
say Alice controls 〈transfer 106, acct1, acct2〉. If Alice has jurisdiction on
〈transfer 106, acct1, acct2〉 and Alice requests 〈transfer 106, acct1, acct2〉, then
the Controls inference rule in Figure 3 allows us to infer the soundness of
〈transfer 106, acct1, acct2〉.

Alice controls 〈transfer 106, acct1, acct2〉 Alice says 〈transfer 106, acct1, acct2〉
〈transfer 106, acct1, acct2〉.

Proxies and delegates. Often, something or somebody makes the requests to the
guards protecting the resource on behalf of the actual principals, who are the
sources of the requests. In an electronic transaction, a cryptographic key is used
as a proxy for a principal. Recall that KCA says (KAlice ⇒ Alice) is a public
key certificate signed with the public key KCA of the certification authority.
The certification authority’s key, KCA, is installed on the computer using a
trustworthy key distribution process, and the trust in the key is captured using
the statement KCA ⇒ CA. If we get a certificate signed using KCA, then we
would attribute the information in that certificate to CA. For example, using the
Derived Speaks For rule in Figure 3 we can conclude that certificate authority
CA vouches for KAlice being Alice’s public key:

KCA ⇒ CA KCA says (KAlice ⇒ Alice)
CA says (KAlice ⇒ Alice).

KAlice ⇒ Alice is a statement of trust on KAlice, where all statements made
by KAlice are attributed to Alice. However, in some situations, a principal may
be trusted only on specific statements. For example, KAlice may be trusted on
a statement requesting a transfer of a million dollars. However, KAlice may
not be trusted on a statement KBob ⇒ Bob. This notion of a constrained
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Fig. 4. Partner key management

delegation, where a principal’s delegate is trusted on specific statements, is
described using reps formulas. For example, if KAlice is trusted to be Al-
ice’s delegate on the statement 〈transfer 106, acct1, acct2〉, we would write:
KAlice reps Alice on 〈transfer 106, acct1, acct2〉.

From the semantics of reps, if we recognize KAlice as Alice’s delegate, in effect
we are saying that KAlice is trusted on Alice stating that she wishes a million
dollars to be transferred from acct1 to acct2. If KAlice says Alice says transfer
a million dollars from acct1 to acct2, we will conclude that Alice has made the
request. Using the Rep Says rule in Figure 3 we can conclude:

KAlice reps Alice on 〈transfer 106, acct1, acct2〉
KAlice | Alice says 〈transfer 106, acct1, acct2〉

Alice says 〈transfer 106, acct1, acct2〉.

5 An Extended Example

In this section, we illustrate PKM with a hypothetical example. Suppose Alice
is a cash manager who works for the Widget Corporation. Further suppose that
Widget uses three banks: First, Second, and Third Bank. Suppose the three
banks use different procedures for authorizing credentials, which the Widget
corporate Treasurer finds acceptable. Both First and Second Banks use the PKM
model, while for explanatory purposes only, assume that Third Bank uses the
PKI model. Both First and Second Bank allow Alice to obtain a credential
from any provider, while Third Bank requires Alice to obtain a credential from
a specific certificate authority that we will refer to as (CA). Therefore, Alice
obtains a certificate from CA that can be used with all the Three banks. Because
First and Second Banks use PKM, Alice registers the certificate with both the
banks. First and Second Bank describe their procedure for accepting certificates
in a partner key practice statement (PKPS). Both First Bank and Second Bank
require Alice to submit a signed PKPS along with each transaction. First Bank
requires Widget to check for revocation prior to Alice sending the payment
instruction. There is a mutual agreement of sender liability if Widget does not
check for revocation before affixing the signature. Second Bank requires Alice
to sign an OCSP response obtained from the certificate provider, and Second
Bank will validate Alice’s certificate using the OCSP response. Third Bank uses
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Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉
2. KAlice says 〈First Bank PKPS, timestamp〉

Entitlement:
1. Alice controls 〈transfer 106, acct1, acct2〉

Mutually Agreed Operational Rules:
1. First controls (KAlice ⇒ Alice)
2. KAlice says 〈First Bank PKPS, timestamp〉

⊃ 〈KAliceV alidated, timestamp〉
3. 〈KAliceV alidated, timestamp〉

⊃ (First says KAlice ⇒ Alice)

Fig. 5. First Bank: Payment instruction, en-

titlement, and operating rules

Fig. 6. First Bank’s PKPS

the traditional PKI model, so there is no PKPS involved. Also, Third Bank
uses a receiver validation model, so Third Bank will connect to the CA’s OCSP
responder to validate the certificates.

We will use the access-control logic (Section 3) to describe in detail the oper-
ations of the three banks for a hypothetical transaction, in which Alice requests
a transfer for $106 from Widget’s account to a different account. For each bank,
we provide a derived inference for justifying the bank’s decision to act on the
payment instruction. The proof of these derived inference rules are a direct appli-
cation of the inference rules described in Section 3.3. Our objective is to primarily
show the differences between PKI and PKM with respect to how the credentials
are managed. We use the access-control logic to show the logical consistency of
the operations and also to make the mutually agreed operating rules explicit.
Important note: In the hypothetical example, Alice requires an entitlement
to request a transaction. The methods commonly used by banks to issue such
entitlements to Alice are outside the scope of this paper. For the purpose of our
illustration, we will assume that Alice has the necessary entitlement.

5.1 First Bank

Figure 5 contains an example payment instruction for First Bank. The pay-
ment instruction comprises two statements, (1) a statement signed using KAlice

requesting transfer of $1 million, (2) First’s PKPS (Figure 6) and timestamp
signed using KAlice. As per the mutually agreed operational rules, First has the
authority for authorizing Alice to use KAlice, and First issues such an authoriza-
tion when KAlice is validated. According to First’s PKPS, the sender is expected
to validate KAlice prior to the transaction, and First assumes that the KAlice

is validated appropriately when Alice signs First’s PKPS with KAlice. The fol-
lowing derived inference rule justifies the bank’s decision to act on the payment
instruction.
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Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉
2. (KAlice | KCA) says 〈KAliceV alidated, timestamp〉
3. KAlice says 〈Second Bank PKPS, timestamp〉

Entitlement:
1. Alice controls 〈transfer 106, acct1, acct2〉

Mutually Agreed Operational Rules
1. Second controls KAlice ⇒ Alice
2. KCA ⇒ CA
3. KAlice says 〈Second Bank PKPS, timestamp〉 ⊃

CA controls 〈KAliceV alidated, timestamp〉∧
KAlice reps KCA on 〈KAliceV alidated, timestamp〉

4. 〈KAliceV alidated, timestamp〉 ⊃
Second says KAlice ⇒ Alice

Fig. 7. Second Bank: Payment instruction,

entitlement, and operating rules
Fig. 8. Second Bank’s PKPS

First Bank

KAlice says 〈transfer 106, acct1, acct2〉
KAlice says 〈First Bank PKPS, timestamp〉

Alice controls 〈transfer 106, acct1, acct2〉
First controls KAlice ⇒ Alice

KAlice says 〈First Bank PKPS, timestamp〉 ⊃ 〈KAliceV alidated, timestamp〉
〈KAliceV alidated, timestamp〉 ⊃ (First says KAlice ⇒ Alice)

〈transfer 106, acct1, acct2〉

5.2 Second Bank

The payment instruction for Second Bank, in Figure 7, comprises three state-
ments, (1) a statement signed using KAlice requesting transfer of $1 million, (2)
CA’s OCSP response for KAlice signed using KAlice, (3) PKPS (Figure 8) and
timestamp signed using KAlice. Second Bank has authority for authorizing Alice
to use KAlice, similar to the First Bank, but uses the sender-validation-with-
evidence model for validation. When KAlice signs Second’s PKPS, both parties
agree to two operating rules for validating KAlice. First, CA has authority for
validating KAlice. Second, KAlice is a recognized delegate of KCA for relaying
the OCSP response for KAlice. The following derived inference rule justifies the
bank’s decision to act on the payment instruction.

Second Bank

KAlice says 〈transfer 106, acct1, acct2〉
(KAlice | KCA) says 〈KAliceV alidated, timestamp〉

KAlice says 〈Second Bank PKPS, timestamp〉
Alice controls 〈transfer 106, acct1, acct2〉

Second controls KAlice ⇒ Alice
KCA ⇒ CA

KAlice says 〈Second Bank PKPS, timestamp〉 ⊃
{CA controls 〈KAliceV alidated, timestamp〉∧

KAlice reps KCA on 〈KAliceV alidated, timestamp〉}
〈KAliceV alidated, timestamp〉 ⊃ Second says KAlice ⇒ Alice

〈transfer 106, acct1, acct2〉



180 G. Benson et al.

5.3 Third Bank

The payment instruction for Third Bank, in Figure 9, is a statement signed us-
ing KAlice for requesting a transfer of $1 million. Third Bank believes in the
jurisdiction of the CA for identifying the Key of Alice. When Third Bank re-
ceives the public key certificate for KAlice, it validates it by connecting to CA’s
OCSP responder. On successful validation, Third Bank is convinced that KAlice

belongs to Alice. For the sake of brevity, we do not describe the actual validation
process in the logic. Moreover, doing so does not change the trust assumptions,
more specifically does not affect Third Bank’s belief in CA’s authority. The fol-
lowing derived inference rule justifies the bank’s decision to act on the payment
instruction.

Third Bank

KAlice says 〈transfer $106, acct1〉
Alice controls 〈transfer $106, acct1〉

KCA says KAlice ⇒ Alice
KCA ⇒ CA

CA controls KAlice ⇒ Alice

〈transfer 106, acct1, acct2〉

Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉

Entitlement
1. Alice controls 〈transfer $106, acct1〉

Public Key Certificate
1. KCA says KAlice ⇒ Alice

Trust Assumptions:
1. KCA ⇒ CA
2. CA controls KAlice ⇒ Alice

Fig. 9. Third Bank: Payment instruction, entitlement, certificates, and trust assump-

tions

5.4 Analysis

The traditional PKI model is characterized by the following three statements:

1. KeyCA ⇒ CA Trust in the root key of the CA

2. CA controls (Key ⇒ Principal) CA’s Jurisdiction

3. KeyCA says (Key ⇒ Principal) Certificate

Users trust that the root key belongs to the CA. Trust in the key of the root
CA must be established by a trustworthy key distribution process. The CA has
jurisdiction over statements associating a key with a particular principal and
issues PKI certificates, each of which is a statement signed by the root key that
associates the key with a particular principal. The PKI model does not deal with
authorizations, and authorization is considered the responsibility of the relying
party (RP). Moreover, validation is also seen as the responsibility of the RP, and
does not involve the user.

The PKM model is characterized by the following two statements:

1. Bank controls (Key ⇒ Principal) Bank’s Jurisdiction

2. 〈Key, V alidated〉 ⊃ Bank says (Key ⇒ Principal) Bank issues authorization
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The PKM model blends authentication with authorization, and Banks have the
authority for authenticating and authorizing the use of credentials. The user has
the freedom to obtain credentials from any provider, but the Banks reinterpret
the credentials in constrained manner, which could vary between banks. In con-
trast to the PKI model, the validation process for the credentials is explicit and
involves the user, supporting non-repudiation claims. In effect, PKPS maps the
common interpretation of PKI credentials into the more constrained and con-
trolled interpretation required by banks for high-value commercial transactions.

6 Related Work

There are several XML schemas for specifying web service policies and privacy
policies. WS-Policy [1] is a W3C standard for specifying web service policies for
security, quality of service, messaging, etc. WSPL [4] has similar motivations,
but is not an accepted W3C standard. P3P enables a web site to publish its
privacy practice in a machine readable format, which all browsers can read and
warn their respective users if the privacy practice of a web site is incompatible
with a user’s personal preference [5]. Our work relates to existing XML schemas
for specifying web service and privacy policies by providing a formal semantics
with sound inference rules for describing policies. The benefit of our work is
banks can rigorously justify acting on payment instructions based on policies
and trust assumptions.

Jon Olnes [6] describes an approach that offers interoperability by using a
trusted third party called the validation authority (VA). The VA is trusted by
both the CAs and relying party (RP), which receives the credentials. Each VA
vouches for the CAs it handles, and the RP can validate all the credentials from
the CAs by connecting to a single VA. While this model provides interoperability
with respect to CAs vouched for by a particular VA, it limits the RP and its cus-
tomers to only those CAs. In contrast, PKM imposes no such restrictions; Banks
use any CAs they want. Moreover, the PKM model reinterprets the authority of
credentials in a constrained and controlled manner.

Fox and LaMacchia [7] describe an alternative to OCSP for online certificate
status checking. Any method similar to OCSP that requires the RP to connect
to the CA for validating the certificates, not only breaks interoperability, but
also imposes a significant cost on the RP. In contrast, PKM supports a general
validation model, including a sender validation model, which in conjunction with
the reinterpretation of authority, scales better, provides interoperability, and
reduces the cost for the RP.

Our work is related to several logical systems used for reasoning about access-
control that are summarized in [8]. The access-control logic we use is based on
Abadi and Plotkin’s work [9], with modifications described in [10].

7 Conclusion

The common interpretation of PKI credentials is problematic for banks en-
gaged in high-value commercial transactions. Partner key management (PKM),
through the use of partner key practice statements (PKPS), reinterprets PKI
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credentials to address the problems of scope of authority, liability, and cost in-
herent to high-value commercial transactions. The failure of any single high-
value transaction can bring severe consequences to banks. Thus, it is essential
that the policies and requirements regarding the use of credentials in high-value
commercial transactions be as precise and accurate as possible. To meet this re-
quirement, we have expressed PKI, PKPS, and PKM policies and interpretations
in an access-control logic with formal semantics and sound inference rules. This
enables banks and their customers to know precisely what is required of them
and to justify acting on payment instructions. Our experience to date indicates
that using this logic is within the capabilities of practitioners and does in fact
clarify the underlying logic of credentials and their use in high-value commercial
transactions.
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Yalçinalp, Ü.: Web services policy 1.5 - framework (September 2007),

http://www.w3.org/TR/ws-policy/
2. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet Pub-

lic Key Infrastructure Online Certificate Status Protocol - OCSP. In: RFC 2560

(Proposed Standard) (June 1999)

3. Benson, G.: Portable security transaction protocol. Comput. Netw. 51(3), 751–766

(2007)

4. Anderson, A.H.: An introduction to the web services policy language (wspl). In:

POLICY (2004)

5. Cranor, L., Dobbs, B., Egelman, S., Hogben, G., Humphrey, J., Langheinrich, M.,

Marchiori, M., Presler-Marshall, M., Reagle, J., Schunter, M., Stampley, D.A.,

Wenning, R.: The platform for privacy preferences 1.1 (p3p1.1) specification.

(November 2006), http://www.w3.org/TR/P3P11/
6. Olnes, J.: DNV VA white paper: PKI interoperability by an independent, trusted

validation authority. In: 5th Annual PKI R & D Workshop (April 2006)

7. Fox, B., LaMacchia, B.A.: Online certificate status checking in financial transac-

tions: The case for re-issuance. In: FC (1999)

8. Abadi, M.: Logic in access control (tutorial notes), 145–165 (2009)

9. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Con-

trol in Distributed Systems. ACM Transactions on Programming Languages and

Systems 15(4), 706–734 (1993)

10. Chin, S.K., Older, S.: Reasoning about delegation and account access in retail

payment systems. In: MMM-ACNS (2007)

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/P3P11/


A New Hard Problem over Non-commutative Finite
Groups for Cryptographic Protocols

Dmitriy N. Moldovyan and Nikolay A. Moldovyan

St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences,
14 Liniya, 39, St. Petersburg 199178, Russia

mdn.spectr@mail.ru
http://www.spiiras.nw.ru

Abstract. A new computationally difficult problem defined over non-commu-
tative finite groups is proposed as cryptographic primitive. The problem is used
to construct public key agreement protocol and algorithms for public and commu-
tative encryption. Finite non-commutative groups of the four-dimension vectors
over the ground field are constructed and investigated as primitives for imple-
menting the protocols and algorithms based on the proposed difficult problem.

Keywords: public key cryptography, difficult problem, finite non-commutative
groups, public key distribution, public encryption, commutative encryption.

1 Introduction

Factorization and finding discrete logarithm are two of the most widely used in the
public key cryptography difficult problems. The second problem is used in the official
signature standards [1]. However both of this problems can be solved in polynomial
time on a quantum computer [2]. Quantum computing develops from theoretic models
towards practical implementations therefore cryptographers look for some new hard
problems that have exponential complexity while using both the ordinary computers
and the quantum ones [3,4]. Such new difficult problems have been defined over braid
groups representing a particular type of infinite non-commutative groups. Using the
braid groups as cryptographic primitive a number of new public key cryptosystems
have been developed [5,6]. Unfortunately, results of the paper [7] show weakness of the
conjugacy search problem used in the braid group based cryptographic protocols.

Present paper introduces a new hard problem defined over finite non-commutative
groups and describes the public key cryptoschemes constructed using the proposed
hard problem that combines the discrete logarithm problem with the conjugacy search
problem. There is also presented a theorem disclosing the local structure of the non-
commutative group, which is exploited in the proposed hard problem. Then concrete
type of the non-commutative finite groups is constructed over finite four-dimension
vector space.

2 New Hard Problem and Its Cryptographic Applications

Suppose for some given finite non-commutative group Γ containing element Q possess-
ing large prime order q there exists a method for easy selection of the elements from
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sufficiently large commutative subgroup Γab ∈ Γ. One can select a private key as the
pair (W,x) containing a random element W ∈ Γab such that W ◦Q �= Q ◦W , where ◦
denotes the group operation, and a random number x < q and then compute the public
key Y = W ◦Qx ◦W−1 (note that it is easy to show that for arbitrary value x the in-
equality W ◦Qx �= Qx ◦W holds). Finding pair (W,x), while given Γ, Γab, Q, and Y , is
a computationally difficult problem that is suitable to design new public key cryptosys-
tems. The problem suits also for designing commutative encryption algorithms. While
constructing cryptoschemes on the basis of this hard problem there is used the mutual
commutativity of the exponentiation operation and the automorphic mapping operation
ϕW (V ) = W ◦V ◦W , where V takes on values of all elements of the group Γ. The com-
mutativity of these two operation can be expressed by the equality ϕW (V x) = (ϕW (V ))x.
Indeed, it is known [8] that

W ◦V x ◦W−1 =
(
W ◦V ◦W−1)x .

The public key agreement protocols can be constructed as follows. Suppose two
users have intension to generate a common secret key using a public channel. The first
user generates his private key (W1,x1), computes his public key Y1 = W1 ◦Qx1 ◦W−1

1 ,
and sends Y1 to the second user. The last generates his private key (W2,x2), computes
his public key Y2 = W2 ◦Qx2 ◦W−1

2 , and sends Y2 to the first user. Then, like in the
Diffie-Hellman protocol [9], the first user computes the value

K12 = W1 ◦ (Y2)
x1 ◦W−1

1 = W1 ◦
(
W2 ◦Qx2 ◦W−1

2

)x1 ◦W−1
1 =

= W1 ◦W2 ◦Qx2x1 ◦W−1
2 ◦W−1

1 .

The second user computes the value

K21 = W2 ◦ (Y1)x2 ◦W−1
2 = W2 ◦

(
W1 ◦Qx1 ◦W−1

1

)x2 ◦W−1
2 =

= W2 ◦W1 ◦Qx1x2 ◦W−1
1 ◦W−1

2 .

The elements W1 and W2 belong to the commutative subgroup Γab, therefore K21 =
K12 = K, i.e. each of the users has generated the same secret K that can be used, for
example, to encrypt confidential messages send through the public channel.

Suppose a public-key reference book is issued. Any person can send to some user a
confidential message M using user’s public key Y = W ◦Qx ◦W−1, where W and x are
elements of user’s private key. For this aim the following public key encryption scheme
can be used, in which it is supposed using some encryption algorithm FK controlled
with secret key K representing an element of the group Γ.

1. Sender generates a random element U ∈ Γab and a random number u, then com-
putes the elements R = U ◦Qu ◦U−1 and

K = U ◦Y u ◦U−1 = U ◦
(
W ◦Qx ◦W−1

)u ◦U−1 = U ◦W ◦Qxu ◦W−1 ◦U−1.
2. Using the element K as encryption key and encryption algorithm EK sender en-

crypts the message M into the cryptogram C = FK(M). Then he sends the cryptogram
C and element R to the user.

3. Using the element R the user computes the encryption key K as follows K =
W ◦Rx ◦W−1 = W ◦

(
U ◦Qu ◦U−1

)x ◦W−1 = W ◦U ◦Qux ◦U−1 ◦W−1. Then the user
decrypts the cryptogram C as follows M = F−1

K (C), where F−1
K is the decryption algo-

rithm corresponding to the encryption algorithm FK .



A New Hard Problem over Non-commutative Finite Groups 185

The proposed hard problem represents some combining the exponentiation proce-
dure with the procedure defining the group mapping that is an automorphism. These
two procedures are commutative therefore their combination can be used to define the
following commutative-encryption algorithm.

1. Represent the message as element M of the group Γ.
2. Encrypt the message with the first encryption key (W1,e1), where W1 ∈ Γab, e1 is a

number invertible modulo m, and m is the least common multiple of all element orders
in the group Γ, as follows C1 = W1 ◦Me1 ◦W−1

1 .
3. Encrypt the cryptogram C1 with the second encryption key (W2,e2), where W2 ∈

Γab, e2 is a number invertible modulo m, as follows

C12 = W2 ◦Ce2
1 ◦W−1

2 = W2 ◦W1 ◦Me1e2 ◦W−1
1 ◦W−1

2 .

It is easy to show the encrypting the message M with the second key (W2,e2) and then
with the first key (W1,e1) produces the cryptogram C21 = C12, i.e. the last encryption
procedure is commutative.

3 On Selection of the Elements from Commutative Subgroups

In the cryptoschemes described in previous section the first element of the private key
should be selected from some commutative group. A suitable way to define such selec-
tion is the following one. Generate an element G ∈ Γ having sufficiently large prime or-
der g and define selection of the element W as selection of the random number 1 < w < g
and computing W = Gw . Using this mechanism the private key is selected as two ran-
dom numbers w and x and the public key is the element Y = Gw ◦Qx ◦G−w. One can
easily show that for arbitrary values w and x the inequality Gw ◦Qx �= Qx ◦Gw holds.

For security estimations it represents interest haw many different elements are gen-
erated from two given elements G and Q having prime orders g and q, respectively. The
following theorem gives a reasonable answer to this question.

Theorem 1. Suppose elements G and Q of some non-commutative finite group Γ have
the prime orders g and q, correspondingly, and satisfy the following expressions G ◦
Q �= Q ◦G and K ◦Q �= Q ◦K, where K = G ◦Q ◦G−1. Then all of elements Ki j =
G j ◦Qi ◦G− j, where i = 1,2, . . . ,q−1 and j = 1,2, . . . ,g, are pairwise different.

Proof. It is evident that for some fixed value j the elements Ki j = G j ◦Qi ◦G− j, where
i = 1,2, . . . ,q, compose a cyclic subgroup of the order q. Condition K ◦Q �= Q◦K means
that element K is not included in the subgroup ΓQ generated by different powers of Q.
Suppose that for some values i, i′ �= i, j, and j′ �= j elements Ki j and Ki′ j′ are equal, i.e.

G j ◦Qi ◦G− j = G j′ ◦Qi′ ◦G− j′ . Multiplying the both parts of the last equation at the
right by element G j and at the left by element G− j one gets Qi = G j′− j ◦Qi′ ◦G−( j′− j).
The subgroup ΓQ has the prime order, therefore its arbitrary element different from
the unity element is generator of ΓQ, i.e. for i′ ≤ q− 1 the element P = Qi′ generates
subgroup ΓQ. Taking this fact into account one can write

(
Qi)z =

(
G j′− j ◦Qi′ ◦G−( j′− j)

)z
= G j′− j ◦Qi′z◦G−( j′− j) = G j′− j ◦P z◦G−( j′− j) ∈ΓQ.
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The last formula shows that mapping ϕGj′− j (P z) = G j′− j ◦ P z ◦G−( j′− j) maps each
element of ΓQ in some element of ΓQ. The mapping ϕGj′− j (ΓQ) is bijection, since for
z = 1,2, . . . ,q the set of elements

(
Qi
)z

composes the subgroup ΓQ. Thus, the mapping
ϕGj′− j (ΓQ) is a bijection of the subgroup ΓQ into itself.

Since order of the element G is prime, there exists some number u = ( j′− j)−1 mod g

for which the following expressions hold G =
(

G j′− j
)u

and

ϕG (ΓQ) = ϕ(Gj′− j)u (ΓQ) = ϕGj′− j

(
ϕGj′− j

(
. . .ϕGj′− j (ΓQ) . . .

))︸ ︷︷ ︸
u bijections

,

where the mapping is represented as superposition of u mappings ϕGj′− j (ΓQ). The
superposition is also a bijection of the subgroup ΓQ into itself, since the mapping
ϕGj′− j (ΓQ) is the bijection ΓQ into ΓQ. Therefore the following expressions hold:

K = G◦Q◦G−1 = ϕG(Q) ∈ ΓQ ⇒ K ◦Q = Q◦K.

The last formula contradicts to the condition K ◦Q �= Q ◦K of the theorem. This con-
tradiction proves Theorem 1. �
Accordingly to Theorem 1 there exist (q− 1)g different elements Zi j �= E , where E is
unity element of Γ. Together with the unity element E they compose g cyclic subgroups
of the order q and each of elements Zi j �= E belongs only to one of such subgroups.

4 Non-commutative Finite Rings of Four-Dimension Vectors

Different finite rings of m-dimension vectors over the ground field GF(p), where p is a
prime, can be defined using technique proposed in [10]. The non-commutative rings of
four-dimension vectors are defined as follows. Suppose e, i, j, k be some formal basis
vectors and a,b,c,d ∈ GF(p), where p ≥ 3, are coordinates. The vectors are denoted
as ae+bi+ ci+dk or as (a,b,c,d). The terms τv, where τ ∈GF(p) and v ∈ {e, i, j,k},
are called components of the vector.

The addition of two vectors (a,b,c,d) and (x,y,z,v) is defined via addition of the
coordinates corresponding to the same basis vector accordingly to the following formula

(a,b,c,d)+ (x,y,z,v) = (a + x,b + y,c + z,d + v).

The multiplication of two vectors ae + bi + cj + zw and xe + yi + zj + vk is defined as
multiplication of each component of the first vector with each component of the second
vector in correspondence with the following formula

(ae + bi+ cj + zw)◦ (xe + yi+ zj+ vk)= axe◦ e + bxi◦ e + cxj◦ e +dxk◦ e+
+aze◦ j + bzi◦ j + czj◦ j+dzk◦ j+ ave◦k+ bvi◦k+ cvj◦k+dvk◦k,

where ◦ denotes the vector multiplication operation. In the final expression each prod-
uct of two basis vectors is to be replaced by some basis vector or by a vector containing
only one non-zero coordinate in accordance with the basis-vector multiplication table
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Table 1. The basis-vector multiplication table

◦ −→e −→ı −→
j

−→
k

−→e e i j k
−→ı i − τe k −τj
−→
j j −k −e i
−→
k k τj −i − τe

(BVMT) defining associative and non-commutative multiplication. There are possible
different types of the BVMTs, but in this paper there is used the BVMT of some partic-
ular type shown in Table 1. For arbitrary value τ ∈ GF(p) Table 1 defines formation of
the non-commutative finite ring of four-dimension vectors. In the defined ring the vec-
tor (1,0,0,0) plays the role of the unity element. For implementing the cryptoschemes
described in Section 2 it represents interest to consider the multiplicative group Γ of the
constructed non-commutative ring. To generate the elements Q and G of sufficiently
large orders it is required computing the group order Ω that is equal to the number
of invertible vectors. If some vector A = (a,b,c,d) is invertible, then there exists its in-
verses A−1 = (x,y,z,v) for which the following formula holds A◦A−1 = E = (1,0,0,0).
This vector equation defines the following system of four linear equations with four
unknowns x, y, z, and v: ⎧⎪⎪⎨

⎪⎪⎩
ax− τby− cz− τdv = 1

bx + ay−dz+ cv = 0
cx + τdy + az− τbv = 0

dx− cy + bz+ av = 0.

(1)

If this system of equations has solution, then the vector (a,b,c,d) is invertible, other-
wise it is not invertible. The main determinant of the system is the following one

Δ(A) =

∣∣∣∣∣∣∣∣
a −τb −c −τd
b a −d c
c τd a −τb
d −c b a

∣∣∣∣∣∣∣∣ (2)

Computation of the determinant gives

Δ(A) =
(
a2 + τb2 + c2 + τd2)2 . (3)

Counting the number of different solutions of the congruence Δ(A)≡ 0 mod p one can
define the number N of non-invertible vectors and then define the group order Ω =
p4−N. The indicated congruence has the same solutions as the congruence

a2 + τb2 + c2 + τd2 ≡ 0 mod p. (4)

Statement 1. For prime p = 4k + 1, where k ≥ 1 and τ �= 0, the order of the non-
commutative group of the four-dimension vectors is equal to Ω = p(p−1)(p2−1).
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Proof. For primes p = 4k+1 the number−1 is a quadratic residue, since (−1)(p−1)/2 =
(−1)2k ≡ 1 mod p. Therefore there exists number λ such that λ2 ≡−1 mod p and con-
gruence (4) can be represented as follows

a2− (λc)2 ≡ τ
(
(λb)2−d2

)
mod p;

(a−λc)(a +λc)≡ τ
(
(λb)2−d2

)
mod p;

αβ≡ τ
(
(λb)2−d2

)
mod p,

where α ≡ a−λc mod p and β≡ a +λc mod p. It is easy to see that for each pair of
numbers (α,β) satisfying the last congruence correspond unique pair of numbers (a,c)
satisfying congruence (4). Therefore the number of solutions of congruence (4) can be
computed as number of solutions of the last equation. Two cases can be considered.
The first case correspond to condition (λb)2−d2 �≡ 0 mod p and there exist (p−1)2 of
different pairs (b,d) satisfying this condition. For each of such pairs (b,d) for all (p−1)
values α �≡ 0 mod p there exists exactly one value β such that the last congruence holds.
Thus, the first case gives N1 = (p−1)3 different solutions of congruence (4).

The second case correspond to condition (λb)2− d2 ≡ 0 mod p which is satisfied
with 2p− 1 different pairs (b,d). The left part of the last congruence is equal to zero
modulo p in the following subcases i) α �≡ 0 mod p and β ≡ 0 mod p (p− 1 different
variants), ii) α ≡ 0 mod p and β �≡ 0 mod p (there exist p− 1 different variants), and
iii) α≡ 0 mod p and β≡ 0 mod p (one variant). Thus, the subcases gives 2p−1 differ-
ent variants of the pairs (a,c), therefore the second case gives N2 = (2p−1)2 different
solutions of congruence (4). In total we have N = N1 + N2 = (p− 1)3 + (2p− 1)2 =
p3 + p2− p solutions. The value N is equal to the number of non-invertible vectors and
defines the group order Ω = p4−N = p4− p3− p2 + p = p(p−1)(p2−1). Statement
1 is proved. �
Statement 2. Suppose prime p = 4k + 3, where k ≥ 1, τ �= 0, and the value τ is a
quadratic non-residue modulo p. Then the order of the non-commutative group of four-
dimension vectors is equal to Ω = p(p−1)(p2−1).

Proof. For primes p = 4k + 3 the number −1 is a quadratic non-residue, since
(−1)(p−1)/2 = (−1)2k+1 ≡ −1 mod p. Since the value τ is a quadratic non-residue the
following formulas hold: τ(p−1)/2 ≡ −1 mod p and (−τ)(p−1)/2 ≡ 1 mod p. The last
formula shows that there exists number λ such that λ2 ≡−τ mod p and congruence (4)
can be represented as follows

a2− (λb)2 ≡ (λd)2− c2 mod p;
(a−λb)(a +λb)≡ (λd)2− c2 mod p;

γδ≡ (λd)2−d2 mod p,

where γ ≡ a−λb mod p and δ≡ a +λb mod p. Then, counting different solutions of
the last equation is analogous to counting solutions in the proof of Statement 1. This
gives N = p3 + p2− p different solutions of congruence (4) and the group order Ω =
p(p−1)(p2−1). �
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5 Homomorphism of the Vector Group

There exists a homomorphism of the group of four-dimension vectors Γ into the field
GF(p).

Theorem 2. Suppose the vector A takes on all values of the elements of the group Γ.
The determinant (2) defines the homomorphism ψ(A) = Δ(A) of the group Γ into the
field GF(p).

Proof. Let us consider the vector equation

A◦X = V (5)

over the four-dimension vector space {V}, where A is an invertible vector and V is an ar-
bitrary vector. Since Δ(A) �= 0 (see formula (2)), the equation (5) has unique solution for
each vector V . Therefore multiplication of the vector A by all vectors V ∈ {V}defines a
linear transformation TA of {V}. The matrix MA of coefficients of the system of equa-
tions (1) can be put into correspondence to TA (see determinant of this matrix in formula
(2)). Another invertible vector B defines the transformation TB corresponding to analo-
gous matrix MB. The vector multiplication operation is associative, therefore we have

(A◦B)◦X = A◦ (B◦X). (6)

The left part of formula (6) represents the linear transformation TA◦B corresponding to
the matrix MA◦B. The right part of formula (6) is the superposition TB ∗ TA of linear
transformations TB and TA, therefore we have

TA◦B = TB ∗TA ⇒MA◦B = MAMB ⇒
⇒ Δ(A◦B) = Δ(A)Δ(B).

The last expression means that the mapping ψ : A→ Δ(A) is the homomorphism of the
group Γ into the field GF(p). Theorem 2 is proved. �
Using different BVMT defining associative multiplication of the m-dimension vectors
defined over the finite fields GF(ps), where s≥ 1, one can define different finite vector
groups, commutative [10] and non-commutative. Theorem 1 can be easily extended to
all of such vector groups, i.e. the determinant Δ(A) of the system of equations providing
computation of the inverses of the vector A defines the homomorphism of any of such
groups into the field GF(ps).

This homomorphism should be taken into account while selecting the parameters of
the public key agreement protocol and of the public encryption algorithm based on the
proposed hard problem. Indeed, in the case of using the group Γ the vector Q should
have the order q such that q|p + 1 and q � |p− 1. In this case the homomorphism maps
the public key into the unity element of the field GF(p). This is stated by the following
statement.

Statement 3. If the vector V has the order ωV such that gcd(ωV , p−1) = 1, then
Δ(V ) = 1.

Proof. Suppose Δ(V ) �= 1. Then we have
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{Δ(VωV ) = Δ(E) = 1 and Δ(VωV ) = (Δ(V )ωV }⇒ (Δ(V )ωV = 1⇒
⇒ gcd(ωV , p−1) �= 1.

The last expression contradicts to the condition gcd(ωV , p− 1) = 1 of the statement.
This contradiction proves Statement 3. �
In the case of incorrect selection of the vector Q the secrete key (x,W ) can be computed
by parts solving two independent hard problems, the discrete logarithm problem and
the conjugacy search problem. For example, suppose the vector Q has the order q such
that q|p−1. Then we have

Δ(Y ) = Δ(W )(Δ(Q))x (Δ(W ))−1 = (Δ(Q))x ,

where Δ(Q) �= 1, and the value x can be found solving the discrete logarithm problem in
GF(p). Then the value W can be found solving the conjugacy search problem defined
by equation Y = W ◦V ◦W−1, where Y and V = Qx are known vectors. The discrete
logarithm can be found in polynomial time using the known algorithm for quantum
computations proposed by P. Shor [2]. Therefore using the quantum computer the pro-
posed problem can be reduced in polynomial time to the conjugacy search problem, if
q|p−1.

In the case of large prime order ω(Q) = q such that q|p + 1 and q � |p−1 this attack
does not work. Since the conjugacy search problem is considered as a primitive for
post quantum cryptography and the proposed problem in the case q|p+1 is harder than
both the dicrete logarithm and the conjugacy search problem we suppose the proposed
cryptoschemes effectively resist the quantum attacks.

6 Complexity of the Private-Key Computation in a Particular
Case

Using the known parameters Q and G having the orders q and g = q the following
algorithm finds the private key (w,x) from the public one Y = Gw ◦Qx ◦G−w.

1. For all values j = 1,2, . . . ,q compute vectors U( j) = G j ◦Y ◦G− j (difficulty of this
step is 2q vector multiplications).

2. Order the table computed at the step 1 accordingly to the values U( j) (difficulty of
this step is q log2 q comparison operations).

3. Set counter i = 1 and initial value of the vector V = (1,0,0,0).
4. Compute the vector V ←V ◦Q.
5. Check if the value V is equal to some of the vectors U( j) in the ordered table.

If there is some vector U( j′) = V , then deliver the private key (w,x) = ( j′, i) and
STOP. Otherwise go to step 6.

6. If i �= q, then increment counter i← i + 1 and go to step 4. Otherwise STOP and
output the message INCORRECT CONDITION. (Difficulty of steps 5 and 6 does
not exceed q vector multiplication operations and q log2 q comparison operations.)

Overall the time complexity of this algorithm is about 3q vector multiplication opera-
tions and 2q log2 q comparison operations, i.e. the time complexity is O(q) operations,
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where O(·) is the order notation. The algorithm requires storage for q vectors and for
the same number of |p|-bit numbers, i.e. the space complexity is O(q).

This algorithm shows that the 80-bit security of the proposed cryptosystems can be
provided selecting 80-bit primes q and g. Such prime orders of the vectors Q and G can
be get using 81-bit primes p.

It seems that element G having composite order can be used in the cryptoschemes
described above and this will give higher security, while using the given fixed modulus
p. However this item represents interest for independent research.

7 Experiments and Numerical Illustrations

Numerous computational experiments have shown that in the case p = 4k + 3, where
k≥ 1 and τ �= 0, when the value τ is a quadratic residue modulo p, the group order also
equals to Ω = p(p−1)(p2−1). However the formal proof of the last fact have not been
found. The experiments have also shown that for given modulus p the structure of the
non-commutative group of four-dimension vectors is the same for all non-zero values
of the structural coefficient τ. Here under structure of the group it is supposed a table
showing the number of different vectors having the same order ω for all possible values
ω. In the case of the commutative finite groups of four-dimension vectors the group
structure changes with changing values of structural coefficients. The experiments have
been performed using different other variants (than Table 1) of the BVMTs defining
non-commutative groups of four-dimension vectors and in all cases the same struc-
ture and the same group order have been get, for all non-zero values of the structural
coefficients.

Defining a group of four-dimension vectors with Table 1 and parameters τ = 1 and
p = 234770281182692326489897 (it is a 82-bit number) one can easily generate the
vectors Q and G having the prime orders q = g = 117385140591346163244949 (it is a
81-bit number; q = (p + 1)/2) and then generate vector K = G◦Q◦G−1:

Q = (197721689364623475468796,104620049500285101666611,
91340663452028702293061,190338950319800446198610);

G = (44090605376274898528561,33539251770968357905908,
62849418993954316199414,121931076128999477030014);

G−1 = (44090605376274898528561,201231029411723968583989,
171920862188738010290483,112839205053692849459883);

K = (197721689364623475468796,127324294038715727080605,
205837389432865711027118,169402831102520905889980).

The vectors satisfy the conditions G ◦Q �= G ◦Q and K ◦Q �= Q ◦K (see Theorem 1),
therefore they can be used to implement the cryptoschemes presented in Sections 2 and
3. It is easy to generate many other different pairs of the vectors Q and G possessing 81-
bit prime orders q and g and satisfying the condition of Theorem 1. The least common
multiple of all element orders in the constructed group is

m = 1293985352618831314433621283538939645931692060
9647589590297471969647376 .
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The exponent e of the encryption key for commutative encryption algorithm can be
selected as e = 7364758519536461719117. Then the exponent of the decryption key is
computed using formula d = e−1 mod m:

d = 8969427630416482351904498868955232431090386202
188967381064403670926661 .

Accordingly to the algorithm for computing the private key from the public one, which
is described in Section 6, the 80-bit security of the proposed cryptoschemes is pro-
vided in the case of 80-bit primes q and g. In this case the difficulty of the computation
of the public key from the private one does not exceed 4000 multiplications modulo
81-bit prime. In the corresponding cryptoschemes of the public encryption and of the
public key agreement, which are based on elliptic curves, the difficulty of computing
the public key from the private one is equal to about 2400 multiplications modulo 160
prime. Taking into account that difficulty of the modulo multiplication is proportional
to squared length of the modulus one can estimate that the proposed cryptoschemes are
about 2.4 times faster than analogous schemes implemented using elliptic curves. Be-
sides, performance of the proposed cryptoschems can be significantly enhanced defin-
ing computation of the secrete element W as a sum of small powers of G, for example,
W = ∑6

s=1 ρsGts , where ρs ∈ GF(p), ts ≤ 15, s = 1,2, . . . ,6.
Experiments have shown that four each pair of vectors G and Q such that G ◦Q �=

Q ◦G the condition K ◦Q �= Q ◦K, where K = G ◦Q ◦G−1, holds. One can suppose
that the condition of Theorem 1 is excessive, however attempts to prove formally this
theorem without condition G ◦Q �= Q ◦G were not successful. Probably there exist
non-commutative groups for which condition G◦Q �= Q◦G does not lead to condition
K ◦Q �= Q ◦K. This is an item of our future research. As regards to selection of the
elements G and Q that are to be used in the public key agreement protocol based on
the considered hard problem one can check that for the selected elements G and Q all
conditions of Theorems 1 and 2 are satisfied.

8 Finite Matrices Groups

For given value n all non-degenerate n×n matrices defined over the ground field GF(p)
compose a finite non-commutative group [8] having the order

Ωn×n =
i=n−1

∏
i=0

pi(pn−i−1).

It is interesting that the order of the 2× 2-matrix group is equal to the order of the
four-dimension vector groups (in the case τ �= 0) described in Section 4: Ω2×2 = p(p−
1)(p2− 1). (For the four-dimension vector groups defined using structural coefficient
τ = 0 the order is equal to Ω = p2(p−1)2 for prime p = 4k +1 and to Ω = p2(p2−1)
for prime p = 4k + 3.)

In the cryptoschemes based on the proposed hard problem there are used the group
elements having sufficiently large prime orders q and g that divide the group order.
In the case of prime values n one can select the value p such that the value qmax
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=
(

pn−1
)

n−1(p− 1)−1 is prime and it is easy to generate matrices having the order
qmax. Taking this fact into account together with the fact that the matrix multiplica-
tion can be performed with n3 arithmetic multiplications, about n3 additions, and n2

arithmetic divisions it is easy to come to conclusion that for practical applications the
finite groups of matrices corresponding to the values n = 2,3,5, and 7 are of the most
practical interest.

In case of the 3×3 matrices one can select such 42-bit prime p that the largest prime
divisor of the group order Ω3×3 is equal to 80-bit prime q =

(
p2 + p + 1

)
/3 providing

the 80-bit security of the proposed cryptoschemes with 378-bit public key. In the case
of using the four-dimension vector groups or the 2×2 matrix group we get the same
security with 324-bit public key.

For abitrary prime n one can find such primes p (for cases of different size of the
value p) that value

q =
pn−1 + pn−2 + ...+ p + 1

n
is also prime. Since such value q divides Ωn×n one can use the values p having smaller
size and get faster cryptoschems for the cases n = 5 and n = 7, however in the last two
cases we get sufficiently large public keys (about 550 and 735 bits, respectively). A
rough comparison of the time required for computing the common secret key using the
Diffie-Hellman protocol based on different hard problems (see Table 2) shows that for
the same security level the proposed hard problem provides faster key generation.

Table 2. Rough estimation of the time required for generating the common secret key with the
Diffie-Hellman protocol implemented using different hard problems (in all cases the selected
parameters provide the 80-bit security of the protocol)

Hard problem Finite group Size of prime p, bits Time, arb. un.

Discrte logarithm Elliptic curve over GF(p) 160 2200
Discrte logarithm F

∗
p 1024 10000

Proposed 4-dimension vectors over GF(p) 81 350
Proposed 2×2 matrices over GF(p) 81 350
Proposed 3×3 matrices over GF(p) 42 200
Proposed 5×6 matrices over GF(p) 22 150
Proposed 7×7 matrices over GF(p) 15 150

9 Conclusion

Results of this paper shows that finite non-commutative groups represent interest for
designing fast public key agreement schemes, public encryption algorithms, and com-
mutative encryption algorithms. Such cryptoschemes are fast and the hard problem they
are based on is expected to have exponential difficulty using both the ordinary comput-
ers and the quantum ones.

Theorems 1 and 2 are useful for justification of the selection elements Q and G while
defining parameters of the cryptoschemes. The proposed non-commutative finite group
of the four-dimension vectors seems to be appropriate for practical implementation of
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the proposed schemes. We have proved the formulas for computing the order of such
groups in majority of cases. Unfortunately for a quarter of cases the formal proof have
not been found and this item remains open for future consideration. However the proved
cases coves the practical demands while implementing the proposed cryptoscheme with
use of the composed non-commutative groups.

Implementation of the proposed cryptoschemes using the finite groups of matrices
having size 3×3, 5×5, and 7×7 yields faster key generation, however in this case the
size of public key is sufficiently large (from 378 to 735 bits). For designing fast cryp-
toschemes with sufficiently small public keys (320-330 bits) the finite non-commutative
groups of the m-dimension vectors, where m = 8,16,20,28, and 32, are very attractive.
Construction and investigation of such finite groups of vectors represents a topic of
independent research.
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Abstract. The goal of this paper is to explore the potential of Role based Trust 
management language RTT as a means for specifying security policies and us-
ing credentials to ensure that confidential resources are not being granted to un-
authorized users. The paper describes formally the syntax and semantics of the 
language and defines RTT credential graphs and credential chains as a means 
for answering security queries. Backward and forward search algorithms to 
build a credential chain are given. 

Keywords: Software security, trust management, role-based trust management 
language, credential graph, credential chain. 

1   Introduction and Related Work 

Software systems, which are used in commercial, governmental and industrial sectors, 
store data and offer services that can be used safely by only a limited set of authorized 
users. Unauthorized access to data and other resources of such a system may have 
disastrous results. Therefore, construction of the mechanisms for controlling access to 
resident information and other resources of computer systems is one of the most im-
portant problems that must be solved by the information technology.  

The traditional approach to access control relies on knowing the identity of all the 
entities that can make requests, and making decisions on allowing or denying access 
to system resources based on a verification of the identity of the requester. When the 
system grows and the number of entities becomes very big, they are divided into 
roles, i.e. overlapping groups of entities, which have the same rights and privileges 
with respect to the system resources [15,8]. This simplifies administration, however, 
the system must still know the members of each role and the access control is still 
based on a verification of identity. One possible mechanism of such a verification is a 
login window. Another example can be the use of a public key. 

A much bigger problem arises is distributed open systems, in which the identity of 
users is not known in advance and can change in time outside the control of an access 
mediator. If this is the case, a new  approach to access control is needed. For example, 
consider a scientific conference, which offers a reduction of the conference fee for 
members of the sponsor organizations. When I come to the registration desk and say 
that I am Chris Sacha, then my identity itself will not help in deciding whether I am 
eligible for a reduced fee or not. What can help, are two credentials stating that I am 



196 K. Sacha 

employed at an organization, and that the organization is a conference sponsor. Cre-
dentials can be implemented in a software system as digitally signed documents. 

This paper deals with Role-based Trust management (RT) languages for describ-
ing security policies, roles and credentials in decentralized and open environments 
[1-6]. Credentials are statements in a RT language, describing entities (role issuers 
and requesters) and roles, which the entities can play in the system. The key concept 
of the trust management approach is delegation: An entity may transfer limited au-
thority over a resource to other entities. Such a delegation can be implemented by 
means of an appropriate credential. This way, a set of credentials defines the security 
policy and allows of deciding on who is authorized to access a resource, and who  
is not. 

The first trust management systems were PolicyMaker [1,2], KeyNote [3] and 
SPKI/SDSI [5]. All those systems used languages that allowed assigning privileges 
to entities and used credentials to delegate permissions from its issuer to its subject. 
A missing feature was the possibility of delegation based on attributes of the  
entities.  

Role-based Trust management languages use roles to represent attributes [11]: A 
role is a set of entities who have the attribute represented by the role. There are sev-
eral RT languages, with varying expressive power and complexity. The basic lan-
guage RT0 [13] allows describing roles, role hierarchies, delegation of authority over 
roles and role intersections. RTT provides manifold roles to express threshold and 
separation of duties policies. A manifold role is a role that can be satisfied by a set of 
cooperating entities. A threshold policy requires a specified minimum number of 
entities to agree before access is granted. Separation of duties policy requires a set of 
entities, each of which fulfils a specific role, to agree before access is granted. Both 
types of policies mean that some roles cannot be fulfilled by a single entity and a set 
of entities must cooperate in order to satisfy these roles. 

RT languages have well defined syntax [11,12] and intuitive meaning. A set-
theoretic semantics has been defined for RT0 in [13,9] and for RTT in [7]. 

The rest of this paper is organized as follows. BNF syntax and an improved and 
simplified definition of the semantics of RTT are described in Section 2. A credential 
graph and a credential chain, which allow answering the access control queries in 
RTT, are presented in Section 3. Final remarks and plans for further research are  
described in Conclusions. 

2   The Language RTT 

There are three basic elements in all the RT languages: Entities, role names and roles. 
Entities are actors within an access control system, which can participate in issuing 
permissions and making requests to access resources. An entity can, e.g., be a person 
or a program identified by a user account or a public key in a computer system. Role 
names represent permissions that can be granted to sets of entities (may be singleton 
sets) to manipulate resources. Roles represent sets of entities that have particular per-
missions granted according to the access control policy. The statements in RTT are 
credentials, which are used for describing access control policies, assigning entities to 
roles and delegating authority to the members of other roles. 
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2.1   The Syntax  

In this paper, we use nouns beginning with a capital letter or just capital letters, e.g. A, 
B, C, to denote sets of entities. Role names are denoted as identifiers beginning with a 
small letter or just small letters, e.g. r, s, t. Roles take the form of a set of entities (the 
issuer of this role) followed by a role name separated by a dot, e.g. A.r. A credential 
consists of a role, left arrow symbol and a valid role expression, e.g. A.r ← e.  

BNF specification of the RTT syntax can be written as follows. 

<credential> ::= <role> ← <role-expression> 
<role> ::= <entity-set> . <role-name> 
<role-expression> ::= <entity-set>  

                                  | <role>  
                                  | <role> . <role-name>  
                                  | <role> ∩ <role  

| <role> ⊕ <role>  
                                  | <role> ⊗ <role> 

There are six types of role expressions and six types of credentials in RTT, which are 
interpreted in the following way: 

A.r ← B – simple membership: a set of entities B can satisfy role A.r. 

A.r ← B.s – simple inclusion: role A.r includes all members of role B.s. This is 
a delegation of authority over r from A to  B, as B may cause new 
sets of entities to become members of the role A.r by issuing cre-
dentials that define B.s. 

A.r ← B.s.t – linking inclusion: role A.r includes role C.t for each C, which is a 
member of role B.s. This is a delegation of authority over r from A 
to all the members of the role B.s. 

A.r ← B.s ∩ C.t – intersection inclusion: role A.r includes all the sets of entities who 
are members of both roles B.s and C.t. This is a partial delegation 
from A to B and C. 

A.r ← B.s ⊕ C.t – role A.r can be satisfied by a union set of one member of role B.s 
and one member of role C.t. This allows expressing separation of 
duties policies. 

A.r ← B.s ⊗ C.t – role A.r can be satisfied by a union set of one member of role B.s 
and one member of role C.t, where both members are disjoint sets 
of entities. This allows expressing threshold policies. 

2.2   The Semantics 

The syntax of a language describes the rules for constructing language expressions, 
such as credentials in RTT. The semantics of a language describes the meaning of 
expressions in the application domain. A definition of semantics consists of two parts 
[10]: A semantic domain, which gives meaning to the language expressions, and a 
semantic mapping from the syntax to the semantic domain. 
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The semantics of RTT defines the meaning of a set of credentials as a relation over 
a set of roles and the power set of entities. Thus, we use a Cartesian product of the set 
of roles and the power set of entities as the semantic domain of RTT. The semantic 
mapping assigns a relation between roles and sets of entities to a set of credentials. 

Let E be a set of entities and R be a set of role names. P is a set of RTT credentials. 
The semantic domain of RTT is a Cartesian product of sets: 

2E × R × 2E 

An instance of this product, e.g. ( A, r, B ) consists of a set A of entities that issue a 
role, the role name r and a set B of entities that fulfill the role A.r. If the cardinality of 
set B in ( A, r, B ) is greater than one, then the role A.r is a manifold role.  

The semantics of P, denoted by SP, is a relation: 

SP  ⊆ 2E × R × 2E 

Let A, B, C, X, Y be arbitrary sets of entities (may be singletons) and r, s, t arbitrary 
role names. The semantics of RTT can formally be defined in the following way. 

Definition 1 (Semantics of RTT). The semantics of a set P of RTT credentials is  
the smallest relation SP ⊆ 2E × R × 2E, which is closed with respect to the following 
properties: 

• ( A, r, X ) ∈ SP  for each A.r ← X ∈ P (1) 
• If A.r ← B.s ∈ P and ( B, s, X ) ∈ SP, then ( A, r, X ) ∈ SP (2) 
• If A.r ← B.s.t ∈ P and ( B, s, C ) ∈ SP and ( C, t, X ) ∈ SP, then ( A, r, X ) ∈ SP (3) 
• If A.r ← B.s ∩ C.t ∈ P and ( B, s, X ) ∈ SP, ( C, t, X ) ∈ SP, then ( A, r, X ) ∈ SP (4) 
• If A.r ← B.s ⊕ C.t ∈ P and ( B, s, X ) ∈ SP, ( C, t, Y ) ∈ SP, then ( A, r, X∪Y ) ∈ SP (5) 
• If A.r ← B.s ⊗ C.t ∈ P and ( B, s, X ) ∈ SP, ( C, t, Y ) ∈ SP and X ∩ Y = φ, 

then ( A, r, X∪Y ) ∈ SP 
(6) 

 

Definition 1 is recursive in that it defines new elements of SP in relation to another 
elements of SP. Resolving the recursion, we can construct SP in a sequence of m steps, 
m ≥ 1, which results in a sequence of  m sets S0 … Sk … Sm, such that: 

1. S0 = φ 
2. Sk, for k ≥ 1, contains Sk−1 and a triple ( A, r, X ) that has been derived from Sk−1 

by an application of one of the properties (1) through (6) in Definition 1. 
3. If Sm+1 = Sm, then Sm = SP 

Please note that Sk ⊆ SP for each k ≥ 0. The algorithm is finite, i.e. the number of steps 
m is finite, because the power set of entities 2E and the set of role names R are finite.  

2.3   An Example 

A company C has departments D1 and D2. There are company managers and there 
are accountants employed at each department. Such a structure of the company and 
the roles of employees can be described using simple membership credentials: 
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 {C}.department ← {D1} (7) 
 {C}.department ← {D2} (8) 
 {C}.manager ← {Adam} (9) 
 {C}.manager ← {Bob} (10) 
 {D1}.accountant ← {Adam} (11) 
 {D1}.accountant ← {Alice} (12) 
 {D2}.accountant ← {Betty} (13) 

The accountants at the departments have the rights of company accountants. This is a 
delegation of role company accountant, issued by the company, to the members of 
role department accountant. This can be described using simple inclusion credentials: 

 {C}.accountant ← {D1}.accountant (14) 
 {C}.accountant ← {D2}.accountant (15) 

or a single linking inclusion credential: 

 {C}.accountant ← {C}.department.accountant (16) 

A bank, which supports the company, requires that a company accountant approves a 
small transaction. A single person, who has the rights of a company accountant as 
well as of a manager, can approve a medium scale transaction. Such a policy of the 
bank can be described using simple inclusion and intersection inclusion credentials: 

 {Bank}.approveSmall ← {C}.accountant (17) 
 {Bank}.approveMedium ← {C}.accountant ∩ {C}.manager (18) 

Two accountants and a manager can jointly approve a big transaction. A manager 
who has the rights of an accountant can serve both roles at the transaction. Such a 
policy can be described using credentials: 

 {C}.twoAccountants ← {C}.accountant ⊗ {C}.accountant (19) 
 {Bank}.approveBig ← {C}.twoAccountants ⊕ {C}.manager (20) 

The semantics of the above set of credentials can be constructed in several steps, 
according to recursive Definition 1. The construction is shown in Table 1. 

Table 1. Construction of the semantics of RTT credentials 

Step Semantics 

1 
({C }, department, {D1}), ({C }, department, {D2}), ({C }, manager, {Adam}), 
({D1}, accountant, {Adam}), ({D1}, accountant, {Alice}), ({D2}, accountant, {Betty}), 

2 ({C }, accountant, {Adam}), ({C }, accountant, {Alice}), ({C }, accountant, {Betty}), 

3 
({Bank}, approveSmall, {Adam}), ({Bank}, approveSmall, {Alice}), 
({Bank}, approveSmall, {Betty}), 

4 ({Bank}, approveMedium, {Adam}), 

5 
({C }, twoAccountants, {Adam, Alice}), ({C }, twoAccountants, {Adam, Betty}),  
({C }, twoAccountants, {Alice, Betty}), 

6 
({Bank}, approveBig, {Adam, Alice}), ({Bank}, approveBig, {Adam, Betty}),  
({Bank}, approveBig, {Alice, Betty, Adam}) 
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3   Credential Chain 

The rights to access resources are granted to roles, such as A.r or B.s, which members 
are groups of entities (manifold roles). When a group X of entities submits a request 
to access a resource, then the access mediator needs to decide whether X is a member 
of the role, say A.r, which was granted access to this resource. One way to make such 
a decision could be to compute the semantics of the entire set of credentials that de-
fine the security policy and to check whether X belongs to role A.r or not. Unfortu-
nately, such an approach could be inefficient if the set of credentials was very large. A 
much better approach is to take into account not all the existing credentials, but only 
those that are necessary to decide on membership of X (the requester) in A.r (the role 
authorized to access the resource). 

3.1   Credential Graph 

A credential graph, introduced for RT0 in [13], is a graphical representation of the 
semantics of a set P of credentials. The nodes of the graph are role expressions, which 
appear within the credentials, and the directed edges reflect inclusion of sets that are 
the meaning of those expressions. Making a decision on the membership of an entity 
B in the role A.r is equivalent to checking whether a path from B to A.r exists in the 
graph or not. RT0 credential graph is static in that the set E of entities that can issue 
roles, delegate permissions to other entities and make requests to access resources is 
constant. No new entity can be created by any credential of set P.  

RTT credential graph, introduced in Definition 2 below, is dynamic. Role issuers as 
well as requesters are groups of entities, and credentials of type A.r ← B.s ⊕ C.t and 
A.r ← B.s ⊗ C.t can create new groups of entities that can issue roles, delegate per-
missions to other groups of entities or make requests to access resources. Such a dy-
namic nature makes the construction of RTT credential graph much more difficult. 

Let P be a set of RTT credentials over a set E of entities and a set R of role names. 

Definition 2 (RTT Credential Graph). RTT credential graph is an ordered pair 
GP = ( NP , EP ) comprising a set NP of nodes, which are role expressions that appear 
in credentials from P and subsets of entities from E, and a set EP of directed edges, 
which are ordered pairs of nodes from NP. The sets NP and EP are the smallest sets 
that are closed with respect to the following properties: 

1. If a credential A.r ← e, where e is a role expression, belongs to P, then the nodes 
A.r and e belong to NP and a credential edge ( e, A.r ) belongs to EP. 

2. If role expressions B.s.t and C.t belong to NP and there exists a path from C to B.s 
in GP, then a derived edge ( C.t, B.s.t ) belongs to EP. The path from C to B.s cre-
ates a support set for this edge. 

3. If role expressions B.s ∩ C.t and X belong to NP and there exist paths from X to B.s 
and from X to C.t in GP, then a derived edge ( X, B.s ∩ C.t ) belongs to EP. The 
paths from X to B.s and from X to C.t create a support set for this edge. 

4. If role expressions B.s ⊕ C.t, B.s, C.t, X, Y belong to NP and there exit paths from X 
to B.s and from Y to C.t in GP, then a derived node X∪Y belongs to NP and a  
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derived edge (X∪Y, B.s ⊕ C.t) belongs to EP. The paths from X to B.s and from Y 
to C.t create a support set for both derived elements. 

5. If role expressions B.s ⊗ C.t, B.s, C.t, X, Y belong to NP and there exit paths from X 
to B.s and from Y to C.t in GP, and X∩Y=φ, then a derived node X∪Y belongs to NP 
and a derived edge (X∪Y, B.s ⊗ C.t) belongs to EP. The paths from X to B.s and 
from Y to C.t create a support set for both derived elements. 

 
Definition 2 is recursive in that it defines new elements of GP in relation to another 
elements of GP. Resolving the recursion, we can construct GP in a sequence of m 
steps, m ≥ 1, which result in a sequence of m subgraphs G1 … Gk… Gm, such that: 

1. G1 is composed of credential nodes and credential edges, created by an application 
of property 1 in Definition 2 to all the credentials in P. 

2. Gk is composed of Gk−1 and a derived edge and (possibly) a derived node added by 
an application of one of the properties 2 through 5 in Definition 2 to G k−1. 

3. If Gm+1 = Gm, then Gm = GP. 

Please note that Gk ⊆ GP for k ≥ 1. The algorithm is finite, i.e. the number of steps m is 
finite, because the power set of entities 2E and the set of role names R are finite. 

3.2   Soundness and Completeness 

Denote the power set of entities by F = 2E. Each element in F is a set of entities from 
E. Each element in 2F is a set, composed of sets of entities from E. The semantics of P 
can now be described as a function: 

ŜP : 2E × R → 2F 

that maps each role from 2E × R to a set of all such sets of entities, which are members 
of this role. Knowing the relation SP, one can define the function ŜP as follows: 

ŜP ( A.r ) = { X ∈ 2E: ( A, r, X ) ∈ SP } 

Let EXP be the set of role expressions that appear within the credentials of set P. The 
function ŜP can be extended to the domain of role expressions EXP: 

ŜP : EXP → 2F 

by adding the following six definitions, related to six types of RTT credentials (X ⊆ E 
is a set of entities, may be a singleton): 

ŜP ( X ) = { X } (21)

ŜP ( A.r ) = { X ∈ 2E: ( A, r, X ) ∈ SP } (22)

ŜP ( B.s.t ) = »C: ( B, s, C ) ∈ SP  { X ∈ 2E: ( C, t, X ) ∈ SP } (23)

ŜP ( B.s ∩ C.t ) = { X ∈ 2E: ( B, s, X ) ∈ SP ∧ ( C, t, X ) ∈ SP } (24)

ŜP ( B.s ⊕ C.t ) = { X∪Y ∈ 2E: ( B, s, X ) ∈ SP ∧ ( C, t, Y ) ∈ SP } (25)

ŜP ( B.s ⊗ C.t ) = { X∪Y ∈ 2E: ( B, s, X ) ∈ SP ∧ ( C, t, Y ) ∈ SP ∧ X ∩ Y = φ } (26)
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To prove the soundness of the credential graph, we must prove that if a path from X to 
A.r exists in GP, then ( A, r, X ) ∈ SP. This is equivalent to showing that ŜP ( X ) ⊆ 
ŜP ( A.r ). To show this inclusion it is sufficient to prove that ŜP ( n1 ) ⊆ ŜP ( n2 ) for 
each edge ( n1, n2 ) of GP. This is proved in Theorem 1. 

Theorem 1. For each n1, n2 ∈ NP, if ( n1, n2 ) ∈ EP then ŜP ( n1 ) ⊆ ŜP ( n2 ). 

Proof. Let ( n1, n2 ) ∈ EP be an arbitrary edge in GP. The proof is by induction with 
respect to the number k of steps, which are needed to add ( n1, n2 ) to the constructed 
credential graph. 

If k = 1, then credential n2 ← n1 must belong to P. This credential can be one of the 
six types allowed in RTT. Each of these types will be considered separately. 

[ A.r ← X ] ( A, r, X ) ∈ SP due to (1). ŜP ( X ) ⊆ ŜP ( A.r ) according to (22) above. 
[ A.r ← B.s ] Consider an arbitrary X ∈ ŜP ( B.s ). This implies ( B, s, X ) ∈ SP ac-

cording to (22), and ( A, r, X ) ∈ SP according to (2). Hence, X ∈ ŜP ( A,r ). 
[ A.r ← B.s.t ] Consider an arbitrary X ∈ ŜP ( B.s.t ). According to (23), there exists 

C ∈ 2E, such that ( B, s, C ) ∈ SP and ( C, t, X ) ∈ SP. This implies ( A, r, X ) ∈ SP 
according to (3). Hence, X ∈ ŜP ( A,r ). 

[ A.r ← B.s ∩ C.t ] Consider an arbitrary X ∈ ŜP ( B.s ∩ C.t  ). This implies 
( B, s, X ) ∈ SP and ( C, t, X ) ∈ SP according to (24), and ( A, r, X ) ∈ SP according to 
(4). Hence, X ∈ ŜP ( A,r ). 

[ A.r ← B.s ⊕ C.t ] Consider an arbitrary Z ∈ ŜP ( B.s ⊕ C.t  ). According to (25), 
there exist X, Y ∈ 2E such that X∪Y=Z and ( B, s, X ) ∈ SP and ( C, t, Y ) ∈ SP. Hence, 
( A, r, Z ) ∈ SP according to (5), which implies that Z ∈ ŜP ( A,r ). 

[ A.r ← B.s ⊗ C.t ] Consider an arbitrary Z ∈ ŜP ( B.s ⊗ C.t  ). According to (26), 
there exist X, Y ∈ 2E such that X∪Y=Z and ( B, s, X ) ∈ SP and ( C, t, Y ) ∈ SP and 
X∩Y=φ. Hence, ( A, r, Z ) ∈ SP according to (6), which implies that Z ∈ ŜP ( A,r ). 

If k > 1, assume as the inductive hypothesis that the thesis is true for the number of 
steps not greater than k−1. We will show that it is true also for the number of steps k. 
In step k one of the properties 2 through 5 in Definition 2 has been applied to add 
( n1, n2 ) to the constructed graph. Each of these cases will be considered separately. 

Property 2. Consider a derived edge ( n1, n2 ) such that n1 = C.t and n2 = B.s.t. The 
existence of the derived edge ( C.t, B.s.t ) in Gk implies that a path from C to B.s ex-
ists in Gk−1. Then ŜP ( C ) ⊆ ŜP ( B.s ) according to the inductive hypothesis, and 
( B, s, C ) ∈ SP. Consider an arbitrary X ∈ ŜP ( C.t  ). This implies ( C, t, X ) ∈ SP ac-
cording to (22), and X ∈ ŜP ( B.s.t  ) according to (23). 

Property 3. Consider a derived edge ( n1, n2 ) such that n1 = X and n2 = B.s ∩ C.t. 
The existence of the derived edge ( X, B.s ∩ C.t ) in Gk implies that paths from X to 
B.s and from X to C.t exist in Gk−1. Then ŜP ( X ) ⊆ ŜP ( B.s ) and ŜP ( X ) ⊆ ŜP ( C.t ) 
according to the inductive hypothesis. Hence, ( B, s, X ) ∈ SP and ( C, t, X ) ∈ SP. This 
implies X ∈ ŜP ( B.s ∩ C.t ) according to (24). 

Property 4. Consider a derived edge ( n1, n2 ), where n1 = X∪Y and n2 = B.s ⊕ C.t. 
The existence of the derived edge ( X∪Y, B.s ⊕ C.t ) in Gk implies that paths from X 
to B.s and from Y to C.t exist in Gk−1. Then ŜP ( X ) ⊆ ŜP ( B.s ) and ŜP ( Y ) ⊆ ŜP ( C.t ) 
according to the inductive hypothesis. Hence, ( B, s, X ) ∈ SP and ( C, t, Y ) ∈ SP, which 
implies X∪Y ∈ ŜP ( B.s ⊕ C.t ) according to (25). 
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Property 5. Consider a derived edge ( n1, n2 ), where n1 = X∪Y and n2 = B.s ⊗ C.t. 
The existence of the derived edge ( X∪Y, B.s ⊗ C.t ) in Gk implies that X∩Y=φ and 
paths from X to B.s and from Y to C.t exist in Gk−1. Then ŜP ( X ) ⊆ ŜP ( B.s ) and 
ŜP (Y ) ⊆ ŜP ( C.t ) according to the inductive hypothesis. Hence, ( B, s, X ) ∈ SP 
and ( C, t, Y ) ∈ SP, which implies X∪Y ∈ ŜP ( B.s ⊕ C.t ) according to (26).                  

 
To prove the completeness of the credential graph, we must prove that for each ele-
ment ( A, r, X  ) ∈ SP the role expressions A.r and X are among the nodes of GP and a 
path from X to A.r exists in GP. This is proved in Theorem 2. 

Theorem 2. If ( A, r, X  ) ∈ SP then A.r, X ∈ NP and a path from X to A.r exists in GP. 

Proof. The proof is by induction with respect to the number k of steps to construct the 
element ( A, r, X ) ∈ SP. Assume ( A, r, X ) ∈ Sk for a certain k ≥ 1. 

If k = 1, then A.r ← X ∈ P, because S0 = φ and no property other than (1) could be 
applied. A path from X to A.r exists in the graph according to point 1 in Definition 2. 

If k > 1, assume for the inductive step that the thesis is true up to k−1 steps. We will 
show that it is true also for k steps. In step k one of the properties (1) through (6) has 
been applied to construct ( A, r, X  ) ∈ Sk. Each of these cases is discussed separately. 

[ A.r ← X ] If this is the case, then A.r ← X ∈ P, which implies that ( X, A.r ) ∈ EP. 
[ A.r ← B.s ] If A.r ← B.s was applied in step k to construct ( A, r, X ) ∈ Sk, then 

( B, s, X ) ∈ Sk−1. Hence, there exists in GP a path from X to B.s, according to the in-
ductive hypothesis, and an edge from B.s to A.r according to point 1 in Definition 2. 

[ A.r ← B.s.t ] If A.r ← B.s.t was applied in step k to construct ( A, r, X ) ∈ Sk, then 
( B, s, C ) ∈ Sk−1 and ( C, t, X ) ∈ Sk−1. Hence, there exist in GP paths from C to B.s  
and from X to C.t according to the inductive hypothesis, an edge (a derived edge) 
from C.t to B.s.t according to point 2 in Definition 2, and an edge from B.s.t to A.r 
according to point 1 in Definition 2. The segments: path from X to C.t, the derived 
edge from C.t to B.s.t and the edge from B.s.t to A.r comprise a path from X to A.r.  

[ A.r ← B.s ∩ C.t ] If A.r ← B.s ∩ C.t was applied in step k to construct 
( A, r, X ) ∈ Sk, then ( B, s, X ) ∈ Sk−1 and ( C, t, X ) ∈ Sk−1. Hence, there exists in GP a 
path (a derived edge) from X to B.s ∩ C.t according to point 3 in Definition 2, and an 
edge from B.s ∩ C.t to A.r according to point 1 in Definition 2.  

[ A.r ← B.s ⊕ C.t ] If A.r ← B.s ⊕ C.t was applied in step k to construct 
( A, r, X ) ∈ Sk, then there exist Z, Y ∈ 2

E such that Z∪Y = X and ( B, s, Z ) ∈ Sk−1 and 
( C, t, Y ) ∈ Sk−1. Hence, there exists in GP a path (a derived edge) from Z∪Y to 
B.s ⊕ C.t according to point 4 in Definition 2, and an edge from B.s ⊕ C.t to A.r ac-
cording to point 1 in Definition 2.  

[ A.r ← B.s ⊗ C.t ] If A.r ← B.s ⊗ C.t was applied in step k to construct 
( A, r, X ) ∈ Sk, then there exist Z,  Y ∈ 2

E such that Z∪Y  = X, Z∩Y = φ and 
( B, s, Z ) ∈ Sk−1 and ( C, t, Y ) ∈ Sk−1. Hence, there exists in GP a path (a derived edge) 
from Z∪Y to B.s ⊗ C.t according to point 5 in Definition 2, and an edge from B.s ⊗ 
C.t to A.r according to point 1 in Definition 2.                                                              

 
A conclusion from Theorem 1 and Theorem 2 is such that the credential graph of 
Definition 2 is sound and complete with respect to the semantics of RTT credentials.  
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3.3   Credential Chain 

A decision on whether a group of entities X is a member of role A.r can be made by 
checking whether a path from X to A.r exists in the RTT credential graph built over the 
set of known credentials. The practical problem is, however, that the number of all the 
credentials can be very big and not all of them can be available at the moment. A 
solution to this problem, suggested in [13] for RT0, is a credential chain, which is the 
minimal part of the credential graph that contains a path from X to A.r. A credential 
chain from X to A.r is sufficient to decide on the membership of X in the role A.r. If 
such a credential chain cannot be built, the membership of X in A.r is not confirmed. 

 A definition of RT0 credential chain can be extended into RTT. The chain can be 
built starting from one end (A.r) or from the other end (X), and continue the process as 
long as a path from X to A.r is found. The resulting subgraph need not be minimal. 
Therefore we omit the word minimal in the definition of the credential chain. 

Definition 3 (Credential Chain). A credential chain from X to A.r is a subset of the 
credential graph containing a path from X to A.r and the support sets for each derived 
edges in the subset.                                                                                                         

 
Let P be a set of RTT credentials, A.r be a role, and X be a set of entities from E. A 
credential chain is a directed graph, which nodes are role expressions that appear in 
credentials from P and subsets of entities from E, and directed edges reflect inclusion 
of sets of entities that are the meaning of those expressions.  

The construction of a credential chain from X to A.r can begin from node A.r and 
proceed backward with respect to the direction of arcs, adding arcs and nodes, until 
the final nodes of the graph. Alternatively, the credential chain can be constructed 
starting from X and proceeding forward with respect to the direction of arcs.  

Both algorithms are described below. Nodes that are added in the construction 
process can be classified into two categories: active nodes and passive nodes. Active 
nodes are those which initiate actions within the construction process. Passive nodes 
are considered only within these actions. All the active nodes represent roles. 

Algorithm 1. A backward search algorithm to construct a credential chain from Z to 
U.v consists of the following steps. 

1. Create a node, which represents the role U.v. The created node is an active node. 

2. Select an active node, denoted here A.r, find all the credentials A.r ← e, where e is 
an arbitrary role expression, and for each such credential do: 
a) Add node e to the set of nodes and add ( e, A.r ) to the set of edges of the con-

structed graph. 
b) If the credential is of type A.r ← B.s.t, then add B.s to the set of nodes. 
c) If the credential is of type A.r ← B.s ∩ C.t or A.r ← B.s ⊕ C.t or A.r ← B.s ⊗ C.t, 

then add B.s and C.t to the set of nodes of the constructed graph.  

3. Repeat as many times as possible: 
a) If there exist nodes B.s.t, B.s and C in the constructed graph and a path from C 

to B.s exists in the graph, then add C.t to the set of nodes and add ( C.t, B.s.t ) to 
the set of edges of the constructed graph. 
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b) If there exist nodes B.s ∩ C.t, B.s, C.t and X in the constructed graph such that 
paths from X to B.s and from X to C.t exist in the graph, then add ( X, B.s ∩ C.t ) 
to the set of edges of the constructed graph. 

c) If there exist nodes B.s ⊕ C.t, B.s, C.t, X and Y in the constructed graph such that 
paths from X to B.s and from Y to C.t exist in the graph, then add X∪Y to the set 
of nodes and add ( X∪Y, B.s ⊕ C.t ) to the set of edges of the constructed graph. 

d) If there exist nodes B.s ⊗ C.t, B.s, C.t, X and Y in the constructed graph such that 
X∩Y = φ and paths from X to B.s and from Y to C.t exists in the graph, then add 
X∪Y to the set of nodes and add ( X∪Y, B.s ⊗ C.t ) to the set of edges of the con-
structed graph. 

4. Each node that is a role added in step 2 or 3 becomes active; all other nodes added 
in step 2 or 3 are passive. Node A.r considered in step 2 becomes passive as well. 

5. If one of the added nodes is Z, then a credential chain has been built. If the list of 
active nodes is empty, then a credential chain from Z to U.v does not exist. Other-
wise, go to step 2.                                                                                                       

 
Forward search algorithm is a bit more complex, because the starting point of the 
construction is not as obvious as in the previous case. To capture the problem con-
sider a set P of three credentials, e.g.: P = { A.r ← B.s ⊕ C.t, B.s ← X, C.t ← Y }. It can 
easily be seen that the only set of entities that can jointly play the manifold role A.r is 
the union of sets X∪Y. But if we denote the union Z = X∪Y, and ask about the exis-
tence of a credential chain from Z to A.r, then we find that the set Z does not appear 
within the credentials of set P. The starting point for a forward search algorithm in 
RTT is then not the set Z itself, but rather the power set of Z. 

Algorithm 2. A forward search algorithm to construct a credential chain from Z to 
U.v consists of the following steps. 

1. For each nonempty subset X ⊆ Z, find all the credentials A.r ← X. For each such 
credential, add nodes X and A.r to the set of nodes and add ( X, A.r ) to the set of 
edges of the constructed graph. Each node that is a role added in this step becomes 
active; all other nodes are passive. 

2. Select an active node, denoted here B.s, and do: 
a) Find all the credentials A.r ← e such that e is a role expression B.s, B.s.t, 

B.s ∩ C.t, B.s ⊕ C.t or B.s ⊗ C.t and C.t is a node that exists in the constructed 
graph. For each such credential, add node e to the set of nodes and add ( e, A.r ) 
to the set of edges of the constructed graph. 

b) Find all the credentials A.r ← B. For each such credential, add nodes B and A.r 
to the set of nodes and add ( B, A.r ) to the set of edges of the constructed graph.  

3. Repeat as many times as possible: 
a) If there exist nodes B.s.t, B.s, C and C.t in the constructed graph such that a path 

from C to B.s exists in the graph, then add ( C.t, B.s.t ) to the set of edges of the 
constructed graph. 

b) If there exist nodes B.s ∩ C.t, B.s, C.t and X in the constructed graph such that 
paths from X to B.s and from X to C.t exist in the graph, then add ( X, B.s ∩ C.t ) 
to the set of edges of the constructed graph. 
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c) If there exist nodes B.s ⊕ C.t, B.s, C.t, X and Y in the constructed graph such that 
paths from X to B.s and from Y to C.t exist in the graph, then add X∪Y to the set 
of nodes and add ( X∪Y, B.s ⊕ C.t ) to the set of edges of the constructed graph. 

d) If there exist nodes B.s ⊗ C.t, B.s, C.t, X and Y in the constructed graph such that 
X∩Y = φ and paths from X to B.s and from Y to C.t exist in the graph, then add 
X∪Y to the set of nodes and add ( X∪Y, B.s ⊗ C.t ) to the set of edges of the con-
structed graph. 

4. Each node that is a role added in step 2 or 3 becomes active; all other nodes added 
in step 2 or 3 are passive. Node B.s considered in step 2 becomes passive as well. 

5. If nodes U.v and Z exist in the constructed graph, then a credential chain has been 
built. If the list of active nodes is empty, then a credential chain from Z to U.v does 
not exist. Otherwise, go to step 2.                                                                              

3.4   An Example 

Consider the following question: Can a team of Adam and Betty approve a big trans-
action in the bank from the example in Section 2.3?  

To answer this question we can construct a credential chain from {Adam, Betty} to 
{Bank}.approveBig (Fig. 1). The edges marked with a solid line are credential edges. 
Dashed lines represent the derived elements, which were added according to proper-
ties 2 through 5 in Definition 2.  

A description of the application of backward and forward search algorithms shown 
below, is based on an assumption that credential (16) is used and the credentials (14) 
and (15) are excluded from the set P of available credentials. 

 
 
 
 
  
 
 
 
 
 
 
 
 

Fig. 1. Credential chain from a team of entities {Adam, Betty} to the role {Bank}.approveBig 

Backward search algorithm starts at node {Bank}.approveBig. Credential (20) adds 
node {C}.twoAccountants ⊕ {C}.manager, according to point 2a in Algorithm 1, and 
nodes {C}.twoAccountants and {C}.manager, according to point 2c. Starting at 

{Bank}.approveBig 

{C}.twoAccountants 

{C}.twoAccountants ⊕ {C}.manager

{C}.accountant ⊗ {C}.accountant

{C}.department 

{C}.accountant {C}.department.accountant 

{D1} 

{D2} 

{D1}.accountant {Adam} 

{D2}.accountant {Betty} 

{Adam, Betty} 

{C}.manager 
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{C}.manager, credential (9) adds node {Adam}, and starting at {C}.twoAccountants, 
credential (19) adds nodes {C}.accountant ⊗ {C}.accountant and {C}.accountant. 

The only active node is now {C}.accountant. Credential (16) adds nodes 
{C}.department.accountant and {C}.department, according to 2b in Algorithm 1. 
Credentials (7) and (8) add nodes {D1} and {D2}. The edges from {D1} and {D2} to 
{C}.department create the support sets for derived edges from {D1}.accountant and 
{D2}.accountant to {C}.department.accountant, added according to point 3a. 

Next, credentials (11) and (13) add edges from {Adam} to {D1}.accountant and 
from {Betty} to {D2}.accountant. According to point 3d in Algorithm 1, a derived 
node {Adam, Betty} is created and added to the graph, together with a derived edge to 
{C}.accountant ⊗ {C}.accountant. Finally, a derived edge from {Adam, Betty} to 
{C}.twoAccountants ⊕ {C}.manager is added, according to point 3c in Algorithm 1. 

The path from {Adam, Betty} to {Bank}.approveBig shows that this team of enti-
ties can approve a big transaction according to the security policy of the bank. 

Forward search algorithm starts at sets of entities {Adam}, {Betty} and {Adam, 
Betty}. Credentials (9), (11), (13) add nodes {Adam}, {Betty}, {C}.manager, 
{D1}.accountant and {D2}.accountant to the constructed graph, and add edges from 
{Adam} to {C}.manager, from {Adam} to {D1}.accountant and from {Betty} to 
{D2}.accountant. Moreover, credentials (11), (13) and {7}, {8} add nodes {D1}, 
{D2} and {C}.department, and add edges from {D1} to {C}.department and from 
{D2} to {C}.department. 

Next, credential (16) adds nodes {C}.department.accountant and {C}.accountant, 
and adds an edge from {C}.department.accountant to {C}.accountant. The active 
node is now {C}.accountant. Credential (19) adds nodes {C}.twoAccountants and 
{C}.accountant ⊗ {C}.accountant and the edge between the two. Moreover, a node 
{Adam, Betty} is created together with an edge to {C}.accountant ⊗ {C}.accountant. 

Finally, credential (20) creates two nodes {C}.twoAccountants ⊕ {C}.manager and 
{Bank}.approveBig, and two edges from {C}.twoAccountants ⊕ {C}.manager to 
{Bank}.approveBig and from Adam, Betty} to {C}.twoAccountants ⊕ {C}.manager. 

A credential chain from {Adam, Betty} to {Bank}.approveBig has been built. 

4   Conclusions 

Role-based Trust management languages use credentials to define security policies 
and handle trust in decentralized distributed access control systems. RTT is a powerful 
language, which supports manifold roles and is capable of expressing threshold and 
separation of duties policies. The contribution of this paper is a modified definition of 
the relational RTT semantics and definitions of RTT credential graph and  credential 
chain, which allow searching a given set of credentials and answering the security 
queries. The soundness and completeness of the credential graph with respect to the 
semantics of  RTT is proved. 

The plans for further research include construction of a prototype implementation 
of a trust management server. Neither the existing implementations of the trust man-
agement systems [1,2,3,5] nor the development described in the literature [14] are 
able to use the potential of RTT language. Our ultimate goal is an environment, in 
which access control is one of the services offered in the system (Fig. 2). 
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Fig. 2. Trust management (TM) server in a service-oriented environment 
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Abstract. The paper presents the formulation of the problem of access control 
to information resources located in virtual local area networks. We define the 
initial data, the objective function and constraints of the problem. To solve the 
proposed problem we suggest the method of genetic optimization of access con-
trol scheme based on the poly-chromosomal representation of intermediate 
points. The results of computer simulation and evaluation of the proposed 
method are discussed.  

Keywords: access control, virtual local area networks, genetic optimization. 

1   Introduction 

Joint work of users in computer networks stipulates the need to restrict the access to 
information resources without the use of passwords. An example is the problem  
of protecting information from unauthorized access in computer classrooms of  
universities.  

This problem has the following specificity. First, the student contingent has a 
strong heterogeneity, and all students can be considered as potential security infring-
ers. In this case, the effectiveness of passwords and user accounts is low. Secondly, in 
classrooms the access control schemes require frequent retuning. This is due to the 
fact that in classrooms the lessons, having different composition of used information 
resources, are usually alternated.  

The basic principles of information security in such integrated information  
systems are outlined, for instance, in the papers [1, 2]. These papers show that the 
discretionary model based on an access control matrix is most widely implemented in 
classrooms of universities. The first access control matrix as access control scheme 
was introduced in [3]. This model was considered in more details in many modern 
works, for example [4, 5]. Each cell of the matrix defines the subject authority to 
access a specific object or another access subject.  

In practice, as a rule, the access control matrix is replaced by access control lists 
(ACL) [6] or "lists of capabilities" (C-lists) [7]. Switches, used for local area net-
works, also use ACL [8]. Such capability allows to implement virtual local area net-
works (VLANs) based on these solutions [9]. ACL lists ensure that certain traffic is 
sent to specific ports. This prevents the unauthorized access to confidential corporate 
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information and network congestion as a result of program attacks. As a result, on the 
one hand, VLANs provide an additional level of access control to network resources, 
and, on the other hand, the adjustment of VLANs is also determined by the access 
control matrix.  

The generation of an access control matrix is a complex problem [10]. Under sys-
tem operation the adjustment of access control schemes is repeated each time, when 
the equipment, software and users are changed. Nevertheless, usually the generation 
of access control scheme is still done manually, without the use of mathematical 
methods [11]. Creation of access control scheme can be automated, if we reduce it to 
an optimization problem and apply an effective way to solve it. One of these ways is 
to use genetic algorithms. Genetic algorithms allow to solve successfully the prob-
lems of structural and parametric optimization of various systems [12, 13].  

The purpose of this paper is to test the idea of applying genetic algorithms to gen-
erate a correct access control matrix for a computer network on the base of construct-
ing VLAN. We suggest the method of genetic optimization of access control scheme 
based on the poly-chromosomal representation of intermediate points.  

The paper is structured as follows. Section 2 considers mechanisms for access con-
trol to information in VLAN. Section 3 outlines the proposed problem definition and 
analysis. In section 4, we suggest the method of genetic optimization of access control 
scheme. Section 5 discusses the results of computer simulation and evaluation of the 
proposed method. Conclusion surveys the main paper results. 

2   Mechanisms for Access Control to Information in VLAN 

The efficient mechanisms for access control and protection of information against 
unauthorized access in VLAN are (1) the rational distribution of information re-
sources and users on network nodes and (2) the organization of virtual subnets using 
network switches or routers. Let us consider these mechanisms.  

2.1   Distribution of Information Resources and Users on Network Nodes  

Information resources (files or directories) distributed on network nodes are called 
access objects. Network computers are network nodes. Users, working at computers 
at any given time, are called access subjects. 

Several access objects can be situated on one network node at one time. In other 
words, there is a mapping DOU of degree 1 : M among the set of access objects and the 
set of nodes. The same access subject can work only on one node. Consequently, the 
mapping DSU among the set of subjects and the set of nodes has also the degree 1 : M. 

Access subjects have full access to those objects which are located on their own 
network node. At the same time, sometimes, the subject has to access one or more 
objects on other nodes (for example, on a network server). This capability is achieved 
by assigning to access object a special shared access flag. It should be noted that 
there is the opportunity of a password based shared access. However, this type of 
shared access is not taken into account in the statement of the problem due the speci-
ficity considered in the Introduction. The password based shared access control is 
assigned to VLAN. 
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It is supposed that the access of a specific subject to a particular object is deter-
mined by the following rules: (1) access is possible, if the object does not have a 
shared access flag, but is located on the node at which the subject operates; (2) access 
is possible, if the object has that flag (in this case it is not important on which node 
the object is located); (3) access is denied in all other cases.  

2.2   Organization of Virtual Subnets  

Virtual subnets are realized by using managed network switches. These network de-
vices have a memory that stores information on banning (permitting) the exchange of 
information between certain pairs of computers connected to switches. As a result, it 
is possible instead of a fully connected exchange scheme between the ports to organ-
ize a selective scheme with segregation of virtual local subnets.  

The following access rule is used in VLAN for all computers: if two computers are 
not in the same subnet, then the information exchange between them is impossible.  

VLAN implementation requires a change of the second rule outlined above. Now 
this rule is as follows: access is possible, if the object has a shared access flag and the 
computer, on which the object is located, and the computer, on which the subject 
works, are in the same virtual subnet. 

The simultaneous use of two considered access control mechanisms makes up 
a "real" access control scheme. At the same time the usage the specific software  
determine a "required" access control scheme. In the general case a "real" and a "re-
quired" access control schemes may be different.  

Thus, an informal statement of the problem of access control with usage of VLAN 
can be formulated as follows: using mentioned access control mechanisms it is 
needed to ensure that the “real” access control scheme has minimal differences with 
the “required” scheme, and coincides with it in ideal case. 

3   Formal Statement of the Problem 

Let us specify the formal statement of the problem of on-line optimization of access 
control schemes in VLANs. 

The initial data for the formal statement of the problem are as follows:  
OD = {odi}, i = 1…I  –  set of access objects (files, directories);  
SD = {sdj}, j = 1…J – set of access subjects (for example, learners and teachers 

working in a computer network); 
U = {uk}, k = 1…K – set of network nodes; 
Rreq = ||rreq

ij|| – requirements for different levels of access (required access control 
scheme), where rreq

ij =1, if sdj should have access odi, and rreq
ij =0 otherwise. 

Since the problem variables should fully determine the decisions on the distribu-
tion of objects and subjects and the structure of VLAN, we assume that these deci-
sions are as follows: 

DOU = ||dOU
ik || – matrix of distribution of objects on network nodes, where dOU

ik =1, 
if odi is located on the node uk, and dOU

ik =0 otherwise; 
DSU = ||dSU

jk|| – matrix of distribution of subjects on network nodes, where dSU
jk =1, 

if sdj is located on the node uk, and dSU
jk =0 otherwise; 
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V = {vi} – vector of shared access flags of network resources, where vi =1, if odi is 
given in the share, and vi =0 otherwise; 

X = ||xmn||, m,n = 1…K – matrix of VLAN structure, where xmn =1, if nodes um and 
un belong to one virtual subnet, and xmn =0 otherwise. 

As an objective function should be used the function, evaluating the difference be-
tween the real control access scheme Rreal, stipulated by values DOU, DSU, V and X, 
and the required access scheme Rreq. 

Let us show how to obtain the functional form of scheme Rreal. 
Assume that the access control scheme is determined only by the decisions DOU 

and DSU (in other words, all the elements of V and X are equal to 1). We call this 
scheme unconditional and denote Ruc. In this case we have 

Ruc = DSU ⋅ (DOU)T , (1) 

where the elements of the matrix Ruc are determined by the expression 

( ).
1

OUSUuc ∑
=

⋅=
K

k

kjikij ddr . (2) 

 
Note that in (2), as in all subsequent expressions, summation and product are the 
logical operators OR and AND respectively. 

Suppose that the decision V takes effect (that is, there are vi=0). We call this access 
control scheme as “conditional on V” and denote RV. 

If vi = 1, then the resource odi is available for all subjects. In this case, for any j, 
rV

ij = 1. If vi = 0, then the availability of the resource odi is defined by a matrix Ruc. 
Consequently, the element of the matrix RV is defined by the following expression 

rV
ij = ruc

ij + vi (1 – ruc
ij). (3) 

Now suppose that in addition to V, the decision X enters into force. In this case, the 
access control scheme is a “real” control access scheme Rreal. 

The actual availability of the resource odi to subject sdj occurs when there is a  
virtual subnet joining this resource and this subject together. In other words, the  
following expression is true: 

.
1

Vreal ∑
=

⋅=
K

k

kjikij rxr  (4) 

It is easy to see that expressions (2)–(4) completely determine Rreal as a function of 
variables DOU, DSU, V and X. 

Objective function of optimization problem statement is defined as a measure of 
divergence between Rreal and Rreq 

∑∑
= =

−=Δ
I

i

J

j

ijij rr
1 1

reqrealR . (5) 
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The discrepancy between Rreal and Rreq should be minimal. Therefore, the synthesis 
criterion formulated in the problem statement has the form 

( ) min,,,, reqSUOU ⇒Δ RХVDDR . (6) 

The constraints of the problem statement are as follows: 
1) on a single node there can not be more than one subject, and therefore the  

following condition is true:  

( ) 1
1

SU ≤∑
=

K

k

ikd ; (7) 

2) one file can be only on one node, so the following expression is valid 

( ) 1
1

OU ≤∑
=

K

k

ikd . (8) 

4   Method of Solving the Problem 

The problem defined by expressions (2) – (8) belongs to a class of non-linear Boolean 
programming problems, when the variables are given in the vector and matrix form. 
The exact solution of this problem is possible only by an exhaustive search of vari-
ables that can not be acceptable for practical purposes. 

We offer for its solution a method which implements genetic optimization algo-
rithms (GOA), successfully used in many synthesis problems [12, 13].  

However, we note that, as shown by expression (3) and (4), the set of variables in 
the objective function (6) can be reduced by replacing the two matrices DOU and DSU 
on a single matrix Ruc. 

The method based on GOA is as follows. On initialization stage, an initial set of 
solutions (or population) is randomly formed. Each solution (or individual) is charac-
terized by a string isomorphically related to the vectors and matrices of variables that 
determine this solution. This string is called a chromosome and a single character in 
it – a gene. 

At each subsequent stage the following steps are fulfilled.  
Pairs from the population of individuals are randomly selected. They are called 

parents. Between them the process of crossing-over occurs. As a result of this proc-
ess, a couple of new individuals appear. These individuals are called descendants. The 
chromosome of each of the descendants is formed from two parts: one part is taken 
from the chromosomes of the "father", and the second – from the "mother"’s chromo-
somes. The descendants are added to the general population. 
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The population has quantitative restrictions, so individuals with the lowest suitabil-
ity function are removed from the population ("die"). The role of suitability function 
is played by the function (5). 

In addition, at each stage a part of the individuals is subjected to mutation. During 
mutation the genes in the chromosome are changed randomly. 

An essential feature of proposed GOA is his poly-chromosomal character, i.e. indi-
viduals have not one, but three chromosomes Ruc, V и X.  

Let us offer the forms of these chromosomes.  
Since Ruc is a matrix of dimension I x J, it is not symmetric. Therefore, the only 

way to build a chromosome mapping this matrix is a serial concatenation of rows of 
Ruc into one big string: 

[R]chr = [r11, …, r1J; x21, …, x2J; …; xi1, …, xiJ; …; xI1, …, xIJ]. (9) 

Vector V by its very nature is a chromosome, in which an element vi carries the role 
of individual gene:  

[V]chr = [v1, v2, …, vi, …, vI]. (10) 

Matrix X is a symmetric matrix. Each element of its main diagonal is 1. Therefore, to 
construct the chromosome which maps X, the following string is used: 

[X]chr = [x12, …, x1K; x23, …, x2K; …; xi,i+1, …, xiK; …; xK-1,K]. (11) 

As a result of poly-chromosomal crossing-over, not two, as in the traditional case, but 
eight descendants (23 = 8) will appear.  

The GOA is completed, when the population goes to a stable state, in which the in-
dividual with the maximum value of efficiency is taken as the final solution of the 
problem.  

5   Evaluation of the Method  

The evaluation was conducted in two phases. On the first phase, we estimated compu-
tational complexity and performance. On the second phase, we estimated the LAN 
security based on the method developed. 

Analysis shows that GOA has a polynomial computational complexity 
O (Npop⋅Nind⋅K), where Npop – number of populations needed to obtain a solution, Nind 
– number of individuals in the population, K – number of network nodes. In the ex-
periments, the value of Npo was in the interval [25; 100], K had values {5; 10; 15} and 
Nind = 200. 

Evaluation of GOA performance demonstrated that a full coincidence of the result-
ing access scheme with the required one is observed only at small values of I, in par-
ticular, when I = 6. Moreover, the coincidence is reached at population number in the 
range from 25 to 30.  

Data on security evaluation are given in Table 1. 
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Table 1. Security evaluation  

I P0 ppw N1 N2 P1 P2 kUUD 
6 10-4 10-4 6 0 0,00070 10-4 7,00 
6 10-5 10-4 6 0 0,00061 10-5 60,98 
6 10-4 10-5 6 0 0,00016 10-4 1,60 

12 10-4 10-4 12 5 0,00130 0,00060 2,17 
12 10-5 10-4 12 5 0,00121 0,00051 2,37 
12 10-4 10-5 12 5 0,00022 0,00015 1,47 
20 10-4 10-4 20 18 0,00210 0,00190 1,11 
20 10-5 10-4 20 18 0,00201 0,00180 1,11 
20 10-4 10-5 20 18 0,00030 0,00028 1,07 

 
The table 1 uses the following parameters: P0  – the probability of unauthorized ac-

cess the information caused by other reasons other than the compromise of shared 
passwords; ppw – the probability of password compromising; N1 and N2 – the number 
of objects which require access password protection in the traditional case and in the 
case of using the proposed method, respectively; P1 и P2 – the probability of unau-
thorized access in the traditional case and in the case of using the proposed method, 
respectively; kUUD = P1 / P2 – degree of security increase. 

Table 1 shows that for various configurations of the simulated system the gain in 
security increase varies from 7 to 600 percentages. The greatest gain in 60 times takes 
place only when ppw is greater than P0 in 10 times, and the simulated system has a low 
dimension, when the resulting access scheme, organized by means of VLANs, is the 
same as required one. In all other cases, when the probability of compromising the 
password is much more than the probability of unauthorized access by other reasons, 
the gain is also significant. 

6   Conclusion 

The paper shows that combining the technologies of VLAN and GOA can be an ef-
fective means of protecting information against unauthorized access to the informa-
tion stored in local networks. On the one hand, the proposed method of protecting 
information from unauthorized access takes into account the requirements of security 
policy. On the other hand, it provides multi-level use of organizational and technical 
measures of protection. The method has high efficiency and improves the security on 
7–11 percentages for large-scaled systems or in 7–60 times for small systems. In this 
case the network performance was not reduced significantly, and the cost of routine 
work of security administrators was greatly decreased. 

Software implementation of proposed method may be included in the arsenal of  
information security means available to network security administrators. It may be 
actively used to create dynamically configurable schemes of custom access to  
network resources. 
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Abstract. The paper addresses to application of sequences alignment intellec-
tual algorithms for the intrusion detection needs. These algorithms are used in 
bioinformatics to detect regions of similarity in several gene sequences. We 
propose two techniques of their utilization. Using the first technique it is possi-
ble to detect the mutations of attack, having a signature of it. The second tech-
nique is applicable to anomaly detection. We discuss what algorithms of  
sequences alignment can be used in these methods and show the effectiveness 
of these techniques on practice. 

Keywords: security, intrusion detection, sequences alignment, mutations of  
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1   Introduction 

Development of information technologies causes the enriching of the intruder’s po-
tential. S(he) can now adapt to new detection algorithms and invent new types of 
attacks. It resembles the game. In a response to new methods of detection the intruder 
invents new methods of attacks. When the method of detection of this new attack is 
invented the intruder invents other new attack and etc. The main thing of it is that the 
number of attacks grows exponentially. These facts obligate us to improve the meth-
ods and algorithms used in IDS. The IDS, the intrusion detection system, is a soft-
ware-based or hardware-based tool developed to detect malicious activities or policy 
violations such as unauthorized access, integrity violation or denial of service. 

IDS usually solves the problem of matching two sequences to determine their like-
ness. For example, it can be a sequence of system calls or sequence of network pack-
ets that is compared to attack signature. In bioinformatics, this problem is solved by 
sequences alignment algorithms. Thus, resemblance of two problems makes research 
of application of these algorithms urgent for information security tasks. 

The IDSs are divided in two classes: signature-based and anomaly-based. One of 
the problems of signature-based IDS is the problem of attack mutation. If attack is 
slightly changed, it can avoid IDS, and consequently a new signature for it should be 
developed. We show how the sequences alignment algorithms can be used to solve 
this problem. One of the approaches for anomaly-based systems is to create the base 
of normal behavior of protected component and then compare the monitored behavior 
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with it. The base of normal behavior can be built of sequence of system calls or net-
work packets. The sequences alignment algorithms can improve this method by  
reduction of the size of normal behavior base. 

The following paper is divided in 7 sections. Section 2 determines the formal 
model of attack detection. In section 3 the sequences alignment algorithms are  
reviewed. Section 4 describes the application of these algorithms. Section 5 and 6 
contain results and review of the related works. Finally, there is the conclusion in 
section 7. 

2   Formal Model of Attack Detection 

We define the protected system System as a set of entities E that interact with each 
other. Whether the interaction is permitted or denied depends on the security attrib-
utes SA: 

System = <E, SA> . (1) 

Informational interaction is an interaction process of two or more entities with the 
purpose of changing the information within at least one of them. In any informational 
interaction, there are entities that initiate it. For example, a man initiates reading of a 
book. We denote entities that cannot be initiators of any interaction as objects O. All 
other entities we denote as subjects S. Thus, a set of entities is unification of S and O: 

OSE Υ= . Informational interaction between the entities in the given system is im-
plemented by executing commands which make the set C. The command can be writ-
ten in pseudo-language as:  

(Condition1) →  (Inter1, Inter2, …, Intern); (Condition2) →  (Interm) . (2) 

Where Inter1, Inter2, …, Intern, Interm are the elements of possible interactions in the 
system set Inter. Condition1, Condition2 are the conditions like “if User1 has a right 
to read file Documents”. 

Let AC denotes an access control function: 

{ }0,1ter)AC:(S,O,In →  . (3) 

It checks whether the subject S can have an interaction Inter with the object O. For 
example, in systems that use Harrison-Russo-Ullman security model, the access con-
trol function equals to 1 iff there is Inter in the access matrix cell respective to S and 
O [1]. 

The condition in command is a unity or conjunction of access control functions: 

⎩
⎨
⎧

∧∧∧
=

),Inter,OAC(S...),Inter,OAC(S),Inter,OAC(S

1
Condition

nnn222111
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State denotes a system state function which returns the tuple <Et, SAt>, where Et and 
SAt are the sets of the system entities and security attributes fixed at time t: 

>→< SAEState:T ,  . (5) 

Where T  is a set of time moments with given discrete frequency. 
IsSecure is a system security function: 

{ }0,1SAEIsSecure: >→< ,  . (6) 

IsSecure is equal to unity iff the system is secure. 
The system state changes under influence of the commands. Thus, knowledge 

about that at the time period [t1, tn] commands С1, С2, … , Сn-1 were executed in the 
given sequence leads us to fact that the initial state at the time moment t1 can define 
all states of the system for this time interval: 

)State(t...)State(t)State(t)State(t n

СССС

1

1n321 −

→→→→ 32
. 

(7) 

The insecure sequence of commands is defined as a sequence of commands С1, С2, 
…, Сn-1 executed at time  interval [t1, tn] having the following conditions true: 

)State(t...)State(t)State(t)State(t n
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)(
1

1
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(8) 

Any influence that can be represented as a sequence of commands that bring system 
to a state in which IsSecure function is zero we will name as an 'attack on the system'. 
At the same time, removal of first command in attack sequence brings the IsSecure 
function to unity. Thus, the following statement is true:  

The attack is always a member of insecure sequence of commands set. 
As defined above, any attack fits the definition of insecure sequence of commands. 

The opposite statement is false. 
Thus, the lifecycle of any system can be presented as a chain of commands that 

lead to system state change. And the attack detection problem is equal to matching 
these chains to known attack signatures. 

3   Sequences Alignment Algorithms 

In bioinformatics, a sequences alignment is a way of arranging the sequences of 
DNA, RNA, or protein to identify regions of similarity that may be a consequence of 
functional, structural, or evolutionary relationships between the sequences [2]. 

There are several sequences alignment algorithms and their results are different. 
The commonly known gene sequences alignment algorithms are local and global 
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alignments. Lets explain their work on the following sample: there are two sequences 
of the commands «open,  read, open, read, write, execute, connect, execute, execute, 
write, close, write, close» and «open, read, write, execute, execute, execute, write, 
write, close».  

Local algorithm: 
open read open read write execute connect execute execute - write close write 

close 
- - open read write execute - execute execute write write close - - 
Global algorithm:  
open read open read write execute connect execute execute write close write close 
open - - read write execute - execute execute write - write close 

where the “-” symbol denotes a gap, i.e. absence of the command.  
Global alignment which is known as the Needlman-Wunsch algorithm [3] stretches 

the smaller sequence along the bigger one. Local alignment which is also known as 
the Smith-Waterman algorithm [4] localizes the smaller sequence on the specified 
region of the bigger one. Both algorithms can be used on sequences of any length, but 
the Needleman-Wunsch algorithm is traditionally used much more often when se-
quences have approximately equal lengths. The Smith-Waterman algorithm is used 
when one sequence is considerably larger than another. 

3.1   Smith-Waterman Algorithm 

The algorithm's input is represented with two sequences a = «Сa1,Сa2…Сan» and b = 
«Сb1,Сb2…Сbm» and the similarity function Z,),C:(C ba →−∪−∪ω , where Сa and Сb 
are the sets of the commands that form the sequences a and b respectively. The “-” 
symbol denotes absence of command. Target of that function is to define a similarity 
degree between two commands if they stand on the same positions in different se-
quences. For example, there is an attack with a purpose of changing some files. In that 
case, important commands are: gaining access rights to open and write file; opening 
the file, and writing into the file. For any important commands ω has to be positive in 
case of same arguments; and negative in case of different arguments. For any non-
important commands, function ω is zero. Also, the important commands can be  
differentiated by danger degree for the protected system. For example, if there is a 
command that deletes all entities in the system, the ω function calculated for this 
command can be set to 10. And for command that changes any entity in the system, 
the ω function can be set to 2.  

Similarity degree between two sequences is represented  by R function: 

∑
−

=

=
1

0

),ω(),(
n

i
biai CCbaR  . (9) 

The first stage of this algorithm is the filling of the similarity matrix H. The matrix 
size is m+1 on n+1, where m and n are lengths of the corresponding sequences. 

Matrix H is built in the following manner: 
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After the matrix is filed, the second stage of the algorithm is made. To obtain the 
optimum local alignment, the stage starts with the highest value in the matrix (i,j). 
This cell is marked as the current one. The next current cell is the largest between the 
following: (i-1,j), (i,j-1), and (i-1,j-1). In case of equity between cells, priority is given 
to hi,j. The process continues until it reaches the cell with zero value, or the cell (0,0). 
After that the alignment is constructed as next: starting with the last current cell, the 
process reaches (i,j) using the previously-calculated path. A diagonal jump implies an 
alignment (either a match or a mismatch). A top-down jump implies a deletion. A 
left-right jump implies an insertion. 

The complexity of this algorithm is estimated as O(m*n). 

3.2   Needleman-Wunsch Algorithm 

The Needleman-Wunsch algorithm has few differences from local alignment algo-
rithm. As in the Smith-Waterman algorithm, there are two sequences on input:  
a = «Сa1,Сa2…Сan» and b = «Сb1,Сb2…Сbm», and the similarity function 

Z,),CS:(C ba → . One of the differences from the Smith-Waterman algorithm is a 
constant d, which defines a penalty. The similarity function R is defined as:  
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Where fi(a,b) is: 
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This algorithm is also consists of two stages.  
First of all, the similarity matrix S of size m+1 on n+1, where m and n are lengths 

of corresponding sequences, is filled. The elements si,0 and s0,j are filled with values 
i*d и j*d, correspondingly. Other elements of S are calculated in the following  
manner:  
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On the second stage the current element is set to the bottom right. The next current 
element has to be chosen according to the following conditions: 
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In case of meeting a couple or more conditions, the priority is given to the most top. 
The process is kept until it reaches the value in position (0,0).  

The complexity of this algorithm is estimated as O(m*n). 

4   Intellectual Attack Detection 

4.1   Detection of Attack Mutations 

Let take a look on signature-based host-based IDS and presume that the intruder’s 
target is the attack implementation in way of evasion of IDS. Common ways of it are 
described in [5]. 

Trace of system is defined by SystemTrace = «С1, C2, C3…CN». The Mali-
ciousTrace = «С’1, C’2, C’3…C’M» is a trace corresponding to the attack. The problem 
of mutation detection is to discover in SystemTrace the traces corresponding to the 
attack mutation equal by a result to the attack implemented by MaliciousTrace.  

The set Seq = {Seqi, 0≤i≤P, P≤N} is built in the following way: 
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The elements of Seq are to be compared with MaliciousTrace. Considering that M << 
P, the best algorithm for similarity calculating is the Smith-Waterman algorithm. As 
the algorithm output there is a value R. In case of its exceeding the value of a 
threshоld it will be considered that SystemTrace contains the mutation of attack  
implemented by MaliciousTrace. The choice of threshold is the main problem of this 
attack detection method.  
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The maximum number of commands in the mutated attack that this method can de-
tect is P. But increase of P causes increase method working time. Each alignment is 
performed at O(P*M). The quantity of alignment is (N-P). So the complexity of 
method is estimated at: 

O(P*M*(N-P)) = O(P*M*N-P2*M)) . (16) 

Thus P must be too big enough to detect a long attack and too small enough to satisfy 
the performance requirements. For the purpose of normalization it is suggested to use 
the next function instead of R: 
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Where b is MaliciousTrace, a is the elements of Seq set, b’ is a MaliciousTrace se-
quence after alignment. In case of R(a1, a1) ≥ Length(a1) for all sequences a1, the 
definition range of this function matches the interval [0,1]. The nearness to null in-
creases a probability of fact that this trace contains a mutation of attack implemented 
by MaliciousTrace. 

Therefore, the sequences alignment algorithms can be used for attack mutation  
detection. 

4.2   Anomaly Detection 

The method of system calls sequence analysis is described in [6] and after that had 
some extensions in number of works, for example in [7], [8]. Let SystemTrace de-
notes a system trace corresponding to a normal behavior. The set Seq = {Seqi, 0≤i≤P, 
P≤N} is built in a following way: 
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NormDb is a set of elements Seq. This set represents a database of sequences that 
correspond to normal behavior.  

Compare is a comparison function of two sequences: 

}1,0{: →×SeqSeqCompare  . (18) 

The condition of addition the sequence Seqk to a NormDb: 

:ikik SeqSeqNormDbSeqNormDbSeq ≠∧∈∀⇔∈  

0),( =ik SeqSeqCompare  . 
(19) 

The sequence will be added to database if it is not equal to any sequence in a database 
in terms of defined comparison function. 
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We suggest using the Needleman-Wunsch algorithm and R’ function as a compari-
son function. The sequence is added to database in case of application of alignment 
algorithm to any this sequence and any sequence from a database the R’ will be less 
than a threshold. The size of the database will be thus decreased. 

5   The Results 

For the testing on practice the UNIX system calls traces are used. The testing traces 
for xlock, sendmail и lpr programs are taken from University of New-Mexico site [9]. 
For each program there were a traces corresponding to normal behavior and attacks. 

5.1   Detection of Attack Mutation 

Firstly, it is necessary to define a ω function. Author of work [18] made an analysis 
how to divide the system calls in four groups from an IT security point of view. The 
first group is most dangerous, the fourth is the less. Therefore,  the ω function can be 
defined in the following manner:   
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There were no attacks in original traces. The maximal values of R and R' were defined 
for each trace and for different values of P. Table 1 contains the test results. 

Table 1. Results in case of normal traces without attacks 

P R R’ time, sec 
xlock trace of length 31729, buffer overflow attack 1 

100 7 0.08478 4,3 
400 7 0.08478 8,9 
700 10 0.00057 13,7 
1000 10 0.00057 22,6 

xlock trace of length 21182, buffer overflow attack 2 
100 7 0.07825 4,2 
400 7 0.07825 8,8 
700 7 0.07825 13,6 
1000 7 0.07825 22,5 

xlock trace of length 20973, buffer overflow attack 3 
100 11 0.12308 4,2 
400 11 0.12308 8,8 
700 11 0.12308 13,6 
1000 11 0.12308 22,5 

sendmail trace of length 32221, sunsendmailcp attack 
100 7 0.12088 1,3 
400 9 0.01001 7 
700 11 0.00932 14,2 
1000 11 0.00932 21,6 
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The results meet the theory. As there are no attacks in the trace, R' is considerably 
less than 1. The method working time grows with P growing. 

Then the mutated attacks were added to each trace. The mutated attack was ob-
tained from common ones with adding 3, 6, 12, and 24 system calls that don’t affect 
the attack goal (results are in table 2). 

Table 2. Results in case of traces with attacks 

Number of command added to common attack R R’ 
xlock trace of length 31729, buffer overflow attack 1 

3 17 0.8 
6 17 0.667 
12 17 0.5 
24 17 0.333 

xlock trace of length 21182, buffer overflow attack 2 
3 17 0.8 
6 17 0.667 
12 17 0.5 
24 17 0.333 

xlock trace of length 20973, buffer overflow attack 3 
3 17 0.8 
6 17 0.667 
12 17 0.5 
24 17 0.333 

sendmail trace of length 32221, sunsendmailcp attack 
3 16 0.8 
6 16 0.667 
12 16 0.5 
24 16 0.333 

It is seen from the results that R’ values for normal traces and traces with attacks are 
considerably different. So this method can be used for the mutations detection. 

5.2   Detection of Attack Mutations 

The ω function was defined in a following way: 
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The penalty value d was set to -1. The threshold value was set to 0,7. The diagrams 
presented on figure 1 were built for different values of P. 

The figure shows that the size of the database was considerably decreased. After 
that it was checked that decreasing has no affect on the detection ability of primary 
method. It is demonstrated in tables 3 and 4.  

Estimating the performance, the primary method is better because time of common 
comparison is proportional to P, and sequences alignment is proportional to P2.  
For the decreased size of the database, the suggested method takes 1,5-2 times less 
than primary. 
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Fig. 1. Comparison of relations between database size and system calls number 
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Table 3. Comparison of anomaly percentage  in case of traces without attacks 

N = 8 N = 10 N = 12 Anomaly percentage in 
normal trace 

N-W Common N-W Common N-W Common 

sendmail 0,30 0,32 0,40 0,84 0,44 0,52 
xlock 0,11 0,11 0,03 0,10 0,03 0,10 
lpc 0,38 0,41 0,41 0,56 0,35 0,57 

Table 4. Comparison of anomaly percentage in case of traces with attacks 

N = 8 N = 10 N = 12 Anomaly percentage in 
trace with attack 

N-W Common N-W Common N-W Common 

sunsendmailcp 22,5 20,7 22,5 20,7 24,2 24,2 
decode 23,5 23,5 23,5 19,9 27,2 26,1 
syslog-local 30,7 30,7 30,7 28,6 32,3 31,4 
syslog-remote 39,8 39,8 41,6 39,8 43,1 42,2 
buffer overflow xlock 1 42,0 41,8 44,2 44,1 48,4 48,4 
buffer overflow xlock 2  42,4 42,0 43,3 43,0 47,5 47,4 
lprcp 32,4 32,1 34,5 34,4 37,6 37,1 

 
 
The suggested method is thus an improvement of primary because it detects attacks 

with the same effectiveness and uses the decreased database. 

6   The Related Works 

There are a few works related to the sequences alignment algorithms used at mali-
cious activity detection.  

In [10] the sequences alignment algorithms are reviewed for the pattern matching. 
Approach was to detect a masquerade of normal user behavior by the intruder. Au-
thors got some positive results in comparison to other algorithms Hybrid Markov and 
IPAM. In [11] the sequences alignment was suggested to generate the attack signa-
tures for the purposes of detecting polymorphic attacks. The generation is focused on 
the string mode so it is considerably different from the method suggested in our work.  

In [5], the method of attack mutation detection was proposed. They defined a set of 
no-ops calls. The suggested approach was consisted in searching any sequence that is 
equal to attack signature after deletion no-ops.  

The approach suggested in our paper is more unified, flexible and effective than 
the analyzed techniques. For example, if there is a system with two different com-
mands that implement the similar operation, our method can detect every kind of 
attack mutations which were obtained through the command replacing. 
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7   Conclusion 

The paper reviews two sequence alignment algorithms. The results obtained for the 
first method showed that some parameter which is a criterion for attack detection is 
considerably different between normal traces and traces with attacks. It means that 
this method can be used in practice for mutated attack detection. It means that in IDS 
one signature can be used for detection of multiple attacks, even those attacks that are 
likely to be unknown. Also this method is helpful in reducing the size of the signature 
database in case of signature-based IDS. It is very important to reduce the database, 
because a number of attacks grows exponentially.  

The future work has the objectives to investigate the use of sequences alignment 
algorithms to detect the mutations in computer viruses.  

The results obtained for the second algorithm have shown that comparing it to pri-
mary slide window method is more effective in memory and time usage. Ability of 
attack detection is not changing by using this method. It is also important that this 
method can be applied to any anomaly-based intrusion detection algorithm that uses 
any kinds of sequences to build behavior profile. 
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Abstract. Botnets have become the most powerful tool for attackers

to victimize countless users across cyberspace. Previous work on botnet

detection has mainly focused on identifying infected bot computers or IP

addresses and not on identifying bot processes on a host machine. This

paper aims to fill this gap by presenting a bot process detection technique

based on process symptoms such as: TCP connection attempts, DNS ac-

tivities, digital signatures, unauthorized process tampering, and process

hiding. We partition symptoms into sets which are input into classifiers

generating individual detection models which are later appropriately in-

tegrated so as to improve the detection accuracy. The integrated ap-

proach correctly identified two bot processes and did not produced any

false positives and false negatives.

Keywords: Botnet detection, bot process, process symptom, behavior-

based detection, symptom-based detection.

1 Introduction

Botnets are an effective tool in spam distribution, denial of service attacks, illegal
content hosting and other malicious acts. By leasing botnets, malware authors
have successfully implemented profitable business models. These dynamic struc-
tures consist of several infected host machines (bots) running the bot software
and responding to the bot master’s instructions. Previous work on detection has
mainly focused on the identification of infected bot machines or IP addresses,
and not the actual bot process executing on the infected machine. This research
presents three sets of process-based symptoms drawn from known bot samples
— bot network activity behavior, unreliable provenance and stealth mechanisms
— that are integrated together to detect bot processes on a host machine. Specif-
ically, we make the following contributions:

– The process-based identification of (1) Bot network activity behavior: failed
TCP connection attempts, DNS and reverse DNS queries; (2) Process prove-
nance: using static file image digital signature verification and process/file
system tampering; (3) Stealth mechanisms: using the absence of a graphical
user interface and no required user input to execute.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 229–241, 2010.
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– A formal detection model based on a non-trivial use of established data min-
ing algorithms (C4.5). We conducted a thorough experiment on generating
and evaluating detection models. Results show our methodology leads to
better detection accuracy for both centralized and Peer-to-Peer (P2P) bots
than a straightforward use of established data mining algorithms.

In both centralized and P2P structures, a bot must establish a connection to
participate in the botnet possibly producing several failed connection attempts.
Bots use DNS activity to reduce failed connection attempts which may instead
produce failed DNS activity. In general, a process will attempt to connect to
the input IP address of a successful reverse DNS query and the returned IP
address of a successful DNS query, concluding the address is active. Our experi-
ments reveal a counterintuitive approach that some bots attempt connecting to
IP addresses regardless of DNS activity results: IP addresses that did not return
a reverse DNS record are connected to successfully and IP addresses that did
return a reverse DNS record failed to connect. Upon host infection, bot activity
may manifest in one or more currently running processes. Bot processes may
lack a digital signature, or may have been tampered with by a process lacking a
digital signature. Bots typically execute without user knowledge by implement-
ing stealth mechanisms, such as lacking a graphical user interface (GUI), not
requiring keyboard and mouse input, removing itself from the list of currently
active processes, and so on [16].

The rest of the paper is organized as follows: Section 2 is related work, Sec-
tion 3 presents our bot detection methodology, Section 4 describes the chosen
symptoms, Section 5 details the experimentation, results and limitations, and
Section 6 gives our conclusion and future work.

2 Related Work

Network-based research analyzing botnets such as [7,2,12] use different tech-
niques characterizing breadth and depth of centralized and P2P botnets, types
of performed malicious activities, botnet structures, intrinsic events in the bot-
net life cycle and hiding techniques. Botnet detection research such as [5,6,1,4,8]
primarily analyze network traffic using destination IP addresses, IRC server
names, packet content, sequence of intrinsic bot events, crowd response and
spatial-temporal relationships in their detection techniques. This results in the
identification of several infected host machines as members of a centralized or
P2P botnet. The research presented by Zhu et. al. [18] is a host-based detection
technique of bots primarily based on a high rate of failed connection attempts.
Connection failure rates of known bots are measured against benign processes
and show that bots can be identified and distinguished from benign processes
based on this single metric. Only measuring failed connection attempts may be
most effective with IP addresses of dead botnets, discovered botnets and par-
tially active botnets. However, a single metric is not enough to detect active bots
which can possibly lead to the production of false negatives, especially with bots
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designed to limit failed connection attempts. Our research uses the novel ap-
proach of analyzing failed connection attempts in relation with DNS activity as
the basis of our bot network activity behavior symptoms, along with symptoms
for unreliable provenance and stealth mechanisms facilitating the identification
of several metrics of suspicious processes producing a more robust detection tech-
nique. Establishing relationships between observed network data of a process is
novel to this research as most related work considered observed network data
in an isolated or sequential form. Relating together different observed network
behaviors reveals dependencies bot processes have on various network services.
Analyzing these dependencies facilitates deeper understanding of bot behavior
which may not be appreciable in isolated or sequential analysis of observed net-
work data. Our approach compliments these two forms of analysis and enhances
understanding by adding a new perspective on bot behavior.

3 Bot Detection Methodology

Our model’s premise is that bot and benign processes will exhibit different rec-
ognizable characteristics that can be utilized via appropriate algorithms. The
differences may be characterized by a set of attributes mapped to a set of symp-
toms. Let us denote by A the universe of bot process attributes and by P a pro-
cess currently executing on a host machine with symptoms Psymp1 . . . Psymp|A|

with respect to A. The goal is to determine the predicate Bot(P ), which de-
termines if P is a bot, true means “yes” and false means “no”. We want to
identify a function f that computes Bot(P ) = f(Psymp1 . . . Psymp|A|). We can
approximate the unknown f via a function f . A straightforward construction
of f would be output of an established data mining algorithm, denoted as f0.
Such f0 may not offer the desired detection accuracy, inspiring us to propose the
following methodology: We can appropriately (1) partition the attributes A into
multiple subsets based on certain domain knowledge, (2) generate a function gi

corresponding to the symptoms with respect to each partition of attributes, and
(3) create function f based on composing the individual functions gi.

Specifically, we propose to partition attributes based on the following “life-
cycle” perspective of bot processes: A1, bot process network activity behavior;
A2, bot process provenance; A3, bot process stealth mechanisms. With respect
to A1, we hope to approximate the predicate B(P ), which indicates if P is ex-
hibiting bot network activity behavior via a function g1. With respect to A2,
we hope to approximate the predicate U(P ), which indicates if P has a unreli-
able provenance via a function g2. With respect to A3, we hope to approximate
the predicate S(P ), which indicates if P has employed stealth mechanisms via
specific known techniques via a function g3. The desired function f can be con-
structed using g1, g2 and g3 with flexible use of data mining techniques coupled
with expert knowledge. We partition the bot process symptoms into three sub-
sets where a symptom represents an occurred execution event or a property that
is present during the life cycle of a bot process.
Approximating the predicate B(P ) with function g1(P ). Intuitively, g1(P )
analyzes network activity of a process P with a set of symptoms determining if P
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is exhibiting similar network activity of known bots. The set of symptoms Bsym

consist of n ≥ 1 symptoms where each bs describes a symptom of network activity
previously observed in a known bot sample. Pval is a set of m responses θ from a
process P which forms a one-to-one mapping with each bs in Bsym and is used to
determine if B(P ) is true or false. The values of θr are acquired by analyzing
the network activity behavior of a process P during execution. The function g1(P )
returns true if and only if there exists a value pr with θr = true corresponding to
a symptom bs in Bsym, thus we have:

Bsym = {b1 . . . bs . . . bn}, Pval = {p1 : θ1 . . . pr : θr . . . pm : θm}
B(P ) = g1(P ) = true⇔ ∃bs, pr : (s = r ∧ θr = true) (1)

When θr = true, P exhibited the described network activity of symptom bs. If all
θr evaluate to false, then P does not exhibit bot behavior and g1(P ) = false;
but if just one θr evaluates to true then P has the specific symptom bs and g1(P ) =
true.

Approximating the predicate U(P ) with function g2(P ). Intuitively, g2(P )
compares origin information of a given process P with a set of symptoms us ∈
Usym deciding if the process’s provenance is reliable. This predicate asks the ques-
tion: has the origin of process P been malevolently tampered or created making it
unreliable? A response of true indicates it is not reliable; false indicates it is. The
symptoms are a list u1 . . . us . . . un, n ≥ 1 submitted to a process P which returns
a set of values Pval, p1 . . . pr . . . pm, and compared with Usym. Each symptom us

precisely states a singular scenario of process unreliability previously observed in
a known bot sample which tampered or created another process in a malevolent
manner. Each result pr ∈ Pval contains an answer ξr = true or false, which cor-
responds to the claim us ∈ Usym. The function g2(P ) will return true if and only
if an answer ξr of a result pr ∈ Pval is true, thus we have:

Usym = {u1 . . . us . . . un}, Pval = {p1 : ξ1 . . . pr : ξr . . . pm : ξm}
U(P ) = g2(P ) = true⇔ ∃us, pr : (s = r ∧ ξr = true) (2)

If Pval returns all false answers then it is reliable and g2(P ) = false; if just
one pr ∈ Pval has a value ξr = true, then P ’s provenance is not reliable and
g2(P ) = true.

Approximating the predicate S(P ) with function g3(P ). Intuitively, g3(P )
determines if a process P is implementing stealth mechanisms previously observed
in a known bot sample. The set of symptoms Ssym consist of n ≥ 1 symptoms
s1...ss...sn where each ss describes a specific stealth mechanism previously ob-
served in a known bot sample. Pval is a set of m responses μz from a process P
which forms a one-to-one mapping with each Ss in Ssym and is used to determine if
S(P ) is true or false. μr values are acquired by analyzing the execution behavior
of process P for the possible use of known stealth mechanisms. The function g3(P )
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returns true if and only if there exists a value pr with μr = true corresponding
to a symptom ss ∈ Ssym, thus we have:

Ssym = {s1 . . . ss . . . sn}, Pval = {p1 : μ1 . . . pr : μr . . . pm : μm}
S(P ) = g3(P ) = true⇔ ∃ss, pr : (s = r ∧ μr = true) (3)

The implication of μr = true is that P exhibited the specific known stealth mech-
anism described in symptom ss. If all μr evaluate to false, then P does not ex-
hibit known stealth mechanisms and g3(P ) = false; but if just one μr evaluates
to true then P has the specific symptom ss and g3(P ) = true.
Approximating the predicate f with function f based on functions g1,
g2 and g3. We approximate f via a function f by utilizing g1, g2 and g3. Three
example definitions to determine Bot(P ) are:
f1(P ) = g1(P ) ∨ (g2(P ) ∧ g3(P )). This is the least restrictive, since a process is
deemed a bot when it exhibits bot network activity behavior or has both an un-
reliable provenance and has stealth mechanisms. False positives can be produced
by benign processes with an instance of bot network activity behavior such as a
process with a successful connection attempt to the input IP address of a failed
reverse DNS query.
f2(P ) = g1(P ) ∧ (g2(P ) ∨ g3(P )). This is more restrictive, the and (∧) opera-
tor requires a process to exhibit bot behavior and either unreliable provenance or
stealth mechanisms. This will focus detection more on processes with bot-like be-
havior. False positives can arise with benign processes lacking a digital signature,
thereby giving them unreliable provenance, while having an instance of bot net-
work activity behavior such as a failed connection attempt to the input IP address
of a successful reverse DNS query. This definition excludes possible detection of
bots that possess unreliable provenance and/or stealth mechanisms but do not
show bot network activity behavior.
f3(P ) = g1(P ) ∧ g2(P ) ∧ g3(P ). This is the most restrictive with the and (∧)
operators requiring triple analysis with each component returning true. A pro-
cess is deemed a bot when it exhibits bot network activity behavior, unreliable
provenance and stealth mechanisms. This detection has the highest probability of
identifying malicious bots, and excluding benign processes. A process with an un-
reliable provenance or exhibiting bot behavior or stealth mechanisms is assumed
benign which could produce a false negative.

4 Symptoms of Bot Processes

BotBehavior Symptoms. Evaluating a process’s bot network activity behavior
employed three symptoms in set Bsym. All the symptoms were based on a process
P , on a local machine, interacting with and responding to TCP protocol connec-
tion attempts and DNS activity (DNS queries and reverse DNS queries).
b1: Failed connection attempt to the returned IP address of a success-
ful DNS query. This is considered abnormal behavior; a successful DNS query
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suggests the returned IP address is active and can establish connections. Many of
these IP addresses failing to connect were also the input IP of a failed reverse DNS
query.
b2: IP address in a successful DNS activity and connection. This is con-
sidered normal behavior. A DNS activity can be either a DNS query or a reverse
DNS query. More precisely, we consider the returned IP address of a successful
DNS query or the input IP address of a successful reverse DNS query which is also
used in a successful connection. In our analysis several more bots than benign pro-
cesses connected to such IP addresses. This further implies the dependency bots
have on DNS activity when attempting connections to remote hosts.
b3: Connection attempt to the input IP address of a failed reverse DNS
query. This is considered abnormal behavior; an IP address failing a reverse DNS
query should be presumed inactive and should not be used in a connection at-
tempt. Almost all analyzed bot samples performed reverse DNS queries possibly
to harvest new domain names of malware servers or infected hosts. Some bots
failed to connect with the input IP addresses of a successful reverse DNS query
and other bots successfully connected to input IP addresses of a failed reverse
DNS query. This counterintuitive use of input IP addresses used in failed reverse
DNS requests implies bots attempt TCP connections with IP addresses regard-
less of DNS activity results for reasons other than TCP connection attempts. One
possible motivation may be the reverse DNS query is used solely to dynamically
acquire during execution new IP addresses or domain names of malware servers,
redirection servers or newly infected victim machines. This helps bots by having
to store fewer IP address/domain name pairs in their static file images prior to
initial execution; thereby making it harder for security personnel to predetermine
the structure and components of a botnet just through static file image analysis.
Unreliable Provenance Symptoms. Determining the provenance of a process
employed three symptoms in set Usym. Selection of these symptoms were based
on verifying the existence of a static file image’s digital signature for known bot
and benign files, files of bot’s parent process, and analyzing process memory for
unauthorized modification by some other process primarily through dynamic code
injection. The absence of a digital signature in a file or the parent file that created
it raises suspicion due to its unknown origin. All of our bots and a few benign static
file images lacked a digital signature. Most of the static file images of benign soft-
ware installers were digitally signed. Dynamic code injection, mostly a malevolent
technique coercing a process into unauthorized behavior [16,15], is frequently used
by our analyzed bots on benign processes which then exhibit bot behavior.
u1: Standalone executable’s static file image does not have a digital sig-
nature. A standalone executable file is written directly to the file system with-
out an installer. Malware contained in email attachments, website downloads and
portable memory infect a system this way [16]. The majority of the analyzed be-
nign standalone executables had digital signatures. All of our standalone bot sam-
ples lacked a digital signature.
u2: Dynamic code injector’s static file image does not have a digital sig-
nature. Dynamic code injection is used by bots to infect legitimate processes
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[16,3]. There are benevolent uses for this, such as debugging and detection of suspi-
cious activity where the injector’s static file image almost always contains a digital
signature. Bot injectors typically do not have digital signatures. A process whose
injector lacks a digital signature is identified as having an unreliable provenance
since the injector’s origin cannot be established.
u3: Creator of process’s static file image does not have a digital signa-
ture. Bots will self-replicate or install other malware on a system [16]. The newly
created malware may or may not have a digital signature but the malware installer
will likely lack a digital signature, which is considered unreliable provenance. An
installed file lacking a digital signature with its installer having a digital signature
is considered to have a reliable provenance.
Stealth Mechanism Symptoms. Evaluating a process’s stealth mechanisms
employed two symptoms in set Ssym, all based on a process P ’s use of graphical
user interfaces (GUI) along with reading keyboard and mouse inputs.
s1: Graphical user interface. A vast amount of benign software interact with
the user via a GUI. Bots typically do not use a GUI since it calls attention to their
existence and may result in their termination [16]. A process executing without a
GUI is considered to have a stealth mechanism.
s2: Human computer interface. A benign program may require user input to
execute an operation; this is typical interaction between application and user. Bots
tend to execute their nefarious acts without the need of explicit user input. A pro-
cess executing without reading keyboard or mouse events is considered to have a
stealth mechanism.

5 Experiment and Results

Data Collection and Instrumentation. Bot data collection was done using
VMWare Workstation running Microsoft Windows XP SP2 with no updates and
no antivirus. Four active bots: virut, waledac, wopla, bobax, and five inactive
bots: nugache, wootbot, gobot, spybot, storm, were executed for a twelve hour
period. These centralized and P2P bots possess different stealth mechanisms, di-
verse command and control channels, various packet encryption and self updates.
Packets were captured using Windows Network Monitor. Detecting dynamic code
injection and Bot replication was accomplished with a real time monitor imple-
menting known techniques [15,11]. Digital signature verification of static file im-
ages was done using Sigcheck [14]. An enhanced version of GlobalHook [10] was
used to collect keyboard and mouse input, GUI presence was recorded using
EasyHook [9]. Collecting data of known benign processes was performed on two
verified malware-free desktops running Windows XP SP2 for twelve hours during
which both machines performed several network-based activities including web
browsing, FTP, instant messaging, P2P file sharing and software updates. The col-
lection, with 20 bot processes and 62 benign processes (41 different applications
with some being tested multiple times) listed in Table 1, produced a diversity of
symptom combinations. In Table 1, most of the symptoms have {Yes,No} values
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Table 1. Bot and Benign Processes Used in the Training Set

Bot Processes

Bot Process Bot Network Unreliable Stealth

Name Name Activity Behavior Provenance Behavior

b1 b2 b3 u1 u2 u3 s1 s2

Nugache mstc.exe Yes 0 Yes No Yes Yes No No

Virut Svchost.exe Yes 0 Yes No Yes No No No

Svchost.exe Yes 0 Yes No Yes No No No

winlogon.exe No 2 Yes No Yes No No No

svchost.exe No 1 Yes No Yes No No No

svchost.exe No 0 Yes No Yes No No No

svchost.exe No 0 Yes No Yes No No No

svchost.exe No 2 Yes No Yes No No No

Waledac Save.exe Yes 123 Yes Yes No No No No

Wopla Rundll32.exe Yes 1 Yes No Yes No No No

Bobax Explorer.exe No 2 No No Yes No No No

Wootbot videosd32.exe Yes 0 No No Yes Yes No No

Gobot Gobot-o.exe Yes 0 Yes Yes No No No No

Spybot wuaghqr.exe Yes 0 No No Yes Yes No No

Storm testdll f.dll Yes 0 Yes Yes No No No No

Bobax Explorer.exe Yes 2 Yes No Yes No No No

Wopla Rundll32.exe No 4 Yes No Yes No No No

Waledac waledac.exe Yes 7 Yes Yes No No No No

Virut winlogon.exe No 2 Yes No Yes No No No

svchost.exe No 2 Yes No Yes No No No

Benign Processes

360tray Flock Mercury Skype

AOL Explorer Foxmail MS Messenger Snarfer

Avant Google Chrome Msfeedssync stormliv

Bittorrent googlepinylndaemon Mstc Svchost

BlogBridge Internet Explorer Opera ThinReader

Btdna Jusched Ppstream ThunderBird

ccApp Kaspersky AV RSS Bandit WinSCP3

Cuteftp32 K-Meleon RSS Owl wlcomm

Explorer LimeWire Rundll32 wlmail

FeedReader Maxthon SeaMonkey Xdict

Firefox

with Yes ,→ true and No ,→ false, except in s1 and s2 where Yes ,→ false and
No ,→ true. Symptom b2 is considered normal behavior and presented as a total
occurrence amount. Test data was collected using five laptops, with minimal secu-
rity and no recent malware scans, for eight to twelve hours. A post-test data col-
lection malware scan of all five laptops revealed two bot processes: servwin.exe
as the cutwail bot, which was not part of the training set, and TMP94.tmp as the
Virut bot. The test set, listed in Table 2 consisted of 34 processes including two bot
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Table 2. Test Set: Decision Tree and Bot Process Predictions

Process Bot Network Unreliable Stealth Bot

Name Activity Behavior Provenance Behavior Prediction

b1 b2 b3 B(P ) u1 u2 u3 U(P ) s1 s2 S(P ) f0 f1 f2 f3

svchost.exe N 0 N F N N N F N N T F F F F

googletalk.exe N 2 N F N N N F Y Y F F F F F

firefox.exe N 5 N F N N N F Y Y F F F F F

cutftp32.exe Y 1 N T Y N N T N N F F T T F

firefox.exe N 44 N F N N N F Y Y F F F F F

svchost.exe N 0 N F N N N F N N T F F F F

servwin.exe Y 0 Y T Y N N T N N T T T T T

Framework

Services.exe N 1 N F N N N F N N T F F F F

iexplore.exe N 126 N F N Y N T Y Y F T F F F

firefox.exe N 49 N F N Y N T Y Y F T F F F

rundll32.exe N 1 N F N N N F N N T F F F F

firefox.exe N 67 N F N N N F Y Y F F F F F

firefox.exe N 7 N F N N N F Y Y F F F F F

iexplore.exe N 54 N F N N N F Y Y F F F F F

firefox.exe N 45 N F N N N F Y Y F F F F F

firefox.exe N 10 N F N N N F Y Y F F F F F

SshClient.exe N 1 N F Y N N T Y Y F F F F F

BitLord.exe Y 1 N T Y N N T N N F F T T F

Acrobat.exe N 1 N F N N N F Y Y F F F F F

Thunder5.exe Y 13 N T N N N F Y Y F F T F F

Thunder

Minisite.exe N 7 N F N N N F Y Y F F F F F

Thunder5.exe Y 24 N T N N N F Y Y F F T F F

wmplayer.exe Y 17 N T N N N F Y Y F F T F F

setup wm.exe N 1 N F N N N F Y Y F F F F F

chrome.exe N 3 N F N N N F Y Y F F F F F

TMP94.tmp N 3 Y T N Y N T N N T T T T T

Google

Update.exe N 1 N F N N N F N N T F F F F

Google

Update.exe N 1 N F N N N F N N T F F F F

chrome.exe N 28 N F N N N F Y Y F F F F F

Adobe F F F F

Updater.exe N 2 N F N N N F Y Y F F F F F

gup.exe N 1 N F N N N F Y Y F F F F F

Tvanst.exe Y 1 N T Y N N T N N F F T T F

msfeeds

sync.exe N 1 N F N N N F N N T F F F F

zclientm.exe N 1 N F N N N F N N T F F F F
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processes, the rest were assumed benign. One of the bot processes and several of
the benign in the test set were not part of the training set.

J48 classification decision trees. The results presented here are partially based
on the J48 decision trees [17] in Figure 1. Running the training sets containing bot
behavior, unreliable provenance and stealth mechanisms individually produced
the decision trees in Figures 1(b), 1(c) and 1(d). Each leaf node, shown as a rect-
angle, represents the total number of processes classified as exhibiting (=yes) or
not exhibiting (=no) the symptom of the leaf node’s parent. A summation of the
numeric values in appropriate leaf nodes gives the total number of processes with a
(=yes) or (=no) answer. The bot network activity behavior decision tree in Figure
1(b) produced eight true responses with the test set data. The two bot processes
were amongst the eight; six false positives and no false negatives were produced.
The unreliable provenance decision tree in Figure 1(c) produced eight true re-
sponses with the test data. The two bot processes were amongst the eight; six false
positives and no false negatives were produced. Five processes exhibited unreli-
able provenance symptom u1 and three processes exhibited unreliable provenance
symptom u2. Two of the three processes with symptom u2 were purposely injected
(see paragraph below The cases of f0,f1,f2 & f3). The stealth mechanisms deci-
sion tree in Figure 1(d) produced ten true responses with the test data. The two
bot processes were amongst the ten; eight false positives and no false negatives
were produced. The high amount is a result of having many system and software
update processes in the test set that are known to run without a GUI. The two bot
processes had no GUI which is assumed implemented as part of a larger stealth
strategy [16].

b3?

bot (17) u2?

yes no

bot (3) not (62)

yes no

b3?

bot (17) b1?

yes no

bot (3) not (62)

yes no

u2?

bot (16) u1?

yes no

bot (4) not (62)

yes no

s1?

not (56) bot (26/6)

yes no

(a) all symptoms (b) bot behavior
(g1(P))

(c) unreliable provenance
(g2(P))

(d) stealth mechanisms 
(g3(P))

Fig. 1. J48 Decision Trees Used in f0, f1, f2 and f3
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The cases of f0,f1,f2 & f3. Evaluating the test data results of bot behavior B(P ),
unreliable provenance U(P ) and stealth mechanisms S(P ) with f0, f1, f2, and f3
are listed in Table 2 along with final bot predictions. The case of f0 is a simplis-
tic use of the J48 classifier. Using all the symptoms to analyze the training set
data produced the decision tree in Figure 1(a) with no false positives and no false
negatives. Analyzing the test set data with this decision tree produced two false
positives and no false negatives, listed in Table 2. RemoteDLL [13] is a benevolent
utility which lacks a digital signature that loads and removes DLLs from a pro-
cess. In our test set, processes iexplore.exe and firefox.exe were purposely
DLL injected using RemoteDLL producing two false positives with the decision
tree in Figure 1(a) since the injector had no digital signature. In the case of f1,
our test set produced eight true responses including the two known bots, leaving
six false positives and no false negatives. All eight exhibited bot behavior includ-
ing the two bots which were also the only ones exhibiting unreliable provenance
and stealth mechanisms. Bot behavior was highly prevalent, partly due to benign
network active processes executing combinations of DNS activity with connection
attempts. In the case of f2, our test set produced five true responses including the
two known bots, with three false positives, an improvement over f1. All five ex-
hibited unreliable provenance but only the two bots exhibited stealth mechanisms
as well. Only the bots possessed additional symptoms, hinting more accurate per-
formance can be made with stronger restrictions. In the case of f3, our test set
produced only two true responses: our two discovered bot processes. Perfect re-
sults were yielded by f3 suggesting accurate detection with minimal false positives
and false negatives may be achieved with high restriction enforcement.

Discussion. Only five of the eight symptoms, b1, b3, u1, u2, s1, composed the de-
cision trees and were used in the final bot predictions. Symptom s1 was the most
dominant with thirteen processes in our test set executing without GUI. This is
not surprising as several tested benign processes were system services running in
the background. Symptom b1 occurred often due to processes failing to connect
with the returned IP address of a successful DNS query. Symptom b3 only occurred
in the two test set bots, suggesting that a well designed benign application will not
attempt to connect to IP addresses involved in a failed reverse DNS query while
bots attempt connections regardless of DNS activity results. According to Table 2,
only the bot processes servwin.exe (cutwail bot) and TMP94.tmp (Virut bot) pos-
sessed more than one bot behavior symptom. This hints to strong dependencies
on DNS activities by bots and higher probability to attempt connections with IP
addresses involved in DNS activities. Symptom u1 occurred often due to our test
set processes lacking digital signatures. One can assume that a portion of benign
applications and the vast majority of malware will lack a digital signature. Both
symptoms s1 and s2 precisely matched for each process in the test set, meaning
every process executing with a GUI also read user input and every process without
a GUI did not read any user input. Ranking from least effective to most effective
detection produces: f1, f2, f0, f3. Even though f0 was second most effective in bot
detection, given a more diverse test set the straightforward construction of f0 may
not be so effective, as shown by our purposeful injection of two processes during
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testing. Detecting the most devious of bots may be best achieved with f3 but f2
may capture a broader range of bots possessing less symptoms. A combination of
the restrictions of f2 and f3 may be best suited for bot detection and combining
restrictions of f1 may be the best to detect other non-bot malware.
Limitations. IP addresses of DNS activity not used in a connection attempt by a
captured process were not analyzed since we could not reliably map specific DNS
activity with a specific process. Only Win32 processes were analyzed while kernel
processes were not. We are currently developing utilities eliminating these limita-
tions allowing their inclusion in our evaluations.

6 Conclusion and Future Work

We presented in this research a symptoms-based technique for detecting bot pro-
cesses using three distinct user defined sets of symptoms drawn from known bot
samples: bot network activity behavior, unreliable provenance and stealth mech-
anisms. Through a non-trivial use of J48 classifier, three distinct evaluations were
performed correctly identifying two bot processes. Bot network activity behav-
ior symptoms were based on failed connection attempts and DNS activity; prove-
nance symptoms were based on the existence of digital signatures and process/file
system tampering; stealth mechanisms were based on the absence of a GUI and no
required reading of user input. Several of the chosen symptoms appeared in both
benign and bot processes, but the bot processes showed a much higher quantity
and diversity of symptoms. Based on the results, the strongest restrictive analy-
sis requiring symptoms of all three sets was the best singular detection solution
producing no false positives and no false negatives. In dealing with future bots
and other non-bot malware combining stronger and weaker restrictions may be
a desirable detection approach. Future work includes analyzing kernel mode bots
and a diverse set of network protocols, as well as a kernel-based real-time monitor
detecting presence of bot processes.
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Abstract. Feature selection is an important pre-processing step in in-

trusion detection. Achieving reduction of the number of relevant traffic

features without negative effect on classification accuracy is a goal that

greatly improves overall effectiveness of an intrusion detection system.

A major challenge is to choose appropriate feature-selection methods

that can precisely determine the relevance of features to the intrusion

detection task and the redundancy between features. Two new feature

selection measures suitable for the intrusion detection task have been

proposed recently [11,12]: the correlation-feature-selection (CFS) mea-

sure and the minimal-redundancy-maximal-relevance (mRMR) measure.

In this paper, we validate these feature selection measures by comparing

them with various previously known automatic feature-selection algo-

rithms for intrusion detection. The feature-selection algorithms involved

in this comparison are the previously known SVM-wrapper, Markov-

blanket and Classification & Regression Trees (CART) algorithms as

well as the recently proposed generic-feature-selection (GeFS) method

with 2 instances applicable in intrusion detection: the correlation-feature-

selection (GeFSCF S) and the minimal-redundancy-maximal-relevance

(GeFSmRMR) measures. Experimental results obtained over the KDD

CUP’99 data set show that the generic-feature-selection (GeFS) method

for intrusion detection outperforms the existing approaches by removing

more than 30% of redundant features from the original data set, while

keeping or yielding an even better classification accuracy.
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fractional programming; mixed 0 − 1 integer linear programming.

1 Introduction

The problem of intrusion detection is often analyzed as a pattern recognition
problem - an Intrusion Detection System (IDS) has to tell normal from abnormal
behaviour of network traffic and/or command sequences on a host. In addition,
it is of interest to further classify abnormal behaviour in order to undertake
adequate counter-measures. An IDS can be modeled in various ways (see for ex-
ample [9], [10]). A model of this kind usually includes a representation algorithm
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(for representing incoming data in the space of selected features) and a classifi-
cation algorithm (for mapping the feature vector representation of the incoming
data to elements of a certain set of values, e.g. normal or abnormal etc.) Some
IDS, like the ones presented in [9], also include the feature selection algorithm,
which determines the features to be used by the representation algorithm. Even
if the feature-selection algorithm is not included in the model directly, it is al-
ways assumed that such an algorithm is run before the very intrusion detection
process.

The quality of the feature selection algorithm is one of the most important
factors that affect the effectiveness of an IDS. The goal of the algorithm is to
determine the most relevant features of the incoming traffic, whose monitoring
would ensure reliable detection of abnormal behaviour. Since the effectiveness
of the classification algorithm heavily depends on the number of features, it is
necessary to minimize the cardinality of the set of selected features, without
dropping potential indicators of abnormal behaviour. Obviously, determining a
good set of features is not an easy task. The most of the work in practice is still
done manually and the feature selection algorithm depends too much on expert
knowledge. Automatic feature selection for intrusion detection is therefore im-
portant. For automatic feature selection, the wrapper and the filter models from
machine learning are frequently applied [18]. The wrapper model assesses the
selected features by learning algorithm’s performance. Therefore, the wrapper
method requires a lot of time and computational resources to find the best fea-
ture subsets. The filter model considers statistical characteristics of a data set
directly without involving any learning algorithm. Due to the computational effi-
ciency, the filter method is usually used to select features from high-dimensional
data sets, such as intrusion detection systems. The filter model encompasses
two groups of methods: the feature ranking methods and the feature-subset-
evaluating methods. The feature ranking methods assign weights to features
individually based on their relevance to the target concept. The feature-subset-
evaluating methods estimate feature subsets not only by their relevance, but also
by the relationships between features that make certain features redundant. It
is well known that the redundant features can reduce the performance of a pat-
tern recognition system. Therefore, the feature-subset-evaluating methods are
more suitable for selecting features for intrusion detection. A major challenge
in the IDS feature selection process is to choose appropriate measures that can
precisely determine the relevance of features to the intrusion detection task and
the relationship between features of a given data set.

Since the relevance and the relationship are usually characterized in terms of
correlation or mutual information [4,19], we focus on two feature selection mea-
sures for intrusion detection task: the correlation-feature-selection (CFS) mea-
sure [1] and the minimal-redundancy-maximal-relevance (mRMR) measure [2].
In [11,12], a new search method that ensures globally optimal feature sets by
means of the CFS and the mRMR measures was proposed. It was shown that the
proposed search method outperforms the heuristic search strategies by removing
much more redundant features from the KDD CUP 1999 data set [7] and still
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keeping the classification accuracies or even getting better performances. In this
paper, the feature selection measures proposed in [11,12] are validated by com-
parison with various previously known automatic feature-selection algorithms
for intrusion detection. Thus, the feature-selection algorithms involved in the
comparison are the previously known SVM-wrapper [13], Markov-blanket [14]
and CART [14] and the new generic-feature-selection (GeFS) method with 2 in-
stances applied in intrusion detection: the correlation-feature-selection
(GeFSCFS) [11] and the minimal-redundancy-maximal-relevance (GeFSmRMR)
[12] measures.

A theoretical basis for comparison of the methods proposed in [11,12] and
the other methods is difficult to give. Such a basis would require the general
solution of the problem of comparison of filter and wrapper methods, which is
not known (sometimes, the filter methods perform better, but sometimes the
wrapper methods perform better). Because of that, in this paper we present
the results of practical comparison achieved on a particular data set. Then the
generalization of the results of the comparison depends to a large extent on the
quality and generality of the test data set. We believe that the data set used
for this comparison with the modifications described below is general enough to
claim that our comparison results can be generalized with high probability.

Any feature selection algorithm selects relevant traffic features based on la-
belled data (Fig.1). In this research, we used the KDD CUP’99 [7] data set for
this purpose, since all the existing approaches involved in the comparison used
the same data set for evaluation [13,14]. The full feature set assigned to this data
set consists of 41 features. It is well known [15,16] that the KDD CUP’99 data
set has several drawbacks regarding its suitability for representation of modern
traffic. To avoid problems related to this data set, we split it into 4 parts ac-
cording to the category of attack: DoS, Probe, U2R and R2L; we consider only
two attack classes: DoS and Probe. This ensures more objective classification,
since in such a way the influence of difference in cardinality of these subsets
in the overall data set is reduced. We compare the feature-selection algorithms
by the number of selected features as well as by the classification accuracy of
machine learning algorithms chosen as classifiers for intrusion detection. Exper-
imental results obtained over the KDD CUP’99 data set show that the GeFS
method outperforms the existing approaches by removing more than 30% of re-
dundant features from the original data set, while keeping or yielding an even
better classification accuracy. Even though the KDD CUP’99 data set does not
reflect completely the characteristics of contemporary traffic, the results of our
comparison indicate that the GeFS method for selecting features would behave
well on general intrusion detection data as well.

The paper is organized as follows. In Section 2, we give an overview of the
feature-selection methods involved in the comparison. In Section 3, we present
experimental setting as well as experimental results regarding the number of
selected features and the classification accuracy obtained over the KDD Cup’99
data set. Section 4 summarizes our findings.
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Fig. 1. A feature selection algorithm

2 Feature-Selection Methods for Intrusion Detection

In this section, we first describe the previously known feature-selection methods
used in intrusion detection. Then we give an overview of the recently proposed
generic-feature-selection (GeFS) method together with 2 instances applied in
intrusion detection: the correlation-feature-selection (GeFSCFS) [11] and the
minimal-redundancy-maximal-relevance (GeFSmRMR) [12] measures.

2.1 Existing Approaches

2.1.1 SVM-Wrapper
Sung and Mukkamala [13] used the ranking methodology to select important
features for intrusion detection: One input feature is deleted from the data at a
time and the resultant data set is then used for the training and testing of the
classifier Support Vector Machine (SVM) [17]. Then the SVMs performance is
compared to that of the original SVM (based on all features) in terms of relevant
performance criteria, such as overall accuracy of classification, training time and
testing time. The deleted feature will be ranked as ”important”, ”secondary” or
”insignificant” according to the following rules:

– If accuracy decreases and training time increases and testing time decreases,
then the feature is important.

– If accuracy decreases and training time increases and testing time increases,
then the feature is important.

– If accuracy decreases and training time decreases and testing time increases,
then the feature is important.

– If accuracy is not changed and training time increases and testing time
increases, then the feature is important.

– If accuracy is not changed and training time decreases and testing time
increases, then the feature is secondary.

– If accuracy is not changed and training time increases and testing time
decreases, then the feature is secondary
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– If accuracy is not changed and training time decreases and testing time
decreases, then the feature is insignificant.

– If accuracy increases and training time increases and testing time decreases,
then the feature is secondary.

– If accuracy increases and training time decreases and testing time increases,
then the feature is secondary.

– If accuracy increases and training time decreases and testing time decreases,
then the feature is insignificant

In [13] the experiment was conducted on a part of KDD CUP’99 data set [7]. This
data set contains normal traffic and four main attack classes: Denial-of-Service
(DoS) attacks, Probe attacks, User-to-Root (U2R) attacks and Remote-to-Local
(R2L) attacks. Some important features were selected and the obtained data set
after removing irrelevant features was classified by SVM [17]. The results are
given in Table 1.

Table 1. Performance of SVM using selected features (SF) [13]

Classes Number-of-SF Accuracy

Normal 25 99.59%

DoS 19 99.22%

Probe 7 99.38%

U2R 8 99.87%

R2L 6 99.78%

2.1.2 Markov-Blanket
Markov blanket MB(T ) of the output variable T is defined as the set of input
variables such that all other variables are probabilistically independent of T .
Knowledge of MB(T ) is sufficient for perfectly estimating the distribution of T
and thus for classifying T . Markov blanket has been applied for feature selec-
tion in many domains [4]. In 2004, Chebrolu et. al. [14] proposed to use Markov
blanket for selecting important features for intrusion detection. In order to do
that, they constructed a Bayesian Network (BN) from the original data set. A
Bayesian network B = (N, A, Q) is a Directed Acyclic Graph (DAG) (N, A)
where each node n ∈ N represents a domain variable (e.g. a data set attribute
or variable), and each arc a ∈ A between nodes represents a probabilistic de-
pendency among the variables. A BN can be used to compute the conditional
probability of one node, given values assigned to the other nodes. From the con-
structed BN, the Markov blanket of a feature T is the union of T ’s parents, T ’s
children and eventually other parents of T ’s children. An example of a Bayesian
Network is given in Fig.2. The gray-filled nodes constitute the MB(T ):

For conducting the experiment, Chebrolu et. al. [14] randomly chose 11,982
instances from the overall (5 millions of instances) KDD CUP’99 data set [7].
17 features were selected and the Bayesian Network [17] was used for classifying
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Fig. 2. An example of Markov blanket

Table 2. Performance of Bayesian Network using selected features (SF) [14]

Classes Number-of-SF Accuracy

Normal 17 99.64%

DoS 17 98.16%

Probe 17 98.57%

U2R 17 60.00%

R2L 17 98.93%

the obtained data set after removing irrelevant features. The results are given
in Table 2.

2.1.3 CART
The Classification and Regression Trees (CART) approach [17] is based on binary
recursive partitioning. The process is binary because parent nodes are always
split into exactly two child nodes and recursive because it is repeated by treating
each child node as a parent. The key elements of CART methodology are a set of
splitting rules in a tree; deciding when the tree is complete and assigning a class
to each terminal node. Feature selection for intrusion detection is based on the
contribution of the input variables to the construction of the decision tree from
the original data set. The importance of features is determined by the role of
each input variable either as a main splitter or as a surrogate. Surrogate splitters
are considered as back-up rules that closely mimic the action of primary splitting
rules. For example, in the given model, the algorithm splits data according to
the variable protocol type and if a value for protocol type is not available then the
algorithm might use the service feature as a good surrogate. Feature importance,
for a particular feature is the sum across all nodes in the tree of the improvement
scores that the predictor has when it acts as a primary or surrogate splitter. For
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Table 3. Performance of CART using selected features (SF) [14]

Classes Number-of-SF Accuracy

Normal 12 100%

DoS 12 85.34%

Probe 12 97.71%

U2R 12 64.00%

R2L 12 95.56%

example, for the node i, if the feature appears as the primary splitter then
its importance could be given as iimportance. But if the feature appears as the
nth surrogate instead of the primary variable, then the importance becomes
iimportance = (pn)× iimprovement in which p is the surrogate improvement weight
which is a user controlled parameter set between 0 and 1.

Chebrolu et. al. [14] conducted the experiment on the data set, which contains
randomly chosen 11,982 instances from the overall (5 millions of instances) KDD
CUP’99 data set [7]. 12 features were selected and the CART [17] was used for
classifying the obtained data set after removing irrelevant features. The results
are given in Table 3.

2.2 A New Generic-Feature-Selection Measure

In this subsection, we give an overview of the generic-feature-selection (GeFS)
method together with 2 instances applied in intrusion detection: the (GeFSCFS)
and the (GeFSmRMR) measures.

2.2.1 Definitions
Definition 1: A generic-feature-selection measure used in the so-called filter
model is a function GeFS(x), which has the following form [12]:

GeFS(x) =
a0 +

∑n
i=1 Ai(x)xi

b0 +
∑n

i=1 Bi(x)xi
, x = (x1, . . . , xn) ∈ {0, 1}n (1)

In this definition, binary values of the variable xi indicate the appearance (xi =
1) or the absence (xi = 0) of the feature fi; a0, b0 are constants; Ai(x), Bi(x)
are linear functions of variables x1, . . . , xn.

Definition 2: The feature selection problem is to find x ∈ {0, 1}n that maxi-
mizes the function GeFS(x) [12]:

max
x∈{0,1}n

GeFS(x) =
a0 +

∑n
i=1 Ai(x)xi

b0 +
∑n

i=1 Bi(x)xi
(2)

There are several feature selection measures, which can be represented by the
form (1), such as the correlation-feature-selection (CFS) measure [1], the minimal-
redundancy-maximal-relevance (mRMR) measure [2], Mahalanobis distance, etc.
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A major challenge in the IDS feature-selection process is to choose appropriate
measures that can precisely determine the relevance of features to the intrusion
detection task and the redundancy between features. Since the relevance and
the redundancy are usually characterized in terms of correlation or mutual in-
formation [4], the following measures for application in intrusion detection were
considered in [11,12]: the correlation-feature-selection (CFS) measure [1] and the
minimal-redundancy-maximal-relevance (mRMR) measure [2].

2.2.2 Correlation Feature Selection Measure
The Correlation Feature Selection (CFS) measure evaluates subsets of features
on the basis of the following hypothesis: ”Good feature subsets contain features
highly correlated with the classification, yet uncorrelated to each other” [1]. The
following equation gives the merit of a feature subset S consisting of k features:

MeritS(k) =
krcf√

k + k(k − 1)rff

Here, rcf is the average value of all feature-classification correlations, and rff is
the average value of all feature-feature correlations. The CFS criterion is defined
as follows:

max
Sk

[ rcf1 + rcf2 + ... + rcfk√
k + 2(rf1f2 + .. + rfifj + .. + rfkf1)

]
(3)

Suppose that there are n full-set features. Binary values of the variable xi are
used to indicate the appearance (xi = 1) or the absence (xi = 0) of the feature
fi in the globally optimal feature set [11]. Therefore, the problem (3) can be
rewritten as an optimization problem as follows:

max
x∈{0,1}n

[ (
∑n

i=1 aixi)2∑n
i=1 xi +

∑
i�=j 2bijxixj

]
(4)

It is obvious that the CFS measure is an instance of the GeFS measure. In [12],
this measure was denoted by GeFSCFS.

2.2.3 The mRMR Feature Selection Measure
In 2005, Peng et. al. [2] proposed a feature-selection method, which is based on
mutual information. In this method, the relevance of features and the redundancy
between features are considered simultaneously. In terms of mutual information,
the relevance of a feature set S for the class c is defined by the mean value of
all mutual information values between the individual feature fi and the class c
as follows:

D(S, c) =
1
|S|
∑
fi∈S

I(fi; c)

The redundancy between features in the set S is the mean value of all mutual
information values between the feature fi and the feature fj :
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R(S) =
1
|S|2

∑
fi,fj∈S

I(fi; fj)

The mRMR criterion is a combination of two measures given above and is defined
as follows:

max
S

[ 1
|S|
∑
fi∈S

I(fi; c)−
1
|S|2

∑
fi,fj∈S

I(fi; fj)
]

(5)

By using binary values of the variable xi as in the case of the CFS measure
to indicate the appearance or the absence of the feature fi and by denoting
the mutual information values I(fi; c) and I(fi; fj) by constants ci and aij ,
respectively, the problem (5) can be described as an optimization problem as
follows:

max
x∈{0,1}n

[∑n
i=1 cixi∑n
i=1 xi

−
∑n

i,j=1 aijxixj

(
∑n

i=1 xi)2
]

(6)

It is also obvious that the mRMR measure is an instance of the GeFS measure.
In [12], this measure was denoted by GeFSmRMR.

Both the GeFSCFS and the GeFSmRMR feature-selection problems are
solved by means of the technique that involves the Polynomial Mixed 0-1 Frac-
tional Programming (PM01FP ). The details are given below.

2.2.4 Polynomial Mixed 0-1 Fractional Programming
A general polynomial mixed 0 − 1 fractional programming (PM01FP ) prob-
lem [5] is represented as follows:

min
m∑

i=1

(ai +
∑n

j=1 aij

∏
k∈J xk

bi +
∑n

j=1 bij

∏
k∈J xk

)
(7)

such that

⎧⎪⎪⎨
⎪⎪⎩

bi +
∑n

j=1 bij

∏
k∈J xk > 0, i = 1, .., m,

cp +
∑n

j=1 cpj

∏
k∈J xk ≤ 0, p = 1, .., m,

xk ∈ {0, 1}, k ∈ J,
ai, bi, cp, aij , bij , cpj ∈ -.

By replacing the denominators in (7) by positive variables yi(i = 1, .., m), the
PM01FP then leads to the following equivalent polynomial mixed 0 − 1 pro-
gramming problem:

min
m∑

i=1

(
aiyi +

n∑
j=1

aij

∏
k∈J

xkyi

)
(8)

such that

⎧⎪⎪⎨
⎪⎪⎩

biyi +
∑n

j=1 bij

∏
k∈J xkyi = 1; yi > 0,

cp +
∑n

j=1 cpj

∏
k∈J xk ≤ 0, p = 1, .., m,

xk ∈ {0, 1}, k ∈ J,
ai, bi, cp, aij , bij , cpj ∈ -.

(9)
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In order to solve this problem, Chang [5] proposed a linearization technique to
transfer the terms

∏
k∈J xkyi into a set of mixed 0− 1 linear inequalities. Based

on this technique, the PM01FP becomes then a mixed 0−1 linear programming
(M01LP ), which can be solved by means of the branch-and-bound method to
obtain the globally optimal solution.

Proposition 1: A polynomial mixed 0 − 1 term
∏

k∈J xkyi from (8) can be
represented by the following program [5], where M is a large positive value:

min zi

such that

{
zi ≥ 0,
zi ≥ M(

∑
k∈J xk − |J |) + yi

(10)

Proposition 2: A polynomial mixed 0−1 term
∏

k∈J xkyi from (9) can be repre-
sented by a continuous variable vi, subject to the following linear inequalities [5],
where M is a large positive value:⎧⎨

⎩
vi ≥ M(

∑
k∈J xk − |J |) + yi,

vi ≤ M(|J | −
∑

k∈J xk) + yi,
0 ≤ vi ≤ Mxi,

(11)

The feature selection problem (2) is formulated as a polynomial mixed 0 − 1
fractional programming (PM01FP ) problem as follows:

Proposition 3: The feature selection problem (2) is a polynomial mixed 0− 1
fractional programming (PM01FP ) problem.

Remark: By applying Chang’s method [5], this PM01FP problem can be trans-
formed into an M01LP problem. The number of variables and constraints is
quadratic in the number n of full set features. This is because the number of
terms xixj in (2), which are replaced by the new variables, is n(n + 1)/2. The
branch-and-bound algorithm can then be used to solve this M01LP problem.
But the efficiency of the method depends strongly on the number of variables
and constraints. The larger the number of variables and constraints an M01LP
problem has, the more complicated the branch-and-bound algorithm is.

In [11,12], an improvement of the Chang’s method was proposed in order to
get an M01LP problem in which the number of variables and constraints is linear
in the number n of full set features. Details of the improvement are given below:

2.2.5 Optimization of the GeFS Measure
By introducing an additional positive variable, denoted by y, the following prob-
lem equivalent to (2) is considered:

min
x∈{0,1}n

(−GeFS(x)) = −a0y −
n∑

i=1

Ai(x)xiy (12)

such that

{
y > 0,
b0y +

∑n
i=1 Bi(x)xiy = 1 (13)
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This problem is transformed into a mixed 0-1 linearning programming problem
as follows:

Proposition 4: A term Ai(x)xiy from (12) can be represented by the following
program, where M is a large positive value [12]:

min zi

such that

{
zi ≥ 0,
zi ≥ M(xi − 1) + Ai(x)y,

(14)

Proposition 5: A term Bi(x)xiy from (13) can be represented by a continuous
variable vi, subject to the following linear inequality constraints, where M is a
large positive value [12]: ⎧⎨

⎩
vi ≥M(xi − 1) + Bi(x)y,
vi ≤M(1− xi) + Ai(x)y,
0 ≤ vi ≤ Mxi

(15)

Each term xiy in (14), (15) is substituted by new variable ti satisfying constraints
from Proposition 2. Then the total number of variables for the M01LP problem
will be 4n + 1, as they are xi, y, ti, zi and vi(i = 1, n). Therefore, the number of
constraints on these variables will also be a linear function of n. As we mentioned
above, with Chang’s method [5] the number of variables and constraints depends
on the square of n. Thus the method [11,12] actually improves Chang’s method
by reducing the complexity of the branch and bound algorithm.

3 Experimental Results

3.1 Experimental Setting

For comparison of the generic-feature-selection (GeFS) measure for intrusion
detection [11,12] with the previously known ones [13,14], we implemented the
GeFSCFS and the GeFSmRMR algorithms. The goal was to find globally op-
timal feature subsets by means of these two measures. Since different intrusion
detection systems used different feature-selection methods and different classi-
fiers with the aim of achieving the best classification results, we compared gen-
eral performance of intrusion detection systems in terms of numbers of selected
features and the classification accuracies of the machine learning algorithms
giving the best classification results. For our experiment, we used the decision
tree algorithm C4.5 [8] as classifier for the full-set data as well as for the data
sets obtained by removing irrelevant features by means of the GeFSCFS and
GeFSmRMR measures.

We performed our experiment using 10% of the overall (5 millions of in-
stances) KDD Cup’99 data set [7], since all the existing approaches involved in
the comparison used the same data set for evaluation [13,14]. This data set con-
tains normal traffic (Normal) and four attack classes: Denial-of-Service (DoS),
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Table 4. The partition of KDD CUP’99 data set used in the experiment

Classes Number-of-instances Percentage

Normal 97.278 18.35%

DoS 391.458 73.88%

Probe 41.113 7.77%

Total 529.849 100%

Probe, User-to-Root (U2R) and Remote-to-Local (R2L) attacks. As the two at-
tack classes U2R and R2L have been criticized [15,16], we did not consider them
for our experiment. Details of numbers of class instances are given in Table 4.

As the attack classes distribute so differently, the feature selection algorithm
might concentrate only on the most frequent class data and neglect the others.
Therefore, we chose to process these attack classes separately. In order to do that,
we added normal traffic into each attack class to get two data sets: Normal&DoS
and Normal&Probe. With each data set, we ran two feature-selection algorithms:
the GeFSCFS and the GeFSmRMR. The number of selected features is given
in Fig.3. We then applied the C4.5 machine learning algorithm on each original
full-set as well as each newly obtained data set that includes only those selected
features from the feature-selection algorithms. We applied 5-fold cross-validation
on each data set. The classification accuracies are given in Fig.4.

The GeFSCFS and the GeFSmRMR feature-selection methods were compared
with the existing ones (the SVM-wrapper, the Markov-Blanket and the CART)
regarding the number of selected features and regarding the classification accu-
racies of machine learning algorithms chosen as classifiers for intrusion detection
process. Weka tool [3] that implements the machine learning algorithms (C4.5,
SVM and BayesNet) was used for obtaining the results. In order to solve the
M01LP problem, we used TOMLAB tool [6]. All the obtained results are shown
in Fig.3 and Fig.4.

Fig. 3. Number of selected features (on average)
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Fig. 4. Classification accuracies (on average)

3.2 Experimental Results

Fig.3 shows the average number of features selected by the GeFS feature-
selection method and those selected by existing approaches. Fig.4 summarizes
the average classification accuracies of chosen machine learning algorithms as
classifiers for intrusion detection process. It can be observed from Fig.3 that the
GeFSCFS feature-selection method selects the smallest number of relevant fea-
tures. Fig.4 shows that with the approach from [11,12] the average classification
accuracies are approximately the same or even better than those achieved by
applying other methods.

4 Conclusions

In this paper, we compared, regarding the number of selected features and the
classification accuracy, some previously known feature selection methods appli-
cable for intrusion detection purposes with the feature selection methods for
intrusion detection proposed in [11,12]. The previously known feature-selection
algorithms involved in this comparison were the SVM-wrapper, Markov-blanket
and CART algorithms. The feature selection algorithms proposed in [11,12] in-
cluded in this comparison are instances of a generic-feature-selection (GeFS)
method for intrusion detection: the correlation-feature-selection (GeFSCFS) and
the minimal-redundancy-maximal-relevance (GeFSmRMR). Experimental results
obtained over the KDD CUP’99 data set show that the GeFS method outper-
forms the previously known approaches by removing more than 30% of redun-
dant features from the original data set, while keeping or yielding an even better
classification accuracy. In spite of all the known limitations of the KDD CUP’99
data set used for comparison and the difficulties in establishing a more general
theoretical basis for the comparison, there is a high probability that comparison
results similar to ours could be obtained on other data sets as well.
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Abstract. Natural Language Processing (NLP) in combination with

Machine Learning techniques plays an important role in the field of au-

tomatic text analysis. Motivated by the successful use of NLP in solving

text classification problems in the area of e-Participation and inspired

by our prior work in the field of polymorphic shellcode detection we gave

classical NLP-processes a trial in the special case of malicious code anal-

ysis. Any malicious program is based on some kind of machine language,

ranging from manually crafted assembler code that exploits a buffer over-

flow to high level languages such as Javascript used in web-based attacks.

We argue that well known NLP analysis processes can be modified and

applied to the malware analysis domain. Similar to the NLP process we

call this process Machine Language Processing (MLP). In this paper, we

use our e-Participation analysis architecture, extract the various NLP

techniques and adopt them for the malware analysis process. As proof-

of-concept we apply the adopted framework to malicious code examples

from Metasploit.

Keywords: Natural Language Processing, Malware Analysis, Semantic

Networks, Machine Language Processing, Machine Learning, Knowledge

Mining.

1 Introduction

Natural Language Processing (NLP) involves a wide range of techniques that
enable the automated parsing and processing of natural language. In the case
of written text, this automated processing ranges from the lexical parsing of
sentences to applying sophisticated methods from machine learning and artificial
intelligence in order to gain insight on the covered topics. Although NLP is a
complex and computationally intensive task, it gains more and more importance
due to the need to automatically analyze large amounts of information stored
within arbitrary text sources on the Internet. For such large text corpora it is
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not feasible for human experts to read, to understand and to draw conclusions
in a complete manual way.

An example for such a domain is the electronic participation (further denoted
as e-Participation) of citizens within a governmental decision process. Typically,
this process involves citizens that express their opinion on certain topics and
domain experts that analyze these opinions and extract important concepts and
ideas. In order to speed up the process and improve the results it makes sense
to apply NLP techniques that support the domain experts. Therefore, we have
implemented and employed an e-Participation analysis framework [1].

Due to previous work in the field of malicious code detection—especially in the
field of polymorphic shellcode detection [2], [3] — we realized that the analysis
of natural languages is somewhat similar to the analysis of machine languages.
Malware, regardless of its nature, is always based on some kind of programming
language used to encode the commands that an attacker wants to execute on
a victim’s machine. This can be raw assembler code or a high level scripting
language such as Javascript. The process of detecting malware is to identify
malicious code within large amounts of regular code. There are a wide range
of malware detection methods ranging from simple signature detection methods
to highly sophisticated methods based on machine learning. However, before
such methods can be deployed for malware detection we need to analyze and
understand the underlying code itself. Due to self mutating code, encryption,
metamorphic and polymorphic engines, and other methods designed to camou-
flage the malware itself, it is not possible to create simple signatures anymore.
Therefore, we need to extract other more complex relations within the machine
language that allow us to devise more robust detection methods.

In this paper, we argue that the same NLP processes and techniques used
for the analysis of natural language can be mapped and applied to machine
language. Analog to the NLP process we introduce the concept of Machine Lan-
guage Processing (MLP). In order to find relevant MLP processes, we extract
the various analysis steps of our e-Participation analysis framework and define
corresponding MLP steps. In order to test the implementability of this approach
we finally apply the modified framework to real assembler code extracted from
various decoding engines generated by the Metasploit framework.

Although the proof-of-concept and the NLP-to-MLP transformations focus on
assembler code, the discussed techniques could easily be extended to arbitrary
machine languages.

2 Related Work

Malware is defined as some piece of software with the only intention to perform
some harmful actions on a device, which is already under control or is intended
to be under control of an attacker. Malware analysis—on the contrary—is the
process of re-engineering these pieces of software or to analyze the behavior for
the only purpose to identify or demonstrate the harmfulness of these pieces of
software (such as a virus, worm, or Trojan horses). Actually, malware analysis
can be divided into
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– behavior analysis (dynamic analysis) and
– code analysis (static analysis)

Since no generic tool exists to perform this analysis automatically, the process of
malware analysis is a manual one, which can fortunately fall back on a rich set of
efficient but simple tools. A tricky part in malware analysis is to detect pieces of
code, which are only triggered under some specific conditions (day, time, etc. ...).
In such cases, it is essential to disassemble the whole executable and to analyze
all possible execution pathes. Finding and watching such execution pathes (e.g.
by the help of a disassembler) is forming the core mechanism of a sophisticated
code analysis process.

As ”dynamic” approach to detect execution chains within a piece of software
is to execute and analyze its behavior in a restricted environment. Such an en-
vironment can be a debugger, which is controlled by a human analyst, to step
through each single line of code to see the code-execution happening and to un-
derstand the ”meaning” of the code. Examples of such ”sandbox”- techniques
are CWSandbox [4], the Norman SandBox [5], TTAnalyze and Cobra [6]. Com-
mon to all these examples is that code is automatically loaded and analyzed
in a virtual machine environment to find out the basic behavior and execution
pathes. A special dynamic sandbox-method is the so called black box analysis.
In this case, the system is studied without any knowledge about its internal con-
struction. Observable during the analysis are only external in- and outputs as
well as their timing relationships. After a successful simulation, a post mortem
analysis will show effects of the malware execution. This post mortem analysis
can be done by standard computer forensic tool chains.

In the case of malicious code analysis, the common idea is to use analysis
archtitectures to make use of the huge number of useful tools in a controlled
way. BitBlaze [7] for instance even tries to combine static- and dynamic analysis
tools. The BitBlaze framework actually consists of three components: Vine, the
static analysis tool, TEMU, the dynamic analysis component, and Rudder, a
separate tool to combine dynamic and static analysis results.

NLP is a huge field in computer science about language- based interactions
between computers and humans. It can basically be divided in the following two
major areas:

– Natural language generation systems (LGS), which convert information from
computer databases into readable human language and

– Natural language understanding systems (LUS), which are designed to con-
vert samples of human language into a formal representation. Such a repre-
sentation can be used to find out what concepts a word or phrase stands for
and how these concepts fit together in a meaningful way.

Related to the content of this paper, we always think about NLP as an applica-
tion that can deal with text in the sense of classification, automatic translations,
knowledge acquisition or the extraction of useful information. In this paper, we
will not link NLP to the generation of natural languages. Especially in the case
of LUS, a lot of prior work exists, which was carried out by many different re-
search groups (e.g. [8],[9]). Machine learning techniques have been applied to
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the natural language problem, statistical analysis has been performed and large
text corpora have been generated and have been used successfully in the field of
NLP. Thus, several projects—about innovative ways to run and improve NLP-
methods—have already been finished or are still ongoing - and we are quite sure
that there will be many more.

3 Methods

3.1 NLP

All NLP components of the platform are based on the lingpipe NLP API [10]. It
is a Java API that covers a wide range of algorithms and techniques important
for NLP: Examples are Part-of-Speech (POS) tagging, the detection of sentences,
spelling correction, handling of text corpora, language identification, word sense
disambiguation (e.g. [11]), etc. The techniques that are relevant for our text-
analysis architecture will be shortly discussed in the subsequent sections. For a
good overview of all these techniques we refer to the tutorials that come with
the lingpipe package1.

3.2 Semantic/Associative Networks and Spreading Activation (SA)

Associative networks [12] are directed or undirected graphs that store informa-
tion in the network nodes and use edges (links) to present the relation between
these nodes. Typically, these links are weighted according to a weighting scheme.
Spreading activation (SA) algorithms [13] can be used to extract information
from associative networks. Associative networks and SA algorithms play an im-
portant role within Information Retrieval (IR) systems such as [14], [15] and
[11]. By applying SA algorithms we are able to extract Activation Patterns from
trained associative networks. These Activation Patterns can then be analyzed
by arbitrary supervised and unsupervised machine learning algorithms.

3.3 Machine Learning (ML)

For the supervised or unsupervised analysis of the activation patterns – the
patterns generated by applying SA to the semantic/associative network – stan-
dard machine learning algorithms can be applied. Examples for supervised algo-
rithms are the widely used Support Vector Machines (SVM), Neural Networks
and Bayesian Networks. The family of unsupervised algorithms has an impor-
tant role, since such techniques allow us to extract relations between features,
to detect anomalies and to find similarities between patterns without having an
a-priori knowledge about the analyzed data. Examples for such algorithms are
Neural Gas based algorithms [16], Self Organizing Maps (SOM), Hierachical Ag-
glomerative Clustering (HAC), or Expectation Maximation (EM). In this work
we employ the Robust Growing Neural Gas algorithm (RGNG) [16].
1 http://alias-i.com/lingpipe/demos/tutorial/read-me.html
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4 From NLP to MLP

In [1] we present an automated text-analysis architecture that is used for the
analysis of various e-Participation related data-sets. The basic modules of this
architecture are depicted in Figure 1. The remaining part of this section describes
the various NLP and ML related submodules of this architecture and how they
can be applied or transformed to MLP modules for malware analysis.

4.1 Lexical Parser/Emulator/Disassembler

NLP: For NLP, we need to convert a sequence of characters into a sequence of
tokens. These tokens represent the terms of the underlying text. The conversion
process is called lexical analysis. By using lexical parsers such as the Stanford
Parser [17], we are able to extract the roles of terms within a sentence and the
relations between these terms. Depending on the subsequent processing steps,
this could range from a superficial analysis identifying some key grammatical
concepts to a deep analysis that is able to extract fine details.

MLP: Raw machine code is a byte sequence that contains instructions that are
executed by the processor. In addition, most of the available instructions have
parameters that are also encoded in the byte sequence. In order to extract infor-
mation for further analysis, we need to process this byte sequence and extract
the instructions and the parameters. In a simple scenario this could be done
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POS Filter
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Semantic Network Generation

Activation Pattern Generation

Unsupervised Analysis Semantic Search
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Semantic Relations
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Fig. 1. MLP vs. NLP Processing
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with a disassembler that extracts instructions from a given byte sequence. How-
ever, due to branch operations such as jmp or call these byte sequence is not
processed by the CPU in a linear way. Thus, in order to extract the instruction
chain the way it is executed on a CPU, we need to employ emulators or execute
the code directly on the CPU. For the example presented later in this work, we
utilize the PTRACE system call2 on linux to execute code directly on the CPU
(see Section 5.1 for a more detailed description). By applying such methods to
the raw byte sequence, we are able to extract and inspect the instructions chains
executed on the CPU. In analogy to NLP these instruction chains represent the
written text, which needs to be analyzed. Similar to NLP the deepness of the
analysis depends on the applied method. These methods range from extracting
the instructions and their execution order to more complicated methods capable
of identifying more complex structures: constructs such as loops, the necessary
preparation for executing interrupts, branching etc.

4.2 POS (Part-of-Speech) Tagging, POC (Part-of-Code) Tagging

NLP: POS tagging can also be seen as part of the lexical analysis described in
the previous section. However, since it plays an important role for text analysis,
we describe it as separate process. In NLP, Part-of-Speech tagging is the process
of identifying the role of each term in a sentence. The following example shows
the POS tags for a given sentence: Hello RB I PRP am VBP a DT little JJ
sentence NN trying VBG to TO find VB my PRP place NN within IN this DT
text NN . . The tags were obtained by using the online interface of the Stanford
parser3, where for example NN indicates nouns and VB* identifies verbs and
their different modes. POS tags are used for subsequent processing steps, which
include the filtering of terms according to their tags and establishing relations
between terms in a semantic network according to these tags.

MLP: Obviously, there are no nouns, verbs or related concepts in machine code,
but there are similar concepts that could be used to tag single instructions. We
call these tags Part-Of-Code (POC) tags. For the example presented in Section
5 we tag the instructions according to their functionality which results in the fol-
lowing categories: control flow, arithmetic, logic, stack, comparison, move, string,
bit manipulation, flag manipulation, floating point unit instructions, other.

4.3 POS/POC Filtering

NLP: Depending on the subsequent analysis, it makes sense to keep only terms
with certain POS tags. For the e-Participation related text analysis, we only
keep nouns, verbs and adjectives since the already convey a large part of the
information within the text.

2 http://linux.die.net/man/2/ptrace
3 http://nlp.stanford.edu:8080/parser/



262 P. Teufl, U. Payer, and G. Lackner

MLP: According to the determined POC tags, we can easily define filters that
allow us to focus on branching behavior, arithmetic operations, logical opera-
tions etc.

4.4 Lemmatization

NLP: Before proceeding with the NLP analysis of POS tagged text, it makes
sense to derive the lemmas of the remaining terms. By doing so we avoid the
ambiguity of different forms such as inflected terms or plural forms. For example
the term bought would be mapped to its lemma buy for further analysis.

MLP: When applying this process to machine code, we need to ask ”What is
the lemma of an assembler instruction?”. There is not a single answer to this
question, but there are several concepts that could be used for lemmatization:

– Instruction without parameters: In this case we strip away the param-
eters of an instruction and use the instruction as lemma.

– Mapping of instructions: Instructions that belong to the same family
could be mapped to one instruction. An example would be the mapping of
all mov derivates to one instruction.

– High level interpretation: In this case we focus on the operations per-
formed by the instructions and not the instructions themselves. E.g. the
instructions and their parameters xor eax,eax or mov eax,0 or the chain
mov eax,5; sub eax,5 all have the same effect – the eax register con-
tains the value 0. As we see, this effect can be achieved by using various
instructions or instruction chains. Such techniques are typically employed
by polymorphic and metamorphic engines trying to camouflage their real
purpose by changing the signature of each generated instance.

4.5 Creation of the Associative/Semantic Network

In this step we create the semantic or associative network that stores the in-
formation on how different features are related. In case of NLP, the terms of
a text are the features and the relations are defined by the co-occurence of
terms within sentences. For MLP, the features are represented by instructions
and the relations between instructions are based on the co-occurence of these in-
structions within chains. We note that although these relations are rather simple
they already convey important information for further analysis (see Section 6 for
possible improvements). The semantic network is generated in the following way:

NLP: For each sentence, we apply the following procedure: For each different
term (sense) within the analyzed text corpus we create a node within the as-
sociative network. The edges between nodes and their weights are determined
in the following way: All senses within a sentence are linked within the asso-
ciative network. Newly generated edges get an initial weight of 1. Every time
senses co-occur together, we increase the weight of their edges by 1. In addition,
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we store the type of connection for each edge. Examples for these types are
noun-to-noun links, noun-to-verb links or adjective-to-adverb links. By using
this information when applying SA algorithms, we are able to constrain the
spreading of activation values to certain types of relations.

MLP: In machine code, sentences as we know them from text, do not ex-
ist. However we can find other techniques that separate instruction chains in a
meaningful way:

– Using branch operations to limit instruction chains: For this method,
we use branch operations such as jmp, call to identify the start/end of an
instruction chain. We have already sucessfully applied this method in prior
work ([3]).

– Number of instructions: We could simply define a window with size n
that take n instructions from the instruction chains.

Regardless of the method for the extraction of instruction chains, the network
is generated in the same way as for the text data.

4.6 Generation of Activation Patterns

Information about the relations between terms/instructions can be extracted
by applying the SA-algorithm to the network. For each sentence/instruction
chain, we can determine the corresponding nodes in the network representing
the values stored in the data vector. By activating these nodes and applying SA,
we can spread the activation according to the links and their associated weights
for a predefined number of iterations. After this process, we can determine the
activation value for each node in the network and represent this information
in a vector - the Activation Pattern. The areas of the associative network that
are activated and the strength of the activation gives information about which
terms/instructions occurred and which nodes are strongly related.

4.7 Analysis of Activation Patterns

The activation patterns generated in the previous layers are the basis for applying
supervised and unsupervised Machine Learning algorithms. Furthermore, we can
implement semantic aware search algorithms based on SA.

Unsupervised Analysis: Unsupervised analysis plays an important role for
the analysis of text, since it allows us to automatically cluster documents or
instruction chains according to their similarity.

Search with Spreading Activation (SA): In order to search for related con-
cepts within the analyzed text sources/instruction chains, we apply the following
procedures:
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1. The user enters the search query, which could be a combination of terms or
instructions, a complete sentence or instruction chain or even a document
containing multiple sentences or instruction chains.

2. We determine the POS/POC tags for every term/instruction within the
search query.

3. Optionally, we now make use of an external knowledge source to find related
terms/instructions and concepts for the terms/instructions in the query. For
NLP such an external source could be WordNet [14] or Wikipedia. For MLP
we could use reference documentation that describes all available instruc-
tions, their parameters and how these are related. An example for such a
source is the Instruction Set Reference for Intel CPUs4.

4. We activate the nodes corresponding to the terms/instructions of the search
query and use the SA algorithm to spread the activation over the associative
network.

5. We extract the activation pattern of the associative network and compare it
to the document, sentence or instruction chain patterns that were extracted
during the training process. The patterns are sorted according to their sim-
ilarity with the search pattern.

External knowledges sources such as Wordnet can be quite useful for improving
the quality of the search results. In order to highlight some of the benefits, we
have the following example for text-analysis. Assuming, we execute a search
query that contains the term fruit. After applying SA, we get the relations that
were generated during the analysis of the text. However, these relations only
represent the information stored within the text. The text itself does not explain
that apples, bananas and oranges are instances of the term fruit. Therefore when
searching for fruit we will not find a sentence that contains the term apple if
the relation between these two terms is not established within the text. Thus, it
makes sense to include external knowledge sources that contain such information.
For NLP we can simply use Wordnet to find the instances of fruit and activate
these instances in the associative network before applying SA. For MLP, such
information could also provide vital information about the relations between
instructions. In a similar way we could issue a search query that extends the
search to all branch or arithmetic instructions.

Relations between Terms/Instructions: The trained associative network
contains information about relations between terms/instructions that co-occur
within sentences/instruction chains. By activating one or more nodes within
this network and applying the SA algorithm, we are able to retrieve related
terms/instructions.

5 The Real World – Example

In order to show the benefits of a possible malware analysis architecture based
on MLP, we transform the existing NLP framework and apply it to payloads
4 http://www.intel.com/products/processor/manuals/
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and shellcode encoders generated by the Metasploit framework. The Metasploit
project is described in this way on the project website5: Metasploit provides
useful information to people who perform penetration testing, IDS signature de-
velopment, and exploit research. This project was created to provide information
on exploit techniques and to create a useful resource for exploit developers and
security professionals. The tools and information on this site are provided for
legal security research and testing purposes only.

5.1 PTRACE Utility

For the lexical analysis of an arbitrary byte sequence we have developed a simple
tool based on the PTRACE system call6 on Linux.

– Single stepping: By utilizing PTRACE we are able to instruct the pro-
cessor to perform single stepping. This enables us to inspect each executed
instruction, its parameters and the CPU registers.

– Execution of arbitrary byte sequences: The utility follows each instruc-
tion chain until the bounds of the byte sequence are reached, the maximum
number of loops is reached or a fault occurs. Whenever one of these condi-
tions is fulfilled, the tool searches for a new entry point that has not already
been executed. By applying these technique we are able to find executable
instruction chains even if they are embedded in other data (e.g. images,
network traffic).

– Blocking of interrupts: The analysis of the payloads and encoders gener-
ated by Metasploit is rather simple. In order to keep payloads from writing
on the harddrive, we simple block all interrupts encountered by the tool.

– Detection of self modifying code: Such behavior is typical for a wide
range of encoders/decoders that encode the actual payload in order to hide
it from IDS systems. Typically the actual payload is decoded (or decrypted)
by a small decoder. After this process the plain payload is executed. Since
this decoding process changes the byte sequence, it is easy to detect when
the decoder has finished and jumps into the decoded payload.

– Dumping of instructions: The tool makes use of the libdisasm library7

to disassemble instructions. For each CPU step, we dump the instruction,
its parameters and the category it belongs to.

5.2 Metasploit Data

Metasploit offers a command line interface to generate and encode payloads.
We have used this interface to extract various payloads. Furthermore, we have
encoded a payload with different shellcode encoders including the polymorphic
shellcode encoder shikata-ga-nai. As dump format we have used the unsigned
char buffer format. In order to apply MLP techniques we use the existing NLP
architecture as basis and add or modify existing plugins for MLP processing:
5 http://www.metasploit.com/
6 http://linux.die.net/man/2/ptrace
7 http://bastard.sourceforge.net/libdisasm.html
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– Lexical Analysis: For the extraction of the instruction chain we use our
ptrace utility. The extracted chains contain the executed instructions, their
parameters and the instruction category. We do not consider the parame-
ters for further processing. The instruction chains are seperated into smaller
chains by using control flow instructions (e.g. jmp, call, loop) as separator.
In analogy to NLP, these sub instruction chains are considered as ”sentences”
whereas the whole payload/encoded payload is considered as ”document”.

– Tagging: Similar to a POS tagger, we can use a POC tagger for MLP. In
this case this tagger uses the instruction category as tag. We consider all
tags for further analysis and do not apply a filter.

– Lemmatization: Except for dropping the parameters, we do not employ
further lemmatization operations.

– Semantic network generation: We apply the same semantic network gen-
eration process as used in the NLP architecture.

– Activation pattern generation: This is also based on the same process
that is used for the NLP architecture. For each sub instruction chain (sen-
tence), we activate the nodes corresponding to the instructions within the
chain and spread the activation over the semantic network. We do not make
use of any external knowledge source.

– Analysis: We show some examples for the analysis of the extracted/encoded
payloads: Unsupervised clustering, finding relations between instructions and
semantic search.

5.3 Relations

For text-analysis we often need to find terms that are closely related to a given
term. An example from the e-Participation data analysis is shown in Figure 2(a).
We use the term vehicle and extract the related terms from the the semantic
network. Some examples for related terms are: pollution, climate change,
car, pedestrian and pedestrian crossing. These relations are stored in the
semantic network that was generated during the analysis of the text data. In
MLP, we can apply exactly the same procedure. For the following example we
want to find instructions that are related to XOR within the dataset consisting
of subchains. In this case relation means that the instructions co-occur within
the same chain. By issuing the query for xor, we get the following related in-
structions: push, pop, inc, add, dec, loop. These results can be explained
by having a closer look on the decoding loops of various decoders (shikata-ga-
nai, countdown, alpha-mixed) shown in Table 1. The utilitzation of these other
instructions is necessary for reading the encoded/encoded shellcode, performing
the actual decoding and writing the decoded shellcode back onto the stack. Due
to the unsupervised analysis and the semantic network we are able to find these
relations without knowing details about the underlying concepts.

5.4 Semantic Search

The previous example shows that due to the semantic network and the links
within this network we are able to find relations between terms/instructions.
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(a) (b)

Fig. 2. NLP - Relation between terms (a) and MLP - relations between instructions (b)

Table 1. Semantic search results for instruction add

Result Decoder Instruction chain Description

1 shikata-ga-nai xor add add loop Decoder

2 shikata-ga-nai xor mov fnstenv pop mov xor add add loop Decoder setup

3 nonalpha pop mov add mov cmp jge Decoder setup

4 fnstenv-mov xor sub loop Decoder

5 countdown xor loop Decoder

These relations can also be used for executing semantic aware search queries.
In order to highlight the benefits, we first present a simple example taken from
text-analysis. Assuming we have two sentences8A and B: A: ”Evidence suggests
flowing water formed the rivers and gullies on the Mars surface, even though
surface temperatures were below freezing” and B: ”Dissolved minerals in liquid
water may be the reason”. When we search for the term Mars we obviously
are able to retrieve sentence A. However, since sentence A talks about water on
Mars, we also want to find sentence B that adds further details concerning the
term water. Since the term Mars is not in sentence B we need to make use of
the relations stored in the semantic network in order to include sentence B in the
search results. The same procedure can be applied to MLP. For the following
example we search for instruction chains that are related to the instruction
add, which plays a role in various shellcode decoders. The results are shown
in Table 1. Obviously, the algorithm returns decoders with an add instruction
first, since these have the best matching pattern. However, at position 4 and 5
we also retrieve decoding loops of other decoders that do not make use of the
add instruction. We are able to find these decoding loops since they use other
instructions that are typical for such loops: xor, sub, loop. Due to the relations
created by the decoding loops of shikata-ga-nai, add is linked with those and
similar instructions. Thus, we are able to retrieve these other decoder loops that
do not contain the add instruction, but have similar tasks.

8 Take from the article: NASA Scientists Find Evidence for Liquid Water on a Frozen

Early Mars, May 28th, http://spacefellowship.com



268 P. Teufl, U. Payer, and G. Lackner

5.5 Clustering

By clustering whole execution chains or sub chains (e.g. loops) into clusters, we
are able to categorize different execution chains automatically. For unsupervised
clustering we apply the RGNG [16] cluster algorithm to the activation patterns of
the subchain dataset. By choosing a rather simple model complexity, we retrieve
4 clusters: Cluster 1 primarily consists of the decoding loops of alpha-upper
and alpha-mixed. Since both decoders have similar tasks (but not the same
instruction chains), they are categorized within the same cluster. Cluster 2 and
Cluster 4 contain the polymorphic decoding engines of shikata-ga-nai. By ob-
serving the instruction chains of those both clusters we see that Cluster 2 has
chains based on add instructions whereas Cluster 4 consists of those chains that
employ sub instructions. This is a perfect example why it could make sense to
employ external knowledge to gain additional information about the analyzed
instructions. In this case, add and sub could be mapped to arithmetic instruc-
tions which would result in the categorization within the same cluster. Cluster 3
contains chains related to decoding engine setup and the necessary preparations
for calling an interrupt (typically the payload itself).

6 Conclusions and Outlook

In this paper we present a MLP architecture for malware analysis. This archi-
tecture is the result of adopting an existing NLP architecture to the analysis
of machine code. We map existing NLP modules to MLP modules and describe
how established NLP processes can be transferred to malware analysis. In order
to show some of the possible applications for such an MLP architecture, we ana-
lyze different shellcode engines and payloads from the Metasploit framework. The
presented malware architecture can be seen as the first step in this direction.
There are further promising techniques, which would increase the capabilities
and the quality of the analysis process:

– Improved lexical parsing in order to allow the identification of more complex
structures such as loops, preparations for interrupts, etc.

– Due to improved lexical parsing, more relations could be stored in the seman-
tic network, which would enable more detailed or focused analysis processes.

– High level interpretation of the underlying machine code.
– Extending the MLP framework to high level languages such as Javascript.

All of these suggested improvements have corresponding elements within NLP
and are partly already solved there. This means, that we might be able to apply
some of these techniques directly in MLP or adapt them for MLP. As next step
we will identify more suitable NLP techniques and adopt them to MLP modules.
Finally, we especially want to thank P. N. Suganthan for providing the Matlab
sources of RGNG [16].
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Abstract. Multi-agent systems allow a multitude of heterogenous sys-

tems to collaborate in a simple manner. It is easy to provide and gather

information, distribute work and coordinate tasks without bothering with

the differences of the underlying systems. Unfortunately, multiple net-

working and security problems arise from the dynamic behavior of multi-

agent systems and the distributed heterogeneous environments in which

they are used. With our work we provide a solution enabling secure

collaboration and agent execution as well as agent mobility in multi-

hop environments. We achieve this by using a secure unstructured P2P

framework as communication layer and integrate it with a well known

multi-agent system.

Keywords: Security, Multi-Agent Systems, Multi-Hop Networks, Peer-

to-Peer.

1 Introduction

Multi-agent systems (MAS) have been used to solve problems that are out of
reach for stand-alone or monolithic systems. Examples of problems to which
multi-agent systems have been applied include control systems [1], [2], timetable
coordination [3], disaster response [4], [5]. MAS are especially promising for disas-
ter response scenarios. Since the specific tasks of such scenarios like information
gathering, on-demand computation, information distribution, and team coordi-
nation are well-suited for MAS.

In close relation to MAS we find the peer-to-peer (P2P) concept. Structured
P2P systems are very prominent since they are well fitted for data storage and
distribution. Their internal organization and function is optimized for addressing
data in a distributed environment. Conversely, they are ill suited for the purpose
of a general overlay network that provides general communication and resource
sharing functions. Unstructured P2P networks are ideal for establishing a general
overlay since they only provide the means of organizing the overlay topology and
providing connectivity between the separate nodes.

Besides all the functions which have been enabled by multi-agent and peer-
to-peer systems, new kinds of network security threats have been introduced [6,
7, 8, 9] as well. These new threats are much more difficult to address because

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2010, LNCS 6258, pp. 270–283, 2010.
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of the composition and distributed nature of these systems. Malicious or selfish
nodes can distract, disturb, obstruct and impede the correct execution of P2P
systems often with little effort [10,11,12]. In a P2P system every entity is equal.
Every entity provides the same set of functions. In a centralized system this is
restricted to a select few. This fact necessitates global protection of all entities
and their interactions.

The main contribution of our work is to first enable multi-agent systems to
work in multi-hop environments and second to provide means to do that in a
secure manner. Our work provides a comprehensive solution for building a Java-
based multi-agent-system with a secure peer-to-peer communication layer. We
used the two existing systems JADE and the Secure P2P framework (SePP), and
integrated them using the JADE communication interface. Out of the box the
communication in JADE is based on Remote Method Invocation (RMI), which
only guarantees end-to-end security via SSL encryption. Our approach relies
on a peer-to-peer system to guarantee not only authentication, integrity and
confidentiality in direct-connected networks but also in multi-hop environments.
In addition, SePP is based on a scalable security concept that allows to adjust
the security measures according to the needs and capabilities of participating
devices.

Subsequently, we present how the JADE agent middleware and the SePP
framework can be combined to develop a secure multi-agent-system for multi-
hop environments. We briefly outline the design and implementation of SePP.
Thereafter, we present the messaging in Jade and the default network implemen-
tation. Our implementation is concisely described with a focus on the specific
solutions such as the message dispatching or the transparent proxy generation.
At last we provide results and a short benchmark which compares vanilla JADE
and our implementation.

2 Motivation

MAS technology relies heavily on the existence of a network infrastructure. Un-
fortunately, in case of an emergency it can not be assumed that an infrastruc-
ture bound network is fully working. Emergencies can occur in isolated regions
which lack the necessary infrastructure such as comprehensive wired or wire-
less network coverage. Also, a disaster which caused the emergency could have
destroyed or disrupted the required infrastructure. The absence of a function-
ing static network infrastructure necessitates that crucial information for on-site
emergency response must be made available through mobile ad-hoc networks.
Ideally, this mechanism is backed by fall-back communication facilities such as
GSM, UMTS, satellite communication, and TETRA. The information required
to respond properly in case of emergencies usually consists of confidential data
including personal health records or electric grid maps that should only be avail-
able to authorized personnel. Thus, the provision of network connectivity, as well
as managing access to confidential data during the emergency response operation
is a substantial network security challenge.
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Fig. 1. Example of a disaster response scenario with on-site equipment

To illustrate the applicability of the secure P2P based agent system intro-
duced in this paper, we describe a real life scenario. The object of our scenario
is a mine complex with several stakeholders. For crisis operations it is essen-
tial that all relevant documentation is made available to the emergency services
and on-site personal. One conceivable emergency situation in a mine complex
is the collapse of several tunnels. A solution that provides access to all rele-
vant information pertaining to the affected mine(s) such as emergency plans,
legal documents, and reports of mining activities, as well as topographical and
cartographic material is necessary. By applying the multi-agent system concept
using a secure P2P framework as communication layer, it becomes possible to
provide a secure decentralized solution to that problem. During an emergency
different organizations have to cooperate. This includes fire and rescue, medical,
and police, as well as other emergency services such as mine rescue, or utility
services. Each service has its own information infrastructure including hard- and
software, and employs different security mechanisms. As a common characteris-
tic, we assume that if security measures exist, they rely on cryptographic keys
and functions.

2.1 Security Assumptions and Bootstrapping

The security of our solution relies on the secrecy and authenticity of keys stored
in nodes. We rely on the following keys to be set up, depending on which security
level is used by the node:

– If a shared secret key is used, we assume a mechanism to set up a secret
key for a network with n nodes.
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– If public-private key pairs are used, we assume a mechanism to set up one
authentic public-private key pair for each node. In addition, the authentic
public keys of legitimate certificate authorities must also be set up for each
node.

To set up shared secret keys, most key establishment protocols involve a so-called
trusted third party or trusted authority. Since, we don’t want to introduce a single
point of failure in our system such protocols are not applicable. We require only
one shared secret key instead of pair-wise shared keys which can be efficiently
handled by pre-deployed keying. Thus, we can either use a single network-wide
key shared by all nodes or a set of keys randomly chosen from a key pool such
that two nodes will share one key with a certain probability [13].

To set up public-private keys we use an offline PKI approach since we want to
prevent a single point of failure and want to allow node addition during system
operation. Thus, the private and public key as well as the trusted authority’s
public key are embedded in each node. The public keys of other nodes are au-
thenticated using the trusted authority’s public key. Using such a system allows
us to provide the required authentication but it is not possible to handle revo-
cation. In order to also enable revocation one can either use a distributed PKI
solution such as [14, 15] or implement a distributed revocation system [16].

It is necessary to note that our system is not intended as an open system. We
don’t allow arbitrary nodes to join and thereafter establish secure communication
through key agreement since these mechanisms don’t provide node authentica-
tion in the absence of a trusted authority. Although it is possible that arbitrary
nodes join our system, security is only provided for nodes which possess authen-
tic credentials. These legitimate nodes can join and communicate in a secure
manner establishing a virtual private overlay.

3 Secure P2P Framework

The secure P2P framework (SePP) is a comprehensive solution for establishing
an unstructured P2P network in a secure manner. It provides secure mechanisms
for creating and maintaining the overlay network, establishing and managing
groups and security administration. The design and implementation of all these
mechanisms and protocols is based on a simple but efficient security concept [17].
This security concept has been designed with heterogeneous multi-hop network
environments in mind. Another aspect in the design of the security concept was
configurability. Thus, giving each node the freedom to select its desired level of
security with respect to its capabilities.

3.1 SePP Security Concept

The SePP security concept provides a simple way to select adequate security
measures. This allows achieving a specific security level in the face of hetero-
geneous nodes with diverse capabilities. The features of a security concept are
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of course important. Especially in our case, the capability to support powerful
workstations, as well as constrained mobile devices is equally important. For
the remainder of this document we call this scalability. Given our scenario, the
security concept must also address node mobility. Nodes with different mobil-
ity patterns must be able to participate in the network. Thus, the underlying
mechanisms have to cope with a changing environment in a secure and efficient
manner. The last characteristic is transparency. Since nodes with different capa-
bilities can participate in the network, the achievable security level of a specific
communication session must be determinable in advance.

All secure communication mechanisms are considered with the same basic
group concept in mind. A group is simply a virtual aggregation of an arbitrary
amount of nodes which follow the same rules and use the same protocols. Every
node can communicate with any other node inside a group. Every virgin node
belongs to a default group after it has joined SePP. Thereafter, a peer can create
or join other groups which are composed of a subset of the peers belonging to
the default group.

3.2 Security Levels

There are three different aspects of security which apply to every group:

1. Establishing secure communication (admission security)
2. Performing secure communication (data security)
3. Upholding secure communication (secret protection)

Establishing secure communication relates to secure group administration. It
combines entity authentication and authorization, secure neighborhood mech-
anisms and secure bootstrapping. Most notably the join process is addressed
with this aspect. After successful authentication each node owns a secret key
which is shared amongst the group members. This key is called session key and
is now used in addition to existing keys in order to increase the performance
of performing secure communication between group members. This means for
instance that the routing information is protected or all messages are protected
group-wise. The benefits of a session key are that it can be updated to protect
against side-channel attacks or to exclude misbehaving nodes from the network.
Upholding secure communication relates to preventing and limiting damage from
exposed session keys. This can be achieved through means such as side-channel
attack protection, malicious peer detection or session key refreshing. The overall
security for SePP can be set individually on three separate axes. These three
axes conform to the three aspects given above. In figure 2 we have outlined the
different aspects of security.

For simplicity we only use three different levels of security. These levels are
low (0), medium (1), and high (2). Each of these security levels can be chosen
differently for every security aspect independently. It is also possible to create
more and/or different security levels depending on the system requirements.
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Each of these security levels is associated with a specific kind of credential or
cryptographic key. For instance, security level high requires each node to possess
a valid and legitimated public and private key pair. For the medium level the
nodes must possess a shared secret key for authentication. No secret information
is used in security level low. Meaning, that if the security level low is selected,
every node can participate in the network.

In figure 3 nodes are grouped into different security levels. The peers in the
light grey area belong to security level medium. The peers in the dark grey area
belong to security level high. All peers outside these areas belong to security
level low. Our system has been designed in such a way that peers with higher
security levels also belong to the lower security levels and are provided with the
required credentials for their operation.
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4 JADE Multi-Agent System

The Java Agent Development Framework (JADE) is a middleware which sim-
plifies the development of FIPA-compliant agents. It provides support for server
and desktop computers and constrained devices. It has been designed under
consideration of scalability and supports it throughout the complete develop-
ment cycle.

JADE commonly uses RMI for the purpose of inter-agent communication.
RMI is a Java technique to provide method invocation over a TCP/IP network.
The main-goal behind the design of RMI was to easily provide an architecture
where code can dynamically be loaded from a server. This is achieved facilitating
a client/server architecture and object serialization. A central entity for method
binding, called the RMI registry, enables methods to be called from RMI clients
remotely even over a network.

The JADE Message Transport Protocol (MTP) default implementation is
based on Java RMI. Also, the current version of JADE possesses a well defined
interface for implementing other transportation protocols. Unfortunately, this
interface’s architecture is heavily RMI orientated. Thus, any optional MTP im-
plementation must adapt its messaging system to emulate the RMI work-flow.

4.1 JADE Messaging

In order to understand the implementation of the MTP layer, it is first necessary
to understand how JADE sends messages. Therefore, we now describe JADE’s
message transmission sequence. In the following we have to distinguish between
the main peer, which is responsible for managing the agent platform with its
nodes and services and the remote peer which uses the main peer’s interfaces
through proxies. The first step in creating an agent platform is to instantiate the
main peer. Thereafter, a new MTPManager is created and the PlatformManager
is used to advertise the JADE Platform. Finally, a PlatformProxy is established
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Fig. 5. Message sequence

through the specification of the main peer’s address during the creation of the
remote peer. With this proxy the remote peer is able to access all the functions
available in the platform.

After the remote and main peer are connected we create a JADE node on
each peer. Nodes are the agent platform’s inter-agent communication mechanism.
Each node is associated with an array of services running on the node. If the
remote peer wants to send a message to the main peer the remote peer asks
the PlatformManager via the PlatformProxy which services are running on the
node of the main peer. During this request, the main peer serializes his local
node and the remote peer receives a proxy to the node of the main peer. With
this proxy the remote peer is able to access the remote peer’s node. From now
on, the two agent containers have the ability to communicate with each other.
For an example of the JADE messaging process see figure 5.

5 Secure Multi-Agent System

Based on the general overview in the previous section, we now present our imple-
mentation of a secure messaging mechanism. For an architectural overview of our
implementation see figure 4. The first step was to emulate the RMI behavior on
top of SePP using different message classes. A message class is a generalization of
a method call. The knowledge about which method should be called and how it is
parameterized is encapsuled within the concrete message classes. We require two
message classes per method. First, a request message class, whose payload is the
parameters of the method. Second a response message class, which contains the
return value of the corresponding method. We chose this design, because it allows
convenient message dispatching and because this architecture is extendible.
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5.1 Implementation

The SecureP2PIMTPManager is the general entity that advertises the agent
platform and it provides the remote peers with access to the main peer. The
functionality of the SecureP2PIMTPManager is comparable to the RMI registry
as mentioned above, with the difference that we don’t have a special storage
facility, where the remote methods are registered. The main peer listens for
incoming requests from the remote peers.

Every communication between the two peers is done via the PlatformProxy. As
an example we observe the behavior of the addNode method which is called when
a new agent container is added. When called from a PlatformProxy the addNode
method creates the appropriate request to the remote PlatformManager. This
request is sent to the main peer. On the main peer the message is dispatched to
the local PlatformManager where the request is processed and a new container
is created. The return value of the method is sent back to the remote peer. If the
PlatformProxy is a proxy for a local object, the same request is created. Instead
of sending it over the network, it is dispatched locally. JADE also facilitates
a different transmission concept which enables sending from a NodeProxy to a
LocalNode. This mechanism is almost identical except for the proxy generation
process.

The class SecureP2PPeer is the interface to the SePP network through the
SePP framework API. This API allows classes which implement the Component
interface to register themselves to received messages with a specified message
type. If a message is received in the SecureP2PPeer, the receivedMessage method
is called. Inside this method, the received byte stream is un-marshalled and a
JADEMessage is created. This JADEMessage is then passed to the registered
Component.

Due to the limited space available, we had to omit many details of our
implementation.

5.2 A Message Sending Sequence

This section combines the concepts discussed so far and illustrates a sample com-
munication sequence of the JADE platform. We chose he method accept for an
illustration example of a message sending sequence. Accept is used by the agents
for communicating within the middleware. We presume that the PlatformProxy
was already created and the two nodes are ready to send.

The sequence diagram depicted in figure 5 illustrates the whole messaging pro-
cess, starting from creating the NodeProxy until the return of the method accept.
In the first step the NodeProxy is created after serializing the SecureP2PNode
from higher layers of the JADE middleware using a mechanism called trans-
parent proxy generation. Afterwards the accept call on the SecureP2PNode is
delegated to its Proxy. This proxy creates a request message and sends it via
the SecureP2PPeer class. On the remote container the message is received and a
new worker thread is created. This new worker thread forwards the message to
its corresponding JadeComponent, in this case we have a LocalNode. The next



Secure Multi-Agent System for Multi-Hop Environments 279

step is to invoke the method related to the message and forward the return value
via the SecureP2PPeer. Back on the main peer the message is dispatched and
the original emphaccept call returns.

6 Security Analysis

The main contribution of our work is to first enable multi-agent systems to work
in multi-hop environments and second to provide means to do that in a secure
manner. To establish the exact boundaries of our security analysis we first define
our assumptions on the environment.

1. Each peer or user that is a part of the multi-hop enabled communication
subsystem must be authenticated. This means, each user joining the system
must provide a prove of it’s identity depending on the security requirements
of the overall system. This can involve either something the user knows or
something the user has.

2. A multi-hop enabled MAS must provide means to communicate even in the
absence of direct connections between the different parts of the MAS. Thus,
it must be possible for agents to communicate with each other in a hop-by-
hop manner in addition to direct communication. This fact requires secure
routing algorithms which guarantee that only legitimated and trusted hops
are used to forward data. Otherwise, malicious peers can disrupt communi-
cations or separate parts of the MAS at their will.

3. The data communication of the MAS must be protected. Depending on the
system security requirements this can include protection from fabrication,
modification, interruption and interception. This translates to data authen-
tication and data confidentiality in addition to reply protection.

4. Participating users are considered trustworthy. Thus, only attacks from ex-
ternal entities are considered (outsider attacks). In addition, it should be
possible to identify attacks from malicious insiders if the security require-
ments for such an identification are met.

To conclude the list of assumptions it has to be remarked that it is always
important to scale the security mechanisms according to the potential damage.
Every user should use the best available security measures given his resources.

6.1 Analysis of the SePP-Jade Solution

The join process in SePP is secured and provides authentication. This guarantees
that only legitimated peers can join and participate in the overlay network. After
peers have joined the SePP network, different secure routing algorithms can be
used to guarantee the integrity of the network. These routing protocols allow
for a secure establishment and maintenance of end-to-end paths in the overlay
network. Depending on the overall security requirements and selected security
level, SePP provides means for data authentication and confidentiality. SePP
uses well known cryptographic algorithms and protocols to ensure the security
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of the data. Reply protection is also integrated into SePP through its messaging
system.

The security levels and SePP are designed in such a manner that for low
everybody can participate and no cryptographic protection is applied. Thus, no
guarantees on the security of the system can be given.

In security level medium shared secret keys are used for node authentication.
Therefore, the secure routing protocol which enforces authentication based on
these secret keys provides protection from outsider attacks. In this security level
insider attacks are still possible.

In security level high digital signatures are used to secure the established
routes. Thus, also insider attacks from non-collaborating peers can be prevented.
Non-collaboration means that the peer does not control any other peer on a path
from the source to the destination. If peers collaborate they can always perform
a wormhole attack by tunneling the route request from one peer to the other and
effectively shorten the route length. This attack only works if the controlled path
is also the fastest. Otherwise the request would arrive to late to be selected from
the destination as new route to the source. For instance, peer D is the source and
peer C is the peer who meets the destination information requirements. Now if
peer B and peer J of figure 3 collaborate and the tunneled request would arrive
earlier than the other one traveling over A and E, this attack still succeeds. Such
attacks can currently only be mitigated if location information and synchronized
clocks are used [12, 18].

7 Performance Evaluation

To benchmark our implementation we compared it with JADE’s out-of-the-box
RMI implementation. We used the PartyAgent application from the JADE ex-
amples. Within this application we created 500 PartyGuest agents which send
several messages to each other in order to pass on some gossip. We measured the
time from the start of the application until all messages are sent, and the party
has officially ended. During this time about 7000 messages have been sent and
received from the agents. The party host agent is responsible for about 99% of
the messages.

The tests have been performed on HP personal computers with Intel Core
2 Duo E8600 processors with 3.33 GHz and 4 GB RAM and Windows 7 as
operating system. The SePP framework implementation has been executed on
Java JDK 6 Update 17 runtime environments. During the test no virus program
or firewall was active.

The values in table 1 have been obtained from different runs of the PartyAgent
application. These values show how long one specific run of the application took.
In the first column the values from the vanilla JADE version using RMI without
any security feature are presented. The next two columns show the amount of
time it took for the same application to finish using SePP with security level
medium as communication layer. The first one has been obtained for the case
that the two peers have a direct connection. The second one depicts the case
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Table 1. Processing time of the different security levels at the participating peers

RMI [s] SePP (direct) [s] SePP (1 hop) [s]

1 4.40 15.40 16.20

2 3.70 14.80 16.90

3 3.40 14.30 15.90

4 3.60 16.10 15.80

5 3.50 14.00 15.40

6 3.90 14.60 16.10

7 3.40 13.40 15.40

8 3.70 15.00 15.80

9 3.30 16.00 15.30

10 3.40 14.30 16.00

Mean 3.63 14.75 15.88

that there is one intermediate hop between the main peer and the remote peer.
The run time of the JADE version using SePP is about four to five times slower
than the RMI version. This fact can be attributed to increased processing time
for cryptography and the P2P management and communication overhead. The
usual round trip time in SePP without transmission latency is about 500μs.
Thus, sending and receiving 7000 messages alone would account for 3.5 seconds,
which already is the mean run time of the RMI version.

8 Related Work

Multi-agent systems have been used in disaster response scenarios previously.
For instance disaster response [4], [5] have shown that MAS can be quite helpful
under such circumstances. But these approaches haven’t addressed security or
multi-hop communication requirements in anyway. They where only concerned
with showing the features MAS can provide in disaster response.

The JADE developers itself have proposed a security extension for its frame-
work [19]. Anyhow, this security framework is only intended as add-on for JADE
and therefore doesn’t address all requirements for security in such challenging
environments. Also their extension only provided interfaces for JAAS (Java Au-
thentication and Authorization Service) and they didn’t implement any security
itself or give instructions on how to use it. There exist also some other works
which have addressed security in JADE. But they are all theoretical and only
outline the requirements and discuss the necessary security features formally.
One such effort is [20].

Some other works have also addressed security of multi-agent systems. But
almost all have only been of theoretical nature. They have outlined the require-
ments in terms of security and shown what attacks and threats are possible with
in the domain of MAS. The most prominent such work is [6].
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9 Conclusion

In conclusion, the proposed multi-agent system with SePP as underlying
communication infrastructure enables the use of agent technology in multi-hop
environments in a secure way. We provided simple means of integrating and en-
hancing existing MAS with secure communication mechanisms without the need
for redesign or re-implementation of the MAS itself. We introduced an RMI-
style interaction layer which mediates between the MAS on top of a secure P2P
framework. The security management is separated from the MAS application
and can be adjusted according to the needs of the participating entities. With
our solution it is possible to comply with various security requirements in a fine
grained manner since it is possible to select security levels from a global to a
group scale. The introduced security guarantees increased robustness and the
added multi-hop functionalities justify the marginal negative impact on com-
munication performance compared to JADE’s RMI solution. Furthermore, we
believe that our solution has the potential to increase the efficiency of emergency
response operations for scenarios where an existing network infrastructure has
been destroyed or disrupted and the different parties had to rely on proprietary
or fall-back communication facilities.
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Abstract. The agent-based computing represents a promising paradigm
for emerging ubiquitous computing and ambient intelligence scenarios
due to the nature of the mobile agents that fit perfectly in these en-
vironments. However, the lack of the appropriate security mechanisms
is hindering the application of this paradigm in real world applications.
The protection of malicious hosts is the most difficult security problem
to solve in mobile agent systems. In this paper we describe our solution,
which is a mechanism to solve this problem. Our work is based in a new
agent migration protocol based on the use of tamper resistant crypto-
graphic hardware. Concretely, we base our work on the use of the Trusted
Computing technology. The result of our work is a library built on JADE
that implements the secure migration for agents named Secure Migra-
tion Library for Agents (SecMiLiA). This library provides a friendly use
of the Trusted Computing technology for agent based system developers.

Keywords: TPM, cryptographic hardware, agent protection.

1 Introduction

While mobile agent paradigm expresses many advantages over the traditional
network computing models [4], the code mobility of the mobile agents brings
some severe security problems. Current research efforts in the security of mo-
bile agent field adopt two different points of view. Firstly, from the platform
perspective, we need to protect the host from malicious mobile agents such as
viruses and Trojan horses that are visiting it and wasting resources. Secondly,
from the mobile agent point of view, we need to protect the agent from ma-
licious hosts. Both points of view have attracted much research effort. In [7]
authors show that scientific community put many efforts in this field, indeed
many applications exist based on this technology. However all these efforts loose
their values due to they are not based on a secure robust basis to build applica-
tions. This fact encouraged us to afford the task of the malicious hosts. For this
purpose we make use of a tamper resistant cryptographic hardware. Because of
the recent approaches in the Trusted Computing technology and their cheaper
price we choose this technology to implement our protocol. However, the secure
migration protocol can be implemented on any tamper resistant cryptographic
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hardware, such as the smartcards. In [7] two mechanisms are presented to pro-
vide security for the agent based systems. Firstly, a software based solution built
on the protected computing approach [6] is introduced. Secondly, a complete
description of a hardware based approach is explained. This approach is the
basis of the work presented in this paper. This paper is organized as follows.
Section 2 deals with the State of the Art. Section 3 gives a perspective of the
role of the Trusted Computing in the agent protection. Section 4 presents the
SecMiLiA. Section 5 describes some issues found in the design and development
of the library. Section 6 gives an overview of the main services provided by the
library. Section 7 introduces some supporting technology. Finally section 8 gives
some concluding remarks.

2 State of the Art

Some mechanisms are oriented to the protection of the host against malicious
agents. Among these, SandBoxing [9], proof-carrying code [8], and a variant
of this technique, called proof-referencing code [2]. One of the most important
problems of these techniques is the difficulty of identifying which operations (or
sequences of them) can be permitted without compromising the local security
policy. Other mechanisms are oriented towards protecting agents against mali-
cious servers. Among them the concept of sanctuaries [12] was proposed. Several
techniques can be applied to an agent in order to verify self-integrity and avoid
that the code or the data of the agent is inadvertently manipulated. Anti-tamper
techniques, such as encryption, checksumming, anti-debugging, anti-emulation
and some others [1,11] share the same goal, but they are also oriented towards
the prevention of the analysis of the function that the agent implements. Ad-
ditionally, some protection schemes are based on self-modifying code, and code
obfuscation [3]. The technique known as co-operating agent [10,5] consists
on the distribution of critical tasks of a single mobile agent between two co-
operating agents. Each of these agents executes the tasks in one of two disjoint
sets of platforms. Finally there are techniques that create a two-way protection.
Some of these are based on the protected computing approach [7]. Most of these
approaches are software based solutions. However, it is important to consider the
fact that the degree of confidence in software-only security solutions depends on
several factors sometimes uncontrollable, such as their correct installation and
execution. This can be affected by all other software that has been executed
on the same platform. For this reason, experts conclude that trusted hardware
is needed as the basis for security solutions. We aimed that our solution takes
advantage of the recent advances in the trusted computing technology.

Agent migration consists on a mechanism to continue the execution of an agent
on another location. This process includes the transport of agent code, execution
state and data of the agent. The migration in an agent based system is initiated
on behalf of the agent and not by the system. The main motivation for this
migration is to move the computation to a data server or a communication part-
ner in order to reduce network load by accessing a data server a communication
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partner by local communication. Then migration is done from a source agency
where agent is running to a destination agency. Migration can be performed by
two different ways. Moving is the process in which the agent is removed from
the source agency when is copied in the destination agency. Cloning consists on
the agent is copied to the destination agency. Henceforth, the two copies of the
agent coexist executing in different places. In the remainder of this paper and
at least stated explicitly we will use the term migration to refer to both cloning
and moving of agents. Our approach is addressed on achieve a secure migration
process. For this reason we propose a hardware-based mechanism to provide se-
curity to agent systems. The TPM provides mechanisms, such as cryptographic
algorithms, secure key storage and remote attestation that provides important
tools to achieve a high level of security.

3 The Trusted Computing Technology in the Agent
Protection

Previously we aimed that is essential the integration of new trusted security
mechanisms in the agent software field to achieve a reasonable security level. For
this reason we propose a proposal based on the appeals of the tamper resistant
cryptographic hardware. This kind of technology provides some mechanisms,
such as cryptographic algorithms, secure key storage and remote attestation
that are essential to achieve a high level of security. The main appeal of the
SecMiLiA is that agent software developers are liberated of security engineering
related tasks, due to the underlying security of our approach.

However our main objective is to provide a high level of security for agent
execution avoiding possible attacks of the hosts. Then, we propose the use of
the trusted computing technology; indeed we use the Trusted Platform Mod-
ule (TPM). Mainly, due to TPM is compliant with the security requirements
mentioned above and this technology has other features like the standardisation
and the growing integration of this technology in the market. Additionally, the
supporting provided by many important companies leaders in the IT security
sector is a considerable appeal of this technology. TPM is the cornerstone of
our approach due to the security of our system is relies on it, this is following
explained. We identified two main pillars of agent protection. Firstly we have
to protect the execution element. The protection of this element is provided by
the root of trust provided of the TPM. It is based on controlling that only a
restricted set of operations can be executed. Secondly we have to protect the mi-
gration procedure, for this purpose, we use the remote attestation functionality
provided by the TPM. In order to facilitate the use of this mechanism we devel-
oped a full library based on the most used agent platform JADE.(Java Agent
DEvelopment Framework), which is a software Framework fully implemented in
Java language. It simplifies the implementation of multi-agent systems through
a middle-ware that complies with the FIPA specifications [14] and through a set
of graphical tools that supports the debugging and deployment phases.
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The basic idea behind the concept of Trusted Computing is the creation of a
chain of trust between all elements in the computing system, starting from the
most basic ones. Consequently, platform boot processes are modified to allow
the TPM to measure each of the components in the system and securely store the
results of the measurements in Platform Configuration Registers (PCR) within
the TPM. This mechanism is used to extend the root of trust to the different
elements in the computing platform. Therefore, the chain of trust starts with
the mentioned above TPM, which analyses whether the BIOS of the computer
is trusted and, in that case, passes control to it. This process is repeated for the
master boot record, the OS loader, the OS, the hardware devices and finally the
applications. In a Trusted Computing scenario a trusted application runs exclu-
sively on top of trusted and pre-approved supporting software and hardware.
Additionally the TC technology provides mechanisms for the measurement (ob-
taining a cryptographic hash) of the configuration of remote platforms. If this
configuration is altered or modified, a new hash value must be generated and
sent to the requester in a certificate. These certificates attest the current state of
the remote platform. We have seen that several mechanisms for secure execution
of agents have been proposed in the literature with the objective of securing
the execution of agents. Most of these mechanisms are designed to provide some
type of protection or some specific security property. Despite they only provide
partial solutions to the agent systems security.

We introduce the case that an agent executing in an agency (source agency)
plans to migrate to a different agency (destination agency). Both agencies take
measures of some system parameters, which determine the security, for instance
BIOS, keys modules from Operating System, active processes and services in the
system. Through these parameters an estimation of the secure state of the agency
can be done. Values taken are securely stored in the trusted device, in such a way
that cannot be either access or modified unauthorized. Agency has the ability to
report configuration values previously stored to other agencies in such a way that
these can determine its security. Before the migration the agent requests to the
source agency to determine the trustworthy on destination agency. By means of
this process an agent in a secure agency can extend the limit of its confidence to
other agency once the security of destination agency is tested.

4 Our Final Result: The Secure Migration Library
(SecMiLiA)

In this section we introduce the Secure Migration Library (SecMiLiA). This
library provides the secure migration functionality. In order to give a friendly
use of the security mechanism provided. We aimed that SecMiLiA is based on the
JADE platform. The main reasons for that fact are following described. Firstly,
because of the widespread use of the JADE platform in the agent community;
and secondly because of the interplatform migration mechanism provided by
JADE. The figure 1 depicts a block diagram that shows how the SecMiLiA is
built on JADE.
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Fig. 1. block diagram

4.1 The Set of Minimum Requirements of Our Library

The most relevant objective in the design of this library is the provision of a
secure environment in which agents can be securely executed and migrated. It is
relevant the easy integration in JADE, that is, no modifications in JADE might
be done, but as secondary aspect. Similarly to the provision of a friendly use for
agent software developers, who are not security expert. And the provision of a
library that complains with the existing security solutions.

As a final result we obtained a library that provides security to software agents
on JADE. We achieve this security level by means of a mechanism that allows
the secure migration. This secure mechanism is based on the testing the trust
of destination agency before the migration process actually is performed that
we explain in the next section. This guarantees that agent execution is always
performed in a secure environment. This gives a solution to the problem of the
malicious hosts. Thus, agent reaches a secure environment where its execution
goes on, in such a way that agents cannot modify the host agency.

We identified some minimum requirements in the design process of the
library. These requirements were grouped in two different sets, functional and
non-functional requirements. On the one hand, concerning the functional re-
quirements, the library must provide a mechanism for secure agent migration in
JADE platform, in such a way that the agent can extend its trustworthy lim-
its by means of adding secure agencies, both from its platform and from remote
platforms. It is important to mention the fact that, each agency must provide lo-
cal functionality, which is allowing an agent to migrate to a destination platform.
Similarly, each agency must provide the functionality to allow to other agencies
take integrity measures to determine if its configuration is secure. The library
must implement the protocol to allow configuration related information to in-
terchange from an agency to a different one. This is required to be implemented
in such a way that both agencies are trusted from the origin of this informa-
tion. Last but not least concerning functional requirements the library must use
trusted hardware. In this case we used a TPM to stored securely agencies data
integrity and reporting data to the agencies, which requested. On the other hand,
related with the non-functional requirements, we believe that the library might
be integrated in the JADE platform, in such a way that the library use does not
imply modifications in the JADE configuration. As well as, the operation of the
library must be transparent to the user. Library must ease the adaptation to
existent solutions to use security mechanisms provided in such a way that the
number of modifications is reduced at maximum. A generic security mechanism
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is provided to be easily adapted to concrete solutions. And it is important that
the library allows the possibility to be easily extended with future improvements
and new functionalities.

4.2 Secure Migration Protocol

Following we include an overview of the protocol that is the basis of our library.
This protocol is the basis to provide the security to the migration. We analyze
the different attestation protocols as well as the secure migration protocol. Then
we study their benefits to design the secure migration protocol. In [7] authors
described a draft of this protocol, which provides some key ideas to take into
account during the design process of the final protocol. Let us assume that the
agent is executing in a secure platform. Thus, the agent trusts in this platform
to check the migration security. Additionally, it is interesting to mention the
necessity of the use of the TPM to obtain and report configuration data. More
relevant ideas provided are that a protocol shows how an agent from the agency
requests to TPM the signed values from PCRs. Besides, the protocol shows how
the agent obtains platform credentials, these credentials together with PCRs
signed values allow to determine whether the destination configuration is secure.

Finally we analyse in depth the protocol .More relevant ideas from this pro-
tocol are; the use of an attestation identity key (AIK) to sign the PCR values;
the use of a certification authority (CA) that validates the attestation identity
key (AIK); and the use of configurations to compare received results from re-
mote agency. We designed a new protocol based on the study of the trusted
computing technology. Our protocol has some characteristics, for instance; the
agency provides to the agent the capacity to migrate by a secure way; and the
agency uses a trusted platform module that provides configuration values stored
in PCRs. The trusted platform module signs PCRs values using a specific attes-
tation identity key for the destination agency; in such a way that data receiver
knows securely the TPM identity, which is signed. A Certification Authority gen-
erates the needed credentials to verify the AIK identity. Together with signed
PCRs values the agency provides attestation identity key credentials producing
the signature. This signature is used to verify that the data are exactly from the
source TPM. A further description of this protocol is included in [15].

4.3 Verification of Secure Migration Protocol with AVISPA

The secure migration protocol described above is the basis of this research. Thus,
we want to build a robust solution, for this purpose the next step is validation
of this protocol. Among different alternatives we selected a model checking tool
called AVISPA.

AVISPA is an automatic push-button formal validation tool for Internet se-
curity protocols, developed in a project sponsored by the European Union. It
encompasses all security protocols in the first five OSI layers for more than
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twenty security services and mechanisms. Furthermore this tool covers (that is
verifiable by it) more than 85 of IETF security specifications. AVISPA library
available on-line has in it verified with code about hundred problems derived
from more than two dozen security protocols. AVISPA uses a High Level Pro-
tocol Specification Language (HLPSL) to feed a protocol in it; HLPSL is an
extremely expressive and intuitive language to model a protocol for AVISPA.
The operational semantic is based on the work of Lamport on Temporal logic of
Actions. Communication using HLPSL is always synchronous. Once a protocol
is fed in AVISPA and modelled in HLPSL, it is translated into Intermediate
Format (IF). IF is an intermediate step where re-write rules are applied in order
to further process a given protocol by back-end analyzer tools. A protocol, writ-
ten in IF, is executed over a finite number of iterations, or entirely if no loop is
involved. Eventually, either an attack is found, or the protocol is considered safe
over the given number of sessions.

System behaviour in HLPSL is modelled as a “state”. Each state has variables
which are responsible for the state transitions; that is, when variables change,
a state takes a new form. The communicating entities are called “roles” which
own variables. These variables can be local or global. Apart from initiator and
receiver, environment and session of protocol execution are also roles in HLPSL.
Roles can be basic or composed depending on if they are constituent of one
agent or more. Each honest participant or principal has one role. It can be par-
allel, sequential or composite. All communication between roles and the intruder
are synchronous. Communication channels are also represented by the variables
carrying different properties of a particular environment. The language used in
AVISPA is very expressive allowing great flexibility to express fine details. This
makes it a bit more complex than Hermes to convert a protocol into HLPSL.
Further, defining implementation environment of the protocol and user-defined
intrusion model may increase the complexity. Results in AVISPA are detailed
and explicitly given with reachable number of states. Therefore regarding result
interpretation, AVISPA requires no expertise or skills in mathematics contrary
to other tools like HERMES[13] where a great deal of experience is at least
necessary to get meaningful conclusions.

Of the four available AVISPA Back-Ends we chose the OFMC Model, which is
the unique that uses fresh values to generate nonce’s. However, this alternative
requires a limit value for the search. The results of our research are the following:

SUMMARY SAFE
....
STATISTICS

parseTime: 0.00s
searchTime: 564.34s
visitedNodes: 18 nodes
depth: 2000 plies

environment()

These results show that the summary of the protocol validation is safe. Also
some statistics are shown among them depth line indicates 2000 plies, but this
process has been performed for 200, 250, 300, 400, 500 and 1000 of depth values
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with similar results. A further description of this validation is out of the scope
of this paper.

5 Design and Deployment of the Library

In the development process were found some issues, such as a JADE system is
composed for a platform that keeps a main container in which agents are de-
ployed. Additional containers can be added to this platform, some of them can be
remote containers, and different platform can interacts among them, allowing the
migration of the agents between the agencies. Henceforth, we consider the same
platform and agency. Taking into account the JADE structure, we conclude that
two different kinds of migration exists, migration among containers from differ-
ent platforms and migration from containers in the same platform. In the case
that the migration is from containers from different platforms, the agent migrates
from a container from source agency to the destination agency main container.
In such a case that destination agency is not a JADE built-on platform the ar-
chitecture can be different, depending on the platform. In the other case, the
agent migrates from a container to another one but in the same platform. Both
migration processes imply some security concerns. The platform migration is not
secure because the main container from the source platform can be untrusted,
the migration between containers has the same problem, it is, if destination con-
tainer is not trusted; and the migration is not secure. Secure migration library
solves both risen problems. In this section we analyse the deployment and the
design of SecMiLiA. Firstly, we study the architecture of the library; secondly
we show the components and their related functionalities. The main use case is
a user that uses SecMiLiA to develop a secure agent based system. We consider
a relevant aspect to consider that the user is not a security expert. Traditionally
in these kinds of systems, the user defines the set of agents that compound the
system. Concretely JADE defines an agent by means of a class that inherits
from Agent class, using this new class the agent created is provided of the basic
behaviour of an agent. Therefore the user defines the specific behaviour of this
agent. Among the most relevant functionalities of a JADE agent we highlight
the compatibility with inter-containers migration. Concerning the main migra-
tion methods we highlight, doMove (Location1) moves the agent from a source
container to a destination one. The method named doClone(Location1, String
newName) clones the agent in container1 using newName as the name. Two main
services are provided by SecMiLiA. The AgentMobility service performs a secure
inter-platform migration in the same platform, and the SecureInterPlatformMo-
bility service, which uses the InterPlatformMobility service to perform the secure
intra-platform migration. We mentioned above that JADE Agent class provides
two “non-secure” migration methods, for this reason we have created a new class
that inherits from this class and redefines migration methods to perform a se-
cure process. This allows a complete integration in the JADE platform, as well
as provides a friendly use for agent software developers, who only need instance
the SecureAgent class and invoke the secureMigration method.
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Fig. 2. SecureAgent Class

6 Main Functionalities of SecMiLiA

This section describes the main services provided by the SecMiLiA as well as
the more relevant classes and methods of this library.

6.1 SecureAgentMobility Service

The SecureAgentMobility service provides the secure migration functionality be-
tween different containers in the same platform. Concretely, the “Helper” class
provides two important methods: (i) “secureMove” that allows secure agents
moving securely to destination container and (ii) “secureClone” that provides a
secure way to cloning agents in destination containers. The following algorithm
presents the case where an agent request for a service to move to a container (c2).
In this case the steps are: This protocol considers the service like a unique entity.
However, several components belonging to that service are avoided in order to
clarify. Other important issue is that the service invokes “doMoveOld” method to
start the migration, which functionality is similar to “doMove” from Agent class,
moving agent to destination. Previously to the migration, the service checks
that destination is secure. This fact allows a similar behaviour of the “doMove”
method from “SecureAgent” and the “doMove” method from the “Agent” class.
The content of these messages is encapsulated using:“AttestRequest_Interface”,
and the “AttestData_Interface” interfaces. The “AttestRequest_Interface” pro-
vides access to data from a request attestation message, and the “AttestData

Algorithm 1. The agent SA is moved to the container C2
1: SA agent requests for S1 service to move to C2
2: Service sends a remote attestation request to S2 service.
3: S2 service accepts the request
4: S1 service sends requested information to S2.
5: S2 service responses to S1 sending the attestation result.
6: S1 service starts agent migration to C2 container.
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_Interface” provides access to the attestation information from a concrete con-
tainer. Both interfaces encapsulate information from attestation protocol mes-
sages. To continue the attestation procedure the source container completes the
needed data using the “set” method. The “secureAgentMobility” service uses the
“AttestTool_Implement” class to complete data messages.

The “AttestTool_Implement” class manages attestation protocol messages,
that is, the generation of the messages in the sources and the verification in the
destination. “AttestTool_Implement” class is provided by access to system TPM,
for that purpose the “TPM_Interface” and the “CA_Interface” interface are ac-
cessed. This fact allows using both entity functionalities to complete messages.
“AttestTool_Implement” class allows to access to system configuration trough
the “AttestConfig_Interface” interface. “AttestTool_Implement” class manages
TPM access in such a way that attestation protocol can be performed. The
“AttestTool_Implement” class behaviour is similar to Key Cache Manager for
dealing with the TPM keys. The “AttestTool_Implement” class implements “At-
testTool_Interface” interface where secure migration process states codes are
defined. These error codes allow to agents to determine the results when do-
MoveError and doCloneError methods are called.

In order to generate and verify the attestation messages contents is needed
the use of a TPM and a certification authority (CA). More relevant reasons
for this are that (i) the TPM provides the functionalities to generate attes-
tation data; (ii) the needed functionalities to generate the attestation identity
keys (AIK); (iii) the functions to produce the data signature; (iv) and the func-
tions to allow the generation of random nonce values. We have to consider that
the Certification Authority (CA) provides the credentials generation. Firstly,
the “TPM_Interface” interface provides access to TPM functionalities. Among
them we found, the initialization of the interface with TPM module; the gen-
eration, dropping and activation of an attestation identity key request from
“reqData”. The certification authority received the “reqData” to provide the cer-
tificates. As well as, the functions to attest the configuration, etc. Secondly, the
“CA_Interface” interface provides the functionality to deal with the Certification
Authority. This interface contains some functions that provide the certification
authority label value, the identification and the public key, as well as the func-
tions to generate the credentials for the attestation identity key. Thirdly, the
“AttestConfig_Interface” provides access to platform configuration values, as
well as own platform values. This interface provides the PCRs indexes to the
remote containers, TPM owner password, storage of keys, etc.

A relevant aspect using the attestation identity key (AIK) in the protocol is
the production of the signature. The TPM generates the AIK and this must be
certified by a valid certification authority. Following we describe how the key is
generated and certified.

“AttestTool_Implement” is requested for generate an attestation identity key
key and a credentials request to TPM. Then, TPM is used to generate the attes-
tation identity key as well as the request and these are delivered to AttestTool.
Request is encrypted in such a way that only the certification authority is able to
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read. The “AttestTool_Implement” sends a certification authority request. Next
the Certification Authority (CA) is used to decrypt the request and generates the
credentials which are delivered to “AttestTool_Implement” in such a way that
only TPM can decrypt. The “AttestTool_Implement” sends the Certification Au-
thority (CA) responses to TPM. And TPM functionalities are used to decrypt
the requested data and sends the key data to the “AttestTool_Implement”.

Several interfaces interact in this process; (i) The “AIKRequestData_Interface”
contains the needed data to allow the TPM to generate the attestation iden-
tity keys (AIK), as well as, to create the credentials generation request. (ii) The
“AIKRequestData_Interface” contains the needed data to allow the certification
authority (CA) to generate the credentials for the attestation identity keys (AIK).
(iii)And the “AIKResponse_Interface” that contains the data to allow the TPM
to obtain the credentials generated by the certification authority.

At this point we briefly described some relevant classes. “AIKRequestData
_Interface” provides “getIdentityLabel()” method, this returns the attestation
identity key label. The “AIKRequest_Interface” provides access to the identity
label, data to the certification authority to certify the attestation identity key,
AIK public key from TPM, key wrappers, etc. “AIKResponse_Interface” inter-
face provides the functionalities to manage the attestation identity key, which is
to get the key handler in TPM, the attestation identity public key, attestation
identity key credentials, key wrappers, etc.

Once the attestation identity key reaches the destination the service generates
the configuration attestation data, then the signature is produced with these
data. Finally, we describe other important elements in this solution, we aim to
the credentials. Some classes are dedicated to deal with the credentials. The
certification authority generates the attestation identity key credentials defined
by “AIKCredentials_Interface” interface.

6.2 SecureInterPlatformMobility Service

The SecureInterPlatformMobility service uses most of used elements in the
SecureAgentMobility service. However, in this case we deal with migration

Algorithm 2. Secure migration protocol
1: SA agent requests S1 service to move to C2 container.
2: S1 service sends a remote attestation request to S1M service from main container of its platform.

3: S1M service sends a request for remote attestation to source platform AMS, A1.
4: A1 sends a request for attestation to destination platform AMS, A2.
5: A2 accepts the request and notifies to A1.
6: A1 notifies S1M service acceptation.
7: S1M service notifies S1 service acceptation.
8: S1 service sends request data to S1M service.
9: S1M service sends data to A1 request.

10: A1 sends request data to A2.
11: A2 responses to A1 sendind the attestation result.
12: A1 sends result to S1M service.
13: S1M service sends received result to S1 service.
14: S1 service starts agent migration to destination platform main container.
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between different platforms, that is, the service messages between the source
container and the destination container are not allowed. This implies that both
containers must belong to the same platform. This fact restricts the communica-
tion by using “Agent Communication Language” ACL messages. The secure mi-
gration protocol for SecureInterPlatformMobility service is following described.

The source container service needs the interaction of the main container service
to interact with the destination platform AMS, in such a way that the only way
to access to agent management system (AMS) class implemented from the main
container. The communication between the source platform AMS and the destina-
tion platform agent management system (AMS) is done by agent communication
language (ACL) messages. Destination AMS uses “AttestTool_Implement” class
to deal with service messages. The rest of service operation component is similar
to the SecureAgentMobility afore detailed.

7 Application of Secure Agents to Clouds Computing

The term “cloud” is used as a metaphor for the Internet, based on the cloud
drawing used in the past to represent the telephone network and later to depict
the Internet in computer network diagrams as an abstraction of the underlying
infrastructure it represents. Typical cloud computing providers deliver common
business applications online which are accessed from another web service or soft-
ware like a web browser, while the software and data are stored on servers. Most
cloud computing infrastructure consists of reliable services delivered through
data centers and built on servers. Clouds often appear as single points of access
for all consumers’ computing needs.

In general, cloud computing customers do not own the physical infrastruc-
ture, instead avoiding capital expenditure by renting usage from a third-party
provider. They consume resources as a service and pay only for resources that
they use. Many cloud-computing offerings employ the utility computing model,
which is analogous to how traditional utility services (such as electricity) are
consumed, whereas others bill on a subscription basis. Sharing “perishable and
intangible” computing power among multiple tenants can improve utilization
rates, as servers are not unnecessarily left idle (which can reduce costs signifi-
cantly while increasing the speed of application development). A side-effect of
this approach is that overall computer usage rises dramatically, as customers
do not have to engineer for peak load limits. In addition, “increased high-speed
bandwidth” makes it possible to receive the same response times from central-
ized infrastructure at other site. Obviously the most relevant issue to face is the
lack of the appropriate security mechanisms.

However we advocate for a new mode of clouds computing in which not only
data are processed by the clouds, instead of it user code´s could be executed
in the cloud. Evidently, the security is the cornerstone for the successful of this
approach. We envisage a parallelism between the security in this new vision of
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clouds computing and mobile agent systems, there are pieces of software that
are executed in different environments. Both environments present similar secu-
rity issues, and we propose to use the same model presented in this paper to
clouds computing.

8 Conclusions and Future Research

In this paper we provide a general solution based on solving the problem of the
“malicious hosts”. Our approach is based on the “Trusted Computing Module”
security capabilities. Despite our solution is a friendly library, but this is built
on a robust secure basis as we explained in this paper. Possible future lines of re-
search are the improvement of the keys management system of the library. Our
library uses RSA keys for attestation protocol that must be loaded in TPM.
However the size for key storage in the TPM is very limited, then it must be
carefully managed to avoid arisen space problems. The key management of our
library might be improved, that is, our library handles the keys in such a way
that only one key is loaded in TPM. Therefore, keys are loaded when will use
and downloaded after they are used. This procedure is not very efficient due to
the many key transactions done. We propose the use a mechanism that allows
to download the same key that we will use in next step, but this is an open
field for future researching. A different approach in the key management lies on
caching these keys. Thus, several keys can be loaded simultaneously in the TPM
making the management system more flexible and efficient. However, this ap-
proach presents some lacks. For instance, some kind of key replace policy might
be established to determine which key is removed for a new one cache. Never-
theless, this task is out of the scope of this paper and we only propose as future
researches. Another future line is to extend the library with new functionalities
to secure migration services to provide of concurrency. That is, the secure mi-
gration service implemented in the library provides secure migration to a remote
container, but they handle a unique request at the same time. Therefore, when
the migration request arrives while migration is actually performed those are
refused. This fact happens due to the TPM key management mentioned above.
A possible extension of the library is to provide of a secure migration service
with the capability to handle simultaneous requests. Finally, we propose the im-
plementation of the SecMiLiA in a different tamper resistant hardware such as
the smartcard to provide a proof of concept of the versatility of this approach.
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Abstract. The paper outlines to the problem of correlation between security and 
scalability of software protection against tampering based on the remote en-
trusting principles. The goal of the paper is to propose a technique allowing 
choosing the most effective combination of different protection methods to ap-
ply. The technique is aimed at finding a trade-off between performance of the 
protection mechanism and its security, ensuring both a necessary security level 
and an appropriate scalability. The technique encompasses the evaluation of 
particular protection methods belonging to the whole protection mechanism and 
getting quantitative metrics of their performance and security level.  

Keywords: Remote entrusting, performance analysis, security analysis, combi-
nation of protection methods. 

1   Introduction  

One of the most important requirements to software protection mechanisms is to pro-
vide a proper performance and scalability besides its security (attack resistance). This 
requirement is really necessary to implement to be able to use the mechanism in prac-
tice. Currently, software protection means, based on the client-server architecture, 
assuming that the server has to ensure correct service for a great number of clients 
working simultaneously, have not spread widely because of scalability problem. 

The mechanism of software protection based on the remote entrusting, proposed in 
the RE-TRUST Project [9], is aimed at discovering the unauthorized modifications of 
a client program functioning in potentially hostile environment. This mechanism 
assumes a client program, to be protected, is executed within untrusted client envi-
ronment, and a trusted entity is located on a safe host. According to the remote  
entrusting scenario [5], the protection mechanism uses different software (SW) and 
hardware (HW) based protection methods (Tamper Resistance methods, TR methods) 
as well as their combinations. Each of them being embedded into the whole protection 
mechanism represents some specific type of defense of a target application against 
tampering. The majority of TR methods assumes those implementation is shared 
between the client and the trusted server side. For instance, as one of TR methods, 
check sums are computed on clients and then delivered and checked on the server. 

According to the remote entrusting principles, the important aim of the protection 
is to minimize the server computations to make the mechanism more scalable. Other-
wise, if for every client the trusted server has to fulfill a lot of resource consuming 
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computations, the support of a great number of clients could appear to be problematic 
and practically infeasible. Thus, the problems of performance and scalability arise.  

This work is positioned at the conjunction of two research directions – security 
analysis and performance analysis of software protection methods. In contrast, the 
existing works address and estimate, for the most part, the security and performance 
of cryptographic protection methods, which better do for formal evaluation techniques 
[8, 13], or these properties of particular security protocols or tools [4, 11].  

The paper aims for reaching the trade-off between security and scalability within 
the problem of SW protection based on remote entrusting principles. The remote 
entrusting mechanism is based on client-server architecture and uses a bundle of pro-
tection methods, which essentially differ from each other by protection principles  
and are characterized by diverse security and resource consuming requirements. 
Therefore, the estimation of such protection methods turns out to be a problem of 
specific character, which should have an acceptable solution. For instance, a great 
heterogeneity and disparateness of Software Guards [1] and Barrier Slicing [6] protec-
tion methods stipulate difficulty of producing a unified approach to evaluate their 
security strength and performance. Thus, in contrast to more conventional investiga-
tions (i.e. analysis of security level and performance penalties of various crypto  
ciphers, hash functions, etc.), the evaluation of TR methods in question and their 
combinations appears to be a weakly investigated task.  

The paper is structured as follows. Section 2 considers shortly TR methods and re-
mote entrusting principles. Section 3 outlines the proposed problem definition and 
analysis. In section 3, we formalize the task to be solved. Section 4 contains the em-
pirical studies focused on evaluating the performance and security level. Conclusion 
surveys the paper results and future research directions.  

2   Tamper Resistance Methods and Remote Entrusting Principles 

In the paper we differentiate two notions: a protection mechanism and a TR or protec-
tion method. By the protection mechanism we mean the protection mechanism against 
tampering based on remote entrusting principles, which includes a combination of 
different TR methods. In Table 1 some TR methods being applied within the protec-
tion mechanism are referenced to. The complete list and description of the protection 
methods are considered in [9]. 

Table 1. Examples of TR methods used in the protection mechanism  

TR method References 
Control Flow Checking  [14] 

Invariant Checking  [10] 
Obfuscation techniques  [7] 
Checksum monitoring  [2] 

Crypto Guards  [1] 
Barrier Slicing  [6] 

Orthogonal and Continuous Replacement  [5] 
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Each TR method used within the mechanism implements one or several remote 
entrusting principles from the following list:  

– Remote attestation. The principle assumes embedding a specific software com-
ponent (monitor) into the client program. The monitor gathers data characterizing the 
program dynamic state and sends them to the trusted server for their checking. The 
principle is realized by means of such methods as invariant checking, control flow 
checking, checksum monitoring and others [1, 2, 7, 10, 14]. This protection principle 
supposes the fulfillment of a special detection function on the server. 

– Code splitting. This principle lies in the fact that some code segments of the cli-
ent program are extracted and transferred to the server. The goal here is to find and 
protect in such a way the most crucial parts of code. As a result an attacker can not 
directly access the processes running these code segments and, hence, is not able to 
influence them. As an example, barrier slicing method [6] implements this principle.  

– Dynamic replacement. First, the principle comes to regular replacement of the 
monitor embedded into the client program. Second, it implements replacement of 
some program components critical from the security viewpoint. Periodic replacement 
in both considerations targeted at impediment to attacks on the protection mechanism 
and protected program. A representative example of this principle is orthogonal re-
placement method [5]. This method supposes realization of replacement with by 
means of creating mutually independent (orthogonal) versions of the software com-
ponent on a basis of various obfuscation techniques.  

In contrast to existing protection mechanisms such as Pioneer [15], SWATT [16], 
Genuinity [12] and some others, which accomplish software protection on the basis of 
client-server architecture and particularly implement remote attestation principle, the 
proposed protection method [9] is remarkable for a dynamic character of protection. 
This dynamism is described by the following properties: dynamic change of a bundle 
of applied TR methods; dynamic installation and enforcement different TR methods 
modules on the fly without suspending the protection process. The choice of particu-
lar TR methods is fulfilled reasoning from their characteristics of resource consump-
tion and protection strength they provide.  

3   Problem of Trade-Off between Security and Performance 

The problem of achieving the reasonable trade-off between security and scalability is 
in the fact that, in addition to granting the proper security level, the protection mecha-
nism has to be quite scalable to support protection for a sufficiently great amount of 
clients. If the mechanism is insufficiently scalable, its effectiveness will appear to be 
close to zero, since it can not be exploited in practice. The actions, which influence 
the mechanism’s scalability, are primarily those ones that are fulfilled on the trusted 
server, i.e. verification functions and other procedures supporting the TR methods. 
The complexity of these actions grows proportionally to the amount of clients being 
served. Therefore reaching a good scalability requires using first of all those TR 
methods that do not contain any complex, resource consuming computations within 
the trusted entity.  

By the scalability aim we mean a requirement that the dependency between the 
computational complexity of the needed actions on the trusted server and the quantity 
of clients being fulfilled simultaneously should be close to a linear or even constant 
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function. It is obvious that the constant dependency is not feasible in practice, how-
ever the closer the dependency to constant one, the better scalability the mechanism 
reaches. More concrete, the scalability of the whole protection mechanism comes to 
the issue of scalability of each particular TR method.  

The approach presented in the paper consists of solving the following tasks: 

• Evaluation of resources consumed by each TR method on the trusted server.  
• Evaluation of security (attack resistance) level of each TR method.  
• Choosing the most effective (optimal) combination of TR methods for imple-

mentation under specific restrictions on available server resources.  

As a result, an optimal is a combination of TR methods that allows achieving the 
highest scalability of the mechanism, having the proper security level ensured.  

4   Problem Statements 

For convenience and uniformity, let us describe below the formal expressions specify-
ing the problem statement to select TR methods.  

(1) Let M be a set of all TR methods being realized within the protection mecha-
nism:  

M = { m1, m2, … mn},  

The set M = { mi }  is defined just as an enumeration of all the used protection meth-
ods mi, ni ,...,1= . 

(2) Performance determined by resource consumption function can be defined as 
p: M → P, where P is a subset of Rr – space of vectors, where r is a number of the 
server resource types. p matches each protection method to a vector of values of its 
resource specific metrics. For each resource type r a constraint C[r] characterizing 
size of this resource is determined as well. Thus, for each protection method mi, its 
resource consumption could be represented as a vector  

( )(1
imp , )(2

imp ,…, )( i
r mp ).  

(3) Security level is defined as a function determining a degree of provided protec-
tion for each TR method: s: M → S, where S – a subset of R characterizing the secu-
rity of different TR methods {mi}, ni ,...,1= , from the set of selected (used) methods. 

(4) The problem statement: 
The common goal, we would like to achieve, is represented as: 
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According to this formula, it is required to find a combination M
~

of TR methods 
that allows minimizing the total resource consumption and at the same time maximiz-
ing the total security level. In general case, the goal, we would like to achieve, is a 
multi-criterion optimization problem, which we suggest to bring to a single criterion 
one. 

As resource consumption function is defined by us as a vector function, we sup-
pose here to minimize some norm of it. There are several possible definitions of the 
norm in the space of resource consumption vector functions:  

 A single component that is the most critical. Here, | ∑p(mi) |  equals to the 
value of minimal component p(mi). 

 A distance between the vector of the total resource consumption and the con-
stant vector rRC ∈  characterizing server resources available for protection 
methods. 

Let us consider a refined statement of the problem we solve, which is expressed by 
the following formulas: 
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Here by )
~

(Mp  we mean the total value of resource consumption metric for a combi-

nation M
~

of TR methods, whereas ŝ  denotes a constraint determining the minimal 
due security level the methods should provide. Thus, the task to be solved is to choose 
a set of protection methods that the resource consumption function to be no more than 
a specific constant, having the proper total security provided. Constant ŝ  is assumed 
to be determined by means of both empirical study and theoretical analysis of resis-
tance of the protection methods. In practice, the precise value could be specified by 
the designer/administrator of the system and supposed to change. 

(5) Computation of performance and security metrics: 
Consider how p(mi) and s(mi) values could be determined for each protection 

method. Estimation of resource consumption is represented by the following ap-
proaches having both theoretical and empirical peculiarities:  

 On the theoretical level, each TR method is subjected to analysis and its 
model, representing its implementation, is constructed. Such a model contains 
merely those operations that are the most important for performance view-
point. Resource consumption metrics for protection method assessment are 
developed as well.  

 On the empirical level, both the software realization of this model on a high-
level programming language and the procedures to measure the resource  
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consumption metrics are completed. Computation of group metrics p is ful-
filled by means of the following formulas: 
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For each im and r the values of )( i
r mp  are obtained experimentally, whereas the 

values )( imp  and )
~

(Mp  are calculated analytically.  

The group metrics are calculated by means of the values of the single metrics. 
Therefore the quantity of experiments, conducted for group metric computation, 
represents a linear function of the amount of protection methods, instead of an expo-
nential one otherwise. 

The difficulty of s(mi) determining is in the fact that security according to its na-
ture is a qualitative characteristic of a protection method. Meanwhile, our task is  
supposed to contain also granting some quantitative character to security. The aim is 
to get a possibility in different cases to make a choice of the most preferable (from 
security viewpoint) combinations of protection methods. 

In general case protection level of a TR method mi is meant as a complexity of ac-
complishment of an attack aimed at its compromise. This approach includes attack 
complexity estimation for each TR method. In practice, however it is considered to be 
infeasible due to the complexity of analysis involved, including the complexity of 
estimating the attacker’s cognitive processes, which are the core elements in the proc-
ess of attack fulfillment by the intruder.  

We have proposed a technique based on expert judgments, which is supposed to 
collect and process the opinions of experts with use of system analysis methods. Each 
expert states a number (from 1 to 10) to each protection method. An advantage of this 
approach is that in its work it takes into consideration all knowledge and experience 
accumulated by all experts. In contrast to the previous approaches this one does not 
suppose any generalizations, which ultimately introduce extra inaccuracy into the 
outcome. Values s(mi) are obtained by means of questioning of experts and calculat-
ing averaged values for each protection method, taking into account both a priori and 
a posteriori competence of every expert in the field of a particular protection method. 

Values of group metrics of protection methods for combinations )
~

(Ms are calculated 

using the following formula: 

∑ ∈
=

Mm i
i

msMs ~ )()
~

(  .  

5   Empirical Study  

The technique of combining different protection methods consists of the following 
main stages: (1) performance evaluation, (2) security evaluation, and (3) determining 
the most effective combination of protection methods. As input data, a set of TR 
methods is used. As output data a set of combinations of TR methods is produced.  
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To evaluate the performance of TR methods, a SW prototype, implementing sev-
eral of them, including control flow checking (m1), invariant checking (m2), barrier 
slicing (m3) and orthogonal replacement (m4) has been realized. On a base of this 
prototype some measurements of resource consumption have been conducted. For 
each TR method, a highest quantity of clients that can be served simultaneously is 
evaluated. The value of intensity of the server loading is also measured. This intensity 
is a ratio between the time the server’s processor is loaded, when carrying out the 
protection method, and the entire time reserved for the method.  

Fig. 1 demonstrates some results of the experiments, including the evaluation of 
these four protection methods. Fig. 1 shows dependencies between the consumption 
of the resource r and the amount u of clients which can be served. Here the resource 

1=r  determines the metric of processor loading intensity ( 1p ), whereas C[1] repre-

sents a constraint of the whole available resource volume. )
~

(1 Mp  denotes the metric 

of resource consumption for a combination M
~

 of protection methods. 

 

Fig. 1. Dependencies between value of resource consumption and amount of clients 

The experiments have shown that in practice one should distinguish one-time  
procedures being accomplished by the server, when new client is connecting (in par-
ticular, actions on connection establishment, client authentication or crypto key agree-
ment), and the regular actions on verification of clients. Hence, one should avoid 
simultaneous mass client connections to avoid strong peak loading.  

In experiments during expert questioning [3], the data from ten security experts 
have been received.  

Table 2 shows the generalized estimations of security level for some of the meth-
ods investigated. One should take into account a relativity of these results. Surely, this 
evaluation technique can not be exploited as a proof of adequacy of the protection 
mechanism and especially to compare the strength of this mechanism with any other 
SW protection means. The technique under consideration represents relatively rough 
solution to evaluate protection methods, which adequacy is sufficient for TR methods  
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Table 2. Results of security evaluation of protection methods 

TR method Security level  
Barrier Slicing 9,0 

Orthogonal Replacement 7,8 
Continuous Replacement 7,1 

Crypto Guards 6,2 
Control Flow Checking 4,3 

Invariant Checking 3,3 
Obfuscation technique: opaque predicates 1,3 

Table 3. Experimental values of metric processor loading intensity 

         M 
  u  

m1 m2 m3 m4 

10 8,7 7,2 59,9 61,1 
20 17,4 14,3 95,6 81,5 
25 21,8 37,8 – 92,0 
50 43,5 35,7 – – 

100 87,1 71,3 – – 

 
combination task being solved. Thus, as a whole, this solution can be regarded as a 
supplement to security evaluation techniques based on formal approaches, which have 
their own drawbacks, particularly, as a rule, they are characterized by a significant 
complexity in implementation and further analysis. 

Thus, the technique, forming the search of optimal combinations of TR methods, 
comes to determining some numerical data characterizing, first, the performance for 
each method and, second, its security level.  

Table 3 contains the experimental values of metric 1p  obtained for different 

amount of clients (u) and different TR methods - control flow checking (m1), invari-
ant checking (m2), barrier slicing (m3) and orthogonal replacement (m4).  

The optimization problem settled in Section 4 is tackled by an improved exhaustive 
search, supposing a restriction of combinations under consideration, cutting those 
ones that are deliberately not optimal. Note, for methods m3 and m4 for some u values 
the metric values are not specified, that is for this amount of the current size of 1r  this 
amount of clients can not be served.  

6   Conclusion 

In the paper we have proposed the technique determining how to combine various 
protection methods based on remote entrusting. The technique allows addressing the 
problem of reaching the compromise between scalability and security. On account of 
objective difficulties of correct security evaluation, we have chosen the technique  
of security evaluation based on expert judgments. The technique for evaluating the 
performance of protection methods comes to empirical study, where resources  
consumption values are obtained as metric values. Experiments to compute the values 
of performance metrics as well as to question the experts and process the received 
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judgments on security strength of protection methods were carried out. As a future 
work, we supposed to search and construct more comprehensive and precise tech-
niques of performance and security evaluation and perform more detailed experiments 
to choose efficient combinations of protection methods. 
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Abstract. This paper introduces a novel class-based method of survivable rout-
ing for connection-oriented IP-MPLS/WDM networks, called MLS-GEN-H. 
The  algorithm is designed to provide differentiated levels of service survivabil-
ity in order to respond to varying requirements of end-users. It  divides the 
complex problem of survivable routing in IP-MPLS/WDM networks into two 
subproblems, one for each network layer, which enables finding the solutions in 
a relatively short time. A genetic approach is applied to improve the quality of 
results by solving the problem iteratively.  

Modeling results show that, after a reasonable number of iterations, a good 
solution (up to 22.55% better than the initial one) is found and further  
improvement is hardly possible.  

Keywords: service survivability, IP-MPLS/WDM networks, routing, differen-
tiated levels of service resilience, genetic algorithms. 

1   Introduction 

Backbone networks are migrating from synchronous transmission infrastructure to 
next generation, high-traffic-volume data (e.g.: IP-MPLS or IP/Ethernet) over optical 
transport networks (OTNs). By applying wavelength division multiplexing (WDM), 
OTNs are capable of carrying many independent channels (currently 160 or 320), 
over a single optical fiber with the fastest channels supporting a data rate of 40 Gbps. 
Fiber cuts (the most typical network outages) may lead to service disruption and huge 
data and revenue losses. Survivability, i.e. capability to deliver essential services in 
the face of failure, or attack, is a key concern in network design. There are two ap-
proaches for providing survivability of connection-oriented IP-over-OTNs: protection 
and restoration [15]. In the protection approach, working lightpaths (being sequences 
of wavelengths over an optical network with fully optical processing at intermediate 
nodes) are protected by the pre-computed backup paths, applied in the case of work-
ing path failures. Restoration finds dynamically a new path, once a failure has  
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under the grant PBZ-MNiSW-02-II/2007. 
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occurred. Usually we distinguish either path protection/restoration, or link protec-
tion/restoration against a single link or node failure. However, intermediate solutions 
also exist, like e.g. area protection [9], partial path protection [17], or segmented 
shared protection [16]. 

1.1   Related Works 

Majority of publications focus on providing survivability in one (usually optical) 
layer. Recently, several papers have appeared on survivability models of IP-over-
WDM networks. Sahasrabuddhe, Ramamurthy and Mukherjee [15], assuming that 
each backup path in the WDM layer is arc-disjoint with the respective primary path, 
analyzed protection in the WDM layer, and restoration in the IP layer. They proposed 
four integer linear programming (ILP) models and heuristics to find solutions. 
Pickavet et al. [13] discussed three approaches to interworking between the network 
layers and two efficient coordinated multilayer recovery techniques.  

Ratnam, Zhou and Gurusamy [14] addressed the problem of efficient multilayer 
operational strategies for survivable IP-over-WDM networks and proposed several 
joint multiple layer restoration schemes with intra-layer and inter-layer signaling and 
backup resource sharing. Bigos et al. [4], and Liu, Tipper and Vajanapoom [8] de-
scribed various methods for spare capacity allocation (SCA) to reroute disrupted traf-
fic in MPLS-over-OTN. Cui et al. [5] proposed a multilayer restoration and routing in 
IP-over-WDM networks (called EROTRIP) with the bottom-up scheme and GMPLS 
token for signaling between the layers. Recently, Harle and Albarrak [7] proposed a 
model of differentiated survivability in a GMPLS-based IP-over-OTN network with 
cooperation mechanisms between control planes in different layers. 

1.2   Outline 

We consider here a survivable IP-MPLS-over-OTN-WDM network protected against 
a single node failure. Demands for IP flows are given. We assume M service classes, 
numbered from 0 to M-1. Class m = 0 represents the demands for which all service 
recovery actions must be performed as fast as possible (i.e. in the WDM layer). For 
other service classes, the values of IP-MPLS restoration time may increase. In the first 
stage of our algorithm, for each service class we find a node-disjoint pair of working 
and backup label switched paths (LSPs). Then we group the IP demands into service 
classes on IP links. In the next stage we map working LSPs of each class onto pro-
tected lightpaths according to available capacities of optical links. The scope of WDM 
protection depends on the service class number: in the highest class m = 0, each two 
adjacent WDM links of the working lightpath are protected by a backup lightpath, 
while in the lowest class (m = M-1) with no backup lightpaths, all the recovery actions 
must be performed at the IP-MPLS layer. We assume a bottom-up restoration strat-
egy. If a working path consists of more than one link, then a failure of the lightpath 
transit node can be restored in the optical layer. Connections which cannot be restored 
in the WDM layer, should be restored in the IP layer. All the optimization models are 
NP-complete, since their simpler version – the task to find |D| working paths in  
capacitated networks in a single network layer is NP-complete [11]. Therefore we 
propose the novel genetic approach, extending the one of [10]. 
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The rest of the paper is organized as follows. The survivable routing problem is 
sketched in Section 2. Heuristic algorithms are then developed to solve the problems: 
the MLS-H algorithm to find initial solutions, and MLS-GEN-H to improve them. 
Modeling assumptions are described in Section 3. Results discussed in Section 4 show 
that it is possible to decrease the total network cost by utilizing the technique of  
genetic algorithms. 

2   Survivable Routing of IP-MPLS Demands in the IP-MPLS/WDM 
Network 

Due to the complexity of the original problem of integrated survivable routing, similar 
to our work [10], we divide here the problem of survivable IP-MPLS/WDM routing 
into two following subproblems: 

a) survivable IP-MPLS routing consisting of determining the IP-MPLS virtual to-
pology and finding the survivable routing of IP-MPLS demands, 

b) survivable WDM routing (lightpath routing and wavelength assignment). 

Our goal is to provide the differentiated levels of service resilience in order to respond 
to varying requirements of end-users. This differentiation is defined in terms of the 
values of service recovery time and the frequency of performing the time-consuming 
recovery actions in the IP-MPLS layer. That’s why we introduce M service classes, 
numbered from 0 to M-1. Class m = 0 comprises demands, for which the time of ser-
vice recovery and the frequency of recovery actions in the IP-MPLS layer must be 
minimized. For other service classes, these values are allowed to increase.  

In order to achieve our goal, the number of working LSP links should depend 
on the service class m, and is determined as: 

⎥
⎥

⎤
⎢
⎢

⎡
+×

−
−

= 1
1

1ˆ m
M

t
m

μ
δ  (1) 

 

where: tμ  is the number of arcs of the end-to-end shortest path between 
the source pt and destination qt nodes of the t-th IP-MPLS demand 

 m is the class of a demand and M is the number of service classes. 
 

 

 

 

 

Fig. 1. Example IP-MPLS/WDM survivable 
routing (class m = 0) 

 Fig. 2. Example IP-MPLS/WDM  
survivable routing (class m = M-1) 
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It is clear from the formula (1), that any working LSP for the class m = 0 demand is 
established by a direct IP-MPLS link, as shown in Fig. 1. This implies in turn that no 
time-consuming IP-MPLS recovery actions will take place. On the contrary, for the 
class m = M-1, each link of the working LSP will be mapped onto a single-link WDM 
lightpath (Fig. 2), implying frequent recovery actions in the IP-MPLS layer. 

Similar to [10], the objective of the subproblem (a) is to find the survivable LSPs, 
where each working LSP is protected by the end-to-end backup LSP having no com-
mon transit nodes with the respective working LSP. 

Fast service recovery in the WDM layer is achieved here by limiting the scope of 
lightpath protection. For that purpose we determine the number of backup lightpaths 
protecting the given working lightpath as: 

| | 1
| | 1

1
r

m rm
M

πδ π−⎡ ⎤= − × + −⎢ ⎥−⎢ ⎥
 (2) 

 

where: rπ  is the number of arcs of the shortest path between the lightpath   
end-nodes; all the other symbols have the same meaning as in (1). 

From the formula (2), one can observe that δm decreases linearly with the increase 
of service class number m. In particular, it means that, for the class m = 0, any backup 
lightpath protects two adjacent links of the working lightpath, as shown in Fig. 1, 
while, for the class m = M-1, there is no backup lightpath for a given working light-
path and all the recovery actions must be performed in the IP-MPLS layer (Fig. 2). 
However, due to limitations on the number of working LSP links in the IP-MPLS 
layer (implying the decrease of the length of the working lightpath with the increase 
of the service class number m, as given in Eq. 1), the real scopes of WDM protection 
(measured in kilometers of fibers) remain at the same low level, independent of the 
service class number. This in turn provides fast service recovery in the WDM layer 
independent of the service class number. The only exception is for the class m = M-1 
with no backup lightpaths in the WDM layer.  

The backup LSPs are grouped into service classes and mapped onto the unpro-
tected lightpaths. The basic MLS-H algorithm is given in Fig. 3.  

Steps 1÷3 are responsible for determining the survivable IP-MPLS routing, while 
Steps 4÷6 are used to find the survivable routing in the WDM layer. Since each sub-
problem considered here is NP-complete, we have used only the heuristic approach in 
computations. Due to the limitations on the size of the paper, the respective ILP for-
mulations may be found in the electronic version at [20]. 

However, finding the solution to the survivable IP-MPLS routing problem in each 
network layer separately, as given in the MLS-H algorithm from Fig. 3, certainly 
leads to suboptimal solutions. To overcome this problem, in this paper we propose to 
use the metaheuristic approach based on genetic programming to improve the quality 
of results by solving the problem iteratively. Any genetic algorithm is a domain-
independent approach based on the mechanisms of natural selection and natural ge-
netics [6]. Its main advantage is the ability to perform the parallel search when finding 
the best solution as well as the adaptability to the problem.  
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INPUT   WDM layer topology Γ = (N, A), where N and A are the sets of nodes and arcs; 
 A set |DIP| of IP-MPLS demands, each demand dt given by a quadruple 
 dt = (pt, qt, m, f(μt)), where pt, qt, m, f(μt) are: the source node, the destination 
 node, the service class number and the requested capacity, respectively.  

OUTPUT   Survivable multilayer routing of demands 
   

 

Step 1   Create the matrix Ξ  of costs ξh, each cost ξh equal to the length of WDM arc ah.  
Step 2   For each demand dt, find a pair of working and backup LSPs using Bhandari’s 
 algorithm [3] and the matrix Ξ  of arc costs. 
Step 3 Divide the working LSPs into 

mδ  regions (Eq. 1) and replace each part of the  

                  working LSP, determined by the given region, with a direct IP-MPLS link.  
Step 4 Find the working lightpaths carrying the IP-MPLS working paths, using the  

                  Dijkstra’s algorithm [3] and the standard distance metrics, treating the aggregated  
                  flows from the same service class m between the end-nodes of the IP-MPLS  
                  virtual links vr, found in Step 3, as the demands for the WDM layer. 
Step 5 Divide each working lightpath into δm regions, as given in Eq. 2, and provide 

 each region with a dedicated backup lightpath. For that purpose, replace each  
                  part of the working lightpath, determined by the given region, with a pair of  
                  node-disjoint paths, found using Bhandari’s algorithm*. 
Step 6 Provide each aggregated IP-MPLS backup flow between the end-nodes sr and tr 

 of the IP-MPLS layer virtual link vr with the unprotected WDM lightpath*. 
*  if finding any lightpath is not feasible due to the lack of resources, then reject all the end-user  

     demands, for which the respective paths were to be groomed into the given lightpath  

  

Fig. 3. The basic MLS-H algorithm to find the survivable routing of IP-MPLS demands 

Any genetic algorithm starts with finding an initial population of |CH| chromo-
somes, each chromosome typically represented by a binary vector. Each next iteration 
is to find a new population of |CH| chromosomes, by choosing the best ones from the 
current population as well as from the sets of |CRS| and |MUT| new chromosomes, 
obtained in the crossover and mutation operations, respectively. In a single crossover 
operation, two chromosomes, randomly chosen from the current population, are used 
to produce a new pair of chromosomes. Each time, a crossover point is selected ran-
domly within the length of a chromosome, and the respective genes are exchanged 
with each other. 

Another operation - mutation, unlike crossover, makes changes within an individ-
ual chromosome, randomly chosen from the set of |CH| population chromosomes, 
rather than across a pair of chromosomes.  

In order to adapt the genetic approach to solve the IP-MPLS/WDM survivable 
routing problem, the following assumptions were made:  

 
Chromosome 
A single chromosome was formed by a matrix Ξ  of costs ξh of arcs ah = (i, j) used 
when finding the working and backup LSPs. The quality of a chromosome was meas-
ured in terms of the total link capacity utilization ratio by finding the solution 
to the respective IP-MPLS/WDM survivable routing problem, using the MLS-H algo-
rithm (Fig. 3) with the costs ξh of network arcs ah stored in the chromosome. 
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Initial Population 
The initial population of |CH| chromosomes was formed by |CH| matrices Ξ of arc 
costs ξh, each matrix obtained by introducing the random modifications to the matrix 
Ξ of the reference costs ξh of WDM arcs ah.  

 
Crossover 
This operation was performed on a pair of randomly chosen chromosomes chA and 
chB to obtain a new pair of chromosomes. A point of crossover was randomly deter-
mined first. The crossover operation assumed the exchange of parts of the symmetric 
matrix Ξ  of arc costs, as given in Fig. 4.  

 

 

Fig. 4. Example crossover operation in MLS-GEN-H algorithm 

 

INPUT   WDM-layer topology Γ = (N, A); A set of IP-MPLS layer demands DIP, each 
 demand given by a quadruple dt = (pt, qt, m, f(μt)), where pt, qt, m, f(μt) are: 
 the source node, the destination node, the service class number 
 and the requested capacity, respectively; the number of iterations ic. 

OUTPUT   Survivable multilayer routing of demands. 
   

Step 1  Set i = 0. 
Step 2  Create the initial population of |CH| chromosomes. 
Step 3  Obtain |CRS| new chromosomes by applying the crossover operation, each 
 such operation for a randomly chosen pair of existing chromosomes 
 from the population.  
Step 4  Obtain |MUT| new chromosomes by using the mutation operation, each such 
  operation for one chromosome randomly chosen from the population.  
Step 5 Measure the quality of |CRS| + |MUT| new chromosomes by executing 
 the MLS-H algorithm once for each given chromosome (matrix Ξ). 
Step 6 Choose |CH| out of |CH| + |CRS| + |MUT| best chromosomes to form 
 the new population. 
Step 7  If i = ic then return the best solution from the current population 
  else  
   Step 7.1   Set i = i + 1. 
 Step 7.2   Go to Step 3. 

  

Fig. 5. The MLS-GEN-H algorithm 

Mutation 
During a single mutation operation, a randomly chosen gene ge1 = (i, j) of a given 
randomly chosen chromosome, being the cost of respective arc ah = (i, j), was  
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assigned a random value from the range (0, ξ 

MAX), where ξ 

MAX
 was the length of the 

longest arc in the WDM layer. Since each cost matrix Ξ was symmetrical, the same 
random value was set to the gene ge2 = (j, i). 

The MLS-GEN-H algorithm is presented in Fig. 5.  

The algorithm first creates the set of |CRS| initial chromosomes (Step 2). Each it-
eration of the MLS-GEN-H algorithm is formed by the execution of Steps 3÷7. 
In Steps 3÷4, |CRS| and |MUT| new chromosomes are produced during the crossover 
and mutation operations, respectively. In Step 5, the quality of each new chromosome 
is verified by executing the MLS-H algorithm from Fig. 3. Finally, the best |CH| out 
of |CH| + |CRS| + |MUT| chromosomes are chosen to form the new population. 
The algorithm terminates after reaching the given number of iterations defined 
by the ic variable and returns the best solution from the last population. 

The MLS-GEN-H algorithm has the polynomial computational complexity of 
O(|N|2), since in Step 2 it executes ic⋅(|CRS|+|MUT|) times the MLS-H algorithm of 
complexity O(|N|2) to check the quality of new chromosomes. Additionally, each opera-
tion of crossover and mutation requires O(|N|2) and Θ(1) time, accordingly. 

3   Modeling Assumptions 

The modeling was to evaluate the properties of the proposed approach regarding 
the following characteristics: 

a) the average length and the average number of links of working and backup paths,  
b) the total number of broken connections and the average value of service restora-

tion time, measured in a single simulation scenario. 

The results additionally include the ratio of improvement in solution quality for 
the genetic approach as a function of the iteration number, measured as the decrease 
in the total number of channels, needed to provide the class-based survivable routing 
for the best solution in each next population. They are presented for four networks, 
namely, the European COST 239 Network, the Italian Network, the NSF Network and 
the U.S. Long-Distance Network (see Figs. 6÷9). 
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  Fig. 6. European COST 239 Network [18]                Fig. 7. Italian Network [1] 
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Fig. 8. NSF Network [12]  Fig. 9.  U.S. Long-Distance Network [19] 

All the WDM layer links were assumed to have 32 channels. Channel capacity unit 
was considered to be the same for all the links. Nodes had the integrated functionality 
of optical cross connects (OXCs) in the optical layer and of the IP-MPLS routers. 
OXCs were assumed to have a full wavelength conversion capability. 

Time of service restoration in the WDM layer comprised: time to detect a failure, 
link propagation delay, time to configure backup lightpath transit nodes and message 
processing delay at network nodes (including queuing delay). The recovery actions, 
that had to be finalized in the IP-MPLS layer, additionally included the following: 

− time to determine that the WDM layer is not able to restore the affected flow 
 (i.e. the time of unsuccessful recovery in the WDM layer equal to the time 
 needed to send the NODE FAIL message to the lightpath end-nodes) 
− time to reroute the affected flow in the IP-MPLS layer comprising: 

 time to detect the failure in the IP-MPLS layer IP
TDFτ , which includes the time 

to transfer the recovery token to the WDM layer. In simulations, the value 

of IP
TDFτ  = 20 ms was used, as defined in [2], 

 time to send the notification to the working LSP source node along 
the working LSP links about the failure, based on the aggregate transmission 
delay of the corresponding working lightpaths and message processing delay 

IP
MPDτ = 20 μs at the working LSP transit nodes (as given in [2]),  

 time to configure, test and set up the forwarding table at the respective LSRs 

set to IP
CNFτ = 10 ms (following [2]), 

− time to activate the backup LSP being the aggregate time to activate all the  
      respective unprotected lightpaths carrying the backup LSPs. 

 

For each IP-MPLS layer connection, the following properties were assumed: 

− demands from M = 5 service classes with protection against a single node failure,  
− the demanded capacity equal to 1/8 of the WDM link channel capacity, 
− protection against a single node failure, 
− provisioning 100% of the requested bandwidth after a failure, 
− a demand to assure unsplittable flows in both the IP-MPLS and the WDM layer,  
− the distance metrics and the Bhandari’s algorithm [3] of finding k-node disjoint 

paths (here k = 2) in all path computations, except for the unprotected lightpaths 
for the backup LSP links, found by the Dijkstra’s shortest path algorithm [3], 

− the number of generated populations set to ic = 1000, 
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− the size each population equal to |CH| = 20 chromosomes, 
− number of chromosomes achieved during the crossover and mutation operations 

in each iteration: |CRS| = 10 and |MUT| = 10, accordingly, 
− percentage of chromosome genes changed during the mutation operation: 10%, 
− type of mutation: random value insertion, 
− the three-way handshake protocol of service restoration in the IP-MPLS and 

WDM layer (the exchange of NODE FAIL, SETUP and CONFIRM messages). 

However, for the analyzed MLS-GEN-H algorithm, the time needed to perform 
ic = 1000 iterations using a Pentium IV 2.4 GHz workstation with 512 MB RAM was 
up to one week for a single demand set (for the case of the U.S. Long Distance Net-
work with the size of a demand set equal to 100% node pairs). For this reason, for any 
of the investigated network, computations were done for a single demand set only. 

The algorithm of a single modeling scenario is shown in Fig. 10.  

 

Execute the following steps: 

Step 1 Randomly choose |DIP| pairs (pt, qt) of nodes (|DIP|/M demands for each service class) *. 
Step 2  Try to establish the survivable connections using the MLS-GEN-H algorithm. 
Step 3 Store the ratio of link capacity utilization and the lengths of paths. 
Step 4 u* times simulate random failures of single nodes. For each failure, restore the broken 
 connections and memorize the values of connection restoration time. 

  
    * in each scenario, u = 100 was assumed. The number of demands |DIP| was set to 25, 50, 75 or 100% of all the  
     network node pairs chosen randomly, accordingly.  
  

 

Fig. 10. Research plan 

4   Modeling Results 

4.1   Average Path Lengths and Numbers of Links of Connection Paths 

Fig. 11 shows the average lengths of working and backup LSPs as a function 
of the service class number, while Fig. 12 gives the respective numbers of LSP links. 
Table 1 shows the lengths of the 95% confidence intervals of the average path length. 
Independent of the service class number m, the lengths of the IP-MPLS layer working 
and backup paths remain at the same level, characteristic to path protection scheme. 
The average number of IP-MPLS layer working path links, defined in Eq. 1, de-
creases with the decrease of the service class number m (Fig. 12), resulting in less 
frequent time-consuming recovery actions in the IP-MPLS layer for more important 
service classes. Since each link of the backup LSP is established as the one-hop light-
path, the average number of backup LSP links remains at the same level, independent 
of the service class number. 

Fig. 13 shows the average lengths of WDM layer lightpaths as a function of a ser-
vice class number, while Fig. 14 gives the numbers of WDM layer path links. Table 2 
presents the lengths of the 95% confidence intervals of the average lightpath length. 
The average length of backup lightpaths remains at the same level, independent of the 
service class number. However, the average length of working lightpaths decreases 
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Fig. 11. Average length of LSPs Fig. 12. Average number of LSP links 

Table 1. Lengths of 95% confidence intervals for the average length of LSPs [km] 

working LSPs backup LSPs 
network 

class 0 class 1 class 2 class 3 class 4 class 0 class 1 class 2 class 3 class 4 
NSF 160.30 161.38 173.98 176.46 175.28 - 204.80 179.38 181.08 175.13 

Italian 32.34 31.84 33.08 33.35 33.37 - 78.08 51.60 59.74 50.26 
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Fig. 13. Average length of lightpath Fig. 14. Average number of lightpath links 

Table 2. Lengths of 95% confidence intervals for the average length of lightpaths [km] 

working lightpaths backup lightpaths 
network 

class 0 class 1 class 2 class 3 class 4 class 0 class 1 class 2 class 3 class 4 

NSF 185.10 151.11 128.69 121.62 56.28 170.67 231.90 212.76 322.21 - 

Italian 27.15 18.89 12.32 11.15 6.61 15.75 32.78 24.61 26.79 - 
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with the increase of service class number. This is due to the fact that with the increase 
of the service class number, the number of IP-MPLS layer working LSP links in-
creases, and each link of the working LSP is realized by a shorter WDM lightpath. 

Fig. 15 shows the average lengths of unprotected lightpaths realizing the backup 
LSPs as a function of the service class number, while Fig. 16 gives the respective 
numbers of LSP links. Independent of the analyzed network, the average length 
of the unprotected lightpath, each unprotected lightpath realized by a direct WDM 
layer link (Fig. 16), remains at the same level for all the service classes.  

4.2   Service Recovery Actions 

Fig. 17 shows the aggregate numbers of service recovery actions for both the IP-
MPLS and the WDM layer, measured in a single scenario. It shows that, with the 
increase of the service class number, the number of recovery actions in the IP-MPLS 
layer increases, while the number of recovery actions in the WDM layer decreases. 
For the class m = 0, it implies that the WDM-layer recovery actions are sufficient to 
handle all the failure cases and, as a result, they provide fast service recovery. For the 
other service classes, with the increase of the number of IP-MPLS working path tran-
sit nodes, the frequency of IP-MPLS recovery actions gets increased. 
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Fig. 18. Average values of service  
restoration time 

Table 3. Lengths of 95% confidence intervals for the average values of connection restoration 
time [ms] 

WDM layer IP-MPLS layer 
network 

class 0 class 1 class 2 class 3 class 4 class 0 class 1 class 2 class 3 class 4 

NSF 2.24 2.94 2.91 3.90 - - 4.96 2.83 1.92 1.68 

Italian 0.24 0.40 0.27 0.00 - - 0.84 0.70 0.74 0.77 

 
The average values of service recovery time in the WDM layer, shown in Fig. 18, 

remain at the same low level (typical to the link protection scheme). This is true inde-
pendent of the service class number, since similar scopes of WDM-layer protection are 
provided for all the service classes. In each case, the values of service restoration time 
in the IP-MPLS layer are several times greater than in the WDM layer.  
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Fig. 19. Aggregate values of service  
restoration time 

Fig. 19 shows the aggregate values of 
service recovery time as a function of 
the service class number. Each aggre-
gate value was calculated as the sum of 
all the values of connection restoration 
time, measured in a single simulation 
scenario. These results give another 
proof of efficiency of the introduced 
approach. The ratio between classes m = 
0 and m = 4 was even of order 1:15 (for 
the Italian Network). Aggregate values of service restoration time for the highest  
service class (m = 0) were always the shortest ones. 

4.3   Ratio of Solution Quality Improvement 

Fig. 20 shows the advantage of the MLS-GEN-H genetic approach over the reference 
MLS-H method of solving the survivable routing problem in each network layer ex-
actly once. The ratio of solution quality improvement is given here in terms 
of the decrease of the total number of WDM link channels, required to provide 
the survivable routing of demands from the set DIP, as a function of the population 
number. For each i-th population, this ratio is given for its best chromosome. 

Due to maintaining a certain number (here |CH| = 20) of the so far calculated best 
chromosomes for computations in each next iteration and performing the parallel 
search in the solution space, the proposed MLS-GEN-H genetic algorithm obtained 
the results up to 22.55% better (Italian Network), compared to the results of the refer-
ence MLS-H approach. In this case, 632 against initial 816 link channels were 
needed. They also show that, after a reasonable number of iterations (e.g. 400), a good 
solution may be found and further improvement is hardly possible. 

 

0%

10%

20%

30%

1 101 201 301 401 501 601 701 801 901

population number

T
he

 r
at

io
 o

f s
o

lu
tio

n
 q

ua
lit

y 
im

p
ro

ve
m

en
t 

[%
]

COST 239 Network Italian 25% NSF Network U.S. Long-Distance Network

 

Fig. 20. The ratio of solution quality improvement (network load: 25% node pairs chosen ran-
domly; population size: 20) 

Fig. 21 shows the results for the U.S. Long-Distance Network for the case of vary-
ing network load. They are presented for four sizes of demand set DIP, consisting of 
randomly chosen 25, 50, 75 and 100% of all the network node pairs, accordingly. 
They show that the average number of iterations needed to obtain a good-quality 
solution increases with the increase of the network load. 
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Fig. 21. The ratio of solution quality improvement for U.S. Long-Distance Network (various 
network loads; population size: |CH| = 20) 

Table 4. Numbers of required WDM link channels for the best solutions for different popula-
tion sizes  

 
 

U.S. Long-Distance NSF COST 239 Italian 

best solution  for |CH| = 20 
chromosomes/population 

1530 256 378 632 

best solution  for |CH| = 60 
chromosomes/population 

1596 260 380 554 

best solution iteration number 
(20 chromosomes/population) 

72 103 809 535 

best solution iteration number 
(60 chromosomes/population) 

30 514 839 806 

 
 

Table 4 presents the numbers of iterations that were required to find the respective 
best solutions for all the analyzed networks with the demand sets consisting of 25% of 
randomly chosen node pairs. They are shown for two cases of population size, con-
sisting of |CH| = 20 and 60 chromosomes, accordingly. In all cases except for the 
Italian Network, after 1000 iterations, the obtained results were worse for the greater 
population size. This may mean that the number of iterations, needed to get the solu-
tion of a given quality, may be greater for larger populations. 

5   Conclusions 

In this paper we introduced the novel class-based algorithm of survivable routing in 
IP-MPLS/WDM networks providing differentiated levels of service survivability, 
based on the service class number. This differentiation was defined in terms of the 
values of service recovery time and the frequency of performing the time-consuming 
recovery actions in the IP-MPLS layer.  

The original problem of survivable routing in IP-MPLS/WDM network was di-
vided into two subproblems, one for each network layer. Finding the solution to the 
survivable routing in the IP-MPLS layer was followed by obtaining the results in the 
WDM layer. However, solving the two subproblems separately in a sequential manner 
might certainly lead to the results far from the optimal ones. To overcome this prob-
lem, the metaheuristic approach, called MLS-GEN-H, based on genetic programming 
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was proposed to improve the quality of results by solving the problem iteratively. 
This in turn enabled to perform the parallel search when finding the best solution. As 
a result, MLS-GEN-H algorithm achieved the advantage of up to 22.55%, compared 
to the results of reference MLS-H method of solving the two subproblems in each 
network layer exactly once.  
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Abstract. This paper presents an approach for predictive security anal-

ysis in a business process execution environment. It is based on op-

erational formal models and leverages process and threat analysis and

simulation techniques in order to be able to dynamically relate events

from different processes and architectural layers and evaluate them with

respect to security requirements. Based on this, we present a blueprint

of an architecture which can provide decision support by performing dy-

namic simulation and analysis while considering real-time process changes.

It allows for the identification of close-future security-threatening process

states and will output a predictive alert for the corresponding violation.

Keywords: predictive security analysis, analysis of business process be-

haviour, security modelling and simulation, complex event processing.

1 Introduction

With the increased adoption of service oriented infrastructures and architec-
tures, organisations are starting to face the need for an accurate management
of cross-process and cross-layer security information and events. The main con-
straint of current systems is the restriction of Security Information and Event
Management (SIEM) [8] to network infrastructure, and the inability to interpret
events and incidents from other layers such as the service view, or the business
impact view, or on a viewpoint of the service itself. Conversely, specific ser-
vice or process oriented security mechanisms are usually not aware of attacks
that exploit complex interrelations between events on different layers such as
physical events (e.g. access to buildings), application level events (e.g. financial
transactions), business application monitoring, events in service oriented archi-
tectures or events on interfaces to cloud computing applications. Nevertheless,
next generation systems should be able to interpret such security-related events
with respect to specific security properties required in different processes. On
the base of these events, the system should be able to analyse upcoming security
threats and violations in order to trigger remediation actions even before the
occurrence of possible security incidences.

In this paper we propose to combine process models with security policies and
a security model in order to identify potential cross-cutting security issues. We
furthermore suggest a blueprint of an architecture for predictive security analysis
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that leverages process and threat analysis and simulation techniques in order to
be able to dynamically relate events from different execution levels, define specific
level abstractions and evaluate them with respect to security issues.

2 Related Work

Our work combines aspects of process monitoring, simulation, and analysis. Some
of the most relevant contributions from these broad areas are reviewed below.

Business Activity Monitoring (BAM). The goal of BAM applications, as
defined by Gartner Inc., is to process events, which are generated from multiple
application systems, enterprise service busses or other inter-enterprise sources in
real time in order to identify critical business key performance indicators and
get a better insight into the business activities and thereby improve the effec-
tiveness of business operations [6]. Recently, runtime monitoring of concurrent
distributed systems based on LTL, state-charts, and related formalisms has also
received a lot of attention [5,3]. However these works are mainly focused on er-
ror detection, e.g. concurrency related bugs. In the context of BAM applications,
in addition to these features we propose a close-future security analysis which
provides information about possible security risks and threats reinforcing the
security-related decision support system components.

Complex Event Processing (CEP). CEP provides a powerful analytic com-
puting engine for BAM applications which monitor raw events as well as the
real-time decisions made by event scenarios. David Luckham [4] provides us
with a framework for thinking about complex events and for designing systems
that use such events. A framework for detecting complex event patterns can
be found e.g. in [10]. However such frameworks concentrate on detecting events
important for statistical aspects, redesign and commercial optimisation of the
business process. Here we want to broaden the scope of the analysed event types
by introducing complex security events in the CEP alphabet.

Simulation. Different categories of tools that are applicable for simulation of
event-driven processes including process modelling tools based on different semi-
formal or formal methods such as Petri Nets [2] or Event-driven Process Chains
(EPC) [1]. Some process managements tools, such as FileNet [7] offer a simu-
lation tool to support the design phase. Also some general purpose simulation
tools such as CPNTools [11] were proven to be suitable for simulating busi-
ness processes. However, independently from the tools and methods used, such
simulation tools concentrate on statistical aspects, redesign and commercial op-
timization of the business process. On the contrary, we propose an approach
for on-the-fly intensive dynamic simulation and analysis considering the current
process state and the event information combined with the corresponding steps
in the process model.

Security Information Management (SIM). SIM systems generally repre-
sent a centralized server acting as a ”security console”, sending it informa-
tion about security-related events, which displays reports, charts, and graphs
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of that information, often in real time. Commercial SIEM products include
Cisco Security Monitoring Analysis and Response System (http://www.cisco.
com/en/US/products/ps6241/index.html), EventTracker by Prism Microsys-
tems (http://www.prismmicrosys.com/EventTrackerSIEM/index.php), Sen-
Sage (http://www.sensage.com/products/sensage-40.php) and others. All
these products monitor the low-level events (such as network events) and per-
form event correlation only on the base of event patterns and rules. Our ap-
proach additionally considers the business process level events combined with
the current process state and business process information provided by a pro-
cess specification.

3 Blueprint of Architecture for Security Event Processing
and Predictive Security Monitoring

In this section we introduce our approach for security evaluation of event-driven
processes. Figure 1 depicts the core components which we consider necessary in
order to be able to perform a security event processing and monitoring analysis
in the context of a running event-driven business process.

The input elements which we need comprise, (1) a process model given in a
notation such as EPC, BPEL, YAWL or BPMN that contains a specification
of the events which can be triggered during runtime, (2) security policies which
contain information about the relations between the users involved in the process,
their roles and the relations between the roles and resources deployed by the
process, (3) a security model that should provide information about the process’s
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Fig. 1. Predictive Security Analyser
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predefined security requirements which will be used to construct the security
events patterns, and, (4) real-time events which will be triggered during runtime.

Model Editor. In order to analyse the system behaviour with tool support,
an appropriate formal representation has to be chosen because semi-formal lan-
guages such as BPMN allow to create models with semantic errors [2]. In our
approach, we use an operational finite state model based on Asynchronous Prod-
uct Automata (APA) [9]. An APA consists of a family of so called elementary
automata communicating by common components of their state (shared mem-
ory). The process model, the organisational model and the security model should
be imported and merged in a high-level model of the process and then this model
is translated into an APA, which will enable the computation of the possible sys-
tem behaviour. In general, we could also use other descriptions of processes with
unambiguous formal semantics here such as the approaches in [2] for BPMN or
[1] for EPC that allow for computation of possible system’s behaviour.

Reachability Graph Generator. Formally, the behaviour of an APA can be
given by a reachability graph which represents all possible coherent sequences
of state transitions starting with the initial state. In the context of on-the-fly
security analysis the reachability graph will represent the path given by the al-
ready triggered events, forwarded by the Event Preprocessor. The computation
will be automatically paused each time when the current state (according to
the triggered events) of the process is reached. In the context of predictive sim-
ulation analysis the Reachability Graph Generator computes all possible near-
future paths according to the given process specification, (e.g. sequences of at
most 2-3 plausible events). This will allow exhaustive analysis of all near-future
states to be performed in order to compute whether there exist possible security-
threatening states of the process which can compromise the process security and
match some of the event patterns saved in the Event Patterns database.

Security Simulator/Analyser. During the computation of the graph this
component will check for each state, whether the specified security properties are
fulfilled and trigger security alarms when possible security violations are found.
Furthermore, it is possible to detect new security violations that were not pre-
dicted by the available security patterns. In order to include them in the analysis
of future process instances, they will be logged in the History Logs database
and then they will be transformed into security event patterns and saved in the
Event Patterns database. The simulator will also enable security analysis by per-
forming intensive simulation which inspects the behaviour of complex/parallel
processes under given hypotheses (what-if analysis) concerning changes in the
organisational model/security policies or the process model.

Security Event Patterns. These patterns which are relevant for the corre-
sponding process are kept in the Event Patterns database and they should be
extracted from the provided security model. In order to be able to reason about
potential security problems, based on real life events, specific abstractions are
included in this extraction process so that the abstraction levels for the various
types of security-related events can be interrelated. Solutions for these kind of
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security analysis are already available but usually limited to a narrow field of
application such as IDS where e.g. the detection of a number of abnormal con-
nections could lead to a “worm detection” alarm. We propose a generic approach
leveraging these ideas and incorporating other types of security related events.

Event Preprocessor. In the context of on-the-fly security analysis the Event
Preprocessor is responsible for receiving the real-life events triggered during run-
time, matching them against the available security event patterns and forwarding
them to the Reachability Graph Generator. During predictive security analysis
the Event Preprocessor will generate all possible events according to the process
specification and will match them against the event patterns. Then it will forward
them to the Reachability Graph Generator in oder to enable the computation
of the process graph.

History Logs. In the History Logs database newly detected security-violating
sequences of events will be logged. These will be used to create new security
event patterns.

4 An Application Scenario

For illustrating how our architecture components, described in the previous sec-
tion, collaborate we will refer to a common example scenario for online credit
application.

4.1 Process Model

In an EPC graph events are represented as hexagons and functions that describe
state transitions are represented as rounded rectangles. Now consider the online
credit application process expressed in EPC notation in Fig. 2. The process
starts when an applicant submits an application form. Upon receiving a new ap-
plication form a credit clerk performs checks in order to validate the applicant’s
income and other relevant information. Depending on the requested loan amount
different checks are performed. Then the validated application passed on to a
manager to decide whether to accept or reject it. In both cases the applicant is
notified of the decision and the process ends.

new
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Fig. 2. Business Process Model
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Fig. 3. Predict near future security violations

4.2 Predicting Security Events

In our example scenario we consider the security event “large credit ALERT”
which is raised when too many large credits are approved for one customer (see
Fig. 3(a)). This is an example of an event abstraction or complex event generated
by a certain sequence of simple events, triggered in the process. Such complex
events are generated by CEP engines whenever certain predefined sequences of
events have been triggered.

Additionally, we apply such complex event patterns in a predictive way. This
means that whenever an event pattern is probably going to match by taking
into account a current partial match and a possible continuation of the current
state, these abstractions can be generated prior to the real-time triggering of the
simple events. In our example we generate an abstraction of the atomic events
“large amount requested” and “credit approved” triggered by the same customer,
namely the complex event “large credit approved”. Then if this complex event
is generated e.g. two times within a certain time and according to security reg-
ulations only two large credits can be given to one customer we can generate
the alert “large credit ALERT” in the upper abstraction level prior to the next
approval in order to ensure that the security regulations will not be overseen by
taking the credit decision.

4.3 Operational Model for Security Event Prediction

A computation of the possible system behaviour of a formal APA model of the
business process in Fig. 2 results in the reachability-graph depicted in Fig. 3(b).
The state M -3 e.g. represents the situation where an event of type “large amount
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requested” is available and can be processed by the action “check large amount”
which in turn will trigger an event of type “check large done”. After this, the
process is in state M -5, where the action “make decision” can be executed and
lead to one of the two possible followup states M -6 or M -7. M -7 is reached iff
the decision results in an event “credit approved”.

From this we now conclude that a predictive alert “large credit ALERT” can
be generated if, (1) the system is in a state where the number of large credits
allowed for one customer is exhausted, (2) an event “large amount requested” for
the same customer is received, and, (3) an evaluation of possible continuations of
the process’s behaviour based on the operational model shows that an additional
event of type “large credit approved” is possible within the forecast window.

The method described in this paper addresses security properties that can be
stated as safety properties. Possible violations of these properties are identified
by reachable states in the predicted system behaviour. Some examples of security
related event types that can be analysed by the method given in this paper are:

Confidentiality. Consider an event sending a cleartext password. Predict that in
one possible continuation of a process, an event about processing a cleartext
password locally may lead to an event sending that password.

Authenticity. Consider the physical presentation of a token which is known to
be unique such as a credit card or passport as parameter of two different
events with very close time and very different location.

Authorisation. Consider two events with persons with the same biometric pa-
rameters in different locations at the same time.

Integrity/Product counterfeiting. Consider RFIDs being scanned in places where
they are not expected.

Integrity/Safety. Consider two trains on the same railtrack. Predict that a spe-
cific constellation of switches leads to a crash in one possible continuation.

5 Conclusions and Further Work

In this paper we proposed a blueprint of an architecture for predictive security
analysis of event-driven processes that enables exhaustive process analysis during
runtime based on the triggered real-life events. Our approach is based on the
specification of an operational finite state model of the process behaviour We
have demonstrated how our methods can be applied in order to ensure certain
security regulations in the process of online credit application and how we can
construct event abstractions on different levels in order to detect current and
near-future threats.

Currently our components are prototypically implemented without automated
merging and translation mechanisms for the input models and specifications,
automated event pattern extraction and new event pattern composition. We
used the SH verification tool [9] to analyse an exemplary business process model
for different concrete instantiations (numbers of clients, and time-horizon) of
the model. In the future, we will further develop such techniques in order to
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automate the security analysis and simulation and extend the method to cover
liveness properties.

Furthermore, alerts in today’s monitoring systems by themselves bring little
value in the process security management if they cannot be acted upon. There-
fore, we have to provide additionally to the alerts alternative counter-measure
scenarios that can be quantifiable evaluated thanks to simulation. In this way
our analysis can be extended to provide feedback to the operators on feasibility
and impacts of both attacks and counter-measures.

Acknowledgments. The work presented in this paper was developed in the
context of the project Alliance Digital Product Flow (ADiWa) that is funded
by the German Federal Ministry of Education and Research. Support code:
01IA08006F.
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9. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool

Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-

puting, The International Journal of Formal Method 11, 1–24 (1999)

10. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in dis-

tributed systems. In: Endler, M., Schmidt, D.C. (eds.) Middleware 2003. LNCS,

vol. 2672, pp. 62–82. Springer, Heidelberg (2003)

11. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M.,

Fidge, C.J.: Workflow simulation for operational decision support. Data Knowl.

Eng. 68(9), 834–850 (2009)



Virtual Environment Security Modeling

Dmitry Zegzhda and Ekaterina Rudina

Saint-Petersburg State Polytechnical University,
Polytekhnicheskaya str. 29, Saint-Petersburg, Russian Federation

{dmitry,e-katerina}@ssl.stu.neva.ru,
ekaterina.rudina@gmail.com

Abstract. Virtualization allows to manage a lot of properties of com-
puter systems including the security of information processing. Goal of
this investigation is to state conditions of the ability of virtualization
mechanism to guarantee satisfying of the security policy. It is formally
proved that if the virtual environment is untrusted, virtualization mech-
anism should be run on the trusted operating system.

Keywords: virtualization, hypervisor, virtual environment, trusted sys-
tem, information security, untrusted application, security modeling.

1 Introduction

In general virtualization is a technique of the computer resources representation
to obtain new properties of these resources use.

The formal requirements for virtualizable architectures were originally defined
by Popek and Goldberg [1]. Their virtual machine monitor was built using the
call interception technique. Binary translation code has become highly compet-
itive to this approach nowadays [2]. However, the concepts of the virtualization
and virtual machine monitor (hypervisor) are being defined and widely used in
this paper independently of the method of their realization.

Hypervisor should answer at least the two conditions. Firstly, execution of the
virtual environment should be invariable to the execution of the non-virtual sys-
tem (equivalence property). Secondly, the virtualized resources should be com-
pletely separated (resource control property). Efficiency property is outside of
this investigation.

A hypervisor usually works as a regular application controlled by a (usually
non-virtual) system and does not prevent using other applications at the same
time. Virualization technique commonly is inessential. If defined so, hypervisors
of both Type-I and Type-II will be considered.

2 Related Works

A tendency has recently been observed to virtualize the information processing
means in order to enhance their security. Different approaches to construct the
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processing architecture has been used, most of them being aimed at the data
isolation and/or virtual separation of the processes. Examples of such solutions
can be found in [3], [4], [5], [6].

In [3] is asserted that the operating system and applications currently run-
ning on a real machine should relocate into a virtual environment, because it
enables services to be added below the operating system and to do so without
trusting or modifying the operating system or applications. Three services are
demonstrated as an examples (secure logging, intrusion prevention and detec-
tion, and environment migration), but the formal substantiation of that approach
is absent.

In [4] is presented an architecture that retains the visibility of a host-based
intrusion detection system, but pulls the IDS outside of the host for greater
attack resistance.

The authors of [5] use the technique, that is analogous to the virtualization,
to isolate the effects of untrusted program execution from the rest of the system.
Isolation is achieved by intercepting and redirecting file modification operations
made by the untrusted process so that they access a "modification cache" invis-
ible to other processes in the system. Key benefits of this approach are that it
requires no changes to the untrusted programs (to be isolated) or the underlying
operating system; it cannot be subverted by malicious programs; and it achieves
these benefits with acceptable runtime overheads. It is the same benefits that
offers the virtualization.

In [6] is also offered the approach to program isolation. The dangerous system
calls are intercepted and filtered via the Solaris process tracing facility. The
declared advantage is to reduce the risk of a security breach by restricting the
program’s access to the operating system. That access can be also restricted by
a virtualization hypervisor (according to a resource control property).

Nevertheless, the virtualization technology is able to provide more opportuni-
ties to secure information processing than simple isolation or access restrictions.

3 Problem Definition

In this paper we will regard program virtualization for executing untrusted ap-
plications in secure environment. Programs which cannot be directly executed
in this environment may be run by a virtual machine, though the operating sys-
tem is to control the access of the applications to the data which are to be kept
secure. Better functioning of the operating system can be achieved to a less cost
in this situation.

The problem is to define properties of the physical system which will be inher-
ited by the virtual environment. To describe the invariable property of programs
[1] a number of statuses of the virtualized system is considered as a homomor-
phic image of the statuses of a real system. Which properties of the virtualized
system does the homomorphism retain? Under what conditions can a virtual
system inherit not only the properties of the virtualized system, but of the base
system as well? To answer these questions we need to:
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– specify which security aspects can formally be guaranteed using the
approach;

– simulate a model of a computer, which can execute a definite set of programs;
– specify the hypervisor’s properties in terms of this simulation and according

to the definition given in [1] and describe how the initial system relates to
its virtual image, executed under the hypervisor’s control.

The goal of this investigation is to formulate the conditions under which any
application executing in virtualized system environment keeps secure, while ex-
ecuting the same applications in the same but not virtualized environment may
not be secure.

4 The Computing System Model. Integrated Security
Condition

Let us describe a model of a computing system M on which the problem defini-
tion will be based.

The crucial feature of the model is resources typification. A resource in com-
puting system is not only a named object keeping data. It is characterized by
its own access techniques and its interpretation when obtaining the data from
it. From the virtualization mechanism viewpoint, different computing system
resources should be regarded according to the technique of their interpretation
and to whether they can be virtualized using this mechanism separately from
other resources. In other words, the typification of these resources in terms of
their virtualization possibility should be applied. The resource type is constant
throughout its lifetime. Resources of different types can keep or transmit the
same data. The single-valued identification of the resource is necessary for its
obtaining or modification.

Thus, each uniquely identified resource of a computing system is determined
by its type and the data it keeps at every particular moment of time.

The model M = (P, R, TR, D, τ, δ, F, Prg, ϕ) is specified by the following sets
and mappings:

P a set of subjects (processes)
R, P ⊆ R a set of objects (resources)
TR a finite set of resource types
D the data kept or transmitted by the resource
τ : R→ TR resource type function
δ : R → D the function of data kept/transmitted by the resource
F = {fi}, i ∈ 1 : n a finite set of functions defining the system status ac-

cording to which resources it was applied
∀fi∃depi = {trij} resources the function executing depends on
∀fi∃effi = {trik} resources the function executing tells on
F

∗
a set of finite function sequences from F

Prg ⊂ F ∗ a set of programs for the system
ϕ : P → Prg a function matching a program to each process
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S = (P, R, p) a sequence describing the system status at each moment
p ∈ P an active process
C = {S} a set of system statuses

Program behavior prg ∈ Prg is described by a sequence Bprg = (Iprg, Oprg, Aprg),
where

Iprg ⊆ R a set of incoming resources
Oprg ⊆ R a set of outcoming resources
Aprg : δ(Iprg)→ δ(Oprg) an algorithm of program performance

Let us consider such security aspects as confidentiality of the data processed,
accessibility of this data (given that the access requested is legitimate), data
and environment integrity. To control the security in one of these aspects some
formal criterion is necessary. The criterion can be described as a predicate V ER,
active in a set of data. The predicate V ER performance should be guaranteed
at least for a specified subset of the computing system. The types of sensitive
resources build a subset CR ⊆ TR. The security condition may then be put
like this:

(∀r ∈ R(τ(r) ∈ CR) ⇒ V ER(δ(r))) (1)

This condition may be reduced to the requirement of confidence or integrity of
some data, to some special requirements to computer resources during processing
of these resources and so on. Hence, using of integrated security condition allows
us to apply our approach more broadly.

5 Virtual System Properties

Let us analyze the properties of the architecture considered using the model we
have introduced.

There is an insecure general-purpose system A and a secure system H . The
systems are used for processing data, kept or transmitted by other resources of
different types. The sets of their resource types completely or partially coincide.
The systems A and H are described by a model of a computing system M .
There is a predicate that describes executing the security aspect V ER : D →
{true, false} and type (1) data security condition. Data representation in the
both systems A and H is identical, i.e. their sets D coincide. As a result, predicate
V ER definition in systems A and H is identical.

System A, described by the model MA = (PA, RA, TRA, D, τA, δ, F, PrgA, ϕ),
may be virtualized under system H control as the third system V , described by
a model MV = (PV , RV , TRV , D, τV , δ, F, PrgV , ϕ)

1. The following properties are fulfilled for the system A relative to the sys-
tem V :
(a) RA ⊆ RV

(b) Invariability of the virtual environment relative to the real machine
∃HS : CA → CV which is such that
∀f ∈ F, ∀SA ∈ CA ⇒ ∃SV ∈ CV , ∃f∗ ∈ F ∗ : (H(f(SA)) = f∗(H(SA)))
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(c) Hypervisor control over virtualization of the resources of types V R ⊆
TRA

∀fi : depi ⊆ V R ∨ effi ⊆ V R
∀SA

1 ∈ CA, SA
2 = fi(SA

1 ), SV
1 = H(SA

1 ), SV
2 = H(SA

2 )
∃f1, f2, . . . , fk :
(SV

2 = f1f2 . . . fk(SV
1 )∧

(j ∈ 1 : k
(depj ∩ V R = ∅ ∨ effj ∩ V R = ∅)∨
(SV

j = f1f2 . . . fj(SV
1 = (Px, Rx, px) ⇒ ϕ(px) = V H))

2. For the base system H , described by the model, are fulfilled the following
properties:
(a) PH ⊆ PV

(b) RH ⊆ RV

(c) TRH ⊆ TRV , ∀r ∈ RH ⇒ τV (r) = τH(r)

3. The sets of programs, valid in A, H and V , relate to each other as
PrgV = PrgA ∪ PrgH and ∀p ∈ PH ⇒ ϕV (r) = ϕH(r) is met.

4. Resources, used for keeping and/or transmitting the sensitive data, are sub-
sets of the virtualized resources:
CRA ⊆ V R.

5. Behavior of the virtualization hypervisor as a program in system H
BV H = (IV H , OV H , AV H), IV H ⊆ R, OV H ⊆ R, AV H : δ(IV H)→ δ(OV H)
answers the security condition 1
∀SH

1 ∈ CH , ∀fi ∈ F :
(SH

1 = (PH
1 , RH

1 , pH
1 ) ∧ fi(SH

1 ) = SH
2 = (PH

2 , RH
2 , pH

2 ) ∧ ϕ(pH
1 ) = V H)⇒

(∀r ∈ RH
1 : (τH(r) ∈ CRH ⇒ V ER(δ(r))) ⇒

(∀r ∈ IV H ∪OV H ⊆ RH
2 (τH(r) ∈ CRH ⇒ V ER(δ(r))))

We will consider this conditions being true for the next propositions. Let’s view
what we should demand under these conditions if we want to supply the secure
execution of untrusted applications.

6 Security Requirements in the Virtual System

The following statement is proved.

Theorem 1. Let the following conditions for the resource typification functions
be met in the systems A and V

the resource typification function is mapped from MA to MV homomorphically,
i.e. ∃χ : TRA → TRV , ∀r ∈ RA ⊆ RV (τV (r) = χ(τA(r)))

and ∀t ∈ TRA : t ∈ CRA ⇔ χ(t) ∈ CRH

The virtual system V meeting the given conditions provides any program of
system A secure execution.
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In other words, when the given conditions are met, any program’s behavior in
V will be changed by the virtualization hypervisor so as to meet the security
requirements, even if the behavior of this program in A is insecure.

Proof. The proof of this statement is being made by reduction to absurdity. If
this statement is false, predicate V ER will be met and not be met simultaneously.

Nonsecure program behaviour in the system A means that some function in
some state of this system violates the security condition:

∃SA
1 ∈ CA, ∃fi ∈ F :

(SA
1 = (PA

1 , RA
1 , pA

1 ) ∧ fi(SA
1 ) = SA

2 = (PA
2 , RA

2 , pA
2 ) ∧ φ(pA

1 ) = prg)⇒
∀r ∈ RA

1 : (τ(r) ∈ CRA ⇒ V ER(δ(r)) = true) ∧ (∃r ∈ OA
2prg ⊆ RA

2 : τ(r) ∈
CRA ∧ V ER(δ(r)) �= true).

Particularly, that is followed by effi ∩CRA �= ∅.

Let us consider that if program were run under virtual machine, its behavior
wouldn’t change. Then following condition is met:

∃SV
1 , SV

k , ∃f1, f2 . . . fk : SV
1 = H(SA

1 ),
SV

k = H(SA
2 ) = H(fi(SA

1 )) = f1f2 . . . fk(H(SA
1 )).

Homomorphism describing invariability of the virtual environment relatively
to real environment saves the data representation. Resource type function ac-
cording to considered condition is mapped from real environment onto virtual
environment also homomorphically:

∃χ : TRA → TRV , ∀r ∈ RA ⊆ RV (τV (r) = χ(τA(r))).
If TRH ⊆ TRV then CRH ⊆ TRV .

Considering that ∀t ∈ CRAχ(t) ∈ CRH , let’s view homomorphic mapping of
nonsecure behavior of the function fi, then

∃SV
1 ∈ CV , ∃f ∈ Fi

(SV
1 = (PV

1 , RV
1 , pV

1 ) ∧ f1 . . . fk(SV
1 ) = SV

k = (PV
k , RV

k , pV
k ) ∧ φ(pV

1 ) = prg) ⇒
((∀r ∈ RV

1 : τV (r) = χ(τA(r)) ∈ CRH ⇒ V ER(δ(r)) = true)∧
∧(∃r ∈ RV

k : τV (r) = χ(τA(r)) ∈ CRH ∧ V ER(δ(r)) �= true)).

So it exists a nonsecure state reached from secure state of the systemV. (2)

From resource control condition we obtain

∀fi : depi ⊆ V R ∨ effi ⊆ V R
∀S1 ∈ C, S2 = fi(S1), SV

1 = H(S1), SV
2 = H(S2)

∃f1, f2 . . . fk : (SV
k = f1f2 . . . fk(SV

1 ))∨
(j ∈ 1 . . . k

(depj ∩ V R = ∅ ∧ effj ∩ V R = ∅)∨
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∨(SV
j = f1f2 . . . fk(SV

1 ) = (PV
j , RV

j , pV
j )⇒ φ(pV

j−1) = V H)).

V H behavior is secure in system H :

∀SH
1 ∈ CH , ∀fi ∈ F :

(SH
1 = (PH

1 , RH
1 , pH

1 ) ∧ fi(SH
1 ) = SH

2 = (PH
2 , RH

2 , pH
2 ) ∧ φ(pH

1 ) = V H)⇒
(∀r ∈ RH

1 : (τH(r) ∈ CRH ⇒ V ER(δ(r)) = true))⇒
(∀r ∈ IV H ∪OV H ⊆ RH

2 (τH(r) ∈ CRH ⇒ V ER(δ(r)) = true)).

As next conditions

PH ⊆ PV , RH ⊆ RV , TRH ⊆ TRV

∀r ∈ RH ⇒ τV (r) = τH(r)
∀p ∈ PH ⇒ φV (p) = φH(p)

are met, so V H behavior is secure in system V relative to base system re-
sources subset:

∀SV
1 ∈ CV , ∀fi ∈ F :

(SV
1 = (PV

1 , RV
1 , pV

1 ) ∧ fi(SV
1 ) = SV

2 = (PV
2 , RV

2 , pV
2 ) ∧ φ(pV

1 ) = V H)⇒
(∀r ∈ RH

1 ⊆ RV
1 : (τV (r) ∈ CRH ⇒ V ER(δ(r)) = true))⇒

(∀r ∈ RH
2 ⊆ RV

2 (τV (r) ∈ CRH ⇒ V ER(δ(r)) = true)).

Let’s show for the considering conditions that the running of the functions
fi : (depi∩V R = ∅∧effi∩V R = ∅) doesn’t affect the virtual environment state
SV

j security, where SV
j is reached with applying one or more of these functions to

some secure state SV
j−1. Security condition here is meant relative to base system

resources subset:

∀t ∈ depi ∪ effi(χ(t) ∈ CRH ⇔ t ∈ CRA)
(depi ∩ V R = ∅ ∧ effi ∩ V R = ∅)⇒ (depi ∩ CRA = ∅ ∧ effi ∩ CRA = ∅).

That is followed by � ∃t ∈ depi ∪ effi : χ(t) ∈ CRH .

The subset of resources affected by these functions in virtual environment,
doesn’t contain resources with types from CRH subset. Thus, security condition
can’t be violated by these functions being run in virtual environment.

Hence with the V H behavior security condition relative to resources of the
types of CRHsubset and the resource control condition for the sequence of states

j ∈ 1 . . . k(SV
j = (Pj , Rj, V H)) it follows that

∀r ∈ RV
j (τV (r) ∈ CRH ⇒ V ER(δ(r)) = true).

So we obtain
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∀fi : depi ∪ V R �= ∅ ∨ effi ∪ V R �= ∅
∀S1 ∈ C, S2 = fi(S1), SV

1 = H−1(S1), SV
2 = H−1(S2)

∃f1, f2 . . . fk : (SV
k = f1f2 . . . fk(SV

1 ))∧
∧(j ∈ 1 . . . k,∀r ∈ RV

j (τV (r) ∈ CRH ⇒ V ER(δ(r)) = true)).

Every state reached from secure state of the system V is secure. (3)

Obtained contradiction between (2) and (3) is followed by the absurdity of made
consideration. Hence, the behavior of the program being run in virtual environ-
ment will be changed, Q.E.D.

7 Conclusion

It is proved that under defined conditions the properties of secure data process-
ing will be inherited by virtual environment. An approach to extend functional
capabilities of secure operation systems using the virtualization technique has
been formally substantiated. The results obtained can be used to create require-
ments to the virtual environments adopted in this area. Such approach makes
the virtualization mechanism worthwhile in securing not only as a means of data
isolation and separation of their processing. It can also provide the inheritance
of secure base system’s properties by a virtual system.
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Abstract. The paper addresses to the technique of integrity control based on se-
curity settings evaluation which is made over variable software components. 
There are formal foundations of integrity control related to finding security  
settings which form trusted security environment. It also uses iterative search 
for security settings which are compatible and agreed with each other. Our ap-
proach results to a schema of Security and Integrity Control System that  
combines principles of automated control system and security management.  

Keywords: access control, automation, integrity, trusted information environ-
ment, security management, security settings. 

1   Introduction 

Contemporary security claims in IT-systems which are targeted at critical information 
utilization are that they have to be trusted in reference to information environment 
(IE) and security components. Basically, IE is a convergence of system software (e.g. 
operating system) and user applications (e.g., office-related software). To be a trusted 
one in security sense, the IE is to integrate a set of security mechanisms, which should 
realize protection methods. For the trusted IE (TIE), there is a great desire to accom-
plish a full set of security aspects, i.e. confidentiality, accessibility, and integrity. 
Having been emphasized at confidentiality and accessibility, access control methods 
seems to supply the IE with fair security. But access restrictions are not enough for 
pure assurance of complete information safety. Concerning with integrity, it is neces-
sary to clarify a traditional definition of overall system integrity and include a set of 
integrity-related aspects corresponding to reliability of system security components, 
stability of security settings, and invariance of security regulations. These aspects hurt 
system security, because they are focused on the TIE's unpredictable properties.  
We call this problem as 'the problem of integrity'. This paper proposes a technology 
targeted to settle it. 

2   Background and Related Works 

Integrity means assurance that information is authentic and complete [1]. In that 
sense, integrity problem could be resolved with well-known cryptographic approaches 
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(hash, checksums, etc.). Traditional definition of integrity is based on the data level 
and it does not involve the system wholeness. As the result, we can not completely 
trust the IE security that obtains assurance for data but not for the system itself. But 
demand for system integrity control is raised with two significant reasons:   

− a huge number of vulnerabilities in operating systems and program applica-
tions. Security flaws make the TIE's characteristics and behavior totally unpredictable 
and instable. As the result, the TIE can not be considered as the reliable (and secure) 
one. It means that IE is just a system with some number of security properties which 
depend on security of the components; 

− complexity of modern IT-solutions. Nowadays, IT-solutions integrate different 
software products shipped by different vendors. Some software has license limitations 
on code distribution; therefore there is no possibility to inspect overall system reliabil-
ity by code analyses. 

To solve the first problem, a number of security enforcing IT-solutions was imple-
mented: trusted versions of operating systems (e.g., Trusted Solaris [2], secure  
editions of UNIX systems [3]); security packs and midware (e.g. RSBAC [4], GRSe-
curity [5]); security gateways (e.g. Astaro Security Gateway [6]); delegating tech-
nologies (e.g., Multiple Independent Levels of Security [7]). All these solutions are 
united with a principle of system isolation. In that case, TIE stability might be treated 
as a desired security, but influence of human factor can not provide TIE with any 
stable integrity. Moreover, the security providing software causes compatibility prob-
lems with each other. The second factor means that the checksums calculated for any 
security component do not guarantee integrity of the whole system. This is a result of 
'a system property': summary of the given elementary properties does not directly 
provide the system with the same property (e.g., correct checksums calculated for 
executables do not mean the system integrity because binaries can run in different 
executive environments with different settings which can be changed while the  
system works).  

The TIE with unpredictable properties (integrity as well) can not be treated as pure 
secured and trusted. System integrity issues (e.g., stability of configuration, invariance 
of security restrictions) are not resolvable with cryptography techniques and thus they 
force us to look for new approaches. This paper proposes a technology targeted at 
solving the problem of integrity on the system level. Soul of the solution is formed 
with monitoring and controlling of IE's security states with giving a more precise 
definition for integrity as for a security property.  

3   Information Environment Integrity  

Traditionally, integrity is the ensuring that information can be relied upon to be suffi-
ciently accurate for its purpose. Term 'integrity' is frequently used when considering 
IT-security as it is represents one of the primary indicators of security (or lack of it). 
As mentioned above, integrity is not only whether data are 'right', but whether they 
are trusted and relied upon. Unfortunately, for system complexity (e.g., either differ-
ent security components or components with different security) and configurations 
instability, it is necessary to clarify the integrity definition taking into account all of 
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the system components besides data. We suggest updating the term of integrity. Integ-
rity is the ensuring that information environment is stable (invariable). The term 'in-
tegrity' is thus transferred from static to dynamic sense. Stable and variable parts of 
system integrity are presented in Fig. 1. Stable components include the functional 
modules that are founded at system designing and building: e.g. executables, operat-
ing system elements, data bases. There are the system components with long life-
cycle. Modifying any of these components forces ones to make considerable changes 
in the system (i.e., in its architecture, structure, and interfaces), to repetitive test and 
check the system security. Variable components are represented by occasionally 
modified system entities: e.g. security configuration settings (system registry values, 
access control rights, etc.), session elements (a list of running applications, etc.). 
There are the components with short life-cycle. 

 

 

Fig. 1. TIE in Integrity Scope: Structure, Threats, and Control 

Cryptographic integrity control methods are suitable only for the stable compo-
nents. Variable ones do not undergo cryptographic approaches for regular changes 
provided in the system: for example, installation of incompatible software (e.g., a 
couple of cryptographic libraries which use different releases of system API); soft-
ware update that induces the security re-configuration (e.g., Service Pack installation 
which results in access bits changed on folders and files); correction of the users list 
(e.g., adding a user leads to changes in the work environment, security settings, and 
user profiles). Therefore, if we want to reach trustiness for the system security we 
should control the system stability. As we can see, every change in the variable com-
ponent is applied to the system security configuration and thus can be referred to as to 
a mutual agreement between the settings of TIE's components including system soft-
ware, applications, and security mechanisms. 
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For better understanding the security and integrity aspects of the system trustiness, 
let's formally specify the solution of the integrity problem.  

The system state is characterized with: 

− a set of program components Ppi ∈ , where P depicts the set of TIE's compo-

nents, N∈i . A program item is specified with a program type TTn ∈ , where T is a 

set of program types (e.g., system software, user application, security mechanism), 
N∈n ; 

− a set of program attributes }{ nn T
j

T aA = , where nT  is a program type, ja is a 

component of program attribute; N∈j . Program attributes are the settings of the 

TIE's program components; 

− a set of attribute values }{ ,, inin pT
k

pT vV = , where ) A, T(pv nin T
ni

pT
k ,var, =∀ , 

N∈k . Function TT VAT: P →××var for the program item Ppi ∈  of type TTn ∈  

with attributes nTA returns the values nTV . 

To keep integrity, the system should, firstly, meet the security conditions at any of its 
security states and, secondly, the conditions of mutual agreement between the settings 
of TIE's components at any secure state. In other words, it means that every system 
state has to be secure and the security settings have to be agreed (compatible) with 
each other.  

The security conditions are met in the system when it provides the security accord-
ing to the security regulations (e.g., according to restrictions of security policy). For-
mally, the security control can be represented in the following manner (it is similar to 
discretionary and mandatory security models, but it is based on the predicative restric-

tions checking). The system Σ={ ΣS ,tr, Σ
inits ,Q} is a state machine, where ΣS  is a set 

of system states, TT VATPS ×××=Σ ; Q depicts a set of access queries; tr is a state 

transition function, ΣΣ → Str: S , which for the given access query Qq ∈  transfers 

the system from the state Σ
xs  into the next state )s,q(trs xx

ΣΣ
+ =1 ; Σ

inits  is the initial 

state. The state Σs is called reachable in the system Σ iff there is a sequence <( 0q , 

Σ
0s ), ..., ( nq , Σ

ns )>, where Σ
0s = Σ

inits , Σ
ns = Σs , and ),(1

ΣΣ
+ = xx sqtrs , 0≤x<n. For any 

system the state Σ
inits  is trivially reachable. In the most common case, the access con-

trol model M implemented in the system Σ can be represented as a set M = {S, R}, 
where S is a set of the model states (so called the security states), R is a set of access 
control rules. The access rules have a form of the predicates: r(q,s,s'). We define a 

function Spr: S →Σ  that specifies a correspondence between the system state and 

the security state. Predicate r checks that the result of the query q is a transfer of the 
system from the state s to the state s', i.e. there is the function 

(s)prs(s')pr'spr(ss')pr(s),s'tr(q,s's ΣΣΣΣΣΣ 11 ,),, −− =====  permitted by access 

control. Other words, transition of the system from the state ΣΣ ∈ Ss  to the next state 
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ΣΣ ∈ S's  is granted iff all predicates r(q,s,s') which permit that transfer are true:  

TRUE"")',,(:),'('),(:', =∈∀==∈∃∈∀ ΣΣΣΣΣ ssqrRrsprssprsSssS',ss .  

Property of security for the system Σ can be represented as Λ = {Σ,M,Cr}, where 
Cr is a set of security requirements (i.e. security criteria). The security constraints 
have a form of predicates like cr(s) defined on the states S. These predicates check the 
security of the states. The state Ss∈  is secure iff for each criterion Cc∈  all of the 

predicates c(s) are true: TRUE"")(:),(: =∈∀=∈∃∈∀ ΣΣΣ scCcsprsSsSs . 

Therefore, formally, the system Σ which implements the access control model M 
meets the security conditions iff: 

− the system Σ corresponds to the access control rules of the model M: 

TRUE"")',,(:),'('),(:', =∈∃==∈∃∈∀ ΣΣΣΣΣ ssqrRrsprssprsSssS',ss  

− the system states (i.e. a set of security settings and their values in the given 
state and in any reachable state) satisfy the security criteria:  

TRUE"")(:),(: =∈∀=∈∃∈∀ ΣΣΣ scCcsprsSsSs . 

Both of these issues can evident on system security.  
To represent the system integrity via the security settings agreement between  

the program components, let's to review the function 
TTTT VATPVATPref ×××→××× :  which for the set Tt Aa ∈  with values 

ptpt Vv ,, ∈  of the given program component Pp∈  of the type Tt ∈  points to the set 

of agreed attributes Tt Aa ∈'  with values ','',' ptpt Vv ∈ of another program item Pp ∈'  

of the type Tt ∈' . In common case, for this function there is no restrictions like 
'pp ≠ , because in the complex systems there is a mutual influence of the settings 

within sole program component (e.g., in the operating systems setting the values of 
some settings can refuse the action of other settings: for instance, in Windows, the 
registry key modification can suppress the Internet Explorer security option).  

Commonly, to each value of program item there is defined one (lets note it TV ) or 

several (lets depict it TT VV ⇐Δ± ) values referring to another program  

item: )( : TTT VVATPVATPref ⇐Δ±×××→××× . The reverse function 

)VV(ATP)VV(ATP:ref TTTT
⇒⇐

− Δ±×××→Δ±××× 1  defines the area TT VV ⇒Δ±  

for each point taken from TT VV ⇐Δ± . Existence of two areas TT VV ⇐Δ±  and 
TT VV ⇒Δ±  allows us formally specify the system integrity via agreement of the  

program items and their settings. Therefore, for the system that consists of a set of 
program items P, an area of symmetric relations has not to be empty: 

.';',,,  ),,','(

 ;,,','  ),,,(  :

,',':,

'1

',,

,,

∅≠∩><=

><=Δ±=
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⇒⇐
−
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Fig. 2. Integrity Universe Finding 

Intersection of all such areas provides the universe of integrity. Measure of integrity is 
a power of that universe. Fig. 2 demonstrates iterations of finding the integrity uni-
verse for three program components (operating system, application, and security 
mechanism). 

If the process starts from one setting, then the area of agreement consists of one 
element, and as the result the TIE obtains the stable integrity. If there is an area of 
reverse settings, which intersection with the start area is not empty, then there are two 
possible variants: 

− the reverse area re-calculation forms the parameters which are not secure. In 
that case, the system can not be considered as secure, because its configuration con-
tains incompatible settings. As well, there is no integrity in that system; 

− the reverse area re-calculation forms the parameters which satisfy the security 
criteria. In that case, there is necessary to recursively check all other program compo-
nents for their agreement between the settings. 

The discussed formalization makes it possible to compose the tools of dynamic secu-
rity and integrity control for any kind of TIE (see Fig 3 for the common schema of the 
security and integrity control system). Historically, theoretical approaches aimed to 
build a system that allows to manage any process are summarized in the form of con-
trol systems. The control systems that provide automatic mode of maintenance are 
called automatic control systems (ACS) (e.g. [8], [9]). ACS is used to synthesize and 
analyze common models and specifications of mathematical and technical processes 
and systems. They do not touch problems of the information systems, especially the 
security aspects. We suggest combining theory of ACS and a concept of controllable 
settings and thus constructing an automatic security management system which moni-
tors and controls the system security and integrity permanently in accordance to secu-
rity requirements (e.g., in [10]) . 
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Fig. 3. The Dynamic Security and Integrity Control System 

That system takes from ACS theory a paradigm of parameterized control applied to 
the target system. It is a closed-loop control system that requires no operator's action 
while it's working. This assumes the security estimation remains in the normal range 
for the controlled system. In our case, parameters to be controlled are the system 
security settings and their changeable values: a set and a structure of the critical sys-
tem program components (i.e. applications, services, executive files, processes, etc); a 
set and a structure of the access subjects (i.e. users, groups, members of groups, etc.); 
a set and a structure of the critical access objects (i.e. files, directories, registry keys, 
printers, shared resources, hierarchical structure, etc.); a set and values of the subjects' 
and objects' security settings (i.e. names, paths, IDs, privileges, access rights, owners 
IDs, etc.); a set and values and security options of the applications (i.e. Internet secu-
rity zones, login/passwords, firewall filtering rules, etc.) 

A set of security parameters is called a system configuration. The system configu-
ration is a manipulated variable (terminology of ACS). Another variable — a  
controlled variable — is a security and integrity estimation. It is maintained at a speci-
fied value or within a specified range. To control security, the system acts on the 
configuration to maintain the security and integrity estimation at the specified value 
or within the specified range. The control system gets information of the current  
system security configuration; evaluates the security of the current configuration; 
estimates the integrity of the current configuration over all program components; and 
adapts the system's configuration to security impacts. In that manner we obtain auto-
matic implementation of the permanent active cycle of security management applied 
to the practical IE and thus make IE a trusted one. 

4   Conclusion 

The paper has addressed to security problem of integrity monitoring and control in 
modern complex information environments. We have reviewed that the environment 
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contains variable and stable components. As for stable items, there are no innova-
tions; the cryptography algorithms are well suitable for integrity control. But for the 
variable components the new approaches are required.  

The paper has discussed the formal foundations of the suggested method of integ-
rity control for changeable program components of the trusted information environ-
ment. Our technique is based on finding the security settings which form the secure 
environment, and on consequent iterative searching of secure settings which are mu-
tually agreed with all settings of all program components. The suggested approach 
allowed us to propose a schema of dynamic Security and Integrity Control System 
which could automate process of security trustiness assurance. 
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