


Lecture Notes in Computer Science 5936
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Moira C. Norrie Michael Grossniklaus (Eds.)

Object Databases

Second International Conference, ICOODB 2009
Zurich, Switzerland, July 1-3, 2009
Revised Papers

13



Volume Editors

Moira C. Norrie
ETH Zurich
Department of Computer Science
Zurich, Switzerland
E-mail: norrie@inf.ethz.ch

Michael Grossniklaus
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Milano, Italy
E-mail: grossniklaus@elet.polimi.it

Library of Congress Control Number: 2010931175

CR Subject Classification (1998): H.2, H.4, H.3, H.5, I.2, D.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-14680-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-14680-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

ICOODB 2009 was the second in a series of international conferences aimed
at promoting the exchange of information and ideas between members of the
object database community. A key feature of the conference was its goal to bring
together developers, users and researchers. The conference had three different
tracks offered as a tutorial day, an industry day and a research day. In addition, a
demo session with contributions from all three communities enabled participants
to see the latest and on-going developments in object database technologies,
supporting tools and also applications.

The conference proceedings presented as this volume consist of the papers
presented in the research track. By publishing these after the conference, authors
were given an opportunity to revise and extend their papers based on feedback
and discussions held during the conference. Six of the papers were selected from
submissions based on reviews by at least three members of the Program Com-
mittee. These papers address a number of classic database issues such as query
processing, transaction processing, event models and the coupling of data and
services in the context of modern object databases.

In addition, the research track included three invited presentations from
researchers who were leaders in the field during what might be called the first
generation of object databases back in the 1980s and early 1990s. At this time,
research in object data models as well as object-oriented databases and per-
sistent programming languages was very active. Over the years, this research
became less fashionable and many researchers moved into other fields. However,
some continued and as technologies and markets evolved so did their models and
systems. With the revival in interest in object databases, it is important that
researchers coming into the field are aware of the large body of previous research
in the field. At the same time, it is interesting to look back on this research and
lessons learned. How have technologies evolved and what remain as open issues?
By addressing this question, we can identify future research directions.

The first of these invited papers is from Al Dearle, Graham Kirby and Ron
Morrison of the University of St. Andrews, who worked together with Malcolm
Atkinson on some of the first persistent programming languages. The goal was
for orthogonal persistence and in their paper they revisit this goal, examining
efforts to satisfy it through the ages from the earliest persistent programming
languages to contemporary object databases.

The second invited paper by Matthias Jarke, Manfred Jeusfeld, Hans
Nissen, Christoph Quix and Martin Staudt is a celebration of the 21st birth-
day of ConceptBase, a deductive object-oriented database system intended for
the management of metadata. ConceptBase has been used in numerous projects
and the team led by Matthias Jarke of RWTH Aachen and Manfred Jeusfeld of
the University of Tilburg has continued to develop the system and add many
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advanced features over the years. The paper provides an overview of the system
and also reports on experiences and impact.

The third invited paper is by Elisa Bertino, Elena Camossi and Michela
Bertolotto. Elisa Bertino was a leading researcher in the first generation of
object databases and has continued to actively support the field, especially with
her work on object data models. The paper shows how an object data model
can be extended to represent and query spatio-temporal objects with multiple
granularities and concludes with a discussion of open research challenges.

We take this opportunity to thank all those who helped to make this confer-
ence a success. First, there are the authors and presenters who of course are an
essential part of every conference. It is their enthusiasm and professionalism that
makes us confident in the future of object databases. We were pleased to see lots
of lively discussions taking place within the conference sessions, during the coffee
and lunch breaks and also at ICOODB 2009’s social events. We believe that the
opportunity for young researchers to interact with not only senior academics but
also leading figures in the commercial world was something very special and we
are pleased to note that in many cases these dialogues have continued beyond
the end of the conference.

We also thank all the members of the program committee who did the
reviewing work that plays such an important role in ensuring the scientific quality
of a conference. Then there are our fellow organizers Anat Gafni, Stefan Edlich
and Roberto Zicari who were key in putting together such an exciting confer-
ence program. We also acknowledge the support of the members of the ICOODB
Steering Committee who provided valuable advice on the general organization
of the conference. Thanks are also due to the many individuals who helped with
the local organization of the conference. Last but not least, we thank the spon-
sors SI-DBTA, Versant and Progress for their financial support: All those who
have organized conferences know the difference that this makes.

November 2009 Moira C. Norrie
Michael Grossniklaus
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Orthogonal Persistence Revisited

Alan Dearle, Graham N.C. Kirby, and Ron Morrison

School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SX, Scotland

{al,graham,ron}@cs.st-andrews.ac.uk

Abstract. The social and economic importance of large bodies of pro-
grams and data that are potentially long-lived has attracted much atten-
tion in the commercial and research communities. Here we concentrate on
a set of methodologies and technologies called persistent programming.
In particular we review programming language support for the concept
of orthogonal persistence, a technique for the uniform treatment of ob-
jects irrespective of their types or longevity. While research in persistent
programming has become unfashionable, we show how the concept is be-
ginning to appear as a major component of modern systems. We relate
these attempts to the original principles of orthogonal persistence and
give a few hints about how the concept may be utilised in the future.

1 Introduction

The aim of persistent programming is to support the design, construction, main-
tenance and operation of long-lived, concurrently accessed and potentially large
bodies of data and programs. When research into persistent programming be-
gan, persistent application systems were supported by disparate mechanisms,
each based upon different philosophical assumptions and implementation tech-
nologies [1]. The mix of technologies typically included naming, type and bind-
ing schemes combined with different database systems, storage architectures and
query languages.

The incoherence in these technologies increased the cost both intellectually
and mechanically of building persistent application systems. The complexity dis-
tracted the application builder from the task in hand to concentrate on master-
ing the multiplicity of programming systems, and the mappings amongst them,
rather than the application being developed. The plethora of disparate mecha-
nisms was also costly in machine terms, in that the code for interfacing them,
their redundant duplication of facilities and their contention for resources caused
execution overheads. Software architects and engineers observed that it was often
much harder and more expensive to build and maintain persistent application
systems than was expected, and their evolution was invariably problematic.

Atkinson [2] postulated that, in many cases, the inconsistency was not fun-
damental but accidental. The various subsystems were built at different times
when the engineering trade-offs were different. In consequence, they provided
virtually the same services, but inconsistently since they were designed and de-
veloped independently. By contrast, Orthogonal Persistence provided the total

M.C. Norrie and M. Grossniklaus (Eds.): ICOODB 2009, LNCS 5936, pp. 1–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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composition of services within one coherent design, thereby eliminating these
accidental disharmonies.

While research in persistent programming has become unfashionable, it is
hard to believe that the situation today has changed much. A recent (2007)
quote from Microsoft illustrates this well:

“Most programs written today manipulate data in one way or another
and often this data is stored in a relational database. Yet there is a huge
divide between modern programming languages and databases in how they
represent and manipulate information. This impedance mismatch is vis-
ible in multiple ways. Most notable is that programming languages access
information in databases through APIs that require queries to be specified
as text strings. These queries are significant portions of the program logic.
Yet they are opaque to the language, unable to benefit from compile-time
verification and design-time features like IntelliSense.” [3].

Orthogonally persistent object systems support a uniform treatment of objects
irrespective of their types by allowing values of all types to have whatever
longevity is required. The benefits of orthogonal persistence have been described
extensively in the literature [2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. They can
be summarised as:

– improving programming productivity from simpler semantics;
– avoiding ad hoc arrangements for data translation and long-term data stor-

age;
– providing protection mechanisms over the whole environment;
– supporting incremental evolution; and
– automatically preserving referential integrity over the entire computational

environment for the whole life-time of an application.

In this paper we review a selection of the many historical approaches to pro-
gramming with long-lived data1 and comment on attempts in the programming
language and ODBMS communities to provide various flavours of persistence.
We conclude by hinting at how the concept may be utilised in the future.

2 Orthogonal Persistence

In most current application systems there are two domains: the programming
language domain and the database domain. The programming language domain
presents a Turing-complete programming environment that permits computa-
tion over data defined using the programming language type system. In the
last twenty years the predominant programming model has become the object-
oriented model, usually providing typed objects containing state, methods and
(usually typed) references to other objects. This model, and the tools which have

1 Space limitations preclude a full survey of the area; notable omissions include
Smalltalk, O2, Galileo, Trellis/Owl, Fibonacci, DBPL and Tycoon.
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evolved to support it, has proven to be highly productive in terms of creating
and maintaining software.

By contrast, the conceptual database domain is largely unchanged: tables of
tuples containing foreign keys identifying tuples in other tables. This remains
the pre-eminent long-term storage architecture.

The cost of the conceptual and technological differences between these two
models became known as the impedance mismatch [19], and was one of the
primary motivations for the work on orthogonal persistence, which aimed to
remove the conceptually unnecessary distinction between short-term and long-
term data [1].

There is a spectrum of possible degrees of integration, as perceived by pro-
grammers, between these formats. At one end of this spectrum data formats
are completely disparate, and there is no automated support for transforma-
tion between them. A programmer has to understand the semantics of multiple
representations and the mappings between them, and to write code for data
transformations that implement these mappings. The impedance mismatch is
strongest at this end of the spectrum. On the other hand, the low degree of inte-
gration yields loose coupling between the language and storage domains, which
in turn facilitates openness in terms of the persistent data being accessible by
routes other than the language.

At the full integration end of the spectrum lies orthogonal persistence, where
no distinction between data formats is visible to the programmer. At intermedi-
ate points in the spectrum, the mapping between the object and storage domains
is partially automated. Typically, the programmer still has to specify the map-
pings and understand the relationships between the multiple representations,
but is relieved of the task of writing explicit translation code.

These differences are crystallised by Fowler, who describes two different ar-
chitectural patterns that may be applied to persistent systems [20]. These are
the Active Record and Data Mapper patterns. In the first, an object in a pro-
gramming system represents a row in a database relation. In this pattern the
database is wrapped in an object that provides methods to save, update, delete
and find objects. Here there is a one-to-one mapping between classes or types in
the programming language and relations in the database.

The Data Mapper pattern is more general. It comprises (potentially multiple)
mappers that move data between the storage layers and maintains the rela-
tionships between entities. For example, in an object-relational system there is
one mapper and two layers-the language system and the relational database.
In a distributed system with caching there might be two mappers maintaining
relationships between three layers—the language, the cache and the database.

The degree of integration dictates the extent to which the application pro-
grammer must be conscious of these patterns. With orthogonal persistence they
are handled entirely by the system. Atkinson and Morrison identified three Prin-
ciples of Orthogonal Persistence [21]:
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– The Principle of Persistence Independence
The persistence of data is independent of how the program manipulates the
data. That is, the programmer does not have to, indeed cannot, program to
control the movement of data between long term and short term store. This
is performed automatically by the system.

– The Principle of Data Type Orthogonality
All data objects should be allowed the full range of persistence irrespective
of their type. That is, there are no special cases where objects of a specific
type are not allowed to be persistent.

– The Principle of Persistence Identification
The choice of how to identify and provide persistent objects is orthogonal to
the universe of discourse of the system2.

The application of the three principles yields orthogonal persistence. Violation
of any of these principles increases the complexity that persistent systems seek
to avoid. In the next section we examine these principles in the context of past
and current persistent systems.

3 Languages and Persistence

3.1 First Generation Persistence Mechanisms

In the last twenty to thirty years the mechanisms for mapping between the
two programming language and database data models have improved consid-
erably. Ironically, this is in part due to technologies that were developed in
the typed persistent world, for example strongly typed generative and reflective
programming.

In the eighties it was common for programmers to explicitly save and restore
programming language objects to the file system. Code was hand-written and
tended to be error-prone and time consuming. Furthermore, when the data was
changed, the code had to adapt, and more code written to evolve any saved data
from previous program incarnations. The need to write such code explicitly was
first eliminated by persistent systems such as PS-algol (discussed in the next
section) and object-oriented databases.

Java serialization goes some way to reducing the programming effort required
to implement object persistence using files, since it allows an entire closure to be
written or read in a single operation. Only instances of classes that implement
the interface java.io.serializable may be serialized. For example:

2 Experience with persistent programming showed that in systems with references,
the only mechanism for implementation was persistence by reachability, also known
as transitive persistence.
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FileInputStream f = new FileInputStream("myobject.data");

ObjectInputStream obj_in = new ObjectInputStream(f);

Object obj = obj_in.readObject();

if (obj instanceof Person) {

Person p = (Person) obj;

// Do something with p ...

}

The above program reads an object from the file myobject.data and casts it to
the type Person. One problem with this style of programming is that the en-
tire closure of an object must be loaded or saved in a single operation. This
can make the operations slow for large object closures, and limits the size of
closure that can be stored to that of main memory—known as the big inhale
in early Smalltalk-80 systems. However, more importantly, each time a clo-
sure is serialized a new copy of the data is made. This breaks referential in-
tegrity since there is no way of matching the identity of objects from different
save/load operations. Another problem with the mechanism is that since not all
Java classes are serializable, some object closures are not consistently saved and
restored.

Serialization does not adhere to the first two principles of orthogonal per-
sistence. Data is explicitly written to backing store, violating the principle of
independence; only serializable objects may be made persistent, so the principle
of data type orthogonality is also violated.

In contrast, to extract data from a database, the programs manipulating per-
sistent data had to perform much string processing. Despite this approach mani-
festing a high impedance mismatch, it is still common in today’s PHP programs.
For example:

$result = mysql_query("SELECT * FROM Persons");

while($row = mysql_fetch_array($result)) {

$firstname = $row[’FirstName’];

$secondname = $row[’LastName’];

}

In this fragment [22], the database access is explicit—the SQL query is embedded
as a string in the program, and data is extracted from the database in the form
of strings.

The use of strings is also employed in JDBC [23], which provides database
independent connectivity between Java programs and databases. The JDBC
API permits SQL operations to be performed, by providing three broad classes
of operations: establishing connections to a database, performing queries and
processing the results of queries. An example is shown below:
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Connection con = DriverManager.getConnection("jdbc:myDriver:fish",

"myLogin", "myPassword");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT name,age FROM Persons");

while (rs.next()) {

String name = rs.getString("name");

int age = rs.getInt("age");

...

}

The similarities between the JDBC and PHP examples are striking. Both em-
bed a query in the form of a string in the host program, and both use string
matching to extract data from the result set that is delivered by the query. Both
mechanisms are a long way from the principles of orthogonal persistence.

3.2 PS-algol

The first language to provide orthogonal persistence was PS-algol [1], which
provided persistence by reachability for all data types supported by the language.
PS-algol adds a small number of functions to S-algol [24], from which it was
derived. These are open.database, close.database, commit and abort3. A number
of functions are also provided to manage associative stores (hash maps), called
tables in PS-algol. These functions are s.lookup, which retrieves a value associated
with a key in a table, and s.enter, which creates an association between a key
and a value in a table. By convention, a database always contains a pointer to
a table at its root. Databases serve as roots of persistence and can be created
dynamically.

Two slightly modified examples from [1] are shown below to give a flavour of
the language. The first example opens a database called “addr.db” and places a
person object into a table associated with the key “addr.table” found at its root.
Note that the person (denoted by p) contains a reference to an address object.
When commit is called, the updated table, the person and the address objects
are written to persistent storage.

structure person(string name, phone; pntr addr)

structure address(int no ; string street, town)

let db = open.database("addr.db", "write")

if db is error.record

do { write "Can’t open database"; abort }

let table = s.lookup("addr.table", db)

let p = person("al", 3250, address(76, "North St", "St Andrews"))

s.enter("al", table, p)

commit

The second example opens the same database and retrieves the person object
before writing out their phone number.
3 Note: dots are legal within identifiers in PS-algol and do not denote dereferencing.

Dereferencing is represented by round brackets enclosing a fieldname. There is no
explicit new operator; the use of a structure name serves as a constructor.
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structure person (string name, phone; pntr addr)

let db = open.database("addr.db", "read")

if db is error.record

do { write "Can’t open database"; abort }

let table = s.lookup("addr.table", db)

let p = s.lookup("al", table)

if p = nil then write "Person not known"

else write "phone number: ", p(phone)

As described in [25],“the programmer never explicitly organises data movement
but it occurs automatically when data is used”, a feature shared with many of
the object-relational systems. The paper also states “the language type rules
are strictly enforced” but is not explicit about how this is achieved, which is
a pity, since it is important. PS-algol uses structural type equivalence rather
than the name equivalence so prevalent today. Using structural type equivalence,
two objects or terms are considered to have compatible types if the types have
identical structure. Thus, in the previous examples, the compatible declarations
of person in the two examples serve to unify the two programs. If the object
retrieved from the database is not of (structural) type person, the deference of
the object will fail.

The type system of PS-algol is more subtle than might appear. Notice that
the second program does not require a declaration of the type address since that
type is never used in the program. It is not necessary since pointers in PS-algol
are typed as pntr, which is an infinite union over all records. The infinite union
facilitates partial and incremental specification of the structure of the data at
the expense of a dynamic check. The persistent schema need only be specified
within a program up to limit of the pntr objects. When one is encountered in
a running program, by dereference, a dynamic check ensures the data is of the
correct type. The specification within that check need only be to the limit of the
subsequent pntr types.

A second version of PS-algol incorporated procedures as data objects thereby
allowing code and data to be stored in the persistent store.

PS-algol does not support any form of concurrency other than at database
level. This often caused problems since it was possible to continue to access
objects after commit. The addition of explicit syntactic boundaries to control
transactions would have addressed this deficiency.

3.3 Napier88

Napier88 attempted to explore the limits of orthogonal persistence by incorpo-
rating the entire language support environment within a strongly typed per-
sistent store [12,21,26,27,28,29,30]. The research produced the first integrated,
self-contained, type-safe persistent environment.

The Napier88 system provides orthogonal persistence, a strongly typed pre-
populated stable store, higher-order procedures, parametric polymorphism, ab-
stract (existential) data types, collections of name-value bindings, graphical data
types, concurrent execution, two infinite union types for partial specification, and
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support for reflective programming. Notable additions over PS-algol include the
following:

– the infinite union type any, which facilitates partial and incremental speci-
fication of the structure of the data

– the infinite union type environment, which, in addition to the above, provides
dynamically extensible collections of name/L-value bindings—and thereby
the dynamic construction of independent name spaces over common data

– parametric polymorphism in a style similar to that later popularised by Java
generics, but with computation over truly persistent polymorphic values

– existentially quantified abstract data types for data abstraction
– a programming environment, including graphical windowing library, object

browser, program editor and compiler, implemented entirely as persistent
objects within the store

– support for hyper-code, in which program source code may contain embedded
direct references to extant objects

– support for structural reflection, where a running program may generate new
program fragments and integrate these into its own execution

The integrated persistent environment of Napier88 that supported higher-order
procedures yielded a new programming paradigm, which is only possible by
this means, whereby source programs could include direct links to values that
already exist in the persistent environment. The programming technique was
termed hyper-programming and the underlying representation hyper-code.

Hyper-code [31] is a representation of an executing system modelled as an
active graph linking source code, existing values and meta-data. It unifies the
concepts of source code, executable code and data, by providing a single repre-
sentation (as a combination of text and hyperlinks) of software throughout its
lifecycle. Sharing is represented by multiple links to the same value. Hyper-code
also allows state and shared data, and thereby closure, to be preserved during
evolution.

The combination of structural reflection, the ability of a program to gener-
ate new program fragments and to integrate these into its own execution, and
hyper-code provides the basis for type-safe evolution. Within the persistent en-
vironment, generator programs may stop part of an executing system (while the
rest of the system continues to execute), inspect its state by introspection, change
the part as necessary by programming or editing the hyper-code representation,
recompiling the new fragment and rebinding it into the executing system.

Unsurprisingly, given their heritage, both PS-algol and Napier88 support all
three of the principles of orthogonal persistence.

3.4 Arjuna

The focus of the Arjuna system [32,33] is to support fault-tolerant distributed
applications, based upon persistent objects supporting nested atomic actions.
Atomic actions control sequences of local and remote operations against abstract
datatypes implemented using C++ classes. The file system is used for long-term
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storage of objects. To support recoverability, a snapshot of object state is taken
before an object is modified for the first time within the scope of an atomic
action. This mechanism is also used to support persistence, with the new state
of an object being used to replace its old state at commit time. A state manager
provides operations to save and restore the state of object instances.

Since all persistent classes must extend the base class StateManager, which
provides the mechanisms for persistence and atomic actions, Arjuna does not ad-
here to the principle of datatype orthogonality. It does not meet the requirements
of persistence independence, since the programmer must implement save state
and restore state operations for all persistent classes. Finally, for the same rea-
son, it does not support persistence identification by reachability.

3.5 Persistent Java

Several orthogonally persistent versions of Java have been implemented. In
PJama [34] the programmer uses an API to associate objects with strings in a
persistent map in order to make them persistent. All objects transitively reach-
able from the map are automatically made persistent. The language syntax itself
is unchanged; typically persistence can be introduced to a previously existing ap-
plication with the addition of a relatively small amount of code making API calls.
The compiler and standard libraries are also unchanged. The virtual machine is
modified, to move objects to and from a proprietary object store automatically
as required. A version of hyper-code has been prototyped using PJama [35].

The emphasis in ANU-OPJ [36] is on promoting inter-operability, by avoiding
any modifications to the virtual machine. Instead, read and write barriers are
introduced by dynamic byte-code modification. This is achieved by using a cus-
tomised class loader, making the approach compatible with standard compilers
and virtual machines. The programmer’s view of persistence is slightly different
from PJama, in that no persistence API is involved. Instead, all static fields
are implicitly persistent roots. The Shore storage manager [37] provides object
storage.

Persistent Java was implemented on the Grasshopper operating system [38].
Unlike the other persistent Java systems, no modifications were made to the
abstract machine or to the bytecode generated for a particular application. In-
stead, orthogonal persistence was achieved by instantiating the entire Java ma-
chine within a persistent address space. In this system, like the later ANU-OPJ
system, static fields were implicitly roots of persistence.

The three persistent Java systems adhered to the three principles of or-
thogonal persistence to varying degrees. PJama followed the PS-algol persis-
tence model but could not make some types persistent due to restrictions in
the abstract machine. Similarly, ANU-OPJ could not uniformly perform byte
code transformation on some system classes. The Grasshopper version did
adhere to the three principles, by virtue of making the entire environment
persistent.
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3.6 OODBs

Object-oriented database systems emerged in the mid 1980s and married persis-
tence to object-oriented languages [39]. In the early systems, the language used
tended to be an extension of C++. The Exodus System with its E programming
language typified this approach [40].

The Object-Oriented Database Manifesto [41], published in 1989, set out to
lay down the ground rules of what was (and what was not) an object-oriented
database. It defined a number of mandatory, optional and open issues in OODB
design. Space prohibits a full exposition of all the mandatory features (identity,
encapsulation, computational completeness, types or classes, class hierarchies,
complex objects, overriding, overloading and late binding, extensibility, persis-
tence, secondary storage management, concurrency, recovery and ad-hoc query-
ing); we will therefore comment on what we consider to be the most important
here.

The first of these, identity, is perhaps the biggest differentiating feature be-
tween an OODB and a relational DB. Relational systems impose identity via
primary keys stored as attributes, whereas objects have unique identities formed
when they are created and remaining throughout their lifetimes irrespective of
their states.

The issue of encapsulation is another feature that distinguishes the relational
from the OO world. In a relational system the universe of discourse is made
up of relations containing flat tuples, which may be queried using a relational
language. By contrast, in an OO system an object has an interface, some state
and a procedural component, which implements the interface and may perform
operations on the state.

A last issue with OODB systems is whether code should be stored in the
database; this issue seems to divide the OODB community. Many feel that
putting code in the database has a detrimental effect on performance; the reasons
for this are unclear. If code is not stored in the database, well-known semantic
anomalies can arise. Richardson [42] describes how a program can populate a
database with objects of some type T . Another program can insert into this
data-structure an object of type T ′, a subtype of T . If the original program then
accesses the new object and calls methods that have been over-ridden in T ′, it
should of course use the code of the subtype when operations are performed
(late binding). However, the code for T ′ may not be in the static environment
(in the file system) of the original program. Indeed, the code may not even exist
on the machine on which the program is written. In this case, when the original
program invokes an operation on the new object a dynamic failure will result.
There are essentially two solutions to this problem: relying on being able to load
code from the file system—which is manifestly unsafe—or placing code in the
database.

The provision of declarative querying was the primary difference between
persistent languages and OODB systems; the latter generally provided querying
whilst the former did not. Whilst pointer chasing can be more efficient than some
operations, notably outer joins, in database systems, the inability to perform
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declarative queries over non-resident data is often cited as the primary reason for
the lack of uptake of OODB and persistent systems. The relatively recent ability
to tightly integrate query languages over objects with a host object-oriented
language [3,43] has addressed much of this criticism.

Another perceived issue with OODB systems is the degree of coupling exhib-
ited. Data in relational systems is loosely coupled; tuples are associated solely
via primary and foreign key values. This permits database schemata to be refac-
tored by database administrators independently of the code base. In an object-
relational system there is also loose coupling between the code and the data.
The object-relational mappings are partial; they specify a degree of compliance
required of the database by the code. Thus database schema changes may not
affect the code in any way. By contrast, this is not true in OODB systems, which
are highly coupled in two respects: the referential integrity of pointers and type
constraints specified in the programming language. Since OODB systems typi-
cally rely on being able to follow the transitive closure of objects, changes to the
code and the database must be made in a consistent manner.

Most OODB systems are strongly typed and consequently the types of refer-
ends and referees must be type compliant; resulting in the schema and the code
being highly coupled. A last problem perceived with OODB systems is that it
is often difficult to determine the extent of pointers in the system due to lack of
sufficient encapsulation. Consequently changes to the schema could affect code
in arbitrary locations. However, this problem also applies to relational systems in
which there is a mismatch in the integrity constraints provided by the database
and those expected of the programs that compute over it. Furthermore, in a
pure object-oriented system the integrity of the data may be enforced by en-
capsulation, which is not true in relational systems. Clearly modern software
engineering tools could be brought to bear on these problems.

3.7 db4o

db4o [44] is a modern OODB system which may be used with both .NET and
Java, via the provision of separate libraries for the two languages. db4o requires
no mappings between transient and persistent data to be described by the pro-
grammer. Thus the objects stored in the database are real POJOs with no extra
interfaces, extended classes or annotations. The db4o model is reminiscent of PS-
algol. To access the database the programmer writes code such as that shown
below.

ObjectContainer db = Db4oEmbedded.openFile(Util.DB4OFILENAME);

try {

Person al = new Person("al", 49);

db.store(al);

} finally {

db.close();

}
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The root of the database is a collection (an ObjectSet) of objects. It is possible to
access such a persistent collection using query by example (QBE), by performing
a get operation with either a prototypical object or an instance of class Class as
a parameter. In addition, db4o supports both native queries and Simple Object
Database Access (SODA). Native queries are constructed using predicates in
C# or Java whereas SODA queries are relatively low level, using strings to
select fields from objects. Once a root object has been accessed its closure may
be traversed using traditional pointer following operations.

By default db4o does not load entire closures from persistent storage. db4o
introduces a concept known as activation depth, which determines how much of
an object closure is loaded when a parent object is loaded. By default, only the
first five levels of objects are loaded from the database. It also includes mecha-
nisms to control activation based on class, via global settings and transparently.
Additionally, objects referenced from a loaded object can be loaded by explicitly
activating objects as they are loaded.

To update objects stored in the database the programmer has to retrieve
an object and call set with a top-level object as a parameter (as in the above
example). However, like object loading, the entire closure of the object is not
written to persistent storage on commit. Instead, the amount of closure written
to storage is controlled by a concept known as update depth (the default is 1).
Like activation depth it is possible to control update depth in a variety of ways.
These design decisions have clearly been made for a mixture of implementation
and efficiency reasons.

Recent versions of db4o support optional transparent persistence which is
much closer to the ideals of orthogonal persistence. When transparent persis-
tence is employed, all objects are transparently loaded from and written to the
persistent store and activation is handled automatically by the runtime system.
To make use of transparent persistence classes must be enhanced during the
build process. Not all classes can be enhanced, for example, classes containing
native methods.

Whenever a container is opened, db4o implicitly starts a new transaction and
an explicit commit occurs before the container is closed. A rollback operation
permits transactions to abort. However, this operation is the root of a semantic
anomaly. Loaded instances of database objects may be still be accessible yet out-
of-sync with the store. To address this problem db4o provides a refresh operation,
which may be applied to objects. It is unclear how the programmer is supposed
to know which objects require refreshing; again this deviates from the principles
of orthogonal persistence.

The db4o system adheres to the principle of data independence. No mappings
or annotations are required to indicate which types may be made persistent.
Similarly, code may manipulate data independent of its longevity. The concepts
of update and activation depth do impact this principle since, for example, a
method to determine the length of a list might get the wrong answer if activation
depth was not used correctly. This is seen as desirable by the developers who
state that “db4o provides a mechanism to give the client fine-grained control over
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how much he wants to pull out of the database when asking for an object” [45].
The principle of data type orthogonality is adhered to, since any user-defined
data object can be made persistent without any additional code, annotations or
XML specifications.

3.8 Java Data Objects

Java Data Objects was released in 2002 [46], providing a storage interface for
Java objects without the necessity to interact with data access languages such as
SQL. Using JDO, Java objects may be stored in a relational database, an object
database, XML file, or any other technology using the same interface. Since
it enables Java programmers to transparently access underlying data storage
without using database-specific code, it moves considerably towards the goals of
persistent systems. An example of the use of JDO is shown below. Although not
shown in this example, the entire transitive closure of objects is stored in the
database on commit.

PersistenceManagerFactory pmf = JDOHelper.

getPersistenceManagerFactory(..);

PersistenceManager pm = pmf.getPersistenceManager();

Person p = new Person("Bob Smith", 49 );

Transaction tx;

try {

tx = pm.currentTransaction();

tx.begin();

pm.makePersistent(p);

tx.commit();

} catch (Exception e) { ... }

Although this looks very much like the PS-algol examples, much additional spec-
ification is required when using JDO. The relationship between the Java objects
and persistent data is specified using an XML metadata file. A simple example
is shown below, specifying the persistent class com.xyz.Person. Field modifiers
may specify a number of attributes, including which fields are primary keys,
whether fields are persistent or transient, how fields are to be loaded, and how
null values should be handled.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE jdo SYSTEM "jdo.dtd">

<jdo>

<package name="com.xyz">

<class name="Person">

<field name="firstname"

persistence-modifier="persistent"/>

...

</class>

</package>

</jdo>
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The query language provided by JDO, JDO Query Language (JDOQL), ab-
stracts over the underlying storage technology. A query interface selects objects
from the database irrespective of whether the underlying storage is based on
objects or relations. Queries are passed to the persistence manager and operate
on either class extents or explicit collections. Filtering is provided by providing
Boolean expressions which are applied to instances.

Query query = pm.newQuery(Person.class, people,

"name == \"Malcolm Atkinson\"");

Collection result = (Collection) query.execute();

Iterator iter = result.iterator();

while (iter.hasNext()) {

Person p = (Person) iter.next();

...

}

JDO succeeds in abstracting over particular underlying storage technologies.
However, in some cases, notably relational databases, the mapping between lan-
guage objects and storage level objects must be described. When an object-
relational mapping is used with JDO, the O-R mappings are described in ORM
mapping files.

Persistence of data is independent of the programs manipulating it, provided
that appropriate persistence mappings have been described. The principle of
data type orthogonality is violated, since only those objects that have a per-
sistent mapping can be made persistent. Furthermore, system classes and some
collection classes may not be made persistent.

3.9 Java Persistence API

The Java Persistence API [47] is intended to operate inside or outside a J2EE
container, creating a persistence model for (plain old) Java objects. It eliminates
much of the complexity required by JDO. For example, the XML mapping tables
are no longer required, and the objects that can be made persistent are ordinary
Java objects rather than having to implement specified interfaces. In contrast
to JDO, which is agnostic to storage technology, the Java Persistence API is
explicitly for use in an object-relational context.

@Entity

public class Person

public Person() {}

@column( name="name" )

public String getName() {}

@column( name="age" )

public int getAge() {}

}
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The @Enitity annotation can be decorated with parameters specifying the name
of the table from which data is drawn; by default this is the name of the class.
Similarly, the column name may be specified using the @column annotation and
identity attribute using @id. This is clearly not a POJO system, despite being
often described as one, since it requires annotations to be made in the Java
classes describing the object-relational mappings. Object-relational mappings
can be arbitrarily complex, and it is possible to specify that data be drawn from
multiple tables using join-based queries.

Queries are defined using (an extension to) Enterprise JavaBeans query lan-
guage (EJB QL) rather than SQL. The difference is subtle but important: rather
than querying over tables in the database, queries are performed on the beans
and the relationships between them. These relationships are specified using the
attributes embedded within the Java objects.

Using the Java Persistence API the persistence of data is independent of the
programs that manipulate data. Additionally, the programmer does not have any
explicit control over the movement of data between the store and main mem-
ory, thus adhering to the principle of persistence independence. The principle
of data type orthogonality is only partially adhered to, since only instances of
classes that are decorated with an @Entity annotation may be stored in the
persistent store. This explicitly precludes most system classes from being per-
sistently stored. The principle of persistence identification is largely adhered, to
since the mechanism for identifying persistent objects is not related to the type
system.

Despite not being fully compliant with the principles of orthogonal persistence,
an application programmer can program against persistent data without the
knowledge that the data is persistent. This is very much in the spirit of the aims
of orthogonal persistence.

3.10 LINQ

Microsoft, recognizing the problems of embedding queries into programs as
strings, has created Language-Integrated Query (LINQ) [3]. Unlike the Java
systems described previously, the approach taken by LINQ is to add general-
purpose query facilities that may be applied to all information sources. Thus
being able to query over relational data is merely a special case of querying.
For example, using LINQ it is possible to write a C# program to query over a
collection of persons as follows:

static void doquery( Person[] people ) {

IEnumerable<Address> result = from p in people

where p.age == 49

select p.address;

foreach (Address item in result)

Console.WriteLine(item.getTown());

}
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The query selects all the people from the array whose age is 49 and forms an enu-
meration containing their addresses. Note that the query is integrated with the
programming language, making it amenable to static type checking, optimization
and—perhaps more importantly—design tools such as refactoring tools.

Relational data stored in a database can also be manipulated using a Visual
Studio component called LINQ to SQL, which transparently translates LINQ
queries into SQL for execution by the database engine. The results are returned
in the language level objects defined in the user program. LINQ tracks the rela-
tionships between the language objects and the database transparently.

Like the Java object-relational mapping solutions, objects may be labelled
with annotations to identify how properties correspond to database columns.
Tool support is provided to assist in the translation between extant databases
and language level object definitions.

4 Taking Stock

A selection of approaches to programming with persistent data have been out-
lined. They differ in a number of key attributes, including:

– data-centric or program-centric
– degree of adherence to the principles of orthogonal persistence
– degree of impedance mismatch
– storage technology employed
– whether object identity is automatically preserved
– whether code is stored with data
– support for declarative queries over non-resident data
– support for transactions

Space precludes a full analysis of the various approaches with respect to all of
these aspects, but we suggest that the most fundamental is the overall system
philosophy. In a data-centric approach it is assumed that pre-existing persistent
data is a given, and the issue is how to program over that data. In a program-
centric approach, code comes first, and the issue is to provide persistence of
program data between executions.

In a data-centric approach the existing data is likely to be large and long-
lived, and openness of the data—avoiding lock-in to proprietary technology—is
likely to be important. Relational databases have overwhelming advantages in
this sector: mature technology resulting from long-term investment in scalability
and optimization; widely available expertise; and standard interfaces promoting
inter-operability. Approaches in this category include low-level database APIs
such as JDBC, and the various object-relational mapping technologies. The con-
straints imposed by the requirement to inter-operate with existing data—and
to cope with changes to both data and meta-data made via other routes to
the data—mean that none of these approaches achieve data type orthogonality,
and that all involve a significant impedance mismatch. The ORM systems re-
quire the programmer to understand and specify the mapping between multiple
representations, while low-level APIs also require conversion code to be written.
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Designers of program-centric persistence technologies are less constrained in
their choice of storage format since they may legitimately assume that the per-
sistent data will be solely accessed via the language infrastructure. The systems
that adhere to the principles of orthogonal persistence have all used proprietary
closed storage formats. There is no obvious technical reason why this is a neces-
sary choice, although it may well maximise scope for achieving good performance.
This may have been one factor behind the lack of commercial adoption of the
various successful research prototypes. To invest in significant use of any closed
storage system requires a very high level of trust in the long-term viability of
the technology and the processes that support it. Other obvious limiting factors
are the relatively limited scalability of those systems in terms of size and query
performance, inevitable given the resources available.

Object-relational systems have been highly successful, now dominating the
field in large applications. It is clear, however, that significant impedance mis-
match problems remain. Although the modern programmer is less likely to have
to program the transfer of objects to and from long-term storage, they must
still deal with a bewildering level of complexity in specifying mappings between
objects and relations. The recent emergence of conceptually simpler approaches
such as db4o is a sign that significant demand remains for the benefits pursued
in the original investigations of orthogonal persistence.

It is perhaps also worth reflecting on the current usefulness of the principles
of orthogonal persistence, a quarter century after they were first proposed. The
principle of persistence independence suggests that data manipulation should be
coded in exactly the same way for transient and persistent data, and that the
programmer should not have to control data movement between transient and
persistent storage. So long as the language is sufficiently rich that all desired data
manipulation can be expressed conveniently, there seems no obvious argument
against this principle. Of course, adherence to it incurs some implementation
effort, hence not all approaches do so.

The principle of data type orthogonality suggests that all objects should be
permitted the full range of persistence. Again, as a desirable feature this seems
uncontroversial. Again, it raises significant implementation difficulties, leading
to few systems achieving full adherence. Even those that claim full orthogonality
have tended to have difficulty with objects that depend on external state, such
as file descriptors, GUI elements, network channels etc.

The principle of persistence identification has had a more chequered history.
The wording of its definition earlier is taken from [21]. In the earlier [1], however,
which first proposed principles of orthogonal persistence, the principle is listed
but not named. In hindsight, it now seems unclear what, precisely, is mandated
by this principle that is not already covered by the principle of persistence in-
dependence. This appears to have been recognised in more recent discussion, in
which it has been replaced by the more concrete principles of transitive persis-
tence [34] and persistence by reachability [48]. We may perhaps conclude that
a more useful general principle might be that it should be possible to iden-
tify persistent objects in a convenient way. If doing so via the type system is
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forbidden by the principle of data type orthogonality, and identifying each ob-
ject individually is ruled out as too arduous, then persistence by reachability is
the only obvious solution.

5 Future Directions

Orthogonally persistent systems will not replace object-relational systems in the
foreseeable future. We may, however, speculate on niche areas in which the prin-
ciples of orthogonal persistence might be usefully carried forward. One possibility
is the development of a program-centric approach in which fully orthogonal per-
sistence is implemented using a relational database as the storage engine. This
would address the ‘closed data format’ criticism potentially levelled at previous
implementations, since read-only access to the data could be permitted at the
relational level.

Another potential avenue for development is to target emerging application
styles such as cloud applications. The development of such applications could
be significantly simplified by a system supporting programming over resilient
distributed objects in a transparent manner, abstracting over replication and
physical location in the same way that orthogonal persistence abstracts over
storage hierarchy [49].

Another avenue for investigation is how the unique features of orthogonally
persistent systems may be exploited to improve current software development
technology [18]. For example, the integration of first-class code and data within
a persistent store that enforces referential integrity makes the hyper-code
paradigm possible. This could be extended with more sophisticated support for
application system evolution, analogous to refactoring tools provided by mod-
ern IDEs [50]. Hyper-code allows source code to be reliably associated with all
code objects. Thus, whereas refactoring tools currently operate separately on a
code base or on a database, refactoring within a persistent environment could
be applied uniformly to data and the code that operates on it. Evolutionary
code could reflect over all of the data bound into the code-base being evolved,
as well as the structure of the code-base itself. Arbitrary evolution (or refac-
toring) of a running application could be performed with complete confidence
that all code and data affected by a change could be located and evolved in
turn consistently. This would be possible even for data that in conventional sys-
tems would be encapsulated within closures and thus inaccessible to evolution
code.

6 Conclusions

Orthogonal persistence was proposed to address the impedance mismatch prob-
lem. This problem has been with us for 20-30 years and refuses to go away.
It has recently been described as the Vietnam of Computer Science [51]. Far
from being resolved, the impedance mismatch is perhaps getting worse. We
now have impedance mismatch across the multiple subsystems concerned with
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data replication, cache-coherency and distribution. In many of today’s enter-
prise systems the programmer must, by necessity, not only manage mappings
from the language to the database but also from the language to the Mem-
cached [52] or DBCache [53] layers, and from those layers to the database.
Thus, when we consider the impedance mismatch problem in our systems it
is important to recognise that the object-relational mapping is not the only
mapping that must be considered. Even if non-relational storage is used, for
example Amazon S3 [54], mapping between layers is required. The essential
issues are who creates the mappings and how efficiently they can be
maintained.

In [19] Maier stated that one of the major problems of OO systems was the
lack of integration between bulk operations and the programming language. In
this domain good progress has been made in the last few years. LINQ makes
great strides in providing a single (sub-) language that operates over objects
regardless of their longevity.

The solutions to providing persistence in programming systems have been
many, and the road has been long and winding. However, there has been a clear
trend towards the ideals of orthogonal persistence. The state of the art has finally
moved away from strings containing embedded queries with explicit coercions to
values in the programming language space.

In the 1980s orthogonal persistence focussed on the differences between long-
and short-term storage. As described above, this is just one of many mappings
that an application builder needs to be concerned with; there are many subsys-
tems that require mappings to be maintained, including caching, networks, vir-
tualized hosts, distributed storage, and replication. Furthermore, we are moving
towards a world in which applications are self-organising and autonomic. Such
autonomic systems are likely to be concerned with data clustering, machine util-
isation and the ability to distribute computation and storage. Lastly the scale
of application systems is likely to vary enormously from small persistent appli-
cations on devices such as iPhones through to extremely large ones to address
the scientific challenges of tomorrow. In such a world it seems unlikely that the
intellectual burden of managing a plethora of complex mappings can be left in
the human domain.
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Abstract. Typically, object-oriented schemas are lacking declarative
specification of the schema integrity constraints. Object-oriented transac-
tions are also typically missing a fundamental ACID requirement: con-
sistency. We present a developed technology based on object-oriented
assertion languages that overcomes these limitations of persistent and
database object systems. This technology allows specification of object-
oriented integrity constraints, their static verification and dynamic
enforcement. Proof strategies that are based on static and dynamic veri-
fication techniques as they apply to verification of object-oriented trans-
actions are presented in the paper. Most of this work has been motivated
by the problems of object-oriented interfaces to XML that have not been
able to express typical XML Schema constraints, database constraints in
particular. The components of this technology are an object-oriented con-
straint language, a verification system with advanced typing and logic
capabilities, predefined libraries of object-oriented specification and ver-
ification theories, and an extended virtual platform for integrating con-
straints into the run-time type system and their management.

1 Introduction

Most persistent object and object database technologies lack the ability to ex-
press the schema integrity constraints in a declarative fashion, as is customary
in conventional data models. The reason is that the mainstream object-oriented
languages lack such declarative logic-based specification features. Specification
of even the most typical database constraints is beyond expressiveness of object-
oriented type systems of mainstream object-oriented languages. This is why the
notion of a transaction in most object-oriented technologies does not include
a fundamental ACID requirement: consistency. Since object-oriented schemas
do not contain specification of general integrity constraints (and often not even
keys and referential integrity) requiring that a transaction should satisfy those
constraints becomes very problematic.

These limitations emerge when interfacing object-oriented technology with
XML. Virtually all object-oriented interfaces to XML, as well as typed XML
oriented languages, suffer from the inability to express constraints such as those
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available in XML Schema [22]. These constraints include specification of the
ranges of the number of occurrences, keys and referential integrity. A core idea
behind type derivations in XML Schema is that an instance of a derived type
may be viewed as a valid instance of its base type. This includes the requirement
that all constraints associated with the base type are still valid when applied to
an instance of a derived type.

Overcoming these limitations becomes possible with the proliferation of ob-
ject-oriented assertion languages, such as JML [14] or Spec# [7]. Object-oriented
assertion languages now allow both specification of the integrity constraints in
object-oriented schemas and enforcing them when executing database transac-
tions. In addition to specifying constraints that are sufficient for XML types,
JML allows specification of mutation (update) of database state. Moreover, the
notion of a transaction that updates the database state maintaining the integrity
constraints of the database schema can now be specified in this technology. In
fact, if the actual Java code is provided, it will be possible to enforce the re-
quirement that a transaction must comply with the integrity constraints.

The availability of constraints makes it possible to use a prover technology for
automated reasoning about a variety of properties expressed by constraints. This
applies even to application properties that are not expressible in XML Schema.
Thus, reasoning and verification are supported in situations when XML data is
processed by a transaction or a general purpose programming language. While
dynamic enforcement of constraints is a reality in the actual systems, our goal
is to use a suitable prover technology to carry out deductions to statically verify
properties expressed by constraints.

Our choice of PVS (Prototype Verification System) [15] is based on its so-
phisticated type system (including subtyping and bounded parametric polymor-
phism) accommodating a variety of logics with higher-order features. A PVS
specification consists of a collection of theories. A theory is a specification of the
required type signatures (of functions in particular) along with a collection of
constraints in a suitable logic applicable to instances of the theory. Since PVS
is a higher-order system it allows embedding of specialized logics as we did for
temporal logic, applying the result to Java classes [2].

Our proof methodology for verification that a transaction respects the in-
tegrity of a schema equipped with constraintsrequires explicit specification of
the frame constraints of a transaction. The frame constraints specify the in-
tegrity constraints which the transaction does not affect. In addition, the active
part (the actual update) that a transaction performs is specified in a declarative,
logic-based style, and the verification is carried out using a proof strategy pre-
sented in the paper. This methodology is independent of a particular transaction
language [3]. Previous work on transaction verification includes [18,19,8,9,5].

The paper is organized as follows. In Sect. 2 we introduce a motivating exam-
ple which illustrates the main problems in object-oriented representation of XML
Schema constraints. Section 3 presents on overview of the architecture of our un-
derlying software technology for specification, representation and management
of constraints and their static and dynamic enforcement. Sections 4, 5, 6, and 7
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show how XML Schema constraints and transactions are specified using JML.
In Sect. 8 and 9 we present our techniques for representing JML specifications
in PVS. This is followed by the transaction verification techniques presented
in Sect. 10. Section 11 shows how our extended virtual platform contributes to
the overall technology for management of constraints, and their enforcement in
transaction verification.

2 Motivation: XML Schema Constraints

Although the technology presented in this paper is a general object-oriented
constraint technology, a substantial part of the motivation comes from the prob-
lems of interfacing object-oriented persistent and database technology with XML
Schema [13]. A typical XML Schema constraint specifies the range of the num-
ber of occurrences of an XML term (an element or a group). This type of a
constraint is illustrated below by a type XMLproject specified according to the
XML Schema formalism.

<xsd:complexType name = "XMLproject"

<xsd:sequence>

<xsd:element name = "leader" type = "XMLprojectLeader" />

<xsd:element name = "funds" type = "xsd:positiveInteger" />

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "1" maxOccurs = "5" />

</xsd:sequence>

<xsd:attribute name = "projectId" type = "xsd:string" />

</xsd: complexType>

XML Schema comes with two techniques for type derivation: by extension and
by restriction. Type derivation by extension can be represented using inheritance
in spite of some subtleties. However, object-oriented interfaces to XML cannot
represent type derivation by restriction because this form is, among other sub-
tleties, based on restricting the range constraints of the base type in the type
derived by restriction. This is illustrated below by a type XMLspecialProject
derived by restriction from the type XMLproject. A special project is required
to have exactly one contract.

<xsd:complexType name = "XMLspecialProject"

<xsd:complexContent>

<xsd:restriction base = "XMLproject" >

<xsd:sequence>

<xsd:element name = "leader" type = "XMLprojectLeader" />

<xsd:element name = "funds"

type = "xsd:positiveInteger" />

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "1" maxOccurs = "1" />

</xsd:sequence>

<xsd:attribute name = "projectId" type = "xsd:string" />

</xsd:complexContent>

</xsd:complexType>
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A sample application schema in this paper consists of a sequence of projects and
a sequence of contracts. Specification of these two types in the XML Schema
formalism is given below. The range-of-occurrences constraints are such that
representing these types in object-oriented interfaces would not be a problem
using parametric types such as a sequence or a list. But if the range constraints
were more specific like in XMLproject and XMLspecialProject, object-oriented
interfaces could not represent them.

<xsd:complexType name = "XMLsequenceOfProjects"

<xsd:sequence>

<xsd:element name = "project" type = "XMLproject"

minOccurs = "0" maxOccurs = "unbounded" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name = "XMLsequenceOfContracts"

<xsd:sequence>

<xsd:element name = "contract" type = "XMLcontract"

minOccurs = "0" maxOccurs = "unbounded" />

</xsd:sequence>

<xsd:complexType>

XML Schema also allows specification of typical database integrity constraints
such as keys and referential integrity. Project and contract keys are specified
below according to the XML Schema formalism, so that the attribute projectId
is a key for the sequence of projects and contractNo is a key for the sequence
of contracts. Object-oriented interfaces to XML such as DOM [11], LINQ to
XML [21] and LINQ to XSD [20] are constrained by the limitations of object-
oriented type systems. This is why they have no way of specifying any of these
constraints, because these constraints are not expressible in the standard object-
oriented type systems. The same applies to referential integrity constraints in
XML Schema illustrated below. This referential constraint specifies that the
contract numbers of contracts of a project must be valid, i.e., keys that actually
appear in the sequence of contracts.

<xsd:element name= "allContractsAndProjects">

<xsd:complexType>

<xsd:sequence>

<xsd:element name = "Contracts"

type ="XMLSequenceOfContracts" />

<xsd:element name = "Projects"

type = "XMLSequenceOfProjects" />

</xsd:sequence>

</xsd:complexType>

<xsd:key name ="contractKey" />

<xsd:selector xpath="./Contracts/contract" />

<xsd:field xpath="@contractNo" />

</xsd:key>

<xsd:key name ="projectKey" />
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<xsd:selector xpath="./Projects/project" />

<xsd:field xpath= "@projectId" />

</xsd:key>

<xsd:keyref name = "projectToContract" refer="contractKey">

<xsd:selector xpath ="Projects/project/contract" />

<xsd:field xpath ="@contractNo" />

</xsd:keyref>

</xsd:element>

The new proposal for XML Schema 1.1 [22] includes even more general con-
straints specified as assertions that are based on Xpath expressions. Complex ap-
plications naturally contain other types of constraints that cannot be expressed
in the XML Schema formalism and well-known object-oriented interfaces to XML
cannot represent them either. The problem here is that object-oriented interfaces
to XML are used in complex object-oriented software application packages that
should enforce the application constraints.

3 Architecture

The underlying support of this technology is an extended virtual platform (XVP)
implemented in a related project [17]. This platform allows declarative represen-
tation of constraints, introspection by extended reflective capabilities that re-
port constraints along with the type signatures, and interfacing with a program
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verification system. The components of this technology represented in Fig. 1
inter-operate as follows.

– Application schemas are specified in JML by extending our predefined library
of JML specifications of the core of XML Schema.

– Application programs and transactions are also specified in JML and imple-
mented in Java, so that JML constraints will be enforced at run-time.

– JML specifications are compiled by a special compiler [17]. The extended
virtual platform [17] makes constraints available for introspection and en-
forcement.

– In order to carry out static verification the PVS theories relevant for the ver-
ification task are produced extending our predefined library of PVS theories
for the XML Schema core.

This architecture makes a variety of verification techniques possible by combining
static and dynamic techniques. If the constraints to be enforced dynamically are
taken as assumptions, other constraints, database integrity in particular, may
be provable statically. If so, the latter constraints will not have to be verified at
run-time, increasing efficiency and reliability of transactions.

4 Object-Oriented Assertions

The JML representation of an XML element XMLproject is specified below. The
three components of this specification are: the type information associated with
an element type, the type signatures of accessor functions, and the constraints.
In fact, the availability of constraints makes this representation possible. A com-
plete and correct representation would not be possible in a type system alone as
it requires constraints, like those expressible in JML.

A project element consists of three subelements (leader, contract and
funds), and a single attribute (projectId). These are specified in the inner types
(classes) ProjectElements and ProjectAttributes. The function elements re-
turns project elements and the function attributes returns project attributes.
Usage of parametric types appears in comments because their support in JML
is still under development.

// class XMLproject extends XMLelement<XMLcomplex>

public class XMLproject extends XMLelement {

/*@ ensures this.elements().fundsConstraint() &&

this.elements().rangeConstraint(); @*/

XMLproject(ProjectElements elements,

ProjectAttributes attributes) {. . . }

/*@ pure @*/

public ProjectElements elements() { . . . }

/*@ pure @*/

public ProjectAttributes attributes() {. . . }

/*@ ensures \result <==> ((XMLfloat)this.elements().funds().

value()).floatValue() >= 100000; pure @*/
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public boolean fundsConstraint() {. . . }

/*@ ensures \result <==> this.elements().contract().occurs() >= 1

&& this.elements().contract().occurs() <= 5; pure @*/

public boolean rangeConstraint() {. . . }

/* specification of ProjectElements and ProjectAttributes */

/*@ invariant this.fundsConstraint() && this.rangeConstraint(); @*/

}

The JML representation technique of type derivation by restriction as defined
in XML Schema is illustrated below. The type XMLspecialProject extends the
type XMLproject using inheritance as specified in Java. There are no new com-
ponents of XMLspecialProject in comparison with XMLproject, but the con-
straints in XMLspecialProject are strengthened with respect to the constraints
in XMLproject. This corresponds to the XML Schema notion of type derivation
by restriction, except that the constraints in our JML and PVS based technology
can be much more general.

public class XMLspecialProject extends XMLproject {

// . . .

/*@ also ensures this.fundsConstraint() <==>

((XMLfloat)this.elements().funds().

value()).floatValue() >= 1000000; pure @*/

public boolean fundsConstraint() {. . .}

/*@ invariant this.elements().contract().maxOccurs() == 1; @*/

}

5 Application Schemas

A project management application schema XMLprojectManagement contains a
sequence of contracts and a sequence of projects. This specification contains two
constraints typical for database schemas and available in XML Schema. The
uniqueness constraint specifies that contract numbers uniquely determine con-
tracts in the sequence of contracts. The referential constraint specifies that
contracts of projects in the sequence of projects exist in the sequence of contracts.
In addition to the above two XML Schema types of constraints, the ordering
constraint specifies that contracts appear in the sequence of contracts in increas-
ing order of their contract numbers. There is also a self-explanatory fundsRange
constraint. The ordering and the fundsRange constraints are samples of typical
database constraints. But the advantage of using a general constraint language
such as JML is that we can express more general constraints belonging to the
application environment and enforce them. Application requirements typically
go beyond the expressive capabilities of the constraint language for XML Schema
or conventional database management systems.
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public class XMLprojectManagement implements XMLschema {

/*@ pure @*/

public XMLsequence projects() {. . . }

// XMLsequence<XMLproject> projects();

/*@ pure @*/

public XMLsequence contracts() {. . . }

// XMLsequence<XMLcontract> contracts();

/*@ ensures \result <==> (\forall XMLcontract c1,c2;

contracts().member(c1) && contracts().member(c2) &&

c1.attributes().contractNo().equals

(c2.attributes().contractNo()) ==> c1.equals(c2)); pure @*/

public boolean uniquenessConstraint() { . . .}

/*@ ensures \result <==> (\forall XMLproject p;(\forall XMLcontract c;

projects().member(p) && p.elements(). contract().equals(c) ==>

(\exists XMLcontract c1; contracts().member(c1) &&

c.attributes().contractNo().equals

(c1.attributes().contractNo())))); pure @*/

public boolean referentialConstraint() { . . . }

/*@ ensures \result <==>(\forall XMLcontract c1,c2;(\forall int n1,n2;

contracts().member(c1) & contracts().member(c2) &&

c1.attributes().contractNo() <= c2.attributes().contractNo() &&

contracts().get(n1).equals(c1) &&

contracts().get(n2).equals(c2) ==> n1 <= n2)); pure @*/

public boolean orderingConstraint() { . . . }

/*@ ensures \result <==> (\forall XMLproject p;

projects().member(p) ==> p.fundsConstraint()); pure @*/

public boolean fundsRangeConstraint() {. . .}

/*@ also ensures \result <==> this.uniquenessConstraint() &&

this.referentialConstraint() && this.orderingConstraint() &&

this.fundsRangeConstraint(); pure @*/

public boolean consistent() { . . . }

/*@ invariant this.consistent(); @*/

}

6 Data Manipulation via Mutator Methods

Object-oriented interfaces to XML are largely intended for developing applica-
tions that manipulate the object-oriented representation of XML data. This is
where the availability of constraints is critical to maintain data integrity. The
existing object-oriented interfaces such as DOM [11], LINQ to XML [21] and
LINQ to XSD [20] have no way of enforcing constraints of XML Schema in data
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manipulation actions. This becomes possible using object-oriented assertion lan-
guages. A few illustrative examples follow.

/*@ ensures this.fundsRangeConstraint(); @*/

void updateFunds(XMLelement amount) {. . .}

// XMLelement<Float> amount

/*@ ensures this.fundsRangeConstraint() &&

this.referentialConstraint(); @*/

void updateProjects(XMLsequence projects){. . .}

// XMLsequence<XMLproject>

/*@ ensures this.uniquenessConstraint() &&

this.orderingConstraint(); @*/

void updateContracts(XMLsequence contracts) {. . . }

// XMLsequence<XML contract>

The above examples demonstrate some of the major advantages of the con-
straint-based approach with respect to the previous results. Enforcing the in-
tegrity constraints is a critical issue for database transactions that perform data
manipulation. This cannot be accomplished with other approaches that are not
based on constraints, but rather on type systems alone.

7 Transactions

Our JML specification of the class Transaction shares some similarity with the
ODMG specification, but the ODMG specification does not have two critical
ingredients: constraints and bounded parametric polymorphism [10]. The type
constraint says that the actual type parameter must extend the type XMLschema.
This is how a transaction is bound to its schema. In spite of all problems related
to genericity in Java [1], this form of bounded parametric polymorphism is sup-
ported in the recent editions of Java. The JML assertions make it possible to
specify the requirements that a transaction must respect the schema integrity
constraints.

// abstract class XMLtransaction <T extends XMLschema>

abstract public class XMLtransaction {

// . . .

/*@ pure @*/

abstract XMLschema schema(); // T schema()

}

A specific transaction is specified below. The fact that this transaction is de-
fined with respect to the XMLprojectManagement schema is represented using
XMLprojectManagement as the actual type parameter. The constructor takes an
instance of the XMLprojectManagement schema and makes it the schema of this
transaction returned by the method schema.
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The actual update that the transaction performs is specified in the method
update. This method requires that the schema consistency requirements are
satisfied before the update is executed. One of the conditions that this method
ensures after its execution is that the sequences of contracts before and after
execution of update are equal. In other words, this transaction does not affect
the sequence of contracts. In addition, the method update ensures that the
referential integrity constraint of the XMLprojectManagement schema holds after
method execution. The remaining part of the postcondition specifies the actual
update that the transaction performs which is increasing project funds by the
specified amount.

// class XMLprojectTransaction

// extends XMLtransaction<XMLprojectManagement>

public class XMLprojectTransaction extends XMLtransaction {

XMLprojectTransaction(XMLprojectManagement schema) {. . . }

/*@ pure @*/

XMLprojectManagement schema(){. . . }

/*@ ensures this.schema().contracts().equals(

\old(this.schema().contracts()))

&& this.schema().referentialConstraint() &&

(\forall int n; 1 <= 1 && n <= this.schema().projects().length();

((XMLfloat)((XMLproject)this.schema().projects().get(n)).elements().

funds().value()).floatValue() ==

\old(((XMLfloat)((XMLproject)this.schema().projects().get(n)).

elements().funds().value()).floatValue()) + 1000 ); @*/

void update(float increase) {. . . }

}

Note that the result type of the method schema has been overridden covariantly
as in the recent editions of Java. If the method update is implemented in Java,
JML will dynamically enforce the above requirements. In the above example an
obvious question is whether the schema integrity constraints will indeed be sat-
isfied if a transaction behaves according to the above specification. As even this
simple example shows, when the integrity constraints and transaction updates
become more complex, their verification requires support from a suitable prover
technology.

8 PVS Theories

In order to use the PVS prover, JML specifications must be transformed into
PVS theories, preferably by an automated tool. A PVS theory is a specification
of the required type signatures (of functions in particular) along with a collec-
tion of constraints in a suitable logic applicable to instances of the theory. Our
core techniques include representation of inheritance, method overriding and
parametric types.
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PVS does not support the object-oriented notion of inheritance. Our PVS
representation technique for inheritance has the following form:

A: THEORY B: THEORY

BEGIN A: TYPE BEGIN IMPORTING A

% body of theory A B: TYPE FROM A

END A % body of theory B

END B

In PVS the subtype declaration B: TYPE FROM A is equivalent to

B_pred: [A -> bool]

B: TYPE =(B_pred)

where (B pred) denotes a type that satisfies B pred. This is the PVS notion of
predicate subtyping. The implications of the PVS notion of predicate subtyping
on modeling inheritance of methods are elaborated in [2].

The PVS notion of predicate subtyping has the following implication on mod-
eling inheritance of methods. A method m of A with the signature

m: [A,C2,...,A,...,Cm -> A]
will be available in B with exactly the same signature, just like in the Java
invariant subtyping rule for signatures of inherited methods. However, since B is
a PVS subtype of A, the effect would be as if m is available in B with the signature
m: [B,C2,...,B,...,Cm -> A]. Otherwise, overriding the signature of m in B
to a signature such as

m: [B,C2,...,B,...,Cm -> B]
which has covariant change of the result type as in recent editions of Java requires
definition of a new function m in B.

Unlike the current version of JML, PVS supports parametric and even boun-
ded parametric polymorphism. A theory representing a parametric type C with
a bounded type constraint has the following form:

C[(IMPORTING B) T: TYPE FROM B]
The fact that a theory K with a bound B for its type parameter T is representing

a subclass of a parametric class C is represented in the PVS notation as follows:

K [(IMPORTING B) T: TYPE FROM B]

BEGIN

IMPORTING C[T]

K: TYPE FROM C[T]

% body of K

END K

9 Application-Oriented PVS Theories

Application-oriented PVS theories are illustrated in the specification XMLpro-
ject given below. The type information for subelements and attributes is rep-
resented by record types. However, because of repetition of the subelement
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contract, XMLproject is not represented as a record, since that would not be
an accurate representation with respect to XML. contract is a unique identi-
fier in the record structure, and it gets repeated as the tag of any occurence
of this subelment in the XMLproject element. The repetition is expressed via
minOccurs and maxOccurs constraints and also by specifying the tag language
of XMLproject. In addition to the above two components (type structure and
constraints), the third component consists of accessor functions that apply to an
instance of an XMLproject. Note that the accessor function projectContracts
returns a sequence of XMLcontract elements.

XMLproject: THEORY

BEGIN

IMPORTING XMLcomplex, XMLcontract, XMLstring

XMLproject: TYPE+ FROM XMLelement

XMLprojectElements: TYPE = [# leader: string, funds: real,

contract: XMLcontract #]

XMLprojectAttributes: TYPE = [# projectId: string #]

project: [XMLprojectElements, XMLprojectAttributes -> XMLproject]

elements: [XMLproject -> XMLprojectElements]

attributes: [XMLproject -> XMLprojectAttributes]

p: VAR XMLproject

leader(p): string = leader(elements(p))

funds(p): real = funds(elements(p))

contract(p): XMLcontract = contract(elements(p))

projectContracts: [XMLproject -> XMLsequence[XMLcontract]]

fundsConstraint(p: XMLproject): bool =

(funds(elements(p))) >= 1000000

contractElementsConstraint(p: XMLproject): bool =

minOccurs(contract(elements(p))) >= 1 AND

maxOccurs(contract(elements(p))) = unbounded

elementTags(p: XMLproject): XMLtags =

conCat(singleton(seq("leader")),

conCat(singleton(seq("funds")),

starPlus(singleton(seq("contract")))) )

END XMLproject

Specification of the XMLprojectManagement schema now follows the initial JML
specification. The constraints specify the schema consistency requirements dis-
cussed earlier in the PVS notation.

XMLprojectManagement: THEORY
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BEGIN

IMPORTING XMLcomplex, XMLcontract, XMLproject, XMLsequence, XMLschema

XMLprojectManagement: TYPE+ FROM XMLschema

projects: [XMLprojectManagement -> XMLsequence[XMLproject]]

contracts: [XMLprojectManagement -> XMLsequence[XMLcontract]]

M: VAR XMLprojectManagement

p: VAR XMLproject

c: VAR XMLcontract

uniquenessConstraint(M): bool = (FORALL (c1,c2: XMLcontract):

member(contracts(M),c1) AND member(contracts(M),c2) AND

contractNo(contractAttributes(c1)) =

contractNo(contractAttributes(c2)) IMPLIES c1 = c2)

referentialConstraint(M): bool = (FORALL (p,c):

(member(projects(M),p) AND contract(elements(p)) = c) IMPLIES

(EXISTS (c1:XMLcontract):(member(contracts(M),c1) AND

(contractNo(contractAttributes(c1)) =

contractNo(contractAttributes(c))))))

orderingConstraint(M): bool = (FORALL (c1,c2: XMLcontract,

n1,n2: below(length(contracts(M)))):

member(contracts(M),c1) AND member(contracts(M),c2)

AND contractNo(contractAttributes(c1)) <=

contractNo(contractAttributes(c2)) AND

nth(contracts(M))(n1) = c1 AND

nth(contracts(M))(n2) = c2 IMPLIES n1 <= n2)

fundsRange(M): bool = (FORALL (n: below(length(projects(M)))):

fundsConstraint(nth(projects(M))(n)))

consistent(M): bool = uniquenessConstraint(M) AND

referentialConstraint(M) AND

orderingConstraint(M) AND

fundsRange(M)

END XMLprojectManagement

10 Transaction Verification in PVS

A transaction theory XMLprojectTransaction contains specification of both
the frame constraint and the actual update that the transaction performs [3].
The frame constraint specifies the integrity constraints that are not affected by
the transaction. This particular transaction only updates contract funds and
hence it has no impact on the uniqueness, referential, and ordering constraints.
Explicit specification of the frame constraints is essential in our proof strategy
that guides the prover appropriately. The actual update that the transaction
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performs is specified in a declarative fashion as a predicate over a pair of object
states, the state before and the state after transaction execution. A transaction
is then a binary predicate specified as a conjunction of its frame constraint and
the actual update constraint.

XMLprojectTransaction: THEORY

BEGIN

IMPORTING XMLtransaction, XMLprojectManagement

XMLprojectTransaction: TYPE FROM XMLtransaction

M1,M2: VAR XMLprojectManagement

frameAx(M1,M2): bool = consistent(M1) AND

contracts(M1) = contracts(M2) AND referentialConstraint(M2)

update(M1,M2): bool = length(projects(M1)) = length(projects(M2))

AND FORALL (n: below(length(projects(M2)))):

(funds(elements(nth(projects(M2))(n))) =

funds(elements(nth(projects(M1))(n))) + 100000)

transaction(M1,M2): bool = frameAx(M1,M2) AND update(M1,M2)

END XMLprojectTransaction

In order to prove that a transaction which conforms to the above theory main-
tains the integrity of the XMLprojectManagment database, the following theory
is constructed. To simplify the proof, a simple update lemma is proved first. The
integrity theorem is then proved using the update lemma [3].

VerifyProjectTransaction: THEORY

BEGIN

IMPORTING XMLprojectTransaction

M1,M2: VAR XMLprojectManagement

updateLemma: LEMMA fundsRange(M1) AND update(M1,M2)

IMPLIES fundsRange(M2)

Integrity: THEOREM FORALL (M1,M2):

consistent(M1) AND transaction(M1,M2) IMPLIES consistent(M2)

END VerifyProjectTransaction

Consider an example of a characterization of a transaction update that violates
the referential integrity constraint and hence its Integrity theorem fails. Let
us define badUpdate as

badUpdate(M1,M2): bool = length(projects(M1)) > 0 AND

projects(M2) = projects(M1) AND length(contracts(M2)) = 0

This update does not affect the sequence of projects but it deletes all con-
tracts which is an obvious violation of referential integrity. The PVS proof of
the updateLema leads to an obvious contradiction demonstrating violation of
integrity.
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11 Virtual Platform Support

In this section we show an example of combination of static and dynamic veri-
fication of a transaction that relies on the support of the extended virtual plat-
form [17]. The main components of an extended virtual platform are given in
Fig. 2.

  PVS Response
Create PVS
Theories

Check Constraints

Class TheoriesPVS System

Reflective Introspection

Verification Tool

Class Theories

Extended
Class Object

File System

Class file
with assertions

  Read Class

Create
Class Object

XVP Loader

Fig. 2. Verification in the extended virtual platform

The existing Java reflective capabilities allow introspection of type signatures
and the extended virtual platform allows introspection of the constraints as-
sociated with those types. Constraints are reported by the extended reflective
capabilities in their logic-based declarative style. This is a major distinction in
comparison with existing virtual platforms, and JML in particular.

This system is designed in such a way that it is independent of a particu-
lar constraint language and its underlying logic basis. The program verification
system accesses loaded class objects through a tool that makes use of extended
reflective capabilities. The interface component produces a program verification
theory of a class and the program verification system carries out deduction and
reports the results.

The Java Core Reflection (JCR) classes that have been extended are Class,
Constructor, and Method. These extensions are based on new types such as
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Invariant, PreCondition, and PostCondition. With these new types it be-
comes possible to add method preconditions and postconditions to the class
Method, and the class invariant to the class Class. These assertions require fur-
ther types that make it possible to create objects that represent logical formulas
for constraints. In order to achieve independence of a particular constraint lan-
guage and its logic basis, the types representing logical formulas are specified
as abstract classes. These classes must be extended for a particular assertion
language as we did for JML.

Additions of the recompiled class Class allow access to the declared and the
inherited invariant. The extensions of the class Method allow access to (declared
and inherited) preconditions and postconditions. The class Constructor is sim-
ilarly extended.

public final class Class { ...

public Invariant getInvariant();

}

public final class Method { ...

public PostCondition getPostCondition();

public PreCondition getPreCondition();

}

Each one of the above assertion types is also equipped with the method evaluate
for run-time evaluation of the assertion objects. The differences in the signatures
of these methods are in their parameters and reflect the nature of the assertions.
Postcondition is also equipped with a method to bind parameters taking into
account both the object state before and after method execution.

In the example given below, the method executeProjectTransaction is writ-
tenwith the assumption that static verification of the transactionproTransaction
has been carried out. Static verification proves that if proManagement is consis-
tent and the transactionproTransaction is executed, proManagementwill remain
consistent. The consistency predicate is in fact the invariant of the object
proManagement.

Dynamic verification requires access to the precondition of the method up-
date of proTransaction and the invariant of the object proManagement. This is
done by extended reflection. If these two conditions evaluate to true, the update
method is invoked using standard reflection. Upon execution of this method its
postcondition is evaluated using extended reflection. If it evaluates to true then
we know that the invariant will hold and hence it does not have to be checked
dynamically. If the postcondition does not hold the transaction proTransaction
is aborted. Otherwise it is committed.

executeProjectTransaction(XMLprojectManagement proManagement,

XMLprojectTransaction proTransaction,

XMLfloat amount) throws Exception

{ proTransaction.start();

Invariant inv = proManagement.getClass().getInvariant();

Method update = proTransaction.getClass().getMethod("update",

new Class[]{XMLfloat.class});
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Object[] params = new Object[]{amount};

PreCondition preCond = update.getPreCondition();

PostCondition postCond = update.getPostCondition();

postCond.bindPreMethodVars(proTransaction,params);

if (inv.evaluate (proManagement) &&

preCond.evaluate(proTransaction,params))

update.invoke(proTransaction,params);

if (postCond.evaluate(proTransaction,null,params))

proTransaction.commit();

else proTransaction.abort();

}

12 Conclusions

Specification, representation and enforcement of constraints has been a major
factor of the impedance mismatch between object-oriented and data languages.
In this paper we showed that interfacing object-oriented database technology
with XML technology also stumbles on the problems of constraints, such as
those available in XML Schema. Resolving the object-oriented/XML mismatch
will be possible only in a constraint-based technology of the kind presented in
this paper.

Object-oriented schemas that are based on object-oriented languages and their
type systems cannot express the integrity constraints typical for either database
schemas or dictated by the semantics of the application environment. The current
underlying architecture of object-oriented assertion languages typically allows
dynamic enforcement. We make two contributions that are relevant to transac-
tions in particular.

The first contribution is to provide a virtual platform that integrates con-
straints with the run-time type system making the constraints available by re-
flection. This makes the integrity constraints of a schema visible by transactions
and application programs in general. This platform allows a variety of constraint
management and enforcement scenarios.

The second contribution is in the usage of a verification system to statically
verify at least some integrity constraints. In fact, it is the combination of dynamic
and static verification that that we applied to transactions to decrease the cost
of dynamic checking of database integrity constraints.

The complexity of verification systems such as PVS requires development of
proof strategies [6] specifically targeted to verification of object-oriented trans-
actions and to interfacing with XML technology. A sample strategy is given in
the paper as it applies to transaction verification. These tailored proof strategies
and more friendly user interfaces are a key requirement in making these tools
accessible to database programmers.
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Abstract. The integration of database and programming languages is
made difficult by the different data models and type systems prevalent
in each field. Functional-object query languages contribute to bridge this
gap by letting software developers write declarative queries without im-
posing any specific execution strategy. Although some query optimizers
support this paradigm, Java provides no means to embed queries in a
seamless and typesafe manner. Interestingly, the benefits of such gram-
mar extension (compile-time type inference and checking, user-friendly
syntax) can alternatively be achieved with a compiler plugin as discussed
in this paper for the LINQ query language and two Java compilers (from
Sun and Eclipse). A prototype confirms the benefits of the approach by
automating at compile-time (a) the parsing of LINQ queries nested in
Java, (b) their analysis for well-formedness, and (c) their rewriting into
statements to build Abstract Syntax Trees (ASTs). The technique is also
applicable to other languages (JPQL, XQuery) which are handled nowa-
days by a Java compiler as uninterpreted strings, being thus prone to
runtime exceptions due to breaches of static semantics.

1 Introduction

The Microsoft project Language Integrated Query (LINQ for short) has raised the
bar for data access in mainstream programming languages by introducing query-
related constructs as first-class citizens. These constructs include relational op-
erations (e.g., projections, selections, joins) as well as the more fundamental
functional operations map, filter, and flatMap (which LINQ calls Select, Where,
and SelectMany). The underlying semantic foundation, list comprehensions [1],
makes LINQ amenable to well-known optimizations [2,3] that compute efficient
access plans at runtime. Because of this, a Java integration of LINQ does not
involve devising new query compilation techniques but applying instead existing
scientific knowledge in the context of language and compiler engineering.

This paper addresses just such engineering problem in a portable manner
(across Java compilers from different vendors, across different IDEs) by relying
on a compiler plugin to extend (but not modify) a Java batch compiler. All
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along, the original syntax of LINQ is supported without extending the Java
grammar, using the error reporting conventions of the host language. Therefore,
our prototype can simply be added to existing toolchains for build automation
facilitating real-world adoption. The methodology in question also paves the way
for other proofs of concept, for example adapting to Java innovative compilation
strategies that straddle the database/virtual machine divide [4,5,6].

Our contributions are twofold. First, we give a denotational semantics for
LINQ and make explicit the reasoning behind the translation from LINQ into its
lower-level, comprehension-style formulation (Standard Query Operators, SQO
[7]). The LINQ specification glosses over many of the issues involved and lacks
a treatment of the confluence of the rewriting process. We cover these aspects,
given their importance for a future standardization of LINQ for Java. As second
contribution, a technique is presented to realize compile-time program transfor-
mations for Java. Unlike other approaches that demand deep knowledge about
the internals of a compiler, the proposed technique enables lightweight language
embedding as demonstrated for LINQ query expansion.

The structure of this paper is as follows. Background is provided in Sect. 2
on current approaches to language embedding in Java, an issue relevant to the
ODBMS, ORM, and RDBMS communities. The syntax and semantics of LINQ
are presented in Sect. 3 thus making the paper self-contained. Section 4 covers
the translation of LINQ into SQO building blocks, as well as aspects of language
design (side-effects and variable capture). Adapting our approach to other query
languages (XQuery, JPQL) is facilitated by the discussion in Sect. 5 of the im-
plementation of our prototype. Finally, the two last sections offer an overview of
related work (Sect. 6) and discuss conclusions and areas for future work (Sect. 7).
Knowledge is assumed from the reader about database query languages as well
as familiarity with compiler terminology.

A prototype (LINQExpand4Java) realizing this approach can be downloaded
from http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java

2 Language Embedding and Static Semantics

Language extensions, as in the Microsoft implementation of LINQ, require a
heavyweight modification of a compiler or the use of a pre-processor. Besides
the higher development cost, combining independently developed extensions is
impossible, as each front-end rejects all extensions but the one it understands.
This explains the renewed interest in language embedding for Domain-Specific
Languages (DSLs), which fosters an agile approach to language engineering. The
original syntax of the host language is kept, while looking for opportunities to
express AST building in a visually appealing manner. For example1:

final Sql sql = Select(ARTICLE.NAME, ARTICLE.ARTICLE_NO)

.from(ARTICLE)

.where(ARTICLE.OID.in(named("article_oid")))

.toSql();

1 JEQUEL: SQL embedded in Java, http://www.jequel.de/

http://www.sts.tu-harburg.de/people/mi.garcia/LINQExpand4Java
http://www.jequel.de/
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The previous example not only resembles SQL but moreover is typesafe, i.e.,
the type system of the host language enforces (most) Well-Formedness Rules
(WFRs) of the embedded language. Kabanov and Raudjärv [8] provide a compre-
hensive review of the relevant design patterns (Fluent Interface, Query Builder,
reification of the database schema, etc.). Common to all proposals (Native Que-
ries2, Criteria API3, etc.) is the limitation that queries are not portable among,
say, Java, C#, and Ruby. We reserve the term nested language for DSLs that
can be reused verbatim across platforms and host languages.

In our context, techniques originally developed for embedded DSLs (EDSLs)
are also of interest because query expansion takes as input a nested query pro-
ducing statements conforming to an embedded DSL (albeit one not intended for
direct editing by developers). Thus, the succinctness of nested syntax is com-
bined with the ability to target existing EDSLs.

Both nested and embedded DSLs rely on a facility to import database schema
information into the program namespace (schema awareness) as an aid to type-
checking. This task is made cumbersome by the variety of formats in use today
(i.e., the ODMG 3.0 object model [9, Chap. 2] [10], the LINQ Entity Data
Model4, and the JSR-317 Schema Metamodel [11, p. 12] used in orm.xml).

Both the nesting and the embedding approach aim at checking at compile
time that queries are (a) syntactically correct, (b) well-typed and compliant
with the database schema, and (c) robust to cope with breaking changes due to
schema renamings. Proponents of EDSLs achieve (a) and (b) with library reuse
and class generation [8], while (c) is attained by making queries participate in
IDE-performed refactorings. However, this IDE functionality cannot be reused
for Nested DSLs, their syntax differing radically from that of the host language.
Upon breaking schema changes (renamings or others) a compiler plugin signals
broken nested queries, for the developer to manually repair. Given our previous
work on generators for EDSLs [12] we explored that alternative first, only to
realize that encapsulating all well-formedness and schema checks in the compiler
plugin (as per the Nested DSL approach) meets all the essential requirements in
a modular way, the only shortcomings being the lack of support for refactoring
and the fragility resulting from developers tinkering with the generated code.

The code snippet below shows an excerpt of the statements generated by
LINQExpand4Java before translating into SQO, whose expansion is more verbose.

// from entry in contacts select new EmailAddr(entry.name, entry.email)

import static linqtextual.LinqtextualExprBuilder.*; ...

NewExprTraditional newExpr0 = newExprTraditional()

.fqTypeName("EmailAddr").args(member0, member1).toAST();

SelectClause selClause0 = selectClause().result(newExpr0).toAST();

QueryBody queryBody0 = queryBody().clauses().result(selClause0).toAST();

QueryExpr finalQuery = queryExpr().from(fromClause().var(entry0)

.inExpr(contacts0).toAST()).body(queryBody0).toAST();

2 http://www.db4o.com/about/productinformation/whitepapers
3 http://in.relation.to/Bloggers/ATypesafeCriteriaQueryAPIForJPA
4 http://msdn.microsoft.com/en-us/library/bb387122.aspx

http://www.db4o.com/about/productinformation/whitepapers
http://in.relation.to/Bloggers/ATypesafeCriteriaQueryAPIForJPA
http://msdn.microsoft.com/en-us/library/bb387122.aspx
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3 Syntax and Semantics of LINQ

The state of the art of O/R mapping on the platform Microsoft .NET 3.5 is
defined by the combination of three technologies: (1) a functional query lan-
guage, LINQ; (2) a software component (the Entity Framework [13]) in charge
of bidirectional, automatically invertible, O/R mapping [14]; and (3) a LINQ-
aware Integrated Development Environment (IDE) offering usability features
such as syntax completion. The concepts underlying LINQ are however platform-
independent and thus our clean-room implementation for Java based on publicly
available specifications only.

The textual syntax of LINQ has been designed for readability and not for
direct evaluation, which requires a previous translation step. For example, the
query from x in numbers where x>0 select 2*x actually stands for the following
C# code: numbers.Where(x => x>0).Select(2*x). LINQ can query data sources
that behave as streams (i.e., that support a minimal open/next/close iterator
interface). In the example, each number x is tested (with the predicate given by
the lambda expression x => x>0) to decide whether to include 2*x in the result
(another stream).

The expressiveness of functional-object query languages [15] calls for opti-
mization techniques to achieve performance competitive with manually tuned
“native” queries (in the dialect supported by a particular persistence engine).
For read-only queries all the techniques devised to speed up the evaluation of
list comprehensions are applicable: deforestation [16, Chap. 7], removal of nested
loops [3], join graph isolation [17], and memoization [18], to name a few. Opti-
mizations for the main-memory case have also been devised [2,19,20].

3.1 Syntax

In its simplest form, a LINQ query begins with a from clause and ends with
either a select or group clause. In between, zero or more query body clauses
can be found (from, let, where, join or orderby). Queries may be nested: the
collection over which a from variable ranges may itself be a query. A similar
effect can be achieved by appending into variable S2 to a subquery S1: with
that, S1 is used as generator for S2. The fragment into variable S2 is called a
query continuation.

A join clause tests for equality the key of an inner-sequence item with that of
of an outer-sequence item, yielding a pair for each successful match. An orderby

clause reorders the items of the incoming stream using one or more keys, each
with its own sorting direction and comparator function. The ending select or
group clause determines the shape of the result in terms of variables in scope.

The detailed structure of LINQ phrases is captured by the grammar in Tab. 1
(listing LINQ-proper productions, with QueryExp being the entry rule) and in
Tab. 2 (listing other syntactic domains). In order to save space, well-known
productions have been omitted (e.g., those for arithmetic expressions). The no-
tation conventions in the grammar follow Turbak and Gifford [21]. Terminals
are enumerated (e.g., for the syntactic domain Direction). Compound syntactic
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Table 1. LINQ-related production rules

Q ∈ QueryExp ::= Ffrom QBqbody

F ∈ FromClause ::= from T0..1
type Vvar in Ein

QB ∈ QueryBody ::= B0..*
qbclauses SGsel gby QC0..1

qcont

B ∈ BodyClause = (FromClause ∪ LetClause ∪ WhereClause
∪ JoinClause ∪ JoinIntoClause ∪ OrderByClause)

QC ∈ QueryCont ::= into Vvar QBqbody

H ∈ LetClause ::= let Vlhs = Erhs

W ∈ WhereClause ::= where Ebooltest

J ∈ JoinClause ::= join T0..1
type Vinnervar in Einnerexp

on Elhs equals Erhs

K ∈ JoinIntoClause ::= Jjc into Vresult

O ∈ OrderByClause ::= orderby U1..* <separator:,>
orderings

U ∈ Ordering ::= Eord Directiondir

Direction ∈ { ascending, descending }
S ∈ SelectClause ::= select Eselexp

G ∈ GroupClause ::= group Ee1 by Ee2

domains are sets of phrases built out of other phrases. Such domains are an-
notated with domain variables, which are referred from the right-hand-side of
productions. References, e.g. QC0..1

qcont (which ranges over the QueryContinuation
domain) are subscripted with a label later used to denote particular child nodes
in the transformations rules. The superscript of a reference indicates the allowed
range of occurrences.

LINQ is mostly implicitly typed: only variables in from or join clauses may
optionally be annotated with type casts. Several ambiguities have to be resolved
with arbitrary lookahead (e.g., to distinguish between a JoinClause and a Join-
IntoClause) requiring rule priorities or syntactic predicates [22].

3.2 Semantics

The “official” semantics of LINQ is given by translation into query operators [7]
whose counterparts in the Data.List Haskell library make for a viable deno-
tational semantics [21]. Still, a LINQ-level semantics is useful to determine
(a) whether two queries are equivalent, or (b) whether a rewritten SQO for-
mulation is semantically equivalent to the original LINQ query. The denotational
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Table 2. Other syntactic domains

Id, V ∈ Identifier = ( ([a-zA-Z][a-zA-Z0-9]*) - Keyword )

SG ∈ (SelectClause ∪ GroupByClause)

E ∈ Exp = (QueryExp ∪ ArithExp ∪ BoolExp ∪ UnaryExp

∪ BinaryExp ∪ PrimaryExp ∪ DotSeparated ∪ . . . )

EL ∈ ExpOrLambda = (Exp ∪ Lambda)

P ∈ PrimaryExp = (Application ∪ QueryExp ∪ NewExp ∪ PrimitiveLit ∪ . . . )

T ∈ TypeName ::= Id1..* <separator:.>
fragments

D ∈ DotSeparated ::= Ppre . Ppost

A ∈ Application ::= Idhead Cast0..1cast ( EL0..* <separator:,>
args )

L ∈ Lambda ::= ( Id0..* <separator:,>
params ) => Ebody

semantics of LINQ given in this section (originally outlined by Wes Dyer5) is also
necessary to guarantee that each LINQ → LINQ simplification step (Sect. 4) is
semantics preserving. Determining the equivalence of two arbitrary queries is in
general undecidable [23, Chap. 8], but the proof is simpler for a transformation
affecting a sub-expression in a compositional manner. Automated proof of query
equivalence for a functional-object language (Entity SQL) is addressed by Mehra
et al. [24].

The semantic foundation of LINQ, list comprehensions, is summarized next.
In the list comprehension [e | e1 . . . en] each ei is a qualifier, which can either

be a generator of the form v ← E, where v is a variable and E is a sequence-
valued expression, or a filter p (a boolean valued predicate). Informally, each
generator v ← E sequentially binds variable v to the items in the sequence de-
noted by E, making it visible in successive qualifiers. A filter evaluating to true
results in successive qualifiers (if any) being evaluated under the current bind-
ings, otherwise ‘backtracking’ takes place. The head expression e is evaluated for
those bindings that satisfy all filters, and taken together these values constitute
the resulting sequence. A let expression in a comprehension provides local bind-
ings visible in successive qualifiers (generators, filters, let expressions) as well as
in the head of the comprehension. For example [1], the SQL query select dept,

sum(salary) from employees group by dept is expressed in Haskell as:

let depts = asSet [ dept | (name, dept, salary) <- employees ]

in [ (dept, sum[salary | (name, dept’, salary) <- employees,

dept == dept’]) | dept <- depts ]

5 http://blogs.msdn.com/wesdyer/archive/2006/12/26/

a-model-for-query-interpretation.aspx

http://blogs.msdn.com/wesdyer/archive/2006/12/26/a-model-for-query-interpretation.aspx
http://blogs.msdn.com/wesdyer/archive/2006/12/26/a-model-for-query-interpretation.aspx
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The denotational semantics of LINQ gives meaning to a query in terms of its
syntax components. An auxiliary definition and two kinds of valuation functions
are needed. A binding-set B ≡ {v1 �→ t1, . . .} is a finite map from non-duplicate
variables vi to values ti. We write vi �→ ti as a shorthand for the pair (vi, ti).
LINQ forbids declaring a variable whose name would hide another, so a non-
ordered map is enough. As usual, an expression E can be evaluated in the context
of B by induction on its syntactic structure, with a non-defining occurrence of
variable v evaluating to its image t under B.

The kinds of valuation functions are: (1) �Q�envs denotes the sequence of
binding-sets generated by Q (a query body) given the incoming sequence of
binding-sets envs ; while (2) �E�(env) denotes the evaluation of E in the con-
text of the single binding-set env. To simplify the formulation of the valuation
functions, a query is regarded as a sequence S of body clauses Q, resulting from
having desugared query continuations into subqueries (Sect. 4).

The valuation �Q�envs denotes simply the (sub-)query results when Q is a
SelectClause or a GroupByClause:

� selectEselexp �envs
def= [ �selexp�(env) | env← envs ] (1)

Informally speaking, group result by key returns a grouping, i.e. a finite or-
dered map with entries key �→ cluster, a cluster being a sequence of results. The
valuation of GroupByClause involves a left-fold, taking an empty grouping as
initial value and progressively adding the valuation of result to the cluster given
by the valuation of key. Using Haskell,

� groupEresult byEkey �envs
def= foldl cf [] envs (2)

where cf, the combining function, captures the provided result selector and key
extractor, has type Grouping → BindingSet → Grouping, and is defined as:

cf g bs = let r = �result�(env) in
let k = �key�(env) in
if hasKey g k then appendToCluster g k r

else append g [(k,[r])]

For Q other than select or groupby, �Q�envs denotes a sequence of binding-sets
which constitute the envs in effect for the next clause in S, the first Q in S being
evaluated with an empty incoming envs.

�from Vvar in EsrcSeq �envs
def= [env’ | env← envs, item← �srcSeq�(env),

let env’ = env ∪ {var �→ item} ] (3)

�let Vvar =Eexp �envs
def= [env’ | env← envs,

let env’ = env ∪ {var �→ �exp�(env) } ] (4)

�where Etest �envs
def= [env | env← envs, �test�(env) ] (5)
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The valuation of an OrderByClause permutes the incoming binding-sets, sorting
the sequence envs according to the multi-key given by expressions keyi and sort
directions diri. In terms of the Haskell function Data.List.sortBy,

� orderby key1 dir1 . . . keyn dirn �envs
def= sortBy comp envs (6)

where comp is a comparison function (specific to the given keyi and diri, i =
1 . . .n) between two binding-sets bsA and bsB, returning one of GT, EQ, LT. First,
� key1 �(bsA) and � key1 �(bsB) are compared taking dir1 into account. If they
are not equal that’s the outcome of comp bsA bsB. Otherwise, � key2 �(bsA) and
� key2 �(bsB) are compared taking dir2 into account, and so on. If no GT or LT is
found for i = 1 . . .n, EQ is returned.
The semantics is defined over a core syntax where explicit type annotations have
been desugared into type casts (in from and join clauses) as discussed in Sect. 4.

�joinVinnerVar in Eisrc onEouterKey equalsEinnerKey �envs
def= [ienv | env← envs, innerItem← �isrc�(env) ,

let ienv = env ∪ { innerVar �→ innerItem } ,

�outerKey�(env) = �innerKey�(ienv) ] (7)
�joinVinnerVar in Eisrc onEouterKey equalsEinnerKey intoVresVar �envs

def= [renv | env← envs,
let group = [ innerItem | innerItem ← �isrc�(env)

let ienv = env ∪ {innerVar �→ innerItem},
�outerKey�(env) = �innerKey�(ienv) ],

let renv = env ∪ { resVar �→ group } ] (8)

4 Rewriting from LINQ to Query Operators

The translation LINQ textual syntax → Standard Query Operators [25, §7.15.2]
is defined in terms of 18 simpler structural transformations. By structural it
is meant that they recursively traverse an input AST leaving most nodes un-
changed. Surprisingly, the C# specification does not label each transformation
with a unique tag, so Tab. 3 cross-references them by listing a brief description
for each rule as well as the section in [25] where it is covered.

In this section a notation is put forward to specify LINQ→ SQO using LINQ
itself (Sect. 4.1) and a precise formulation of rewriting order is given (Sect. 4.2).
In order to be useful, a set of rewriting rules should be (a) confluent (i.e., rule ap-
plication terminates in a finite number of steps), (b) deterministic (i.e., for any
input AST just one output AST exists), and (c) free from multiple applicable rules
during any intermediate step. Moreover, the rewrite rules should be (d) semantics
preserving. In Sect. 4.3 we explain how the transformation rules fare with regard to
these properties. Section 4.4 reviews the consequences (as for the semantics of Java
with embedded LINQ) of our design choice to favor the query-shipping paradigm.
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Table 3. Catalog of structural transformations in the LINQ → SQO translation

ID Phase Description § in C# spec.
T1 1 Inline query continuation 7.15.2.1
T2

2
FromClause

type annotation 7.15.2.2T3 JoinClause
T4 JoinIntoClause
T5 3 Identity query 7.15.2.3
T6

4

FromClause FromClause
SelectClause

7.15.2.4

T7 otherwise
T8

FromClause JoinClause
SelectClause

T9 otherwise
T10

FromClause JoinIntoClause
SelectClause

T11 otherwise
T12

FromClause

OrderByClause
T13 WhereClause
T14 LetClause
T15 non-identity SelectClause

7.15.2.5
T16 identity SelectClause
T17 non-identity GroupByClause 7.15.2.6
T18 identity GroupByClause

4.1 Notation

To clarify notation, Tab. 4 lists for transformation T1 (a) its informal formulation
(from [25, §7.15.2]); (b) its applicability condition, in terms of the productions
in Tab. 1; and (c) its functional definition, using LINQ itself. For completeness,
Fig. 1 depicts the parse tree of the resulting query.

In contrast to the cursory presentation in [25], the notation in Tab. 4 is precise
(facilitating conformance across different implementations) and seems therefore
well suited as an ingredient for a JSR standardizing LINQ for Java. As an-
other advantage, this notation is closer to the logic formalism of model-checkers,
which can be used to validate the translation algorithm (i.e., to certify that
the resulting ASTs are well-formed, for all valid input ASTs [26]) and to test
the algorithm’s implementation against an oracle (i.e., to corroborate whether
an implementation produces for some given input the result expected by the
declarative specification). Also based on that specification, a model-checker can
generate input datasets for tests, achieving larger coverage than manual testing.

4.2 Phases

Transformations T1 - T18 are not applied all at once but in phases. The first phase
comprises just T1 (“inline query continuations”), recursively rewriting subqueries
to eliminate this syntax shorthand.

After the second phase (T2 - T4) all explicit type annotations have been refor-
mulated in terms of Application and Cast productions (shown in Tab. 2).
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var :

from

type: 

in : QueryExp

from

type:

q.qbody.qcont.var

in : QueryExp

QueryExp

from

type: 

in : QueryExp

qbody :

from :

qbody :

qbclauses :

sel_gby :

qcont: ∅

QueryBodyqbody : QueryBodyqbody :

q.qbody.qbclauses

q.qbody.sel_gby

q.from

q.qbody.qcont.qbodyq.qbody.qcont.qbody

q.from

q.qbody.qcont.qbody q.qbody.qbclauses

q.from

q.qbody.qcont.qbody

q.qbody.sel_gby

q.qbody.qbclauses

q.from

q.qbody.qcont.type

q.qbody.qcont.qbody

Fig. 1. Template of parse trees resulting from applying T1

The third phase rewrites identity queries (of the form from x in srcSeq select

x) into srcSeq.Select( x => x ). In main-memory evaluation, returning items as
in the first query would expose the object identities of the base data. In contrast,
the second formulation allows an overridden Select to return clones of the items,
clones that can be mutated later at will. In the query shipping scenario both for-
mulations denote the same result.

The fourth phase iteratively applies the bulk of the transformations (T6 - T18).
In each iteration, T6 to T18 are tried in that order, innermost queries first. After
successful application of a rule, the next iteration tries again from T6 onwards.

4.3 Confluence and Determinism

Regarding confluence and determinism, each of phase 1 and 3 involves apply-
ing only one rewriting whereby a construct is consumed (i.e., not copied to the
output). Phase 2 involves three rules, whose applicability conditions are dis-
joint (each rule matching one of the constructs FromClause, JoinClause, and
JoinIntoClause). While the same kind of clause will be copied to the output,
it will not match again as the explicit cast has been removed. As can be seen,
the first two phases are confluent and lead to a deterministic result for finite
input.

Following a similar reasoning, Phase 3 can be shown to be well-behaved. And
due to the fact that rewritings reduce syntax shorthands, there is no doubt that
the output queries are semantically equivalent to the original queries.

The analysis of Phase 4 must consider more subcases. To recap, the shape
of the input to this phase is: (a) because of T1, a legal query expression can
now only end in either a select or a groupby clause, and (b) because of none
of Phases 1 to 3 touches them, the initial mandatory from clause(s) are still
there.
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Table 4. Definition of transformation T1

(a)
T1: inline query continuation

from x1 in e1 ... into x2 ...

→ from x2 in (from x1 in e1 ...) ...

(b)
function T1 ( q : QueryExp ) : QueryExp

when q.qbody.qcont �= ∅

(c)

new QueryExp {
from = new FromClause {

type = q.qbody.qcont.type,

var = q.qbody.qcont.var,

in = new QueryExp {
from = q.from

qbody = new QueryBody {
qbclauses = q.qbody.qbclauses,

sel gby = q.qbody.sel gby

} } }
qbody = q.qbody.qcont.qbody

}

The translation sidesteps the issue of non-unique rule applicability by forcing
the order T6-T18 on rewriting. A visual inspection of columns 3 and 4 in Tab. 3
reveals that the subcases partition the set of valid queries. To prove confluence,
it suffices to show that each rule strictly diminishes a progress measure. This
measure is the number of clauses in the query.

1. The rules that bring an outermost query into its final SQO form are T6, T8,
T10, and T15 to T18. They have in common that the input query ends in a
GroupByClause (T17 and T18) or a SelectClause (the rest).

2. In contrast, T7, T9, and T11 to T14 result in a non-SQO query, but diminish
the number of clauses by one: T7 consumes a FromClause, T9 a JoinClause
without into, and T11 a JoinIntoClause.

3. Finally, T12, T13, and T14 consume one orderby, where, and let clause resp.

The clauses that each of T7, T9, T11, and T14 consume happen to declare range
variables. In order to avoid those usages becoming dangling in the output query,
they are prepended with a prefix (a so called transparent identifier) to access hid-
den identifiers, as follows. The input to any of these rules starts with two clauses
(the first of them a FromClause) that introduce two variables x1 and x2. In all
cases, those two clauses are reduced to a single from prefix in srcSeq , where
prefix is a fresh name and srcSeq denotes a sequence of pairs (x1, x2), i.e., the
labels for the tuple components match the old variable identifiers. Pairs (x1, x2)
result from instantiating an anonymous type, as done with the C# code new {
x1 = Ex1, x2 = Ex2}. With this name choice, usages of x1 can be rewritten to
prefix.x1 (similarly for x2) thus making the output query well-formed.

The analysis of semantic equivalence for T6-T18 remains as future work, on
the basis of the denotational semantics introduced in Sect. 3.2 for LINQ.
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4.4 Language Integration Aspects

In the Microsoft implementation, the behavior of an SQO method chain is de-
termined by the receiver object at its head. Depending on the runtime type of
the receiver the following will happen:

– for an in-memory collection (an instance of IEnumerable) an iterator is con-
figured to reel off results as they are found when traversing the object graph
on the heap. The iterator idiom simulates lazy evaluation from functional
languages, and the applicable optimizations are only those that the C# com-
piler and the virtual machine (VM) know about.

– for an IQueryable, an AST is built for shipping to a LINQ provider, which
mediates the interaction with a DBMS engine. Any or both of provider and
engine may optimize the AST.

In our prototype we focus only on the query shipping case, which implies:

– When evaluating queries on the heap (LINQ to Objects) C# does not restrict
query constituents in any way: calls to Thread.Sleep() may appear, custom
comparators may be given as arguments to sorting operators (in the spirit of
java.util.Comparator); i.e., constructs may be used which in general cannot
be translated into a DBMS native language. Such translation could be suc-
cessfully performed in some cases with the help of bytecode inspection and
rewriting techniques [27], but we find the supported LINQ textual syntax
to be expressive enough for all practical purposes. In our implementation,
constructs that cannot be translated are rejected.

– The LINQ grammar includes a production invoking expression, the most
general syntactic category for expressions in C# [25, §B.2.4]. This defeats
any hope of faithfully supporting 100% of the LINQ grammar (short of reim-
plementing the C# compiler). As done in the NLinq open-source project6

(where LINQ capabilities are back-ported to previous versions of .NET) our
grammar covers as large a subset of expression as practical.

Favoring the query shipping scenario results in two other behaviors of LINQ to
Objects not being exhibited by our translation: (a) side-effects, and (b) variable
capture. We argue in what follows that these behaviors are more a consequence
of VM-semantics than desirable properties of a database query language.

Side-effects are possible in LINQ to Objects, e.g., index++ in the query:

int index = 0;

List<Customer> top10 = (from c in customers

where index++ < 10 select c).ToList();

Besides rendering most optimizations useless, the stateful index++ makes the
query prone to race conditions, in case index can be accessed from other threads.

Variable capture occurs when a lambda expression refers to a variable in scope
not hidden by a parameter. For example7, the following C# code prints 10 five
times and not 0, 2, 4, 6, 8:
6 http://www.codeplex.com/nlinq
7 http://lorgonblog.spaces.live.com/Blog/cns!701679AD17B6D310!689.entry

http://www.codeplex.com/nlinq
http://lorgonblog.spaces.live.com/Blog/cns!701679AD17B6D310!689.entry
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List<Func<int>> actions = new List<Func<int>>();

for (int i = 0; i < 5; ++i) { actions.Add( () => i * 2 ); }

foreach (var act in actions) { Console.WriteLine( act() ); }

because all five instances of the Func objects created by the lambda capture a
reference to the same mutable variable instance i. McNamara goes on to say,

[As in] every language that has both mutable variables and closures
. . . the lambda captures the mutable variable now, but gets evaluated
later, after further mutations may have occurred. This is an instance of
how “lazy evaluation” and “side effects” don’t always mix nicely.

In the query shipping scenario, no DBMS can callback the client VM to retrieve
the then-current value of a captured variable. In our implementation, such vari-
able references are re-formulated as copy by-value parameter passing (and thus
evaluated once, just before query shipping).

5 Rewriting of Compiler-Level Trees

A Java compiler operates in phases, progressively decorating Abstract Syntax
Trees (ASTs) and populating symbol tables with information needed for succes-
sive analyses. JSR-269 (Pluggable Annotation Processing) allows third-parties
to provide compiler plugins to interact with any Java compiler during the early
phases of compilation, for example to rewrite an AST. After rewriting an AST in
phase N , a compiler plugin may (a) reconstruct the state that previous phases
would have computed up to that point; or (b) pretty-print the updated AST
and launch the compilation task anew. Depending on the amount of information
required from surrounding nodes (the program context) transformations range
from desugaring (performed based on the contents of a subtree alone) to whole-
program (requiring knowledge of several compilation units).

The phases of the OpenJDK javac (Fig. 2) are representative of those in
other compilers. Rather than describe each phase in detail (as done in [28]) we
review first the whole process, focusing afterwards on the contract between the
Annotation Processing and the Analyze and Generate phases where our plu-
gin gets activated. During the first phase (Parse and Enter), externally-visible
information about each compilation unit is entered into symbol tables. Next, An-
notation processing calls one or more annotation processors which may generate
new source or class files, causing a compilation restart until no new files are cre-
ated. The last phase, Analyze and Generate encapsulates several complex stages:
(1) Attribute includes type checking and constant folding. Additionally, names,
expressions and other elements in the AST are resolved to their corresponding
type and symbol nodes. (2) Flow checks for definite assignment to variables and
for unreachable statements, based on a class-level dataflow analysis. (3) Gener-
ics erasure is followed by (4) Desugar (e.g., simplification of nested and inner
classes into normal ones, expansion of “foreach”); concluding with (5) Generate.
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Parse and
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Annotation
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Fig. 2. Compilation workflow realized by javax.tools.JavaCompiler

5.1 Prototype

Annotation processors, standardized for Java 6 in JSR-269, access functionality
from packages javax.annotation.processing.* and javax.lang.model.*. A cus-
tom processor (a subclass of AbstractProcessor) may declare interest in handling
all compilation units, be they annotated or not8. With that, a method overrid-
ing AbstractProcessor.process() may inspect a set of TypeElement, for example
to look up enclosed ExecutableElement elements, which stand for methods, con-
structors, or initializers of a class or interface. Still, no access is provided to the
subtrees of their associated statement blocks, as necessary for detecting LINQ
queries nested as strings. At least not through that interface, but in practice such
navigation is possible for both the Sun and Eclipse compilers by downcasting an
elem AST-node reference to its specific type in the compiler tree API, along the
lines of:

if (elem.getKind() == ElementKind.CLASS) {

String cName = elem.getClass().getName();

if (cName.startsWith("org.eclipse.jdt.internal.compiler")) { ...

} else if (cName.startsWith("com.sun.tools.javac.tree")) { ...

A factory provides at startup compiler-specific visitors (based on the runtime
type of the obtained javax.tools.JavaCompiler). These visitors are later used to
detect LINQ queries, expand them, and instantiate AST nodes. The first and
last visitors admittedly require porting to each supported compiler, however
the bulk of the plugin functionality (LINQ → SQO) is compiler-independent.
Moreover, the AST hierarchies between compilers exhibit variations mostly in
naming conventions, while their organization always reflects the Java Language
Specification (e.g., JCMethodDecl vs. MethodDeclaration). Because of this, the
porting effort is kept to a minimum.

Instead of letting compilation proceed on the rewritten AST, the compilation
unit may be pretty-printed into a textual file (option -printsource in javac).
This arrangement is convenient in conjunction with an IDE, where the project
builder internal to the IDE picks up the output file as part of the build process.
In this case, generated code can be inspected in read-only mode.

Our LINQ query expander gets activated immediately after Java ASTs have
been built and performs a desugaring, without restarting the compilation task.
Each statement block of the form {JL.expand("<LINQ query> ");} is replaced with
another containing invocations to SQO factory methods. In a typical arrange-
ment, a method is declared for each LINQ query, whose expansion will constitute
8 @SupportedAnnotationTypes("*").
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the method body, with method arguments corresponding to query parameters.
As to the return type, the developer-provided dummy placeholder (e.g., Object)
is overwritten with the specific type computed for the query result.

5.2 Static Semantics and Schema Awareness

Once expanded, the resulting queries are well-formed (i.e., guaranteed not to
cause syntax errors when shipped to a persistence engine) and immune to in-
jection attacks (that is, for LINQ queries provided by the developer at compile-
time). These guarantees result from (a) the checks performed by the compiler
plugin; (b) the wrapping of query parameters as arguments to strongly-typed
factory methods; and (c) the checks performed later during the Attribute phase
of the compilation task.

Regarding the runtime assembly of LINQ queries immune to injection at-
tacks, that capability can be achieved by directly building an AST using factory
methods, rather than by concatenating strings9.

Our design decision does not prevent others from adapting our compiler plugin
to target other query EDSLs or different DBMS drivers. Rather, it simplifies
that customization by relieving them from performing the aforementioned well-
formedness checks at the level of generated EDSL statements. Irrespective of the
compile-time analyses performed, still there will be some queries that generate
exceptions upon evaluation (e.g., division by zero, or attempting to obtain the
single() element of a non-singleton sequence). These queries would also have
raised exceptions in the Microsoft implementation of LINQ.

Incidentally, it is not necessary for the generated code to serve simultaneously
the purposes of (a) checking well-formedness, and (b) building the AST of its
translation. As an extreme example, our compiler plugin might have generated
code to null out at runtime the AST just built, only to send the original query
string to a LINQ provider (à la JDBC, JPQL, etc.) Unlike its JDBC counterpart,
such plugin would still statically guarantee well-formedness.

6 Related Work

Several grammar-centered approaches promote language extensibility, with case
studies reporting typesafe nesting of SQL based on an Attribute Grammar for-
malism as implemented by the Silver system [29]. Similar extensions are re-
ported for the JastAdd system [30]. These systems act as frontend processors,
performing AST-to-AST transformations that are later fed to a standard Java
compiler. As our prototype shows, non-trivial transformations can be achieved
without the extra machinery offered by these systems. If needed, a compiler plu-
gin can also perform elaborate rewriting, with the MatchO library [31].

9 http://blogs.msdn.com/swiss_dpe_team/archive/2008/06/05/

composable-linq-to-sql-query-with-dynamic-orderby.aspx

http://blogs.msdn.com/swiss_dpe_team/archive/2008/06/05/composable-linq-to-sql-query-with-dynamic-orderby.aspx
http://blogs.msdn.com/swiss_dpe_team/archive/2008/06/05/composable-linq-to-sql-query-with-dynamic-orderby.aspx
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The closest to a grammar-centered approach being addressed by Java compiler
vendors is the OpenJDK Compiler Grammar Project10, an experimental version
of the javac compiler based on a grammar written in ANTLR v3. Modifications
to javac were ruled out by our design objectives. This decision will be revisited
in case the Compiler Grammar Project graduates to release status.

Ideally, a standard API should be available to process ASTs (as intended
by JSR-198), an idea that has not gained support among compiler and IDE
vendors. AST manipulation is supported in Java by IDE-specific frameworks,
e.g., Jackpot for NetBeans11 and LTK [32] for Eclipse.

Embedded DSLs leverage the compiler to perform impact analysis upon changes
to the object-oriented schema, as such code does not type-check when the classes
involved in queries have been refactored. An early example of a tool reifying the
schema is Safe Query Objects [27].

DSLs which do not assume an object model (e.g., XQuery) may have well-
formedness constraints that cannot be captured by the Java 5 type system.
Such DSLs can still be embedded in a typesafe manner, given that the Checker
Framework12 of JSR-308 supports the implementation of custom static analy-
ses in compiler plugins. Besides its current use cases (e.g., enforcing non-null
references) JSR-308 can thus play a key role in improving language embedding.

7 Conclusions and Future Work

Rather than shoehorning a query language to stay within the confines of Java
syntax (which raises new problems, e.g., extracting declarative queries from im-
perative code [6]) we have attempted instead to balance the desire for dedicated
syntax with the realities of standard compiler infrastructure.

The work reported in this paper is part of a larger project on language en-
gineering, aiming at efficiently supporting in one of the traditionally distinct
execution environments (Virtual Machine, Database Manager) useful abstrac-
tions originating in the other. While functional queries were originally applied to
main-memory object populations, their adoption in the DBMS setting is gaining
momentum. In the other direction, ACID transactions are finding a new home
in virtual machines with Software Transactional Memory [33].

Finally, we believe that while individual improvements (as addressed in this
paper for nested query languages) contribute to advancing the case for Object
Database Management Systems (ODBMSs), it is still necessary not to lose sight
of a more encompassing research and engineering agenda if ODBMSs are to be-
come a strategic technology for software development.

Acknowledgement. Kaichuan Wen proficiently contributed to the implementa-
tion of the prototype as part of his course project on query language translation.

10 http://openjdk.java.net/projects/compiler-grammar/
11 A framework for Java source code reengineering, http://jackpot.netbeans.org/
12 http://groups.csail.mit.edu/pag/jsr308/
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Abstract. In the area of highly interactive systems, the use of object
databases has significantly grown in the past few years due to the fact
that one can, not only persistently store data in the form of objects,
but also provide additional functionality in terms of methods defined
on these objects. However, a limitation of such a tight coupling of ob-
jects and their methods is that parts of the application logic cannot be
reused without also having instances of these objects in the new applica-
tion database. Based on our experience of designing multiple interactive
cross-media applications, we propose an approach where we distinguish
between regular database objects containing the data and so-called active
components storing metadata about specific services. Active components
are first class objects which, at activation time, can perform some op-
erations on the server as well as on the client side. Since active compo-
nents are standalone lightweight components, they can be dynamically
bound to single objects or semantically grouped sets of objects and be
automatically invoked by different forms of database interactions. The
database-driven development of arbitrary client and server-side appli-
cation functionality not only simplifies the design of highly interactive
systems, but also improves the reuse of existing components across dif-
ferent systems.

1 Introduction

In recent years, there has been a rapid growth in the number of applications
where the same data can be accessed by different input modalities as well as
from a variety of input devices. These types of highly interactive applications
generally require an adaptation of the content as well as the form of interaction
in order to become accessible from different client devices. Nevertheless, the
database is often seen purely as a storage container for data, with any complex
interaction handled and implemented in an application-specific manner.
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If, however, a database can not only store data but also some general appli-
cation logic, this functionality can be reused in the development process of a
specific application, thereby simplifying the design of new applications in terms
of time and cost. Furthermore, by reusing existing application logic, the cor-
responding functionality gets refined and optimised over time leading to more
stable and less error-prone applications.

Of course, the idea of modular software development and the reuse of com-
ponents is not a new one and there exists a variety of different solutions for
component-based software development such as the OSGi Service Platform1.
Also Web Services and service-oriented architectures (SOAs) offer a method for
loosely coupling different distributed components and composing complex appli-
cations out of simple building blocks and services.

However, for many existing solutions, the configuration and use of the ser-
vices still requires substantial programming skills and often the solutions are too
heavyweight for applications that should run on devices with limited resources.
They are based on a simple remote method invocation (RMI) mechanism where
a client-side proxy component offers the functionality of a remote service. While
this simplifies the development of applications with a distributed application
functionality, it does not really provide a method for designing reusable com-
ponents for more complex client-server interaction. Based on our experience in
developing multiple interactive cross-media applications and working together
with, not only programmers, but also designers and artists, we identified a need
for a less programming intensive solution for reusing functionality in the devel-
opment of these kinds of applications. We present a solution where application
functionality can not only be executed remotely on the server but also run on
the client side and enable complex interaction between client and server-side
application functionality.

In this paper, we show how database-driven application development can be
simplified through the concept of active components. Some motivational ex-
amples for database-driven client and server-side functionality are provided in
Sect. 2. Related work in terms of solutions for reusing component-based applica-
tion functionality in software engineering and also active databases is discussed
in Sect. 3. In Sect. 4, we introduce the concept of active components and outline
the basic idea of storing data as well as services in an object database. We then
present our architecture for executing active components in Sect. 5 and provide
some details about the prototype implementation of our new active component-
based approach in Sect. 6. Different active component use cases are presented in
Sect. 7 before providing concluding remarks in Sect. 8.

2 Motivation

To motivate our approach, we will first provide some application scenarios where
data managed by a database system is accessed through a combination of data-
base-driven client- and server-side services. We will later show how this kind
1 http://www.osgi.org
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of database-driven client-server interaction can be realised based on our active
component solution for coupling data and services.

If we think about the evolution of the Web and how rich Internet applications
(RIAs) are nowadays used to mimic the behaviour of desktop applications within
a browser, we can see that a similar behaviour can be achieved by using some
form of active database content that is deployed to and executed on the client
side. RIAs normally need a browser plug-in or a virtual machine to run the
client-side components, which is the equivalent of a runtime environment for
active components deployed to the client side as introduced later in this paper.
If we implement an active component runtime environment as a browser plug-in,
we can execute the client-side active component directly within a web browser for
the access to and manipulation of any remote data stored in an object database.

While in most service-oriented architectures there is an explicit remote execu-
tion of services offered by a server, we would like to introduce a scenario where
services are executed implicitly by accessing database objects. A service could
for example be associated with specific object instances, object types or semantic
collections of database objects. If such a database object with an associated ac-
tive component is accessed, the linked active component is automatically loaded
by an active component runtime environment. An example where active compo-
nents are associated with specific media on the type level is shown in Fig. 1.

TextText Editing
Active Component

API

Client1 Client2 Client3

Fig. 1. Media service component

The idea is that specific applications (clients) no longer directly deal with
raw media types but rather use services offered by active components coupled to
these media types. In the example shown in Fig. 1, all objects of type text have
been associated with a special text editing active component. This text editing
component provides some basic text editing functionality such as the insertion
or deletion of a set of characters within a text which can be reused and shared by
different client applications. Of course we would easily have the possibility to run
different text editing active component implementations at remote sites while
still having control over who is currently accessing a specific text resource based
on a given server-side text editing component. The text editing component could
be used by standard word processors (e.g. Microsoft Word) as well as browser-
based text editors or a basic editing active component executed within the active
component runtime environment of small portable devices.
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Since the text editing functionality is not implemented as methods on the
text data objects themselves, we could still exchange the services provided for
specific classes or instances of media types by simply dynamically reconfiguring
the associated active components. Another advantage is that we could provide
editing functionality for rich media types out of the database and the number
of supported formats could be extended in a flexible way. The active compo-
nent runtime environment would be in charge of providing a layer for the basic
functionality by running the media service active components whereas specific
input and output devices might provide different user interfaces on top of these
media service components. Since we can not only define active component ser-
vices on a type level but also use role-driven service invocation based on object
classification, our text objects in Fig. 1 could be dynamically reconfigured over
time and bound to other services (e.g. a logger service) based on their classifica-
tion. Note that type-based as well as role-driven service invocation is a powerful
mechanism for automatically triggering any object-related functionality which
otherwise would have to be explicitly accessed by static library method calls.

Another use case we would like to address is the processing of data generated
by physical objects such as sensors. In today’s “Internet of Things” where more
and more physical objects become integrated with the digital world by sensing
for example some environmental parameters, it becomes important that input
from these objects can be easily integrated with digital information spaces as
represented by a database. If we can guarantee that some kind of active com-
ponent runtime environment is available for the augmented physical objects,
then the client-server active component communication provides a lightweight
solution for updating sensor data in a database. At initialisation time, a physi-
cal object could query for a specific active component which would then define
the application logic on the client and server side and provide functionality for
database updates.

In the next section, we present related work in terms of solutions for active
databases as well as component-based and service-oriented architectures. We
then introduce our database-driven and active component-based development
process for applications such as the ones presented in this section.

3 Related Work

In component-based software engineering (CBSE) [1], the emphasis is on building
modular components with well-defined interfaces which can then be composed
to develop more complex systems. This allows components to be aggregated in
a distributed manner as well as within a single local system. More recent tech-
nologies for software components in distributed computing are Web Services [2]
and service-oriented architectures (SOAs) [3]. While these technologies provide
a solution for language independent reuse of business logic as well as data ex-
change, there is still quite some effort required for a developer to register and
make use of existing Web Services. Also, data exchange over the transport layer
is well suited to standard business applications, but does not suit the processing



Active Components as a Method for Coupling Data and Services 63

of real-time and streaming data as produced, for example, by different types of
physical sensors. More recently there have also been some efforts to apply SOA
principles to DBMSs to provide loosely-coupled database services [4], but in this
case the principles are applied to the DBMS rather than to the applications.

While Web Services mainly focus on digital services, there exist other ap-
proaches trying to integrate physical devices as elements of a component-based
architecture. For example, as part of a research project, the OSGi model has
been generalised to support the “Internet of Things” by turning physical de-
vices and objects into loosely coupled software modules that interact with each
other through service interfaces [5]. Since OSGi can use direct method invoca-
tions without requiring a transport layer, it is much faster than a Web Service
approach. In contrast to Web Services, OSGi components can also directly react
to the appearance and disappearance of new services. However, the extended
OSGi model deals with integration on a rather low level in terms of different
transport protocols such as Bluetooth and is less concerned with higher level
concepts directly supporting the application developer.

The connection and integration of devices with a service oriented architecture
is the idea of the Service-Oriented Device Architecture (SODA) [6] and some
of its implementations such as DBNet [7]. The SODA solution is effective for
connecting powerful client devices but less suited to realising lightweight services
as required by devices with limited computing and communication resources.

Database systems were traditionally designed to store application data which
was then accessed and manipulated by one or more application programs. While
the data was managed by the database system, the application logic normally
formed part of a specific application accessing the database. The handling of any
application logic outside of the database potentially results in a replication of
functionality if multiple applications are going to use the same data and imple-
ment the same or similar functionality. Of course, this often led to maintenance
problems if parts of the application logic had to be updated at a later stage since
changes to different implementations were necessary.

The idea to move functionality from the application layer into the database
was originally introduced to perform integrity checks within the database. Nowa-
days almost all commercial relational database systems support triggers as a
form of automatically executing some functionality, for example implemented
as stored procedures [8], within the database. Triggers are usually represented
as event-condition-action (ECA) rules which were adopted as the main means
of representing business logic in the paradigm of active database systems [9].
The event describes the happening, inside or outside of the database, to which
a rule might respond. Upon a specific event, the condition part of an ECA rule
is checked and, if necessary, the corresponding action is executed.

There were also proposals to extend object databases with ECA rules to
support the active database paradigm. For example, the TriGS system [10]
was an active object database based on GemStone [11]. In these systems, the
application-specific interaction with data is often defined by methods on the
data objects and the ECA rules are mapped to invocations of these methods.
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In contrast to active object databases, we propose a clear distinction between
regular data objects and active components providing services based on these
data objects. This is mainly due to the fact that functionality provided by the
active components is sometimes closely related to the interaction with different
input and output modalities. Therefore, this functionality should not be imple-
mented as methods on the class level since this would restrict its reuse across
different classes of database objects without (mis)using inheritance. However,
this additional extrinsic object behaviour should not be implemented via vari-
ous static library calls but be designed as active components that are bound to
data objects and can access and update any information managed by these data
objects and also create new data objects.

Furthermore, an active component should not only be able to be triggered
by a single event but also process successive events if required. These long-lived
interactions—note the similarity to long-lived transactions—are very helpful in
the design of more complex types of interactions with data where the single
triggering of a method is not sufficient since additional input data (e.g. stream-
ing data) should be processed by an active component. While active object
databases support the execution of methods on database objects, our active
component-based solution also provides a mechanism to deploy and run parts
of the application functionality on the client side, thereby enabling rich types of
long-lived interactions between client- and server-side active components.

4 Approach

The active component concept was originally developed as part of a general link
server for cross-media information management [12]. While the server initially
supported the cross-linking of arbitrary types of digital and physical resources,
we were looking for a way to integrate, not only data and information in terms of
different resources such as web pages, movie clips and sounds, but also services
as represented by small software components that would be executed when a
link is activated.

The concept of active components has been generalised and can now be in-
stantiated as an active component runtime environment on top of an existing
object database system. The activation of active component services is man-
aged by the active component runtime environment. In addition to the set of
regular database objects O = {O1, O2, . . . , Om}, the database now also has to
persistently handle a set of active components A = {A1, A2, . . . , An}.

The active component runtime layer enables the definition of associations or
links li between arbitrary database objects Oj and active components Ak. The
active component runtime environment shown in Fig. 2 checks for any associated
active components after each query processed by the database system. If a re-
turned object Oi has an associated active component Aj , the active component
service is started and gets a handle to the database object Oi. Note that, in
the current version, only queries resulting in single database objects may also
trigger an associated active component service. Result sets are currently treated
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without the additional active component features but we plan to investigate how
this could best be handled in future research. The coupling of database objects
with active component services can be achieved on the instance level as well as
on the schema class level. Let us assume that our object database contains the
classes or types T = {T1, T2, . . . , Tn}. A link li can then be defined between a
type Tj and an active component Ak which implies that the active component
service is also bound to all the subtypes of Tj . For example, an association li
can be defined between a type contact and a service Ak that operates on ob-
jects of a contacts database. Each time a contact object is accessed, the active
component runtime layer ensures that the associated service is started and gets
access to the contact object.

Our object-model further distinguishes between the typing of objects for rep-
resenting behavioural properties and the semantic classification of objects by
grouping them into collections [13]. Therefore, a third possibility for the service
binding is to define an association li between an active component Aj and one
or multiple of these semantic collections C = {C1, C2, . . . , Cn} resulting in role-
driven service invocation. Since these role-driven services are no longer bound to
the object type, objects can easily gain and lose service functionality over time
by simple reclassification (service evolution). Note that the kind of implicit ser-
vice invocation presented in this section is not available in most service-oriented
architectures where services have to be invoked explicitly.

Client

data and
ACs AC Registry

AC Runtime 
Environment

Logic

AC Library

Stub Logic

Object DB

Fig. 2. Active component runtime environment

A second way of accessing a service offered by an active component is to query
the active component directly by its name (shown in Fig. 3). After a query is
sent to the database, the active component runtime environment checks whether
the returned object is an active component Ai. In the case that the database
returns an active component, the object is not forwarded to the requester but
instead the corresponding service is invoked. Note that in this direct form of ser-
vice invocation, the active component will not get a handle to any linked data
object Oj .
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+name: String
+identifier: String
+timeout: int
+parameters: Hashtable<String, String>

ActiveComponent

Fig. 3. Active component database object

Since an active component only contains some data about the service to be
invoked, we need a way of getting access to the actual program code to be
executed. The identifier field provides a unique identifier which is used to
lookup the corresponding stub and logic classnames in an active component
registry and fetch the classes from the active component library. An example of an
entry in the active component registry is shown in Fig. 4. After a classname has
been retrieved from the active component library, the Java reflection mechanism
is used to dynamically load the corresponding Java class and initialise it with
any data provided by the active component database object.

identifier

stub

logic

org.ximtec.iserver.activecomponent.BROWSER

org.ximtec.iserver.activecomponent.stub.BrowserStub

org.ximtec.iserver.activecomponent.logic.BrowserLogic

Fig. 4. Active component registry entry

Due to the fact that some active components will deal with multiple input
events and we can never be sure whether further data has to be processed, an
active component may have an optional timeout field that defines after how
many milliseconds without a new input event an active component should be
terminated. Last but not least, each active component can contain an arbitrary
number of properties in terms of key/value string pairs defining different param-
eters of the service to be invoked.

By decoupling the functionality offered by an active component service and
the data object stored in the database, one gains flexibility in reusing the corre-
sponding functionality since it is no longer implemented as a class method and
therefore no longer tightly coupled to a specific class of objects. Furthermore,
through the use of the active component registry and library, the implementa-
tion of a specific service offered by an active component can be easily updated
or replaced at any time. The introduction of active components as first-class
objects eliminates the need to introduce artificial class hierarchies just for the
sake of reusing some application functionality and leads to a cleaner and more
flexible integration of data and the corresponding services.
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5 Architecture

As stated earlier, our active component-based solution enables not only the re-
mote invocation of server-side services but also more complex and richer types
of interaction with any database content. Often it is not sufficient for an active
component to react to and process a single event, but instead it needs to estab-
lish some long-term interaction with a client application or device. In addition
to the active components managed by the active component runtime layer in
combination with the DBMS (active component logic), we therefore also sup-
port the concept of active components that are deployed to the client side by
the database (active component stub) as highlighted in Fig. 5.

data and
ACs AC Registry

AC Runtime 
Environment

Logic

AC Library

Stub Logic

AC Registry

AC Runtime 
Environment

Stub

AC Library

Stub Logic

Client Server

Object DB

Fig. 5. Client-server active component runtime environment

In this new client-server active component scenario, the first phase is still the
same. After the active component runtime environment has detected that an
active component has been returned as a result of a query, the corresponding
active component logic is instantiated and initialised on the server side. In the
next step, a representation of the active component including its unique identifier
and all the other fields is sent to the client side. The active component response
is detected by the client-side active component runtime environment and, after
a lookup in the active component registry, the corresponding active component
stub class is fetched from the active component library and executed on the client
side. In Fig. 5, the active component registry as well as the active component
library are part of the client environment. However, these two lookup services
could also be accessed remotely.

An interesting aspect of the client-server active component approach is that
the active component stub can take over the control over any input from the
client and communicate directly with the server-side active component logic
instance. It is up to the implementation of a specific active component stub
to define any criteria for the termination of an active component service by
calling a special setDone() method. Note that the terms client and server are
to be interpreted on a conceptual level and do not necessarily imply that the
active component stub and logic instances have to run on remote sites. It is even
possible that an active component stub interacts with an active component logic
within the same virtual machine.
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We can basically distinguish three different types of active component services
that can be driven by the database. If only data has to be created, updated or
deleted on the database side, an active component logic instance can be used to
implement this kind of functionality as shown in Fig. 6. After a database request
has been processed, the corresponding active component logic is loaded and a
confirmation message (OK) is sent to the client. Note that the confirmation for
the client can either be sent after the active component stub has been successfully
initialised or after the execution of the active component logic has finished. This
solution is closely related to the AOODB approach with the difference that
interactions may also be driven explicitly from outside rather than being based
only on the internal database state. An example of such a server-side active
component service could be an active component that provides some business
logic and updates multiple database objects when invoked.

Client
Application

Database
Server

database request

AC
Stub

AC
Logic

load AC

OK

Client Server

Fig. 6. Server-side application functionality

The second type of service involves the client component only. In this case,
illustrated in Fig. 7, the server-side active component logic just sends an active
component specification to the client side without executing any application
functionality. The client-side active component runtime environment loads the
corresponding active component stub instance and executes its functionality. An
example of a client-side active component could be a Movie active component
that is deployed to the client together with the URI of a movie clip as a parameter
and opens the movie in the client’s default movie player.

The advantage of this database-driven execution of client-side functionality is
that it becomes easier to deploy specific functionality to different client devices.
As long as a client device provides an active component runtime environment, an
active component stub can be executed on different devices. Another advantage
of the database-driven deployment of client-side services is that we can avoid any
redundant installation and update of services on different client devices since the
functionality is deployed to these devices on demand.
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Client
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AC
Logic
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AC message (XML)

Client Server

load AC

Fig. 7. Client-side application functionality

The most powerful active component service solution involves the combined
execution of application functionality on the server as well as on the client side
and potential communication between the client- and server-side active com-
ponents as highlighted in Fig. 8. This flexible approach supports a variety of
use cases ranging from consistency checks on the client side before sending up-
date queries to the database to the filtering and streaming of real-time data. In
Sect. 7, we will provide some examples of how this client-server active compo-
nent approach has been used for implementing highly interactive user interfaces
to databases.

Client
Application

Database
Server

database request

AC
Stub

AC
Logic

load AC
AC message (XML)

Client Server

load AC
AC message

AC message

.......

Fig. 8. Client- and server-side application functionality

Note that the second as well third type of active component services, where
part of the active component functionality is executed on the client side, are not
supported by AOODB solutions or Web Service approaches.
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6 Implementation

A first prototype of the active component framework for database-driven ser-
vices has been realised in Java on top of our own object-oriented data manage-
ment framework [14]. However, the presented concepts are general enough to be
implemented in other programming languages and environments. Since our ap-
plication scenario was mainly dealing with various client devices accessing and in-
teracting with information stored within our object-oriented database system, we
have chosen a classical client-server architecture where the client communicates
with the server over the HTTP protocol. The active component communication
does not have to be limited to a single protocol and different configurations are
possible.

While our OODBMS stores active components in terms of database objects
containing the relevant information to initialise the services at request time,
it is up to the client- and server-side active component runtime environments
to start the corresponding services. For each uniquely identifiable service, the
corresponding stub and logic Java classes have to be registered in the active
component registry. The client- and server-side active component runtimes use
this information provided by the active component registry to dynamically load
the classes.

The active component logic and stub classes share some common features such
as all the metadata provided by the active component database object as well
as an initialisation method as shown in Fig. 9. After an active component stub
has been loaded, its init() method is invoked. The active component metadata
is then serialised in XML and sent to the client-side active component runtime
environment. After deserialising the XML message, an active component stub is
instantiated on the client side. The active component stub provides an enhanced
initialisation method where the component gets not only access to its configu-
ration data (ACConfiguration) but also a handle to the client (device) initi-
ating the interaction. Subsequent events are processed by the processEvent()
method and there might be some potential communication with the server-side
active component logic. Any request from an active component stub to its cor-
responding active component logic is sent in XML format and processed by the
active component logic’s handleActionRequest() method which generates an
appropriate response.

It is up to the client-side active component to decide when its work has
to be finished and the component has to be unloaded. As soon as the active
component stub’s setDone() method gets invoked as part of the component’s
program logic, the active component stub is unloaded by the client-side active
component runtime environment. Note that before its removal from the system,
there is an upcall to the active component’s finish() method. This enables
the active component developer to perform any necessary cleanup and release
of acquired resources such as database or network connections. In addition, a
client- or server-side active component has an optional timeout parameter and
is terminated automatically if it has been idle for longer than a given amount of
time.
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+init(ACConfiguration c, ACEvent e)
+processEvent(ACEvent e)
+setDone()
+finish()

ActiveComponentStub

+init()
+Object handleRequest(Object request)

ActiveComponentLogic

+init(AComponent dbActiveComponent)

+name: String
+identifier: String
+timeout: int
+parameters: Hashtable<String, String>

ActiveComponent

Fig. 9. Active component stub and logic

There are some resource-specific active components which require additional
information from the client triggering the active component. These components
can be reused in different applications but they always have to be used in com-
bination with a client providing the appropriate input data. On the other hand,
generic active components do not depend on any additional information from the
client. An example of a generic active component is a Browser active component
opening the system’s default web browser with a given URI parameter.

Note that while the current implementation is based on Java, it is also possible
to support active components implemented in other programming languages. It
would even be possible to have stub and logic components that are implemented
in different languages given that the communication could, for example, be over
XML. It is up to the active component registry and active component library
to provide access to an active component in the required programming language
based on the active component identifier. Of course in order to support active
components implemented in other programming languages, we would also have
to implement additional active component runtime environments.

By providing the corresponding active component runtime environment on
top of our data management framework, we also plan to implement some of the
examples introduced earlier in Sect. 2..

7 Use Case

A major advantage of having the active components as first class objects within
the system rather than implementing the corresponding functionality within a
method that is tightly bound to a specific database object is that it becomes
easier to reuse functionality of existing active components by inheritance. To
illustrate this, we provide an example of several active components that build
on top of each other and have been implemented as part of our interactive pa-
per platform (iPaper) [15,16] for processing digital pen input. Digital pen and
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paper technology2 enables the continuous capturing of a pen’s position on ordi-
nary paper augmented with a position encoding pattern. The captured digital
information can, for example, be processed by an active component and used to
trigger digital actions and services. Note that we only show the details for the
stub components since, for this specific task, most of the interaction takes place
on the client side.

As part of a specific iPaper application, we wanted to capture pen stroke
information from a digital pen, perform intelligent character recognition (ICR)
on the captured handwriting and output the recognised text using a text-to-
speech (TTS) engine. Instead of implementing this functionality as a monolithic
piece of program, the active component-based approach enabled us to separate
the functionality into several reusable active components highlighted in Fig. 10.

+processEvent(ACEvent e)

ActiveComponentStub

+getLastLocation()
+getInputDevice()

DefaultStub

+getCaptureArea()
+handleNote(Note note)

CaptureNoteStub

+handleNote(Note note)
+handleText(String text)

CaptureAndIcrStub

+handleText(String text)

CaptureAndSpeakStub

+handleNote(Note note)

CaptureAndStoreStub

Fig. 10. Active component examples

A first client-side active component is the DefaultStub, an extension of the
ActiveComponentStub providing some general functionality required by many
interactive paper active components. For example, the DefaultStub provides
access to the last pen position (getLastLocation()) that was processed by the

2 http://www.anoto.com
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active component or offers a handle to the buffered input device. Note that the
DefaultStub is an abstract class and therefore it is not possible to directly
instantiate any DefaultStub active component.

The CaptureNoteStub active component extends the DefaultStub class and
offers the functionality to capture handwritten notes. For example, the
CaptureNoteStub communicates with its server-side logic component to get in-
formation about the capture area from the interactive paper database. This
information is accessible via the getCaptureArea() method and is used as a
criteria to finish the capture process and terminate the active component as
soon as the pen leaves the predefined capture area. The CaptureNoteStub is
still an abstract class which can be accessed by other services that would like
to build on top of a capture service. As a result of the capture process, there is
an upcall to the abstract handleNote() method with the captured note as an
argument, as soon as the capture process finishes. Note that the configuration
of a CaptureNoteStub active component contains a variety of other key/value
properties to, for example, define whether a captured note should be cropped.

A simple active component that makes use of the CaptureNoteStub service
is defined in the CaptureAndStoreStub class. By overriding the handleNote()
method, the CaptureAndStoreStub active component gets access to the cap-
tured note and stores it in the local file system. The configuration parameters
of the CaptureAndStoreStub component include information about the format
of the document to be stored (e.g. jpeg or gif) as well as the path and filename.

This example of an active component storing the captured note in the file
system was only introduced to show that an active component’s functionality,
in this case the one of the CaptureNoteStub, can be reused by many differ-
ent active components. Our goal is to further process the capture information
and therefore we implement a CaptureAndIcrStub that takes the output of the
CaptureNoteStub component, performs some intelligent character recognition
on the stroke data and returns a text in string form. The CaptureAndIcrStub
is again an abstract class and the handleText() method has to be overridden
by any concrete subclass.

Last but not least, the CaptureAndSpeakStub class is an extension of the
CaptureAndIcrStub component implementing the handleText() method and
feeding the text to a text-to-speech engine. A summary of the method upcalls
within the inheritance hierarchy of the CaptureAndSpeakStub class is shown in
Fig. 11.

handleNote()

CaptureNoteStub CaptureAndIcrStub CaptureAndSpeakStub

handleText()
perform ICR

send text to
voice engine

Fig. 11. Active component method calls
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Figure 12 outlines the interaction between the CaptureAndSpeakLogic and
CaptureAndSpeakStub components as part of a capture process. After the Cap-
tureAndSpeakLogic and CaptureAndSpeakStub components have been initial-
ised, the CaptureAndSpeakStub sends a request to the server-side active com-
ponent to get information about the capture area. The CaptureAndSpeakStub
then autonomously processes any positional input from the digital pen until the
pen leaves the predefined capture area. It finally applies an intelligent charac-
ter recognition (ICR) algorithm to the captured data and sends the resulting
string to a text-to-speech (TTS) engine. While it was not the goal of this active
component to store the captured information, this functionality can be easily
realised by sending a message with the captured data to the server-side active
component. This server-side storage of captured information based on active
components was used in the EdFest interactive paper-based festival guide [17]
for sharing comments. In the EdFest application, active components were not
only used to persistently store captured information but also to send requests to
external databases.

Digital Pen
and Paper

iPaper
Client

iServer
and iPaper

ID, page, (x,y)

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates

(x,y) coordinates
...

CaptureAnd-
SpeakStub

CaptureAnd-
SpeakLogic

load AC

AC message (XML)

load AC
AC message

(capture area)

capture area
(x,y) coordinates

(x,y) coordinates (x,y)

(x,y)
ICR and TTS

(x,y) coordinates
ID, page, (x,y)

Client Server

...

(x,y) coordinates

Fig. 12. Client and server active component interaction

To achieve the task of capturing some pen-based input, recognising the hand-
written information and producing the corresponding voice output, we have de-
fined four reusable components. There are several advantages of this fine gran-
ularity of functionality offered by the different active components. First of all,
the frequent reuse of the components should enhance the overall quality of the
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components over time. Since there is a growing set of active components, it also
becomes easier for the developer to design and implement extensions of existing
active components. Another advantage is that the code size of a single active
component is relatively small and therefore it is easy to understand the func-
tionality that it offers. Furthermore, we gain flexibility by storing the active
component configurations in a database since all of its parameters can easily be
adapted at runtime without a recompilation of the source code. However, the
reusability of active component functionality within and across applications is
only one aspect. As we have shown, another important benefit is the definition
of modular and component-based client-server interaction which goes far beyond
the “simple” remote service invocation offered by other solutions.

Our database-driven application development process based on active compo-
nents has been successfully used to realise multiple highly interactive cross-media
applications. These applications included artistic installations [18] as well as a
variety of interactive paper applications [16,19].

8 Conclusions

We have presented a database-driven approach for developing highly interactive
applications based on active components. While many systems focus on the in-
tegration of services on the protocol level, our approach provides a high-level
lightweight solution for an application developer to implement and reuse modu-
lar services. The clear separation of data objects and services provided by active
components further simplifies the reuse of services with various types of data.
Since active components are first-class database objects, their associated services
can easily be configured within the database. A service provided by an active
component can be flexibly associated with data objects on the instance, type or
classification level. Role-driven service invocation provides a flexible mechanism
for runtime object evolution in terms of services that are bound to a specific ob-
ject. Further, the client-server active component runtime environment provides
a powerful solution for executing parts of the application on the client side and
for establishing a client-server service communication. While service-oriented
architectures allow for executing remote services, our active component-based
approach enables the definition and execution of autonomous and encapsulated
client-server services. The automatic deployment of services to the client side
not only simplifies the installation and maintenance of new functionality but
also enables a richer form of interaction between client-side services and appli-
cation data that is stored on the server side.
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Abstract. A new static optimization method in object query languages
is presented. We introduce a special kind of subqueries of a query referred
to as “weakly dependent subqueries”. A subquery is weakly dependent
if it depends from an external query operator only on an expression
returning the result of an enumerated type. If a query contains such
subqueries then we rewrite it to an equivalent form which guarantees
much better performance. Our method is based on the stack-based ap-
proach (SBA) and its query language SBQL (Stack-Based Query Lan-
guage) implemented in the ODRA system. SBA is relevant for a general
object model and for its specific variants. Clean formal semantics and
abstract implementation of SBQL, integration with the constructs of
programming languages and advanced data structures give the possibil-
ity to investigate different areas that are related to query optimization
techniques. The paper presents examples how the optimization method
works. General and detailed features of the implemented algorithm are
also presented.

Keywords: query optimization, weakly dependent subquery, stack-ba-
sed approach, SBQL, object-oriented database, strong typing.

1 Introduction

In the past optimization of object-oriented queries attracted many researchers,
see for example [4,6]. Recently, however, the attention of the research commu-
nity to object databases is much lower thus the problem is a bit forgotten. There
are even opinions that nothing essential in this respect has been done and is ex-
pected. Fortunately, this is not true. In our research and implementation devoted
to object-oriented databases we treat query optimization very seriously. We have
developed and implemented several methods, including query rewriting and in-
dices [10]. Some of them we adopted and generalized from relational systems,
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but the majority of them are totally new. This paper presents one of such new
powerful methods.

Query optimization based on the analysis of weakly dependent subqueries
belongs to optimization methods that are based on query rewriting. It is static
optimization entirely performed before a query is executed. Rewriting means
transforming a query q1 into a semantically equivalent query q2 ensuring better
performance. It is accomplished according to rewriting rules, which are based
on detecting parts of a query matching some pattern. These parts are to be
replaced according to the rewriting rule by other parts. Such optimizations are
compile-time actions, hence the optimization processes do not affect run-time
performance of database applications. For very large databases the gain from
query rewriting can be significant, sometimes the orders of magnitude shorter
query response time.

One of the most important rewriting optimization techniques is the method
of independent subqueries. It is known from relational systems and SQL in a less
general variant [8,9]. Using the method, some subquery can be factored out from
a loop implied by a query operator if the subquery result is the same for each
cycle of the loop. In the stack-based approach [1,17,18,19] this method is gener-
alized (see [13,14,15,18]) for any kind of non-algebraic query operators and for a
general object-oriented database model that includes arbitrarily complex objects,
collections, classes and methods, cardinalities associated to any database en-
tity, static and dynamic inheritance, associations, encapsulation, polymorphism,
etc. Non-algebraic operators include selection, join, projection/navigation (dot),
quantifiers, ordering and transitive closures. In such cases an independent sub-
query is evaluated only once and its result is used in each loop iteration. The
method was successfully implemented in different systems. The last implemen-
tation concerns the ODRA system [2,11,12] deployed in two large European
projects, eGov Bus and VIDE [20], and in several local projects.

In the research that is presented in this paper we generalize the independent
subqueries method. It may happen that the result of some subquery is depen-
dent from the nearest non-algebraic operator (the result can be different in each
loop cycle of the operator), but the dependency is specifically constrained. The
dependency concerns a name that is typed by enumeration. Consider the query
(Get females earning more than the average for women and males earning more
than the average for men):

(Emp as e) where e.sal > avg((Emp as f where e.sex = f.sex).f.sal) (1)
In this case the subquery

avg((Emp as f where e.sex = f.sex).f.sal) (2)
is not independent from the first where operator because it contains the name
e that is bound in the second section of the environment stack, which is just
opened by the first operator where. However, it makes little sense to evaluate it
thousands of times because it is clear that it can be evaluated only two times:
once assuming e.sex = “male” and next one assuming e.sex = “female”. How
such cases can be generally formalized and how the corresponding rewriting
algorithm should look like?
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A subquery like (2) we call “weakly dependent”, because it depends on the
enumerated type {“male”, “female”} only. The idea of our rewriting rule is based
on converting weakly dependent subqueries into independent subqueries and
then, optimizing it by the already developed independent subqueries method.
The advantage of the mentioned above optimization method is that the number
of evaluations of a weakly dependent subquery is equal to the number of values of
the enumerated type that the subquery depends on. Usually the number of values
of an enumerated type is much lower than the number of objects in a collection
visited by a query operator like selection. Thus the performance gain can be very
essential. The method can also be associated with some query evaluation cost
model or with some heuristics if we assume very large enumerated types which
do not justify straightforward application of the method.

Implementation of the weakly dependent subqueries method is strictly related
to an enumerated types. This kind of types has been implemented by us in
the ODRA system. We hope that this optimization method will also be useful
in other object-oriented database management systems that involve non-trivial
nested queries. The method can also be extended to dictionaries that are kept
in databases and to some kind of queries that address jointly very big and very
small collections in a database.

The rest of the paper is organized as follows. In Sect. 2 we briefly present main
concepts of the Stack-Based Approach that are important for our optimization
method. Section 3 gives an overview of the method based on factoring out inde-
pendent subqueries. Section 4 describes the general idea of the weakly dependent
subqueries method. Section 5 presents the corresponding algorithm that we have
implemented, including its pseudocode. Section 6 presents the results of simple
experiments with the method. Section 7 presents conclusions and future work.

2 Main Concepts of the Stack-Based Approach (SBA)

The Stack-Based Approach (SBA) and its Stack-Based Query Language (SBQL)
are the result of investigations into a uniform conceptual platform for integrated
query and programming languages for object-oriented databases [1,17,18,19]. The
approach is universal and abstract, what makes it relevant to a very general object
model. SBA assumes that a query language is a special case of a programming
language.The basic paradigm ofSBA is known as the naming, scoping and binding.
Each name in a query or program code is bound according to its scope to a suitable
run-time entity (e.g. object, attribute, variable, procedure, method, view, etc.).

Environment stack (ENVS), known also as call stack, is an important con-
cept of SBA. The stack is responsible for binding names, scope control, proce-
dure and method calls, parameter passing and other features of object-oriented
query and programming languages. In SBA the stack has a new role: process-
ing non-algebraic operators. In contrast to stacks implemented in (practically
all) well-known high-level programming languages, in SBA the stack does not
store objects (or variables). It stores binders, that is, some structures built upon
names, object identifiers and values. SBA assumes full internal identification:
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each run-time entity that can be separately retrieved or updated must pos-
sess a unique internal identifier. SBA assumes no differences in defining types
and queries addressing transient and persistent data (this is known as orthog-
onal persistence [3]). SBA assumes the object relativity principle which claims
no syntactic, semantic and pragmatic differences of queries addressing objects
stored at any level of object hierarchy.

In SBA results of functional methods and procedures belong to the same
semantic category as results of queries. Thus such methods and procedures can
be called in queries. SBQL is semi-strongly typed, which means that a type can
be associated with a cardinal number like [0..1] or [0..*] (known from UML),
where lower number 0 denotes that an object can be absent (similar to a null
value known from relational systems) or a collection can be empty. Types are
used for static code checking, dynamic checking of objects structures and for
query optimization. The following three sets are used to define objects:

• I – the set of unique internal identifiers
• N – the set of external data names
• V – the set of atomic values, e.g. strings, integers, blobs, etc.

Atomic values include also codes of procedures, functions, methods, views, etc.
Let i, i1, i2 ∈ I, n ∈ N , and v ∈ V . Objects are modeled as triples: atomic objects
as 〈i, n, v〉; link objects as 〈i1, n, i2〉; complex objects as 〈i, n, S〉, where S denotes a
set of objects. This definition is recursive—it is possible to create complex objects
with any number of hierarchy levels. Relationships are represented through link
objects. To represent collections SBA does not assume the uniqueness of external
object names at any level of object hierarchy.

Queries in SBQL return structures built upon object identifiers, names and
values. In SBA classes are understood as prototypes, which means that they are
objects, but their role is different. A class object stores invariants (e.g. meth-
ods) of the objects that are instances of that class. A special relationship—
instantiation—between a class and its instances is introduced. Inheritance be-
tween classes is supported.

Example database. An SBA object store is specified in the UML-like class dia-
gram presented in Fig. 1. The schema defines five classes: Person, Student, Emp,
Project, and Dept. Person is the superclass of the classes Student and Emp. The
classes Project, Student, Emp and Dept model students implementing projects,
which are supervised by employees working in departments. An Emp object can
contain multiple complex prev job subobjects (previous jobs). Names of classes
(attributes, links, etc.) are followed by cardinality numbers, cardinality [1..1] is
dropped. Attributes sex of Person and position of Emp are of an enumerated
type. The first one takes values (“male”, “female”), the second one takes values
(“analyst”, “programmer”, “tester”).

SBQL is described in detail in [1,12,18,19]. It has several implementations, in
particular for the ODRA system. The syntax of SBQL is as follows:

• A single name or a single literal is an (atomic) query. For instance, Emp,
name, salary, x, y, “John”, 1000, etc, are queries.
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Person [0..*]
fName: string
lname: string
sex: enum_gender
birthday: date
fullName(): string

Student [0..*]
year: integer
grades[0..*]: integer
avgGrade(): real

Project [0..*]
name: string
duration: integer

Dept [0..*]
dname: string

Emp [0..*]
hire_date: date
sal: real
position: enum_pos

prev_job [0..*]
place: string
years: string

employs [0..*]

works_in manages [0..1]

boss

implements [1..*]

implemented_by [1..*]

supervises [1..*]

supervised_by

Fig. 1. A schema (class diagram) of an example database

• If q is a query, and σ is a unary operator (e.g. sum, avg, count, distinct, cos,
sqrt), then σ(q) is a query.
• If q1 and q2 are queries, and θ is a binary operator (e.g. where, dot, join, +,

=, and), then q1 θ q2 is a query.

Semantics of SBQL queries follows the compositionality principle, which means
that the semantics of a query is a function of the semantics of its components, re-
cursively, down to atomic queries (names and literals). In principle, all operators
that are used to build queries are unary or binary. Big syntactic and seman-
tic patterns, such as select...from...where...qroup by...having... etc., are avoided.
This feature much simplifies implementation and supports query optimization.

SBQL operators are subdivided into algebraic and non-algebraic. The main
difference between them is whether they modify the state of ENVS during query
processing or not. If an operator does not modify ENVS then it is algebraic.
The algebraic operators include string and numerical operators and compar-
isons, Boolean and, or, not, aggregate functions, bag and sequence operators
and comparisons, structure constructors, etc. Very useful algebraic operators
are as and group as which name query results. Operator as names each element
in a bag or sequence returned by a query, while group as names the entire query
result.
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Evaluation of the non-algebraic operators requires further notions. If we have
a query q1 θ q2 , where θ is a non-algebraic operator, then q2 is evaluated in the
context of q1. The context is determined by a new section on ENVS opened by θ
for an element returned by q1. Thus the order of evaluation of subqueries q1 and
q2 is important. The non-algebraic operators include: selection (q1 where q2),
dependent join (q1 join q2), projection/navigation (q1.q2), quantifiers (∀q1(q2)
and ∃q1(q2)), ordering and transitive closures. Path expressions are compositions
of the dot operator, e.g. q1.q2.q3.q4.q5 is understood as (((q1.q2).q3).q4).q5. All
features of currently implemented SBQL can be found in [1,12,18,19]. Below we
present sample SBQL queries:
“Get employees earning more than 2000”

Emp where sal > 2000 (3)
“Get departments together with their bosses”

(Dept as d) join (d.boss.Emp as b) (4)

3 Query Optimization by Factoring Out Independent
Subqueries

The following example in SBQL illustrates the general idea of the independent
subqueries method. The query (5) gets employees who earn more than Clark.

Emp where sal > ((Emp where name=“Clark”).sal) (5)
Note that the subquery

(Emp where name=“Clark”).sal (6)
due to the loop implied by the first where operator, is evaluated for each Emp
object in the database. However, it is enough to evaluate the subquery only once,
because its result is the same in each loop cycle. The idea of the independent
subqueries method assumes two phases: detecting subqueries that are indepen-
dent and then, rewriting the entire query by pushing independent subqueries
out of loops.

Detecting independent subqueries is accomplished by the analysis in which
section of the environment stack the names occurring in a subquery are to be
bound. If none of the names of the subquery is bound in the stack section
opened by the currently evaluated non-algebraic operator, then the subquery is
independent and can be evaluated outside the loop. In our example the subquery
(6) is independent from the first where operator of the query (5). Hence the
method factors (6) out of the where operator in the following steps:

• A new unique auxiliary name is introduced to name the result of (6)
• Query (6) is named with that name, put before the entire query (5), and

connected to (5) by the dot operator
• The auxiliary name is put in the original place of (6)

In the result of the above rewriting rules we get the following query:
((Emp where name=“Clark”).sal group as aux).(Emp where sal > aux) (7)

Note that for naming the subquery we use the operator group as (nesting) rather
than as. In this way the method is much more general, because we need not to
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care what type of the result the subquery returns. In particular, it can return
bags, sequences or any other data structures that are provided by the typing
system.

Although the idea seems to be simple, the general algorithm is quite sophis-
ticated. It is connected with the strong type checker, which (besides typical
actions) augments a query abstract syntax tree (AST) by order numbers of the
environment stack sections. A number is assigned to all non-algebraic opera-
tors and to all names occurring in a query and denotes a section opened by a
non-algebraic operator or a section in which a given name is to be bound, cor-
respondingly. Then, AST is traversed recursively to find the largest subquery
having all the numbers different than the number assigned to a non-algebraic
operator processing the subquery. After discovering such a subquery the AST
is reorganized, as shown in our example above. The optimization method is re-
peated, to detect next and next subqueries to be pushed out of loops. Some sub-
query can be independent from several loops, hence in each step of the method
the subquery is pushed out of a next loop. The process is finished when no non-
trivial independent subquery is detected. (Trivial queries are literals and single
names, with exception of names of procedures, methods and views.).

The architecture for query processing is presented in Fig. 2. Query optimizer
acts on three structures: a metabase (compiled form a database schema), a static
environment stack S ENVS and a static query result stack S QRES. These struc-
tures are compile-time counterparts of run-time structures: an object store, an
environment stack ENVS and a query result stack QRES, correspondingly. The
static stacks contain typing signatures. These stacks are managed by the strong
type checker, which simulates run-time computations for the given query by
calculating type signatures of run-time entities (objects, in particular). Each
non-algebraic operator occurring in a query augments S ENVS according to the
stack-based semantics of SBQL and each name occurring in the query is stat-
ically bound on S ENVS returning the signature of a corresponding run-time
entity.

Figure 3 presents a part of the schema from Fig. 1 and the corresponding
metabase. It consists of nodes, that represent particular entities in the schema,
and edges that represent associations between nodes. Three kinds of associations
are provided: inheritance (arrows with white ends), subordination of objects (ar-
rows with black ends) and pointer links (arrows with broken lines). The metabase
is organized as an object-oriented database, in particular, each node has a unique
identifier. The metabase is queried by regular SBQL queries.

Now we can give a precise definition of the concept of typing signature (set
T ); the definition is recursive:

1. Names of atomic types (e.g. integer, real, string, date, etc.) belong to T .
2. Literals belongs to T (to take into account enumerated types).
3. All identifiers of the metabase graph nodes (e.g. iEmp and iDept) belong to

T . Identifiers of graph nodes represent types defined in the database schema.
4. If x belongs to T and n is an external name, then the pair n(x) belongs to

T . Such a pair will be called static binder.
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Query optimizer

metabase compile-time
environment

stack
(S_ENVS)

object
store

run-time
environment

stack
(ENVS)

run-time
result
stack

(QRES)

Parser

query
result

query

query abstract 
syntax tree

(AST)

optimized AST

compile-time
result
stack

(S_QRES)

Compiler to
bytecode

query
bytecode

Query evaluator (virtual machine)

Fig. 2. Architecture of SBQL query processing

5. If x1, x2, . . . , xn belong to T , then struct{x1, x2, . . . , xn} and variant{x1,
x2, . . . , xn} belong to T . A variant is used when the type of an expression
cannot be determined at the given stage of compilation (for instance, for
processing elliptic queries).

6. If x belongs to T , then bag{x} and sequence{x} belong to T . Signatures
bag and sequence reflect bags and sequences processed by the query engine.

There are next rules defining the set T . A function static nested (a compile-time
counterpart of the run-time function nested) is used during the static type check
of queries when a non-algebraic operator is processed. The function refers to the
metabase and returns static binders subordinated to a processed metabase node.
S ENVS contains static binders that correspond to actual binders processed
during run-time. S QRES contain signatures that correspond to types of entities
that are returned by a query. The strong typechecking mechanism processes
these signatures according to the stack-based semantics of SBQL.
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name: Person
kind: class
card: *

name: lname
kind: object
type: string
card: 1

name: Emp
kind: class
card: *

name: Dept
kind: class
card: *

name: sal
kind: object
type: real
card: 1

name: hire_date
kind: object
type: date
card: 1

name: position
kind: object
type: enum_pos
card: 1

name: dname
kind: object
type: string
card: 1

name: fullName
kind: method
type: void → string

name: works_in
kind: link
card: 1

name: manages
kind: link
card: 0..1

name: employs
kind: link
card: *

name: boss
kind: link
card: 1

Person[0..*]
lname: string
fullName(): string

Emp[0..*]
hire_date: date
sal: real
position: enum_pos

Dept[0..*]
dname: string

works_in

employs[0..*]

manages[0..1]

boss

Fig. 3. Database schema and the corresponding metabase

In this way each non-algebraic operator occurring in AST is associated with
the number of a stack section that it opens, and each name occurring in AST is
associated with the number of a stack section in which it is bound during run-
time. Because of the relativity of the stacks (query evaluation can start with any
previous state of the stacks) all sections that existed prior to query evaluation
are denoted by the number 1. For example, for query (5) these numbers are
presented below:

Emp where sal > ((Emp where name=“Clark”) . sal)
1 2 2 1 3 3 3 3

(8)

Now we can see that the first operator where opens the 2nd stack section, but no
name occurring in the subquery (6) is bound in this section. Hence the subquery
is independent from the loop implied by the where operator and can be factored
out of the loop, as shown in (7).

After determining that a given subquery is independent from the nearest left-
side non-algebraic operator, the general query rewriting rule is the following. Let
q1 θ q2 be a query with a non-algebraic operator θ. Let q2 = φ1 ◦ q3 ◦ φ2, where
φ1, φ2 are some query parts (perhaps empty), ◦ is concatenation of strings, q3
is a subquery for which θ is the nearest left-side non-algebraic operator and q3
is independent from this operator. Let aux be a unique name that is chosen
automatically and is internally marked (to avoid naming clashes). Then the
query:

q1 θ φ1 ◦ q3 ◦ φ2 (9)
can be rewritten to:

(q3 group as aux) . (q1 θ φ1 aux φ2) (10)
Note the generality of this rewriting rule. The rule holds for any data model,
including the relational model, the XML model and any version of the object-
oriented model. Moreover, it makes no difference concerning which non-algebraic
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operator is considered—it works for selection, projection, navigation, quantifiers,
transitive closures, ordering and any other non-algebraic operator (assuming it
will be invented). Note also that the rule makes no assumptions concerning how
an independent subquery is complex: it may include any operators, including
aggregate functions, method calls, algebraic and non-algebraic operators, etc.
The rule makes also no assumptions concerning what the independent subquery
returns: it may return a single value, a reference to an object, a structure, a col-
lection of values, a collection of references, a collection of structures, etc. Finally,
the rule makes no assumption how the independent subquery is connected with
its left and right context (φ1 and φ2).

We claim that such a general and fundamental for query optimization rewrit-
ing rule is impossible to express in any other formalism, including the relational
algebra and calculus, their object-oriented counterparts, monoid comprehensions
calculus, F-logic, etc. Only the stack-based approach presents the right theory
that is able to solve the problem in its full generality.

Query optimization rules that are presented in this paper strictly depend on
type processing. Calculations performed on type signatures and the management
of stacks S ENVS and S QRES are fundamental for detecting independent sub-
queries. Hence, the typing mechanism should strongly involve the semantics of a
given query language. Because previous approaches to strong typing of object-
oriented query/programming languages do not consider the query semantics at
all (e.g. ODMG ODL [5], F-bounded polymorphism, etc.), we claim they are
unacceptably limited. Query optimization is much more important function of
a typing system than discovering typing errors. For very large databases we can
live without a compile-time strong type checking (cf. SQL), but a query language
without optimization is unacceptable for the users. Again, only the stack-based
approach with its strong typing based on the compile time simulation of run-
time actions [7,16,18] presents the right idea which deals either with strong type
checking and with query optimization.

4 Query Optimization Involving Weakly Dependent
Subqueries

As in case of independent subqueries, weak dependence of subqueries is con-
sidered in the context of non-algebraic operators. A subquery is called weakly
dependent if there is a name (names) which can be statically bound to an enu-
merated type and is in the scope opened by the currently evaluated non-algebraic
operator. Other names in the subquery should not be in this scope. As previously,
finding weakly dependent subqueries consists in analyzing in which sections of
ENVS particular names are bound. Hence the static analysis does the following:

• For each non-algebraic operator occurring in a query assigns the order num-
ber of a section which it opens. Note that for store models AS1, AS2 and
AS3 [19] there may be several sections opened by a non-algebraic operator.
Without loss of generality we can assume that all of them are assigned by
the same number.
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• For each name that is bound in a query assigns the order number of a stack
section in which the name is bound (binding level). Note that names after
as and group as are not bound on the stack, hence they are omitted.

The following example illustrates the general idea of the method. The query gets
employees which are men and earn more than Smith and women earning more
than 2000. For the query below we determine the stack size and the binding
level for each name and the order number of a section opened by non-algebraic
operators.

Emp as e where e . sal > ((2000 where e . sex = “female”) union
1 2 2 3 3 3 2 4 4

(Emp where e . sex = “male” and lName = “Smith”) . sal)
1 3 2 4 4 3 3 3

(11)

Consider the following subquery of query (11).
((2000 where e.sex=“female”) union
(Emp where e.sex=“male” and lName=“Smith”).sal)

(12)

The subquery (12) is not independent from the first where in query (11) be-
cause name e in expressions e.sex is bound in the scope opened by the where
operator. However subquery (12) is weakly dependent w.r.t. the operator. The
name sex in both expressions e.sex is typed to an enumerated type. Hence the
expression e.sex can take only two values: “male” or “female”. Denote (12) by
wdq(e.sex). Then, the original query (11) Emp as e where e.sal > wdq(e.sex)
can be rewritten to (13):

Emp as e where if e.sex = “male” then e.sal > wdq(“male”)
else e.sal > wdq(“female”)

(13)

After unfolding (13) we obtain the following query:
Emp as e where if e.sex = “male”

then e.sal > ((2000 where “male” = “female”) union
(Emp where “male” = “male” and lName = “Smith”).sal)

else e.sal > ((2000 where “female” = “female” ) union
(Emp where “female” = “male” and lName = “Smith”).sal)

(14)

If an enumerated type has more than two values, we can use several if operators
or some case or switch operator. Note that we put if directly after the first where
operator on which the subquery depends. This is conscious decision, because in
this way we can collectively resolve several weakly dependent subqueries that may
occur in the scope of a non-algebraic operator and depend on the same name.

Is our transformation beneficial for performance? In (11) the expressions e.sex
is under two operators where. Therefore we had to perform many evaluations (e.g.
bindings, opening new sections) of expression e.sex. For instance, if the database
contains 500 employees we process the expression e.sex 250500 times. Query
(14) requires only 500 times, because e.sex is under the external where operator
only.

Moreover, query (14) is a good starting point for further optimizations. Our
static analysis mechanism can calculate comparison of literals and change them
into true or false. Then, these truth values can be removed, together with some
parts of the entire query (14). In the result, (14) can be transformed to the form:
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Emp as e where if e.sex = “male”
then e.sal > (Emp where lName = “Smith”).sal else e.sal > 2000

(15)

In (15) the subquery (Emp where lName=“Smith”).sal is now independent
from the first where operator, hence it can be optimized by the independent
subquery method:

((Emp where lName = “Smith”).sal group as aux).
(Emp as e where if e.sex = “male” then e.sal > aux else e.sal > 2000)

(16)

If there is a dense index for lName in the Emp collection, then the query can
be further optimized by involving the index (Emp lName Index is a function
returning a reference to a proper object according to the parameter being the
index key):

((Emp lName Index(“Smith”).sal group as aux).
(Emp as e where if e.sex = “male” then e.sal > aux else e.sal > 2000)

(17)

The form (17) terminates the optimization action—no further optimization is
possible.

In some cases the weakly dependent subqueries method does not generate
independent subqueries. Consider the query (18) (Get departments together with
the number of their employees having the position of their boss):

Dept join count(employs . Emp where position = boss . Emp . position)
1 2 2 3 3 3 3 2 4 4 4 4

(18)

The above query contains the subquery boss.Emp.position which is weakly de-
pendent from the join operator (name boss is bound in the 2nd stack section
opened by the join). The subquery can take three values (“analyst”, “program-
mer”, “tester”). According to our method we get the following query:

Dept join
(if (boss.Emp.position=“analyst”)
then (count(employs.Emp where position=“analyst”))
else (if (boss.Emp.position=“programmer”)

then (count(employs.Emp where position=“programmer”))
else (count(employs.Emp where position=“tester”))))

(19)

Query (19) does not contain an independent subquery, hence its optimization is
terminated. However, the optimization brings the essential gain. In (19)
boss.Emp.position is processed only in the loop implied by join. Providing there
is 20 departments and 500 employees, query (18) evaluates boss.Emp.position
10000 times, while query (19) only 20 or 40 times.

If the method of independent subqueries would be used before the method of
weakly dependent subqueries, the situation is different. The subquery boss.Emp.
position is independent from the nearest where operator, thus the subquery can
be factored out of its scope:

Dept join (boss.Emp.position group as aux).
(count(employs.Emp where position = aux)))

(20)

The query (20) cannot be further optimized. However, we have concluded that
(20) is less optimal than (19). In order to evaluate (20) we must do many bind-
ings to the aux name. Unlike statically bound programming languages, bindings
in SBQL are dynamic, hence cost some processing time. In (19) we have another
situation: conditions under where contain constant values (“analyst”, “program-
mer”, “tester”), which do not require binding. This example suggests that the
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method of weakly dependent subqueries should be used before the method of
independent subqueries, but this requires more examples and experiments on
real applications.

The general rewriting rule for queries having weakly dependent subqueries
can be formulated as follows. Let q1 θ q2 be a query connecting two subqueries
by a non-algebraic operator θ. Let ET = enum{v1, v2, . . . , vk} be an enumerated
type, k ≥ 2. Let q2 = φ1 ◦ wdq(q3) ◦ φ2, where φ1, φ2 are some query parts
(perhaps empty), ◦ is concatenation of strings, wdq(q3) is a weakly dependent
query that has a part q3 that depends on θ and has the type ET . Then the
query:

q1 θ φ1 ◦ wdq(q3) ◦ φ2 (21)
can be rewritten to:

q1 θ if q3 = v1 then φ1 ◦ wdq(v1) ◦ φ2

else if q3 = v2 then φ1 ◦ wdq(v2) ◦ φ2

. . .
else φ1 ◦ wdq(vk) ◦ φ2

(22)

It may happen that after this rewriting φ1 ◦ wdq(vi) ◦ φ2 has still a next weakly
dependent subquery. In this case such a rewritten query can be the subject of
next analysis and rewriting, according to the same rule.

The rewriting rule is correct in the general case. The idea of the method is
to build a proper conditional statement. The conditions of the statement are
based on all the values of an enumerated type. The statement is put directly
after the non-algebraic operator in relation to which the weakly dependence is
investigated. All the names occurring in the query before and after transforma-
tion are bound in exactly the same ENVS sections. Therefore the binding results
before and after that transformation are exactly the same. We conclude that our
method cannot change the result of a query. This conclusion is confirmed by
experiments on the implemented prototype.

As in the case of the method based on factoring out independent subqueries
we underline that the method is very general. It does not depend on a data or ob-
ject model, a kind of a non-algebraic operator, complexity of weakly dependent
subqueries, complexity of their output and the contexts in which weakly depen-
dent subqueries occur. This kind of generality is possible only in the stack-based
approach to query and programming languages.

In trivial cases the method gives no result. Assume the query:
Emp where sex = “male” (23)

Query (23) contains the weakly dependent subquery sex = “male”, so we can
rewrite it to the following form:

Emp where (if sex=“male” then “male”=“male” else “female”=“male”) (24)
We see there is no gain. To avoid such cases we provide the following rule:

• Check whether an expression typed to an enumerated type is under the
scope of another non-algebraic operator (we call it internal operator) which
is under the scope of the non-algebraic operator for which weakly dependence
is investigated (we call it external operator).
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• Check the number of cycles in the loop implied by the internal operator. If
the number is greater than some threshold (e.g. 1) then the query can be
transformed, otherwise should be left without changes.

The number of cycles can be estimated according to some cost model, which in-
volves estimated sizes of collections in the store. The number can be also deduced
from cardinalities that are associated to collection types. In (23) the subquery sex
= “male” is under external where operator only and the query does not contain
an internal non-algebraic operator. According to the criteria above it should not
be rewritten. Returning to example (18) we see that boss.Emp.position is under
the internal where operator. The number of cycles can be very large, because the
cardinality of the Emp collection is *. Hence this query should be rewritten.

5 Algorithm of the Weakly Dependent Subqueries
Method

In this section we describe the general algorithm of the method. Optimization
is performed by means of four recursive procedures:

• optimizeQuery(q:ASTtype) – it applies the procedure weaklyDependentSub-
queryMethod to AST node q as long as possible;
• weaklyDependentSubqueryMethod(q:ASTtype) – it recursively traverses AST

from node q and applies the applyWeaklyDependentSubqueryMethod proce-
dure to it;
• applyWeaklyDependentSubqueryMethod(q:ASTtype) – it analyzes AST q and

performs query rewriting; q is an AST node with a non-algebraic operator.
• checkWeakDependence(q:ASTtype):ASTtype[0..*] – responsible for detecting

weakly dependent subqueries starting from AST node q. It returns AST
nodes that are roots of weakly dependent subqueries.

The procedure weaklyDependentSubqueryMethod traverses AST of a query start-
ing from its root. If the procedure meets a non-algebraic operator θ then its
right and left queries are visited by the same procedure, recursively. At first we
want to rewrite weakly dependent subqueries which are under the scope of the
most nested non-algebraic operators. weaklyDependentSubqueryMethod calls ap-
plyWeaklyDependentSubqueryMethod for the encountered operator θ. In turn it
invokes checkWeakDependence to check whether the right subquery of θ contains
names which are to be bound to an enumerated type in the scope of θ. If such
names occur in the subquery then checkWeakDependence method returns nodes
of a subtree (right subquery of θ) containing the names which will be bound
to enumerators. On the basis of these names the proper if or switch statement
is inserted into the AST depending on number of values enumerated type. The
right subtree of the operator θ will be replaced by earlier created if /switch
statement. The subqueries in the if /switch statement are built through replac-
ing the nodes returned by the checkWeakDependence procedure. Nodes will be
replaced through the values of the given enumerated type. If the query has been
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rewritten then its static analysis is performed at the end of applyWeaklyDepen-
dentSubqueryMethod method. Static analysis is required to determine signatures,
binding levels for names and scope numbers for non-algebraic operators.

When weaklyDependentSubqueryMethod method have rewritten at least once
the original query, then the method of independent subqueries is to be applied,
as well as other methods.

Pseudocodes of the procedures

procedure optimizeQuery(q : ASTtype)

begin

loop

weaklyDependentSubqueryMethod(q);

if q has not been rewritten then break;

end if;

end loop;

if q has been rewritten at least once then

independentSubqueryMethod(q);

end if;

end.

procedure weaklyDependentSubqueryMethod(q : ASTtype)

begin

traverse AST starting from q;

if non-algebraic θ operator is met then

weaklyDependentSubqueryMethod(left subquery of θ);
weaklyDependentSubqueryMethod(right subquery of θ);
applyWeaklyDependentSubqueryMethod(ASTofθ);

end if;

end.

procedure applyWeaklyDependentSubqueryMethod(ASTofθ : ASTtype)

nodes : array of ASTtype;

begin

nodes := checkWeakDependence(ASTofθ);
/* the nodes array contains the parts of the right subquery of θ

which are to be bound to an enumerated type */

if nodes array is not empty then

q : ASTtype := nodes[0];

enumerators : array of ASTtype := getEnums();

/* the enumerators array contains the values of the given

enumerated type */

ifStatement, elseIfStatement : ASTtype;

ifStatement := (if q = enumerators[0] then

replaceDependentPart(nodes,enumerators[0]));

/* the parts in the right subquery of ASTofθ which are to be bound

to the enumerated type (elements of the nodes array) will be

replaced by enumerators[0] */

for i = 1 to enumerators.size do
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/* iterate through the values of the enumerated type starting from

the second */

elseIfStatement := (else if q = enumerators[i]

then replaceDependentPart(

nodes,enumerators[i]));

add the i-th else-if part to ifStatemnt and

set it to elseIfStatement;

end for;

set the right subquery of ASTofθ to ifStatement;

determine signatures, binding levels for names

and scope numbers for the new form of the query;

end if;

end.

function checkWeakDependence(ASTofθ1 : ASTtype) : ASTtype[0..*]

nodes : array of ASTtype;

threshold : integer := 10;

begin

traverse AST of the right subquery of θ1

starting from its root;

if visited node is a name then

if the name is bound to an enumerated type then

if (the name is under non-algebraic operator θ2 which is under

the scope of θ1) and (number of cycles in the loop implied

by θ2 is greater then threshold) then

add the name to nodes;

end if;

end if;

end if;

end.

6 Optimization Gain

The algorithm is experimentally implemented and tested within the ODRA sys-
tem. Figure 4 presents the average times of execution and optimization gain for
query (11). For instance, the gain for a collection of 1000 employee objects is
361 times faster execution and the gain for 10000 employee objects is 3940 times
faster execution.

7 Conclusions and Future Work

We have presented the optimization method which was aimed at minimizing the
number of evaluations of specific parts of queries. This method usually generates
independent subqueries which can be further optimized by a proper method.
The weakly dependent subqueries method is beneficial in each case even if the
transformation does not generate independent subqueries. The algorithm of the
method is not very complex, but efficient and very general. It makes rewrites
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Fig. 4. Evaluations times and optimization gain for query (11)

for arbitrarily complex nested queries and does not depend on a kind a non-
algebraic operator. In principle, the algorithm does not depend on a query cost
model, however this is not sure and will be the subject of further investigations.
The algorithm applied repeatedly detects and resolves all the possible weakly
dependent subqueries in a query, including subqueries that are dependent on
two or more names having enumerated types. The complexity of the algorithm
is linear w.r.t. the query size.

In the future we are going to implement an algorithm that joins the method
of weakly dependent subqueries with the method of independent subqueries. We
observe that parts of both algorithms are very similar, hence can be based on
the same code. Besides many experimental tests in real database applications
are necessary to prove the efficiency of various variants of the algorithm.

We also plan to extend the method to dictionaries that are stored in databases.
Indeed, the difference between dictionaries and enumerated types is secondary
from the point of view of this method. For instance, instead of an enumerated
type jobPosition we may have a dictionary of job positions that is supported by
some integrity constraint. The only difference is that dictionaries can be updated,
hence after such updates applications must be re-compiled and re-optimized.

A similar extension of the method concerns the case when a query involves
very big and very small collections. For instance, assume there is 10 departments
and 1000 employees. The query “Get employees together with the average salary
in their departments” without optimization would require 1000 times of evalua-
tion of the average salaries, while it is enough to evaluate them only 10 times.
This extension will be the subject of further investigations and implementations.
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Abstract. ConceptBase is a deductive object-oriented database system
intended for the management of metadata. A distinguishing feature of
the Telos language underlying ConceptBase is the ability to manage rules
and constraints across multiple levels of instantiation in so-called meta
formulas, thus offering uniform consistency management across hetero-
geneous notations or ontologies. Originally developed in the context of
model-driven database design in the late 1980’s, ConceptBase has been
used in several thousand installations all over the world for numerous
applications in areas such as requirements engineering, engineering in-
formation management, model management, eLearning, cultural infor-
mation systems, and data warehousing. The internal representation is
based on a quadruple object structure, combined with advanced Datalog
engines, such that many optimization techniques in ConceptBase have
pioneered ideas later pursued in the implementation of XML databases
and ontology-based reasoning and data management engines.

1 Introduction

The large number of different modeling formalisms used in information systems
engineering, semi-automated development techniques such as Model-Driven De-
sign, but also the increasing richness of media handled by such systems beyond
the traditional structured data, has renewed the interest in so-called metadata
repositories and model management systems since at least the end-1990’s. In
standards such as the Information Resource Dictionary Standard IRDS [11] or
OMG’s meta object facility MOF [31], but also in many experimental and com-
mercial systems such as, e.g., MetaEdit+ [20], Clio [10] or Rondo [24]. A shared
feature of these standards is that not just data and their schema or other meta-
data are stored but also the metaschemas for these metadata and their rela-
tionships. In the typical heterogeneous environments, further metalevels may be
necessary to manage the relationships between different metaschemas or mod-
eling languages, such that a multi-level hierarchy of instance-class relationships
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ensues. It is surprising to see that, despite this obvious and increasing need, after
more than 20 years, our ConceptBase system is apparently still the only one that
offers full support for the syntax and semantics of such multi-level hierarchies
with heterogeneity at all levels. This paper reviews some of the features of Con-
ceptBase that made this possible as well as some of the many applications in
research, teaching, and practice the system has enjoyed and continues to enjoy.

The development of ConceptBase was motivated by work in the European
DAIDA project [15], in which an early version of what would now be called
model-driven information systems development was developed, using a mapping
from semi-formal requirements modeling languages [8] via the design language
Taxis [25] to database programming languages. A repository was needed to doc-
ument and maintain the developed artefacts as well as their relationships from
a product, process, and design tool perspective, ensuring traceability and incre-
mental design within and across multiple design versions. A version of the Telos
information systems modeling language [26] formed the formal starting point for
the ConceptBase development but the final version of Telos itself was also heavily
influenced by the application domain of metadata repository management.

We started the development of ConceptBase in mid-1987, the first version
became operational in late 1988 [16]. About a year later, a stable client-server
version existed which was already used in 1989 as perhaps the first Internet-based
knowledge base management system in a project on requirements traceability
modeling across the Atlantic ocean, four years before the advent of the World
Wide Web. Using innovative storage models similar to the ones nowadays used
in XML stores, and extending optimization techniques for query and integrity
processing in deductive databases for our case of a deductive object-oriented
metadata manager, the performance of ConceptBase improved rapidly, leading
to a stable and externally usable prototype by about 1993 [12]. In the rest of the
1990’s, about 250 applications in various domains of research, teaching, and even
industrial practice became known to us, some of them with our participation but
many also completely independently.

In the new century, the user community of ConceptBase increased further,
probably due to the broadened interest in model management and metadata
management for multimedia data where our experiments were also brought into
some of the multimedia metadata standardization committees. Dissemination
was also helped by new system features and many further performance im-
provements, plus a robustness of the system that is now competitive with many
commercial systems. At present, we know of over 1000 registered installations,
probably a number of unregistered ones exist as well.

In [18], detailed descriptions of the meta modeling context, the ConceptBase
systems, and some of the more influential applications are described, and a
current version of the system is made available with many examples. In this
short overview paper, we first review the most important language features of
ConceptBase and then give an overview of the application domains and the
impact experiments with ConceptBase have achieved in these domains. We end
with some indications of ongoing work.
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2 Language Features of ConceptBase

ConceptBase is an implementation of the object model O-Telos [17], a Datalog-
based variant of Telos [26]; for simplicity, we use the name Telos in the sequel.
We first give a general introduction to the Telos language features in general and
then highlight some features that distinguish ConceptBase from similar systems
or have been added to the system rather recently.

2.1 Basic Concepts

As in all deductive database models, Telos databases consist of an explicit and an
implicit part. All explicit information as reified in the form of objects with object
identity. This holds for regular objects (instance level), for classes, meta classes
etc., but also for non-derived instantiation, specialization and attribution links.
For example, any explicit attribute is also an object and can have attributes
itself.

To make this very general object concept possible, the basic object is a propo-
sition P(o,x,l,y) in a kind of semantic network link labeled l with o is an object
identifier (oid), x as the source oid and y as a target oid. Such a proposition has
the dual role as a fact in the sense of deductive databases, and as an identifi-
able object in an object-oriented database, thus forming the elementary bridge
within the deductive object-oriented approach of ConceptBase. It also allows
ConceptBase to offer a textual syntax as well as an equivalent graphical syntax
to the user. Both of them hide the object identifiers to the user and only work
with the labels.

Note that this approach can be seen as a precursor to the very similar triple
storage approach for XML or RDF [27], except that those do not work with
object identifiers and thus offer a bit less flexibility. Among other things, this
similarity implies that many of the storage and query optimization techniques
developed for ConceptBase over the years can be evaluated for their applicability
to semi-structured databases.

As special subkinds of propositions, Telos supports instantiation (instances,
classes, meta classes, meta meta classes, etc.), specialization, and attribution.
In the graphical syntax supported by the ConceptBase graph editor, these three
kinds of links are typically indicated by graphical symbols, as shown, for example,
in Fig 1. As shown in Sect. 2.2, the user can extend the collection of such subkinds
by meta-objects which are given semantics through meta-formulas.

Deductive rules and integrity constraints can be defined for objects at any
abstraction level. In the textual syntax of deduction rules and constraints (see
Sect. 2.2 for examples), standard labels are used in literals for instantiation (x
in C) and specialization (C1 isA C2) whereas, due to the greater variability of
attribution link types, we offer the form (x m/l y) where x is the label of the
source object, y is the label of the target object, l is the label of the link itself,
and m is the label of the class of links to which the link belongs (also called the
attribute category).
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Fig. 1. A simple Telos knowledge base graph in five meta-levels: dashed lines indicate
instantiation, bold lines isA, normal lines attribution; both nodes and links are objects
in Telos
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The external textual syntax of Telos is a frame syntax that groups a large
number of propositions into a coherent and more easily understandable frame.
It defines, for a given object, its classes (multiple instantiation is possible), its
generalizations (not allowed for instances), and its attributes grouped by at-
tribute categories. As a simple example, some of the objects in Fig. 1 can be
described in frame syntax as follows:

Bill in Employee, Pilot with

salary

earns : 10000

colleague

col1 : Mary

col2 : Jim

end

Employee in EntityType with

feature

salary : Integer;

colleague : employee

Manager in EntityType isA Employee end

A collection of basic axioms comprising a number of facts, rules, and constraints
defines the semantics of Telos used in ConceptBase. For example, the isA re-
lationship between Manager and Employee means that instances of Manager
can also have the features salary and colleague by inheritance. We refer to [18,
Chap. 3] for more details.

The example also illustrates the perhaps most distinguishing feature of Con-
ceptBase which will be elaborated in more detail in the next subsection: an in
principle infinite hierarchy of instantiation relationships allows ConceptBase as a
repository system of design knowledge to manage a complete hierarchy of exam-
ple objects/scenarios, their classes, their meta classes, their meta meta classes,
etc. in a uniform framework governed by a well-defined syntax of a deductive
database.

Of course, such a uniform framework is only useful if it can be efficiently
processed. This was achieved by the important result in Manfred Jeusfeld’s the-
sis [17] that the collection of Telos axioms enforces a deductive database which
can be mapped to Datalog with dynamically stratified negation, and thus pro-
cessed with high efficiency by any good Datalog engine. Indeed, while the early
ConceptBase versions were implemented on top of Prolog systems linked to data
stores, recent versions since 2002 rely on dedicated Datalog engines, thus lead-
ing to very competitive performance and to by now commercial-level stability
of the whole system with large data sets. For readers interested in deductive
databases, it should be pointed out that achieving the dynamic stratification
was by no means easy given the fact that we have essentially only one single
stored relation (of Propositions) in ConceptBase. One of the key solution ideas
was to replace the generic in relationship for instantiation by specialized in.C
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relationships to class C using partial evaluation—the same trick we shall use in
Sect. 2.2 below for handling meta formulas efficiently.

In two further doctoral theses, supported by several master theses (too many
to be mentioned here in detail), important practice-oriented extensions of the
basic syntax and semantics of the language were achieved. Hans Nissen demon-
strated that it is possible with just a few additional axioms and limited imple-
mentation effort, to add a module concept to ConceptBase. It allows, among
other things, the team development and delayed consistency checking of large
complex models [28]. With the concept of Query Classes, Martin Staudt invented
a very flexible view mechanism which—like in SQL or (long after Concept-
Base) XQuery—ensures closure in deductive repositories by making the results
of queries ConceptBase objects; implementation of these objects nevertheless can
adapt and extend all the ideas for efficient deductive query optimization, view
maintenance, and integrity checking from the literature [34,35]. An interesting
application was our idea of externally materialized views in which a query class
is materialized outside control of the system itself but incrementally informed
about necessary changes to the view. Such algorithms could, e.g., be used to
maintain materialized views on mobile devices with uncertain linkage to their
data sources. We shall give examples of query classes below.

2.2 Meta-formulas

In this subsection, we elaborate more how we accomplished the most distin-
guishing feature of ConceptBase—its handling of multiple instantiation levels
as a pre-requisite for many model management applications in heterogeneous
systems.

A deductive rule or integrity constraint typically ranges over exactly one ab-
straction level, i.e. it is defined at a certain level (e.g. the class level) and the
variables range over objects at the next lower level (e.g. instance level). For ex-
ample, a class Employee can have an attribute salary and a constraint that
demands that the salary of an employee must be smaller than the salary of
the Manager of his department. Another example is an integrity constraint that
demands that instance of EntityType must have at least one attribute. Here,
EntityType is a meta class and its instances are classes.

Meta-level formulas are formulas that range over objects from more than
one abstraction level. For example, the key constraint in the relational data
model is a formula expressed at the meta class level (the concept Relation is a
meta class) but is evaluated against the database instance (instance level). The
class level (database schema) is referred to by variables. Meta-level formulas
are particularly useful for meta modeling, i.e. the specification of constructs of
modeling languages.

As an illustrative example, consider a very simple process language, in which
tasks have successor tasks. A task with more than one successor task is a ‘pred-
icate task’ (condition). A task without successor is an end statement. A task
that is not the successor of another task is a start statement. All other tasks are
procedural tasks. Besides, tasks are executed by agents. We demand that there
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is a unique start statement and a unique end statement. We are interested in
detecting loops. Moreover, we want to check whether there are agents who are
executing two tasks t1 and t2, where t2 indirectly follows t1 but there is at least
one task in between that is executed by another agent (execution split).

The structural part of this simple process language is defined in the Telos
frame syntax as follows:

Task with

attribute

successor: Task

end

Agent with

attribute

executes: Task

end

To deal with the integrity constraints and the analysis queries, we need to be
able to follow the successor link transitively. Since transitivity is frequently used,
we specify it as a general construct with a meta-level formula:

Proposition in Class with

attribute

transitive: Proposition

rule

trans_R: $ forall x,y,z,R/VAR

AC/Proposition!transitive C/Proposition

P(AC,C,R,C) and (x in C) and (y in C)

and (z in C) and

A(x,R,y) and A(y,R,z) ==> A(x,R,z) $

end

Note that the relation R is a variable in the formula. It is the label of any
attribute AC that is required to be transitive. In our class definition of Task, we
now simply make the successor attribute transitive via

Task with

attribute,transitive

successor: Task

end

Some subclasses of Task do not require transitivity, e.g.

StartStatement in QueryClass isA Task with

constraint

c1: $ not exists link/Task!successor To(link,this) $

end

PredicateTask in QueryClass isA Task with

constraint

c1: $ exists s1,s2/Task A\_e(this,successor,s1) and

A_e(this,successor,s2) and (s1 {\= s2) $

end
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In a similar way, we can define end statements and join statements (more than
one direct predecessor). The predicate A e(x,successor,y) operates on explicit
successor facts, whereas A(x,successor,y) also operates on facts derived via
the transitivity rule

LoopTask in GenericQueryClass isA Task with

parameter

rep: Task

constraint

c: $ A(this,successor, rep) and

A(rep,successor,this) and

(exists s/Task A_e(rep,successor,s) and

A(s,successor,rep)) $

end

Hence, a task like this is a loop task for the loop represented by ‘rep’ if rep can
be transitively reached from ‘this’ and rep can be reached from itself via at least
one intermediate task s.

The execution split query is also exploiting the transitivity:

AgentWithSplitResponsibility in QueryClass isA Agent

with

constraint

c1: $ exists t1,t2,t/Task A(this,executes,t1) and

A(this,executes,t2) and A(t1,successor,t) and

A(t,successor,t2) and not A(this,executes,t) $

end

Figure 2 shows a graphical representation of the analysis of an example workflow
defined by the query classes above. The queries are displayed as ovals. The
answer to a query is the set of instances that fulfill the membership constraint
of the query class. This derived instantiation is denoted by dotted links. Thus,
InsuranceAgent is a derived instance of AgentWithSplit-Responsibility. A
loop is detected as well featuring four loop tasks. The loop tasks checkPolicy
and proposePayment are additionally classified as predicate tasks.

Note that the above query class definitions are sufficient to provide this func-
tionality. Just by storing them in ConceptBase you get the desired analysis
capability.

Meta-formulas are made for re-use. For example, we can define the concept
of an organizational unit

OrgUnit with

attribute, transitive, asymmetric

subunit: OrgUnit

end

where asymmetry is defined as follows:
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Fig. 2. Graphical analysis of a workflow model

Proposition in Class with

attribute

asymmetric: Proposition

constraint

asym_IC: $ forall AC/Proposition!asymmetric

C/Proposition x,y,R/VAR

P(AC,C,R,C) and (x in C) and (y in C) and

A(x,R,y) ==> not A(y,R,x) $

end

ConceptBase comes with a library of pre-defined meta formulas (multivalued
attributes, transitivity, symmetry, etc.) that can be extended and modified, as
meta formulas are objects in ConceptBase that can be inserted to and deleted
at any time. Other researchers have used this to investigate proposals for new
basic abstraction mechanisms in information systems engineering such as mate-
rialization [4].
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2.3 Active Rules

Active rules (also called event-condition-action or ECA rules) are triggered by
an event (e.g. an update), check a condition, and then execute the action part for
all variable instantiations of the condition part. They can be used for multiple
purposes, e.g. to set initial attribute values whenever an object is created for
the first time, or to call an external program upon certain database updates.
ConceptBase has a full implementation of active rules. We demonstrate here that
it allows to define the execution semantics of Petri nets. Petri nets have places
and transitions connected by directed links. Places have a positive number of
tokens. A transition is enabled if all input places have at least one token. Firing
a transition means to remove tokens from the input places of a transition and to
add them to all output places of the transition. The structural part of the Petri
net language is expressed in ConceptBase as follows:

Place with

attribute

sendsToken: Transition

single

tokenFill: Integer

end

Transition with

attribute

producesToken : Place

end

The tokenFill attribute is used to define the state of the Petri net. For conve-
nience, we define a function to return the token number of a given place. The
function is then used to define the concept of an enabled transition

TokenNr in Function isA Integer with

parameter

place: Place

constraint

c1: $ (place tokenFill this) $

end

EnabledTransition in QueryClass isA Transition with

constraint

c1: $ forall pl/Place (pl sendsToken this)

==> (TokenNr(pl) \texttt{>} 0) $

end

A single ECA rule is sufficient to model the execution semantics of Petri nets. We
omit here the obvious definitions of auxiliary concepts such as Connected-Place
and NetEffectOfTransition:

ECArule UpdateConnectedPlaces with

mode m: Deferred

ecarule
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er: $fire/FireTransition tr/Transition pl/Place

n,n1/Integer

ON Tell (fire transition tr)

IF (tr in EnabledTransition) and

(pl in ConnectedPlace[tr]) and

(n1 = TokenFill(pl)+NetEffectOfTransition(pl,tr))

DO Retell (pl tokenFill n1)$

End

Figure 3 shows a Petri net visualized in the ConceptBase graph editor. The
graph editor has been configured to display enabled transitions with a green
color. Places with a token are visualized by circles with a corresponding number
of black dots.

Fig. 3. Graphical display of a Petri net with ConceptBase

2.4 Function Definitions

The Petri net example illustrates the definition of a simple function TokenNr.
Functions in ConceptBase are queries that return at most one result per input.
As ConceptBase fully supports recursive Datalog, we can reuse this capability
to support the recursive definition of certain simple functions. For example, the
Fibonacci numbers can be computed by



106 M. Jarke et al.

fib in Function isA Integer with

required,parameter

n: Integer

constraint

cfib: $ (n=0) and (this=0) or

(n=1) and (this=1) or

(n>1) and (this=fib(n-1)+fib(n-2)) $

end

The definition employs double recursion. A naive evaluation would require expo-
nential time to compute the result. As the second call can reuse the result of the
first call, an optimized algorithm requires only linear time. Due to the bottom-
up evaluation strategy of Datalog, ConceptBase requires only linear time, i.e.
realizes the optimal algorithm with its Datalog engine.

A second example is the computation of the length of the shortest path be-
tween two nodes in a graph. This function is useful for a whole family of model
metrics. In ConceptBase, this can be defined by a combination of a function and
a query definition that call each other recursively:

sp in Function isA Integer with

parameter x: Node; y: Node

constraint

csp: $ (x=y) and (this=0) or

(x nexttrans y) and (x <> y) and

(this = MIN(spSet[x,y])+1) $

End

spSet in GenericQueryClass isA Integer with

parameter x: Node; y: Node

constraint

csps: $ exists x1/Node (x next x1) and

(this=sp(x1,y)) $

End

So, the length of the shortest path between x,y is 0 iff x=y. Otherwise, it is the
minimum of the length of all shortest path starting from a successor of x plus 1.
The function sp can be used to define the concept of a node being on a shortest
path between two given nodes. In Figure 4, nodes on a shortest path (except the
start and end node) are displayed in yellow.

3 Application Experiences and Impact

ConceptBase has been used in a wide variety of application domains where meta
modeling and metadata repository management in heterogeneous environments
play a role. In most cases, individuals and organizations used ConceptBase to
investigate or teach certain concepts, or to prototype ideas from which then code
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Fig. 4. Graphical representation of nodes on a shortest path

was derived—in a few cases even automatically generated—for commercial sys-
tems. Below, we summarize experiences in three broad application areas, namely
IS engineering environments, requirements analysis, and the more recent mul-
timedia community management. Detailed descriptions of several applications
can be found in [18].

3.1 Repository Management of Heterogeneous Engineering
Environments

The original motivation for the development of ConceptBase was the integrated
management of requirements [8], Taxis database design specifications [25], and
database programs in the European DAIDA project [15]. In a precursor of
today’s model-driven approaches, semi-automatic tools for the mapping from
requirements to designs, and for the code generation from design specs were
developed. An important goal was to make this process incremental such that
small requirements changes would not lead to a complete repetition of the whole
process. This required a meta meta model in which the design objects in the
different formalisms, the human design decisions taken in the semi-automatic
process, and the tool applications for automated parts of the process could be
documented in a homogeneous manner. This meta meta model was defined and
tested in early versions of ConceptBase. In an operational mode, this meta meta
model then served as the basis for a query facility by which design tools could
store retrieve repository objects under this schema, and by which implications
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of design changes could be roughly analysed. Constraints were used to prevent
tools from inserting inconsistent or incomplete design objects, or to warn against
non process-conformant decisions.

Especially the issue of traceability among design decisions spawned a major
research initiative in this field which we conducted jointly with researchers in
New York and later Monterey and Atlanta, in what was perhaps the worldwide
first Internet-based knowledge base management system operating across the At-
lantic. In large-scale empirical studies in the US, reference models for different
degrees of maturity in traceability were developed using ConceptBase [33], and
served as blueprints for the models underlying market-leading traceability tools
by Anderson Consulting (now Accenture) and Texas Instrument. Other groups
e.g. at the TU Munich used ConceptBase to model the structures of commer-
cial software development environments such as HP’s FUSION environment. In
our cooperations with engineering groups at RWTH Aachen University, similar
repository meta meta models were developed for engineering environments in
industrial quality management and in chemical engineering design.

In the European DWQ project on Foundations of Data Warehouse Quality,
ConceptBase was employed as an active metadata repository linking models of
sources, integrators, data warehouses, and client data perspectives. The repos-
itory was used as a semi-shallow documentation mechanism for the inputs and
results of description logic reasoners [23,14], and as a basis for generating code
from the metamodel relationships using both local-as-view and global-as-view
algorithms [9,22,32].

Since 2001, this early work also fed into research on model management
conducted at Microsoft Research [1,2] and influenced our own recent projects
on generic metamodels for model management in heterogeneous environments
[21,22]. Such a more active role of the metadata repository was pioneered in a
project for a large European software vendor in the mid-1990s where we were
able to show that, using a notation-oriented meta meta model and related meta-
formulas, the reverse engineering of complex relational databases into entity-
relationship models, could be automatically supported to a large percentage
with surprisingly little effort [19]. The same turned out to be true for the reverse
code analysis of a significant part of one of the world’s largest switching systems,
Ericsson’s AXE system.

3.2 Multi-perspective Requirements Engineering

Requirements elicitation and management (RE) is well known to be one of the
most important and difficult tasks in information systems engineering. An early
external example of ConceptBase usage in this field was a requirements analysis
tool for Telecommunication Services (RATS) developed as a prototype at British
Telecom [5]. Their meta model was quite elaborate, including aspects such as
non-functional quality goals, use cases, and multiple domain models, all coming
along with version histories. ConceptBase rules and constraints were used to give
some guidance to the development process.
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In our own work, we pursued a slightly different line of work. Practice ex-
periences showed that one of the best ways to elicit requirements in complex
systems is their capture from many different perspectives—different notations
as well as different user task perspectives. Capture is interleaved with incon-
sistency analyses among these perspectives to spawn debate, thus clarifying
mutual misunderstandings and bringing to light hidden assumptions and re-
quirements. This approach which became popular as Viewpoint Analysis in the
late 1990’s [6,30], is of course a perfect application example for ConceptBase.
Together with the German software and consulting firm USU, we developed a
process analysis meta meta model focusing on task interrelationships and me-
dia breaks, which was applied successfully in numerous business and software
requirements analyses [29]. This application was also the motivation for adding
modules to ConceptBase [28].

In the last years, multi-perspective modeling has been extended to the anal-
ysis of inter-organizational networks and even of Internet communities, with
particular emphasis on rich models of trust evolution in such networks [7].

Fig. 5. Modeling perspectives on multimedia community metadata management

3.3 Multimedia Information Engineering

Since the late 1990’s, the KBS Hyperbook project at TU Hannover [17, Chap. 5],
pioneered the idea to use the metadata management facilities of ConceptBase
for the structuring of eLearning environments. These experiments also formed a
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starting point for research in the well-known peer-to-peer learning environment
Edutella [27].

In interdisciplinary cooperation with various kinds of media scientists, we
have extended such approaches to various approaches to the analysis and sup-
port of multimedia communities of practice on the Internet in numerous fields
of education and research, ranging from Judaic studies to movie sciences to gen-
eral contributions to cultural reconstruction in former war areas, to multimedia
metadata standards such as MPEG-7/21. Goal is supporting the interaction of
communities across different types of media and under different negotiated co-
operation regimes; social network analyses are augmented by aspects of media
usage and by requirements engineering strategies. Figure 5 illustrates the number
of different perspectives to be considered in such environments [3]. The closeness
of many ConceptBase features to recent XML and RDF extensions keeps this
work rather directly relevant even for people who are not using the system itself.

4 Summary and Outlook

With its distinguishing feature of powerful multi-level metamodel handling un-
der the well understood and efficiently implemented Datalog semantics, Con-
ceptBase has successfully preserved a niche from which some impact could be
achieved in many application domains. We feel that the potential of meta-formula
management for multi-language, multi-domain or multi-perspective engineer-
ing has still not yet been fully utilized. Ongoing work at Tilburg University
shows that traceability can be defined as an extremely versatile ConceptBase
attribute category which can then be used to automatically generate inconsis-
tency management analyses across notations, ontologies, or tasks, thus automati-
cally generating a surprising number of traceability tasks in engineering projects.
ConceptBase is free software since summer 2009 and can be downloaded from
http://conceptbase.sourceforge.net/.
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Abstract. Most object databases offer little or no support for event-
based programming over and above what is provided in the programming
language. Consequently, functionality offered by traditional
database triggers and event-condition-action (ECA) rules has to be coded
in each application. We believe that a notion of triggers should be offered
by object databases to facilitate application development and a clear sep-
aration of concerns. We present a general and flexible event model that
unifies concepts from programming languages and database triggers. We
describe an implementation of the model and how it can support the
requirements of a rich variety of applications.

1 Introduction

Event-based programming is gaining in popularity and is a paradigm now used in
a wide range of applications. The underlying concept of automatically invoking
actions in response to pre-defined events is well-known in traditional databases
under the term triggers. Triggers were first introduced into databases as a means
of maintaining database consistency. Later, they were generalised into event-
condition-action (ECA) rules capable of representing business logic and widely
promoted in the active database community.

Most object databases offer little or no support for event-based programming
over and above what is provided in the programming language. Consequently,
functionality offered by database triggers and ECA rules has to be coded in
each application, resulting in a duplication of programmer effort. Further, the
event model offered by most object-oriented programming languages is more
restrictive than that typically offered by database triggers and ECA rules. We
therefore believe that object databases should offer a concept of triggers in order
to facilitate the application development process and support a clean separation
of concerns.

In this paper, we present a general and flexible event model for object data-
bases that unifies concepts from programming languages and database triggers.
The model is capable of supporting a rich variety of application requirements
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common in emerging domains such as sensor databases as well as more tradi-
tional applications. Further, it also supports distributed triggers where an event
in one database may trigger an action in another database.

Section 2 provides the background in terms of database triggers, ECA rules
and support for event-based programming in object databases. We then present
the core of our unified event model in Sect. 3 and a detailed discussion of event
scopes in Sect. 4. The architecture of our event system and details of imple-
mentation are given in Sects. 5 and 6, respectively. To illustrate the use of our
model, a small example application is presented in Sect. 7. Concluding remarks
are given in Section 8.

2 Background

Database triggers were first developed as a mechanism to automate basic
database management tasks such as integrity constraint enforcement, view main-
tenance and authorisation control. Once the potential of a mechanism to auto-
matically invoke actions in response to pre-defined events was realised, triggers
were generalised into the concept of ECA rules that could be used to represent
business logic within the database and the field of active databases emerged. Ac-
tive rules have also been used as the basis for version management and workflow
control systems. Recent research in the management of data streams has seen a
renewed interest in database technologies for event processing.

Active databases were an active area of research in the late 1980s and 1990s
with approaches based on both relational [1,2,3,4,5,6,7,8] and object-oriented
[9,10,11,12,13,14,15] database management systems. These approaches are com-
pared and classified in [16]. While most of these systems provide a notion of
ECA rules in different variations, the issue of rule component reuse has not been
addressed in detail. In addition, publish-subscribe mechanisms as known from
programming languages are not supported.

A number of architectures and frameworks for managing applications in dis-
tributed settings incorporate a notion of events. One of the earliest examples is
CORBA where the event service allows for the decoupling of the communication
between distributed objects. An example of more recent work is WebLogic Event
Server [17] which manages event-driven, distributed applications with applica-
tions interacting by exchanging events. Applications are developed in Java com-
bined with their own event processing language (EPL) which is an extension to
SQL for querying streams of events. EPL rules can be dynamically changed and
adapted at runtime. Applications are based on and composed of so-called event
processing networks, a model based on Petri nets which represent an event flow
graph including the event streams, producers and consumers. No details about
how events are processed and the possible reuse of rules are given.

Other approaches introduce an event processing language for application de-
velopment. For example, EventScript [18] is a language that processes events
and the corresponding actions based on regular expressions. The language can
be executed in a Java-based runtime and it is claimed that it is easy to integrate
it with other runtime environments.
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In [19], a rich event model is presented that incorporates concepts such as
typing, inheritance and exheritance, dynamic type inferencing as well as exten-
sibility and addressability. Event objects can be accessed using different methods,
such as an event access expression, or using an event API in Java or C# or a
tailored event expression language.

Support for event-based programming in object databases tends to be limited.
For example, db4o offers Java developers a concept similar to that of triggers
offered by most RDBMS. In order to introduce active behaviour, the classes of
persistent objects must implement a so-called ObjectCallBack interface [20].
This interface declares a set of callback methods that correspond to the system-
defined trigger hooks provided by most RDBMS, while their body represents
the action to be taken. Actions can be executed upon one of the following:
before/after object update, before/after object creation and deletion, and be-
fore/after object activation and deactivation. The action to be taken is imple-
mented using Java and, since the interface is implemented by the class itself, the
developer has access to the internals of that class. However, having to implement
the desired set of methods of the interface for each and every class that should
exhibit active behaviour can involve a lot of work. In addition, incorporating
triggers and thus event processing into the persistent class itself inhibits any
kind of reuse. Furthermore, event processing is not orthogonal to the persistent
data but part of the domain class definition in the application logic. Note that
the scope of db4o callback methods is always the class, i.e. the extent of objects
of a given class that implements specific callback methods.

A more comprehensive approach is taken by the Java Versant API (JVI) for
the Versant Object Database where events are propagated from the database to
registered clients based on the JavaBeans event model. Four kinds of events—
class, object, transaction demarcation and user-defined events—are supported
by Versant and for each type of event a corresponding listener interface exists.
The database and the clients communicate through so-called event channels
that are persistent across client applications and serve to limit the scope of the
monitored events. Class-based channels only propagate events of a certain class
of objects, while object-based channels monitor a set of objects. Finally, query-
based channels can be used to receive events related to the objects contained
in the result set of the query. As a consequence, Versant overcomes some of the
limitations regarding the scope of events present in db4o as mentioned above.
Also, by separating the kind of events from the scope of monitored events, their
approach is capable of supporting a higher degree of flexibility and reuse. As in
the approach taken by db4o, event handlers are defined by the application logic
and executed on the client side. In contrast to traditional database triggers that
are part of the database logic and executed on the server side, this approach can
lead to several problems. Events are often used to ensure the consistency of the
database, i.e. to execute maintenance code when objects are created or deleted.
If the event handling logic is defined by the client, different clients can produce
different and even inconsistent database states. Another problem stems from
the fact that if events are triggered on the server and handled on the client this
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results in an increased communication overhead that can have adverse effects on
the performance of the system.

As another option, Java application developers can make use of the Observer-
Observable pattern [21] offered by the Java API. The developer can create a class
that extends the Observable class as well as a set of classes that implement the
Observer interface. Objects of classes that implement the Observer interface
can register themselves to observe objects of classes that extend Observable.
However, this pattern and its Java implementation is not intended for per-
sistent classes. As already mentioned, a class to be observed has to extend
the Java class Observable and thus will maintain a list of registered observer
objects. In the setting of persistent objects, the instances of the observable
class are most likely to be made persistent. Since the Observable class is pro-
vided by the Java API, the application developer cannot declare that list of
observers as transient and consequently has to store the observers implicitly
with the object itself. Obviously, storing the list of observers along with an
object can cause several problems upon retrieval, such as observers which no
longer exist or double instantiation of the same observer object. In addition,
the event handling is again not orthogonal to the actual persistent classes,
since these classes have to extend the Observable class and manage the list of
observers.

We believe that object databases need a well-defined event model that of-
fers the generality and flexibility supported in active databases and modern
event processing systems. By introducing the concept of event types and event
handlers, event processing functionality can be made orthogonal to persistence,
thereby ensuring that the goal of transparent persistence is not violated. The
model should support user-defined as well as system-defined event types with
a registration service that allows one or more handlers to be associated with
the same event type, with handler selection depending on conditions of event
activation. Further, the model should support reuse of event types and event
distribution. With these goals in mind, we have designed and implemented such
a model which we describe in the remaining sections of this paper.

3 Event Model

Our approach unifies concepts known from active databases with related ideas
from object-oriented programming languages and notification systems. We in-
troduced these concepts in the context of mobile databases in previous work
[22] and now present how they can be adapted for object databases and their
application domains in general.

We base our event model on the four concepts of event triggers, event types,
event handlers and event actions shown in Fig. 1. In contrast to active databases
where the single concept of a rule or trigger encapsulates a number of concepts,
our approach separates the actors involved in event processing, namely, defining
events, firing triggers upon event detection and processing. Defining and repre-
senting these concepts as entities in their own right leads to a higher potential
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Fig. 1. Event system concepts

for reusability and provides the basis for specifying behaviour at a finer level of
granularity.

An event type defines an operation and a scope. The operation is an activity
upon which handlers should be notified. The scope denotes the source in which
the activity should be detected, such as a single object, set or class of objects.
For example, an event type PersonCreation could specify the Person class as
the scope and the creation of a Person instance as the operation. We will discuss
event scopes in detail in the next section.

An event action consists of a set of operations to be executed. Operations can
include the execution of any database operation, notification of the application
or firing of other events.

An event handler defines the entity that is registered to be notified upon the
occurrence of an event of a certain type. An event handler is associated with an
event type and action. As in active databases, the execution of the action can be
guarded by a conditional expression. If it evaluates to true, the actions specified
by the event handler are executed. To continue with our example, an event
handler could be created and associated to the event type PersonCreation and
to an action that should be executed upon that event. The action could consist
of inserting the newly created instance into a given set of persons. Finally, an
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event handler may optionally specify a life cycle that governs when the handler
can be invoked. The life cycle can be specified as a given point in time, a time
span or a certain number of executions.

As can be seen in Fig. 1, event types and event actions can be associated
to more than one event handler to allow for maximum reuse, while an event
handler is always associated with exactly one event type and one event action.
As in many notification systems, our model allows fallback actions to be defined
that will be executed if the main event action fails. These are not included in
Fig. 1 for the sake of simplicity. Note that fallback actions correspond to normal
actions.

An event trigger is invoked as a result of the occurrence of an event, i.e. the
detection of an activity within a source that matches an operation/scope com-
bination specified by an event type. In our example, a trigger would be invoked
whenever a new instance of the Person class is created. The trigger fires an event
object that contains the scope object itself as well as all additional information
needed for handling of the event. In our example, the scope object would be the
newly created Person instance.

In summary, an event handler glues together an event type and an action. If
an event of that type occurs, the trigger is invoked and fires an event object. The
event object is handled by all handlers associated to the event type that defines
the event object. Note that an event handler handles all event objects defined
by its associated event type and that an event object may in turn be handled
by a number of event handlers that are associated to that same event type.

Inspired by the concepts of observables in object-oriented programming lan-
guages, an event type describes a certain class of events and serves as a registra-
tion point for interested subscribers. Hence, an event type provides a way to ex-
plicitly specify what has been defined only implicitly in traditional databases by
predefined events. Of course, these predefined database event types also exist in
our model, but they are represented as system-defined event types and therefore
provide full access to their metadata. As a result, the scope and its operations
can be changed at runtime. In addition, this separation and publish-subscribe
way of registering for event types also favours the handling of distributed events.
Handlers can not only register to event types residing in their local database,
but also to remote event types and, thus, react locally on remote events.

In contrast to database systems where events are exclusively triggered by the
system, programming languages allow events to be defined and fired by user code.
However, most programming languages still combine the definition of an event
type and an event trigger in a single class that defines itself to be observable
and then fires events whenever its internal state changes. Hence, a client of
the class has no possibility to fire the events defined by the class. While this
coupling might be appropriate sometimes for reasons of security, we have chosen
to separate types and triggers for the sake of generality. Due to this separation, an
event type also needs to specify a set of constraints that capture who is granted
permission to fire events of that type and who can subscribe handlers for it. If the
database object that fires the event has been granted access by the corresponding
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event type, the subscribed handlers are invoked and the specified parameters are
passed along. By representing event triggers as a discrete concept, events can be
fired by external processes such as the client application. Further, our system
supports the definition of so-called multiple triggers. Instead of firing only once,
a multiple trigger remains active in the system and repeatedly dispatches events
at previously defined points in time.

4 Event Scopes

In Sect. 3, we introduced the notions of scope and operation as attributes of an
event type definition. In this section, we take a closer look at these two concepts,
introducing a classification of scopes and operations and showing how they can
be combined in order to obtain a general and flexible means of defining event
types and supporting reuse.

A scope can be a single object instance, a group of instances, a class of in-
stances, a collection, a transaction or global. Thus, the granularity of an event
type can be chosen according to specific application needs. A handler can be no-
tified about an operation executed on a single instance, on any instance within a
group of instances or an instance of a particular class. Depending on the scope,
a set of operations can be chosen upon which the event is raised. The scopes and
their corresponding operations are summarised in Tab. 1.

Table 1. Event scopes and triggering operations

Scope Operations

Instance Retrieve, update, delete
Set of instances Retrieve, update, delete
Class extent Create, retrieve, update, delete
Class Schema evolution
Collection Insert, remove object
Transaction Begin, abort, commit
Global Clock, external

The operations on scopes of single instances, groups of instances and instance
classes are operations on an instance itself, such as the retrieval, update and
deletion of an instance. Operations on the class extent additionally include the
creation of new instances. Note that the scope of a class refers to the class as a
structure and the corresponding operations include schema evolution activities
such as altering a class definition and subclassing. The scope of a collection
differs from a group of instances in that we refer to the concept of collection
in the former and the actual member objects in the latter. This distinction
becomes important since, for every scope, we have a different set of operations
which can cause a trigger to be fired. While the scope of a collection is associated
with operations such as insertion and removal of members, operations associated
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with the scope of a group of instances include retrieval, update and deletion of
the instances. Operations on the scope of a transaction include begin, abort and
commit and the global scope is associated with clock operations and any external
operation such as user-defined operations.

A single instance is always a member of one or multiple class extents and
can be a member of an arbitrary number of sets of instances. Similarly, a set
of instances is always a subset of a class extent. Therefore, an activity that is
detected on a single instance is also detected within the scope of the instance’s
class extent and any set to which the instance belongs. As a consequence, the
set of scopes S is a partially ordered set where the partial order ≤ is given
by { instance ≤ set of instances, instance ≤ class extent, set of instances ≤
class extent, . . . }.

Having the scope and operation stored in two separate attributes of an event
type allows for maximum reuse. For example, an attribute write operation can
be reused in the cases that the scope is a single instance, a set of instances or a
class extent. However, a complete separation is not possible as some operations
cannot be used with particular scopes and other operations are specific to a
single scope. An attribute write operation cannot be used in combination with
a collection scope while an insert operation can only be used with a collection
scope.

We now further specify the operations outlined in Tab. 1 and show how this
naturally leads to reusability. We introduce a minimal classification which con-
sists of instance, extent, class, collection, transaction and global operations. For
example, an instance operation is an attribute read or write, a method invoca-
tion, or the storage, retrieval or deletion of an instance. A collection operation
is the insertion or removal of a member or access to a member. Table 2 sum-
marises the main operations, their possible concrete operations and the scopes
with which they can legally be associated in an event type.

An instance operation denotes all possible operations on a single instance
such as reading or writing an attribute value, a method execution or its storage,
retrieval and deletion. Together with the possible scopes which can be a single
instance, a set of instances or a class extent, this operation spans a wide range

Table 2. Operatios

Operation Classes Operations Legal Scopes

Instance operations Attribute read/write, Instance, set of instances,
method execution, class extent
store, retrieve, delete

Class Extent operations Create, store, retrieve, Class Extent
delete

Schema operations Changes to attribute or Class
method declarations

Collection operations Insert, access, remove Collection
Transaction operations Begin, abort, commit Transaction
Global operations Clock, external −
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of event types for which handlers can be registered. An extent operation can
be either the creation of a new instance or the storage, retrieval or deletion
of an instance of a particular class. Therefore, these operations may only be
associated with a class scope. A schema operation includes changes made to class
definitions, i.e. the addition, removal or update of an attribute declaration as
well as changes to method signatures. Such operations must always be associated
with a particular class. A collection operation comprises all possible operations
on a collection as defined by common collection interfaces and is associated with
a collection object. A transaction activity may be a begin, abort or commit
operation and is associated with a transaction scope. Finally, global operations
such as a clock or an external application raising an event are not associated
with any particular scope object.

To represent an event type with which handlers can register to be notified
when an attribute value of a particular instance has been changed, an event
type with its scope attribute pointing to the instance of interest is associated
with the instance operation attribute write. Alternatively, if a handler is to
be notified upon the change of an attribute of any instance of a particular class
extent, an event type with the scope attribute pointing to the particular class
is associated with the same instance operation. In the case of an event type
describing the insertion of members into a collection, the scope attribute is set
to the collection of interest and the operation attribute to the insert collection
operation.

5 Architecture

Figure 2 gives an overview of the system architecture. The event system is part
of the DBMS and consists of several components. A monitoring service monitors
the data in the database 1©. On any operation defined by an event type, the
monitoring service fires a trigger and thus initiates the event processing 2©. The
event processor 4© receives the trigger containing all the information required as
described in Sect. 3 and retrieves all registered handlers for a given event type
from the handler registry 3©. For each of these retrieved handlers, their condition
is first evaluated. If the condition is valid, the handler’s action is executed. For
this purpose, the corresponding action is retrieved from the action library. If the
execution of the action fails, the fallback action is executed, which is in turn
retrieved from the action.

As can be seen in Fig. 2, our approach aims for maximum reusability by
providing an event type and an action library from which event types and actions
can be reused when registering a new handler. In addition, new event types can
be composed using existing event types. The system allows for runtime adaptivity
in that new event types, new actions and new event handlers can be built as well
as existing ones being manipulated and deleted.

If a new handler is to be registered, the following steps have to be taken. First,
an event type has to be created, composed or selected from the event library.
In addition, an action as well as a fallback action has either to be specified or
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Fig. 2. Architecture

an existing one can be selected and reused from the action library. Finally, an
optional condition can be defined to further constrain the action’s execution.

Note that when creating and registering a handler, one can decide between
creating a synchronous or asynchronous handler. If a trigger is fired and a syn-
chronous handler is registered for that event, the handler is processed within the
given transaction. If the base transaction is aborted, the operations performed
as a result of the event handler executions are undone as well. An asynchronous
handler is in general less time-critical. Therefore asynchronous handlers are pro-
cessed when the transaction that created the trigger is being committed, i.e. in
a separate transaction.

In addition, our approach also allows the distribution of events. Remote
handlers can be registered for remote events. This implies that, when creat-
ing a handler, one can choose between creating a local or remote handler.
Consider the case in Fig. 2 where we have three databases and one database
would like to subscribe to events that happen in another database. For exam-
ple, assume DBMS 2 should react to an event that happens in DBMS 1. To
do so, a so-called remote handler that listens to events of a certain type re-
siding in DBMS 1 has to be created and registered in DBMS 2. In contrast
to a local handler, this remote handler is associated with an event type de-
fined in DBMS 1 and an action defined in DBMS 2. In order to query the
network for external event types, each DBMS exposes an external event man-
ager, that, among other things, returns their internal event type libraries upon
request.

In our example, a remote handler is created in DBMS 2 and registered in
the handler registry of DBMS 2. The creation of a remote handler causes an
additional handler to be created implicitly and registered in DBMS 1 where the
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event type of interest resides 5©. This handler is associated with the requested
event type and a special action that invokes the remote notification.

The notification process in that case works as follows. After a trigger for the
subscribed event type has been fired in DBMS 1, the DBMS 1 event processor
processes all handlers registered for that type of event 6© as discussed before,
including the implicitly created handler. Note that the action of the handler in
DBMS 1 corresponds to the publishing process, basically forwarding the trigger,
including the scope object and other defined parameters, to DBMS 2. This is
carried out by the external event managers of the two sites. In our case, the
action of the handler in DBMS 1 forwards the trigger to the external event
manager of DBMS 2 7©.

In DBMS 2, the external event manager acts as an external application and
invokes a trigger to be fired by the monitoring service 8©. That trigger is concep-
tually equivalent to the trigger fired in DBMS 1 and contains the scope object
from DBMS 1 along with all other defined parameters. Consequently, all the
handlers for that event type are processed 9©, which includes the initially reg-
istered remote handler. As a result, DBMS 2 executes an action invoked by an
activity in DBMS 1.

6 Implementation

The event manager serves as the main interface to the event system for an ap-
plication developer. Figure 3 shows UML diagrams of the three components
forming the manager interface. The event manager consists of two interfaces,
InternalEventManager and ExternalEventManager. The internal event man-
ager provides the methods to create, update and delete instances of the concepts
introduced in Sect. 3, namely event types, handlers and actions. Note that trig-
gers cannot be created explicitly. However, the Monitor interface provides a
fire(EventType, Object) method, which causes a trigger to be fired. Trigger
management is thus encapsulated by the Monitor. As a result, developers do
not have to first create trigger objects and then fire them but only need to use
one method call.

As part of the internal event management, the retrieval of handlers to be
notified about the occurrence of a particular type of event plays an important
role in the event processing. Once an event object has been fired — triggered
by a particular operation within a given scope — all event types having this
operation and scope must first be selected. Note that multiple event types may
be selected as the scopes may directly match or include each other by means
of their partial order. Second, when the event types have been selected, the
handlers registered for these are retrieved and notified. This two-stage process is
similar to the condition-action processing in active databases and [16] presents
an overview of implementations of its subroutines.

An external event manager serves as an interface to the publish/subscribe
middleware introduced in Sect. 5. It therefore allows for a list of existing event
types to be retrieved, so that handlers residing on other databases can register
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createType(Scope, Activity, P[], UHandle[], UTrigger[]): EventType
createAction(Action): Action
createHandler(EventType, Action, Fallback, Condition, Lifecycle): Handler
[update type, action, handler]
[delete type, action, handler]

InternalEventManager

fire(EventType, Source, Operation, P[], User,TL)

Monitor

getEventTypes(): EventType[]
receiveRemoteTrigger(Trigger)

ExternalEventManager

Fig. 3. API of the event manager

for them. It also declares a method receiveRemoteTriggerwhich is used by the
middleware to notify the database about an event occurring in another database.

Having presented the event system API, we now describe the implementation
of the event model. Figure 4 shows simplified UML diagrams of the main classes
implementing the four core concepts of the event model, namely event type,
handler, trigger and action.

execute(Object[])

<<interface>>
Action

Scope
Class[]
User[][]

EventType

Condition
Lifecycle

Handler

Source
Operation
Object[]
User
Multiplicity

Trigger

Fig. 4. Metamodel of the event system

An event type has attributes defining the scope, the list of parameters passed
on to the handler and the two lists of users allowed to fire and handle events,
respectively. The declaration of the parameters is simply implemented as a list of
class objects denoting the type of each parameter. The scope attribute defines the
source of an event as defined in Tab. 1. For each scope, there is a corresponding
subtype of event type shown in Fig. 5. These subtypes declare an additional
attribute specifying the operation related to their scope. Each of the six kinds
of operations introduced in Tab. 2 is implemented as an enumeration where the
members represent the concrete operation.

A handler is composed of a condition object and a lifecycle object. The condi-
tion object is an implementation of an interface defining an evaluation method.
This method is declared to return a Boolean value which is true if the action
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Fig. 5. Event type specialisations according to the scope

is to be executed and false otherwise. Note that for the implementation of this
method, the entire system may be accessed as well as the parameters passed
to the handler upon notification. The lifecycle object encapsulates the lifecy-
cle definition assigned to the handler. Since a lifecycle can either be a time
span, a point in time or a number of notifications, it is modelled as a root class
Lifecycle with three subclasses TimeSpan, PointInTime and NumberOf, each
declaring their specific attributes.

When a handler is notified, the condition method is evaluated and, if it re-
turns true, the action is executed. The action object is of a class implementing
the Action interface declaring the method to be executed. A second action ob-
ject serves as a fallback method to be executed if the former method call fails.
Consequently, when application developers create a handler, they must provide
two instances of the action interface, the condition interface as well as instances
of the lifecycle class.

Trigger objects contain the occurring operation, the object on which the op-
eration has happened, a list of parameter objects passed to the handler and the
user that executed the operation. Furthermore, a multiplicity attribute specifies
whether this trigger is fired once or multiple times, and, in the latter case, with
which period and for how many times or for how long. The multiplicity definition
is realised using a class Multiplicity with an integer attribute representing the
number of times the trigger should be fired.

7 Application

In order to outline the use of the proposed event system, we show how event
types, handlers and actions are implemented for an online book store. We as-
sume a simple application domain shown in Fig. 6 consisting of persons ordering
books. A class Person represents customers who place an order. Instances of
the Order class are associated with any number of ordered items represented as
instances of the Item class. The status attribute of orders allows customers to
be notified about whether an order has been processed, paid or shipped. As a
first example, we want to configure the system to send an email to customers
whenever the status of their orders has changed. As a first step, an event type is
created.
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Fig. 6. Application domain of an online book store

EventType eventType = eventManager.createEventType(

Order.class, InstanceOperation.ATTRIBUTE_UPDATE, null, null, null);

The event type is defined to fire an event whenever an instance of the Order
class has changed its status attribute. Note that the first parameter passed to
the handler is always the scope object on which the event has been triggered.
Therefore, the scope is set to the class extent Order and the operation is an
instance operation ATTRIBUTE UPDATE. Since a handler processing such an event
does not need any parameters, the p[] argument is set to null. Similarly, since
we do not want to introduce any user rights, the two user lists are set to null.

Next, an action is created with an implementation performing the act of
sending an email to a user whose order has changed its status. Then the action is
registered with the system in order to be added to the action library and made
available. As a fallback action, an action object is retrieved from the library
which notifies the system administrator about a failure.

Action action = new Action(){

public void execute(Object[] params) {

Order order = (Order) params[0];

Person person = Queries.getPerson(order);

Mailer.statusChangeMail(person, order.Status);

}

};

eventManager.createAction(action);

Action fallback = eventManager.getAction(NotifySysadminAction);

Furthermore, a handler is created with the action previously defined and the con-
dition that the updated attribute must be the one named Status. The condition
is implemented as an anonymous class.

Condition condition = new Condition() {

public boolean evaluate(Object[] params) {

Field attribute = (Field) params[1];

return attriute.getName().equals("Status");

}

}

The handler’s lifecycle parameter is set to null as the handler should behave as
if having no particular lifecycle. If no lifecycle is specified, a handler executes its
action whenever an event of a certain event type has been fired.

eventManager.createHandler(eventType, action, fallback, condition, null);

As a second example, customers may subscribe to be informed about special
offers. For this purpose, a set of user instances is maintained containing those
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users to be informed. In what follows, we set the system to welcome any person
who has been newly inserted into this group.

Set<Person> subscribedCustomers = new HashSet<Person>();

EventType eventType = eventManager.createEventType(

subscribedCustomers, CollectionOperation.INSERT, null, null, null);

The scope of the event type is the collection assigned to the variable subscribed-
Customers which contains all persons subscribed to be informed. The operation
that fires the event is an insert collection operation. The action consisting of
sending an email to the newly added person is defined and registered as follows.

Action action = new Action(){

public void execute(Object[] params) {

Person member = (Person) params[1];

Mailer.welcomeSubscribed(person);

}

};

eventManager.createAction(action);

Action fallback = eventManager.getAction(NotifySysadminAction);

Finally, the handler is created and registered for the previously defined event
type.

eventManager.createHandler(eventType, action, fallback, null, null);

In order to demonstrate the use of remote handlers, we assume that the book
store has agencies located in particular countries and is handling orders from
these countries. An agency manages its own physical stock by means of an in-
ventory database. For this purpose, the domain model shown in Fig. 6 is ex-
tended with a map Map<Book, Integer> which maintains the number of books
in stock. This map is kept up-to-date by a handler registered to be notified upon
the change of an order status to shipped. The event type is defined as an attribute
update on any object of class Order.

EventType orderStatusChanged = eventManager.createEventType(

Order.class, InstanceOperation.ATTRIBUTE_UPDATE, null, null, null);

The action consists of updating the map. Given the order that has changed its
status to shipped, all books it contains are retrieved. For each of these books,
the inventory map is updated.

Action updateMap = new Action(){

public void execute(Object[] params) {

Order order = (Order) params[0];

Set<Book> books = order.getBooks();

for (Book current : books) {

// update Map<Book, Integer>

}

}

};

eventManager.createAction(action);
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The handler is set to only execute its action if the status has been changed to
shipped. For this purpose, a condition is declared as follows.

Condition isShipped = new Condition() {

public boolean evaluate(Object[] params) {

Order order = (Order) params[0];

Field attribute = (Field) params[1];

return attriute.getName().equals("Status") &&

order.getStatus().equals(Order.SHIPPED);

}

}

Having defined all required parts, the handler is created.

eventManager.createHandler(orderStatusChanged, updateMap, fallback,

isShipped, null);

Using remote handlers, a central database can be set to keep an account of
the stock of each agency. Similar to the inventory database of the agency, a
map Map<Agency, Map<Book, Integer>> is used. Whenever a new agency is
created, a remote handler is registered for the event type orderStatusChanged
defined in the database of the agency.

To do so, the method ExternalEventManager.getEventTypes() is used to
retrieve all event types in the agency database. Once the orderStatusChanged
event type is selected, the method InternalEventManager.createHandler()
is used to create the handler. In the following code we assume that within the
book shop network the connection details about the agency database are known
as host:port. Furthermore, the selection of the particular event type leverages
the fact that all event types have a name that can be used to query for them.
Note that event type names have not been discussed in the scope of this paper
due to space limitations.

ExternalEventManager agencyEventManager =

new ExternalEventManager("zurich.bookstore.com:3927");

EventType orderStatusChanged =

agencyEventManager.getEventType("OrderStatusChanged");

eventManager.createHandler(orderStatusChanged, updateMap, fallback,

isShipped, null);

Note that the action must be changed in a way that it is able to handle the
central map Map<Agency, Map<Book, Integer>> instead of the agency map
Map<Book, Integer>.

8 Conclusions

In this paper, we have presented an event model for object databases that pro-
vides support for event-based programming required by many application do-
mains. As object databases are situated in the intersection of database systems
and object-oriented programming languages, our model unifies concepts that
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have originated in either of these domains. Additionally, the proposed event
model clearly separates the concepts involved in event processing. It provides
all the event processing functionality within the database and orthogonal to the
data as well as support for event composition and distribution. In comparison to
similar proposals, our approach is therefore better suited to distributed scenarios
while at the same time offering a higher potential for code reuse.

An example of how code can be reused is the concept of the handler that allows
for indirect event notification registration. For example, a developer could regis-
ter two event handlers for the same event type, thereby reusing the event types
in order to define different actions in response to a given event. The conditions
associated with the event handlers will determine which actions are executed.
By providing event and action libraries, we offer maximum reuse and flexibility
for combining event types with actions.

A central contribution of our eventmodel is the generalisation of the well-known
concept of event scopes. The approach we have presented can be seen as an exten-
sion of the one taken by Versant discussed in Sect. 2. While their solution motivates
the scope concept as a valid approach to building a flexible event model with a high
potential for code reusability, Versant omits support for some scopes that we be-
lieve are important. Specifically, collection data structures and uniform access to
metadata are important characteristics of most object databases and, therefore,
we have included additional event scopes to deal with changes to collections as well
as to the metadata, i.e. schema evolution. As a consequence, in our definition, the
scope of an event can either be a single object, a group of objects, a collection of
object or a class of objects as well as a transaction or the global scope.

We have also presented an architecture and implementation to support our
event model in an object database, clearly detailing how the concepts of the
model are realised in the setting of the Java language. As our model is a unifica-
tion of concepts that originated in the domains of databases and software engi-
neering, our architecture can be used to handle events both on the server and the
client side. By default, events are processed within the database as they are part
of the database logic. However, our event model also supports distributed event
processing based on a publish/subscribe middleware and, therefore, events can
also be handled on the client if required. Finally, we have discussed the imple-
mentation of a simple application scenario based on the programming interface
of our unified event model.
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Abstract. Thecapability of representing spatio-temporal objects is funda-
mentalwhenanalysingandmonitoring the changes in the spatial configura-
tion of a geographical area over a period of time. An important requirement
when managing spatio-temporal objects is the support for multiple gran-
ularities. In this paper we discuss how the modelling constructs of object
data models can be extended for representing and querying multi-granular
spatio-temporal objects. In particular, we describe object-oriented formal-
izations for granularities, granules, and multi-granular values, exploring
the issues of value conversions. Furthermore, we formally define an object-
oriented multi-granular query language, and discuss dynamic multi-
granularity. Finally, we discuss open research issues.

1 Introduction

Many relevant application domains, including homeland security, environmental
protection, geological and agricultural sciences, require modelling and managing
spatial data objects and monitoring their evolution according to time. The ca-
pability of representing spatio-temporal objects with respect to both their spatial
layout and their temporal evolution, is fundamental when analysing and monitor-
ing the changes in the spatial configuration of a geographical area over a period
of time. An important requirement when managing spatio-temporal objects is
the support for multiple granularities. For example, when tracing modifications
to spatial areas, the history of the areas under observation has to be maintained
and retrieved at multiple temporal granularities (e.g., years, months, decades).
When analysing large spatial datasets, one may need to zoom-in and zoom-out
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from the dataset under analysis according to different spatial granularities (e.g.,
meters, kilometres, feet, yards).

Granularities intuitively represent the units of measure of a dataset, and may
be defined on all data dimensions (i.e., space and time for spatio-temporal data).
For each dimension, a connected set of granularities must be defined, and the dif-
ferent sets are independent. The choice of proper granularities allows the system
to store a minimal amount of data, according to the most appropriate levels of
detail. In many applications different granularities may exist, neither of which is
inherently better than the others. Therefore, a database system for such appli-
cations should support a wide range of granularities and allow the applications to
define their own specific granularities. Moreover, because the selection of attribute
granularities is based on a trade-off between application efficiency and modelling
requirements and this trade-off may change over time, the model at hand should
support the ability to dynamically set and change the spatio-temporal granularity.
For example, in a spatio-temporal database for environmental monitoring, the col-
lection of meteorological parameters like the amount of rainfall, the strength and
direction of the wind, the value of atmospheric pressure, must be collected more
frequently in the presence of exceptional events like hurricanes and storms. Fur-
thermore, such a granularity modification may involve only specific geographical
areas (e.g., those affected by the phenomenon), and is required for limited periods
of time (e.g., the time when the phenomenon occurs), therefore the modification
of the level of detail of data has to be spatio-temporally bounded.

However, even though research in the spatial and temporal data management
systems has resulted in many spatial and temporal models, these models are in
most cases extensions of the relational data model [1] and are unable to directly
represent crucial modelling features of spatio-temporal data objects. As a result,
the applications have to implement and maintain mappings between the spatio-
temporal objects of interest and low-level data and are unable to efficiently
support multiple object representations at different granularities in both space
and time. We believe that an object DBMS (ODBMS), because of its modelling
features such as complex data types and methods, is better suited for addressing
such requirements. However, even with such a model, modelling and managing
multiple granularities is not trivial and extensions are required. However, the
natural extensibility of object models makes easier developing these extensions.
The goal of this paper is to explore in details the notion of multiple granularities
for spatio-temporal objects and show how the modelling constructs of an object
data model can be extended for representing and querying these objects.

More specifically in the paper we discuss a number of issues, including:

– The notion of granularities in space and time. How do we represent them?
How do we relate granularities and maintain a granularity lattice? How do we
extend the granularity sets and, at the same time, preserve the relationships
among granularities?

– The notion of temporal, spatial, and spatio-temporal values. How do we rep-
resent multi-granular spatio-temporal values? How do we support granular-
ity conversions? How do we preserve data usability and reduce uncertainty
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on converted values? Can we combine concepts like topologically consistent
transformation, probability distributions, invertibility and quasi-invertibility
properties to reduce uncertainty?

– Navigating and querying through multi-granular data. How does multi-granu-
larity impact on object navigation and value comparison? How do we access
to multi-granular spatio-temporal object values?

– Dynamic multi-granular data. How do we refine object attributes? Are con-
ventional object specialization models adequate? How do we support object
evolution with respect to the object state and the object granularities?

In the discussion, we will refer to the ST ODMG and the ST2 ODMGe object
data models, which have been specifically defined for modelling and querying
spatio-temporal objects with multiple dynamically varying granularities [2,3,31]
and thus can illustrate solutions to some of the above challenges. Both models
have been defined as extension of the ODMG model [4], the standard de facto for
object-oriented databases; ST ODMG has been recently extended for application
to an object-relational data model [5].

The rest of the paper is organized as follows. We first discuss related work
on modelling approaches for multi-granularity. We then illustrate how multi-
granular spatio-temporal objects are represented and queried in the ST ODMG
model. In Sect. 5 we describe two different solutions for evolving multi-granular
objects, i.e., attribute redefinition and dynamic objects. Afterwards, in Sect. 6
we discuss the issues of spatio-temporal multi-granularity. Finally, we conclude
the paper illustrating future research directions.

2 Related Work

Spatio-temporal multi-granularity has been mostly investigated by separately
considering the temporal and the spatial domains. The pioneering research work
on temporal granularities is by Anderson [6]. A consensus among the different
disciplines interested in temporal granularity representation is the formalization
by Bettini et al. [7], who give a comprehensive discussion on temporal granu-
larities for databases, data mining, and temporal reasoning. Granularity issues
related to temporal databases have been investigated both for the relational
and the object-oriented data models [8,9]. The introduction of multiple tempo-
ral granularities in an object-oriented data model poses additional issues with
respect to the relational context, due to the semantic richness of such a model.
Bertino et al. [10] investigate the impact of temporal granularities in an object-
oriented model compliant with the ODMG standard.

The representation of data at multiple levels of details, that is, at multiple
granularities, is a topic of relevant interest also in modelling spatial entities.
In the context of Geographical Information Systems (GIS), much research ad-
dresses the development of data models for the multiresolution representation of
geographic maps [11,12].

Research on multiple resolutions addresses in particular model-oriented gen-
eralization [13], which applies techniques used in cartography for representing
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spatial data at different levels of abstraction, by taking into account also the
semantics of data and some notion of consistency to preserve data usability, as,
for example, the preservation of topological relationships.

Other proposals address specifically the multi-granular representation of spa-
tio-temporal data [14,2,15]. Claramunt and Juang [14] propose the application
of nested hierarchies for modelling space and time to extract quantitative in-
formation about spatio-temporal relationships in a data set. Griffiths et al. [16]
define the Tripod spatio-historical model. This model includes a definition of
histories at different granularities. However, no operators are provided to con-
vert multi-granular data, but the histories are always internally represented at
the chronon [17] granularity. Katri et al. [18] define an annotation-model for the
specification of spatio-temporal data at multiple granularities. Such a granularity
formalization relies on the concepts of temporal indeterminacy [19] and spatial
imprecision [20]. However, the resulting model and the granularity systems are
effective only for data specification, because the conversion from a granularity
to another is completely left to the user. The European project MurMur [21]
addresses multiple resolutions through multiple representations, supporting per-
ceptions, which include different points of view and spatial resolutions. Wang
and Liu [?] adopt the same definition of spatial granularity as [2], addressing un-
certain spatio-temporal regions. Belussi et al. [15] define spatio-temporal granu-
larities as historical evolution of spatial granules, to search valid spatial granules
in a given instant. Their approach relies on the mapping of spatial multiple gran-
ularities and granules onto graph structures (multidigraphs), which encompasses
labelling functions for granules and their mutual (topological) relationships, dis-
regarding value conversions.

3 Modelling Multi-granular Spatio-temporal data

The exploitation of multiple granularities for spatio-temporal data entails the
definition of a multi-granular spatio-temporal type system and conversions to
represent spatio-temporal data at different granularities. These elements are con-
structed relying on formal definitions for granularities, granules, and granular el-
ements, and are the key components of a multi-granular algebra for representing
and managing multi-granular spatio-temporal data. Relying on such an algebra,
a multi-granular spatio-temporal query language, which will be discussed in the
next section, may be designed as well.

In what follows, we discuss the formal definition of granularities, types, values,
and multi-granular conversions we adopt in the design of ST ODMG [2]. We
refer the interested reader to [22] for a more complete discussion of granularity
implementation challenges.

3.1 Spatial and Temporal Granularities

According to [7], temporal granularities may be formally represented as map-
pings from an ordered index set IS to the power set of the temporal domain
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(i.e., T IME), which is totally ordered. Both Khatri et al. [18] and Camossi
et al. [2] apply the same definition to spatial granularities, which are defined
as mapping from an index set IS to subsets of SPACE , the spatial domain.
SPACE is two-dimensional (that is, subset of R2). Spatial granularities may
include 2-dimensional granules (e.g., units of area: squaremeters, acres, etc.;
administrative boundaries classifications: municipalities, countries, etc.), or 1-
dimensional granules (e.g., measures of length: kilometers, miles, etc.; map
scales: 1 : 24000, 1 : 62500, etc.). For instance, days, weeks, years are tempo-
ral granularities; meters, kilometers, feet, yards, provinces and countries are
spatial granularities.

Each subset of the temporal and spatial domains corresponding to a single
granularity mapping is referred to as a temporal or spatial granule, i.e., given
a granularity G and an index i ∈ IS, G(i) is a granule of G that identifies
a subset of the corresponding domain. Granules are used to specify the valid
spatio-temporal bounds on attribute values, as well as the temporal occurrence
of database events. For instance, we can say that a value reporting the measure
of the daily temperature in Rome is defined for the first and the second day
of January. The granules of interest for this example can be identified by three
textual labels: “01/01”, “02/01”, and “Rome”, that respectively identify two
temporal and one spatial granules. The interiors of different granules of the
same granularity cannot overlap1. Moreover, non-empty granules of the same
temporal granularity must preserve the order of the temporal domain.

Sets of temporal or spatial granules expressed at the same granularity are
referred to as temporal or spatial elements [3], respectively. An element at granu-
larity G is denoted as ΥG. For instance, {1999, 2000, 2001}years is a temporal
element at granularity years, and {Rome, Berlin}municipalities is a spatial ele-
ment at granularity municipalities.

Different granularities provide different partitions of their domain of refer-
ence. The reason is that diverse relationships may hold among granularities,
depending on the inclusion and the overlapping of granules [7]. For instance, in
ST ODMG [2] we assume that spatial and temporal granularities are related by
the finer-than relationship: given two granularities G and H such that G is finer-
than H , every granule g of G is properly included in a granule h of the coarser
granularity H (cf. Fig. 1). If G is finer-than H , we also say that H is coarser-than
G. For example, temporal granularity days is finer-than months, and granular-
ity months is finer-than years. Likewise, spatial granularity municipalities is
finer-than countries.

Relationships among different granularities are fundamental for enabling the
comparison of multi-granular values in queries. For instance, in a query we might
require to compare the values of seasonal sales of two similar products, one stored
at spatial granularity countries and one at temporal granularity provinces, to
decide which one to sell at a shop chain. To perform a meaningful comparison,
these values have to be expressed at the same spatial granularity. In the following

1 Temporal granules, according to the definition by Bettini et al. [23], do not overlap,
while spatial granules can overlap on the granule boundaries.
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Fig. 1. The finer-than relationship: G is finer-than H

sections we will describe granularity conversions supported by ST ODMG for
converting granular values at different temporal and spatial granularities related
by finer-than. In this case, we observe that provinces is finer-than countries;
therefore we may likely apply some conversions to these values (e.g., the value
at granularity countries may be split among the different provinces of each
country or viceversa). By contrast, if the granularities were, for instance, feet
and meters, these values cannot be directly converted (being granules the basic
units of measure, granule portions are meaningless); we may instead convert
both values to a common representation, different from feet and meters (e.g.,
μmeters, which is finer-than both granularities). Therefore, given two multi-
granular values, one at granularity G and one at granularity H such that G
and H are not directly related by the finer-than relationship, such values may
be compared if the two values may be represented (i.e., converted) at the same
granularity K, that is finer-than G and H . K is chosen as the granularity that
minimizes the number of conversions applied. If K is the coarsest, among the
granularities finer-than G and H , K is referred to as the greatest lower bound
(GLB) of G and H .

Furthermore, by relying on granularity relationships, we may design efficient
representations for granularities. For instance, we may implement granules of
temporal granularity years relying on the representation provided for months
and exploiting the uniform relationship between these two granularities. Indeed,
the mapping onto the temporal domain of a given granule of years may be
obtained retrieving the mappings of the twelve months of that year. Iterating
the same technique onto the set of temporal granularities, we map the repre-
sentation of most granularities onto the most finer one the model assumes (e.g.,
milliseconds), and avoid the exhaustive mapping onto the temporal domain for
most of the granularities (see [22] for further details).

3.2 Multi-granular Types, Values and Conversions

In addition to the conventional database values, a spatio-temporal database
schema can include spatial, temporal, and spatio-temporal values. Multi-granular
values in ST ODMG are defined as partial functions from the set of granules
of the corresponding granularity(ies) to the set of values of a conventional (i.e.,
literal or object types without any spatio-temporal capability) or geometric (i.e.,
two- and three-dimensional vector features) inner type. ST ODMG provides two
multi-granular parametric types: SpatialSG(σ) and TemporalTG(τ), where SG
and TG are a spatial and a temporal granularity, respectively; σ is a conventional
or a geometric type; τ is a conventional or a Spatial type. These types may be
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(a) 1946 (b) 1989

Fig. 2. A spatio-temporal geometric value

functionally combined to define multi-granular spatio-temporal types, as in the
following example.

Example 1. Suppose a class Europe is defined to describe geo-political properties
of European countries. The following is an example of a spatio-temporal value
storing some of the names of the Heads of Government of European countries.
Its type is Temporalyears(Spatialcountries(string)).

v = {〈2007,{〈France,‘F. Fillon’〉,〈Germany,‘A. Merkel’〉}countries〉,
〈2008,{〈France,‘N. Sarkozy’〉,〈Germany,‘A. Merkel’〉}countries〉}years.

In Fig. 2, a value of type Temporalyears(Spatialcountries(set〈Polygon〉)) illus-
trates the historical changes in the German political boundaries: each country
is represented through a polygon or a closed polyline. �

To improve or reduce the level of detail of a multi-granular value, the value
has to be converted to a different granularity. To address this requirement, in
ST ODMG we introduce granularity conversions, which include temporal and
spatial coercion [10] and refinement [24] functions. We note here that coercion
and refinement functions, that are basic notions in the object-oriented paradigm,
directly address the requirement of spatio-temporal value conversion from a con-
ceptual point of view. However, in a spatio-temporal setting, these functions must
account for the additional semantics provided by granularities.

An important issue in the use of spatio-temporal coercion and refinement
functions is represented by data consistency. For instance, if one first coerces a
value v from a spatial granularity G into a value v′ at a spatial granularity H ,
one would expect the relationships v has with other spatial objects be preserved
by v′. To address this issue, model-oriented and cartographic map generalisation
operators that guarantee topological consistency [25,26], an essential property to
guarantee data usability, may be applied. For example, merge operators merge
adjacent features of the same dimension into a single one, while splitting opera-
tors subdivide single features in adjacent features of the same dimension. Other
operators perform contraction and thinning (whose inverse is expansion); ab-
straction and simplification (whose inverse is addition). Their application avoids
situations like the one shown in Fig. 3, where a non-topologically consistent line
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simplification algorithm [27] is applied to coarse a coast line in a map (in black
the original coast, in red the straight coarser one). Such a simplification would
require a post-process revision, to correct the location of the island, which has
been incorporated into the land, and of the city, which has been moved into the
sea.

Fig. 3. Topologically inconsistent geometric transformation

The ST ODMG model also provides operators for converting spatio-temporal
quantitative (i.e., non-geometrical) attribute values. These operators perform
selection (e.g., projection, main, first), and aggregation (e.g., sum, average)
to convert values to a coarser representation; their inverse functions, restric-
tion and splitting, convert attribute values to finer representations, according to
downward hereditary property [28] or according to a probability distribution,
respectively.

Granularity conversions in ST ODMG have been proven to return legal val-
ues of the ST ODMG type system [2]. Conversions that generalize geometric
attribute values to coarser spatial granularities have been demonstrated to pre-
serve the semantics of the spatio-temporal data represented [2]. Furthermore, the
conversions we provided for converting spatio-temporal values at finer granular-
ities address indeterminacy [19] and imprecision [20] that always affect this type
of conversion (see also [24] for a more comprehensive discussion on invertibility
and quasi-invertibility of multi-granular values).

4 Querying Multi-granular Spatio-temporal Data

A model for multi-granular spatio-temporal queries in ST ODMG has also been
defined [3]. The language extends the value comparison and object navigation
paradigms of OQL [4] to support multi-granular spatio-temporal values. The
key concept of the language is the multi-granular spatio-temporal path expression
(MST Path-Expr), which extends the conventional notion of object-oriented path
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expression to multi-granular spatio-temporal values. In a MST Path-Exprs the
access to multi-granular attribute values is specified by referring to portions of
the spatio-temporal domain through the use of a specific operator (↓).

References to the spatio-temporal domain are given explicitly through spatial
and temporal elements we introduced in the previous section, as illustrated in
the following example.

Example 2. Given the spatio-temporal value of Example 1, representing the
name of European Heads of Government, the temporal path expression v ↓
{2007}years returns the spatial value:

{〈France,‘F. Fillon’〉,〈Germany,‘A. Merkel’〉}countries.

By contrast, the spatial path expression v ↓ {France}countries returns the tem-
poral value:

{〈2007,‘F. Fillon’〉,〈2008,‘N. Sarkozy’〉}years. �

In MST Path-Exprs, we also use multi-granular spatio-temporal expressions
(Exprs), which are implicit representations of spatio-temporal elements. Exprs
are given as conditions that are evaluated on database objects. They result in
temporal and spatial elements, which intuitively represent when and where such
conditions are satisfied. Conditions are specified through temporal and spa-
tial variations of conventional comparison operators (e.g., =T , <>S) and bi-
nary topological relationships as defined by Egenhofer and Franzosa [29] (e.g.,
equalsT , overlapsS).

Example 3. Given the spatio-temporal value of Example 1, the temporal expres-
sion v =T ‘N. Sarkozy’ returns the temporal element {2008}years, whereas the
spatial expression v =S ‘N. Sarkozy’ returns {France}countries. �
Queries have the usual OQL select-from-where form. MST Path-Exprs are
applied in the target list to specify the data to retrieve, and in the where clause
to express conditions against multi-granular spatio-temporal objects. When-
ever MST Path-Exprs involve different granularities, granularity conversions de-
scribed in the previous section are applied during the evaluation of these MST
Path-Exprs.

Example 4. Given class Europe of Example 1, and given a class Nation describ-
ing the properties of interest for a single country, the following query retrieves
the name of the Head of Government of West Germany in 1980:

select e.head of government ↓ {1980}years

from Europe e, Nation n

where n.name ↓ {1980}years = ‘West Germany’.

It returns the name ‘H. Shmidt’. By contrast, the following query retrieves when
Angela Merkel was Head of Government of Germany:

select e.head of government =T ‘A. Merkel’

from Europe e, Nation n

where (n.name ↓ e.head of government =T ‘A. Merkel’) = ‘Germany’.

It returns the temporal element representing the period from 2005 and 2009. �
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5 Adaptive Spatio-temporal Multi-granular Models

Adaptivity support is a crucial requirement for almost all applications we may
think of. In a spatio-temporal setting with multiple granularities, an added di-
mension to the problem of adaptation is represented by the evolution of at-
tribute granularity. To date this problem has not been much investigated. In
what follows, we discuss two preliminary solutions to adapt attribute granu-
larities: object-oriented attributes redefinition, and evolution models. The first
approach, which is discussed in [30], provides a weaker granularity adaptability,
which is limited to attribute redefinition along the inheritance hierarchy; then,
granularity modifications are pre-arranged in the database schema. Conversely,
the ST2 ODMGe model [31], which is described at the end of the section, adopts
a flexible solution by which run time evolutions may be specified and executed.

5.1 Multi-granular Attribute Redefinition

The idea behind multi-granular attribute refinement is that the granularity at
which an attribute value is stored can be changed in a sub-class, to better reflect
the application evolution needs. In the sub-class the attribute values may be
maintained at a coarser or at a finer level of detail. For instance, if at the super-
class only the monthly values are recorded, in the sub-class the daily changes
can be maintained, improving the level of detail for the attribute. By contrast,
we may reduce the detail coarsening the attribute value in the sub-class.

The most critical requirement in attribute refinement is to preserve object
substitutability. Whenever an object instance of a sub-class is found in a context
where a super-class object is expected, its attribute values must be converted
to the expected granularity, leaving the whole procedure completely transparent
to the user. Therefore, multi-granular conversions including both coercion and
refinement functions, such those described in Sect. 3.2, must be provided by a
multi-granular model. Supplying a variety of conversions with different semantics
enables to choose, for each attribute and situation, the conversion that better
reflects the attribute semantics.

Substitutability impacts both on attribute accesses and updates. In an object
access, granularity conversions are used to compute the value to consider in the
super-class, given the value of the attribute in the sub-class. By contrast, in case
of object updates, granularity conversions are applied to convert the value to
the granularity required in the sub-class.

Example 5. The following multi-granular spatio-temporal schema includes an
example of multi-granular attribute refinement2. We give a partial definition for
class Nation, reporting the specification of attribute population, which stores

2 The syntax we use in this example has been first introduced in ST ODMG: it ex-
tends the ODMG Data Definition Language to spatio-temporal multi-granularity.
The same syntax has been further extended in [30] to support attribute refinement.
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the daily updates to the amount of population recorded in each municipality of
a country.

class Nation (. . .) {
attribute Temporaldays(Spatialmunicipalities(int)) population;

. . .

};

Then, we define a class NationStatistic, which extends Nation, to collect
statistical information on the countries in the database. In particular, attribute
population is refined at temporal granularity years and at spatial granularity
countries.

class NationStatistic extends Nation (. . .) {
ref attribute Temporalyears(Spatialcountries(int)) population {

〈 splitcountries→municipalities, summunicipalities→countries 〉,
〈 restryears→days, avgdays→years 〉}

. . .

};

Two pairs of granularity conversions are specified for this attribute: the first
refers to the spatial refinement, whereas the second deals with the temporal re-
finement. In each pair of conversions 〈af, uf〉, af is the granularity conversion
used to access the attribute value from an object that at compile time has type
Nation: the attribute value has to be converted from the sub-class granularity
(e.g., countries) to that used in the super-class (e.g., municipalities). In this
example both the spatial and the temporal granularities have been refined in the
sub-class, therefore we have two refinement conversion functions to use in the
access: both split (i.e., split) and restr (i.e., restriction) granularity conver-
sions have to be applied to the value, that is converted from granularities years
and countries to finer granularities days and municipalities. uf conversions
are applied when updating the attribute from an object whose run-time type is
NationStatistic, while at compile time it has type Nation: in this case, the
conversions sum and avg (i.e., average) are applied to coarser the finer value to
granularities years and countries. �

To guarantee data consistency, both compile and run-time checks may be ap-
plied. At compile time, the consistency of the database schema must be verified,
checking first that the granularities in the super-class and in the sub-class are
related by some granularity relationship. In ST ODMG we consider the finer-
than relationship, but other relationships may be applied as well. Then, we have
to check that two inverse or quasi-inverse [24] granularity conversions have been
specified, one to use for the access and one for the update of the attribute. How-
ever, at run-time we may allow one to apply a different granularity conversion
for the attribute access, whenever the user needs a different conversion seman-
tics, and also in this case the granularity conversion must be compliant with the
attribute refinement.
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5.2 Evolutions of Spatio-temporal Multi-granular Objects

Being able to dynamically adapt the spatial and temporal granularities to re-
spond to dynamic events and situations and to reflect changes in data signif-
icance is crucial in many contexts: e.g., periodic phenomena, modifications to
attribute values, operation execution, data aging or privacy restrictions. Specific
operations required for supporting dynamic adaptation of granularity include:
1) granularity evolution, which aggregates existing detailed data at a coarser
granularity (e.g., older data that may be stored for future reference), or even
refines information at a finer granularity (e.g., in data analysis); 2) granularity
acquisition, which changes at run-time the granularity used when inserting new
values in the database; 3) value deletion, which removes attribute values from
the database, whenever they are no longer useful at a given granularity (e.g.,
detailed data).

The recently defined ST2 ODMGe (Spatio-(Bi)Temporal ODMG supporting
Evolutions) [31] addresses these requirement by supporting the modification of
the granularities used in attribute definitions, and the deletion of attribute val-
ues at run-time. Evolutions have the form: ON Event [IF Condition] DO Action.
Example of events are: update, delete, etc., that is, occurrences that modify
the database state, including evolution actions, and may have a periodic or an
extemporary behaviour. Furthermore, references to the transaction time, both
periodic and extemporary, may be specified as events. Conditions are specified
against database attribute values, and include also periodic checks, evaluated
on valid time. Finally, evolution actions are sequences of operations that may
modify the attribute granularities and delete the attribute values.

Evolutions are defined and executed at run-time and conform to the execution
model of active databases. Given an instance of an ST2 ODMGe database and
a set of evolutions specified for it, the database is continuously monitored. The
execution of database transactions modifies the database state and triggers the
evolutions whose events refer to such transactions. Therefore, the corresponding
conditions are evaluated. For those triggered evolutions whose conditions eval-
uate to TRUE, the corresponding actions are executed. As a consequence, the
database state (or schema, in case of granularity acquisition) may be modified.

Example 6. Given class Nation defined in Example 5, the following are two
examples of evolutions we may specify to periodically obtain summarized values
of the amount of population of the countries in the database.

ON update Nation.population < days, municipalities >

IF every 1
years
VT

DO evolve < days, municipalities > to < days, countries > using

summunicipalities→countries, splitcountries→municipalities;

ON update Nation.population < days, countries >

DO evolve < days, countries > to < years, countries > using

avgdays→years, restryears→days;
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The first evolution is triggered by updates to attribute population as origi-
nally defined in class Nation, i.e., at temporal granularity days and at spatial
granularity municipalities. Once one year of values (i.e., 1years

VT , where VT de-
notes valid time) has been recorded for this attribute, the evolution is executed,
and the first time a new value is created for this attribute: specifically, a new
granularity level (see [31]) at granularity days and countries is defined for at-
tribute population. For each country, it stores the daily amount of population,
given as the sum of the population of every municipality in the country. This
evolution is executed periodically, every 1years

VT . Every time this new granularity
level is updated (i.e., once a year), the second evolution is triggered. It results
in the creation of a new granularity level, at granularity years and countries,
that stores the annual amount of population of the country. This value is ob-
tained as the average of the daily amount stored in the previous granularity
level.

Consequently to the execution of evolutions, the run-time type of population
is Temporaldays(Spatialmunicipalities(int)) × Temporaldays(Spatialcountries(int)) ×
Temporalyears(Spatialcountries(int)). Note that the last granularity level has the
same type of attribute population we defined in class NationStatistic of Ex-
ample 5. However, in this case the value is automatically computed, and belongs
to the same object of type Nation it refers to. By contrast, in the case of Exam-
ple 5, for each country at least two objects have to be created to maintain the
same information. �

After the execution of evolutions, the run-time type of the attribute values is
a Cartesian product of multi-granular types as defined in Sect. 3. Therefore at
run-time the state of objects in the database is no longer consistent with their
class definition. We formally revisited the notion of object consistency, weak-
ening the conditions on attribute values and on objects spatio-temporal lifes-
pans to include the side-effects of evolutions. In particular, we require that each
evolution specification includes a pair of inverse and quasi inverse granularity
conversions among portions of the same attribute value expressed at different
granularities.

Moreover, we take advantage of attribute run-time values at multiple gran-
ularities to enhance the access strategies to multi-granular values. We demon-
strate that, under certain assumptions, object access is invariant to the execution
of evolutions. In particular, the stored information may be preserved after the
deletion of a value, because the same value may be present in the database at
a different granularity, therefore it may be retrieved when needed. Furthermore,
object access may benefit from evolutions with respect to both effectiveness and
efficiency. The values resulting from the execution of granularity conversions are
already materialized in the database, thus improving the performance of queries
involving aggregates and granularity refinement. The existence in the database of
values at different granularities makes possible to apply two different strategies
for object access. Such strategies optimize, respectively, the execution efficiency,
minimizing the retrieval time, and the result accuracy, minimizing the indeter-
minacy of granular values.
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6 Open Research Challenges

Even though ST ODMG and ST2 ODMGe represent some important initial
steps towards the problem of developing adaptive multi-granular spatio-temporal
object models and systems, many open research challenges are still open. We
briefly outline them in the following.

Foundations of formal models and type systems. Because of the com-
plexity of an adaptive multi-granular spatio-temporal object model, it is crucial
for formal definitions exist for both static and dynamic features of the model.
Suitable type systems, that are also relevant for object-oriented programming
languages manipulating spatio-temporal objects, need to be developed, perhaps
as extension of conventional type systems. For example, when declaring a vari-
able one may have to specify, in addition to the variable type, the spatio-temporal
granularity of the variable. Assignments of a value to a variable must then take
into account not only the types of the value and the variable, but also their
spatio-temporal granularities. Static type checking of programs would then need
to be extended by, for example, allowing such an assignment provided that a con-
version function be defined for the granularities of the value and the variable,
respectively. Consistency properties, such as assuring the correct combination of
spatial and temporal type constructors, would also need to be devised, coupled
with techniques for their analysis.

Analysis tools for evolutions. If evolution are formulated according to the
active database paradigm, it is important not only that object-oriented models
and systems be equipped with triggers, but also that tools for the analysis of
these “evolution” triggers be supported to detect non-terminating executions
and indeterministic executions. Note that such issues have been extensively in-
vestigated in the area of active DBMS and currently no satisfactory solution
exists. However, since we deal with a specialized domain, that is, the evolution
of granularities, effective solutions to these issues for this domain are more likely
to be found.

Implementation strategies. Efficient and comprehensive implementations are
crucial. Several alternatives can be investigated including implementation of the
required features as class libraries on top of existing ODBMS and extensions to
ODBMS engines. Both approaches have shortcomings. The first approach may
enable the best execution performance, but it may be impractical if all the multi-
granular features have to be implemented from scratch (e.g., think of evolution
triggers). By contrast, the second approach may require extensive implementa-
tion efforts and may still not able to cover all required features, especially the
ones depending on the application domain, like specialized spatial conversion
operators. In our opinion, the best approach would be to extend the engine of
an existing ODBMS with some basic functions, supporting for example the or-
ganization of value domains according to multiple granularities, and providing
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a basic support for triggers, by at the same time allowing the applications to
define their own application-depending granularities and specialized conversion
functions (e.g., through the use of object methods).

Multi-granular volumetric objects. The geographic information systems
and spatial community is showing a growing interest in systems for manag-
ing three-dimensional (3D) data. This is demonstrated also by commercial GIS
and Spatial DBMS products, that offer support for representing and analysing
volumetric information. However, those products do not offer instruments for
dealing with multi-granular information. One of the main issues in support-
ing multi-granularity for volumetric information is the definition of meaningful
multi-granular conversions, able to preserve topological consistency. Moreover,
because the computational complexity of the analysis and conversion algorithms
is very high and the explicit storage of spatial relationships result in huge data
sets, techniques are needed to optimize both temporal and storage costs.

Multi-granular exploitation of legacy data. When analysing existing data
sets, one may require to make explicit the granularity according to which data
are represented, in particular when integrating or matching data sets from het-
erogeneous sources. The automatic exploitation of the level of detail of a data
set is a challenging problem that so far has not been investigated. Semantics
driven methods that make use of both implicit and explicit semantics of data,
such the ones discussed by Albertoni et al. [32] for the extraction of the levels of
detail used in data representation, may provide valid solution to this problem.

7 Conclusions

In this paper we have discussed concepts and approaches for handling multi-
granular spatio-temporal data. In our discussion we refer to recent work on
spatio-temporal multi-granularity, and illustrate the design of the ST ODMG
and the ST2 ODMGe models, which extend the ODMG model to provide multi-
granular spatio-temporal support. In particular we have discussed the formal
design for several key concepts encompassing: granularities, granules, multi-
granular values, multi-granular conversions, multi-granular spatio-temporal que-
rying, multi-granular attribute refinement and evolutions. Furthermore, we have
discussed some open problems of interest for multi-granular spatio-temporal data
management, including the definition of formal multi-granular models and type
systems; the development of analysis tools for evolution models; the definition
of implementation strategies; the design of multi-granular volumetric data mod-
els; the handling of legacy data. Many other challenges exist when consider-
ing different application domains. Addressing these challenges typically requires
extensible data management systems, like provided by object DBMSs, that
must however be equipped with specialized features in order to support com-
plex application-specific object model, like the dynamic multi-granular spatio-
temporal data we have discussed in this paper.
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Abstract. This paper presents algorithms that make it possible to
process XML data that conforms to XML Schema (XSD) in a main-
stream object-oriented programming language. These algorithms are
based on our object-oriented view of the core of XSD. The novelty of this
view is that it is intellectually manageable for object-oriented program-
mers while still capturing the complexity of the core structural properties
of XSD. This paper develops two mappings based on this view. The first
one is specified by a set of rules that map a source XSD schema into its
object-oriented schema. The second one maps XML instances that con-
form to an XSD schema to their representation as objects. In addition
to mapping elements and attributes, these mappings reflect correctly the
particle structures including different types of groups, and type deriva-
tion by restriction and extension. The structural properties of identity
constraints are also mapped correctly. Formally defined mappings or al-
gorithms of this sort have not been available so far, and existing indus-
trial tools typically do not handle the level of complexity of XSD that
our mappings do.

1 Introduction

XML Schema (XSD for short) is a standard for specifying structural features of
XML data [17]. In addition, XSD allows specification of constraints that XML
data is required to satisfy. Application programmers are faced with the problem
of processing data that conforms to XSD in a general-purpose object-oriented
programming language. For this to be possible, an object-oriented interface to
XML data must be available to application programmers.

To enable this scenario we need a schema mapping that translates each XSD
schema X into a corresponding object-oriented schema O. The schema mapping
from X to O creates the object-oriented interface for application programmers.
We also need an instance mapping between instances of X (i.e., XML documents)
and instances of O (i.e., sets of objects). The instance mapping is used to trans-
late XML documents into objects that can be manipulated by applications, and
to translate objects that are created or modified by applications back into XML
documents. Developing such translations poses nontrivial problems due to the
mismatch of the core XSD features and the features that are expressible in type
systems underlying mainstream object-oriented languages. All object-oriented
interfaces to XML suffer the implications of this mismatch [10].
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The starting point is a user’s XSD schema. An off-the-shelf XSD schema
compiler is used in our approach to translate the user’s schema into an object-
oriented representation, such as .NET’s XML Schema Object Model (SOM) [15].
The schema mapping rules translate the user’s XSD schema into object-oriented
interfaces. These interfaces comprise the user’s programming model. They are
a combination of predefined interfaces that are based only on XSD itself and
user-schema-specific interfaces that are generated from a user’s XSD schema.
A program can use these interfaces to access pieces of an XML document that
conforms to the XSD schema. Enabling this access requires that there be a
mapping that translates an XML document into objects whose classes implement
the generated XSD interfaces.

The main research contributions of this paper are as follows:

– We specify the structural core of XSD (Sect. 3)
– We specify the syntax for the XSD core (Sect. 3.1).
– We specify the rules for mapping an XSD core schema to its corresponding

OO schema (Sect. 4).
– We specify an algorithm for mapping instances that conform to a source

XSD core schema to their OO counterparts (Sect. 5).

Formally defined mappings or algorithms of this sort have not been available
so far, and existing industrial tools typically do not handle the level of complexity
of XML Schema that our mappings do.

2 Motivating Example

To motivate some of the detailed problems that need to be solved by such a
system, let us consider how to map an example XSD schema into object-oriented
(OO) interfaces. Consider the complex type DictionaryType defined in the XSD
schema below. The structure of this type is defined as a sequence group where
the number of elements in the sequence ranges from zero to an arbitrary and
unspecified natural number. An OO representation of this type will obviously be
based on a parametric type of sequence or list. However, as soon as we specify a
type SmallDictionaryType that is derived by restriction from DictionaryType,
we encounter a nontrivial problem.

<xsd:schema id="XMLDictionarySchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd: complexType name="DictionaryType"/>

<xsd: sequence>

<xsd:element name="item" type="ItemType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ItemType">

<xsd:sequence>
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<xsd:element name="typeOfEntity"

type="EntityType" />

</xsd:sequence>

<xsd:attribute name="key" type="xsd:string" />

</xsd:complexType>

<xsd:element name="dictionary"

type="DictionaryType">

<xsd:key name="searchKey">

<xsd:selector xpath="item"/>

<xsd:field xpath="@key"/>

</xsdkey>

</xsd:element>

<xsd:complexType name="SmallDictionaryType"/>

<xsd:restriction base= "DictionaryType"/>

<xsd:sequence>

<xsd:element name="item" type="ItemType"

minOccurs="1" maxOccurs="1000"/>

</xsd:sequence>

</xsd:restriction>

</xsd:complexType>

<xsd:complexType name="AddressType"/>

<xsd:extension base="ItemType"/>

<xsd:sequence>

<xsd:element name="firstName"

type="xsd:string"/>

<xsd:element name="lastName"

type="xsd:string"/>

<xsd:choice>

<xsd:element name="POboxAddress"

type="xsd:string"/>

<xsd:element name="streetAddress"

type="streetAddressType"/>

</xsd:choice>

</xsd:sequence>

</xsd:extension>

</xsd:complexType>

</xsd:schema>

XSD type derivations are represented in the OO schema by inheritance. But in
this case, the structural specification of DictionaryType and
SmallDictionaryType is identical. What is different is that the range-of-occur-
rences constraint has been strengthened. OO type systems cannot represent this
constraint and hence cannot represent type derivation by restriction in XSD.
Well-known OO interfaces to XSD typically lack any suitable representation of
this type of construct and of type derivation by restriction as defined in XSD.

Consider now an actual dictionary specified as an XSD element. This element
type will also be represented as an object type (a class or an interface). One
problem of existing OO interfaces to XML is not distinguishing between two
type hierarchies in XSD as in [13]. One hierarchy represents the actual instances,
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starting with elements. But an element has a name (i.e., a tag) and a value. The
value of an element may be simple or complex, and hence belongs to a type that
is defined in a different hierarchy of XSD types, all of which are derived from
the root type anyType.

Yet another subtlety in this example is that a dictionary element is equipped
with a key constraint, a typical database constraint that captures the essential
semantics of a dictionary. Well-known OO interfaces to XML do not consider
representation of this constraint. In fact, key constraints are not representable
in OO type systems.

Now consider ItemType, which is the type of dictionary elements. Its complex
structure is specified as a sequence group. In addition, this type is equipped
with an attribute key. In the most straightforward representation of ItemType
its corresponding object type will have properties typeOfEntity and key. This
seems to be a preferred OO user view of ItemType[13]. However, it comes with
nontrivial problems.

The first problem is the lack of distinction between elements and attributes.
The second is that in XML two elements or an element and an attribute may
have the same name. In those situations the straightforward representation does
not work because the names of elements and attributes cannot be the property
names in the corresponding object type, as they must be unique.

Consider now a specific item type AddressType of a dictionary. This type
will be specified in XSD as derived by extension from the type ItemType. This
type derivation has a fairly accurate representation by inheritance. The exten-
sion is specified as a sequence group with one subtlety. The third component
of the sequence is specified as a choice-group, so an XML instance has either
POboxAddress or streetAddress but not both.

XSD choice represents a major problem for OO interfaces to XML. Specifying
a fixed number of subtypes of a type is contrary to the core features of the
OO model. Because of the lack of a suitable representation for choice, some
OO interfaces use the same representation for choice and sequence groups. This
representation has nontrivial implications because these two types of groups have
different semantics. In fact, widely known OO interfaces to XML do not have
a suitable representation of XSD groups and its three subtypes (i.e., sequence,
choice, and all groups).

To see the implications of structural misrepresentation of an XSD schema in
its corresponding OO schema, assume that we have a database that conforms to
an XSD schema. Suppose that application programs will be developed in an OO
language and will be based on the OO representation of XSD schema. Manipu-
lating OO representations of XSD instances will now lead to object structures
that do not reflect the structure of XSD instances. Installing the updated XSD
instances presents a huge challenge because of this structural mismatch. This
is why our goal is to produce an OO representation of XSD that is as struc-
turally accurate as possible, so that manipulating OO instances does not violate
structural and semantic constraints of XSD.
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3 XML Schema Core

3.1 Syntactic Specification

In this section we define a subset of XSD, which we call the XSD core [1]. It is
comprised of features that we regard as essential to XSD and is the focus of our
mapping from XSD schemas to OO interfaces.

In the XSD core, attributes and elements are specified as (Name, Type) pairs.
Name stands for the tag and Type for the type of the associated value. The type
of an attribute is required to be simple, and the type of an element may be either
simple or complex.
Attribute ::= Name simpleType

Element ::= Name Type

The key notion of the XSD core is that of a Particle, which is a term followed by
the range of occurrences. A term is either an Element or a Group. So a particle
is a sequence of repeated terms where the number of occurrences of the term is
between minOccurs and maxOccurs.
Particle := Term Range

Term := Element | Group

Range := [minOccurs][maxOccurs]

X M L G r o u p

X M L S e q u e n c e G r o u p

X M L C h o i c e G r o u p

X M L A l l G r o u p

X M L P a r t i c l e X M L A t t r i b u t e

X M L E l e m e n t

X M L T e r m

Fig. 1. XSD particle hierarchy

There are three types of groups in the core: sequence-groups, choice-groups and
all-groups. A sequence-group is specified as a sequence of particles. The same
applies to a choice-group, but its semantics is different. In a sequence-group all
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particles must be present, while in a choice-group exactly one of them must be
present in a document fragment that conforms to the group definition. Particles
of an all-group are of a particular type: they are elements. In the syntax, sets
and sequences are represented as sequences, but in fact the ordering of elements
in an all all-group is irrelevant.
Group := Sequence | Choice | All

Sequence ::= Particle{Particle}
Choice ::= Particle{Particle}
All ::= Element{Element}
A type is either simple or complex.
Type ::= [Name] simpleOrComplexType

simpleOrComplexType ::= simpleType | complexType

A simple type either is a built-in type or is derived from another simple type
(its base) by simple type restriction.
simpleType ::= builtInType | simpleType simpleTypeRestriction

A simple type restriction is specified by a sequence of facets.
simpleTypeRestriction ::= facet{facet}
Facets include direct enumeration, specification of ranges of values, and speci-
fication of patterns of regular expressions. All of these facets specify the values
belonging to the restricted type.
facet ::= enumeration | range| regExpression

A complex type is derived from its base type (denoted by Type below) by a
complex type derivation:
complexType ::= Type complexTypeDerivation

There are three kinds of complex type derivation:
complexTypeDerivation ::= simpleTypeExtension |

complexTypeExtension | complexTypeRestriction

Simple type extension applies to complex types with simple content. Since the
content is simple, the only allowed extension is adding attributes. Hence, this
form of type derivation by extension is specified by a sequence of additional
attributes.
simpleTypeExtension ::= {Attribute}
Complex type extension includes both extending the set of attributes and ex-
tending the particle structure of the base type. The extended particle structure
is specified by a group. This group is obtained by forming a sequence-group of
the base type particle of the complex type and appending additional particles
specified in the complex type derivation.
complexTypeExtension ::= {Attribute} Group

Complex type restriction allows restriction of the base type by a set of facets,
making changes in the set of attributes of the base type, and restricting the
constraints in the particle structure of the base type. The particle structure may
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omit optional elements. Otherwise it remains the same, hence it is repeated, but
the constraints will be different. An exception is omitting optional elements. The
particle structure obtained this way is specified as a group.
complexTypeRestriction ::= {Facet}{Attribute} Group

There are three types of identity constraints in XSD: uniqueness, key and ref-
erential integrity (foreign key) constraints. An identity constraint consists of
a specification of the key fields along with the scope to which the constraint
applies. This scope is specified by an XPath expression.
identityConstraint ::= Name field {field} path

In addition, a referential integrity constraint contains specification of the key
constraint to which it refers.

Specification of a schema includes its name and sets of global elements, types,
attributes, groups and identity constraints:
Schema ::=

Name Element{Element}{Type}{Attribute}{Group}{identityConstraint}

X M L a n y S i m p l e T y p e X M L a n y C o m p l e x T y p e

X M L a n y T y p e

Fig. 2. XSD type hierarchy

3.2 Core Interfaces

The library of predefined interfaces includes the two type hierarchies presented
by the diagrams in figures 1 and 2. Figure 1 represents the particles as defined in
XSD. Since the range constraint may be associated with any type of a term, in
a slightly simplified representation that follows SOM [15], elements and groups
are viewed as subtypes of the particle type. Specific types of groups are defined
as subtypes of the group type. The range constraints are specified by methods
minOccurs and maxOccurs of the particle interface. Full specification is given
in [1] along with a representative collection of LINQ queries with respect to
object-oriented schemas specified according to XSD core.

All types are derived from XSD anyType denoted XMLanyType in Figure 2.
We specify two subtypes of anyType that stand for simple and complex types.
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Specific simple and complex types will be derived from those. The above two
hierarchies are related. Since a complex type will in general be equipped with
a set of attributes and a particle structure, it will in general refer to the types
specified in the particle hierarchy.

The third type hierarchy represents XSD identity constraints, shown in Figure
3. In this paper we do not consider the implications of using a constraint language
such as JML or Spec# as in [5], so that the representation of constraints is
necessarily structural.

4 Mapping Schemas

This section presents an algorithm for mapping XSD schemas to OO interfaces.
The algorithm assumes that the source XSD schema is valid. Its representation
could be of any form, as long as its XSD schema components are available
via correctly typed expressions such as: XMLElement(elementName, typeName).
This expression indicates that the source XSD schema contains an element type
whose name is elementName and the type of its value is typeName.

The source XSD schema contains global elements, attributes, types, groups,
etc. The algorithm is a set of mapping rules, each of which specifies how to map
one of these source constructs to its OO representation. For each rule, we specify
the typing assumptions under which the rule applies. The typing assumptions
follow from our assumption that the XSD schema is valid. They are specified as
typing rules with respect to a typing environment of mainstream object-oriented
languages such as C# and Java. The rules are more closely tied to C#.

The typing environment, denoted by T , includes facts about the types in an
XSD schema. In particular, it includes a mapping from names to types and sub-
typing relationships. The fact that an identifier id has a type typeName in the
environment T is expressed as
T � id : typeName.
Since the inheritance relationships are identified with subtyping in mainstream

object-oriented languages, we will use the subtyping symbol <: in the typing
rules. So if typeName is the name of an XML type, the typing environment will
allow the following deduction, which says that the XML type typeName is a
subtype of XMLanyType in T :
T � typeName <: XMLanyType

The typing environment is initialized with the core interfaces such as XML-
Element, XMLAttribute, XMLParticle, XMLGroup, XMLSequenceGroup, XML-
ChoiceGroup, XMLAllGroup, XMLanySimpleType, XMLanyComplexType, etc.
We present some of the most important mapping rules. A complete set is given
in [2].

First consider mapping element types and attribute types from the source
XSD into OO interfaces. If typeName stands for an object representation of an
XML type, and elementName is a valid name, then the expression
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X M L I d e n t i t y C o n s t r a i n t

X M L U n i q u n e s s C o n s t r a i n t X M L R e f C o n s t r a i n t

X M L K e y C o n s t r a i n t

Fig. 3. XSD constraints hierarchy

XMLElement(elementName, typeName) is well typed and its type is XMLEle-
ment:

T � typeName <: XMLanyType,
T � elementName : NameType

T � XMLElement(elementName, typeName) : XMLElement

The above conditions summarize the typing assumptions about an element type
in the source XSD schema. The conditions are the consequence of the fact that
the source XSD schema has been validated. If e is a well typed expression XM-
LElement(elementName,typeName), then its object-oriented image is map(e):

e = XMLElement(elementName, typeName)

map(e) = interface elementName : XMLElement {
NameType name(); typeName value()}

The typing and mapping rule for the attribute types follows the same pattern
except the value of an attribute must be of a simple type so that we would have
the following in the corresponding typing rule:
T � typeName <: XMLanySimpleType

If the source XSD schema contains a specification of an XML simple type whose
name is typeName, then this type will in general be derived by restriction from
its base type which is also simple. The set of constraining facets must also be
specified in the source schema. Hence the information about a simple type in
the source schema is summarized in an expression of the form
XMLanySimpleType(baseTypeName, typeName,facets).

The conditions under which
XMLanySimpleType(baseTypeName,typeName,facets) is a well typed expression
of type XMLanySimpleType that are based on the assumed validation are as
follows:
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T � baseTypeName <: XMLanySimpleType,
T � typeName : NameType,

T � facets : XMLSet < XMLFacet >

T � XMLanySimpleType(baseTypeName,typeName, facets) :
XMLanySimpleType

If T is a well-typed expression
XMLanySimpleType(baseTypeName, typeName, facets)
then its object-oriented image map(T ) is:

T = XMLanySimpleType(baseTypeName,typeName, facets)

map(T ) = interface typeName : baseTypeName {
XMLSet < XMLFacet > facets()}

In the most complex specification of an XML complex type, the base type is
complex, and the type derivation includes a set of attributes and a new particle
structure obtained either by extending the particle of the base type or restrict-
ing its range constraints. If the type is derived by restriction, a set of facets
is also specified. So the information about a complex XML type coming from
the source XSD schema is assumed to have the form of an expression XMLany-
ComplexType(baseTypeName, typeName, attributes, facets, particleType). The
typing constraints for this expression that follow from its validation are:

T � baseTypeName <: XMLanyType,
T � typeName : NameType,

T � attributes : XMLSet < XMLAttribute >,
T � facets : XMLSet < XMLFacet >,

T � particleType <: XMLParticle

T � XMLanyComplexType(baseTypeName,typeName,
attributes, facets, particleType) : XMLanyComplexType

If T is a well typed expression
XMLanyComplexType(baseTypeName, typeName, attributes, facets, particleTy-
pe), then its object-oriented image map(T ) is:

T = XMLanyComplexType(baseTypeName,typeName,
attributes, particleType)

map(T ) = interface typeName : baseTypeName {
XMLSet < XMLAttribute > attributes();

XMLSet < XMLFacet > facets();
particleType particle()}

If the source XSD schema contains a group, the first piece of information that
is available is the type of the group. In addition, a group specifies a sequence of
particles, which in the case of an all-group are elements. In the rules for groups
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we assume that a group has a name (as global groups do) so that information
from the source for a sequence-group has the form of an expression XMLSe-
quenceGroup(groupName, particles). The typing constraints for an expression
XMLSequenceGroup(groupName, particles) that follow from the assumed vali-
dation are:

T � groupName : NameType,
T � particles : XMLSequence < XMLParticle >

T � XMLSequenceGroup(groupName, particles) : XMLSequenceGroup

If g is a well typed expression XMLSequenceGroup(groupName, particles)
then its object-oriented image map(g) is:

g = XMLSequenceGroup(groupName, particles)

map(g) = interface groupName : XMLSequenceGroup {
XMLSequence < XMLParticle > particles()}

A choice-group is also specified in the source XSD schema as a sequence of parti-
cles but its interface will be derived from XMLChoiceGroup. The only difference
in the specification of an all-group is that in its sequence of particles, the particles
must be elements.

The above developed mapping framework allows specification of mapping rules
for the XSD identity constraints, a feature missing in just about all other ap-
proaches. The approach presented in this paper cannot express the semantics of
the identity constraints, but it makes it possible to map their structural spec-
ification. The typing information about an identity constraint coming from a
validated specification of such a constraint in the source XML schema is sum-
marized in the rule given below:

T � name : NameType,
T � fields : XMLSequence < XMLPath >,

T � path : XMLPath

T � XMLIdentityConstraint(Name, fields, path) : XMLIdentityConstraint

The corresponding mapping rule that maps a constraint c into its correspond-
ing object-oriented interface is:

c = XMLIdentityConstraint(Name,fields, path)

map(c) = interface Name : XMLIdentityConstraint {
XMLSequence < XMLPath > fields();

XMLPath path()}

The above rules apply to the uniqueness and key constraints. A referential in-
tegrity constraint is trivially more complex as it contains specification of a key
constraint to which it refers.
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5 Mapping Instances

The mapping rules for schemas and documents are clearly independent of the
underlying implementation platform. But the XSD core may be viewed as an
abstraction on top of SOM [15] as an implementation platform. Given an XSD
schema, SOM will process it and make its OO representation available. This is
why in the algorithm for mapping instances we assume that the source schema
has been mapped to the target OO schema according to the rules in Sect. 4. We
also assume that the source XML instances have been validated with respect to
the source XSD schema. So the presented algorithm implements the map from
XML instances to their corresponding OO instances according to figure 4.

Since the source schema has been mapped to the OO schema, the algorithm
will consult the OO schema for the schema information required to correctly
map the source XML instances to the corresponding objects. The information
in the core interfaces in Sect. 3.2 is available both at the schema level and in
the programming language interface. The distinction between the two levels will
be indicated by the prefix Schema for the interfaces at the schema level. The
complete algorithm is given in [2] and here we present its core features.

X M L  d o c u m e n t s X M L  o b j e c t s

X S D  s c h e m a s O O  s c h e m a s

c o n f o r m s T o c o n f o r m s T o

m a p s T o

m a p s T o

Fig. 4. Mapping schemas and objects

A given object instance will in general represent a particle object. A whole
document will be represented as an element object. The complete structural
representation is available using reflection. From a particle object one can get
all the information required to generate a valid XSD particle recursively from
a sequence of sub-particles. The recursion terminates when a particle of type
element whose type is simple is reached. For a particle object that represents
an element, the name and the type will be available from the element object. If
the type of an element is derived from XML complex type, the actual complex
particle structure of the element will be discoverable from the corresponding
object type information. The object type representing an XML complex type
contains a specification of the underlying particle structure which is how the
algorithm gets invoked recursively.
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The source XML instance is assumed to be available via a collection of
methods of the class Input. The tag of the input element is used to access
the schema information. The type of the element value is looked up in the
schema. If the type is simple, the value of the element is taken from the in-
put. If the type is complex, then an object of the type XMLanyComplexType will
be created as the element’s value. This is accomplished by invoking the method
createComplexValueObject which parses the complex structure of the input
element.

XMLElement createElementObject(string tag) {

Schema.XMLanyType type = Schema.lookUpType(tag);

if type <: Schema.XMLanySimpleType then

XMLanySimpleType value = (XMLanySimpleType)Input.getValue();

else XMLanyComplexType value =

createComplexValueObject((Schema.XMLanyComplexType)type);

return newInstance(getClass("XMLElementClass"),[]Object{tag,value});

}

Mapping an attribute instance follows a similar logic, but it is much simpler
because the value of an attribute is of a simple type.

The method createComplexValueObject has a complex schema type as its
argument. The newly created instance will have two components: a set of at-
tributes (which we represent as a sequence) and a particle structure. These
two components are created invoking the methods createAttributesObject
and createParticleObject, and then the object representing complex element
value will be created.

XMLanyComplexType createComplexValueObject(

Schema.XMLanyComplexType type){

XMLSequence<XMLAttribute> attributes =

createAttributesObject(type.attributes());

XMLParticle particle = createParticleObject(type.particle());

return newInstance(getClass("XMLanyComplexType"),

[]Object{attributes, particle})

}

The second component of a complex value object is a particle object that con-
forms to the XMLParticle type. This object is constructed by invoking the
method createParticleObject which takes an argument of type
Schema.XMLParticle so that it will have the source schema specification of the
particle that is coming up in the input. An object of type XMLParticle will
have the range specified by minOccurs and maxOccurs according to the schema
information, and a sequence of particles coming up in the input whose number of
occurrences will be determined by minOccurs and maxOccurs. Since each one of
those particles appears as a sequence of particles, its particle sequence must be
correctly recognized in the input and its sequence of particle objects constructed.
This is possible only by looking at the schema information about the type of the
particle under consideration
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XMLParticle createParticleObject(Schema.XMLParticle particle){

XMLSequence<XMLParticle> particles = new XMLSequence<XMLParticle>;

for (int i=1; i < particle.minOccurs; i=i+1){

particles.Append(getParticleSequence(particle.particles(i)))};

for (int i = particle.minOccurs; i < particle.maxOccurs; i=i+1) {

particles.Append(getParticleSequence(particle.particles(i)))};

return newInstance(getClass("XMLParticleClass"),

[]Object{particle.minOcccurs,particle.maxOccurs,particles})

}

The method getParticleSequence tests the type of the particle as specified in
the source XSD schema and returns a particle sequence that corresponds to each
particular type of a particle.

Consider a sequence of particles appearing in the input that corresponds to
a sequence group. The argument of the method sequenceGroupParticles is
a sequence group in the source XSD schema and hence it contains a specifi-
cation of a sequence of particles. For each particle in the sequence, the type
of particle is tested to see whether it is an element. If so, the element tag is
read from the input, an element object is constructed and appended to the out-
put particle sequence. If the type of the ith particle as specified in the source
schema is not an element, then the method createParticleObject is invoked
recursively.

XMLSequence<XMLParticle> sequenceGroupParticles(

Schema.XMLSequenceGroup seqGr)

{ XMLSequence<XMLParticle> particleSeq =

new XMLSequence<XMLParticle>;

for( int i = 1; i < seqGr.particles().high(); i=i+1)

{ ithParticle = seqGr.particles()(i);

if ithParticle instanceOf Schema.XMLElement

then {string tag = Input.getTag();

XMLElement newElement = createElementObject(tag);

particleSeq.append(newElement) }

else {XMLParticle newParticle = createParticleObject(ithParticle);

particleSeq.append(newParticle) };

return particleSeq

}

If the type of a particle is a choice group, the schema will still contain a specifi-
cation of a sequence of particles, but only one of them will appear in the input.
Which one is determined by the first tag that appears in the input particle. This
is why we need a method getFirstElementTag.

The result of the getChoiceGroupParticle method is a sequence of particles
because of type compatibility, but it will contain a single particle. The sequence
of particles in the schema representation of the choice group is accessed and for
each one of them the input tag is compared with the first element tag of the ith
particle. When those are equal, the ith particle description in the schema will
be taken as the valid description of the input particle.
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XMLSequence<XMLParticle> getChoiceGroupParticle(

Schema.XMLSchemaChoiceGroup choiceGr) {

XMLSequence<XMLParticle> particleSeq = new XMLSequence<XMLParticle>;

string tag = Input.getTag();

for (int i=1; i < choiceGr.particles().high(); i=i+1)

{ithParticle = choiceGr.particles()(i);

if tag = getFirstElementTag(ithParticle) then

{particleSeq.append(ithParticle);

return(particleSeq)}

}

Constructing a particle sequence of an all group follows the above logic with
one simplification. We know that a sequence of particles in the input should be
interpreted as a sequence of elements of an all group.

6 Related Work

One of the first OO models of XML was DOM [7]. Although it is a part of W3C
activities, DOM predated XSD and hence has very limited in its support of XSD.
It contains interfaces such as Element and Attribute which are subtypes of the
interface Node. The DOM model has a variety of other XSD-specific features.
However, it is far from capturing the structural complexity of XSD. A tool that
works with DOM and its Java version JDOM is JAXP [9] which is a Java API
for XML processing.

LINQ to XML is an OO interface to XML data that is based on the assumption
that an XML schema is not available [12]. LINQ to XML has a fixed collection
of classes such as XElement, XAttribute, XNode, XContainer, etc. An input
XML document is parsed and viewed through the methods available in these
classes. This approach requires extensive type casting and hence dynamic type
checking. LINQ to XML supports LINQ queries, but the above typing issues
apply to queries just as well.

LINQ to XSD takes a different approach in which specific classes are specified
for specific element types that appear in the source XSD schema [13]. It has a
variety of techniques for representing some structural features of XSD such as
sequence groups, type derivation by inheritance etc. However, the representation
model, as appealing as it may be, is too simple to represent XSD accurately. In
particular, LINQ to XSD does not distinguish between elements and attributes,
has nontrivial problems when the names of elements are repeated, does not
represent the notion of a particle with range constraints, does not represent
identity constraints, and cannot represent type derivation by restriction because
this form of type derivation in XSD is based on constraints.

Paper [16] presents a view of the essence of XSD but it is not object-oriented.
This model is limited to well-established and well-understood constructs in type
systems. However, some of those constructs are actually not available in main-
stream OO languages. Since this approach is based on what is expressible in type
systems, it cannot represent particle structures with general range constraints,
type derivation by restriction in general, or identity constraints.
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The .NET Schema Object Model (SOM) is the most accurate and OO repre-
sentation of XSD that we know of [15]. Given an XSD schema SOM produces
its OO representation which we use in our approach. However, the complexity of
SOM is prohibitive for typical application programmers. This is why we develop
an OO interface that represents a correct abstraction over XSD, but is intellec-
tually manageable [1]. We also use some more recent features of type systems of
mainstream OO languages such as parametric polymorphism, which SOM does
not have. Lack of such typing features in SOM creates undesirable representation
problems for SOM which we do not have.

Data Contracts in .NET is the only system we know of that supports both
schema level and instance level mappings in both directions: from XSD to OO
and the other way around [6,11]. This system relies on SOM. Data Contracts
has nontrivial limitations as to what kind of XSD schema features it can handle.
For example, it cannot handle attributes. In the other direction, Data Contracts
can handle only certain object types whose structure is such that this system
can map them to XSD types.

An analysis of the mismatch between XML and OO languages is presented
in [10]. LINQ to XSD in fact follows some of the representation options from [10].
The main difference between our work [1,2] and [10] is that we represent explicitly
and accurately the structural core of XSD, its particle (elements and groups) and
type hierarchies. In addition, we represent accurately the complex structure of
content models, type derivations, and the identity constraints which are missing
in all other approaches except in SOM.

XML Data Binder [18] also maps XSD schemas into a collection of classes
that could be in Java, C#, C++ and VB. In fact, XML Data Binder generates
code for those classes for access and update methods, as well as for some checks.
Based on what is available from the XML Data Binder web site [18] we could
not see evidence that that XML Data Binder will handle correctly the com-
plexity of XML Schema. This specifically applies to representation of general
particle structures and the XML Schema type hierarchy with type derivations
by restriction and extension. As in most other approaches XML Data Binder
has no way of representing range of occurrences constraints of a general form. It
deals only with special cases. We assume that XML Data Binder can represent
type derivation by extension using inheritance, but there is no indication that
it will somehow represent type derivation by restriction in general when range
constraints are involved. Just like most other approaches, mapping the identity
constraints (keys, referential integrity) in XML Schema is not addressed.

XML Beans [19] seems to have a more elaborate and more accurate represen-
tation of XML Schema in comparison with XML Data Binder. For example, this
applies to representation of XML Schema groups and XML Schema types. XML
Beans also has a structural representation of the identity constraints, similar to
ours. However, XML Beans will have the same problems as XML Data Binder in
representing the ranges constraints or type derivation by restriction in general.

In all the industrial systems that we have seen there is no specification of the
mapping rules from XML Schema to its object-oriented representation. Because
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of that it is hard to see what is actually correctly represented and how. Like-
wise, there is no published algorithm for mapping instances, i.e., input XML
documents into their object-oriented representation. Explicit specification of the
schema mapping rules and the instance mapping algorithm is a major distinction
between our work and the other published results.

The only work we know of that goes beyond the limitations of type sys-
tems is [3,4,5]. This research is based on OO constraint languages such as the
Java Modeling Language [8] or Spec# [14]. It is thus able to represent all the
XSD constraint-related features such as general range constraints for particles,
type derivation by restriction, semantics of different types of groups (sequence
versus choice), and identity constraints (keys and referential integrity). This ap-
proach is also equipped with a prover to verify constraint-related features and
transaction safety with respect to the schema integrity constraints. The over-
all technology is considerably more sophisticated and more complex than the
technology based on type systems, mostly because of the prover which requires
sophisticated users.

7 Conclusions

Our first contribution is to show that in spite of the complexity of XML Schema,
it is actually possible to define its structural core and specify it formally in terms
of the syntactic and typing rules commonly used for mainstream object-oriented
programming languages. This makes it possible to present to object-oriented
programmers a well-defined core of XSD that is intellectually manageable and
a solid basis for complex object-oriented applications that process XML data.
This is important because most object-oriented programmers have a limited
understanding of XML Schema and are not willing to get involved in deciphering
its complexity.

Our second contribution is in the algorithm for mapping XSD schemas to
object-oriented schemas. This algorithm is specified through a collection of rules
that includes the typing assumptions under which the rules apply. Our rules
for mapping XSD schemas into object-oriented schemas are the first such rules
ever specified in an explicit and formal manner. One novelty in these rules is
that they have two important properties: (i) they are lossless for the XSD core;
and (ii) they produce object-oriented interfaces that conform to the rules of
object-oriented type systems of mainstream object-oriented languages.

The rules are lossless in the sense that the mapping from the XSD-core struc-
tures of an XSD schema to object-oriented types preserves the core structural
features which include particle structures (elements and different types of groups)
and the type hierarchy based on type derivations by extension and by restric-
tion. The structural specifications of range constraints and identity constraints
are also preserved. We conjecture that the mapping can be proved to be lossless
in a precise mathematical sense—a subject for future work.

Our third contribution is the first algorithm for mapping XML instances con-
forming to a given source schema to their object-oriented representation. The
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existing object-oriented interfaces to XML have underlying algorithms that are
neither visible nor published.

The framework for the mapping rules allows mapping identity constraints of
the source XSD schema into their object-oriented representation. Although this
representation is necessarily structural, it is critical to avoid losing the integrity
constraints of the source schema, as they are in just about all other approaches.
The implications on data integrity are obvious and nontrivial.
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