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Preface

Five high-quality workshops were held at the 13th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2009) in Bangkok, Thailand
during April 27-30, 2009. There were 17, 6, 9, 4 and 5 accepted papers to be
presented at the Pacific Asia Workshop on Intelligence and Security Informatics
(PAISI 2009), the workshop on Advances and Issues in Biomedical Data Mining
(AIBDM 2009), the workshop on Data Mining with Imbalanced Classes and
Error Cost (ICEC 2009), the workshop on Open Source in Data Mining (OSDM
2009), and the workshop on Quality Issues, Measures of Interestingness and
Evaluation of Data Mining Models (QIMIE 2009). One competition, PAKDD
2009 Data Mining Competition, and one local workshop, Thai Track Session,
were arranged. From these workshops (except PAISI which published its works
in separate LNCS proceedings), we selected two or three best papers for this
LNCS publication. PAKDD is a major international conference in the areas of
data mining (DM) and knowledge discovery in database (KDD). It provides an
international forum for researchers and industry practitioners to share their new
ideas, original research results and practical development experiences from all
KDD-related areas including data mining, data warehousing, machine learning,
databases, statistics, knowledge acquisition and automatic scientific discovery,
data visualization, causal induction and knowledge-based systems.

In general, we wish to thank our General Workshop Co-chairs, Manabu Oku-
mura and Bernhard Pfahringe, for selecting and coordinating the great work-
shops. We would like to thank Junbin Gao (Charles Sturt University), Paul Kwan
(University of New England, Australia), Josiah Poon (University of Sydney), and
Simon Poon (University of Sydney), for their arrangement of AIBDM 2009. We
thank our ICEC 2009 Program Committee, Nitesh Chawla (University of Notre
Dame), Nathalie Japkowicz (University of Ottawa), and Zhi-Hua Zhou (Nanjing
University). We appreciate the OSDM Workshop Committee, Peter Christen
(The Australian National University), and Graham Williams (Togaware, Aus-
tralia) for his good arrangement work at the OSDM 2009. We also thank to the
QIMIE Committee, Philippe Lenca and Stephane Lallich, for their arrangement
of QIMIE 2009. We thank the PAKDD 2009 Data Mining Competition Com-
mittee, led by Paulo J. L. Adeodato. Three excellent papers were selected from
the PAKDD 2009 Thai Track Session to be published in this LNCS volume.

The PAKDD 2009 workshops would not have been successful without the sup-
port of Program Committee members, reviewers, workshop organizers, invited
speakers, organizing staff, and supporting organizations. Last but not least, spe-
cially thanks to our Organizing Committee members, including KIND laboratory
at SIIT, Thammasat University, Nattapong Tongtep, Juniar Ganis, Peerasak
Intarapaiboon, Jakkrit TeCho, Nichnan Kittiphattanabawon, Piya Limcharoen,
for the publication of the PAKDD Workshops proceedings in the series of Lecture
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Notes in Computer Science, and to Wirat Chinnan and Swit Phuvipadawat for
their support of the PAKDD 2009 conference and workshop website. While the
arrangement of the PAKDD 2009 conference and workshop involved so many
people, we would like to extend an additional thank you to the contributors who
helped with the PAKDD 2009 conference and workshop but their names may
not be listed.

We greatly appreciate the support from various institutions. The confer-
ence was organized by the Sirindhorn International Institute of Technology
(SIIT), Thammasat University (TU) and co-organized by the Department of
Computer Engineering, Faculty of Engineering, Chulalongkorn University (CU),
and Asian Institute of Technology (AIT). It was sponsored by the National
Electronics and Computer Technology Center (NECTEC, Thailand), the Thai-
land Convention and Exhibition Bureau (TCEB), and the Air Force Office
of Scientific Research/Asian Office of Aerospace Research and Development
(AFOSR/AOARD). Finally, we wish to thank all authors and all conference
participants for their contribution and support.
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Thanaruk Theeramunkong
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The iZi Project: Easy Prototyping of
Interesting Pattern Mining Algorithms

Frédéric Flouvat1, Fabien De Marchi2, and Jean-Marc Petit2

1 University of New Caledonia, PPME, F-98851, Noumea, New Caledonia
frederic.flouvat@univ-nc.nc

2 Université de Lyon, CNRS
Université Lyon 1, LIRIS, UMR5205, F-69621, France

fabien.demarchi@liris.cnrs.fr
3 Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69621, France
jean-marc.petit@insa-lyon.fr

Abstract. In the last decade, many data mining tools have been devel-
oped. They address most of the classical data mining problems such as
classification, clustering or pattern mining. However, providing classical
solutions for classical problems is not always sufficient.

This is especially true for pattern mining problems known to be “rep-
resentable as set”, an important class of problems which have many
applications such as in data mining, in databases, in artificial intelli-
gence, or in software engineering. A common idea is to say that solutions
devised so far for classical pattern mining problems, such as frequent
itemset mining, should be useful to answer these tasks. Unfortunately,
it seems rather optimistic to envision the application of most of publicly
available tools even for closely related problems.

In this context, the main contribution of this paper is to propose a
modular and efficient tool in which users can easily adapt and control
several pattern mining algorithms. From a theoretical point of view, this
work takes advantage of the common theoretical background of pattern
mining problems isomorphic to boolean lattices. This tool, a C++ li-
brary called iZi, has been devised and applied to several problems such
as itemset mining, constraint mining in relational databases, and query
rewriting in data integration systems. According to our first results, the
programs obtained using the library have very interesting performance
characteristics regarding simplicity of their development. The library is
open source and freely available on the Web.

1 Introduction

In the last decade, many data mining tools have been developed [1]: standalone al-
gorithm implementations [2,3], packages [4], libraries [5], complete softwares with
GUI [6,7] or inductive databases prototypes [8,9] . They address most of the clas-
sical data mining problems such as classification, clustering or pattern mining.

T. Theeramunkong et al. (Eds.): PAKDD Workshops 2009, LNAI 5669, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 F. Flouvat, F. De Marchi, and J.-M. Petit

However, providing classical solutions for classical problems is not always
sufficient. For example, frequent itemset mining (FIM) is a classical data min-
ing problems with applications in many domains. Many algorithms and tools
have been proposed to solve this problem. Moreover, several works, such as [10],
shown that FIM algorithms can be used as a building block for other, more so-
phisticated pattern mining problems. This is especially true for pattern mining
problems known to be “representable as set” [10], an important class of problem
which have many applications such as in data mining (e.g. frequent itemset min-
ing and variants [11,12]), in databases (e.g. functional or inclusion dependency
inference [13,14]), in artificial intelligence (e.g. learning monotone boolean func-
tion [15]), or in software engineering (e.g. software bug mining [16]).

In this setting, a common idea is to say that algorithms devised so far should
be useful to answer these tasks. Unfortunately, it seems rather optimistic to
envision the application of most of publicly available tools for frequent itemset
mining, even for closely related problems. For example, frequent essential itemset
mining [17] (as well as other conjunctions of anti-monotone properties) is very
closely related to FIM. Actually, only the predicate test is different. In the same
way, mining keys in a relational database is a pattern mining problem where,
from a theoretical point of view, FIM strategies could be used. However, in both
cases, users can hardly adapt existing tools to their specific requirements, and
have to re-implement the whole algorithms.

Paper contribution. In this context, the main contribution of this paper is
to propose a modular and efficient tool in which users can easily adapt and
control several pattern mining algorithms. From a theoretical point of view, this
work takes advantage of the common theoretical background of pattern mining
problems isomorphic to boolean lattices. This tool, a C++ library called iZi, has
been devised and applied to several problems such as itemset mining, constraint
mining in relational databases and query rewriting in data integration systems.
According to our first results, the programs obtained using the library have very
interesting performance performance characteristics regarding simplicity of their
development. The library is open source and freely available on the Web.

Paper organization. Section 2 discusses the value of our proposition w.r.t. ex-
isting related works. Section 3 introduces the iZi library. This section presents the
underlined theoretical framework, points out how state of the art solutions can be
exploited in our generic context, and describes the architecture of the iZi library. A
demonstration scenario is presented in Section 4. Experimentations are described
in Section 5. The last section concludes and gives some perspectives of this work.

2 Related Works

One may notice that algorithm implementations for pattern mining problems
are “home-made” programs, see for example implementations available in FIMI
workshops [2,3].

Packages, libraries, software, inductive databases prototypes have also been
proposed, for instance Illimine [4], DMTL [5], Weka [6], ConQuest [8] and [9].
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Except DMTL, they provide classical algorithms for several data mining tasks
(classification, clustering, itemset mining...). However, their algorithms are very
specific and could not be used to solve equivalent or closely related problems. For
example, even if most of these tools implement an itemset mining algorithm, none
of them can deal with other interesting pattern discovery problems. Moreover,
their source codes are not always available.

DMTL (Data Mining Template Library) is a C++ library composed of al-
gorithms and data structures optimized for frequent pattern mining. Different
types of frequent patterns (sets, sequences, trees and graphs) using generic al-
gorithms implementations are available. Actually, DMTL supports any types of
patterns representable as graphs. Moreover, the data is decoupled of the algo-
rithms, and can be stored in memory, files, Gigabase databases (an embedded
object relational database), and PSTL [18] components (a library of persistent
containers). This library currently implements an exploration strategy: a depth-
first approach (eclat-like [19]). Moreover, some support for breadth-first strate-
gies is also provided. These algorithms could be used to mine all the frequent
patterns of a given database.

To our knowledge, only the DMTL library has objectives close to iZi. Even if
objectives are relatively similar w.r.t. code reusability and genericity, the moti-
vations are quite different: while DMTL focuses on patterns genericity w.r.t. the
frequency criteria only, iZi focuses on a different class of patterns but on a wider
class of predicates. Moreover, iZi is based on a well established theoretical frame-
work, whereas DMTL does not rely on such a theoretical background. However,
DMTL encompasses problems that cannot be integrated into iZi, for instance
frequent sequences or graphs mining since such problems are not isomorphic to
a boolean lattice. The iZi library is complementary to DMTL since it offers the
following new functionalities:

1. any monotone predicate can be integrated in iZi, while DMTL “only” offers
support for the “frequent” predicate;

2. the structure of the patterns does not matter for iZi, while the patterns stud-
ied by DMTL must be representable as graphs (e.g. inclusion dependencies
cannot be represented in DMTL);

3. while DMTL only gives all frequent patterns, iZi is able to supply different
borders of “interesting” patterns (positive and negative borders). These bor-
ders are the solutions of many pattern mining problems. Moreover, end-users
often do not care about all the patterns and prefer a smaller representation
of the solution.

3 A Generic and Modular Solution for Patterns
Discovery

3.1 A Generic Theoretical Framework

The theoretical framework of [10] formalizes enumeration problems under con-
straints, i.e. of the form “enumerate all the patterns that satisfy a condition”.
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When the condition must be verified in a data set, the word ”enumerate” is com-
monly replaced by “extract”. Frequently, the problem specification requires that
patterns must be maximal or minimal w.r.t. some natural order over patterns.

Consequently, common characteristics of these problems are: 1) the predicate
defining the interestingness criteria is monotone (or anti-monotone) with respect
to a partial order � over patterns, 2) there exists a bijective function f from the
set of patterns to a boolean lattice and its inverse f−1 is computable, and 3) the
partial order among patterns is preserved, i.e. X � Y ⇔ f(X) ⊆ f(Y ).

3.2 Algorithms

The classical way to solve pattern mining problems is to develop ad-hoc solu-
tions from scratch, with specialized data structures and optimization techniques.
If such a solution leads to efficient programs in general, it requires a huge amount
of work to obtain a sound and operational program. Moreover, if problem specifi-
cations slightly change over time, a consequent effort should be made to identify
what parts of the program should be updated.

One of our goal is to factorize some algorithmic solutions which can be com-
mon to any pattern mining problem representable as sets.

Currently, many algorithms from the multitude that has been proposed for the
FIM problem could be generalized and implemented in a modular way, from well
knowns Apriori algorithm [20] or depth-first approaches, to more sophisticated
dualization-based algorithms (Dualize and Advance [21] or ABS [14,22]).

However, some algorithms don’t fit in this framework because they are not
based on a clear distinction between the exploration strategy and the problem.
For example, FP-growth like algorithms [23] cannot be used into this framework
since their strategy is based on a data structure specially devised for FIM. In
the same way, condensed representations based algorithms like LCM [24] cannot
be applied to any pattern mining problem representable as sets.

The need to have multiple strategies in a pattern mining tool is twofold. First,
note that the type of solution discovered by each algorithm is specific. For ex-
ample, the Apriori algorithm discover (without any overhead) the theory and
the two borders, whereas dualization-based algorithms “only” discovers the two
borders. Since depending on the studied problem, we might be interested in ei-
ther the theory, or the positive border, or the negative border, it is necessary
to have multiple strategies to enable the discovery of the required solution. Sec-
ondly, as shown by the FIMI workshops, the algorithms performance depend
on dataset/problem characteristics. For example, the Apriori algorithm is more
appropriate when the theory is composed of relatively small elements, i.e. so-
lutions are small patterns. Consequently, several algorithms must be integrated
into a pattern mining tool to have the best performances according to problem
properties.

3.3 The iZi Library

Based on the theoretical framework introduced in Section 3.1, we propose a C++
library, called iZi, for this family of problems. The basic idea is to offer a toolkit
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providing several efficient, robust, generic and modular algorithm implementa-
tions. The development of this library takes advantage of our past experience to
solve particular pattern mining problems such as frequent itemsets mining, func-
tional dependencies mining, inclusion dependencies mining and query rewriting.

Architecture. Figure 1 represents the architecture and the “workflow” of our
library: The algorithm is initialized (initialization component) with patterns
corresponding to singletons in the set representation, using the data (data access
component). Then, during the execution of the algorithm, the predicate is used
to test each pattern against the data. Before testing an element, the algorithm
use the set transformation component to transform each set generated into the
corresponding pattern.

This architecture is directly derived from the studied framework and has the
main advantage of decoupling algorithms, patterns and data. Only the predicate,
set transformation and initialization components are specifics to a given prob-
lem. Consequently, to solve a new problem, users may have to implement or reuse
with light modifications some of these components.

The algorithm component represents generic algorithm implementations pro-
vided with the library and used to solve pattern mining problems. As shown
in Figure 1, algorithms are decoupled from the problems and are a black
box for users. Each algorithm can be used directly to solve any problem fitting
in the framework without modifications. This leads to the rapid construction
of robust programs without having to deal with low level details. Currently,
the library offers a levelwise algorithm [10], a dualization-based algorithm, and
two other variants of these algorithms. These variants globally have the same
strategy but explore the search space in a different way (top-down exploration
instead of bottom-up) which is more appropriate for some predicates. Finally,
depth-first strategies are also currently being integrated.

Another important aspect of our library is that data access is totally decoupled
of all other components (see Figure 1). Currently, data access in most of the
other implementations is tightly coupled with algorithm implementations and

Fig. 1. iZi “workflow”
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predicates. Consequently, algorithms and “problem” components can be used
with different data formats without modifications.

Figure 2 presents how the library works for the IND (INclusion Dependency)
mining problem. We suppose in this example that the algorithm used is the
levelwise strategy.

Fig. 2. IND mining example

Data structures. Since internally each algorithm only manipulates sets, we use a
data structure based on prefix-tree (or trie) specially devoted to this purpose [25].
For example, Figure 3 represents the prefix-tree data structure associated to the
set {{A, C}, {A, D, F}, {A, D, G}, {A, E}, {D, E}, {E, F, G}, {E, G}}.

They have not only a power of compression by factorizing common prefix in
a set collection, but are also very efficient for candidate generation. Moreover,
prefix-trees are well adapted for inclusion and intersection tests, which are basic
operations when considering sets. Of course, as for algorithms, one can imagine

Fig. 3. Example of trie data structure
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to extend our library with alternative structures for sets, like bitmaps. The use
of indexes is also an important issue but not considered yet.

Note that template trie container and iterator are provided with the library.
Actually, two trie implementations are available with the library: one optimized
for data compression and one optimized for data search. Their implementation
have been mapped on the implementations of the standard C++ STL (Standard
Template Library) containers. This class also contains an implementation of an
incremental algorithm, based on trie data structures, for the minimal transversals
computation of an hypergraph.

Implementation issues. Figure 4 presents, from an implementation point of
view, a UML model of the library. In particular, this model specifies how pat-
terns and sets interact with the other components: patterns are used in problem
specific components and sets are used internally by the algorithms. This model
also points out the possibility to do predicate composition which is the case
in many applications (e.g. itemset mining using conjunction of monotone con-
straints). For data access, this model distinguishes two cases: input data and
output data. Input data is used by the predicate to test patterns and is totally
independent of the algorithms. Output data is used by the algorithm to output
the solutions (theory and/or positive border and/or negative border).

Fig. 4. iZi UML model

Moreover, thanks to this model and to the object-oriented paradigm, users can
also implement algorithm and predicate variants/refinements, i.e. use inheritance
to define new algorithms or predicate based on existing ones. Figure 5 presents an
example of algorithm and predicate variants/refinements already implemented.
In this figure, the frequent class represents the frequent itemset mining predicate,
and the frequent essential class represents the predicate for a condensed represen-
tation of frequent itemsets. In the same way, the Dualization class represents
the dualization based algorithm provided in iZi and the ReverseDualization
class represents a variant of this algorithm changing the exploration strategy.
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Fig. 5. Example of algorithm and predicate variants/refinements

In our context, another interesting property is method overloading which can
be used to optimize some predicates sub-methods w.r.t. specific data structures.
For example, the support counting method is crucial for frequent itemset mining
algorithms. Using method overloading, it is for example possible to have a generic
support counting method and one optimized for trie data structures. Thanks
to this property, it is possible to have a good trade-off between components
genericity and algorithms performances.

Finally, to solve a new problem, users only have few implementations con-
straints. For example, their predicate and set transformation classes have to
be functors (i.e. function objects) with the same signature for the operator()
method, and output data classes must only have a push back() method. To fa-
cilitate these developments, abstract base classes are provided with the library
as well as sample components.

4 Demonstration Scenario

From our past experience in the development of pattern mining algorithms, we
note that the adaptation of existing implementations is extremely difficult. In
some cases, it implies the redevelopment of most of the implementation and
could take more time than developing a new program from scratch.

As shown in Table 1, many problems have been implemented in our library
along with several data types and data sources components. For itemset mining,
the format considered is the FIMI file format which has been defined by the
FIMI workshops [2,3] to store transactional databases in a text file. This data
format is widely used for this family of problems. For constraint mining in re-
lational databases, components have also been developed to access data in files

Table 1. Problems and data sources experimented with iZi

Data type Problem File (format) DBMS
tabular inclusion dependencies [14] CVS MySQL

FDEP [26]
tabular keys [10] CVS MySQL

FDEP [26]
binary frequent itemsets [11] FIMI [2,3]
binary frequent essential itemsets [17] FIMI [2,3]

set sub-problems of query rewriting [27] specific
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(CSV format of Excel and FDEP format defined by [26]) and in the MySQL
DBMS. For query rewriting in integration systems, we have studied two combi-
natorial sub-problems (i.e. two different predicates). The data access and output
components processed specific file formats.

As indication, the use of our library to implement a program for the key
mining problem in a relational database has been done in less than one working
day. Based on these components, the following scenario will show the simplicity
of solving a new problem using iZi.

Let us suppose that a user wants to solve a new pattern mining problem using
iZi: for example inclusion dependencies mining. First, the user has to check
some theoretical aspects:

1. Is the problem an “enumeration problem under constraint”?
An inclusion dependency (IND) is an expression of the form R[X ] ⊆ S[Y ],
where R and S are relation schemas of a same database schema D. Such a
constraint ensures that, for any relations r and s over R and S, any X-value
into r is a Y -value into s . If Y is a key in S, then X is a foreign key in R.
Inclusion dependency discovery is a way to discover foreign keys and other
more general semantic constraints. It can be stated as follows:

IND mining problem (referred to as IND): Let d be a database over
a schema D, extract (maximal) inclusion dependencies satisfied in d. Let
IND(d) = {R[X ] ⊆ S[Y ] | R, S ∈ D, R[X ] ⊆ S[Y ] is satisfied in d}.

2. What are the patterns, the partial order and the predicate? Is the
predicate (anti-)monotone?
a. The pattern language Lind is composed of all the IND expressions that

can be expressed into a database schema.
b. The predicate Pind(R[X ] ⊆ S[Y ], d) is true, if πX(r) ⊆ πY (s) (with π

the projection operator of the relational algebra).
c. From a well known inference rule for INDs [28], if an IND is satisfied,

then any IND obtained by applying the same projection on the left and
right-hand sides is satisfied. As an example, if R[ABC] ⊆ S[EFG] is
satisfied, then the following INDs (not exhaustive) are satisfied: R[A] ⊆
S[E], R[B] ⊆ S[F ], R[C] ⊆ S[G], R[BC] ⊆ S[FG], R[CB] ⊆ S[GF ]...
Consequently, the partial order is defined by projections over INDs.

Considering the partial order defined by projections over INDs, the predicate
Pind(R[X ] ⊆ S[Y ], d) is anti-monotone (see [14] for the proof).

The IND mining problem can be reformulated as follows [14]:

IND(d) = Bd+(Th(Lind, d, Pind))

3. What is the function f that guarantees the isomorphism with a
boolean lattice ? (see [14] for more details on this point)
The search space of IND is not a boolean lattice at all. As an example,
consider the two INDs R[X ] ⊆ S[Y ] and R[X ′] ⊆ T [Z]. They do not have an
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upper bound (i.e. a common specialization), such as R[XX ′] ⊆ S[Y Z] for
R[X ] ⊆ S[Y ] and R[X ′] ⊆ S[Z], since they don’t consider the same relations.
To solve this, we have to consider the subproblems IND(r, s) for each pair of
relations {r,s} in d. However, the search spaces of these subproblems are still
not boolean lattices. For example R[A] ⊆ S[E] and R[B] ⊆ S[F ] have two
possible least upper bound, which are R[AB] ⊆ S[EF ] and R[BA] ⊆ S[FE].
In order to fit each subproblem into a boolean lattice context, we define the
function f which transforms any IND into the set of all unary INDs (i.e.
INDs between single attributes) obtained by projection. Thus, f(R[AB] ⊆
S[EF ]) = {R[A] ⊆ S[E]; R[B] ⊆ S[F ]}. Now, the desirable property is that
f must be a bijection between IND search space and the powerset of all
unary INDs. However:

– f is not a one-to-one function, since f(R[AB] ⊆ S[EF ]) = f(R[BA] ⊆
S[FE]). The solution is to restrict the IND search space to INDs with a
sorted left-hand side. Thanks to the “permutation inference rule”, this
restriction leads to no loss of knowledge [28].

– f is not surjective, since e.g. f−1({R[A] ⊆ S[E]; R[B] ⊆ T [G]}) cannot
be defined. To cope with this problem, one needs to mine INDs from
pairs of relations one by one. Moreover, duplicate attributes must be
allowed in IND definition as it is done in [29].

With the above restrictions, one can easily verify that f is an isomorphism
between IND search space and the powerset of unary INDs.
The search space C of INDs over (R, S) is defined by: C(R, S) = {R[<
A1...An >] ⊆ S[< B1...Bn >] | ∀1 ≤ i < j ≤ n, (Ai < Aj)∨ (Ai = Aj ∧Bi <
Bj)} where n = min(|R|, |S|).

Let I1 be the set of unary INDs over R. The function f : C −→ P(I1) is
defined by: f(i) = {j ∈ I1 | j � i}. The function f : C −→ P(I1) is bijective
and its inverse function f−1 is computable. Moreover, given i and j two IND
expressions of C, i � j ⇔ f(i) ⊆ f(j).

Consequently, f is an isomorphism from (C,�) to (P(I1),⊆), that is to
say that the search space of INDs is representable as sets.

Let Lind = C(R, S), the search space of IND(r, s) is isomorphic to a
boolean lattice, and the function f is f : C −→ P(I1) (see [14] for the
proof).

This example is a typical case: the problem becomes representable as sets
by restricting the language to be used to define the search space (without
any loss of knowledge thanks to patterns properties).

Secondly, the user has to develop (or adapt) several components:

4. the data access component. Suppose in this scenario that the data is
stored in a MySQL database, and that a component for this data source is
already implemented.

5. the initialization component, which will initialize unary INDs using
databases schemas.
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6. the set transformation component, which will transform an IND in a
set of unary INDs (and inversely).

7. the predicate component, which will test if the IND in parameter is
satisfied in the database (using the data access component).

Note that as shown by their source code, all these components are simple with
few lines of code. Moreover, if some of them are already developed, the user
can directly reuse them without modifications. See as an example Figure 6 for
an implementation of the predicate component for IND mining in a MySQL
database.

Fig. 6. Example of IND predicate implementation

From this moment, the user can directly use any algorithm provided with iZi in
his/her source codes, compile and execute the algorithm to find all satisfied INDs.

5 Experimentations

Our motivation here is to show that our generic library has good performance
characteristics w.r.t. specialized and optimized implementations.

We present some experimental results for frequent itemset mining, since it is
the original application domain of the algorithms we used and the only common
problem with DMTL. Moreover, many resources (algorithms implementations,
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datasets, benchmarks...) are available on Internet [30] for frequent itemset min-
ing. For other problems such as key mining, even if algorithms implementations
are sometimes available, it is difficult to have access to the datasets. As an exam-
ple, we plan to compare iZi with the proposal in [31] for key mining. Unfortunately,
neither their implementation, nor their datasets have been made available in time.

Implementations for frequent itemset mining are very optimized, specialized,
and consequently very competitive. The best performing ones are often the re-
sults of many years of research and development. In this context, our experimen-
tations aims at proving that our generic algorithms implementations behave well
compared to specialized ones. Moreover, we compare iZi to the DTML library,
which is also optimized for frequent pattern mining.

Experiments have been done on some FIMI datasets [2,3] on a pentium 4.3GHz
processor, with 1 Go of memory. The operating system was Ubuntu Linux 6.06
and we used gcc 4.0.3 for the compilation. We compared our Apriori generic
implementation to two others devoted implementations: one by B. Goethals [32]
and one by C. Borgelt [33]. The first one is a quite natural version, while the
second one is, to our knowledge, the best existing Apriori implementation, de-
veloped in C and strongly optimized. Then, we compared “iZi Apriori” and “iZi
dualization based algorithm” to the eclat implementation provided with DMTL.

In Table 2, three Apriori implementations are compared w.r.t. their execu-
tion times (in milliseconds) for datasets Connect (129 items and 67 557 trans-
actions), Pumsb (2 113 items and 49 046 transactions) and Pumsb∗ (2 088
items and 49 046 transactions). One can observe that our generic version has
good performance with respect to other implementations. These results are very
encouraging, in regards of the simplicity to obtain an operational program.

In Table 3, iZi and DMTL are compared w.r.t. their execution times (in mil-
liseconds) for the same datasets. Even if DMTL is optimized and specialized for
the frequent predicate, algorithm implementations of iZi have good performances
w.r.t. eclat DMTL . The difference between the two libraries is mainly due to the
algorithm used during the experimentations. This could be easily confirmed by
looking at the performances of Apriori, Eclat and dualization based algorithms
observed during FIMI benchmarks [30].

Table 2. Comparison of three Apriori implementations (in milliseconds)

Apriori iZi Apriori Goethals Apriori Borgelt
Connect 90% 23 000 133 000 1 000
Pumsb 90% 18 000 14 000 1 000
Pumsb* 60% 2 000 4 000 1 000

Table 3. Comparison of iZi and DMTL implementations (in milliseconds)

Apriori iZi ABS iZi eclat DMTL
Connect 90% 23 000 8 000 17 000
Pumsb 90% 18 000 18 000 8 000
Pumsb* 60% 2 000 2 000 5 000
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6 Discussion and Perspectives

In this paper, we have considered a classical problem in data mining: the discov-
ery of interesting patterns for problems known to be representable as sets, i.e.
isomorphic to a boolean lattice. In addition to the interest of our library to solve
new problems, iZi is also very interesting for algorithm benchmarking. Indeed,
thanks to the modularity of iZi, it is possible to test several data representations
(e.g. prefix tree or bitmap) or several predicates, with the same algorithm source
code. Thus, it enables a fair comparison and test of new strategies. iZi has also
been used for educational purpose. Using the library, students can better un-
derstand where the key issues are in pattern mining. For example, for frequent
itemset mining, they often underestimate the importance of support counting in
the algorithm performance. By allowing to easily change the strategy used for
support counting, iZi enables to better understand how this affects algorithms
performances.

To our knowledge, this is the first contribution trying to bridge the gap be-
tween fundamental studies in data mining around inductive databases [10,21,34]
and practical aspects of pattern mining discovery. Our work concerns plenty of
applications from different areas such as databases, data mining, or machine
learning.

Many perspectives exist for this work. First, we may try to integrate the notion
of closure which appears under different flavors in many problems. The basic re-
search around concept lattices [35] could be a unifying framework. Secondly, we
are interested in integrating the library as a plugin for a data mining software
such as Weka [6]. Analysts could directly use the algorithms to solve already
implemented problems or new problems by dynamically loading their own com-
ponents. Finally, a natural perspective of this work is to develop a declarative
version for such mining problems using query optimization techniques developed
in databases [36].
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Abstract. Imbalanced datasets occur in many domains, such as fraud
detection, cancer detection and web; and in such domains, the class of
interest often concerns the rare occurring events. Thus it is important to
have a good performance on these classes while maintaining a reasonable
overall accuracy. Although imbalanced datasets can be difficult to learn,
but in the previous researches, the skewed class distribution has been
suggested to not necessarily being the one that poses problems for learn-
ing. Therefore, when the learning of the rare class becomes problematic,
it does not imply that the skewed class distribution is the cause to blame,
but rather that the imbalanced distribution may just be a byproduct of
some other hidden intrinsic difficulties.

This paper tries to shade some light on this issue of learning from
imbalanced dataset. We propose to use data complexity models to profile
datasets in order to make connections with imbalanced datasets; this
can potentially lead to better learning approaches. We have extended
from our previous work with an improved implementation of the CODE
framework in order to tackle a more difficult learning challenge. Despite
the increased difficulty, CODE still enables a reasonable performance on
profiling the data complexity of imbalanced datasets.

Keywords: Imbalanced datasets, Data complexity.

1 Introduction

The imbalanced dataset problem is an important research area that has received
a growing amount of attention over the past few years. Motivations for solving
some of the imbalanced dataset problems are attached with great economical
values. The economical incentives come from problems like credit card fraud
detection, cancer detection, and marketing selections. These problems can easily
cost billions of dollar every year across the globe. The problem of imbalanced
datasets happens because the conventional machine learners aim to maximize
the overall accuracy, which will lead to a bias towards the majority class under
imbalanced situations. However, with imbalanced datasets, the interesting class
is often the rare class. Therefore, it is better to have a good performance on the
rare class while maintaining a reasonable overall accuracy.
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In the imbalanced dataset community, it has been suggested that the skewed
class distribution may be a consequence of another disguised intrinsic problem.
Yet, there is still no systematic way of explaining what underlying causes are
affecting the learning performance of an imbalanced dataset. We think the answer
could be found through data complexity analysis.

In this paper, we continue to explore the data complexity models under im-
balanced situations. In our previous work [16], we have proposed an alternative
data complexity framework that tries to describe data complexity based on the
local information of the problem rather than only taking a broad, global analysis,
which can often be misleading due to the effect of the majority class. We have
updated our work, and the new materials in this paper include: a more refined
explanation of CODE with a slight name change, an improved implementation
of CODE, as well as results from more real world datasets.

The next section discusses the related works, it is then followed by a section
introducing our CODE framework. We describe our experimental setup in section
4, and these results will then be presented with discussions in section 5. Lastly,
we will conclude by proposing some possible future investigations.

2 Related Works and Motivations

There have been many attempts to resolve the imbalanced dataset problem.
The biggest problem that we see is the lack of overall guidance as to which cause
needs to be solved in any imbalanced dataset. Researchers have been working on
different methods and carrying out experiments in different domains, and still, we
have yet to agree on standard benchmark datasets also on a systematic approach
for resolving class imbalance problem. Currently, the most common approach for
resolving class imbalance is the re-sampling strategy. Other approaches vary from
modifying existing algorithms, cost sensitive learning, one-class learning, or some
combination of the above [4,2,13].

It is suggested that class imbalance does not always hinder classification
performance[11,8]. The problem seems to be related to learning with a small
target class size when it is in the presence of other factors, e.g. class overlapping
[10]. The experiments conducted by [9] have also suggested that the degradation
in performance is not directly caused by class imbalances, but rather, the small
disjuncts.

In an attempt to address the issue of how to learn from an imbalanced dataset,
we will utilize data complexity framework. Data complexity in our context is
defined as the degree of difficulty to learn from a dataset. The data complexity
measurements are derived for quantifying the data complexity. Our approach
is mainly geometrically-based, meaning we are looking at the location of data
points and how they are distributed across the feature space, as well as the
relationship between the data points in terms of their geometrical position in
the feature space, e.g. their distances measured by Euclidean distance.

As far as we know, the relevant work on measuring data complexity is done by
[6]. They composed a set of data complexity measurements and they were able to
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show a notable difference in the data structure between a real world dataset and
a random noise dataset. They observed the existence of a relationship between
the overall learning performance and the data complexity measurements. They
further suggested the possible use of data complexity measurements to guide
the dynamic selection of classifiers for certain problems. Their measurements
provided a global view of data complexity of which they looked at data point
distribution across feature space, noise level, amount of sub-clusters, distance ra-
tio of intra-class and inter-class examples, the non-linearity of the dataset, and
fisher discriminate ratio. However, the limitation of their work is their frame-
work’s inability to reflect the performance of the rare class due to the dominat-
ing effect of the majority class. There is another work done by [14], in which
they have also looked at the data complexity model by [6] and tried to ana-
lyze how learner’s performance can be explained by looking at data complexity
measurements. However, they only looked at two datasets and did not apply
any correlation analysis to make the relationship more explicit. Therefore, we
have further explored data complexity in [16] with the CODE framework and
also extending the work done by [6]. We have both compared the data complex-
ity framework and carried out experiments with real world datasets; we have
found some promising results from this, and they indicate that data complexity
is capable of capturing the level of difficulty presented in imbalanced datasets.

The data complexity approach is related to the meta-learning research [12]
because data complexity measurements can also be seen as meta-information.
However, we have a different focus in this paper. While meta-learning is about
exploiting meta-knowledge about learning in order to enhance the learning perfor-
mance; our focus is to find a connection between the imbalanced dataset problem
and data complexity. Therefore, we focus more on finding an explanation behind
the problem rather than solving the problem; which in our opinion, is the first step
to take towards answering difficult questions in the imbalanced dataset commu-
nity. Questions like, when can an imbalanced dataset cause problems for learn-
ing, when to employ the over-sampling or the under-sampling approach, and an
even more fundamental question is how to precisely define the imbalanced dataset
problem instead of setting a threshold on the class distribution or size.

3 CODE

We have developed CODE, a new data complexity framework, as an alternative
to the existing data complexity measurements. Our objective is to improve the
previous data complexity model in terms of the computational cost as well as
the ability to describe the data complexity of an imbalanced dataset. The main
difference between CODE and the previous complexity measurements is that
CODE utilizes local information of a dataset to capture the data complexity. The
local information that we are referring to is in the sense of a region. Regardless
of the referenced space, when we talk about local information it refers to an
enclosure of space and the information about the enclosed space is considered to
be a local information. In contrast to local information is the global information,
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Fig. 1. Local v.s. global information

This simple example illustrates the difference between local and global information.
The above 1D dataset contains 66.7% circle objects and 33.3% square objects, this is
a global information; whereas the enclosed region between 0 and 5 contains 40% circle
objects and 60% square objects, this is a local information about the referenced region.

which is the information collected from the whole dataset. Figure 1 is a simple
illustration of the difference between the two different levels of information. Local
information requires an enclosed region to generate information that is local to
that referenced region. However, if we extend the enclosed space to cover the
whole dataset, then global information can actually be local information as well,
but this would probably defeat the purpose of having a more localized data
complexity measurements. The acronym, CODE, stands for 4 concepts: Cluster,
Overlap, Density and Error. These four concepts is designed to work together as
a single unit so they are meant to compliment one another. We will go through
each concept and describe how they work.

The first concept is Cluster, which plays a big part in the CODE framework.
In this first concept, the dataset is divided into smaller groups so that we can col-
lect local information on an imbalanced dataset to give a more appropriate and
somewhat more representative data complexity measurements. The use of local
information has been shown to be more resilient to the dictating influence of the
majority class [16]. By restricting the space to more manageable parts is an advan-
tage because it can potentially separate the difficult clusters from the easy ones,
so the learning process could potentially made more flexible and adaptive.

Overlap, as the name suggests, is a measurement for detecting how much
the classes have overlapped with each other. Intuitively, high degrees of class
overlapping makes the dataset more difficult to learn. In literature, the effect of
class overlapping in imbalanced datasets have been investigated [3,10], and from
their experiments, we see there is a direct correlation between the two. So more
overlapping tend to make the imbalanced dataset harder to learn. Therefore,
the rationale is to quantify the level of difficulty in separating different class
examples.

Density looks at the distribution of data points in the feature space, e.g.
dense and sparse areas in the space. The concept is inspired by [18], where SVM
have been reported to produce misaligned decision boundary for an imbalanced
dataset due to the uneven distribution of the two classes. This phenomena will
lead to more false negatives because SVM will place the “optimal” hyperplane
much too close to the rare class examples. Therefore, the Density concept aims to
help better understand the dynamics between the different distribution of data
points in the dataset. By doing so, it can also be effective at capturing the intra
v.s. inter class imbalance phenomenon that was discussed in the literature[7].
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Error is a concept that looks at the level of noise in a dataset, which is
meant to identify any irregularities, outliers, or potential errors in a dataset. This
measurement tries to quantify how much noise is present in a dataset because it
is generally agreed that the quality of a dataset has a direct impact on the upper
bound of the learning performance. It has also been discussed in the literature
that the noise is a contributing factor in the imbalanced datasets learning process
[13]. Another way of thinking about this concept is to think about the coherence
of the data, so if a group of data points has high coherence it would imply that
there is a sense of harmony in the group because data points fits well together,
which would lead to low noise level in the dataset.

CODE is designed to be a general conceptual framework, so there is no one
fixed implementation and each concept in CODE can be implemented into dif-
ferent sets of practical data complexity measurements. In the next section we
will describe an implementation of CODE.

3.1 CODE Updated

In our initial implementation of CODE, the first step clustering was done with
k-mean, but in the updated version of CODE we uses EM instead. We have made
the change because EM will automatically determine the number of clusters by
running cross validation, and even though it requires more computation, but it
eliminates the need to preset the number of clusters.

After clustering, we measure different attributes for their ability to separate
different class examples. There are two types of attribute in our consideration:
numeric and nominal attributes. For any dataset, we would like to measure
the goodness of its best attribute for separating the two class. However, due
to the difference of numeric and nominal attributes, we will perform different
measurement for each type of attributes. In the end, base on the value computed,
we take the best attribute, one for each attribute type, for separating the classes
among all the attributes as the resulting measurement. The changes that we have
incorporated in the updated version is to make adjustments to the formulas
in order to make sure that the value is more consistent with the wording of
“overlapping”, which means the higher the value, the higher the overlapping.

For the numeric attributes, we use numeric overlapping formula(numOverlap),
which is the inverse of fisher discriminant ratio [6]. The formula for fisher dis-
criminant ratio is shown in equation 1, where μ1, μ2, σ2

1 and σ2
2 are means and

variances of the two classes:

fisher =
(μ1 − μ2)

2

σ2
1 + σ2

2
(1)

and the reason for using the inverse of fisher is for consistency with the meaning
of overlapping, which is the opposite of discriminant. Therefore, the numeric
overlapping has the following formula:

numOverlap =
1

fisher
=

σ2
1 + σ2

2

(μ1 − μ2)
2 (2)
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The formula for nominal attribute was inspired by the value difference metric [17]
and we have formulated it as in equation 3:

nomRatioa =
n∑

v=0

minNa,v,c

maxNa,v,c
× Na,v

total
(3)

nomOverlap = min([nomRatio0, nomRatio1, ...nomRatiom]) (4)

where Na,v is the number of instances in the training data that has value v for
the attribute a. We can further split Na,v into different classes, writing as Na,v,c,
this means the number of class c instances with the value v for the attribute a.
Since we are currently only deal with two-class problems, so minNa,v,c denotes
the value for the class with a smaller Na,v and maxNa,v,c is the other class, which
has a larger Na,v. The reason for using the notation minNa,v,c and maxNa,v,c

is because the class may not be the same for different values of attributes, so
we cannot use a fixed value for c. After we compute the ratio of minNa,v,c and
maxNa,v,c , it is then weighted base on the presence of the attribute value in
the dataset, i.e. if many instances has the same attribute value, the value gets
a larger weight. total is the total number of instances in the dataset. We repeat
this calculation for all values of attribute a and take the sum as nomRatioa

of attribute a. Note, regardless of the class, the smaller count for an attribute
value is treated as the numerator, because we are only interested in the ratio.
We assign the min(nomRatio0..a) as the nominal overlapping value. The range
of nomOverlap is from 0 to 1, smaller value means less class overlapping and
the attribute will have more discriminative power.

In addition to numOverlap and nomOverlap, we have also added a new
geometric-based overlapping measurement (geoOverlap), which is based on the
idea of fisher discriminant ratio, but instead of performing calculations on the
attribute space, we use the geometrical space instead. The calculation is as fol-
lows: the first step is to calculate the center for each class. It is the same process
as in k-mean clustering, but we calculate the mean for each class rather than for
each clusters. For each class we add up every example in the class and take the
average, which can be expressed more precisely as:

mc =
1

| Sc |
∑

xi∈Sc

xi (5)

where mcis the class center and Scis the set of examples in class c.
After we have the centers, the second step is to calculate the standard devia-

tion, in geometric terms, for each class. Here, we use Euclidean distance for the
difference between two examples:

σc =
√

1
| Sc |

∑
xi∈Sc

| xi − mc |2 (6)

The final step is to apply the same numOverlap formula (eq. 2) to get the
geoOverlap of the two classes.
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For density, we have kept the measure of class distribution for each clusters
and the new addition is a geometric-based measure, which is the geometric stan-
dard deviation that we have calculated in the equation 6. This measurement
is a measure of density because standard deviation measures the variability or
dispersion of a population. If we have a small standard deviation, it means the
data points are closer and more dense, whereas large standard deviation means
that the data points are sparse and far away from each other.

Error concept in our context is referring to examples that are incoherent, that
does not fit well with certain model. These errors can also be called the noise of
the dataset. In concrete terms, a noisy example may be something that is clas-
sified incorrectly base on its nearest neighbour. In our previous implementation
we use 1-nearest-neighbour to determine the level of noise, we record the accu-
racy of classifying examples within each cluster as the measure of noise level.
In the updated implementation, we use Naive Bayes (NB) instead, because we
have realised that this process is effectively the same as a leave-one-out cross-
validation procedure. Therefore one can actually have the freedom to choose
whichever model they believe would be a good model for the given dataset. We
have chosen NB because it can run much faster than 1-nearest-neighbour.

The implementation described above still has the same shortcoming as the ini-
tial implementation, which is that the generated CODE measurements are not a
uniform set of measurements. For different datasets, we may have different num-
ber of clusters, which will produce a variable number of CODE values. This is a
problem if we want to perform supervised learning to find correlationbetween data
complexity and learning performance. An ideal solution for this problem will be
to generate an uniform set of features and still able to reflect most, if not all, of the
local information that CODE model is trying to convey. In our current implemen-
tation, we have used the mean-variance approach, which is essentially taking the
mean and variance of each measurements in CODE from each cluster. Although
this averaging approach does not fully reflect the information that original CODE
contains, but it does a reasonable job in our experiments. However, we will address
this shortcoming in the future updates of CODE.

4 Experiments

Dataset

In our experiments, we have used 56 datasets from the UCI data repository [1].
Since our framework only work with binary problems and there is only a lim-
ited number of binary class problems available, so we have transformed multi-
class problems with the 1-vs-others approach. Twenty-seven datasets were col-
lected from UCI data repository: anneal, audiology, autos, balance-scale, breast-
cancer, Wisconsin-breast-cancer, colic.ORIG, credit-a, credit-g, diabetes, glass,
heart-Cleveland, heart-stalog, hepatitis, ionosphere, iris, kr-vs-kp, lymphography,
segment, sonar, soybean, splice, vote, vehicle, vowel, waveform and zoo. After we
transformed the multi-class problems, we end up with a total of 56 datasets.
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Fig. 2. Datasets: rare class distribution v.s. averaged AUC

This figure shows a plot of all the datasets with their corresponding rare class distribu-
tion (x-axis) and their averaged AUC score (y-axis). 0.5 is the baseline value for AUC
and the best value is 1 or 0 (because one can inverse the decisions). 0.8 is a threshold
that we use to separate “easy” datasets and “hard” datasets. Above 0.8 (or below 0.2)
will be consider as easy, whereas between 0.2 to 0.8 is “hard”.

Due to space restriction, we only show the rare class distribution of the dataset in
figure 2, which also shows the averagedAUC performance across different learners.

Setup

In order to ensure the results are not too biased, we used 4 different learners,
2 linear and 2 non-linear learners. In the two linear learners, we have both
discriminative and generative models, namely Decision Tree and Naive Bayes.
As for the non-linear learners, we have the classic k-Nearest Neighbour and a
kernel-based method, Support Vector Machine. First, we apply the learners on
all the datasets and measure the learning performance on the smaller class with
area under ROC curve (AUC). AUC is chosen because it has been found to be a
useful measure for imbalanced dataset problems [5,15]. All experiments are done
with 10 fold cross-validation and repeated 10 times to reduce the variance of the
results. In the end, each dataset will have 4 AUC values from each learner, these
AUC values are averaged to produce an averaged AUC score. We use this score as
a general indicate of whether a dataset is easy or difficult to learn. The averaged
AUC is shown in figure 2 with their respective rare class distribution. After we
have computed all the AUC values, we combine them with the corresponding
data complexity values and apply linear regression to portrait the relationship
between the AUC and the data complexity of each dataset. 5 different linear
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regression models were built to correlate 4 different learner’s AUC values, as well
as the averaged AUC score, to the data complexity. The results are discussed in
the next section.

5 Results and Discussion

The resulting correlations of data complexity and the learning performance
were not as good as our previous experiment, however, it was expected. We
has achieved 0.74, 0.59, 0.52, 0.6 and 0.67 correlation values respectively for 3-
nearest-neighbour, decision tree, naive bayes, SVM and the average AUC. The
correlation value is between 1 to -1, 1 means there is a strong positive correla-
tion and -1 means strong inverse correlation, so values close to 0 would be a bad
result because there is no obvious linear correlation found. Our results shows
moderate correlations, which is still an encouraging results considering this is
a more difficult task, and there is probably not enough data sample to achieve
above 0.9 correlations.

In this paper, we have used 56 domains from the UCI data repository, which
is 8 times more than before. It is more difficult because each domain can have a
different data characteristics and we suspect that as the data diversity getting
larger, so does the number of dataset sample required for building a good corre-
lation model. This relationship is illustrated in figure 3, which shows a positive

Fig. 3. Data complexity model quality

The quality of the model can be estimated from a direct relationship between the
diversity of datasets and the number of datasets used. The gradient of colour shows the
best model lies at bottom right-hand corner and the model quality gradually decreases
as you move towards the top left-hand corner.
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Table 1. balance-scale: “balanced”

cluster numOlap densityC0% error0% error1% ~
1 1 0.09 1 0 ~
2 5.08 0.08 1 0 ~
3 0.82 0.05 1 0 ~

EM has found 3 clusters and we only have space to show some of the CODE values
for this dataset. cluster is the cluster assignment, numOlap is the numeric overlapping,
densityC0% is the rare class distribution within the cluster, error0% is the percentage
of mis-classified rare class examples in the cluster and error1% is the mis-classification
rate of the common class examples.

correlation between the diversity and the size of the dataset samples that we use
to build the data complexity model. A similar analogy would be the relationship
between dimensionality and the dataset size at a fixed level of data complex-
ity; it would be more difficult to learn a good model from a high dimensional
dataset if the training dataset is not have large enough. In theory, one can draw
a threshold line to specify the required number of datasets in order to achieve a
reasonable model quality, this line would be the theoretical lower bound. Finding
this lower bound is an interesting but challenging research topic and we will not
cover in this paper.

From figure 2, we can see an outlier which is the most difficult domain to
learn. This dataset is the from the balance-scale dataset and the rare class label
is called “balanced”, which has a low 0.08 class distribution. So, why is this
imbalanced dataset difficult to learn? This is where data complexity will help,
we know it has a very skewed class distribution, but when we look closer at the
CODE value, it has revealed some of the possible difficulties. With limited space,
we only show some of its CODE values in table 1 and limit our discussion to
these values. Here is what we have noticed:

1. There seems to be three natural clusters.
2. Cluster 2 seems to be more difficult than the other two clusters because it

has higher numeric overlapping.
3. The presence of the rare class in each cluster are all quite low.
4. The rare class examples seems to be scattered across the three clusters.
5. The rare class examples all seem like noises in each cluster, because the NB

model has got all the rare class examples wrong.

By reading CODE values, we can learn more information about the dataset than
just knowing that it is an imbalanced dataset and it is difficult to learn. Knowing
more about the domain that you are working with could be a great help in the
data mining process.

6 Conclusion and Future Work

In this paper, we have described an improved version of CODE and the main
contribution was that we have addressed a shortcoming in our previous work
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by using a more diverse set of datasets to find the relationship between data
complexity and the learning performance. We have shown that CODE is able to
capture a reasonable amount of data complexity despite the increased difficulty.
We also shown how one can use CODE values to inspect different data charac-
teristics that might have caused learning to become difficult. Some of the issues,
such as the relationship between the data diversity and the required dataset
sample size is also discussed.

Some future directions for this work would be to use synthetic datasets to build
up a data complexity model and see if we can use it to describe different type of
imbalanced datasets. Another interesting future work would be to visualize the
datasets and visually verify some of the finding that CODE is producing. There
are many potential usage for data complexity and we hope more research will
be done to make data complexity more explicit and accessible for different data
mining researches.
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Abstract. Two factors that slow down the deployment of classification or  
supervised learning in real-world situations. One is the reality that data are not 
perfect in practice, while the other is the fact that every technique has its own 
limits. Although there have been techniques developed to resolve issues about 
imperfectness of real-world data, there is no single one that outperforms all  
others and each such technique focuses on some types of imperfectness. Fur-
thermore, quite a few works apply ensembles of heterogeneous classifiers to 
such situations. In this paper, we report a work on progress that studies the im-
pact of heterogeneity on ensemble, especially focusing on the following as-
pects: diversity and classification quality for imbalanced data. Our goal is to 
evaluate how introducing heterogeneity into ensemble influences its behavior 
and performance. 

Keywords: bagging, AdaBoost, diversity, heterogeneity, imbalanced data. 

1   Introduction 

Classification is an important data mining task and has been systematically studied for 
decades. Nevertheless, two factors slow down its deployment in more real-world 
situations. One is that most real-world data sets are not perfect [8, 23], while the other 
is that every classification technique has its own limits. In practice, data usually come 
with missing values, noise, and imbalanced distributions between classes or within a 
class. For the second factor, ensemble techniques are usually employed to overcome 
limitations of an individual classification technique. An ensemble creates a committee 
that collects predictions from all member classifiers and combines them to form final 
predictions. The motive for ensemble is similar to the concept that "different models 
excel in different regions" [11]. Ensemble compensates the limits of an individual 
classification technique. In some sense, this point of view is close to one, adopted in 
[9], that suggests "starting globally, optimizing locally, and predicting globally". 

It is well known that diversity among member classifiers contributes to the success 
of ensemble. Moreover, using heterogeneous classifiers to create a committee would 
increase diversity [14]. Here, heterogeneous classifiers are those based on different 
algorithms. In this paper, we report our work in progress that studies the impact of 
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heterogeneity on ensemble, such as bagging and boosting (e.g., AdaBoost). Because 
distinguished researchers have done investigations into using ensembles to improve 
classification performance for difficult and imperfect data sets [4, 5, 6, 7, 20 24], en-
sembles show us an opportunity to review problems from imperfectness of data. 

The rest of this paper is organized as follows. In Section 2, we will demonstrate 
motivational examples. In Section 3, we will examine the procedure described in [14] 
first and then extend the procedure for further investigations. Next, we will report 
results for the extension of classical bagging and AdaBoost algorithms in Section 4. 
Finally conclusions will be given in Section 5. 

2   Examples 

Diversity is one of factors contributing to the success of ensemble techniques.  
Because boosting tends to generate more diverse classifier combinations [26] and 
heterogeneity enhances diversity [14], we use a variant of AdaBoost and employ het-
erogeneous classifiers. Following the basic procedure of AdaBoost, the variant alter-
natively creates classifiers with different algorithms. 

The first example is for synthetic data sets with multiple decision boundaries. Here 
we run experiments on six synthetic data sets (Eq. 61, p.37, in [12]), as summarized in 
the right panel of Figure 1. We use the programming libraries provided by WEKA 
[25]. We construct three ensembles each of which is composed of ten member classi-
fiers. They are based on decision tree (DT), artificial neural network (ANN), and 
DT+ANN (i.e., the combination of DT and ANN), respectively. We use C4.5 [22] and 
multilayer perceptron for DT and ANN, respectively. Results reported here are from 
five-fold cross-validation. Note here that, we are not comparing an ensemble of het-
erogeneous algorithms with a single algorithm but with an ensemble that is composed 
of homogeneous algorithms. As shown in Fig. 1, DT outperforms ANN in less com-
plicated data sets while ANN outperforms DT in data sets that present mixtures of 
linear and nonlinear transformation functions. Surprisingly, accuracies given by an 
ensemble composed of DT and ANN are not necessarily in between accuracies from 
using only DT and accuracies from using only ANN. In fact, the ensemble 
(DT+ANN) outperforms others even in complicated data sets. 

The second example is for thirteen benchmark data sets from the UCI repository 
[3, 13]. It is associated with Table 1. Here we apply the variant of AdaBoost with 
three algorithms, DT, NB (Naïve Bayes [15]), and kNN (k-nearest neighbor [1]), on 
these data sets. We consider four ensembles each of which is composed of heteroge-
neous algorithms (HE), while we compare results from them with those from three 
ensembles each of which consists of homogeneous algorithms (HO). For each 
benchmark data set, we randomly draw samples from it with replacement and accord-
ingly produce two data sets each of which is as large as it. We use one as the training 
set and the other as the test set. Test accuracies averaged over thirteen data sets are 
reported in Table 1, where ensembles of heterogeneous algorithms achieve the better 
stability by giving relatively smaller standard deviations. 
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4 2000 Mix of #1 and #3 48.65% 
5 2000 Mix of #2 and #3 28.85% 
6 3000 Mix of #1 to  #3 45.53%  

Fig 1. Accuracy (left) for six synthetic data sets (right) 

Table 1. Test accuracies (mean and standard deviations) on benchmark data sets 

Classifiers 10-iteration run 100-iteration run 
DT 0.764 ± 0.110 0.857 ± 0.137 
NB 0.758 ± 0.140 0.809 ± 0.094 HO 

kNN 0.880 ± 0.079 0.924 ± 0.067 
DT+NB 0.893 ± 0.049 0.932 ± 0.080 

DT+kNN 0.892 ± 0.051 0.962 ± 0.023 
NB+kNN 0.954 ± 0.024 0.923 ± 0.091 

HE 

DT+NB+kNN 0.901 ± 0.037 0.971 ± 0.022 

3   Diversity 

Diversity measures are proposed to assist in the selection of member classifiers in an 
ensemble [17, 19]. However, because there is no widely accepted diversity measures 
[4, 36], this paper as well as the paper [14] consider several measures in the estab-
lishment of the quantitative determination of diversity among classifiers. Initially, ten 
popular diversity measures are Q-statistic (Q), correlation coefficient (ρ), double-fault 
measure (DF), interrater agreement (κ), measure of difficulty (θ), disagreement meas-
ure (DIS), entropy (E), Kohavi-Wolpert variance (KW), generalized diversity (GD), 
and coincident failure diversity (CFD). The paper [18] gives a succinct summary of 
them. Furthermore, we employ four other diversity measures to do further investiga-
tions: Weighted count of errors and correct results (WCEC) [2], Exponential Error 
Count (EEC) [2], Distinct failure diversity (DFD) [21], Measure of soft label outputs 
(M) [10]. 

Furthermore, two synthetic data generators are employed to generate ten synthetic 
data sets. The number of samples in each data set is 10000 and the size of the feature 
set of each data set is 10. Neither missing values nor noise appear. In eight data sets 
percentages of minority class are from 42.09% to 49.91%, while those in the other 
two are 26.29% and 39.87%. We also use benchmark data sets. Considering three 
disparate algorithms, DT, NB, and kNN, we select any two of them and create a pair 
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of heterogeneous classifiers. Therefore, for each data set, we set up six experimental 
sets in each of which we compare diversity of the combination of homogeneous clas-
sifiers with that of heterogeneous ones. 

Table 2. Diversity in ten measures 

Synthetic data sets Benchmark data sets 

Bagging setting Bagging setting Diversity values  averaged over ten test data sets 

HO HE HO HE 
Q 1 0.44 1 0.71 

ρ 1 0.16 1 0.29 

DF 0.22 0.08 0.12 0.05 

κ 1 0.44 1 0.71 

Measures that prefer lower (absolute) values 

θ 0.13 0.08 0.15 0.12 

DIS 0 0.28 0 0.15 
E 0 0.28 0 0.15 

KW 0 0.07 0 0.04 
GD 0 0.7 0 0.66 

Measures that prefer higher values 

CFD 0 0.82 0 0.78 

Table 3. Diversity in fourteen measures 

Synthetic data sets Benchmark data sets 

Bagging setting Boosting setting
Bagging  
setting 

Boosting  
setting 

Average diversity values 

HO HE HO HE HO HE HO HE 
Q 1 0.58 -0.84 -0.74 1 0.78 -0.94 -0.93 

ρ 1 0.26 -0.26 -0.18 1 0.42 -0.24 -0.19 

DF 0.24 0.11 0.04 0.03 0.12 0.06 0 0 

κ 1 0.48 -0.08 0.04 1 0.75 0.04 0.15 

θ 0.12 0.07 0.06 0.06 0.16 0.13 0.08 0.08 

Measures that  

prefer lower  

(absolute) values 

EEC 137 50 28 11 7 2 2 1 

DIS 0 0.26 0.54 0.48 0 0.12 0.48 0.43 
E 0 0.26 0.54 0.48 0 0.12 0.48 0.43 

KW 0 0.06 0.14 0.12 0 0.03 0.12 0.11 
GD 0 0.61 0.91 0.93 0 0.56 0.98 0.99 

CFD 0 0.74 0.95 0.96 0 0.69 0.99 0.99 
WCEC -429 212 495 597 215 322 326 346 
DFD 0 0.01 0.48 0.42 0.02 0.06 0.75 0.79 

Measures that  

prefer higher  

values 

M 0 0.29 0.09 0.21 0 0.11 0.07 0.08 
 
The procedure described in [14] is as follows: Given an input data set D and algo-

rithms A1 and A2 (where A1≠A2), we sample D without replacement and generate two 
training sets. For synthetic data sets, we sample 10%; for benchmark data sets, we 
sample 50%. Next, we use A1 and one training set to create (classifier) C1. Then, we 
use A1 and the other training set to create C2. Next, we create C3 by using the second 
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training set and A2. Then, we sample D with replacement and produce ten test sets. 
Finally, for each test set, we collect predictions and calculate the diversity between C1 
and C2 (HO) and also that between C1 and C3 (HE). Results averaged over ten test sets 
are presented in Table 2, where each number represents a group of six experimental 
sets. Furthermore, we extend the above bagging-like setting to a boosting-like setting. 
More results are in Table 3. 

We extend the above procedure and do exponential updates for weights of data 
samples based on the quality of predictions. Results are given in Table 3. Here we con-
sider four more diversity measures, two more classification algorithms, and one more 
benchmark data set. Both bagging and boosting settings are with five algorithms: DT, 
NB, kNN, ANN, and SOM (Self-Organizing Map [16]). Data sets used here are the 
same as those used earlier, while one additional benchmark data set in used in this sub-
section such that here are fourteen benchmark data sets in total. Moreover, average 
diversity values reported in Table 3 are from fourteen diversity measures, among which 
ten are summarized in [18] and four are introduced earlier. In Table 3, diversity given 
by heterogeneous classifiers is still better than that given by homogeneous ones. How-
ever, such an advantage is not very dominative in boosting setting. This might be be-
cause that boosting would focus on difficult samples and its sampling procedure would 
act like an over-sampling procedure (for difficult samples) in later iterations. 

4   Classification Quality 

Based on the above discussion, we extend bagging and AdaBoost algorithms such that 
each randomly selects an algorithm (used as the base algorithm) in every iteration. 
This random selection strategy (for algorithm) is different from what we have seen in 
Section 2, where an alternative selection strategy (for algorithm) is employed. More-
over, we consider various metrics and report results from five-fold cross-validation. 
For balanced data sets, we simply present the error rates; for imbalanced data sets, we 
focus on minority and present results in false-positive rate (FPR), area under ROC 
(AUC), and F-measure. 

1) Balanced and small data set (sonar: 208 samples, 60 features, and the minority 
is 47%). Curves in Fig. 2 show stable patterns in bagging but relatively unstable ones 
in boosting. This might be because of the small size of the data set. 

2) Balanced and large data sets (kr-vs-kp: 3196 samples, 36 features, majority is 
48%). In Fig. 3, the stabilities of curves from homogeneous and heterogeneous classi-
fiers in boosting are much better than those shown in Fig. 2. This is because the data 
set is larger. 

3) Imbalanced and small data (hepatitis: 155 samples, 19 features among 15 with 
missing values, the minority is 21% and labeled as “a”). For bagging, in terms of FPR 
in Fig.4, the best one is DT while the worst two are NB and kNN, and heterogeneous 
classifiers give curves in between; in terms of AUC in Fig. 5, the worst one is kNN 
while the best one is DT+NB. For boosting, since the size of data set plays an impor-
tant role and hepatitis is a small data set, naturally it is not easy to see what classifier 
is the winner when the number of iterations is small. Results in F-measure for the 
minority are in Fig. 6. 



 An Empirical Study of Applying Ensembles of Heterogeneous Classifiers 33 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300 350 400 450 500

Iterations

er
ro

r 
ra

te

DT NB kNN DT+NB DT+kNN NB+kNN DT+NB+kNN

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400 450 500

Iterations

er
ro

r 
ra

te

DT NB kNN DT+NB DT+kNN NB+kNN DT+NB+kNN

 

Fig. 2. Error rates vs. iterations for the data set sonar in bagging (left) and boosting (right) 
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Fig. 3. Error rates vs. iterations for the data set kr-vs-kp in bagging (left) and boosting (right) 
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Fig. 4. FPR (minority) vs. iterations for the data set hepatitis in bagging (left) and boosting 
(right) 

4) Imbalanced and large data (sick: 3772 samples, 29 features, among which 8 with 
missing values, the minority is 6% and labeled as “b”). For FPR shown in Fig. 7, the 
worst one is NB and the best one is DT+kNN in bagging, while worst ones are DT 
and NB in boosting. kNN is better than these two but not better than heterogeneous 
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classifiers. For AUC presented in Fig. 8, heterogeneous classifiers (except NB+kNN) 
provide good results in both bagging and boosting. Fig. 9 presents F-measure for the 
minority.  
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Fig. 5. AUC (minority) vs. iterations for the data hepatitis in bagging (left) and boosting (right) 
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Fig. 6. F-measure (minority) vs. iterations for the data hepatitis in bagging (left) and boosting 
(right). 
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Fig. 7. FPR (minority) vs. iterations for the data set sick in bagging (left) and boosting (right). 
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Fig. 8. AUC (minority) vs. iterations for the data sick in bagging (left) and boosting (right) 
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Fig. 9. F-measure (minority) vs. iterations for the data sick in bagging (left) and boosting (right) 

Next, we consider data sets with noise: Results presented below are obtained from 
using the data set that contains artificially-added class noise in training and the origi-
nal data set in test. They are with 100 iterations. For balanced data sets, we present 
error rates; for imbalanced ones, we present precision and recall for minority class. 

 
1) Balanced and small data set (sonar). Fig. 10 shows the results. In bagging, NB is 

the worst while both DT (which is well known as an unstable algorithm) and kNN 
(which is a stable algorithm) show relatively stable curves (close to linear ones). Us-
ing DT and kNN  in heterogeneous classifiers improves stability. For example, 
DT+NB is better than NB while NB+kNN is even better. Similar observations could 
be made in boosting. Moreover, DT+NB+kNN gives relatively stable curves in both 
bagging and boosting. 

2) Balanced and large data set (kr-vs-kp). Fig. 11 shows the results. In bagging, 
NB+kNN is not only better than NB but also better than kNN. This suggests the use-
fulness of heterogeneity. In boosting, heterogeneous classifiers give relatively stable 
curves. Although DT is the worst, heterogeneous classifiers where it is used perform 
well. 

3) Imbalanced and small data set (hepatitis). Results are shown in Fig. 12 and  
Fig. 13. For both precision and recall for minority class, it is expected that they de-
crease as the percentage of noise increases. Neither homogeneous nor homogeneous 
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classifiers perform well in boosting since the data set is small and AdaBoost is more 
sensitive to noise than bagging. If we look at 10% class label noise in bagging, 
NB+kNN performs well (but is not the best) even though NB is the worst in precision 
and kNN is the worst in recall. 
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Fig. 10. Error rates vs. noise level for the data set sonar in bagging (left) and boosting (right). 
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Fig. 11. Error rates vs. noise level for the data set kr-vs-kp in bagging (left) and boosting (right) 
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Fig. 12. Precision (minority) vs. noise level for hepatitis in bagging (left) and boosting (right) 
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Fig. 13. Recall (minority) vs. noise level for hepatitis in bagging (left) and boosting (right) 
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Fig. 14. Precision (minority) vs. noise level for sick in bagging (left) and boosting (right). 
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Fig. 15. Recall (minority) vs. noise level for sick in bagging (left) and boosting (right) 

4) Imbalanced and large data set (sick). Results are shown in Fig. 14 and Fig. 15. In 
terms of precision, (most) curves show similar patterns more in boosting than in bag-
ging; in terms of recall, (most) curves are close to each other more in bagging than in 
boosting. Moreover, when we mix these three algorithms together, the resulting en-
sembles (give relatively stable curves, where precision and recall decrease relatively. 
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5   Conclusions 

In the paper, we conduct a rich set of experiments to study the impact of heterogeneity 
on ensemble, especially focusing on applying bagging and AdaBoost with heteroge-
neous classifiers to imperfect real-world and synthetic data sets. We report results in 
the following aspects: 1) diversity values given by homogeneous and heterogeneous 
classifiers in various measures; 2) classification quality for benchmark data sets that 
come with mixed types of attributes, missing values, imbalanced class distributions;3) 
classification quality when data sets are with artificially-added class label noise. Re-
sults support that heterogeneity does have impact on the performance of ensemble 
when the given data sets are not perfect. This paper presents unexpected results and 
also reveals interesting phenomena that are worth further exploration. Future work 
include 1) further investigations into the relationship between heterogeneity and clas-
sification quality and 2) the study of ensembles composed of heterogeneous classifiers 
employing techniques that are specifically designed for some types of imperfectness. 

References 

[1] Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991) 
[2] Aksela, M.: Comparison of Classifier Selection Methods for Improving Committee Per-

formance. MCS, 84–93 (2003) 
[3] Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information 

and Computer Science. University of California, Irvine (2007) 
[4] Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Ensemble Diversity Meas-

ures and their Application to Thinning. Information Fusion J. 6(1), 49–62 (2005) 
[5] Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A Comparison of De-cision 

Tree Ensemble Creation Techniques. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence 29(1), 173–180 (2007) 

[6] Banfield, R.E., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Boosting Lite - Handling 
Larger data sets and Slower Base Classifiers. MCS (2007) 

[7] Chawla, N., Moore, T., Bowyer, K., Hall, L., Springer, C., Kegelmeyer, P.: Investiga-tion 
of bagging-like effects and decision trees versus neural nets in protein secondary structure 
prediction. In: Workshop on Data Mining in Bioinformatics, KDD (2001) 

[8] Chawla, N., Japkowicz, N., Kolcz, A.: Editorial: Special Issue on Learning from Imbal-
anced data sets. SIGKDD Expl. 6(1), 1–6 (2004) 

[9] Cieslak, D., Chawla, N.: Start Globally, Optimize Locally, Predict Globally: Improving 
Performance on Unbalanced Data. In: ICDM (2008) 

[10] Fan, T.-G., Zhu, Y., Chen, J.-M.: A new measure of classifier diversity in multiple classi-
fier system. ICMLC 1, 18–21 (2008) 

[11] Forman, G., Cohen, I.: Learning from Little: Comparison of Classifiers Given Little 
Training. ECML. HPL-2004-19R1 (2004) 

[12] Friedman, J.H.: Multivariate adaptive regression splines. Ann. of Stat. 19(1), 1–67 (1991) 
[13] Hettich, S., Bay, S.D.: The UCI KDD Archive. Department of Information and Computer 

Science. University of California, Irvine (1999) 
[14] Hsu, K.-W., Srivastava, J.: Diversity in Combinations of Heterogeneous Classifiers. In: 

PAKDD (2009) 



 An Empirical Study of Applying Ensembles of Heterogeneous Classifiers 39 

[15] John, G.H., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: 
Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995) 

[16] Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, 
vol. 30 (2001) 

[17] Kuncheva, L.I., Whitaker, C.J.: 10 measures of diversity in classifier ensembles: lim-its 
for two classifiers. In: A DERA/IEE Workshop on Intelligent Sensor Processing, pp. 
10/1-10/10 (2001) 

[18] Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their 
Relationship with the Ensemble Accuracy. Mach. Learn. 51(2), 181–207 (2003) 

[19] Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Perales, F.J., Campilho, 
A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1126–1138. 
Springer, Heidelberg (2003) 

[20] Liu, X.-Y., Wu, J., Zhou, Z.-H.: Exploratory under-sampling for class-imbalance learning. 
In: ICDM, pp. 965–969 (2006) 

[21] Partridge, D., Krzanowski, W.J.: Software diversity: practical statistics for its meas-
urement and exploitation. Information and Software Technology 39, 707–717 (1997) 

[22] Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San 
Francisco (1993) 

[23] Weiss, G.M.: Mining with Rarity: A Unifying Framework. SIGKDD Expl. 6(1), 7–19 
(2004) 

[24] Weiss, G.M.: Mining Rare Cases. In: O. Data Mining and Knowledge Discovery Hand-
book: A Complete Guide for Practitioners and Researchers, pp. 765–776 (2005) 

[25] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd 
edn. Morgan Kaufmann, San Francisco (2005) 

[26] Whitaker, C.J., Kuncheva, L.I.: Examining the relationship between majority vote accu-
racy and diversity in bagging and boosting, Technical Report, School of Informatics, Uni-
versity of Wales, Bangor (2003) 

 
 



Undersampling Approach for Imbalanced Training Sets
and Induction from Multi-label Text-Categorization

Domains

Sareewan Dendamrongvit and Miroslav Kubat

Department of Electrical & Computer Engineering
University of Miami, Coral Gables, FL 33146, USA

s.dendamrongvit@umiami.edu, mkubat@miami.edu

Abstract. Text categorization is an important application domain of multi-label
classification where each document can simultaneously belong to more than one
class. The most common approach is to address the problem of multi-label ex-
amples by inducing a separate binary classifier for each class, and then use these
classifiers in parallel. What the information-retrieval community has all but ig-
nored, however, is that such classifiers are almost always induced from highly
imbalanced training sets. The study reported in this paper shows how taking this
aspect into consideration with a majority-class undersampling we used here can
indeed improve classification performance as measured by criteria common in
text categorization: macro/micro precision, recall, and F1. We also show how a
slight modification of an older undersampling technique helps further improve
the results.

1 Introduction

The classification of text documents under multi-label setting is a necessity in informa-
tion retrieval. Text categorization organizes text data with the goal of assigning one or
more classes from a pre-defined set to a document—for instance, a scientific paper may
be labeled as medical studies, clinical research, data analysis
and drug tests. We encountered this problem in EUROVOC, a multilingual the-
saurus that contains tens of thousands of documents from many different fields. To as-
sist the user’s search for a relevant document, the thesaurus needs a powerful indexing
scheme, but such scheme is not easy to create. Manual labeling of each single document
being impractical due to the enormous size of the collection, the next best solution is to
induce some characterization for each class from a training subset of preclassified doc-
uments, and then to employ these characterizations to classify the rest of the thesaurus
automatically, by a computer program.

Over the past decade, studies of induction from multi-label examples have pursued
two fundamental strategies: induction of sets of binary classifiers, and induction of one
large multi-label classifier. As for the former, mechanisms based on Bayesian decision
theory were studied by [1], [2], and [3], instance-based classifiers were investigated by
[4], and the currently popular support vector machines were employed by [5] and [6].
Unfortunately, binary classifiers ignore inter-class relations, which sometimes leads to

T. Theeramunkong et al. (Eds.): PAKDD Workshops 2009, LNAI 5669, pp. 40–52, 2010.
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performance degradation. This is why some other researchers preferred to work with
multi-label classifiers. Thus [7] modified, accordingly, the methodology of decision
trees, while [8] and [9] developed algorithms that handle multi-label domains in the
framework of the “boosting” technique invented by [10].

In the study reported here, we concentrated on the first approach: induction of a sep-
arate binary classifier for each class. We noticed that previous work had not taken into
consideration the fact that some of the binary classifiers have to be induced from im-
balanced training sets because negative examples tend to outnumber, significantly, the
positive ones. The lack of balance is here almost inevitable. While the total number
of classes (in our version of the Eurovoc data) is about thirty, most examples are la-
beled with no more than four or five classes. We hypothesized that the performance of
the induced classifiers would improve if appropriate measures—such as majority-class
undersampling—are taken. Moreover, each of the binary classifiers should probably
have to rely on a different feature subset.

We focus here on the k-nearest-neighbor classifier (k-NN), selecting relevant fea-
tures by the use of decision trees. Our idea was that a potential success would inspire
other researchers for a closer investigation of other paradigms. We have indeed ob-
served that taking appropriate measures for dealing with imbalanced classes improves
performance as measured along the usual text-categorization criteria. Section 2 for-
mally specifies the problem and defines the requisite performance criteria; Section 3
provides details of our approach; and Section 4 details the experiments on two data
sets, EUROVOC thesaurus and Reuters corpus. As we were interested in how well our
technique works with other paradigms, further experiments with another classifier, Sup-
port Vector Machines (SVM), were also carried out.

2 Problem and Performance Criteria

Let Rp be an instance space, let X ⊂ Rp be a finite set of documents, and let Y
be a finite set of classes such that each xi ∈ X belongs to its subset, Yi ⊆ Y . The
features describing the documents have been obtained from the relative frequencies
of words or terms. Given a set of training examples, S = {(x1, Y1), . . . , (xn, Yn)},
the goal is to find a classifier to carry out the mapping g : X → 2Y in a way that
optimizes classification performance. Moreover, the induction of the classifier has to be
accomplished in a realistic time.

To obtain reasonable criteria to measure classification performance, let us start with
those employed by the field of information retrieval for domains where only two class
labels are permitted: positive examples and negative examples. Let us denote by TP
(true positives) the number of correctly classified positive examples; by FN
(false negatives), the number of positive examples misclassified as negative; by FP
(false positives), the number of negative examples misclassified as positive ones; and
by TN (true negatives), the number of correctly classified negative examples. Let us
now use these four quantities to define precision, Pr, and recall, Re, by the following
simple formulas:

Pr =
TP

TP + FP
Re =

TP

TP + FN
(1)
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Observing that the user often wants to maximize both criteria, while balancing their
values, [11] proposed to combine precision and recall in a single formula, Fβ , parame-
terized by the user-specified β ∈ [0,∞) that quantifies the relative importance ascribed
to either criterion:

Fβ =
(β2 + 1) × Pr × Re

β2 × Pr + Re
(2)

It is easy to see that β > 1 gives more weight to recall and β < 1 gives more weight to
precision; that Fβ converges to recall if β → ∞, and to precision if β = 0. The situation
where precision and recall are deemed equally relevant is reflected by the value β = 1,
in which case F1 degenerates to the following formula:

F1 =
2 × Pr × Re

Pr + Re
(3)

Based on these preliminaries, [12] proposed two alternative ways how to generalize
these criteria for domains with multi-label examples: (1) macro-averaging, where pre-
cision and recall are first computed for each category and then averaged; and (2) micro-
averaging, where precision and recall are obtained by summing over all individual
decisions. The formulas are summarized in Table 1 where Pri, Rei, TPi, FNi, FPi,
and TNi stand for the precision, recall, and the four above-mentioned variables for the
i-th class.

Table 1. The macro-averaging and micro-averaging versions of the precision and recall perfor-
mance criteria for domains with multi-label examples

Precision Recall F1

Macro PrM =
∑k

i Pri

k
ReM =

∑k
i Rei

k
F M

1 =
∑k

i F1,i

k

Micro Prμ =
∑k

i=1 TPi∑k
i=1 (TPi+F Pi)

Reμ =
∑k

i=1 TPi∑k
i=1 (TPi+F Ni)

F μ
1 = 2×Prµ×Reµ

Prµ+Reµ

For the sake of completeness, we would like to mention that other performance met-
rics have been recommended (and used) for performance evaluation in multi-label do-
mains, especially in the case of classifiers that make it possible to rank the documents
according the the likelihood that they represent the given class. From these, we would
like to mention One error, Coverage, Average Precision, Hamming loss, and Ranking
loss [13,14]. To keep things simple, though, we will not employ them here, although
we did recommend their use in our earlier work [9].

3 Proposed Solution

Recall that we want to induce a binary classifier for each class. In the framework of
instance-based classifiers (k-NN classifiers), the simplest solution is to store all training
examples, described by all available features. This, however, would miss two important
points: first, in text categorization, each class is often characterized by different features;
second, the training sets for each class are likely to be imbalanced.
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As for the first point, we decided to select the features for each class by a decision
tree—as advocated, among others, by [15]. For the i-th class, we take the original train-
ing set and re-label all examples so that those that have, in their lists of classes, the i-th
class are seen as positive, and all others are deemed negative. From this modified train-
ing set, we induce (by Quinlan’s C4.5 [16] with default parameter settings) a decision
tree; the features that appear in the tree are then retained and all others ignored. The
result is a modified training set where examples are described by a relevant subset of
features, and labeled with “+” or “-” depending on whether or not they belong to the
i-th class.

More important for this paper is the second point: in the training set used to induce
the i-th classifier, the number of positive examples will often be much smaller than the
number of negative examples. We addressed this issue by a minor modification of the
technique recommended by [17] who used undersampling of the majority class (the
negative examples, in this case). To be more specific, they exploited the idea of Tomek
links, informally defined as follows. Take two examples, x and y, so that each has a
different class label. Denote by δ(x,y) the distance between x and y. The pair (x,y)
is a Tomek link if no example z exists such that δ(x, z) < δ(x,y) or δ(y, z) < δ(y,x).
Examples participating in Tomek links are either borderline or noisy, and as such unre-
liable. For this reason, the majority-class participant in the Tomek link is removed from
the training set.

In our text-categorization domain, we were concerned that this mechanism treats the
minority examples as if they were noise-free. However, assuming that some positive
examples are incorrectly labeled, it is perhaps inappropriate to remove the (possibly
correct) negative examples surrounding them, while retaining the false positive. This
conjecture motivated a slight modification of the original idea: if the positive example
participating in a Tomek link is “very distant” from any other positive example in the
training set (by its Euclidean distance), we “suspect” that it is noisy, and will not remove
the negative-example part of the Tomek link.

To be more specific, let us denote by x a positive example participating in a Tomek
link, let us denote by y the the positive example nearest to x, and let dx,y be the distance
between x and y. Let M be the number of negative examples whose distance from x
is smaller than dx,y. Then, we remove the negative participant of the Tomek link if
M < T (where T is a user-specified threshold); otherwise, we do not remove the
negative participant.

The pseudocode of the technique thus described is summarized in Table 2.The pro-
cedure results in N training sets, each used by a binary classifier representing one class.
This means that each binary classifier not only relies on a different set of examples,
but these examples are also described by a different feature subset. In the case of k-NN
algorithm, when the system is presented with a document, x, to be classified, it will
submit the feature vector describing x to each of the k-NN classifiers in parallel. The
i-th k-NN classifier then identifies (among the documents stored in its training set) the
k documents that have the smallest Euclidean distance from x. If most of these selected
examples are positive, then x is labeled with the i-class.
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Table 2. The pseudocode summarizing our algorithm that creates a different “training set” for
each class (to be used by a binary classifier). N denotes the number of class labels.

For i = 1 to N :
1. In the i-th training set, let each example be labeled as positive if the list of its labels contains

the i-th class and label it as negative otherwise.
2. For the i-th training set, induce a decision tree. Only features tested in this tree are deemed

relevant. Remove from the i-th training set all irrelevant features.
3. In the i-th training set, identify all Tomek links. Remove all negative examples participating

in the Tomek links, provided that the positive example is not too isolated from the other
positive examples.

4 Experimental Evaluation

4.1 Data, Methodology, and Parameter Setting

The performance of our technique is demonstrated through experiments on two data
sets, a simplified EUROVOC database and a publicly available data set in Reuters test
collection, Reuters Corpus Volume 1 version 2 (RCV1-v2) [18].

For Eurovoc data, the size of the original database is so huge as to render systematic
experimentation impractical: given that each single induction run on the complete data
from EUROVOC takes many days, it is impossible to go through the hundreds of ex-
periments needed for statistically justified conclusions. So, as the next-best solution, we
decided to work with a simplified database (as we did in our previous paper [9]): 10,000
documents described by 4,000 features, and labeled with only 20 classes. We selected
the features by the Document Frequency criterion, a method recommended for text cat-
egorization by [19]—in principle, we picked randomly 4,000 features from those that
appeared in more than 50 documents.

Table 3 summarizes the data, giving for each class the number of examples labeled
with it, and then providing the “degree of imbalance” recommended by [20]. Let us
denote by n the total number of examples and let us denote by n⊕ the number of positive
examples. The degree of imbalance is then calculated by the following formula:

d = |1 − 2n⊕
n

| (4)

Note that if 50% examples in a training set belong to one class and 50% to the other,
the degree of imbalance is d = 0. Conversely, d approaches 1 in the case of highly
imbalanced training sets where n⊕ � n.

The reader will have noticed that some of the classes are very poorly represented.
Intending to use N -fold cross-validation, we decided to ignore those class labels that
appear in less than 200 documents because these would be rather underrepresented
in the individual “folds.” This means that we eliminated the following class labels:
10, 11, 15, 19, 20, 22, 24, 26, 27, and 30.
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Table 3. The class-label distribution in Eurovoc data. The degree of imbalance of the training sets
used to induce the binary classifiers is calculated by Equation 4.

number of degree of number of degree of

class representatives imbalance class representatives imbalance

1 1389 0.72 16 1134 0.77

2 2501 0.5 17 2313 0.54

3 4418 0.12 18 2139 0.57

4 1508 0.70 19 5 1

5 1771 0.65 20 2 1

6 3258 0.35 21 1052 0.79

7 1638 0.67 22 1 1

8 2036 0.59 23 423 0.92

9 1393 0.72 24 3 1

10 18 1 25 924 0.82

11 114 0.98 26 0 1

12 1444 0.71 27 1 1

13 1000 0.80 28 4279 0.14

14 935 0.81 29 363 0.93

15 6 1 30 138 0.97

To achieve statistical significance, we used the methodology of 5-fold cross-
validation and, whenever appropriate, evaluated the results with t-test. The parameter
T (used in the modified Tomek-link technique) was throughout the experiments set to
5% of the size of the training set. For a total of 10,000 examples, and for 5-fold cross-
validation, the training set size is 8,000, which means T = 400. In auxiliary experi-
ments (not detailed here), we observed that the overall behavior was not very sensitive
to the exact setting of T : when we varied T between 2% and 10% of the training set
size, the results changed only marginally.

For RCV1-v2 data, we experimented with five independent training sets and five
independent test sets selected from RCV1-v2 collection 1 [18]. Every data set has 3,000
documents described by 4,000 features randomly selected from those that have non-
zero values in at least 6 documents. The data are imbalanced with only two classes
having more than 500 documents and most classes under 100 documents. The overall
degree of imbalance in RCV1-v2 binary sets is higher than in Eurovoc sets shown in
Table 3. We used here 53 topic categories that have at least 50 documents, omitting
those classes that are extremely imbalanced. For the experiments, the parameter T used
in our undersampling technique was set to 0.5% of the size of the training set as it gave
the best result when we varied T between 0.1% and 5% of the training set size. The
performance measures were evaluated on 5 test data sets.

For both data sets, the values k ∈ {3, 5, 7, 9, 11, 13, 15, 17} for the k-NN classifier
were experimented with. A statistical t-test is based on 5% significance level.

1 http://mlkd.csd.auth.gr/multilabel.html#Datasets
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4.2 Experiments

We rely on the hypothesis that the imbalanced nature of our training sets impairs the
classification performance of the induced binary classifiers; this means that the perfor-
mance might improve if majority-class undersampling is applied. Our first experiment
with Eurovoc data puts this hypothesis to test by comparing the performance obtained
in the following scenarios: (1) each k-NN classifier uses all features and all training
examples; (2) each k-NN classifier uses all training examples described by features
that have appeared in a decision tree induced for this class; (3) each k-NN classifier
uses only features that have appeared in a decision tree induced for this class, and only
examples that survived the majority-class undersampling mechanism from Section 3.

Table 4. The performance of (1) k-NN, (2) k-NN after feature selection, and (3) k-NN after
feature selection and majority-class undersampling on Eurovoc data (we used k = 9).

Micro-averaging Macro-averaging

Precision Recall F1 Precision Recall F1

k-NN 0.49 ± 0.06 0.05 ± 0.01 0.08 ± 0.01 0.67 ± 0.12 0.02 ± 0.00 0.11 ± 0.02

feature+k-NN 0.39 ± 0.02 0.22 ± 0.05 0.28 ± 0.05 0.48 ± 0.04 0.12 ± 0.02 0.19 ± 0.02

feature+sampling+k-NN 0.39 ± 0.01 0.73 ± 0.02 0.51 ± 0.01 0.38 ± 0.02 0.64 ± 0.04 0.46 ± 0.01

Table 4 shows the classification performance (averaged over 5-fold cross-validation)
in terms of micro/macro precision, recall, and F1. In all cases, k = 9 was used. The
table shows the gradual progression of the performance improvements: first, after the
feature selection; then, after subjecting each training set to majority-class undersam-
pling. Most important is of course the increased value of F1 (which combines precision
and recall). A more detailed look reveals that slightly worsened precision is compen-
sated by massive improvement of recall (which was dismal in the case of k-NN). The
reader will also have noticed the relatively low standard deviations.

The graphs in Figure 1 show how the performance depends on the concrete value of
k (the number of nearest neighbors)—our technique is more robust to variations in k
than the other methods. Also, whereas micro-F1 apparently benefits from the growing
value of k, macro-F1 seems to lose. Which of the two averaging methods really matters
depends on the concrete requirements of the given application: whereas micro-F1 gives
equal weight to each class, macro-F1 weighs the classes according to their relative
frequency.

Finally, the graphs in Figure 2 show why we decided to replace the original under-
sampling technique from [17] with the improved version from Section 3. While the
recall of the original technique is almost 100%, its precision is way too low. What helps
is our technique’s more careful consideration whether to remove those majority-class
examples that seem to surround a noisy positive example. The result is a somewhat
lower recall in exchange for better precision and F1.
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Fig. 1. Sensitivity of our technique to varied number of nearest neighbors, k, on Eurovoc data
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Fig. 2. Comparing the performance of the original algorithm from [17] with the improved version
we used here
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Table 5. The performance of (1) k-NN, (2) k-NN after feature selection, and (3) k-NN after
feature selection and majority-class undersampling on RCV1-v2 data (we used k = 5).

Micro-averaging Macro-averaging

Precision Recall F1 Precision Recall F1

k-NN 0.73 ± 0.14 0.26 ± 0.04 0.38 ± 0.05 0.61 ± 0.05 0.14 ± 0.01 0.18 ± 0.02

feature+k-NN 0.88 ± 0.01 0.44 ± 0.01 0.59 ± 0.01 0.76 ± 0.03 0.33 ± 0.00 0.43 ± 0.01

feature+sampling+k-NN 0.67 ± 0.01 0.65 ± 0.00 0.66 ± 0.01 0.62 ± 0.01 0.49 ± 0.01 0.53 ± 0.01

Having observed improvement in the performance of k-NN classifiers, we are inter-
ested to see how our technique performs on other data sets. Here we select a data set
from Reuters collection, RCV1-v2, to experiment with. All results from experiments
with RCV1-v2 data were obtained as averages from 5 independent test data sets.

The empirical results summarized in Table 5 for RCV1-v2 clearly support the ob-
servation drawn from Eurovoc data. Similarly, our technique performs better than other
methods in terms of the value of F1. The improvement in the classification performance
after each scenario is similar to what we have observed in Eurovoc data. Note that in
this table, k = 5 was used in every case.

Figure 3 shows the micro-average and macro-average of three evaluation measures,
precision, recall, and F1, of k-NN algorithm for different k values. The graphs exhibit a
similar pattern as in Eurovoc data. Again, our technique outperforms the other methods
as it has systematically improved the classification performance along the micro- and
macro-averaging versions of F1.

To see whether the technique helps in other paradigms as well, we experimented also
with the Support Vector Machines (SVM). Similarly as before, we denote here (1) svm
(2) feature+svm and (3) feature+sampling+svm. Our implementation is based on the
LIBSVM [21] with radial basis function. The results in Table 6 and Table 7 reinforce
the conclusion from previous experiment: our majority-class undersampling method
improves the recall value with acceptable loss in precision. Results from experiments
on two data sets agree.

Table 6. The performance of (1) svm, (2) svm after feature selection, and (3) svm after feature
selection and majority-class undersampling on Eurovoc data

Micro-averaging Macro-averaging

Precision Recall F1 Precision Recall F1

svm 0.93 ± 0.02 0.58 ± 0.02 0.72 ± 0.01 0.63 ± 0.01 0.37 ± 0.01 0.46 ± 0.01

feature+svm 0.92 ± 0.01 0.67 ± 0.00 0.78 ± 0.00 0.61 ± 0.01 0.43 ± 0.00 0.50 ± 0.00

feature+sampling+svm 0.87 ± 0.01 0.74 ± 0.02 0.80 ± 0.02 0.57 ± 0.01 0.46 ± 0.01 0.51 ± 0.01
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Fig. 3. Sensitivity of our technique to varied number of nearest neighbors, k, on RCV1-v2 data
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Table 7. The performance of (1) svm, (2) svm after feature selection, and (3) svm after feature
selection and majority-class undersampling on RCV1-v2 data

Micro-averaging Macro-averaging

Precision Recall F1 Precision Recall F1

svm 0.91 ± 0.02 0.07 ± 0.00 0.12 ± 0.01 0.36 ± 0.04 0.03 ± 0.00 0.05 ± 0.00

feature+svm 0.60 ± 0.01 0.43 ± 0.01 0.50 ± 0.01 0.43 ± 0.01 0.29 ± 0.01 0.33 ± 0.00

feature+sampling+svm 0.57 ± 0.01 0.47 ± 0.01 0.52 ± 0.01 0.41 ± 0.01 0.32 ± 0.00 0.35 ± 0.01

5 Conclusion

The paper reports our experience with the imbalanced-classes treatment in the field
of text categorization that is characterized by multi-label examples—each document
can potentially have more than one class label at the same time. Classification perfor-
mance in domains of this kind is typically evaluated along somewhat different criteria—
precision, recall, and F1—than those typical of other machine-learning application.

Having started with the majority-class-undersampling technique from [17], we ob-
served that it indeed improved classification performance; however, we also noticed that
the excellent recall had come at the cost of low precision. This observation motivated
a modification of the technique, obtaining better performance of the induced binary
classifiers. We made the same observation when working with instance-based classifier
and when working with Support Vector Machines. Experiments with EUROVOC data
showed that our technique improved classification performance for text categorization
task. Likewise, further experiments with another data set, documents from the Reuters
test collection, confirmed the same outcome.

In summary, the paper has demonstrated that the field of multi-label text-categorization
can benefit from explicitly considering the imbalanced-classes problem: while it is com-
mon to induce in these domains a separate binary classifier for each class (with the idea
of using them all in parallel when classifying future documents), previous studies ne-
glected the fact that each of these binary classifies almost inevitably has to be induced
from (sometimes heavily) imbalanced training sets.
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Abstract. Streaming data is pervasive in a multitude of data mining
applications. One fundamental problem in the task of mining streaming
data is distributional drift over time. Streams may also exhibit high
and varying degrees of class imbalance, which can further complicate
the task. In scenarios like these, class imbalance is particularly difficult
to overcome and has not been as thoroughly studied. In this paper,
we comprehensively consider the issues of changing distributions in
conjunction with high degrees of class imbalance in streaming data.
We propose new approaches based on distributional divergence and
meta-classification that improve several performance metrics often
applied in the study of imbalanced classification. We also propose a
new distance measure for detecting distributional drift and examine its
utility in weighting ensemble base classifiers. We employ a sequential
validation framework, which we believe is the most meaningful option
in the context of streaming imbalanced data.

Keywords: Sequential learning, stream mining, imbalanced data, skew,
concept drift, Hellinger distance.

1 Introduction

Data stream mining is a prolific area of research. In recent years, many pa-
pers have been published either directly related to stream mining or addressing
challenges in a particular stream mining application. Concept drift is a prob-
lem inherent in stream mining that continues to limit performance. Classifier
ensembles have been applied in several incarnations to reduce variance, but they
cannot combat bias. More recently the problem of class imbalance has been con-
sidered in the context of existing stream mining research. The intersection of
these difficulties makes for a uniquely interesting and demanding research topic
that can contribute to practically every data-driven or data-related field. As data
streams become increasingly ubiquitous and prolific, the importance of solving
their unique and interrelated challenges grows.

Research in stream mining primarily falls into one of two families: incremental
processing [1,2,3,4] or batch processing [5,6]. Figure 1 illustrates. In the former
approach, each processing step handles one instance. Labels for an instance are

T. Theeramunkong et al. (Eds.): PAKDD Workshops 2009, LNAI 5669, pp. 53–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



54 R.N. Lichtenwalter and N.V. Chawla

Incremental

Batch

Fig. 1. An illustration of the difference in the way incremental and batch process-
ing methods expect and handle incoming streams of data. With the arrival of each
subsequent unit, class labels become available for the previous unit.

assumed to be available immediately after classifying the instance. Instance pro-
cessing methods have an inherent advantage in terms of their adaptiveness due
to this assumption. At time t, instance it is received and classified with some
model trained on instances i1 through it−1. At time t + 1, a label arrives for in-
stance it and unlabeled instance it+1 becomes available for classification. In the
latter approach, each batch is a collection of data instances that arrives during a
particular period. At time t, batch bt is received and classified with some model
trained on batches b1 through bt−1. At time t + 1, labels arrive for batch bt and
unlabeled instances in batch bt+1 become available for classification. While the
problem spaces for these two approaches do intersect, often the instance process-
ing assumption is unrealistic. In many scenarios, large sets of new data and class
labels arrive with low temporal granularity such as weeks, months, or years. The
principles presented in this paper operate in the batch processing space.

2 Challenges in Data Streams

Stream mining presents inherent difficulties not present in static distributions.
Most significantly, since data streams are generated over time by an underlying
hidden function, changes in that function can cause various forms of data drift.
Secondarily, the rare class problem becomes more difficult because positive class
events, which appear infrequently in a static distribution, may be available in
even smaller quantities per unit time in data streams.

2.1 Distributional and Concept Drift

Since data streams are generated over time by an underlying hidden function,
changes in that function can cause changes in data distributions and posterior
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probabilities, a phenomenon termed concept drift. Concept drift occurs when any
of the following are present: ΔP (f ), a change in the distribution of feature values;
ΔP (c|f), a change in the conditional probability of class labels for particular
feature values; and both ΔP (c|f) and ΔP (f), when both the feature distribution
and the conditional probability of class label appearance change. Examples of
these three forms of drift are illustrated in Figure 2.

0 1 0 1 1 1 0 1 0 0 0 0

0 1 0 0 0 00 1 0 0 0 0 0 1 0 0 0 0

0 1 0 1 1 0

Fig. 2. An illustration of the three different forms of concept drift. The class value is
denoted by colors and the feature value is denoted by numbers.

– ΔP (f ) (left):
• P (0) = 5

6 → P (0) = 1
3• P (1) = 1

6 → P (1) = 2
3

– ΔP (c|f ) (middle):
• P (white|0) = 1 → P (white|0) = 3

5• P (black|0) = 0 → P (black|0) = 2
5

– ΔP (c|f ) and ΔP (f ) (right):
• P (0) = 5

6 → P (0) = 1
2• P (1) = 1

6 → P (1) = 1
2• P (white|0) = 1 → P (white|0) = 2

3• P (white|1) = 0 → P (white|1) = 1
3• P (black|0) = 0 → P (black|0) = 1

3• P (black|1) = 1 → P (black|1) = 2
3

Henceforth, we designate changes that occur solely in feature distributions,
ΔP (f), with the term distributional drift.

2.2 Class Imbalance

Imbalanced data is a persistent problem in general data mining contexts. The
problem becomes especially difficult in streams. Consider data with 12,000 in-
stances and a class ratio of 100:1. This leaves 120 positive class examples. This
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Traditional Dataset (5:1 imbalance ratio, 5 positive instances)

Stream Chunk (5:1 imbalance ratio, 1 positive instance)

Fig. 3. An illustration of the manifestation of the class imbalance problem in the stream
mining domain

may be sufficient to define the class boundaries and leaves plenty of data after
application of a good resampling approach. In a streaming context this data may
appear over the course of a year. If we assume a uniform temporal distribution
of the positive class and want a good model for monthly predictions, we have
only 10 positive class examples each month on which to train. This may be in-
sufficient. In reality, some months may exhibit no positive class occurrences at
all while others have hundreds. Figure 3 illustrates a simplistic example.

2.3 Problem Intersections

When imbalanced data and concept drift are both present in a data stream,
they can cause several confounding effects. First, class frequency inversions for
a class c with positive value ci and negative value cj can occur such that prior
probabilities P (ci) << P (cj) may become P (ci) >> P (cj) later in the stream.
An effective model must be able to adapt to changes of these types. Further-
more, for a given decision threshold θ, posterior probabilities may change for
the positive class such that P (ci|f ) >> θ may become P (ci|f) << θ. The lack
of prevalence of the positive class may result in difficulty assimilating the new
concept, thereby rendering models unable to detect the class effectively for an
extended period of time.

3 Evaluation Methods

There are two fundamental methods of evaluating classification performance in
data streams under the batch paradigm. The first is to evaluate the classifier
over a single batch among the many batches of data. The second is to evaluate
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the classifier over all of the batches in the data stream and either examine them
individually or use some notion of average performance. We highlight the core
ideas underlying these two fundamental methods.

Evaluating the classifier over a single batch of data has been used in [5], where
the last batch of data is used to render performance scores. Such an evaluation
framework might somehow seek to report a concept of average classification
accuracy by fulfilling some combination of these three goals:

1. Reporting results on a batch of data representative of the stream as a whole.
2. Reporting results on a batch of data for which classifier performance is rep-

resentative of some notion of typical or average performance.
3. Reporting results on a batch of data sufficiently late in the stream so that

the classifier has captured the concept.

The first and second may seem at first to be the same, but in fact they are not.
A simple example proves this. Suppose a heavily drifting binary classification
problem C with batches b1 to bn and class labels ∈ {0, 1}. Further suppose a
dumb model M that always adapts to drift by classifying all instances of bi

with the predominant label from bi−1. Now suppose that batches b1 to bn−1
alternate such that instances ∈ {bi|i = 2m, m ∈ Z} have label 0, instances
∈ {bi|i = 2m + 1, m ∈ Z} have label 1, and bn has a uniform distribution of the
two classes. When M is evaluated according to the first goal, bn is used and M
is reported to obtain 50 percent classification accuracy. When M is evaluated
according to the second goal, any one of b1 through bn−1 is used and M is
reported to obtain 0 percent classification accuracy.

The example is contrived, but nonetheless illustrates that the first two goals
are not always aligned in terms of the results they output. Unfortunately, the
first goal can output virtually meaningless results and the second goal may be
difficult to achieve without evaluating model performance on all batches anyhow.
The result is that it may be very difficult to decide on which batch one should
evaluate and report performance, especially in the context of the third goal.

The third goal itself may or may not be desirable. Since one of the principle
objectives in many approaches to data stream mining is to overcome various
forms of drift, waiting until the model has achieved a stable state with respect to
its classification performance in the stream may inflate the performance metric.
Even in data streams with static distributions and concepts, using a single batch
such as the last one does not include information about how quickly the target
concept was learned. Two models M1 and M2 that reach performance level P
somewhere in n batches of data certainly are not equally effective if M1 reaches
P after n

2 batches and M2 reaches P after n
4 batches. The second model, in most

circumstances should be considered clearly superior, but evaluation on the last
batch will consider them the same.

All of these problems may be avoided by employing the second fundamental
method. Using all batches does not suffer from the problem of finding represen-
tative data. Indeed, in data streams where concepts fluctuate through time, the
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existence of any meaningful sense of representative data is dubious since a single
batch fundamentally lacks the ability to represent the temporal dimension. Using
all batches also guarantees that not only the peak performance is captured in
the evaluation, but also the speed at which that performance is reached. For
these reasons, we advocate, and unless otherwise stated, employ the evaluation
method that averages classification performance metrics over all batches in the
data stream.

4 Boundary Definition

We present two findings about how to resample in stream mining to achieve
better performance under heavy class imbalance. The first, in line with other
findings such as in [7], is that the performance improvement in propagating rare-
class instances arises from defining the class boundary better rather than simply
providing more positive class instances on which to train. The second arises from
the first. In addition to propagating rare-class instances, we propagate instances
in the negative class that the current model misclassifies. These help further
define the boundary thus increasing precision while minimally affecting recall.

5 Data Set Distance

It is desirable to adapt to drift in a data stream as quickly as possible. Adjust-
ing ensemble weights based on classification performance metrics is a common
method, but this is always one batch behind. In a worst case scenario, the data
stream fluctuates such that performance on batch i and performance on batch
i+1 are inversely correlated. Applying weights based on performance metrics in
such a scenario will perform worse than not using any weighting scheme at all.
We can do better by examining distributional and information-theoretic prop-
erties of the data in the past and comparing the results to the testing batch.

5.1 Hellinger Distance

Hellinger distance has recently been used with excellent effect in detecting clas-
sifier performance degradation due to distributional changes [8] and even as a
decision tree splitting criterion [9]. For this reason, we employ it to construct a
consistent measure of distance between two separate data sets or data batches.
After discretizing numeric attributes into some number of equal-width bins, we
can define Hellinger distance in two batches X and Y for a given feature f as:

HD(X, Y, f) =

√√√√√∑
v∈f

(√
|Xf=v|
|X | −

√
|Yf=v|
|Y |

)2

(1)
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Algorithm 1. Misclassified Propagation
Require: unlabeled batch of instances b

model m
real class labels l
desired percent positive p
set of positive examples P
set of misclassified negative examples N

Ensure: resampled batch b
updated set of positive examples P
updated set of misclassified negative examples N

1: for instance ∈ b do
2: label ←PREDICT(m, instance)
3: if linstance = + then
4: pos ← pos ∪ instance
5: else
6: neg ← neg ∪ instance
7: if linstance �= label then
8: mneg ← mneg ∪ instance
9: end if

10: end if
11: end for
12: while |pos| < p ∗ (|pos| + |neg| + |mneg|) do
13: if |neg| > 0 then
14: REMOVE-RANDOM(neg)
15: else
16: REMOVE-RANDOM(mneg)
17: end if
18: end while
19: b ← pos ∪ neg ∪ mneg
20: return b, P , N

5.2 Information Gain

To extend Hellinger distance to measure the distance between two data sets, we
must first devise some method of accounting for the difference in feature rele-
vance. Simple aggregating functions fail to capture this important information.
For two features fi and fj in training sets X and Y and testing set Z, it is possi-
ble that HD(X, Z, fi) + HD(X, Z, fj) << HD(Y, Z, fi) + HD(Y, Z, fj) and the
model trained on X performs more poorly than the model trained on Y . This
can happen when HD(X, Z, fi) − HD(Y, Z, fi) < HD(X, Z, fj) − HD(Y, Z, fj)
and fi is a more relevant feature. In other words, the two distributions of in-
stances for fi are more proximate than the two distributions of instances for fj ,
but fj is a weaker feature. If we assume that feature relevance remains roughly
stable over time we can use the information gain on labeled data to inform the
Hellinger distance. Information gain for a batch X is defined as the decrease in
entropy H of a class c conditioned upon a particular feature f .
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IG(X, f) = H(Xc) − H(Xc|Xf ) (2)

We observe immediately that the product of information gain and Hellinger dis-
tance behaves well for most ordinary situations. Because both Hellinger distance
and information gain are well-defined, their product is also well-defined with the
range [0,

√
2] and has a sensible meaning. When information gain is high and

Hellinger distance is high, the product is high, corresponding to when a highly
discriminating feature has significantly drifted. When information gain is high
and Hellinger distance is low, the product is low, corresponding to when a highly
discriminating feature has remained stable. When information gain is low and
Hellinger distance is high, the product is, unfortunately, low.

In this final case, problems may arise. Consider the most extreme case of
a batch in which there are no rare class instances. In these cases, there is no
reduction in entropy by conditioning on any feature because the initial class
distribution has no entropy. The judged difference between this batch and any
other for the feature is 0 no matter how divergent the feature distributions are.
In reality, our distance function should fall back on Hellinger distance. This
way it would not consider two data batches to have 0 distance just because
the training set has no rare-class instances and the otherwise useless “predict
1” model is only applied when Hellinger distance indicates that it should be.
We can easily achieve this with a simple smoothing, leading us to the following
distance function for a single feature.

HDIG(X, Y, f) = HD(X, Y, f) ∗ (1 + IG(X, f)) (3)

To obtain a normalized distance between two complete data sets, we can apply an
arbitrary aggregation function to these relevance-weighted feature distribution
distances. For our experiments, we use summation and arrive with the following
distance function for two data sets X and Y, which is well defined in the range
[0, 2

√
2] for all data sets:

D(X, Y ) =

∑
f∈X HDIG(X, Y, f)

|f ∈ X | (4)

We apply algorithm 2 to incoming batches to classify their instances with dis-
tributions that were most similar in the past.

A distance function measuring distance between data sets X and Y need
not be correlated with the performance on Y of a model trained on X for it
to be logical, consistent, and useful. For this particular application, however,
such a correlation is indicative of a strong potential to provide good weights.
We illustrate in Figure 4 a plot of the correlation between the distance and the
F1-measure that results from weighting the ensemble according to the distance.
Pearson correlation coefficient provides a rough single number representing the
effectiveness of the distance function. For the illustrated example, the coefficient
is 0.435. More important is the performance of the function when distances vary
greatly. Ignoring the noise in the lower right quadrant of the plot, we observe sub-
stantial performance differences correspond to substantial distance differences.
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Algorithm 2. Distance-Weighted Ensembles
Require: batches b1 . . . bt

models m1 . . . mt

unlabeled batch bt+1

Ensure: Probability distributions P for instances ∈ bt+1

1: for i = 1 to t do
2: distancei ← D(bi, bt+1)
3: weighti ← 1

distancei

4: end for
5: NORMALIZE(w)
6: for instance ∈ bt+1 do
7: for i = 1 to t do
8: Pinstance ← Pinstance + wi·PREDICT(mi, instance)
9: end for

10: end for
11: return P
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Fig. 4. The correlation between HD-IG distance output and weighted ensemble classi-
fication performance. This plot is computed based on the compustat data set.

6 Meta-classification

The product of Hellinger distance and information gain ensures that distances
appropriately reflect influential features. There are two caveats: (1) it is still
possible that the influence of ΔP (c|f) is unrelated to or overpowers ΔP (f ) and
(2) the distances are constructed respecting the importance of the most powerful
features only as measured by the training batch. Feature relevance may change
over time, which poses a problem when assigning weights to old batches based
on properties such as information gain. Without class labels, it is impossible to
determine with complete certainty the relevance of a feature in testing data.
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Algorithm 3. Ensembles Weighted Using Meta-Classification
Require: ordered labeled batches b1 . . . bt

models m1 to mt

unlabeled batch bt+1

regression classifier R
list of performance features F
objective performance metric fo

Ensure: probability distributions P for instances ∈ bt+1

updated regression classifier R

1: TRAIN(R)
2: for i ← 1 to n do
3: wi ←PREDICT(R, bi)
4: end for
5: NORMALIZE(weights)
6: for instance ∈ bt+1 do
7: for i = 1 to t do
8: Pinstance ← Pinstance + wi·PREDICT(mi, instance)
9: end for

10: for feature ∈ bt+1 do
11: ADD-FEATURE(meta,HD(bi, bt+1, feature)
12: end for
13: for f ∈ F do
14: ADD-FEATURE(meta,EVALUATE-METRIC(Pinstance, f)
15: end for
16: ADD-CLASS(meta,EVALUATE-METRIC(Pinstance, fo)
17: ADD-INSTANCE(R,meta)
18: end for
19: return P , R

We present another method of incorporating distributional divergence
measures into ensemble model weighting that can respond to posterior prob-
ability drift. We propose a meta-level weighting classifier with feature vector
HD(X, Y, f)∀f ∈ f , and a sliding window of classifier performance metrics. The
Hellinger distance metrics provide information about distributional divergence
at the level of individual features while the performance metrics allow for
weighting based on strong trends in classification success patterns. The class is
the performance metric to optimize. After each base classifier makes its predic-
tion and receives performance results, whether the prediction contributes to the
ensemble or not, a new instance is generated in the weighting classifier data set.
The weighting classifier must be rebuilt and and must then perform regression
analysis on the features. In our experiments, we use simple linear regression.
Algorithm 3 delineates the process in its most general form. There are many
possible modifications such as using only a subset of best base classifiers and
modifying frequency with which information is added to the meta-classifier.
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Table 1. The format of the data on which regression is performed to predict perfor-
mance. The example represents a single instance of the metadata containing informa-
tion about a model trained on bi and previously used to classify bj .

Weighting Classifier Features Class
Distributional Performance Objective Metric

HD(bi, bt+1, f)∀f ∈ bi MSE(bj) AUC-ROC(bt+1)

We leave these for future consideration. The algorithm does not provide the
mundane details of training the base classifier, but instead assumes that this
is performed separately. In Table 1 we provide an illustration of the weighting
classifier data format with AUC-ROC as the optimization objective:

In the same spirit as Section 5.2, we provide Figure 5 to quantify the effec-
tiveness of the meta-classification scheme. The correlation coefficient is 0.577 for
F1-measure and a similar value for other performance measures. This particular
example depicts the ability of the meta-classification scheme to handle drift in
posterior probabilities alone.
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Fig. 5. The correlation between the predicted performance and the actual weighted en-
semble classification performance. This plot is computed based on the STAGGER data set.

7 Weighting

Even after rendering a distance performance prediction, it is necessary to apply
some function to transform outputs to weights. In the case of a distance d, weight
should be inversely proportional to closeness, suggesting a function such as 1

d . In
the case of most performance metrics, for which higher values are better, the most
simple function given a prediction value p is to assign p directly as the weight.
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There are two problems with using such simple functions generally: (1) differ-
ences in the values may be too insignificant to create discriminating weights and
(2) many bad models can outweigh few good ones. At the same time, we have
to be careful not to lose the effectiveness of the ensemble at reducing variance
in cases where differences in the base classifiers are insubstantial. We can attack
the first problem by using more complex functions such as exponential or power
functions. For a distance d our weight would then be x−d or d−x using some base
or exponent x. Given a sufficiently large number of batches, any such function,
no matter what disparity it creates in the model weights, will allow possibly
much better classifiers to be out-ruled. To combat this, we can incorporate the
number of ensemble members b to give us functions such as d−b or d−bx.

While these considerations are important, the require a completely separate
study involving many data sets and extensive parameter exploration. Inevitably
there will still be some small number of classification problems that defy any
single general function. For these reasons, we acknowledge this difficult issue,
but sidestep it and apply linear weighting functions to achieve all of our results.

8 Data

We operate on different categories of data sets with drastically different proper-
ties. Chief among these in number are UCI data sets [10]. They are not inherently
sequential and exhibit no concept drift, but we consider these data sets because
of their class imbalance. We render them as data streams by randomizing the or-
der of instances and processing them in batches. Most notably, we use thyroid,
covtype, optdigits, and letter-recognition for direct comparison with [5].

We also present several generated and real world data sets that vary greatly
in their degrees of imbalance and distributional drift. The can data set captures
properties of a crunching can over time and exhibits imbalance at a ratio of 52:1
and extreme distributional drift in the form of blips of positive class instances.
compustat includes both class imbalance and concept drift, as the training and
testing sets represent several years of changing data. The football data set
comprises features derived from 2003-2008 college football statistics available on
ESPN and the class is whether the home team wins. Features drift over time
due to underlying changes, the most significant of which are clock rule changes
that affect game time. We use a version of the kddcup2008 data set, which
contains instances of breast cancer and exhibits extreme imbalance. text is a
text-recognition data set with a large number of features. Finally, we include an
ordered variation of the Wharton wrds data set.

Characteristics of all of these data sets are available in Table 2. Lack of public
availability of source data is a problem with many works focusing on streaming
data. It is therefore difficult to repeat or verify experiments. For this reason, all
data sets for experiments in this paper are publicly available.
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Table 2. Data Set Characteristics

Instances Features Properties
Name All Positive Nominal Numeric Imbalance Ordered
adult 48,842 11,687 8 6 3.2:1 No
boundary 3,505 123 175 0 27.5:1 No
breast-w 569 212 0 30 1.7:1 No
cam 18,916 942 132 0 19.1:1 No
can 443,872 8,360 0 9 52.1:1 Yes
compustat 13,657 520 0 20 25.3:1 Yes
covtype 38,500 2,747 0 10 13.0:1 No
estate 5,322 636 0 12 7.4:1 No
football 4,288 1,597 2 11 1.7:1 Yes
fourclass 862 307 0 2 1.8:1 No
german 1,000 300 0 24 2.3:1 No
ism 11,180 260 0 6 42.0:1 No
kddcup2008 102,294 623 2 123 163.2:1 No
letter 20,000 789 0 16 24.3:1 No
oil 937 41 0 49 21.9:1 No
ozone-1h 2,536 73 0 72 33.7:1 Yes
ozone-8h 2,534 160 0 72 14.8:1 Yes
page 5,473 560 0 10 8.8:1 No
pendigits 10,992 1,142 0 16 8.6:1 No
phoneme 5,400 1,584 0 5 2.4:1 No
phoss 11,411 613 0 480 17.6:1 No
pima 768 268 0 8 1.9:1 No
satimage 6,430 625 0 36 9.3:1 No
segment 2,310 330 0 19 6.0:1 No
splice 1,000 483 0 60 1.1:1 No
STAGGER 12,000 5,303 3 0 1.3:1 Yes
svmguide1 3,089 1,089 0 4 1.8:1 No
text 11,162 709 0 11,465 14.7:1 Yes
thyroid 7,200 166 15 6 42.4:1 No
wrds 99,200 48,832 2 39 1.0:1 Yes

9 Results

We first examine the degree to which the boundary definition (BD) method can
improve classification metrics on static data sets. Because this method seeks
only to improve performance in the domain of extreme imbalance, we compare
it to the other existing work [5], from which it borrows the idea of propagating
minority class instances. In Tables 3(a), 3(b), and 3(c) we directly compare the
performance for several data sets reported in [5]. We duplicated their methods
(SE) for constructing the data sets and evaluating performance as closely as
possible. For letter we created a separate data for each individual letter with
that letter as the positive class. For optdigits we followed the same process
for each number. We select class 2 as the negative class and class 4 as the posi-
tive class in covtype. From thyroid we create two data sets with class 3 as the
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Table 3. Direct comparison of BD and SE

(a) Precision and Recall

Precision Recall
BL SE- SE BD BL SE- SE BD

covtype 0.980 0.603 0.770 0.993 0.958 0.999 0.998 0.999
letter 0.836 0.398 0.519 0.780 0.719 0.963 0.955 0.934
optdigits 0.869 0.765 0.834 0.915 0.827 0.954 0.952 0.952
thyroid1 0.914 0.527 0.728 0.897 0.907 1.000 1.000 1.000
thyroid2 0.940 0.617 0.857 0.957 0.982 1.000 1.000 1.000

(b) F1-measure and PRBEP

F1-measure PRBEP
BL SE- SE BD BL SE- SE BD

covtype 0.969 0.748 0.869 0.996 0.968 0.880 0.953 0.997
letter 0.771 0.558 0.667 0.847 0.739 0.775 0.826 0.891
optdigits 0.846 0.847 0.887 0.932 0.833 0.896 0.915 0.936
thyroid1 0.910 0.686 0.836 0.945 0.899 0.876 0.912 0.937
thyroid2 0.960 0.762 0.922 0.978 0.941 0.860 0.922 0.975

(c) AUC-ROC and AUC-PR

AUC-ROC AUC-PR
BL SE- SE BD BL SE- SE BD

covtype 0.975 0.999 1.000 1.000 0.944 0.840 0.951 1.000
letter 0.891 0.987 0.989 0.993 0.675 0.785 0.847 0.941
optdigits 0.909 0.990 0.990 0.993 0.768 0.934 0.949 0.972
thyroid1 0.951 0.998 0.999 0.999 0.854 0.897 0.913 0.934
thyroid2 0.991 0.995 0.998 0.999 0.934 0.862 0.920 0.975

negative class: one with 1 as the positive class and the other with 2 as the positive
class. After constructing the data sets from the UCI source data, we randomized
the order of the instances and repeated all framework experiments ten times.
The baseline method (BL) is to train a model on batch t with no resampling
and use it to test on batch t + 1. For instructive purposes, we also examine the
performance of positive class propagation when only the misclassified instances
are propagated (SE-). We report several widely accepted imbalanced classifica-
tion metrics including the area under the receiver operating characteristic curve
(AUC-ROC) as implemented in WEKA [11], precision, recall, F1-measure, and
the area under the precision-recall curve (AUC-PR) as implemented in [12]. We
observe that AUC-PR is a more discriminating measure than AUC-ROC in the
domain of imbalance. Bold font indicates the highest value, but not necessarily
statistical significance.

From Table 3(a) we see immediately that propagating misclassified negative
class instances improves precision. The method creates a more complete
boundary for training. In all cases, it is much closer to baseline precision, while
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sacrificing very little in recall. In some cases, it even improves precision beyond
the baseline, which uses no resampling. Table 3(b) illustrates the trade-off per-
formance on precision and recall and we see here that BD outperforms SE in
terms of F1-measure by at least 5 percent and as much as 26 percent. Finally,
BD always performs at least as well as SE in AUC-ROC while outperforming it
for every data set in the more discriminating AUC-PR measure.

For a broader view of the performance of BD with respect to the baseline and
with respect to SE, we provide comprehensive coverage of 21 data sets from the
UCI repository. To obtain these results, we simply execute each framework ten
times on each data set. The data sets have precisely the properties described in 2.
Each cell intersecting a method and a data set represents the rank of the method
on that data set for the metric in the heading. A rank of 1 means the method
performs best, and a rank of three means it performs worst. At the bottom, we
provide the mean rank and the overall rank. The overall rank is calculated using
the Nemenyi procedure as described in [13] with α = 0.05. Statistical significance
is indicated between two ranks when a value of one or greater separates them.
This comes into play for the F1-measure column where BD performs significantly
better than BL, but SE does not perform statistically significantly better than
BL, and BD does not perform statistically significantly better than SE.

Table 4. Performance on Static Data Sets

Precision Recall F1-measure AUC-ROC AUC-PR
Name BL SE BD BL SE BD BL SE BD BL SE BD BL SE BD
adult 1 3 2 3 1 2 2 3 1 3 2 1 3 2 1
boundary 3 2 1 3 1 2 3 2 1 3 2 1 3 2 1
breast-w 2 3 1 3 2 1 3 2 1 3 2 1 3 2 1
cam 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2
covtype 2 3 1 3 1 2 3 2 1 3 2 1 3 2 1
estate 3 2 1 3 1 2 3 1 2 3 1 2 3 1 2
fourclass 3 2 1 3 1 2 3 2 1 3 2 1 3 2 1
german 1 2 3 3 1 2 3 1 2 3 1 2 3 2 1
ism 1 2 3 3 1 2 1 2 3 3 2 1 2 3 1
letter 1 3 2 3 2 1 1 3 2 3 2 1 3 2 1
oil 1 3 2 3 1 2 1 2 3 3 1 2 3 2 1
page 1 2 3 3 1 2 1 3 2 3 2 1 3 2 1
pendigits 1 3 2 3 1 2 2 3 1 3 2 1 3 2 1
phoneme 2 3 1 3 1 2 3 2 1 3 2 1 3 2 1
phoss 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2
pima 1 3 2 3 1 2 3 1 2 3 2 1 3 2 1
satimage 1 3 2 3 1 2 3 2 1 3 2 1 3 2 1
segment 1 3 2 3 1 2 2 3 1 3 2 1 2 3 1
splice 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1
svmguide1 1 3 2 3 1 2 3 1 2 3 1 2 3 1 2
thyroid 1 3 2 3 1 2 1 3 2 3 2 1 3 2 1
MEAN 1.5 2.6 1.9 3.0 1.1 1.9 2.4 2.0 1.6 3.0 1.7 1.3 2.9 1.9 1.2
OVERALL 1 2.5 1.5 3 1 2 2.5 2 1.5 2.5 2 1.5 2.5 2 1.5
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Table 5. Performance on Drifting Data; Weighting Alone

(a) Precision and Recall

Precision Recall
SA HD HDIG MW SA HD HDIG MW

adult 0.792 0.793 0.793 0.792 0.526 0.526 0.526 0.526
can 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
compustat 0.246 0.264 0.345 0.275 0.005 0.007 0.011 0.018
covtype 0.837 0.838 0.838 0.837 0.683 0.683 0.681 0.682
football 0.763 0.763 0.760 0.764 0.669 0.670 0.669 0.671
kddcup2008 0.038 0.046 0.046 0.092 0.005 0.013 0.013 0.020
ozone-1h 0.144 0.118 0.118 0.150 0.095 0.095 0.095 0.095
ozone-8h 0.154 0.200 0.200 0.155 0.061 0.119 0.119 0.061
STAGGER 0.656 0.656 0.656 0.741 0.454 0.454 0.454 0.588
text 0.657 0.659 0.659 0.641 0.693 0.693 0.693 0.696
wrds 0.971 0.971 0.971 0.971 0.875 0.875 0.861 0.875

(b) F1-measure and PRBEP

F1-measure PRBEP
SA HD HDIG MW SA HD HDIG MW

adult 0.631 0.631 0.631 0.631 0.620 0.620 0.620 0.620
can 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
compustat 0.010 0.014 0.021 0.034 0.519 0.519 0.519 0.519
covtype 0.751 0.752 0.751 0.752 0.536 0.536 0.536 0.536
football 0.712 0.713 0.711 0.714 0.688 0.688 0.688 0.688
kddcup2008 0.009 0.017 0.017 0.025 0.160 0.160 0.160 0.160
ozone-1h 0.104 0.100 0.100 0.106 0.516 0.516 0.516 0.516
ozone-8h 0.072 0.142 0.142 0.072 0.534 0.534 0.534 0.534
STAGGER 0.508 0.508 0.508 0.630 0.711 0.711 0.711 0.711
text 0.671 0.672 0.672 0.664 0.534 0.534 0.534 0.534
wrds 0.918 0.918 0.904 0.918 0.462 0.462 0.462 0.462

(c) AUC-ROC and AUC-PR

AUC-ROC AUC-PR
SA HD HDIG MW SA HD HDIG MW

adult 0.892 0.892 0.892 0.892 0.763 0.763 0.763 0.763
can 0.815 0.815 0.815 0.815 0.007 0.007 0.007 0.007
compustat 0.741 0.743 0.744 0.743 0.207 0.228 0.251 0.226
covtype 0.970 0.970 0.970 0.970 0.834 0.834 0.834 0.834
football 0.855 0.855 0.855 0.855 0.776 0.777 0.777 0.776
kddcup2008 0.780 0.790 0.780 0.767 0.124 0.122 0.122 0.121
ozone-1h 0.784 0.795 0.794 0.784 0.139 0.158 0.158 0.139
ozone-8h 0.748 0.747 0.746 0.744 0.175 0.176 0.175 0.174
STAGGER 0.744 0.739 0.739 0.795 0.807 0.807 0.807 0.849
text 0.937 0.937 0.937 0.934 0.617 0.618 0.618 0.610
wrds 0.973 0.973 0.973 0.973 0.698 0.698 0.698 0.698
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We can conclude that both BL and BD achieve better precision than SE, which
loses precision with respect to BL because it tends to push the border beyond
more negative class instances. Although BL usually achieves higher precision
than BD, the results are not significant with α = 0.05. Although we see that SE
outranks BD in terms of recall, a quick look at both Table 3(a) and much of the
data underlying the ranks show that the benefit of SE over BD with respect to
BL is often negligible given the precision gains. Although individual F1-measure
results suggest that BD often outperforms SE, we cannot say this with α = 0.05,
nor can we say with confidence that SE outperforms BL. Finally, on both AUC-
ROC and AUC-PR, despite frequent wins by BD, the results are not statistically
significant at α = 0.05. For AUC-PR, at α = 0.10 we can say that SE performs
worse than BD.

Next, we examine how these methods perform on data that exhibits distri-
butional or concept drift, especially in the context of class imbalance. As con-
trol factors, we include adult and kddcup2008, which exhibit no form of data
drift. We also include the benchmark data set, STAGGER, which exhibits only con-
cept drift and no distributional drift. STAGGER also does not exhibit meaningful
imbalance. Table 5 illustrates results for simple average voting (SA), ensembles
weighted using Hellinger distance (HD), ensembles weighted using the HDIG dis-
tance (HDIG), and ensembles weighted using a meta-classification scheme (MW).

These results indicate that applying weights to ensemble members instead of
using the simple average of unweighted probability outputs without any under-
lying sampling does little to improve classification. The authors of [14] found
a similar result in which modifications to a majority voting scheme produced
small and inconsistent improvements. compustat is an exemplary data set for
showing the usefulness of the HD-IG method. Many of the performance metrics
show large differences. The exemplary data set for exhibiting the usefulness of
the MW method is STAGGER. Its posterior drift is detected by the performance
features in the performance history data.

Applying ensemble weights seems to produce much more consistent results
after resampling. This result is surprising since resampling changes the distri-
bution of the models without changing the distribution of the underlying data
used for the distance computation. It is meaningful because HD-IG systemati-
cally improves the recall and F1-measure for almost all of the data sets, although
the improvements are minor and apply almost equally to the randomized data
in adult and covtype.

10 Timing and Parallelism

Because stream mining frameworks and algorithms are often employed in time-
critical or resource constrained situations, it is more important than in typical
non-streaming applications that they perform efficiently. Aside from any spe-
cific performance or resource constraints, mining data streams has an inherent
requirement that the classification task have a throughput at least equal to the
rate at which instances or batches arrive. Research like that in [15] even explores
the topic specifically.
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Table 6. Performance on Drifting Data; Weighting and Resampling

(a) Precision and Recall

Precision Recall
BD BD-HDIG BD-MW BD BD-HDIG BD-MW

adult 0.614 0.618 0.614 0.781 0.783 0.776
can 0.027 0.027 0.027 0.011 0.014 0.012
compustat 0.142 0.161 0.128 0.326 0.396 0.374
covtype 0.728 0.734 0.728 0.892 0.899 0.897
football 0.774 0.774 0.774 0.651 0.655 0.650
kddcup2008 0.071 0.062 0.070 0.370 0.379 0.379
ozone-1h 0.063 0.074 0.055 0.455 0.552 0.431
ozone-8h 0.133 0.134 0.149 0.422 0.428 0.425
STAGGER 0.569 0.598 0.686 0.454 0.454 0.588
text 0.510 0.511 0.558 0.831 0.816 0.821
wrds 0.973 0.973 0.974 0.874 0.801 0.873

(b) F1-measure and PRBEP

F1-measure PRBEP
BD BD-HDIG BD-MW BD BD-HDIG BD-MW

adult 0.686 0.689 0.685 0.783 0.785 0.784
can 0.012 0.016 0.014 0.021 0.021 0.021
compustat 0.185 0.217 0.183 0.701 0.701 0.701
covtype 0.796 0.802 0.798 0.708 0.709 0.709
football 0.707 0.709 0.706 0.782 0.781 0.782
kddcup2008 0.105 0.098 0.105 0.325 0.323 0.323
ozone-1h 0.110 0.129 0.096 0.701 0.701 0.701
ozone-8h 0.199 0.203 0.218 0.700 0.700 0.700
STAGGER 0.475 0.488 0.607 0.815 0.818 0.813
text 0.629 0.611 0.625 0.700 0.700 0.700
wrds 0.918 0.854 0.918 0.918 0.918 0.919

(c) AUC-ROC and AUC-PR

AUC-ROC AUC-PR
BD BD-HDIG BD-MW BD BD-HDIG BD-MW

adult 0.905 0.906 0.905 0.783 0.784 0.783
can 0.819 0.821 0.819 0.026 0.026 0.026
compustat 0.770 0.774 0.780 0.207 0.210 0.184
covtype 0.982 0.981 0.982 0.866 0.866 0.866
football 0.862 0.861 0.862 0.795 0.794 0.795
kddcup2008 0.931 0.940 0.936 0.201 0.225 0.196
ozone-1h 0.751 0.785 0.727 0.108 0.102 0.095
ozone-8h 0.724 0.728 0.725 0.159 0.165 0.168
STAGGER 0.709 0.704 0.753 0.788 0.785 0.812
text 0.941 0.936 0.942 0.625 0.617 0.622
wrds 0.974 0.973 0.974 0.975 0.974 0.975
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The increased time requirement for BD is minimal but evident since it must
consider the misclassified negative class instances through time. We demonstrate
here that the performance benefit of DW is offset by a modest increase in compu-
tational requirements. We begin with a theoretical examination and move to an
empirical study. Hellinger distance may be computed on a single feature in O(e)
where e is the number of instances in the batch. Computing Hellinger distance
for all features is O(|f | · e). As each batch with unclassified instances arrives,
all previous batches must be compared with only the new batch. The number of
Hellinger distance computations for each batch therefore increases linearly with
the number of batches. For a batch i there will be O(|f | · e) · O(i) operations
for ensemble construction. Because the information gain component of the dis-
tance measure can be saved for each feature in each batch after computation,
its growth through time is described by O(1) and its time requirement for each
batch is O(e), which is subsumed by the Hellinger distance computation. The
overhead requirement for preparing the weights for all batches in a stream up to
and including batch n is such:

n∑
i=0

O(|f | · e + 1) =
n · (n + 1)

2
· O(|f | · e) = O

(
n2 · |f | · e) (5)

The task also enjoys simple parallelization. Distance computations for a batch
bi and the incoming test batch bt+1 are entirely independent and may easily
be done in parallel. Each of the ensemble members can run independently to
produce its probability estimations or classification output on new unlabeled
instances.

We include BL, SE, BD, and HD for comparison. We omit HD-IG because
information gain computation results can be saved resulting in negligible contri-
butions to time requirements. We also omit MW since its complexity is depen-
dent on the choice of classifier and the specific nature of the problem at hand,
although we do observe that its growth will be at least linear growth in the num-
ber of batches. Theoretically, BL should exhibit no increase in time requirements
with incoming batches. SE should exhibit small increases with each batch as SE
requires all previously constructed models to provide a probability estimation
and training time increases for the increasingly large resampled batches.

For empirical study, we use kddcup2008 data only because the data volume
is sufficient to accommodate 80 batches of 1278 instances each. Times include
the entire training and evaluation process for each batch. We made no effort to
improve the performance of any of the algorithms over any others. We observe
that all methods except BL theoretically exhibit, with varying coefficients, linear
growth in the number of batches over time. Finally, Figure 6 shows all methods
requiring more time than BL for almost all batches. This is only a consequence
of the fact that we divided the data into batches with small numbers of instances
so that sufficient batches would exist to illustrate the growth patterns. In reality,
the BL method will require longer whenever methods that undersample remove
a significant portion of the batch.
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Fig. 6. The time requirement in milliseconds for processing batches from 1 through 80

11 Conclusions

Generating classifier ensembles to detect and address concept drift in a proactive
manner is a powerful new solution. It performs dramatically better than existing
methods on extremely complicated data streams with complex concept drift and
high degrees of imbalance. Simultaneously, it sacrifices no significant performance
on simpler data sets with no concept drift and only moderate imbalance. Often
classification improvements are measured in a few percentage points of accuracy
or small fractional increases in AUC-ROC. Our method achieves gains in several
performance metrics that are as great as an order of magnitude with respect to
preexisting methods of handling the intersecting problems of concept drift and
imbalance.

We acknowledge that the assumption that feature relevance is stable over
time does not always hold. Several works in the field observe that it is not
[16,17,18,19]. We can say that for all the data sets on which we tested, the infor-
mation gain adjusted distance function performed better than Hellinger distance
alone. For arbitrarily complex drifts in ΔP (f) or drifts in ΔP (c|f ) signaled by
ΔP (f), distributional divergence performs well. It is theoretically impossible to
detect with certainty that a new batch contains a posterior probability shift. In
situations like these, it may become necessary to sample a few instances from the
upcoming batch as in [20]. Another alternative is to combine performance-based
weighting with the weighting proposed here.

We believe that the distance measure proposed herein is an excellent way to
measure the distance between two data sets. In its current form, it only uses
information gain from one of the two data sets to provide a distance, but it can
easily be extended to accept information gain from two sources when class labels
are available from both. We hope to compare this measure of data set distance
to several others to compare properties and usefulness.
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12 Related Work

Researchers have extensively studied class imbalance. The most popular ap-
proaches for handling imbalance are various forms of resampling to achieve a
more balanced distribution, including random undersampling of the negative
class and SMOTE [21]. A more recent approach is an active learning system
capable of efficiently querying large data sets to find informative examples [22].

Together, [23] and [24] serve as an excellent overview of the principles of con-
cept drift. An early seminal paper in overcoming concept drift was [25]. Since
then, there has been much research in data stream mining to attempt to react to
concept drift as quickly as possible. Many batch approaches employ some form
of ensemble technique. Some use simple average [5], while others employ weight-
ing [3,6]. With various levels of sophistication, some systems maintain a sliding
window of examples or models. [26] and [27] dynamically adjust window size and
the former provides strict performance guarantees. We observe that a contigu-
ous window, even an optimally sized one, may fail to contain recurring concepts
if they were previously forgotten by the system. This concept of periodicity is
briefly discussed in [1]. The FLORA systems have the ability to reactivate old
concepts outside the window [4].

We are aware of few publications that directly address the notion of class
imbalance in combination with concept drift in data streams. The FLORA sys-
tems include distinct rules for positive examples [4], but do not directly target
them. Work in [28] focuses on detecting concept drift in potentially adversarial
scenarios such as the perpetration of fraud. In [5], which specifically addresses
imbalance, the primary contribution was the idea of propagating positive class
examples to overcome class imbalance.

Much of our work focuses on distributional divergence. Although the topic has
not been explored extensively in general stream mining, it is a familiar concept in
the related field of novelty detection, which is the task of realizing the occurrence
of previously unobserved or infrequently observed concepts. An excellent review
of distributional measures in novelty detection appears in [29]. Although it does
not implement or report results for any methods, [24] addresses the potential
of using distributional considerations to detect concept drift. The work in [30]
proposes modeling the underlying distributions in data and using the models to
detect change. In [31], distributional measures are used for ensemble weighting.
Finally, [20] uses distributional measures in the forms of expected loss due to
feature dissimilarity and decision tree leaf statistics to determine when data
distributions are changing outside an acceptable level.
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26. Bifet, A., Gavaldá, R.: Learning from time-changing data with adaptive windowing.
In: SIAM International Conference on Data Mining, SDM 2007 (2006)

27. Klinkenberg, R.: Using labeled and unlabeled data to learn drifting concepts. In:
Workshop notes of the IJCAI 2001 Workshop on Learning from Temporal and
Spatial Data, pp. 16–24 (2001)

28. Phua, C., Miles, K.S., Lee, V., Gayler, R.: Adaptive spike detection for resilient
data stream mining. In: Proceedings of the sixth Australasian conference on Data
mining and analytics (AusDM 2007), pp. 181–188. Australian Computer Society,
Inc., Darlinghurst (2007)

29. Markou, M., Singh, S.: Novelty detection: A review - part 1: Statistical approaches.
Signal Processing 83, 2481–2497 (2003)

30. Korn, F., Muthukrishnan, S., Wu, Y.: Modeling skew in data streams. In: SIG-
MOD 2006: Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pp. 181–192. ACM, New York (2006)

31. Nishida, K., Yamauchi, K., Omori, T.: Ace: Adaptive classifiers-ensemble system
for concept-drifting environments. Multiple Classifier Systems, 176–185 (2005)



Two Measures of Objective Novelty in
Association Rule Mining�

José L. Balcázar
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Abstract. Association rule mining is well-known to depend heavily on
a support threshold parameter, and on one or more thresholds for in-
tensity of implication; among these measures, confidence is most often
used and, sometimes, related alternatives such as lift, leverage, improve-
ment, or all-confidence are employed, either separately or jointly with
confidence. We remain within the support-and-confidence framework in
an attempt at studying complementary notions, which have the goal of
measuring relative forms of objective novelty or surprisingness of each
individual rule with respect to other rules that hold in the same dataset.
We measure novelty through the extent to which the confidence value is
robust, taken relative to the confidences of related (for instance, logically
stronger) rules, as opposed to the absolute consideration of the single rule
at hand. We consider two variants of this idea and analyze their logical
and algorithmic properties. Since this approach has the drawback of re-
quiring further parameters, we also propose a framework in which the
user sets a single parameter, of quite clear intuitive semantics, from which
the corresponding thresholds for confidence and novelty are computed.

1 Introduction and Related Work

Association rule mining is a process by which a transactional or relational dataset
is explored in an attempt at identifying implications among its elementary com-
ponents (items or attribute values). The syntax of implications is very sugges-
tive of cause-effect relationships; therefore, such syntax is welcome by human
decision-makers and domain experts, who can analyze actions to be taken on
the basis of the causality intuitively suggested by the implications found.

The idea of expressing knowledge extracted from data in a form of implica-
tions has been proposed in a myriad of contributions, many of these in a manner
independent of each other. An early development, largely unknown, that already
offered the current notion of association rules as a mere part of a much more
expressive logic-based system is described in [20]. The research area of Machine
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Learning has contributed also many algorithms to “learn rules from examples”,
which, often, amounts to identifying implications or variants thereof. Purely logi-
cal implications have been explored in many contributions (see [16], [35], and the
references there for one of the settings, and [23], [25] for closely related perspec-
tives); a proposal that gave the topic of research and applications of association
rules inmense momentum, was the description in [2] of the usefulness of param-
eterizing the association mining process according to a support constraint and
a confidence constraint (or “precision” in [30]). In fact, the support constraint
opened the door to the design of practically feasible algorithms, starting with [3];
in fact, different datasets often require different algorithmics: see the outcomes
of the FIMI competition [14] and the alternatives described in the survey [12].
On the other hand, there is a clear need of quantifying “degrees of implication”
because purely logical implications turn out not to match exactly the needs of
practical association mining projects. However, several criticisms could be put
forward about confidence as a measure of “degree of implication”, and a large
number of alternatives have been proposed, evaluated, and studied; the litera-
ture about these notions is, in fact quite large [17], [19], [21], [37]. A good survey
with many references is [18].

Yet, we prefer to develop our proposal in the context of support and confidence
bounds, for several reasons. First, conditional probability is a concept known to
many educated users from a number of scientific and engineering disciplines, so
that communication with the data mining expert is simplified if our measure
is confidence. Second, as a very elementary concept, it is the best playground
to study other proposals, such as our contribution here, which could be then
lifted to other similar parameters. Third, we believe that, in fact, our relative
measures will make up for many of the objections raised against confidence.
Additionally, it must be taken into account that the quantity of data is usually
insufficient to test the extremely large number of hypotheses given by the set of
all possible rules, even if schemes more efficient than the Bonferroni guarantees
are employed; and it has been observed and argued that the combination of
support and confidence is already very good at discarding rules that are present
only as statistical artifacts and do not really correspond to correlations in the
phenomenon at the origin of the dataset [32].

Now, let us put forward the following considerations. The outcome of a data
mining project is expected to offer some degree of novelty. A wide spectrum of
subjective considerations regarding the user’s previous knowledge can be con-
sidered, and, of course, novelty with respect to knowledge existing previously
to the data mining process is hard to formalize. But one fact is clear: novelty
cannot be evaluated in an absolute form; it refers to knowledge that is somehow
unexpected, and therefore some expectation, lower than actually found, must
exist, due to some alternative prediction mechanism. Additionally, an intuitive
“rule of thumb” is that the amount of novel facts must be low in order that
novelty is actually useful.

We propose to measure the novelty of each rule with respect to the rest of the
outcome of the same data mining process. To do this, we resort to recent advances
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in the construction of irredundant bases and in mathematical characterizations
of the most natural notion of redundancy. As we shall see, a redundant rule
is so because we can know beforehand, from the information in a basis, that
its confidence will be above the threshold. Pushing this intuition further, an
irredundant rule in the basis is so because its confidence is higher than what
the rest of the basis would suggest: this opens the door to asking, “how much
higher?”. If the basis suggests, say, a confidence of 0.8 (or 80%) for a rule, and the
rule has actually a confidence of 0.81, the rule is indeed irredundant and brings
in additional information, but its novelty, with respect to the rest of the basis, is
not high; whereas, in case its confidence is actually 0.95, quite higher than the
0.8 expected, the fact can be considered novel, in that it states something really
different from the rest of the information mined. We provide a new notion that
formalizes this intuition, and show that it indeed refines very much the data
mining process, but has a limitation due to being too close to a fully logical
approach. Then we relax slightly the definition into a more useful variant, and
we study both concepts.

The main notions to be defined below are similar to the “pruning” proposal
from [29], in that the intuition is the same; two major differences are, first, that
we will work on an already heavily reduced basis, so that a large portion of the
pruning becomes unnecessary, and that for what remains, the pruning in [29]
is based on the χ2 statistic, whereas we will look instead into the confidence
thresholds that would make the rule logically redundant. Our notions are also
similar to the notion of improvement, proposed in [7] (and also briefly discussed
in [29], although we are not aware of that proposal having received further at-
tention); this quantity also attempts at discarding uninteresting rules due to the
same intuitions as ours; but it is a measure of an absolute, additive confidence
increase, with no reference to representative rules or standard redundancy, and
it only allows for varying the antecedent into a smaller one, keeping the same
consequent. Our quotient-based definitions are more powerful, enjoy better algo-
rithmic properties than those currently known for the analogous difference-based
alternative, and are also, in our opinion, more natural.

Our notions have some surface similarity as well with the notion of all-
confidence [33] and the related concept of m-patterns [31]. However, these no-
tions are rather restrictive, and provide only strong “niches” where all the sets
of attributes within an output pattern depend heavily pairwise among them.
We wish to depart in a lesser degree from the standard association rule setting.
On the other hand, a strong point of these notions is that they bring in an an-
timonotonicity property to prune the search space. Instead, we just employ a
support bound for its antimonotonicity property, and discuss our contribution
in terms of postprocessing the output of a standard frequent closed set miner.

Each of these additional measures, and ours are not exceptions, raises an
additional difficulty. For a vast majority of datasets, already the setting of a
support and confidence value by a human requires enormous expertise and intu-
ition, and/or insistingly repeated runs of the computation process with different
values. Few works discuss the setting of the support threshold for association
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rules; worth mentioning are the works [6], [13], [22], and [24], all of which pro-
vide interesting advances for the case where the association rules are to be used
as a classifier (which is not our case here), using the additional information that
one of the attributes will be a as target class; this opens the door to using cover-
age analysis or criteria related to the ROC curve to orient the decision of which
support threshold to use. Many algorithms related to Machine Learning have
a similar criticism; say, the parameter corresponding to the box constraint of
the soft-margin support vector machines, as one mere example. Many successful
algorithms are so through the identification of some sort of autonomic or semi-
autonomic self-adjustment of the parameters, thus freeing the user from having
to choose a value for them.

However, fully removing all parameters would not be the best choice either. It
is clear that different characteristics of datasets (largish or smallish transactions,
largeor smalldeviations fromtheaverage in the transaction sizes, largeor smalluni-
verse of items, more uniform or less uniform distributions of the individual items)
are likely to call for somewhat tailored explorations. Therefore, the data mining
process needs some way of tuning the exploration to the dataset at hand. We pro-
pose here an interpretation of confidence that allows us to suggest values for the
bounds on our new novelty parameters, automatically from the confidence bound.

1.1 Redundancy among Association Rules

We start our analysis from one of the notions of redundancy defined formally first
in [1], but employed also, generally with no formal definition, in several papers
on association rules; thus, we will qualify sometimes this redundancy notion as
“standard”. We give up front two equivalent characterizations of the notion: the
second one was proposed, as nearly identical “covering”-like simplifications, in
several independent sources ([1], [26], [36]); the fact that they are equivalent to
standard redundancy, instead of being a simplified variant of it, is quite recent [5].

We denote itemsets by capital letters from the end of the alphabet, and use
juxtaposition to denote union, as in XY . For a given dataset D, consisting
of transactions, each of which is an itemset labeled with a unique transaction
identifier, we can count the support s(X) of an itemset X , which is the cardinality
of the set of transactions that contain X . The confidence of a rule X → Y is
c(X → Y ) = s(XY )/s(X).

Lemma 1. [5] Consider two association rules, X0 → Y0 and X1 → Y1. The
following are equivalent:

1. The confidence and support of X0 → Y0 are always larger than or equal to
those of X1 → Y1, in all datasets; that is, for every dataset D, c(X0 → Y0) ≥
c(X1 → Y1) and s(X0Y0) ≥ s(X1Y1).

2. X1 ⊆ X0 ⊆ X0Y0 ⊆ X1Y1.

The fact that 2 implies 1 is easy to see and was pointed out in the references
indicated. The fact that 1 implies 2 is nontrivial and much more recently shown.
Whenever rules X0 → Y0 and X1 → Y1 fulfill either of the two equivalent
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conditions, we say that X0 → Y0 is redundant with respect to X1 → Y1. As an
example, for items A, B, C, and D, the rule AB → C is redundant with respect
to rule A → BC, and is also redundant with respect to AB → CD. The first
of the two equivalent forms of definition is akin to the definition of entailment
in purely logic-based studies, and we will use sometimes the phrase “logically
stronger” to refer to a rule that makes another one redundant with respect to
standard redundancy.

Note that the rules X → Y and X → XY are mutually redundant, in fact fully
equivalent because their confidence s(XY )/s(X) and support s(XY ) always coin-
cide. Therefore we consider all association rules where the right-hand side always
includes the left-hand side, although for the purpose of showing them to the user
the repeated items of the left-hand side will be removed from the right-hand side.
This simple convention greatly simplifies the mathematical development.

There are several alternative notions of redundancy in the literature; see [5]
for further comparisons among a few of them. For this particular notion we
have just given, the aim is clear: whatever the dataset under analysis, and the
support and confidence parameters, if we find that rule X1 → Y1 appears among
the mined rules by passing the support and confidence thresholds, any other rule
X0 → Y0 showing standard redundancy with respect to it is known to be also in
the set of mined rules without need to inspect them to check out. This is because
the support and confidence must be at least the same as those of rule X1 → Y1,
whence it passes the thresholds as well.

1.2 Representative Rules

The fact that the output of association rule miners tends to be far larger than
desired has been widely reported; it is also self-apparent to anyone that has tried
any of the association miners in data mining packages or implementations freely
available on the web, e.g. [9].

Our implementation builds on the representative rules for association rules,
proposed independently and in different but equivalent ways, in [1], in [26], and
in [36]. Recently, several new mathematical properties of this basis have been
proved, including a form of optimality [5].

Definition 1. Fix a dataset D and confidence and support thresholds. The cor-
responding basis of representative rules consists of all the rules that hold in D,
passing both thresholds, which are not redundant with respect to any other rule
that holds in D for the same thresholds.

Among several equivalent possibilities to define representative rules, we have
chosen a definition so that the following claim becomes intuitively clear: every
rule that passes the thresholds for D is either a representative rule, or is redun-
dant with respect to a representative rule. Indeed, any given rule that is not
among the representative rules must be redundant with respect to some other
rule, which again must be redundant with respect to a third, and so on, until
finiteness enforces termination that can be only reached by finding a rule in the
basis, making redundant all the others found along the way. The formalization
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of this argument can be found in [26] (Lemma 1 must be taken into account to
complete the proof).

Thus, every rule that passes the thresholds for D is either a representative rule,
or is redundant with respect to a representative rule. Moreover, any basis, that
is, any set of rules that makes redundant all the rules mined from D at the given
thresholds, must include all the representative rules, since there is no other way of
making them redundant. Thus, the representative rules form the unique smallest
basis with respect to standard redundancy. (This is not true of rules of confidence
100%; for these absolute implications, the representative basis from [1], [26],
[36] can be constructed as well and coincides with the “canonical iteration-free
basis” of [38], the nonredundant implications of [40], the proposal in [35] and the
“generic” (or “exact min-max”) basis of [34]; but all these equivalent proposals
fail to reach a minimum size, since there is a more economical alternative [15].
Full discussion can be found in [5], where all these facts, and also the equivalence
of our formulation with the original ones, are studied in detail.)

In a sense, representative rules are sort of a required starting point, since they
give demonstrably the best basis size one can hope for with no loss of informa-
tion, with respect to redundancy as defined. Representative rules turn out to be
intimately related to closed itemsets and minimal generators. These two notions
play an important role in rule mining ([11], [27], [34], [40], [41]). A set is closed if
there is no proper superset with the same support. A set is a minimal generator
(or also a free set) if there is no proper subset with the same support. In the pres-
ence of a support threshold, frequent closed sets are closed sets whose support
clears the threshold. Frequent closed sets are very crucial to the algorithmics of
association rules and to the identification of irredundant bases. Specifically, in
[27] we find a proof of the following nonobvious fact: all representative rules have
a minimal generator as antecedent and a closed itemset as consequent (however,
not all such pairs give representative rules). Good algorithms and implementa-
tions to find them already exist. Absolute optimality of certain versions of these
bases is shown in [5].

2 Confidence Width

This section describes the foundations of our proposal. Our intuition is as follows:
consider a rule X → Y of a given confidence, say c(X → Y ) = c0 ∈ [0, 1], in a
given dataset D. Assume that a fixed support threshold is enforced throughout
the discussion, and consider what happens as we vary the confidence threshold γ.

If we set it higher than c0, that is, c0 < γ, the rule at hand will not play
any role at all, being of confidence too low for the threshold. As we lower the
threshold and reach exactly γ = c0, the rule becomes part of the output of
any standard association mining process, but two different things may happen:
the question is whether, at the same confidence, some other “logically stronger”
rule appears. If not, X → Y will belong to the representative rules basis for
that threshold; but it may be that, at the same threshold, some other logically
stronger rule is found. For instance, it could be that both rules A → B and
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A → BC have confidence c0: then A → B is redundant and will not belong to
the basis for that confidence.

Let’s then assume that the rule at hand does appear among the representative
rules at the confidence threshold given by its own confidence value; and let’s keep
decreasing the threshold. At some lower confidence, a logically stronger rule may
appear. If a logically stronger rule shows up early, at a confidence threshold γ
very close to c0, then the rule X → Y is not very novel: it is too similar to the
logically stronger one, and this shows in the fact that the interval of confidence
thresholds where it is a representative rule is short.

To the contrary, a stronger rule may take long to appear: in that case, only
rules of much lower confidence entail X → Y , so the fact that it does reach
confidence c0 is novel in this sense. The interval of confidence thresholds where
X → Y is a representative rule is large. For instance, if the confidence of A → AB
is 0.9, and all rules that make it redundant all have confidences below 0.75, the
rule is a much better candidate to novelty than it would be if some rule like
A → ABC would have a confidence of 0.88.

This motivates the following definition:

Definition 2. Fix a dataset D and a support threshold τ . Consider a rule that
has support at least τ in D, say rule X → Y . Consider all rules that are not
equivalent to X → Y , but such that X → Y is redundant with respect to them,
and pick one with maximum confidence in D among them, say X ′ → Y ′ (thus
c(X ′ → Y ′) ≤ c(X → Y )). The confidence width of X → Y in D is:

w(X → Y ) =
c(X → Y )
c(X ′ → Y ′)

In case X → Y is representative, only rules of confidence smaller than γ can
make it redundant. In order to check for the existence of X ′ → Y ′, one should
mine at lower confidence levels (but see comments after Theorem 1 below). The
confidence width can be defined equivalently as the ratio between the extremes
of the interval of confidence thresholds that allow the rule to be representative.
That is: the highest value where the rule can belong to the representative rule
basis is the confidence of the rule; and the denominator is the highest value where
there is a different representative rule that makes it redundant, thus forcing it
out of the representative basis.

Observe that when X → Y is redundant with respect to X ′ → Y ′, its con-
fidence must be at least the confidence of the latter, which implies that the
confidence width is always greater than or equal to 1. For a rule X ′′ → Y ′′,
the confidence width is exactly 1 if and only if there is a rule making redun-
dant X ′′ → Y ′′ and having the same confidence: this is the same as saying that
X ′′ → Y ′′ is never among the representative rules. Regarding upper bounds, in
principle there is none, as it may happen that a rule of as large confidence as
desired is only redundant with respect to rules of as low confidence as desired.
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2.1 Properties and Algorithms

We proceed to study some properties of the confidence width; by combining them
with known properties of the standard redundancy and of the representative
rules, we will obtain reasonably efficient ways to compute the width of the rules
in the basis. We will need a preliminary fact:

Proposition 1. Consider a rule X → Y and a different rule X ′ → Y ′ that
makes it redundant; assume X ′ → Y ′ has maximum confidence as in the defi-
nition of width, say δ. Then X ′ → Y ′ can be chosen among the representative
rules for confidence δ.

This proposition can be proved easily by resorting to the known fact [26] that
every rule of confidence δ is redundant with respect to a representative rule of
the same confidence (possibly itself). As indicated in the previous section, rules
not in the representative basis have minimum width, namely 1. Thus, to know
the confidence width of all the rules it suffices to find it for representative rules.

We do not need to scan all frequent sets, since, as indicated above, it is
known that if X → Y is a representative rule, then XY is a closed set and X is
a minimal generator [27]. There are several published algorithms that compute
the frequent closed sets and the minimal generators (see the survey [12]); in
one form or another, all of them employ the key and well-known fact of the
antimonotonicity of the frequent itemsets. These closures and minimal generators
can be used to find the representative rules whose width is to be computed, by
using the algorithm in [27].

A naive algorithm follows immediately: construct the representative rules and
scan them repeatedly, applying Proposition 1 to find, for each rule X → Y , the
largest confidence c of any representative rule that makes X → Y redundant;
use Lemma 1 to test for standard redundancy. Once this largest confidence c

is known, the width of X → Y is clearly w(X → Y ) = c(X→Y )
c by definition.

However, notice that this algorithm requires time quadratic in the number of
representative rules, and that we mean all representative rules, that is, for all
values of the confidence threshold. This is likely to be a large set.

2.2 An Alternative Algorithm

In some cases, we are likely to wish a computational shortcut: consider the usual
case of a user having indicated thresholds for support and confidence, so that
our proposal would end in answering the user with a set of representative rules
that pass both thresholds, maybe ordered according to width, or possibly even
pruned once more at a width threshold. In principle, we only need representative
rules at the confidence threshold given. However, to compute the width, we need
all representative rules at all threshold levels. If the threshold is somewhat high,
say 0.8, it is overkill to find representative rules at all confidence levels, including,
say, 0.1, 0.01, 0.001.
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We analyze further properties of the confidence width to search for a faster
computation. The key is to avoid much of the exploration in the naive algorithm
by precomputing a small amount of side information in a single scan of the
closures lattice. We explain now what side information would be sufficient; it
is the same as used as a heuristic in [28] to compute a large subset of the
representative rules faster1. The first step is to find out more about the rules
X ′ → Y ′ that could be useful to compute the width of X → Y .

Theorem 1. Let X → Y (with X ⊂ Y , proper inclusion) be a representative
rule for a fixed dataset D at some fixed values of support and confidence. Let
X ′ → Y ′ be a different rule that makes it redundant, with X ′ ⊆ Y ′, and assume
X ′ → Y ′ has maximum confidence as in the definition of width. Then either
X = X ′ and Y ′ is a closed set, immediate superset of Y in the lattice of closed
sets, and of maximum support among the closed supersets of Y ; or else, Y = Y ′,
and X ′ is a minimal generator properly included in X and having minimum
support among the proper subsets of X.

Proof. First apply Lemma 1, but assume that we are in neither of the two cases,
that is: X ′ ⊂ X ⊂ Y ⊂ Y ′ where all the inclusions are proper. Consider the
rules X ′ → Y and X → Y ′. Clearly, appealing again at Lemma 1, both make
X → Y redundant as well. However, since Y is closed, s(Y ′) < s(Y ), and this
implies that c(X ′ → Y ′) < c(X ′ → Y ); similarly, since X is a minimal generator,
s(X) < s(X ′), and again c(X ′ → Y ′) < c(X → Y ′). Therefore, the confidence
of c(X ′ → Y ′) is not maximum as required, and one of the two rules X ′ → Y
and X → Y ′ will be the one having maximum confidence among those making
X → Y redundant. ��

Now, the algorithmic alternative consists in modifying a closure lattice miner
to maintain the side information we need. Since the resulting algorithm depends
on which closed itemset miner is chosen as starting point, we cannot be fully
explicit and keep generality at the same time: we just indicate the changes to be
made into the closure miner. They are as follows: along the antimonotonicity-
based construction of the frequent closures lattice and the minimal generators,
we keep track of the largest existing support of the frequent closed supersets of
each frequent closed set Y , let us denote it mxs(Y ). Similarly, for each minimal
generator X , we keep track of the smallest existing support among the minimal
generators properly contained in X , let us denote it mns(X). Then the following
proposition explains how to compute the width:

Proposition 2. Consider a rule X → Y , and assume that both mxs(Y ) and
mns(X) are defined. Then the width of X → Y is the minimum of the two
values: mns(X)

s(X) and s(Y )
mxs(Y ) . If only one of mxs(Y ) and mns(X) is defined, then

the corresponding quotient gives the width.

1 The algorithm in [28], actually, may miss rules due to an incompleteness of the
heuristic employed, caused by the fact that Property 9, as stated in that paper, is
not true in all cases. This observation will be further elaborated in a later paper.
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This follows directly from Theorem 1 since each of the two cases corresponds
to one of the two options for a rule of maximum confidence making X → Y
redundant. Note that we must compute mns(X) for all minimal generators re-
gardless of whether they are also closed, which is something that can happen
(for instance, the empty set is often closed, and is always a minimal generator of
the smallest closed set, possibly itself). Note also that some closures Y may not
have frequent closed proper supersets, in the sense that all larger closures could
fall below the support threshold; likewise, some minimal generators X , namely,
the empty set, will lack minimal generators as proper subsets. For such cases, we
leave mxs(Y ) and mns(X) undefined. Rules where both are undefined do not
have a confidence width value according to the definition, because no rule at all
is able to make them redundant. Their width can be likened to “infinity”. They
have not arisen in our empirical analysis, probably due to the support threshold,
and further theoretical development regarding this marginal case is undergoing.

Thus, algorithmically, we would use width by precomputing, at the time of
finding closures from the dataset, or along the reading from a file if these are
constructed by a separate closed set miner, the values mxs(Y ) for each frequent
closed set Y and mns(X) for each minimal generator X ; then, for each repre-
sentative rule X → Y , we resort to Proposition 2 to compute w(X → Y ) and
use it either to filter (against a width threshold) or to sort the representative
rules to be given as output.

Proposition 2 tells us also something else: we can discuss the confidence width
according to two variants, one of them corresponding to a rule becoming redun-
dant due to a larger consequent, and the other corresponding to a rule becoming
redundant due to a smaller antecedent. It will be important shortly to take into
account that the items discarded from the antecedent in this last case must still
be present in the consequent, since we are assuming, as discussed immediately
after Lemma 1, that right hand sides include left hand sides.

2.3 Squint-Based Threshold Setting

We propose here a way of connecting the confidence bound to the confidence
width bound. The guiding intuition is as follows. First, we rephrase the confi-
dence in a way that, informally, we call “squint”: the extent to which we “see”
small details. For squint q, sets that differ in a size ratio of q or higher will be
considered distinguishable: their difference is actually seen. Note that this cannot
be taken as a formal definition, since it may happen that one cannot distinguish
X from Y nor Y from Z, yet X can be distinguished from Z. We take it just as
an intuition.

Correlating the intuition of squint with the confidence threshold is easy. The
implication X → Y (that is, X → XY ) is 100% true exactly if the set of
transactions having X coincides with the (in principle potentially smaller) set
of transactions having XY . Now, apply the guiding intuition for the squint
parameter: if these sets can be distinguished, we discard the implication. For
instance: at squint zero, sharpness is maximum, any existing difference is seen,
and only absolute implications are accepted as association rules. However, at
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squint q > 0, to distinguish the set of transactions having X from those having
XY we need that their difference has a size, relative to the larger of both sets,
of at least q. That is: to distinguish enough counterexamples for the implication,
(s(X)− s(XY ))/s(X) must be larger than q, and, conversely, the implication is
accepted if (s(X) − s(XY ))/s(X) ≤ q, which is equivalent by straightforward
algebraic manipulation to s(XY )/s(X) = c(X → Y ) ≥ (1 − q). (Note that this
part also works for the case q = 0.) The confidence threshold corresponding to
squint q is, then, 1 − q.

Now, through a similar intuition, each of the two quantities, of which the
smallest one provides the confidence witdh as per Proposition 2, can be con-
nected to this “squint” parameter. To obtain a large enough width bound that
allows us to “see” rule X → Y , given squint q, the supports s(X) and mns(X)
must be clearly different, and also the supports s(XY ) and mxs(XY ). Thus,
we model the corresponding intuitions as (mns(X) − s(X))/s(X) > q and
(s(XY ) − mxs(XY ))/mxs(XY ) > q. Straightforward algebraic manipulations
lead, in both cases, to the condition w(X → XY ) > 1+q. That is, the confidence
threshold, through the intuition associated to the squint parameter, provides us
with a natural suggestion regarding how to set the threshold on the quantity
under study: if the confidence threshold is γ = 1− q, the natural first choice for
confidence width threshold is 1 + q = 2 − γ.

3 Blocked Rules

The main disadvantage often argued against confidence is as follows: for a thresh-
old of, say, 2/3 (or around 66%), consider a representative rule A → B of con-
fidence slightly beyond the threshold. It is going to be provided as interesting
in the output, suggesting that transactions having A tend to have also B. How-
ever, in case the actual frequency of B is rather high, say, 80%, the correlation
is in fact negative, since B appears less often among the transactions having
A than in the whole dataset. The natural reaction, consisting of a normaliza-
tion by dividing the confidence by the support of B, gives in fact (an analogue
to) the deviation from independence s(AB)/s(A)s(B), also known as interest,
strength, or lift, a natural measure that, however, lacks the ability to orient the
rules, because, in it, the roles of A and B are absolutely symmetric, so that no
preference is given for A → B versus B → A. The same objection appears for
the randomization-based proposal in [19]. Confidence width comes close to help
but falls a bit short of offering a new solution to this problem. In this section,
we relax slightly the notion of confidence width into a notion of “rule blocking”
that progresses towards an alternative, nice solution to this difficulty.

For a specific motivating example, let us observe the outcome of mining for
association rules at 5% support and 100% confidence the Adult dataset, avail-
able at the UCI Repository [4]. The representative basis for these thresholds
consists of 71 rules. In four of them, the consequent consists of the items “Male”
and “Married-civ-spouse”. In the other 67, the consequent is, in all cases, just
“Male”. For instance, we find “Craft-repair, Husband → Male” or “Husband,
Some-college, United-States, White → Male”.
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Further examination reveals that all the left-hand sides consist of the item
“Husband”, together with one to four additional items. Domain knowledge sug-
gests that all these 67 rules should be superseded by a single full-confidence rule
“Husband → Male”. However, tuple 7110 includes actually the item “Husband”,
and the item “Female” instead of “Male”. Hence, such a rule does not appear
due to the 100% confidence threshold and, instead, many rules that enlarge a bit
the left-hand side (enough to avoid tuple 7110 so as to reach confidence 100%)
show up. But the real information is the unsurprising (but reassuring) rule given
by the domain knowledge and, to some extent, the fact that its confidence is
below 100% due to the odd tuple; the user gains nothing by seeing 67 slightly
different variations of the same fact. Confidence width does not help: the rule
given by domain knowledge does not really make redundant, in the strict log-
ical sense, the 67 rules mined, due to the extra items present in them. On the
other hand, the presence of such a large family of rules, each of them improving
the confidence only slightly over an existing rule, is a potentially very effective
approach to outlier detection.

Yet another example, on the same dataset, that does not involve implications
of full confidence but still allows for a similar argumentation, is the following rule,
which relates family status with native country: “Unmarried → United-States”,
of rather high confidence (88%); it might be taken as a suggestion that people
coming from abroad into the given U.S. community under analysis tend to come
after marriage, but it may as well be an artifact due to the very large ratio of the
sample that actually consists of U.S. natives, irrespective of their family status:
over 89%. Note, however, that whereas this large support makes the high confi-
dence of the rule “Unmarried → United-States” much less surprising, both high
values carry related but different information: the distribution of the U.S. natives
along the two different populations, the global one and the one of unmarried peo-
ple, in principle could be different. The task is, then, to put the squint intuition
into use in order to distinguish whether we should maintain both rules “Unmar-
ried→United-States” and, so to say, “∅ →United-States” (the latter being essen-
tially the same as to observe the high support of that item), because the slightly
different information they carry is of interest, or we should consider the former
subsumed by the latter. Note that either could have higher confidence than the
other, depending on the dataset. To cater for such situations, we propose to work
out a variation of confidence width, and a corresponding threshold obtained from
the confidence threshold via the “squint” intuition, as follows.

3.1 Blocking a Rule with Another

Consider a rule X → Y , and assume X ∩ Y = ∅. We wish to discard it in case
we find a rule Z → Y , with Z ⊂ X , having almost the same confidence, and
the task is to quantify this “almost”. We propose to apply the squint intuition
to compare the number of tuples having XY with the quantity that would be
predicted from the confidence of the rule Z → Y ; if both sets of tuples are close
enough in size, we keep Z → Y and forget about X → Y . We will say, then,
that Z “blocks” X → Y .
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Let c(Z → Y ) = c. If Y is distributed along the support of X at the same
ratio as along the larger support of Z, we would expect s(XY ) ≈ cs(X). We
employ the “squint” intuition described in the previous section, and evaluate
X → Y as follows:

Definition 3. Given rule X → Y , with X ∩ Y = ∅, a proper subset Z ⊂ X
blocks X → Y at squint q if

(s(XY ) − c(Z → Y )s(X))/(c(Z → Y )s(X)) ≤ q.

In case the difference in the numerator is negative, it would mean that s(XY ) is
even lower than what Z → Y would suggest. If it is positive but the quotient is
bounded by q, the difference is “not seen” and X → Y still does not bring high
enough confidence with respect to Z → Y to be considered: it remains blocked.
But, if the quotient is larger, and this happens for all Z, then X → Y becomes
interesting since its confidence is higher enough than suggested by the rules of
the form Z → Y .

It can be readily checked that the particular problems of the Adult dataset
alluded to above are actually solved in this way. Namely, a bit of arithmetic
with the actual supports in the dataset shows that, indeed, the rules given as
example above, namely, “Craft-repair, Husband → Male”, “Husband, Some-
college, United-States, White → Male”, or “Unmarried → United-States” get
all blocked at minimally reasonable squint levels: only an extreme acuteness
value for squint will be able to distinguish the different information provided by
these rules from that of their blocking rules.

By way of comparison, note that we assume that redundancy due to larger
consequents is handled by confidence width, whereas smaller antecedents only
in some cases are handled appopriately by width, due to the stringent condition
of logical consequence. With blocking, we handle similarly the case of smaller
antecedents but in a way that is not as strict as logical consequence.

4 Empirical Validation

We describe first some experimentation made with the notion of confidence
width. We compute closures using the C implementation provided by Borgelt
[9]. On top of the obtained lattice of closures, we precompute the quantities
mxs and mns as per the previous section at the time of loading the closures into
our system, use hypergraph transversal techniques to find minimal generators
[35], and thus obtain all the representative rules for the support and confidence
bounds computed from the squint value. Table 1 indicates some parameters of
the datasets on which we have tested our approach.

First, we consider two of the standard FIMI benchmarks [14], of very different
characteristics: chess, which is a small but very dense dataset on which even
high support constraints lead to huge amounts of closed sets and of rules, and
the largish, much sparser dataset retail coming from a standard application
domain (market basket analysis). We have computed the representative rules
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Table 1. Dataset parameters

Dataset Source Transactions Different Items
Chess FIMI 3196 75
Retail FIMI 88162 16470
Adult UCI 32561 269
Cmc UCI 1473 36

and their widths, and we have plotted the number of rules passing each of a
series of width thresholds. In all cases the computation has taken just a few
seconds in a mid-range laptop.

If comparatively larger width values are expected to correlate in some sense
with novelty, we wish the number of such rules above comparatively larger
thresholds to decrease substantially. This is indeed the behavior we have found.
With respect to the chess dataset, we have constructed rules of confidence 85%
out of the closures lattice formed by frequent closed sets at support 80%. Even
for such a large support, the number of closures is around 5083 and the repre-
sentative rules amount to a number of 15067. It is known from the theoretical
advances that all of them are fully irredundant, that is, omitting any of them
loses information; however, it makes no sense to expect a human analyst to look
at fifteen thousand rules.

We propose, instead, to look at the width values: for this dataset, they range
in the quite limited interval between 1 and 1.22; and we see that if we impose
a very mild bound of width above 1.005, only 2467 out of the 15067 rules reach
it. This means that all the others, even if they are indeed irredundant, this is
so due to a rather negligible confidence increase. Higher width bounds exhibit
an interesting phenomenon of discontinuity, represented by each plateau of the
graph in Figure 1 (left): the maximum confidence width of 1.22 is attained by two
rules; a third comes close, and all three have high confidences (between 97% and
99%). Then seventeen more rules show up together near width 1.18, and nothing
happens until the width bound gets below 1.13 where a bunch of 31 rules show
up together. Below 1.11 we are again at a stable figure of 134 rules, and seventy
more appear together at the already quite low confidence width bound of 1.075.
All the others, up to 15067, have extremely low width. But the same role cannot
be filled directly by confidence: the plot in Figure 1 (right) indicates that there
are no steep decreases, no plateau suggesting a good cutpoint shows up, no hint
that really any novelty is at play, and, above all, the following fact: the 51 rules
of width 1.13 or more all have confidence of 90% or higher, but there are around
1950 other rules, of lower width, attaining the same confidence. Just width is
able to focus on the 51 more novel ones.

With respect to retail, the behavior of the notion of width is very different,
and also very interesting. Huge widths are reached: there are 18 rules whose
width is beyond 560 (up to 855.94), whereas the highest next width is just 29:
no rule has width between 29 and 560. Another plateau, at width 21, has 7
additional rules, and from there on the number of rules at each width threshold
grows steadily.
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Fig. 1. Chess: Number of rules per width and confidence

The FIMI datasets have all their items coded as opaque integers; therefore,
the actual rules found cannot be intuitively assessed, in that we do not know
their meaning. In order to understand better both the confidence width and the
blocked rules, we have performed some further analysis of the very well-known
Adult dataset from the UCI Repository [4]. We use only the train data (we note
that the test data has an extra dot in the class attribute). The numeric fields
“fnlwgt”, “capital-gain” and “capital-loss” were removed, as well as the field
“education-num” which is fully redundant with the field “education”. In fields
“age” and “hours-per-week” the field name was concatenated to the numeric
values, in order to distinguish which source to attribute to numeric items. No
further cleaning or recoding was done. Table 2 shows the number of rules after the
various filtering options. Each row in the table corresponds to a different value of
the squint: all thresholds, including support and confidence, are computed from
it and used consistently to get each of the figures. Confidence width is computed
according to our proposal. Blocking, which in principle should be more powerful,
is implemented here in a preliminary form: for each rule of large enough support
and confidence, we just test whether it is blocked, at the given squint, by another
rule that has also large enough support and confidence. See the Conclusions
section for alternatives we wish to explore. The connection of support and squint
is also very preliminary and under research: in this case we have used the support
value 4 ∗ q ∗ r/M for squint q, where r is the average transaction size and M
is the total number of items; but explanations and variants will be reported in
future work.

The columns in Table 2 indicate the number of rules and the effect of filtering
the representative rules through thresholds computed according to our proposal
on the basis of the squint value. Their meaning is as follows:
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Table 2. Number of rules in the Adult dataset

Squint Standard Repr R Block Conf Wd Both
0.10 7916 5706 1509 409 125
0.14 6518 4747 563 290 68
0.18 5270 3730 282 236 40
0.22 4289 2948 162 195 14
0.26 3641 2400 112 156 14
0.30 3024 2012 99 174 11
0.34 2740 1790 71 185 10
0.38 2547 1668 51 219 7
0.42 2255 1486 32 199 6
0.46 2056 1334 24 192 8
0.50 1865 1217 16 196 7

– Column “Standard” are the rules found by the standard apriori miner im-
plementation [9]. We must mention that their number is less than the total
number of rules since the Apriori rule miner employed only outputs rules
with a single item in the consequent, as per the original proposals [3]; our
system, and the rest of the figures, do not have this restriction.

– Column “Repr R” is the number of representative rules, which is optimum
if we do not want to lose information.

– Column “Block” indicates the number of representative rules clearing the
blocked rule condition.

– Column “Conf Wd” indicates the number of representative rules clearing the
confidence width threshold.

– Column “Both” indicates the number of representative rules passing both
constraints.

For the sake of arguing the interest of our process, we provide in Table 3
the full set of rules passing the thresholds at squint 0.32, with their supports,
confidences, and confidence widths.

Whereas none is particularly surprising, the advantage is that now we know
that, at the corresponding support, everything else is related to these rules
through either redundancy, blocking, or lack of novelty; that each of these rela-
tionships can be quantified, and that in order to change the level up to which
these relationships are computed it suffices to change a single parameter.

Finally, we have run our experiments also on an additional dataset: Contracep-
tive Method Choice, for which the results are displayed in Table 4. This dataset,
abbreviated here Cmc, is also from [4]; it is similar to Adult in that it was
originally conceived for a prediction task and in that it contains socioeconomic
and demographic data where correlations among human factors can be poten-
tially detected; but is very different in terms of size and density. Data come from
an actual survey in Indonesia regarding demographic, religious, educational, and
offspring data among women, run in 1987. Whereas in Adult even the represen-
tative rules are long to explore manually, in this case the option clearly exists,
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Table 3. Rules from the Adult dataset filtered at squint 0.32

lhs rhs Support Confid C. Wd
∅ ⇒ United-States,White 78.69% 78.69% 1.35
Husband ⇒ Male,Married-civ-spouse,

United-States,White 33.91% 83.70% 1.56
Married-civ-spouse ⇒ Husband,Male,

United-States,White 33.91% 73.74% 1.56
Not-in-family ⇒ ≤ 50K,United-States,White 18.06% 70.81% 1.36
Divorced ⇒ ≤ 50K,United-States,White 9.87% 72.32% 1.39
Black ⇒ ≤ 50K,United-States 7.62% 79.42% 1.42
hours-per-week:50 ⇒ Male,United-States,White 6.37% 73.54% 1.4
Female,Some-college ⇒ ≤ 50K,United-States,White 6.06% 70.31% 1.37
Adm-clerical,Private ⇒ ≤ 50K,United-States,White 6.04% 69.43% 1.33
Self-emp-not-inc ⇒ Male,United-States,White 5.71% 73.20% 1.35
≤ 50K,Sales ⇒ Private,United-States,White 5.65% 68.95% 1.37

Table 4. Number of rules in the Cmc dataset

Squint Standard Repr. Rules Block filter Conf Wd filter Both filters
0.10 228 206 120 16 10
0.20 81 67 27 13 8
0.30 33 25 9 7 3
0.40 12 10 2 4 1
0.50 7 5 1 5 1

but it is a frustrating experience: two items (“Good-exposure-to-media”, 92%,
and “Wife-religion-islam”, 85%) are prevalent to such an extent that almost
all the rules have just one of these, or both, as consequent, and are therefore
uninformative; “High-husband-education” follows closely (61%). Our approach
points this out: the rule with empty antecedent “→ Good-exposure-to-media
Wife-religion-islam” is clearly singled out beyond squint 0.35, and appears to-
gether with the rules “High-wife-education → Good-exposure-to-media High-
husband-education” and “High-standard-of-living → Good-exposure-to-media
High-husband-education” already at squint 0.25.

This exploration was fast (the closure space consisting of just 1863 closures,
thus all rule computations taking just seconds on a mid-range laptop) and im-
mediately suggests to proceed to a more acute exploration, of low squint, to
see whether more benign thresholds for support, blocking, and confidence width
(automatically compensated by a stricter confidence threshold) provide further
information. From such a second phase, also fast, we just note that, at squint
around 0.04, the representative rules are several hundred, but our automatically
computed thresholds leave just around four dozen rules, most of which are now-
unblocked variants with the three very frequent items as consequent (that can
be readily discarded at a glance) plus the additional rule “No-children-so-far →
No-contraceptive-method”, missed in the previous exploration due to low width
and support but having large confidence (almost 98%).
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5 Conclusions and Further Work

We have proposed two objective approaches to the analysis of the novelty of
association rules. A main intuition can be gleaned from the current early devel-
opments: it is known that, on the one hand, the standard support-and-confidence
bound framework does a good preliminary job for avoiding statistical noise, but,
on the other hand, fails somewhat to focus on the really interesting facts; and
this is the main reason that has led to a flourishing of variants of notions of “im-
plication degree” to replace confidence, blaming into it the problem. However,
we consider now that a viable alternative is to leave the standard support-and-
confidence setting on, and complement it, in order to gain further focus, with
a measure that does not check the degree of the implications in an alternative
way (thus, performing something intuitively analogous to confidence) but which
checks a relative intensity of implication compared to the other rules mined in
the same process.

Our proposals for this role are confidence width and a related form of blocked
rules. Both compare rules among them in search of logical or intuitive redun-
dancy: logical redundancy for the case of width, and a more relaxed, intuitive
redundancy for blocking. Our experimental analysis is, admittedly, somewhat
limited; but our work so far already suggests several interesting points. It shows
that width has the ability to yield wide segments where a width threshold is very
robust, and fixing it at a close but different value may select exactly the same
rules. It tends to select rules of high confidence but is much more selective.

Also, our proposals open a door to a more human-centered development where
one can find ways of evaluating this formal notion of novelty with respect to
user-conceived naive notions of novelty. One potential development could be to
design an interactive knowledge elicitation tool that, on the basis of the theory
described here, could tune in, up to focusing on the user’s intuitions for novelty,
by showing a handful of unblocked rules of high width, asking the user to label
them as novel or not novel: we should develop further the theory to take into
account facts such as rules of high width (or support or confidence) being labeled
as not novel, so that the labeling would have consequences on the values of these
parameters for the rest of the rules.

We have proposed as well a rule mining framework in which, instead of asking
the user to choose, with hardly any guidance, thresholds for all the parameters
such as confidence, width, blocking thresholds, and possibly others, a single
parameter is chosen, with a degree of semantic intuitive guidance, and then
some of the necessary thresholds are autonomously computed by the system
from that chosen value. In further work we will analyze the amenability of the
support threshold to be treated in the same way; some of our experiments were
done according to our preliminary results on that question.

Several major issues need further attention, and are described briefly in the
next paragraphs.
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5.1 Blocking Rules

Our current implementation only checks for blocking among the rules that have
passed the support and confidence thresholds, that is, does not block all “block-
able” rules; in most cases this is unproblematic thanks to the confidence width
threshold. The analog of Proposition 1 is very easy to prove and we have in-
corporated this consideration into our experiments. Our further preliminary re-
sults suggest the use of a “double-confidence mining” approach analogous to the
“double-support mining” approach described in [5], where it is shown how it can
be advantageous, in order to distinguish representative rules under a support
threshold, to mine closures above a milder threshold than the one set by the
user, and employ that information to analyze redundancy of the rules above the
user-set threshold. Further mathematical analysis of the formal properties of the
blocking process is also necessary to clarify what is the sensible thing to do in
case of “transitive blocking”, whereby the blocking rule is itself blocked by a
third rule: a case that may happen in practice and where we should study the
properties we wish for the output rules.

5.2 Robustness

Other parameters instead of those described here may be manageable on the
basis of the squint intuition, and possibly with potential advantages. Clearly a
large family of candidates is given by the myriad of existing measures of intensity
of implication (see [17], [18], [21], [37], among many others). But another family
of parameters that could be employed are those whereby the family of closed
sets is made more resilient, in the sense of tolerating a small degree of error and
considering sets that are “almost” closed (see [8], [10], [11], and the references
there). In that approach, the sort of analysis we perform on rules is made in the
earlier stage of closure computation. It may become important to understand
the potential advantages of this alternative.

In order to safely implement an exploration process as just described, ideally,
the main parameter in a system like ours should offer, in as much as possible,
robustness in some form of continuity: in most cases, slight modifications in the
value of this parameter should not cause extremely big changes of the output.
However, the very nature of the discrete sets we work with will impose occassion-
ally abrupt changes. Whereas the squint intuition is already quite good in this
respect, one potential way of improvement could be to use the “double-support
mining” approach indicated above. The degree of robustness that this approach
could contribute to the squint-based analysis is currently under study.

5.3 Alternative Ratios

The relative largeness of a set compared to another, as is considered along the
squint-guided intuition, has one additional ambiguity. Namely: as denominator,
in the ratio that relates each of our parameters to the squint intuition, we could
have chosen the size of the other set. Then, the confidence threshold would result
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in 1/(1 + q) instead of 1− q, and the thresholds for the other parameters would
end up using a factor 1/(1 − q) substituting for the uses of (1 + q). We have
chosen the milder, less restrictive, form of the bound for all the cases; further
experimentation may suggest, for each threshold, either to stay with the milder
bound, to replace it by the more strict one, or to somehow find a way of choosing
among both options.

5.4 Revising the Closure Operator

The notion of representative rules is, in fact, only dependent on the dataset;
however, the most efficient way to compute it is using the closure operator as-
sociated to the dataset. An alternative approach was suggested in [34] and [40],
where similar approaches were proposed to treat separately the rules of confi-
dence 100% from the rules of confidence at least γ (a minor variant of the same
scheme, which reaches mathematically demonstrable absolute optimality of size
for that approach, is described in [5]); all these variants are very tightly coupled
to the closure operator, and are better than the representative rules when the
confidence threshold is high and there are many rules of confidence 100%. In our
preliminary tests we have not detected a major difference in the outcome from
using representative rules or from using closure-based redundancy, but further
analysis would be in order.

However, the closure operator itself is, essentially, the same mathematical
object as the rules of confidence 100%; and, due to the blocked rules and the
confidence width bound, we may as well be reluctant to employ anything related
to them, since many of these rules may be some sort of artifacts, as we have
already discussed in the case of the Adult dataset. Therefore, we are left with
a quandary: should we trust the closure operator when we distrust some of the
full-confidence implications that conform it? The effect of this doubt on the
representative rules is minor, since they are defined with no reference to closures
nor implications and the role of the closure operator in their computation is,
essentially, just algorithmic. For this reason, we have developed our approach in
terms of representative rules, but further work is necessary to clarify to what
extent bases constructed only from the closure space would offer better results.

5.5 Support Bounds versus Itemset Size

We have started to consider some natural heuristics for determining a support
threshold. These are based on individual items; however, we can consider briefly
here the option of setting different support thresholds for different itemset sizes.
This simple idea has, in principle, a serious drawback: if one, generally, already
lacks guidance to sensibly set a single support threshold, the problem is ex-
acerbated if we are to set several of them, for the different itemset sizes. Our
approach offers a way out: it is conceivable that the squint intuition can be used
to suggest supports for different itemset cardinalities.
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5.6 Item Distribution

In the computation of support, we have not distinguished among the various
items. However, in practical cases, individual items may not be distributed uni-
formly; Zipfian-like laws or other distributions would be often natural. The effect
of this consideration on the computation of the support bound has been discussed
in [39]. The extensions of our approach to handle such cases are definitely worth
further exploration.

Additional topics become open through our novel proposal: the applicability
of the approach to outlier detection has been already hinted at; nowadays, pat-
tern mining on structures more complex than itemsets is necessary in a wide
spectrum of application areas, and exporting our approach may not be immedi-
ate; we definitely envision the possibility of applying this approach to preference
analysis; and other application areas will call for additional developments.
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with intensity of implication. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510,
pp. 318–327. Springer, Heidelberg (1998)
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Abstract. The PAKDD 2009 competition focuses on the problem of credit risk 
assessment. As required, we had to confront the problem of the robustness of 
the credit-scoring model against performance degradation caused by gradual 
market changes along a few years of business operation. We utilized the 
following standard models: logistic regression, KNN, SVM, GBM and decision 
tree. The novelty of our approach is two-fold: the integration of existing 
models, namely feeding the results of KNN as an input variable to the logistic 
regression, and re-coding categorical variables as numerical values that 
represent each category’s statistical impact on the target label. The best solution 
we obtained reached 3rd place in the competition, with an AUC score of 0.655.  

Keywords: data mining, logistic regression, KNN, credit risk assessment. 

1   Introduction 

The offer of credit for potential clients is a very important service for stimulating 
consumption in the market. One main difficulty credit scoring modelers have to 
contend with is gradual market changes which occur during the collection of data. 
This difficulty increases the risk when the credit is lent for long term payment.  

The PAKDD 2009 data mining competition focused on the model's robustness 
against performance degradation caused by market gradual changes along several 
business years [1]. We participated in this competition as part of the requirements of 
the Data Mining course given by Professor Yoav Benjamini in Tel-Aviv University. 

The challenge was as follows. We were given three datasets, which were collected 
over different years and consist of 30 explanatory variables and one binary target 
variable. The first dataset, which was used for model selection, is labeled and contains 
50,000 samples collected during 2003. The second dataset consists of 10,000 
unlabeled samples collected during 2005 and was used for model evaluation. After 
selecting a model we could apply it on this dataset, submit the results to the 
leaderboard web-site, and compare its performance to the scores attained by other 
teams. The third dataset, called the prediction data, consists of 10,000 unlabeled 
samples from 2008, and was used for grading the performance of the final models of 
all competitors. Performance of each model was evaluated by area under ROC curve 
(AUC, in short). 
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2   Data Preparation 

Initial observations revealed that some of the explanatory variables are not useful for 
analysis, since they are constant in either the modeling or prediction data. A small 
number of samples in the modeling dataset have unreasonable or missing values, so 
we ignored them. We replaced unreasonable and missing values in the prediction 
data, as detailed below. We also tried to remove samples with area and profession 
codes that are absent from the leaderboard or prediction data. This gave better results 
on the modeling data, but performed worse on the leaderboard dataset, so we 
abandoned this approach. 

We noticed that some variables have a significantly different distribution in the 
modeling data than in the leaderboard and/or prediction data. For example, 
AREA_CODE_RESIDENCIAL_PHONE is “50” in 22%, 5%, and 15% of the samples in the 
modeling, leaderboard, and prediction datasets, respectively. Another example is 
PAYMENT_DAY, which receives the value “15” in only 0.2% of the modeling samples, 
and 21% of the prediction samples. These differences might lead to degraded 
performance on the prediction data – the models are fitted to data with certain 
characteristics, and tested on data with different distributions.    

 

Numerical variables: Unreasonable values, such as age 0 or extremely high income, 
were replaced by the median value of the corresponding variable. In order to account 
for possible changes in the value of the local currency over time (e.g., due to inflation), 
we standardized the two income variables to mean 0 and standard deviation 1. We also 
experimented with other transformations, such as logarithm and square root. 

We noticed that some samples contain 0 in the income variables 
PERSONAL_NET_INCOME and MATE_INCOME. The distribution of the target variable 
suggests that at least some of these values do not really represent zero income. For 
example, when PERSONAL_NET_INCOME is 0, the target variable is 0 in 83% of the 
cases; when the income is 50-150, it’s 77%; for 150-250, it’s 76%; and for 350-450 
(approximately the mean income) it’s 79%. This suggests that a value of zero 
indicates either no income, or a missing value. Therefore, as with several other 
variables, we replaced the 0’s by the mean value (not including 0’s). 

 

Textual variables: We replaced the two personal reference textual variables by a single 
numerical variable that holds the sum of their lengths. This was done since we discovered 
a relationship between the length of the personal references and the target variable. 
 

Categorial variables: Boolean variables and categorical variables with a small 
number of categories (such as MARITAL_STATUS) are easily handled by all the models 
we applied – each category is replaced by several boolean indicator variables, one per 
category. Variables with a large number of categories, such as ID_SHOP and 
PROFESSION_CODE, pose a difficult challenge. We first added indicator variables for 
the most frequent values of each such variable. However, using many such variables 
in a logistic regression, for example, is prone to over-fitting. On the other hand, using 
only a small number of the indicator variables utilizes the information in the 
corresponding categories while effectively ignoring the information in the rest of the 
categories. We thus developed a method for transforming these categorial variables 
into numerical variables in a similar approach taken in [2]. These variables are called 
here "P-VAL variables" and are described in what follows. 
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The target variable TARGET_LABEL_BAD gets the values 0 (good) and 1 (bad) in 
40,105 and 9,868 (legal) modeling samples, respectively. Given a categorial variable 
X, we compared the distribution of TARGET_LABEL_BAD in each category of X to that of 
the entire data. We tried the following three transformations: 

 

I. “Probs”: The proportion of 0's (good clients) among each category, that is, 
for a sample with X=c we replaced the category c by the fraction of 0’s in 
TARGET_LABEL_BAD among all the samples with X=c. 

II. “P-values”: The probability to obtain at least/most the observed number of 
TARGET_LABEL_BAD=0 in a category, given the total number of 0’s and 1’s in 
TARGET_LABEL_BAD. Assume there are K samples with X=c, out of which K1 
have TARGET_LABEL_BAD=1 and K0 have TARGET_LABEL_BAD=0. We can view 
these K samples as a series of samples from the whole set of samples without 
replacement, and thus we may use the hypergeometric distribution to test 
whether the K samples were drawn randomly from the entire set. We use a 
two-sided test to detect a tendency both to 0 and to 1. In order to preserve 
this information in the numerical variable, we replaced categories with a 
tendency to 0 by the above p-value, and categories with many 1’s by one 
minus the p-value. 

III. “Logit”: As in II, but taking the logit of the p-value for categories with over-
representation of 0’s in TARGET_LABEL_BAD, and taking –logit(p-value) for 
categories with tendency to 1’s. Thus, categories with a similar 0/1 
distribution to that of the entire dataset, as well as very rare categories (that 
are present in only a couple of samples), are replaced by values close to 0. 
Categories in which there are statistically many samples with 
TARGET_LABEL_BAD=0 are replaced by very small (negative) values. 
Likewise, categories with a strong tendency for TARGET_LABEL_BAD=1 are 
replaced by large (positive) values. 

 
Table 1. Main pre-processing steps performed on the data 

 
The problem/issue Variables involved Our solution 
Constant in 
modeling or 
prediction data 

QUANT_BANKING_ACCOUNTS 
FLAG_MOBILE_PHONE 
FLAG_CONTACT_PHONE 
COD_APPLICATION_BOOTH 
FLAG_CARD_INSURANCE_OPTION  
FLAG_OTHER_CARD 
QUANT_DEPENDANTS 
EDUCATION 

Omit variables 

Illegal values in 
modeling data 

SEX Remove samples with 
illegal values 

Unreasonable values AGE 
MONTHS_IN_RESIDENCE 
PERSONAL_NET_INCOME 
MATE_INCOME 

Replace unreasonable 
values with the median of 
the variable 
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Table 1. (continued) 

Different categories 
and distribution of 
values in model and 
prediction datasets 

SHOP_RANK Omit the variable 

Categorial variable 
with many 
categories 

AREA_CODE_RESIDENCIAL_PHONE 
PROFESSION_CODE 
ID_SHOP 
PAYMENT_DAY 

1. Create indicator 
variables for the most 
frequent categories 
2. Transform to numerical 
variables using one of 
three methods: Probs, P-
values, Logit 

Currency changes 
over time (inflation) 

PERSONAL_NET_INCOME 
MATE_INCOME 

Standardize the variables 
to mean 0 and std 1 

Textual variables PERSONAL_REFERENCE_1 
PERSONAL_REFERENCE_2 

Replace by sum of lengths 

3   Modeling 

We used the cross validation approach (5-fold CV) to estimate the performance of our 
models. Note, however, that since the modeling, leaderboard and prediction datasets 
were not sampled from the same distribution, better performance on the modeling 
data does not guarantee improved results on the other two datasets.  
 

Logistic model: We fitted logistic models using the glm() function in R [3], starting 
with single variables, and went on to include interactions between variables. We 
found that using our transformation of categorial variables into numerical variables 
solves the difficulty of ranking the categories - which is necessary for a monotonous 
relation, as the one the model tries to fit.  
 

KNN: We implemented our own KNN function. For each test sample, it first identifies 
the training samples with: (a) The same sex, (b) The same marital status, (c) A similar 
age (ages different by less than some predefined threshold), and (d) A similar income 
(salaries that are bounded from both sides by some pre-defined multiplicative factor). 
It then computes the distance between the test sample and each of these training 
samples, using different weights for the various variables. It is worth mentioning that 
different types of variables require a different distance metric. For numeric variables 
we used the Euclidean distance, whereas categorial variables got a zero weight when 
levels were equal and some positive weight otherwise. Finally, the procedure reports 
the fraction of the k nearest neighbors with TARGET_LABEL_BAD=1, as well as the logit 
of its p-value (as described above for the "P-VAL" variables). 
 

Logistic + KNN combined model: We combined the KNN and logistic models by 
feeding the results of KNN as input to the logistic model. In other words, we added 
two new variables, called KNN_PROBS and KNN_PROBS_PVALS, that contained the results 
of our KNN procedure in “Probs” and “Logit” transformation, respectively (notice that 
the KNN procedure was executed on both the training and test sets, in order to obtain 
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the value of the two aforementioned variables for all samples – the training samples, to 
which the logistic model is fitted, and the test samples, on which it is tested).  

We also experimented with several other models, such as decision tree, SVM 
(support vector machines) and GBM (generalized boosted models) as implemented in 
R [3]. However, they did not yield good results.  

 

Fig. 1. AUC scores of the main models we studied. Scores were obtained using two iterations 
of 5-fold cross validation tests on the entire modeling dataset. “MyKnn” refers to our 
implementation of KNN. “MyKnn + Logistic” is the combined model. 

4   Results 

Logistic model: The logistic model gave reasonable results on the leaderboard data. 
Once we included the “P-VAL” variables, the score improved further. Interestingly, 
when we tested which type performs best, the results of the cross validation procedure 
indicated that the transformation of type “Probs” outperforms the others. However, 
the “Logit” transformation yielded the best score on the leaderboard dataset. A 
possible explanation is that the exact ratio of 0’s and 1’s in the target variable change 
over time, whereas statistically significant tendencies do not. The best logistic model 



104 C. Linhart et al. 

 

we obtained reached an AUC score of 0.677 on the modeling data (see Figure 1), and 
0.6125 on the leaderboard data. 

An important observation is that a logistic model with many variables tended to 
return degraded results on the leaderboard data, even though it improved the results as 
assessed by the cross validation procedure on the modeling data. This might indicate 
an over-fitting of the model to specific characteristics of the modeling data, which 
change over time (recall that the leaderboard samples are two years after the modeling 
samples). 

KNN: Our KNN procedure with k=250 attained an AUC score of 0.654 on the 
modeling data (Fig. 1) – less promising that the logistic model. However, the two 
models received the same score on the leaderboard data. Surprisingly, this was 
achieved by our KNN implementation using cutoffs and weights that were set by 
mere intuition on which variables are more important for predicting the target 
variable. Due to lack of time, we did not implement any procedure for optimizing the 
parameters of the KNN model. However, based on a couple of experiments, we 
believe that small changes to these parameters have very little effect on the results. 

Logistic + KNN combined model: Combining the two models, as explained above, 
gave the best results. Our final logistic model consisted of 43 variables, including two 
variables that contained the results of our KNN procedure (KNN_PROBS and 
KNN_PROBS_PVALS), seven "P-VAL" variables (of type “Logit”) and two indicator 
variables for frequent categories (area code 31 and profession 950); the rest of the 
variables were original variables (after the transformations we applied) and 
interactions between several pairs of variables (e.g., all pairwise interactions of AGE, 
SEX, and MARITAL_STATUS). The AUC score of the final model is 0.68 on the 
modeling data, 0.6177 on the leaderboard data and 0.655 on the prediction data – 
which is ranked 3rd in the competition.  

5   Conclusions and Summary 

We conclude that both KNN and logistic models describe the data quite well. 
However, these results may be misleading since the long execution time of KNN 
compelled us to attempt it with very few combinations of parameters and variables. 
Also, since we have limited experience with SVM and GBM, we cannot conclude 
whether they can or cannot model the data in the competition as well as KNN and 
logistic regression. Interestingly, the logistic model attained higher scores than the 
KNN approach in the CV test on the modeling data (see Figure 1), but both methods 
performed equally well on the leaderboard data, indicating perhaps that the logistic 
model is more over-fitted to the characteristics of the modeling data than KNN. 
Combining KNN with a logistic model gave the best results in our experiments.      

Some variables that may have some influence on the target variable were omitted 
from our analysis for technical reasons, such as different names of categories between the 
modeling and prediction data. Replacement of missing or unreasonable values could be 
performed by a more suitable procedure, such as maximum-likelihood based methods.  

We believe that the method we described for transforming categorial variables into 
numerical variables, as well as our combination of KNN with logistic regression, are 
interesting and could be applied on other datasets. Another interesting approach could 
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be feeding the logistic model with results from other models, such as SVM or neural 
networks. Due to lack of time, we paid little attention to the issue of feature selection, 
which could have enhanced the performance of our models. 
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Abstract. In this paper we empirically evaluate feature selection methods for 
classification of Brain-Computer Interface (BCI) data. We selected five state-of 
the-art methods, suitable for the noisy, correlated and highly dimensional BCI 
data, namely: information gain ranking, correlation-based feature selection, Re-
liefF, consistency-based feature selection and 1R ranking. We tested them with 
ten classification algorithms, representing different learning paradigms, on a 
benchmark BCI competition dataset. The results show that all feature selectors 
significantly reduced the number of features and also improved accuracy when 
used with suitable classification algorithms. The top three feature selectors in 
terms of classification accuracy were correlation-based feature selection, infor-
mation gain and 1R ranking, with correlation based feature selection choosing 
the smallest number of features.  

Keywords: brain-computer interfaces, classification of EEG data, information 
gain ranking, correlation-based feature selection, RelifF, consistency-based fea-
ture selection, 1R ranking. 

1   Introduction 

A BCI is a system which allows a person to control devices such as a computer cursor 
or robotic limb by only using his/her thoughts. It aims to help severely paralyzed 
people to communicate by providing a way which doesn’t depend on muscle control 
but only on their thoughts. Building BCIs is an interdisciplinary field combining ex-
pertise in medicine, neurology, psychology, machine learning, statistics and signal 
processing. It has been a very active area of research in the last 15 years, stimulated 
by new understanding of the brain function and EEG signals, the availability of pow-
erful and low cost computer equipment and the wider recognition of the needs of 
people with severe neuromuscular disorders [1, 2].  

BCI systems are based on recording EEG brain activity and recognizing patterns 
associated with mental tasks. It is known that mental tasks such as imagining a 
movement of the right and left hand are associated with patterns of EEG activity in 
the left and right side of the motor cortex, respectively. These patterns are associated 
with various changes in EEG activity. For example, the mu rhythm (8-12 Hz) and 
beta rhythms (18-26 Hz) are known to decrease during movement or preparation for 
the movement (event-related desynchronization) or increase after movement (event- 
related synchronization) [2]. It is possible to select a small set of mental tasks that 
activate different parts of the brain to make the recognition easier. Then, supervised 
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classification algorithms are employed to learn to recognize these patterns of EEG 
activity, i.e. to learn the mapping between the EEG data and the classes corresponding 
to mental tasks [3].  

From data mining point of view this is a challenging task for several reasons. 
Firstly, the EEG data is noisy and correlated as many electrodes are fixed on the small 
scalp surface and each electrode measures the activity of thousands of neurons [4]. In 
addition, the quality of the data is affected by the different degree of attention of the 
subject and changes in their concentration during the data recording; these factors 
introduce additional noise. Secondly, the dimensionality of the data is high as many 
channels are recorded and several features are extracted from them [3]. At the same 
time the number of training examples is small as collecting labelled data is time con-
suming and cognitively demanding process for the subjects.  

In this paper we focus on feature selection to address these challenges of BCI data, 
namely the noisy, correlated and highly dimensional data, with a small number of 
training examples. Feature selection is the process of removing irrelevant and redun-
dant features and selecting a small set of informative features that are necessary and 
sufficient for good classification. It is one of the key factors affecting the success of a 
classification algorithm. Feature selection also reduces the dimensionality of data 
which means faster building of the classifier and often producing more compact and 
easier to interpret classification rule [5]. Furthermore, it is needed to avoid the above 
mentioned curse of dimensionality problem - small ratio of sample size to number of 
features.  

The main goal of our study is to empirically evaluate a number of state-of-the-art 
feature selection methods for classification of BCI data. Comprehensive surveys of 
feature selection for classification can be found in [6] and [7]. An empirical compari-
son of feature selection methods on UCI benchmark datasets was presented in [8]. A 
brief survey of machine learning techniques, including feature selection methods, that 
can be applied to BCI data is given in [9]. In contrast, our goal is to empirically com-
pare five important feature selection methods on benchmark BCI data from the BCI 
competition, which hasn’t been done before. The five methods we chose - Informa-
tion Gain Ranking (IG), Correlation-Based Feature Selection (CFS), ReliefF, Consis-
tency-Based Feature Selection (Consistency) and 1R Ranking (1RR) - are state-of-
the-art feature selectors, have been successfully applied in other domains and are 
appropriate for the nature of the EEG data. Only one of them, CFS, has been previ-
ously applied for classification of BCI data in our recent study [10].  

In addition, we also evaluate a number of classification algorithms with these fea-
ture selection methods. A variety of algorithms have been applied in BCI systems, 
e.g. linear classifiers [3, 9, 11] which are still the favorite approach, neural networks 
[12], nearest neighbor classifiers [11] and support vector machines [4]. Lotte et al [3] 
survey classification algorithms for BCI data and note that it is hard to compare them 
as the experimental setup, preprocessing and feature selection are different in the 
reported studies. Hence, we also contribute to the evaluation of classifiers, using a 
benchmark dataset, the same pre-processing and the same feature selection methods.  

The next section briefly describes the feature selection methods we compare. Sec-
tion 3 presents the dataset, pre-processing and experimental methodology. The results 
are presented and discussed in Section 4. Section 5 concluded the paper. 
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2   Feature Selection Methods 

We chose five state-of-the-art feature selection methods: IG, CFS, ReliefF, Consis-
tency and 1RR. All of them are examples of filter methods for feature selection [13]. 
The distinction between filter and wrapper methods for feature selection is based on 
their connection with the classification algorithm. Filters evaluate and rank features or 
feature subsets prior to learning and independently of the classification algorithm. 
Wrappers evaluate and rank feature subsets for a particular target classification algo-
rithm. They work well as the feature selection is tuned for the particular classifier but 
are also very slow as a classifier needs to be built for every subset and evaluated using 
cross validation. Due to the large number of features in our task, the application of 
wrappers was not feasible in this study.  

Feature selection methods can also be categorized based on what they evaluate and 
rank: individual features or subsets of features. CFS and Consistency evaluate subset 
of features and produce a single feature subset; IG, Relief and 1RR evaluate all fea-
tures individually and rank them; a feature subset selection is achieved by selecting 
the highest N ranked features or all features with a value above t, where N and t are 
user-specified thresholds.  

IG, CFS, ReliefF and Consistency were included in the comparison of 6 feature se-
lection methods on 15 benchmark and 3 large datasets in [8], which also included 
principle component analysis and wrapper. When the speed was not an issue, the 
wrapper was found to be the best performing method in terms of accuracy; otherwise 
CFS, Consistency and ReliefF were the best. The evaluation was conducted using 
only 2 common classification algorithms (decision trees and naïve Bayes) while in 
this study we use 10 algorithms, see Section 3.2.  

IG. This is a very popular and successful feature selection method for high 
dimensional data, widely used in the area of text classification [14]. Given a set of 
classes },...,{ 1 kccC = , the information gain of a feature f , IG(f), is the expected 
reduction in entropy H caused by observing f:  
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The computation is done for each feature across all classes and then the features are 
ranked based on their IG value; the higher the value the more informative the feature 
is. To select the top N features, we experimented with different thresholds and report 
the best results which were achieved for t = 0. 

CFS. CFS is a simple and fast feature subset selection method developed by Hall [5]. 
It searches for the “best” subset of features where “best” is defined by a heuristic 
which takes into consideration two criteria: 1) how good the individual features are at 
predicting the class and 2) how much they correlate with the other features. Good 
subsets of features contain features that are highly correlated with the class and uncor-
related with each other. Thus, CFS directly handles correlated and irrelevant features, 
which makes it suitable for EEG data. The search space is very big for employing a 
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brute-force search algorithm. We used the best first (greedy) search option starting 
with an empty set of features and adding new features.  

ReliefF. Relief [15] is an instance-based feature ranking method for two-class prob-
lems. ReliefF [16] is an extension of Relief for multiclass problems. Relief ranks the 
features based on how well they distinguish between instances that are near to each 
other. It randomly selects an instance Ri from the data and finds the nearest neighbor 
H from the same class and the nearest neighbor M from the other class. Then it up-
dates the quality score of each feature by comparing the feature values of Ri with H 
and M. If Ri and H have different values of f, this means that two instances from the 
same class are separated by f (not desirable), the score of f is decreased. If Ri and M 
have different values of f, this means that two instances from different classes are 
separated by f (desirable), the score of f is increased. The process is repeated for m 
randomly selected instances. ReliefF is also more robust that Relief as it uses k near-
est neighbors. We used k = 10 and m = all instances, i.e. all instances in the training 
data were sampled which increases the reliability of the feature scores.  

ReliefF is very appropriate for EEG data as it works well on noisy and correlated 
features and scales well for high dimensional data due to its linear time complexity. 
Similarly to IG, ReliefF ranks all features and requires a threshold t for selecting the 
top N features. We report the best results which were achieved for t = 0.05. 

Consistency. It selects a subset of features by searching  the space of subsets 
guided by a class consistency measure [17]. More specifically, it looks for combina-
tions of features that are mainly associated with the same class. Initially, the best 
subset consists of all features and the consistency threshold is set to 0. If the candi-
date subset has a better class consistency score and less or equal number of features 
than the current one, it becomes the best subset. We used best first search as a 
search method. Consistency is a fast algorithm, able to identify dependency be-
tween features [8]. 

1RR. 1RR [18] is based on the 1R classification algorithm [19]. 1R generates a classi-
fication rule (1-rule) that tests the values of a single feature, i.e. it generates a one-
level decision tree. It does this by creating a 1-rule for all features and then selecting 
the one with the highest classification accuracy. Holte [19] shows that the simple 1R 
classifier compares favourably with state-of-the art classifiers on standard machine 
learning datasets and explains this with the rudimentary structure of many real-world 
datasets, which motivates the use of simple algorithms first. 1RR is an extension of 
the 1R algorithm and is used for feature selection. It ranks all features based on the 
classification accuracy of their 1-rules and then selects the top N features based on a 
value threshold t. Thus, it is based on the assumption that the accuracy of each feature 
is an indicator of its relevance. While 1R can be seen as a method for selecting 1 
feature, 1RR is used to select sub-set of features. 1RR is a simple and fast algorithm 
and was shown to be an effective feature selector for document classification [20]. In 
our experiments we used a cut-off threshold t = 40. 
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3   Experimental Methodology 

3.1   Data and Preprocessing  

We used dataset IIIa from the latest BCI competition, BCI III [21]. It contains re-
cordings for three subjects (K3b, K6b and L1b) in a four-class classification problem.  

We briefly summarized the data acquisition procedure, for more details see [22]. 
The subject sits in front of a computer. A recording consists of multiple trials. Each 
trial starts with a blank screen. At t=2s, a beep and a cross “+”inform the subject to 
pay attention. At t=3s an arrow pointing to the left, right, up or down is shown for 1s 
and the subject is asked to imagine a left hand, right hand, tongue or foot movement, 
respectively, until the cross disappears at t=7s. This is followed by a 2s break, and 
then the next trial begins. The EEG data was recorded using 60 electrodes, at a sam-
pling rate of 250 Hz and filtered between 1 and 50 Hz. Two independent data files 
were made available for each subject: training and test. 

We applied the same data preprocessing as in our previous work [10] where we re-
ported the CFS results. Firstly, we used the Common Spatial Patterns (CSP) method, 
extended to multiclass problems [23]. It transforms the original signal into a new 
space where the variance of one of the classes is maximised while the variance of the 
others is minimized. The result, for each class versus the others, is a new set of 60 
signals, ordered based on how informative they are. We selected the first 5 projections 
and applied 3 frequency band filters (8-12, 12-20 and 20-30 Hz). We then extracted 7 
features: max, min and mean voltage values, voltage range, number of samples above 
zero volts, zero voltage crossing rate and average signal power. This resulted in 420 
(5x4x3x7) discrete numeric features.  

Table 1 shows the resulting number of instances in the training and test sets. For 
each subject, the size of the training and test sets were the same. The four classes 
were equally distributed in both the training and test set, e.g. for subject K3b there 
were 45 instances from each class in both the training and test data. 

Table 1. Number of instances in the training and test sets for each subject 

 K3b K6b L1b 
Training set 180 120 120 
Test set 180 120 120 

 
From a data mining point of view the task can be formulated as follows. Given is a 

training set of 120 or 180 instances, each instance has a dimensionality of 420 fea-
tures and is labelled with one of the four classes; the goal is to build a classifier for 
each subject able to distinguish between the four classes. The curse of dimensionality 
problem is evident – there are many features but a small number of training instances. 
It is generally accepted that the number of training instances per class should be at lest 
10 times more than the number of features and that more complex classifiers require a 
larger ratio of sample size to features [7]. 



 Feature Selection for Brain-Computer Interfaces 111 

 

3.2   Classification Algorithms  

The selected feature sets were tested with 10 classification algorithms which are listed 
in Table 2. We chose these algorithms as they are state-of-the-art in data mining and 
also represent different paradigms (rule-based, tree-based, nearest neighbor, probabil-
istic, function-based, ensemble of classifiers).  

It is important to note that the test data was not used in any way during the feature 
selection. The feature selection was done based on the training data only. A classifier 
was build using the training data and selected features. It was evaluated on the test 
data, which was filtered to retain the selected features only.  

We used the Weka’s implementations [13] of both the feature selection methods 
and classification algorithms. 

Table 2. Classification algorithms used – description and parameters 

1R: A rule based on the values of one attribute [19]. 
Decision Tree (DT): A classical divide and conquer learning algorithm. We used J48. 
K-Nearest Neighbor (k-NN): A classical instance-based algorithm; uses normalised 
Euclidean distance. We used k=5.  
Naïve Bayes (NB): A standard probabilistic classifier. 
Radial-bases Network (RBF): A two-layer neural network. Uses Gausssians as basis func-
tions in the first layer (number and centers set by the k-means algorithm) and a linear sec-
ond layer. 
Support Vector Machine (SVM): Finds the maximum margin hyperplane between two 
classes. We used Weka’s SMO with polynomial kernel. 
Logistic Regression (LogR): Standard linear regression. 
Ada Boost (AdaB): An ensemble of classifiers. It produces a series of classifiers iteratively 
where new classifiers focus on the instances which were misclassified by the previous clas-
sifiers and uses weighed vote to combine individual decisions. We combined 10 decision 
trees (J48). 
Bagging (Bagg): An ensemble of classifiers. Uses random sampling with replacement to 
generates training sets for the classifiers; decisions are combined with majority vote. We 
combined 10 decision trees (J48). 
Random Forest (RF): An ensemble of decision trees based bagging and random feature 
selection. We used t=10 trees. 

4   Results and Discussion 

4.1   Feature Reduction 

Table 3 lists the number of selected features by the five methods for each subject. It 
shows that all methods were able to select much smaller subsets of features than the 
original set of 420 features. The range of the feature reduction was between 53.3% 
(IG) and 98.1% (Consistency) for K3b, 87.3% (IG) and 98.1% (ReliefF) for K6b and 
92.1% (IG) and 97.1% (ReliefF) for L1b. Overall Consistency selected the smallest 
feature set, followed by CFS, ReliefF, 1RR and IG; the feature set produced by  
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Table 3. Number of features selected. In brackets is the % of original features retained 

 K3b K6b L1b Total 
IG 196 (46.7%) 53 (12.6%) 33 (7.9%) 282 
CFS 56 (13.3%) 19 (4.5%) 15 (3.6%) 90 
ReliefF 82 (19.5%) 8 (1.9%) 12 (2.9%) 102 
Consistency 8 (1.9%) 14 (3.3%) 13 (3.1%) 35 
1RR 87 (20.7%) 22 (5.2%) 17 (4%) 126 

 
Consistency was eight times smaller than the feature set produced by IG. In [5] CFS 
was found to select the smallest feature sets on the large datasets, retaining 3-22% of 
the original features, followed by Consistency, ReliefF and IG. A comparison be-
tween CFS and Consistency, the two methods that directly produce feature subsets, 
shows that in our study CFS retained more features than Consistency (3 times more) 
while in [5] it retained less (2 times less).  

This large feature reduction confirms that the BCI data is noisy and highly corre-
lated. It also reduces the effect of the curse of dimensionality: the ratio of the number 
of training instances per class to the number of features is reduced from 45/420 to 
45/82 – 45/8 for K3b, from 30/420 to 30/56 – 30/8 for K3b and from 30/420 to 30/33 
- 30/12 for L1b.  

4.2   Classification Performance 

Tables 4, 5 and 6 show the classification results in terms of accuracy on the test set 
for the three subjects, without feature selection and using the five feature selection 
methods and 10 classifiers. The number of features used is shown in brackets, the best 
accuracy result for each classifier is in bold and the best accuracy result for the sub-
ject is in bold underlined.  

A comparison between the subjects shows that the accuracy is highest for K3b and 
lowest for K6b. This is as expected and due to the different amount of BCI training 
the subjects received [4]: K3 was the most experienced, L1 had little experience and 
K6 was a beginner.  

Table 4. Subject K3b - accuracy on test set [%] for various classification algorithms, without 
and with feature selection 

 1R DT 5-NN NB RBF SVM LR AdaB Bagg RF 
none (420) 45.00 67.22 87.78 82.22 82.22 90.56 88.89 84.44 84.44 86.67 
IG (196) 45.00 67.22 90.56 85.55 87.22 94.44 87.78 80.56 82.78 89.44 
CFS (56) 45.00 75.00 90.56 91.67 89.44 93.33 78.88 81.11 81.11 86.11 
ReliefF (82) 45.00 80.56 88.89 88.33 89.44 92.78 80.56 86.67 85.00 86.11 
Cons. (8) 46.67 80.00 83.33 81.67 82.22 87.22 81.67 83.89 82.22 82.78 
1RR (87) 45.00 76.11 87.88 87.78 87.22 93.89 75.56 85.56 84.44 87.22 
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Table 5. Subject K6b - accuracy on test set [%] for various classification algorithms, without 
and with feature selection 

 1R DT 5-NN NB RBF SVM LR AdaB Bagg RF 
none (420) 40.00 55.84 56.67 50.83 50.83 55.00 45.00 55.83 55.83 50.00 
IG (53) 40.00 54.17 51.57 56.67 55.83 62.50 41.67 57.50 58.33 55.83 
CFS (19) 28.33 55.84 51.67 54.17 56.67 58.33 54.17 61.67 61.67 55.83 
ReliefF (8) 40.00 36.67 37.50 45.00 42.50 45.00 48.33 39.17 40.00 47.50 
Cons. (14) 28.33 52.50 52.50 53.33 50.00 57.50 50.83 56.67 56.67 49.17 
1RR (22) 40.00 56.67 52.50 55.83 58.33 55.00 47.50 62.50 56.67 60.83 

Table 6. Subject L1b - accuracy on test set [%] for various classification algorithms, without 
and with feature selection 

 1R DT 5-NN NB RBF SVM LR AdaB Bagg RF 
none (420) 50.00 58.33 57.50 60.00 56.67 62.50 60.83 67.50 62.50 48.33 
IG (33) 50.00 68.33 66.67 63.33 69.17 71.67 59.17 75.00 69.17 72.50 
CFS (15) 50.00 69.17 70.83 66.67 68.33 70.83 70.00 78.33 71.67 63.33 
ReliefF (12) 50.00 68.33 65.83 70.83 75.00 74.17 70.00 72.50 68.33 58.33 
Cons. (13) 50.00 61.67 64.17 71.67 67.50 70.00 67.50 68.33 67.50 70.83 
1RR (17) 50.00 67.50 70.83 63.33 63.33 67.50 67.50 66.67 67.50 67.50 

 
It is important to compare the classification accuracy with a baseline. As such we 

can use the distribution of the majority class in the training data, also called ZeroR 
prediction [13], which was 25% for all subjects (as noted in Section 3.1 there was no 
majority class – all four classes were equally distributed). Tables 4-6 show that all 
classifiers, with and without feature selection, outperformed the baseline. 

Table 7. Accuracy on test set [%] – comparison with the top three competition submissions as 
reported in [21]. 

BCI team K3b K6b L1b 
Hill & Schröder (resampling 100Hz, detrending, 
Informax ICA, Welch amplitude spectra, PCA, 
SVM) 

96.11 55.83 64.17 

Guan, Zhang & Li (Fisher ratios of channel-
frequency-time bins, feature extraction, mu and beta 
band, CSP, SVM) 

86.67 81.67 85.00 

Gao, Wu & Wei (surface Laplacian, 8-30Hz filter, 
multi-class CSP, SVM+kNN+LDA) 

92.78 57.50 78.33 

Ours (CSP, 3 frequency bands, 7 features extracted) 94.44 
IG+SVM

62.50 
IG+SVM 

1RR+AdaB

78.33 
CFS+AdaB 

 
Table 7 shows our best results and the results of the top three BCI competition 

submissions as reported in [21]. Our best results were achieved using feature selec-
tion, in particular: IG+SVM for K3b, IG+SVM and 1RR+AdaB for K6b, and 
CFS+AdaB for L1b. Our results are the second best for each subject, hence they are 
comparable with the best submitted results. 
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To rank the feature selection methods, we compared pairwise the accuracy of each 
two of them, for all subjects. We calculated the number of wins (#wins), draws 
(#draws) and losses (#losses), and computed the following ranking function: #wins + 
#draws - #losses. The results are shown in Table 8 for each classifier individually. 
The last column shows the total score for each feature selector for all classifiers; the 
higher the score, the better the feature selector. It can be seen that CFS was the best 
feature selector, followed by IG, 1RR, ReliefF, Consistency and no feature selection. 
All feature selectors improved the classification accuracy in comparison to no feature 
selection despite the fact that they discarded a large number of features. CFS, IG and 
1RR significantly outperformed the other methods in terms of the wins-draws-losses 
criterion. From these top three methods, CFS selected the smallest feature set.  

Table 8.  #wins+#draws-#losses for each feature selector for all subjects 

 1R DT 5-NN NB RBF SVM LR AdaB Bagg RF total 
none 13 -5 -3 -11 -9 -9 -1 -5 -5 -5 -40 
IG  13 -1 5 5 3 13 -7 -1 5 13 48 
CFS  5 7 5 7 9 7 7 5 5 1 58 
ReliefF  13 3 -5 1 5 -1 3 1 1 -9 12 
Cons.  7 -3 -5 -1 -7 -5 3 -3 -3 -5 -22 
1RR 13 5 6 5 3 -1 -3 3 3 9 43 

 
Fig.1 shows the effectiveness of the feature selectors when used with various clas-

sifiers. For the case without feature selection the best performing classifiers were 
SVM, AdaB and Bagg; IG performed best with SVM, RF and 5-NN; CFS - with 
Bagg, AdaB and SVM; ReliefF - with SVM, RBF and NB; Consistency – with SVM, 
NB and AdaB and 1RR – with SVM, RF and AdaB. As expected, different feature 
selectors work best with different classifiers [8]. 
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Fig. 2. Comparing classifiers - accuracy on test set [%] averaged over the 3 subjects 

 
A comparison across the classifiers is shown in Fig. 2. The best classifiers were 

SVM, AdaB, Bagg, RBF and RF. Hence, our results confirm the good performance of 
SVM from [22] but also show that ensembles of classifiers and RBF are powerful 
algorithms for classification of BCI data, without feature selection and with the fea-
ture selectors we applied. AdaB, Bagg, RF and RBF have received very little attention 
in previous work on BCI data classification [10]. The widely used linear regression 
method did not perform well – it ranked 7 out of 10 in terms of accuracy, before 1R, 
DT and NB. It is also worth noting the poor performance of IG with NB. 

SVM was the slowest classifier to build (1.03s to build a classifier for K3B using 
CFS) as the four-class problem is decomposed into four binary problems, followed by 
AdaBoost (0.42s) and the remaining three classifiers (0.04-0.19s). In the current BCI 
systems classifiers are built off-line which means that accuracy is more important 
than training time; they require fast classification of new data which is true for all 
except lazy classifiers such as k-NN. However, the need to incrementally retrain the 
classifier to adapt to the incoming data or subject is recognised as one of the desirable 
features of the future BCI applications, in which case the training time is important. 

5   Conclusions 

In this paper we empirically compared five state-of-the-art feature selection methods 
for classification of BCI data: IG, CFS, ReliefF, Consistency and 1RR. Only CFS has 
been previously applied to BCI data. We tested the selected feature sets with ten clas-
sification algorithms, representing different paradigms, and using benchmark dataset 
from the BCI competition III. Feature selection was found to be beneficial. In particu-
lar, all feature selection methods were found to significantly reduce the number of 
features (reduction from 53.3% to 98.1%) and to improve accuracy in comparison to 
the case without feature selection, when used with suitable classification algorithms. 
Overall, the best feature selector was CFS. In terms of pair-wise accuracy comparison 
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(wins-draws-losses ranking) it achieved the best results followed by IG and 1RR, and 
it also selected the smallest number of features among the three feature selectors. CFS 
performed best with ensembles of classifiers such as Bagg and AdaB, and also  
with SVM.  

The best accuracy results per subject were produced by IG with SVM for subject 
K3b, IG with SVM and 1RR with AdaB for subject K6b, and CFS with AdaB for 
subject L1b; these results rank second best in comparison to the top results submitted 
to the BCI competition. We also found that in addition to the popular SVM, other 
classification algorithms that have received little attention in the BCI community such 
as AdaB, Bagg, RF and RBF, produced good accuracy results. 
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Abstract. As the sizes of biomedical literature databases increase, there
is an urgent need to develop intelligent systems that automatically dis-
cover Protein-Protein interactions from text. Despite resource-intensive
efforts to create manually curated interaction databases, the sheer vol-
ume of biological literature databases makes it impossible to achieve sig-
nificant coverage. In this paper, we describe a scalable hierarchical Sup-
port Vector Machine(SVM) based framework to efficiently mine protein
interactions with high precision. In addition, we describe a convolution
tree-vector kernel based on syntactic similarity of natural language text
to further enhance the mining process. By using the inherent syntactic
similarity of interaction phrases as a kernel method, we are able to sig-
nificantly improve the classification quality. Our hierarchical framework
allows us to reduce the search space dramatically with each stage, while
sustaining a high level of accuracy. We test our framework on a corpus of
over 10000 manually annotated phrases gathered from various sources.
The convolution kernel technique identifies sentences describing interac-
tions with a precision of 95% and a recall of 92%, yielding significant
improvements over previous machine learning techniques.

1 Introduction

Protein-Protein interactions are the associations of protein molecules with one
another, and the study of these associations from the perspective of biochemistry,
signal transduction and protein networks. Protein interactions form the basis for
virtually every process in a living cell, and the study of interactions improves the
understanding of diseases and provides researchers with the ability to analyze
and study therapeutic approaches.

Over the past few years, a multitude of high throughput methods to detect
protein interactions have been developed. Researchers all over the world are per-
forming these experiments and reporting results on protein-protein interactions.
Although a few large-scale studies are available, most of the protein-protein inter-
actions come from thousands of smaller studies. Figure 1 shows that the number
of articles in Pubmed over the last 50 years is steadily increasing. Consolidat-
ing the known list of protein-protein interactions will provide researchers with a
powerful tool that will greatly enhance their understanding of these relationships
on a genomic scale.
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Fig. 1. Growth of the Pubmed Database over the last few years

There have been several attempts to develop databases of interacting proteins,
and the supporting metadata that describes an interaction. Currently, there are
several manually curated databases like DIP, BIND and MINT [10,1,4]. While
these databases promise a high degree of accuracy, by providing supporting evi-
dence reviewed by a subject expert, their coverage leaves much to be desired. DIP
contains 56493 records referring to protein interactions whereas MINT describes
105537 interactions. However, there is a common consensus that the number
of interactions available in these manually curated databases is miniscule com-
pared to the total number of interactions described in the literature. Typically,
manually curated databases cover about 3000-4000 articles. Considering that
Pubmed, the biomedical literature database maintained by National Institute of
Health (NIH) contains over 17 million documents, we can clearly see the limited
usefulness of manually curated databases.

Machine learning and data mining techniques have been applied to develop
automated and semi-automated methods for finding protein interactions on a
large scale. The highly ambiguous nature of natural languages and lack of stan-
dards in research writing complicate this task tremendously. The lack of stan-
dards in protein nomenclature has led to a single protein being referred to by
several synonyms, with no apparent similarities (eg. Trehalose-phosphatase, EC
3.1.3.12 and TPP refer to the same protein). Therefore, the use of standard
exhaustive dictionaries to extract protein/gene references [2,17] have not been
very effective. Existing machine learning approaches [15,14] have shown some
success, but suffer from lack of scalability, inability to adapt to different do-
mains and small test sets. Semi-automated techniques like PreBIND use SVMs
to speed up manual expert reviewing by reducing the amount of information to
be examined. The challenges of manual curation can be addressed by developing
fully automated systems to extract interactions from abstracts or full text ar-
ticles. However, fully automated methods suffer from low sensitivity and a lack
of coverage. Since there are a large number of ways in which interactions can
be described, simple rule-based approaches, relying on human-generated rules to
recognize phrases, can only capture a limited percentage of interactions. At the
same time, using a complex but accurate machine learning technique may not
be computationally feasible, nor achieve the desired coverage. Previous efforts
have also been hampered by the lack of quality training datasets.
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However, we utilize the highly accurate protein interaction information in
interaction databases like DIP and MINT to serve as a vast, diverse training
platform for our supervised learning system. In this paper, our contributions are

– We propose a scalable hierarchical Support Vector Machine(SVM) based
framework to efficiently mine protein interactions from Pubmed abstracts
with high precision.

– We propose the use of Convolutions kernels in Support Vector Machines for
mining protein-protein interactions.

– We validate our technique on a large corpus gathered from various manually
annotated databases, and achieve high rates of precision and recall.

2 Kernel Methods and Support Vector Machines

Support vector machines (SVMs) are a set of supervised machine learning tech-
niques used for classification and regression. SVMs have been shown to be highly
successful for text classification[11]. [19] contains a comprehensive discussion of
support vector machine theory. SVMs are able to solve a multitude of classifi-
cation problems by using domain-specific and cost-sensitive kernel functions. In
our work, we use the concept of tree kernels to efficiently determine the simi-
larity between the syntactic parse trees of sentences. As a result, we are able
to exploit the syntactic structure of natural language text and develop a better
classification model when compared to a traditional SVM.

3 Hierarchical Approach

We tackle the problem of finding protein interactions in Pubmed abstracts us-
ing a three-stage hierarchical approach. Figure 2 shows a brief overview of our
approach, and the various stages involved.

Stage I: Pubmed contains a vast number of abstracts (around 17 million),
most of which do not contain descriptions of protein interactions. Comprehensive
analysis of each of these abstracts is time-consuming and wasteful in terms of com-
putational resources. Therefore we need a way to determine which documents are
worth looking at in greater detail. This is a classic example of a text classification
problem, and we propose a solution using a simple SVM formulation.
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Fig. 2. System architecture for Mining Protein-Protein Interactions
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Stage II: Once we have determined those abstracts which are likely to contain
interactions, we need to narrow down the list of possibilities furthur. Occurrence
of proteins (in general, biomedical named entities) is a strong requirement for
description of an interaction. In other words, it is very likely that a sentence
containing two or more protein names actually describes an interaction amongst
them. Also a sentence containing no references to proteins in unlikely to contain
an interaction. To find proteins in text, we use a comprehensive SVM-based
method, that yields high recall, thus finding most protein references, and by
implication, most sentences that describe interactions.

Stage III: Finally, to determine if a sentence describes an interaction or
not, we must understand the inherent meaning of the sentence. This can be a
tricky proposition, considering the richness and diversity of the English language.
However, by studying the syntactic and semantic structure of the text, we can
determine, with high accuracy, whether or not it describes an interaction. For this
purpose, we introduce the concept of convolution kernels to accurately identify
sentences describing interactions. While this is a resource intensive technique,
we only apply it to those candidate sentences which have been obtained after
the first two stages.

3.1 Reducing the Search Space

In our problem, we require a method to prune the search space, so that we can
apply more accurate and complex machine learning techniques on a reduced
candidate set. We have used SVMs with a Bag-of-Words approach to build a
classifier model which successfully distinguishes those abstracts which may con-
tain a protein interaction. The Bag-of-words technique is a simple approach that
relies on word-frequency information to classify text documents. Each abstract is
converted into a high dimensional feature vector, after performing necessary pre-
processing steps like stemming and stop-word removal. We used the TFIDF [11]
metric to represent features in the input vector. The details of the training and
validation phases are provided in the results section. The end-result of this phase
is that we are able to identify those documents which are likely candidates for
containing protein-protein interactions, with an acceptable false-positive rate.

3.2 Biomedical Named Entity Recognition (NER)

Stage II involves the recognition of biomedical named entities(more specifically,
proteins) in text. In this work, we do not distinguish between proteins and other
named entities(NEs), since it is difficult to make such a distinction. Each word
is represented by a binary feature vector, which consists of lexical features, or-
thographical and morphological features, Part-of-Speech features, and context
features(as in [13]). The basic idea is that using these features, the SVM will be
able to determine whether the word is a biomedical named entity. The features
we use are similar, but not identical to those in [8]. Details of these features are
discussed below:

Lexical Features : The lexical feature set of a word consist of three lists of terms:
single-term list, functional-term list and general-term list. Each term in these
lists corresponds to a feature. Single-terms are words which can be used as
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an protein entity by themselves, such as ‘NF-KappaB’, ‘astrogen’ or ‘ERK’.
Functional terms are devised to describe the function and characteristics of NEs.
They have no special orthographic features and consist of all lower case words
which frequently appear in NEs (eg. ‘protein’,‘gene’,‘receptor’ are all functional
words). General terms are a set of words that are classified neither as single-
terms nor function terms. This is simply a list of words with frequency greater
than three in the training corpus.

Orthological and Morphological Features : A large number of NEs contain surface
clues (called orthological features), which may help in discriminating them. We
use a list of sufficiently powerful orthological features in our model(see Figure 3).
We also utilize commonly occurring suffix patterns in NEs as a predicting feature.

Part-of-Speech(POS) Features : The part-of-speech tags of a target word and its
surrounding context words represent syntactic characteristics for composing an
entity. It is commonly seen that named entities are tagged as nouns or adjectives,
whereas they are rarely tagged as adverbs.

Contextual features: For boundary identification, we use neighboring words and
the POS of neighboring words as contextual features. In our experiments, we
considered the two words to the left and right of the target word. Context words
are selected as features only if they belong to one of the lexical feature lists.

Therefore, the feature vector for a target word is obtained by composing all of
the features described above. For each feature, the binary feature vector has a 1
if that feature is present, or 0 otherwise. We use a SVM with standard settings
and a linear kernel. Once biomedical entities are recognized, we will be able to
further narrow down the list of candidate sentences which may contain protein
interactions.

3.3 Convolution Kernels

Stage III represents the most complex of all our SVM formulations. The input
is a sentence containing several biomedical named entities. However, the mere
presence of a protein does not guarantee that the sentence will describe a protein
interaction (See Figure 5). Also the use of the Bag-of-Words and similar tech-
niques does not allow us to exploit the syntactic structure of the phrase in ques-
tion. In recent years, tree kernels have been shown to be interesting approaches
for the modeling of syntactic information in natural language tasks [21,22,23].

Given an input sentence, we can obtain the corresponding syntactic parse
tree using standard natural language processing techniques. Figure 4 shows the
parse tree of the sentence ‘IL-5 activated the Jak 2-STAT 1 signaling pathway’.
The kernels that we consider represent parse trees in terms of their substruc-
tures(fragments). These substructures define the feature space of a tree, which is
represented as a high-dimensional vector. The kernel function attempts to find
the similarity between two trees by counting the number of their common frag-
ments. When this kernel function is plugged into a SVM, it detects if a parse
tree belongs to the feature space of the known examples belonging to the target
class, thereby accomplishing the classification task.
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Feature ID Example
Cap + Digit IL22

Alpha-numeric Ama292
Cap + Digit + Cap L809TR

Greek NF-KappaB
Lower+digit+sym 110-nt

Unit U/mg
HasDot a.m

Has_special_symbol Doc1/Apc10

Fig. 3. An example of Orthological
Features used for NER Fig. 4. Parse Tree

In a syntactic parse tree, each node with its children is associated with a
grammar production rule, where the symbol on the left-hand side corresponds
to the parent node, and the symbols on the right hand side are associated with
the child nodes. We define as a subtree(ST) any node of a tree along with all
its descendants. A subset tree (SST) is a tree obtained by applying the same
grammatical rule set which generated the original tree. The main idea behind
tree kernels is to compute the number of common substructures between two
trees T1 and T2 without explicitly considering the whole fragment space. We
base our tree kernel on the method proposed in [5], along with a modification
that enables us to evaluate differences between features spaces generated from
STs or SSTs.

We formally represent a parse tree feature space (ST or SST) as T = (f1, f2, ...
f|N |), where fi represents a ST or SST fragment. Define a function Fi(n) to be
1 if fragment fi is rooted at node n of T , and 0 otherwise. The kernel function
K between two trees T1, T2 is defined as follows: K(T1, T2) =

∑
n1∈NT1

∑
n2∈NT2∑|N |

i=1 Fi(n1)Fi(n2).
Here NT1 , NT2 represent node sets of T1, T2, and |N | represents the size of the

feature space.
It can be shown that computing the kernel function as-it-is can lead to an

exponential number of evaluations in the size of the input tree. However, we can
compute the inner product (

∑|N |
i=1 Fi(n1)Fi(n2), designated as IP (n1, n2)) in

an efficient manner as follows:

– If the productions at n1 and n2 are different, then IP (n1, n2) = 0
– If the productions at n1 and n2 are the same, and n1 and n2 have only leaf

children, then IP (n1, n2) = λ
– If the productions at n1 and n2 are the same, and n1, n2 are not pre-

terminals, then
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IP (n1, n2) = λ
∏numchild(n1)

j=1 (σ + IP (cj
n1

, cj
n2

))

where cj
n is the jth child of node n. When σ = 0, we evaluate the ST kernel,

and when σ = 1, the SST kernel is evaluated. λ is a decay parameter that de-
termines the importance of the tree fragment length in the kernel evaluation.

The complexity of evaluating the above kernel function is quadratic in the length
of the trees. However using several optimization techniques, the kernel evalua-
tion can run in linear time on average. Therefore, in Stage III we generate the
Part-of-Speech tags for each sentence and then generate the corresponding syn-
tactic parse tree. In addition to the parse tree representation, we also generate
a bag-of-words feature vector for each candidate sentence. This is because we
would like to combine the word-frequency information with the syntactic tree
kernel to generate a hybrid kernel. The details of the training and test datasets,
implementation and results are discussed in the next section.

4 Experimental Results

In order to verify the effectiveness of our system, we perform extensive testing
to gauge the performance of all three stages individually and as a group. We use
SVM-light [12] software for all our experiments. The metrics we use to determine
performance are Precision, Recall and F-1 score.

Stage I: We generated a training set of 3730 Pubmed abstracts (2230 posi-
tive cases and 1500 negative cases). The positive examples were those abstracts
in DIP(Database of Interacting Proteins) which have been manually curated and
found to contain protein interactions. The negative examples were derived by se-
lecting a subset of Pubmed abstracts which had no interaction keywords, and then
were reviewed by a subject expert. After performing preprocessing steps like word
stemming and stop word removal, the SVM was trained with these examples us-
ing a linear kernel and default settings. Testing the model on a set of 500 pos-
itive examples and 1000 negative examples(generated from the same sources as
described above) yielded a precision of 97.5% and recall of 92%. For further test-
ing, we obtained a set of 3121 positive examples from another manually curated
database, MINT, and attempted to classify those abstracts using our SVM model.
The model was able to successfully predict that 96.4% of these abstracts described
protein interactions. Therefore, with a lightweight technique, we are able to dra-
matically reduce the search space, without generating too many false negatives.

Stage II: The Genia corpus [9] is a large human subject expert annotated
database which serves as an ideal platform to train and test supervised learning
systems. In the Genia corpus, 2000 abstracts from Pubmed have been manually
annotated to denote biological entities like proteins, genes, DNA etc. as well
as language constructs like sentences, abbreviations and titles. The number of
‘protein’ terms alone is 10504, which indicates the richness of this corpus.This
serves as an ideal testing platform to measure the effectiveness of the Named
entity recognition module. We used the GENIA POS tagger [9] for part-of-speech
tagging, and computed the various lexicographic and orthographic features for
each word as described in the earlier section. Inspite of inconsistent naming
conventions and punctuation, our named entity recognition module was able to
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Interaction
Phrase

Similar findings have been achieved in another 
study, where it was shown that Tat activates the 
ERK kinases

Protein 1

However, the designated AR protein e3_19
exhibits a significantly lower stability than E3_5
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keyword

Protein 2 Protein 2Non-Interaction
Phrase

Protein 2

Fig. 5. Positive and Negative examples
from the Input Corpus
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successfully identify biomedical named entities (NEs) with a precision of 79%
and a recall of 77%.

Stage III: In order to generate an appropriate dataset to test the convolution
kernel SVM formulation, we consider a list of protein interaction sentences gen-
erated by the BioText project [16]. This dataset contains a list of 3190 sentences
which describe protein interactions of various kinds. A list of 7000 negative ex-
amples was generated in a semi-automated fashion by gathering sentences which
contained protein references, yet did not contain interaction keywords. Figure 5
shows examples of positive and negative cases in the corpus. The sentences were
divided into training and test datasets. The Genia POS tagger was used for
part-of-speech tagging, and the Collins parser [6] was used to generate syntactic
parse trees.

In our experiments, we first compare the performance of the convolution ker-
nel based method with a Bag-of-words approach. Further, we use a combination
of both these approaches to generate a hybrid model. The kernel formulation for
two input examples x1:(T1, v1), x2:(T2, v2) where Ti represents the syntactic parse
tree, and vi represents the traditional bag-of-words feature vector is as follows:

K(x1, x2) = τKt(T1, T2) + Kbow(v1, v2),

where τ is a parameter that represents the contribution of the tree kernel, Kt

represents the tree kernel, and Kbow represents a traditional SVM kernel on a
bag-of-words feature vector(radial,gaussian etc). Figure 6 shows the variation in
precision and recall as we vary the contribution of the tree kernel (parameter σ is
set to 0). It can be seen that the usage of a tree kernel significantly improves the
precision and recall values. This is because the tree kernel takes into account the
syntactic structure of a sentence, and is able to capture the inherent semantics
in a superior way, as compared to a normal bag-of-words feature representation.
In fact, the use of word frequency information may actually bias the classifier
and produce erroneous results. The highest precision and recall values are when
τ = ∞, or in other words, when only the tree kernel is considered.
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We also study how our classification model changes when we change the value
of λ, the tree decay parameter. Intuitively, λ adjusts the importance of tree
fragments according to their size. A higher value of λ indicates that we are con-
cerned about the details of the fragment structure, especially for larger sentences.
Figure 7 shows how the precision, recall and F-1 values vary for λ in the range
(0,1]. The performance of the kernel remains relatively stable for λ in the range
[0.1-0.5], with a dramatic drop around 0.6. At this stage, the precision values
reach 100%, but the recall falls to near-zero levels. This indicates that our SVM
based model performs better when we consider the local structure of the frag-
ments, without giving too much weight to the details. The ideal choice of λ is
determined to be 0.4.

We also ran experiments testing the performance of the subtree kernel as com-
pared to the subset tree kernel. The difference between these kernels is the value
of σ. For the subtree Kernel, σ = 0, and for the subset tree kernel σ = 1. The
results described earlier are for the subset tree kernel. Figure 8 shows the com-
parative performance between the subtree and subset tree kernels for different
values of the decay parameter. The subtree kernel performance for lower values
of λ is poor, but it gradually improves till at λ = 1, the performance matches
the best case performance of the subset tree kernel. The optimum choice of λ
for the subtree kernel is 1. Overall, we were able to achieve an average precision
of 95% and average recall of 92% using the convolution kernel technique.

Finally, to test the system as a whole, we ran experiments to evaluate the
performance on a dataset of 1584 Pubmed abstracts. After Stage I, we were able
to identify 95% of those abstracts which did contain an interaction. Similarly,
Stage II was able to identify 82% of all protein references. Finally in Stage III
we were able to identify 95% of those sentences which contained protein interac-
tions. We also tested our technique on the Biocreative 2[27] dataset. However, the
toughest task in this dataset is the Named Entity Recognition, and the precision
and recall of the results are highly influenced by this step. Since that is not the
major focus of this work, we have evaluated only Stage III of our technique using
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this dataset. The convolution kernel technique yields a precision of 93% and a
recall of 89% on a test set comprising of over 2000 sentences.

Previously used techniques like [18,8,20] make use of manually constructed
interaction phrases, as well as context free grammars to describe interaction
patterns between biological entities. The interactions generated by these tech-
niques are limited by the coverage of the recognition rules, as well as the inherent
complexity and variability in sentences describing interactions. These methods
achieve high precision rates (above 90%), but suffer from extremely low recall
rates (around 20-30%). Another popular approach is to use machine learning
and statistical techniques [15,14], which have been shown to have higher recall.
However, the major issues are scalability and portability. State-of-the-art text
mining systems for protein interaction mining([3]) which offer full automation
are tested on datasets of only a few hundred articles. In contrast, we have vali-
dated our results using a much larger corpus. Shin et al[28] also use tree kernels
to identify interaction sentences. However, our work differs from theirs in that we
explore a variety of different kernels (and combinations of convolution/bow ker-
nels), and perform extensive performance comparisons. Though the convolution
kernel technique performs impressively, as a whole, the overall recall of our sys-
tem is low (around 60%). This is because there is loss of interaction information
in each stage.

5 Conclusions and Future Work

In this paper, we have highlighted the need for a scalable, accurate method for
predicting protein-protein interactions from text articles. We propose a hierar-
chical Support Vector Machine based system to efficiently mine these interac-
tions from Pubmed abstracts. In our three-stage system, we use simple word-
frequency based SVM formulation in Stage I, a slightly more complex Named
Entity Recognition module in Stage II, and a sophisticated, accurate convolution
kernel-based method in Stage III. At each stage, the complexity of the technique
used increases. However, a large number of redundant documents are eliminated
in the earlier stages, thereby reducing the overall workload. In doing so, we
achieve a reasonable performance/accuracy tradeoff. Extensive testing on real-
world datasets yields reasonable results. In the future, we plan to address the
problem of extracting the specific interaction type. Also, while abstracts contain
useful information, a vast body of knowledge lies hidden in full text articles. It
will be useful to extend our technique to mine interactions from full text articles.
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Abstract. We propose a method to recover missing phrases dropped in the 
phrase extraction algorithm. Those phrases, therefore, are not translated even 
though we tested the system with the training data. On the other hand, in native-
to-foreign, or backward training, some missing phrases can be recovered. In this 
paper, we combined two phrase translation tables extracted by the source-to-
target and target-to-source training for the sake of more complete phrase 
translation table. We re-estimated the lexical weights and phrase translation 
probabilities for each phrase pair. Additional combining weights were applied 
to both tables. We assessed our method on different combining weights by 
counting the missing phrases and calculating the BLEU scores and NIST 
scores. Approximately 7% of missing phrases are recovered and 1.3% of BLEU 
score is increased. 

Keywords: statistical machine translation, phrase translation table, parallel 
phrase extraction.  

1   Introduction 

The early SMT system, introduced by IBM [1], is based on word alignment 
probabilities. To enhance the accuracy,features of the translation model such as 
fertility and distortion were incorporated to the system. A well-known word 
alignment toolkit GIZA++ is developed based on IBM models. However, using only 
word translation probabilities leads the system to the ambiguity of translation 
alternatives as local contexts are predominantly taken into account. Afterwards, the 
phrase-based approach, focusing on groups of connecting words, was emerged to 
resolve this deficiency. This approach claims to yield higher-quality result compared 
to the word-based approach. The word translation model was adapted to the phrase 
translation model [2] using phrase translation table. The efficiency of phrase 
translation table is affected by two main factors, i.e. (1) the correctness of phrase pair 
and (2) phrase scores such as translation probabilities.  

Building phrase table is a knowledge acquisition process for the system. Okuma 
[3] introduced adding a dictionary into the phrase-based system with reordering 
information. In other researches, factors such as word form, root of word, 
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morphological information and part-of-speech are applied in the language model [4] 
and the translation model [5]. 

We organize this paper as follows. An example of missing phrases is illustrated in 
Section 2. Section 3 describes the methodology for solving “missing phrases”. The 
experiment settings are shown in Section 4. In Section 5, we assess our method and 
discuss the experiment results. Finally, we conclude our paper and list up future work 
Section 6. 

2   Background 

In word-based SMT, the translation is model on probabilities in the word level. The 
translation result is produced by choosing the best word-to-word translation option. 
This model cannot cope with the ambiguity caused bymultiple-word translation. 
Phrase-based translation was then emerged to fulfill this deficiency. Besides word-
level translation, the phrase-based model utilizes the probability of chunk-and phrase-
level translation in dealing with multiple-word translation. This model outperforms 
the word-based model because it is capable of capturing local context information. 
Fig. 1 shows the difference between word-based translation model and phrase-based 
onewhen translating two phrases “international school” and “international politics”. 
Translating the word “international” in “international school” by using word 
translation probabilities might encounterthe translation ambiguity,where the word 
“international” can equally be translated to either “นานาชาติ ”or “ระหวางประเทศ”. However, 
this problem can be solved by using phrase translation probabilities which are 
estimatedfrom the phrase extraction algorithm.  

 

Fig. 1. Word and phrase translation probabilities of “international school” and “international 
politics” 

In subsections 2.1 to 2.3, we review the phrase extraction algorithm and provide an 
example of the missing phrase problem. Then, we illustrate the overview of our 
solution. 
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2.1   Phrase Extraction Algorithm 

The heuristic algorithm [2] for the phrase extraction starts with an intersection of 
bidirectional word alignments. Then, the growing algorithm is applied for adding 
alignments based on the union of the both directions of word alignments. All consistent 
phrase pairs are extracted. Fig. 2 shows an inconsistent and a consistent phrase pairs, 
respectively. As seen, the consistent phrase pair does not contain any alignments 
outside the scope represented in the rectangle, while the inconsistent one does. 

 

 

Fig. 2. Inconsistent and consistent phrase pair 

2.2   Problem 

During the development of English-to-Thai SMT, we investigated the translation 
quality by using the training data for a test set. We found that, surprisingly, some 
phrases were incorrectly translated. Once we recognized this problem, we then 
focused on the phrase extraction algorithm. 

Normally, if the phrase extraction algorithm cannot find any consistent alignment 
within a certain number of words (our default is 7 words), that phrase pair will be 
dropped. In addition, all words in the dropped phrase pairs that appear only once in 
the corpus will becomeunknown words when we translate them. We call those 
unknown phrases as missing phrases.  

For example, Fig. 3 compares Thai-to-English and English-to-Thai word alignments. 
Fig. 3(a) shows an example of alignments that any phrase pairs cannot be extractedfrom 
by two reasons. First,the phrase pair in the inner rectangle is inconsistent because the 
alignment X* is aligned outside itself. Second,while the phrase pair in the outer 
rectangle is consistent, the number of target word exceeds the limitation so it is dropped 
out. Fig. 3(b) shows the transposed word alignment of Thai-to-English. Comparing to 
the inner rectangle of Fig. 3(a), the rectangle in Fig. 3(b) is consistent andthenumber of 
words in the source and target sentences donot exceed the limit number. 

2.3   Proposed Solution  

Intuitively, allowing more words in the rectangle may solve the problem, but the 
phrase table might over-fit the training corpus. Based on our investigation shown in 
the example, we propose to add all phrases extracted from the Thai-to-English word 
alignment into the English-to-Thai phrase translation table. 
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Fig. 3. (a) Word alignment of English-to-Thai; (b) Transposed word alignment of Thai-to 
English 

The phrase extraction algorithm produces a symmetric alignment by using the 
intersection of bidirectional word alignments.  The bidirectional word alignment, 
probabilities of source word given target word and probabilities of target word given  
source word, is trained by GIZA++, which is based on EM-algorithm. Assume that 
we have two languages which are A (source) and B (target), the GIZA++ will 
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generate the word translation probabilities of A given B )|( BAPforward  and the word 

translation probabilities of B given A )|( ABPforward . We call these word translation 

models as forward models because we set A to be the source language and set B to be 
the target language. These forward word translation models are used to produce 
bidirectional word alignments by choosing the best translation of each word.  

However, if we switch the source language and the target language (set A to be 
target and B to be source) and then we train them with the GIZA++ again, we will 
get another word translation models, including translation probabilities of B given A 

)|( ABPbackward   and translation probabilities of A given B )|( BAPbackward . We call these 
word translation models as backward model. By investigation, the forward word 
alignment model and the backward word translation model can be different. We 
found that many correct phrases in backward phrase translation table are not 
included in forward phrase translation table. According to this phenomenon, we aim 
to produce better phrase translation table by combining forward and backward 
phrase translation tables. 

3   Methodology 

In combining process, we defined three processes for calculating phrase translation 
probabilities and lexical weights. 
 

1. Word level combining process – To combine word translation probabilities that 
are used for the lexical weight calculation. 
2. Phrase level combining process – To combine phrase translation probabilities of 
the forward phrase translation table and the backward phrase translation table. 
3. Lexical weight calculation process – To calculate lexical weight of each phrase 
pair using combined word translation probabilities. 

3.1   Word Level Combining Process 

We developed an adding algorithm to combine word-based translation model of an 
English word given a Thai word. 

3.2   Adding Algorithm 

Definition. Let },...,,{ 21 Ieee be the set of English words and },...,,{ 21 Jttt be the 

set of Thai words of a given corpus. We define )|( jiforward tew and )|( jibackward tew  to 

be the probability of Thai word jt which is translated into English word ie  in forward 

and backward model, respectively. 
In the adding algorithm, we gradually add each translation pair of backward model  

into the original forward modeland compute a scoring function shown in Eq.4. This 

scoring function ),( lk teτ represents how likely that given lt is translated into the target 

ke  after determining the forward translation models and backward translation models. 
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)|(),( lkforwardlk tewte ×= ατ )|()1( lkbackward tew×−+ α  (1) 

For k = 1,2, …, I and Jl ,...,2,1=  

Where α is a combining weight that balances the effectsofthe forward and 
backward models. 

We normalized ),( lk efτ to construct    a combined word-based translation model 

of English words given Thai words by Eq.5. 
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For Ik ,...,2,1= and Jl ,...,2,1=  

We normalized ),( lk teτ due to the property of conditional probability which is 
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Fig. 4. Graphical explanation of the adding algorithm  
 
 



136 P. Porkaew and T. Supnithi 

 

In Fig. 4, there are three cases of adding a translation pair. We compute the 

score ),( lk teτ  by using Eq.1 where the value of α is 0.8 for these three cases in 

normalizing step. In Fig. 4(a) is a case of unseen pairs. We add the pair with its 
probability to the original directly. In Fig. 4(b), the parent node is the same as one in 
original tree but the child node is different. We attach the child node to the original 
parent with its probability. Lastly, in Fig. 4(c) there is the same pair in the original 
graph; we only update the score without adding a new child node.  

3.3   Phrase Level Combining 

In order to recover missing phrases, we combined phrase translation models of the 
forward and backward training. These phrase-based translation models are combined 
using the adding algorithm as mentioned in Section 3.1. Instead of a word, each node 
in a graph contains a phrase. 

3.4   Lexical Weight Calculation 

Lexical weight [2] was used to assign a validation score to a phrase translation pair 
with a given alignment. The lexical weight is computed by Eq.3. 

∏ ∑
− ∈∀∈

=
n

i aji
jiw tew

ajij
atep

1 ),(

)|(
}),(|{

1
),|(  (4) 

Where English phrase neeee ...21=  and Thai phrase mtttt ...21=  and a is a given 

alignment. )|( ji tew is the word-based translation probability. Fig. 5 shows a phrase 

translation pair 321 eeee = , 321 tttt = with a given alignment. 

 

 

Fig. 5. Lexical weight calculation  

 

Our method use Eq.4 to compute the lexical weight. But, instead of using the 
original word alignment model extracted by using the IBM Model-4, we use the 
combined word-based translation model in Section 3.1.  

Fig. 6 shows the overview of our algorithm to construct phrase translation 
parameters of an English-to-Thai phrase pair. 
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Fig. 6. The overview of our combining algorithm 

4   Experiments 

In the experiments, we use our English-Thai parallel corpus consisting of 200,000 
sentence pairs. There are approximately 1.2 million words in the corpus. Thai 
sentences were lexically segmentedby our word segmentation toolkit called jWordSeg 
(http://www.suparsit.com/nlp-tools). 135 sentences whose lengths exceed 40 words 
are excluded fromtheexperiment.  The experiments use GIZA++ toolkit to align word 
pair. SRILM [6] is used for constructing language model.Finally, Moses is used for 
decoding in order to produce translation results. The difficulties of detecting missing 
phrases during the training and test set separation encourage us to use a training set 
fora test set because we aim to investigate the number of missing phrases. 

The Baseline Model 
We alternatively trained all data in the corpus for English-to-Thai baseline model 
without dividing training set and test set in order to compare the performance of the 
baseline and improved training processes. To prepare data, we train  English-to-Thai 
phrase translation table by using GIZA++ and  phrase extraction algorithm based 
described in Section 2. 

The Combined Models 
According to the algorithm, we design the weight combining value α in the word 
level combining and the phrase level combining processes. In our experiment, we 
manually adjust the combining weight from 0.1 to 0.9. 

In decoding step, we set weight parameters for each score equally (0.2 as default). 
The weight of language model is set to 0.5 as default. For the baseline and the 
combined models, we evaluate the system by calculating the BLEU score [7] and the 
NIST score [8]. These scores show how similarity of translation result between 
machine and human based on an n-gram approach. 
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5   Results and Discussion 

Table 1 shows BLEU scores and NIST scores of the baseline model and combined 
models. It is obvious that the recovery of missing phrases shows better results. The 
combined model with 0.1 of α yields the best score. In average, about 1.3% of BLEU 
scores and 0.9 % of NIST scores are increased. 

Table 1. BLEU scores and NIST scores of the baseline model 

Model α  BLEU NIST 

Baseline - 0.5492 13.3945 

Combined#1 0.1 0.5562 13.5214   

Combined#2 0.2 0.5562 13.5202   

Combined#3 0.3 0.5561 13.5187   

Combined#4 0.4 0.5560 13.5174   

Combined#5 0.5 0.5560 13.5173   

Combined#6 0.6 0.5559 13.5152   

Combined#7 0.7 0.5559 13.5152   

Combined#8 0.8 0.5559 13.5133   

Combined#9 0.9 0.5559 13.5128   

 
There are 9,336 missing phrases in the baseline result. However, the number of 

missing phrases in combined models is reduced to 8,646 and 7.36% of missing 
phrases (690/9336) are recovered from baseline model. We extracted the result from 
Combine#1 model and compared it to Baseline model line-by-line. We realised that 
over 40,000 sentences were changed.  

Fig. 7(a) obviously shows that the missing phrase “summarize” is recovered by our 
method.  In Fig. 7(b), the baseline model cannot extract the phrase “workload”, while 
the Combine#1 model gives the translation result as “ภาระ งาน นี้”. The phrase pair 

“workload-ภาระ งาน นี้”was extracted from other sentences. Actually, the phrase“ภาระ 
งาน นี้” and “ปริมาณ งาน นี้”(in the desired target) shares the same meaning with 
“workload”.  

In Fig. 7(c), the phrase “has been vacant” is successfully translated to“มี ท่ี วาง” in 
baseline model. However, the Combined#1 model alternatively translates it to  
“ได วาง”which is exactly the desired translation results. Since the baseline model 
cannot extract “has been vacant-ได วาง”, the phrase “has been vacant” is also a 
missing phrase. Comparing to explicitly missing phrases, this type of missing phrases 
is different since it cannot be specified from the results directly because the decoder 
yields another alternative. This is separately named implicitly missing phrase. The 
recovery of hidden missing phrases gives significant improvements. 
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Fig. 7. Examples of improved result compared to baseline 

In summary,over 30,000 phrase pairs are recovered into the new phrase translation 
table from combined model. 

6   Conclusions and Future Work 

In this paper, we propose a method to recover missing phrase alignments from the 
forward phrase table and the backward phrase table. The phrase translation tables 
extracted from the source-to-target training and the target-to-source training are 
combined. A phrase translation table consists of several scores, for instance phrase 
translation probabilities and lexical weights. In order to calculate lexical weights, the 
forward and backward word translation models are merged. Next, the adding 
algorithm is used in both word and phrase level combining process with a specified 
combining weight.  

We designed our experiments by adjusting the combining weight. We tested our 
combined model by using the training corpus in order to see how many missing 
phrases can be recovered. According to the results, 7.3% of unknown phrases were 
solved. 1.3% of BLEU score and 0.9% of NIST score are increased. Approximately 
30,000 phrase pairs are increased in the combined phrase translation table.  

Although our method is initially designed for combining the phrase translation 
model in a same corpus, we plan to extend this work to adjust combining weight from 
different corpora. 
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The ambiguity on word alignment leads to inconsistent phrase pair; therefore, in 
the future work, we will focus on word alignment model for sparse corpus. To 
investigate the effect on forward and backward model, we plan to experiment with 
different language pairs. 
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1 Introduction

In recent years, there have been several attempts to extend text mining techniques to
mine specific health-related knowledge, such as medical, pharmaceutical and biolog-
ical [1,2,3] practices. Since health-related articles usually include a lot of technical
terms, processing such terminologies becomes an important factor towards success of
automating analysis of those articles. There are still a lot of challenges in developing
Thai health-related terminology due to at least two reasons. First, currently there has
been no standardization of health-related terminology in Thai languages. Second, it is
a backbreaking task to add new terms or to modify information of terms in a conven-
tional paper-based or online dictionary. Nowadays, since there are a lot of web pages
providing information or knowledge related to health science, it is possible to use such
pages as resources to construct health-related terminology. Normally, like texts in sev-
eral non-English languages, Thai medical texts often include Thai technical terms fol-
lowed by their corresponding English translations since English is widely recognized as
a common language for interchanging technical information. Among several patterns of
translation pairs, a common one is that the English translation of a Thai term is enclosed
in a parenthesis or placed immediately after a term. For example, ‘โรคกระเพาะ (peptic
ulcer)’ or ‘โรคกระเพาะ peptic ulcer’ denotes that the Thai word ‘โรคกระเพาะ’ has the
term ‘peptic ulcer’ as its English translation.

This common regularity enables us to extract Thai-English translation pairs. How-
ever, there have been a few difficulties in extracting translation pairs from texts. First,
a technical term may be translated into several different terms due to lacking of stan-
dardization. For instance, a term ‘peptic ulcer’ can be translated into four Thai trans-
lation terms, (1)‘โรคกระเพาะอาหาร’, (2)‘โรคแผลในกระเพาะอาหาร’, (3)‘แผลเป็บติก’ or
(4)‘แผลเพ็ปติก’ where the first two terms are direct translation, and the last two terms
are transliteration. While an English term can be translated to more than one Thai terms,
a Thai term is also able to be mapped to several English terms. Therefore, a mechanism
to select the best translation pair is needed. Second, due to authors’ writing styles, an
English term after a Thai term may not be its translation. As one example, in Thai med-
ical texts, sometimes an English term is used directly as a word in a context, without
specifying its corresponding Thai term, such as ‘สามารถทำให้เกิด dengue fever’ (‘can
trigger dengue fever’). This irregularity causes difficulty in detecting translation pairs.

Intuitively it is possible to detect synonyms by linking two translation candidate
pairs. To create a candidate for Thai-Thai synonym, we link a Thai-English translation
pair with another English-Thai translation pair that has identical English term. In the
same manner, linking a English-Thai translation pair and a Thai-English translation
pair will enable us to obtain a candidate for English-English synonyms.
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Towards the above objectives, this paper presents a method to use Web documents as
resources for extracting translation and synonym pairs of English and Thai. This paper
is organized as follows. Some previous approaches are described in Section 2. Section 3
presents the framework and techniques for constructing translation and synonym pairs.
In Section 4, the experimental results are discussed. Finally, a conclusion and some
further works are given in Section 5.

2 Related Works

This section gives a survey to research works related to extraction of term translations
and synonyms. Some recent works have been conducted to extract term pairs between
English and Chinese translations from Chinese texts on the Internet. In [2], Zhang and
Vines proposed a method that generated English-Chinese and Chinese-English transla-
tion candidates from top-100 search results from a search engine and then find potential
translation pairs by exploiting co-occurrence frequency and surface characteristics, such
as term length and common substring.

As another work, Wang and his colleagues [4,5,6] showed promising results of ex-
ploiting the Web as a source to generate effective translation equivalents for many un-
known terms, including proper nouns, technical terms and Web query terms and in
assisting bilingual lexicon construction for a real digital library system. Their method
applied the Chi-square test and context vector analysis to rank cohesion among terms
in web documents to tackle with low-frequency problem.

English synonym extraction by using an unsupervised learning algorithm based on
statistical data was proposed in [7] and was improved by combining with symbolic
knowledge in [8]. For Japanese language, Okamoto[9] extracted a set of near-synonyms
by using semantic features from the Thesaurus and then weighting them with their oc-
currence probabilities under a set of heuristics. Shimohata[10] extracted synonyms from
documents whose contents are similar by looking contextual information of surround-
ing words. In Thai language, the number of works in mining translation pairs is still
limited. As our best knowledge, there is still no work on Thai synonym extraction using
web documents.

3 Iterative Approach for Candidate Generation and

Association- ased Candidate Selection

In this section, an approach to extract translation pairs and synonyms using iterative
candidate generation and association-based selection is described. The two main steps
in our approach are (1) iterative candidate generation and (2) candidate selection.
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Fig. 1. Mapping candidate generation and multi-level candidates of translation pairs and synonym
pairs (L-n: nth iteration, TC-n: The nth-level mapping of Thai-English translation pairs, TSC-n:
The nth-level mapping of Thai synonym pairs, ESC-n: The nth-level mapping of English synonym
pairs)

In the first step, an initial set of Thai terms are fed to a search engine to get their
potential English translations from Thai web documents. Next, these obtained English
translations are submitted again to the search engine in order to retrieve their poten-
tial Thai translations from Thai web documents. This process is iteratively executed
by inputting the obtained Thai translations into the search engine repeatedly to obtain
English translations. In general, it is possible to specify the language of search result
pages returned from the search engines, such as Google4 and Yahoo5. With this feature,
we have chosen Thai as the language of our target pages for all iterations. The search
results are used as a corpus to extract term translations and synonyms.

In the second step, after a number of potential translations are obtained, an association-
based measure is applied to select the most plausible candidates as translation and syn-
onym pairs. Figure 1 illustrates the whole process where the details are shown in the
following subsections.

4 http://www.google.com
5 http://www.yahoo.com
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3.1 Iterative Candidate Generation

As the first step, our proposed approach starts from a set of initial Thai technical terms
and then find their English translations. Each Thai term is submitted as a query to a
search engine. Then, a set of the top-k result snippets are obtained from the search
engine. The common writing patterns are applied to each snippet to extract English
translations of the term. Then, each obtained English translation is re-submitted to the
search engine and different Thai terms may be extracted from the results. The process
is repeatedly conducted for each newly obtained English or Thai terms until no new
term is obtained from the search results or the number of iterations is higher than a pre-
defined threshold. The result of the iterative extraction for each term is represented as
a directed graph as shown in Figure 1(a). Each node of the graph denotes a term. Each
arc links a term with its translated term in another language.

The iterative approach allows us to construct a set of potential translation candidates
since a Thai term can be translated into more than one English terms, or there are more
than one Thai terms used to refer to an English term. For example, a Thai term ‘โรคหูด’
is a translation of both ‘ringworm’ and ‘tinea’ which are synonym. By linking two
related term translation pairs, the proposed method can be also used to generate a pair of
synonyms. In this case, a Thai term can be used as an intermediate to obtain a synonym
of the given English term. In the same manner, we can link two Thai terms through a
English term. This linking can also be done through more than one intermediates as
shown in Figure 1(b) to obtain more than one synonyms.

Since, there is no explicit word boundary in the Thai writing system, it is possible
to extract an incorrect portion (string) as a word in a running text. For example, we
may get a phrase ‘มีอาการคล้ายไข้เดงกี’ (‘has symptoms similar to dengue fever’) that
includes an useless part ‘มีอาการคล้าย’ (‘has symptoms similar to’) in front of a suitable
word ‘ไข้เดงกี’ because, as occurred often in Thai natural writing style, a space may not
be inserted between that part and the target term ‘ไข้เดงกี’(‘dengue fever’). To filter out
these incorrect pairs, we have proposed to use association-based candidate selection.
The basic idea is that the incorrect pairs usually have low occurrence frequency. More
details will be described in the next subsection.

3.2 Association- ased Candidate Selection

The association analysis aims to evaluate the relationship between two sets of objects
(set A and set B) written as A → B. The A → B indicates that B is likely to occur
when A occurs. In our experiments, if A is set to be the source language term and B is
set to be the target language term, we can use A → B to indicate how likely B will be
taken place when A occured. In other words, how likely B is the translation of A when
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B is a term that is enclosed by parenthesis or is placed immediately after A in common
writing pattern. Normally, association is quantified by a set of well-known measures
in association rule mining; namely support, confidence, lift and conviction. They have
strong and weak points under different situations. Next, we explain how the association
measures are applied to measure the association between terms in a translation pair.

N(X) is the number of pages that include the word X and N(∗) is the total amount
of existing pages. Unfortunately computing N(∗) is impossible since the total number
of Web pages indexed by search engine are not precisely estimated. However N(∗) may
be trivial when only ranking result is concerned.

– Support is an undirected measure that specifies the ratio that A and B occur with
respect to the total occurrence.

Support(A → B) =
N(A ∧ B)

N(∗) (1)

– Confidence is a directed measure specifying the ratio that A and B occurs when A

occurred.

Conf (A → B) =
N(A ∧ B)

N(A)
(2)

– Lift or Interestingness is an undirected measure that has an advantage over confi-
dence by exploiting negative association. Lift measures the proportion of A and B

occurring together compared to the expected occurrence when they are considered
statistically independent.

Lift(A → B) =
N(∗)N(A ∧ B)

N(A)N(B)
(3)

– Conviction is a directed measure representing the proportion of A occurrences
without B, comparing to the expected occurrence when they are dependent. i.e.
N(A) and N(¬B).

Conv(A → B) =
N(A)N(¬B)

N(∗)N(A ∧ ¬B)
(4)

To calculate association measures, we submit queries to a search engine and use the
number of page hits returned from the search engine as probability estimation. From the
above association measures, the search results from the search engine for association
measures are obtained by submitting both A and B for N(A ∧ B), either A or B for
N(A) and N(B), and both A and −B for N(A ∧ ¬B). B is leaded by the minus sign
to specifies that B is an unwanted word.
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However, computing conviction requires some assumptions since we cannot submit
a query to obtain the web pages not containing B for finding N(¬B). Anyway, since
the number of pages available on the Web is very large and B is a specific technical

terms that are rarely found on the Web, we can assume that is very closed to 1.
Therefore, the approximated conviction can be computed as

(5)

As stated above, the association measures are of two types: directed and undirected
measure. A directed measure evaluates the relationship of A → B, (i.e. A causes oc-
currence of B), differently from the relationship B → A. In contrast, the undirected
association measures do not take into account the direction of occurrence. It measures
both relationships in the same manner. Since we suppose that the relation between terms
in the translation and synonym pairs are undirected relation, the directed association
measure such as conviction and confidence need to be translated into an undirected rep-
resentation. At this step, three functions; Minimum, Maximum and Mean are proposed
to combine two directed measures to be an undirected one.

λMin(A ↔ B) = Min(λ(A → B), λ(B → A)) (6)

λMax (A ↔ B) = Max (λ(A → B), λ(B → A)) (7)

λMean(A ↔ B) = Mean(λ(A → B), λ(B → A)) (8)

where λ represents an directed association measure which is confidence or conviction,
λMin , λMax and λMean denotes an undirected association measure generated by Mini-
mum function, Maximum function and Mean function respectively.

As an extension, association measures can be applied to find potential synonym
pairs. However, a pair of synonyms are rarely occurred together on the same web page
because a writer usually selects only one term to express each meaning in a sentence.
Therefore, we cannot directly apply the search results to compute the measure for a
pair of synonyms. However, with slight application, we can combine the association
measures for term translation pairs in order to obtain a synonym pair.

In this paper, how likely two terms are a synonym pair is determined by consider-
ing the minimum association measures obtained from their translation intermediates.
For example, while the arc labeled as ‘TSC-1’ in Figure 1(b) presents the example of a
Thai-Thai synonym pair, T0 and T2, their association value is determined by the mini-
mum value among the association values of all intermediate translation pairs, (T0, E0),
(E0, T1), (T1, E1) and (E1, T2).

Iterative candidate generation repeatedly extracts the translated term from the prod-
uct of the previous iteration. In any iteration when the association value is low, resulting

 Automatic Extraction of Thai-English Term Translations and Synonyms 14  

N(¬B)
N(∗)

Conv∗(A → B) =
N(A)

N(A ∧ ¬B)

7



in translated terms weaken the linkage in the next iteration. We infer that the associa-
tion of synonym pairs is low when their intermediate linkage is weak. For this reason
the minimum function is used for the association of the synonym pair μs(T1, Tn) as
defined below.

μs(T1, Tn) = min
i∈{1...n−1}

(μt(Ti, Ti+1)) (9)

where T1 and Tn represent a synonym pair. Ti and Ti + 1 denote an intermediate trans-
lation pair appearing between T1 and Tn. μs represents an association measure used for
evaluating each synonym pair. μt represents an association measure used for evaluating
each translation pair.

4 Experiments

4.1 Experimental Settings

A number of experiments have been conducted to confirm the performance of the pro-
posed approach. The prototype system is implemented based on the APIs provided by
Yahoo Developer Center6. The APIs allows us to access and obtain XML results from
the Yahoo search engine. An initial set of 510 Thai medical terms manually collected
from various web pages are used as the initial set of terms for extracting translation. A
set of English translation terms are generated from snippets returned from Yahoo APIs.
The process is done repeatedly for five times as shown in Figure 1(a). We perform three
experiments to solve three questions as follows.

In the first experiment, the performance of the three functions, namely Min, Max
and Mean, used for combining two directed measures to be an undirected measure are
compared to select the best one. The training set includes all translation pairs from iter-
ative candidate generation. For each undirected confidence and undirected conviction,
its score is ranked in the descending order and compared to another. Here, top-k word
pairs are evaluated where k is varied from 1 to the number of all possible word pairs in
order to evaluate which function is the best.

In the second experiment, we evaluate translation and synonym pairs obtained by
four association measures i.e. support, confidence, lift and conviction. As directed as-
sociation measures, confidence and conviction require a mechanism to combine two
functions that are the result of the first experiment to be the undirected association mea-
sures. For each association measure, the top-k translation and synonym word pairs are
displayed in the descending order when the result is output. The experiments are con-
ducted to evaluate three levels of generated candidates for translation and two levels of

6 http://developer.yahoo.com
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generated candidates for synonym as shown in Figure 1(b). The results are compared
with the results labeled by three human evaluators. When the evaluators give different
labels on one word pair, majority voting is selected.

In the third experiment, the performance of four association measures is tested with
an unseen test set. The ten-fold cross validation is applied. The translation and synonym
candidate pairs are equally divided into ten parts. Nine parts stand as a training set
and one remaining part is used as a test set with equal distribution among positive and
negative examples. The test are conducted repeatedly for ten times. In each time, the test
set is changed to another part that never tested before. For each association measure, the
value of an association measure that yields the highest f-measure in the top-k training
set will be used as the threshold in the test set. For each translation and synonym pair
in test set, we have

C(x) =

⎧⎨
⎩C+ if V(x) ≥ δ,

C− if V(x) < δ.

where C(x) stands for the assigned class for a pair x in the test set, C+ denotes the
positive class, C− denotes the negative class, V(x) represents the association value of
the pair x in the test set, δ stands as a threshold in the test set. The performance of our
proposed system is evaluated with false positive, precision, recall and f-measure. Here,
let S be the set of generated word pairs, and C be the set of correct word pairs. We have

FalsePositive =
|S − C|

|S| (10)

Precision =
|S ∩ C|
|S| (11)

Recall =
|S ∩ C|
|C| (12)

F−measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(13)

4.2 Experimental Results

Table 1(a) shows the result of candidate generation with the number of input terms, the
number of extracted terms, the ratio of extracted terms over input terms. It is found that
candidate generation from Thai to English has branching factor of approximately 2 but
approximately 0.75 in English to Thai. At the end of all iterations, we got 2,321 Thai
words and 5,953 English words in total. Table 1(b) shows the precision of the extracted
words is decreased in the later iteration.
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Table 1. Basic characteristic of candidate generation and baseline precision of the translation and
synonym pairs

(a) Candidate generation result

Iteration Input terms Extracted terms Ratio(Extracted/Input)

level 0 (T → E) 510 1129 2.214
level 1 (E → T ) 1129 991 0.878
level 2 (T → E) 991 2024 2.042
level 3 (E → T ) 2024 1330 0.657
level 4 (T → E) 1330 2800 2.105

(b) Baseline precision

Evaluation Baseline Precision(%)

level Translation Thai synonym English synonym

Level 0 63.77 35.62 24.95
Level 1 11.96 6.39 0.42
Level 2 0.57 - -

Total 16.43 18.87 12.40
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(b) Undirected confidence

Fig. 2. F-measures of the top-k translation pairs in descending order (undirected confidence and
undirected conviction). Three conditions considered are minimum, maximum and mean combin-
ing function.

In the first experiment, Figure 2 shows the f-measure of the top-k translation pairs
of undirected confidence and undirected conviction that are combined by minimum,
maximum and mean functions as shown in Section 3.2. The minimum function yielded
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Fig. 3. Precision, Recall and F-measure for Thai-English Translation, Thai Synonym and English
Synonym. Four association measures are Confidence, Conviction, Lift, Support.

the highest 68.44% f-measure in confidence and the highest 52.23% f-measure in con-
viction. Hence, we use the minimum function to generate undirected measures in the
second and third experiment.

The second experiment investigates the precision, recall and f-measure score of top-
k ranked by each association measures using all candidates as the training set and test
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set. Figure 3(a), 3(b) and 3(c) show that lift yields the best association measure with
the highest 77.4% f-measure (with 70.3% precision and 85.9% recall) for Thai-English
translation, the highest 68.3% f-measure (with 68.9% precision and 67.7% recall) for
Thai synonym and the highest 73.4% f-measure (with 70.6% precision and 76.6% re-
call) in English synonym, respectively.

Figure 3(a) shows the precision, recall and f-measure score of top-k Thai-English
translation pairs that rank by each association measures using all evaluation levels as
training and test set. The lift×confidence achieved the best association measure with
the highest 78.7% f-measure (with 70.8% precision and 83.5% recall) at top-1279. The
precision of lift×confidence is approximately four times greater than baseline precision
as shown in Table 1(b).

3(b) shows the precision, recall and f-measure score of top-k Thai synonym
pairs that rank by each association measures in all evaluation levels. The highest 68.3%
f-measure (with 68.9% precision and 67.7% recall) at top-553 obtained by lift. Its pre-
cision outperforms baseline precision as shown in Table 1(b) with three and a half times
improvement.

For English synonym pairs, figure 3(c) shows the precision, recall and f-measure
score of top-k English synonym pairs that rank by each association measures in all
evaluation levels. Lift yielded the highest 73.5% f-measure at top-827 (with 70.6%
precision and 76.6% recall) which is superior to baseline precision as shown in Table
1(b) with approximately five and a half times improvement.

As the result of the third experiment, Table 2 shows the average false positive rate,
average precision, average recall and average f-measure of ten-fold cross validation
(subscripted, with ‘10’) when our proposed algorithm is applied. The last column of the
table is the f-measure of our proposed algorithm using all candidates as the training test
and test set (subscripted with ‘all’). The difference between both f-measures is trivial.
This means the stability of the proposed system.

Table 2(a) shows lift yields the highest 73.1% average f-measure (with 8.3% aver-
age false positive, 67.0% average precision and 84.2% average recall) for Thai-English
translation. Its average precision is superior to baseline precision (16.43%) as shown in
Table 1(b) with approximately 4 times improvement. Table 2(b) shows that lift yields
the highest 68.7% average f-measure (with 9.9% average false positive, 71.5% average
precision and 67.7% average recall) for Thai synonym. Its average precision outper-
forms baseline precision (18.87%) as shown in Table 1(b) with 3.5 times improvement.
Table 2(c) shows that lift yields the highest 72.8% f-measure (with 6.0% false positive,
the 72.0% precision and 75.1% recall) for English synonym. The average precision of
lift is approximately 5.5 times greater than baseline precision (12.40%) as shown in
Table 1(b).
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Table 2. Experimental Result in Ten-fold Cross Validation

(a) Thai-English Translation

Model False Positive10 Precision10 Recall10 F-measure10 F-measureall

Lift 0.083 0.670 0.842 0.731 0.774

Confidence 0.112 0.599 0.777 0.654 0.684
Conviction 0.230 0.398 0.703 0.493 0.522

Support 0.438 0.296 0.831 0.423 0.442

(b) Thai synonym

Model False Positive10 Precision10 Recall10 F-measure10 F-measureall

Lift 0.099 0.715 0.677 0.687 0.683

Confidence 0.155 0.544 0.537 0.531 0.548
Conviction 0.461 0.396 0.712 0.464 0.561

Support 1.000 0.243 1.000 0.390 0.406

(c) English synonym

Model False Positive10 Precision10 Recall10 F-measure10 F-measureall

Lift 0.060 0.720 0.751 0.728 0.735

Confidence 0.095 0.531 0.493 0.487 0.498
Conviction 0.089 0.515 0.446 0.453 0.477

Support 0.924 0.164 0.966 0.280 0.281

Concludingly, the experimental results evidenced that our system with lift gained
the highest f-measure (73.1%) for mining Thai-English translation pairs, compared to
the extraction of English synonym pairs (72.8%) and Thai synonym pairs (68.7%). This
result is quite intuitive since naturally it is necessary to extract at least two translation
pairs to obtain a synonym pair. Moreover, comparing to mining of English synonyms,
extracting Thai synonyms is a harder task since Thai language has no explicit word
boundary.

5 Conclusion

This paper presented a method to use Web documents as resources for extracting trans-
lation and synonym pairs between English and Thai medical terms. Iteratively inputting
keywords on a search engine, a set of translation candidate pairs are generated. The po-
tential scores of translation word pairs are calculated using four alternative measures,
support, confidence, lift and conviction, commonly used in association rule mining.

By experiments using 510 Thai words, we found out that our approach using lift
as association measure achieves the highest average f-measure of ten-fold cross valida-
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tion that is 73.1% (with 67% precision and 84.2% recall) for Thai-English translation,
68.7% (with 71.5% precision and 67.7% recall) for Thai synonym and 72.8% (with
72% precision and 75.1% recall) for English synonym. The precision of our approach
in Thai-English translation, Thai synonym and English synonym are 4 times, 3.5 times
and 5.5 times greater than baseline precision respectively. Lift is the best association
measure for extracting both translation and synonym. We also found that the minimum
function is the best function for combining two directed measure to be an undirected
measure.

As our future work, we plan to improve our approach to using combination of asso-
ciation measures with larger data sets and different specific domains.
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Abstract. Dynamic Time Warping (DTW) distance has been proven
to work exceptionally well, but with higher time and space complexities.
Particularly for time series data, subsequence matching under DTW dis-
tance poses a much challenging problem to work on streaming data. Re-
cent work, SPRING, has introduced a solution to this problem with only
linear time and space which makes subsequence matching on data stream
become more and more practical. However, we will demonstrate that it
may still give inaccurate results, and then propose a novel Accurate Sub-
sequence Matching (ASM) algorithm that eliminates this discrepancy by
using a global constraint and a scaling factor. We further demonstrate
utilities of our work on a comprehensive set of experiments that guaran-
tees an improvement in accuracy while maintaining the same time and
space complexities.

Keywords: Subsequence Matching, Data Stream, Dynamic Time
Warping Distance.

1 Introduction

Dynamic Time Warping (DTW) distance measure, the distance that is widely
used in various time series mining tasks, especially in classification [1], is largely
established as one of the most accurate methods in finding similarity between two
time series data. Past research work [2] has confirmed that the DTW distance
measure dominantly outperforms the traditional Euclidean distance metric in
terms of accuracy since the DTW distance measure exploits dynamic program-
ming that allows more flexibility in sequence alignments. However, it relatively
requires much higher time and space complexities.

Especially in working on data streams, DTW at first seems unattainable. In
subsequence matching problems, we try to find most similar subsequences to
the query on a much longer candidate sequence, i.e., a data stream. A can-
didate sequence can either be a fixed-length sequence or an infinite streaming
sequence, producing a much more challenging problem. A brute-force method
for subsequence matching simply extracts every subsequence from the candidate
sequence, and then these sequences are all compared with the query sequence
in a similar fashion to the whole sequence matching approach. This clearly is
impractical for large or streaming data.

T. Theeramunkong et al. (Eds.): PAKDD Workshops 2009, LNAI 5669, pp. 156–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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SPRING [3], a recently proposed subsequence matching algorithm on a data
stream under DTW distance, has been introduced to provide solutions for the
best-matched query and range query. SPRING algorithm obtains the same re-
trieval results as the brute-force subsequence matching approach with an im-
pressively low complexity. Unfortunately, we have discovered that SPRING may
give undesired results. To illustrate our point, Figure 1 shows an example of
this discrepancy in the SPRING algorithm that fails to accurately retrieve the
best-matched subsequence.

Pattern A

Pattern B R1
R2

Fig. 1. Illustration of failure in retrieving accureate subsequences of SPRING

Given two pattern sequences of interest, A and B, which have similar shape,
but with different lengths, onsets, and offset positions, we would like to find the
best-matched subsequences to each pattern on a streaming sequence S. If we use
pattern A as a query, R1 (in left highlighted box) will be incorrectly retrieved as
the best match, and both R1 and R2 (in right highlighted box) will be incorrectly
detected in the range query. In fact, we expect that if we use pattern A as a query,
only a blue solid sequence will be an answer for both range query and the best-
matched query. On the other hand, if we use pattern B as a query, though R1
will be incorrectly retrieved as the best match due to its shorter length, both
R1 and R2 will again be incorrectly detected for the range query. The correct
result is expected to be a red dashed-dot sequence. Although this example is a
bit contrived, it clearly demonstrates undesired results from SPRING algorithm
which is critical to achieving an accurate subsequence matching algorithm.

In this work, we introduce ASM – Accurate Subsequence Matching – which
is fast and accurate. We extend an idea of linear-time subsequence matching
from SPRING, and we generalize the subsequence matching to support a global
constraint and uniform scaling, where SPRING algorithm is ASM’s special case.
Our algorithm is comprehensively examined over 10 datasets to demonstrate
effectiveness of our proposed work comparing with the best existing method,
SPRING.

The remainder of this paper is organized as follows. In Section 2, we state sub-
sequence matching problems and provide essential background knowledge. We de-
scribe our proposed work, ASM, in Section 3, and then report experimental results
and give discussion in Section 4, before concluding our work in Section 5.
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2 Problem Definition and Background

In this section, we review related work, define problems for subsequence match-
ing, and provide background knowledge of Dynamic Time Warping distance
measure, global constraints, and SPRING algorithm.

2.1 Related Work

With proven superiority of DTW distance measure, many subsequent works
have been proposed to speed up its calculations by exploiting various indexing
techniques through the use of lower bounds [4,5,6,7,8]. However, all of these
techniques are designed for non-streaming data. Therefore, the advent of research
on data stream has triggered a great number of works [9,10]. But, only until
recently, SPRING algorithm [3] has been introduced to solve the subsequence
matching problem on streaming data under DTW distance.

After the introduction of SPRING, many extensions and its applications
[11,12,13] have been proposed, including Fast Subsequence Matching (FSM) [13]
and Embedded Subsequence Matching (EBSM) [11]. More specifically, FSM ex-
tends SPRING to further reduce unnecessary distance calculations, and EBSM
computes an approximate distance for subsequence matching by modifying query
data and the data stream in vectors before the actual DTW calculations. How-
ever, all these works mainly focus on speed of the calculation, but not the re-
trieval accuracy. Therefore, this work attempts to improve retrieval accuracy
without affecting the time and space complexities of the algorithm. We will first
start by familiarizing the readers with formal problem definitions and essential
background.

2.2 Problem Definition

In this section, we formalize and define two fundamental types of query – non-
overlapping range query and non-overlapping top-k query – that are essential for
the subsequence matching problem and the rest of this work. Let Q be a fixed-
length query sequence with length n, S[ts : te] be a subsequence of data stream
S from time ts to te, R be a global constraint, and [nmin, nmax] be the sequence
length ranging from a scaling range of [fmin : fmax]. This scaling range is a user-
defined parameter that indicates possible lengths of a candidate subsequence,
where nmin = fmin × n, nmax = fmax × n, and n is the query sequence’s
length. When no global constraint and scaling are applied, non-overlapping range
query is equivalent to SPRING algorithm’s, and non-overlapping top-k query is
equivalent to the best-matched query in SPRING when k = 1. In this work,
we define DR(X, Y ) as the DTW distance with a global constraint R of data
sequences X and Y . In typical subsequence matching problem, a subsequence
from non-overlapping range query is reported when a local minimum-distance
subsequence is found, and subsequences from non-overlapping top-k query are
reported when a set of top-k subsequences is changed.
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Definition 1 (Non-Overlapping Range Query). Non-overlapping range
query returns a set ΩNORange of non-overlapping subsequences S[ts : te]
whose distance to a query sequence Q is less than a specific threshold ε
under DTW with a global constraint R, and the length of a subsequence is
between nmin and nmax.

Definition 2 (Non-Overlapping Top-k Query). Non-overlapping top-k
query returns a set ΩNOTopK of first k non-overlapping subsequences S[ts :
te] with smallest distances resulted from non-overlapping range query with
constrained DTW measure. The lengths of subsequences are also between
nmin and nmax.

2.3 Dynamic Time Warping Distance Measure

Dynamic Time Warping (DTW) distance measure [14,15] is a well-known shape-
based similarity measurement. It uses a dynamic programming technique to
find an optimal warping path between two time series sequences. Suppose we
have two time series, a sequence X = 〈x1, x2, . . . , xi, . . . xn〉 and a sequence
Y = 〈y1, y2, . . . , yj, . . . ym〉. The distance is calculated by following equations.

D(X1...n, Y1...m) = d(xn, ym) + min

⎧⎨
⎩

D(X1...n−1, Yj...m−1)
D(X1...n, Y1...m−1)
D(X1...n−1, Y1...m)

(1)

where D(Ø, Ø) = 0, D(Xi...n, Ø) = D(Ø, Yj...m) = ∞, and Ø is an empty
sequence. Any distance metrics can be used for d(xi, yj), including L1-norm,
d(xi, yj) = |xi − yj |, and L2-norm, d(xi, yj) = (xi − yj)2. For simplicity, we use
L1-norm to describe our proposed method, but L2-norm is used in experimental
evaluation to achieve better accuracy.

However, in reality, DTW measure may not give the best alignment that fits
our need as it tries its best to find a minimum distance, it may generate an
unwanted path. Without a global constraint, DTW measure will find its optimal
mapping between the two time series data. We can resolve this problem by simply
limiting the permissible warping paths using a global constraint.

2.4 Global Constraints

Although unconstrained DTW distance measure gives as optimal distance be-
tween two time series data, an unwanted warping path may be generated. The
global constraint [1,16,17] efficiently limits the optimal path to give a more suit-
able alignment. Recently, Ratanamahatana-Keogh band (R-K band), a general
model of global constraints, has been proposed, as shown in Figure 2. It can be
specified by a one-dimensional array R, i.e., R = 〈r1, r2, . . . , ri, . . . , rn〉, where
n is the length of time series, and ri is the height above the diagonal in y di-
rection and the width to the right of the diagonal in x direction. Each ri value
is arbitrary; therefore, R-K band is also an arbitrary-shaped global constraint.
Note that when ri = 0, where 1 ≤ i ≤ n, this R-K band represents the classic
Euclidean distance, and when ri = n, 1 ≤ i ≤ n, this R-K band represents the
original DTW distance without constraint.
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Fig. 2. An arbitrary-shaped global constraint, R-K band

2.5 SPRING Algorithm

SPRING algorithm [3], the first-proposed subsequence matching on data stream
under DTW measure, can calculate optimal distance among subsequences in the
data stream requiring O(n) in both time and space complexities, where n is the
length of a query sequence. SPRING is implemented based on two main ideas of
Star-padding technique and STWM (Subsequence Time Warping Matrix). Star-
padding is used to separate the overlapped subsequences, and STWM is a data
structure that stores a minimum distance dt,i and a starting position spt,i. Sup-
pose we have streaming sequence S = 〈s1, s2, . . . , st, . . .〉 and a query sequence
Q = 〈q1, q2, . . . , qi, . . . , qn〉. At each time slice, new elements are calculated by
following Equation 2 and Equation 3.

dt,i = ‖st − qi‖ + dbest (2)

spt,i =

⎧⎨
⎩

spt−1,i−1 if dbest = dt−1,i−1
spt,i−1 if dbest = dt,i−1
spt−1,i if dbest = dt−1,i

(3)

where dt,0 = 0, d0,i = ∞, and dbest = min {dt−1,i−1, dt,i−1, dt−1,i}.
For more detail, a complete description of SPRING algorithm can be found

in [3].

3 Accurate Subsequence Matching Algorithm

In this section, ASM (Accurate Subsequence Matching) algorithm and two im-
portant ideas, i.e., Scaled-Array (S-A) band and Modified Subsequence Matrix
(MSM), are proposed. We describe S-A band and MSM in Sections 3.1 and 3.2,
respectively. In Section 3.3, we introduce our novel subsequence matching al-
gorithm, ASM, which supports two important features, i.e., a global constraint
and scaling range.

3.1 Scaled-Array Band

The current global constraint representations are applicable only for a squared
calculation matrix. Thus, we propose a Scaled-Array (S-A) band which can rep-
resent a global constraint as a single vector array A. More specifically, suppose we
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have an n-by-m path matrix, S-A band is defined as A=〈a1, a2, . . . , ai, . . . , an〉=
〈(α1, β1), (α2, β2), . . . , (αi, βi), . . . , (αn, βn)〉, where 1 ≤ αi ≤ βi ≤ m for all
1 ≤ i ≤ n. Each element ai in A collects a tuple of vector, i.e., a valid start-
ing position αi and a valid ending position βi. A valid starting position is the
smallest j that a cell (i, j) is a valid position within a global constraint, and a
valid ending position is the largest j that a cell (i, j) is a valid position within a
global constraint, where 1 ≤ j ≤ m.

Since R-K band cannot be used as a global constraint for comparing time series
data with different lengths, S-A band is proposed to represent global constraint.
Suppose we have a query sequence with length n and a candidate sequence with
length is a scaling range from fmin to fmax. Valid starting and ending positions
(αi, βi) are defined in Equations 4 and 5.

αi = argmin {k|k + rk ≥ i} × fmin (4)

βi =
{

(i + ri) × fmax ; if i + ri ≤ n
(n − (i + ri)) × fmax ; otherwise (5)

where 0 < fmin ≤ fmax, ri ≤ n, 1 ≤ i ≤ n, and 1 ≤ αi ≤ βi ≤ m.
Note that a full global constraint and Euclidean distance are also defined when

αi = 1, βi = ∞, 1 ≤ i ≤ n, and αi = i, βi = i, 1 ≤ i ≤ n, respectively.

3.2 Modified Subsequence Matrix

Modified Subsequence Matrix (MSM) is a data structure, derived from Subse-
quence Time Warping Matrix (STWM) in SPRING, where each element consists
of four values, i.e., distance dt,i, starting position spt,i, and positions x and y
(xt,i, yt,i) on a global constraint S-A band. Each element (t, i) containing dt,i,
spt,i, xt,i, and yt,i means that at this point, we have a valid subsequence from
spt,i that give the optimal distance dt,i at its coordinate (xt,i,yt,i) on a global
constraint. A “valid” subsequence is defined as the subsequence that all coordi-
nates (xt,i, yt,i) in its warping path from spt,i to t are valid within the S-A band.
Updating algorithm for an element in MSM is described in the next section.

3.3 Accurate Subsequence Matching

The basic idea behind ASM is the validation before an update of dt,i from
dt−1,i−1, dt−1,i, or dt,i−1 in MSM. We check the validity of global constraint
position (xt,i, yt,i) from position (xt−1,i−1 + 1, yt−1,i−1 + 1), (xt−1,i + 1, yt−1,i),
and (xt,i−1, yt,i−1 + 1). If some positions (xt−1,i−1, yt−1,i−1), (xt−1,i, yt−1,i), or
(xt,i−1, yt,i−1) make (xt,i, yt,i) invalid on the S-A band, these positions will
not be selected in the calculation for dbest. Let Q = 〈q1, q2, . . . , qi, . . . , qn〉 be
a query sequence, S = 〈s1, s2, . . . , st, . . .〉 be a streaming sequence, and A =
〈(α1, β1), (α2, β2), . . . , (αi, βi), . . . , (αn, βn)〉 be an S-A band with scaling ranges
from fmin to fmax. We define function v(x, y) to validate position (x, y) in
the S-A band. It returns value 1 if (x, y) lies within the global constraint or
αy ≤ x ≤ βy; otherwise, it returns positive infinity. Four values at time t are
updated according to the following equations.
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dt,i = ‖qi − st‖ + dbest (6)

spt,i =

⎧⎨
⎩

spt−1,i−1 if dbest = dt−1,i−1
spt,i−1 if dbest = dt,i−1
spt−1,i if dbest = dt−1,i

(7)

xt,i =

⎧⎨
⎩

xt−1,i−1 + 1 if dbest = dt−1,i−1
xt,i−1 if dbest = dt,i−1
xt−1,i + 1 if dbest = dt−1,i

(8)

yt,i =

⎧⎨
⎩

yt−1,i−1 + 1 if dbest = dt−1,i−1
yt,i−1 + 1 if dbest = dt,i−1
yt−1,i if dbest = dt−1,i

(9)

where dt,0 =0, d0,i=∞, and dbest=min

⎧⎨
⎩

dt−1,i−1 × v(xt−1,i−1 + 1, yt−1,i−1 + 1)
dt−1,i × v(xt−1,i + 1, yt−1,i)
dt,i−1 × v(xt,i−1, yt,i−1 + 1)

.

As we can see, values of each element at time t depends only on the previous
element values at time t−1. Therefore, in practice, only two arrays are required.
We denote di, spi, xi, and yi as distance, starting point, x position, and y position
at current time t and at the query sequence position i, and d′i, sp′i, x′

i, and y′
i as

distance, starting point, x position, and y position at previous time t − 1.
For non-overlapping range query, a subsequence S[ts : te] is considered a result

when minimum DTW distance with S-A band between S[ts : te] and Q is less than
a threshold ε, and the subsequence has a qualified length. In addition, ASM will
report this subsequence when ∀i, di ≥ dmin ∨ spi > te, as shown in Table 1. It
is important to note that SPRING algorithm is a special case of our ASM when
(αi, βi) = (1,∞) for all i in the S-A band and a scaling length is [1,∞], so the
same results are returned when non-overlapping range query is issued.

Non-overlapping top-k query is used to monitor a set of k subsequences
which has minimum distance among overlapped subsequences. Generally, non-
overlapping top-k query is implemented on non-overlapping range query whose
initial threshold ε be positive infinity. When optimal range subsequence is found,
we push this subsequence into a distance-priority queue. If size of the queue ex-
ceeds k, we pop the maximum-distance subsequence, and reset threshold ε to be
a maximum distance of the queue. ASM algorithm for top-k query is shown in
Table 2.

We would like to emphasize that ASM always achieves higher accuracy (as
will be shown in our experimental section) while maintaining the same time and
space complexities as SPRING’s, i.e., O(n) for both space and time complexities
at each time slice, where n is the length of a query sequence. Since ASM keeps
a single matrix and a single array which are both length n, and updates O(n)
numbers every time slice, ASM requires only O(n) both in space and time.
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Table 1. ASM algorithm for optimal range query

Algorithm ASMOptimalRange

1 Input: new streaming data point st

2 Output: optimal subsequence S[ts : te], if any
3 Let n be the length of a query sequence
4 nmin = n × fmin, nmax = n × fmax

5 for i = 1 to n do
6 Compute di, spi, xi, and yi

7 endfor
8 if dmin ≤ ε
9 if ∀i, di ≥ dmin ∨ spi > te then
10 Report(dmin, ts, te)
11 dmin = ∞
12 for i = 1 to m do
13 if spi ≤ te then
14 di = ∞
15 endif
16 endif
17 if [dm ≤ ε] ∧ [dm < dmin] ∧ [nmin ≤ xm ≤ nmax] then
19 dmin = dm; ts = sm; te = t
20 endif
21 Substitute d′

i for di, sp′
i for spi, x′

i for xi, y′
i for y;

Table 2. ASM algorithm for optimal top-k query

Algorithm ASMOptimalTopK

1 Input: new streaming data point st

2 Output: updated set P of top k
3 S[ts : te]= ASMOptimalRange(st, ε)
4 if (S[ts : te] 	= NULL)
5 P.push(S[ts : te])
6 if (size(P ) > k)
7 P.pop()
8 e = P.peek().distance
9 endif
10 Report(P )
11 endif

4 Experimental Evaluation

To evaluate the performance of our proposed method, we measure an accu-
racy of our algorithm comparing with the best existing algorithm, SPRING,
using two evaluation metrics, i.e., Accuracy-on-Retrieval (AoR) and Accuracy-
on-Detection (AoD).
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4.1 Evaluation Metrics

We use two metrics, Accuracy-on-Retrieval (AoR) defined in Definition 3 and
Accuracy-on-Detection (AoD) defined in Definition 4, to measure the quality of
retrieval results on streaming sequences. Suppose we have a streaming sequence
S, a set of expected pattern sequences E, and a set of retrieved sequences R. We
first define an overlapping subsequence. Let S[ts : te] be the subsequence starting
at ts and ending at te. Overlapping subsequence OX,Y and overlap percentage
PX,Y , where X = S[a : b] and Y = S[c : d], are defined as follows.

OX,Y = S[max {a, c} : min {b, d}] (10)

PX,Y =
|OX,Y |

max {b, d} − min {a, c} + 1
(11)

For instance, if we have subsequence X = S[2 : 5] and Y = S[3 : 7], OX,Y =
S[3 : 5] and PX,Y = |S[3:5]|

max{5,7}−min{2,3}+1 = 3
6 = 0.5.

Definition 3 Accuracy-on-Retrieval. This evaluation measures how well an
algorithm has found a set of expected subsequences while definition of found
depends on overlapped percentage p. An extremely optimistic case is when
p is 0, i.e., even subsequences are only one single data point overlapped,
subsequence is marked as found. AoR is defined in Equation 12. Note that
the higher the AoR, the better the result.

AoR =
| {OX,Y |PX,Y > p, X ∈ R, Y ∈ E} |

|E| (12)

Definition 4 Accuracy-on-Detection. This evaluation measures that once
expected subsequences are found, as described in Definition 3, with over-
lapped percentage p, how well an algorithm can recognize these expected
subsequences; in the other words, AoD is an average overlapping percentage
(PX,Y ) of found sequences. AoD is defined in Equation 13. Again, the higher
the AoD, the better the result.

AoD =
∑ {PX,Y |PX,Y > p, X ∈ R, Y ∈ E}
| {OX,Y |PX,Y > p, X ∈ R, Y ∈ E} | (13)

4.2 Datasets

To test the accuracy of stream monitoring, we assemble synthetic datasets based
on UCR time series archive [18]. We use this archive because these datasets are
labeled, and we can precisely calculate the accuracy. More specifically, we con-
catenate each time series sequence from a training dataset together, but each
time series pattern is separated by normalized random walk data with twice
the pattern’s length to simulate real-world applications. For example, in CBF
dataset [18], each training data has 128 data points. We concatenate random
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Fig. 3. Example of the data stream built from the CBF classification dataset

walk sequence of 256 data points to connect each and every sequence in the
training data, as shown in Figure 3.

4.3 Experiments

All experiments are implemented in Java, and run on Linux Redhat 6.2 with
Intel Xeon 3.2 GHz and 2 GB main memory. We test our ASM algorithm using
non-overlapping top-k query on ten classification datasets from the UCR time
series data mining archive. The k value is set to be the number of patterns within
the data stream. We use a concatenated training dataset as a data stream, and
use a test dataset as query sequences for evaluation. We then report AoR and
AoD of our proposed method comparing with SPRING algorithm, as shown in
Table 3.

Table 3. Our experiment result outperforms SPRING in both AoR and AoD

Dataset AoR AoD ASM Parameters
SPRING ASM SPRING ASM [fmin : fmax] Global Constraint

Synthetic Control 73.82% 74.64% 58.33% 76.85% [0.6:1.4] 12%

Gun Point 44.31% 53.21% 50.90% 80.11% [0.7:1.3] 0%

CBF 74.03% 78.10% 60.65% 74.76% [0.7:1.3] 14%

Trace 72.84% 77.99% 33.21% 76.41% [0.7:1.3] 50%

Face Four 57.23% 63.15% 55.77% 83.81% [0.8:1.2] 0%

Lighting 7 47.57% 52.16% 35.41% 89.61% [0.8:1.2] 0%

ECG 200 60.66% 64.94% 62.87% 88.26% [0.9:1.1] 0%

Beef 33.89% 38.33% 36.11% 88.94% [0.9:1.1] 24%

Coffee 79.59% 80.10% 49.23% 94.51% [0.9:1.1] 2%

Olive Oil 69.76% 72.59% 72.59% 89.69% [1:1] 0%

4.4 Discussion

From our experiment, we can see that ASM achieves higher accuracies both in
terms of Accuracy-on-Retrieval (AoR) and Accuracy-on-Detection (AoD) com-
paring with the best similarity subsequence matching on data stream under
DTW distance, SPRING, as expected. Since SPRING finds minimum distance
from all possible subsequences of a data stream, it tries to match the query with
a subsequence that gives minimum distance. Therefore, shorter subsequences
are preferred. If we have different classes of two patterns as shown in Figure 1,
SPRING cannot distinguish. It still reports wrong subsequences, although the
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size of a query sequence and a retrieved subsequence greatly differ. ASM has
great flexibility on limiting the unwanted warping path. Scaling range is also
needed since patterns in streaming data are unpredictable. Additionally, S-A
band makes a global constraint support sequences of different length.

5 Conclusion

In this work, we have illustrated that the current subsequence matching al-
gorithm (SPRING) on data stream under time warping distance is somewhat
inaccurate, and may give undesired results. We then introduce a novel Accu-
rate Subsequence Matching algorithm that has SPRING algorithm as its special
case. With the use of a global constraint and scaling range, our experiments have
shown to improve the retrieval accuracy on every dataset by a wide margin, while
being able to maintain both time and space complexities of O(n).
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