
Verification Technology for

Object-Oriented/XML Transactions

Suad Alagić, Mark Royer, and David Briggs

Department of Computer Science
University of Southern Maine

Portland, ME 04104-9300
{alagic,mroyer,briggs}@usm.maine.edu

Abstract. Typically, object-oriented schemas are lacking declarative
specification of the schema integrity constraints. Object-oriented transac-
tions are also typically missing a fundamental ACID requirement: con-
sistency. We present a developed technology based on object-oriented
assertion languages that overcomes these limitations of persistent and
database object systems. This technology allows specification of object-
oriented integrity constraints, their static verification and dynamic
enforcement. Proof strategies that are based on static and dynamic veri-
fication techniques as they apply to verification of object-oriented trans-
actions are presented in the paper. Most of this work has been motivated
by the problems of object-oriented interfaces to XML that have not been
able to express typical XML Schema constraints, database constraints in
particular. The components of this technology are an object-oriented con-
straint language, a verification system with advanced typing and logic
capabilities, predefined libraries of object-oriented specification and ver-
ification theories, and an extended virtual platform for integrating con-
straints into the run-time type system and their management.

1 Introduction

Most persistent object and object database technologies lack the ability to ex-
press the schema integrity constraints in a declarative fashion, as is customary
in conventional data models. The reason is that the mainstream object-oriented
languages lack such declarative logic-based specification features. Specification
of even the most typical database constraints is beyond expressiveness of object-
oriented type systems of mainstream object-oriented languages. This is why the
notion of a transaction in most object-oriented technologies does not include
a fundamental ACID requirement: consistency. Since object-oriented schemas
do not contain specification of general integrity constraints (and often not even
keys and referential integrity) requiring that a transaction should satisfy those
constraints becomes very problematic.

These limitations emerge when interfacing object-oriented technology with
XML. Virtually all object-oriented interfaces to XML, as well as typed XML
oriented languages, suffer from the inability to express constraints such as those

M.C. Norrie and M. Grossniklaus (Eds.): ICOODB 2009, LNCS 5936, pp. 23–40, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

24 S. Alagić, M. Royer, and D. Briggs

available in XML Schema [22]. These constraints include specification of the
ranges of the number of occurrences, keys and referential integrity. A core idea
behind type derivations in XML Schema is that an instance of a derived type
may be viewed as a valid instance of its base type. This includes the requirement
that all constraints associated with the base type are still valid when applied to
an instance of a derived type.

Overcoming these limitations becomes possible with the proliferation of ob-
ject-oriented assertion languages, such as JML [14] or Spec# [7]. Object-oriented
assertion languages now allow both specification of the integrity constraints in
object-oriented schemas and enforcing them when executing database transac-
tions. In addition to specifying constraints that are sufficient for XML types,
JML allows specification of mutation (update) of database state. Moreover, the
notion of a transaction that updates the database state maintaining the integrity
constraints of the database schema can now be specified in this technology. In
fact, if the actual Java code is provided, it will be possible to enforce the re-
quirement that a transaction must comply with the integrity constraints.

The availability of constraints makes it possible to use a prover technology for
automated reasoning about a variety of properties expressed by constraints. This
applies even to application properties that are not expressible in XML Schema.
Thus, reasoning and verification are supported in situations when XML data is
processed by a transaction or a general purpose programming language. While
dynamic enforcement of constraints is a reality in the actual systems, our goal
is to use a suitable prover technology to carry out deductions to statically verify
properties expressed by constraints.

Our choice of PVS (Prototype Verification System) [15] is based on its so-
phisticated type system (including subtyping and bounded parametric polymor-
phism) accommodating a variety of logics with higher-order features. A PVS
specification consists of a collection of theories. A theory is a specification of the
required type signatures (of functions in particular) along with a collection of
constraints in a suitable logic applicable to instances of the theory. Since PVS
is a higher-order system it allows embedding of specialized logics as we did for
temporal logic, applying the result to Java classes [2].

Our proof methodology for verification that a transaction respects the in-
tegrity of a schema equipped with constraintsrequires explicit specification of
the frame constraints of a transaction. The frame constraints specify the in-
tegrity constraints which the transaction does not affect. In addition, the active
part (the actual update) that a transaction performs is specified in a declarative,
logic-based style, and the verification is carried out using a proof strategy pre-
sented in the paper. This methodology is independent of a particular transaction
language [3]. Previous work on transaction verification includes [18,19,8,9,5].

The paper is organized as follows. In Sect. 2 we introduce a motivating exam-
ple which illustrates the main problems in object-oriented representation of XML
Schema constraints. Section 3 presents on overview of the architecture of our un-
derlying software technology for specification, representation and management
of constraints and their static and dynamic enforcement. Sections 4, 5, 6, and 7

Verification of Object-Oriented/XML Transactions 25

show how XML Schema constraints and transactions are specified using JML.
In Sect. 8 and 9 we present our techniques for representing JML specifications
in PVS. This is followed by the transaction verification techniques presented
in Sect. 10. Section 11 shows how our extended virtual platform contributes to
the overall technology for management of constraints, and their enforcement in
transaction verification.

2 Motivation: XML Schema Constraints

Although the technology presented in this paper is a general object-oriented
constraint technology, a substantial part of the motivation comes from the prob-
lems of interfacing object-oriented persistent and database technology with XML
Schema [13]. A typical XML Schema constraint specifies the range of the num-
ber of occurrences of an XML term (an element or a group). This type of a
constraint is illustrated below by a type XMLproject specified according to the
XML Schema formalism.

<xsd:complexType name = "XMLproject"

<xsd:sequence>

<xsd:element name = "leader" type = "XMLprojectLeader" />

<xsd:element name = "funds" type = "xsd:positiveInteger" />

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "1" maxOccurs = "5" />

</xsd:sequence>

<xsd:attribute name = "projectId" type = "xsd:string" />

</xsd: complexType>

XML Schema comes with two techniques for type derivation: by extension and
by restriction. Type derivation by extension can be represented using inheritance
in spite of some subtleties. However, object-oriented interfaces to XML cannot
represent type derivation by restriction because this form is, among other sub-
tleties, based on restricting the range constraints of the base type in the type
derived by restriction. This is illustrated below by a type XMLspecialProject
derived by restriction from the type XMLproject. A special project is required
to have exactly one contract.

<xsd:complexType name = "XMLspecialProject"

<xsd:complexContent>

<xsd:restriction base = "XMLproject" >

<xsd:sequence>

<xsd:element name = "leader" type = "XMLprojectLeader" />

<xsd:element name = "funds"

type = "xsd:positiveInteger" />

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "1" maxOccurs = "1" />

</xsd:sequence>

<xsd:attribute name = "projectId" type = "xsd:string" />

</xsd:complexContent>

</xsd:complexType>

26 S. Alagić, M. Royer, and D. Briggs

A sample application schema in this paper consists of a sequence of projects and
a sequence of contracts. Specification of these two types in the XML Schema
formalism is given below. The range-of-occurrences constraints are such that
representing these types in object-oriented interfaces would not be a problem
using parametric types such as a sequence or a list. But if the range constraints
were more specific like in XMLproject and XMLspecialProject, object-oriented
interfaces could not represent them.

<xsd:complexType name = "XMLsequenceOfProjects"

<xsd:sequence>

<xsd:element name = "project" type = "XMLproject"

minOccurs = "0" maxOccurs = "unbounded" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "XMLsequenceOfContracts"

<xsd:sequence>

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "0" maxOccurs = "unbounded" />

</xsd:sequence>

<xsd:complexType>

XML Schema also allows specification of typical database integrity constraints
such as keys and referential integrity. Project and contract keys are specified
below according to the XML Schema formalism, so that the attribute projectId
is a key for the sequence of projects and contractNo is a key for the sequence
of contracts. Object-oriented interfaces to XML such as DOM [11], LINQ to
XML [21] and LINQ to XSD [20] are constrained by the limitations of object-
oriented type systems. This is why they have no way of specifying any of these
constraints, because these constraints are not expressible in the standard object-
oriented type systems. The same applies to referential integrity constraints in
XML Schema illustrated below. This referential constraint specifies that the
contract numbers of contracts of a project must be valid, i.e., keys that actually
appear in the sequence of contracts.

<xsd:element name= "allContractsAndProjects">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "Contracts"

type ="XMLSequenceOfContracts" />

<xsd:element name = "Projects"

type = "XMLSequenceOfProjects" />

</xsd:sequence>

</xsd:complexType>

<xsd:key name ="contractKey" />

<xsd:selector xpath="./Contracts/contract" />

<xsd:field xpath="@contractNo" />

</xsd:key>

<xsd:key name ="projectKey" />

Verification of Object-Oriented/XML Transactions 27

<xsd:selector xpath="./Projects/project" />

<xsd:field xpath= "@projectId" />

</xsd:key>

<xsd:keyref name = "projectToContract" refer="contractKey">

<xsd:selector xpath ="Projects/project/contract" />

<xsd:field xpath ="@contractNo" />

</xsd:keyref>

</xsd:element>

The new proposal for XML Schema 1.1 [22] includes even more general con-
straints specified as assertions that are based on Xpath expressions. Complex ap-
plications naturally contain other types of constraints that cannot be expressed
in the XML Schema formalism and well-known object-oriented interfaces to XML
cannot represent them either. The problem here is that object-oriented interfaces
to XML are used in complex object-oriented software application packages that
should enforce the application constraints.

3 Architecture

The underlying support of this technology is an extended virtual platform (XVP)
implemented in a related project [17]. This platform allows declarative represen-
tation of constraints, introspection by extended reflective capabilities that re-
port constraints along with the type signatures, and interfacing with a program

File System
 Read Class

Access
Objects

via
JCR

XVP

XML types and
structures in JML

XML schemas and
transactions in JML

Class
Object

Class
Object

Class
Object

PVS

Dynamically
Enforce
Semantic
Conditions

Extended Class Objects

Statically Verify Behavioral Conditions

Fig. 1. Components of the technology

28 S. Alagić, M. Royer, and D. Briggs

verification system. The components of this technology represented in Fig. 1
inter-operate as follows.

– Application schemas are specified in JML by extending our predefined library
of JML specifications of the core of XML Schema.

– Application programs and transactions are also specified in JML and imple-
mented in Java, so that JML constraints will be enforced at run-time.

– JML specifications are compiled by a special compiler [17]. The extended
virtual platform [17] makes constraints available for introspection and en-
forcement.

– In order to carry out static verification the PVS theories relevant for the ver-
ification task are produced extending our predefined library of PVS theories
for the XML Schema core.

This architecture makes a variety of verification techniques possible by combining
static and dynamic techniques. If the constraints to be enforced dynamically are
taken as assumptions, other constraints, database integrity in particular, may
be provable statically. If so, the latter constraints will not have to be verified at
run-time, increasing efficiency and reliability of transactions.

4 Object-Oriented Assertions

The JML representation of an XML element XMLproject is specified below. The
three components of this specification are: the type information associated with
an element type, the type signatures of accessor functions, and the constraints.
In fact, the availability of constraints makes this representation possible. A com-
plete and correct representation would not be possible in a type system alone as
it requires constraints, like those expressible in JML.

A project element consists of three subelements (leader, contract and
funds), and a single attribute (projectId). These are specified in the inner types
(classes) ProjectElements and ProjectAttributes. The function elements re-
turns project elements and the function attributes returns project attributes.
Usage of parametric types appears in comments because their support in JML
is still under development.

// class XMLproject extends XMLelement<XMLcomplex>

public class XMLproject extends XMLelement {

/*@ ensures this.elements().fundsConstraint() &&

this.elements().rangeConstraint(); @*/

XMLproject(ProjectElements elements,

ProjectAttributes attributes) {. . . }

/*@ pure @*/

public ProjectElements elements() { . . . }

/*@ pure @*/

public ProjectAttributes attributes() {. . . }

/*@ ensures \result <==> ((XMLfloat)this.elements().funds().

value()).floatValue() >= 100000; pure @*/

Verification of Object-Oriented/XML Transactions 29

public boolean fundsConstraint() {. . . }

/*@ ensures \result <==> this.elements().contract().occurs() >= 1

&& this.elements().contract().occurs() <= 5; pure @*/

public boolean rangeConstraint() {. . . }

/* specification of ProjectElements and ProjectAttributes */

/*@ invariant this.fundsConstraint() && this.rangeConstraint(); @*/

}

The JML representation technique of type derivation by restriction as defined
in XML Schema is illustrated below. The type XMLspecialProject extends the
type XMLproject using inheritance as specified in Java. There are no new com-
ponents of XMLspecialProject in comparison with XMLproject, but the con-
straints in XMLspecialProject are strengthened with respect to the constraints
in XMLproject. This corresponds to the XML Schema notion of type derivation
by restriction, except that the constraints in our JML and PVS based technology
can be much more general.

public class XMLspecialProject extends XMLproject {

// . . .

/*@ also ensures this.fundsConstraint() <==>

((XMLfloat)this.elements().funds().

value()).floatValue() >= 1000000; pure @*/

public boolean fundsConstraint() {. . .}

/*@ invariant this.elements().contract().maxOccurs() == 1; @*/

}

5 Application Schemas

A project management application schema XMLprojectManagement contains a
sequence of contracts and a sequence of projects. This specification contains two
constraints typical for database schemas and available in XML Schema. The
uniqueness constraint specifies that contract numbers uniquely determine con-
tracts in the sequence of contracts. The referential constraint specifies that
contracts of projects in the sequence of projects exist in the sequence of contracts.
In addition to the above two XML Schema types of constraints, the ordering
constraint specifies that contracts appear in the sequence of contracts in increas-
ing order of their contract numbers. There is also a self-explanatory fundsRange
constraint. The ordering and the fundsRange constraints are samples of typical
database constraints. But the advantage of using a general constraint language
such as JML is that we can express more general constraints belonging to the
application environment and enforce them. Application requirements typically
go beyond the expressive capabilities of the constraint language for XML Schema
or conventional database management systems.

30 S. Alagić, M. Royer, and D. Briggs

public class XMLprojectManagement implements XMLschema {

/*@ pure @*/

public XMLsequence projects() {. . . }

// XMLsequence<XMLproject> projects();

/*@ pure @*/

public XMLsequence contracts() {. . . }

// XMLsequence<XMLcontract> contracts();

/*@ ensures \result <==> (\forall XMLcontract c1,c2;

contracts().member(c1) && contracts().member(c2) &&

c1.attributes().contractNo().equals

(c2.attributes().contractNo()) ==> c1.equals(c2)); pure @*/

public boolean uniquenessConstraint() { . . .}

/*@ ensures \result <==> (\forall XMLproject p;(\forall XMLcontract c;

projects().member(p) && p.elements(). contract().equals(c) ==>

(\exists XMLcontract c1; contracts().member(c1) &&

c.attributes().contractNo().equals

(c1.attributes().contractNo())))); pure @*/

public boolean referentialConstraint() { . . . }

/*@ ensures \result <==>(\forall XMLcontract c1,c2;(\forall int n1,n2;

contracts().member(c1) & contracts().member(c2) &&

c1.attributes().contractNo() <= c2.attributes().contractNo() &&

contracts().get(n1).equals(c1) &&

contracts().get(n2).equals(c2) ==> n1 <= n2)); pure @*/

public boolean orderingConstraint() { . . . }

/*@ ensures \result <==> (\forall XMLproject p;

projects().member(p) ==> p.fundsConstraint()); pure @*/

public boolean fundsRangeConstraint() {. . .}

/*@ also ensures \result <==> this.uniquenessConstraint() &&

this.referentialConstraint() && this.orderingConstraint() &&

this.fundsRangeConstraint(); pure @*/

public boolean consistent() { . . . }

/*@ invariant this.consistent(); @*/

}

6 Data Manipulation via Mutator Methods

Object-oriented interfaces to XML are largely intended for developing applica-
tions that manipulate the object-oriented representation of XML data. This is
where the availability of constraints is critical to maintain data integrity. The
existing object-oriented interfaces such as DOM [11], LINQ to XML [21] and
LINQ to XSD [20] have no way of enforcing constraints of XML Schema in data

Verification of Object-Oriented/XML Transactions 31

manipulation actions. This becomes possible using object-oriented assertion lan-
guages. A few illustrative examples follow.

/*@ ensures this.fundsRangeConstraint(); @*/

void updateFunds(XMLelement amount) {. . .}

// XMLelement<Float> amount

/*@ ensures this.fundsRangeConstraint() &&

this.referentialConstraint(); @*/

void updateProjects(XMLsequence projects){. . .}

// XMLsequence<XMLproject>

/*@ ensures this.uniquenessConstraint() &&

this.orderingConstraint(); @*/

void updateContracts(XMLsequence contracts) {. . . }

// XMLsequence<XML contract>

The above examples demonstrate some of the major advantages of the con-
straint-based approach with respect to the previous results. Enforcing the in-
tegrity constraints is a critical issue for database transactions that perform data
manipulation. This cannot be accomplished with other approaches that are not
based on constraints, but rather on type systems alone.

7 Transactions

Our JML specification of the class Transaction shares some similarity with the
ODMG specification, but the ODMG specification does not have two critical
ingredients: constraints and bounded parametric polymorphism [10]. The type
constraint says that the actual type parameter must extend the type XMLschema.
This is how a transaction is bound to its schema. In spite of all problems related
to genericity in Java [1], this form of bounded parametric polymorphism is sup-
ported in the recent editions of Java. The JML assertions make it possible to
specify the requirements that a transaction must respect the schema integrity
constraints.

// abstract class XMLtransaction <T extends XMLschema>

abstract public class XMLtransaction {

// . . .

/*@ pure @*/

abstract XMLschema schema(); // T schema()

}

A specific transaction is specified below. The fact that this transaction is de-
fined with respect to the XMLprojectManagement schema is represented using
XMLprojectManagement as the actual type parameter. The constructor takes an
instance of the XMLprojectManagement schema and makes it the schema of this
transaction returned by the method schema.

32 S. Alagić, M. Royer, and D. Briggs

The actual update that the transaction performs is specified in the method
update. This method requires that the schema consistency requirements are
satisfied before the update is executed. One of the conditions that this method
ensures after its execution is that the sequences of contracts before and after
execution of update are equal. In other words, this transaction does not affect
the sequence of contracts. In addition, the method update ensures that the
referential integrity constraint of the XMLprojectManagement schema holds after
method execution. The remaining part of the postcondition specifies the actual
update that the transaction performs which is increasing project funds by the
specified amount.

// class XMLprojectTransaction

// extends XMLtransaction<XMLprojectManagement>

public class XMLprojectTransaction extends XMLtransaction {

XMLprojectTransaction(XMLprojectManagement schema) {. . . }

/*@ pure @*/

XMLprojectManagement schema(){. . . }

/*@ ensures this.schema().contracts().equals(

\old(this.schema().contracts()))

&& this.schema().referentialConstraint() &&

(\forall int n; 1 <= 1 && n <= this.schema().projects().length();

((XMLfloat)((XMLproject)this.schema().projects().get(n)).elements().

funds().value()).floatValue() ==

\old(((XMLfloat)((XMLproject)this.schema().projects().get(n)).

elements().funds().value()).floatValue()) + 1000); @*/

void update(float increase) {. . . }

}

Note that the result type of the method schema has been overridden covariantly
as in the recent editions of Java. If the method update is implemented in Java,
JML will dynamically enforce the above requirements. In the above example an
obvious question is whether the schema integrity constraints will indeed be sat-
isfied if a transaction behaves according to the above specification. As even this
simple example shows, when the integrity constraints and transaction updates
become more complex, their verification requires support from a suitable prover
technology.

8 PVS Theories

In order to use the PVS prover, JML specifications must be transformed into
PVS theories, preferably by an automated tool. A PVS theory is a specification
of the required type signatures (of functions in particular) along with a collec-
tion of constraints in a suitable logic applicable to instances of the theory. Our
core techniques include representation of inheritance, method overriding and
parametric types.

Verification of Object-Oriented/XML Transactions 33

PVS does not support the object-oriented notion of inheritance. Our PVS
representation technique for inheritance has the following form:

A: THEORY B: THEORY

BEGIN A: TYPE BEGIN IMPORTING A

% body of theory A B: TYPE FROM A

END A % body of theory B

END B

In PVS the subtype declaration B: TYPE FROM A is equivalent to

B_pred: [A -> bool]

B: TYPE =(B_pred)

where (B pred) denotes a type that satisfies B pred. This is the PVS notion of
predicate subtyping. The implications of the PVS notion of predicate subtyping
on modeling inheritance of methods are elaborated in [2].

The PVS notion of predicate subtyping has the following implication on mod-
eling inheritance of methods. A method m of A with the signature

m: [A,C2,...,A,...,Cm -> A]
will be available in B with exactly the same signature, just like in the Java
invariant subtyping rule for signatures of inherited methods. However, since B is
a PVS subtype of A, the effect would be as if m is available in B with the signature
m: [B,C2,...,B,...,Cm -> A]. Otherwise, overriding the signature of m in B
to a signature such as

m: [B,C2,...,B,...,Cm -> B]
which has covariant change of the result type as in recent editions of Java requires
definition of a new function m in B.

Unlike the current version of JML, PVS supports parametric and even boun-
ded parametric polymorphism. A theory representing a parametric type C with
a bounded type constraint has the following form:

C[(IMPORTING B) T: TYPE FROM B]
The fact that a theory K with a bound B for its type parameter T is representing

a subclass of a parametric class C is represented in the PVS notation as follows:

K [(IMPORTING B) T: TYPE FROM B]

BEGIN

IMPORTING C[T]

K: TYPE FROM C[T]

% body of K

END K

9 Application-Oriented PVS Theories

Application-oriented PVS theories are illustrated in the specification XMLpro-
ject given below. The type information for subelements and attributes is rep-
resented by record types. However, because of repetition of the subelement

34 S. Alagić, M. Royer, and D. Briggs

contract, XMLproject is not represented as a record, since that would not be
an accurate representation with respect to XML. contract is a unique identi-
fier in the record structure, and it gets repeated as the tag of any occurence
of this subelment in the XMLproject element. The repetition is expressed via
minOccurs and maxOccurs constraints and also by specifying the tag language
of XMLproject. In addition to the above two components (type structure and
constraints), the third component consists of accessor functions that apply to an
instance of an XMLproject. Note that the accessor function projectContracts
returns a sequence of XMLcontract elements.

XMLproject: THEORY

BEGIN

IMPORTING XMLcomplex, XMLcontract, XMLstring

XMLproject: TYPE+ FROM XMLelement

XMLprojectElements: TYPE = [# leader: string, funds: real,

contract: XMLcontract #]

XMLprojectAttributes: TYPE = [# projectId: string #]

project: [XMLprojectElements, XMLprojectAttributes -> XMLproject]

elements: [XMLproject -> XMLprojectElements]

attributes: [XMLproject -> XMLprojectAttributes]

p: VAR XMLproject

leader(p): string = leader(elements(p))

funds(p): real = funds(elements(p))

contract(p): XMLcontract = contract(elements(p))

projectContracts: [XMLproject -> XMLsequence[XMLcontract]]

fundsConstraint(p: XMLproject): bool =

(funds(elements(p))) >= 1000000

contractElementsConstraint(p: XMLproject): bool =

minOccurs(contract(elements(p))) >= 1 AND

maxOccurs(contract(elements(p))) = unbounded

elementTags(p: XMLproject): XMLtags =

conCat(singleton(seq("leader")),

conCat(singleton(seq("funds")),

starPlus(singleton(seq("contract")))))

END XMLproject

Specification of the XMLprojectManagement schema now follows the initial JML
specification. The constraints specify the schema consistency requirements dis-
cussed earlier in the PVS notation.

XMLprojectManagement: THEORY

Verification of Object-Oriented/XML Transactions 35

BEGIN

IMPORTING XMLcomplex, XMLcontract, XMLproject, XMLsequence, XMLschema

XMLprojectManagement: TYPE+ FROM XMLschema

projects: [XMLprojectManagement -> XMLsequence[XMLproject]]

contracts: [XMLprojectManagement -> XMLsequence[XMLcontract]]

M: VAR XMLprojectManagement

p: VAR XMLproject

c: VAR XMLcontract

uniquenessConstraint(M): bool = (FORALL (c1,c2: XMLcontract):

member(contracts(M),c1) AND member(contracts(M),c2) AND

contractNo(contractAttributes(c1)) =

contractNo(contractAttributes(c2)) IMPLIES c1 = c2)

referentialConstraint(M): bool = (FORALL (p,c):

(member(projects(M),p) AND contract(elements(p)) = c) IMPLIES

(EXISTS (c1:XMLcontract):(member(contracts(M),c1) AND

(contractNo(contractAttributes(c1)) =

contractNo(contractAttributes(c))))))

orderingConstraint(M): bool = (FORALL (c1,c2: XMLcontract,

n1,n2: below(length(contracts(M)))):

member(contracts(M),c1) AND member(contracts(M),c2)

AND contractNo(contractAttributes(c1)) <=

contractNo(contractAttributes(c2)) AND

nth(contracts(M))(n1) = c1 AND

nth(contracts(M))(n2) = c2 IMPLIES n1 <= n2)

fundsRange(M): bool = (FORALL (n: below(length(projects(M)))):

fundsConstraint(nth(projects(M))(n)))

consistent(M): bool = uniquenessConstraint(M) AND

referentialConstraint(M) AND

orderingConstraint(M) AND

fundsRange(M)

END XMLprojectManagement

10 Transaction Verification in PVS

A transaction theory XMLprojectTransaction contains specification of both
the frame constraint and the actual update that the transaction performs [3].
The frame constraint specifies the integrity constraints that are not affected by
the transaction. This particular transaction only updates contract funds and
hence it has no impact on the uniqueness, referential, and ordering constraints.
Explicit specification of the frame constraints is essential in our proof strategy
that guides the prover appropriately. The actual update that the transaction

36 S. Alagić, M. Royer, and D. Briggs

performs is specified in a declarative fashion as a predicate over a pair of object
states, the state before and the state after transaction execution. A transaction
is then a binary predicate specified as a conjunction of its frame constraint and
the actual update constraint.

XMLprojectTransaction: THEORY

BEGIN

IMPORTING XMLtransaction, XMLprojectManagement

XMLprojectTransaction: TYPE FROM XMLtransaction

M1,M2: VAR XMLprojectManagement

frameAx(M1,M2): bool = consistent(M1) AND

contracts(M1) = contracts(M2) AND referentialConstraint(M2)

update(M1,M2): bool = length(projects(M1)) = length(projects(M2))

AND FORALL (n: below(length(projects(M2)))):

(funds(elements(nth(projects(M2))(n))) =

funds(elements(nth(projects(M1))(n))) + 100000)

transaction(M1,M2): bool = frameAx(M1,M2) AND update(M1,M2)

END XMLprojectTransaction

In order to prove that a transaction which conforms to the above theory main-
tains the integrity of the XMLprojectManagment database, the following theory
is constructed. To simplify the proof, a simple update lemma is proved first. The
integrity theorem is then proved using the update lemma [3].

VerifyProjectTransaction: THEORY

BEGIN

IMPORTING XMLprojectTransaction

M1,M2: VAR XMLprojectManagement

updateLemma: LEMMA fundsRange(M1) AND update(M1,M2)

IMPLIES fundsRange(M2)

Integrity: THEOREM FORALL (M1,M2):

consistent(M1) AND transaction(M1,M2) IMPLIES consistent(M2)

END VerifyProjectTransaction

Consider an example of a characterization of a transaction update that violates
the referential integrity constraint and hence its Integrity theorem fails. Let
us define badUpdate as

badUpdate(M1,M2): bool = length(projects(M1)) > 0 AND

projects(M2) = projects(M1) AND length(contracts(M2)) = 0

This update does not affect the sequence of projects but it deletes all con-
tracts which is an obvious violation of referential integrity. The PVS proof of
the updateLema leads to an obvious contradiction demonstrating violation of
integrity.

Verification of Object-Oriented/XML Transactions 37

11 Virtual Platform Support

In this section we show an example of combination of static and dynamic veri-
fication of a transaction that relies on the support of the extended virtual plat-
form [17]. The main components of an extended virtual platform are given in
Fig. 2.

 PVS Response
Create PVS
Theories

Check Constraints

Class TheoriesPVS System

Reflective Introspection

Verification Tool

Class Theories

Extended
Class Object

File System

Class file
with assertions

 Read Class

Create
Class Object

XVP Loader

Fig. 2. Verification in the extended virtual platform

The existing Java reflective capabilities allow introspection of type signatures
and the extended virtual platform allows introspection of the constraints as-
sociated with those types. Constraints are reported by the extended reflective
capabilities in their logic-based declarative style. This is a major distinction in
comparison with existing virtual platforms, and JML in particular.

This system is designed in such a way that it is independent of a particu-
lar constraint language and its underlying logic basis. The program verification
system accesses loaded class objects through a tool that makes use of extended
reflective capabilities. The interface component produces a program verification
theory of a class and the program verification system carries out deduction and
reports the results.

The Java Core Reflection (JCR) classes that have been extended are Class,
Constructor, and Method. These extensions are based on new types such as

38 S. Alagić, M. Royer, and D. Briggs

Invariant, PreCondition, and PostCondition. With these new types it be-
comes possible to add method preconditions and postconditions to the class
Method, and the class invariant to the class Class. These assertions require fur-
ther types that make it possible to create objects that represent logical formulas
for constraints. In order to achieve independence of a particular constraint lan-
guage and its logic basis, the types representing logical formulas are specified
as abstract classes. These classes must be extended for a particular assertion
language as we did for JML.

Additions of the recompiled class Class allow access to the declared and the
inherited invariant. The extensions of the class Method allow access to (declared
and inherited) preconditions and postconditions. The class Constructor is sim-
ilarly extended.

public final class Class { ...

public Invariant getInvariant();

}

public final class Method { ...

public PostCondition getPostCondition();

public PreCondition getPreCondition();

}

Each one of the above assertion types is also equipped with the method evaluate
for run-time evaluation of the assertion objects. The differences in the signatures
of these methods are in their parameters and reflect the nature of the assertions.
Postcondition is also equipped with a method to bind parameters taking into
account both the object state before and after method execution.

In the example given below, the method executeProjectTransaction is writ-
tenwith the assumption that static verification of the transactionproTransaction
has been carried out. Static verification proves that if proManagement is consis-
tent and the transactionproTransaction is executed, proManagementwill remain
consistent. The consistency predicate is in fact the invariant of the object
proManagement.

Dynamic verification requires access to the precondition of the method up-
date of proTransaction and the invariant of the object proManagement. This is
done by extended reflection. If these two conditions evaluate to true, the update
method is invoked using standard reflection. Upon execution of this method its
postcondition is evaluated using extended reflection. If it evaluates to true then
we know that the invariant will hold and hence it does not have to be checked
dynamically. If the postcondition does not hold the transaction proTransaction
is aborted. Otherwise it is committed.

executeProjectTransaction(XMLprojectManagement proManagement,

XMLprojectTransaction proTransaction,

XMLfloat amount) throws Exception

{ proTransaction.start();

Invariant inv = proManagement.getClass().getInvariant();

Method update = proTransaction.getClass().getMethod("update",

new Class[]{XMLfloat.class});

Verification of Object-Oriented/XML Transactions 39

Object[] params = new Object[]{amount};

PreCondition preCond = update.getPreCondition();

PostCondition postCond = update.getPostCondition();

postCond.bindPreMethodVars(proTransaction,params);

if (inv.evaluate (proManagement) &&

preCond.evaluate(proTransaction,params))

update.invoke(proTransaction,params);

if (postCond.evaluate(proTransaction,null,params))

proTransaction.commit();

else proTransaction.abort();

}

12 Conclusions

Specification, representation and enforcement of constraints has been a major
factor of the impedance mismatch between object-oriented and data languages.
In this paper we showed that interfacing object-oriented database technology
with XML technology also stumbles on the problems of constraints, such as
those available in XML Schema. Resolving the object-oriented/XML mismatch
will be possible only in a constraint-based technology of the kind presented in
this paper.

Object-oriented schemas that are based on object-oriented languages and their
type systems cannot express the integrity constraints typical for either database
schemas or dictated by the semantics of the application environment. The current
underlying architecture of object-oriented assertion languages typically allows
dynamic enforcement. We make two contributions that are relevant to transac-
tions in particular.

The first contribution is to provide a virtual platform that integrates con-
straints with the run-time type system making the constraints available by re-
flection. This makes the integrity constraints of a schema visible by transactions
and application programs in general. This platform allows a variety of constraint
management and enforcement scenarios.

The second contribution is in the usage of a verification system to statically
verify at least some integrity constraints. In fact, it is the combination of dynamic
and static verification that that we applied to transactions to decrease the cost
of dynamic checking of database integrity constraints.

The complexity of verification systems such as PVS requires development of
proof strategies [6] specifically targeted to verification of object-oriented trans-
actions and to interfacing with XML technology. A sample strategy is given in
the paper as it applies to transaction verification. These tailored proof strategies
and more friendly user interfaces are a key requirement in making these tools
accessible to database programmers.

40 S. Alagić, M. Royer, and D. Briggs

References

1. Alagić, S., Royer, M.: Genericity in Java: Persistent and database
system implications. The VLDB Journal (2007),
http://www.springerlink.com/content/a067l813x8p28724/

2. Alagić, S., Royer, M., Crews, D.: Temporal verification of Java-like classes. In:
Proceedings of FTfJP 2006 (2006),
http://www.disi.unige.it/person/AnconaD/FTfJP06/

3. Alagić, S., Royer, M., Briggs, D.: Program verification techniques for XML Schema-
based technologies. In: Proceedings of ICSOFT, vol. 2, pp. 86–93 (2006)

4. Alagić, S., Royer, M.: Next generation of virtual platforms,
http://www.odbms.org/experts.aspx#article4

5. Alagić, S., Logan, J.: Consistency of Java transactions. In: Lausen, G., Suciu, D.
(eds.) DBPL 2003. LNCS, vol. 2921, pp. 71–89. Springer, Heidelberg (2004)

6. Archer, M., Di Vito, B., Munoz, C.: Developing user strategies in PVS: A tutorial.
In: Proceedings of STRATA 2003 (2003)

7. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an
overview, Microsoft Research 2004. Also in Proceedings of CASSIS 2004 (2004)

8. Benzaken, V., Doucet, D.: Themis: A database language handling integrity con-
straints. VLDB Journal 4, 493–517 (1994)

9. Benzanken, V., Schaefer, X.: Static integrity constraint management in object-
oriented database programming languages via predicate transformers. In: Aksit,
M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 60–84. Springer, Hei-
delberg (1997)

10. Cattell, R.G.G., Barry, D., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, San Francisco (2000)

11. Document Object Model (DOM), http://www.w3.org/TR/REC-DOM-Level-1/
12. Fan, W., Simeon, J.: Integrity constraints for XML. Journal of Computer and

System Sciences 66, 254–291 (2003)
13. Lammel, R., Meijer, E.: Revealing the X/O impedance mismatch. Microsoft Cor-

poration (2007),
http://homepages.cwi.nl/~ralf/xo-impedance-mismatch/paper.pdf

14. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cook, D., Muller, P.,
Kiniry, J.: JML Reference Manual, draft (July 2005), http://www.cs.iastate.

edu/~leavens/JML/
15. Owre, S., Shankar, N., Rushby, J.M., Stringer-Clavert, D.W.J.: PVS Language Ref-

erence, SRI International, Computer Science Laboratory, Menlo Park, California
16. Owre, S., Shankar, N.: Writing PVS proof strategies, Computer Science Laboratory,

SRI International, http://www.csl.sri.com
17. Royer, M., Alagić, S., Dillon, D.: Reflective constraint management for languages

on virtual platforms. Journal of Object Technology 6, 59–79 (2007)
18. Sheard, T., Stemple, D.: Automatic verification of database transaction safety.

ACM Transactions on Database Systems 14, 322–368 (1989)
19. Spelt, D., Even, S.: A theorem prover-based analysis tool for object-oriented

databases. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 375–
389. Springer, Heidelberg (1999)

20. LINQ to XSD, Microsoft (2007), http://blogs.msdn.com/xmlteam/archive/

2006/11/27/typed-xml-programmer-welcome-to-linq.aspx
21. LINQ to XML, Microsoft (2006), http://www.xlinq.net/
22. XML Schema 1.1, http://www.w3.org/XML/Schema

http://www.springerlink.com/content/a067l813x8p28724/
http://www.disi.unige.it/person/AnconaD/FTfJP06/
http://www.odbms.org/experts.aspx#article4
http://www.w3.org/TR/REC-DOM-Level-1/
http://homepages.cwi.nl/~ralf/xo-impedance-mismatch/paper.pdf
http://www.cs.iastate.edu/~leavens/JML/
http://www.cs.iastate.edu/~leavens/JML/
http://www.csl.sri.com
http://blogs.msdn.com/xmlteam/archive/2006/11/27/typed-xml-programmer-welcome-to-linq.aspx
http://blogs.msdn.com/xmlteam/archive/2006/11/27/typed-xml-programmer-welcome-to-linq.aspx
http://www.xlinq.net/
http://www.w3.org/XML/Schema

	Verification Technology for Object-Oriented/XML Transactions
	Introduction
	Motivation: XML Schema Constraints
	Architecture
	Object-Oriented Assertions
	Application Schemas
	Data Manipulation via Mutator Methods
	Transactions
	PVS Theories
	Application-Oriented PVS Theories
	Transaction Verification in PVS
	Virtual Platform Support
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

